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Abstract 
 

Microbes in the intestinal tract are essential for host health and development. While the 

role of bacteria in these process is well studied, the role of fungi (the mycobiota) have received 

less attention. However, fungi have been shown to alter immune system development and 

intestinal architecture. The objectives of this thesis were to explore the impact of antibiotic 

treatment on fungal community structure, to track and profile the pig mycobiome over 1 

production cycle with comparisons to commercially raised and feral pigs, and to determine the 

impact of Kazachstania slooffiae on bacterial community structure, metabolite production, 

intestinal and immune system development.  

In study 1, 32 piglets from 4 different litters were randomly assigned to one of 4 

treatment groups: placebo (P) amoxicillin (A) amoxicillin + clavulanic acid (AC) or gentamicin 

+ ampicillin (GA). Bacterial and fungal community structure were investigated by sequencing 

the 16S rRNA gene and the internal transcribed spacer-2 (ITS2) rRNA gene, respectively. Total 

bacteria and total fungi were quantified by quantitative polymerase chain reaction. This study 

showed that antibiotics did not alter fungal community composition (P = 0.834), however, AC 

treatment increased the ratio of total fungi to total bacteria (P = 0.027). Additionally, the 

maternal mycobiome drove piglet mycobiome composition, especially with regard to the yeast K. 

slooffiae. We found that piglets were more similar to their maternal sow than to any of the other 

sows in the study (P  ≤  0.05).  

In study 2, 2 piglets from 12 different litters were fecal sampled at 11 days of age, the day 

before weaning, 7 days after weaning and 119 days after weaning. Additionally, 8 sows in a 

commercial facility and feral pigs were sampled. Fungal community structure was evaluated via 

sequencing of the ITS2 rRNA gene. We found that piglets clustered by sow  K. slooffiae status at 
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11 days of age (P = 0.087) and 119 days after weaning (P = 0.046), but not on the day before (P = 

0.297) or 7 days after weaning (P = 0.859). Piglets were more similar to their maternal sow than 

a random sow at 11 days of age (P  < 0.001) but not after (P ≥ 0.05). Additionally piglets 

clustered with their litter mate at 11 days of age (P = 0.006) and 119 days after weaning (P = 

0.007), but not on the day before weaning (P = 0.184) or 1 week after weaning (P = 0.087). 

Together these results suggests that what piglets are exposed to in the farrowing pen can have 

long-term impacts on mycobiome composition. Commercial sows were found to be variable in 

the amount of K. slooffiae present. Feral pigs had a more complex mycobiome consisting 

predominantly of fungi associated with soil. 

In study 3 we used a gnotobiotic piglet model to study the impact of K. slooffiae on 

bacterial community structure, metabolite production, and immune system and intestinal 

development. We found that K. sloofffiae altered the bacterial community and increased the 

amount of total bacteria present in the intestine (P ≤ 0.05). K. slooffiae colonization altered the 

ileal metabolome including increasing butyrate levels (P = 0.032). K. slooffie also resulted in a 

greater villus height to crypt depth ratio in the ileum (P = 0.028) suggesting increased absorptive 

capacity and the immune system was altered both in terms of cytokine production and immune 

cell phenotype (P  ≤ 0.05).    

In summary, this thesis shows that shaping early life fungal exposure may have long-term 

impacts on mycobiota composition, and that K. slooffiae is an active member of the core pig 

mycobiota that may play a role in pig health.  
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Chapter 1: Introduction 
 

1.1 Characterization of fungi and yeast 
 

 The gastrointestinal tract is home to a vast array of microorganisms, which include 

bacteria, fungi, archaea, protozoa, and viruses (1). Together, these microorganisms can be 

referred to as the intestinal microbiome. Compared to bacteria, fungi have received much less 

attention, despite being important members of the intestinal microbiome. The collection of fungi 

in the intestinal tract is referred to as the mycobiota. The kingdom Fungi represents a diverse 

collection of eukaryotic organisms ranging from single celled yeast to multicellular mushrooms 

