
Graph-based Computation of Control Invariant Sets:

Algorithms, Analysis and Applications

by

Benjamin Decardi-Nelson

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Process Control

Department of Chemical and Materials Engineering

University of Alberta

© Benjamin Decardi-Nelson, 2022

Abstract

Increasingly faced with sustainability and profitability objectives, chemical process plants

have become very complex with many operating constraints. To achieve these objectives, a

high level of automation is required. Unfortunately, the ability of the automated controllers

to ensure that the control objectives are met at all future times is complicated by constraints

on the available control energy and uncertainties present in the control system. Robust

control invariant set (RCIS) and control invariant set (CIS) are fundamental tools used in

the analysis of constrained, controlled dynamical systems. However, determining these sets is

very difficult, especially in a nonlinear setting. This thesis tackled the problem of computing

invariant sets in two directions.

In the first part of this thesis, we developed several graph-based invariant set (GIS)

tools for computing invariant sets of constrained, controlled dynamical systems and proved

the convergence of the set to the largest RCIS. Specifically, we first presented algorithms

that inner and outer approximate the largest RCIS (and by extension CIS) contained in

the state constraint. Thereafter, we identified several bottlenecks in the GIS algorithm

and proposed remedial strategies including adaptive subdivision, parallelization, and system

decomposition. The improved GIS has a much improved scalability compared to the standard

GIS algorithm. We demonstrated the efficacy of the proposed algorithms and remedial

strategies using several numerical examples, including a six dimensional continuous stirred

tank reactor (CSTR).

In the second part of this thesis, we used the algorithms developed in the first part to

ii

develop a robust economic model predictive control with zone tracking (RZEMPC) frame-

work for nonlinear systems. Because the zone to be tracked is not necessarily robust control

invariant, we proposed to obtain an RCIS subset of the zone to be tracked and introduced

the concept of risk factor in the controller design. This not only ensured the stability of

the closed-loop system but also ensured guaranteed economic performance in the presence of

uncertainties. We conducted rigorous stability analysis and demonstrated the efficacy of the

RZEMPC framework using a nonlinear CSTR example. Thereafter, we further improved the

applicability of the RZEMPC framework to higher dimensional systems by tracking an ellip-

soidal control invariant set instead of a polytopic control invariant set. We demonstrated the

suitability of the proposed RZEMPC algorithm to avoid solvent flooding and over-circulation

in the absorption column of a post-combustion CO2 capture plant.

iii

Preface

The materials presented in this thesis are part of the research project under the supervision of

Dr. Jinfeng Liu, and is funded by the Natural Sciences and Engineering Research Council of

Canada (NSERC). This research was also enabled in part by the support provided by West-

grid (https://www.westgrid.ca) and Compute Canada (http://www.computecanada.ca).

Chapter 2 of this thesis is a revised version of Benjamin Decardi-Nelson and Jinfeng Liu,

Computing robust control invariant set of constrained nonlinear systems: a graph algorithm

approach. Computers & Chemical Engineering, 145:107177, 2021.

Chapter 3 of this thesis is a revised version of Benjamin Decardi-Nelson and Jinfeng

Liu, An efficient implementation of graph-based invariant set algorithm for constrained non-

linear dynamical systems which is currently under review in the Computers & Chemical

Engineering journal.

Chapter 4 of this thesis is under preparation to be submitted as Benjamin Decardi-Nelson

and Jinfeng Liu, Control invariant set computation for nonlinear systems: a distributed

approach. A short version has been accepted for oral presentation in the 2022 American

Control Conference in Atlanta, Georgia, USA.

Chapter 5 of this thesis is a revised version of Benjamin Decardi-Nelson and Jinfeng

Liu, Robust economic model predictive control with zone tracking. Chemical Engineering

Research & Design, 177:502-512, 2022.

Chapter 6 of this thesis is a revised version of Benjamin Decardi-Nelson and Jinfeng Liu.

Robust economic MPC of the absorption column in post-combustion CO2 capture through

iv

zone tracking. Energies, 15:1140, 2022.

v

To my family

vi

Acknowledgements

I cannot begin to express my deepest thanks to my advisor Dr. Jinfeng Liu, who provided

the necessary advice and a stimulating environment for this research to be conducted. He

allowed the research to be my own while steering me in the right direction whenever I needed

it.

I would also like to express my thanks to Dr. Zukui Li, Dr. Stevan Dubljevic, Dr. Mahdi

Tavakoli Afshari and Dr. Yang Shi for agreeing to serve on my examination committee, and

for their valuable comments and suggestions which helped improve my thesis.

I would also like to extend my sincere thanks to Dr. Su Liu for the numerous discussions we

had early on in the program which led to this research direction in control invariance and

zone model predictive control.

I would also like to thank Dr. Xunyuan Yin who provided me with numerous collaboration

opportunities through which I learnt to conduct research in systems and control.

I would also like to acknowledge the help and friendship of every member of the PSACE

lab, especially Bernard Agyeman who was always available to listen and critique my ideas.

Without them, my stay at the university of Alberta would not have been as pleasant as I

experienced.

Finally, I would like to acknowledge my parents and numerous friends, who either actively

or passively, helped me achieve the goals of this thesis.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 4

1.3 Contributions and thesis outline . 6

2 Computing robust control invariant sets of constrained nonlinear systems:

A graph algorithm approach 9

2.1 Introduction . 9

2.2 Preliminaries . 10

2.2.1 Notation . 10

2.2.2 System description and problem formulation 11

2.2.3 Graph construction . 12

2.2.4 Set invariance condition for autonomous systems 15

2.3 Main results . 18

2.3.1 Robust control invariance condition 19

2.3.2 Computation of robust control invariant set 21

2.3.3 Convergence of algorithm . 23

2.3.4 Inner approximation . 25

2.3.5 Algorithm complexity . 28

2.3.6 Special case: Input and disturbance affine systems 29

viii

2.4 Illustrative examples . 31

2.4.1 Example 1 . 31

2.4.2 Example 2 . 34

2.5 Concluding remarks . 35

3 An efficient implementation of graph-based invariant set algorithm for

constrained nonlinear dynamical systems 36

3.1 Introduction . 36

3.2 Preliminaries . 37

3.2.1 System description and problem formulation 37

3.2.2 Computational requirements of standard GIS algorithm 38

3.3 The improved and efficient GIS algorithm 39

3.3.1 Adaptive cell subdivision . 39

3.3.1.1 Boundary selection . 41

3.3.1.2 Selection of neighborhood of boundary cells 43

3.3.2 Efficient parallelization with GPU . 44

3.3.3 Convergence issues . 47

3.4 Results . 48

3.4.1 Process description . 48

3.4.2 Adaptive subdivision results . 49

3.4.3 Parallelization results . 51

3.5 Concluding remarks . 53

4 A distributed control invariant set computing algorithm for constrained

nonlinear cascade systems 54

4.1 Introduction . 54

4.2 Problem formulation and background . 55

4.2.1 Notation . 55

ix

4.2.2 Problem formulation . 55

4.3 System decomposition and set invariance . 57

4.3.1 System structures and invariance . 58

4.3.2 Overlapping system decomposition 65

4.4 Computation of the largest control invariant set via system decomposition . 67

4.4.1 Decentralized and distributed computation 68

4.4.2 Set reconstruction and validation . 71

4.4.3 Computational complexity . 74

4.5 Examples . 75

4.5.1 Linear system example . 76

4.5.2 Nonlinear system example . 78

4.5.3 Three Continuously stirred tank reactors in series example 80

4.6 Concluding remarks . 82

5 Robust economic model predictive control with zone tracking 83

5.1 Introduction . 83

5.2 Preliminaries . 85

5.2.1 Notation . 85

5.2.2 System description and control problem formulation 86

5.3 Robust EMPC with zone tracking . 87

5.3.1 Design of the proposed EMPC with zone tracking 88

5.3.2 Construction of the economic zone 90

5.3.2.1 Risk factor . 90

5.3.2.2 Computing the economic zone 91

5.4 Stability analysis . 94

5.5 Illustrative example . 101

5.5.1 Process description . 102

5.5.2 Effect of risk factor δ . 105

x

5.5.3 Comparison with an EMPC tracking the target zone 108

5.6 Concluding remarks . 111

6 Robust economic MPC of the absorption column in post-combustion car-

bon capture through zone tracking 112

6.1 Introduction . 112

6.2 Preliminaries . 116

6.2.1 Notation . 116

6.2.2 Process description . 116

6.2.3 Model discretization and state space representation 118

6.2.4 Control problem formulation . 120

6.3 Economic model predictive control with zone tracking 121

6.3.1 Economic MPC with target zone tracking 122

6.3.2 Modification of the target zone . 124

6.4 Simulation results . 131

6.4.1 Simulation settings . 132

6.4.2 Results and discussion . 133

6.4.2.1 Additive state uncertainty 134

6.4.2.2 Time-varying flue gas flow rate 135

6.5 Concluding remarks . 139

7 Concluding remarks and future work 141

7.1 Introduction . 141

7.2 Concluding remarks . 142

7.3 Future research directions . 143

xi

List of Tables

3.1 Major parts of the GIS algorithm and their computational requirements . . 39

3.2 Table of parameter values . 49

5.1 Table of parameter values . 103

5.2 Asymptotic average performance for the controllers 109

6.1 Definition of the state variables at the jth discrete point (j = 1, 2, · · · , 5). N2

= 1, CO2 = 2, MEA = 3, H2O = 4 . 119

6.2 CO2 gas absorption column configuration . 132

6.3 Nominal flue gas condition . 132

6.4 Nominal inlet amine solvent condition . 132

6.5 Comparison of the nominal EMPC with target zone tracking and the two

EMPCs with modified zone tracking (smaller is better). 134

6.6 Comparison of the average cost of NZEMPC and RZEMPC under time-

varying flue gas flow rate (smaller is better) 137

xii

List of Figures

1.1 Feedback control loop with various constraints, limitations and disturbances. 2

1.2 The effect of actuator limitations (hard input constraints) on the control sys-

tem. The initial state of the system is x = 1. 3

2.1 Construction of the symbolic image. (a) Image of B13 intersects with the

shaded cells B6, B7, B10, B11. (b) Directed graph depicting the image of B13. 16

2.2 Different sampling types (a) Uniform sampling (b) Boundary sampling (c)

Center sampling (d) Random sampling. 16

2.3 Example graph construction for a fictitious autonomous system and resulting

invariant set. Left: Region in state space under study; Center: Approximation

of the flow of the system using directed graph. Right: Selected cells which is

an outer approximation of the forward invariant set. 17

2.4 Comparison of inner (dashed dot) and outer approximations (dashes) obtained

from Algorithm 1 and that of [1] (solid) for a two dimensional linear system.

The invariant sets in the figure are obtained by finding the convex hull of the

cells obtained from the Algorithms. 33

2.5 Comparison of inner (dashed dot) and outer approximations (dashes) obtained

from Algorithm 1 and that of [1] (solid) for a two dimensional linear system

without disturbances. The invariant sets in the figure are obtained by finding

the convex hull of the cells obtained from the Algorithms. 33

xiii

2.6 Comparison of inner approximations of control invariant set (dashes), robust

control invariant set (dashed dot) obtained from Algorithm 2 and control

invariant set obtained from [2] (solid) for a two dimensional nonlinear system.

The invariant sets in the figure are obtained by finding the convex hull of the

cells obtained in Algorithm 2. 34

3.1 Types of control invariant set boundaries. The thick black lines represent

the boundary of the set and the shaded portion represent the interior of the

control invariant set. The box represent the region of the state space of interest

X. Left: Control invariant set with continuous boundary; Middle: Control

invariant set with pocket of holes creating a discontinuous boundary; Right:

Multiple control invariant set in the search region. 40

3.2 Representation of the same set with different number of cells. Left: Uniform

cell subdivision as used in the standard algorithm. Right: Adaptive subdivi-

sion where the boundary is refined and the interior is not 41

3.3 Graphical illustration of the process for selecting the boundary. The dashed

blue lines represents the cell enlargement and the circles represent the vertices

of the enlarged cells. 42

3.4 Graphical illustration of the process for selecting the neighborhood of the

boundary cells. The center of the cells are indicated with the solid circles.

The two dashed circles show the N -nearest neighbors of Cell B1 for different

N . The smaller dashed circle corresponds to an N of 3 while the larger dashed

circle corresponds to an N of 7. Thus, for the smaller dashed circle, the three

cells namely, B2, B6 and B7 are selected. The Cells B2, B6, B7, B3, B8, B12

and B11 are selected for the larger dashed circle. 44

3.5 Coordination of CPU and GPU, and data flow in the parallelized graph con-

struction step of the improved GIS algorithm 45

xiv

3.6 Sample plot of the cells after 20 iterations of the adaptive algorithm with

N = 0 . 49

3.7 Sets for different N after 20 iterations. The invariant sets in the figure were

obtained by finding the convex hull of the final cells after the algorithm . . 50

3.8 Number of cells generated at each iteration of the algorithm with different N . 51

3.9 Computation times for different N . 52

3.10 Comparison of computation speed for both serial and parallel computation,

with and without GPU usage. 52

4.1 Parallel or independent system structure . 58

4.2 The Cartesian product of two graphs . 59

4.3 Decomposition and full solution reconstruction for system (4.5). Left: Solu-

tion of Subsystem 1. Middle: Solution of Subsystem 2. Right: The recon-

structed full system solution from the subsystem solutions (black line) and

the actual solution of the full system (light blue region). 62

4.4 Series or connected system structures . 63

4.5 Decomposition and full solution reconstruction for system (4.8). Left: Solu-

tion of Subsystem 1. Middle: Solution of Subsystem 2 when x̃1 is treated as

an input. Right: The reconstructed full system solution from the subsystem

solutions (black line) and the actual solution of the full system (light blue

region). 64

4.6 Different decomposition strategies for the cascade system 66

xv

4.7 Procedure for dynamically estimating the missing x1 information for each cell

in Subsystem 2. (a) Solution of Subsystem 1 R1. The yellow cells indicate

the cells that correspond to B3 in the solution of Subsystem 2. Merging and

projecting these cells onto the x1 dimension produces the range of x1 for B3.

(b) Solution of Subsystem 2 R2. The green cell indicate the cell whose missing

state information is being estimated. This procedure is repeated for all other

cells in R2. 70

4.8 Procedure for reconstructing the control invariant set for the overall system

from the subsystem solutions R1 and R2. The procedure is indicated for Cell

B3 in R2. Because of the overlap, B6 in R2 has a connection with with B1, B2

and B3 in R1. These cells are then projected onto the x1 dimension to obtain

the range of x1 for each cell. The Cartesian product of the B3 with the range

of x1 produces 3 dimensional cells (in this case 3 cells). This is repeated for

all other cells in R2 to obtain the solution R for the overall system. 71

4.9 Procedure for the analysis of the distributed graphs to find the cells to be

tested. 73

4.10 Comparison of the convex hull of the cells in the centralized and distributed

solutions. Blue shaded area: centralized solution. Dashed red: solution of the

sets obtained from the distributed computation. Black: Final solution after

reconstructing the solution and validating the cells. 77

4.11 Comparison of the convex hull of the cells in the solutions utilizing the de-

composed model and the full system model. Blue shaded area: Solution from

the computation utilizing the full system model. Dashed red: solution of the

sets obtained from the distributed computation. Black: Final solution after

reconstructing the solution and validating the cells. 79

xvi

4.12 The computation vs the number of interval divisions in each dimension. At

256 interval divisions, it took more than an hour for the computation using

the centralized model. An hour has been used for better visualization. 79

4.13 The solution for Reactor 1. 81

4.14 The solution for Reactor 2. Red: results from decentralized computation.

Blue: results from the distributed computation. Black: Final solution after

validation . 81

4.15 The solution for Reactor 3. Red: results from decentralized computation.

Blue: results from the distributed computation. Black: Final solution after

validation . 82

5.1 The sets used in the controller design. The operating region (solid line) is

the hard constraint on the states where the process must be operated within

without any violation. The target zone (dashed line) is a soft constraint on

the states which ensures that the economic cost is optimized within reasonable

temperature bounds. 104

5.2 Effect of risk factor on the best steady-state cost in the economic zone and

the closed-loop asymptotic average performance. The dotted lines show the

threshold value of the risk factor after which the closed-loop asymptotic aver-

age performance begins to deteriorate implying a violation of the target zone.

(Solid line with circle markers: Asymptotic average performance, Dashed line

with square markers: Optimal steady-state cost, Dotted line: Risk factor

threshold) . 106

5.3 Effect of risk factor on the economic zone. As the δ increased, the size of

the economic zone also increased and vice versa. The magnitude of the risk

factor δ therefore determines the size of the economic zone and ultimately the

conservativeness of the controller. (Solid line: δ = 30, Dashed line: δ = 20,

Dash-dotted line: δ = 10) . 107

xvii

5.4 The sets used in the controller design. (Solid line: Hard constraint, Dashed

line: Original zone, Dash-dotted line: Economic zone) 109

5.5 State, input and economic cost trajectories of the CSTR process under con-

ventional zone EMPC (black) and our proposed zone EMPC (red) 110

6.1 A schematic diagram of a packed absorption column 117

6.2 An illustration of three iterations of the zone modification algorithm in a ficti-

tious two dimensional space. The rectangle represents the original target zone,

the circle with solid line represent the ellipsoidal invariant set and the circle

with dashed lines represent the εB enlargement of the ellipsoidal invariant set.

The algorithm terminates in the third step when the εB-enlarged ellipsoidal

invariant set does not intersect with the set outside the target zone. 128

6.3 Trajectories of the absorption efficiency (y) for the absorption column under

the operation of the zone EMPC control algorithm tracking the original target

zone (blue) and modified zone (orange). Target zone: EMPC tracking the

target zone; Modified zone: EMPC tracking the modified zone; Upper zone

limit: upper bound of the target zone. 135

6.4 Trajectories of the stage cost for the absorption column under the operation

of the zone EMPC control algorithm tracking the original target zone (blue)

and modified zone (orange) . 136

6.5 Generated trajectories of the disturbance of the flue gas flow rate signifying

ramping up and ramping down operations of a power plant 137

6.6 Trajectories of the absorption efficiency for the absorption column under the

operation of the zone EMPC control algorithm tracking the original target

zone (blue) and modified zone (orange) for the time-varying flue gas scenario 138

6.7 Trajectories of the stage cost for the absorption column under the operation

of the zone EMPC control algorithm tracking the original target zone (blue)

and modified zone (orange) for the time-varying flue gas flow rate 139

xviii

Chapter 1

Introduction

1.1 Motivation

Modern chemical process plants are becoming increasingly more complex with many oper-

ating constraints as a result of increased requirements for sustainability and profitability [3].

To ensure that these objectives are achieved in an optimal way, high level of automation

is necessary. Automated controllers are deployed in chemical process plants in an attempt

to drive the plants to operate in a desired way. Unfortunately, the design of controllers

is complicated by potential system instability which may cause the plant to operate out-

side the safe region – usually in the form of hard state/output constraints – prescribed by

the plant designers. Operating outside the prescribed safe region often lead to improper

plant behaviour, potentially causing damage to equipment, loss of human lives, violation of

environmental regulations and degraded plant profitability. A properly designed controller

ensures that the system states stay within the prescribed safe sets. Therefore, it is important

that an automated controller is designed to guarantee stability and constraint satisfaction,

even in the presence of uncertainties. Figure 1.1 shows different sources of operating con-

straints and uncertainties in a typical feedback control loop. In an ideal situation where

there are no limitations on the available control energy, controllability imply that the system

1

Controller PlantActuator

Magnitude limits
Rate limits

Disturbances
Model errors
Safety limits
Operational limits

Setpoint Output

Figure 1.1: Feedback control loop with various constraints, limitations and disturbances.

can be controlled everywhere within the state constraint. However, in a real world, there

are limitations on the available control energy for process control. Take for example a valve.

It can open between a range of 0 – 100 % and nothing outside this range. The presence of

limitations on the actuator, limit the ability of the control system from ensuring that the

system states stay within the safe region at all future times [4]. As a demonstration, consider

the linear discrete-time system in Example 1.1.

Example 1.1. Consider the discrete-time linear system

x+ = 2x+ u

where x and u are the system state and manipulated input respectively, and x+ is the system

state at the next time step.

In Example 1.1, the goal is to transfer the system from an initial state of x = 1 to a final

state of x = 0 in finite time. This is possible in the absence of input constraints because the

system is controllable. However, this may not be possible when a limitation is put on the

input. The evolution of the system from an initial state of x = 1 under an unconstrained

input and an input constrained to be within -0.5 and 0.5 is presented in Figure 1.2. It can

be seen in the figure that without input constraints, the controller is able to drive the system

state to the origin whereas the presence of the input constraint makes the controller unable

to drive the state of the system to the origin or even stabilize the system. This shows that

the presence of input constraints limit the ability of the controller to stabilize the system at

2

0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

St
at

e

(a) Unconstrained

0 1 2 3 4

2

4

6

8

St
at

e

(b) Constrained u=[-0.5 0.5]

0 2 4 6 8
Time

1.5

1.0

0.5

0.0

In
pu

t

0 1 2 3
Time

0.52

0.51

0.50

0.49

0.48

In
pu

t

Figure 1.2: The effect of actuator limitations (hard input constraints) on the control system.
The initial state of the system is x = 1.

the origin and eventually the states of the plants will violate the state constraints. In short,

failure to account for input constraints, disturbances, etc. in the controller design could lead

to poor performance and/or instability [5].

It therefore is necessary that the set of states for which a control input exist to keep the

state of system within the state constraint at all times is known for controller design purposes.

This set of states is known as a control invariant set (CIS). In addition, if disturbances are

considered in the determination of this set, then the set is known as a robust control invariant

set (RCIS). The concept of control invariant set is closely related to reachable sets [6], null

controllable sets [7] and viability kernels [8]. The importance of control invariant sets in

controller design and assessment is evident in the numerous attention it has received in the

control literature (see [9] for an extensive survey on the subject). For example, it is used as

a terminal region constraint in the design of Model Predictive Control (MPC) strategies to

guarantee stability, recursive feasibility and constraint satisfaction [10, 11]. Also, advances

in economic MPC with zone tracking [12, 13] further motivate the need to determine control

3

invariant sets. A Lyapunov function is a widely used tool for stability analysis of a system

[14, 15, 16]. It also well known that sublevel sets of Lyapunov functions are invariant [9].

Therefore, finding the CIS or RCIS of a given system imply that a Lyapunov function can be

constructed [9, 8, 17, 18]. More recently, control invariant set has been found to be useful in

ensuring stability and constraint satisfaction in reinforcement learning [19, 20, 21, 22]. The

above considerations motivate the need to find the largest (robust) control invariant sets

contained in the state constraint. In this thesis, we will focus on the computation of CIS

and RCIS of constrained controlled nonlinear systems and its applications to zone MPC.

1.2 Background

Despite the well known importance of control invariant sets, accurate and efficient determi-

nation of control invariant sets is still an open issue, even for linear systems. This is because

determining a control invariant set for a given system involves considering all possible tra-

jectories of the system. For several decades, the challenges of estimating control invariant

sets for discrete-time systems have been widely studied in the systems and control litera-

ture [23]. Linear systems, in particular, have gotten a lot of attention [1, 24, 25, 26, 27].

Most of the algorithms for computing control invariant sets of linear systems are based on

the dynamic programming technique [28], which provide convergence to the largest (with

respect to inclusion) CIS. For general nonlinear systems however, only a few results exit

[2, 29, 30]. Although Lyapunov functions are important tools for set invariance analysis, it

is difficult to obtain such functions for nonlinear systems in general. Moreover, most algo-

rithms for nonlinear systems do not provide convergence to the largest CIS. This is because

of the inherent difficulty in computing control invariant sets of general nonlinear systems.

Homer and Mhaskar presented an algorithm for estimating null controllable regions of non-

linear systems by enlarging an initial estimate of a control invariant set [5, 31]. However,

the algorithm makes use of an invariance test function that require guessing an appropriate

4

input sequence for a specified prediction horizon which may not be easy especially the case

of systems which are not input affine. This was further extended to an approach that solves

a reverse time-optimal control problem in [7]. In these cases however, the presence of distur-

bances were not considered. Fiacchini and coworkers also presented an algorithm based on

difference of two convex (DC) functions to estimate convex robust control invariant sets of

nonlinear systems [2]. However, the algorithm requires contractivity and convergence to the

largest RCIS was not provided. In the level-set algorithm proposed by Mitchell et al. [6], a

grid-based algorithm which solves a time-dependent Hamilton-Jacobi formulation was used

to estimate reachable sets of continuous systems with uncertainties.

Another major challenge with determining control invariant set is that many of the cur-

rent state-of-the-art algorithms have inadequate scalability when it comes to the dimension

of the system states. For example, the methods for linear time invariant (LTI) systems are

based on vertex enumeration of the set’s full-dimensional polytopic representation [1]. The

number of vertices in the polytope grows exponentially as the system’s dimension increase,

resulting in intractable computation. For nonlinear systems, only a few results exist with

majority of the algorithms either being grid-based [5, 6, 31] or set-based [32]. Similar issues

which are considerably more challenging exist for nonlinear systems because of the state

space discretization. A trade-off between set complexity and computational complexity is

frequently made to overcome scalability concerns in determining control invariant sets. The

methods presented in [33, 34] have been successful in computing control invariant set of high

dimensional systems but assume a control invariant set of prescribed complexity or shape

which results in faster computation but overly conservative sets. A decomposition and recon-

struction based method for exact computation of backward reachable sets of self-contained

nonlinear subsystems using the Halmilton-Jacobi (HJ) formulations was developed in [35].

In [36, 37], decentralized and distributed algorithms were developed to obtain a family of

practical positively invariant sets of linear systems. In [38], a decomposition based method

was proposed to compute the backward reachable sets of nonlinear systems. In these cases,

5

however, the missing interconnection information were treated as disturbances which results

in conservative results.

Motivated by the above considerations, this thesis presents new algorithms for comput-

ing approximations of the largest robust control invariant set of general constrained time-

invariant discrete-time uncertain nonlinear systems.

1.3 Contributions and thesis outline

In Chapter 2, we present a graph-based invariant set (GIS) algorithm for computing the

largest robust control invariant sets (RCISs) of constrained nonlinear systems. The pro-

posed approach is based on casting the search for the invariant set as a graph theoretical

problem. Specifically, a general class of discrete-time time-invariant nonlinear systems is con-

sidered. First, the dynamics of a nonlinear system is approximated with a directed graph.

Subsequently, the condition for robust control invariance is derived and an algorithm for

computing the robust control invariant set is presented. The algorithm combines the iter-

ative subdivision technique with the robust control invariance condition to produce outer

approximations of the largest robust control invariant set at each iteration. Following this,

we prove convergence of the algorithm to the largest RCIS as the iterations proceed to in-

finity. Based on the developed algorithm, an algorithm to compute inner approximations of

the RCIS is also presented. A special case of input affine and disturbance affine systems is

also considered. Finally, two numerical examples are presented to demonstrate the efficacy

of the proposed method.

In Chapter 3, we present an improved and efficient implementation of the GIS algorithm

for general discrete-time controlled nonlinear systems. We first identify the bottlenecks of the

GIS algorithm through extensive analysis, and then provide remedial procedures to improve

the implementation of the GIS algorithm. Specifically, we developed an adaptive subdivision

scheme using a supervised machine learning-based algorithm to reduce the cell growth rate

6

and parallelize the graph construction step. We extensively demonstrate the performance

of the improved GIS algorithm using a numerical example and compare the result to that

of the standard GIS algorithm. The results show that the adaptive subdivision and the

parallelization improved the speed of the algorithm by about 8x and 3x respectively, that of

the standard GIS algorithm.

In Chapter 4, we present a distributed framework based on the graph algorithm for com-

puting control invariant set for nonlinear cascade systems. The proposed algorithm exploits

the structure of the interconnections within a process network. First, the overall system is

decomposed into several subsystems with overlapping states. Second, the control invariant

set for the subsystems are computed in a distributed manner. Finally, an approximation

of the control invariant set for the overall system is reconstructed from the subsystem solu-

tions and validated. We demonstrate the efficacy and convergence of the proposed method

to the centralized graph-based algorithm using several numerical examples including a six

dimensional continuous stirred tank reactor system.

In Chapter 5, we present a robust economic model predictive control (EMPC) formula-

tion with zone tracking for discrete-time uncertain nonlinear systems. The proposed design

ensures that the zone tracking objective is achieved in finite steps and at the same time op-

timizes the economic performance. In the proposed design, instead of tracking the original

target zone, a robust control invariant set within the target zone is determined and is used as

the actual zone tracked in the proposed EMPC. This approach ensures that the zone track-

ing objective is achieved within finite steps and once the zone tracking objective is achieved

(the system state enters the robust control invariant set), the system state does not come

out of the target zone anymore. To optimize the economic performance within the zone in

the presence of disturbances, we introduce the notion of risk factor in the controller design.

An algorithm to determine the economic zone to be tracked is provided. The risk factor

determines the conservativeness of the controller and provides a way to tune the EMPC for

better economic performance. A nonlinear chemical example is presented to demonstrate

7

the performance of the proposed formulation.

In Chapter 6, we present an EMPC with zone tracking algorithm as an effective means to

ensure optimal operation of the absorption column of a post-combustion CO2 capture plant.

The proposed control algorithm incorporates a zone tracking objective and an economic

objective to form a multi-objective optimal control problem. To ensure that the zone tracking

objective is achieved in the presence of model uncertainties and time-varying flue gas flow

rate, we propose a method to modify the original target zone with a control invariant set.

The zone modification method combines both ellipsoidal control invariant set techniques

and a back-off strategy. The use of ellipsoidal control invariant sets ensure that the method

is applicable to large scale systems such as the absorption column. We present several

simulation case studies that demonstrate the effectiveness and applicability of the proposed

control algorithm to the absorption column in a post-combustion CO2 capture plant.

Chapter 7 summarizes the main contributions of this thesis and discusses possible research

directions in graph-based control invariant set algorithms.

8

Chapter 2

Computing robust control invariant

sets of constrained nonlinear systems:

A graph algorithm approach

2.1 Introduction

As mentioned in Chapter 1, algorithms for computing RCIS of general constrained nonlinear

systems has received less attention in the systems and control literature compared to the

linear counterpart. In addition to the methods for nonlinear systems mentioned earlier, a

common approach for handling nonlinearity is to linearize the nonlinear system about an

equilibrium point and then use a well-known linear algorithm to compute the RCIS [11]. This

approach usually leads to overly conservative results due to the introduction of additional

uncertainties into the system model. Another approach is to assume that the system has

polynomial dynamics and then use the methods in [39, 40]. A major limitation is that most

models of chemical processes have complex dynamics which is far from such an assumption.

