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Abstract

This research studies the use of fuzzy expert system to predict the productivities of
industrial rig pipe and weld pipe activities. Three models were developed, one for rig pipe

and two for weld pipe.

Context variables and factors influencing the productivity of each activity were identified.
A fuzzy expert system that comprises membership functions, a fuzzy rulebase containing
If-Then rules, a fuzzy inference system, and a defuzzification module, was generated for
each model, in a computer environment. Correlation analysis was used to determine the
factors that significantly affect productivity. The models were calibrated to improve their
accuracies, and validated using productivity data. All the models have high linguistic
accuracies. Sensitivity analysis was performed for each model to improve its numerical and

linguistic accuracies.

The study demonstrates the use of fuzzy expert system in predicting the productivity of

industrial construction activities, given limited data and a large number of input factors.
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1. Introduction

1.1 Introduction

Construction labor productivity is very crucial to the successful completion of any
construction project. Since labor constitutes a large portion of the entire project cost, it is of
utmost importance that labor is fully and effectively utilized on a construction project. The
ability of the estimating team to accurately determine labor productivities for different
activities will have a significant impact on the labor cost component of a project. Most
studies on construction labor productivity have focused on commercial construction. There
has not been significant study of this topic in the area of industrial construction, therefore

necessitating the focus of this research on this sector of the construction industry.

Barrie and Paulson (1992) stated that industrial construction involves the execution of
construction projects, such as petroleum refineries and petrochemical plants, synthetic fuel
plants, fossil fuel and nuclear power plants, offshore oil and gas production facilities,
cryogenic plants, etc. They also observed that industrial construction generally features
large amounts of highly complex process piping, mechanical, electrical, and
instrumentation work, and that industrial design and construction require the highest level
of engineering expertise from multiple disciplines. Knowles (1997) defined industrial
construction as the construction of piping systems, typically for oil and gas, petrochemical,

mining, or other industrial-related fields.



This research studies the use of fuzzy expert system to develop models that predict
industrial productivity, for two pipefitting activities, namely rig pipe and weld pipe.
Construction productivity models were developed for these activities. The development of
the models were done by defining the factors that affect productivity for each activity,
developing the models based on the proposed model structures, and finally testing the
models with previously published construction productivity data, in order to determine the

accuracy of the models.

1.2 Thesis Objectives

The main purpose of this research is to present a methodology for developing fuzzy expert
system models for predicting industrial construction labor productivity for two major
pipefitting activities, namely rig pipe and weld pipe. The study seeks to develop a
methodology for the development of productivity models that are realistic and accurate for
predicting productivity. These models, which are applicable to crew-level operations, can
help estimators in the industrial construction sector to estimate productivities for different
activities based on the several factors that affect the activities. Three models were
developed in this study, one for rig pipe and the others for weld pipe. The model for each
activity accounts for many factors that may influence crew productivity and also overcome
the rigidity problem associated with existing productivity models. The major idea behind
this study is that if the productivity of a crew can be accurately predicted, then it would be
easy to determine appropriate crew ratios (apprentice to journeyman ratios) required to

achieve certain desired levels of productivity.



This research set out to identify factors that affect industrial construction labor productivity
for the chosen activities. A variety of factors that affect industrial construction productivity
were closely examined and subsequently reduced to a manageable few that can be used in
the models to be developed. This was necessary since it would be difficult to consider all
the possible factors affecting construction productivity in the models. This difficulty arises
from the fact that it is hard to implement a productivity model, based on a fuzzy expert
system, if the model comprises a large number of input and output factors. The factors
included in the models developed in this study were determined by the availability of data
for each factor. This is because the data published in Fayek et al. (2002), were used in this
study, and the data do not cover all the possible factors affecting industrial construction
productivity. The published data were collected at a major industrial construction site in

Alberta in 2001.

The factors included in the models were reduced based on the statistical significance of
each factor with respect to the prediction of productivity values. In order to achieve the
objectives of this research, two statistical techniques, namely correlation and regression
analyses, were examined in order to determine their degrees of applicability. Eventually,
correlation analysis was used to reduce the factors affecting productivity to a significant,
manageable subset of factors. Multiple linear regression could not be used because it was
assumed that the relationships between some of the input factors and productivity are not
linear, but polynomial or exponential. Correlation analysis was used in this study because it

is more appropriate in situations where uncontrolled experiments have been conducted.



The objectives of this research can be summarized as follows:

e To identify and classify all the possible factors that affect the productivity of rig
pipe and weld pipe activities.

e To identify the most significant factors affecting labor productivity for these two
activities.

e To develop membership functions and fuzzy rulebases for the input factors and
productivity (output factor) based on objective and subjective data.

e To develop fuzzy expert system models for predicting the productivities of the rig
pipe and weld pipe activities.

o To validate the developed models using the rig pipe and weld pipe productivity

data published in Fayek et al. (2002).

1.3 Expected Contributions

This study is expected to generate models that can be used to predict industrial construction
productivity. The models will be able to determine the effects of changing project
conditions on productivity and predict the most appropriate crew ratios for different
combinations of factors affecting productivity. The study will involve the development of a
technique for determining the significant factors influencing productivity. The technique
will involve the use of statistical methods and field knowledge. A flexible model structure
that will facilitate easy prediction of productivity will be developed. Techniques for

generating membership functions and fuzzy expert rules will also be developed, using the



available data set. The models will be able to predict productivity from incomplete and

inconsistent data sets.

The use of the models is expected to result in savings in cost of construction and savings in
the cost of the overall project since labor constitutes a significant proportion of the total
construction costs. The models will enable the construction estimating team to determine
the amounts of labor required to complete different quantities of an activity, while taking
into consideration the other factors that affect productivity. Using the models, the
estimating team will also be able to determine the adequacy of the crew size and will be
able to suggest the right mix of apprentices and journeymen for each activity. This will
facilitate effective use of available manpower, and it will enhance the use of apprentices on

industrial projects.

This study will determine the applicability of a neuro-fuzzy technique, namely, the
Adaptive Neuro-Fuzzy Inference System (ANFIS), and, a neural network technique,
namely, Neuroshell 2, towards predicting the productivities of industrial construction

activities.

1.4 Research Methodology

A thorough review of existing literature is done in this study in order to identify factors

relevant to industrial construction productivity estimation. A review of existing literature is



also important so as to identify existing techniques for predicting labor productivity and if

possible, to suggest ways of improving on the existing models.

Apart from fuzzy logic, this study examines the application of ANFIS and Neuroshell 2, to
the process of modeling industrial construction data with respect to the factors affecting
productivity. This was done in order to determine if more feasible models could be
developed using those techniques. However, the two techniques were found to be
unsuitable. This is because the two techniques do not work well with many input and
output factors and they require substantial data sets for training, testing and checking the

model developed.

Fayek et al. (2002) carried out a three-month survey of two trades, namely the pipefitting
and electrical trades, at a major industrial construction site in Alberta. Objective numerical
and subjective linguistic data on both the quantities of work done and the amounts of
manhours used to do the work, and data on some of the factors affecting productivity of the
two chosen activities, were collected during the survey. The data were obtained using the
Work Improvement techniques of Work Sampling and Five-Minute Rating, the
information contained in structured questionnaires that were completed by the foremen,
journeymen and apprentices on the crews studied, and in the productivity forms completed

by the survey’s researchers in conjunction with the crew foremen.

The factors affecting the productivity of each activity were identified and classified based

on previous research and existing literature. The factors included in the models developed



in this study are those for which data were available. These factors were categorized into
context variables, activity-level input factors, and project-level input factors. The context
variables are the factors that are used to classify the other factors based on how the
objective data of each factor relate to subjective linguistic descriptors for different
activities in different contexts. Membership functions and expert rules were generated for
the models based on expert opinions. The membership functions were developed for each
of the input factors and productivity included in each model and they were used to
represent factors that are subjective in nature. The membership functions for a factor are
used to define the extent, which is defined in terms of a membership value between 0 and
1, to which different levels of the factor fits different linguistic concepts (such as low,

average, and high).

In order to reduce the number of factors to be included in the productivity models to a
manageable number, correlation analysis, which provides a greater understanding of the
relationships in the data being studied, was used to determine the most important factors
affecting crew productivity based on data already collected. The correlation analysis was
done after the development of membership functions for all the input and output factors,
and, using the Statistical Package for Social Sciences (SPSS) for Windows, Version 9

(SPSS Inc., 2001).

The fuzzy rules were developed to provide the models with the logical reasoning necessary

to infer the output (productivity) of the models. The membership functions and fuzzy rules



were developed in MS Excel spreadsheets and later implemented in the Fuzzy Logic

Toolbox of MATLAB 6.1 (The Mathworks, Inc., 2001).

Construction of membership functions was primarily based on information elicited from
structured questionnaires that were completed by experts. The information obtained was
used to determine the range of membership values corresponding to the linguistic concepts
of the membership functions. The rulebases were developed using logical reasoning skills.
The existing data were then used to test the models so as to determine their levels of
accuracy, that is, how far the predicted productivity values are from the actual productivity
values. The models developed were calibrated in order to improve their accuracy. The
model calibration was done by adjusting the productivity membership functions used in
building the models. This was done using MS Excel spreadsheets. A sensitivity analysis of
the fuzzy inference system was carried out to determine the sensitivity of the system to
fuzzy operators, and to implication, aggregation and defuzzification methods. This analysis

helped to improve the accuracy of the developed models.

1.5 Thesis Qutline

Chapter 2 describes a detailed review of topics related to construction labor productivity
and fuzzy logic. The chapter gives a brief overview of the previous research efforts in the
area of modeling labor productivity with the use of neural network techniques, fuzzy logic

techniques, and, other techniques.



Chapter 3 describes the process of developing the models for predicting industrial
construction labor productivity. It consists of a detailed description of the factors affecting
construction labor productivity with respect to the activities that were chosen for this study.
This chapter also consists of the graphical structure of the models, as well as the flowchart

indicating how the models work.

Chapter 4 gives a description of the process of developing the expert systems employed in
the models. This chapter comprises the development of the membership functions,
simplification of the models using correlation analysis, development of the If-Then rules,

as well as the sensitivity and linguistic error distribution analyses performed on the models.

Chapter 5 comprises the conclusions and contributions of this research study, as well as the

recommendations for future work.



2. Literature Review

2.1 Introduction

The relationship that exists between the inputs to a production or construction system and
the output from the system is defined by productivity. According to Liou and Borcherding
(1986), productivity can be defined as the ratio of the outputs from a system, which may
be goods and/or services, to the inputs to the system, which may be resources, such as,
labor, capital, technology, materials, and/or energy. In its simplest form, productivity can

be mathematically expressed as:

Productivity = input(s)/output(s) (2-1)

From the mathematical expression in the equation shown above, it appears that one can
easily increase productivity either by increasing the output(s) of the production or
construction system while keeping the input(s) constant, reducing the input(s) to the
system while keeping the output(s) constant, or by reducing the input(s) and increasing the

output(s) simultaneously.

It is not easy to represent productivity as a ratio because there are certain variables that
cannot be easily quantified, such as, reputation, credibility, quality, and achievement. Most
of the available methods of measuring productivity do not measure productivity

completely. Using fuzzy logic, inputs and outputs that are not easily quantifiable can be

10



quantified in the form of linguistic variables. For example, although quality is not an
objective measure of productivity, it can be described in terms of low, average or high
quality. This subjective quantification can further be translated to objective values by

assigning numerical values to subjective ratings.

In construction terms, an input to the system may be in the form of the number of
manhours used to complete a unit of work. The unit of work completed is quantified and it
represents the output from the system. An example is the amount of earth moved by an
excavator in an earthmoving activity, in terms of cubic yards of earth material. In the
construction industry, the commonly used index for calculating productivity is manhours

per unit of work done.

Relatively, more research has been done on construction productivity in the commercial
and institutional construction sectors than in the industrial sector. Therefore, there is a
great need for more research to be carried out in the industrial construction sector. This
chapter reviews existing literature on productivity, productivity models, the application of
fuzzy logic in construction, and, the existing techniques of developing membership

functions and fuzzy expert rules.

2.2 Previous Studies of Labor Productivity

It is difficult to study construction productivity because of the variable nature of the

factors that affect productivity from one job to the other (Logcher and William, 1978).

11



Hinze and Kuechenmeister (1981) observed that one of the major problems of productivity
studies is the determination of a convenient and feasible approach to measuring
productivity. They noted that profitability is probably the most frequently used measure,
although it assumes perfect estimates and that work conditions do not vary from job to job.
Other measures of productivity include work hours and average direct activity ratings on
jobs, which is an indirect measure. The work hour measure assumes that there are no
changes in work conditions during the comparison of different project units. Hancher and
Abd-Elkhalek (1998) observed that for most projects, productivity is more difficult to
estimate and control than any other cost component. According to Halligan et al. (1994),
in construction, productivity is taken to mean labor productivity. It is work defined as the
units of work placed or produced per manhour. This measure of productivity is believed to
have several advantages: the meaning of the term labor productivity is relatively easy to
comprehend; labor productivity is frequently the greatest source of variation in overall
construction productivity; and the productivity of other inputs can often be determined
with respect to labor productivity. The inverse of labor productivity, manhours per unit of

work placed or produced (i.e., unit rate), is also commonly used.

Although labor productivity rate is sometimes measured using other rates, such as
installation rate (or units of work placed per unit time), and manhours used per week or
month, these rates do not directly measure productivity and can therefore give false results
if not carefully applied. For example, manhours per week or month indicates only the
intensity of effort, not productivity. Labor productivity for a particular activity is often

treated as a single, discrete value. However, productivity is better understood as a quantity

12



that varies throughout the duration of an activity. A single-valued estimate is typically
used in preparing a bid but in contrast, the measured value of productivity varies
throughout the duration of the job. However, at any given time during the duration of the

activity, the measured productivity may be close to or far from the estimated productivity.

Efforts have been made to determine the relationship between productivity and direct
work. Liou and Borcherding (1986) studied the relationship between direct work and unit
rate productivity of concrete pouring activity and they developed several equations for
predicting productivity. Liou and Borcherding (1986); Thomas et al. (1984); and Handa
and Abdalla (1989), reported that the percentage of time spent in direct work activities is
correlated to labor productivity, that is, labor productivity improves as more time is spent
on direct work activities. Thomas (1991) used seven databases, collected primarily from
nuclear power plant construction projects, to determine the relationship between labor
productivity and direct work. In the study, linear regression models were developed, and
these models proved that direct work is not related to productivity, contrary to previous

studies. This conclusion is based on the following three assumptions (Thomas et al.,

1990):
o By reducing the wait time, the direct work time is increased.
. By increasing the direct work time, the productivity is improved.
o If the two assumptions stated above are true, reducing wait time leads to improved

productivity.
Each assumption was tested, and the model statistics showed very poor correlations and
predictive capabilities between direct work and productivity. The study concluded that

work sampling studies show how busy trades are, and the results cannot be used to predict

13



labor productivity or to estimate the number of work hours that is wasted. This result is
contrary to previously published articles that suggest that labor productivity is related to

work sampling.

A subsequent study of the relationship between labor productivity and work sampling by
Thomas (1991), on reviewing the work done by Liou and Borcherding (1986), observed
that rather than correlate monthly unit rates with work sampling point estimates, Liou and
Borcherding (1986) correlated cumulative unit rates to work sampling data. This type of
correlation is incorrect because, while a typical work sampling study spans two weeks, the
unit rate may span three to five years. Thomas et al. (1984) used a seven-day moving
average data to develop a mathematical relationship between direct work and
performance. Although the derived relationship had a high correlation, the standard error
of the estimate was not reported. Thomas (1991) re-derived the relationship using un-
averaged data. The results obtained indicated that the variable direct work is a random
variable and the relationship derived by Thomas et al. (1984) suffered from a narrow
definition of direct work, the measurement of crew output by concentrating on only certain

crews, and the moving average data.

An understanding of the relationship between the manning levels of projects and the
productivity of trades can aid construction project managers in the area of project
planning, scheduling and management. Jansma (1988) studied the relationship that exists
between project manning levels and trade productivity for a nuclear power construction

plant. However, no attempt was made to estimate the industry optimum manning level.

14



Jansma (1998) state(i that the peak manning level could only be determined on a project by
project basis by comparing the costs associated with a longer schedule duration and the
costs due to productivity losses. In order to determine the extent of overmanning of a
construction activity and to minimize productivity losses, it is necessary to establish a
peak manning level. The factors affecting construction trade productivity were grouped
under five main categories of unproductive time, namely: waiting or idle, traveling,
working slowly, doing ineffective work, and doing rework. The main causes of loss of
productivity as they relate to the five main categories are listed in the study in the form of
an influence diagram. It may not be straightforward to relate a factor to a category because
of the inter-relationships that exist among the factors. Therefore, a factor may be identified

with more than one category.

According to Jansma (1988), the factors include: “overtime, time of day and day of week,
remote location, outdated equipment, unclear technical information, adverse weather,
fatigue, low craftsmen skills, pacing, low morale and no motivation, lack of visible work,
negative labor influences, lack of respect, poor site access, lack of eating or toilet
facilities, pay inequalities, lack of communication, protesters at the site, public opinion,
workforce observation and measurement, poor quality craftsmanship, damage, engineering
errors, poor drawings, scope and design changes, conservative design, alcohol and drugs,
poor lighting and poor ventilation, accelerated schedule, cumbersome procedures, slow
drawing revision and distribution, engineering errors and poor drawings, paperwork,
survey alignment, elevation, and markings, unclear, poorly marked walkways,

housekeeping, lack of pre-planning, logistics of tools and materials, absenteeism turnover,

15



poor quality of supervision, inexperienced quality control inspectors, late quality control
inspectors, regulatory changes, cumbersome procedures, late starts and early quits,
inadequate consumables, tool repair, crew coordination, unbalanced crews, overcrowding,
materials, tools, and equipment, accidents, poor safety, shift coordination, mobilization
and re-mobilization, contract coordination, jurisdictional disputes, strikes, temporary
installation, quality control hold points, start, stop, move, and restart, lack of engineering
information, lack of communication, phase of the project, joint occupancy, work

sequencing, make-work, restrictive work practice and featherbedding”.

These factors make it difficult to accurately measure craft productivity. This is because the
factors exert many influences on one another and on productivity. Jansma (1988) used
multiple regression analysis to account for the numerous factors that affect productivity,
with the exception of scheduled acceleration. The multiple regression analysis was also
used to control for project specific characteristics. The study concluded that the results of
the regression analysis carried out in the study may be applicable to large industrial

construction projects.

Borcherding et al. (1979) listed materials availability, tool availability, work redone,
overcrowded work areas and delays due to interference with other crews, and, inspection
delays, as the major factors influencing craftsman productivity. Maloney (1983) listed the
design of the construction facility, management of the construction firm, government

regulation, and, labor, as the major factors that affect construction labor productivity.
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Borcherding and Alarcon (1991) classified productivity factors under the following
groups:

o Factors associated with scheduled acceleration: These include materials
shortage, tools and equipment shortage, late inspection, increased craft
population overcrowding, competition for facilities, equipment, and space;
shortage of skilled labor, and, scheduled overtime.

o Factors associated with poor coordination: These include stacking of trades,
congestion, inability to locate tools and materials, damage to other trades’ work,
and, the presence of additional safety hazards.

o Factors associated with changes: These include re-assignment of manpower,
engineering errors and ommisions, inaccurate drawings and unclear technical
instructions.

o Factors associated with resources and site management: These include site
conditions and organization, materials and tools availability, limited materials
handling space, access to the site, interferences, poor lighting and housekeeping,
size and dispersion of tasks, poor methods and equipment, poor management of
labor, and, crew size.

. Factors associated with management characteristics: These include
management control and dilution of supervision.

o Factors associated with project characteristics: These include project size,
work force size, fast-track construction, and sub-contracting.

. Factor associated with labor and morale: These include poor training, low

payment, and scarce labor, quality control and quality assurance practices, non-
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availability of inspectors, craft absenteeism and turnover, long periods of
overtime, morale and attitude, wages, and incentives.

. Factors associated with project location and external conditions: These
include economical activity, availability of skilled labor, commuting time, support
community size, and, adverse weather.

They observed that previous attempts to evaluate the complex interactions among the
factors affecting productivity have been concentrated on measuring the effect of one factor
on productivity while disregarding the effects of other factors on productivity. They also
mentioned that no standards exist for identifying, categorizing, or measuring productivity
factors. Although Horner et al. (1987), Thomas and Yiakoumis (1987), and, Tucker et al

(1986), tried to solve this problem, no acceptable standards have been produced.

Tucker et al. (1999) in their review of the factors affecting construction labor productivity,
identified project uniqueness, technology, management, labor organization, real wage
trends, and, construction training, as the factors affecting productivity. Borcherding (1976)
stated that very large construction projects, predominantly industrial construction projects,
experience decreasing productivities, due mainly to labor and construction time and costs.

The following factors were stated as having adverse effects on the productivities of large

projects:
. Effects of union attitudes
o Effects of workman selection practices
° Effects of workman motivation
° Effects of inflexible bureaucratic structures
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. Effects of scheduled overtime

o Effects of change orders

The following recommendations were made to improve labor productivity:

. Organizational change

. Open shop challenge

. Motivation of workmen

. Overtime and change order strategies
The scope of the study by Borcherding (1976) is narrow because it only considered a
limited number of factors having adverse effects on productivities. Future work along this
line of study should consider several other factors that are known to affect the

productivities of large construction projects.

Thomas and Oloufa (1995) quantified the effect of disruptions on labor productivity. They
collected and analyzed data from 19 international construction sites on crew size, crew
composition and absenteeism; quantity measurement, work content, site conditions,
management practices, construction methods, project organization, and, project features.
The construction sites studied include masonry, concrete formwork, and, structural steel
erection; electrical conduit and cable installation; fabrication of precast concrete segments
for a segmental bridge; and, caisson drilling. It was observed that for projects that have a
low frequency of disruptions (i.e., reasonably good projects), the average weekly labor
performance is reduced by about 9% for every disrupted workday, as indicated by the

regression model that was generated.
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Thomas and Daily (1983) stated that in order to achieve better construction productivity at
the crew level, methods of measuring performance, other than unit productivity rate
should be used. They illustrated the use of three methods of sampling activities, namely:
work sampling, group timing technique, and, the five-minute rating, and concluded that
the work sampling and group timing methods are better than the five-minute rating

method.

Tucker et al. (1999) observed that productivity increased substantially in the construction
industry of the United States between 1970 and 1998. They concluded that the two major
reasons for the increase are depressed real wages and technological advances. They also
concluded that based on the data used in the study, management practices were not a
leading contributor to construction productivity changes over time. The conclusions were
based on the results derived by monitoring and recording the labor cost and output
productivity trends for tasks that represent different trades and differing levels of
technological intensity within the building construction sector. A wide range of specific
tasks was chosen and R.S. Means cost manuals were used to trace the benchmark values
for these tasks. These benchmark values were found to give a good description of
productivity trends. The researchers recommended that the construction industry needs to
expand benchmarking efforts and additional research should be conducted to determine
productivity trends. They observed that a major problem associated with conducting

studies on productivity trends in the construction industry is the lack of data.
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Hanna et al. (2002) developed benchmark productivity indicators for labor-intensive
industries, specifically the mechanical and electrical industries. The benchmark
productivity indicators include relationships developed using regression analysis, between
the percent complete or percent time and cumulative work hours or cost. They also include
project size and duration, project size and average manpower, project size and peak
manpower, and, average manpower and peak manpower. Manpower loading charts and S-
curves were used to compare actual project values with the benchmark values. The
benchmark data can only be used for projects that vary in size between 2,000 and 100,000

work hours.

2.3 Productivity Models

Lu (2001) observed that it is difficult to create a conventional analytical model that
incorporates the impacts of numerous factors on productivity. An estimator requires years
of site experience and estimating practice in order to develop a model mentally. The
decision making process attaches a lot of weight to the estimator’s experience and the
results may be inconsistent. Lu et al. (2000) noted that when the estimator determines
industrial productivity, he or she usually over-estimate or under-estimate labor rates
(manhours per unit quantity). This is done by using a difficulty multiplier to indicate
overall favorable or unfavorable conditions. In order to determine the difficulty multiplier,
the estimator only considers the factors that are believed to have great impact on job

productivity as being significant.
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For the purpose of this research, the existing labor productivity models are classified into
two categories, namely: Neural Network Productivity Models, and Other Productivity

Models. These models are reviewed in the following sub-sections.

2.3.1 Neural Network Productivity Models

Portas and AbouRizk (1997) developed a feed forward back propagation neural network
model for estimating the productivity rates of formwork. The model generates a single
point productivity rate that has an equal chance of occurring in a number of symmetrically
and equally divided productivity zones that are generated by the model within the possible
range of productivity rates. A score of 1.0, representing high certainty, is assigned to the
output zone containing the predicted productivity rate, which coincides with the actual
productivity rate. The two adjacent output zones are also assigned a score of 0.5 each
while the other zones are assigned a score of zero, representing low certainty. The

shortcoming of the model is that it requires substantial amounts of accurate data.

The productivity of two pipeline activities, namely: trenching and welding, were predicted
using neural networks (McCabe et al., 1996). Using a feed forward back propagation
neural network training algorithm, the effects of certain factors that affect trenching and
welding activities on productivity were determined. For the trenching activity, historic
data from two projects, on weather characteristics, equipment type, hours worked per day,
and, the cumulative percentage of the trenching activity that is completed, are used to train
the neural network. The output from the network was the daily productivity. For the

welding activity, the neural network was trained with data on crew size, hours of work per
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day, air temperature, and, the cumulative percentage of the welding activity that is

completed. The output from the network was the number of joints welded daily.

The network for the trenching activity predicted with a better accuracy than has ever been
obtained but the training data was noisy. This was attributed to poor reporting of daily
production and poor documentation of equipment failures. The variability in the training
data was eliminated by training the network using five-day averages of the productivity
rates. However, little improvement was achieved in the accuracy of the trained network.
The network for the welding activity was used to determine the appropriate crew size and
then trained using data on the input and output factors. A high level of accuracy was
achieved by the network but the training data was noisy. This was traced to poor reporting
of daily production. In order to overcome this problem, average project productivity rates
were used. Adequate training of the network could not be done due to lack of sufficient

data.

A feed forward back propagation neural network training algorithm was used by Wales
and AbouRizk (1993) to determine the effects of three major environmental site factors,
namely: daily average temperature, precipitation, and cumulative precipitation, on labor
productivity. The temperature, precipitation and, cumulative precipitation data served as
inputs to the algorithm while the output was a productivity factor. A productivity factor
less than one indicates that the environmental conditions produce a productivity that is less
than the average value, while a productivity factor greater than one indicates that the

environmental conditions produce a productivity that is greater than average value.
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Regression analysis was used to determine the effects of job complexity, crew size and
composition, repetition, weather, equipment, and, motivation and fatigue, on concrete
construction productivity (Sonmez, 1996). This was done with respect to four concrete
construction tasks: concrete pouring, formwork, concrete finishing, and, granular filling.
Neural network models were used to predict productivity rates for these activities. Feed
forward back propagation neural network models were trained for each of the four tasks.
Sonmez (1996) also attempted to predict productivity rates using regression analysis, and
observed that the neural network models produce more accurate results. This is because

neural networks have the ability to account for the effects of interactions among factors.

Portas (1996) studied the use of neural network to predict formwork productivity for two
formwork activities: loose or non-repetitive walls and loose or non-repetitive slabs. Data
were collected for project factors such as staff (administrative) characteristics, size,
location, and, site characteristics, and activity factors such as crew characteristics,
formwork design aspects, quantity, repetition, and, working conditions. A complex feed
forward back propagation neural network structure comprising 40 inputs, 35 hidden nodes,
and 14 output nodes was used to estimate productivity rates. Thirteen of the 14 output
nodes composed a fuzzy output format while the last node composed a point prediction.
During 80% of the time the model was tested, it proved to be accurate to within 15% of

the actual productivity rates.

A two-stage neural network model for predicting the productivity of pipe installation

activity was developed by Knowles (1997). A Linear Vector Quantization (LVQ)
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classification procedure was developed using the input factors. A predictive procedure was
also developed. The LVQ classification procedure models the productivity output and
estimates its range. This enables the proper feed forward back propagation network to be

implemented. However, the technique accumulates errors if classification failure occurs.

Chao and Skibniewski (1994) provided an approach to estimating construction operation
productivity using neural networks and observed data. This was done in order to perform
complex mapping from environment and management conditions to operation
productivity. The neural networks were trained with samples of observation data and the
trained networks performed the required estimation. The methodology used includes
identifying the factors affecting productivity, breaking down the productivity analysis into
several simpler modules, and, defining the inputs and outputs of each module, as well as
collecting real data representing the model. An example of excavation-hauling operation

was given for which an automated experiment was used to simulate the hauling process.

Data were then collected and applied into two networks: excavator cycle-time estimate
network and excavator efficiency network. In both cases, a neural network is trained and
tested using 16 hidden nodes, a learning rate of 0.7, and, a momentum of 0.9. More testing
was subsequently done to minimize the error generated. This study shows that neural
networks can be used to model complex relationships between job conditions and the
productivity of a construction operation with an acceptable level of accuracy in estimation.

The authors recommended further model validation using real-job data.
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Murtaza and Fisher (1994) examined the feasibility of using modularization instead of
conventional methods in construction and observed that the feasibility is affected by the
project specifics such as the organizations involved, social, legal, and, environmental
conditions. A neural networks-based modularization approach that can handle inexact and
incomplete inputs in order to obtain results, Neuromodex, was used in this study based on
five major factors namely: plant location, labor considerations, environmental and
organizational factors, plant characteristics, and, project risks. A multi-layered, self-
organizing neural network was designed and implemented for the purpose of performing

the decision making or classification process for the construction modularization problem.

The multi-layered network consisted of two neural network paradigms which are based on
unsupervised learning, namely, Kohonen’s self-organizing feature maps and competitive
learning. The input data vector consisted of up to 40 components, corresponding to
problem attributes for decision making. The architecture of the network is parallel, multi-
layered, self-organizing, and, hierarchichal. This network was developed in order to
decrease system complexity, to increase classification accuracy, to reduce learning and
recall times, and, to achieve a high degree of robustness and fault tolerance. A self-
organizing feature map (unsupervised learning), was used to train each Kohonen layer.
Forty cases were run several hundred times while the learning rate was continuously
reduced until the connection weights stabilized. Three comparison tests were carried out
on the system in order to validate it after completion of the network training process.

Statistical tests were carried out to validate the system and the tests’ results showed that
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the probability distributions of the actual decisions and the neural network decisions were

identical.

Lu et al. (2000) developed a probabilistic neural network classification model and studied
its applicability to the construction industry. They developed a Probability Inference Neural
Network (PINN) model that has a structure similar to the General Regression Neural
Network/Probabilistic Neural Network (GRPNN/PNN) that was generated by Sprecht
(1991), by combining statistical regression and a trained neural network. The GRPNN/PNN
is a feed forward neural network model that is based on memory, and uses less time for
network training. The PINN model combines LVQ with probabilistic inferencing, and it
also combines classification and prediction networks. The PINN model was trained using
300 iterations with 101 records and tested with 18 records, and using Microsoft Access 97
and Visual Basic Applications. The 119 records were obtained from the historical
productivity for three piping activities, namely pipe installation, pipe welding, and pipe
hydro-testing, and from 66 projects. The structure of the PINN model consists of an input
layer, a Kohonen layer, a Bayesian layer, and, an output layer. The Kohonen and Bayesian
layers are the middle layers while the output is described by a probability density function

(PDF).

For the pipe installation activity, 81 input nodes were used and the output range had 20
output zones, each containing 10 elements, and each having a width of 0.72. An average
absolute error of 0.57 and a maximum absolute error of 2.02 were obtained for the mode

value, when the model was tested, and on comparison with the actual output values
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obtained from the test data. An average absolute error of 0.75 and a maximum absolute
error of 2.23 were obtained for the weighted average value, when the model was tested, and

on comparison with the actual output values obtained from the test data.

2.3.2 Other Productivity Models

Sanvido (1988) proposed a conceptual model to describe how job site organization affects
the productivity of a construction process. His study provided a conceptual framework
under which the complexity of the problem of construction productivity can be
understood. A causal model was proposed by Shaddad and Pilcher (1984). This model
involved the development of a concept for the effects that different management sub-

systems have on construction productivity.

Thomas et al. (1990) described three work-study-based productivity models. These are the
delay, activity, and task models. The delay model relates delays and worker productivity.
The activity model, which is based on the work-measurement method of activity sampling,
measures the time engaged in various activities. The delay model is most applicable to
closed systems that have few external influences. The task model is an extension of the
delay and activity models and it introduces the concept that some activities are basic or
necessary, some are additional but necessary, and others are not necessary. The three
models indicate the time required to carry out various tasks that define the work method.
However, the degree of their applicability to other activities is limited and the models have

limited abilities to model other factors.
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The Factor Model proposed by Thomas and Yiakoumis (1987) is a statistical model that
accounts for the effect of different factors on construction productivity. Factors affecting
productivity are divided into the following groups: manpower or labor, design features and
work content, environment and site conditions, management practices and control,
construction methods, and, project organizational structure. The factors are quantified

using statistical analysis of crew productivity and factors that are related to it.

Maloney and Fillen (1985) developed the Expectancy Theory model which models
individual performance. The model is based on the theory that if a worker has sufficient
knowledge, skills, and, abilities; applies effort on a job; and, he or she receives adequate
job directions and there are no job constraints, the worker’s performance is expected to be
high. The theory can also be applied to a group such as a construction crew. The members
of a group are motivated to produce greater output if they know that they would receive

better rewards.

Halligan et al. (1994) developed an Action-Response model for evaluating loss of
productivity in construction. This model identifies the factors and processes that result in

productivity loss. The factors and processes include the following:

. Owner actions

. Force majeure or third party actions
° Environmental conditions

. Contractor’s initial actions

. Management-level constraints
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) Crew-level constraints

. Consequences of management actions
. Contractor’s management actions
° Crew responses

Using three case studies, they developed a model that graphically depicts how a variety of
factors may interact to cause a loss of productivity; how a crew is influenced by these
factors; and, how management of crews can mitigate, eliminate, initiate, or exacerbate any

particular loss of productivity.

Unlike previously developed similar models that are general in nature, the Action-
Response model can be applied to any particular project. This is very important because
by applying the model on individual projects, the framework for evaluating the causes of
productivity loss on the specific project is provided. This makes it possible for the project
managers to take appropriate management actions to reduce or eliminate the occurrence of
a loss of productivity. If the cause of the loss of productivity is unknown, any remedial

actions taken may be ineffective or may worsen the situation.

In a situation in which a loss cannot be eliminated, the model facilitates the identification
of the party responsible for the loss in productivity, by first facilitating an understanding of
the cause of the loss. This party will then have to bear the cost of the loss. It recognizes
the importance of focusing on the crew in any discussion of productivity, and it indicates
the extent to which productivity loss at the crew level may be eliminated from initiating

events. The model also shows the contractor’s active role in influencing productivity
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through management decisions, and it clearly illustrates the two ways in which a
contractor becomes aware of the need for management decisions: either specifically in
response to constraints resulting from external conditions or in response to an observed
loss of productivity at the crew level. The model shows how productivity can go into a
downward spiral if inappropriate management actions are taken. The model provides a
practical tool for evaluating the loss of productivity that can accompany unanticipated
conditions in construction. It takes into account the complex nature of interactions or non-

interactions of factors affecting productivity.

An additive linear regression model that takes into consideration factors that are not
previously accounted for by existing models in forecasting labor productivity rates, such
as weather and changing work requirements, was developed by Sanders and Thomas

(1993). The model is represented mathematically as follows:
E(P)=Bo+5 BiXi+ Bi-2CS+ Bu-1CS® + B.CS’, (2-2)

where

E(P) = Expected productivity

B, = Base productivity rate

B; B,.; B,, B, =Model coefficients for factors
n-3 = Number of factors

1= Factor number

CS = Crew size
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The model evaluates the combined effects of factors on the labor productivity rate of
masonry construction. The model is easily implemented in a database or spreadsheet

program and it can be used to forecast daily labor productivity rates.

Based on a historical data search of masonry projects between 1984 and 1986, Sanders and
Thomas (1991) identified six factors, namely, work type, building elements, construction
method, design requirement, weather zone, and, crew size, as the factors that have the
greatest effects on masonry labor productivity. After determining a standard condition for
each factor, the coefficients of impact of each factor on productivity rate was evaluated
using the historical data and subsequently compared, in the form of a ratio, to the range of

productivity values for the standard condition.

Based on the research focus of Sanders and Thomas (1993), Thomas and Sakarcan (1994)
developed a factor model that recognizes that labor productivity predictably varies with
time. They stated that two classes of factors affect labor productivity, namely,
organizational and executional continuities. Organizational continuity represents the work
content and physical components of the work, and these factors affect masonry
productivity by as much as 15%. Executional continuity includes the work environment,
and organization and management factors. These factors affect masonry productivity by as
much as 25%. The factor model concentrates on only organizational continuity because
the factors in this class, unlike those in executional continuity, are predictable. In order to
achieve accurate predictions, the productivity rates predicted by the model must be

factored based on the productivity rates obtained during the first few days after the
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commencement of construction activities. The factor model, which is also based on the

results of a two-year historical study, is expressed mathematically as shown below:
E =Is+zm,aiXi+2f(y)j, (2-3)
i=1 j=1

where
E, = Predicted productivity rate

I, = Standard conditions productivity rate

i axi = Effect of all organizational continuity conditions, where
i=t

ai = Coefficient of condition variable
x = Presence of condition (present = 1, absent = 0)

m = Number of variables in the problem

Z f(»);= Submodels effect (e.g., the effect of crew size)

P=

A similar factor model, which models crew-level productivity, had earlier been developed
by Thomas and Yiakoumis (1987). The model uses statistical analysis to quantify factors

and it is represented mathematically as:

AUR: = IUR(q) + ga,-xi + 2 fO), (2-4)

=
where
AUR = The actual or predicted crew productivity for time period t
IUR = The ideal productivity for a wide range of classifications of work performed under
standard conditions

g = Number of quantities installed
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ai= A constant representing the change in productivity caused by factor i

xi= A variable whose value is either zero or one, and which denotes the presence of the
factor i

f(y); = Submodel j

y = The factors in submodel ;

IUR is a function of the number of quantities installed ¢. The factors can be expressed as

binary integer (that is, with a value of zero or one), or continuous variables. The

submodels consist of integer and continuous variable factors and they describe factors

such as weather, crew size, and, absenteeism. Unlike work study models, the factor model

determines productivity as a function of output and not as a function of time. The model

considers the crew and not the individual members of the crew as the basic unit of work

and it comprises the major factors that affect productivity. It is flexible because it allows

factors to be added or removed from it easily. The model can also be validated easily using

statistical techniques, such as regression. The model can be validated using data that are

measured daily, such as the daily data including the productivity of the crew (Horner et al.,

1989).