(2). There are several markers that are used to delineate Fungi from microbes belonging to other 

kingdoms. Historically, Fungi were classified as plants, however, they were later separated due 

to their lack of chloroplasts and their ability to acquire nutrients from decomposition (3). The 

next major marker that has been used to identify fungi is the presence of ergosterol in the cell 

membrane (4). Ergosterol is a molecule that is similar in function to cholesterol in mammals in 

that it regulates fluidity of the cellular membrane (5). Ergosterol has been used to identify fungal 

biomass (6); and is frequently used as a target for antifungal drugs due to its presence in all 

major fungal pathogens (7). However, it should be noted that it’s not only fungi that contain 

ergosterol as it is present in some Protozoa, Archaeplastida, and Amoebozoa (4). Another feature 

that has been used to define fungi is the structure of the fungal cell wall. The innermost layer of 

the cell wall is highly conserved among fungi and consists predominantly of b-(1,3) glucan and 

chitin which form a scaffold around the cell (8). Depending on the organism b-(1,6), b-(1,4), a-

(1,3) and a-(1,4) linkages may also be present (9).  Attached the layer of glucans and chitin are 
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glycoproteins (including mannoproteins) and in some fungi, melanin. Glycoproteins have several 

different cellular functions such as protection, structural integrity, mating, and immune 

recognition by the host (10, 11). Melanin is used by some fungi such as Aspergillus species and 

may enhance cell wall rigidity, thereby allowing them to remain turgid when dehydrated and to 

enable the hyphae of pathogenic fungi to penetrate host tissue (8). 

 Fungi can be broken down into 5 major phyla – Chytridiomycota, Zygomycota, 

Glomeromycota, Basidomycota, and Ascomycota (12). In the pig gastrointestinal tract (GIT), the 

dominate phyla are Basidomycota and Ascomycota, with the majority of fungi being yeast 

belonging to Ascomycota (13). As previously mentioned, yeast are unicellular fungi which can 

belong to either Basidomycota (e.g. Cryptococcus neoformans) or Ascomycota (e.g. 

Saccharomyces cerevisiae) (14). Yeast can be found in soil, plants, animals, insects, and water 

(15, 16), and has been consumed by humans in the form of bread or fermented beverages for 

thousands of years (17). Yeasts are facultative anaerobes (18), meaning they can survive both 

with and without oxygen, allowing them to live in the intestinal environment. Yeasts grow 

optimally at 25-30 °C, however they can grow over a large temperature range, from 0-47 °C. 

Yeasts are typically quite acid tolerant and can grow under conditions as low as pH 4.0-4.5, 

however they do not grow well under alkaline conditions (19), making them well suited to the 

GIT. Yeasts such as S. cerevisiae can reproduce both sexually and asexually. Asexual 

reproduction occurs via budding, a process in which both haploid and diploid cells produce a 

genetically identical bud, which will grow until it reaches a certain size, and then produce a bud 

of its own. The haploid version of S. cerevisiae can exist as two mating types, a and a, and they 

mate with the opposite mating partner to form a diploid a/a cell. Under stressful conditions, 

diploid cells can undergo sporulation where each diploid cell will produce 4 haploid spores (20). 
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Conditions for spore production can include the absence of nitrogen and the presence of a non-

fermentable carbon source (21). Some yeasts, such as Schizosaccharomyces pombe, are able to 

reproduce via binary fission, similar to bacteria (22). Yeast of both reproduction types, that is, 

budding and binary fission, are present in the gut microbiome of humans (23, 24). To the authors 

knowledge, only budding yeast have been identified in the pig.  

1.2 Fungi in the pig 
 

Piglets are born with sterile gastrointestinal tracts (25) and are colonized with microbes 

shortly after birth (26). Fungi have been shown to colonize the piglet GIT as early as post-natal 

day (PND) 1 (27). On PND 1 the piglet mycobiome is composed predominantly of 

Cladosporiaceae, Malasseziaceae, Dipodascaceae, and Nectriaceae, although the mycobiome at 

this age shows a high degree of individual variation (27).  Cladosporiaceae is a family of fungi 

that includes molds that are present in the environment (28), and it is likely that piglets are 

obtaining these fungi from exploring surfaces in the farrowing pen. In humans, Malassezia, the 

sole genera from the family Malasseziaceae is commonly isolated from skin (29), and can be 

passed to the infants GIT via breastfeeding and skin-to-skin contact (30). Pigs also have 

Malassezia on their skin (31), and as such, it is likely that their GITs are colonized from 

suckling. In humans, fungi are considered to have high intra-individual and inter-individual 

variability, especially when compared to bacteria (23), and it is likely that fungal colonization in 

pigs is similar.   