Graph theoretical methods have been successfully used in the analysis of nonlinear sys-

tems [41, 42, 43, 44]. The idea is to approximate the trajectories of the dynamical system

9

using directed graphs and then analyze the constructed graph using graph theoretical meth-

ods. This method has been used in identifying or computing periodic orbits, invariant sets,

recurrent sets, Lyapunov exponents, etc (see [45] for more applications). However, all the

studies focused on autonomous dynamical systems with the exception of [44] which used

graph theoretical method to determine control sets. Control sets are maximal subsets of the

state space where complete controllability holds [46]. They are subsets of the largest control

invariant sets. Moreover, only outer approximations of the invariant sets were considered in

these studies which are not very useful in control.

Motivated by the success of graph theory in the analysis of autonomous nonlinear systems,

in this chapter, we present new algorithms for computing approximations of the largest robust

control invariant set of general constrained time-invariant discrete-time uncertain nonlinear

systems. The first algorithm computes an outer approximation and the second algorithm

computes an inner approximation of the largest RCIS. In contrast to some existing methods,

we do not assume polynomial dynamics, nor require contractivity nor require prior knowledge

of the structure of the set. More importantly, the proposed algorithms yield inner and outer

approximations of the largest robust control invariant set for a sufficiently high precision. By

combining our derived robust control invariant condition with the subdivision technique, our

algorithm shows higher efficiency as compared to the grid-based methods. Furthermore, we

propose an approach similar to feedback linearization of nonlinear systems to further reduce

the computational load.

2.2 Preliminaries

2.2.1 Notation

Throughout this chapter, Z denotes the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}. Z+ denotes

the set of non-negative integers {0, 1, 2, . . .}. {zk}k∈Z+ denotes an ordered set of numbers

according to k ∈ Z+ {z0, z1, z2, . . .}. B denotes the unit ball in Rn with respect to the infinity

10

norm. The operator |·| denotes the Euclidean norm of a vector. The Minkowski set addition

of two sets P,Q⊆Rn is defined as Q + P = {p + q ∈ Rn|q ∈ Q, p ∈ P}. We slightly abuse

notation and use x+Q instead of {x}+Q to denote the Minkowski set addition of a point x

and a set Q. A directed graph is denoted as G = (V,E) with V denoting the set of vertices

of the graph and E denoting the set of ordered pairs of vertices known as edges. A function

f : X → X is said to be homeomorphic in X if it is continuous with continuous inverse in

X.

2.2.2 System description and problem formulation

In this chapter, we consider a class of discrete-time nonlinear systems that can be described

by the following model:

x+ = f(x, u, w) (2.1)

where x+ ∈ Rn denotes the state at the next sampling time, x ∈ Rn is the state, u ∈ Rm

represents the control input and w ∈ Rn denotes the unknown disturbance input. We

consider that the state, control and disturbance are subject to the following constraints:

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm and w ∈ W ⊆ Rn (2.2)

Throughout our discussion, we make the following assumptions:

Assumption 2.1 (Compactness of constraints). The sets X, U and W are compact metric

spaces. In addition, we assume that U and W have the origin in their interiors.

Assumption 2.2 (Smoothness of system). The function f : X×U×W → X is a sufficiently

smooth vector field in X. In addition, we assume that for each x ∈ X, u ∈ U and w ∈ W ,

f(x, u, w) is uniquely defined.

We also recall the following definitions on forward invariant set and robust control in-

variant set:

11

Definition 2.1 (Forward invariant set [9]). A set R⊆X is said to be a forward or positively

invariant set of the system x+ = f(x) if for every x ∈ R, f(x) ∈ R.

Definition 2.2 (Robust control invariant set [9]). A set R⊆X is said to be a robust control

invariant set (RCIS) for system (2.1) and constraint set (2.2) if for every x ∈ R, there exist

a feedback control law u = µ(x) ∈ U such that R is forward invariant for the closed-loop

system f(x, u, w) for all w ∈ W .

In the absence of disturbances, the robust control invariant set R, falls back to the usual

notion of control invariant set. In this work, we are interested in determining the largest

robust control invariant set contained in X. This set is also known as the maximal RCIS,

strongly reachable set [28] or discriminating kernel [47]. We denote by R(X) the largest

RCIS of system (2.1) with constraints (2.2).

2.2.3 Graph construction

In this section, we briefly present the notion of symbolic image of a dynamical system and

its construction for autonomous systems. For a more detailed discussion, the reader may

refer to Chapters 2 and 5 of [45].

Consider a discrete-time autonomous system as follows:

x+ = f̂(x) (2.3)

where f̂ : X → X is a homeomorphism on a compact domain X⊆Rn.

A symbolic image of (2.3) is a finite approximation of the dynamics of the system using

a directed graph. To construct a symbolic image, the state space X is quantized with the

help of a finite covering, C = {B1, . . . , Bl}, of the state space X. The finite covering C is a

12

collection of closed sets known as cells Bi, i = 1, . . . l, such that

X ⊆ ∪Bi∈CBi (2.4a)

Bi ∩Bj = ∅, ∀Bi, Bj ∈ C with i ̸= j (2.4b)

The diameter of the covering C is given by

diam(C) := max
Bi∈C

diam(Bi)

where diam(Bi) = sup{|x−y|: x, y ∈ Bi}. Since X is compact, it is always possible to obtain

a finite covering. We now introduce the symbolic image of f̂ with respect to the covering C.

Definition 2.3 (Symbolic image [45]). Let G be a directed graph with l vertices where each

vertex is a cell or box Bi in a finite covering C of the domain X of system (2.3). The vertices

Bi and Bj are connected by a directed edge Bi → Bj if

Bj ∩ f̂(Bi) ̸= ∅

where f̂(Bi) := {y|y = f̂(x), x ∈ Bi}. The graph G is called a symbolic image of (2.3) with

respect to the covering C.

Definition 2.4 (Admissible path [45]). A sequence {zk}k∈Z+ with each element zk taking a

value from the set of vertices of G is called an admissible path if for each k ∈ Z+, the graph

G contains the edge zk → zk+1.

To understand the relationship between an admissible path on the symbolic image and

the trajectories of system (2.3), we recall the notion of ε-orbit.

Definition 2.5 (ε-orbit [48]). For a given ε > 0, a sequence of points {xk}k∈Z+ in X is

called an ε-orbit of system (2.3) if for any k ∈ Z+

|f̂(xk)− xk+1|< ε

13

Due to round off errors in numerically computed trajectory of system (2.3), its real tra-

jectory is rarely known in practice. Thus, a numerically computed trajectory of system (2.3)

is usually no more than an ε-orbit for sufficiently small positive ε. There is therefore a

natural correspondence between admissible paths on the symbolic image and the ε-orbits.

That is, an admissible path on the graph G represents an ε-orbit of system (2.3) and vice

versa. Specifically, if the sequence {zk}k∈Z+ is an admissible path on the symbolic image G,

then there exist a sequence {xk, xk ∈ zk}k∈Z+ that is an ε-orbit of system (2.3) such that the

following inequality hold

|f̂(xk)− xk+1|≤ diam(zk+1) < ε

It is obvious that the finer the covering, the more precise the approximation of the system

trajectories.

Definition 2.6 (Out-degree of a vertex). The out-degree of a vertex in a directed graph is

the number of edges going out of the vertex.

If a vertex (Bi) of the symbolic image of system (2.3) has zero out-degree, then its image

f̂(Bi) has no intersection with any other vertex on the symbolic image. i.e. f̂(Bi) ∩X = ∅.

Therefore its image f̂(Bi) lies outside X. This implies that any trajectory starting from the

cell will exit the state constraint X in finite time. An admissible path on the symbolic image

G may either be finite or infinite. An admissible path on the symbolic image is finite if it

ends with a vertex that has zero out-degree. Otherwise, it is infinite.

The construction of the symbolic image is depicted in Example 2.1.

Example 2.1 (Construction of the symbolic image). Let X = {x ∈ R2 : ∥x∥∞≤ 2} and

consider the autonomous two dimensional system defined by

x+ = f̂(x) =

⎡⎢⎣x1 + 1.5

x2 + 1.5

⎤⎥⎦
To construct the symbolic image of the system in Example 2.1, the state constraint X

14

is first quantized. Quantization of X is not unique. One of such quantization is to use 16

cells of unit length to obtain the finite covering C = {B1, . . . , B16} of X. Since X satisfies

Assumption 2.1, this is possible. Thereafter, the image of each cell is obtained and used to

construct the symbolic image. The quantized X is shown in Figure 2.1(a). The shaded cells

(B6, B7, B10, B11) in Figure 2.1(a) are the image of cell B13 i.e. they have an intersection

with f̂(B13). The resulting graph is shown in Figure 2.1(b). The existence of a directed edge

between cells B13 and B6 implies there exist an admissible path between the two cells. Cells

whose image have no intersection with any other cells will have no outgoing edges in the

symbolic image i.e. out-degree will be zero. The symbolic image is constructed by repeating

this procedure for all other cells. The union of the resulting graphs form the symbolic image.

What remains is how the image of a cell can be approximated. One approach to approx-

imate the image of a cell is to finitely sample points in the cell and then find the image of

the points. The image of the cell is the union of the image of each sampled point in the cell.

Different sampling methods that can be used are shown in Figure 2.2. Another approach

is the use of interval arithmetic [49]. This involves performing numerical computations on

intervals rather than numbers. Interval arithmetic was used in [30] to compute one-step

reachable sets.

2.2.4 Set invariance condition for autonomous systems

In the previous section, we described the construction of the symbolic imageG of system (2.3)

which is an approximation of its dynamics using directed graphs. In this section, we describe

how the resulting directed graph can be investigated using graph theory to obtain an outer

approximation of the largest forward invariant set for autonomous dynamical systems. We

recall the terminology in graph theory:

Definition 2.7 (Strongly connected graph). A directed graph G = (V,E) is said to be

strongly connected if there is an admissible path in both directions between each pair of

vertices of the graph.

15

1

13

6 7

10 11
13

6

10

7

11

1

16

16

2

1

0

-1

-2

-2 -1 0 1 2

(a) (b)

2 3 4

5 8

9 12

14 15

Figure 2.1: Construction of the symbolic image. (a) Image of B13 intersects with the shaded
cells B6, B7, B10, B11. (b) Directed graph depicting the image of B13.

(a) (b) (d)(c)

Figure 2.2: Different sampling types (a) Uniform sampling (b) Boundary sampling (c)
Center sampling (d) Random sampling.

For a graph G that is not strongly connected, it may contain subgraphs that are strongly

connected. These subgraphs are known as the strongly connected component subgraphs of

G.

Definition 2.8 (Non-leaving cells). The set of vertices of the directed graph G with infinite

admissible paths passing through them, denoted as I+(G), is the union of vertices of the

largest strongly connected component subgraph of the directed graph G and any vertex of G

that is not in the largest strongly connected components but has a path to a vertex in the

largest strongly connected component subgraph.

The following theorem summarizes how we may obtain an outer approximation of the

largest forward invariant set of an autonomous system based on its symbolic image [45].

16

1 2

3

5

4

6
7

9 8

1 2 3

4 5 6

7 8 9

2 3

4 5

8 9

Figure 2.3: Example graph construction for a fictitious autonomous system and resulting
invariant set. Left: Region in state space under study; Center: Approximation of the flow
of the system using directed graph. Right: Selected cells which is an outer approximation
of the forward invariant set.

Theorem 2.1. Let G = (V,E) having a set of vertices V and a set of ordered pairs of

vertices E be a symbolic image of the mapping f̂ in (2.3) with respect to a finite covering C

of X. Then

i. the vertices of the largest strongly connected component subgraph Gs = (Vs, Es) of G

have infinite admissible paths passing through them.

ii. any element of V but not Vs with a path to at least one vertex of Gs also has an infinite

admissible path passing through it.

iii. the union of the elements of (i) and (ii), I+(G), is a closed neighbourhood of the largest

forward invariant set R of (2.3) in X. i.e.

R⊆I+(G) (2.5)

Fundamentally, Theorem 2.1 characterizes cells that have infinite admissible paths pass-

ing through them on the symbolic image. The central idea is illustrated in Figure 2.3 for

a fictitious autonomous system. In the figure, cells B2, B3, B4 and B5 form the strongly

connected components subgraph of the symbolic image since there exist an admissible path

in both directions between each pair of vertices on the symbolic image (Theorem 2.1: i).

Also, since there exist an admissible path from cells B8 and B9 to an element (Cell B5) of

17

the the strongly connected components subgraph, they also have infinite admissible paths

passing through them (Theorem 2.1: ii). Notice that Cell B2 also has admissible path to

Cells B1 and B7 which have zero outdegree. Similarly, there exist an admissible path from

Cell B4 to Cell B6. Thus, both finite and infinite admissible paths pass through Cells B2 and

B4. Therefore, the union of Cells B2, B3, B4, B5, B8 and B9 form a closed neighbourhood of

the largest forward invariant set in the region of the state space under study (Theorem 2.1:

iii). Since Cells B2 and B4 also have finite admissible paths passing through them, the set is

not actually forward invariant and is merely an outer approximation of the largest forward

invariant set contained in X. Finally, since Cells B1, B6 and B7 have no outgoing edges (zero

outdegree), any trajectory starting from them will exit the region of state space understudy

in finite time and therefore do not form part of the approximation of forward invariant set.

We now proceed to present the main results of this work.

2.3 Main results

In the previous section, we demonstrated how forward invariant sets can be outer approxi-

mated for autonomous dynamical systems based on graph theory. In this section, we extend

this result for constrained dynamical systems with controls and disturbances, and then use

this result to develop efficient algorithms for computing robust control invariant sets. Recall

that the dynamics of a system needs to be transcribed in a directed graph before analysis

using graph algorithms. While the graph construction is straight forward to do for au-

tonomous dynamical systems, it is not the case for dynamical systems with controls and

disturbances (2.1). We show how the directed graph can be constructed for system (2.1)

for our intended purposes as well as the robust control invariance condition based on the

constructed graph.

We begin by presenting the directed graph construction and the robust control invariant

set condition for constrained controlled systems with disturbances. Then, we present the

18

algorithm for computing the robust control invariant set. Finally, we present a way to reduce

the computational load for input affine systems which are a special case of system (2.1).

2.3.1 Robust control invariance condition

Let us consider the set-valued map, also called parameterized map,

F (x,w) := f(x, U, w) = {f(x, u, w)}∪u∈U
(2.6)

The map F associates with each state x and disturbance w the subset F (x,w) of feasible next

states. Therefore, system (2.1) defined by the family of parameterized difference equations

is actually governed by the difference inclusion

x+ ∈ F (x,w) (2.7)

With this difference inclusion, all feasible trajectories of system (2.1) under every initial

state and disturbance can be obtained. However, care must be taken when constructing

the graph. If one naively constructs the symbolic image of system (2.1) by considering the

union of all feasible trajectories of (2.7) for every initial state and disturbance, the graph

obtained will not be suitable for our purposes. This is because the so-called “best-case” will

be included. The “best-case” are instances where the disturbances aid the control inputs.

They must be avoided in the graph construction as it does not provide guaranteed existence

of a control law that will keep the system in the constraint set under every disturbance

realization. Thus, to ensure guaranteed existence of a control law to keep the states within

constraint set (2.2) at all times, not all trajectories must be allowed on the symbolic image

which will be investigated. A pessimistic or worst-case view must therefore be adopted in

the construction of the symbolic image. In short, the control seeks to enlarge the robust

control invariant set while the disturbance seeks to make it smaller.

To address this, we construct individual graphs for each w ∈ W using the difference

19

inclusion (2.7) and analyze them using Theorem 2.1. By taking an intersection of the re-

sulting sets for every w ∈ W , we ensure that the disturbance always act against the control

inputs. The resulting set obtained from the intersections, outer approximates the largest

robust control invariant set. Let us define Gw = (Vw, Ew) as the symbolic image of F (X,w)

with respect to the finite covering C of X and the constraint sets (2.2). Also, let

K := ∩w∈W I+(Gw) (2.8)

The set K represents the cells with infinite admissible paths passing through them irrespec-

tive of the disturbance realization. The following theorem characterizes an outer approxi-

mation of the robust control invariant set of system (2.1) with constraint set (2.2).

Theorem 2.2. Let K be defined as in Equation 2.8 above. If Assumptions 2.1 and 2.2 hold,

then the set K is a closed neighbourhood of the largest robust control invariant set R(X) of

system (2.1) with constraint sets (2.2) i.e.

R(X)⊆K (2.9)

Proof. First we prove by contradiction that infinite admissible paths pass through the cells in

K. Assume there exists a state x ∈ R(X) but x /∈ K. Then by definition ofK, it implies that

there exist Cells Bi⊆X containing x without any infinite admissible path passing through

it and Bj⊆X with no outgoing edge (zero outdegree) such that there exist a disturbance

sequence {w0, . . . , wk} for every input sequence {u0, . . . , uk} such that the finite sequence

{z0, . . . , zk} with z0 = Bi and zk = Bj exist. This implies that the trajectory of x will

eventually escape from X. This however, contradicts the assumption that x ∈ R(X). Now

we show that the set K is a closed neighbourhood of R(X). Since an admissible path on the

symbolic image is an ε-orbit and every cell inK is closed, the setK is a closed neighbourhood

of R(X).

20

Theorem 2.2 characterizes the cells whose union forms an outer approximation of the

robust control invariant set of system (2.1) and constraint sets (2.2) given a quantized state

constraint set. This is the central idea we use in designing an algorithm for computing the

largest robust control invariant set contained in X.

2.3.2 Computation of robust control invariant set

In this section, we present the algorithm for computing the robust control invariant set of sys-

tem (2.1) subject to constraint set (2.2) and prove its convergence to the maximal RCIS. The

algorithm is combined with the subdivision process (see [50] for more discussion) to improve

the computational efficiency. This is realized using a family of finite coverings of the RCIS

starting from the state constraint. In each step, a set of cells are selected according to The-

orem 2.2 and then subdivided while the remainder are discarded. The algorithm is achieved

in three main steps namely subdivision, graph construction and selection. Considering the

k-th iteration in the proposed algorithm, the operations are outlined below.

• In the subdivision step, a finer covering of the RCIS is generated by dividing the current

cells along one of the dimensions. If Ĉdk and Cdk−1
are coverings of the RCIS where dk

and dk−1 denote their respective diameters, then dk > dk−1 and

∪B∈Ĉdk
B = ∪B∈Cdk−1

B

The set that is subdivided does not change other than have cells with smaller diameter.

In each iteration of the algorithm, the dimension along which the cells are divided is

cycled. The function subdivide() is used to compute the subdivision.

• Following the subdivision step, the graph construction step is conducted. This is

achieved by creating a collection of graphs Gk = {Gk
w = (V k

w , E
k
w) ∀w ∈ W} with

21

Algorithm 1: Computing maximal robust control invariant set

Input: System (2.1), constraint sets (2.2) and maximum number of iterations N
Output: largest robust control invariant set

1 Cd0 ← X // Initialization

2 for k ← 1, 2, 3, · · · , N do
3 if Cdk = ∅ then
4 CdN ← Cdk
5 break

6 if Cdk = Cdk−1
then

7 CdN ← Cdk
8 break

9 Ĉdk ← subdivide(Cdk)
10 Gk ← graph(Ĉdk)
11 Cdk+1

← select(Gk)

12 return CdN

respect to the covering obtained from the subdivision step Cdk where

V k
w = Ĉdk and

Ek
w = {(Bi, Bj) ∈ Ĉdk × Ĉdk | F (Bi, w) ∩Bj ̸= ∅}

This is realized in the algorithm as the function graph().

• Finally, the selection step involves the selection of the set of cells that have infinite

paths passing through them irrespective of w ∈ W using the robust control invariant

set condition in Theorem 2.2. i.e.

Cdk = {B ∈ Ĉdk | B ∈ ∩G∈Gk
I+(G)}

The cells that are not selected are discarded while the selected ones goes on to the

next iteration. This is represented in the algorithm as the function select().

The complete algorithm is summarized in Algorithm 1 below:

Algorithm 1 is initialized using the state constraint X. This not only ensures that the

22

domain understudy is restricted toX, but also ensures that the state constraints are enforced.

Also, since Equation (2.7) is used during the graph construction step, the input and the

disturbance constraint sets need to be finitely sampled for numerical implementation of

the algorithm. An alternative is to treat the input and disturbance sets as intervals and use

interval arithmetic for the computations. Notice that the computational load of the algorithm

depends heavily on the number of cells generated at each iteration. This grows exponentially

as the algorithm progresses. Similar to other algorithms for numerically computing invariant

sets, there is a trade off between computational load and accuracy.

In what follows, we prove the convergence of the algorithm to the largest robust control

invariant set.

2.3.3 Convergence of algorithm

We now prove that Algorithm 1 always converge to the largest RCIS R(X) provided k goes to

infinity. Let us denote by Rk the collection of closed sets after the k-th iteration of Algorithm

1. i.e.

Rk = ∪B∈CdkB

A quick observation is that Algorithm 1 generates a nested sequence {Rk} of compact sets

with Rk⊆Rk−1 due to the continuity of system (2.1). We can therefore observe that the N -th

output from the algorithm is given by

RN = ∩Nk=0Rk (2.10)

and we may write

R∞ = ∩∞k=0Rk (2.11)

as the limit set of the algorithm. Our goal is to show that the robust control invariant set

R(X) is a subset of R∞ and vice versa.

23

We first begin by showing that the sets Rk contain the robust control invariant set.

Lemma 2.1. Consider system (2.1) with constraint sets (2.2). If Assumptions 2.1 and 2.2

hold, then the sets Rk obtained at the k-th iteration of Algorithm 1 contain the largest robust

control invariant set. i.e.

R(X)⊆Rk, ∀k ∈ Z+

Proof. Obviously, we know that R(X)⊆X = R0. It also follows from Theorem 2.2 that

R(X)⊆Rk⊆R0. Therefore R(X)⊆Rk ∀k ∈ Z+.

We now show that the limit set of Algorithm 1 is robust control invariant.

Lemma 2.2. Consider system (2.1) with constraint sets (2.2). If Assumptions 2.1 and 2.2

hold, then the limit set R∞ obtained from Algorithm 1 is robust control invariant.

Proof. Recall that an admissible path on a symbolic image represents an ε-orbit of sys-

tem (2.1). From the construction of Algorithm 1, we have that dk → 0 as k → ∞. As a

consequence of the weak shadowing property of an admissible path on the symbolic image

(see [45], Theorem 14, 2) and the continuity of system (2.1), ε → 0. Following similar ar-

guments in [45] (Theorem 41, 2), we have that as ε → 0 every admissible path approach

the true path. Now we prove by contradiction. Suppose there exists an x ∈ R∞ such that

there exist w ∈ W for every u ∈ U such that f(x, u, w) /∈ R∞. This implies that only finite

admissible paths pass through x. But this is impossible by the construction of Algorithm 1

since infinite admissible paths pass through every x ∈ R∞, and we have obtained the desired

contradiction.

Finally by combining Lemmas 2.1 and 2.2, we obtain the desired convergence result for

Algorithm 1.

Theorem 2.3. Let R(X) be the largest robust control invariant set of system (2.1) with con-

straint sets (2.2). Consider the sequence {Rk}k∈Z+ generated by Algorithm 1. If Assumptions

24

2.1 and 2.2 hold, then

R(X) = R∞

Proof. To prove the above assertion, we need to show that the largest robust control invariant

set R(X) is a subset of R∞ and at the same time a superset of R∞. Now we proceed with

the proof.

First we show that R(X) is a subset of R∞. It immediately follows from Lemma 2.1 that

R(X) is contained in every Rk and therefore is also contained in R∞. i.e.

R(X)⊆R∞

Next we show that R∞ is a subset of R(X). It follows from Lemma 2.2 that the compact

set R∞ is robust control invariant and therefore must be contained in R(X). i.e.

R∞⊆R(X)

Since combining the two Lemmas gives

R∞⊆R(X)⊆R∞

This further implies that

R(X) = R∞,

which completes the proof.

2.3.4 Inner approximation

Notice that by the construction of Algorithm 1, the sets Rk are outer approximations of

the largest robust control invariant set contained in X (see Lemma 2.1). Therefore, though

the convergence results show that R(X) can be computed, in practice it is impossible to

25

infinitely go on with the construction of an arbitrary fine covering of X. Thus, we have that

Rk ⊆ R(X) + εB (2.12)

at the k-th iteration of Algorithm 1. While the set obtained gives an idea of the location and

structure of the robust control invariant set of system (2.1) contained X, in the context of

control theory, the sets Rk obtained from Algorithm 1 are not very useful since they are not

robust control invariant. Therefore, an inner approximation is desired for controller design

purposes.

One approach often used in the dynamic programming type algorithm is to initialize

the algorithm from a robust control invariant set and gradually enlarge it (see [23, 2]). An

alternative approach is the use of contractive sets. The former is not applicable to our

algorithm since the feasible trajectories of the system (2.1) is approximated within the state

constraint set and the latter assumes that X must contain a convex λ-contractive set and

therefore restrictive. Recall that we do not assume contractivity in our analysis.

We take an approach similar to the stopping criterion of [1] for obtaining the inner approx-

imation. Thus to obtain an inner approximation using Algorithm 1, we modify system (2.1)

to

x+ = f(x, u, w) + εB (2.13)

and show that there exist k ∈ Z+ such that

Rε
k ⊆ Rε

k+1 + εB (2.14)

where Rε
k denotes the k-th set generated by Algorithm 1 with the graphs constructed using

the modified system (2.13).

The algorithm for inner approximation is presented in Algorithm 2. The termination

criterion ensures that an inner approximation is obtained.

26

Algorithm 2: Computing inner approximation of maximal robust control invariant
set
Input: system (2.13), constraint sets (2.2) and ε
Output: Inner approximation of largest robust control invariant set

1 Cd0 ← X // Initialization

2 for k ← 1, 2, 3, · · · do
3 if Cdk = ∅ then
4 CdN ← Cdk
5 break

6 if Cdk−1
⊆ Cdk + εB then

7 CdN ← Cdk
8 break

9 Ĉdk ← subdivide(Cdk)
10 Gk ← graph(Ĉdk)
11 Cdk+1

← select(Gk)

12 return CdN

In what follows, we show that the output of Algorithm 2 is an inner approximation of

the largest robust control invariant set.

Lemma 2.3. Consider system (2.13) and constraint sets (2.2). Let {Rε
k, k ∈ Z+} be a

sequence obtained from Algorithm 2. If Assumptions 2.1 and 2.2 hold, then for any ε > 0,

there exist k ∈ Z+ so that (2.14) holds.

Proof. From Lemma 2.1 we know that the sets {Rε
k} obtained from Algorithm 1 form a

closed neighbourhood of R(X) and therefore there exist k′ ∈ Z+ such that for all k ≥ k′, we

have that Rε
k ⊆ R(X) + εB. It then follows that Rε

k ⊆ Rε
k+1 + εB.

We now show that if the stopping criterion is met in Algorithm 2, then the output of the

algorithm is an inner approximation of the robust control invariant set. Note that we do not

consider the case where the largest robust control invariant is empty since this is trivial.

Theorem 2.4. Consider system (2.13) and constraint sets (2.2) and let k′ ∈ Z+ be the

smallest index so that (2.14) hold for some ε > 0. If Assumptions 2.1 and 2.2 hold, then for

any k ≥ k′, the set Rε
k+1 is robust control invariant.

27

Proof. Let x ∈ Rε
k+1 such that k ≥ k′. Then for all w ∈ W there exist u ∈ U such that

f(x, u, w) + εB ⊆ Rε
k ⊆ Rε

k+1 + εB

This implies that f(x, u, w) ⊆ Rε
k+1 and therefore Rε

k+1 is robust control invariant.

Notice that if the disturbance is affine in w, then the modification in (2.13) is equivalent

to increasing the disturbance set W by ε i.e. Wε ⊆ W + εB.

2.3.5 Algorithm complexity

As stated earlier, computing invariant sets even for linear systems is not easy. In this

section, we briefly discuss on the complexity of the proposed algorithms. In particular, we

focus on how the complexity of the algorithm increases with the dimensions of the system

state n, input m and disturbance n. At each iteration of the proposed algorithms, three

main operations are conducted namely: subdivision, graph construction and cell selection.

Let nc be the number of cells at iteration k, nu and nw be the number of discrete points

selected in each dimension of the input and disturbance respectively, and ns be the number

of sampling points per cell. The complexity of the subdivision step is O(nc) since each cell

is visited once and subdivided. The number of cells then becomes 2nc. After the subdivision

step, the directed graph is constructed for each disturbance point and then investigated to

determine the cells that approximate the robust control invariant set. The construction step

require that one step prediction be computed. This leads to a complexity of O(2ncnsn
m
u n

n
w).

The selection step require that the cells be separated into cells with infinite admissible paths

passing through them and cells without infinite admissible paths passing through them. This

can be determined using a combination of strongly connected component (SCC) algorithm

and finding the cells with a path to the SCC. This leads to a linear time complexity i.e.

O(|V |+|E|) where |V | is the number of vertices of the directed graph and |E| is the number

of edges. Since the directed graph analysis is computed nn
w times, the complexity of the

28

selection step is O(nn
w(|V |+|E|)). As can be seen from the above analysis, the slowest step

of the algorithm is determined by the graph construction. If interval arithmetic is used in

the computation instead of finite sampling of the input set and cells, the complexity of the

graph construction algorithm becomes O(2ncn
n
w). Furthermore, if only additive disturbance

is present in the system model, then the disturbance discretization can be limited to the

vertices of the disturbance set and the origin. This leads to a complexity of O(2nc(2
n + 1)).

As mentioned earlier, the number of cells nc has a tendency to grow quickly, especially as the

dimension of the state increases. Adaptive subdivision is one way to prevent the number of

cells from growing quickly. To further speed up the computation, the subdivision and graph

construction steps of the algorithm can be parallelized.