Hendrickson et al. (1987) used expert system knowledge to develop MASON, a two-stage
expert system whose function is to estimate activity durations for masonry construction.
They estimated the maximum expected productivity rate and then adjusted the rate for job
and site characteristics, based on the knowledge acquired from interviewing a professional
mason and his supporting laborer. An expert system for predicting the production rates for

concrete pouring was developed by Christian and Hachey (1995). The expert system is
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based on the knowledge obtained from concrete experts and from data collected on seven
construction sites where concrete pouring activities were observed. The expert system is
user-friendly, and the user is allowed to query the expert system for an estimate by asking
questions to which answers are provided by the system. The two expert systems described
above estimate productivity based on rules that have been previously defined by experts.
This may introduce inconsistency into the system since rule generation by the experts is
subjective. Furthermore, the expert systems cannot evaluate the effects of changing job

conditions on productivity.

Herbsman and Ellis (1990) proposed a model based on statistical analysis to relate certain
identified factors affecting construction productivity to productivity. The model was
developed in order to predict highly accurate estimates of unit productivity rates on
construction projects. Statistical models that evaluate the effects of weather on
productivity were developed by Yiakoumis (1986) and Thomas (1987). Three building
project activities, namely, masonry construction, structural steel erection, and, formwork
erection, were chosen for the study. Hancher and Abd-Elkhalek (1998) used a hot-weather
productivity model to generate a group of productivity curves. The productivity curves
were validated using questionnaires that were completed by contractors in warm weather
areas. The equations of the curves can be used to determine productivity for construction

processes in different temperatures.

An expert-simulation model that simulates the expected occurrence of productivity factors,

and analyzes and quantifies their combined effects on a productivity rate was developed
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by Boussabaine and Duff (1996). The model is based on rules set by experts and the
prototype system is very specific; it only applies to reinforced concrete buildings that are

not more than five storeys tall.

2.3.3 Discussion of Previous Productivity Models

Some models, such as the Mansonry Productivity Forecasting Model and the Factor Model
are simply rigid, and therefore cannot be applied beyond the project on which the model is
based (Knowles, 1997). The structure and rules of the models are only applicable to the
construction activity and to the factors for which the models are constructed. This makes it
difficult to apply the models to other activities. The models developed in this study are
more flexible because the factors in the model structures can easily be substituted with

other factors and the same process of model building can then be carried out.

The inability of most models to predict productivity accurately arises from the various
factors that affect the final results. Other reasons that limit the application of existing
models include the quantification of input factors, limited number of inputs, and the
effects of incomplete or inconsistent data. The present study overcomes the problem
associated with having a multitude of factors by identifying all the factors that affect
productivity, for which data are available, and then reducing the factors to a manageable
number by correlation analysis, such that only the factors that are found to contribute
significantly to the models are included in the process of model development. The

problems of factor quantification, and incomplete or inconsistent data were solved through
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the use of fuzzy logic techniques, which are described in subsequent chapters of this

research.

2.4 Use of Fuzzy Logic in Construction

Fuzzy logic is growing rapidly to become one of the most useful modeling techniques
available in construction and other areas (Knight, 2001). Fuzzy logic and fuzzy set theory
are applied to the data in order to account for the qualitative and quantitative factors that
affect productivity. Fuzzy logic is a branch of artificial intelligence that provides a method
of representing human language in mathematical form. It has the capability to generate
solutions to problems through the use of subjective data. In this study, a fuzzy logic
approach is developed, and it can be used by estimators to estimate industrial construction
productivity when there is lack of sufficient data. This approach makes linguistic or
qualitative assertions about the relationships between productivity and the factors affecting

it.

Fuzzy logic is a technique that can be used to model systems in situations in which there is
insufficient data (Mason and Kahn, 1997). The fuzzy approach is used to model several
problems because it produces simple models in little time, and because of its easy and
cheap implementation in a computer environment. Fuzzy logic provides a clear
representation of the state of activities and events and it introduces fuzziness into systems
which facilitates easy modeling with insufficient data. In fuzzy logic, a statement is true to

various degrees, ranging from totally true to totally false. Elements or objects belong to a
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fuzzy set to different degrees, called grades of membership. The use of grades of

membership in a fuzzy set facilitates the easy construction of expert systems.

Fuzzy techniques can be used to assess productivity factors in qualitative terms in order to
capture and reduce the degree of subjectivity that may be present in the collected data. The
use of fuzzy techniques is especially appropriate in construction since large data sizes are
hard to collect. Membership functions and expert rules can be generated based on the
collected data. The membership functions can assume shapes that are based on the

frequency plots generated for the relevant data sets.

In order to apply fuzzy techniques on the input factors efficiently so as to develop fuzzy
logic models, correlation and/or regression analysis is and/or sometimes used to determine
the relationship of the input factors to the output factor. This is done to reduce the size of
the rulebase since it increases exponentially with the number of input factors. The
correlation and/or regression analysis determine(s) the factors that mostly affect the output
factor. Fuzzy expert rules can be generated for the model based on the factors that are
correlated to the output factor. These expert rules can relate input factors to the output

factor.

Fayek and Sun (2001) developed a complex fuzzy expert system which models design
project performance based on the techniques of fuzzy logic. Several factors that affect
design project performance were identified and classified based on literature search and

professional guidelines. A technique was generated for developing membership functions
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based on the data that was gathered through a mail out survey of actual completed design
projects in the industrial construction sector in Alberta and British Columbia. An expert
rule method was developed to relate the factors affecting design project performance in a
logical manner. The fuzzy expert system was developed in the MATLAB Fuzzy Logic
Toolbox (Mathworks, Inc., 1998), and the model was trained and validated using the
collected data. The model does not account for the impact of context variables and the data
set was small. This affected the performance of some of the model’s membership
functions and consequently, the numerical accuracy of the model. However, the model

achieved a high linguistic accuracy.

A flexible model that uses fuzzy logic techniques to assist decision makers in building and
civil engineering companies in selecting the right margin or markup to add to the
estimated project cost was developed by Fayek (1998). This model improves the quality of
the decision making process employed in setting a margin, thereby giving contractors
using the model an edge over the competition. The model implementation was done using
a user-friendly prototype software called PRESTTO (PRoject EStimating and Tendering
Tool). The model employs fuzzy binary relations to link data related to a company’s
objectives in bidding with data related to the factors that affect the margin size with which
the company chooses to bid. The relationship between the company’s objectives in
bidding and the factors affecting margin sizes is generated by fuzzy composition
operations. The model was validated using real-life bids whose data were collected from

the Australian construction industry.
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Knight (2001) developed a model for predicting design cost overruns and underruns on
commercial building construction projects. The model, which is applicable during the
design stage of commercial building projects, employs fuzzy binary relations to relate
project characteristics with potential risk events, in order to predict a percentage cost
overrun or underrun above or below the estimated fee respectively. The data used in
developing the model were collected by interviewing the project managers of a local
consulting engineering firm in Edmonton, Alberta. Two types of interview questionnaires
were used to obtain the data. The first questionnaire was used to obtain expert opinions on
the standard strengths to be used in the model. The second questionnaire was used to
collect data that were used in testing the developed model. The application of fuzzy logic
in building the model facilitated the easy description of input and output data in subjective
terms. However, only a limited number of project characteristics and risk events were
considered in the study. Furthermore, the standard strengths used in the model require

more refinement and the project ratings should be evaluated on the same scale.

Cost estimating relationships were used by Mason and Kahn (1997), to describe the
process of estimating construction excavation costs, in a situation where there is

insufficient data. The process of model building involves:

. Defining the fuzzy sets that describe the cost drivers.

. Defining the fuzzy sets that describe the excavation costs.

o Defining and constructing the membership functions and rules for the expert
system.

. Applying the inferencing procedure to estimate costs.
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The advantage of applying fuzzy logic in estimating cost is that linguistic or qualitative
inferences about the relationships between costs and the project factors that affect costs
can be made, when there are insufficient data. However, it is difficult to predict the cost

surface that will be obtained when there are more than two input factors involved.

Kangari and Riggs (1989) proposed a model for evaluating construction risks using a
linguistic approach. The model employs the extension principle for construction risk
analysis in a situation in which numerical and detailed information are not available. A
problem that a user of this model faces is how to assign realistic membership values of a
fuzzy set to represent a linguistic variable. The present research overcame this problem by
eliciting expert opinions on what can be considered as realistic membership values. This
was done by using structured questionnaires. The effects of varying the membership

values of fuzzy sets may be determined by doing a sensitivity analysis.

2.5 Methods of Developing Membership Functions and Expert Rules

Several methods exist in literature for developing membership functions. However, very
few methods have been used to build fuzzy expert rules. The existing techniques of
developing membership functions and expert rules are reviewed in this section.

According to Musilek (2001), the horizontal approach of developing membership

functions involves arbitrarily choosing the shape of the membership functions and asking

experts to assign values to elements in the universal set, U, based on the linguistic
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concepts specified for the membership functions. A membership function plot is then
constructed based on the ratio of the number of positive responses to the total number of
responses. The vertical approach of constructing membership functions involves asking
experts to identify alpha cuts, which are intervals of values that fit a concept with a
specific level of confidence associated with them, and which are used to develop fuzzy
sets. The horizontal and vertical approaches are easy to use and are easily adapted for
constructing membership functions for isolated experiments dealing with single elements
of the universal set. In order to use these techniques, numerous expert responses are

required.

Bobrowicz et al. (1990) proposed a method of building membership functions, using a
semantic definition module, which enables the construction of membership functions of
three dependent linguistic descriptors, for example, low, normal, and high, which are
defined on the same universe of discourse, U. The method uses fuzzy set theory to develop
membership functions that represent the opinion of experts. The membership in a set U is
defined by the grades of membership whose values range between 0 and 1 and there is a
gradual transition from membership to non-membership. It is possible to compare a fuzzy

descriptor, A, to a fuzzy set and in order to assign meaning to the fuzzy descriptor, a
membership function 14, must be defined on the universe of discourse U. The parameters
of the membership functions are determined from the knowledge about semantic links
joining the three fuzzy descriptors that are to be represented on the same universe of

discourse, and from the expert knowledge representing the meaning the experts assign to

the fuzzy descriptors. In order to determine the membership functions that best represent
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the fuzzy descriptors, numerical parameters that describe the membership functions have
to be determined. The determination of the parameters is done by calculations that are
based on the knowledge of the experts and by successive parameter approximations within

the boundaries of the semantic links.

Civanlar and Trussel (1986) presented a technique for developing membership functions
from probability density function (PDF). The PDF is generated from a histogram which
has been constructed based on collected data. This technique of generating membership
functions require the use of large data sets and a high frequency of responses from experts

to questionnaires. Therefore, the technique could not be used in the present study.

Hong and Chen (1999) used a training data set to develop membership functions and fuzzy
If-Then rules. This was done by determining the attributes that are important and using
these attributes to develop preliminary membership functions. The attributes and
preliminary membership functions are then used in a decision table to generate final fuzzy
ifthen rules and membership functions. The learning algorithm, proposed for
automatically inducing membership functions and fuzzy rules from training instances, is
illustrated below:

1. Find relevant attributes

2. Build initial membership functions

3. Derive decision rules

The architecture of the learning algorithm is shown in Figure 2-1:
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Part 1: Find Relevant Attributes

Arrange each attribute value of Ai appearing in training instances in ascending order

v

For each attribute value Ay, determine how many instances of Ai belong to the same classes

v

Calculate how many instances of Aiwith attribute values belong to only one class

v

Determine the fitness degree of each attribute

v

Determine relevant attributes

Part 2: Build Initial Membership F uniions

Determine the initial default group number of each relevant attribute

v

Determine the range Riof each attribute Ai

v

Determine the eroup interval Hiof each attribute Ai

v

Extend the possible minimum attribute value of Ai

v

Divide the possible range of each attribute Aiinto G groups

v

Find the point by of each initial membership function Mj

v
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Part 3:Derive Decision Rules

2
Construct an initial decision table

A 4
Simplify the initial decision table

\ 4
Re-build membership functions

v

Derive decision rules from the decision table

Figure 2-1: Learning Algorithm for Developing Membership Functions and Fuzzy Rules

(Hong and Chen, 1999).

The algorithm is useful when developing membership functions and when faced with
uncertainty. However, interactions between attributes reduce the accuracy of the learning

algorithm.

Mabuchi (1997) constructed membership functions for attributes in a universal set U, by
finding a membership grade of a particular element, x, associated with an attribute of the
domain. Membership grade values are determined through the knowledge of a person,
facts and reasons, or the knowledge of many persons. In the present study, membership

grade values were determined through the knowledge of many persons. This was done by
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using structured questionnaires to elicit information on membership values for

membership functions of factors from industry experts.

The pairwise comparison method involves the development of membership functions by
comparing the individual objects, in pairs, in the universal set, within the context of the

membership values, which are organized as a reciprocal matrix (Musilek, 2001).

The method of determining membership functions as a problem of parametric optimization
uses procedures such as the mean squared errors to estimate the vector, p, of the
parameters of a membership function (Pedrycz and Gomide, 1998). This technique is
based on the availability of experimental data:

(Xx. M (Xc)),K =1,2,...N

Where X, and M(Xy) denote the k™ values of an ordered pair of element and membership
value, respectively, and X is an element of the universal set, U. The method determines

the optimum values given the parametized membership function 4(X, p) in order to fit the

experimental data:

N
min Z (M (Xx) - A(Xx, p))°

Chen and Otto (1995) used interpolation and measurement theory to construct membership
functions. This was done by fitting a membership function to a finite number of known
membership values. In order to specify a complete membership function, membership

values are determined at a finite subset of a set of points and constrained interpolation is
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smoothly applied on the remaining part of the set to determine the remaining membership
values. This technique does not require a lot of data. However, the problem associated

with the technique is that the x-axis of the membership function must have a limit.

Sun (2000) developed a technique for generating membership functions from the available
data set. She divided the data set into training and testing sets and used the training set to
construct membership functions based on the frequency of responses to questions by
industry experts in Alberta and British Columbia. The assumption behind using the
frequency of responses is that the frequency of responses can reasonably approximate

membership values of a given fuzzy set (Li and Yen, 1995).

Membership functions can be developed by using fuzzy clustering technique (Pedrycz and
Gomide, 1998). This technique involves segregating the data into clusters and interpreting
the extent to which the data points belong to the clusters as membership values. According
to Musilek (2001), given an experimental data set

X, K =12,.,N

Data points can be grouped or clusterered into “c” categories of fuzzy sets

The fuzzy set is derived through the process of optimization. The fuzzy set A: can be
obtained by finding a solution to the following optimization problem:
min 40

subject to:
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(4

Y Aix) =1

i=1

Krishnapuram (1994) used the possibilistic clustering technique to develop membership
functions. He demonstrated how to use the calculated distances between clusters to
determine the parameters that approximate the shape of membership functions that can be
derived from the clusters. The clusters are naturally formed through the attraction of

similar prototypes and the number of clusters involved are easily determined.

Runkler and Bezdek (1999) developed a method to generate parameters of piecewise
quadratic membership functions, by determining the parameters that can be used to
approximately calculate the left hand side parameters and the right hand side parameters of
the membership functions. They observed that if the center and directions of clusters could
be precisely determined, membership functions could be precisely generated from the

clusters.

Yager and Filev (1994) used a mountain clustering technique to determine the structure
and preliminary parameters of the rule base of fuzzy expert system models. This technique
gives a clear picture of input regions where there is insufficient data and it facilitates the
use of multiple rules in a given region. This technique could not be used in this study

because of its complex nature.

Sun (2000) developed a technique for generating fuzzy rules from the available data set.

She divided the data set into training and testing sets and used the training set to elicit
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linguistic relationships while maintaining a complete and consistent rulebase. The
magnitudes and directions of correlation among the input and output variables were used

to determine the nature of the rules. The rules derived were tested using the test data.

Araki et al. (1991) stated that fuzzy rules could be generated by determining fuzzy
partitions and parameters of a model and by adjusting the parameters and the steps
necessary to develop the rules, while keeping track of the inference error, and changes in
it. The process of generating fuzzy rules is iterative and it involves increasing the number
of membership functions in the fuzzy partition with the highest inference error. The
process of generating rules involves determining the rule generating region, generating the
membership function of the antecedent part, and generating real numbers of the
consequent part. This technique has been used to study the ability of a moving robot to
avoid obstacles. Its effectiveness in determining rules for construction data is yet to be

proved.

None of the techniques of constructing membership functions and fuzzy rules that are
described above could be used in the present study. The major reason for this
inapplicability is the size of the available data set, which does not lend itself to these
techniques. Most of the techniques of developing membership functions require a large
data set, and, a high frequency of response to questionnaires, in order to be able to cluster
the data and subsequently determine the parameters that approximate the shape of the
membership functions, or train the data set and subsequently elicit membership values,

based on frequencies of response, or, as may be approximated by a histogram or a PDF.
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The existing techniques for constructing fuzzy rules also require extensive data sets to

train data sets, or partition data sets, or cluster the data set so as to determine the structure

and parameters of the rulebase.

2.6 Summary

Several models of labor productivity have been reviewed in this chapter. Only few of the
previous research work have been in the area of industrial construction. Neural network
models require a large data set for model training and testing, which is difficult and time-
consuming to obtain in most construction applications. The data sets available for use in
this study are small, therefore neural network models could not be used to achieve the
modeling objectives. The other types of productivity model can accommodate only a few
input variables. However, this research involves the development of many-inputs-
productivity fuzzy expert system models. In order to use these fuzzy logic techniques in
this study, many of the input variables available in the data sets would have to be
eliminated. This was not done because of the belief that most of the factors are important,
and, failure to use most of them in modeling productivity of construction activities would
result in incomplete models being developed. A solution to this problem, which was
applied in this study, is to simplify the models by reducing the input variables to obtain a
subset of factors, all of which are important in determining the output factor. This also

made it possible to develop manageable rulebases for the models.
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3. Factors Affecting Industrial Construction Labor Productivity

3.1 Factors Affecting Industrial Construction Labor Productivity

Construction labor productivity, whether it is in the commercial, residential, or industrial
sector, is a complex topic, and it is not straightforward to determine the effects of factors
that affect it. Fayek and Knight (2000) observed that there are many factors affecting
construction labor productivity and these factors include those affecting the productivity of
the project and those affecting the productivity of the individual worker or crew. Every
construction project is unique because it is affected differently by a combination of
productivity factors. Factors affecting the productivity of the project include factors such
as weather, landscape and physical location. It is important that the various factors
affecting labor productivity are considered within the contexts in which they operate. This
is because different factors, in different contexts, can combine to have different effects on

productivity.

The productivity of projects is also affected by the availability, ability, and quality of
skilled labor, availability and time of delivery of material, availability and level of
technology employed in the project, breakdown or lack of equipment, and the nature of
managerial direction. Worker motivation affects the productivity of the individual worker
or crew and it depends on the level of planning, communication, work environment,
discipline for poor performance or rewards for exemplary performance, overtime work,

overstaffing, trade stacking, crowding on site, and other factors. Labor productivity is also

51



affected by poor labor organization, lack of training, absenteeism, disruptions, and
turnover. Job conditions such as poor planning, poor management or supetvision,

inadequate tools, and, equipment will increase both absenteeism and turnover.

Productivity is a complex topic and there are numerous factors that affect it. These factors
affect different activities in different trades. Knowles (1997) stated that industrial
construction involves the construction of piping systems, typically for oil and gas,
petrochemical, mining, or other industrial-related fields. Industrial construction activities
include rig pipe, rig equipment, weld pipe, bolt up, install cable trays, install basket trays,
pull electrical cable, cut electrical cable, terminate electrical cable, install boiler, erect steel,
construct and install scaffold, carpentary, and, install, repair, and maintain machinery. These
varieties of activities are carried out by different trades namely: the pipefitters, electricians,
boilermakers, steel workers, scaffolders and carpenters, and, millwrights, respectively
(Fayek and Knight, 2000). The productivity of each activity is affected by a wide variety of

factors.

Two pipefitting activities, namely rig pipe and weld pipe, were chosen for this study because
data were collected on them in a case study carried out at a major industrial construction site
in Alberta in 2001. One of the objectives of this study is to identify the various factors that
affect the productivities of the chosen activities. The factors identified in this study were
determined from existing literature, and from the data published in Fayek et al. (2002).

Adequate identification of these input factors is very important because improper use or
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exclusion of certain factors may lead to inadequate modeling of the rig pipe and weld pipe

productivities.

3.2 Classification of Variables and Factors

3.2.1 Type of factors

The major factors affecting construction labor productivity, as obtained from the data
published in Fayek et al. (2002), were used in this study to model labor productivity. The
factors considered in this study can be classified into context variables, input factors, and the
output factor (productivity). The three categories of factors are described in the following

sub-sections.

3.2.1.1 Context Variables

Context variables are fixed input factors whose values are constant and are used to categorize
activities. They affect the shape and range of the membership function and are not used as
input factors in the productivity model because their values are fixed. However, if these
factors, which specify different conditions or contexts for membership functions change, the
membership functions will also change. For example, in order to properly determine the
membership functions for temperature different membership functions have to be constructed
for different seasons and locations. Since context variables are usually fixed, they are used in
this study to categorize activities, and therefore models. The total number of the context

variables and input factors, for rig and weld pipe activities, are shown in Table 3-1 below.
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The context variables that were identified for rig and weld pipe activities in this study, and
their corresponding categories, are indicated in Tables 3-2 and 3-3 respectively below. These
context variables were identified for activity-level and project-level factors. Activity-level
context variables such as material type and weld type, affect the productivity of an activity,
while project-level factors context variables, such as project location and contract type, affect
the productivity of an entire project. Eleven context variables were identified for rig pipe
while 14 context variables were identified for weld pipe. While activity-level and project-
level context variables could be identified for weld pipe, only project-level context variables
could be identified for the rig pipe activity because none of the activity-level input factors

could be easily categorized based on its characteristics.

Table 3-1: Total Number of Factors and Variables for Rig and Weld Pipe Activities

Activity | Number of context variables | Number of input factors Total number of factors and variables
Rig pipe 11 41 52
Weld pipe 14 43 57

Table 3-2: Project-Level Context Variables for Rig Pipe and Weld Pipe

Name of Context Variable

Category of Context Variable

Project location

Urban, rural

Province

c.g., Alberta, British Columbia, Saskatchewan

'Year of construction

e.g., 2001, 2002

Client

e.g., Shell, Mobil-Exxon, Syncrude, Suncor

Contract type

Cost re-imbursable, lump sum, unit price, negotiated

Project definition

New construction, new construction with some upgrading, plant upgrade where a
shutdown is required

Project type

e.g., refinery, pipeline, mining, water treatment plant

Union status

Union job, open-shop job

Project sector

Industrial, commercial, institutional, residential

Season

Summer, spring, winter, fall

Location of work scope

Confined, scattered
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Table 3-3: Activity-Level Context Variables for Weld Pipe

Name of Context Variable Category of Context Variable
Material type Carbon steel, stainless steel, alloy

Weld type Butt weld, socket weld, fillet weld

Filler material type Tig, stick, flux core

Project-Level Context Variables for Rig Pipe and Weld Pipe:

Project Location: This factor describes the location of the project. The location of
the project may affect the skill level and morale of the worker, as well as the
availability of resources necessary to carry out construction tasks. The weather
conditions may also vary with location.

Province: This factor is important because different provinces have different
weather conditions and varying availability or supply of labor, and this may affect
the productivity of the workers on a project. Furthermore, different provinces have
different working conditions, attitudes, practices, and, regulations.

Year of Construction: This factor addresses the differences in the times in which
projects take place. Productivity may differ on a yearly basis if different years
have different work ethics, regulations, and, standards. Furthermore, the supply of
skilled workers may vary from year to year, and this is bound to affect labor
productivity.

Client: The productivity of workers may be affected by the policies, missions, and
visions, of the client with regard to work quality, safety practices, and, work
conditions such as working hours, work schedules, and workers’ incentive or

bonus system.

55




Contract Type: The type of contract under which a project is being executed may
determine the level of management’s or outside interference, and this may
influence construction productivity.

Project Definition: This factor describes the nature of the project being
undertaken. The nature of the project may affect construction productivity. For
example, whether the project is a plant upgrade where a shutdown is required, a
plant upgrade where no shut down is required, or the project is a new construction,
may affect the productivity of the project.

Project Type: This involves describing the type of the project a firm is currently
undertaking. The project may fall into the oil and gas, petrochemical, mining,
water treatment or other industrial-related fields. This may have a significant
impact on construction productivity because different projects have different
safety requirements, work hours, work conditions, or, other conditions.

Union Status: Labor supply and job rules and regulations differ between union
and non-union projects.

Project Sector: Industrial construction projects differ from commercial and
residential projects in terms of quality requirements, safety requirements, and,
supply of labor.

Season: The pace of rig pipe activities becomes reduced during harsh weather
conditions, especially during the winter season. This has a negative effect on crew
productivity.

Location of Work Scope: This factor describes the crew arrangement within the

project’s workspace or site.
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Activity-Level Context Variables for Weld Pipe:
e Material Type: This factor describes the type of pipe material to be welded. It
may be carbon steel pipe, stainless steel pipe, or alloy pipe.
e Weld Type: This factor describes the type of welding used. It may be butt weld,
socket weld, or, fillet weld.
e Type of Filler Material: This factor describes the type of filler material that is
used in welding. The filler material type can be classified based on the welding

process involved, such as, tig, stick, and flux core.

3.2.1.2 Input Factors

As stated in the previous section, the ability to properly model the chosen industrial
construction activities depends on the proper identification of the factors that influence
industrial construction productivity, as well as the proper use of input factors (Knowles,
1997). Depending on individual project circumstances, any particular factor may or may
not result in a loss of productivity (Halligan et al., 1994). Unanticipated conditions on a
construction project, such as adverse weather, scheduled overtime, and, material shortages,
sometimes result in a significant loss of productivity. When such losses are observed, their

magnitudes vary from project to project, from activity to activity, and, from crew to crew.

The focus of this research is on two major pipefitting activities, namely: rig pipe and weld

pipe. These activities are typically two of the major cost items on an industrial construction
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project. The factors that affect industrial construction productivity for the two activities can
be categorized as rig pipe productivity factors, and weld pipe productivity factors. These
factors, their linguistic descriptors, and, the numerical scales of their membership
functions, are shown in Tables 3-4 to 3-7. The factors are highly variable and their effects
change from time to time and from context to context. Activity-level factors are factors that
affect the productivity of an activity such as pipe diameter and crew ratio. Project-level
factors are factors that affect the productivity of an entire project such as the extent of fast

tracking and the criticality of schedule.
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Table 3-4: Activity-Level Input Factors Influencing Productivity for Rig Pipe

Numerical Scale

Factor Number Name of Factor Linguistic Descriptors

Input 1 Pipe length small, average, large Real numbers (feet)

Input 2 Pipe diameter small, average, large Real numbers (inches)

Input 3 Efficiency of rigging method low, average, high Percentage (%) of hand vs. crane
rigging

Input 4 Crew ratio small, average, large ia:;ge(;tr‘sgfrentxces to

Input 5 Task crew size small, average, large Real numbers (numbers)

Input 6 Overall crew size small, average, large Real numbers (numbers)

Input 7 Elevation small, average, large Real numbers (feet)

Input 8 Complexity of shape of pipe low, average, high 1-10 ratings

Input 9 Scaffold requirement yes, no 0-1 ratings

Input 10 Impact of weather conditions poor, fair, good 1-10 ratings

Input 11 Ground conditions poor, fair, good 1-10 ratings

Input 12 Access to work area oor, fair, good 1-10 ratings

Input 13 Crowding of work area poor, fair, good 1-10 ratings

Input 14 Adequacy of site storage poor, fair, good 1-10 ratings

Input 15 ;tﬁgfrzcy of number of crew low, medium, high 1-10 ratings

Input 16 Crew's skill level low, medium, high 1-10 ratings

Input 17 Crew turnover low, medium, high 1-10 ratings

Input 18 Average temperature low, average, high Real numbers (°C)

Input 19 Average windspeed low, average, high Real numbers (km/h)

Input 20 Average precipitation low, average, high Real numbers (mm)

Input 21 Average relative humidity low, average, high Percentage (%)

Input 22 Crew experience in terms of learning | low, average, high 1151?)?11'[;11:1:: :::vfft(\);gil?if;?g;ether)
Real numbers (total number of

Input 23 Crew experience in terms of seniority | low, average, high years of crew members working
in the trade )

Input 24 Amount of rework low, average, high 1-10 ratings

Input 25 Amount of change orders low, average, high 1-10 ratings

Input 26 Drawings and specifications quality poor, fair, good 1-10 ratings

Input 27 Extent and quality of training low, average, high 1-10 ratings

Input 28 Extent and quality of supervision low, average, high 1-10 ratings

Input 29 Number of disruptions per day low, average, high 1-10 ratings

Input 30 Percentage overtime per week low, average, high Percentage (%)
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Table 3-4: Activity-Level Input Factors Influencing Productivity for Rig Pipe (Continued)

Factor Number

Name of Factor

Linguistic Descriptors

Numerical Scale

Input 31

Frequency and extent of material shortages

low, average, high

1-10 ratings

Input 32 Magnitude of organizational constraints small, average, large 1-10 ratings
Input 33 Number of consecutive days worked low, average, high 1-10 ratings
Input 34 Inspection requirements detailed, average, tolerant| 1-10 ratings
Input 35 Safety requirements detailed, average, tolerant| 1-10 ratings
Input 36 Quality requirements detailed, average, tolerant| 1-10 ratings
Input 37 Percentage of prefabricated or modularized work|low, average, high Percentage (%)
Input 38 Equipment availability poor, fair, good 1-10 ratings
Table 3-5: Project-Level Input Factors Influencing Productivity for Rig Pipe
Factor Number Name of Factor Linguistic Descriptors Numerical Scale
Input 39 Extent of fast tracking Low, average, high 1-10 ratings
Input 40 Criticality of schedule Low, average, high 1-10 ratings
Input 41 Tightness of budget Low, average, high 1-10 ratings
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Table 3-6: Activity-Level Input Factors Influencing Productivity for Weld Pipe

Numerical Scale

Factor Number Name of Factor Linguistic Descriptors

Input 1 Pipe diameter small, average, large Real numbers (inches)

Input 2 Wall thickness or schedule small, average, large Real numbers (inches)

Input 3 Crew ratio small, average, large Ratio of apprentices to
journeymen

Input 4 Task crew size small, average, large Real numbers (number)

Input 5 Overall crew size small, average, large Real numbers (number)

Input 6 Elevation small, average, large Real numbers (feet)

Input 7 Shelter requirement yes, no 0-1 ratings

Input 8 Scaffold requirement yes, 1o 0-1 ratings

Input 9 Purge requirement yes, no 0-1 ratings

Input 10 Pre-heat requirement yes, no 0-1 ratings

Input 11 Bevel dimc.snsion or joint small, average, large 1-10 ratings

configuration

Input 12 Impact of weather conditions poor, fair, good 1-10 ratings

Input 13 Ground conditions poor, fair, good 1-10 ratings

Input 14 Access to work area poor, fair, good 1-10 ratings

Input 15 Crowding of work area poor, fair, good 1-10 ratings

Input 16 Adequacy of site storage low, medium, high 1-10 ratings

Input 17 Sufficiency of number of crew low, medium, high 1-10 ratings

members

Input 18 Crew's skill level low, medium, high 1-10 ratings

Input 19 Crew turnover low, medium, high 1-10 ratings

Input 20 Average temperature low, average, high Real numbers (°C)

Input 21 Average windspeed low, average, high Real numbers (km/h)

Input 22 Average precipitation low, average, high Real numbers (mm)

Input 23 Average relative humidity low, average, high Percentage (%)

Input 24 Crew experience in terms of learning | low, average, high gf::llt;l:r:fb (?;valt(xzi'lzljf;lt)s;ether)
Real numbers (total number of

Input 25 Crew experience in terms of seniority | low, average, high years crew members have worked
in the trade )

Input 26 Amount of rework low, average, high 1-10 ratings

Input 27 Amount of change orders low, average, high 1-10 ratings

Input 28 Drawings and specifications quality poor, fair, good 1-10 ratings

Input 29 Extent and quality of training low, average, high 1-10 ratings

Input 30 Extent and quality of supervision low, average, high 1-10 ratings

Input 31 Number of disruptions per day low, average, high 1-10 ratings
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Table 3-6: Activity-Level Input Factors Influencing Productivity for Weld Pipe (Continued)

Factor Number Name of Factor Linguistic Descriptors Numerical Scale
Input 32 Percentage of overtime per week low, average, high 1-10 ratings

Input 33 Frequency and extent of material shortages low, average, high 1-10 ratings

Input 34 Magnitude of organizational constraints small, average, large 1-10 ratings

Input 35 Number of consecutive days worked low, average, high 1-10 ratings

Input 36 Inspection requirements detailed, average, tolerant} 1-10 ratings

Input 37 Safety requirements detailed, average, tolerant| 1-10 ratings

Input 38 Quality requirements detailed, average, tolerant] 1-10 ratings

Input 39 Percentage of prefabricated or modularized workjlow, average, high Percentage (%)

Input 40 Equipment availability poor, fair, good 1-10 ratings

Table 3-7: Project-Level Input Factors Influencing Productivity for Weld Pipe

Factor Number Name of Factor Linguistic Descriptors Numerical Scale
Input 41 Extent of fast tracking Low, average, high 1-10 ratings
Input 42 Criticality of schedule Low, average, high 1-10 ratings
Input 43 Tightness of budget Low, average, high 1-10 ratings

The input factors that affect each of the pipefitting activities mentioned above are compiled
for use in the proposed models. The data for each activity are converted into fuzzy data sets
and membership functions are consequently generated based on the completed expert
questionnaires that were filled by some industrial construction personnel. For each activity,
each of the input factors is described using linguistic terms (e.g., low, medium, high) or
using numerical ratings (e.g., from 1 to 10, for example, crew turnover may be assigned a
rating of zero, five or ten). The models generated in this study can be used to predict
activity productivities prior to the start of construction. This will involve a consideration of
the factors that affect that activity. A detailed description of each activity, and the factors

that affect the productivity of each activity considered in this study, are illustrated below:
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e Rig Pipe: Rig pipe describes the process of installing a piping system within a
construction plant site. Rig pipe involves preparing the pipe for rigging by tying it to the
hook of a crane, signaling the crane operator, helping the crane operator to spot the final
location of the pipe, and, rigging the pipe in place (Fayek et al., 2002). This type of rigging
is called crane rigging. The activity may also be carried out without the use of the crane, in
which case, it is called hand rigging. The activity is mainly performed by pipefitters,
although in some cases, the welders on the pipefitting crew are involved. Both journeymen

and apprentices can be involved in the rig pipe activity.

A comprehensive investigation of literature and the data published in Fayek et al. (2002),
revealed 41 input factors for the rig pipe activity, which are described below. Some of
these factors affect productivity at the activity level, while others affect productivity at the

project level.

Activity-Level Input Factors:
e Pipe Length: The longer the pipe to be rigged, the more difficult is the rigging
process, and consequently, the lower the productivity of the crew.
e Pipe Diameter: The larger the diameter of a pipe, the bigger is its size, and the
more difficult it is to rig the pipe.
o Efficiency of Rigging Method: A rigging task that is carried out using a crane may

be more effective than a rigging task that is carried out using hands.
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Crew Ratio: The composition of a crew may determine the crew’s level of output.
A crew that has a high ratio of inexperienced workers may not be as productive as a
crew that has a high ratio of experienced workers.

Task Crew Size: Construction productivity at the task level may be affected by the
size of the crew unit carrying out the rigging task. Obtaining the optimum task crew
size depends on the work quantity and work space requirements.

Overall Crew Size: Construction productivity at the task level may be affected by
overall crew sizes, especially during periods when some crew members may have
to be moved from one task to another.

Elevation: The higher the point of installation of a pipe, the more difficult is the
rigging process, and therefore, the lower is the rigging crew’s productivity.
Complexity of Shape of Pipe: It may be easier to rig straight pipes than curved
pipes, especially when the point of pipe installation is not easy to access.

Scaffold Requirement: The quality of scaffold provided and the performance of
the scaffolding team in quickly erecting the scaffold will either slow down or
improve the performance of the rigging team if the use of scaffolds is required to
carry out the rig pipe activity.

Impact of Weather Conditions: The more severe the weather conditions are, the
greater their impacts are on productivity.

Ground Conditions: If ground conditions are bad, for example, wet and marshy,
the mobility of the rigging crew may be reduced, and this may have a negative

impact on productivity.
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Access to Work Area: The easier it is to access the area where pipes are to be
installed, the easier is the rigging process, and the shorter the time that will be spent
by the rigging crew on the activity. This will have a direct impact on the crew’s
productivity.

Crowding of Work Area: If the work area is crowded with materials, equipment,
tools, or, other trades, the rigging process may be more difficult to carry out, and
the rigging crew may have to spend more time on the activity. This will have a
direct impact on the crew’s productivity.

Adequacy of Site Storage: If adequate storage facilities are provided for materials
on the site, the crowding of work area will be reduced and the access to work area
will be improved. This will have a positive impact on crew productivity.
Sufficiency of Number of Crew Members: If a crew is sufficiently staffed, as
determined by the optimum crew size, the crew’s productivity will be high.

Crew’s Skill Level: Crews having high skill levels tend to perform better than
crews having low skill levels.

Crew Turnover: Crews having low labor turnovers have high learning experiences
and know the job better.

Average Temperature: Variations in temperature may affect workers’
performances. In this part of the world, workers tend to perform better when the
temperature 1s moderately cold than when the temperature is hot.

Average Windspeed: A rigging crew’s productivity will be reduced in windy
conditions. If the weather condition is too windy, the entire work may be disrupted

or delayed for long periods.
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Average Precipitation: A rigging crew’s productivity will be reduced in rainy
conditions. If there is heavy rainfall, the entire work may be disrupted or delayed
for long periods.