By PND 3 fungi have increased in abundance from approximately 10 colony forming 

units (CFU) /g on PND 1 to 100 CFU/g of feces when cultured on Sabouraud dextrose agar plus 

cefoperazone, and no major increases are seen after PND 3 until 1 week post weaning (27). Prior 
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to weaning fungal a-diversity, as measured by Shannon index, decreases, and species evenness 

is variable (27, 32). However, b-diversity prior to weaning stayed relatively constant, with pre-

wean and post-weaning pigs clustering separately (27, 32). During the pre-weaning stage, one 

study found that the fecal mycobiome was dominated by Mucoromycota and Basidiomycota, and 

found that the families Cladosporaceae, Mucoraceae, Symbiotraphinaceae, and 

Trichosporonaceae were significantly correlated with pre-wean feces (32).  

On the day of weaning, fungal Shannon index was observed to increase sharply, but 

decrease again by 1 week post-weaning, before rising again by 2 weeks post weaning (27). This 

is in contrast with bacterial Shannon index which in the same pigs increased over time and was 

the highest at 2 weeks post weaning (27). When b-diversity was measured by Bray-Curtis 

dissimilarity, piglets at 1 and 2 weeks post weaning clustered together (27), and additionally 

cluster with adult pigs (32). This suggests that the dietary change to solid feed instead of a milk 

based diet drives mycobiota composition during the weaning transition. Adult pigs do have 

slightly different mycobiotas than pigs undergoing the weaning transition, with adults having 

greater mean relative abundance of Dipodascaceae and Neocallimastigaceae and lower mean 

relative abundance of Wallemia, which may be due to the change in diet (32). Post-weaning, 

there is an increase in the genera Kazachstania, Wallemia, and Hyphopichia (27, 32, 33). 

Compared to nursery and weanling pigs, the mature pig mycobiome is less well 

characterized. Summers et al. (2019) found that non-gravid adult pigs had 5.18 CFU of fungi per 

gram of feces, which did not differ statistically from postpartum sows who had 5.86 CFU/g of 

feces (27). Li et al. (2020) found that there are some differences between adult pigs of different 

breeds in terms of fungal composition. They found that Chenghua pigs were dominated by the 

genera Loreleia, Russila, Candida, Nephroma, and Metshnikowia. Yorkshire pigs were 
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dominated by the genera Loreleia, Russula, Candida, Metschnikowia, and Bullera. Finally 

Tibetan pigs were dominated by the genera Russula, Nephroma, Candida, Loreleia, and 

Metschnikowia (34). It should be noted that the pigs used in this study were all housed in 

different environments depending on their breed. Additionally, while the pigs in the Chenghua 

and Yorkshire groups were fed a corn and soybean based diet, the Tibetan pigs were fed a grass 

silage based diet. Therefore, it is not possible to conclude that the differences were based on 

breed, but that the differences may be based on environmental factors such as diet and intensity 

of rearing practices. 

In 35-day-old piglets, Arfkan et al. (2019) found that the dominate genera throughout the 

entire GIT were Kazachstania, Hyphopichia and Wallemia, however the authors note that in 

contrast to Kazachstania, Hyphopichia and Wallemia are most likely non-colonizing and are 

simply being ingested and not establishing in the GIT. This differed compared to bacteria, where 

several organisms such as Helicobacteraceae were decreased in the lower GIT compared to the 

upper GIT.  Fungal a-diversity was highest in the stomach and then in the colon. In the same 

pigs, bacterial a-diversity increased throughout the GIT. The presence of increased fungal 

diversity in the stomach likely has to do with fungi being acid tolerant and also likely having 

decreased competition for resources with bacteria in the stomach. Bacteria showed decreased 

dispersion in feces whereas fungi did not (13). These findings, which suggest that many of the 

fungi in the tract are simply passengers and do not truly colonize is similar to what is proposed 

for humans, where a few core mycobiota are noted with a high prevalence of ‘passengers’ (35). 

As outlined by Suhr and Hallen-Adams (2015) there are likely a few reasons for this trend, the 

first of which is that many fungi, including those commonly found in the human intestine, such 

as Penicillium do not grow at 37 °C. Wallemia, which is also commonly found in the pig gut, is 
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an extreme xerophile and would not be able to grow at the water-activity of the mammalian body 

(36).  