2.3.6 Special case: Input and disturbance affine systems

The algorithm as presented require the construction of several graphs of system (2.1) and

constraint sets (2.2) under different disturbance realization. The computational burden for

constructing the symbolic images may be excessive. Therefore in this section, we provide a

simple method to reduce the computational load. The key idea is to cancel some or all of the

disturbances by employing concepts from feedback linearization of nonlinear systems. We

do not assume that the disturbances are known or measured other than the system equation

must have a particular structure which can be exploited.

To achieve this, we require that the discrete-time uncertain control system (2.1) to have

the following structure

x+ = f(x) + g(x)u+ h(x)w (2.15)

where f(·) ∈ Rn, g(·) ∈ Rn × Rm and h(·) ∈ Rn × Rn. This is possible if system (2.1) is

affine in the input and the disturbance. If the state equation takes the form (2.15), then we

can cancel out some or all disturbances via the equation

u = −g(x)−1h(x)w + v (2.16)

29

to obtain the transformed equation

x+ = f(x) + g(x)v (2.17)

The caveat to using this approach is that the state dependent matrix g(·) must be non-

singular for every x ∈ X. If g(·) is non-singular, then the bounds on v can be obtained

from Equation (2.16). Notice that if g(·) is independent of the state i.e. constant, then the

bounds on v remain constant and therefore can be determined offline prior to the start of

the algorithm. However, if g(·) or h(·) is state dependent, then the bounds on v may vary

for every x ∈ X and hence has to be determined online. This ensures that the use of this

technique does not lead to conservative results. Unfortunately matrix inversion may not be

cheap.

In cases where the g(·) matrix is non-square, it is possible to make it square by introducing

arbitrary inputs.

Proposition 2.1. The following constrained systems are equivalent:

(i) x+ = f1(x) + g1(x)u+ h1(x)w with x ∈ X, u ∈ U and w ∈ W

(ii) x+ = f1(x) + g1(x)u+ g2(x)ua + h1(x)w with x ∈ X, u ∈ U , ua ∈ {0} and w ∈ W

Proof. It is obvious that if ua = 0 for all t ∈ Z+, then g2(·) vanishes and has no effect on the

dynamics of (ii). Hence, the two systems are equivalent.

Proposition 2.1 shows that arbitrary inputs can be added to a difference equation without

affecting the dynamics so long as it is constrained to the origin. This makes it possible to

alter the structure of g(·) to a square matrix if it is not already a square. This is demonstrated

using a linear system in Section 2.4.

30

2.4 Illustrative examples

In this section we conclude our study by demonstrating the efficacy of our algorithm on two

problems. Both algorithms were implemented in the numerical computation language Julia

[51]. In the first example, we use a simple two-dimensional linear model to show how feedback

linearization-like concepts can be used to reduce the computational load. To demonstrate

the correctness of our algorithms, we also compare the inner and outer approximation of the

invariant sets generated by our algorithm for the linear system with the algorithm presented

in [1]. Our choice for the algorithm in [1] stems from the fact that it is one of the well-

known algorithms for computing the largest robust control invariant sets of constrained linear

systems. In the second example, we apply our algorithm to the two-dimensional nonlinear

model used in the work of [2]. This is to demonstrate the efficacy of our algorithms to that

of [2]. The method in [2] is one of the recent results on the approximation of robust control

invariant sets of constrained nonlinear systems.

In both examples, 10 points close to the edges of each cell were uniformly sampled and

5 points were also uniformly sampled in U . Also the vertices of the disturbance set were

selected since both systems are affine in the disturbance. The maximum number of iterations

N in Algorithm 1 and ε in Algorithm 2 are set at 16 and 0.001 respectively.

2.4.1 Example 1

Consider the linear system

x+ = Ax+Bu+Gw

where A, B, and G are given by

A =

⎡⎢⎣0.0 1.0

1.0 1.0

⎤⎥⎦ , B =

⎡⎢⎣0.0
1.0

⎤⎥⎦ and G =

⎡⎢⎣1.0 0.0

0.0 1.0

⎤⎥⎦ .

31

The constraints on the states and input are X = {x ∈ R2 : ∥x∥∞≤ 5} and U = {u ∈

R : ∥u∥∞≤ 2} respectively. The disturbance on the other hand is restricted to the set

W = {w ∈ R2 : ∥w∥∞≤ 0.3}.

As can be observed, B is a vector and therefore not invertible. However from Proposition

2.1, its structure can be altered without changing the dynamics by introducing arbitrary

inputs. In this case the modified equation becomes

x+ = Ax+

⎡⎢⎣0.0 1.0

1.0 0.0

⎤⎥⎦
⎡⎢⎣u1

ua

⎤⎥⎦+Gw (2.18)

With this structural change, the system can be transformed to that of Equation 2.17 such

that

v =

⎡⎢⎣u1

ua

⎤⎥⎦+

⎡⎢⎣0.0 1.0

1.0 0.0

⎤⎥⎦
−1 ⎡⎢⎣1.0 0.0

0.0 1.0

⎤⎥⎦w (2.19)

Since g(·) = B is invertible for all x(t) ∈ X and independent of the current state, the bounds

on v(t) can be obtained.

v =

⎡⎢⎣u1 + w2

ua + w1

⎤⎥⎦ (2.20)

From the above equation, |v1|≤ 1.7 and |v2|≤ 0.3. Notice that v2 is still a disturbance while

v1 is an input. With the transformed system having 1 disturbance, the graph construction

reduces to 2 instead of 4. This cuts down the computation time by half.

We compare the results outer and inner approximations of the largest robust control

invariant set obtained by Algorithms 1 and 2 respectively, to that of [1]. We allowed the

latter to run for a sufficiently long time to ensure its as close as possible to the actual

invariant set. As can be observed in Figure 2.4, our proposed algorithms are able to provide

inner and outer approximations of the largest robust control invariant set. Also, as can be

observed in Figure 2.5, Algorithms 1 and 2 give accurate outer and inner approximations

the largest control invariant set in the absence of disturbances.

32

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
2

Figure 2.4: Comparison of inner (dashed dot) and outer approximations (dashes) obtained
from Algorithm 1 and that of [1] (solid) for a two dimensional linear system. The invariant
sets in the figure are obtained by finding the convex hull of the cells obtained from the
Algorithms.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
2

Figure 2.5: Comparison of inner (dashed dot) and outer approximations (dashes) obtained
from Algorithm 1 and that of [1] (solid) for a two dimensional linear system without distur-
bances. The invariant sets in the figure are obtained by finding the convex hull of the cells
obtained from the Algorithms.

33

-4 -3 -2 -1 0 1 2 3 4

x
1

-4

-3

-2

-1

0

1

2

3

4

x
2

Figure 2.6: Comparison of inner approximations of control invariant set (dashes), robust
control invariant set (dashed dot) obtained from Algorithm 2 and control invariant set ob-
tained from [2] (solid) for a two dimensional nonlinear system. The invariant sets in the
figure are obtained by finding the convex hull of the cells obtained in Algorithm 2.

2.4.2 Example 2

Consider the nonlinear system

⎡⎣x+
1

x+
2

⎤⎦ =

⎡⎣1.0 T

T 1.0

⎤⎦⎡⎣x1

x2

⎤⎦+ T

⎧⎨⎩µ

⎡⎣1.0
1.0

⎤⎦+ (1− µ)

⎡⎣1.0 0.0

0.0 −4.0

⎤⎦x

⎫⎬⎭u+ T

⎡⎣1.0 0.0

0.0 1.0

⎤⎦⎡⎣w1

w2

⎤⎦
where T = 0.01, µ = 0.9. The constraints on the states and input are X = {x ∈ R2 : ∥x∥∞≤

4} and U = {u ∈ R : ∥u∥∞≤ 2} respectively. The disturbance on the other hand is restricted

to the set W = {w ∈ R2 : ∥w∥∞≤ 0.4}. From the system equations, it can be seen that g(x)

is state dependent. Thus, applying the feedback-linearizing technique to cancel out some of

the disturbances will require computing matrix inversion for each sampling point in a cell.

This may be computationally excessive. To avoid this, the technique was not used in this

example. Figure 2.6 shows the comparison between the inner approximation of the control

invariant set obtained after the 16th subdivision from Algorithm 2 and that of the [2]. It

34

also shows the robust control invariant set obtained from Algorithm 2.

As can be seen in Figure 2.6, our Algorithm was able to compute a much larger control

invariant set compared to that of [2].

2.5 Concluding remarks

Given a discrete-time time-invariant uncertain control system with bounded disturbances

subject to state and input constraints, the methods presented in this chapter obtains inner

and outer approximations of the largest robust control invariant set contained in the state

constraint. For this purpose, we presented an algorithm which approximates the dynamics

of the uncertain control system as a directed graph allowing for analysis of the system using

graph theory. The results of this chapter, proving convergence to the largest robust control

invariant set, are important in that they show the theoretical soundness of this approach.

Simulations using linear and nonlinear systems demonstrate the effectiveness of the proposed

method.

35

Chapter 3

An efficient implementation of

graph-based invariant set algorithm

for constrained nonlinear dynamical

systems

3.1 Introduction

In Chapter 2, we successfully used the graph-based invariant set (GIS) algorithm to deter-

mine the largest control invariant sets of complex nonlinear dynamical systems [32]. More

importantly, convergence to the largest CIS was also provided. In the GIS algorithm, the

dynamics of the system is approximated with a directed graph and then analyzed to obtain

an approximation of the largest CIS. However, the GIS algorithm, like other control invariant

set algorithms for nonlinear systems, may require high computing resources. This limits the

applicability of the algorithm to high dimensional systems.

In this chapter, we present details of an improved and efficient implementation of the GIS

algorithm for computing control invariant sets of constrained dynamical systems. Obviously,

36

only the boundary of the CIS is of interest during the computation. This is the central idea

we employ in the improved GIS algorithm. Our approach involves an adaptive subdivision

technique to slow down the cell growth rate, and parallelization of the graph construction

with multicore processing and graphics processing units (GPU). The adaptive subdivision

technique makes use of a supervised machine learning technique to select the cells for sub-

division. We compare the results obtained by the improved GIS algorithm to that of the

standard GIS algorithm using a nonlinear example.

3.2 Preliminaries

3.2.1 System description and problem formulation

In this chapter, we are concerned with discrete-time nonlinear systems of the form

x+ = f(x, u) (3.1)

where x+ ∈ X ⊆ Rn denotes the state at the next sampling time, x ∈ X ⊆ Rn is the state,

and u ∈ U ⊆ Rm represents the control input. The sets X and U denote the state and input

constraints respectively. We assume that the sets X and U are compact, and the function

f : X × U → X is a sufficiently smooth vector field in X.

The goal is the compute the largest (with respect to inclusion) control invariant set

RX for system (3.1) and the associated constraint sets using the GIS algorithm described

in Chapter 1. However, the algorithm in its present form may require high computational

resources which eventually, slows down the computation speed. Thus, the goal of this chapter

is to identify the bottlenecks of the GIS algorithm and present remedial strategies to address

them.

37

3.2.2 Computational requirements of standard GIS algorithm

In this section, we briefly analyze the computational requirements for each step of the algo-

rithm. When the standard GIS algorithm is used to compute the largest CIS, the compu-

tational requirements are directly proportional to the number of cells used to approximate

the set. This implies that as the number of cells increase at each iteration, the algorithm

gets slower while the memory needed goes higher. Thus, the algorithm is greatly influenced

by the number of cells used to approximate RX . Let nc be the number of cells at iteration

k of the algorithm. The subdivision step involves iterating through all the cells to divide

each cell into two. This results in a linear time complexity, that is O(nc). The graph con-

struction step involves (1) finding one step forward mappings of each cell, (2) finding which

cells intersect the one step forward mapping and (3) constructing an edge list of the graph.

Without going into the details of how the one step mapping is achieved for each cell, the

time complexity is O(nc) since the one step forward mapping need to be created for each

cell. Finding the cells that have an intersection section with the one step forward mapping

involves using an R*-tree. The average case (because we do not have data overlaps) time

complexity of querying the R*-tree for each cell is O(log nc). Hence, the time complexity

for finding the intersection of the one step forward mapping of all the cells is O(nclog nc).

Finally, the complexity of creating the edge list of the digraph is O(|E|) where |E| is the

number of edges on the digraph. The overall time complexity of the graph construction step

is O(nclog nc+ |E|). Analyzing the digraph involves finding the non-leaving cells. This has a

time complexity of O(|V |+|E|) where |V | is the number of vertices which is equivalent to nc.

The time complexities of the major parts of the GIS algorithm as well as their significance

are presented in Table 3.1.

38

Table 3.1: Major parts of the GIS algorithm and their computational requirements

Part Time complexity Significance
Cell subdivision O(nc) Not significant
Graph construction O(nclog nc + |E|) Significant
Graph analysis O(|V |+|E|) Not significant

3.3 The improved and efficient GIS algorithm

As mentioned earlier, the standard GIS algorithm approximates the largest control invariant

set by iteratively refining the cells that cover RX . In doing so, it may over refine cells which

may be dynamically irrelevant to the computation. This is because in the subdivision step of

the standard algorithm, each cell is divided. While this works in principle, it may generate

high number of cells as the algorithm proceeds. This significantly slows down the algorithm,

and lead to high memory storage and computational requirements as demonstrated in the

preceding section. In this section, we propose a method to improve the computational

efficiency of the algorithm by adaptively selecting a subset of the cells to be subdivided

instead of subdividing all the cells. This reduces the cell growth rate and ultimately the

overall computational requirements of the algorithm. In addition, we describe a parallel

implementation of the graph construction step to speed up the standard algorithm using

graphics processing unit (GPU).

We begin this section by first describing the adaptive subdivision method. Thereafter,

we describe the parallelization of the graph construction step using GPU. Finally, we briefly

discuss the implications of the modifications on the convergence of the GIS algorithm to RX .

3.3.1 Adaptive cell subdivision

Theoretically, the part of the control invariant set of interest to us is its boundary. For linear

systems with convex state and input constraints, the largest control invariant set is convex.

This explains why for linear systems with convex constraints, it is sufficient to test for control

39

Figure 3.1: Types of control invariant set boundaries. The thick black lines represent the
boundary of the set and the shaded portion represent the interior of the control invariant
set. The box represent the region of the state space of interest X. Left: Control invariant
set with continuous boundary; Middle: Control invariant set with pocket of holes creating a
discontinuous boundary; Right: Multiple control invariant set in the search region.

invariance only at the vertices (boundary) as the iteration progresses. For nonlinear systems

however, the largest control invariant set may not be convex. The set can be in any form or

shape depending on the system dynamics. Moreover, there could be more than one invariant

set in the region of interest. Hence, the search for the control invariant set involves searching

everywhere within the state constraint. Figure 3.1 shows some examples of the shape of

control invariant set that may be encountered in nonlinear systems. If the boundary area

of the control invariant set contained in X is roughly known, then it suffices to just refine

around the boundary area and use cells with bigger diameter for the interior. As an example,

Figure 3.2 shows how the same set can be represented by different number of cells. One with

uniform cell diameter and the other with non-uniform cell diameter. It can be seen that

both sets have the same shape and size, albeit the number of cells. This is the central idea

we use in the proposed adaptive algorithm.

The proposed algorithm seeks to alleviate the cell growth draw back by subdividing only

a subset of the cells obtained after the selection step. The question remains what criteria to

use to select the cells to be subdivided. Indeed, an earlier work on set-oriented methods for

analysis of autonomous dynamical system used approximations of the Sinai-Bowen-Ruelle

(SBR) measures as the criterion to adaptively select the cells for subdivision [52]. We however

take a different approach since it could be equally challenging to compute the SBR measures.

Let B(Cdk), N (B(Cdk)) and I(Cdk) be the boundary, neighborhood of the boundary and

interior cells respectively, at iteration k of the standard GIS algorithm. In line with the

40

Figure 3.2: Representation of the same set with different number of cells. Left: Uniform
cell subdivision as used in the standard algorithm. Right: Adaptive subdivision where the
boundary is refined and the interior is not

earlier explanation, the proposed algorithm selects the boundary cells B(Cdk) for subdivision.

However, since the boundary of the largest control invariant set RX or the region where it

lies is not precisely known, the algorithm includes additional cells within the neighborhood

of the boundary cells N (B(Cdk)). The selection of the boundary cells N (B(Cdk)) is based on

the N -nearest neighbor (N -NN) supervised machine learning algorithm, and is controlled

by a parameter N . This will be described later in this section. The adaptive subdivision

step at each iteration of the algorithm involves three main steps. The first step involves

selecting the boundary cells B(Cdk). The second step involves selecting a neighborhood of

the boundary cells N (B(Cdk)). Finally, both group of cells are subdivided.

We begin this section by first describing the procedure for selecting the boundary. There-

after, we described how the neighborhood of the boundary cells are selected.

3.3.1.1 Boundary selection

The goal of the boundary selection step is to find B(Cdk). Consider the cell Bi ∈ Cdk at

iteration k of the algorithm. The Cell Bi is first enlarged by a small factor δ. Afterwards,

the vertices of the enlarged cell are selected. The idea is that, each vertex of the enlarged

cell must intersect a neighboring cell if it is an interior cell I(Cdk), otherwise it is a boundary

41

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

Figure 3.3: Graphical illustration of the process for selecting the boundary. The dashed blue
lines represents the cell enlargement and the circles represent the vertices of the enlarged
cells.

cell B(Cdk). This is illustrated in Figure 3.3.

In Figure 3.3, Cells B1 to B24 are the cells that constitute the cells to be subdivided Cdk .

This implies that Cell B25 has been removed from the previous iteration of the algorithm.

For illustration purposes, the cell enlargement is shown for Cells B1, B9 and B19 as the blue

dashed rectangles. The vertices of the enlarged cells are selected after the enlargement. This

is shown as the blue small circles. The expectation is that if a cell in an interior cell, then all

four selected vertices must intersect a neighboring cell. For Cell B1, it can be seen that only

one vertex intersects a neighboring cell, that is Cell B7. The other vertices do not intersect

any neighboring cell. This makes Cell B1 a boundary cell. Similarly for Cell B19, three

vertices of the enlarged cell intersect neighboring cells with one vertex not intersecting any

cell. This implies that Cell B19 is also a boundary cell. Finally, following the same procedure

for Cell B9, it can be seen that all the vertices intersect its neighboring cells. This makes it

an interior cell. A summary of the boundary selection algorithm is summarized in Algorithm

3.

Remark 3.1. It is possible that a cell which is supposed to be a boundary cell is not selected.

This is an edge case. While edge cases in the boundary selection process are not expected,

42

Algorithm 3: Selection of boundary cells

Input: Cells to be subdivided Cdk , boundary cells B(Cdk)
Output: Boundary cells B(Cdk)

1 B(Cdk)← ∅ // Initialization

2 for Bi ∈ Cdk do
3 Enlarge the cell Bi

4 Select the vertices of the enlarged cell
5 if all the vertices do not intersect cells in Cdk then
6 Add Bi to the collection B(Cdk) // Bi is a boundary cell

7 return B(Cdk)

they can occur. For example, in Figure 3.3, if Cell 4 is not present, then Cell 9 is supposed

to be a boundary cell. However, Cell 9 will not be selected as a boundary cell because all the

vertices of the enlarged cell satisfy the criterion for it to be an interior cell. In this case,

the procedure can be modified such that points along the edges of the enlarged cell are also

included. This may however impact the computational speed.

Moreover, the selection of the neighborhood of the boundary will automatically resolve

such edge cases. This will be described shortly in the next subsection.

3.3.1.2 Selection of neighborhood of boundary cells

As mentioned earlier, since the location of the boundary of the largest control invariant

set RX is unknown in advance, a neighborhood of the boundary cells is also selected for

subdivision. The implications of selecting or not selecting the neighborhood of the boundary

cells will be demonstrated in the results section. Therefore, following the boundary cell

selection, the neighborhood cells of each boundary cell are also selected for subdivision. This

is achieved using the N -nearest neighbors (N -NN) of a point algorithm. N is a parameter

which determines the number of neighboring cells to be selected. This ultimately determines

how far from the boundary cells we want to move into the interior of the set.

N -NN is a supervised machine learning technique which is used to solve classification

and regression problems. Given a point p, it selects the N neighboring points of p using the

43

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

Figure 3.4: Graphical illustration of the process for selecting the neighborhood of the
boundary cells. The center of the cells are indicated with the solid circles. The two dashed
circles show the N -nearest neighbors of Cell B1 for different N . The smaller dashed circle
corresponds to an N of 3 while the larger dashed circle corresponds to an N of 7. Thus, for
the smaller dashed circle, the three cells namely, B2, B6 and B7 are selected. The Cells B2,
B6, B7, B3, B8, B12 and B11 are selected for the larger dashed circle.

distances from the point. This is implemented in the adaptive GIS as follows. First, the

center of the cells are selected. Then for each boundary cell, theN -nearest neighboring points

are selected. Figure 3.4 shows how the N -NN algorithm is used to select the N -neighborhood

of the Cell B1.

Remark 3.2. The presence of dataset imbalance and outliers can significantly affect the

N-NN algorithm. However, in this work we do not expect these situations to happen since

the outliers are absent and there is no dataset imbalance.

3.3.2 Efficient parallelization with GPU

Because of the complicated nature of the GIS algorithm, parallelization with GPU is not

trivial. For example, if the parallelization is not done properly, it can lead to computational

inefficiencies due to excessive communications between the processors and GPU. Several

issues need to be addressed for efficient parallelization:

• Load-balancing: Parallelization cannot be achieved if the tasks to be completed are

44

Batch

CPU sub | G(V,E)i

GPU | f(x,u)

CPU main

G(V,E)

Create subgraphs

Combine subgraphs

Figure 3.5: Coordination of CPU and GPU, and data flow in the parallelized graph con-
struction step of the improved GIS algorithm

not distributed fairly among the compute cores. We use load-balancing to improve the

parallelization in the graph creation step.

• Batching: The number of cells in the GIS algorithm can grow quickly. Loading and

unloading data to and from the GPU can significantly degrade the benefits of using the

GPU. We use batching to load a number of cells onto the GPU at time to maximize

the use of the GPU.

Using appropriate batching and load-balancing schemes can significantly reduce the data

traffic between the CPU cores and the GPU. In this section, we outline the details of the

parallelization of the GIS algorithm.

In the GIS algorithm, one step forward mappings need to be computed for each cell. This

can be done for each cell independently. Thus, the same instruction is used for each cell.

This type of parallelization is known as data parallelization. GPUs are particularly suited

for this kind of operation than CPUs. This is because GPUs have a highly parallel structure

45

which make them more efficient for algorithms that process large chunks of data in parallel.

A typical GPU usage sequence involves

1. loading the data from the CPU to the GPU

2. performing the computation on the data

3. offloading the data from the GPU to the CPU

The main speed up when using the GPU is from the second step. Steps (1) and (3) are

the main bottlenecks when using a GPU. Thus, frequent loading and offloading of data to

and from the GPU can significantly overshadow the gains made in Step (2). To address this

problem, we load the cells in batches. This is in contrast to the sequential GIS algorithm

where the one step forward mapping is computed one cell at a time. By loading a number of

cells at a time (batch), the communication frequency between the CPU and GPU is reduced

significantly. The number of cells to load from the CPU to the GPU depends on the available

memory on the GPU.

Let B+
i be the cells that have an intersection with F (Bi), that is, B

+
i =: {Bj|Bj∩F (Bi) ̸=

∅, Bj ∈ Cdk}. In the parallelized GIS algorithm, the main CPU passes a batch of n cells

Bi . . . Bi+n to the GPU which then computes and returns the images F (Bi) . . . F (Bi+n).

Once the main CPU receives the data from the GPU, it creates and distributes the data

across a number of subprocesses. Each subprocess finds the corresponding B+
i using the

F (Bi) information. To avoid race condition when each subprocess writes the edge data into

the same graph, a subgraph Gi(V,E) is created for each subprocess i. This continues until

all the cells in Cdk are exhausted. Then in the second step, the graphs are merged into a

single graph G(V,E). This is then passed to the graph analysis step for processing. Figure

3.5 shows the data flow and how the main CPU coordinates with the GPU and subprocesses.

46

3.3.3 Convergence issues

In this section, we briefly discuss the implications of the modifications to the GIS algorithm

on the convergence of the sets to the largest control invariant set RX . We note that paral-

lelization of the graph construction step does not affect convergence to RX in anyway. This

is because other than speeding up the construction of the graph, the graph is not modi-

fied in any way. We therefore focus on the implication of the adaptive subdivision on the

convergence to the algorithm to RX .

In the adaptive subdivision technique, only a subset of the cells are subdivided. This is in

contrast to the standard GIS algorithm where all the cells are subdivided at each iteration.

However, we note that this modification does not affect the convergence of the algorithm

other than the speed of convergence. As an illustration, let us assume the worst case scenario

where the boundary of the largest control invariant set lies somewhere deep in the interior

of the state constraint. If only the boundary cells are selected and subdivided, then the

algorithm will spend majority of the time refining cells which do not contain the boundary

of RX . The algorithm will keep refining the irrelevant cells until they are sufficiently small,

only to remove those cells before moving to the next boundary cells which are much coarser

since they have not been subdivided. This continues until the boundary cells which contain

the boundary of RX are eventually located. While the cell growth is significantly reduces, the

rate of convergence also reduces. This is certainly different from the standard GIS algorithm

where all the cells are subdivided and therefore the boundary of RX can be found much

faster. The addition of the neighborhood of the boundary cells helps to balance the trade off

between faster convergence and cell growth rate. This will be demonstrated in the results

section.

47

3.4 Results

In this section, we test the effectiveness of the modifications to the standard graph-based

control invariant set computation algorithm. First, we consider the effects of the adaptive

subdivision modification on the standard algorithm. Then, we consider the impact of the

parallelization. Both tests were performed using a nonlinear continuously stirred tank reactor

example. In all these cases, the computations were run on workstation with the following

configuration: a quadcore Intel i7-4720HQ CPU with frequency of 2.6 GHz, 16 GB of random

access memory (RAM), and Nvidia GeForce GTX 960M GPU with 2 GB video RAM.

3.4.1 Process description

We consider a well-mixed continuously stirred tank reactor (CSTR) in which a first-order

reaction of the form A→ B takes place. Because the reaction is exothermic, a cooling jacket

is used to remove excess heat from the reactor. Equation (3.2) describes the dynamics of

the CSTR

dcA
dt

=
q

V
(cAf − cA)− k0 exp(−

E

RT
)cA (3.2a)

dT

dt
=

q

V
(Tf − T) +

−∆H

ρcp
k0 exp(−

E

RT
)cA +

UA

V ρcp
(Tc − T) (3.2b)

where cA and T are the reactant concentration and temperature of the reaction mixture

in mol/L and K respectively, Tc is the temperature of the coolant stream in K, q denotes

the volumetric flow rate of the inlet and outlet streams of the reactor in L/min, cAf is the

concentration of reactant A in the feed stream, V is the volume of the reaction mixture,

k0 denotes the reaction rate pre-exponential factor, E denotes the activation energy, R is

the universal gas constant, ρ denotes the density of the reaction mixture, Tf denotes the

temperature of the feed stream, cp is the specific heat capacity of the reaction mixture, ∆H

is the heat of reaction and UA is the heat transfer coefficient between the cooling jacket

and the reactor. The parameters used in the simulations are presented in Table 3.2. The

48

Table 3.2: Table of parameter values

Parameter Unit Value
q L/min 100.0
V L 100.0
cAf mol/L 1.0
Tf K 350.0
E/R K 8750.0
k0 min−1 7.2× 1010

−∆H J/mol 5.0× 104

UA J/min ·K 5.0× 104

cp J/g ·K 0.239
ρ g/L 1000.0

Figure 3.6: Sample plot of the cells after 20 iterations of the adaptive algorithm with N = 0

nonlinear model of (3.2) is discretized with a step size h = 0.1 min to obtain a discrete-time

nonlinear state space model in the form of system (3.1). In this case x = [cA T]T is the state

vector and u = Tc is the input. The state and input are constrained to be in the following

sets: 0.0 ≤ x1 ≤ 1.0, 345.0 ≤ x2 ≤ 355.0, 285.0 ≤ u ≤ 315.0.

3.4.2 Adaptive subdivision results

In this section we present the results of the adaptive subdivision without the parallelization.

Figure 3.6 shows a sample output of the algorithm after 20 iterations with N = 0. This

49

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

cA, kmol/m
3

345

346

347

348

349

350

351

352

353

354

355

T
,

K

N=5

N=3

N=2

N=1

Figure 3.7: Sets for different N after 20 iterations. The invariant sets in the figure were
obtained by finding the convex hull of the final cells after the algorithm

means that only the boundary cells are selected for subdivision. This value of N was chosen

to ensure that the number of cells is not too large to slow down the plotting of the figure. As

expected, it can be seen that the cells are finer at the boundaries and coarser at the interior

of the set.

In the next set of computations, we varied the parameter N and recorded the number of

cells generated at each iteration as well as the computation times. Figures 3.7, 3.8 and 3.9

show the convex hull of the sets generated, the number of cells generated and the computation

times after 20 iterations respectively for different values of N . It can be seen in Figure 3.7

that the parameter N affects the speed of convergence of the algorithm to the largest control

invariant set RX . For the same number of iterations, that is 20, the computation with a

higher value of N converges faster to RX compared that with a smaller value. This implies

that a higher number of iterations is needed for the set to converge to RX when for example,

N = 1. As explained in Section 3.3, when a small value of N is used, the computation

focuses on the boundary cells while searching for the boundary of RX . Thus, more time

is spent refining the cells in areas which do not contain the boundary of RX . However, as

50

0 2 4 6 8 10 12 14 16 18 20

Iteration number

0

0.5

1

1.5

2

2.5

3

3.5

4

N
u
m

b
e
r

o
f
c
e
ll
s

10
4

N=1

N=2

N=3

N=5

N=10

Figure 3.8: Number of cells generated at each iteration of the algorithm with different N .

the value of N increases, more cells are selected. This means that larger areas within the

domain of interest is explored in the search for the largest control invariant set. Hence, the

selection of the parameter N is not a trivial task. The choice of the value of N depends on

the properties of the system under study.

In this example, it can be seen from Figure 3.7 that the optimal value of N is 3 since

there’s no difference between the set when N = 3 and N = 5. Furthermore, taking a closer

look at the number of cells generated and the computation times (in Figures 3.8 and 3.9

respectively), the number of cells is significantly reduced at N = 3. Also, at N = 3, the

computational savings is 8 times that of N = 1000 which represents the case when all the

cells are subdivided at each iteration.