Average Relative Humidity: Crew performance may be reduced if the relative
humidity of the work environment is very high.

Crew Experience in terms of Learning: The longer the time a worker spends on a
particular type of activity, the greater will be his or her learning curve, and the
greater will be his or her productivity.

Crew Experience in terms of Seniority: The longer the time a worker spends in a
particular trade, the greater will be his or her learning curve, and the greater will be
his or her productivity.

Amount of Rework: If rework is to be done by a crew, the morale of the crew may
be negatively affected.

Amount of Change Orders: Change orders may also affect workers’ morale and
consequently productivity, because additional time is required to carry out
necessary job adjustments.

Drawings and Specifications Quality: The quality of drawings and specifications
will affect the time spent on activities and consequently, this will affect
construction productivity.

Extent and Quality of Training: Adequate and continuous exposure of workers to
training will increase their skill levels and safety awareness levels. This will

increase the productivity of the workers.
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Extent and Quality of Supervision: The quality of crew supervision has a
significant impact on the crew’s performance. Undue interference, untimely
supervision, and lack of leadership qualities in the supervision, may affect the
morale of the crew. This may reduce the productivity of the crew.

Number of Disruptions per Day: Frequent disruptions caused by management
interference, weather, and union disputes will reduce the time spent on activities by
crews. This will have a negative impact on the crew’s productivity.

Percentage of Overtime per Week: This factor may positively or negatively affect
the performance of a crew. A crew’s productivity level may reduce if the workers
believe that they will make more money while working at reduced levels of
performance. A crew may not be keen on completing the activities assigned to it on
time if it believes that the work can be completed during the overtime period. On
the contrary, a crew may see overtime as a morale booster and this may enhance its
productivity. Instead of increasing the crew size, project managers sometimes allow
crews to work overtime in order to meet the date planned for the completion of the
project. Overtime may also be allowed in order to remove undesirable float from a
schedule. This facilitates the compression of the duration of activities. However, as
the number of days of the week and the number of weeks during which overtime is
allowed increase, the productivity of a crew decreases (RS Means, 2002).
Frequency and Extent of Material Shortages: Improper or inadequate planning
may result in delays due to non-arrival or late arrival of materials to the

construction site. A rigging crew may be delayed or may have to be re-assigned to
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another activity if rigging items do not arrive on the construction site on time. This
may negatively affect the crew’s productivity.

Magnitude of Organization Constraints: The more organized the management
team is, the better the quality of supervision, training, and resources, provided to
the workers on the site.

Number of consecutive days worked: This factor describes the number of
consecutive days in the week during which a crew work without a break. This may
have a positive effect on the productivity of the crew because of the learning effect
it has on the crew.

Inspection Requirements: The productivity of a project may be affected by the
extent of the client’s inspection requirements.

Safety Requirements: The productivity of a project may be affected by the extent
of the client’s safety requirements.

Quality Requirements: The productivity of a project may be affected by the extent
of the client’s quality requirements.

Percentage of Prefabricated or Modularized Work: The higher the percentage
of the prefabrication that is done in the shop, or modularized work that a crew does,
the lower is the amount of physical exertion that is required. This should improve
the crew’s performance.

Equipment Availability: The performance of a crew may be reduced if the
equipment the crew requires to perform its tasks, such as the crane or manlift, is not

available at the right time.
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Project-Level Input Factors:

e Extent of Fast Tracking: This factor represents the amount of overlap that exists
between the commencement of design and the commencement of construction. The
greater the overlap, the greater the likelihood of delays and problems occurring due
to incomplete design and specifications, which may adversely affect productivity.

e Criticality of Schedule: This factor describes the extent to which the job schedule
is critical. A very critical job schedule will result in more job pressures and
overtime, which may have a negative effect on productivity.

e Tightness of Budget: This factor describes the criticality and tightness of the
budget on a project. A tight budget will result in more job pressures and less

allowance for overtime, which may have a negative effect on productivity.

e Weld Pipe: Weld pipe describes the process of performing welding on a pipe section. It
comprises pipefitting, which is usually carried out by a pipefitter or a welder who has
pipefitting experience, and welding pipe, which is usually carried out by a journeyman
welder (Fayek et al., 2002). Pipefitting is the process of joining different components of a
piping system, such as pipe, elbow, or, flange, to form one pipe unit. Weld pipe is usually
performed by two crew members, who work as a team by assisting each other in their
respective roles. The welding process involves joining different pipe components by
welding and it is always performed by a journeyman welder. The pipefitting process

involves aligning the pipe components in order to prepare them for welding and it is
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usually carried out by a journeyman or apprentice pipefitter, who basically assists the

welder in fitting the pipe under close supervision.

A comprehensive investigation of literature and the data published in Fayek et al. (2002),

revealed 43 input factors for the weld pipe activity, which are described in below. Some of

these factors affect productivity at the activity level, while the others affect productivity at

the project level.

Activity-Level Input Factors:

Pipe Diameter: A pipe with a large diameter takes more time to weld, than a pipe
with a smaller diameter.

Pipe Thickness or Schedule: A pipe with a greater wall thickness or schedule
takes more time to weld, than a pipe with a smaller wall thickness or schedule.
Shelter Requirement: The productivity of a welding crew will be enhanced if
adequate shelter is provided. This is important since many welding procedures have
to be carried out in an enclosed unit.

Scaffold Requirement: The quality of scaffold provided and the performance of
the scaffolding team in quickly erecting the scaffold will either slow down or
improve the performance of the welding team.

Purge Requirement: The welding team may spend more hours on the same task if
purging is required.

Pre-heat Requirement: The welding team may spend more hours on the same task

if pre-heating is required.

70



e Bevel Dimension or Joint Configuration: The simpler the joint configuration, the

greater the productivity of a welding crew, and vice versa.

The other activity-level input factors listed in Table 3-6 and the project-level input factors

listed in Table 3-7, have the same descriptions as those of the rig pipe activity.

3.2.1.3 Output Factor

Defining the output factor, productivity is not a simple task. The definition of productivity
depends on the perspective of the user of the productivity data (Thomas et al., 1990).
Productivity can be defined in many ways. In the construction industry, productivity is
usually taken to mean labor productivity. For the purpose of this study, productivity
definition is based on the activity-oriented model unit rate definitions outlined in Thomas et
al. (1990):

Labor productivity = Labor cost / Unit Quantity and,

Labor productivity = Manhours / Unit Quantity

In the definitions stated above, labor cost and manhours are the input parameters while the
quantity of work done is the output parameter. The input parameter may be in dollars (that
is, labor cost), or manhours, while the output quantity is measured in inches, feet, kilogram,

or numbers, depending on the type of task carried out by the crew involved.
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3.3 Structure, Description and Flowchart of the Models

The structure of the many-inputs-single-output models used to evaluate the impact of the
input factors on construction productivity of rig pipe and weld pipe activities is shown in
Figure 3-1. Three models were developed, one for rig pipe activity and the other two for
weld pipe activities. This is because, while no context variable was used as part of the
model development process for rig pipe activity, two context variables, namely: material
type and weld type, were used in developing the models for the weld pipe activity. The weld
pipe models predict productivity by the combination of different numbers of input factors

under different contexts.
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Context Variables
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Figure 3-1: Structure of the Models for Predicting Productivity of Rig Pipe and Weld Pipe.
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The rig pipe and weld pipe models are four-layered in structure. This is necessary because
of the large number of input factors that were eventually used to test the models. The
structure of each model was broken down into four layers in order to reduce the sizes of the
rulebases to be developed for the models. If all the factors are included in a single-layer
structure, this would result in a very large rulebase, which would be tedious and time
consuming to develop. The first layer of each model consists of all 21 input factors that
were used in each of the models. The second layer consists of six sub-models, namely, pipe
dimensions, crew dimensions, crew competency, degree of difficulty, site conditions, and,
weather conditions. These sub-models serve as input factors for the sub-models in the third
layer. The 21 original inputs of each model were categorized within these second layer sub-
models. The third layer consists of two additional sub-models, namely, crew characteristics
and working conditions, which were used to categorize four of the sub-models in the second
layer. The two sub-models in the third layer serve as input factors for the fourth layer,
together with the two remaining sub-models in the second layer. The fourth layer consists of
the output factor, that is, productivity. The components of the models are illustrated in

tabulated form in Tables 3-8 and 3-9 below.

The basis of categorization throughout the models is the functions of the factors. For
example, crew dimensions and crew competency sub-models were categorized under the
crew characteristics sub-model because both sub-models deal with the crew-related input
factors in the first layer. Some of the factors in the sub-models in the first layer are objective

factors while others are subjective factors. All the factors in the sub-models in the second and
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third layers were made subjective because data were not collected for them by Fayek et al.
(2002). In order to convert the subjective factors into objective ones during the model
development process, numerical ratings on a scale of 1 to 10 were given to the linguistic

variables (for example, poor, fair, and good) used to describe the factors in the sub-models.

Table 3-8: Rig Pipe Model Structure

Factors in First Layer Factors in Second Layer | Factors in Third Layer

Pipe length
Pipe diameter

Pipe Dimensions None

Crew ratio

Task crew size . .
) Crew Dimensions
Crew sufficiency

Overall crew size
Skill level Crew Characteristics

Crew turnover
Crew experience in terms of learning Crew Competency
Crew experience in terms of seniority
Number of consecutive days

Elevation .
Degree of Difficulty None

Complexity of shape of pipe
Ground conditions

Access to work area
Crowding of work area

Site Conditions

Adequacy of site storage
Impact of weather conditions

Working Conditions

Average temperature "
& P Weather Conditions

Average windspeed

Average precipitation
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Table 3-9: Weld Pipe Models Structure

Factors in First Layer Factors in Second Layer Factors in Third Layer

Pipe diameter

Pipe Dimensions None
Wall thickness or schedule

Crew ratio

Task crew size Crew Dimensions
Crew sufficiency

Overall crew size
Skill level Crew Characteristics

Crew turnover
Crew experience in terms of learning Crew Competency
Crew experience in terms of seniority
Number of consecutive days

Elevation Degree of Difficulty None

Shelter requirement

Ground conditions
Access to work area
Crowding of work area

Site Conditions

Adequacy of site storage

— Working Conditions
Impact of weather conditions

Average temperature i1
verag peratur Weather Conditions

Average windspeed

Average precipitation

The flowchart for developing the rig pipe and weld pipe models are illustrated in Figure 3-2
below. This flowchart describes the steps and methods that were used in order to build the
models. The first step involves the identification of the context variables, input and output
factors, and the classification of the input factors using the context variables as the basis for
classification. The second step is the development of membership functions for the input and
output factors, using the information obtained from experts, while the third step is the
simplification of the models by using correlation analysis to reduce the number of factors to

be used in the models to a manageable but significant number.
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The fourth step involves developing fuzzy rulebases for the models in MATLAB using
logical reasoning, while taking into consideration the directions and magnitudes of
correlation between the factors. In the fifth step, the numerical and linguistic accuracies of
the models were tested using the data published in Fayek et al. (2002), and, in the sixth step
the membership functions of the output factor were calibrated by shifting the legs of the
productivity membership functions in order to achieve higher accuracies. The seventh step
involves re-testing the models after calibration using the published data, while the eight and
last step involves the performance of sensitivity analysis on the models in order to improve

their accuracies.

Identify and classify Input and Output Factors and Context Variables

'

Develop Membership Functions for Input and Output Factors

I

Simplify Input and Output Factors Using Correlation Analysis

'

Develop Fuzzy Rulebase for Input and Output Factors using MATLAB

I

Test Models using the published data

!

Calibrate Membership Functions of the Output Factors

!
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Re-test Models using the published data

I

Perform Sensitivity and Linguistic Error Distribution Analyses

Figure 3-2: Steps in the Development of the Models Predicting Productivity for Rig Pipe
and Weld Pipe.

3.4 Summary

This chapter describes the factors employed in the proposed fuzzy logic models, the structure
of the models, and the steps taken in developing the models. The context variables and the
factors affecting industrial construction productivity were identified for two pipefitting
activities, namely: the rig pipe and weld pipe activities. The linguistic descriptors and
numerical scales corresponding to each factor were also determined. The structure of the
models developed in this study were described in this chapter and the basis for using this
structure was also explained in detail. The steps and the methods used to develop the models
were outlined in this chapter. The next section describes the methods that were used to

simplify, develop, test, and calibrate the models in this study.
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4. Development of Fuzzy Expert System

4.1 Introduction

This chapter describes the development of the fuzzy expert systems used to model the
productivity prediction of rig pipe and weld pipe. It describes the development of
membership functions, fuzzy rules, and, the fuzzy inference mechanisms for the rig pipe
productivity model and the two weld pipe productivity models that were developed in this
study. The chapter also covers the procedures used to test and calibrate the models, and the
procedures used to perform sensitivity analysis on the models. Two other techniques, namely
ANFIS and Neuroshell 2, that were explored in the process of model building, are also

discussed in this chapter.

The major problem that was encountered in trying to develop the models in this study was
the fact that there were not sufficient data sets with which to develop and validate
membership functions, and with which to develop the fuzzy rules. The rig pipe data set had
only 32 original data points while the weld pipe data set had 102 original data points. The
number of data points for weld pipe was reduced when context variables were applied. While
no context variable was applied to the rig pipe data, two context variables, namely material
type and weld type, were applied to the weld pipe data. The material types that were used in
the data categorization are carbon steel and alloy, while the weld type that was used in the
categorization is butt weld. This is because on carrying out a statistical analysis of the weld
pipe productivities for all the different context variable combinations, the combinations of

carbon steel and butt weld and that of alloy and butt weld were found to have reasonably
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wide ranges of productivity and close median productivities. The average productivity of
carbon steel and butt weld productivities is about 68% of the average productivities of alloy

and butt weld.

Carbon steel and socket weld ranges of productivity and average productivity are also close
to those of carbon steel and butt weld, and, alloy and butt weld. However, the carbon steel
and socket weld data had to be discarded because of insufficient data points (only five data
points). These explanations are illustrated in Table 4-1. The 102 weld data points were
categorized on the basis of the combination of material type and weld type context variables.
Eventually, two sets of weld pipe data were created, with one having 63 data points (for

carbon steel and butt weld) and the other having 32 data points (for alloy and butt weld).

Table 4-1: Context Variable Statistics for Weld Pipe

Average
Contes Vil Compinion | s ofEstucany | Meduntroheiny | Bodutyiy
inch)
Carbon steel and Butt weld 0.25-4.00 1.20 1.35
Carbon steel and Socket weld 1.50 - 2.50 2.00 2.00
Alloy and Butt weld 0.56 - 6.67 1.67 1.99
Alloy and Socket weld 18.87 - 26.67 22.67 22.67

Another problem that was encountered was the large number of input factors that had to be
considered in the productivity models. Twenty-one original input factors were considered in
each of the three models. The selection of the 21 input factors was based on the input factors
for which objective and subjective data were published in Fayek et al. (2002). At the early
stage of model development, all the 21 factors were used to develop the fuzzy expert system.

However, it was found that this is not a feasible procedure due to the problem of exponential
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growth of rules and consequently, generation of a very large rulebase. For example, if a
rulebase is to be created for an expert system having 21 input factors, with each input factor
having three membership functions, the number of rules that would have to be generated is
3% or 1.05 x 10" (i.e., approximately 10 billion rules). Attempts were made to overcome the
rule growth problem by using ANFIS and Neuroshell 2 techniques to develop the models.
However, these techniques gave results that were not satisfactory because they only work
well with a small number of input and output factors, and a large data set. Furthermore,

ANFIS may not provide a complete rulebase for model development.

Eventually, each model structure was readjusted to include sub-models. This was done in
order to reduce the number of input factors that had to be considered in any rulebase and to
solve the problem of growth of rules. The models were developed based on this new

structure.

4.2 Data Extraction

The data used in this study are published in Fayek et al. (2002). The data were collected
using productivity forms, work sampling, five-minute rating, and, interview questionnaires.
For this study, the types of data required to model construction productivity are those

pertaining to productivity input and output factors.

Prior to developing membership functions, the necessary data for all the input and output

factors were extracted from the data set in Fayek et al. (2002). The data were extracted for
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each of the 21 input factors for all the days during which the chosen activities, that is rig pipe
and weld pipe, were studied. Consequently, there are 32 data points for the rig pipe activity
while 102 data points were obtained for the weld pipe activity. Each data point consists of

data for all the 21 input factors and the output factor, that is, productivity, for each of the two

activities.

The productivity form used by Fayek et al. (2002) to collect productivity data, was structured
to collect subjective and objective data. Therefore, for input factors such as pipe diameter,
pipe length, and, elevation, objective data, such as pipe diameter values in inches, pipe length
values in feet, and, elevation values in feet, were collected. For input factors such as crew
turnover, access to work area, and, crowding of work area, subjective data, in the form of
linguistic variables, such as low, average, and, high, were collected on the productivity
forms. The only exceptions are the data for the weather-related input factors, namely, average
temperature, average windspeed, and, average precipitation. Data for these factors were
obtained from the weather data provided by a major oil company located adjacent to the
industrial construction site where the data were collected (Fayek et al., 2002). Objective data
were also collected for the output factor, that is, productivity, in manhours per foot of pipe

(for rig pipe activity), and manhours per diameter-inch of pipe (for weld pipe activity).

For each of the input factors and the output factor (productivity), three membership functions
were developed, such as poor, fair, and, good, with the exception of the input factor named
shelter requirement, used in only in the weld pipe models. Shelter requirement has only two

membership functions (low and high). This is because the data collected for this factor were
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in terms of either a “no” or a “yes” which was translated to “low” and “high” respectively,
for the purpose of membership function generation. The purpose of developing the
membership functions is to convert raw data into membership values, which can be applied
in fuzzy sets using the fuzzy rules and fuzzy inference mechanisms. The membership value,
M, corresponding to a particular element, x, in the universe of discourse U, depends on the
shape of the membership function and varies between 0 and 1. The degree of belief that an
element X, in the universe of discourse, U, is well represented by a linguistic concept, is
depicted by the membership function. This degree of belief is measured in terms of the

membership value, 4,.

The extracted data was used to test the fuzzy expert systems that were developed. The tests
were done in four trials for the rig pipe fuzzy expert system and the two weld pipe fuzzy
expert systems. The trials were carried out to obtain the best fuzzy expert systems, in terms
of numerical and linguistic accuracies of the output from each system. Some key adjustments
were made to the raw data during the trials:
¢ In the second trial, the raw data ratings of all subjective factors were adjusted from
0, 1, 2 descriptors (for example, O=poor, 1=fair, 2=good) to 0, 5, 10 descriptors
(O=poor, 5=fair, 10=good).
¢ In the fourth trial, the average lengths of pipe were used in the rig pipe model and
because of this, three of the 32 data points had to be removed because their average
lengths could not be determined.
¢ In the fourth trial, the crew ratio was changed from journeyman to apprentice ratio to

apprentice to journeyman ratio for all models.
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4.3 Development of Membership Functions

4.3.1 Introduction

Model development using fuzzy logic involves the generation of membership functions for
all the input and output factors in the models. In this study, the next procedure in the
development of the fuzzy expert systems, after the identification and categorization of the
factors using context variables, is the development of membership functions for all the
input and output factors, as well as for all the factors in the sub-models, used in developing

the models.

The review of existing literature on the study of the modeling of construction labor
productivity reveals that no fuzzy logic model exists for modeling industrial construction
labor productivity. The development of membership functions depends on the availability
of large data sets that are not easy to obtain in the construction industry. In this study, both
subjective and objective data sets published in Fayek et al. (2002), were used to model
industrial construction labor productivity, for the rig pipe and weld pipe activities. The
review of existing literature revealed the different techniques that are available for
developing membership functions. Most of these techniques require the use of a small
number of input factors and large data sets in order to train, test, and, validate the

membership functions (Sun, 2000).

As an example, Sun used a technique that is based on the frequency of numerical responses

to structured interview questions about the linguistic descriptors (such as low, average and

84



high) of the factors that affect design performance in the industrial construction sector.
This technique could not be applied in this study because a large number of responses from
industry experts were not available through structured questionnaires. Furthermore, the
technique requires that objective (numerical) and subjective (linguistic) data should be
collected simultaneously, for all the input and output factors. This type of data was not
available for use in this study because the data published in Fayek et al. (2002) were either

objective or subjective. The two types of data were not collected simultaneously.

4.3.2 Assumptions Used in Developing Membership Functions

The following assumptions were used to develop the membership functions used in this

study.

e Only triangular and trapezoidal membership functions are developed for the input
and output factors. In order to achieve as much overlap as possible among the
membership functions, most of the membership functions, especially membership
functions of subjective factors such as crew turnover, access to work area, and,
adequacy of site storage, are trapezoidal in shape.

e Each input factor, with the exception of shelter requirement, is assumed to have
three membership functions. The three membership functions are low, average,
high; short, average, long; small, average, large; low, medium, high; poor, fair,
good; and, tolerant, average, detailed. Shelter requirement is represented by two
membership functions, namely low and high. The output factor, productivity, has

three membership functions, namely, good, average, and, poor.
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e All subjective factors have the same triangular or trapezoidal membership
function shapes (depending on the trial involved). Furthermore, each subjective
factor has three membership functions. The only exception is shelter requirement
that has two triangularly shaped membership functions.

e All input sub-models, such as crew characteristics, crew dimensions, and, crew
competency, have the same trapezoidal membership function shapes.

Furthermore, each sub-model has three membership functions.

4.3.3 Method of Developing Membership Functions

The development of membership functions was based on the expert questionnaires that were
completed by two industrial construction researchers (including the author of this study) and
two industrial construction personnel. Four questionnaires were sent out to the construction

personnel, but only two questionnaires were completed and returned.

An expert questionnaire was developed for each of the two activities that were studied in
this research. This was done in order to generate membership functions for each input and
output factors. The questionnaire was developed for the rig pipe and the weld pipe
activities in the industrial construction context. The questionnaire addressed each of the
factors affecting productivity for which membership functions have been developed in this
study. A sample of the expert questionnaire is shown in Appendix A. For each question
asked, the respondents were required to provide answers based on their knowledge of the

concerned topic.
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The respondents were provided with a range of values or ratings (such as 0 to 10) that
describe a particular factor or productivity, and were asked to determine which values or
ratings they considered as appropriate for linguistic variables such as small, average, and,
large. The responses were used to determine the linguistic ratings and membership values
that define the membership functions of each input factor and the output factor

(productivity).

The technique used to define the membership functions for the factors is simple but
subjective. The completed questionnaires were used to construct the initial membership
functions for both input and output factors. The weather-related membership functions were
developed using the questionnaires, information obtained from Chilldex (which is a
software for predicting weather information), and, information obtained from the weather-

related websites located in Appendix B.

The overall range of x-axis values for the membership functions of any factor is
determined by the range of values for that factor as contained in the raw data. For example,
if the range of raw data values for elevation is from zero to 60 feet, then the range of x-axis
values for elevation is between zero and greater than 70 feet. The range of a particular
membership function is defined by the average of the respondents’ values. The respondents
were asked to circle on the questionnaires (refer to Appendix A), that is, numerical values
or subjective values (on a scale of zero to 10), of a particular factor which they believe
belong to a certain linguistic variable. For example, on a scale of zero to greater than 70

feet, that is, x-axis values, the respondents were asked to define the range of elevation
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values which they believe could be described as low elevation. The membership value 4 is
determined by the average degree of belief that the respondents have in their chosen
responses. For example, if the respondent believes that an elevation of zero belongs to the
variable low more than an elevation of 10 feet, then in the membership function “low”, an
elevation of zero on the x-axis is assigned a greater membership value on the y-axis than an
elevation of 10 feet. The membership value assigned to an elevation value on the x-axis
would depend on the number of elevation values on the x-axis, for the range of any
linguistic descriptor. For example, if on the x-axis, for the membership function “low”, the
value of elevation corresponding to low elevation ranges from 0 to 30 feet, then zero may
be assigned a membership value of 1, 10 feet may be assigned a value of 0.75, 20 feet may
be assigned a value of 0.5, 30 feet may be assigned a value of 0.25, and, 40 feet may be

assigned a value of zero, assuming the membership function is triangular in shape.

The four trials carried out for each of the three models are illustrated using the membership
functions for pipe diameter as an example for the rig pipe model, and the membership
functions for pipe wall thickness for the weld pipe models. The examples are illustrated as

follows:

Rig Pipe Model, Pipe Diameter

The membership functions developed for pipe diameter of the rig pipe model are as shown

in Figure 4-1. For this factor, the same membership functions were used in all the four trials.
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Membership Functions for Pipe Diameter
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Figure 4-1: Membership Functions for Pipe Diameter (Rig Pipe Model)-Trials 1, 2, 3, and 4.

Weld Pipe Models, Pipe Wall Thickness or Schedule

The membership functions developed for wall thickness (schedule) of the weld pipe models
are as shown in Figure 4-2. For this factor, the same membership functions were used in all

the four trials.
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Figure 4-2: Membership Functions for Wall Thickness (Weld Pipe Models)-Trials 1, 2, 3, and 4.
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All the membership functions that were developed in the four trials and used in this study

to develop the three fuzzy expert systems are found in Appendix C.

Adjustments were made by changing the shapes of the membership functions, by
increasing the degree of overlap among the membership functions, and, by increasing the

extreme membership functions beyond the limits described in the questionnaires.

4.3.4 Discussion of Trials

The process of developing the models was carried out four times, that is, in four trials. This
was done in order to obtain the most numerically and linguistically accurate models. At
the end of each trial, the membership functions were adjusted, either in terms of shape or
the range of values on the x-axis. The cumulative or incremental changes in the

membership functions for the four steps are described as follows:

e In the first trial, all the input factors of both rig pipe and weld pipe have three
membership functions each. The membership functions have both triangular and
trapezoidal shapes. The only exception is the input factor called shelter
requirement, of the weld pipe models, which has two trapezoidal membership
functions. In this trial, the subjective factors also have three membership
functions each, including both triangular and trapezoidal shapes. However, each
objective factor in the sub-models has three triangular membership functions. The

output factor, productivity, also has three membership functions, all trapezoidal in
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shape. For the weld pipe activity, the carbon steel and butt weld membership
functions are the same as those of the alloy and butt weld membership functions.

In the second trial, shelter requirement has two symmetrical triangular
membership functions and its x-axis values were changed from 0-10 to 0-1. The
peak membership value, 1,=1.0, is located at the extreme ends of the x-axis, that
is, x=0 and x=1. Each factor in the sub-models has three symmetrical, triangular
membership functions, with x-axis values ranging between zero and 10, and with
the peak membership value of the membership function in the middle, that is
1:=1.0, corresponding to an x-axis value, x=5. For the weld pipe activity, the x-
axis values of the carbon steel and butt weld output membership functions are
adjusted to be 60 % (based on the approximation of the ratio of the average
productivity of carbon steel and butt weld to the average productivity of alloy and
butt weld expressed as a percentage) of the x-axis values of the alloy and butt

weld membership functions.

In the third trial, and for the weld pipe activity, the x-axis values of the carbon
steel and butt weld membership functions are adjusted to be 68 % (based on the
exact ratio of the average productivity of carbon steel and butt weld to the average
productivity of alloy and butt weld expressed as a percentage) of the x-axis values

of the alloy and butt weld membership functions.

In the fourth trial, the membership functions of seniority, overall crew size, and,

precipitation, were adjusted by increasing the degrees of overlap between them.

91



For all the models, the crew ratio was changed from journeyman to apprentice
ratio to apprentice to journeyman ratio. The subjective factors and the factors in

the sub-models all have symmetrical trapezoidal membership functions.

4.4 Correlation Analysis
4.4.1 Introduction

Each of the three models built in this study originally had 21 input factors and one output
factor. An attempt was made to develop rulebases for each model which would include all
the 21 input factors. There is exponential growth of rules, since the number of rules for a

complete rulebase is given by Equation 4-1.

umber of factors

Number of rules = (number of membership functions)n 4-1)

This would lead to a very large number of unmanageable rules for each model. Besides, it
would be difficult to input and implement such a large rulebase in the Fuzzy Logic
Toolbox in MATLAB or any other existing computer software. For example, if a rulebase
is to be created for an expert system having 21 input factors, with each input factor having
three membership functions, the number of rules that would have to be generated is 3°' or
1.05 x 10" (that is, approximately 10 billion rules). In order to solve this problem, the
models were broken down into sub-models. However, it was still necessary to determine
which factors actually contributed positively and negatively towards determining the

models’ outputs.

An attempt was made to simplify the models using a combination of correlation analysis

and simple linear regression analysis, specifically the Backward Elimination method.
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However, the linear regression technique was considered infeasible because some of the
input factors may not have a linear relationship with productivity. The other alternative was
to use non-linear regression, but this technique was discarded because it requires that the
relationships between the input variables (such as exponential, or polynomial) and the
output factor should be assumed. This technique could easily be applied only in a situation

where a small number of variables are involved.

Furthermore, the objective of this research is not to develop regression models, but to
develop fuzzy expert systems for predicting productivity. However, prior to developing the
expert systems, it was necessary to quantify the relationships between the input and output
variables. Therefore, correlation analysis is used in this study to determine how the input
and output factors vary together. It is convenient to use correlation analysis in preference to
regression analysis because the variables involved are measurable and none of the variables
is a controlled variable (GraphPad Software Inc., 1999). Consequently, only correlation
analysis was used to determine the input factors that make significant contributions
towards determining the productivity of the models. The factors found to be significant

were included in the sub-models described in Chapter 3.

It was convenient to use correlation analysis because it presents a clear picture of the type,
significance, and direction of the relationship that exists among the input factors and
between the input factors and productivity. Correlation analysis was used to determine if
there is a linear relationship between the input factors and productivity. The level of
importance of an input factor with respect to the output factor can be determined by either

the significance value (i.e., p value), or the Pearson Correlation Coefficient, determined
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during the correlation. The significance value is associated with the hypothesis test that the
correlation is zero. If the significance value obtained for two variables in a correlation test
is less than the significance level, then the null hypothesis stating that the correlation is
zero is rejected. In other words, this implies that there is correlation between the variables
or that they are correlated. In this study, the significance value, which is used in statistics
to test whether or not the correlation is significantly different from zero, is used as the

basis for determining the level of importance of each input factor (Sun, 2001).

This significance value varies between 0.0 and 1.0, and the closer the value is to 0.0, the
higher is the significance of the factor. A factor having a significance value that is greater
than 0.1 is considered insignificant. Two-tailed significance values were obtained and used
in this study because the direction of the correlation could either be positive or negative.
Most of the correlation results obtained in this study were achieved at the 99% confidence
level, that is, the results obtained have a 1% or 0.01 significance level or chance of not
being true. The significance level measures the error tolerance allowed in the correlation
analysis. In this study, for the purpose of determining the factors to be included in the
models, the significance level was taken to be 0.1 (that is, 90% confidence level), thereby

increasing the error tolerance level in the correlation results.

The direction of correlation is determined by the Pearson Correlation Coefficient, denoted
by v, and it is described in Norusis (1993). The value of y can vary between —1 and +1 and
a y value of zero implies that there is no relationship between variables x and y, a y value

of —~1 implies that there is a complete indirect relationship between variables x and vy,
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while a y value of +1 implies that there is a complete direct relationship between the two
variables. The strength of the linear relationship between variables x and y is determined
by the magnitude of y. If the magnitude of vy is greater than or equal to 0.8, then both
variables x and y are highly correlated or multi-collinear (Jalal, 1999). When two variables
are perfectly multi-collinear, they have equal ability to predict the output, thereby creating
redundancy. In a situation where two variables are found to be multi-collinear, either one
of the variables is excluded from the rule joining the two variables, or the two variables
are joined by the “OR” operator instead of the “AND” operator. This is because the two
variables are highly dependent on each other. The equation below shows Norusis’ formula

for determining the relationship between two variables x and y.

N

Y (xi-X)(yi- ¥)

TS NS, 2)

where

Y = Pearson correlation coefficient
xi = ith value of variable x

yi = ith value of variable y

X = the average of N values of variable x

¥ = the average of N values of variable y

N = Number of cases
Sx = Standard deviation of variable x

Sy = Standard deviation of variable y
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Although the purpose of doing correlation analysis in this study is to simplify the
productivity models, the major problem that was encountered was how flexible to be in
determining the factors that should be included in the models. Under normal
circumstances, factors should be included in the models based on their statistical
significances. However, when this was done, it was observed that certain factors that are
believed to be important based on field experience were found to be insignificant by the

correlation analysis.

This problem was solved by introducing more flexibility into the process of factor
selection. This was done by selecting the factors that were found to be statistically
significant and those that were believed to be important based on field experience. In the
case of the weld pipe models, the significance of the factors were determined by their
significance in their weld pipe correlation (that is, carbon steel and butt weld correlation,
and, alloy and butt weld correlation) and in a preliminary correlation analysis done for all

95 butt weld data points.

4.4.2 Models’ Simplification Using Correlation Analysis

The correlation analysis was done using the Statistical Package for Social Sciences (SPSS)
for Windows, Version 9 (SPSS Inc., 2001), which is a data management and analysis
software. The correlation analysis was done for each of the three models in two steps
which are as explained below. Step 1 comprises the first three trials while step 2 involves

the fourth trial.
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Step 1
In the first three trials, the correlation analysis was done as follows:

e Correlation analysis was done for all of the original 32 data points of the rig pipe
activity.

e Correlation analysis was done for all of the 95 data points of the butt weld, weld
pipe activity. Originally, there were 102 data points for the weld pipe activity.

e Correlation analysis was done for the 63 data points of the carbon steel and butt
weld, weld pipe activity.

e Correlation analysis was done for the 32 data points of the alloy and butt weld,
weld pipe activity.

Step 2
In the fourth trial, the correlation analysis was done as follows:

o Correlation analysis was done for the 29 data points remaining after the
application of average pipe lengths, in the rig pipe model. In the first three trials,
the total pipe length obtained by adding the individual lengths of the pipe pieces
rigged by a crew was used, while in the fourth trial, the total pipe length was
divided by the quantity of pipes that were rigged by the crew involved, in order to
obtain the average pipe length.

e The factor called access to work area was replaced with the factor called crowding
of work area, in the alloy and butt weld, weld pipe model. This was done because
the correlation analysis done for the 95 data points for butt weld, and the 63 data
points for carbon steel and butt weld, in step 1, found access to work area to be

multi-collinear with crowding of work area and adequacy of site storage.
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The models’ simplification using correlation analysis is demonstrated in Tables 4-2 and 4-3,
with the use of the crew competency sub-model for carbon steel and butt weld, weld pipe
from step 1. The correlations were determined to be significant at the 90% confidence level,
that is, at the 10% significance level. If the two-tailed Pearson correlation coefficient of two
variables have an absolute value that is greater than, or equal to 0.8, the two variables are
considered to be multi-collinear. Therefore, if the significance value of a particular factor, in
a model, is greater than 10% or 0.10, the factor is considered as not contributing
significantly to the output of the model and would be rejected after the correlation is done
(Sun, 2001). However, in situations in which a factor is found to be insignificant by
statistical correlation but is believed to be significant based on field experience, the factor is
included in the model. All the tables showing the rig pipe and weld pipe data that were input
into the SPSS environment, and the results of the correlation analysis, can be found in

Appendix D. The example is illustrated in Tables 4-2 and 4-3.

The crew competency sub-models for carbon steel and butt weld, weld pipe model, before

and after simplification, are shown below:

(Sub-model before simplification) (Sub-model after simplification)
Input 7: Skill level Input 8: Crew turnover
Input 8: Crew turnover Input 9: Crew experience (learning)
Input 9: Crew experience (learning) | ————p| Input 10: Crew experience (seniority)
Input 10: Crew experience (seniority) Input 11: No. of consecutive days
Input 11: No. of consecutive days worked

worked

All the simplified sub-models derived using correlation analysis can be found in Appendix E.
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Table 4-2: Results of Correlation Analysis for Crew Competency Sub-model of the
Carbon Steel and Butt Weld, Weld Pipe Model.

Correlations
Crew Crew Crew No. of
Productivity| Skill level tunover experience | experience | consecutive
(learning) | (seniority) |days worked
Pearson
Productivity | Correlation 1 -0.04818 | 0.30268 | 0.001682 0.219882 0.101035
Sig. (2-tailed) . 0.707657 | 0.0159 | 0.989562 0.08335 0.430755
N 63 63 63 63 63 63
Pearson
Skill level Correlation | -0.04818 1 -0.28201 | -0.00631 -0.82659 0.220264
Sig. (2-tailed) | 0.707657 . 0.025143 | 0.96086 7.23E-17 0.082802
N 63 63 63 63 63 63
Pearson
Crew turnover | Correlation 0.30268 | -0.28201 1 -0.05051 0.404341 -0.33958
Sig. (2-tailed) |  0.0159 0.025143 . 0.694219 0.001014 0.006474
N 63 63 63 63 63 63
Crew
experience Pearson
(learning) Correlation | 0.001682 | -0.00631 | -0.05051 1 -0.09353 0.275002
Sig. (2-tailed) | 0.989562 | 0.96086 | 0.694219 . 0.465953 0.029162
N 63 63 63 63 63 63
Crew
experience Pearson
(seniority) Correlation | 0.219882 | -0.82659 | 0.404341 | -0.09353 1 -0.30312
Sig. (2-tailed) | 0.08335 | 7.23E-17 | 0.001014 | 0.465953 . 0.015741
N 63 63 63 63 63 63
No. of
consecutive Pearson
days worked | Correlation | 0.101035 | 0.220264 | -0.33958 | 0.275002 -0.30312 1
Sig. (2-tailed) | 0.430755 | 0.082802 | 0.006474 | 0.029162 0.015741 .
N 63 63 63 63 63 63

Correlation is significant at the 0.05 level (2-tailed).

sk

Correlation is significant at the 0.01 level (2-tailed).
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Table 4-3: Summary of Correlation Results for Crew Competency Sub-model of the

Carbon Steel and Butt Weld, Weld Pipe Model.