1.2.1 Kazachstania slooffiae in pigs 
 

While many bacterial species have been consistently found in pig populations around the 

world, relatively few fungal species are consistent across studies. Kazachstania slooffiae is a 

species of yeast that is commonly isolated from the pig GIT (13, 27, 32, 37, 38). K. slooffiae is a 

particularly interesting yeast, as it is found in pigs from different geographic locations and under 

different farm conditions (13, 27, 32, 33, 37-42). It has been found in the United States, 

Germany, Spain, and China, and in pigs raised under commercial and experimental farm 

conditions with different diets (13, 27, 32, 33, 37-42).  There is no known environmental 

reservoir for K. slooffiae, and its presence in pigs from diverse environments suggests that it is a 

yeast that is host adapted. As a result of its ubiquitous presence in pig populations, it is also the 

best characterized pig yeast species. K. slooffiae is a budding yeast belonging to the 

Kazachstania (Arxiozyma) telluris complex, which also contains Kazachstania bovina which is 

commonly found in cattle, and Kazachstania pintolopesii which is commonly isolated from 

rodents (43). K. slooffiae is considered a commensal organism (38). There may be some benefits 

of K. slooffiae for the pig, and a previous study by Urubschurov et al. (2017) suggested that K. 

slooffiae may be used as an amino acid source for pigs, as it is high in the limiting amino acid 

lysine and found that the abundance of both K. slooffiae and total yeasts correlated positively 

with total short chain fatty acids (SCFAs) (44). Some interesting interactions with the bacterial 

community have been noted. K. slooffiae abundance has been positively correlated bacteria 

species such as Lactobacillus (13). When grown in the supernatant of Lactobacillus acidophilus 
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isolated from pigs, K. slooffiae has been shown to have increased biofilm complexity, suggesting 

that a positive correlation between L. acidophilus and K. slooffiae may be present in the pig GIT 

(38). Additionally, Summers et al. (2021) found that the supernatant Enterococcus faecalis 

isolated from piglets decreased K. slooffiae growth, suggesting that a negative correlation may 

exist between the two in the piglet GIT, and found no difference is K. slooffiae growth when 

grown in the supernatant from Lactobacillus fermentum isolated from humans (38). This 

suggests that bacteria that are not host adapted do not have the same impact on K. slooffiae 

growth. This may be important when considering the use of bacterial probiotics, as if the goal is 

to increase K. slooffiae growth, using organisms which are not adapted to the pig may not result 

in increased K. slooffiae growth. Recently, Hu et al. (2023) showed that K. slooffiae is able to 

promote glycolysis in the intestinal epithelium by lysine desuccinylation, suggesting that K. 

slooffiae is an important commensal in the pig GIT and that supplementation with K. slooffiae 

could be used as an intestinal protectant for pigs with an insufficient intestinal energy supply, 

such as those with diarrhea (45). While largely considered to be commensal, one study identified 

Kazachstania as a genus that was in higher abundance in pigs with diarrhea compared to healthy 

pigs (39). However, there may be an alternate explanation to this finding. Since K. slooffiae 

appears to be a core microbe among pigs, that even when the mycobiome is disturbed by 

diarrhea, it stays in the gut, thereby representing a larger relative abundance of the intestinal 

mycobiota. The literature that has thus far been mentioned in this review has relied on both 

culture and next generation sequencing (NGS) based approaches to characterize the mycobiome. 

However, there are a number of challenges that exist when it comes to characterizing fungi in the 

intestinal environment. 
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1.3 The study of fungi  
 

Until recently, the field of microbiology relied on culture-based approaches to 

characterize organisms, both in the GIT and elsewhere. Previous research has identified that only 

27% of fungal species found in the human GIT are identifiable by culture-based methods (46). 

While this number is low, it is important to note that it is possible to culture some of the most 

abundant fungal organisms in the human GIT such as S. cerevisiae, multiple species of Candida 

and Malassezia (23, 47).  

1.3.1 Fungal culture   

There are multiple types of culture media commonly used in fungal studies. Perhaps the 

most commonly used media for are Sabouraud dextrose agar and Potato dextrose agar (48). 