3.4.3 Parallelization results

In this section, we compare the computational speed improvements for the parallelization

of the graph construction step of the algorithm. In this set of simulations, all the cells

were subdivided without using the adaptive cell subdivision. This is to ensure that only the

51

1 2 3 5 10 100 1000

N

0

10

20

30

40

50

60

70

80

T
im

e
,

s
e

c
o

n
d

s

Figure 3.9: Computation times for different N .

Serial Parallel
0

20

40

60

80

100

120

140

160

180

T
im

e
,

s
e

c
o

n
d

s

CPU only

CPU+GPU

Figure 3.10: Comparison of computation speed for both serial and parallel computation,
with and without GPU usage.

52

effect of the parallelization observed. We also considered the effect of using the GPU on the

computation speed. Figure 3.10 summarizes the results of the computation of the largest

control invariant set using the parallelized algorithm. It can be seen that in both cases, the

parallelization sped up the computation with a much improved speed, in the GPU case. The

number of cells in a batch was selected as 1024 in the case where GPU is used.

3.5 Concluding remarks

In this chapter, we have presented an improved and efficient graph-based invariant set al-

gorithm for computing approximations of the largest control invariant set of constrained

controlled nonlinear systems. We first critically analyzed the computational complexity of

the standard GIS algorithm. It was observed that the graph construction and the subdivi-

sion steps have significant impacts on the overall time complexity of the algorithm. Thus,

we proposed two methods to improve the algorithm namely, adaptive subdivision and par-

allelization of the graph construction step. We demonstrated the efficacy of the improved

algorithm using a nonlinear continuously stirred tank reactor. It was observed that the

adaptive subdivision method only affects the speed of convergence to the largest control in-

variant set and not the convergence itself. Furthermore, the adaptive subdivision improved

the speed of the algorithm by about 8x that of standard algorithm. Also, the parallelization

of the graph construction step improved the computation speed by about 3x that of the

standard algorithm.

53

Chapter 4

A distributed control invariant set

computing algorithm for constrained

nonlinear cascade systems

4.1 Introduction

In the previous chapter, we modified the GIS algorithm to improve its computational effi-

ciency with respect to the cell subdivision and graph construction steps. While the modifica-

tions were able to improve the algorithm, it does not necessarily solve the problem pertaining

to the scalability of the algorithm with respect to the state dimension. In this chapter, we

focus on cascade systems and present a system decomposition method and a distributed ap-

proach for computing control invariant sets. The proposed algorithm exploits the structure

of the interconnections within a process network and decomposes the entire process network

into smaller subsystems. Following the decomposition, a distributed approach is developed

to compute the control invariant set of the entire system. The proposed approach adopts

graph-based algorithms in computing the control invariant sets [32]. In contrast to other

works on distributed computation of control invariant sets, our proposed approach produces

54

sets that approximates the largest control invariant set since the missing interconnection

information is not treated as disturbances. We demonstrated the convergence of the results

from the decomposition-based graph algorithm to that of the standard centralized algorithm

using several numerical examples including a six dimensional continuous stirred tank reactor.

4.2 Problem formulation and background

4.2.1 Notation

Throughout this chapter, the operator proji(x) denotes the projection of the set or point

x onto the subspace of subsystem i. The operator / denotes set subtraction such that A/

B = {x : x ∈ A, x /∈ B}. G = (V,E) represents a directed graph with V denoting the set

of vertices of the graph and E denoting the set of ordered pairs of vertices known as edges.

The operator |·| denotes the Euclidean norm of a vector.

4.2.2 Problem formulation

We are concerned with a class of nonlinear systems composed of N subsystems coupled

together in a cascade manner. The dynamics of the overall system is described by

x+ = f(x, u) (4.1)

where x ∈ Rn is the current state of the system, u ∈ Rm is the current control input, and

x+ ∈ Rn denotes the state of the system at the next sampling time. We assume that the

state and the control input of the system are restricted to be in the compact constraint sets

X ⊂ Rn and U ⊂ Rm respectively. Without loss of generality, we also assume that the

vector field f : X ×U → X is a sufficiently smooth vector field in X. The coupling between

the subsystems is such that the first subsystem is independent of the other subsystems.

Also, any subsystem i, other than the first subsystem, is directly affected by the upstream

55

subsystem i − 1 but not the downstream subsystem i + 1. The structure of the cascade

system considered in this chapter is represented by

x+
1 = f1(x1, u1) (4.2a)

x+
2 = f2(x2, u2) + g2(x1) (4.2b)

...

x+
N = fN(xN , uN) + gN(xN−1) (4.2c)

where fi denotes the local dynamics of state xi, and gi denotes the dynamics of the coupling

between the states xi and xi−1. The subscript i = 1, 2, · · · , N represents the ith subsystem.

The state and input constraints for subsystem i is given by Xi = proji(X) and Ui = proji(U)

respectively.

Before we begin our discussion, let us introduce the following definitions which are central

and referred to throughout this chapter.

Definition 4.1 (Forward invariant set [9]). A set R ⊆ X is said to be a forward or positively

invariant set of the system x+ = f(x) if for every x ∈ R, f(x) ∈ R.

Definition 4.2 (Control invariant set [9]). A set R ⊆ X is said to be a control invariant

set (CIS) of system (4.1) if for every x ∈ R, there exist a feedback control law u = µ(x) ∈ U

such that R is forward invariant for the closed-loop system f(x, u).

Definition 4.3 (Largest control invariant set [25]). A set RX ⊆ X is said to be the largest

(with respect to inclusion) control invariant set of system (4.1) if RX is control invariant

and contains all other control invariant sets contained in X.

In general, the state constraint X for a given system is not control invariant. However,

one may wish to find the largest control invariant set RX contained in X for controller design

and assessment purposes. The goal of this chapter is to present a framework for computing

an approximation of the largest control invariant set RX when the state dimension n is too

56

large to make the standard GIS algorithm tractable [32]. At present, this happens when

n > 4. This is because the number of cells generated in the standard GIS algorithm grows

exponentially in the state dimension.

Our solution to computing an approximation of RX is to decompose system (4.2) with

N subsystems into M subsystems with overlapping states.

4.3 System decomposition and set invariance

In trying to alleviate the exponential cell growth in the GIS algorithm, we propose to decom-

pose the overall system into smaller subsystems. This makes it computationally tractable

for control invariant set approximation using the GIS algorithm. System decomposition is

a typical way of addressing the computational challenges associated with control and state

estimation of large scale dynamical systems. This is also the case for control invariant set

calculation. The goal is to divide the original system into many small subsystems thus

making the computations tractable. Usually, the decomposition is achieved by dividing the

system in such a way that the subsystems have weak to no coupling or interconnection.

In this section, we investigate the system structures suitable for decomposition and con-

trol invariant set computation. In particular, we consider simple parallel and series/cascade

system structures. Throughout this section, we restrict the discussion to two and three di-

mensional system structures namely, series and parallel system structures to make the ideas

presented here easier to follow. The ideas presented here can easily be generalized to much

higher dimensional systems.

We begin this section by analyzing two types of system structures, their decomposition

and the ability to reconstruct the solution from the solution of the subsystems. Thereafter

we described the method of overlapping decomposition, which is a precursor for the proposed

distributed algorithm.

57

2

1

Figure 4.1: Parallel or independent system structure

4.3.1 System structures and invariance

Consider the disjoint system structure

x+ = f̂(x) =

⎡⎢⎣f̂ 1(x1)

f̂ 2(x2)

⎤⎥⎦ =

⎡⎢⎣A11 0

0 A22

⎤⎥⎦x (4.3)

where x = [x1 x2]
T subject to the state constraint X. A graphical depiction of the system is

shown in Figure 4.1. Since the evolution of the system states are independent of each other,

the system equations can be intuitively decomposed into the following subsystems

S1 : x
+
1 = f̂ 1(x1) = A11x1 and S2 : x

+
2 = f̂ 2(x2) = A22x2 (4.4)

with subspaces X1 = proj1(X) and X2 = proj2(X) respectively. To construct a graph

representation of the dynamics of each subsystem, the subspaces X1 and X2 need to be

quantized into C1 and C2. In what follows, we show how the control invariant set can be

computed for the full system from the subsystem information.

Definition 4.4 (Graph Cartesian product [53]). The Cartesian product of the directed graphs

G1 = (V1, E1) and G2 = (V2, E2), denoted G1 × G2, is a graph G = (V,E) such that

V = V1 × V2 and for any two points u = (u1, u2) and v = (v1, v2) in V , the directed edge

(u, v) ∈ E whenever u1 = v1 and (u2, v2) ∈ E2, or u2 = v2 and (u1, v1) ∈ E1.

An illustration of the Cartesian product of two fictitious digraphs G1 and G2 is presented

in Figure 4.2.

Assumption 4.1 (Subsystem quantization). The set C, which is a quantization of X, is the

cross product of C1 and C2, that is C = C1 × C2.

58

u1

v1

u2 v2

(u ,u)1 2 (u ,v)1 2

(v ,u)1 2 (v ,v)1 2

G1

G2
G ×G1 2

Figure 4.2: The Cartesian product of two graphs

Proposition 4.1. Consider the system described by Equation (4.3) and decomposed in the

form of Equation (4.4). Let G1 = (V1, E1) and G2 = (V2, E2) be a directed graph representa-

tion of the dynamics of each subsystem S1 and S2 respectively based on the sets C1 and C2.

Also, let G = (V,E) be the directed graph representation of system (4.3) based on C. If As-

sumption 4.1 holds, then the full system solution can be exactly obtained from the subsystem

solutions, that is,

I+(G) = I+(G1 ×G2)

Proof. To prove the above assertion, we first need to show that the vertices of the two graphs

G and G1 × G2 are equal. Thereafter, we need to show that if there is an admissible path

between any two cells in G, then there is an equivalent admissible path between those same

two cells in G1 ×G2.

First, we show that the vertices of the two graphs G and G1 × G2 are equal. It follows

directly from Assumption 4.1 that C = C1 × C2. Therefore from Definition 4.4, we have that

V = V1 × V2.

Now, we show by that if there is a path between any two cells in G, then there exist a

path between those same two cells in G1 × G2. Let Bi = (u1, u2) and Bj = (v1, v2) be any

two cells in V such that u1 and v1 are in V1, and u2 and v2 are cells in V2. From the graph

59

construction procedure, we have that

E = {(Bi, Bj) ∈ C × C : f̂(Bi) ∩Bj ̸= ∅}

= {(Bi, Bj) ∈ C × C : f̂ 1(u1) ∩ v1 ̸= ∅ ∧ f̂ 2(u2) ∩ v2 ̸= ∅}

= {(Bi, Bj) ∈ C × C : (u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2}

From the definition of G1 ×G2 and E, we have that the path (u1, u2) → (u1, v2) → (v1, v2)

and (u1, u2)→ (v1, u2)→ (v1, v2) exist in G1 ×G2. This implies that there is an admissible

path from (u1, u2) to (v1, v2) in G1 × G2. It then follows that if an infinite admissible path

passes through the cell Bi in G, then an infinite admissible path also passes through the cell

Bi = (u1, u2) in G1 ×G2. Hence we have that

I+(G) = I+(G1 ×G2),

which completes the proof.

While we have shown that an approximation of RX can be obtained for the disjoint

system by constructing the digraph G1 × G2, in most cases this will require a considerable

amount of memory to store the graph for higher dimensional systems. The following theorem

shows how an approximation of the largest control invariant set can be exactly obtained from

the solutions of the subsystems.

Theorem 4.1. Consider the system described by Equation (4.3) and decomposed in the form

of Equation (4.4). Let G1 = (V1, E1) and G2 = (V2, E2) be a directed graph representation of

the dynamics of each subsystem S1 and S2 respectively based on the sets C1 and C2. Also, let

G = (V,E) be the directed graph representation of system (4.3) based on C. If Assumption 4.1

holds, then the full system solution can be exactly obtained from the subsystem solutions, that

is,

I+(G) = I+(G1)× I+(G2)

60

Proof. We know from Proposition 4.1 that I+(G) = I+(G1 × G2). Let Bi = (u1, u2) ∈ V

where u1 ∈ V1 and u2 ∈ V2. It can be inferred from the definition of G1 ×G2 that wherever

there is an infinite admissible path passing through Bi, there is also infinite admissible paths

passing through u1 in G1 and u2 in G2. This implies that

I+(G) = I+(G1)× I+(G2)

Theorem 4.1 shows that the graph representation of the subsystems can be analyzed in-

dependently. Then the cells that approximate the largest control invariant set for full system

can be computed by finding the Cartesian product of the individual subsystem solutions.

This is computationally more efficient since a large graph is not constructed for analysis. To

illustrate the ideas presented so far, let us consider Example 4.1.

Example 4.1. Consider the system

x+ =

⎡⎢⎣2 0

0 2

⎤⎥⎦x+

⎡⎢⎣1 0

0 1

⎤⎥⎦u (4.5)

where the constraints on the states and input are X = {x ∈ R2 : ∥x∥∞≤ 5} and U = {u ∈

R2 : ∥u∥∞≤ 1} respectively.

The system in Example 4.1 can be decomposed into two subsystems in a form similar to

Equation (4.4). Figure 4.3 shows the largest control invariant sets RX1 and RX2 for each of

the subsystems, the largest control invariant set RX for the full system and the reconstructed

solution from the control invariant sets of the subsystems. It can be seen that the full system

solution can be exactly obtained from the subsystem solution without incurring any error

due to the decomposition. This agrees well with our earlier arguments in Theorem 4.1, that

RX = RX1 × RX2 . Ultimately, this shows that we can freely move between the control

invariant sets of the lower dimension subsystems and the control invariant set for the full

system without incurring an losses. Geometrically, the structure of the control invariant set

61

-1 0 1
x

1

-1

-0.5

0

0.5

1

-1 0 1
x

2

-1

-0.5

0

0.5

1

-1 0 1
x

1

-1

-0.5

0

0.5

1

x 2

Figure 4.3: Decomposition and full solution reconstruction for system (4.5). Left: Solution
of Subsystem 1. Middle: Solution of Subsystem 2. Right: The reconstructed full system
solution from the subsystem solutions (black line) and the actual solution of the full system
(light blue region).

is always going to be a box.

While an approximation of the largest control invariant set can be obtained from the

solutions of the subsystems without incurring any errors due to decomposition for disjoint

subsystems, such systems rarely occur in the real world. In most cases, the subsystems may

be interconnected. Let us consider one of such cases where is coupling between the system

states. Consider the system

x+ = f̂(x) =

⎡⎢⎣A11 0

A21 A22

⎤⎥⎦x (4.6)

where x = [x1 x2]
T subject to the state constraint X. A graphical depiction of the system

is shown in Figure 4.4. Similar to the disjoint structure in Equation (4.3), system (4.6) can

be decomposed into two subsystems such that

S1 : x
+
1 = f̂ 1(x1) = A11x1 and S2 : x

+
2 = f̂ 2(x̃1, x2) = A22x2 + A21x̃1 (4.7)

with subspaces X1 = proj1(X) and X2 = proj2(X) respectively. Notice that while Sub-

system 1 is independent of the dynamics of Subsystem 2, Subsystem 2 is dependent on the

dynamics of Subsystem 1. The state information about Subsystem 1 required by Subsystem 2

62

1 2

Figure 4.4: Series or connected system structures

is denoted by x̃1 in Equation (4.7). To work with such a decomposition, the fundamental

issues that needs to be addressed in this scenario are how to obtain the values of x̃1 and how

to use this information in Subsystem 2.

It is easy to see that the range of values for x̃1 can be obtained from the solution of

Subsystem 1. For the choice of usage of the x̃1 information, one approach is to use the x̃1

information as an input in Subsystem 2. However, this more often than not result in an over

approximation of the solution of the full system.

Theorem 4.2. Consider the system described by Equation (4.6) and decomposed in the form

of Equation (4.7). Let G1 = (V1, E1) and G2 = (V2, E2) be a directed graph representation of

the dynamics of each subsystem S1 and S2 respectively based on the sets C1 and C2. Also, let

G = (V,E) be the directed graph representation of system (4.6) based on C. If Assumption 4.1

holds, then

I+(G) ⊆ I+(G1)× I+(G2)

Proof. This proof follows along the same lines as Theorem 4.1. We know from Proposition 4.1

that I+(G) = I+(G1 × G2). Let Bi = (u1, u2) ∈ V where u1 ∈ V1 and u2 ∈ V2. It can be

inferred from the definition of G1 × G2 that wherever there is an infinite admissible path

passing through Bi, there is also infinite admissible paths passing through u1 in G1 and u2

in G2. This implies that

I+(G) ⊆ I+(G1)× I+(G2)

The reverse of Theorem 4.2, that is I+(G1)× I+(G2) ⊆ I+(G) is necessarily not true. To

demonstrate this, let us consider the following example.

63

-1 0 1
x

1

-1

-0.5

0

0.5

1

-2 0 2
x

2

-1

-0.5

0

0.5

1

-1 0 1
x

1

-2

-1

0

1

2

x 2

Figure 4.5: Decomposition and full solution reconstruction for system (4.8). Left: Solution
of Subsystem 1. Middle: Solution of Subsystem 2 when x̃1 is treated as an input. Right:
The reconstructed full system solution from the subsystem solutions (black line) and the
actual solution of the full system (light blue region).

Example 4.2. Consider the system

x+ =

⎡⎢⎣2 0

1 2

⎤⎥⎦x+

⎡⎢⎣1 0

0 1

⎤⎥⎦u (4.8)

where the constraints on the states and input are X = {x ∈ R2 : ∥x∥∞≤ 5} and U = {u ∈

R2 : ∥u∥∞≤ 1} respectively.

As an illustration of our arguments so far, consider the system in Example 4.2. Sys-

tem (4.8) can be decomposed into two subsystems following Equation (4.7). Figure 4.5

shows the solution of the subsystems RX1 and RX2 , when x̃1 is treated as an input in Sub-

system 2, the reconstructed solution of the full system from the solution of the subsystems,

and the solution of the full system RX . It can be seen that RX ⊆ RX1 × RX2 . Hence, there

exists some states in RX1 ×RX2 which are not in RX .

To address the issue of over approximation, several studies have proposed to treat x̃1 as

an uncertain input in Subsystem 2 [38, 54]. By treating x̃1 as an uncertain input, a worse case

scenario analysis can be considered during the computation of the solution of Subsystem 2.

This results in a robust control invariant set solution for Subsystem 2. While this approach

works, there are several downsides to it. First, it is neither trivial nor easy to compute

64

robust control invariant sets. In fact, more resources are needed to compute robust control

invariant sets than to compute control invariant sets. Second, the resulting reconstructed

set is often conservative or small compared to the control invariant set for the full system.

In some instances, the computation may end up with an empty set for Subsystem 2 which

is undesired. Let us consider the system in Example 4.2 again. When x̃1 is treated as an

uncertainty in its worst case, RX2 = ∅, implying that RX2 ×RX2 = ∅, which is not desirable.

This also shows that RX1 × RX2 ⊆ RX when the x̃1 is treated as an uncertainty, which is a

conservative result.

In a nutshell, it can be seen that when the subsystems are connected, the full system

solution cannot be easily obtained from the solution of the subsystems. Further scrutinizing

the actual control invariant set for system (4.8) in Figure 4.5, it can be seen that x̃1 actually

behaves as an input at some points in x2 and as an uncertainty in other x2 locations. This

is the central idea on which we develop our distributed algorithm.

4.3.2 Overlapping system decomposition

In the preceding section, we have discussed the implication of decomposition of set invariance

using 2 dimensional systems. But how do we decompose connected systems when the system

dimension is greater than 2? In this section, we briefly discuss how to decompose three

dimensional cascade systems.

Let us consider the following system

x+ = f̂(x) =

⎡⎢⎢⎢⎢⎣
A11 0 0

A21 A22 0

0 A32 A33

⎤⎥⎥⎥⎥⎦x (4.9)

where x = [x1 x2 x3]
T subject to the state constraint X. There are different ways to

decompose system (4.9) into several subsystems. A simple but naive decomposition is to

consider each state in Equation (4.9) separately as shown in Figure 4.6. This way, three

65

1 2 3

(a) Naive decomposition (b) Overlapping decomposition

1 2 2 3

Figure 4.6: Different decomposition strategies for the cascade system

subsystems will be obtained with each subsystem focusing on a single state. While this look

simple and is similar to the parallel decomposition, it require information about the state in

the preceding subsystem. Moreover, the control invariant sets obtained this way based on

the subsystems are not very useful in reconstructing the control invariant set of the original

system since they do not contain the interconnection information about the neighboring

states. The only way to reconstruct the control invariant set from the subsystem solutions

is to find the Cartesian product of the resulting control invariant set for the each subsystem.

This will ultimately result in a large over approximation of RX .

A more useful way is to decompose system (4.9) into subsystems such that each subsystem

is chained to its neighboring subsystem as shown in Figure 4.6. This way, the interactions

between the states can be accounted for. As an example, system (4.9) can be decomposed

into two subsystems that share a common part. This can be considered as equivalent to

expanding the system to a higher dimension since the overlapping states are repeated in the

state equation as shown in Equation (4.10). The overlapping states play an important role

in reconstructing the control invariant set from the distributed computing results. The role

of the overlapping states will be made clear in the later discussion.

More formally, let z ∈ Rn1+n2 denote the states for the expanded system for system (4.6)

such that z = [x1 x2 x2 x3]
T is the expanded system state vector with z1 = [x1 x2]

T ∈ Rn1

and z2 = [x2 x3]
T ∈ Rn2 being the subsystem states. The two subsystems are shown in

Equation (4.11). The corresponding decomposition is depicted in Figure 4.6.

66

z+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0

A21 A22 0 0

A21 0 A22 0

0 0 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
z (4.10)

S1 : z
+
1 = f1(z1) =

⎡⎢⎣A11 0

A21 A22

⎤⎥⎦ z1 S2 : z
+
2 = f2(z2, x̃1) =

⎡⎢⎣A22 0

A32 A33

⎤⎥⎦ z2+

⎡⎢⎣A21

0

⎤⎥⎦ x̃1 (4.11)

Notice that while Subsystem 1 is independent of any external state, Subsystem 2 requires

information about x1 similar to our earlier discussions. We will refer to the information about

x1 required by Subsystem 2 as missing state information, denoted by x̃1, in the next section.

How the missing state information is obtained will be discussed in the subsequent section.

As can be seen in the above equations, the decomposed system has a higher dimension than

the original system i.e. n1 + n2 > n. While the above example used a linear system, this

type of decomposition can be readily applied to nonlinear systems with exogenous inputs

and serves as a precursor to the proposed algorithm. Unfortunately, there is no general

way of reconstructing the control invariant set for the overall system from the solution of

the subsystems. This is because of the coupling between the two subsystems and that in

Subsystem 2, though x1 information is used, the dynamics is not considered.

4.4 Computation of the largest control invariant set

via system decomposition

In this section, we present an algorithm to compute an approximation of RX via system

decomposition. We focus on the cascade structure presented in Section 4.3. Given a cascade

system with its associated overlapping decomposition, the algorithm computes the control

67

invariant set for each of the subsystems, first in a decentralized manner, followed by a

distributed. Thereafter, the control invariant for the overall system is reconstructed and

subset of the cells tested for control invariance. The central idea employed here is that the

missing state information is treated as both a regular input and an uncertain input. This

way, the two aspects of the missing state is utilized. As we will show in this section, the use

of graph analysis makes it easier for this to be achieved. Throughout this section, we assume

there are only two subsystems S1 and S2, that is M = 2, as described in Equations (4.11)

with subspaces X1 = proj1(X) and X2 = proj2(X) respectively.

We begin this section by first describing procedure for the decentralized and distributed

computation. Thereafter, we present the procedure for the reconstruction and validation of

the solution. We end this section by conducting a brief analyzes of the complexity of the

proposed algorithm.

4.4.1 Decentralized and distributed computation

The decentralized and the distributed computation makes use of the standard GIS algorithm

to determine the cells which approximate the largest control invariant sets (RX1 and RX2) for

each of the subsystems. We denote the solutions of the subsystems by R1 and R2 respectively.

During the computations, the directed graphs G1 and G2 for each subsystem are constructed

based on the collections C1 and C2 of each subsystem respectively. Further analysis on these

graphs is vital for the reconstruction of the solution of the overall system.

In the decentralized step, each subsystem is treated as independent of each other. This

allows for the computation of R1 and R2 in parallel. The goal is to quickly obtain an

approximation of the largest control invariant sets and reduce the search space for further

computations. To make this possible, the interval for missing state information for x1 in

Subsystem 2 is held constant during the computation. In this case, an approximation which

68

is obtained by projecting the state constraint onto the dimension of x1 may be used, that is

x̃1 = projuX (4.12)

where u denotes the dimension of x1. Once the computation begin, there is no communication

between the solutions of the two subsystems. The algorithm for the decentralized step is

summarized in Algorithm 4. The algorithm takes as input the subsystem equations, the

quantized subspaces for each subsystem, the input constraint and the number of subsystems.

As mentioned earlier, this is fixed since only two subsystems are considered here. The

algorithm returns estimates of the control invariant sets for each of the subsystems as well

as their associated digraphs.

Algorithm 4: Decentralized computation

Input: Subsystems in Equation (4.11) and the collections C1 and C2, U , M = 2
Output: Gi, Ri, i = 1, · · · ,M

1 G1 ← Construct the directed graph representation of S1

2 R1 ← I+(G1)
3 for i = 2 · · ·M do

// Can be done in parallel

4 x̃i−1 ← proji−1X
5 Gi ← Construct the directed graph representation of Si utilizing x̃i−1

6 Ri ← I+(Gi)

7 return Ri, Gi, (i = 1, · · · ,M)

In the distributed step, the control invariant set for each subsystem is computed sequen-

tially. Thus, the solution for the immediately preceding subsystem is used to estimate the

missing state information for the current subsystem. While the missing state information for

each subsystem is obtained from the state constraint in the decentralized computation, the

missing state information is dynamically obtained from the neighboring subsystem solution

in the distributed computation. This is the key difference between the decentralized com-

putation and the distributed computation. It is also the reason for computing the solution

for each subsystem in a sequential fashion. The procedure for dynamically estimating the

69

(a) Subsystem 1

1 2 3

4 5 6

8

x1

x2

(b) Subsystem 2

1 2 3

4 5 6

7 8 9

x2

x3

Figure 4.7: Procedure for dynamically estimating the missing x1 information for each cell
in Subsystem 2. (a) Solution of Subsystem 1 R1. The yellow cells indicate the cells that
correspond to B3 in the solution of Subsystem 2. Merging and projecting these cells onto the
x1 dimension produces the range of x1 for B3. (b) Solution of Subsystem 2 R2. The green
cell indicate the cell whose missing state information is being estimated. This procedure is
repeated for all other cells in R2.

missing state information in the computation of the control invariant set of Subsystem 2 is

presented in Figure 4.7. By allowing unidirectional communication through dynamic esti-

mation of the missing state information, the solution of each subsystem is further refined.

Furthermore, a more realistic graph representation of the dynamics of each subsystem is

obtained. This will be useful during the set reconstruction step of the algorithm. The al-

gorithm for the distributed computation is presented in Algorithm 5. It is similar to the

algorithm used for the decentralized computation. As mentioned earlier, the key difference

is how the missing state information x̃i is obtained.

Algorithm 5: Distributed computation

Input: Subsystems in Equation (4.11) and the collections C1 and C2, U , M = 2
Output: Gi, Ri, i = 1, · · · ,M

1 G1 ← Construct the directed graph representation of S1

2 R1 ← I+(G1)
3 for i = 2 · · ·M do
4 Estimate the range of x̃i−1 for Si from Ri−1

5 Gi ← Construct the directed graph representation of Si utilizing x̃i−1

6 Ri ← I+(Gi)

7 return Ri, Gi, (i = 1, · · · ,M)

70

2 3

5 6

1 2 3

4 5 6

31 2 3

3

proj (.)1

×

R1

R2

Figure 4.8: Procedure for reconstructing the control invariant set for the overall system from
the subsystem solutions R1 and R2. The procedure is indicated for Cell B3 in R2. Because
of the overlap, B6 in R2 has a connection with with B1, B2 and B3 in R1. These cells are
then projected onto the x1 dimension to obtain the range of x1 for each cell. The Cartesian
product of the B3 with the range of x1 produces 3 dimensional cells (in this case 3 cells).
This is repeated for all other cells in R2 to obtain the solution R for the overall system.

4.4.2 Set reconstruction and validation

Following the distributed computation step, the solutions from the two subsystems, that is

R1 and R2, together with the directed graphs G1 and G2 are used to reconstruct the solution

for the overall system R. Notice that the Cartesian product of the two sets will result in a 4

dimensional object which is not accurate. This is because of the overlapping decomposition.

The procedure for reconstructing R therefore involves projecting the cells in R1 onto the x1

dimension in a dynamic fashion similar to the procedure for estimating the missing state

information in the distributed computation. However, the range of x1 is not merged in this

case since the focus is reconstruction of the set for the overall system. The procedure for

reconstructing the set is described in Figure 4.8.

As described earlier, reconstructing the solution of the overall system from the subsystem

solutions may often than not result an approximation error due to the decomposition and

coupling between the subsystems. However, compared to the naive decomposition, the ap-

proximation error for the overlapping decomposition is expected to be smaller. Nonetheless,

the approximation error need to be addressed to ensure that the reconstructed solution from

the solution of the subsystems converges to solution when the full system model is used.

71

To address the approximation error due to the decomposition, we propose that a subset

of the cells forming the reconstructed set needs to be validated for inclusion in the final

reconstructed solution. The validation test involves computing the next feasible states of

each cell to be tested using the overall system model. Thereafter, the next feasible states of

the cell is checked for intersection with the reconstructed set. A cell Bi fails the validation

test if its successive states does not intersect the reconstructed set R, that is

F (Bi) ∩R = ∅ (4.13)

This is a direct intuition from the definition of control invariance. Any cell that fails the

validation test is removed from the reconstructed set.

What now remains is how to select the cells from the reconstructed set R for the validation

test. In principle, each cell in the reconstructed set need to be tested. However, this may

result in having to check for a large number of cells especially when the system dimension

is high. An alternative approach is to further investigate the graph G2 from the distributed

computation step to determine the cells that need to be tested. This way, the cells to test

will be significantly reduced. The general idea we use to further investigate the graph G2

is to consider the adversarial aspects of the missing state information used to construct G2.