Pearson [Significance Ranking SS?;?): . . L
Factor . . of | Accept/Reject Basis for acceptance/rejection
Correlation| (2-tailed) F alpha =
actors 0.01
High significance value, and factor is
multi-collinear with crew experience
Skill level -0.048 0.708 4 63 Reject (seniority)
Crew
turnover 0.303 0.016 1 63 Accept Low significance value
Crew High significance value, factor is
experience considered important based on field
(learning) 0.002 0.990 5 63 Accept experience
Crew
experience Low significance value, but factor is
(seniority) 0.219 0.083 2 63 Accept multi-collinear with skill level
No. of High significant value, but factor is
consecutive considered important based on field
days worked| 0.101 0.431 3 63 Accept experience

The development of the fuzzy rulebase of each model became easier after model

simplification using correlation analysis. This is because a fewer number of input factors

had to be considered in each rulebase. Table 4-4 summarizes the number of input factors

that remained in each model after model simplification. In Table 4-4, step 1 denotes

correlation analysis that was done for trials 1, 2, and 3, while step 2 denotes correlation

analysis that was done for trial 4. Eventually, only the correlation results for rig pipe, weld

pipe (carbon steel and butt weld), and weld pipe (alloy and butt weld), were used. The

results for weld pipe (butt weld) was discarded. In fact, no correlation analysis was done

for weld pipe (butt weld) in step 2.

100




Table 4-4: Summary of Input Factors Remaining After Model Simplification

. Weld Pipe
A . Weld Pipe Model (Carbon
Step | Rig Pipe Model | Weld Pipe Model (Butt Weld) Steel and Butt Weld) Model (Alloy
and Butt Weld)
1 15 16 16 16
2 16 Not applicable 16 16

4.5 Development of Fuzzy Expert Rules

4.5.1 Introduction

Fuzzy expert system development involves the creation of a fuzzy rule base, which
consists of If-Then rules that relate the input factors to the output factors. The If-Then
rules are composed of fuzzy antecedents or premises (represented by the membership
functions of the input factors) and fuzzy consequents or conclusions (represented by the
membership functions of the output factor). The If-Then rules provide the logical
reasoning framework for determining the output, based on values of the input factors.

Various fuzzy inference mechanisms are used for reasoning.

For a two-input-one output fuzzy expert system, the following example can be used to
illustrate a fuzzy If-Then rule. Assuming that crew skill level and crew experience level
are the input factors and productivity is the output factor, a fuzzy If-Then rule can be
expressed as follows:

If crew skill level is high and crew experience level is high, then productivity is good

The input and output factors are represented in the fuzzy expert system by membership
functions such as low, average, and, high for each input factor, and, good, average, and,

poor for the output factor. The fuzzy inference mechanism in this example is denoted by
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“and”, which assumes that the input factors exert equal but independent effects on the

output factor.

4.5.2 Fuzzy Inference Mechanisms

The fuzzy inference mechanisms of a fuzzy expert system consists of the mechanisms for
carrying out the fuzzification, implication, aggregation, and, defuzzification procedures
necessary to generate outputs from a system, given the inputs to the system. These
procedures are implemented with the use of fuzzy operators. The fuzzy operator is used to
combine the membership values of the input variables in the premise of a rule when more
than one variable exists in the premise. The fuzzy operators that are commonly used are

“AND” and “OR”.

The fuzzy operator “AND” is used when the input variables are believed to have equal and
independent effects on the output of the system. The operator “AND” performs its operation
process in either of two ways: as a “MIN” operator, or as a “PRODUCT” operator. The
former operator determines the minimum of the membership values of the input variables
while the latter calculates the product of the membership values of the input variables. The
operator “OR” performs its operation process as a “MAX” operator, or as a “PROBOR”
operator. The former determines the maximum of the membership values of the input
variables while the latter calculates the algebraic sum of the membership values of the input
variables. All the input factors exert equal but independent effects on the output factor of

each model. This necessitated the use of the “AND” operator in the fuzzy rules.
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However, in situations where the factors are highly correlated (i.e., multi-collinear), they are

joined using the “OR” operator. For example, in the pipe dimensions sub-model for carbon

steel and butt weld, weld pipe model, the two input variables in the sub-model, namely pipe

diameter and wall thickness, were found to be multi-collinear. This necessitated the use of

the operator “OR” in joining the rules linking the two variables. Furthermore, all the rules

developed in this study are assumed to have the same weights. If two factors are believed to

be dependent on each other as determined by a high correlation between them (multi-

collinearity), then the two variables should be joined in the rule by “OR”.

The different steps of the fuzzy inference mechanisms are explained below:

Fuzzification is the process of converting the crisp input variables to fuzzy data
by determining the membership values or the degrees of belief that elements of
the input variables belong to fuzzy sets that are defined by membership functions.

Application of fuzzy operator If there is more than one input variable in the
antecedent of the rule, the membership values of the input variables are combined
using a fuzzy operator such as “AND” and “OR”, to obtain a single value in the
consequent of the rule. The “AND” operator has two operating methods,
including the “MIN” operator, which uses the minimum of the membership values
in the antecedent. The other operation method is the “PRODUCT” operator,
which uses the product of the membership values in the antecedent. The “OR”
operator also has two operation methods, including the “MAX” operator, which

uses the maximum of the membership values in the antecedent. The other
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operating method is the “PROBOR” operator, which uses the algebraic sum of the
membership values in the antecedent.

Implication is the process of applying the single membership value obtained after
combining membership values in the antecedent of the rule, to the fuzzy set of the
output variable in the consequent of the rule. The membership function in the
consequent part of the rule is truncated (using “MIN”), or squashed down (using
“PRODUCT”).

Aggregation which is a process that occurs once for all rules in a rulebase,
involves combining the fuzzy output of each rule in the rulebase to obtain a single
fuzzy set. This occurs when an aggregation operator (“MAX” or “PROBOR”)
combines the output fuzzy set of each rule to obtain a single fuzzy set. The fuzzy
operator “MAX” combines the maximum value from the output of each rule,
while the operator “PROBOR” combines the algebraic sum of the output from
each rule, in order to determine the single output fuzzy set.

Defuzzification is the process of generating a crisp value from the fuzzy set
obtained by the aggregation method. This can be achieved using defuzzification
methods such as “CENTROID”, “BISECTOR?”, Largest of Maximum or “LOM”,
Middle of Maximum or “MOM?”, and, Smallest of Maximum or “SOM”. The
operator “CENTROID” is used to determine the single value related to the center
of gravity of the output membership function, while the operator “BISECTOR” is
used to calculate a defuzzified value obtained by bisecting the area under the
curve of the aggregate output set. The operators “LOM”, “MOM”, and “SOM”,

are used to determine the largest value, the mean value, and, the smallest value,
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respectively, from the range of elements in the output membership function that

have the maximum membership value.

4.5.3 Method of Developing Fuzzy Rules

The rulebases were developed by iteratively combining the input variables in a logical
manner. The development of complete and consistent fuzzy rules for the models was done
in four trials. In each trial, If-Then rules were developed for each of the three productivity
models. The method used in developing the rules are explained below:

¢ The minimum number of rules required to obtain a rulebase that is complete
was determined using Equation 4-1.

o The results obtained from the correlation analysis were used to determine
whether or not the input factors are independent of one another. If they are
independent, the operator “AND” is used to join the factors, while the operator
“OR” is used to join the factors if the factors are dependent on one another, that
is, if they are multi-collinear.

e The rules were constructed based on the author’s logical reasoning about the way
different combinations of varying degrees of input factors affect the output

factor. This iterative process was carried out in the four trials.
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4.5.4 An Example of Fuzzy Rules Development

The fuzzy rules used in this study were developed for the four trials described in Section 4.2
(Data Extraction), for the rig pipe fuzzy expert system and the two weld pipe fuzzy expert
systems, according to the method described in section 4.5.3 above. The trials were carried
out to obtain the best fuzzy expert systems, in terms of numerical and linguistic accuracies
of the output from each system. The process of developing the rules was carried out in two
steps. The rules developed in the first step were used in the first and second trials while the
rules developed in the second step were used in the third and fourth trials. The fuzzy rules
were developed for the sub-models that make up the models. The technique used is strictly
an iterative procedure based on the logical reasoning of the author. The four trials carried
out for the pipe dimensions sub-model for the rig pipe model are described in this section.

The example is illustrated as follows:

The procedures used to develop the rulebase for the pipe dimensions sub-models, for rig

pipe, are outlined below. The rules developed for the sub-model in the first step (i.e., the

rules that were used in trials 1 and 2), and, in the second step (i.e., the rules that were used
in trials 3 and 4), are shown in Table 4-5.

e The minimum number of rules required to develop a complete rulebase for each of

the pipe dimension sub-models, was determined. Since there are two input factors

in each sub-model and each factor has three membership functions, the minimum

number of rules used in each sub-model is equal to 32=9 rules.
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e The correlation analysis of the sub-model showed that there is no multi-collinearity
between the two factors. Therefore, the rules were joined using the operator
“AND”.

e The rules were developed based on logical reasoning, while maintaining a complete

rulebase.

Table 4-5: Fuzzy Rules for Pipe Dimensions Sub-model, Rig Pipe Model for
Stepl (Trials 1 and 2) and Step 2 (Trials 3 and 4)

Pipe Dimensions
pipe length pipe diameter pipe dimensions

short small small
short average small
short large average

average small average

average average average

average large large
long small large
long average large
long large large

The rules used in step 2 (trials 3 and 4) are the same as those used in step 1(trials 1 and 2).

No change was made to the rules between steps 1 and 2.

4.5.5 Development of Fuzzy Rulebases in MATLAB

The fuzzy rulebases for the three models were developed in a MATLAB environment using
the Mamdani Fuzzy Inference System (FIS) located in the Fuzzy Logic Toolbox of
MATLAB (Mathworks Inc., 1998). The following procedures were carried out to
implement the fuzzy inference system in MATLAB. The procedures are illustrated using the
Graphical User Interfaces (GUIs) for the pipe dimensions sub-model, rig pipe model. For

this sub-model, the FIS is the same for all the four trials.
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e Open a new Mamdani Fuzzy Inference System (FIS), and specify all the input and

output variables in the FIS. This is illustrated in Figure 4-3.

Use the Membership Function Editor to specify all the membership functions for all

the input and output variables in the FIS. This is illustrated in Figure 4-4.

Use the Rule Editor to specify all the rules in the FIS, using the appropriate fuzzy

operator. This is illustrated in Figure 4-5.

Use the Rule Viewer to inspect the results generated by the FIS. This is illustrated
in Figure 4-6. Otherwise use the “readfis” function to load the FIS from disk, and
use the “evalfis” function to carry out the fuzzy inference calculations necessary to

determine the outputs from the FIS.

pipe dimensions rig pipe

(mamdani)

Cipipe Jameter.

pipe_length

Figure 4-3: GUI Showing the Input and Output Variables of the Pipe Dimensions Sub-
model, Rig Pipe, in MATLAB.
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Figure 4-4: GUI Showing the Membership Functions of the Input and Output Variables

of the Pipe Dimensions Sub-model, Rig Pipe, in MATLAB.
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I {pipe_length is short] and (pipe_diameter is average) then (pipe_dimensions is small] (1)

IF [pipe_length is short] and (pipe_diameter is large] then [pipe_dimensions is average] (1]

{f {pipe_length is average) and [pipe_diameter is small) then [pipe_dimensions is average] (1)

it {pipe_length is average) and [pipe_diameter is average] then [pipe_dimensions is average] (1]
If {pipe_length is average) and [pipe_diameter is large) then (pipe_dimensions is large) (1]

if {pipe_lenath is long) and {pipe_diameter is small) then [pipe_dimensions is large) (1)

If {pipe_length is tong] and (pipe_diameter is averagel then (pipe_dimensions is large) (1)

. If [pipe_length is long] and (pipe_diameter is arge) then (pipe_dimensions is large] (1)

ALY -

Figure 4-5: GUI Showing the Rules of the Input and Output Variables of the Pipe
Dimensions Sub-model, Rig Pipe, in MATLAB.
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Pipe jJameter = 20

piped‘mensions =837

Figure 4-6: GUI Showing the Membership Functions and the Rules of the Input and
Output Variables of the Pipe Dimensions Sub-model, Rig Pipe, in MATLAB.

The complete rulebase for each model is shown in Appendix F.

4.6 Testing and Calibration of Models

4.6.1 Method of Testing Models

The accuracies of the models developed were determined by testing the models with the
existing data sets. In the base case, the “AND” method used is min, the “OR” method used
is max (i.e., in cases where multi-collinearity existed between the input factors), the
implication method used is min, the aggregation method used is max, and the

defuzzification method used is centroid. The crisp output obtained for each data point is
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compared to the actual output of the existing data. The percentage error is then calculated

using the following formula:
Percentage Error = (Predicted Output-Actual Output)/Actual Output * 100 4-3)

For the rulebase to be considered adequate, the percentage error for each data point must
be less than or equal to 33% (Sun, 2001). Therefore, a numerical match is achieved if the
percentage error is not more than 33%. If the linguistic term of the defuzzified output is
the same as that of the actual output, then the data point has a linguistic match. For the
model to be considered successful, the percentage of numerical or linguistic matches over

the total number of data points should be greater than or equal to 50% (Sun, 2001).

The testing process was done on the base case models. The numerical and linguistic
accuracies of each model developed in each of the four trials were determined. The models
with the best linguistic accuracies were then selected for calibration and sensitivity and
linguistic error distribution analyses. Linguistic accuracy was used as the basis for model
selection because the purpose of fuzzy expert system is to provide linguistic output based on
input to the system. For the rig pipe model, all the different sensitivity methods used have
high linguistic matches. The numerical and linguistic matches for all the models are as

shown in Tables 4-6, 4-7, and, 4-8.
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Table 4-6: Rig Pipe Model Selection Table (Base Case)

Trial Number 1 2 3 4
Numerical match (%) 3.13 9.40 37.50 37.93
Linguistic match (%) 12.50 21.90 62.50 70.00
Selected model Trial 4

Table 4-7: Weld Pipe, Carbon Steel and Butt Weld Model Selection Table

(Base Case)
Trial Number 1 2 3 4
Numerical match (%) 3.17 39.70 47.62 42.86
ILinguistic match (%) 15.87 63.50 68.25 60.32
Selected model Trial 3

Table 4-8: Weld Pipe, Alloy and Butt Weld Model Selection Table (Base Case)

Trial Number 1 2 3 4
Numerical match (%) 15.63 21.90 40.63 21.88
Linguistic match (%) 21.88 40.60 50.00 34.38
Selected model Trial 3

The results of the model trials show that the most acceptable model for rig pipe is the
model in trial 4 with a numerical accuracy of 37.93% and a linguistic accuracy of 70%.
The best model for weld pipe, carbon steel and butt weld model is the model in trial 3 with
a numerical accuracy of 47.62% and a linguistic accuracy of 68.25%. The best model for
weld pipe, alloy and butt weld model is the model in trial 3 with a numerical accuracy of
40.63% and a linguistic accuracy of 50%. These three models were selected for model
calibration in order to obtain more accurate models. The model testing results are located

in Appendix G.
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4.6.2 Method of Calibrating Models

The models obtained after initial testing using the existing raw data generally had
numerical accuracies that were less than 50% and linguistic accuracies greater than 50%. In
order to improve the accuracies of the models, the most accurate model was selected for
each model type and then calibrated. The output membership functions of the selected
models were calibrated by shifting the right leg of each membership function, first to the
right, by increasing the x-axis value by 20%; then to the left, by reducing the x-axis values
by 20%; and finally by shifting both legs of the membership functions in either direction,
by 20%. The predicted productivity values were then determined. The entire results of the
calibration of the models are as shown in Appendix H. The calibration process was carried
out on the base case models. The summary of the results obtained after the model
calibration carried out for the base case of each of the three chosen models are shown in

Tables 4-9, 4-10, and 4-11.

Table 4-9: Calibration Results for Rig Pipe Model (Base Case)

Match Type 20% Shift to Right | 20% Shift to Left [20% Shift in both Directions
Numerical match (%) 25.79 34.48 37.93
Linguistic match (%) 62.07 62.07 86.21

Table 4-10: Calibration Results for Weld Pipe, Carbon Steel and Butt

Weld Model (Base Case)
Match Type 20% Shift to Right | 20% Shift to Left 20% Shift in both Directions
Numerical match (%) 47.62 42.86 49.21
Linguistic match (%) 61.90 65.08 74.60
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Table 4-11: Calibration Results for Weld Pipe, Alloy and Butt Weld Model

(Base Case)
Match Type 20% Shift to Right | 20% Shift to Left [20% Shift in both Directions
Numerical match (%) 34.38 25.00 40.63
Linguistic match (%) 50.00 37.50 50.00

The results obtained before and after calibration of the models selected from each model

type are shown in Tables 4-12, 4-13, and 4-14.

Table 4-12: Rig Pipe Model Comparison (Base Case)

Match Type Before Calibration After Calibration
Numerical match (%) 37.93 37.93
Linguistic match (%) 70.00 86.21

Table 4-13: Weld Pipe, Carbon Steel and Butt Weld Model Comparison

(Base Case)
Match Type Before Calibration After Calibration
Numerical match (%) 47.62 49.21
Linguistic match (%) 68.25 74.60

Table 4-14: Weld Pipe, Alloy and Butt Weld Model Comparison (Base Case)

Match Type Before Calibration After Calibration
Numerical match (%) 40.63 40.63
Linguistic match (%) 50.00 50.00

The tables shown above indicate that calibration of the three models selected after initial
testing by shifting the two legs of the membership functions of the output factor by 20%,
prior to determining the predicted outputs, numerically and linguistically improved the
results of the rig pipe model and the weld pipe, carbon steel and butt weld model. This is
probably due to the increase in the overlap between the membership functions. However,

there was neither an improvement nor a deterioration in the results obtained for the weld
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pipe, alloy and butt weld model. Therefore, a sensitivity analysis was done for each model

to see if better results could be obtained.

4.7 Model Sensitivity Analysis

Model sensitivity analysis was performed for each of the three calibrated models in order to
improve the accuracies of the models The sensitivity analysis was carried out on the
calibrated models and it involves the determination of the changes in the accuracy of the
models, resulting from changing all the methods in the fuzzy inference mechanism of the

base case.

The sensitivity analysis was done by first varying the defuzzification methods, followed by
the implication-aggregation method. The “and” and “or” operator methods were also varied.
The results of the analysis are shown in Appendix 1. The analysis was carried out in the
following steps or methods. The results obtained by using all the methods listed below are

shown in Tables 4-15, 4-16, and 4-17.
4.7.1 Bisector Defuzzification Method

The bisector defuzzification method improved the numerical accuracy of the rig pipe and

weld pipe, alloy and butt weld models, to 41.38% and 44.82% respectively.
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4.7.2 LOM Defuzzification Method

The LOM defuzzification method was only able to improve the numerical accuracy of the

weld pipe, alloy and butt weld model, to 43.75%.

4.7.3 SOM Defuzzification Method

The SOM defuzzification method was only able to improve the linguistic accuracy of the
weld pipe, alloy and butt weld model, to 56.25%.

4.7.4 MOM Defuzzification Method

The MOM defuzzification method was only able to improve the numerical accuracy of the
weld pipe, carbon steel and butt weld model, to 52.38%.

4.7.5 Prod-Probor Implication-Aggregate Method

The prod-probor implication-aggregation method is used when there is interaction between
variables (on the contrary, the min-max method is used when there is no interaction between

variables). The method did not improve the accuracies of any of the three models.

4.7.6 “and”-Product Operation Method

The “and”-product operation method changes the “and” operator from min, in the base case,
to product. The method was only able to improve the numerical accuracy of the weld pipe,

carbon steel and butt weld model, to 50.79%.
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4.7.7

The “or”-probor operation method improved the numerical accuracy of the rig pipe model, to

“or”-Probor Operation Method

48.28%.
Table 4-15: Sensitivity Results for the Rig Pipe Model
Method Modified Operator | Numerical match(%) | Linguistic match(%) Ranking
Base case None 37.93 86.21 3
Bisector Defuzzification 41.38 86.21 2
MOM Defuzzification 34.48 86.21 6
LOM Defuzzification 27.59 17.24 8
SOM Defuzzification 0.00 86.21 7
Prod-Probor Implication-aggregation 37.93 86.21 3
"and"-product "and" 37.93 86.21 3
"or"-probor "or" 48.28 86.21 1

Table 4-16: Sensitivity Results for the Weld Pipe, Carbon Steel and Butt Weld

Model

Method Modified Operator | Numerical match(%) | Linguistic match(%) Ranking
Base case (centroid) None 49.21 74.60 1
Bisector Defuzzification 42.86 57.14 7
MOM Defuzzification 52.38 73.02 2
LOM Defuzzification 31.75 71.42 4
SOM Defuzzification 22.22 12.70 8
Prod-Probor Implication-aggregation 49.21 69.84 5
"and"-product "and" 50.79 71.43 3
"or"-probor "or" 42.86 63.49 6
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Table 4-17: Sensitivity Results for the Weld Pipe, Alloy and Butt Weld Model

Method Modified Operator | Numerical match(%) | Linguistic match(%) Ranking
Base case (centroid) None 40.63 50.00 4
Bisector Defuzzification 44.82 50.00 2
MOM Defuzzification 37.50 50.00 8
LOM Defuzzification 43.75 50.00 3
SOM Defuzzification 25.00 56.25 1
Prod-Probor Implication-aggregation 40.63 50.00 4
"and"-product "and" 40.63 50.00 4
"or"-probor "or" 40.63 50.00 4

The analysis shows that the models achieved better linguistic accuracy than numerical
accuracy. While sensitivity analysis caused some positive and negative changes in the
numerical accuracies of the models, it did not change their linguistic accuracies. The only
exception is the weld pipe model for alloy and butt weld, which had a linguistic accuracy
improvement from 50.00% to 56.25%. The sensitivity analysis done on the calibrated rig
pipe model improved the numerical accuracy of the base case, but there was no
improvement in the linguistic accuracy. The “or”-probor operation method produced the
best result for this model, that is, numerical and linguistic accuracies of 48.28% and 86.21%
respectively, followed by the bisector method, which produced numerical and linguistic

accuracies of 41.38% and 86.21% respectively.

The sensitivity analysis done on the calibrated weld pipe, carbon steel and butt weld model,
resulted in numerical accuracy improvements over the base case, for the model through the
MOM method (52.38%) and “and”-product methods (50.79%). However, greater linguistic
accuracy could not be obtained. Rather, the other methods produced linguistic accuracies
that are lower than that of the base case. Based primarily on the linguistic matches and

secondarily on the numerical matches, the best method is the base case method.
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The sensitivity analysis done on the calibrated weld pipe, alloy and butt weld model,
resulted in numerical accuracy improvement over the base case, through the bisector
method (44.82%) and the LOM method (43.75%), and linguistic accuracy improvement for
the model through the SOM method (56.25%), the latter of which produced the lowest
numerical accuracy among the methods (25.00%). Based primarily on the linguistic

matches and secondarily on the numerical matches, the best method is the SOM method.

4.7.8 Linguistic Error Distribution Analysis

In order to determine the accuracies of the linguistic outputs from the models, an error
distribution matrix was developed. This matrix helps to determine the percentage of the
linguistic outputs of a model that constitutes a match, or that are one term off or two terms
off. One term off means that the actual and predicted outputs are one term apart. For
example, if the predicted output is “average” and the actual term is “large”, the error is a

1-term error. Two terms off means that the actual and predicted output are two linguistic
terms apart. For example, if the predicted output is “low” and the actual term is “large”, the

error is a 2-term error. These explanations are illustrated in Table 4-18.

Table 4-18: Linguistic Error Distribution Matrix

Actual Linguistic Term
small average large
small atch 1 term off 2 terms off
Predicted Linguistic Term average 1 term off match 1 term off
large 2 terms off 1 term off match

The results of the linguistic term matching are shown in Table 4-19. The linguistic error

distribution analysis was done to determine the nature and degree of the linguistic errors that
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are present in the developed models. This is necessary since the function of fuzzy expert

systems is primarily to provide linguistic output based on linguistic input. For the rig pipe

model, all the different sensitivity methods used have high linguistic matches. The only

exception is the LOM method which has a very low linguistic match (17.24%). For the

weld pipe model (carbon steel and butt weld), all the different sensitivity methods used

except the bisector method (57.14%), and the SOM method (12.70%), have high linguistic

matches. For the weld pipe model (alloy and butt weld), all the different sensitivity methods

used have average linguistic matches.

Table 4-19: Linguistic Error Distribution Table for Rig Pipe and Weld Pipe Models

Weld Pipe, Carbon Steel

Weld Pipe, Alloy and

Tosting Mothod | smateh/ono match | ¥ 1pe Modell o Buit Weld Model | Butt Weld Model

match (%) 86.21 74.60 50.00

Base case 1-term off (%) 10.34 22.22 50.00
2-term off (%) 3.45 3.17 0.00

match (%) 86.21 57.14 50.00

Bisector 1-term off (%) 10.34 39.68 50.00
2-term off (%) 3.45 3.17 0.00

match (%) 86.21 73.02 50.00

MOM method 1-term off (%) 10.34 26.98 50.00
2-term off (%) 345 0.00 0.00

match (%) 17.24 71.42 50.00

LOM method 1-term off (%) 79.31 28.57 50.00
2-term off (%) 3.45 0.00 0.00

match (%) 86.21 12.70 56.25

SOM method 1-term off (%) 10.34 71.43 37.50
2-term off (%) 3.45 15.87 6.25

match (%) 86.21 69.84 50.00

Prod-Probor method | 1-term off (%) 10.34 28.57 50.00
2-term off (%) 3.45 1.59 0.00

match (%) 86.21 71.43 50.00

"and"-product method | 1-term off (%) 10.34 28.57 50.00
2-term off (%) 3.45 0.00 0.00

match (%) 86.21 63.49 50.00

"or"-probor method | 1-term off (%) 10.34 33.33 50.00
2-term off (%) 3.45 3.17 0.00
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Although the models do not have good numerical accuracies (i.e., they mostly have
numerical accuracies less than 50%), their linguistic accuracies are satisfactory (i.e., they
mostly have linguistic accuracies greater than 50%). All the different methods in the fuzzy
inference mechanism affected the model accuracies to different extents. Therefore, a
conclusion cannot be drawn with regard to the best method. There is no clear-cut method for
improving the accuracies of the models, using sensitivity analysis. The results obtained from
the error distribution analysis show that all the models have a high linguistic accuracy and a

low 2-term error.

4.8 Conclusions

In conclusion, even though the models have high linguistic accuracies, the numerical

accuracy of the models is low. Several reasons contribute to these results:

e The models suffered from lack of sufficient data and responses to interview
questionnaires. Some of the available data were subjective, and had to be
converted into numerical data, and this may have introduced errors in the models.
It was difficult to build membership functions and fuzzy rules by using any of the
existing methods. This is because of lack of significant size data set, which is a
common problem in modeling construction operations. Although the data set
available for use in this study, that is, the data set published in Fayek et al. (2002),
is not a large data set, significant effort was required to collect it over a period of

three months. The data available does not exist in the form required for model
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development. The membership functions could not be validated since data for
validation does not exist in this form while the fuzzy rules were developed using

an iterative logical reasoning approach.

Selecting all of the significant factors that affect productivity of tasks is a
complex problem. A large number of factors affect industrial construction
productivity and it is difficult to determine which factors should be included in a
productivity model. In this study, two important considerations were the factors
for which data was available and the factors that were identified in Fayek et al.

(2002) as being important.

The problems of lack of sufficient data and the presence of a large number of
input variables made it difficult to use the other two techniques for model
development that were explored in this research, namely, ANFIS, and Neuroshell
2. These two methods could not be implemented because they require substantial
amounts of data to train the models, as well as to test and check the models for
errors. Furthermore, these techniques work well with a limited number of input
variables. Twenty-one input variables were considered for use in this study, for
each model, and this number is too large for the ANFIS and Neuroshell 2
techniques, therefore rendering the techniques infeasible. It is also difficult to
implement a fuzzy expert system to model productivity with a large number of
input variables, because of the problem associated with building a large rulebase
to accommodate all the factors. This is why the models’ structures were modified

to accommodate sub-models, which may have introduced inaccuracies.
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The study demonstrated that fuzzy logic and fuzzy expert systems could be used to develop
models for predicting the productivity of industrial construction activities to a high degree
of linguistic accuracy. The study also illustrated how to use incomplete data, especially in
situations where objective and/or exact data are not available, to model productivity, as
well as how to model a many-input system, using statistical techniques. However, several
issues have to be addressed before a very complete model can be developed. These issues

are discussed in the next chapter.

123



5. Conclusions and Recommendations

5.1 Conclusions

The main objective for carrying out this research was to develop models for predicting
industrial construction labor productivity with the use of fuzzy logic techniques. In order
to achieve this objective, the factors that affect industrial construction labor productivity,
at the activity and project levels, were identified, along with their context variables.
Membership functions were generated for these factors, as well as for the output factor,
that is, productivity, and, fuzzy rulebases were developed for the models. The models were

tested and calibrated for numerical and linguistic accuracies in MATLAB.

A comprehensive list of factors affecting industrial construction productivity was
identified through a review of existing literature, and through the use of information
obtained from the study done by Fayek et al. (2002). All the factors that were identified
were categorized into three classes, namely: context variables, activity-level factors, and
project-level factors. The context variables were identified based on their degrees of
variation on a project while the activity-level and project-level factors were identified
based on the scope within which they affect the productivity of an activity. Two context
variables, namely: material type and weld type, were used to partition the data set for the
weld pipe activity. Two model types were generated for this activity, namely: the weld
pipe model based on carbon steel material and butt weld process, and, the weld pipe model
based on alloy material and butt weld process. Carbon steel and alloy were chosen because

they were the most frequently occurring pipe material types during the period of data
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collection at the industrial construction site where the data published in Fayek et al. (2002)
were obtained. Butt weld was the only welding process that was selected because it
constituted over 93% of the data collected for weld pipe activity (that is, 95 out of 102
data points). No context variable was applied on the rig pipe data and therefore, this

activity had only one model.

The factors that were included in the productivity models that were developed in this study
were selected based on the availability of raw data. The raw data that were used to test the
numerical and linguistic accuracies of the models were extracted from the data published
in Fayek et al. (2002). Expert questionnaires were also completed by industrial
construction researchers and personnel. The data on 21 input factors affecting industrial
construction productivity, as well as data on the productivity of the two activities, namely
rig pipe and weld pipe, were extracted from the data records of the industrial construction

study.

Membership functions were developed for the fuzzy expert systems used to build the
productivity models. The development process incorporated both objective and subjective
input data. The development of membership functions was done using logical reasoning
and interview responses. The membership functions were subsequently fine-tuned by
increasing the extent of overlap between the legs of the membership functions, thereby
increasing their fuzziness. However, the accuracy of the membership functions could not

be tested because of a lack of data that exists in the required form.
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The input factors that were used to model rig pipe and weld pipe productivities in this
study are quite considerable in number, and this presented a problem regarding model
development using the Mamdani-type fuzzy expert system. Therefore, the feasibility of
one neuro-fuzzy technique, that is, the Sugeno-type ANFIS, and, a neural network
technique, that is, Neuroshell 2, was explored, with the main objective of modeling
productivity using all the input factors. However, it was observed that the two techniques
do not work well with many input factors and limited data sets. Therefore, it became
necessary to modify the modeling process in order to be able to use the Mamdani fuzzy
expert technique in MATLAB. This was achieved in two stages: firstly, the structures of
the three models were modified to accommodate sub-models, and, secondly, using
correlation analysis, the models were simplified by determining the factors that
contributed significantly towards determining the productivity output. This statistical
technique also provided a clear picture of the relationships that existed among the input
variables, and, between the variables and productivity. This reduced the number of input
factors to a manageable number, for each model, and helped in the development of the

rulebases.

The relationships existing among the input variables and between the input variables and
productivity were used to develop the fuzzy rulebases that were used to provide the logical
reasoning component of the fuzzy expert systems. The rulebases were developed based on
the simplification of the input factors done using correlation analysis. This facilitated the
development of manageable rulebases, therefore avoiding the exponential growth of rules

that could arise from having to use a large number of input factors in the models. The
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fuzzy If-Then rules were developed based on logical reasoning, and subsequently fine-
tuned to achieve better model accuracies. The rulebases were implemented in MATLAB
using the Mamdani fuzzy expert system technique. Each of the three models was
developed in four trials, and each of the models developed in each trial was initially tested
using the data published in Fayek et al. (2002). The best trial was selected for each model
type, based on the degree of linguistic and numerical accuracies achieved. The selected
models were calibrated to improve their performances and were re-tested with the

published data.

The models developed were tested using the extracted raw data for rig pipe and weld pipe
activities. The results predicted by the models are acceptable, with the three models having
generally low numerical accuracies, but high linguistic accuracies. Only the weld pipe
model based on carbon steel and butt weld, had a numerical accuracy that is greater than
50%. However, this acceptable numerical accuracy was achieved only after performing a
sensitivity analysis on the model. No concrete conclusion could however be drawn based
on the sensitivity analysis. A linguistic error distribution analysis was also carried out for
each model to determine the margin of error generated by the linguistic outputs of the
models. The models were observed to have performed at low linguistic error margins.
Since the intent of the fuzzy expert system is to provide linguistic output based on
linguistic input, these results indicate that the performance of the productivity prediction

models is acceptable.
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In conclusion, this study demonstrated the use of fuzzy logic and fuzzy expert system in
modeling industrial construction productivity. The study also highlighted the problems
that would be faced by researchers carrying out other similar studies. More work remains
to be done in order to be able to use fuzzy logic and fuzzy expert systems to accurately
model industrial construction labor productivity, especially since little research has been

carried out in this area using these techniques.

5.2 Contributions

Significant contributions were made by this study in advancing the field of industrial
construction productivity research. The main contribution of this research is in developing
a methodology for the development of realistic models for predicting industrial
construction productivity. Other contributions were made in terms of highlighting the
appropriateness of using fuzzy logic and fuzzy expert system techniques to model
productivity, despite facing different problems, and, using these techniques to model
objective and subjective data that were extracted from an actual productivity study. Since
the data collected in the productivity study represent the type of data that would be
available within organizations, this research demonstrates how such data can be used for

predicting productivity.

This study shows how fuzzy set theory and fuzzy expert system could be used to build
productivity models based on realistic data. A large number of factors affecting two
industrial construction activities were identified. A subset of these factors was used in

building the productivity models in this study. This study shows how a subset of factors
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could be chosen based on the availability of data. A process of converting subjective data
into objective data was also developed. This process involves translating subjective
linguistic variables, such as low, average, and, high, into objective numbers, such as 0, 5,

and 10, in a realistic manner.

Membership functions and fuzzy rulebases were developed based on logical reasoning,
without the availability of large data sets required to train, test, and, validate the
membership functions and fuzzy rules, and without a large number of expert opinions.
This study demonstrates how to incorporate flexibility by using basic model structuring
and statistical correlation analysis to simplify productivity models that would otherwise

have had to incorporate a large number of input factors.

Finally, this research provides a basis for future work in predicting the productivity of
different industrial construction activities, given the numerous factors affecting productivity.
Since this problem is largely a subjective one, with non-mathematical relationships, fuzzy
logic is an appropriate technique for modeling. This research has illustrated its usefulness in
modeling the productivity prediction problem, and has laid the foundation for future research

in this area.

5.3 Limitations and Recommendations for Future Research

This research study was faced with several limitations, which may have affected the

performance of the productivity models developed. If these limitations could be overcome
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in future studies, better productivity models could be developed. The limitations are as

follows:

e Survey Data: The study was done using productivity data collected for a study on
the effective integration of apprentices into the industrial construction sector.
While such data illustrates what data is realistically available, future research can
improve on these models by including a data collection process that is well
structured and conducted specifically for the purpose of collecting the required
data for the models. The survey should be structured with the main objective of
collecting both subjective and objective data for factors affecting industrial
construction labor productivity of the chosen activities. For each factor, both
objective and linguistic data should be obtained from as many industry sources as
possible, within the time and cost budget of the research study. This would help
provide sufficient data sets and a sufficient number of responses necessary for the
development of fuzzy expert systems. It may also improve the accuracy of the

resultant models.

e Model Design and Structure: A limited number of context variables were used
to develop the weld pipe models, while no context variable was used to develop
the rig pipe model. This limits the classification of the activities and their models,
as well as the models’ outputs. The models’ structures include factors in the sub-
models, for which no raw data exist. The only data used in the sub-models were
those resulting from the membership functions, which were based on subjective

logical reasoning. This may have introduced errors into the models and
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consequently reduced the models’ accuracies. Future studies should involve the
acquisition of data for these sub-models, and more data related to the context

variables.

Statistical Techniques: Correlation analysis was used in this study to simplify
the models through the determination of the input factors that most significantly
contribute to the models’ output. However, in order not to leave out certain
factors that were considered as important based on field experience, greater
flexibility was introduced into the factor-selection process by the inclusion of
certain input factors that were not found to be statistically significant. This may
have introduced errors into the models. Future research should devise a method
of factor selection that reduces the errors introduced through the selection of
factors. Future research should also consider the possibility of using multiple non-
linear regression as a preliminary factor selection technique. The benefit of doing
this is that factors will be selected not only on the basis of their linear relationship
with productivity, but also on the basis of other possible relationships, such as
exponential or polynomial relationship. This requires that the relationships
between the input variables (such as exponential or polynomial) and the output
factor should be assumed. This technique could easily be applied only in a

situation where a small number of variables are involved.

Development of Fuzzy Expert Systems: The membership functions and fuzzy

rules could not be developed and validated using existing techniques because of
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the lack of sufficient data and limited interview responses. Consequently, the
membership functions and fuzzy rules had to be developed using iterative logical
reasoning. This may have introduced errors in the models. Future data collection
techniques should take into consideration the techniques to be used to develop the
membership functions and fuzzy rules to be used in the fuzzy expert systems.
With respect to the development of membership functions, greater research
should be done to determine how the shape and degree of overlap of membership

functions affect the model performance.

e Fuzzy Logic Techniques: The models in this study were developed using the
Mamdani fuzzy expert system. Although the feasibility of neuro-fuzzy and neural
network techniques was studied in this research, future work should examine the
feasibility of these and other fuzzy logic techniques, such as binary relations, to
model industrial construction productivity. Furthermore, although significant
studies have been done in this area using artificial neural networks, more work
should be done to determine how fuzzy logic techniques could perform better
when faced with the problem of insufficient data, especially since it is difficult to

obtain large data sets in the field of construction.