However, other media such as yeast extract peptone dextrose (YPD) are commonly used to grow 

yeast such as S. cerevisiae (49), which is commonly used in the food industry. In general, yeast 

require several different media components for growth. They require a carbon source such as 

dextrose, a source of nitrogen and amino acids, and vitamins. This can be achieved by using cell 

wall hydrolysate which provides a source of nitrogen, amino acids and vitamins, with the 

addition of dextrose or glucose (50). Many more complex medias have been used to isolate yeast 

and filamentous fungi from the GIT. Hamad et al. (2017) used a culturomics approach to study 

the human mycobiome and found that they were able to isolate 73.2% of the identified yeast 

strains in the GIT from Dixon agar, followed by 53.7% from modified Schadler agar, 19.5% 

from Sabouraud agar, 14.6% on Banana agar and 12.2% from Potato Dextrose Agar (47). This 

shows that to date, most studies that have relied solely on fungal culture using media other than 

Dixon media may be missing a significant proportion of fungal species in the intestine. Dixon 
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media allows for the growth of Malassezia species (51), which are lipophilic fungi (52). This is 

because Dixon media contains lipids, in the case of the study by Hamad et al., from oleic acid 

and olive oil (47). Regardless of media used, when isolating fungi from a mixed microbial 

community containing bacteria, the use of antibiotics is necessary. Antibiotic usage varies 

between studies, but chloramphenicol is commonly used, as is oxytetracycline (53), and 

sometimes chloramphenicol is used in combination with gentamicin (54). Hamad et al. (2017) 

used a combination of imipenem, colistin, and vancomycin to successfully culture yeast strains 

on Dixon media (47). Regardless of the antibiotics used, they must be broad spectrum enough to 

eliminate all bacteria that may grow on the media, and tests should be carried out prior to sample 

collection and plating to ensure that there is no bacterial resistance that could cause inaccurate 

plate counts.  

In culture dependent studies, it is also important to pay attention to the conditions in 

which the microbes are grown. In the human intestine, one study found that all isolated fungi 

were able to grow aerobically. Additionally, they found that all isolated fungi were able to grow 

at 22 °C and 28 °C but not 42 °C, although they did not try 37 °C (47). Another study using 

human fecal samples found no difference between aerobic or anaerobic culture conditions on 

fungal counts irrespective of media type when incubated at 37 °C (55). While a temperature of 

37 °C may not allow for the growth of all fungi found in the intestine, isolation at 37 °C gives a 

good idea of which organisms are capable of reproduction at body temperature and may indicate 

that these organisms are able to colonize the GIT, not just flow through it as is the case with 

many fungi.  

Another component of culture dependent studies is identification once organisms have 

been cultured. Perhaps the most traditional method of identification is colony morphology. In 
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pigs, yeast isolated from the GIT has several distinct colony morphologies (40). S. cerevisiae 

colony morphology is altered by glucose availability, with increased glucose resulting in 

increased convexity of colonies (56). K. slooffiae grown on yeast potato dextrose agar displays a 

concave morphology and when grown on Sabouraud dextrose agar display a flat morphology 

(38). While identification by colony morphology is a simple and inexpensive method of 

identification, it also proves difficult when differentiating between yeast in the GIT. This is 

because many yeasts of the pig GIT have similar colony morphology (40). Therefore, other 

methods must be used to help identify yeast in the GIT. 

One method of identifying fungal taxonomy is through Sanger sequencing. Sanger 

sequencing allows for the generation of a DNA sequence (57) which can then be used to identify 

a microbe by comparing the sequence against reference data bases, such as the one maintained 

by the National Institutes of Health, the Basic Local Alignment Search tool. One drawback to 

Sanger sequencing is that the microbes must be isolated and prepared for sequencing, which can 

be quite time consuming when sequencing is required for many isolates. 

Another commonly used method is the use of matrix assisted laser desorption ionization-

time of flight mass spectrometry (MALDI-TOF MS). MALDI-TOF-MS has multiple benefits for 

isolate identification, including speed, accuracy, ease of use and cost effectiveness (58). 

However, there are some limitations to the use of MALDI-TOF MS, that include an inability to 

discriminate between closely related species, incorrect identification due to incomplete spectra 

databases, and a need for considerable biomass for identification (59). 
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1.3.2 Next generation sequencing  
 

The advent of next generation sequencing (NGS) has helped make studying the 

microbiome more feasible. Next generation sequencing refers to the practice of sequencing DNA 

fragments in parallel, thereby allowing for many sequences to be generated at one time (60). One 

of the main benefits of NGS is the time saved. Prior to the advent of NGS, it took approximately 

a decade to sequence the human genome using Sanger sequencing, and now the human genome 

can be sequenced in one day (60). Therefore, many microbiome studies choose to use NGS to 

better understand the microbiome.  