We know by definition that the set R2 is made of cells with infinite admissible paths passing

through it, that is non-leaving cells. Thus, if there is a direct path from a cell in R2 to a cell

not in R2, then that path could have been caused by the missing state x̃1. By doing this,

we consider the contribution of the missing state x̃1 as a regular input and as an uncertain

input.

Given the collection C2 for Subsystem 2, let Clc2 denote the leaving cells. It is easy to see

that C2 = R2 ∪ Clc2 .

Definition 4.5 (Incoming neighbors). Given the directed graph G = (V,E), the incoming

or in neighbors of the vertex u ∈ V are the nodes v ∈ V such that the edges (v, u) ∈ E exist.

72

1 2 3

4 5 6

7 8 9

(a) Graph construction and analysis for Subsystem 1

31 2

64 5

97 8

2 3

5 6

1 2 3

4 5 6

7 8 9

31 2

64 5

97 8

1 2 3

4 5 6

x1

x2

x2

x3

(b) Graph construction and analysis for Subsystem 2

Figure 4.9: Procedure for the analysis of the distributed graphs to find the cells to be tested.

The central idea is to find the incoming neighbors of the leaving cells in the graph of Subsys-

tem 2. Then we find those incoming neighbors that have an intersection with the non-leaving

cells. Let Ct2 denote the cells that need to be tested for Subsystem 2 and in(G2, Clc2) be the

incoming neighbors of the leaving cells on G2. Then the following relationship describes the

cells that need to be flagged for further testing after the reconstruction

Ct2 = in(G2, Clc2) ∩R2 (4.14)

By obtaining the cells to be tested according to Equation (4.14), we ensure that any cell that

has a direct path to any of the leaving cells are verified. The cells to be tested, that is Ct

for the full dimensional problem can be obtained from Ct2 by following the set reconstruction

procedure described earlier for R2.

To illustrate how a cell is selected for testing, Figure 4.9 is presented. From the figure, it

can be seen that the non-leaving cells of Subsystem 2 R2 are {B2, · · · , B6} while the leaving

cells Clc2 are {B8, B9}. Also, the incoming neighbors of the leaving cells are {B5, B6}. Thus,

Ctd,2 = {B5, B6}.

73

The algorithm for the set validation is presented in Algorithm 6. The algorithm takes as

input the full system model, the constraint set, the cells to be tested Ct and the reconstructed

solution R. It returns the final validated solution R∗. A while loop is used in the validation

algorithm since the order to conduct the tests for the cells in the testing set in not known

in advanced. Hence, we check several times until no cell is removed.

Remark 4.1. It is worth mentioning that the presence of both finite and infinite path passing

through a particular cell may be caused by the effects of the actual system inputs and not

the missing state. The effects of this two can be separated. However, in this work we take a

conservative approach and treat the presence of both finite and infinite admissible path on a

cell as an effect of the missing state.

Algorithm 6: Set validation

Input: System (4.1), constraint sets X and U , Ct, R
Output: R∗

1 cont = true
2 while cont do
3 tmp← ∅
4 for Bi ∈ Ct do
5 if F (Bi) ∩R = ∅ then
6 Add Bi to tmp

7 if tmp ̸= ∅ then
8 R← R/tmp // Set difference

9 Ct ← Ct/tmp

10 R∗ ← R
11 return R∗

4.4.3 Computational complexity

In this section, we briefly analyze the computational complexity of the proposed algorithm.

In particular, we focus on how the complexity of the algorithm increases in the system state

dimension n. Consider that only two subsystems S1, S2 with state dimensions n1 < n, n2 < n

have been created and let nc denote the number of interval divisions per state dimension.

74

Based on the results of [32], we know that the overall complexity of the graph-based control

invariant set computation algorithm is determined by the graph construction step which is

O(nn
c). This implies that the algorithm increases exponentially in the state dimension n.

Owing to the decomposition, the computation of the control invariant sets for the each

of the subsystems is O(nn1
c) and O(nn2

c) respectively which is less than O(nn
c). Thus, the

complexity of the decentralized and the distributed steps is determined by the subsystem

with the largest dimension i.e. max(O(nn1
c),O(nn2

c)). In both of the steps, the missing states

are determined and stored in a dictionary prior to the computation and therefore retrieving

it has a complexity of O(1). The centralized step is probably the most time consuming

part of the algorithm since the control invariant set is reconstructed from the subsystem

solution and validated. However, since only the cells flagged for testing Ct are tested, three

possibilities can occur depending on the number of cells flagged. Let nt be the number of

cells flagged for testing after the distributed computation step. At worst, all the cells are

flagged and therefore all the cells in the reconstruction step need to be validated. At the best

case, no cell is flagged and therefore the overall control invariant set can be reconstructed

without any validation. On the average case, not all the cells are flagged for validation. The

complexity in this stage is therefore O(nt) which is on average less than or at worst equal to

O(nn
c).

4.5 Examples

In this section we present three numerical examples to demonstrate the efficacy of the pro-

posed algorithm. The first two are 3 dimensional linear and nonlinear examples. This is

used to demonstrate that the solution converges to the solution of the full system model for

both the linear and nonlinear case. This is because, it is computationally difficult to obtain

an approximation of RX for higher dimensional systems using the standard GIS algorithm.

Finally, we compute an outer approximation of RX for a 6 dimensional nonlinear system.

75

Unless otherwise stated, the number of division in each dimension was fixed at 128.The

computation was performed on a laptop computer with Intel i7 CPU at 2.60 GHZ and 16

GB RAM. We refer to the solution from the decomposition as the distributed solution and

that from the full system model as the centralized solution.

4.5.1 Linear system example

Consider the linear time-invariant cascade system

x+ = Ax+Bu (4.15)

where A and B are given by

A =

⎡⎢⎢⎢⎢⎣
2 0 0

1 2 0

0 1 2

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎦ .

The constraints on the states and input are X = {x ∈ R3 : ∥x∥∞≤ 5} and U = {u ∈ R :

∥u∥∞≤ 1} respectively.

Our goal is to compute the control invariant set for the system. To use the proposed

algorithm, the system is first expanded to a 4-dimensional system by repeating the state

equation for the second state as shown in Equation (4.16).

z+ = f(z, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0

1 2 0 0

1 0 2 0

0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
z +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u (4.16)

where z = [x1 x2 x2 x3]
T ∈ R4. It can be seen that nz = 4 > nx = 3. Equation (4.16) is then

decomposed to obtain two subsystems namely: subsystem one: z1 = (x1, x2) and subsystem

76

-1

1

0

1
x 3

x
2

0

1

x
1

0
-1 -1 -1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x 2

-1 -0.5 0 0.5 1
x

2

-1

-0.5

0

0.5

1

x 3

-1 -0.5 0 0.5 1
x

1

-1

-0.5

0

0.5

1

x 3

Figure 4.10: Comparison of the convex hull of the cells in the centralized and distributed
solutions. Blue shaded area: centralized solution. Dashed red: solution of the sets obtained
from the distributed computation. Black: Final solution after reconstructing the solution
and validating the cells.

two: z2 = (x2, x3) as shown in Equations (4.17) and (4.18) below.

z+1 = f1(z1, u) =

⎡⎢⎣2 0

1 2

⎤⎥⎦ z1 +

⎡⎢⎣1
0

⎤⎥⎦u = f1(x1, x2, u) (4.17)

z+2 = f2(z2, x1) =

⎡⎢⎣2 0

1 2

⎤⎥⎦ z2 +

⎡⎢⎣1
0

⎤⎥⎦x1 +

⎡⎢⎣0
0

⎤⎥⎦u = f2(x2, x3, x1) (4.18)

The control invariant sets for the two subsystems and ultimately the full system are computed

using the distributed algorithm. The solution from the distributed algorithm is compared

to the projections of the control invariant set computed using the centralized model. This is

presented in Figure 4.10. It can be seen that the distributed computation converges to the

centralized computation.

77

4.5.2 Nonlinear system example

Consider the nonlinear system

x+
1 = x2

1 + u (4.19a)

x+
2 = x2

2 + x1 (4.19b)

x+
3 = x2

3 + x2 (4.19c)

The constraints on the states and input are X = {x ∈ R3 : ∥x∥∞≤ 5} and U = {u ∈ R :

∥u∥∞≤ 1} respectively.

Our goal is to compute an approximation of the largest control invariant set for the

system. To use the proposed algorithm, the system is first expanded to a 4-dimensional

system by repeating the state equation for the second state as shown in Equation (4.20).

z+ = f(z, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2
1 0 0 0

x1 x2
2 0 0

x1 0 x2
2 0

0 0 x2 x2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u (4.20)

where z = [x1 x2 x2 x3]
T ∈ Rnz with nz = 4 > nx = 3. Thereafter, the expanded system is

decomposed into two subsystems with overlapping states as described in the earlier sections.k

The results from the computations using the full system model and that of the decom-

posed system model are presented in Figure 4.11 and 4.12. Figure 4.11 shows the convex

hull of the sets in the distributed solution and the centralized solution. Again, it can be seen

that the solution using the decomposed models converges to that of the full system model

after the reconstruction. Furthermore, Figure 4.12 show the scalabilities of the proposed

distributed algorithm and the centralized algorithm. It can be seen that the algorithm using

the decomposed model scales better than when the centralized model is used.

78

-1

1

0

1

x 3

0

x
2

1

x
1

0
-1 -1

-2 -1 0 1
x

1

-1

0

1

x 2
-1 0 1

x
2

-2

0

2

x 3

-2 -1 0 1
x

1

-2

0

2

x 3

Figure 4.11: Comparison of the convex hull of the cells in the solutions utilizing the decom-
posed model and the full system model. Blue shaded area: Solution from the computation
utilizing the full system model. Dashed red: solution of the sets obtained from the dis-
tributed computation. Black: Final solution after reconstructing the solution and validating
the cells.

0 50 100 150 200 250 300

Number of divisions in each dimension

0

500

1000

1500

2000

2500

3000

3500

4000

C
o
m

p
u
ta

ti
o
n
 t

im
e

(s
)

Centralized Distributed

Figure 4.12: The computation vs the number of interval divisions in each dimension. At
256 interval divisions, it took more than an hour for the computation using the centralized
model. An hour has been used for better visualization.

79

4.5.3 Three Continuously stirred tank reactors in series example

Let us consider an isothermal continuous-stirred tank reactor (CSTR) in which the following

irreversible chained reactions occurs

A
k1−→ B

k2−→ C

The reactor can be described by the following dimensionless modeling equations

dx1

dt′
= − x1 +Da1x1 + u1 (4.21a)

dx2

dt′
= − x2 +Da2x

2
2 −Da1x1 (4.21b)

where Da1 = 1 and Da2 = 2 represent the dimensionless Damkholer number for the reactions

1 and 2, x and u are the dimensionless state and input vectors and t′ is dimensionless time. By

connecting three of the CSTR model in series, the follow six dimensional model is obtained.

dx1

dt′
= − x1 +Da1x1 + u1 (4.22a)

dx2

dt′
= − x2 +Da2x

2
2 −Da1x1 (4.22b)

dx3

dt′
= − x3 +Da1x3 + x1 (4.22c)

dx4

dt′
= − x4 +Da2x

2
4 −Da1x3 + x2 (4.22d)

dx5

dt′
= − x5 +Da1x5 + x3 (4.22e)

dx6

dt′
= − x6 +Da2x

2
6 −Da1x5 + x4 (4.22f)

The continuous-time model is discretized using a step size of 1 before usage in CIS algorithm.

The constraints on the states and input are X = {x ∈ R6 : 0 ≤ x ≤ 1} and U = {u ∈ R :

0 ≤ u ≤ 1} respectively.

Figures 4.13–4.15 show the results of each reactor. The computations were performed on

80

0 0.2 0.4 0.6 0.8 1
x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x 2

Figure 4.13: The solution for Reactor 1.

0 0.2 0.4 0.6 0.8 1
x3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 4

Figure 4.14: The solution for Reactor 2. Red: results from decentralized computation.
Blue: results from the distributed computation. Black: Final solution after validation

81

0 0.2 0.4 0.6 0.8 1
x5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 6

Figure 4.15: The solution for Reactor 3. Red: results from decentralized computation.
Blue: results from the distributed computation. Black: Final solution after validation

a computing server with single core Intel Xeon E5 processor with 2.1 GHz frequency and 100

GB of RAM. It took roughly 4 hours to compute the solution using the distributed approach

with the reconstruction and validation step taking about 70 % of the total computation time.

It is worth mentioning that it is intractable to compute an approximation of the largest

control invariant set for the six dimensional system using the GIS algorithm presented in

Chapter 2 without system decomposition.

4.6 Concluding remarks

Given a constrained discrete-time time-invariant control system, the method proposed in this

chapter obtains outer approximations of the largest control invariant set contained in the

state constraint. For this purpose, we presented a graph-based distributed algorithm which

approximates the dynamics of the control system as a directed graph allowing for analysis

of the system using graph theory. This algorithm paves a promising way to overcome the

“curse of dimensionality” encountered in control invariant set computation. Simulations

using several numerical examples demonstrate the ability and effectiveness of the proposed

method to approximate the largest control invariant set, just like the centralized algorithm.

82

Chapter 5

Robust economic model predictive

control with zone tracking

5.1 Introduction

Nonlinear model predictive control (MPC) with a general objective known as economic

MPC (EMPC) has received significant attention in recent years [55, 56, 57]. The objective

function in an EMPC generally reflects some economic performance criterion such as profit

maximization or heat minimization. This is in contrast with the tracking MPC where the

objective is a positive definite quadratic function. The integration of process economics

directly in the control layer makes EMPC of interest in many areas especially in the process

industry. There has been a significant number of applications of EMPC [58, 59, 60, 61]. To

address stability and computational issues of EMPC, different formulations of EMPC has

been proposed [62, 56, 57, 63].

Uncertainties arise as a result of imperfect models and/or unmeasured disturbances.

The presence of uncertainties in any control system can result in performance degradation

and/or loss of feasibility which can lead to loss of stability. Due to the integration of process

economics in the control layer, it is not fully understood how the presence of uncertainties

83

affect the economic performance of EMPC. In the context of tracking MPC, robust MPC is

a common approach used to address the robustness of a control system in the presence of

uncertainties. See [64] for a recent survey on robust MPC as well as the associated challenges.

Robust MPC techniques have also been applied to EMPC in the literature. In [65], an EMPC

formulation which is based on robust tracking of a prior nominal trajectory was proposed. In

[66], a robust EMPC formulation based on scenario tree approach was presented. In [67], a

min-max robust EMPC algorithm was proposed to address transmission delays in networked

control systems. Tube-based formulations with and without stochastic information have also

been proposed [68, 69, 70]. However, they either use a min-max optimization approach or use

the nominal model with tightened invariant constraints. In both cases, the computational

demands are very high even for linear systems.

While robust MPC techniques are common in the design of tracking MPCs for handling

uncertainty, it was pointed out that simply transferring robust MPC techniques to EMPC

could result in poor economic performance [68]. This is because economic optimization

and robustness are two objectives and often may conflict with each other. Robust MPC

techniques have been designed to reject all disturbances to achieve their desired goal which

may not be the case in EMPC as some disturbances can lead to better economic performance.

In our previous work, we proposed an EMPC with zone tracking scheme to handle the two

objectives in one integrated framework [12]. The use of a target zone allows for flexible

handling of multiple objectives in the controller design and at the same time improves the

degree of robustness of the controller due to the inherent robustness of zone control. It is

worth noting that the concept of zone control is not new. Zone MPC have been reported in

several areas such as diabetes treatment [71], control of building heating system [72], control

of irrigation systems [73] and coal-fired boiler-turbine generating system [60]. In the context

of MPC literature, zone control is often dismissed as a trick to avoid feasibility issues and

has received less attention in terms of theoretical analysis. A recent study on the stability

analysis of MPC with generalized zone tracking [13] paves the way for further development

84

of zone control.

In [12], the stability and economic performance of the EMPC with zone tracking frame-

work were studied without considering process uncertainty. In this chapter, we extend [12]

to consider constrained nonlinear systems subject to unmeasured but bounded disturbances.

Instead of tracking the original target zone, we propose to track a robust control invariant

set within the target zone so that once the system state enters the invariant zone, it will not

exit the target zone anymore. The proposed design can ensure that the zone tracking objec-

tive is achieved in finite steps and at the same time optimizes the economic performance. It

is found that in the presence of uncertainty, the economic performance of EMPC not only

depends on the optimal steady state but also the size of the tracked zone. To take this

into account, we introduce the notion of risk factor in the controller design. The risk factor

determines the conservativeness of the controller and provides a way to tune the EMPC for

better economic performance. An algorithm to determine the zone integrating the risk factor

is also proposed. A nonlinear chemical example is presented to demonstrate the performance

of the proposed formulation.

5.2 Preliminaries

5.2.1 Notation

Throughout this chapter, the symbol I≥0 denotes the set of nonnegative integers {0, 1, 2, . . .}.

INM is the set of integers from M to N : INM = {M,M + 1, . . . N}. |·| denotes the Euclidean

norm of a scalar or a vector. ∥·∥n denotes the n-norm of a scalar or vector. A continuous

function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly increasing and satisfies

α(0) = 0. A class K function α is called a class K∞ function if α is unbounded. A continuous

function σ : [0,∞)→ [0, a) is said to belong to class L if it is strictly decreasing and satisfies

limx→∞σ(x) = 0. A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class

KL if for each fixed r, β(r, s) is a class L, and for each fixed s, β(r, s) is a K function. The

85

operator ‘/’ means set subtraction such that A/B = {x ∈ Rnx : x ∈ A, x /∈ B}.

5.2.2 System description and control problem formulation

In this chapter, we consider discrete-time nonlinear systems described by the following state-

space model:

x(n+ 1) = f(x(n), u(n), w(n)) (5.1)

where x(n) ∈ Rnx is the system state vector at time instant n ∈ I≥0, u(n) ∈ Rnu is the control

input vector and w(n) ∈ Rnw denotes the system disturbance vector. It is assumed that the

system state and the control input vectors are restricted to be in the coupled non-empty

convex set of the following form:

(x(n), u(n)) ∈ Z ⊆ X× U (5.2)

where X and U are the constraints on the state and the input respectively. It is also assumed

that the disturbance is unknown and contained in a set W (w ∈W) where

W := {w ∈ Rnw : ∥w∥∞≤ θ, θ > 0}

with θ being a positive real number. Throughout this paper, we make the following assump-

tions.

Assumption 5.1 (Compact constraints). The sets X, U and W are compact with W con-

taining the origin in its interior.

Assumption 5.2 (Continuity). The function f : Rnx×Rnu×Rnw → Rnx is locally Lipschitz

with respect to x and w for all x ∈ Z, u ∈ U, w ∈ W. This implies that there exist positive

constants Lx and Lw such that:

|f(x, u, w)− f(z, u, 0)|≤ Lw|w|+Lx|x− z| (5.3)

86

for all x, z ∈ X, u ∈ U and w ∈W.

The primary control objective of this work is to design a feedback controller such that

it can drive the state of system (5.1) to a pre-determined target zone Xt ⊂ X if the initial

state of system (5.1) is outside the target zone (x(0) ∈ X/Xt) and maintain the state of

system (5.1) within the target set Xt when the zone tracking is achieved. A secondary

objective is to minimize the average economic cost over the infinite horizon T characterized

as follows:

lim sup
T→∞

1

T

T−1∑︂
n=0

ℓe(x(n), u(n)) (5.4)

where ℓe : Rnx×Rnu → R is a general economic stage cost which is not necessarily quadratic

or positive definite but it must be continuous. In order to achieve the above control ob-

jectives, we resort to EMPC with zone tracking [12] and takes into account the presence of

process disturbance w in the design of the EMPC.

5.3 Robust EMPC with zone tracking

In this section, we present the design of the proposed robust EMPC with zone tracking

scheme. The proposed design steers the system state to the target zone and optimizes the

economic objective in the process.

Given that there is model uncertainty due to the presence of process disturbances and

that the target zone Xt is not necessarily control invariant, a robust control invariant set

Xe within the target zone (Xe ⊆ Xt) is determined and is used as the actual tracking zone

in the proposed EMPC design [13]. To optimize the economic objective within the robust

control invariant set, the set Xe is optimized also according to the economic objective. In the

remainder of this work, we will refer to this robust control invariant set Xe as the economic

zone.

Let us first assume that such an economic zone Xe has been determined. The procedure to

create such an economic zone will be discussed in section 5.3.2. It is also assumed that there

87

is a steady state (xs, us) with xs ∈ Xe, us ∈ U such that it solves the following steady-state

optimization problem:

(xs, us) = argmin ℓe(x, u) (5.5a)

s.t. x = f(x, u, 0) (5.5b)

(x, u) ∈ Xe × U (5.5c)

Without loss of generality, we assume that (xs, us) is the unique solution to the above steady-

state optimization problem.

5.3.1 Design of the proposed EMPC with zone tracking

With information about the current state x(n), the proposed EMPC uses the nominal model

of system (5.1):

z(k + 1) = f(z(k), v(k), 0) (5.6)

with the initial condition z(0) = x(n) to find a control sequence v = {v(0), . . . , v(N − 1)}

and the associated state sequence z = {z(0), . . . , z(N)} over the entire prediction horizon N

to minimize the cost function:

VN(x(n),v) =
N−1∑︂
k=0

ℓ(z(k), v(k)) (5.7)

In (5.6) and (5.7), z(n) ∈ X ⊆ Rnx and v(n) ∈ U ⊆ Rnu are the nominal state vector and

computed control input vector respectively in the proposed EMPC. The stage cost ℓ(·, ·) is

defined as follows:

ℓ(z, v) = ℓe(z, v) + ℓz(z) (5.8)

88

where ℓe(·, ·) is the economic stage cost as introduced in (5.4) and ℓz(·) is a zone tracking

penalty term which is defined as below:

ℓz(z) = min
zz

c1(∥z − zz∥1) + c2(∥z − zz∥22) (5.9a)

s.t. zz ∈ Xe (5.9b)

with c1 ∈ R≥0, c2 ∈ R≥0 being non-negative weights on the l1 norm and the squared l2

norm respectively, zz is a slack variable and Xe is the economic zone to be tracked. The

zone tracking stage cost reflects the distance of the system states from the economic zone

and is positive definite. The weights c1 and c2 must be appropriately selected such that the

zone tracking cost is given a higher priority than the economic objective. The incorporation

of both the l1 and the squared l2 norms penalizes the magnitude and duration of the zone

tracking violation [12].

At each sampling time, the following dynamic optimization problem PN(x(n)) is solved:

min
v

VN(x(n),v) (5.10a)

s.t. z(k + 1) = f(z(k), v(k), 0), k = 0, . . . , N − 1 (5.10b)

z(0) = x(n) (5.10c)

z(k) ∈ X, k = 0, . . . , N − 1 (5.10d)

v(k) ∈ U, k = 0, . . . , N − 1 (5.10e)

z(N) = xs (5.10f)

In the optimization problem (5.10) above, Equation (5.10c) is the initial state constraint,

Equation (5.10f) is a terminal equality constraint and Equations (5.10d) and (5.10e) are the

constraints on the state and inputs respectively. As a result of the cost function employed,

the optimization problem in (5.10) is a multi-objective optimization problem which seeks to

89

minimize the deviation of the system’s state from the economic zone Xe while optimizing

the economic objective.

The solution of PN(x(n)) denoted v∗ gives an optimal value of the cost V 0
N(x(k)) and at

the same time u(n) = v∗(0) is applied to the actual system (5.1). Notice that the nominal

system is used in the optimization and therefore generates mismatch between the prediction

in the EMPC optimization and the actual system evolution. We will show in the next section

that under some mild conditions, our proposed controller is able to stabilize the plant in the

presence of this mismatch. The prediction horizon is shifted forward by one sampling time

once information about x(n + 1) is known and the optimization problem PN(x(n + 1)) is

solved to find u(n+ 1).

5.3.2 Construction of the economic zone

In the previous section, we have presented the proposed EMPC formulation with zone track-

ing. In the proposed design, a robust control invariant economic zone Xe replaces the original

target zone and is the zone to be tracked. In this section, we discuss how to construct the

economic zone.

5.3.2.1 Risk factor

In determining the economic zone Xe, the idea is to find a robust control invariant set

within the original target zone Xt while taking into account the economic performance of

the system within the control invariant set. The use of a robust control invariant set as the

actual tracking zone ensures that the system state converges to the zone and will not leave

the zone again once enters the invariant zone even in the presence of disturbances. This will

be shown in the stability analysis section.

While any robust control invariant set within the original target zone can achieve the

zone tracking objective, the size of the robust control invariant set affects the economic

performance of the system. Due to the presence of disturbance in the system, the overall

90

economic performance of the system not only depends on the optimal steady state within

the zone Xe but also depends on the economic performance of the system within the zone.

In order to account for this in determining the economic zone, we introduce the concept of

risk factor δ ∈ R in the Xe construction. The risk factor is a positive scalar that can be

tuned. It determines the size of the economic zone and ultimately, the conservativeness of

the controller. Here, conservative is used to mean the ability of the controller to optimize

the economic objective within the target zone. When a higher risk factor is used, the size

of the economic zone is larger and the controller is less conservative. Algorithm 8 presented

in the next subsection will summarize how the risk factor is used in the computation of the

economic zone.

5.3.2.2 Computing the economic zone

The algorithm for determining the economic zone builds on the graph-based robust control

invariant set computing algorithm developed in [32]. In the algorithm in [32], the state space

X is quantized into closed sets Bi, i = 1, . . . l. The collection of these cells, C = {B1, . . . , Bl},

is called the finite covering of the state space X. The closed sets in the finite covering C are

also known as cells or boxes such that:

X ⊆ ∪Bi∈CBi (5.11)

The diameter of the covering C is given by

diam(C) := max
Bi∈C

diam(Bi)

where diam(Bi) = sup{|x − y|: x, y ∈ Bi}. Since X is compact, it is always possible to

obtain a finite covering. Following the quantization, the system dynamics is approximated

using a directed graph G. Graph investigations are then carried out on the directed graph to

determine the cells that approximate the largest robust control invariant set while the ones

91

Algorithm 7: Determination of economic zone

Input: f , Xt, U, W, ℓe, δ, d
Output: Xe

1 Create a finite covering Ct of Xt with cell diameter d
2 Initialize the cells that satisfy the economic criterion Ce as empty array
3 for Bi in Ct do
4 if ∀x ∈ Bi, ∃u ∈ U : ℓe(x+ f(x, u, w)− f(x, u, 0), u) ≤ δ, ∀w ∈W then
5 Add Bi to Ce

6 if Ce is empty then
7 return ∅
8 else
9 Initialize Algorithm 2 in [32] with Ce

10 Compute an inner approximation of the largest robust control invariant set Cr
contained in Ce

11 Xe ← ∪Bi∈CrBi

12 return Xe

that do not form part of the robust control invariant set are discarded.

We denote by Cr the cells that approximate the robust control invariant set.

The procedure for determining the economic zone Xe is summarized in Algorithm 7.

The algorithm has a few inputs including the system model f , the risk factor δ, the initial

cell diameter d, the target zone Xt, the economic objective ℓe as well as the input and the

disturbance sets. The algorithm returns the calculated economic zone Xe.

Intuitively, the algorithm seeks to find an economic zone that compensates for the effects

of the disturbances on the economics of the closed-loop system while ensuring good stability

property. This is achieved by backing-off from the boundaries of the target zone to obtain

Xe. The algorithm is in two main stages. In the first stage of the algorithm (Lines 1 – 5),

the target zone is quantized with the help of a finite covering Ct. The initial diameter d

of the cells should be selected such that it sufficiently captures how the economic objective

changes with the state. The set of cells Ce within the target zone Xt that satisfy the economic

criterion is then determined. Consider a cell Bi ∈ Ct, if

∀x ∈ Bi,∃u ∈ U : ℓe(x+ f(x, u, w)− f(x, u, 0), u) ≤ δ, ∀w ∈W (5.12)

92

then the cell Bi is added to Ce. This is repeated until all the cells are checked. The remainder

of the cells in Ct are then discarded. The choice of the selection criterion in Algorithm 7

stems from the fact that every state within the target zone is a potential initial state as

well as a potential end state after one time-step. We focus on the latter since our proposed

controller does not consider the effects of the disturbance. The idea is that, for any potential

end state given by the nominal system, we know that the disturbance will be applied in

the real system. Thus, we are taking into consideration the effects of the disturbance on

the economics implicitly. By considering the end state in the selection criterion, we want to

guarantee that the economic performance of the closed-loop system is bounded above by the

risk factor δ irrespective of the disturbance w.

It is worth mentioning that the set formed by the union of the cells in Ce is not necessarily

robust control invariant. The second stage (Lines 5 – 8) in Algorithm 7, therefore seeks to

address this by finding the cells in Ce that inner approximate the largest robust control

invariant set. This is achieved by initializing Algorithm 2 in [32] with Ce and then using the

algorithm to find the cells that inner approximate the largest robust control invariant set Cr

contained in the set formed by Ce. The economic zone Xe is obtained after the two stages of

Algorithm 7 are carried out.

Remark 5.1. Xe is not guaranteed to exist. It depends on the chosen risk factor δ as well

as the properties of the system. Thus, it is possible for Algorithm 7 to return an empty set.

An obvious possibility is if the target zone Xt does not contain a robust control invariant set.

This ultimately implies that it is impossible to keep the states of the system within the target

zone and can therefore not be tracked. To understand why it is so, the reader may refer to the

stability analysis in [13]. Another possibility is if a very small risk factor δ is selected such

that it is impossible to satisfy condition (12). This will lead to Ce in Algorithm 1 being empty

and subsequently the economic zone. Hence, the risk factor must be appropriately selected to

ensure the existence of the economic zone Xe.

93

Remark 5.2. The cells in Cr needs to be combined and represented in a way that makes

the optimization problem presented in (5.10) easier to solve. One of such representations is

to find an inner approximation convex hull of the cells in Cr if the cells form a convex set.

Another approach is to use a more general set representation such as alpha hull. However,

this may lead to the use of non-convex sets in (5.10) which can increase the complexity of

the optimization problem.