This study is one of the few that has been done in the area of industrial construction labor
productivity modeling using fuzzy logic and fuzzy expert systems. It is hoped that future
studies will improve on the techniques used in this study, while taking into consideration

the difficulties encountered in this study.
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Appendix A (Expert Questionnaire)

General Information

This survey questionnaire is being used to obtain information for the development of a
university thesis. Its main purpose is to gather information from an expert’s point of view,
which will be used to model certain factors affecting industrial construction productivity with
respect to two tasks: Rig Pipe and Weld Pipe. Please fill out the questionnaire as accurately as
you can by circling the chosen response(s). If you are not sure of an exact value for any
particular question, you can estimate an approximate value.

For the purpose of ensuring confidentiality, your company information and identity will not be
linked in any way to the project information in subsequent sections. Kindly answer the
following questions based on your general knowledge and experience. If in your opinion, the
questions can have more than one answer, you may circle more than one answer.

The terms “average”, “ fair”, and * medium” imply that the condition is standard in the
experience of the respondent.
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General Instruction: Kindly circle the most appropriate options. You may circle more than one
value for each term.

A. Rig Pipe

I Questions related to Input Factors:

1. What sizes or diameters would you consider as small, average and large,
respectively for a rigged pipe? The pipe sizes or diameters are in inches.
Small: <2,2,4,6,8, 10, 12, 14, 16, 18, 20, >20
Average: <2,2,4,6,8, 10, 12, 14, 16, 18, 20, >20
Large: <2,2,4,6, 8,10, 12, 14, 16, 18, 20, >20
2. What lengths would you consider as short, average and long, respectively for a
rigged pipe? The pipe lengths are in feet.
Short: <2, 2, 6, 10, 14, 18, 22, 26, 30, 40, >40
Average: <2, 2, 6, 10, 14, 18, 22, 26, 30, 40, >40
Long: <2, 2, 6, 10, 14, 18, 22, 26, 30, 40, >40
3. The efficiency of rigging a pipe is to be determined by the percentage of crane
rigging involved. What percentage of crane rigging would you consider as low,
average and high, respectively, for a rigged pipe?
Low: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Average: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

High: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

147



4. What crew ratios (journeymen : apprentice) would you consider as small,
average, and high, respectively, for a rigging task?

Small: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1

Average: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1

Large: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1

Note:

1:1 = one journeyman for every one apprentice on the crew
2:1 = two journeymen for every one apprentice on the crew
3:1 = three journeymen for every one apprentice on the crew
4:1 = four journeymen for every one apprentice on the crew
5:1 = five journeymen for every one apprentice on the crew

6:1 = six journeymen for every one apprentice on the crew
7:1 = seven journeymen for every one apprentice on the crew

5. What task crew sizes would you consider as small, average, and large,
respectively, for a rigging task? The task crew sizes are in terms of number of
crew members, excluding the foreman.

Small: <2, 2, 4,6, 8, 10, 12, 14, 16, >16
Average: <2,2,4,6,8,10, 12, 14, 16,>16
Large: <2, 2,4, 6, 8,10, 12, 14, 16,>16

6. What overall crew sizes would you consider as small, average, and large,
respectively, for a rigging task? The overall crew sizes are in terms of number
of crew members, excluding the foreman.

Small: <4, 8, 12, 16, 20, 24, 28, >28
Average: <4, 8, 12, 16, 20, 24, 28, >28

Large: <4, 8, 12, 16, 20, 24, 28, >28
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7.

10.

What final elevations above the ground would you consider as low, average and
high, for a rigging task? The elevations are in feet above the ground level.

Low: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

Average: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

High: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

How would you rate the experience of a crew working together on a rigging
task? The times shown below are in terms of number of months that the crew
has worked together.

Low: <1,1,2,4,6,8,10,12,>12

Average: <1, 1,2,4, 6, 8,10, 12, >12

High: <1, 1,2, 4,6, 8,10, 12,>12

How would you rate the experience of a crew in terms of seniority, on a rigging
task? Ratings are in terms of average number of years of crew members’
experience (e.g. total number of crew members divided by total number of years
of experience of all crew members combined).
Low:<1,1,2,4,6,8,10,12,>12

Average: <1,1,2,4,6,8,10,12,>12

High: <1, 1,2,4,6,8,10,12,>12

How would you rate the following average temperatures as they affect
productivity of a rigging task? The temperature values are in ° C.

Low: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30

Average: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30

High: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30
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11. How would you rate the following average windspeeds as they affect the
productivity of a rigging task? The windspeed values are in km/hr.

Low: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40
Average: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40
High: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40
12. How would you rate the following average precipitations as they affect the
productivity of a rigging task? The precipitation values are in mm.
Low: <10, 10, 20, 30, 40, 50, 60, >60
Average: <10, 10, 20, 30, 40, 50, 60, >60
High: <10, 10, 20, 30, 40, 50, 60, >60
13. How would you rate the following average relative humidities as they affect the
productivity of a rigging task? The average relative humidity values are in
percentages.
Low: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Average: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
High: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
14. On a scale of 1-100 %, what percentage of overtime per week would you
consider as low, average and high respectively, for a rigging task?
Low: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Average: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

High: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
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15.

16.

17.

18.

19.

20.

21.

On a scale of 1-100 %, what percentage of prefabricated work ratings would
you consider as low, average and high respectively, for a rigging task?

Low: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Average: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

High: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

On a scale of 1-10, what is the impact of the access to the work area on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of ground condition on the productivity
of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of crowding of work area on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of drawing and specification quality on
the productivity of a rigging task?

1,2,3,4,5,6,7,8,9, 10

On a scale of 1-10, what is the impact of the crew’s skill level on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9, 10

On a scale of 1-10, what impact of weather conditions on work progress and
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10
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22.

23.

24,

25.

26.

27.

28.

On a scale of 1-10, what is the impact of the adequacy of site storage on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of crew turnover on the productivity of a
rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of inspection required for a
rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of safety required for a rigging
task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of quality required for a
rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of the sufficiency of number of crew
members on the productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of the complexity of the shape of pipe on
the productivity of a rigging task?

1,2,3,4,5,6,7,8,9, 10
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29.

30.

31.

32.

33.

34.

35.

On a scale of 1-10, what is the impact of training on the productivity of a
rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of field supervision on the productivity of
a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of disruptions on the productivity of a
rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of material shortages on the productivity
of a rigging task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of rework on the productivity of a rigging
task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of change orders on the productivity of a
rigging task?

1,2,3,4,5,6,7,8,9, 10

On a scale of 1-10, what is the impact of organizational constraint on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10
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36. On a scale of 1-10, what is the impact of the availability of equipment on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10

37. On a scale of 1-10, what is the impact of equipment breakdowns on the
productivity of a rigging task?
1,2,3,4,5,6,7,8,9,10

38. On a scale of 1-10, what is the impact of project management on the
productivity of a rigging task?

1,2,3,4,5,6,7,8,9,10
Question(s) related to the Output Factor (Productivity):
1. For carbon steel pipe, what are the productivity ranges for rigging? Productivity

values are in manhours/foot.

Good: <0.1, 0.1,0.3,0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,29,3.1,>3.1

Average: <0.1,0.1,0.3,0.5,0.7,09, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,2.9,3.1,>3.1

Poor: <0.1, 0.1, 0.3,0.5,0.7,09, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,2.9,3.1,>3.1
2. For stainless steel pipe, what are the productivity ranges for rigging?

Productivity values are in manhours/foot.

Good: <0.1,0.1,0.3,0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,2.9,3.1,>3.1

Average: <0.1,0.1,0.3,0.5,0.7,0.9,1.1,1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
25,2.7,2.9,3.1,>3.1

Poor: <0.1, 0.1, 0.3,0.5,0.7,09, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,29,3.1,>3.1
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3. For alloy pipe, what are the productivity ranges for rigging? Productivity values
are in manhours/foot.

Good: <0.1, 0.1,0.3,0.5,0.7,09,1.1,1.3,1.5,1.7, 1.9, 2.1, 2.3,
25,2.7,2.9,3.1,>3.1

Average: <0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
25,2.7,2.9,3.1,>3.1

Poor: <0.1, 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1, 2.3,
2.5,2.7,29,3.1,>3.1
4. For atypical rigging task, what productivity ranges would you consider as good,

average and poor? Productivity values are in manhours/foot.

Good: <0.1, 0.1, 0.3, 0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
25,2.7,2.9,3.1,>3.1

Average: <0.1, 0.1, 0.3,0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,2.9,3.1,>3.1

Poor: <0.1, 0.1, 0.3, 0.5, 0.7,0.9,1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
2.5,2.7,2.9,3.1,>3.1

B. Weld Pipe

I. Questions related to Input Factors:

1. What sizes or diameters would you consider as small, average and large,
respectively for a welded pipe? The pipe sizes or diameters are in inches.
Small: <2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, >20
Average: <2,2, 4, 6, 8, 10, 12, 14, 16, 18, 20, >20

Large: <2, 2,4, 6, 8,10, 12, 14, 16, 18, 20, >20
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2. 'What wall thicknesses would you consider as thin, average, thick, respectively
for a welded pipe? The wall thicknesses are in inches.

Thin: <0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, >1.7
Average: <0.1, 0.1, 0.3,0.5,0.7,0.9,1.1, 1.3, 1.5, 1.7, >1.7
Thick: <0.1, 0.1, 0.3, 0.5,0.7,0.9, 1.1, 1.3, 1.5, 1.7, >1.7
3. What crew ratios (journeymen: apprentice) would you consider as small,
average, and high, respectively, for a welding task?
Small: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1
Average: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1

Large: 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1

Note:

1:1 = one journeyman for every one apprentice on the crew
2:1 = two journeymen for every one apprentice on the crew
3:1 = three journeymen for every one apprentice on the crew
4:1 = four journeymen for every one apprentice on the crew
5:1 = five journeymen for every one apprentice on the crew
6:1 = six journeymen for every one apprentice on the crew
7:1 = seven journeymen for every one apprentice on the crew

4. What task crew sizes would you consider as small, average, and large,
respectively, for a rigging task? The task crew sizes are in terms of number of
crew members, excluding the foreman.

Small: <2, 2, 4, 6, 8, 10, 12, 14, 16, >16
Average: <2,2,4,6, 8,10, 12, 14, 16,>16

Large: <2, 2,4, 6, 8,10, 12, 14, 16, >16
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5. What overall crew sizes would you consider as small, average, and large,
respectively, for a rigging task? The overall crew sizes are in terms of number
of crew members, excluding the foreman.

Small: <4, 8, 12, 16, 20, 24, 28, >28
Average: <4, 8, 12, 16, 20, 24, 28, >28
Large: <4, 8, 12, 16, 20, 24, 28, >28

6. What final elevations above the ground would you consider as low, average and

high, for a welding task? The elevations are in feet above the ground level.
Low: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

Average: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

High: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

7. How would you rate the experience of a crew working together on a welding
task? The times shown below are in terms of number of months that the crew
has worked together.

Low:<1,1,2,4,6,8,10, 12,>12
Average: <1, 1, 2,4, 6, 8,10, 12, >12
High: <1, 1,2, 4,6, 8,10, 12,>12

8. How would you rate the experience of a crew in terms of seniority, on a welding
task? Ratings are in terms of average number of years of crew members’
experience (e.g. total number of crew members divided by total number of years
of experience of all crew members combined).
Low:<1,1,2,4,6,8,10,12,>12

Average: <1, 1,2,4,6,8,10,12,>12

High:<1,1,2,4,6,8,10,12,>12
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10.

11.

12.

How would you rate the following average temperatures as they affect
productivity of a welding task? The temperature values are in ° C.

Low: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30

Average: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30

High: <-40, -40, -30, -20, -10, 0, 10, 20, 30, >30

How would you rate the following average windspeeds as they affect the
productivity of a welding task? The windspeed values are in km/hr.

Low: <§, 5, 10, 15, 20, 25, 30, 35, 40, >40

Average: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

High: <5, 5, 10, 15, 20, 25, 30, 35, 40, >40

How would you rate the following average precipitations as they affect the
productivity of a welding task? The precipitation values are in mm.

Low: <10, 10, 20, 30, 40, 50, 60, >60

Average: <10, 10, 20, 30, 40, 50, 60, >60

High: <10, 10, 20, 30, 40, 50, 60, >60

How would you rate the following average relative humidities as they affect the
productivity of a welding task? The average relative humidity values are in
percentages.

Low: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Average: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

High: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
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13. On a scale of 1-100 %, what percentage of overtime per week would you
consider as low, average and high respectively, for a welding task?

Low: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Average: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
High: <10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

14. On a scale of 1-100 %, what percentage of prefabricated work ratings would
you consider as low, average and high respectively, for a welding task?
Low: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Average: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
High: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

15. On a scale of 1-10, what is the impact of the access to the work area on the
productivity of a welding task?
1,2,3,4,5,6,7,8,9,10

16. On a scale of 1-10, what is the impact of ground condition on the productivity
of a welding task?
1,2,3,4,5,6,7,8,9,10

17. On a scale of 1-10, what is the impact of crowding of work area ratings on the
productivity of a welding task?
1,2,3,4,5,6,7,8,9,10

18. On a scale of 1-10, what is the impact of drawing and specification quality on
the productivity of a welding task?

1,2,3,4,5,6,7,8,9,10
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19.

20.

21.

22.

23.

24.

25.

26.

On a scale of 1-10, what is the impact of the crew’s skill level on the
productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what impact of weather conditions on work progress and
productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of the adequacy of site storage on the
productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of crew turnover on the productivity of a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of inspection required for a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of safety required for a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, how would you rate the level of quality required for a
welding task?

1,2,3,4,5,6,7,8,9,10
On a scale of 1-10, what is the impact of the sufficiency of number of crew
members on the productivity of a welding task?

1,2,3,4,5,6,7,8,9,10
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27.

28.

29.

30.

31.

32.

33.

On a scale of 1-10, what is the impact of the complexity of the shape of pipe on
the productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of training on the productivity of a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of field supervision on the productivity of
a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of disruptions on the productivity of a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of material shortages on the productivity
of a welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of rework on the productivity of a
welding task?

1,2,3,4,5,6,7,8,9,10

On a scale of 1-10, what is the impact of change orders on the productivity of a
welding task?

1,2,3,4,5,6,7,8,9,10
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34. On a scale of 1-10, what is the impact of organizational constraint on the
productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

35. On a scale of 1-10, what is the impact of the availability of equipment on the
productivity of a welding task?
1,2,3,4,5,6,7,8,9, 10

36. On a scale of 1-10, what is the impact of equipment breakdowns on the
productivity of a welding task?

1,2,3,4,5,6,7,8,9, 10
37. On a scale of 1-10, what is the impact of project management on the
productivity of a welding task?

1,2,3,4,5,6,7,8,9,10

II.  Question(s) related to the Output Factor (Productivity):
1. For carbon steel pipe and a butt weld, what are the productivity ranges for
welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, >7.5
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2. For carbon steel pipe and a socket weld, what are the productivity ranges for
welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5,7.0,7.5,>7.5

3. For carbon steel pipe and a fillet weld, what are the productivity ranges for
welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5,2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5,7.0,7.5,>7.5
4. For stainless steel pipe and a butt weld, what are the productivity ranges for

welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, >7.5
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5. For stainless steel pipe and a socket weld, what are the productivity ranges
for welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

6. For stainless steel pipe and a fillet weld, what are the productivity ranges for
welding? Productivity values are in manhours/dia.-inch.

Good: <0.5,0.5,1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

7. For alloy pipe and a butt weld, what are the productivity ranges for welding?
Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5,7.0,7.5,>7.5
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8. For alloy pipe and a socket weld, what are the productivity ranges for
welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,4.0,4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Average: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5
9. For alloy pipe and a fillet weld, what are the productivity ranges for

welding? Productivity values are in manhours/dia.-inch.

Good: <0.5, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5,7.0,7.5,>7.5

Average: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5

Poor: <0.5,0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
6.0,6.5,7.0,7.5,>7.5
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Appendix B (Weather-Related Websites)

/weather/longterm/historical/data’edmonton_alberta.htim

http://www.washingtonpost.com/wp-sry
(July, 2002).

http://www.discoveredmonton.com/Edmonton/TravelEssentials/WeatherInformation/8-
106.html (July, 2002).

http://parkscanada.pch.ge.ca/parks/alberta/elk island/English/weather e.htm (July, 2002).

http://envweb.env.gov.ab.ca/env/forests/fpd/htit. html (July, 2002).
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Appendix C (Membership Functions)

(I) Membership Functions for Rig Pipe Model
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Membership Functions for Task Crew Size
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Membership Functions for Experience of Crew Working together
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Membership Functions for Experience of Crew in terms of Seniority
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| Membership Functions for Average Windspeed

Membership Value

Membership Functions for Average Windspeed (Trials 1,2,3, and, 4)

Membership Functions for Average Precipitation
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1‘ Membership Functions for Average Precipitation
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| Membership Functions for Ground Conditions
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Membership Functions for Access to Work Area
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Membership Functions for Access to Work Area (Trials 1 and 2)
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Membership Functions for Access to Work Area
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Membership Functions for Crowding of Work Area
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Membership Functions for Crew Skill Level
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Membership Functions for Crew Skill Level ‘
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| Membership Functions for Adequacy of Site Storage
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Membership Functions for Crew Turnover
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: Membership Functions for Sufficiency of Number of Crew Members
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Membership Functions for Sufficiency of Number of Crew Members
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Membership Functions for Complexity of Shape of Pipe
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Membership functions for the number of consecutive days worked
without a break
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Membership Functions for Overall Crew Size
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Membership Functions for Pipe Dimensions
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‘ Membership Functions for Crew Competency
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Membership Functions for Site Conditions
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Membership Functions for Weather Conditions
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\ Membership Functions for Crew Characteristics
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i Membership Functions for Working Conditions
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(II) Membership Functions for Weld Models (Applies to both Weld Pipe Models,
except in cases where it is stated otherwise)

The same membership functions exist for the weld pipe models as the ones for the rig
pipe model. The only exceptions are the membership functions for pipe wall thickness
or schedule, pipe diameter, shelter requirement, and productivity. These membership
functions are illustrated below:
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Membership Functions for Pipe Diameter
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Membership Functions for Shelter Requirement
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Membership Functions for Productivity (manhours/diameter-inch of pipe)
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Appendix E (Simplified Models)

Rig Pipe Model Before and After Simplification (Trials 1, 2, and, 3)

Pipe Dimensions Sub-model:

Input 1: Pipe length Input 1: Pipe length
Input 2: Pipe diameter Input 2: Pipe diameter

Crew Dimensions Sub-model:

Input 3: Crew ratio Input 3: Crew ratio

Input 4: Task crew size Input 4: Task crew size
Input 5: Overall crew size ——®| Input 5: Overall crew size
Input 6: Sufficiency of number of crew

Crew Competency Sub-model:

Input 7: Crew Skill level Input 7: Crew Skill level
Input 8: Crew turnover Input 9: Crew experience (learning)
Input 9: Crew experience (learning) I Input 10: Crew experience (seniority)
Input 10: Crew experience (seniority) Input 11: No. of consecutive days
Input 11: No. of consecutive days worked

worked

Degree of Difficulty Sub-model:

Input 12: Elevation Input 12: Elevation
Input 13: Complexity of shapeof | —— pI Input 13: Complexity of shape of
pipe pipe
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Site Conditions Sub-model:

Input 14: Ground conditions Input 17: Adequacy of site storage
Input 15: Access to work area P

Input 16: Crowding of work area

Input 17: Adequacy of site storage

Weather Conditions Sub-model:

Input 18: Impact of weather conditions Input 19: Avg. temperature
Input 19: Avg. temperature L Input 20: Avg. windspeed
Input 20: Avg. windspeed Input 21: Avg,. precipitation
Input 21: Avg. precipitation

Weld Pipe Model (Carbon Steel and Butt Weld) Before and After Simplification (Trials
1,2, and, 3)

Pipe Dimensions Sub-model:

Input 1: Pipe diameter Input 1: Pipe diameter
Input 2: Wall thickness Input 2: Wall thickness

Crew Dimensions Sub-model:

Input 3: Crew ratio Input 3: Crew ratio

Input 4: Task crew size L3 Input 4: Task crew size
Input 5: Overall crew size Input 5: Overall crew size
Input 6: Sufficiency of number of crew
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Crew Competency Sub-model:

Input 7: Crew Skill level
Input 8: Crew turnover
Input 9: Crew experience (learning) I
Input 10: Crew experience (seniority)
Input 11: No. of consecutive days

Input 8: Crew turnover

Input 9: Crew experience (learning)
Input 10: Crew experience (seniority)
Input 11: No. of consecutive days

worked ‘XI(\?'](PA
Degree of Difficulty Sub-model:
Input 12: Elevation Input 12: Elevation
. ——————P .
Input 13: Shelter requirement Input 13: Shelter requirement
Site Conditions Sub-model:
Input 14: Ground conditions Input 16: Crowding of work area
Input 15: Access to work area L p| Input 17: Adequacy of site storage
Input 16: Crowding of work area

Input 17: Adequacy of site storage

Weather Conditions Sub-model:

Input 18: Impact of weather conditions Input 19: Avg. temperature
Input 19: Avg. temperature ! Input 20: Avg. windspeed
Input 20: Avg. windspeed Input 21: Avg. precipitation
Input 21: Avg. precipitation
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Weld Pipe Model (Alloy and Butt Weld) Before and After Simplification (Trials 1, 2, and, 3)

Pipe Dimensions Sub-model:

Input 1: Pipe diameter
Input 2: Wall thickness

&

Input 1: Pipe diameter
Input 2: Wall thickness

Crew Dimensions Sub-model:

Input 3: Crew ratio

Input 4: Task crew size

Input 5: Overall crew size

Input 6: Sufficiency of number of crew

I »| Input 4: Task crew size

Input 3: Crew ratio

Input 5: Overall crew size

Crew Competency Sub-model:

Input 7: Crew Skill level

Input 8: Crew turnover

Input 9: Crew experience (learning)

Input 10: Crew experience (seniority)

Input 11: No. of consecutive days
worked

Input 8: Crew turnover
Input 9: Crew experience (learning)

—®| Input 10: Crew experience (seniority)

Input 11: No. of consecutive days worked

Degree of Difficulty Sub-model:

Input 12: Elevation

Input 13: Shelter requirement
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Site Conditions Sub-model:

Input 14: Ground conditions Input 15: Access to work area
Input 15: Access to work area ————p Input 17: Adequacy of site storage
Input 16: Crowding of work area

Input 17: Adequacy of site storage

Weather Conditions Sub-model:

Input 18: Impact of weather conditions Input 19: Avg. temperature
Input 19: Avg. temperature Input 20: Avg. windspeed
Input 20: Avg. windspeed —®| Input 21: Avg. precipitation
Input 21: Avg. precipitation

Rig Pipe Model Before and After Simplification (Trial 4)

Pipe Dimensions Sub-model:

Input 1: Pipe length Input 1: Pipe length
Input 2: Pipe diameter Input 2: Pipe diameter

Crew Dimensions Sub-model:

Input 3: Crew ratio Input 3: Crew ratio

Input 4: Task crew size Input 4: Task crew size
Input 5: Overall crew size — | Input 5: Overall crew size
Input 6: Sufficiency of number of crew
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Crew Competency Sub-model:

Input 7: Crew Skill level Input 7: Crew Skill level
Input 8: Crew turnover Input 9: Crew experience (learning)
Input 9: Crew experience (learning) ) Input 10: Crew experience (seniority)
Input 10: Crew experience (seniority) Input 11: No. of consecutive days
Input 11: No. of consecutive days worked

worked

Degree of Difficulty Sub-model:

Input 12: Elevation Input 12: Elevation
Input 13: Complexity of shape of |——————p Input 13: Complexity of shape of
pipe pipe
Site Conditions Sub-model:
inpu: 1451 iroundtconditli{ons Input 16: Crowding of work area
: —>
nput 15: Access to work area Inout 17: Ad £ site st
Input 16: Crowding of work area npu euacy of site storage
Input 17: Adequacy of site storage

Weather Conditions Sub-model:

Input 18:
Input 19:
Input 20:
Input 21:

Impact of weather conditions Input 19: Avg. temperature
Avg. temperature | Input 20: Avg. windspeed
Avg. windspeed Input 21: Avg, precipitation
Avg. precipitation
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Weld Pipe Model (Carbon Steel and Butt Weld) Before and After Simplification (Trial 4)

Pipe Dimensions Sub-model:

Input 1: Pipe diameter Input 1: Pipe diameter
Input 2: Wall thickness Input 2: Wall thickness

Crew Dimensions Sub-model:

Input 3: Crew ratio Input 3: Crew ratio

Input 4: Task crew size Input 4: Task crew size
Input 5: Overall crew size —®| Input 5: Overall crew size
Input 6: Sufficiency of number of crew

Crew Competency Sub-model:

Input 7: Crew Skill level

Input 8: Crew turnover

Input 9: Crew experience (learning)

Input 10: Crew experience (seniority)

Input 11: No. of consecutive days
worked

Input 8: Crew turnover

Input 9: Crew experience (learning)
| Input 10: Crew experience (seniority)
Input 11: No. of consecutive days

waorked

Degree of Difficulty Sub-model:

Input 12: Elevation Input 12: Elevation
Input 13: Shelter requirement Input 13: Shelter requirement
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Site Conditions Sub-model:

Input 14:
Input 15:
Input 16:
Input 17:

Ground conditions Input 16: Crowding of work area
Access to work area L » Input 17: Adequacy of site storage
Crowding of work area

Adequacy of site storage

Weather Conditions Sub-model:

Input 18:
Input 19:
Input 20:
Input 21:

Impact of weather conditions
Avg. temperature

Avg. windspeed

Avg. precipitation

Input 19: Avg. temperature

- »{ Input 20: Avg. windspeed
Input 21: Avg. precipitation

Weld Pipe Model (Alloy and Butt Weld) Before and After Simplification (Trial 4)

Pipe Dimensions Sub-model:

Input 1: Pipe diameter
Input 2: Wall thickness

——————»

Input 1: Pipe diameter
Input 2: Wall thickness

Crew Dimensions Sub-model:

Input 3: Crew ratio

Input 4: Task crew size

Input 5: Overall crew size

Input 6: Sufficiency of number of crew

| Input 4: Task crew size

Input 3: Crew ratio

Input 5: Overall crew size
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Crew Competency Sub-model:

Input 7: Crew Skill level Input 8: Crew turnover
Input 8: Crew turnover Input 9: Crew experience (learning)
Input 9: Crew experience (learning) —®| Input 10: Crew experience (seniority)
Input 10: Crew experience (seniority) Input 11: No. of consecutive days worked
Input 11: No. of consecutive days

worked

Degree of Difficulty Sub-model:

Input 12: Elevation ’ Input 12: Elevation
Input 13: Shelter requirement Input 13: Shelter requirement

Site Conditions Sub-model:

Input 14: Ground conditions Input 15: Access to work area
Input 15: Access to work area - »! Input 17: Adequacy of site
Input 16: Crowding of work area storage

Input 17: Adequacy of site storage

Weather Conditions Sub-model:

Input 18: Impact of weather conditions Input 19: Avg. temperature
Input 19: Avg. temperature Input 20: Avg. windspeed
Input 20: Avg. windspeed —®| Input 21: Avg. precipitation
Input 21: Avg. precipitation
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Appendix F (Fuzzy Rulebases)

Rules for Rig Pipe Model (Trials 1 and 2)

Rules for Pipe Dimensions Sub-model

Pipe Dimensions

pipe length pipe diameter _pipe dimensions
short small smali
short average small
short large average
average small average
average average average
average large large
long small large
long average large
long large large
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Rules for Crew Dimensions Sub-model

Crew Dimensions
crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small small
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency

crew experience

crew experience

no. of consecutive

skill level (seniority) (learning) days crew competency
low low low low low
low low low average average
low low low high average
low low average fow average
low low average average average
fow low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medivm low low low low
medium low low average low
medium low low high average
medium low average low low
medium low average average average
medium low average high average
medium low high low average
medium low high average average
medium low high high average
medium average low low low
medium average low average average
medium average low high average
medium average average low average
medium average average average average
medium average average high average
medium average high low average
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Rules for Crew Competency Sub-model (Continued)
Crew Competency
crew experience crew experience no. of consecutive
skill level (seniority) (learning) days crew competency
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high low average high average
high low high low low
high low high average average
high low high high average
high average low low low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high low average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
complexity of shape elevation degree of difficulty

low low low
low average average
low high high

medium low average

medium average high

medium high high
high low average
high average high
high high high

Rules for Site Conditions Sub-model

Site Conditions

adequacy of site storage

site conditions

poor poor
fair fair
gOOd ‘g@d
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Rules for Weather Conditions Sub-model

Weather Conditions

avg. temperature avg.precipitation avg windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions

crew competency

crew characteristics

small low poor
small average average
small high good
average low poor
average average average
average high good
large low poor
large average average
large high good

Rules for Working Conditions Sub-model

Working Conditions
site conditions weather conditions working conditions

poor poor poor
poor fair poor
poor good fair
fair poor poor
fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for the Output Factor (Productivity)

Productivity
pipe dimensions  [crew characteristicsjdegree of difficulty] working conditions productivity
small poor low poor average
small poor low fair good
small poor low good good
small poor average poor average
small poor average fair average
small poor average good good
small poor high poor poor
smatl poor high fair average
small poor high good average
small average low poor average
small average low fair good
small average low good good
small average average poor average
small average average fair average
small average average good good
small average high poor average
small average high fair average
small average high good average
small good low poor average
small good low fair good
small good low good good
small good average poor average
small good average fair good
small good average good good
small good high poor average
small good high fair good
small good high good good
average poor low poor poor
average poor low fair average
average poor low good good
average poor average poor poor
average poor average fair average
average poor average good average
average poor high poor poor
average poor high fair poor
average poor high good average
average average low poor average
average average low fair good
average average low good good
average average average poor poor
average average average fair average
average average average good good
average average high poor poor
average average high fair average

240




Rules for the Output Factor (Productivity)-Continued

Productivity
pipe dimensions _[crew characteristics|/degree of difficulty] working conditions productivity
average average high good average
average good low poor average
average good low fair good
average good low good good
average good average poor average
average good average fair average
average good average good good
average good high poor poor
average good high fair average
average good high good good
large poor low poor poor
large poor low fair average
large poor low good good
large poor average poor poor
large poor average fair poor
large poor average good average
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair average
large average low good good
large average average poor poor
large average average fair average
large average average good average
large average high poor poor
large average high fair poor
large average high good average
large good low poor average
large good low fair good
large good low good good
large good average poor average
large good average fair average
large good average good good
large good high poor poor
large good high fair average
large good high good average
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Rules for Weld Pipe Model, Carbon Steel and Butt Weld (Trials 1 and 2)

Rules for Pipe Dimensions Sub-model
Pipe Dimensions
pipe diameter wall thickness pipe dimensions
small thin small
small average small
small thick average
average thin average
average average average
average thick large
large thin large
large average large
large thick large
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Rules for Crew Dimensions Sub-model

Crew Dimensions
crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small small
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency

crew furnover

crew experience (seniority)

crew experience (leaming)

no. of consecutive daysl crew competency

low low low low low
low low low average average
low low low high average
low low average low average
low low average average average
low low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medium low low low low
medium low low average low
medium low low high average
medium low average low low
medium low average average average
medium low average high average
medium low high low average
medium low high average average
medium low high high average
medium average low low low
medium average low average average
medium average low high average
medium average average low average
medium average average average average
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Rules for Crew Competency Sub-model-Continued

Crew Competency

crew turnover | crew experience(seniority) jcrew experience (learning)|no. of consecutive daysl crew competency
medium average average high average
medium average high low average
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high low average high average
high low high low low
high low high average average
high low high high average
high average low low low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high Tow average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
shelter requirement elevation degree of difficulty
low low low
low average average
low high high
high low average
high average average
high high high

Rules for Site Conditions Sub-model

Site Conditions

crowding of work area adequacy of site storage site conditions

poor poor poor
poor fair poor
poor good fair

fair poor poor

fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for Weather Conditions Sub-model

Weather Conditions
avg. temperature avg.precipitation avg.windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions crew competency crew characteristics

small low poor

small average average

small high good
average low poor
average average average
average high good

large low poor

large average average

large high good

Rules for Working Conditions Sub-model

Working Conditions
site conditions weather conditions working conditions
poor poor poor
poor fair poor
poor good fair
fair poor poor
fair fair fair
fair good good
good poor fair
good fair good
good good good
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Rules for the Output Factor (Productivity)

Productivity
pipe dimensions crew characteristics|degree of difficulty] working conditions productivity
smail poor low poor average
small poor low fair good
small poor low good good
small poor average poor average
small poor average fair average
small poor average good good
small poor high poor poor
small poor high fair average
small poor high good average
small average low poor average
small average low fair good
small average low good good
small average average poor average
small average average fair average
small average average good good
small average high poor average
small average high fair average
small average high good average
small good low poor average
small good low fair good
small good low good good
small good average poor average
small good average fair good
small good average good good
small good high poor average
small good high fair good
small good high good good
average poor low poor poor
average poor low fair average
average poor low good good
average poor average poor poor
average poor average fair average
average poor average good average
average poor high poor poor
average poor high fair poor
average poor high good average
average average low poor average
average average low fair good
average average low good good
average average average poor poor
average average average fair average
average average average good good
average average high poor poor
average average high fair average
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Rules for the Output Factor (Productivity)-Continued

Productivity
crew
pipe dimensions characteristics degree of difficulty | working conditions productivity
average average high good average
average good low poor average
average good low fair good
average good low good good
average good average poor average
average good average fair average
average good average good good
average good high poor poor
average good high fair average
average good high good good
large poor low poor poor
large poor low fair average
large poor low good good
large poor average poor poor
large poor average fair poor
large poor average good average
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair average
large average low good good
large average average poor poor
large average average fair average
large average average good average
large average high poor poor
large average high fair poor
large average high good average
large good low poor average
large good low fair good
large good low good good
large good average poor average
large good average fair average
large good average good good
large good high poor poor
large good high fair average
large good high good average
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Rules for Weld Pipe Model, Alloy and Butt Weld (Trials 1 and 2)

Rules for Pipe Dimensions Sub-model

Pipe Dimensions

pipe diameter wall thickness pipe dimensions
small thin small
small average small
small thick average
average thin average
average average average
average thick large
large thin large
large average large
large thick large
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Rules for Crew Dimensions Sub-model

Crew Dimensions

crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small small
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency
crew turnover |crew experience (seniority)lcrew experience (learning)no. of consecutive daysl crew competency
low low low low low
low low low average average
low low low high average
low low average low average
low low average average average
low low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medium low low low low
medium low low average low
medium low low high average
medium low average low low
medium low average average average
medium low average high average
medium low high fow average
medium low high average average
medium low high high average
medium average low low low
medium average low average average
medium average low high average
medium average average low average
medium average average average average
medium average average high average
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Rules for Crew Competency Sub-model-Continued
Crew Competency
crew turnover [crew experience (seniority)jcrew experience (learning)ino. of consecutive days| crew competency
medium average high low average
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high fow average high average
high low high low low
high low high average average
high low high high average
high average low fow low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high low average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high _high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
shelter requirement elevation degree of difficulty
low low low
low average average
low high high
high low average
high average average
high high high

Rules for Site Conditions Sub-model

Site Conditions

access to work area adequacy of site storage site conditions

poor poor poor
poor fair poor
poor good fair

fair poor poor

fair fair fair

fair good good
good poor fair
good fair good
good good good

255




Rules for Weather Conditions Sub-model

Weather Conditions
avg. temperature avg precipitation avg.windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions

crew competency

crew characteristics

small low poor
small average average
small high good
average low poor
average average average
average high good
large low poor
large average average
large high good

Rules for Working Conditions Sub-model

Working Conditions

site conditions

weather conditions

working conditions

poor poor poor
poor fair poor
poor good fair
fair poor poor
fair fair fair
fair good good
good poor fair
good fair good
good good good
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Rules for the Output Factor (Productivity)

Productivity
pipe dimensions crew characteristicsidegree of difficultyjworking conditions, productivity
small poor low poor average
small poor low fair good
small poor low good good
small poor average poor average
small poor average fair average
small poor average good good
small poor high poor poor
small poor high fair average
small poor high good average
small average low poor average
small average low fair good
small average low good good
small average average poor average
small average average fair average
small average average good good
small average high poor average
small average high fair average
small average high good average
small good low poor average
small good low fair good
small good low good good
small good average poor average
small good average fair good
small good average good good
small good high poor average
small good high fair good
small good high good good
average poor low poor poor
average poor low fair average
average poor low good good
average poor average poor poor
average poor average fair average
average poor average good average
average poor high poor poor
average poor high fair poor
average poor high good average
average average low poor average
average average low fair good
average average low good good
average average average poor poor
average average average fair average
average average average good good
average average high poor poor
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Rules for the Output Factor (Productivity)-Continued

Productivity
_pipe dimensions crew characteristics|degree of difficultyfworking conditions] productivity
average average high fair average
average average high good average
average good low poor average
average good low fair good
average good low good good
average good average poor average
average good average fair average
average good average good good
average good high poor poor
average good high fair average
average good high good good
large poor low poor poor
large poor low fair average
large poor low good good
large poor average poor poor
large poor average fair poor
large poor average good average
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair average
large average low good good
large average average poor poor
large average average fair average
large average average good average
large average high poor poor
large average high fair poor
large average high good average
large good low poor average
large good low fair good
large good low good good
large good average poor average
large good average fair average
large good average good good
large good high poor poor
large good high fair average
large good high good average
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Rules for Rig Pipe Model (Trials 3 and 4)

Rules for Pipe Dimensions Sub-model

Pipe Dimensions

pipe length pipe diameter “pipe dimensions
short small small
short average small
short large average
average small average
average average average
average large large
long small large
long average large
long large large
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Rules for Crew Dimensions Sub-model

Crew Dimensions
crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small small
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency
crew experience crew experience no. of consecutive
skill level (seniority) (learning) days crew competency
low low low low low
low low low average average
low low fow high average
low low average low average
low low average average average
low low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medium low low low low
medium low low average low
medium low low high average
medium low average low low
medium low average average average
medium low average high average
medium low high low average
medium low high average average
medium low high high average
medium average low low low
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Rules for Crew Competency Sub-model-Continued