Remark 5.3. As a result of the presence of the disturbances, it is in general difficult to de-

termine the optimal control inputs. One approach to determine the optimal feedback control

law is to solve a min-max optimization problem [64]. However, it suffers from high computa-

tional demand which makes it challenging to implement. In this paper, we propose an EMPC

scheme based on only the nominal model and zone tracking. The zone to be tracked can be

considered as an economic trust region. This makes our proposed approach similar to other

trust-region based approaches such as the Lyapunov-based EMPC [74] and that presented in

[61]. However, in the proposed formulation, we do not make use of any additional constraints

such as Lyapunov constraints in the formulation. Moreover, our formulation introduces eco-

nomic risk factor in the controller design thus implicitly considers an upper bound on the

asymptotic average performance of the closed-loop system.

5.4 Stability analysis

In this section, we address the stability of the proposed control algorithm. To proceed with

the discussion, we first introduce a few relevant definitions and assumptions.

First, we define the N -step reachable set of the optimal steady-state xs based on the

nominal model. The N -step reachable set will be used to construct a set for the initial state

of the system to ensure the feasibility of the proposed EMPC.

Definition 5.1 (N -step reachable set). Consider the nominal system of system (5.1) (i.e.,

w ≡ 0 for all time). A set XN is called the N-step reachable set with respect to the steady-

94

state xs if it contains all the states that can be steered to xs in N steps while satisfying the

state and input constraints. That is,

XN = {x(0) ∈ X|∃(x(n), u(n)) ∈ Z, n ∈ IN−1
0 , such that x(N) = xs} (5.13)

Assumption 5.3. The N-step reachable set XN is a compact set with xs in the interior of

set.

Next, we introduce the definition of dissipative systems and the relevant assumptions.

These definition and assumptions will be used to establish the stability of the proposed

EMPC.

Definition 5.2 (Strictly dissipative systems). The nominal system x̃(n+1) = f(x̃(n), u(n), 0)

is strictly dissipative with respect to the supply rate s : X×U→ R if there exists a continuous

storage function λ(·) : X → R and a K∞ function α(·) such that the following hold for all

x̃ ∈ X and u ∈ U:

λ(f(x̃, u))− λ(x̃) ≤ s(x̃, u)− α(|x̃− xs|) (5.14)

Assumption 5.4 (Strict disspativity). The nominal system x̃(n + 1) = f(x̃(n), u(n), 0) is

strictly dissipative with respect to the supply rate

s(x̃, u) = ℓe(x̃, u)− ℓe(xs, us)

Assumption 5.5 (Weak controllability). There exists a K∞ function γ(·) such that for all

x ∈ XN , there exists a feasible solution to (5.10) such that
N−1∑︂
k=0

|v(k)− us|≤ γ(|x− xs|).

The following proposition provides an upper bound on the deviation of the nominal

system state trajectory from the uncertain system state trajectory when the same input

sequence is applied.

95

Proposition 5.1. Consider the following system

x(n+ 1) = f(x(n), u(n), w(n)) (5.15)

and the corresponding nominal system

x̃(n+ 1) = f(x̃(n), u(n), 0) (5.16)

with the initial condition x(n) = x̃(n) ∈ X. The deviation of the nominal system state x̃

from the state x over one sampling time is bounded as follows:

|x(n+ 1)− x̃(n+ 1)|≤
√
nxLwθ (5.17)

for all x(n), x̃(n) ∈ X and all w(n) ∈W.

Proof. Let us define the deviation of x̃ from x as e such that e = x− x̃. Therefore, e(n+1) =

x(n+ 1)− x̃(n+ 1), which can further be written as:

e(n+ 1) = f(x(n), u(n), w(n))− f(x̃(n), u(n), 0) (5.18)

Taking the Euclidean norm of the error e and applying (5.3), the following inequality is

obtained

|e(n+ 1)|≤ Lw|w(n)|+Lx|x(n)− x̃(n)|= Lw|w(n)|+Lx|e(n)| (5.19)

for all x(n), x̃(n) ∈ X and w(n) ∈ W. Since the initial state for both the nominal and the

uncertain system are the same i.e. x(n) = x̃(n), we have that the initial deviation is 0, i.e.

e(n) = 0. Given that ∥w∥∞≤ θ, |w|≤ √nxθ. This leads to (5.17) and proves Proposition

5.1.

We now state the main results of this section. Theorem 5.1 considers the nominal system

of system (5.1) and finds a Lyapunov function of the system with respect to the steady

96

state xs. Theorem 5.2 will use this Lyapunov function to study the uncertain system to

establish the feasible region, finite step convergence, and ultimate stability and robustness

of the proposed EMPC.

Theorem 5.1. Consider the nominal system of system (5.1) under the control of EMPC

(5.10). Suppose that Assumption 5.4 holds and λ(·), α(·), s(x̃, u) = ℓe(x̃, u)− ℓe(xs, us) are

the associated functions that satisfy the condition (5.14) for all x̃ ∈ X and u ∈ U. Define

the rotated cost as follows:

ℓ̃e(x̃, u) = ℓe(x̃, u)− ℓe(xs, us) + λ(x̃)− λ(f(x̃, u, 0)). (5.20)

Then, the following dynamical optimization problem is equivalent to the proposed EMPC (5.10):

min
v

Ṽ N(x̃(n), v) =
N−1∑︂
k=0

(︂
ℓ̃e(z(k), v(k)) + ℓz(z(k))

)︂
(5.21a)

s.t. (5.10b)− (5.10f) (5.21b)

If Assumption 5.5 also holds, then the value function of (5.21) denoted as Ṽ
0

N(·) is a Lya-

punov function of the closed-loop system under the control of EMPC (5.10) with respect to

the optimal steady-state xs

Proof. In this proof, we use x̃ to denote the state of the nominal system under the control

of the proposed EMPC. Based on the definition of the rotated cost as in (5.20) and the

condition (5.14), it can be concluded that the rotated cost is bounded from below for all

(x̃, u) ∈ Z as follows:

ℓ̃e(x̃, u) ≥ α(|x̃− xs|) (5.22)

Based on the definition of ℓ(·, ·) in (5.8) and the rotated cost in (5.20), the stage cost ℓ(z, u)

97

can be equivalently expressed as follows:

ℓ(z, v) = ℓ̃e(z, v) + ℓz(z) + ℓe(xs, us)− λ(z) + λ(f(z, v, 0)) (5.23)

Based on the above expression of ℓ(·, ·), the cost function VN(·) in the optimization problem

(5.10) at time n can be equivalently expressed as follows:

VN(x̃(n),v) =
N−1∑︂
k=0

(︂
ℓ̃e(z(k), v(k)) + ℓz(z(k))

)︂
− λ(z(0)) + λ(z(N)) +Nℓe(xs, us) (5.24)

Taking into account the constraint (5.10f) in EMPC (5.10), the last three terms in the above

expression of VN(·, ·) are constants. This implies that if we replace the cost function VN(·, ·) in

the EMPC optimization problem (5.10) with the new cost function as in (5.21a), the solution

of the EMPC optimization problem remains the same. That is, the original EMPC (5.10)

is equivalent to the new EMPC (5.21). Let us denote the optimal value of the cost function

(the value function) of the new EMPC (5.21) as Ṽ
0

N(x̃(n)). Taking into account (5.22) and

the expression of Ṽ N(x̃(n),v), and noticing that z(0) = x̃(n) in the EMPC optimization

problem, it can be obtained that:

Ṽ
0

N(x̃(n)) ≥ ℓ̃e(z(0), u(0)) + ℓz(z(0)) ≥ ℓ̃e(z(0), u(0)) ≥ α(|x̃(n)− xs|) (5.25)

From Assumption 5.5, there exists a β(·) ∈ K∞ such that for all x̃(n) ∈ XN (see Appendix

of [75]):

Ṽ
0

N(x̃(n)) ≤ β(|x̃(n)− xs|) (5.26)

For the nominal system, it can be shown that the value function Ṽ
0

N(·) is non-increasing and

satisfies the following condition:

Ṽ
0

N(x̃(n+ 1))− Ṽ
0

N(x̃(n)) ≤ −ℓ̃e(x̃(n), u(n))− ℓz(x̃(n), u(n)) ≤ −α(|x̃(n)− xs|) (5.27)

98

This makes the value function Ṽ
0

N(·) a Lyapunov function of the closed-loop system under the

control of EMPC (5.10) with respect to the optimal steady state xs. This proves Theorem 5.1.

Before presenting Theorem 5.2, we introduce the set Ωρ defined based on the level set of

the Lyapunov function Ṽ
0

N(·):

Ωρ = {x ∈ X : Ṽ
0

N(x) ≤ ρ}. (5.28)

Let us assume that the value function Ṽ
0

N(x) is differentiable with respect to x. Based on

the above definition, we also define Ωρmin
as follows:

Ωρmin
:= max{Ṽ 0

N(x(n+ 1)) : |x(n)− xs|≤ α−1(KVLw

√
nxθ +HnxL

2
wθ

2)} (5.29)

where KV is a positive constant that bounds the the magnitude of the partial derivative

∂Ṽ
0

N(x)

∂x
such that |∂Ṽ

0

N(x)

∂x
|≤ KV for all x ∈ XN , and H is the constant associated with the

Taylor expansion of Ṽ
0

N(x) (which will be made clearer in the proof of Theorem 5.2). The

size of Ωρmin
is determined by the properties of the system and the disturbance set. Further,

we denote the maximum level set within XN as Ωρmax .

Theorem 5.2. Consider system (5.1) in closed-loop with EMPC (5.10). Let the target zone

and the economic zone satisfy: Ωρmin
⊂ Xe ⊂ Xt ⊂ Ωρmax ⊂ X. If Assumptions 5.2 – 5.5 hold,

the magnitude of the partial derivative
∂Ṽ

0

N(x)

∂x
is upper bounded such that |∂Ṽ

0

N(x)

∂x
|≤ KV

for all x ∈ X, and if there exist ϵs > 0, ρs > 0 such that:

− α(ρs) +KVLw

√
nxθ +HnxL

2
wθ

2 ≤ −ϵs (5.30)

where α(·) is a class K∞ function associated with Assumption 5.4 and as defined in (5.14),

and H is the constant associated with the Taylor expansion of Ṽ
0

N(x), then the closed-loop

system state x converges to the economic zone Xe in finite steps and then maintains in Xe

99

all the time for any initial condition x(0) ∈ Ωρmax.

Proof. In this proof, we consider applying EMPC (5.10) which is designed based on the

nominal system to the actual system with disturbance w. At time instant n, the EMPC

optimization problem is solved with the actual system state x(n) as the initial condition and

only the first input value in the optimal input trajectory is applied to the system. Applying

Proposition 5.1, from n to n+ 1, the deviation of the actual system state x(n+ 1) from the

nominal system state x̃(n+ 1) is bounded as following:

|x(n+ 1)− x̃(n+ 1)|≤
√
nxLwθ (5.31)

Using Taylor expansion, we can obtain the following relation:

Ṽ
0

N(x(n+ 1)) = Ṽ
0

N(x̃(n+ 1)) +
∂Ṽ

0

N(x)

∂x

⃓⃓⃓⃓
⃓
x̃(n+1)

(x(n+ 1)− x̃(n+ 1)) +H.O.T (5.32)

where H.O.T includes the high order terms in the above Taylor expansion. For x ∈ X,

a positive constant H can be found such that the high order terms satisfy the following

constraint:

H.O.T ≤ H|x(n+ 1)− x̃(n+ 1)|2 (5.33)

Taking into account that the initial condition (x̃(n) = x(n)) when solving the EMPC opti-

mization, (5.27), (5.31)–(5.33), it can be derived the following inequality:

Ṽ
0

N(x(n+ 1))− Ṽ
0

N(x(n)) ≤ −α(|x(n)− xs|) +KVLw

√
nxθ +HnxL

2
wθ

2 (5.34)

If condition (5.30) is satisfied, from (5.34), it can be seen that

Ṽ
0

N(x(n+ 1))− Ṽ
0

N(x(n)) ≤ −ϵs (5.35)

for all x(n) ∈ Ωρmax and |x(n) − xs|≥ ρs. This implies that as long as |x − xs|≥ ρs, the

100

Lyapunov function keeps decreasing. By applying (5.35) recursively, it is proved that the

system state enters a region such that |x − xs|≥ ρs in finite steps. Given the definition of

Ωρmin
, it further implies that once the state satisfies |x − xs|≥ ρs, the state will remain in

Ωρmin
all the time. Then, the actual system under the control of the proposed EMPC will

eventually converge to Ωρ. Given that Ωρmin
⊂ Xe, this proves that the system state enters

the economic zone in finite steps and then remains within the economic zone. This proves

Theorem 5.2.

Remark 5.4. The use of general economic objective in economic MPC may drive the system

states to operate close to the operating constraints. This is no different in the zone economic

MPC formulation. It is therefore possible that the optimal steady state within the desired

economic zone is on the boundary. Since Theorem 5.2 require that the optimal operating

point be in the interior of the desired economic zone, this needs to be resolved. One way

to achieve this is to construct a smaller economic zone and then use that in the controller

design. This way, the desired economic zone will be tracked once the smaller economic zone

is tracked. Another approach is to construct an economic zone with a bigger risk factor

and then track this new economic zone while ensuring that system’s states go to the optimal

operating point of the desired economic zone. To achieve this however, the cost function may

need to be regularized to ensure that the steady-state point is tracked by the controller once

the states are within the economic zone.

5.5 Illustrative example

In this section, we demonstrate the efficacy of our proposed controller using a chemical

process. We first describe the chemical process example used in our analysis. Subsequently,

we consider the impact of the risk factor on the asymptotic average economic performance of

our proposed controller and then finally compare the performance of our proposed controller

to that of the conventional economic MPC.

101

5.5.1 Process description

Consider a well-mixed continuously stirred tank reactor (CSTR) where a single first-order

irreversible reaction of the form A → B takes place. Since the reaction is exothermic,

thermal energy is removed from the reactor through a cooling jacket. Assuming constant

volume reaction mixture, the following nonlinear differential equations are obtained based

on energy balance and component balance for reactant A:

dCA

dt
=

q

V
(CAf − CA)− k0 exp(−

E

RT
)CA (5.36a)

dT

dt
=

q

V
(Tf − T) +

−∆H

ρCp

k0 exp(−
E

RT
)CA +

UA

V ρCp

(Tc − T) (5.36b)

where CA and T denote the reactant concentration and temperature of the reaction mixture

in mol/L and K respectively, Tc denotes the temperature of the coolant stream in K, q

denotes the volumetric flow rate of the inlet and outlet streams of the reactor in L/min,

CAf denotes the concentration of reactant A in the feed stream, V denotes the volume of

the reaction mixture, k0 denotes the reaction rate pre-exponential factor, E denotes the

activation energy, R is the universal gas constant, ρ is the density of the reaction mixture,

Tf is the temperature of the feed stream, Cp is the specific heat capacity of the reaction

mixture, ∆H is the heat of reaction and UA is the heat transfer coefficient between the

cooling jacket and the reactor. The values of the parameters used in the simulations are

listed in Table 5.1. A linear version of this model was used in [69] in the context of robust

tube-based economic MPC.

The nonlinear model of (5.36) is discretized using a step-size h = 0.1 min to obtain a

discrete-time nonlinear state space model of the following form:

x(n+ 1) = f(x(n), u(n), w(n)) (5.37)

where x = [CA T]T is the state vector, u = Tc is the input and w = [CAf Tf]
T is the

102

Table 5.1: Table of parameter values

Parameter Unit Value
q L/min 100.0
V L 100.0
cAf mol/L 1.0
Tf K 350.0
E/R K 8750.0
k0 min−1 7.2× 1010

−∆H J/mol 5.0× 104

UA J/min ·K 5.0× 104

cp J/g ·K 0.239
ρ g/L 1000.0

disturbance vector. The state, input and disturbance are assumed to be subject to the

following hard constraints: 0.0 ≤ x1 ≤ 1.0, 345.0 ≤ x2 ≤ 355.0, 285.0 ≤ u ≤ 315.0,

0.9 ≤ w1 ≤ 1.1 and 348.0 ≤ w2 ≤ 352.0. The disturbances are assumed to be uniformly

distributed in the constraints with their nominal values being 1.0 and 350.0 as shown in

Table 5.1.

The economic objective ℓe is to minimize the concentration of reactant A (i.e. maximize

the concentration of reactant B) in the reactor such that

ℓe(x, u) = cA (5.38)

To ensure that the economic cost is optimized within a reasonable temperature range, a zone

tracking objective ℓz is incorporated into the control objective where

ℓz(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
10.0× (348.0− T)2 for T < 348.0

0 for 348.0 ≤ T ≤ 352.0

10.0× (352.0− T)2 for T > 352.0

(5.39)

The zone tracking objective is a quadratic function that penalizes the deviation of the system

103

0 0.2 0.4 0.6 0.8 1

c
A

 (mol/L)

345

350

355

T
 (

K
)

Operating region Target zone

Figure 5.1: The sets used in the controller design. The operating region (solid line) is
the hard constraint on the states where the process must be operated within without any
violation. The target zone (dashed line) is a soft constraint on the states which ensures that
the economic cost is optimized within reasonable temperature bounds.

states from the target zone Xt. The overall control objective therefore becomes

ℓ(x, u) := ℓe(x, u) + ℓz(x) = cA +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
10.0× (348.0− T)2 for T < 348.0

0 for 348.0 ≤ T ≤ 352.0

10.0× (352.0− T)2 for T > 352.0

(5.40)

This control objective is multi-objective and can be achieved by manipulating the tempera-

ture of the coolant Tc in the cooling jacket. Notice that in this example, only the temperature

has a zone requirement. The zone on the concentration therefore spans the entire constraint.

The safe operating region (hard constraints) as well as the target zone Xt for this example

is presented in Figure 5.1.

In the simulations, unless otherwise stated, the control and prediction horizons of all con-

104

trollers are N = 20 respectively. The l1 norm weight c1 and l2 norm weight c2 in (5.10) for our

proposed controllers were chosen as 0 and 10 respectively. The selected weight ensures that

the zone tracking cost is given a higher priority than the economic cost whenever the states

of the system are outside the target zone. We assume that all the system states are available

to the controller. The proposed robust economic MPC scheme and the traditional economic

MPC scheme were numerically transcribed using the direct multiple shooting method and

solved using IPOPT [76]. The optimization problems were implemented in the modeling lan-

guage JuMP [77]. Each dynamic simulation was run for 1000 time steps and the asymptotic

average performance, computed thereafter.

In the subsequent analysis, the optimal steady-state economic cost ℓ∗e was obtained by

solving the steady-state optimization problem in (5.5) to obtain the optimal steady state

xs together with the corresponding steady-state input us. The optimal steady-state cost ℓ∗e

was then obtained by computing the value of the economic cost in (5.38) using the steady-

state values. The asymptotic average performance ℓavg on the other hand was obtained by

simulating the closed-loop disturbed system for T time steps and finding the average of the

overall control objective in (5.40) using the equation

ℓavg =
1

T

T−1∑︂
n=0

ℓ(x(n), u(n)) (5.41)

where T = 1000 time steps. ℓavg considers the effects of the target zone violations and is

used to assess the performance of the controllers in the analysis.

5.5.2 Effect of risk factor δ

We first investigate the effect of the design parameter δ on the optimal steady-state economic

cost ℓ∗e and the asymptotic average performance ℓavg of the closed-loop system with the

proposed economic zone MPC algorithm. This was achieved by varying the risk factor δ

and determining ℓ∗e in the associated economic zone as well as ℓavg. As can be seen from the

105

0 10 20 30 40 50 60

Risk factor

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

C
o

st

Asymp. avg. perf. s.s. economic cost threshold

Figure 5.2: Effect of risk factor on the best steady-state cost in the economic zone and the
closed-loop asymptotic average performance. The dotted lines show the threshold value of the
risk factor after which the closed-loop asymptotic average performance begins to deteriorate
implying a violation of the target zone. (Solid line with circle markers: Asymptotic average
performance, Dashed line with square markers: Optimal steady-state cost, Dotted line: Risk
factor threshold)

results in Figure 5.2, the value of both performance measures generally decrease as the risk

factor increases until at δ = 35 where ℓavg begins to increase.

As mentioned earlier and as shown in Figure 5.3, the size of the economic zone increases

as the risk factor increases. This implies that a controller designed with a larger risk factor

has a larger operating room to optimize the process economics compared to a controller

designed with a smaller risk factor. To explain the reason for the difference in the plots of

optimal steady-state economic cost ℓ∗e and the asymptotic average performance ℓavg, we look

at how the values were obtained. The optimal steady-state economic cost was obtained by

solving the static optimization problem of (5.5). Since the effects of the disturbances are not

explicitly considered in the steady-state optimization problem, ℓ∗e represents the potentially

achievable economic cost. ℓavg on the other hand represents the actual cost achieved in the

106

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

c
A

 (mol/L)

348.5

349

349.5

350

350.5

351

351.5

T
 (

K
)

=10 =20 =30

Figure 5.3: Effect of risk factor on the economic zone. As the δ increased, the size of the
economic zone also increased and vice versa. The magnitude of the risk factor δ therefore
determines the size of the economic zone and ultimately the conservativeness of the controller.
(Solid line: δ = 30, Dashed line: δ = 20, Dash-dotted line: δ = 10)

107

closed-loop system affected by the disturbance. A large economic zone therefore allowed

the process to operate close to the target zone. The presence of the disturbance caused the

process to violate the target zone and this resulted in a poor economic performance (on

average). A violation of the target zone means that the conditions in Theorem 5.2 were not

satisfied.

The analysis in Figure 5.2 implies that the risk factor should not be arbitrarily chosen.

It should be chosen such that the conditions in Theorem 5.2 are satisfied to ensure that the

states of the system converge to the target zone Xt in finite time and stays in it thereafter even

in the presence of disturbances. For this illustrative example, any δ value above the threshold

value of 35 resulted in a poor closed-loop asymptotic average performance ℓavg. Intuitively,

the risk factor is a design parameter which offers a trade-off between a conservative controller

or a more risk-taking one to maximize the economic objective. This implies that the risk

factor δ in the proposed controller needs to be carefully tuned to get a good trade-off.

5.5.3 Comparison with an EMPC tracking the target zone

Following the analysis of the effects of the risk factor on the controller performance, we com-

pare the closed-loop performance of our proposed controller (ZEMPC tracking the economic

zone) to that of conventional EMPC (ZEMPC tracking the target zone). The economic zone

Xe for our proposed controller was determined using a risk factor of 30. However, as men-

tioned in Remark 5.4, the optimal steady state for this process lies on the boundary of Xe. To

ensure that the conditions in the Theorems are satisfied, a smaller economic zone with δ = 10

was computed and the optimal steady state within the smaller economic zone determined.

Figure 5.4 shows the sets used in the proposed control algorithm with the optimal steady

state within its interior. The conventional EMPC on the other hand was designed to track

the original target zone without any modification. In both cases, c1 and c2 were selected to

be 0 and 10 respectively. The steady state values with and without the computed economic

zone are (xs, us) = ([0.483 350.970]T , 299.709) and (xs, us) = ([0.465 352.000]T , 299.413)

108

0 0.2 0.4 0.6 0.8 1

c
A

 (mol/L)

345

350

355

T
 (

K
)

Operating region Target zone Economic zone

Figure 5.4: The sets used in the controller design. (Solid line: Hard constraint, Dashed line:
Original zone, Dash-dotted line: Economic zone)

Table 5.2: Asymptotic average performance for the controllers

Controller ℓavg
Conventional EMPC 0.530
Proposed EMPC 0.482

respectively.

The results of the comparison is shown in Table 5.2. As can be seen in the table, our

proposed controller gave (on average) a lower asymptotic average performance compared to

the conventional EMPC in the presence of the disturbance. To understand why this is so,

Figure 5.5 has been provided. Figure 5.5 shows the state, input and average performance

trajectories of the closed-loop system under the two controllers in the presence of disturbance.

It can be observed that our proposed EMPC forces the system to operate at a temperature

below the 352.0K thus allowing room for the disturbances to occur without any significant

effects on the cost. This results in a fairly stable overall cost ℓ. The conventional EMPC

109

0 10 20 30 40 50 60 70 80 90 100

0.45

0.5

C
A

 (
m

o
l/

L
)

0 10 20 30 40 50 60 70 80 90 100

351

351.5

352

T
 (

K
)

0 10 20 30 40 50 60 70 80 90 100
295

300

305

T
c
 (

K
)

0 10 20 30 40 50 60 70 80 90 100

Time (min)

0.6

0.8

ZEMPC with target zone ZEMPC with economic zone

Figure 5.5: State, input and economic cost trajectories of the CSTR process under conven-
tional zone EMPC (black) and our proposed zone EMPC (red)

110

on the other hand operated close to 352.0K. Thus, the effects of the disturbances caused

the system to operate in an expensive zone which results in a much higher cost. It is worth

mentioning that our proposed ZEMPC with economic zone sacrifices some economic cost ℓe

as can be observed from the trajectories of cA in Figure 5.5. This ensured that the control

objective ℓ is achieved always even in the presence of the disturbances.

5.6 Concluding remarks

In this chapter, we presented a robust EMPC framework with zone tracking for general

nonlinear systems. The proposed design ensures that the zone tracking objective can be

achieved in finite steps and the economic performance in the operation is optimized. A

robust control invariant set within the original target zone is determined and is used as the

actual zone tracked. To optimize the economic performance within the zone in the presence

of disturbances, the notion of risk factor in the controller design was adopted. An algorithm

to determine the economic zone to be tracked was provided. The risk factor determines the

conservativeness of the controller and provides a way to tune the EMPC for better economic

performance. A nonlinear chemical example was presented to demonstrate the performance

of the proposed formulation.

111

Chapter 6

Robust economic MPC of the

absorption column in post-combustion

carbon capture through zone tracking

6.1 Introduction

Climate change is a pressing global issue that needs immediate solution. A major contribut-

ing factor to climate change is the presence of large quantities of anthropogenic greenhouse

gases especially carbon dioxide (CO2) in the atmosphere. A major contributor to the in-

crease in anthropogenic CO2 in the atmosphere is due to the combustion of fossil fuels such as

coal for electricity generation [78]. Several studies have shown that switching to low carbon

energy sources such as renewable energy sources can help address the climate change issues

[79]. However, the pursuit for relatively cheaper and reliable energy sources in response to

the ever increasing demand for energy is making it difficult to switch to these lower carbon

energy sources. In 2020, fossil fuels contributed to about 61% of the global electricity gen-

eration sources with coal taking up roughly 35% of the share [80]. Clearly, it is impractical

to completely eliminate fossil fuels from the energy generation sources at a go. Therefore,

112

effective means of reducing the emissions from fossil fuel power plants is the best approach

to reduce CO2 emissions while allowing the low carbon electricity generation technologies

to reach maturity. Several approaches have been proposed to reduce CO2 emissions from

large point sources such as power plants. These approaches include pre-combustion [81],

oxy-fuel combustion [82] and post-combustion [83]. However, amine-based post-combustion

CO2 capture (PCC) is the most mature and viable technology available today.

In amine-based PCC, the flue gas produced after combusting the fossil fuel is sent to a

gas processing unit (PCC plant) where the amount of CO2 in the gas is reduced using an

amine solvent before being released into the atmosphere. This makes it easier to retrofit

it into existing power plants. However, amine-based PCC is not without downsides. It

has been shown that attaching a PCC plant to a power plant reduces the efficiency of the

power plant by about 10% for state-of-the-art monoethanolamine (MEA) solvent [84]. This

is because of the high energy requirements to regenerate the amine in the desorption unit.

Sakwattanapong and coworkers [85] demonstrated that maintaining the CO2 concentration

in the amine solvent within an optimal range during absorption is essential for efficient

operation of the regeneration unit. It is therefore critical that advanced model-based process

control techniques such as model predictive control (MPC) are employed in the control of

the PCC plant.

Model predictive control is an advanced model-based optimal control method that has

gained popularity within the chemical process industry. This is because of its ability to

handle complex multivariable systems and constraints. Within the context of process con-

trol of PCC plants, several control schemes have been developed using MPC. Panahi and

Skogestad [86] investigated different control schemes using a linear MPC. He et al. [87]

also used a combined scheduling and MPC scheme to achieve the desired carbon dioxide

absorption efficiency in the absorption column as well as the CO2 purity in the gas outlet

of the desorption unit. Bankole and coworkers [88] investigated the flexibility of operating

a PCC plant attached to a load following power plant using MPC. To address the presence

113

of uncertainties in the control system, Patron and Ricardez-Sandoval implemented a robust

MPC algorithm for the absorption column [89] as well as an integrated control and state

estimation scheme for the PCC plant [90]. More recently, a variant of model predictive

control (MPC) with a general objective known as economic MPC (EMPC) has received sig-

nificant attention [55, 56]. The objective function in an EMPC scheme generally reflects

some economic performance criterion such as profit maximization or waste minimization.

This is in contrast to the standard MPC where the objective is a positive definite quadratic

function. The integration of process economics directly in the control layer makes EMPC

of interest in many areas especially in the process industry. Decardi-Nelson, Liu and Liu

[59] demonstrated the superiority of EMPC scheme over the standard MPC scheme in a full

cycle PCC plant.

While EMPC is a promising control algorithm for the PCC process, the general economic

objective such as maximizing the absorption efficiency of the absorption column may drive

the system states to the constraints. This may lead to column flooding and/or solvent

overcirculation in the PCC plant. Column flooding can compromise the safety of both the

absorption column and the personnel that manage it while solvent overcirculation may lead

to high energy requirements for regeneration of the solvent in the desorption column. In

another direction, it is not well understood how the presence of uncertainties affect the

economic performance of EMPC in general. This is because of the integration of process

economics in the control layer. Uncertainties are unavoidable in the real world. They are

caused by the use of imperfect process models in the model-based control algorithms and/or

unmeasured disturbances. A typical disturbance in a load following PCC plant attached to

a power plant is large fluctuations in the flue gas flow rate [91]. The presence of uncertainty

in a control system can result in significant performance degradation and/or loss of stability.

This can ultimately compromise safety during operation. A common technique to address

uncertainties in a control system is through robust MPC. However, as observed in a recent

study by Patron and Ricardez-Sandoval [89], the online computational requirements of robust

114

MPC techniques such as the multi-scenario approach can be demanding as the number of

uncertainties and scenarios increase. Moreover, for EMPC, it was pointed out in the study

by Bayer and coworkers [68] that simply transferring robust MPC techniques to EMPC

could result in poor performance. This is because economic optimization and robustness

are two objectives and often may conflict with each other. Robust MPC techniques have

been designed to reject all disturbances to achieve their desired goal which may not be

the case in EMPC as some disturbances can lead to better economic performance. It is

therefore important to develop robust EMPC algorithms which does not involve complex

online computations.