Crew Competency

no. of consecutive

Crew experience crew experience
skill level (seniority) (learning) days crew competency
medium average low average average
medium average low high average
mediuvm average average low average
medium average average average average
medium average average high average
medium average high low average
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high low average high average
high low high low low
high low high average average
high low high high average
high average low low low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high low average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
complexity of shape elevation degree of difficulty

low low low
low average average
low high high

medium low average

medium average high

medium high high
high low average
high average high
high high high

Rules for Site Conditions Sub-model

Site Conditions (Trial 3)

adequacy of site storage

site conditions

poor poor
fair fair
good good
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Rules for Site Conditions Sub-model

Site Conditions (Trial 4)

crowding of work area adequacy of site storage site conditions

poor poor poor
poor fair poor
poor good fair

fair poor poor

fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for Weather Conditions Sub-model

Weather Conditions
avg. temperature avg precipitation avg.windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions

crew competency

crew characteristics

small low poor
small average average
small high good
average low poor
average average average
average high good
large low poor
large average average
large high good

Rules for Working Conditions Sub-model

Working Conditions
site conditions weather conditions working conditions

poor poor poor
poor fair poor
poor good fair
fair poor poor
fair fair fair
fair good good
good poor fair
good fair good
good good _good
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Rules for the Output Factor (Productivity)

Productivity
degree of
pipe dimensions | crew characteristics difficulty working conditions |  productivity
small poor low poor average
small poor low fair good
small poor low good good
small poor average poor average
small poor average fair good
small poor average good good
small poor high poor poor
small poor high fair good
small poor high good good
small average low poor good
small average low fair good
small average low good good
small average average poor average
small average average fair good
small average average good good
small average high poor average
small average high fair good
small average high good good
small good low poor good
small good low fair good
small good low good good
small good average poor good
small good average fair good
small good average good good
small good high poor average
small good high fair good
small good high good good
average poor low poor average
average poor low fair good
average poor low good good
average poor average poor average
average poor average fair good
average poor average good good
average poor high poor poor
average poor high fair good
average poor high good good
average average low poor good
average average low fair good
average average low good good
average average average poor average
average average average fair good
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Rules for the Output Factor (Productivity)-Continued

Productivity
degree of
pipe dimensions | crew characteristics difficulty working conditions [ productivity
average average average good good
average average high poor average
average average high fair good
average average high good good
average good low poor good
average good low fair good
average good low good good
average good average poor good
average good average fair good
average good average good good
average good high poor average
average good high fair good
average good high good good
large poor low poor poor
large poor low fair good
large poor low good good
large poor average poor poor
large poor average fair good
large poor average good good
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair good
large average low good good
large average average poor average
large average average fair good
large average average good good
large average high poor poor
large average high fair good
large average high good good
large good low poor good
large good low fair good
large good low good good
large good average poor average
large good average fair good
large good average good good
large good high poor average
large good high fair good
large good high good good
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Rules for Weld Pipe Model, Carbon Steel and Butt Weld (Trials 3 and 4)

Rules for Pipe Dimensions Sub-model

Pipe Dimensions

pipe diameter wall thickness pipe dimensions
small thin small
small average small
small thick average
average thin average
average average average
average thick large
large thin large
large average large
large thick large
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Rules for Crew Dimensions Sub-model

Crew Dimensions
crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small small
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency
crew experience crew experience
crew turnover (seniority) (learning) no. of consecutive days| crew competency
low low low low low
low low low average average
low low low high average
low low average low average
low low average average average
low low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medium low low low low
medium low low average low
medium low low high average
medium low average low low
medium low average average average
medium low average high average
medium low high low average
medium low high average average
medium low high high average
medium average low low low
medium average low average average
medium average low high average
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Rules for Crew Competency Sub-model

Crew Competency

crew experience

Crew experience

crew turnover (seniority) (learning) no. of consecutive days| crew competency
medium average average low average
medium average average average average
medium average average high average
medium average high low average
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high low average high average
high low high low low
high low high average average
high low high high average
high average low low low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high low average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
shelter requirement elevation degree of difficulty
low low low
low average average
low high high
high low average
high average average
high high high

Rules for Site Conditions Sub-model

Site Conditions

crowding of work area

adequacy of site storage

site conditions

poor poor poor
poor fair poor
poor good fair
fair poor poor
fair fair fair
fair good good
good poor fair
good fair good
good good good
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Rules for Weather Conditions Sub-model

Weather Conditions
avg. temperature avg.precipitation avg.windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions

crew competency

crew characteristics

small low poor
small average average
small high good
average low poor
average average average
average high good
large low poor
large average average
large high good

Rules for Working Conditions Sub-model

Working Conditions
site conditions weather conditions working conditions

poor poor poor
poor fair poor
poor good fair
fair poor poor

fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for the Qutput Factor (Productivity)

Productivity
pipe dimensions  |crew characteristics{degree of difficultyjworking conditions productivity
small poor low poor average
small poor low fair average
small poor low good good
small poor average poor average
small poor average fair average
small poor average good average
small poor high poor poor
small poor high fair average
small poor high good average
small average low poor average
small average low fair good
small average low good good
small average average poor average
small average average fair average
small average average good good
small average high poor average
small average high fair average
small average high good average
small good low poor average
small good low fair good
small good low good good
small good average poor average
small good average fair good
small good average good good
small good high poor average
small good high fair average
small good high good good
average poor low poor poor
average poor low fair average
average poor low good average
average poor average poor poor
average poor average fair average
average poor average good average
average poor high poor poor
average poor high fair poor
average poor high good average
average average low poor average
average average low fair average
average average low good good
average average average poor average
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Rules for the Output Factor (Productivity)-Continued

Productivity
pipe dimensions _[crew characteristics|degree of difficultyjworking conditions| productivity
average average average fair average
average average average good average
average average high poor average
average average high fair average
average average high good average
average good low poor average
average good low fair good
average good low good good
average good average poor average
average good average fair average
average good average good good
average good high poor average
average good high fair average
average good high good average
large poor low poor poor
large poor low fair average
large poor low good average
large poor average poor poor
large poor average fair average
large poor average good average
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair average
large average low good average
large average average poor average
large average average fair average
large average average good average
large average high poor poor
large average high fair average
large average high good average
large good low poor average
large good low fair average
large good low good average
large good average poor average
large good average fair average
large good average good average
large good high poor poor
large good high fair average
large good high good average
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Rules for Weld Pipe Model, Alloy and Butt Weld (Trials 3 and 4)

Rules for Pipe Dimensions Sub-model

Pipe Dimensions

pipe diameter wall thickness pipe dimensions
small thin small
small average small
small thick average
average thin average
average average average
average thick large
large thin large
large average large
large thick large
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Rules for Crew Dimensions Sub-model

Crew Dimensions
crew ratio task crew size overall crew size crew dimensions
small small small small
small small average small
small small large average
small average small small
small average average average
small average large average
small large small average
small large average average
small large large large
average small small smail
average small average average
average small large large
average average small average
average average average average
average average large large
average large small average
average large average average
average large large large
large small small small
large small average average
large small large large
large average small average
large average average average
large average large large
large large small average
large large average large
large large large large
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Rules for Crew Competency Sub-model

Crew Competency

no. of consecutive

crew turnover |crew experience (seniority) |crew experience (learing) days crew competency
low low low low low
low low low average average
low low low high average
low low average low average
low low average average average
low low average high average
low low high low average
low low high average average
low low high high high
low average low low average
low average low average average
low average low high average
low average average low average
low average average average average
low average average high high
low average high low average
low average high average average
low average high high average
low high low low average
low high low average average
low high low high high
low high average low average
low high average average average
low high average high high
low high high low high
low high high average high
low high high high high
medium low low low low
medium low low average low
medium low low high average
medium fow average low low
medium low average average average
medium low average high average
medium low high low average
medium low high average average
medium low high high average
medium average low low low
medium average low average average
medium average low high average
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Rules for Crew Competency Sub-model-Continued

Crew Competency

no. of consecutive

crew turnover | crew experience (seniority) |crew experience (learning) days crew competency
medium average average low average
medium average average average average
medium average average high average
medium average high low average
medium average high average average
medium average high high high
medium high low low average
medium high low average average
medium high low high average
medium high average low average
medium high average average average
medium high average high high
medium high high low average
medium high high average high
medium high high high high
high low low low low
high low low average low
high low low high low
high low average low low
high low average average low
high low average high average
high low high low low
high low high average average
high low high high average
high average low low low
high average low average low
high average low high average
high average average low average
high average average average high
high average average high high
high average high low high
high average high average high
high average high high high
high high low low high
high high low average high
high high low high high
high high average low high
high high average average high
high high average high high
high high high low high
high high high average high
high high high high high
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Rules for Degree of Difficulty Sub-model

Degree of Difficulty
shelter requirement elevation degree of difficulty
low low low
low average average
low high high
high low average
high average average
high high high

Rules for Site Conditions Sub-model

Site Conditions

crowding of work area adequacy of site storage site conditions

poor poor poor
poor fair poor
poor good fair

fair poor poor

fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for Weather Conditions Sub-model

Weather Conditions
avg. temperature avg.precipitation avg.windspeed weather conditions
low low low good
low low average good
low low high fair
low average low fair
low average average fair
low average high poor
low high low poor
low high average poor
low high high poor
average low low good
average low average good
average low high poor
average average low fair
average average average poor
average average high poor
average high low poor
average high average poor
average high high poor
high low low fair
high low average fair
high low high poor
high average low fair
high average average fair
high average high poor
high high low poor
high high average poor
high high high poor
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Rules for Crew Characteristics Sub-model

Crew Characteristics

crew dimensions

crew competency

crew characteristics

small low poor
small average average
small high good
average low poor
average average average
average high good
large low poor
large average average
large high good

Rules for Working Conditions Sub-model

Working Conditions
site conditions weather conditions working conditions

poor poor poor
poor fair poor
poor good fair

fair poor poor
fair fair fair

fair good good
good poor fair
good fair good
good good good
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Rules for the Output Factor (Productivity)

Productivity
pipe dimensions |crew characteristicsjdegree of difficultyjworking conditions|  productivity
small poor low poor average
small poor low fair good
small poor low good good
small poor average poor average
small poor average fair average
small poor average good good
small poor high poor poor
small poor high fair good
small poor high good average
small average low poor average
small average low fair average
small average low good good
small average average poor average
small average average fair average
small average average good average
small average high poor average
small average high fair average
small average high good good
small good low poor good
small good low fair good
small good low good good
small good average poor good
small good average fair average
small good average good good
small good high poor average
small good high fair good
small good high good good
average poor low poor average
average poor low fair average
average poor low good good
average poor average poor average
average poor average fair average
average poor average good average
average poor high poor poor
average poor high fair average
average poor high good good
average average low poor average
average average low fair average
average average low good average
average average average poor average
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Rules for the Output Factor (Productivity)-Continued

Productivity
pipe dimensions _ |crew characteristics|degree of difficultylworking conditions|  productivity
average average average fair average
average average average good good
average average high poor average
average average high fair average
average average high good good
average good low poor good
average good low fair good
average good low good good
average good average poor average
average good average fair average
average good average good good
average good high poor average
average good high fair average
average good high good good
large poor low poor poor
large poor low fair good
large poor low good good
large poor average poor poor
large poor average fair average
large poor average good good
large poor high poor poor
large poor high fair poor
large poor high good average
large average low poor average
large average low fair average
large average low good good
large average average poor average
large average average fair average
large average average good average
large average high poor poor
large average high fair average
large average high good good
large good low poor good
large good low fair good
large good low good good
large good average poor average
large good average fair average
large good average good good
large good high poor average
large good bigh fair good
large good high good good
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Appendix G (Model Test Results)

Test Results for Rig Pipe Model (Trial 1)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
0.38 3.8733 919.2895 N good poor N
0.81 3.4751 329.0247 N good poor N
0.38 0.8579 125.7632 N good good Y
0.76 0.8335 9.671053 Y good good Y
0.41 0.8335 103.2927 N good good Y
0.64 1.1738 83.40625 N good average N
0.05 1.1193 2138.6 N good average N
0.08 3.4191 4173.875 N good poor N
0.83 1.2053 45.21687 N good average N
0.41 1.2053 193.9756 N good average N
0.58 4.9497 753.3966 N good poor N
0.63 1.9542 210.1905 N good poor N
2.00 4.9927 149.635 N poor poor Y
0.13 3.1678 2336.769 N good poor N
0.42 3.1678 654.2381 N good poor N
0.40 3.9953 898.825 N good poor N
1.28 5.3128 315.0625 N average poor N
2.05 5.3128 159.161 N average poor N
0.89 4.0565 355.7865 N good poor N
0.52 5.3097 921.0962 N good poor N
0.62 5.3097 756.4032 N good poor N
0.04 3.9892 9873 N good poor N
0.28 5.2326 1768.786 N good poor N
0.14 3.9745 2738.929 N good poor N
0.03 4.118 13626.67 N good poor N
1.52 4.9582 226.1974 N average poor N
0.49 4.666 852.2449 N good poor N
0.89 4.2866 381.6404 N good poor N
0.38 5.09 1239.474 N good poor N
0.89 4.1407 365.2472 N good poor N
0.56 3.9667 608.3393 N good poor N
0.67 4.8317 621.1493 N good poor N

numerical match % (base case) =3.13%
linguistic match % (base case) =12.5%
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 1)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
1.25 4.9797 298.376 N average poor N
2.00 5.0309 151.545 N poor poor Y
1.00 4.9797 397.97 N average poor N
1.00 4.9797 397.97 N average poor N
0.67 4.9797 643.2388 N good poor N
0.75 4.0045 433.9333 N average poor N
1.50 4.0045 166.9667 N average poor N
1.25 4.9797 298.376 N average poor N
1.67 4.0566 142.9102 N average poor N
1.56 4.0566 160.0385 N average poor N
2.50 3.9574 58.296 N poor poor Y
1.67 3.9646 137.4012 N average poor N
1.67 3.9646 137.4012 N average poor N
1.13 4.8338 327.7699 N average poor N
1.39 4.0501 191.3741 N average poor N
0.61 4.0084 557.1148 N good poor N
1.33 4.0501 204.5188 N average poor N
1.67 3.3075 98.05389 N average poor N
0.81 3.2964 306.963 N average poor N
1.33 4.9577 272.7594 N average poor N
1.00 4.9577 395.77 N average poor N
0.86 4.9571 476.407 N average poor N
1.11 4.0386 263.8378 N average poor N
0.73 5.1375 603.7671 N average poor N
2.50 4.0106 60.424 N poor poor Y
1.08 4.0545 275.4167 N average poor N
0.83 4.9793 499.9157 N average poor N
0.75 1.9804 164.0533 N average poor N
1.17 2.245 91.88034 N average poor N
0.80 4.5145 464.3125 N average poor N
1.33 42137 216.8195 N average poor N
1.20 4.1968 249.7333 N average poor N
0.25 4.1968 1578.72 N good poor N
0.56 4.1406 639.3929 N good poor N
2.00 4.0667 103.335 N poor poor Y
1.33 4.9327 270.8797 N average poor N
0.70 4.9327 604.6714 N average poor N
1.67 3.8726 131.8922 N average poor N
1.25 3.8726 209.808 N average poor N
0.67 4.5112 5733134 N good poor N
3.00 4.0265 34.21667 N poor poor Y
1.00 5.0166 401.66 N average poor N
1.20 5.0166 318.05 N average poor N
0.67 5.1499 668.6418 N good poor N
1.67 4.6185 176.5569 N average poor N
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 1)-Continued

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
0.94 4.6239 391.9043 N average poor N
0.67 4.7414 607.6716 N average poor N
1.67 4.746 184.1916 N average poor N
0.38 4.746 1148.947 N good poor N
0.88 4.746 439.3182 N average poor N
2.50 4.7722 90.888 N poor poor Y
1.00 4.7937 379.37 N average poor N
0.83 4.7944 477.6386 N average poor N
0.63 4.7938 660.9206 N good poor N
2.33 5.0114 115.0815 N poor poor Y
2.50 5.0527 102.108 N poor poor Y
0.83 4.1535 400.4217 N average poor N
1.67 4.0938 145.1377 N average poor N
1.67 2.6332 57.67665 N average poor N
3.33 4.0545 21.75676 Y poor poor Y
1.67 3.9162 134.503 N average poor N
4.00 4.1642 4.105 Y poor poor Y
1.67 3.9313 135.4072 N average poor N

numerical match % (base case) =3.17%
linguistic match % (base case) =15.87%
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Test Results for Weld Pipe Model, Alloy and Butt Weld (Trial 1)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.78 3.575 358.3333 N good poor N
2.50 3.4881 39.524 N average poor N
1.00 3.4953 249.53 N good poor N
2.00 3.8261 91.305 N average poor N
1.75 3.8331 119.0343 N average poor N
1.67 2.2222 33.06587 Y average average Y
1.67 4.0581 143 N average poor N
1.67 4.0939 145.1437 N average poor N
1.67 3.8455 130.2695 N average poor N
0.56 3.8201 582.1607 N good poor N
0.63 1.1668 85.20635 N good average N
1.25 3.8311 206.488 N average poor N
1.67 3.9765 138.1138 N average poor N
0.89 3.8201 329.2247 N good poor N
1.67 3.8035 127.7545 N average poor N
1.67 3.8035 127.7545 N average poor N
2.33 5.1048 119.0901 N average poor N
6.67 5.2198 -21.7421 Y poor poor Y
2.50 4.1226 64.904 N average poor N
333 5.0908 52.87688 N poor poor Y
3.33 5.1199 53.75075 N poor poor Y
3.33 4.1232 23.81982 Y poor poor Y
1.67 4.1015 145.5988 N average poor N
1.67 4.0131 140.3054 N average poor N
3.33 4.0827 22.6036 Y poor poor Y
1.00 3.8081 280.81 N good poor N
1.00 1.6953 69.53 N good average N
3.33 3.8331 15.10811 Y poor poor Y
1.00 3.8331 283.31 N good poor N
1.00 4.1204 312.04 N good poor N
2.50 4.3085 72.34 N average poor N
0.50 4.1061 721.22 N good poor N

numerical match % (base case) =15.63%
linguistic match % (base case) =21.88%
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Test Results for Rig Pipe Model (Trial 2)

Productivity Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.38 0.8786 131.2105263 N good good Y
0.81 0.8851 9.271604938 Y good good Y
0.38 0.8659 127.8684211 N good good Y
0.76 0.8718 14.71052632 Y good good Y
0.41 0.8718 112.6341463 N good good Y
0.64 1.1256 75.875 N good average N
0.05 1.1026 2105.2 N good average N
0.08 1.1035 1279.375 N good average N
0.83 1.1703 41 N good average N
0.41 1.1703 185.4390244 N good average N
0.58 1.2118 108.9310345 N good average N
0.63 1.1078 75.84126984 N good average N
2.00 4.9368 146.84 N poor poor Y
0.13 1.9601 1407.769231 N good poor N
0.42 1.149 173.5714286 N good average N
0.40 3.9742 893.55 N good poor N
1.28 5.6809 343.8203125 N average poor N
2.05 5.6809 177.1170732 N average poor N
0.89 4.2156 373.6629213 N good poor N
0.52 5.3097 921.0961538 N good poor N
0.62 5.3097 756.4032258 N good poor N
0.04 3.9719 9829.75 N good poor N
0.28 5.1495 1739.107143 N good poor N
0.14 3.9745 2738.928571 N good poor N
0.03 4.0918 13539.33333 N good poor N
1.52 1.3513 -11.09868421 Y average average Y
0.49 1.323 170 N good average N
0.89 1.2953 45.53932584 N good average N
0.38 1.3918 266.2631579 N good average N
0.89 48111 440.5730337 N good poor N
0.56 1.3259 136.7678571 N good average N
0.67 4.7161 603.8955224 N good poor N

numerical match % (base case) = 9.4%
linguistic match % (base case) =21.9%
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 2)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
1.25 0.9799 -21.608 Y average average Y
2.00 0.9704 -51.48 N poor average N
1.00 0.9799 -2.01 Y average average Y
1.00 0.9799 -2.01 Y average average Y
0.67 0.9799 46.25373134 N good average N
0.75 0.7731 3.08 Y average average Y
1.50 0.7532 -49.78666667 N average average Y
1.25 0.9368 -25.056 Y average average Y
1.67 0.7605 -54.46107784 N average average Y
1.56 0.7605 -51.25 N average average Y
2.50 0.7729 -69.084 N poor average N
1.67 0.7731 -53.70658683 N average average Y
1.67 0.7731 -53.70658683 N average average Y
1.13 0.9105 -19.42477876 Y average average Y
1.39 0.7731 -44.38129496 N average average Y
0.61 0.7731 26.73770492 Y good average N
1.33 0.7731 -41.87218045 N average average Y
1.67 0.7232 -56.69461078 N average average Y
0.81 0.7609 -6.061728395 Y average average Y
1.33 0.9978 -24.97744361 Y average average Y
1.00 0.9978 -0.22 Y average average Y
0.86 0.9978 16.02325581 Y average average Y
1.11 3.654 229.1891892 N average poor N
0.73 4.6036 530.630137 N average poor N
2.50 0.7558 -69.768 N poor average N
1.08 1.658 53.51851852 N average average Y
0.83 0.9336 12.48192771 Y average average Y
0.75 0.924 232 Y average average Y
1.17 0.7362 -37.07692308 N average average Y
0.80 4.3196 439.95 N average poor N
1.33 0.9302 -30.06015038 Y average average Y
1.20 0.9317 -22.35833333 Y average average Y
0.25 0.9317 272.68 N good average N
0.56 0.751 34.10714286 N good average N
2.00 0.7731 -61.345 N poor average N
133 0.9105 -31.54135338 Y average average Y
0.70 0.9105 30.07142857 Y average average Y
1.67 0.9483 -43.21556886 N average average Y
1.25 0.9483 -24.136 Y average average Y
0.67 4.4192 559.5820896 N good poor N
3.00 0.7402 -75.32666667 N poor average N
1.00 1.0152 1.52 Y average average Y
1.20 1.0152 -15.4 Y average average Y
0.67 5.0964 660.6567164 N good poor N
1.67 0.9131 -45.32335329 N average average Y
0.94 0.9131 -2.861702128 Y average average Y
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 2)-Continued

Productivity | Productivity defuzzified ‘
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.67 4.2682 537.0447761 N average poor N
1.67 0.9105 -45.47904192 N average average Y
0.38 0.9105 139.6052632 N good average N
0.88 0.9105 3.465909091 Y average average Y
2.50 0.9105 -63.58 N poor average N
1.00 0.9105 -8.95 Y average average Y
0.83 0.9105 9.698795181 Y average average Y
0.63 0.9105 44.52380952 N good average N
2.33 4.9085 110.6652361 N poor poor Y
2.50 5.093 103.72 N poor poor Y
0.83 3.9237 372.7349398 N average poor N
1.67 3.9411 135.994012 N average poor N
1.67 0.7663 -54.11377246 N average average Y
3.33 0.8243 -75.24624625 N poor average N
1.67 4.1436 148.1197605 N average poor N
4.00 43119 7.7975 Y poor poor Y
1.67 4.1989 1514311377 N average poor N

numerical match % (base case) = 39.7%
linguistic match % (base case) =63.5%
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Test Results for Weld Pipe Model, Alloy and Butt Weld (Trial 2)

Productivity |  Productivity defuzzifie
(actual) (base case) error % match(y/n) actual term d term | match(y/n)
0.78 1.4967 91.8846154 N good average N
2.50 1.5227 -39.092 N average average Y
1.00 1.5227 52.27 N good average N
2.00 3.5921 79.605 N average average Y
1.75 1.7591 0.52 Y average average Y
1.67 1.1334 -32.131737 Y average average Y
1.67 1.1663 -30.161677 Y average average Y
1.67 1.1235 -32.724551 Y average average Y
1.67 1.1776 -29.48503 Y average average Y
0.56 1.529 173.035714 N good average N
0.63 1.1668 85.2063492 N good average N
1.25 3.8226 205.808 N average poor N
1.67 1.085 -35.0299%4 N average average Y
0.89 3.8201 329.224719 N good poor N
1.67 3.8023 127.682635 N average poor N
1.67 3.8022 127.676647 N average poor N
2.33 4.9769 113.600858 N average poor N
6.67 5.0481 -24.316342 Y poor poor N
2.50 3.9186 56.744 N average poor N
3.33 4.9043 47.2762763 N poor poor Y
3.33 5.056 51.8318318 N poor poor Y
3.33 1.0288 -69.105105 N poor good N
1.67 1.085 -35.02994 N average average Y
1.67 1.085 -35.02994 N average average Y
3.33 3.8321 15.0780781 Y poor poor Y
1.00 3.8739 287.39 N good poor N
1.00 1.492 49.2 N good average N
3.33 1.7619 -47.09009 N poor average N
1.00 1.7619 76.19 N good average N
1.00 1.8988 89.88 N good average N
2.50 4.4127 76.508 N average poor N
0.50 1.6063 221.26 N good average N

numerical match % (base case) =21.9%
linguistic match % (base case) =40.6%
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Test Results for Rig Pipe Model (Trial 3)

Productivity Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.38 0.6636 74.63157895 N good good Y
0.81 0.6666 -17.7037037 Y good good Y
0.38 0.6581 73.18421053 N good good Y
0.76 0.6608 -13.05263158 Y good good Y
0.41 0.6608 61.17073171 N good good Y
0.64 0.6608 3.25 Y good good Y
0.05 0.6666 1233.2 N good good Y
0.08 0.6666 733.25 N good good Y
0.83 0.6503 -21.65060241 Y good good Y
0.41 0.6503 58.6097561 N good good Y
0.58 0.6466 11.48275862 Y good good Y
0.63 0.6654 5.619047619 Y good good Y
2.00 0.941 -52.95 N poor good N
0.13 0.6666 412.7692308 N good good Y
0.42 0.6666 58.71428571 N good good Y
0.40 1.027 156.75 N good average N
1.28 5.1115 299.3359375 N average poor N
2.05 5.1115 149.3414634 N average poor N
0.89 1.0607 19.17977528 Y good average N
0.52 1.0656 104.9230769 N good average N
0.62 1.0656 71.87096774 N good average N
0.04 1.0087 2421.75 N good average N
0.28 1.019 263.9285714 N good average N
0.14 1.019 627.8571429 N good average N
0.03 1.0306 3335.333333 N good average N
1.52 0.5865 -61.41447368 N average good N
0.49 0.6249 27.53061224 Y good good Y
0.89 0.6441 -27.62921348 Y good good Y
0.38 0.6366 67.52631579 N good good Y
0.89 0.6653 -25.24719101 Y good good Y
0.56 0.6437 14.94642857 Y good good Y
0.67 0.6547 -2.28358209 Y good good Y

numerical match % (base case) =37.5 %
linguistic match % (base case) =62.5%
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 3)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
1.25 1.0586 -15.312 Y average average Y
2.00 1.0783 -46.085 N poor average N
1.00 1.0586 5.86 Y average average Y
1.00 1.0586 5.86 Y average average Y
0.67 1.0586 58 N good average N
0.75 1.0118 34.90666667 N average average Y
1.50 1.063 -29.13333333 Y average average Y
1.25 1.0419 -16.648 Y average average Y
1.67 1.0309 -38.26946108 N average average Y
1.56 1.0309 -33.91666667 N average average Y
2.50 1.0554 -57.784 N poor average N
1.67 1.0555 -36.79640719 N average average Y
1.67 1.0555 -36.79640719 N average average Y
1.13 1.0125 -10.39823009 Y average average Y
1.39 1.0125 -27.15827338 Y average average Y
0.61 1.0125 65.98360656 N good average N
1.33 1.0125 -23.87218045 Y average average Y
1.67 1.2015 -28.05389222 Y average average Y
0.81 1.0309 27.271604%94 Y average average Y
1.33 1.0367 -22.05263158 Y average average Y
1.00 1.0367 3.67 Y average average Y
0.86 1.0367 20.54651163 Y average average Y
1.11 1.0586 -4.630630631 Y average average Y
0.73 3.8882 432.630137 N average poor N
2.50 1.062 -57.52 N poor average N
1.08 1.0422 -3.5 Y average average N
0.83 1.0385 25.12048193 Y average average Y
0.75 1.0285 37.13333333 N average average Y
1.17 1.0685 -8.675213675 Y average average Y
0.80 1.1355 41.9375 N average average Y
1.33 1.0173 -23.5112782 Y average average Y
1.20 1.0231 -14.74166667 Y average average Y
0.25 1.0231 309.24 N good average N
0.56 1.0458 86.75 N good average N
2.00 1.0281 -48.595 N poor average N
1.33 1.0125 -23.87218045 Y average average Y
0.70 1.0125 44.64285714 N average average Y
1.67 1.0538 -36.89820359 N average average Y
1.25 1.0538 -15.696 Y average average Y
0.67 1.1355 69.47761194 N good average N
3.00 1.1957 -60.14333333 N poor average N
1.00 1.0622 6.22 Y average average Y
1.20 1.0622 -11.48333333 Y average average Y
0.67 4.5484 578.8656716 N good poor N
1.67 1.0158 -39.17365269 N average average Y
0.94 1.0158 8.063829787 Y average average Y
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 3)-Continued

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.67 1.2009 79.23880597 N average average Y
1.67 1.0125 -39.37125749 N average average Y
0.38 1.0125 166.4473684 N good average N
0.88 1.0125 15.05681818 Y average average Y
2.50 1.0539 -57.844 N poor average N
1.00 1.0125 1.25 Y average average Y
0.83 1.0125 21.98795181 Y average average Y
0.63 1.0125 60.71428571 N good average N
2.33 1.2008 -48.46351931 N poor average N
2.50 1.2018 -51.928 N poor average N
0.83 1.2014 44.74698795 N average average Y
1.67 1.2009 -28.08982036 Y average average Y
1.67 1.0627 -36.36526946 N average average Y
3.33 1.2018 -63.90990991 N poor average N
1.67 1.2014 -28.05988024 Y average average Y
4.00 1.0622 -73.445 N poor average N
1.67 1.2018 -28.03592814 Y average average Y

numerical match % (base case) =47.619 %
linguistic match % (base case) =68.25%
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Test Results for Weld Pipe Model, Alloy and Butt Weld (Trial 3)

Productivity |  Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
0.78 1.4967 91.8846154 N good average N
2.50 1.556 -37.76 N average average Y
1.00 1.5227 52.27 N good average N
2.00 1.5496 -22.52 Y average average Y
1.75 1.5664 -10.491429 Y average average Y
1.67 1.5707 -5.9461078 Y average average Y
1.67 1.529 -8.4431138 Y average average Y
1.67 1.529 -8.4431138 Y average average Y
1.67 1.5149 -9.2874251 Y average average Y
0.56 1.5243 172.196429 N good average N
0.63 1.6711 165.253968 N good average N
1.25 1.7891 43.128 N average average Y
1.67 1.78 6.58682635 Y average average Y
0.89 1.789 101.011236 N good average N
1.67 1.5667 -6.1856287 Y average average Y
1.67 1.5667 -6.1856287 Y average average Y
2.33 1.5458 -33.656652 N average average Y
6.67 1.5277 -77.095952 N poor average N
2.50 1.7906 -28.376 Y average average Y
3.33 1.5466 -53.555556 N poor average N
3.33 1.7891 -46.273273 N poor average N
3.33 1.7861 -46.363363 N poor average N
1.67 1.7848 6.8742515 Y average average Y
1.67 1.7863 6.96407186 Y average average Y
3.33 1.7861 -46.363363 N poor average N
1.00 1.7861 78.61 N good average N
1.00 1.5927 59.27 N good average N
3.33 1.492 -55.195195 N poor average N
1.00 1.7901 79.01 N good average N
1.00 1.7901 79.01 N good average N
2.50 1.5114 -39.544 Y average average Y
0.50 1.5537 210.74 N good average N

numerical match % (base case) =40.625 %
linguistic match % (base case) =50.00%
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Test Results for Rig Pipe Model (Trial 4)

Productivity Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.38 0.7251 90.81578947 N good good Y
0.81 0.7013 -13.41975309 Y good good Y
0.38 0.7323 92.71052632 N good good Y
0.76 0.7298 -3.973684211 Y good good Y
0.41 0.7494 82.7804878 N good good Y
0.64 0.7293 13.953125 Y good good Y
0.83 0.742 -10.60240964 Y good good Y
0.41 0.7354 79.36585366 N good good Y
0.58 0.7307 25.98275862 Y good good Y
0.63 0.7506 19.14285714 Y good good Y
2.00 0.9438 -52.81 N poor good N
0.13 0.7388 468.3076923 N good good Y
0.42 0.7501 78.5952381 N good good Y
0.40 1.0675 166.875 N good good Y
1.28 5.0316 293.09375 N average poor N
2.05 5.0316 145.4439024 N average poor N
0.89 0.8512 -4.359550562 Y good good Y
0.52 1.0851 108.6730769 N good average N
0.62 1.0656 71.87096774 N good average N
0.04 1.0485 2521.25 N good average N
0.28 1.039 271.0714286 N good average N
0.14 1.0485 648.9285714 N good average N
1.52 0.6018 -60.40789474 N average good N
0.49 0.848 73.06122449 N good good Y
0.89 0.7878 -11.48314607 Y good good Y
0.38 0.6796 78.84210526 N good good Y
0.89 0.7515 -15.56179775 Y good good Y
0.56 0.7033 25.58928571 Y good good Y
0.67 0.7321 9.268656716 Y good good Y

numerical match % (base case) =37.93 %
linguistic match % (base case) =70.00%
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 4)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
1.25 0.9872 -21.024 Y average average Y
2.00 1.0843 -45.785 N poor average N
1.00 0.9872 -1.28 Y average average Y
1.00 0.9872 -1.28 Y average average Y
0.67 0.9872 47.34328358 N good average N
0.75 0.6699 -10.68 Y average average Y
1.50 1.0839 -27.74 Y average average Y
1.25 0.9872 -21.024 Y average average Y
1.67 0.6428 -61.50898204 N average good N
1.56 0.6429 -58.78846154 N average good N
2.50 1.0667 -57.332 N poor average N
1.67 1.0667 -36.1257485 N average average Y
1.67 1.0667 -36.1257485 N average average Y
1.13 0.9865 -12.69911504 Y average average Y
1.39 0.6226 -55.20863309 N average good N
0.61 0.6094 -0.098360656 Y good good Y
1.33 0.6226 -53.18796992 N average good N
1.67 0.8372 -49.86826347 N average average Y
0.81 0.6638 -18.04938272 Y average average Y
1.33 0.987 -25.78947368 Y average average Y
1.00 0.987 -1.3 Y average average Y
0.86 0.987 14.76744186 Y average average Y
1.11 0.6712 -39.53153153 N average average Y
0.73 3.9603 442.5068493 N average poor N
2.50 1.0841 -56.636 N poor average N
1.08 0.6293 -41.73148148 N average good N
0.83 0.9866 18.86746988 Y average average Y
0.75 0.6128 -18.29333333 Y average good N
1.17 0.6128 -47.62393162 N average good N
0.80 0.7234 -9.575 Y average average Y
1.33 0.9581 -27.96240602 Y average average Y
1.20 0.9581 -20.15833333 Y average average Y
0.25 0.9581 283.24 N good average N
0.56 0.6257 11.73214286 Y good good Y
2.00 1.0705 -46.475 N poor average N
1.33 0.987 -25.78947368 Y average average Y
0.70 0.987 41 N average average Y
1.67 0.925 -44.61077844 N average average Y
1.25 0.925 -26 Y average average Y
0.67 0.925 38.05970149 N good average N
3.00 1.0845 -63.85 N poor average N
1.00 1.0845 8.45 Y average average Y
1.20 1.0845 -9.625 Y average average Y
0.67 4.5818 583.8507463 N good poor N
1.67 0.987 -40.89820359 N average average Y
0.94 0.9861 4.904255319 Y average average Y
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Test Results for Weld Pipe Model, Carbon Steel and Butt Weld (Trial 4)-Continued

Productivity ] Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.67 4.4424 563.0447761 N average poor N
1.67 0.987 -40.89820359 N average average Y
0.38 0.987 159.7368421 N good average N
0.88 0.987 12.15909091 Y average average Y
2.50 1.0544 -57.824 N poor average N
1.00 0.9866 -1.34 Y average average Y
0.83 0.9866 18.86746988 Y average average Y
0.63 0.9866 56.6031746 N good average N
2.33 1.0841 -53.472103 N poor average N
2.50 1.0843 -56.628 N poor average N
0.83 0.9856 18.74698795 Y average average Y
1.67 0.955 -42.81437126 N average average Y
1.67 0.7312 -56.21556886 N average average Y
3.33 1.0842 -67.44144144 N poor average N
1.67 0.9965 -40.32934132 N average average Y
4.00 0.9406 -76.485 N poor average N
1.67 0.9796 -41.34131737 N average average Y

numerical match % (base case) =42.86 %
linguistic match % (base case) =60.32%

302




Test Results for Weld Pipe Model, Alloy and Butt Weld (Trial 4)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.78 0.6897 -11.576923 Y good good Y
2.50 0.975 -61 N average good N
1.00 0.6568 -34.32 N good good Y
2.00 0.6347 -68.265 N average good N
1.75 0.6347 -63.731429 N average good N
1.67 0.638 -61.796407 N average good N
1.67 0.6505 -61.047904 N average good N
1.67 0.6505 -61.047904 N average good N
1.67 0.6536 -60.862275 N average good N
0.56 0.6536 16.7142857 Y good good Y
0.63 1.5005 138.174603 N good average N
1.25 1.7853 42.824 N average average Y
1.67 1.7036 2.01197605 Y average average Y
0.89 1.789 101.011236 N good average N
1.67 0.6756 -59.54491 N average good N
1.67 0.6756 -59.54491 N average good N
2.33 1.6113 -30.845494 Y average average Y
6.67 1.3145 -80.292354 N poor average N
2.50 1.784 -28.64 Y average average Y
333 1.6111 -51.618619 N poor average N
3.33 1.7837 -46.435435 N poor average N
3.33 1.7837 -46.435435 N poor average N
1.67 1.7828 6.75449102 Y average average Y
1.67 1.7871 7.01197605 Y average average Y
3.33 1.7837 -46.435435 N poor average N
1.00 1.7837 78.37 N good average N
1.00 0.6377 -36.23 N good good Y
3.33 0.636 -80.900901 N poor good N
1.00 1.7837 78.37 N good average N
1.00 1.7837 78.37 N good average N
2.50 1.5317 -38.732 N average average Y
0.50 1.5317 206.34 N good average N

numerical match % (base case) =21.88 %
linguistic match % (base case) =34.38%
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Appendix H (Model Calibration Results)

Calibration Results for Rig Pipe Model (Selected from Trial 4)-First Calibration

(Base Case)
Productivity | Productivity
(actual) (base case) error % match(y/n) actual term | defuzzified term | match(y/n)
0.38 0.8168 114.9473684 N good good Y
0.81 0.7896 -2.518518519 Y good good Y
0.38 0.8298 118.3684211 N good good Y
0.76 0.8252 8.578947368 Y good good Y
0.41 0.8432 105.6585366 N good good Y
0.64 0.8244 28.8125 Y good good Y
0.83 0.8385 1.024096386 Y good good Y
0.41 0.8344 103.5121951 N good good Y
0.58 0.8268 42.55172414 N good good Y
0.63 0.8468 34.41269841 N good good Y
2.00 1.1574 -42.13 N poor average N
0.13 0.8365 543.4615385 N good good Y
0.42 0.8443 101.0238095 N good good Y
0.40 1.3278 231.95 N good average N
1.28 49192 284.3125 N average poor N
2.05 49192 139.9609756 N average poor N
0.89 1.0098 13.46067416 Y good average N
0.52 1.3493 159.4807692 N good average N
0.62 1.3197 112.8548387 N good average N
0.04 1.3015 3153.75 N good average N
0.28 1.2882 360.0714286 N good average N
0.14 1.3015 829.6428571 N good average N
1.52 0.6693 -55.96710526 N average good N
0.49 1.0209 108.3469388 N good good Y
0.89 0.9395 5.561797753 Y good good Y
0.38 0.7648 101.2631579 N good good Y
0.89 0.8514 -4.337078652 Y good good Y
0.56 0.7923 41.48214286 N good good Y
0.67 0.8293 23.7761194 Y good good Y

numerical match % (base case) =27.59 %
linguistic match % (base case) =62.07%

304




Calibration Results for Rig Pipe Model (Selected from Trial 4)-Second Calibration

(Base Case)

Productivity Productivity
{actual) (base case) error % match(y/n) | actual term | defuzzified term | match(y/n)
0.38 0.5375 41.44736842 N good good Y
0.81 0.5186 -35.97530864 N good good Y
0.38 0.544 43.15789474 N good good Y
0.76 0.5417 -28.72368421 Y good good Y
0.41 0.5593 36.41463415 N good good Y
0.64 0.5413 -15.421875 Y good good Y
0.83 0.5526 -33.42168675 N good good Y
0.41 0.5468 33.36585366 N good good Y
0.58 0.5425 -6.465517241 Y good good Y
0.63 0.5595 -11.19047619 Y good good Y
2.00 0.7699 -61.505 N poor good N
0.13 0.5497 322.8461538 N good good Y
0.42 0.5594 33.19047619 Y good good Y
0.40 0.8759 118.975 N good average N
1.28 5.0728 296.3125 N average poor N
2.05 5.0728 147.4536585 N average poor N
0.89 0.6645 -25.33707865 Y good average N
0.52 0.899 72.88461538 N good average N
0.62 0.883 42.41935484 N good average N
0.04 0.8573 2043.25 N good average N
0.28 0.8531 204.6785714 N good average N
0.14 0.8573 512.3571429 N good average N
1.52 0.4392 -71.10526316 N average good N
0.49 0.6765 38.06122449 N good good Y
0.89 0.6213 -30.19101124 Y good good Y
0.38 0.5023 32.18421053 Y good good Y
0.89 0.5595 -37.13483146 N good good Y
0.56 0.5206 -7.035714286 Y good good Y
0.67 0.5437 -18.85074627 Y ~good good Y

numerical match % (base case) =34.48 %
linguistic match % (base case) =62.07%
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Calibration Results for Rig Pipe Model (Selected from Trial 4)-Third Calibration

(Base Case)
Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.38 0.5413 42.44736842 N good good Y
0.81 0.5261 -35.04938272 N good good Y
0.38 0.5486 44.36842105 N good good Y
0.76 0.546 -28.15789474 Y good good Y
0.41 0.5594 36.43902439 N good good Y
0.64 0.5455 -14.765625 Y good good Y
0.83 0.5583 -32.73493976 Y good good Y
0.41 0.5517 34.56097561 N good good Y
0.58 0.5469 -5.706896552 Y good good Y
0.63 0.5595 -11.19047619 Y good good Y
2.00 0.7174 -64.13 N poor good N
0.13 0.5551 327 N good good Y
0.42 0.5594 33.19047619 Y good good Y
0.40 0.7917 97.925 N good good Y
1.28 5.0549 294.9140625 N average poor N
2.05 5.0549 146.5804878 N average poor N
0.89 0.6285 -29.38202247 Y good good Y
0.52 0.8344 60.46153846 N good good Y
0.62 0.8225 32.66129032 Y good good Y
0.04 0.7774 1843.5 N good good Y
0.28 0.7721 175.75 N good good Y
0.14 0.7774 455.2857143 N good good Y
1.52 0.4541 -70.125 N average good N
0.49 0.6282 28.20408163 Y good good Y
0.89 0.5829 -34.50561798 N good good Y
0.38 0.5122 34.78947368 N good good Y
0.89 0.5595 -37.13483146 N good good Y
0.56 0.5283 -5.660714286 Y good good Y
0.67 0.5483 -18.1641791 Y good _good Y

numerical match % (base case) =37.93 %
linguistic match % (base case) =86.21%
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Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected

from Trial 3)-First Calibration (Base Case)

Productivity | Productivity defuzzifie
(actual) (base case) error % match(y/n) actual term dterm | match(y/n)
1.25 1.2835 2.68 Y average average Y
2.00 1.2883 -35.585 N poor average N
1.00 1.2835 28.35 Y average average Y
1.00 1.2835 28.35 Y average average Y
0.67 1.2835 91.56716418 N good average N
0.75 0.9354 24.72 Y average average Y
1.50 1.2361 -17.59333333 Y average average Y
1.25 1.2361 -1.112 Y average average Y
1.67 0.9158 -45.16167665 N average average Y
1.56 0.9158 -41.29487179 N average average Y
2.50 1.2029 -51.884 N poor average N
1.67 1.2029 -27.97005988 Y average average Y
1.67 1.2029 -27.97005988 Y average average Y
1.13 1.2029 6.451327434 Y average average N
1.39 0.9347 -32.75539568 Y average average N
0.61 0.9347 53.2295082 N good average N
1.33 0.935 -29.69924812 Y average average Y
1.67 1.2551 -24.84431138 Y average average Y
0.81 0.942 16.2962963 Y average average Y
1.33 1.3253 -0.353383459 Y average average Y
1.00 1.3253 32.53 Y average average Y
0.86 1.3253 54.10465116 N average average Y
1.11 3.95 255.8558559 N average poor N
0.73 4.3039 489.5753425 N average poor N
2.50 1.2383 -50.468 Y poor average Y
1.08 1.865 72.68518519 N average poor N
0.83 1.2383 49.19277108 N average average Y
0.75 1.224 63.2 N average average Y
1.17 0.8846 -24.39316239 Y average average Y
0.80 3.9254 390.675 N average poor N
1.33 1.2337 -7.240601504 Y average average Y
1.20 1.2337 2.808333333 Y average average Y
0.25 1.2337 393.48 N good average N
0.56 0.9316 66.35714286 N good average N
2.00 1.2029 -39.855 N poor average N
1.33 1.2029 -9.556390977 Y average average Y
0.70 1.2029 71.84285714 N average average Y
1.67 1.259 -24.61077844 Y average average Y
1.25 1.259 0.72 Y average average Y
0.67 4.1507 519.5074627 N good poor N
3.00 1.4449 -51.83666667 N poor average N
1.00 1.3494 34.94 N average average Y
1.20 1.3494 12.45 Y average average Y
0.67 5.1392 667.0447761 N good poor N
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Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected from
Trial 3)-First Calibration (Base Case)-Continued

Productivity | Productivity defuzzifie
(actual) (base case) error % match(y/n) actual term d term match(y/n)
1.67 1.2071 -27.71856287 Y average average Y
0.94 1.2071 28.41489362 Y average average Y
0.67 39184 484.8358209 N average poor N
1.67 1.2029 -27.97005988 Y average average Y
0.38 1.2029 216.5526316 N good average N
0.88 1.2029 36.69318182 N average average Y
2.50 1.2029 -51.884 N poor average N
1.00 1.2029 20.29 Y average average Y
0.83 1.2029 44.92771084 N average average Y
0.63 1.2029 90.93650794 N good average N
2.33 5.1566 121.3133047 N poor poor Y
2.50 5.2216 108.864 N poor poor Y
0.83 4.2334 410.0481928 N average poor N
1.67 3.9472 136.3592814 N average poor N
1.67 1.2322 -26.21556886 Y average average Y
3.33 4.0701 22.22522523 Y poor poor Y
1.67 4.6382 177.7365269 N average poor N
4.00 4.1935 4.8375 Y poor poor Y
1.67 4.5239 170.8922156 N average poor N

numerical match % (base case) =47.62 %
linguistic match % (base case) =61.90%
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Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected
from Trial 3)-Second Calibration (Base Case)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
1.25 0.8662 -30.704 Y average average Y
2.00 0.8686 -56.57 N poor average N
1.00 0.8662 -13.38 Y average average Y
1.00 0.8662 -13.38 Y average average Y
0.67 0.8662 29.28358209 Y good average N
0.75 0.6434 -14.21333333 Y average average Y
1.50 0.8378 -44.14666667 N average average Y
1.25 0.8378 -32.976 Y average average Y
1.67 0.63 -62.2754491 N average average Y
1.56 0.63 -59.61538462 N average average Y
2.50 0.8183 -67.268 N poor average N
1.67 0.8183 -51 N average average Y
1.67 0.8183 -51 N average average Y
1.13 0.8183 -27.5840708 Y average average Y
1.39 0.6429 -53.74820144 N average average Y
0.61 0.6429 5.393442623 Y good average N
1.33 0.6431 -51.64661654 N average average Y
1.67 0.8489 -49.16766467 N average average Y
0.81 0.6479 -20.01234568 Y average average Y
1.33 0.8886 -33.18796992 Y average average Y
1.00 0.8886 -11.14 Y average average Y
0.86 0.8886 3.325581395 Y average average Y
1.11 4.2382 281.8198198 N average poor N
0.73 4.365 497.9452055 N average poor N
2.50 0.8392 -66.432 N poor average N
1.08 2.035 88.42592593 N average poor N
0.83 0.8392 1.108433735 Y average average Y
0.75 0.8306 10.74666667 Y average average Y
1.17 0.6096 -47.8974359 N average average Y
0.80 4.107 413.375 N average poor N
1.33 0.8365 -37.10526316 N average average Y
1.20 0.8365 -30.29166667 Y average average Y
0.25 0.8365 234.6 N good average N
0.56 0.6408 14.42857143 Y good average N
2.00 0.8183 -59.085 N poor average N
1.33 0.8183 -38.47368421 N average average Y
0.70 0.8183 16.9 Y average average Y
1.67 0.8512 -49.02994012 N average average Y
1.25 0.8512 -31.904 Y average average Y
0.67 4.2772 538.3880597 N good poor N
3.00 0.9485 -68.38333333 N poor average Y
1.00 0.9022 -9.78 Y average average Y
1.20 0.9022 -24.81666667 Y average average Y
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Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected from
Trial 3)-Second Calibration (Base Case)-Continued

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/m) | actual term term match(y/n)
0.67 5.0664 656.1791045 N good poor N
1.67 0.8207 -50.85628743 N average average Y
0.94 0.8207 -12.69148936 Y average average Y
0.67 4.0401 503 N average poor N
1.67 0.8183 -51 N average average Y
0.38 0.8183 115.3421053 N good average N
0.88 0.8183 -7.011363636 Y average average Y
2.50 0.8183 -67.268 N poor average N
1.00 0.8183 -18.17 Y average average Y
0.83 0.8183 -1.409638554 Y average average Y
0.63 0.8183 29.88888889 Y good average N
233 5.0782 117.9484979 N poor poor Y
2.50 5.1343 105.372 N poor poor Y
0.83 4.3146 419.8313253 N average poor N
1.67 4.048 142.3952096 N average poor N
1.67 0.8356 -49.96407186 N average average Y
3.33 4.1511 24.65765766 Y poor poor Y
1.67 4.656 178.8023952 N average poor N
4.00 4.3365 8.4125 Y poor poor Y
1.67 4.5604 173.0778443 N average poor N

numerical match % (base case) =42.86 %
linguistic match % (base case) =65.08%
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Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected

from Trial 3)-Third Calibration (Base Case)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
1.25 1.216 -2.72 Y average average Y
2.00 1.2154 -39.23 N poor average N
1.00 1.216 21.6 Y average average Y
1.00 1.216 21.6 Y average average Y
0.67 1.216 81.49253731 N good good Y
0.75 1.1649 55.32 N average average Y
1.50 1.1825 21.16666667 Y average average Y
1.25 1.1825 -5.4 Y average average Y
1.67 1.1766 29.54491018 Y average average Y
1.56 1.1766 24.57692308 Y average average Y
2.50 1.194 -52.24 N poor poor Y
1.67 1.194 28.50299401 Y average average Y
1.67 1.194 28.50299401 Y average average Y
1.13 1.194 5.663716814 Y average average Y
1.39 1.1654 16.15827338 Y average average Y
0.61 1.1654 91.04918033 N good good Y
1.33 1.1652 12.39097744 Y average average Y
1.67 1.2901 22.74850299 Y average average Y
0.81 1.1604 43.25925926 N average average Y
1.33 1.2336 7.248120301 Y average average Y
1.00 1.2336 23.36 Y average average Y
0.86 1.2336 43.44186047 N average average Y
1.11 1.1634 4.810810811 Y average average Y
0.73 3.6747 403.3835616 N average poor N
2.50 1.1938 -52.248 N poor average N
1.08 1.1737 8.675925926 Y average average Y
0.83 1.1954 44.02409639 N average average Y
0.75 1.1943 59.24 N average average Y
1.17 1.1979 2.384615385 Y average average Y
0.80 1.2086 51.075 N average average Y
1.33 1.183 11.05263158 Y average average Y
1.20 1.183 1.416666667 Y average average Y




Calibration Results for Weld Pipe Model, Carbon Steel and Butt Weld (Selected from
Trial 3)-Third Calibration (Base Case)-Continued

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.25 1.183 373.2 N good average N
0.56 1.1675 108.4821429 N good average N
2.00 1.1786 -41.07 N poor average N
1.33 1.1786 11.38345865 Y average average Y
0.70 1.1786 68.37142857 N average average Y
1.67 1.1971 28.31736527 Y average average Y
1.25 1.1971 -4.232 Y average average Y
0.67 1.2513 86.76119403 N good poor N
3.00 1.2857 57.14333333 N poor average N
1.00 1.2426 24.26 Y average average Y
1.20 1.2426 3.55 Y average average Y
0.67 4.0743 508.1044776 N good poor N
1.67 1.1714 29.85628743 Y average average Y
0.94 1.1703 24.5 Y average average Y
0.67 1.2721 89.86567164 N average average Y
1.67 1.1786 -29.4251497 Y average average Y
0.38 1.1786 210.1578947 N good average N
0.88 1.1786 33.93181818 N average average Y
2.50 1.1746 -53.016 N poor average N
1.00 1.1939 19.39 Y average average Y
0.83 1.1939 43.84337349 N average average Y
0.63 1.1939 89.50793651 N good average N
2.33 1.2974 44.31759657 N poor average N
2.50 1.2955 -48.18 N poor average N
0.83 1.2704 53.06024096 N average average Y
1.67 1.2656 24.21556886 Y average average Y
1.67 1.182 29.22155689 Y average average Y
3.33 1.2953 -61.1021021 N poor average N
1.67 1.2915 22.66467066 Y average average Y
4.00 1.2211 -69.4725 N poor average N
1.67 1.2953 2243712575 Y average average Y

numerical match % (base case) =49.21 %
linguistic match % (base case) =74.60%
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Calibration Results for Weld Pipe Model, Alloy and Butt Weld (Selected from Trial
3)-First Calibration (Base Case)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
0.78 1.7527 124.705128 N good average N
2.50 1.7964 -28.144 Y average average Y
1.00 1.7582 75.82 N good average N
2.00 3.6603 83.015 Y average average Y
1.75 1.9335 10.4857143 Y average average Y
1.67 1.3616 -18.467066 Y average average Y
1.67 1.433 -14.191617 Y average average Y
1.67 1.3813 -17.287425 Y average average Y
1.67 3.7617 125.251497 N average average Y
0.56 3.7876 576.357143 N good average N
0.63 1.9523 209.888889 N good average N
1.25 5.1516 312.128 N average average Y
1.67 2.0222 21.0898204 Y average average Y
0.89 4.9942 461.146067 N good average N
1.67 3.8243 129 N average average Y
1.67 3.8243 129 N average average Y
2.33 5.0348 116.085837 N average average Y
6.67 4.9904 -25.181409 Y poor average N
2.50 5.2997 111.988 N average average Y
3.33 5.1286 54.012012 N poor average N
333 5.0227 50.8318318 N poor average N
3.33 3.7317 12.0630631 Y poor average N
1.67 3.9808 138.371257 N average average Y
1.67 4.4899 168.856287 N average average Y
3.33 3.7146 11.5495495 Y poor average N
1.00 3.9426 294.26 N good average N
1.00 1.7923 79.23 N good average N
333 3.8185 14.6696697 Y poor average N
1.00 3.9804 298.04 N good average N
1.00 3.9804 298.04 N good average N
2.50 4.3316 73.264 N average average Y
0.50 4.0989 719.78 N good average N

numerical match % (base case) =34.38 %
linguistic match % (base case) =50.00%
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Calibration Results for Weld Pipe Model, Alloy and Butt Weld (Selected from Trial

3)-Second Calibration (Base Case)

Productivity [ Productivity defuzzified
(actual) (base case) error % match(y/n) | actual term term match(y/n)
0.78 1.1943 53.1153846 N good average N
2.50 1.2324 -50.704 N average average Y
1.00 1.1993 19.93 Y good average N
2.00 3.9083 95.415 N average poor N
1.75 1.8373 498857143 Y average average Y
1.67 0.9288 -44.383234 N average average Y
1.67 0.9766 -41.520958 N average average Y
1.67 0.9427 -43.550898 N average average Y
1.67 3.9316 135.42515 N average poor N
0.56 3.9416 603.857143 N good poor N
0.63 1.3856 119.936508 N good average N
1.25 5.2518 320.144 N average poor N
1.67 1.4801 -11.371257 Y average average Y
0.89 5.1161 474.842697 N good poor N
1.67 4.0021 139.646707 N average poor N
1.67 4.0021 139.646707 N average poor N
2.33 5.1106 119.339056 N average poor N
6.67 5.0392 -24.449775 Y poor poor Y
2.50 5.3583 114.332 N average poor N
333 5.1935 55.960961 N poor poor Y
3.33 5.1144 53.5855856 N poor poor Y
3.33 4.0033 20.2192192 Y poor poor Y
1.67 4.317 158.502994 N average poor N
1.67 4.7549 184.724551 N average poor N
333 3.9792 19.4954955 Y poor poor Y
1.00 4.2532 325.32 N good poor N
1.00 1.2283 22.83 Y good average N
3.33 4.068 22.1621622 Y poor poor Y
1.00 4.238 323.8 N good poor N
1.00 4.238 323.8 N good poor N
2.50 4.5128 80.512 N average poor N
0.50 4.3032 760.64 N good poor N

numerical match % (base case) =25.00 %
linguistic match % (base case) =37.50%
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Calibration Results for Weld Pipe Model, Alloy and Butt Weld (Selected from Trial 3)-
Third Calibration (Base Case)

Productivity | Productivity defuzzified
(actual) (base case) error % match(y/n) actual term term match(y/n)
0.78 1.1922 52.8461538 N good average N
2.50 1.2245 -51.02 N average average Y
1.00 1.1964 19.64 Y good average N
2.00 1.1892 -40.54 N average average Y
1.75 1.2103 -30.84 Y average average Y
1.67 1.2562 -24.778443 Y average average Y
1.67 1.197 -28.323353 Y average average Y
1.67 1.197 -28.323353 Y average average Y
1.67 1.2237 -26.724551 Y average average Y
0.56 1.197 113.75 N good average N
0.63 1.3465 113.730159 N good average N
1.25 1.4391 15.128 Y average average Y
1.67 1.4097 -15.586826 Y average average Y
0.89 1.441 619101124 N good average N
1.67 1.2145 -27.275449 Y average average Y
1.67 1.2145 -27.275449 Y average average Y
2.33 1.3258 -43.098712 N average average Y
6.67 1.2032 -81.961019 N poor average N
2.50 1.441 -42.36 N average average Y
3.33 1.3269 -60.153153 N poor average N
3.33 1.4391 -56.783784 N poor average N
3.33 1.4366 -56.858859 N poor average N
1.67 1.4345 -14.101796 Y average average Y
1.67 1.4366 -13.976048 Y average average Y
333 1.4366 -56.858859 N poor average N
1.00 1.4366 43.66 N good average N
1.00 1.2213 22.13 Y good average N
3.33 1.2057 -63.792793 N poor average N
1.00 1.4408 44.08 N good average N
1.00 1.4408 44.08 N good average N
2.50 1.2889 -48.444 N average average Y
0.50 1.2929 158.58 N good average N

numerical match % (base case) =40.63 %
linguistic match % (base case) =50.00%
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Appendix I (Sensitivity and Error Distribution Analyses)

Rig Pipe Model (Third Calibrated Model)

Results of Sensitivity Analysis

Base Case
Productivity defuzzified error
(base case) error % match(y/n) actual term term match(y/n) | distribution

0.5413 42.44736842 N good good Y match
0.5261 -35.04938272 N good good Y match
0.5486 44.36842105 N good good Y match

0.546 -28.15789474 Y good good Y match
0.5594 36.43902439 N good good Y match
0.5455 -14.765625 Y good good Y match
0.5583 -32.73493976 Y good good Y match
0.5517 34.56097561 N good good Y match
0.5469 -5.706896552 Y good good Y match
0.5595 -11.19047619 Y good good Y match
0.7174 -64.13 N poor good N 2-term
0.5551 327 N good good Y match
0.5594 33.19047619 Y good good Y match
0.7917 97.925 N good good Y match
5.0549 294.9140625 N average poor N 1-term
5.0549 146.5804878 N average poor N 1-term
0.6285 -29.38202247 Y good good Y match
0.8344 60.46153846 N good good Y match
0.8225 32.66129032 Y good good Y match
0.7774 1843.5 N good good Y match
0.7721 175.75 N good good Y match
0.7774 455.2857143 N good good Y match
0.4541 -70.125 N average good N I-term
0.6282 28.20408163 Y good good Y match
0.5829 -34.50561798 N good good Y match
0.5122 34.78947368 N good good Y match
0.5595 -37.13483146 N good good Y match
0.5283 -5.660714286 Y good good Y match
0.5483 -18.1641791 Y good good Y match

numerical match % (base case) =37.93 %
linguistic match % (base case) =86.21%

1-term off = 10.34%
2-term off = 3.45%
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Bisector Method

Productivity
(bisector defuzzified
method) error % | match(y/n) | actual term term match(y/n) error distribution
0.5095 34.07895 N good good Y match
0.5095 -37.0988 N good good Y match
0.5095 34.07895 N good good Y match
0.5095 -32.9605 Y good good Y match
0.5095 24.26829 Y good good Y match
0.5095 -20.3906 Y good good Y match
0.5095 -38.6145 N good good Y match
0.5095 24.26829 Y good good Y match
0.5095 -12.1552 Y good good Y match
0.5095 -19.127 Y good good Y match
0.6094 -69.53 N poor good N 2-term
0.5095 291.9231 N good good Y match
0.5095 21.30952 Y good good Y match
0.7093 77.325 N good good Y match
5.1049 298.8203 N average poor N I-term
5.1049 149.0195 N average poor N 1-term
0.6094 -31.5281 Y good good Y match
0.8092 55.61538 N good good Y match
0.8092 30.51613 Y good good Y match
0.7093 1673.25 N good good Y match
0.7093 153.3214 N good good Y match
0.7093 406.6429 N good good Y match
0.4096 -73.0526 N average good N I-term
0.6094 24.36735 Y good good Y match
0.5095 -42.7528 N good good Y match
0.5095 34.07895 N good good Y match
0.5095 -42.7528 N good good Y match
0.5095 -9.01786 Y good good Y match
0.5095 -23.9552 Y good good Y match

numerical match % (bisector method) =41.38%
linguistic match % (bisector method) =86.21%
1-term off = 10.34%
2-term off = 3.45%

317




MOM Method

Productivity error
(MOM method) error % match(y/n) |actual term defuzzified term | match(y/n) listribution
0.5095 34.07894737 N good good Y match
0.4596 -43.25925926 N good good Y match
0.5095 34.07894737 N good good Y match
0.5095 -32.96052632 Y good good Y match
0.5595 36.46341463 N good good Y match
0.5095 -20.390625 Y good good Y match
0.5095 -38.61445783 N good good Y match
0.5095 24.26829268 Y good good Y match
0.5095 -12.15517241 Y good good Y match
0.5595 -11.19047619 Y good good Y match
0.3597 -82.015 N poor good N 2-term
0.5095 291.9230769 N good good Y match
0.5595 33.21428571 Y good good Y match
0.5595 39.875 N good good Y match
0.5095 -60.1953125 N average good N 1-term
0.5095 -75.14634146 N average good N 1-term
0.5095 -42.75280899 N good good Y match
0.4596 -11.61538462 Y good good Y match
0.4096 -33.93548387 N good good Y match
0.5595 1298.75 N good good Y match
0.5095 81.96428571 N good good Y match
0.5595 299.6428571 N good good Y match
0.3097 -79.625 N average good N 1-term
0.4096 -16.40816327 Y good good Y match
0.3597 -59.58426966 N good good Y match
0.4596 20.94736842 Y good good Y match
0.5595 -37.13483146 N good good Y match
0.4596 -17.92857143 Y good good Y match
0.5095 -23.95522388 Y good good Y match

numerical match % (MOM method) =34.48%
linguistic match % (MOM method) =86.21%

1-term off = 10.34%
2-term off = 3.45%
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LOM Method

Productivity defuzzified error
(LOM method) error % match(y/n) | actual term term match(y/n) | distribution
1.009 165.5263158 N good average N 1-term
0.9091 12.2345679 Y good average N I-term
1.009 165.5263158 N good average N 1-term
1.009 32.76315789 Y good average N 1-term
1.1089 170.4634146 N good average N 1-term
1.009 57.65625 N good average N I-term
1.009 21.56626506 Y good average N 1-term
1.009 146.097561 N good average N I-term
1.009 73.96551724 N good average N 1-term
1.1089 76.01587302 N good average N 1-term
0.7093 -64.535 N poor good N 2-term
1.009 676.1538462 N good average N 1-term
1.1089 164.0238095 N good average N 1-term
1.1089 177.225 N good average N 1-term
1.009 -21.171875 Y average average Y match
1.009 -50.7804878 N average average Y match
1.009 13.37078652 Y good average N 1-term
0.9091 74.82692308 N good average N 1-term
0.8092 30.51612903 Y good good Y match
1.1089 2672.25 N good average N I-term
1.009 260.3571429 N good average N 1-term
1.1089 692.0714286 N good average N 1-term
0.6094 -59.90789474 N average good N 1-term
0.8092 65.14285714 N good good Y match
0.7093 -20.30337079 Y good good Y match
0.9091 139.2368421 N good average N 1-term
1.1089 24.59550562 Y good average N 1-term
0.9091 62.33928571 N good average N 1-term
1.009 50.59701493 N good average N 1-term

numerical match % (LOM method) =27.59%
linguistic match % (LOM method) =17.24%

1-term off = 79.31%
2-term off = 3.45%
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SOM Method

Productivity defuzzified error
(SOM method) error % match(y/n) | actual term term match(y/n) | distribution
0.01 -97.36842105 N good good Y match
0.01 -98.7654321 N good good Y match
0.01 -97.36842105 N good good Y match
0.01 -98.68421053 N good good Y match
0.01 -97.56097561 N good good Y match
0.01 -98.4375 N good good Y match
0.01 -98.79518072 N good good Y match
0.01 -97.56097561 N good good Y match
0.01 -98.27586207 N good good Y match
0.01 -08.41269841 N good good Y match
0.01 -99.5 N poor good N 2-term
0.01 -92.30769231 N good good Y match
0.01 -97.61904762 N good good Y match
0.01 -97.5 N good good Y match
0.01 -99.21875 N average good N 1-term
0.01 -99.51219512 N average good N 1-term
0.01 -98.87640449 N good good Y match
0.01 -98.07692308 N good good Y match
0.01 -98.38709677 N good good Y match
0.01 -75 N good good Y match
0.01 -96.42857143 N good good Y match
0.01 -92.85714286 N good good Y match
0.01 -99.34210526 N average good N 1-term
0.01 -97.95918367 N good good Y match
0.01 -98.87640449 N good good Y match
0.01 -97.36842105 N good good Y match
0.01 -98.87640449 N good good Y match
0.01 -98.21428571 N good good Y match
0.01 -98.50746269 N good good Y match

numerical match % (SOM method) =0%
linguistic match % (SOM method) =86.21%

1-term off = 10.34%
2-term off = 3.45%
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Prod-Probor Method

Productivity
(prod-probor actual
method) error % match(y/n) term |defuzzified term| match(y/n) |error distribution
0.5413 42.44736842 N good good Y match
0.5261 -35.04938272 N good good Y match
0.5486 4436842105 N good good Y match
0.546 -28.15789474 Y good good Y match
0.5594 36.43902439 N good good Y match
0.5455 -14.765625 Y good good Y match
0.5583 -32.73493976 Y good good Y match
0.5517 34.56097561 N good good Y match
0.5469 -5.706896552 Y good good Y match
0.5595 -11.19047619 Y good good Y match
0.7174 -64.13 N poor good N 2-term
0.5551 327 N good good Y match
0.5594 33.19047619 Y good good Y match
0.7917 97.925 N good good Y match
5.0549 294.9140625 N average poor N 1-term
5.0549 146.5804878 N average poor N 1-term
0.6285 -29.38202247 Y good good Y match
0.8344 60.46153846 N good good Y match
0.8225 32.66129032 Y good good Y match
0.7774 1843.5 N good good Y match
0.7721 175.75 N good good Y match
0.7774 4552857143 N good good Y match
0.4541 -70.125 N average good N 1-term
0.6282 28.20408163 Y good good Y match
0.5829 -34.50561798 N good good Y match
0.5122 34,78947368 N good good Y match
0.5595 -37.13483146 N good good Y match
0.5283 -5.660714286 Y good good Y match
0.5483 -18.1641791 Y good _good Y match

numerical match % (prod-probor method) =37.93%
linguistic match % (prod-probor method) =86.21%
1-term off = 10.34%
2-term off = 3.45%
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“and”-Product Method

Productivity
("and"-product error

method) error % match(y/n) actual term |defuzzified term| match(y/n) distribution
0.5413 42.44737 N good good Y match
0.5261 -35.0494 N good good Y match
0.5486 44.36842 N good good Y match
0.546 -28.1579 Y good good Y match
0.5594 36.43902 N good good Y match
0.5455 -14.7656 Y good good Y match
0.5583 -32.7349 Y good good Y match
0.5517 34.56098 N good good Y match
0.5469 -5.7069 Y good good Y match
0.5595 -11.1905 Y good good Y match
0.7174 -64.13 N poor good N 2-term
0.5551 327 N good good Y match
0.5594 33.19048 Y good good Y match
0.7917 97.925 N good good Y match
5.0549 294.9141 N average poor N 1-term
5.0549 146.5805 N average poor N 1-term
0.6285 -29.382 Y good good Y match
0.8344 60.46154 N good good Y match
0.8225 32.66129 Y good good Y match
0.7774 1843.5 N good good Y match
0.7721 175.75 N good good Y match
0.7774 455.2857 N good good Y match
0.4541 -70.125 N average good N 1-term
0.6282 28.20408 Y good good Y match
0.5829 -34.5056 N good good Y match
0.5122 34.78947 N good good Y match
0.5595 -37.1348 N good good Y match
0.5283 -5.66071 Y good good Y match
0.5483 -18.1642 Y good good Y match

numerical match % ("and"-product method) =37.93%
linguistic match % ("and"-product method) =86.21%
1-term off = 10.34%
2-term off = 3.45%
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“or”-Probor Method

productivity
("or"-probor| defuzzified error
method) error % match(y/n) actual term term match(y/n) distribution
0.4979 | 31.02632 Y good good Y match
0.5023 -37.9877 N good good Y match
0.5005 | 31.71053 Y good good Y match
0.4977 -34.5132 N good good Y match
0.4977 | 21.39024 Y good good Y match
0.4977 -22.2344 Y good good Y match
0.4908 -40.8675 N good good Y match
0.4908 19.70732 Y good good Y match
0.4942 -14.7931 Y good good Y match
0.5014 -20.4127 Y good good Y match
0.7159 -64.205 N poor good N 2-term
0.5023 | 286.3846 N good good Y match
0.5023 | 19.59524 Y good good Y match
0.7874 96.85 N good good Y match
5.0856 |297.3125 N average poor N 1-term
5.0856 148.078 N average poor N 1-term
0.6526 -26.6742 Y good good Y match
0.8225 | 58.17308 N good good Y match
0.8225 32.66129 Y good good Y match
0.7805 1851.25 N good good Y match
0.7805 178.75 N good good Y match
0.7805 457.5 N good good Y match
0.4421 -70.9145 N average good N 1-term
0.6381 | 30.22449 Y good good Y match
0.5724 -35.6854 N good good Y match
0.4798 | 26.26316 Y good good Y match
0.5013 -43.6742 N good good Y match
0.4918 -12.1786 Y good good Y match
0.4935 | -26.3433 Y good good Y match

numerical match % ("or"-probor method) =48.28%
linguistic match % ("or"-probor method) =86.21%
1-term off = 10.34%
2-term off = 3.45%
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Weld Pipe Model, Carbon Steel and Butt Weld (Third Calibrated Model)

Base Case
Productivity error
(base case) error % match(y/n) | actual term | defuzzified term | match(y/n) | distribution

1.216 -2.72 Y average average Y match
1.2154 -39.23 N poor average N 1-term

1.216 21.6 Y average average Y match

1.216 21.6 Y average average Y match

1.216 81.49253731 N good good Y match
1.1649 55.32 N average average Y match
1.1825 -21.16666667 Y average average Y match
1.1825 -5.4 Y average average Y match
1.1766 -29.54491018 Y average average Y match
1.1766 -24.57692308 Y average average Y match

1.194 -52.24 N poor poor Y match

1.194 -28.50299401 Y average average Y match

1.194 -28.50299401 Y average average Y match

1.194 5.663716814 Y average average Y match
1.1654 -16.15827338 Y average average Y match
1.1654 91.04918033 N good good Y match
1.1652 -12.39097744 Y average average Y match
1.2901 -22.74850299 Y average average Y match
1.1604 43.25925926 N average average Y match
1.2336 -7.248120301 Y average average Y match
1.2336 23.36 Y average average Y match
1.2336 43.44186047 N average average Y match
1.1634 4.810810811 Y average average Y match
3.6747 403.3835616 N average poor N 1-term
1.1938 -52.248 N poor average N 1-term
1.1737 8.675925926 Y average average Y match
1.1954 44.02409639 N average average Y match
1.1943 59.24 N average average Y match
1.1979 2.384615385 Y average average Y match
1.2086 51.075 N average average Y match

1.183 -11.05263158 Y average average Y match

1.183 -1.416666667 Y average average Y match

1.183 373.2 N good average N 1-term
1.1675 108.4821429 N good average N 1-term
1.1786 -41.07 N poor average N 1-term
1.1786 -11.38345865 Y average average Y match
1.1786 68.37142857 N average average Y match
1.1971 -28.31736527 Y average average Y match
1.1971 -4.232 Y average average Y match
1.2513 86.76119403 N good poor N 2-term
1.2857 -57.14333333 N poor average N 1-term
1.2426 24.26 Y average average Y match
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Base Case-Continued

Productivity error
(base case) error % match(y/n) actual term | defuzzified term | match(y/n) | distribution
1.2426 3.55 Y average average Y match
4.0743 508.1044776 N good poor N 2-term
1.1714 -29.85628743 Y average average Y match
1.1703 245 Y average average Y match
1.2721 89.86567164 N average average Y match
1.1786 -29.4251497 'Y average average Y match
1.1786 210.1578947 N good average N 1-term
1.1786 3393181818 N average average Y match
1.1746 -53.016 N poor average N I-term
1.1939 19.39 Y average average Y match
1.1939 43.84337349 N average average Y match
1.1939 89.50793651 N good average N 1-term
1.2974 -44.31759657 N poor average N I-term
1.2955 -48.18 N poor average N 1-term
1.2704 53.06024096 N average average Y match
1.2656 -24.21556886 Y average average Y match
1.182 -29.22155689 Y average average Y match
1.2953 -61.1021021 N poor average N 1-term
1.2915 -22.66467066 Y average average Y match
1.2211 -69.4725 N poor average N 1-term
1.2953 -22.43712575 Y average average Y match

numerical match % (base case) =49.21 %
linguistic match % (base case) =74.60%

1-term off = 22.22%
2-term off = 3.17%
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Bisector