In this chapter, we present an economic MPC with zone tracking algorithm for the control

of the absorption column of the PCC process under additive state uncertainties and time-

varying flue gas flow rate. The proposed control algorithm only makes use of the nominal

process model without explicitly accounting for the uncertainties in the process. This makes

the online computations less demanding compared to the scenario-based approach. The

integration of zone tracking in EMPC allows for concurrent handling of two objectives while

enhancing the degree of robustness of the controller [13]. Zone MPC has been reported

in several process control application areas such as diabetes management [71], control of

building heating system [72], control of irrigation systems [73] and control of coal-fired boiler-

turbine generating system [60]. This work builds on our previous EMPC with zone tracking

formulation – with [92] and without [12] uncertainty consideration. In line with the work by

Decardi-Nelson and Liu [92] described in Chapter 5, we propose to track a control invariant

subset of the target zone contrary to tracking the target zone. However, because of the

large number of states in the process model of the absorption column, the zone modification

algorithm developed by Decardi-Nelson and Liu [92] is computationally intractable. We

therefore propose a target zone modification algorithm using ellipsoidal control invariant

set computation techniques and a back-off strategy. This has a potential to extend the

applicability of the robust EMPC with zone tracking algorithm to much wider range of

115

systems.

6.2 Preliminaries

6.2.1 Notation

Throughout this chapter, the symbol ∥·∥n denotes the n-norm of a scalar or a vector, the

operator ‘\’ means set subtraction such that A\C = {x : x ∈ A, x /∈ C}, R+ denotes the set

of all real numbers greater than or equal to zero, the set B represents the unit ball.

6.2.2 Process description

An absorption column in an amine-based post-combustion CO2 capture process is a multi-

stage gas processing unit in which an amine solvent selectively removes CO2 from the flue

gas. The amine solvent with low amount of CO2 (lean solvent) is introduced at the top of the

column while the flue gas enters the column from the bottom in a counter-current manner

as shown in Figure 6.1. The absorption column is usually filled with packing materials to

increase the contact area for mass transfer between the liquid and the gas phases. Following

the transfer of CO2 from the gas phase to the liquid phase, the liquid with increased amount

of CO2 (rich solvent) exits the column at the bottom while the treated gas exits the column

at the top.

Owing to the reactive nature of the mass transfer process occurring in the absorption

column, the rate-based approach is used to model the process. The rate-based model has

been found to be superior to the equilibrium-based approach to modeling reactive mass

transfer processes [93]. The following assumptions were used in modeling the absorption

column:

• The liquid and the gas phases are well mixed with no spatial variations in properties.

116

Flue gas

Rich solvent

Lean solvent

Treated gas

Figure 6.1: A schematic diagram of a packed absorption column

• The reactions are described using enhancement factor and occur only in the liquid

phase.

• The heat and mass transfer occurring at the gas-liquid interface is described by the

two film theory.

• The pressure drop along the axial direction of the column is linear.

• The velocities of the liquid and gas phases in the column remain constant.

• The absorption column is well insulated.

The simultaneous heat and mass transfer process occurring in the column is described

by the partial differential equations in Equations (6.1) – (6.4).

∂cLi
∂t

=
4FL

πD2
c

∂cLi
∂z

+Nia
I (6.1)

∂cGi

∂t
= − 4FG

πD2
c

∂cGi

∂z
−Nia

I (6.2)

117

∂TL

∂t
=

4FL

πD2
c

∂TL

∂z
+

QLa
I∑︁n

i=1 cLicpi
(6.3)

∂TG

∂t
= − 4FG

πD2
c

∂TG

∂z
+

QGa
I∑︁n

i=1 cGicpi
(6.4)

In Equations (6.1) – (6.4), ci represents the phase concentration of component i in kmol/m3,

F is the phase volumetric flow rate in m3/s, Dc is the diameter of the column in m, Ni is

the mass transfer rate of component i in kmol/m2s, z is the height of the column in m, T

denotes the phase temperature in K, Q denotes the heat transfer rate in kJ/m2s, cp is the

heat capacity in kJ/kmol, aI is the interfacial area in m2/m3. Also, subscripts L and G

represent the liquid and gas phase respectively, and subscript i denotes the components in

the system namely CO2, N2, H2O and MEA.

In the mathematical model above, the enhancement factor approach together with the

Chilton-Colburn analogy [94] is used to determine the influence of the reactions on the rate

of heat and mass transfer of CO2 from the gas phase to the liquid phase. Details of the

physical and chemical properties of the components in the system can be found in the work

by Decardi-Nelson et al. [59].

6.2.3 Model discretization and state space representation

To avoid having to formulate and solve infinite dimensional optimal control problems online,

the partial differential equations are converted to ordinary differential equations using the

method of lines (MOL). The method of lines involves discretizing the partial derivatives with

respect to the length of the column to obtain only differential equations with respect to time.

In this work, the derivatives with respect to the length of the column were discretized into

five stages to obtain 50 ordinary differential equations as shown in Equations (6.5) – (6.8).

dcjLi
dt

=
4FL

πD2
c

cjLi − cj−1
Li

zj − zj−1
+N j

i a
I,j (6.5)

118

Table 6.1: Definition of the state variables at the jth discrete point (j = 1, 2, · · · , 5). N2 =
1, CO2 = 2, MEA = 3, H2O = 4

State variable Definition

x1−5 cjL,1
x6−10 cjL,2
x11−15 cjL,3
x16−20 cjL,4
x21−25 T j

L

x26−30 cjG,1

x31−35 cjG,2

x36−40 cjG,3

x41−45 cjG,4

x46−50 T j
G

dcjGi

dt
= − 4FG

πD2
c

cjGi − cj−1
Gi

zj − zj−1
−N j

i a
I,j (6.6)

dT j
L

dt
=

4FL

πD2
c

T j
L − T j−1

L

zj − zj−1
+

Qj
La

I,j∑︁n
i=1 c

j
Lic

j
pi

(6.7)

dT j
G

dt
= − 4FG

πD2
c

T j
G − T j−1

G

zj − zj−1
+

Qj
Ga

I,j∑︁n
i=1 c

j
Gic

j
pi

(6.8)

where j = 1, 2, · · · , 5 denotes the index of the respective variable at height zj of the column.

The variables at indices j = 0 and j = 5 represent the inlet and outlet boundary conditions

of respectively.

Considering the presence of uncertainties in the system, the dynamics of the CO2 ab-

sorption column can be written in a nonlinear state space model of the form:

ẋ(t) = f(x(t), u(t)) + w(t) (6.9)

where ẋ ∈ R50 is the time derivative of the state, x ∈ R50 is the state of the system at

time t ∈ R+, u = FL ∈ R is the manipulated input, and w ∈ R50 represents the additive

uncertainties that may be present in the system. The definition of the state variable x is

shown in Table 6.1. The controlled output y of the system is the CO2 absorption efficiency

119

and is given by

y(t) = h(x(t)) =
Molar flow rate of CO2 in−Molar flow rate of CO2 out

Molar flow rate of CO2 in
× 100% (6.10)

For practical reasons, we assume that the system state, input, output and uncertainty

are restricted to be in the compact sets X, U, Y and W respectively.

6.2.4 Control problem formulation

In a post combustion carbon dioxide capture plant, the primary objective of the absorption

column is to reduce the amount of carbon dioxide in the flue gas emanating from the power

plant. This can be achieved by controlling the efficiency y of the absorption column. The

absorption efficiency can be controlled by manipulating the lean solvent flow rate FL and

the concentration of CO2 in the lean solvent entering the top of the column. In this work,

the concentration of CO2 in the lean solvent is kept constant since the desorption column

is not considered. Therefore, only the lean solvent flow rate is used as the manipulated

variable. Under these conditions, a very high CO2 absorption efficiency which translates to

high removal of CO2 from the inlet flue gas may be achieved by using a high lean solvent

flow rate. However, using a high amount of solvent to reduce the amount of CO2 in the flue

gas can have negative effects on the operation of the absorption column and the PCC plant

as a whole. First, a high amount of solvent may cause flooding in the column. Column

flooding is usually followed by a dramatic increase in column pressure and prevent the

flue gas from flowing out of the column. This may result in inefficient operation of the

column and/or equipment damage. Second, a high solvent flow rate may often than not

lead to overcirculation of the solvent in the PCC plant. This usually results in the solvent

leaving the absorption column (rich solvent) having a low CO2 concentration. This makes it

difficult to operate the desorption column efficiently. Therefore the desire is usually to keep

120

the absorption efficiency y within a target zone Yt which ensures a balance between high

absorption efficiency, column flooding and overcirculation.

The primary control objective of this work is therefore to design a feedback controller

which drives the system state to a predetermined target zone Yt if the initial absorption

efficiency of the system is outside the target zone and subsequently maintain the state of

the system within the target zone Yt thereafter. A secondary objective is to minimize the

average economic cost ℓe over an infinite horizon T which is given by

lim sup
T→∞

1

T

T−1∑︂
t=0

ℓe(y(t)) (6.11)

where

ℓe(y) = −y (6.12)

denotes the economic objective to be minimized. To achieve the above control objectives,

we resort to EMPC with zone tracking [12, 92] and implicitly take into account the presence

of process disturbance w in the design of the EMPC.

6.3 Economic model predictive control with zone track-

ing

In this section, we present the economic model predictive control with zone tracking (ZEMPC)

algorithm. Specifically, two variations of the ZEMPC algorithm are presented. The first

control algorithm denoted as nominal ZEMPC (NZEMPC) is the economic model predictive

control with target zone tracking. In this formulation, the disturbances are not considered

in the design. This serves as a basis to compare the second variation of ZEMPC. In the

second control algorithm denoted as robust ZEMPC (RZEMPC), the original target zone Yt

is modified to implicitly consider the effects of the uncertainty in the process system.

121

We begin this section by presenting the NZEMPC formulation. Thereafter, an algo-

rithm to modify the original target zone Yt is presented. Finally, we present the RZEMPC

formulation.

6.3.1 Economic MPC with target zone tracking

Given information about the current state x(tk) at sampling time tk, the ZEMPC uses the

nominal model of system (6.9):

ẋ̃x(t) = f(x̃(t), v(t)) (6.13)

with the initial condition x̃(tk) = x(tk) to find a control sequence v = {v(tk), . . . , v(tk+N∆)}

and the associated state sequence x̃ = {x̃(tk), . . . , x̃(tk + ∆N)} over the entire prediction

horizon N at a sampling time ∆ to minimize the cost functional:

VN(x(tk),v) =

∫︂ tk+N∆

tk

ℓ(y(t))dt (6.14)

In Equations (6.13) and (6.14), x̃(t) ∈ X ⊆ R50 and v(t) ∈ U ⊆ R are the nominal state

vector and computed control input vector respectively. The stage cost ℓ(·) is defined as

follows:

ℓ(y) = ℓe(y) + ℓz(y) (6.15)

where ℓe(·) is the economic stage cost as introduced in (6.12) and ℓz(·) is a zone tracking

penalty term which is defined as below:

ℓz(y) = min
yz

c1(∥y − yz∥22) (6.16a)

s.t. yz ∈ Yt (6.16b)

122

with c1 ∈ R+ being a non-negative weight on the zone tracking term and yz is a slack variable.

The zone tracking stage cost reflects the distance of the system states from the target zone

and is positive definite. The weights c1 must be appropriately selected such that the zone

tracking cost is given a higher priority than the economic objective.

At each sampling time, the following dynamic optimization problem PN(x(tk)) is solved:

min
v,yz

∫︂ tk+N∆

tk

−y(t) + c1(∥y(t)− yz(t)∥22)dt (6.17a)

s.t. ẋ̃x(t) = f(x̃(t), v(t)) (6.17b)

y(t) = h(x̃(t)) (6.17c)

x̃(tk) = x(tk) (6.17d)

x̃(t) ∈ X (6.17e)

v(t) ∈ U (6.17f)

y(t) ∈ Y (6.17g)

yz(t) ∈ Yt (6.17h)

In the Optimization problem (6.17) above, Equation (6.17b) is the model constraint, Equa-

tion (6.17c) represents the output relationship, Equation (6.17d) is the initial state con-

straint, Equation (6.17e) – (6.17g) are the constraints on the state, input and output re-

spectively, and Equation (6.17h) is the zone constraint. As a result of the cost function

employed, the Optimization problem (6.17) is a multi-objective optimization problem which

seeks to minimize the deviation of the absorption efficiency from the target zone Yt while at

the same time maximizing the the efficiency within the target zone.

The solution of PN(x(tk)) denoted v∗ gives an optimal value of the cost V 0
N(x(tk)) and

at the same time u(tk) = v∗(tk) is applied to the actual system (6.9).

123

6.3.2 Modification of the target zone

While the NZEMPC described in the earlier section ensures that the zone tracking objective

is achieved for the absorption column without any uncertainty, the zone tracking objective

may not be achieved in general for systems with uncertainty. This may be due to two

reasons. First, the target zone may not necessarily be forward invariant for the closed-loop

system. This means that it is possible for the uncertainty to drive the system’s states to a

region outside the forward invariant set but within the target zone. Once the state is outside

the forward invariant set, the target zone cannot be tracked anymore and will ultimately

result in system instability. Second, the NZEMPC algorithm may cause the system output

to operate very close to the boundary of the target zone due to the secondary economic

objective employed; that is maximization of the absorption efficiency. While this may not

be an issue in the nominal case, the presence of the uncertainty may drive the system states

outside the target zone making it difficult to track the zone.

Therefore to achieve the zone tracking objective in the presence of uncertainty, we modify

the target zone used in the formulation of the EMPC with zone tracking algorithm. It is

worth mentioning that modification of the target zone is not trivial. For example, merely

tracking the center of the target zone may not be the best choice. This will be demonstrated

in the simulation section. The idea is to find a robust control invariant set within the target

zone which ensures that the target zone can still be tracked in the presence of the uncertainty.

A robust control invariant set R is a set of initial states in the target zone for which there

exists a control action such that the trajectory of the system stays in R for all future times

irrespective of the disturbances. Ideally, the largest robust control invariant set within the

target zone is desired [92]. However, finding the largest robust control invariant sets for large

scale systems is very difficult and the method proposed by Decardi-Nelson and coworkers

[92] cannot be applied to the absorption column due to the number of states involved.

We therefore resort to using simpler ellipsoidal control invariant set techniques. Since the

ellipsoidal control invariant set does not consider the presence of uncertainty in the control

124

system, we use a back-off approach not only to account for the presence of disturbances but

to also avoid operating close to the boundary of the target zone Yt.

Before we present the zone modification algorithm, let us first define the steady-state

(SS) optimization problem with respect to the target zone as

(ℓ∗e, xs, us) = argmin ℓe(y) (6.18a)

s.t. 0 = f(x, u) (6.18b)

y = h(x) (6.18c)

x ∈ X (6.18d)

u ∈ U (6.18e)

y ∈ Yt (6.18f)

In Optimization problem (6.18), Equation (6.18b) is the system model defined in system (6.9)

without any uncertainty, and Equation (6.18c) – (6.18f) are the same as defined previously.

The Optimization problem (6.18) returns the optimal economic cost ℓ∗e within the target

zone Yt as well as the steady-state state xs and input us. The ℓ∗e serves as a lower bound

on the economic cost that can be achieved in the target zone Yt. In the proposed zone

modification algorithm, this value is relaxed by multiplying it with the relaxation rate r to

obtain the relaxed optimal economic cost ℓre. Here, relaxation of the optimal steady-state

economic cost within the target zone means increasing the value of the economic cost above

ℓ∗e such that

ℓ∗e < ℓre (6.19)

Relaxing the best economic cost within the target zone sacrifices some economic performance

to implicitly account for the effects of the uncertainty in the control system. To achieve the

125

relaxation, the following cost-relaxed steady-state (CRSS) optimization problem is solved

(xs, us) = argmin 0 (6.20a)

s.t. 0 = f(x, u) (6.20b)

x ∈ X (6.20c)

u ∈ U (6.20d)

y ∈ Yt (6.20e)

ℓe(y) = ℓre (6.20f)

In Optimization problem (6.20) above, Equation (6.20f) is the economic cost relaxation con-

straint which needs to be achieved. It can be seen that Optimization problem (6.20) is a

feasibility problem since it does not seek to minimize any cost function. The CRSS prob-

lem returns the steady-state operating point (xs,us) at the relaxed economic cost function

value. This is used in the subsequent parts of the zone modification algorithm to obtain the

ellipsoidal control invariant set.

To compute the ellipsoidal control invariant set, the nonlinear system is first linearized

about the steady-state operating point (xs,us) from Optimization problem (6.20) to obtain

a linear system of differential equations of the form

ẋ̄x(t) = Ax̄(t) +Bū(t) (6.21)

where A = ∂f(x,u)
∂x
|xs,us and B = ∂f(x,u)

∂u
|xs,us are matrices of appropriate dimensions, and x̄

and ū denote the system states and input in deviation form i.e. x̄ = x− xs and ū = u− us.

Following the linearization, a semi-definite program (SDP) is formulated according to the

work by Polyak and Shcherbakov [95]. The SDP to be solved is presented in Optimization

problem (6.22).

126

max
P,Y

trace(P) (6.22a)

s.t. AP + PAT +BY + Y TBT ≺ 0 (6.22b)⎡⎢⎣P Y T

Y ū2
maxI

⎤⎥⎦ ⪰ 0 (6.22c)

where P and Y are matrices of appropriate dimension and ūmax is the bound on the input

i.e. ∥ū∥≤ ūmax. By maximizing the trace of P , the maximal ellipsoidal control invariant set

under the constrained input can be obtained from the optimal solution of (6.22) as

Xm = {x̄ ∈ R50 : x̄TP−1x̄ ≤ 1}, P ≻ 0 (6.23)

It is worth mentioning that computing an ellipsoidal control invariant set for the case where

system (6.21) is stable (i.e. real part of the eigen values of A are negative) is trivial. This is

because the stability region spans the entire state space and the input is not necessary for

stabilization. Thus, Optimization problem (6.22) will not return a solution since the maximal

ellipsoidal control invariant set is unbounded. In such a situation, the Lyapunov equation

AP + PAT +Q = 0 is solved with Q being an identity matrix of appropriate dimension. In

this case the ellipsoidal control invariant set is obtained as Xm = {x̄ ∈ R50 : x̄TPx̄ ≤ α}

where α ≥ 0 is a scalar parameter which determines the size of the invariant set.

Remark 6.1. A linear system obtained by linearizing a nonlinear system might only be

accurate within a very small region of the linearization point (origin). To avoid obtaining

an ellipsoidal control invariant set that spans areas in the state space for which the linear

model is inaccurate, the bound on the input umax should be reduced. The magnitude of the

reduction ultimately depends on the properties of the system.

Once Xm is obtained, it is projected into the output space using the output equation to

127

Figure 6.2: An illustration of three iterations of the zone modification algorithm in a fictitious
two dimensional space. The rectangle represents the original target zone, the circle with solid
line represent the ellipsoidal invariant set and the circle with dashed lines represent the εB
enlargement of the ellipsoidal invariant set. The algorithm terminates in the third step when
the εB-enlarged ellipsoidal invariant set does not intersect with the set outside the target
zone.

obtain the modified target zone Ym such that

Ym = h(Xm) (6.24)

Since the output equation in Equation (6.10) depends on only the concentration of CO2 in

the gas exiting the top of the absorption column (inlet CO2 concentration in the gas phase

is fixed), the minimum and the maximum state in Xm can be used to obtain Ym. For more

general cases, a finite sample of states in Xm may be required. The modified output zone Ym

is then enlarged by an ε-ball. This is used as a stopping criterion by checking if the enlarged

modified output target zone (Ym + εB) does not intersect with any part of the output space

outside the output target zone, that is

Ym + εB ∩ Yt\Y = ∅ (6.25)

The procedure is run in while loop until the stopping criterion in Equation (6.25) is met.

The entire zone modification algorithm is summarized in Algorithm 1. A visual depiction

of the algorithm is shown in Figure 6.2. The algorithm takes as inputs the nominal system

model f , the output equation h, the state X and input U constraints, the optimal economic

128

Algorithm 8: Modification of target zone

Input: f , h, ℓe, X, U, Yt, umax, ε, r, Nmax, ℓ
∗
e

Output: Xm, Ym

1 Y0 ← Yt

2 X0 ← ∅
3 ℓre ← ℓ∗e
4 i← 1
5 while Yi−1 + εB ∩ Yt\Y do
6 ℓre ← (1 + r)ℓre
7 Solve the optimization problem in (6.20) to obtain (xs, us)
8 Linearize the system (6.9) at (xs, us) to obtain A and B
9 if A is stable then

10 Solve the Lyapunov equation to obtain P
11 else
12 Solve (6.22) to obtain P

13 Find the ellipsoidal control invariant set Xi using P
14 Yi ← h(Xi)
15 if i = Nmax then
16 Xi ← ∅
17 Yi ← ∅
18 break

19 i← i+ 1

20 Xm ← Xi

21 Ym ← Yi

22 return Xm, Ym

129

cost within the target zone ℓ∗e as well as the parameters ε, the cost relaxation rate r and the

maximum number of iterations Nmax. Nmax is introduced in the algorithm to ensure that

the while loop does not run indefinitely if a poor choice of the parameters are selected. The

algorithm terminates with an empty set if the parameters are poorly chosen.

While the modified output zone Ym is in a form which can be used in the NZEMPC

optimization (6.17), this may not the best approach. This is because there is no guarantee

that the set Ym obtained from the projection of the ellipsoidal control invariant set Xm is

also control invariant. Therefore, the ellipsoidal control invariant set Xm needs to be used

the MPC algorithm. However, replacing the zone slack constraint (6.17h) in Optimization

problem (6.17) will lead to having the number of slack variables equal to the dimension

of the state of the system. Since in most control systems the dimension of the output is

smaller than or equal to the dimension of the system states, the increased number of slack

variables yz will eventually increase the size of the optimization problem to be solved online.

Thus to mitigate this problem, the zone constraint is modified to Equation (6.26h) and an

additional positivity constraint (6.26i) is added. This results in only one slack variable with is

independent of the input or the output dimension. Full details of the robust economic Model

Predictive Control with zone tracking (RZEMPC) algorithm is presented in Optimization

problem (6.26).

130

min
v,yz

∫︂ tk+N∆

tk

−y(t) + c1(∥yz(t)∥22)dt (6.26a)

s.t. ẋ̃x(t) = f(x̃(t), v(t)) (6.26b)

y(t) = h(x̃(t)) (6.26c)

x̃(tk) = x(tk) (6.26d)

x̃(t) ∈ X (6.26e)

v(t) ∈ U (6.26f)

y(t) ∈ Y (6.26g)

(x̃(t)− xs)
TP (x̃(t)− xs) ≤ 1 + yz(t) (6.26h)

yz(t) ≥ 0 (6.26i)

The constraints in Optimization problem (6.26) are the same as previously defined.

6.4 Simulation results

In this section, we present different set of simulations to demonstrate the effectiveness and ap-

plicability of the proposed EMPC algorithm. We compare the results of the control algorithm

with the modified zone to that of the controller with the original target zone. Specifically, we

present the performance of the controllers under additive state uncertainties which represent

various kinds of uncertainties in the process model. We also compare the performance of the

controllers under time-varying inlet flue gas flow rate.

We begin this section with the simulation settings and model parameters used in this

work. Then, we investigate the effects of additive state uncertainty that may be present in

the process. Finally, we analyze and compare the performance of the controllers when the

inlet flue gas flow rate vary.

131

Table 6.2: CO2 gas absorption column configuration

Property Value
Column internal diameter Dc (m) 0.43
Packing height (m) 6.1
Packing type IMTP #40
Nominal packing size (m) 0.038
Specific packing area (m2) 143.9

Table 6.3: Nominal flue gas condition

Property Value
Temperature (K) 319.70
Volumetric Flow rate FG (m3/s) 0.0832
CO2 mole fraction 0.1500
N2 mole fraction 0.8000
MEA mole fraction 0.0000
H2O mole fraction 0.0500

Table 6.4: Nominal inlet amine solvent condition

Property Value
Temperature (K) 314.0
CO2 mole fraction 0.0266
N2 mole fraction 0.0000
MEA mole fraction 0.1104
H2O mole fraction 0.8630

6.4.1 Simulation settings

The plant configuration for the process model described in Section 6.2.2 is determined ac-

cording to Decardi-Nelson et al. [59] and is presented in Table 6.2.

The properties of the inlet flue gas entering the column from the bottom and the inlet

solvent entering the column from the top are also shown in Tables 6.3 and 6.4 respectively.

In this work, we assume that the properties of the solvent entering the absorption column

from the desorption unit is fixed with the exception of the flow rate which is manipulated.

The flue gas flow rate to the column may vary but this is unknown to the controller.

132

In this work, we assume that all the states are measured and available to the controller

at any sampling time tk≥0 with a sampling interval ∆ set at 10 minutes. This is a reasonable

assumption since it has been shown that only the temperature measurements, which can

be easily obtained, can be used to reconstruct the full states of the absorption column [96].

Unless otherwise stated, the prediction and control horizon N of the controllers is set at

10. The parameters ε, r, α and Nmax in Algorithm 1 are fixed at 0.009, -0.005, 5, and 10

respectively. The value of umax was fixed at 20 % of the available input energy for control and

the identity matrix was used as the value of Q. The output zone to be tracked was chosen to

be between 0.85 and 0.90 i.e. Yz = [0.85 0.90] with a target zone tracking weight c1 = 10000.

This ensures that a high absorption efficiency is not pursued by the controller due to the

economic objective which can cause operational issues such as flooding of the column and

solvent over-circulation at high liquid flow rates. This also prevents the controller from

allowing large quantities of CO2 to be released into the atmosphere resulting in higher CO2

taxes. In the implementation of the control algorithms, the system states were scaled such

that

x̂(tk) = x(t)/xscale, û(tk) = u(t)/uscale (6.27)

where x̂ and û are the scaled states and inputs respectively, and xscale and uscale are the

steady-state values corresponding to the center of the zone i.e. an absorption efficiency of

0.875. The additive state uncertainty w in (6.9) was assumed to be uniformly distributed

in [−0.00001 × 1 0.00001 × 1] where 1 = xscale/xscale is a vector of ones having the same

dimension as the state. The nonlinear process model (6.13) was used in all the simulations.

6.4.2 Results and discussion

In this section, we present the results for the two control algorithms namely EMPC with

target zone tracking (NZEMPC) and EMPC with modified zone tracking (RZEMPC). We

133

Table 6.5: Comparison of the nominal EMPC with target zone tracking and the two EMPCs
with modified zone tracking (smaller is better).

Controller Average cost
EMPC tracking the target zone −0.72785
EMPC tracking the modified zone −0.88639
EMPC tracking the center of target zone −0.86811

also consider the case where the modified zone is at the center of the target zone. This

case was added to illustrate the notion that arbitrarily tracking a zone within the center

of the target zone, though easy, may not be the best strategy to ensure finite-time zone

tracking with good performance. Performance or cost as defined in this section refers to

Equation (6.15) which represents both the economic performance and the ability of the

controller to ensure that the output is within target zone at all times.

6.4.2.1 Additive state uncertainty

The average performance of the controllers for the case of additive state disturbances are

shown in Table 6.5. As can be seen from Table 6.5, our proposed zone EMPC control

algorithm with modified target zone outperforms that of the controller that tracks the original

target zone. The EMPC with modified target zone at the center of the zone performs better

than tracking the original target zone but does not perform better than that with the modified

target zone. This implies that the parameters in Algorithm 1 need to be carefully tuned to

ensure that both the performance and the zone tracking objectives are achieved. One way

to do this is to consider that uncertainty information when selecting ε as this ensures a

reasonable back-off from the boundary of the target zone.

To understand why this happens, Figures 6.3 and 6.4 have been provided. As mentioned

earlier, the presence of the secondary economic objective can cause the system output to

operate close to the boundary of the target zone. This is the case for the operation of the

absorption column since the economic objective is to maximize the absorption efficiency.

134

0 500 1000 1500 2000 2500 3000
Time (min)

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

Ab
so

rp
tio

n
ef

fic
ie

nc
y

(-)

Target zone Modified zone Upper zone limit

Figure 6.3: Trajectories of the absorption efficiency (y) for the absorption column under
the operation of the zone EMPC control algorithm tracking the original target zone (blue)
and modified zone (orange). Target zone: EMPC tracking the target zone; Modified zone:
EMPC tracking the modified zone; Upper zone limit: upper bound of the target zone.

The presence of the uncertainty causes the system output to move out of the target leading

to high cost and inability to track the target zone. By modifying the target zone, our

proposed controller ensures that there is room available for the system to operate within

the target zone even in the presence of the uncertainty. It is worth mentioning that, by

modifying the target zone, some performance is sacrificed in favour of achieving the zone

tracking objective. This can be seen in Figure 6.3 where the controller tracking the target

zone operates at a higher absorption efficiency compared to the one that tracks the modified

target zone. Because of the target zone violation, it can be seen in Figure 6.4 that the cost

trajectory of the NZEMPC is erratic compared to that of the RZEMPC.

6.4.2.2 Time-varying flue gas flow rate

The operation of a typical power plant is usually periodic every day and seasonally. This

is because of the variation in electricity demand. Electricity demand is usually low in the

early morning and very late at night where consumer activity is low. It gradually rises to

135

0 500 1000 1500 2000 2500 3000
Time (min)

0.8

0.6

0.4

0.2

0.0

Co
st

ZEMPC with target zone ZEMPC with modified zone

Figure 6.4: Trajectories of the stage cost for the absorption column under the operation of
the zone EMPC control algorithm tracking the original target zone (blue) and modified zone
(orange)

a peak around noon and stays there for sometime before finally reducing again at night.

Furthermore, it has been suggested that renewable energy sources be integrated into the

energy generation mix with the renewable energy sources being the main power generation

sources and the fossil fuel power plants as backups. However, some renewable energy sources

may not be very reliable. For example, the ability of a solar panel to generate electricity

depends on the availability of sunlight which may not always be available. This integrated

energy mix will therefore further cause more erratic operation of the fossil fuel power plant.

A consequence of this changes in the demand and subsequently the output of the power

plant is that the flue gas emanating from the power plant to the absorption column will vary

frequently. This time-varying behaviour can have significant effects on the performance of

the PCC plant attached to the fossil fueled power plant. Therefore, flexible operation of the

PCC plant attached to the power plant is inevitable. This has been the subject of several

studies in the control of PCC plant attached to a load-following power plant [88, 89, 59, 91].

We compare the performance of the EMPC with target zone tracking (NZEMPC) to that

of the EMPC with modified zone tracking (RZEMPC) under a time-varying flue gas flow

136

0 200 400 600 800
Time (min)

0.004

0.002

0.000

0.002

0.004

Fl
ow

 (L
/s

)

Figure 6.5: Generated trajectories of the disturbance of the flue gas flow rate signifying
ramping up and ramping down operations of a power plant

Table 6.6: Comparison of the average cost of NZEMPC and RZEMPC under time-varying
flue gas flow rate (smaller is better)

Controller Ramping up cost Ramping down cost Average overall cost
EMPC tracking the target zone −0.8948 −0.4525 −0.6690
EMPC tracking the modified zone −0.8813 −0.8916 −0.8866

rate setting. This was achieved by varying the flue gas flow rate using the disturbance shown

in Figure 6.5. The disturbance to the flue gas mimics typical ramp up and ramp down

behaviour of a power plant. The average costs of the operation of the absorption column

under the two controllers is presented in Table 6.6. As can be seen the EMPC with modified

zone tracking yields a better overall cost on average than that of the EMPC with target zone

tracking. The reason for the poor performance in the NZEMPC is the same as explained in

the earlier section. The economic objective drives the absorption efficiency to the boundary

of the target zone which leads to a target zone violation once the disturbance is present.

The RZEMPC on the other hand causes the system to operate away from the boundary

thus making room for the effects of the disturbance. This ensures that the absorption

137

0 200 400 600 800
Time (min)

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

Ab
so

rp
tio

n
ef

fic
ie

nc
y

(-)

Target zone Modified zone Upper zone limit

Figure 6.6: Trajectories of the absorption efficiency for the absorption column under the
operation of the zone EMPC control algorithm tracking the original target zone (blue) and
modified zone (orange) for the time-varying flue gas scenario

efficiency stays within the target zone at all times which leads to a better cost on average.

The absorption efficiency trajectory can be seen in Figure 6.6. It can be seen that in both

cases, the absorption efficiency decreases during the ramp up and increases during the ramp

down. This is because when the flue gas flow rate increase, the amount of CO2 entering the

column also increase. The controllers still try to capture the same amount of CO2 since the

process model used in the controller uses the nominal flue gas flow rate. A careful look at the

cost trajectories in Figure 6.7 and as shown in Table 6.6 shows that during the ramping up

phase, the NZEMPC yields a better cost than that of the RZEMPC. However, the NZEMPC

performs poorly during the ramping down phase. The RZEMPC on the other hand ensures

a fairly constant cost throughout the operation. This shows the benefits of modifying the

target zone to ensure finite time zone tracking.

138

0 200 400 600 800
Time (min)

0.8

0.6

0.4

0.2

0.0

Co
st

ZEMPC with target zone ZEMPC with modified zone

Figure 6.7: Trajectories of the stage cost for the absorption column under the operation of
the zone EMPC control algorithm tracking the original target zone (blue) and modified zone
(orange) for the time-varying flue gas flow rate

6.5 Concluding remarks

In this chapter, a control problem which typically arises in the operation of the absorption

unit in a post-combustion CO2 capture plant is addressed using an EMPC with zone tracking

formulation. This helps to avoid the problems of solvent overcirculation and flooding in the

column during operation. To ensure that finite-time zone tracking objective is achieved in the

presence of modelling uncertainty, the target zone to be tracked is modified. The proposed

zone modification algorithm makes use of ellipsoidal control invariant set and a back-off

strategy which is scalable for systems with large number of states such as the absorption

column. The use of the control invariant set as the zone ensures that the zone can be tracked

since there is no guarantee that the original target zone is control invariant. It was shown

that the EMPC with modified zone tracking performed better than the EMPC with target

zone tracking in the presence of model uncertainties and exogenous disturbances. Finally, the

simulation example demonstrates the efficacy of the proposed EMPC algorithm with zone

tracking as a effective control strategy for the absorption column of a typical post-combustion

139

CO2 capture plant.

140

Chapter 7

Concluding remarks and future work

7.1 Introduction

This thesis presented methods to compute the largest (robust) control invariant sets of

constrained nonlinear systems using graph theoretical algorithms. In the systems and control

literature, computing the control invariant sets for constrained nonlinear systems has received

less attention than the linear counterpart. Moreover, in most cases, the nonlinear system are

linearized leading to conservative results. Then again, the issue of scalability of the present

algorithms for computing control invariant sets for higher dimensional systems is still an

open problem.

In this thesis, we tackled the problem of computing control invariant sets from multiple

facets. We proposed an algorithm for determining inner and outer approximations of control

invariant sets of general nonlinear systems with guarantees of finding the control invariant set

(if it exists). We then provided several avenues for improving the computational complexity

of the proposed algorithms including adaptive subdivision, parallelization using GPU and

system decomposition. Thereafter, we demonstrated the use control invariant sets to improve

the robustness and asymptotic performance of zone EMPC using several examples.

This chapter summarizes the overall findings in this thesis and provides discussions on

141

possible research directions based on the findings in this study.

7.2 Concluding remarks

In Chapter 2, we proposed a general framework for computing the largest (robust) control

invariant sets of constrained nonlinear systems based on graph theory. A mathematical

analysis of the proposed algorithm showed that the algorithm is able to converge to the

largest (robust) control invariant set which demonstrates the theoretical soundness of the

proposed algorithm. Owing to the challenges of numerical implementation of the algorithm,

algorithms to compute the inner and outer approximations of the control invariant sets were

proposed. The efficacy of the proposed algorithms were compared to well-known algorithms

in literature using both a linear and a nonlinear example.

Chapters 3 and 4 are extensions of the algorithms proposed in Chapter 2. In Chapter 3,

we systematically analyzed the framework proposed in Chapter 2 and determined the bottle-

necks which include graph construction and cell subdivision steps. Thereafter, we proposed

ways to improve the algorithm using an adaptive subdivision scheme and parallelization using

graphics processing units. An example using a continuous stirred tank reactor was used to

demonstrate the effectiveness of the measures proposed to improve the graph-based invariant

set algorithm. In Chapter 4, we further tackled the issue of scalability of the GIS algorithm

using a decomposition-based approach. By decomposing the overall system into smaller

subsystems, computationally manageable problems can be solved. A notable aspect of the

proposed decomposition-based GIS algorithm is that the states that couple the subsystems

together are not treated as disturbances contrary to other decomposition-based algorithms.

We showed that the algorithm based on system decomposition is able to converge to the

centralized algorithm results. We demonstrated the suitability of the decomposition-based

algorithm using several cascade system examples including a six dimensional CSTR example.

Chapters 5 and 6 are applications of robust control invariant in the design of economic

142

model predictive control. In Chapter 5, we developed a robust economic model predictive

control with zone tracking scheme for control of nonlinear systems. Specifically, we intro-

duced the concept of risk factor in the selection of a subset of the zone to be tracked by the

controller. The subset of the zone to be tracked was selected such that it is robust control

invariant for stability guarantees. We conducted rigorous stability analysis on the proposed

control algorithm and demonstrated the applicability of the algorithm to chemical processes

using a CSTR example. In Chapter 6, we extended and applied the robust economic model

predictive control with zone tracking scheme presented in Chapter 5 to a large scale chem-

ical process. Specifically, we considered a typical absorption column of a post-combustion

CO2 capture plant. Because of the scale of the system, we proposed an ellipsoidal control

invariant set as the subset of the zone to be tracked. This removed the limitation on the

applicability of the RZEMPC scheme to large scale systems. We used several scenarios to

demonstrate the suitability of the proposed RZEMPC scheme to improve the operation of

the absorption column under uncertainty in the the flue gas flow rate and endogenous model

uncertainty.

7.3 Future research directions

There are several exciting future research directions in the development of graph-based in-

variant set algorithms for nonlinear systems. Below, a few discussions on possible research

directions are provided.

Interdependent graph networks: In the decomposition-based GIS algorithm, the solu-

tion of the overall system need to be reconstructed from the solution of the subsystems and

then some cells tested for invariance. This step could be computationally demanding requir-

ing large amount of memory and computation resources. We propose that the reconstruction

and validation step may be eliminated by utilizing recent advances in interdependent graph

networks to analyze the distributed graphs for control invariance instead. Two of such possi-

143

ble interdependent network analysis tools are percolation theory and cascading failure theory

[97].

Integration of the various techniques into a single framework: In this thesis, we

have developed a graph-based invariant set algorithm for nonlinear systems and proposed

several ways to improve the computational efficiency including system decomposition, adap-

tive subdivision and parallelization. As it stands now, the various methods are not integrated

into a single framework. It will be worth knowing the overall computational efficiency when

the various methods are integrated into a single framework. We note that the integration

is not trivial. Several issues such as convergence, missing state estimation, tuning of the

parameters and inner approximation need to be addressed in the integrated framework.

Invariant set representation: The GIS algorithm produces sets which may not necessarily

be convex. While it is easy to represent convex sets in controller design such as MPC using

the convex hull algorithm, it is in general difficult to obtain a representation of non-convex

invariant sets. A possible direction is to find the largest convex invariant set for MPC

applications. Another possible direction is to use semi-algebraic sets [98] or deep neural

networks to represent the non-convex sets.

Extraction of the control law: Currently, the algorithms proposed in this thesis compute

the largest CIS or RCIS without determining the appropriate control law that enforces the

control invariance. A possible future direction is to use reinforcement learning to determine

a general control law that enforces the control invariance for a given CIS or RCIS.

144

Bibliography

[1] M. Rungger and P. Tabuada, “Computing robust controlled invariant sets of linear

systems,” IEEE Transactions on Automatic Control, vol. 62, pp. 3665–3670, July 2017.

[2] M. Fiacchini, T. Alamo, and E. Camacho, “On the computation of convex robust control

invariant sets for nonlinear systems,” Automatica, vol. 46, pp. 1334–1338, Aug. 2010.

[3] A. Nikolopoulou and M. G. Ierapetritou, “Optimal design of sustainable chemical pro-

cesses and supply chains: A review,” Computers & Chemical Engineering, vol. 44,

p. 94–103, 2012.

[4] M. Mahmood and P. Mhaskar, “Enhanced stability regions for model predictive control

of nonlinear process systems,” AIChE Journal, vol. 54, no. 6, p. 1487–1498, 2008.

[5] T. Homer and P. Mhaskar, “Constrained control lyapunov function-based control of

nonlinear systems,” Systems & Control Letters, vol. 110, pp. 55–61, 2017.

[6] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent hamilton-jacobi formulation

of reachable sets for continuous dynamic games,” IEEE Transactions on Automatic

Control, vol. 50, pp. 947–957, jul 2005.

[7] T. Homer, M. Mahmood, and P. Mhaskar, “A trajectory-based method for construct-

ing null controllable regions,” International Journal of Robust and Nonlinear Control,

vol. 30, no. 2, pp. 776–786, 2020.

[8] J. P. Aubin, Viability theory. Modern Birkhäuser classics, Boston: Birkhäuser, 2009.

145

[9] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767,

1999.

[10] D. Q. Mayne, “Control of constrained dynamic systems,” European Journal of Control,

vol. 7, no. 2-3, pp. 87–99, 2001.

[11] M. Cannon, V. Deshmukh, and B. Kouvaritakis, “Nonlinear model predictive control

with polytopic invariant sets,” Automatica, vol. 39, no. 8, pp. 1487–1494, 2003.

[12] S. Liu and J. Liu, “Economic model predictive control with zone tracking,”Mathematics,

vol. 6, no. 5, p. 65, 2018.

[13] S. Liu, Y. Mao, and J. Liu, “Model predictive control with generalized zone tracking,”

IEEE Transactions on Automatic Control, 2019.

[14] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: Theory, Methods

& Applications, vol. 7, p. 1163–1173, Jan 1983.

[15] E. D. Sontag, “A ‘universal’ construction of artstein’s theorem on nonlinear stabiliza-

tion,” Systems & Control Letters, vol. 13, p. 117–123, Aug 1989.

[16] H. Khalil, Nonlinear Systems. Pearson Education, Prentice Hall, 2002.

[17] S. Munir, M. Hovd, and S. Olaru, “Low complexity constrained control using higher

degree lyapunov functions,” Automatica, vol. 98, p. 215–222, Dec 2018.

[18] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in

system and control theory. SIAM, 1994.

[19] M. Han, Y. Tian, L. Zhang, J. Wang, and W. Pan, “Reinforcement learning control of

constrained dynamic systems with uniformly ultimate boundedness stability guarantee,”

Automatica, vol. 129, p. 109689, Jul 2021.

146

[20] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin,

“A general safety framework for learning-based control in uncertain robotic systems,”

IEEE Transactions on Automatic Control, vol. 64, p. 2737–2752, Jul 2019.

[21] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model pre-

dictive control for safe exploration,” 2018 IEEE Conference on Decision and Control

(CDC), Dec 2018.

[22] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based rein-

forcement learning with stability guarantees,” Advances in neural information process-

ing systems, vol. 30, 2017.

[23] F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Springer International

Publishing, 2015.

[24] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, “Invariant approxima-

tions of the minimal robust positively invariant set,” IEEE Transactions on Automatic

Control, vol. 50, no. 3, pp. 406–410, 2005.

[25] E. C. Kerrigan, Robust constraint satisfaction: Invariant sets and predictive control.

PhD thesis, University of Cambridge, 2001.

[26] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance invariant

sets for discrete-time linear systems,” Mathematical problems in engineering, vol. 4,

no. 4, pp. 317–367, 1998.

[27] E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints: the

theory and application of maximal output admissible sets,” IEEE Transactions on Au-

tomatic Control, vol. 36, pp. 1008–1020, Sep. 1991.

[28] D. Bertsekas, “Infinite time reachability of state-space regions by using feedback con-

trol,” IEEE Transactions on Automatic Control, vol. 17, pp. 604–613, October 1972.

147

[29] T. Alamo, A. Cepeda, M. Fiacchini, and E. F. Camacho, “Convex invariant sets for

discrete-time lur’e systems,” Automatica, vol. 45, no. 4, pp. 1066–1071, 2009.

[30] J. M. Bravo, D. Limón, T. Alamo, and E. F. Camacho, “On the computation of invariant

sets for constrained nonlinear systems: An interval arithmetic approach,” Automatica,

vol. 41, no. 9, pp. 1583–1589, 2005.

[31] T. Homer and P. Mhaskar, “Utilizing null controllable regions to stabilize input-

constrained nonlinear systems,” Computers & Chemical Engineering, vol. 108, pp. 24–

30, 2018.

[32] B. Decardi-Nelson and J. Liu, “Computing robust control invariant sets of constrained

nonlinear systems: A graph algorithm approach,” Computers & Chemical Engineering,

vol. 145, p. 107177, 2021.

[33] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis: in-

ternal approximation,” Systems & control letters, vol. 41, no. 3, pp. 201–211, 2000.

[34] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-

rard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in

International Conference on Computer Aided Verification, pp. 379–395, Springer, 2011.

[35] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin, “Decomposition

of reachable sets and tubes for a class of nonlinear systems,” IEEE Transactions on

Automatic Control, vol. 63, no. 11, pp. 3675–3688, 2018.

[36] S. Riverso, K. Kouramas, and G. Ferrari-Trecate, “Decentralized and distributed robust

control invariance for constrained linear systems,” in 2017 IEEE 56th Annual Confer-

ence on Decision and Control (CDC), pp. 5978–5984, IEEE, 2017.

148

[37] S. V. Raković, B. Kern, and R. Findeisen, “Practical set invariance for decentralized

discrete time systems,” in 49th IEEE Conference on Decision and Control (CDC),

pp. 3283–3288, IEEE, 2010.

[38] A. Li and M. Chen, “Guaranteed-safe approximate reachability via state dependency-

based decomposition,” in 2020 American Control Conference (ACC), pp. 974–980,

IEEE, 2020.

[39] M. Korda, D. Henrion, and C. N. Jones, “Convex computation of the maximum con-

trolled invariant set for polynomial control systems,” SIAM Journal on Control and

Optimization, vol. 52, p. 2944–2969, Jan 2014.

[40] M. A. Ben Sassi and A. Girard, “Controller synthesis for robust invariance of polyno-

mial dynamical systems using linear programming,” Systems & Control Letters, vol. 61,

p. 506–512, Apr 2012.

[41] G. S. Osipenko, “On a symbolic image of dynamical system,” Boundary Value Problems,

vol. , pp. Interuniv. Collect, Sci. Works, perm (in Russian) 101–105, 1983.

[42] M. Eidenschink, “Exploring global dynamics: A numerical algorithm based on the con-

ley index theory.,” 1997.

[43] K. Mischaikow, “Topological techniques for efficient rigorous computation in dynamics,”

Acta Numerica, vol. 11, pp. 435–477, 2002.

[44] D. Szolnoki, “Set oriented methods for computing reachable sets and control sets,”

Discrete and Continuous Dynamical Systems - Series B, vol. 3, pp. 361–382, May 2003.

[45] G. Osipenko, Dynamical Systems, Graphs, and Algorithms. No. 1889 in Lecture Notes

in Mathematics, Berlin ; New York: Springer, 2007. OCLC: ocm75927357.

[46] F. Colonius and W. Kliemann, The dynamics of control. Springer Science & Business

Media, 2012.

149

[47] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Some algorithms for differ-

ential games with two players and one target,” ESAIM: Mathematical Modelling and

Numerical Analysis-Modélisation Mathématique et Analyse Numérique, vol. 28, no. 4,

pp. 441–461, 1994.

[48] K. Sakai, “Pseudo-orbit tracing property and strong transversality of diffeomorphisms

on closed manifolds,” Osaka Journal of Mathematics, vol. 31, no. 2, pp. 373–386, 1994.

[49] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval analysis, vol. 110.

Siam, 2009.

[50] M. Dellnitz and O. Junge, “Set Oriented Numerical Methods for Dynamical Systems,”

in Handbook of Dynamical Systems, vol. 2, pp. 221–264, Elsevier, 2002.

[51] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to

numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[52] M. Dellnitz and O. Junge, “An adaptive subdivision technique for the approximation

of attractors and invariant measures,” Computing and Visualization in Science, vol. 1,

no. 2, p. 63–68, 1998.

[53] W. T. Trotter and P. Erdös, “When the cartesian product of directed cycles is hamil-

tonian,” Journal of Graph Theory, vol. 2, no. 2, p. 137–142, 1978.

[54] S. Kaynama and M. Oishi, “A modified riccati transformation for decentralized compu-

tation of the viability kernel under LTI dynamics,” IEEE Transactions on Automatic

Control, vol. 58, p. 2878–2892, Nov 2013.

[55] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic model predic-

tive control,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),

pp. 3851–3861, IEEE, 2012.

150

[56] S. Liu and J. Liu, “Economic model predictive control with extended horizon,” Auto-

matica, vol. 73, pp. 180–192, 2016.

[57] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of economic model

predictive control methods,” Journal of Process Control, vol. 24, no. 8, pp. 1156–1178,

2014.

[58] S. Liu, J. Zhang, and J. Liu, “Economic MPC with terminal cost and application to an

oilsand primary separation vessel,” Chemical Engineering Science, vol. 136, pp. 27–37,

2015.

[59] B. Decardi-Nelson, S. Liu, and J. Liu, “Improving flexibility and energy efficiency of

post-combustion CO2 capture plants using economic model predictive control,” Pro-

cesses, vol. 6, no. 9, p. 135, 2018.

[60] Y. Zhang, B. Decardi-Nelson, J. Liu, J. Shen, and J. Liu, “Zone economic model pre-

dictive control of a coal-fired boiler-turbine generating system,” Chemical Engineering

Research and Design, vol. 153, pp. 246–256, 2020.

[61] D. W. Griffith, V. M. Zavala, and L. T. Biegler, “Robustly stable economic nmpc for

non-dissipative stage costs,” Journal of Process Control, vol. 57, pp. 116–126, 2017.

[62] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance and stability of

economic model predictive control,” IEEE Transactions on Automatic Control, vol. 57,

no. 7, pp. 1615–1626, 2011.

[63] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using model predictive

control with a terminal cost,” Annual Reviews in Control, vol. 35, no. 2, pp. 178–186,

2011.

[64] D. Mayne, “Robust and stochastic model predictive control: Are we going in the right

direction?,” Annual Reviews in Control, vol. 41, pp. 184–192, 2016.

151

[65] R. Huang, L. T. Biegler, and E. Harinath, “Robust stability of economically oriented in-

finite horizon NMPC that include cyclic processes,” Journal of Process Control, vol. 22,

no. 1, pp. 51–59, 2012.

[66] S. Lucia, J. A. Andersson, H. Brandt, M. Diehl, and S. Engell, “Handling uncertainty

in economic nonlinear model predictive control: A comparative case study,” Journal of

Process Control, vol. 24, no. 8, pp. 1247–1259, 2014.

[67] Y. Mao, S. Liu, and J. Liu, “Robust economic model predictive control of nonlinear net-

worked control systems with communication delays,” International Journal of Adaptive

Control and Signal Processing, vol. 34, no. 5, pp. 614–637, 2020.

[68] F. A. Bayer, M. A. Müller, and F. Allgöwer, “Tube-based robust economic model pre-

dictive control,” Journal of Process Control, vol. 24, no. 8, pp. 1237–1246, 2014.

[69] F. A. Bayer, M. Lorenzen, M. A. Müller, and F. Allgöwer, “Robust economic model

predictive control using stochastic information,” Automatica, vol. 74, pp. 151–161, 2016.

[70] Z. Dong and D. Angeli, “Tube-based robust economic model predictive control on dissi-

pative systems with generalized optimal regimes of operation,” in 2018 IEEE Conference

on Decision and Control (CDC), pp. 4309–4314, IEEE, 2018.

[71] B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovič, and F. J. Doyle III, “Zone model

predictive control: a strategy to minimize hyper-and hypoglycemic events,” Journal of

Diabetes Science and Technology, vol. 4, no. 4, pp. 961–975, 2010.

[72] S. Privara, J. Širokỳ, L. Ferkl, and J. Cigler, “Model predictive control of a building

heating system: The first experience,” Energy and Buildings, vol. 43, no. 2-3, pp. 564–

572, 2011.

152

[73] Y. Mao, S. Liu, J. Nahar, J. Liu, and F. Ding, “Soil moisture regulation of agro-

hydrological systems using zone model predictive control,” Computers and Electronics

in Agriculture, vol. 154, pp. 239–247, 2018.

[74] M. Heidarinejad, J. Liu, and P. D. Christofides, “Economic model predictive control of

nonlinear process systems using lyapunov techniques,” AIChE Journal, vol. 58, no. 3,

pp. 855–870, 2012.

[75] M. Diehl, R. Amrit, and J. B. Rawlings, “A lyapunov function for economic optimizing

model predictive control,” IEEE Transactions on Automatic Control, vol. 56, no. 3,

pp. 703–707, 2010.

[76] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical Programming,

vol. 106, no. 1, pp. 25–57, 2006.

[77] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathematical

optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[78] M. Höök and X. Tang, “Depletion of fossil fuels and anthropogenic climate change—a

review,” Energy Policy, vol. 52, p. 797–809, Jan 2013.

[79] C. Bataille, H. Waisman, M. Colombier, L. Segafredo, J. Williams, and F. Jotzo, “The

need for national deep decarbonization pathways for effective climate policy,” Climate

Policy, vol. 16, no. sup1, p. S7–S26, 2016.

[80] British Petroleum Company, BP statistical review of world energy. 70th ed., 2021.

[81] P. Babu, R. Kumar, and P. Linga, “Pre-combustion capture of carbon dioxide in a fixed

bed reactor using the clathrate hydrate process,” Energy, vol. 50, p. 364–373, Feb 2013.

[82] A. Chansomwong, K. Zanganeh, A. Shafeen, P. Douglas, E. Croiset, and L. Ricardez-

Sandoval, “Dynamic modelling of a co2 capture and purification unit for an oxy-

153

coal-fired power plant,” International Journal of Greenhouse Gas Control, vol. 22,

p. 111–122, Mar 2014.

[83] B. Decardi-Nelson, A. Akachuku, P. Osei, W. Srisang, F. Pouryousefi, and R. Idem,

“A flexible and robust model for low temperature catalytic desorption of co 2 from co

2 -loaded amines over solid acid catalysts,” Chemical Engineering Science, vol. 170,

p. 518–529, Oct 2017.

[84] J. Davison, L. Mancuso, and N. Ferrari, “Costs of CO2 capture technologies in coal fired

power and hydrogen plants,” Energy Procedia, vol. 63, p. 7598–7607, 2014.

[85] R. Sakwattanapong, A. Aroonwilas, and A. Veawab, “Behavior of reboiler heat duty

for CO2 capture plants using regenerable single and blended alkanolamines,” Industrial

& Engineering Chemistry Research, vol. 44, no. 12, p. 4465–4473, 2005.

[86] M. Panahi and S. Skogestad, “Economically efficient operation of co2 capturing pro-

cess. part ii. design of control layer,” Chemical Engineering and Processing: Process

Intensification, vol. 52, p. 112–124, 2012.

[87] Z. He, M. H. Sahraei, and L. A. Ricardez-Sandoval, “Flexible operation and simulta-

neous scheduling and control of a co2 capture plant using model predictive control,”

International Journal of Greenhouse Gas Control, vol. 48, p. 300–311, 2016.

[88] T. Bankole, D. Jones, D. Bhattacharyya, R. Turton, and S. E. Zitney, “Optimal schedul-

ing and its lyapunov stability for advanced load-following energy plants with CO2 cap-

ture,” Computers & Chemical Engineering, vol. 109, p. 30–47, 2018.

[89] G. D. Patron and L. Ricardez-Sandoval, “A robust nonlinear model predictive controller

for a post-combustion CO2 capture absorber unit,” Fuel, vol. 265, p. 116932, 2020.

154

[90] G. D. Patrón and L. Ricardez-Sandoval, “An integrated real-time optimization, control,

and estimation scheme for post-combustion CO2 capture,” Applied Energy, vol. 308,

p. 118302, 2022.

[91] J. Rúa, M. Bui, L. O. Nord, and N. Mac Dowell, “Does ccs reduce power generation

flexibility? a dynamic study of combined cycles with post-combustion CO2 capture,”

International Journal of Greenhouse Gas Control, vol. 95, p. 102984, 2020.

[92] B. Decardi-Nelson and J. Liu, “Robust economic model predictive control with zone

tracking,” Chemical Engineering Research and Design, vol. 177, p. 502–512, 2022.

[93] M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, “Post-combustion

CO2 capture with chemical absorption: A state-of-the-art review,” Chemical engineering

research and design, vol. 89, no. 9, pp. 1609–1624, 2011.

[94] T. H. Chilton and A. P. Colburn, “Mass transfer (absorption) coefficients prediction

from data on heat transfer and fluid friction,” Industrial & Engineering Chemistry,

vol. 26, no. 11, p. 1183–1187, 1934.

[95] B. Polyak and P. Shcherbakov, “Ellipsoidal approximations to attraction domains of

linear systems with bounded control,” 2009 American Control Conference, 2009.

[96] X. Yin, B. Decardi-Nelson, and J. Liu, “Distributed monitoring of the absorption column

of a post-combustion CO2 capture plant,” International Journal of Adaptive Control and

Signal Processing, vol. 34, no. 6, p. 757–776, 2019.

[97] D. Y. Kenett, J. Gao, X. Huang, S. Shao, I. Vodenska, S. V. Buldyrev, G. Paul, H. E.

Stanley, and S. Havlin, “Network of interdependent networks: overview of theory and

applications,” Networks of Networks: The Last Frontier of Complexity, pp. 3–36, 2014.

[98] F. Dabbene, D. Henrion, and C. M. Lagoa, “Simple approximations of semialgebraic

sets and their applications to control,” Automatica, vol. 78, p. 110–118, Apr 2017.

155

	Introduction
	Motivation
	Background
	Contributions and thesis outline

	Computing robust control invariant sets of constrained nonlinear systems: A graph algorithm approach
	Introduction
	Preliminaries
	Notation
	System description and problem formulation
	Graph construction
	Set invariance condition for autonomous systems

	Main results
	Robust control invariance condition
	Computation of robust control invariant set
	Convergence of algorithm
	Inner approximation
	Algorithm complexity
	Special case: Input and disturbance affine systems

	Illustrative examples
	Example 1
	Example 2

	Concluding remarks

	An efficient implementation of graph-based invariant set algorithm for constrained nonlinear dynamical systems
	Introduction
	Preliminaries
	System description and problem formulation
	Computational requirements of standard GIS algorithm

	The improved and efficient GIS algorithm
	Adaptive cell subdivision
	Boundary selection
	Selection of neighborhood of boundary cells

	Efficient parallelization with GPU
	Convergence issues

	Results
	Process description
	Adaptive subdivision results
	Parallelization results

	Concluding remarks

	A distributed control invariant set computing algorithm for constrained nonlinear cascade systems
	Introduction
	Problem formulation and background
	Notation
	Problem formulation

	System decomposition and set invariance
	System structures and invariance
	Overlapping system decomposition

	Computation of the largest control invariant set via system decomposition
	Decentralized and distributed computation
	Set reconstruction and validation
	Computational complexity

	Examples
	Linear system example
	Nonlinear system example
	Three Continuously stirred tank reactors in series example

	Concluding remarks

	Robust economic model predictive control with zone tracking
	Introduction
	Preliminaries
	Notation
	System description and control problem formulation

	Robust EMPC with zone tracking
	Design of the proposed EMPC with zone tracking
	Construction of the economic zone
	Risk factor
	Computing the economic zone

	Stability analysis
	Illustrative example
	Process description
	Effect of risk factor δ
	Comparison with an EMPC tracking the target zone

	Concluding remarks

	Robust economic MPC of the absorption column in post-combustion carbon capture through zone tracking
	Introduction
	Preliminaries
	Notation
	Process description
	Model discretization and state space representation
	Control problem formulation

	Economic model predictive control with zone tracking
	Economic MPC with target zone tracking
	Modification of the target zone

	Simulation results
	Simulation settings
	Results and discussion
	Additive state uncertainty
	Time-varying flue gas flow rate

	Concluding remarks

	Concluding remarks and future work
	Introduction
	Concluding remarks
	Future research directions