Productivity
(bisector defuzzified error
method) error % | match(y/n) | actual term term match(y/n) | distribution
0.892 -28.64 Y average average Y match
0.892 -55.4 N poor average N 1-term
0.892 -10.8 Y average average Y match
0.892 -10.8 Y average average Y match
0.892 33.13433 Y good average N 1-term
0.496 -33.8667 Y average good N 1-term
0.892 -40.5333 N average average Y match
0.892 -28.64 Y average average Y match
0.496 -70.2994 N average good N 1-term
0.496 -68.2051 N average good N 1-term
0.793 -68.28 N poor average N 1-term
0.793 -52.515 N average average Y match
0.793 -52.515 N average average Y match
0.793 -29.823 Y average average Y match
0.496 -64.3165 N average good N 1-term
0.496 -18.6885 Y good good Y match
0.496 -62.7068 N average good N 1-term
0.892 -46.5868 N average average Y match
0.496 -38.7654 N average good N 1-term
0.892 -32.9323 Y average average Y match
0.892 -10.8 Y average average Y match
0.892 3.72093 Y average average Y match
3.961 256.8468 N average poor N 1-term
4.258 483.2877 N average poor N 1-term
0.892 -64.32 N poor average N 1-term
0.793 -26.5741 Y average average Y match
0.892 7.46988 Y average average Y match
0.892 18.93333 Y average average Y match
0.496 -57.6068 N average good N I-term
3.664 358 N average poor N 1-term
0.892 -32.9323 Y average average Y match
0.892 -25.6667 Y average average Y match
0.892 256.8 N good average N 1-term
0.496 -11.4286 Y good good Y match
0.793 -60.35 N poor average N 1-term
0.793 -40.3759 N average average Y match
0.793 13.28571 Y average average Y match
0.892 -46.5868 N average average Y match
0.892 -28.64 Y average average Y match
4.06 505.9701 N good poor N 2-term
0.991 -66.9667 N poor average N 1-term
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Bisector-Continued

Productivity
(bisector defuzzified
method) error % | match(y/n) actual term term match(y/n) error distribution
0.991 -0.9 Y average average Y match
0.991 -17.4167 Y average average Y match
5.149 668.5075 N good poor N 2-term
0.793 -52.515 N average average Y match
0.793 -15.6383 Y average average Y match
3.664 446.8657 N average poor N 1-term
0.793 -52.515 N average average Y match
0.793 108.6842 N good average N 1-term
0.793 -9.88636 Y average average Y match
0.793 -68.28 N poor average N I-term
0.793 -20.7 Y average average Y match
0.793 -4.45783 Y average average Y match
0.793 25.87302 Y good average N 1-term
5.149 120.9871 N poor poor Y match
5.248 109.92 N poor poor Y match
4.159 401.0843 N average poor N 1-term
3.763 125.3293 N average poor N 1-term
0.892 -46.5868 N average average Y match
3.862 15.97598 Y poor poor Y match
4.654 178.6826 N average poor N 1-term
4.159 3.975 Y poor poor Y match
4.555 172.7545 N average poor N 1-term

numerical match % (bisector method) =42.86%
linguistic match % (bisector method) =63.49%
1-term off = 39.68%
2-term off = 3.17%
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MOM Method

Productivity defuzzified error
(MOM method) error % match(y/n) |actual term term match(y/n) | distribution
1.2385 -0.92 Y average average Y match
1.189 -40.55 N poor average N 1-term
1.2385 23.85 Y average average Y match
1.2385 23.85 Y average average Y match
1.2385 84.8507463 N good average N 1-term
1.2385 65.1333333 N average average Y match
1.2385 -17.433333 Y average average Y match
1.2385 -0.92 Y average average Y match
1.2385 -25.838323 Y average average Y match
1.2385 -20.608974 Y average average Y match
1.2385 -50.46 N poor average N I-term
1.2385 -25.838323 Y average average Y match
1.2385 -25.838323 Y average average Y match
1.2385 9.60176991 Y average average Y match
1.2385 -10.899281 Y average average Y match
1.2385 103.032787 N good good Y match
1.2385 -6.8796992 Y average average Y match
1.2385 -25.838323 Y average average Y match
1.2385 52.9012346 N average average Y match
1.2385 -6.8796992 Y average average Y match
1.2385 23.85 Y average average Y match
1.2385 44.0116279 N average average Y match
1.2385 11.5765766 Y average average Y match
1.189 62.8767123 N average average Y match
1.2385 -50.46 N poor average N 1-term
1.189 10.0925926 Y average average Y match
1.2385 49.2168675 N average average Y match
1.189 58.5333333 N average average Y match
1.2385 5.85470085 Y average average Y match
1.2385 54.8125 N average average Y match
1.189 -10.601504 Y average average Y match
1.189 -0.9166667 Y average average Y match
1.189 375.6 N good average N 1-term
1.2385 121.160714 N good average N 1-term
1.2385 -38.075 N poor average N I-term
1.2385 -6.8796992 Y average average Y match
1.2385 76.9285714 N average average Y match
1.2385 -25.838323 Y average average Y match
1.2385 -0.92 Y average average Y match
1.2385 84.8507463 N good average N 1-term
1.2385 -58.716667 N poor average N 1-term
1.2385 23.85 Y average average Y match
1.2385 3.20833333 Y average average Y match
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MOM Method-Continued

Productivity defuzzified error
{(MOM method) error % match(y/n) |actual term term match(y/n) | distribution
1.2385 84.8507463 N good average N I-term
1.2385 -25.838323 Y average average Y match
1.2385 31.7553191 Y average average Y match
1.189 774626866 N average average Y match
1.2385 -25.838323 Y average average Y match
1.2385 225.921053 N good average N 1-term
1.2385 40.7386364 N average average Y match
1.2385 -50.46 N poor average N I-term
1.2385 23.85 Y average average Y match
1.2385 49.2168675 N average average Y match
1.2385 96.5873016 N good average N 1-term
1.2385 -46.845494 N poor average N I-term
1.189 -52.44 N poor average N I-term
1.1395 37.2891566 N average average Y match
1.1395 -31.766467 Y average average Y match
1.189 -28.802395 Y average average Y match
1.189 -64.294294 N poor average N I-term
1.2385 -25.838323 Y average average Y match
1.2385 -69.0375 N poor average N 1-term
1.189 -28.802395 Y average average Y match

numerical match % (MOM method) =52.38%
linguistic match % (MOM method) =73.02%
I-term off = 26.98%

2-term

off = 0.00%

329




LOM Method

Productivity defuzzified error
(LLOM method) error % match(y/n) | actual term term match(y/n) | distribution
1.981 58.48 N average average Y match
1.882 -5.9 Y poor average N I-term
1.981 98.1 N average average Y match
1.981 98.1 N average average Y match
1.981 195.671642 N good average N 1-term
1.981 164.133333 N average average Y match
1.882 25.4666667 Y average average Y match
1.882 50.56 N average average Y match
1.882 12.6946108 Y average average Y match
1.882 20.6410256 Y average average Y match
1.981 -20.76 Y poor average N 1-term
1.981 18.6227545 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 75.3097345 N average average Y match
1.981 42.5179856 N average average Y match
1.981 224.754098 N good average N 1-term
1.981 48.9473684 N average average Y match
1.882 12.6946108 Y average average Y match
1.981 144.567901 N average average Y match
1.882 41.5037594 N average average Y match
1.882 88.2 N average average Y match
1.882 118.837209 N average average Y match
1.981 78.4684685 N average average Y match
1.882 157.808219 N average average Y match
1.882 -24.72 Y poor average N 1-term
1.882 74.2592593 N average average Y match
1.882 126.746988 N average average Y match
1.882 150.933333 N average average Y match
1.882 60.8547009 N average average Y match
1.882 135.25 N average average Y match
1.882 41.5037594 N average average Y match
1.882 56.8333333 N average average Y match
1.882 652.8 N good average N 1-term
1.981 253.75 N good average N 1-term
1.981 -0.95 Y poor average N 1-term
1.981 48.9473684 N average average Y match
1.981 183 N average average Y match
1.882 12.6946108 Y average average Y match
1.882 50.56 N average average Y match
1.882 180.895522 N good average N 1-term
1.882 -37.2666667 N poor average N 1-term
1.882 88.2 N average average Y match
1.882 56.8333333 N average average Y match
1.882 180.895522 N good average N 1-term
1.981 18.6227545 Y average average Y match
1.981 110.744681 N average average Y match
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LOM Method-Continued

Productivity defuzzified error
(LOM method) error % match(y/n) | actual term term match(y/n) | distribution
1.684 151.343284 N average average Y match
1.981 18.6227545 Y average average Y match
1.981 421.315789 N good average N I-term
1.981 125.113636 N average average Y match
1.981 -20.76 Y poor average N 1-term
1.981 98.1 N average average Y match
1.981 138.674699 N average average Y match
1.981 214.444444 N good average N 1-term
1.981 -14.9785408 Y poor average N 1-term
1.882 -24.72 Y poor average N 1-term
1.585 90.9638554 N average average Y match
1.585 -5.08982036 Y average average Y match
1.882 12.6946108 Y average average Y match
1.882 -43.4834835 N poor average N I-term
1.882 12.6946108 Y average average Y match
1.882 -52.95 N poor average N 1-term
1.882 12.6946108 Y average average Y match

numerical match % (LOM method) =31.75%
linguistic match % (LOM method) =71.42%

1-term off

=28.57%

2-term off = 0.00%
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SOM Method

Productivity defuzzified error
(SOM method) error % match(y/n) actual term term match(y/n) | distribution
0.496 -60.32 N average good N 1-term
0.496 -75.2 N poor good N 2-term
0.496 -50.4 N average good N 1-term
0.496 -50.4 N average good N 1-term
0.496 -25.9701 Y good good Y match
0.496 -33.8667 N average good N 1-term
0.595 -60.3333 N average good N 1-term
0.595 -52.4 N average good N 1-term
0.595 -64.3713 N average good N 1-term
0.595 -61.859 N average good N 1-term
0.496 -80.16 N poor good N 2-term
0.496 -70.2994 N average good N 1-term
0.496 -70.2994 N average good N 1-term
0.496 -56.1062 N average good N 1-term
0.496 -64.3165 N average good N 1-term
0.496 -18.6885 Y good good Y match
0.496 -62.7068 N average good N 1-term
0.595 -64.3713 N average good N 1-term
0.496 -38.7654 N average good N 1-term
0.595 -55.2632 N average good N 1-term
0.595 -40.5 N average good N 1-term
0.595 -30.814 Y average good N 1-term
0.496 -55.3153 N average good N 1-term
0.496 -32.0548 Y average good N 1-term
0.595 -76.2 N poor good N 2-term
0.496 -54.0741 N average good N 1-term
0.595 -28.3133 Y average good N 1-term
0.496 -33.8667 N average good N 1-term
0.595 -49.1453 N average good N 1-term
0.595 -25.625 Y average good N 1-term
0.496 -62.7068 N average good N 1-term
0.496 -58.6667 N average good N 1-term
0.496 98.4 N good good Y match
0.496 -11.4286 Y good good Y match
0.496 -75.2 N poor good N 2-term
0.496 -62.7068 N average good N 1-term
0.496 ~29.1429 Y average good N 1-term
0.595 ~64.3713 N average good N 1-term
0.595 -52.4 N average good N 1-term
0.595 -11.194 Y good good Y match
0.595 -80.1667 N poor good N 2-term
0.595 -40.5 N average good N 1-term
0.595 -50.4167 N average good N 1-term
0.595 -11.194 Y good good Y match
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SOM Method-Continued

Productivity defuzzified error
(SOM method) error % match(y/n) actual term term match(y/n) | distribution
0.496 -70.2994 N average good N 1-term
0.496 -47.234 N average good N 1-term
0.694 3.58209 Y average good N I-term
0.496 -70.2994 N average good N 1-term
0.496 30.52632 Y good good Y match
0.496 -43.6364 N average good N 1-term
0.496 -80.16 N poor good N 2-term
0.496 -50.4 N average good N 1-term
0.496 -40.241 N average good N 1-term
0.496 -21.2698 Y . good good Y match
0.496 -78.7124 N poor good N 2-term
0.496 -80.16 N poor good N 2-term
0.694 -16.3855 Y average good N 1-term
0.694 -58.4431 N average good N 1-term
0.496 -70.2994 N average good N 1-term
0.496 -85.1051 N poor good N 2-term
0.595 -64.3713 N average good N 1-term
0.595 -85.125 N poor good N 2-term
0.496 -70.2994 N average good N 1-term

numerical match % (SOM method) =22.22%
linguistic match % (SOM method) =12.70%

1-term off = 71.43%
2-term off = 15.87%
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Prod-Probor Method

Productivity
(prod-probor) defuzzified
method) error % match(y/n) jactual term| term match(y/n) error distribution

1.1374 -9.008 Y average | average Y match
1.1932 -40.34 N poor average N I-term
1.1335 13.35 Y average | average Y match
1.1335 13.35 Y average | average Y match
1.1124 66.02985 N good average N 1-term
1.0392 38.56 N average | average Y match
1.1654 -22.3067 Y average { average Y match
1.1348 -9.216 Y average | average Y match
1.0319 -38.2096 N average | average Y match
1.0321 -33.8397 N average | average Y match
1.1704 -53.184 N poor average N 1-term
1.1704 -29.9162 Y average | average Y match
1.1704 -29.9162 Y average | average Y match
1.1112 -1.66372 Y average | average Y match
1.0243 -26.3094 Y average | average Y match

1.021 67.37705 N good average N 1-term
1.0252 -22.9173 Y average | average Y match
1.2603 -24.5329 Y average | average Y match
1.0478 29.35802 Y average | average Y match
1.1145 -16.203 Y average | average Y match
1.1401 14.01 Y average | average Y match
1.1145 29.59302 Y average | average Y match
1.1509 3.684685 Y average | average Y match
3.6842 404.6849 N average poor N 1-term
1.1705 -53.18 N poor average N 1-term
1.1259 4.25 Y average | average Y match
1.1511 38.68675 N average | average Y match
1.1118 48.24 N average | average Y match
1.0575 -9.61538 Y average | average Y match
1.2476 55.95 N average | average Y match
1.1111 -16.4586 Y average | average Y match
1.1312 -5.73333 Y average | average Y match
1.1111 344.44 N good average N i-term
1.0658 90.32143 N good average N 1-term
1.1636 -41.82 N poor average N I-term
1.1105 -16.5038 Y average | average Y match
1.1306 61.51429 N average | average Y match
1.1131 -33.3473 N average | average Y match
1.1363 -9.096 Y average | average Y match
1.267 89.10448 N good average N 1-term
1.2558 -58.14 N poor average N 1-term
1.2071 20.71 Y average | average Y match
1.2058 0.483333 Y average | average Y match
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Prod-Probor Method-Continued

Productivity
(prod-probor) defuzzified
method) error % match(y/n) |actual term| term match(y/n) error distribution

4.0172 499.5821 N good | poor N 2-term
1.1104 -33.509 N average | average Y match
1.1103 18.11702 Y average | average Y match
1.2746 90.23881 N average | average Y match
1.1105 -33.503 N average | average Y match
1.1105 192.2368 N good average N I-term
1.1105 26.19318 Y average | average Y match
1.1728 -53.088 N poor average N 1-term
1.1317 13.17 Y average | average Y match
1.1111 33.86747 N average | average Y match
1.1111 76.36508 N good average N 1-term
1.2757 -45.2489 N poor average N 1-term
1.2768 -48.928 N poor average N 1-term
1.2572 51.46988 N average | average Y match

1.256 -24.7904 Y average | average Y match
1.1651 -30.2335 Y average | average Y match
1.2667 -61.961 N poor average N 1-term
1.2706 -23.9162 Y average | average Y match
1.2216 -69.46 N poor average N 1-term
1.2693 -23.994 Y average | average Y match

numerical match % (prod-probor method) =49.21%
linguistic match % (prod-probor method) =69.84%
1-term off = 28.57%
2-term off = 1.59%
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“and”-Product Method

Productivity
("and"-product defuzzified
method) error % match(y/n) jactual term term match(y/n) | error distribution

1.2853 2.824 Y average average Y match
1.2769 -36.155 N poor average N 1-term
1.2849 28.49 Y average average Y match
1.2849 28.49 Y average average Y match

1.283 91.49254 N good average N 1-term
1.2326 64.34667 N average average Y match
1.258 -16.1333 Y average average Y match
1.2671 1.368 Y average average Y match
1.2477 -25.2874 Y average average Y match
1.2477 -20.0192 Y average average Y match
1.2602 -49.592 N poor average N 1-term
1.2602 -24.5389 Y average average Y match
1.2602 -24.5389 Y average average Y match
1.2697 12.36283 Y average average Y match
1.2375 -10.9712 Y average average Y match
1.2399 103.2623 N good average N 1-term
1.2373 -6.96992 Y average average Y match
1.2901 -22.7485 Y average average Y match
1.221 50.74074 N average average Y match
1.2931 -2.77444 Y average average Y match
1.2951 29.51 Y average average Y match
1.2931 50.36047 N average average Y match
1.2116 9.153153 Y average average Y match
1.4645 100.6164 N average average Y match
1.2664 -49.344 N poor average N I-term
1.2114 12.16667 Y average average Y match
1.2798 54.19277 N average average Y match
1.2752 70.02667 N average average Y match
1.2611 7.786325 Y average average Y match
1.2947 61.8375 N average average Y match
1.2647 -4.90977 Y average average Y match
1.2646 5.383333 Y average average Y match
1.2647 405.88 N good average N 1-term
1.2189 117.6607 N good average N 1-term
1.2495 -37.525 N poor average N 1-term
1.2566 -5.5188 Y average average Y match
1.2566 79.51429 N average average Y match
1.2809 -23.2994 Y average average Y match
1.2832 2.656 Y average average Y match
1.3073 95.1194 N good average N 1-term
1.2881 -57.0633 N poor average N 1-term
1.2878 28.78 Y average average Y match
1.2872 7.266667 Y average average Y match
2.0308 203.1045 N good average N 1-term
1.2506 -25.1138 Y average average Y match
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“and”-Product Method-Continued

Productivity

("and"-product defuzzified
method) error % match(y/n) |actual term term match(y/n) error distribution

1.2496 32.93617 Y average average Y match
1.292 92.83582 N average average Y match
1.2566 -24.7545 Y average average Y match
1.2566 230.6842 N good average N I-term
1.2566 42.79545 N average average Y match

1.25 -50 N poor average N 1-term
1.2695 26.95 Y average average Y match
1.2696 52.96386 N average average Y match
1.2696 101.5238 N good average N I-term
1.3233 -43.206 N poor average N 1-term
1.325 -47 N poor average N 1-term
1.2704 53.06024 N average average Y match
1.2656 -24.2156 Y average average Y match
1.2556 -24.8144 Y average average Y match
1.3052 -60.8048 N poor average N 1-term
1.3087 -21.6347 Y average average Y match
1.2911 -67.7225 N poor average N I-term
1.3089 -21.6228 Y average average Y match

numerical match % ("and"-product method) =50.79%
linguistic match % ("and"-product method) =71.43%
1-term off = 28.57%

2-term off =
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“or”-Probor Method

Productivity
("or"-probor defuzzified
method) error % |match(y/n) actual term term match(y/n) error distribution
0.8819 -29.448 Y average average Y match
0.8862 -55.69 N poor average N 1-term
0.8819 -11.81 Y average average Y match
0.8819 -11.81 Y average average Y match
0.8819 31.62687 Y good average N 1-term
0.6434 -14.2133 Y average average Y match
0.8457 -43.62 N average average Y match
0.8457 -32.344 Y average average Y match
0.63 -62.2754 N average average Y match
0.63 -59.6154 N average average Y match
0.8212 -67.152 N poor average N I-term
0.8212 -50.8263 N average average Y match
0.8212 -50.8263 N average average Y match
0.8212 -27.3274 Y average average Y match
0.6429 -53.7482 N average average Y match
0.6429 ] 5.393443 Y good average N 1-term
0.6431 -51.6466 N average average Y match
0.859 -48.5629 N average average Y match
0.6479 -20.0123 Y average average Y match
0.9137 -31.3008 Y average average Y match
0.9137 -8.63 Y average average Y match
0.9137 6.244186 Y average average Y match
4.2382 281.8198 N average poor N 1-term
4.4951 515.7671 N average poor N 1-term
0.8473 -66.108 N poor average N 1-term
2.035 88.42593 N average poor N 1-term
0.8473 2.084337 Y average average Y match
0.837 11.6 Y average average Y match
0.6096 -47.8974 N average average Y match
4.1619 420.2375 N average poor N 1-term
0.8436 -36.5714 N average average Y match
0.8436 -29.7 Y average average Y match
0.8436 237.44 N good average N I-term
0.6408 14.42857 Y good average N 1-term
0.8212 -58.94 N poor average N 1-term
0.8212 -38.2556 N average average Y match
0.8212 17.31429 Y average average Y match
0.8618 -48.3952 N average average Y match
0.8618 -31.056 Y average average Y match
43627 | 551.1493 N good poor N 2-term
1.0076 -66.4133 N poor average N 1-term
0.932 -6.8 Y average average Y match
0.932 -22.3333 Y average average Y match
5.1446 667.8507 N good poor N 2-term
0.8243 -50.6407 N average average Y match
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“or”-Probor Method-Continued

Productivity
("or"-probor defuzzified
method) error % |match(y/n) actual term term match(y/n) error distribution
0.8243 -12.3085 Y average average Y match
4.1907 5254776 N average poor N 1-term
0.8212 -50.8263 N average average Y match
0.8212 116.1053 N good average N 1-term
0.8212 -6.68182 Y average average Y match
0.8212 -67.152 N poor average N 1-term
0.8212 -17.88 Y average average Y match
0.8212 -1.06024 Y average average Y match
0.8212 30.34921 Y good average N 1-term
5.1524 121.133 N poor poor Y match
5.2054 108.216 N poor poor Y match
44755 | 439.2169 N average poor N 1-term
4.2345 153.5629 N average poor N 1-term
0.8425 -49.5509 N average average Y match
4.2914 | 28.87087 Y poor poor Y match
4.7679 185.503 N average poor N 1-term
4.4027 10.0675 Y poor poor Y match
4.6773 180.0778 N average poor N 1-term

numerical match % ("or"-probor method) =42.86%
linguistic match % ("or"-probor method) =63.49%
1-term off = 33.33%
2-term off = 3.17%
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Weld Pipe Model, Alloy and Butt Weld (Third Calibrated Model)

Base Case
Productivity defuzzified error
(actual) output(base case){ error % match(y/n) | actual term term match(y/n) |distribution
0.78 1.1922 52.8461538 N good average N I-term
2.50 1.2245 -51.02 N average average Y match
1.00 1.1964 19.64 Y good average N 1-term
2.00 1.1892 -40.54 N average average Y match
1.75 1.2103 -30.84 Y average average Y match
1.67 1.2562 -24.778443 Y average average Y match
1.67 1.197 -28.323353 Y average average Y match
1.67 1.197 -28.323353 Y average average Y match
1.67 1.2237 -26.724551 Y average average Y match
0.56 1.197 113.75 N good average N 1-term
0.63 1.3465 113.730159 N good average N 1-term
1.25 1.4391 15.128 Y average average Y match
1.67 1.4097 -15.586826 Y average average Y match
0.89 1.441 619101124 N good average N 1-term
1.67 1.2145 -27.275449 Y average average Y match
1.67 1.2145 -27.275449 Y average average Y match
2.33 1.3258 -43.098712 N average average Y match
6.67 1.2032 -81.961019 N poor average N 1-term
2.50 1.441 -42.36 N average average Y match
3.33 1.3269 -60.153153 N poor average N 1-term
3.33 1.4391 -56.783784 N poor average N 1-term
3.33 1.4366 -56.858859 N poor average N 1-term
1.67 1.4345 -14.101796 Y average average Y match
1.67 1.4366 -13.976048 Y average average Y match
3.33 1.4366 -56.858859 N poor average N 1-term
1.00 1.4366 43.66 N good average N 1-term
1.00 1.2213 22.13 Y good average N 1-term
333 1.2057 -63.792793 N poor average N 1-term
1.00 1.4408 44.08 N good average N 1-term
1.00 1.4408 44.08 N good average N 1-term
2.50 1.2889 -48.444 N average average Y match
0.50 1.2929 158.58 N good average N 1-term

numerical match % (base case) =40.63 %
linguistic match % (base case) =50.00%
1-term off = 50.00%
2-term off = 0.00%
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Bisector

Productivity
(bisector defuzzified error
method) error % match(y/n) | actual term term match(y/n) distribution
1.189 52.4358974 N good average N 1-term
1.288 -48.48 N average average Y match
1.189 18.9 Y good average N 1-term
1.189 -40.55 N average average Y match
1.189 -32.057143 Y average average Y match
1.288 -22.874251 Y average average Y match
1.189 -28.802395 Y average average Y match
1.189 -28.802395 Y average average Y match
1.288 -22.874251 Y average average Y match
1.189 112.321429 N good average N 1-term
1.387 120.15873 N good average N 1-term
1.486 18.88 Y average average Y match
1.387 -16.946108 Y average average Y match
1.486 66.9662921 N good average N 1-term
1.189 -28.802395 Y average average Y match
1.189 -28.802395 Y average average Y match
1.387 -40.472103 N average average Y match
1.189 -82.173913 N poor average N 1-term
1.486 -40.56 N average average Y match
1.387 -58.348348 N poor average N 1-term
1.486 -55.375375 N poor average N 1-term
1.387 -58.348348 N poor average N 1-term
1.387 -16.946108 Y average average Y match
1.387 -16.946108 Y average average Y match
1.387 -58.348348 N poor average N 1-term
1.387 38.7 N good average N 1-term
1.189 18.9 Y good average N 1-term
1.189 -64.294294 N poor average N I-term
1.486 48.6 N good average N 1-term
1.486 48.6 N good average N 1-term
1.288 -48.48 N average average Y match
1.288 157.6 N “good average N 1-term

numerical match % (bisector method) =44.82%
linguistic match % (bisector method) =50.00%

1-term off = 50.00%
2-term off = 0.00%
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MOM Method

Productivity
(MOM error
method) error % match(y/n) actual term |defuzzified term} match(y/n) distribution
1.4365 84.16666667 N good average N 1-term
1.4365 -42.54 N average average Y match
1.387 38.7 N good average N 1-term
1.4365 -28.175 Y average average Y match
1.387 -20.74285714 Y average average Y match
1.4365 -13.98203593 Y average average Y match
1.387 -16.94610778 Y average average Y match
1.387 -16.94610778 Y average average Y match
1.4365 -13.98203593 Y average average Y match
1.387 147.6785714 N good average N 1-term
1.4365 128.015873 N good average N 1-term
1.4365 14.92 Y average average Y match
1.4365 -13.98203593 Y average average Y match
1.387 55.84269663 N good average N 1-term
1.4365 -13.98203593 Y average average Y match
1.4365 -13.98203593 Y average average Y match
1.387 -40.472103 N average average Y match
1.387 -79.2053973 N poor average N 1-term
1.387 -44.52 N average average Y match
1.387 -58.34834835 N poor average N 1-term
1.4365 -56.86186186 N poor average N I-term
1.4365 -56.86186186 N poor average N 1-term
1.4365 -13.98203593 Y average average Y match
1.4365 -13.98203593 Y average average Y match
1.4365 -56.86186186 N poor average N I-term
1.4365 43.65 N good average N 1-term
1.387 38.7 N good average N 1-term
1.387 -58.34834835 N poor average N 1-term
1.387 38.7 N good average N I-term
1.387 38.7 N good average N 1-term
1.4365 -42.54 N average average Y match
1.4365 187.3 N good average N 1-term

numerical match % (MOM method) =37.5%
linguistic match % (MOM method) =50.00%

1-term off = 50.00%
2-term off = 0.00%
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LOM Method

Productivity
(LOM defuzzified error
method) error % match(y/n) actual term term match(y/n) distribution
2.08 166.666667 N good average N 1-term
1.981 -20.76 Y average average Y match
1.981 98.1 N good average N 1-term
2.08 4 Y average average Y match
1.981 13.2 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 253.75 N good average N 1-term
1.981 214.444444 N good average N 1-term
1.981 58.48 N average average Y match
1.783 6.76646707 N average average Y match
1.981 122.58427 N good average N 1-term
1.981 18.6227545 Y average average Y match
1.981 18.6227545 Y average average Y match
1.981 -14.978541 Y average average Y match
1.981 -70.29985 N poor average N 1-term
1.981 -20.76 Y average average Y match
1.981 -40.510511 N poor average N 1-term
1.981 -40.510511 N poor average N I-term
1.882 -43.483483 N poor average N I-term
1.783 6.76646707 Y average average Y match
1.882 12.6946108 Y average average Y match
1.882 -43.483483 N poor average N 1-term
1.882 88.2 N good average N 1-term
1.981 98.1 N good average N 1-term
1.981 -40.510511 N poor average N 1-term
1.981 98.1 N good average N 1-term
1.981 98.1 N good average N 1-term
1.981 -20.76 Y average average Y match
1.981 296.2 N good average N 1-term

numerical match % (LOM method) =43.75%
linguistic match % (LOM method) =50.00%
1-term off = 50.00%
2-term off = 0.00%
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SOM Method

Productivity defuzzified error
(SOM method) error % match(y/n) | actual term term match(y/n) distribution
0.793 1.66666667 Y good good Y match
0.892 -64.32 N average average Y match
0.793 -20.7 Y good good Y match
0.793 -60.35 N average good N 1-term
0.793 -54.685714 N average good N 1-term
0.892 -46.586826 N average average Y match
0.793 -52.51497 N average good N 1-term
0.793 -52.51497 N average good N 1-term
0.892 -46.586826 N average average Y match
0.793 41.6071429 N good good Y match
0.892 41.5873016 N good average N 1-term
0.892 -28.64 Y average average Y match
1.09 -34.730539 N average average Y match
0.793 -10.898876 Y good good Y match
0.892 -46.586826 N average average Y match
0.892 -46.586826 N average average Y match
0.793 -65.965665 N average good N 1-term
0.793 -88.110945 N poor good N 2-term
0.793 -68.28 N average good N 1-term
0.793 -76.186186 N poor good N 2-term
0.892 -73.213213 N poor average N 1-term
0.991 -70.24024 N poor average N 1-term
1.09 -34.730539 N average average Y match
0.991 -40.658683 N average average Y match
0.991 -70.24024 N poor average N 1-term
0.991 -0.9 Y good average N 1-term
0.793 -20.7 Y good good Y match
0.793 -76.186186 N poor good Y match
0.793 -20.7 Y good good Y match
0.793 -20.7 Y good good Y match
0.892 -64.32 N average average Y match
0.892 78.4 N good average N 1-term

numerical match % (SOM method) =25.00%
linguistic match % (SOM method) =56.25%

1-term off = 37.50%
2-term off = 6.25%
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Prod-Probor Method

Productivity
(prod-probor error
method) error % match(y/n) | actual term |defuzzified term| match(y/n) | distribution

1.1087 42.1410256 N good average N 1-term
1.2034 -51.864 N average average Y match
1.1014 10.14 Y good average N 1-term
1.2 -40 N average average Y match
1.2038 -31.211429 Y average average Y match
1.1379 -31.862275 Y average average Y match
1.1252 -32.622754 Y average average Y match
1.1245 -32.664671 Y average average Y match
1.198 -28.263473 Y average average Y match
1.1937 113.160714 N good average N 1-term
1.2438 97.4285714 N good average N I-term
1.4391 15.128 Y average average Y match
1.3976 -16.311377 Y average average Y match
1.4386 61.6404494 N good average N 1-term
1.1985 -28.233533 Y average average Y match
1.1985 -28.233533 Y average average Y match
1.2866 -44.781116 N average average Y match
1.3011 -80.493253 N poor average N 1-term
1.4395 -42.42 N average average Y match
1.2889 -61.294294 N poor average N 1-term
1.4362 -56.870871 N poor average N 1-term
1.4354 -56.894895 N poor average N I-term
1.4348 -14.083832 Y average average Y match
1.4351 -14.065868 Y average average Y match
1.4355 -56.891892 N poor average N I-term
1.4343 43.43 N good average N 1-term
1.2096 20.96 Y good average N 1-term
1.2051 -63.810811 N poor average N 1-term
1.4361 43.61 N good average N I-term
1.437 43.7 N good average N I-term
1.2426 -50.296 N average average Y match
1.245 149 N good average N 1-term

numerical match % (prod-probor method) =40.63%
linguistic match % (prod-probor method) =50.00%
I-term off = 50.00%
2-term off = 0.00%
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“and”-Product Method

Productivity
("and"-
product defuzzified error
method) error % match(y/n) actual term term match(y/n) distribution
1.2624 61.8461538 N good average N 1-term
1.3173 -47.308 N average average Y match
1.2659 26.59 Y good average N 1-term
1.2343 -38.285 N average average Y match
1.2545 -28.314286 Y average average Y match
1.3125 -21.407186 Y average average Y match
1.25 -25.149701 Y average average Y match
1.2483 -25.251497 Y average average Y match
1.2906 -22.7718563 Y average average Y match
1.2669 126.232143 N good average N 1-term
1.3896 120.571429 N good average N 1-term
1.4466 15.728 Y average average Y match
1.4162 -15.197605 Y average average Y match
1.4482 62.7191011 N good average N 1-term
1.2829 -23.179641 Y average average Y match
1.2829 -23.179641 Y average average Y match
1.3926 -40.23176 N average average Y match
1.3035 -80.457271 N poor average N 1-term
1.4517 -41.932 N average average Y match
1.3988 -57.993994 N poor average N 1-term
1.4434 -56.654655 N poor average N I-term
1.4398 -56.762763 N poor average N 1-term
1.4385 -13.862275 Y average average Y match
1.4391 -13.826347 Y average average Y match
1.441 -56.726727 N poor average N 1-term
1.439 439 N good average N I-term
1.3106 31.06 Y good average N 1-term
1.2496 -62.474474 N poor average N 1-term
1.4436 44.36 N good average N 1-term
1.4456 44.56 N good average N 1-term
1.378 -44.88 N average average Y match
1.3896 177.92 N good average N 1-term

match % ("and"-product method) =40.63%
match % ("and"-product method) =50.00%
1-term off = 50.00%
2-term off = 0.00%

346




“or”-Probor Method

Productivity
("or"-probor defuzzified error
method) error % match(y/n) | actual term term match(y/n) distribution
1.1922 52.8461538 N good average N 1-term
1.2245 -51.02 N average average Y match
1.1964 19.64 Y good average N I-term
1.1892 -40.54 N average average Y match
1.2103 -30.84 Y average average Y match
1.2562 -24.778443 Y average average Y match
1.197 -28.323353 Y average average Y match
1.197 -28.323353 Y average average Y match
1.2237 -26.724551 Y average average Y match
1.197 113.75 N good average N 1-term
1.3465 113.730159 N good average N 1-term
1.4391 15.128 Y average average Y match
1.4097 -15.586826 Y average average Y match
1.441 619101124 N good average N 1-term
1.2145 -27.275449 Y average average Y match
1.2145 -27.275449 Y average average Y match
1.3258 -43.098712 N average average Y match
1.2032 -81.961019 N poor average N 1-term
1.441 -42.36 N average average Y match
1.3269 -60.153153 N poor average N 1-term
1.4391 -56.783784 N poor average N 1-term
1.4366 -56.858859 N poor average N I-term
1.4345 -14.101796 Y average average Y match
1.4366 -13.976048 Y average average Y match
1.4366 -56.858859 N poor average N I-term
1.4366 43.66 N good average N 1-term
1.2213 22.13 Y good average N 1-term
1.2057 -63.792793 N poor average N I-term
1.4408 44.08 N good average N 1-term
1.4408 44.08 N good average N 1-term
1.2889 -48.444 N average average Y match
1.2929 158.58 N good average N 1-term

match % ("or"-probor method) =40.63%
match % ("or"-probor method) =50.00%
1-term off = 50.00%
2-term off = 0.00%
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Sensitivity Results for the Rig Pipe Model

Method Modified Operator | Numerical match (%) | Linguistic match (%) | Ranking |
Base case None 37.93 86.21 3
Bisector Defuzzification 41.38 86.21 2
MOM Defuzzification 34.48 86.21 6
LOM Defuzzification 27.59 17.24 8
SOM Defuzzification 0.00 86.21 7
Prod-Probor Implication-aggregation 37.93 86.21 3
"and"-product "and" 37.93 86.21 3
"or"-probor "or" 48.28 86.21 1

Sensitivity Results for the Weld Pipe, Carbon Steel and Butt Weld Model

Method Modified Operator | Numerical match (%) | Linguistic match (%) | Ranking
Base case (centroid) None 49.21 74.60 1
Bisector Defuzzification 42.86 57.14 7
MOM Defuzzification 52.38 73.02 2
LOM Defuzzification 31.75 71.42 4
SOM Defuzzification 22.22 12.70 8
Prod-Probor  [Implication-aggregation 49.21 69.84 5
"and"-product "and" 50.79 71.43 3
"or"-probor "or" 42.86 63.49 6
Sensitivity Results for the Weld Pipe, Alloy and Butt Weld Model

Method Modified Operator | Numerical match (%) | Linguistic match (%) | Ranking |
Base case (centroid) None 40.63 50.00 4
Bisector Defuzzification 44.82 50.00 2
MOM Defuzzification 37.50 50.00 8
LOM Defuzzification 43.75 50.00 3
SOM Defuzzification 25.00 56.25 1
Prod-Probor  |Implication-aggregation 40.63 50.00 4
"and"-product "and" 40.63 50.00 4
"or"-probor "or" 40.63 50.00 4
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Results of Linguistic Error Distribution Analysis

Linguistic Error Distribution Table for Rig Pipe and Weld Pipe Models

Rig Pipe Model Weld Pipe, Carbon Steel| Weld Pipe, Alloy and
Testing Method match/no-match and Butt Weld Model Butt Weld Model

match (%) 86.21 74.60 50.00

Base case 1-term off (%) 10.34 22.22 50.00
2-term off (%) 3.45 3.17 0.00

match (%) 86.21 57.14 50.00

Bisector 1-term off (%) 10.34 39.68 50.00
2-term off (%) 3.45 3.17 0.00

match (%) 86.21 73.02 50.00

MOM method 1-term off (%) 10.34 26.98 50.00
2-term off (%) 3.45 0.00 0.00

match (%) 17.24 71.42 50.00

LOM method 1-term off (%) 79.31 28.57 50.00
2-term off (%) 3.45 0.00 0.00

match (%) 86.21 12.70 56.25

SOM method 1-term off (%) 10.34 7143 37.50
2-term off (%) 3.45 15.87 6.25

match (%) 86.21 69.84 50.00

Prod-Probor method | 1-term off (%) 10.34 28.57 50.00
2-term off (%) 3.45 1.59 0.00

match (%) 86.21 71.43 50.00

"and"-product method | 1-term off (%) 10.34 28.57 50.00
2-term off (%) 3.45 0.00 0.00

match (%) 86.21 63.49 50.00

"or"-probor method | I1-term off (%) 10.34 33.33 50.00
2-term off (%) 3.45 3.17 0.00
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