1.3.3 DNA extraction 
 

 Prior to performing any NGS assays, DNA must be extracted from fungi. This too poses 

several challenges. Fungi are often more difficult to extract than bacteria as fungi have thick and 

complex cell walls which resist lysis (61, 62). As such there is a wide variation in the success of 

fungal DNA recovery between commercial kits (63). However, there are several factors that 

contribute to successful fungal DNA extraction. The first factor is mechanical disruption of the 

cell wall, which involves breaking up the cell wall typically using glass or ceramic beads and a 

tissue homogenizer (64). Bead beating followed by proteinase K digestion has been shown to 

increase DNA recovery by 10 to 100 fold, depending on the type of fungi, compared to a 

commercial DNA extraction kit alone (64).  This brings us to another important aspect of fungal 

extraction – chemical cell wall lysis. A variety of commercial kits are available which contain 

proprietary lysis buffers. In one study the Fungi/Yeast Genomic DNA Isolation Kit (Norgen 

BioTek Corp, ON, CAN) outperformed the Qiamp DNA extraction kit (Qiagen, DUS, DUE) or 
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phenol chloroform isoamyl alcohol extraction after the fungi in all groups had been treated with 

proteinase K (65). Another study identified that a combination of bead beating and the DNeasy 

Powersoil Kit (Quigen, DUS, DUE) yielded the highest amount of DNA compared to phenol 

chloroform and other commercially available kits, although increased DNA fragmentation was 

observed with this method (66). Commercial kits are frequently updated with new ones 

becoming available all the time. It is recommended that extraction controls be included in order 

to make sure that the extraction method is suitable for the type of sample being studied. 

Extraction bias is frequently present in microbiome studies (67). However, there are some best 

practices that can be used to help minimize the impact of these biases. Randomizing samples 

during extraction can help decrease batch effects. Samples should be extracted using the same 

extraction kit lot where possible, and when not possible the extraction kit lot numbers and dates 

should be included as confounding variables during data analysis (68).  

1.3.4 Fungal marker gene regions and challenges  
 

 There are, however, several challenges when it comes to studying the mycobiome 

compared to the studies that focus on bacteria. For one, there is less consensus on which region 

of the fungal genome is ideal for sequencing. Primers used in fungal sequencing studies typically 

cover one of 4 regions: 18S (small subunit (SSU)), Internal transcribed spacer (ITS) 1, ITS2 or 

28S (large subunit (LSU)). In between the ITS1 and ITS2 regions is the 5.8S region, which is 

typically conserved within species with only negligible variation (69). The 18S SSU region is 

frequently used when looking at classification on phylum level or above, as this region typically 

does not contain enough hypervariable regions to be able to classify fungi at a species level (70). 

Although depending on the primer set 75% accuracy at the genus level can be achieved (71). The 
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28S LSU region allows for species level classification in some yeasts, although this region is 

sometimes not sufficient to resolve differences in closely related species (72). With these 

challenges in mind, the ITS1 and ITS2 regions have become popular targets for studies where 

identification at the species level is desired (69). One challenge of using either of the ITS regions 

is that there is sometimes considerable intraspecific variation in ITS sequences (69). On average, 

there is more intraspecific variation in the ITS1 region compared to the ITS2 region (69). 

However, the results of one study found that in 34% of the fungi studied the ITS2 region was 

more variable than the ITS1 region (69). Another challenge of using the ITS regions is length 

variation between organisms (73). One study found that the ITS1 region varied from 9 base pairs 

to 1181 base pairs and ITS2 ranged from 14 to 730 base pairs (74). However, the ITS2 region is 

less variable and therefore may result in less taxonomic bias than ITS1 (73, 74).  

Once sequenced, reads need to be classified using a database. One challenge of fungal 

taxonomic classification is that fungal databases are often incomplete or incorrect (75). Another 

challenge is that there is no agreed upon database which is best used for certain regions, and as a 

result studies tend to differ in the database used.  

With all of these challenges in mind, it may be advantageous to base primer selection on 

the fungal community being studied. In the case of the pig mycobiome, a study was completed 

by Arfken et al. (2023) which looked at a fungal mock community based on the piglet 

mycobiome to try and determine the best target gene (18S, ITS1 or ITS2) and the best database 

(ITS1 and ITS2 – UNITE and 18S – SILVA) (76). The authors of this study concluded that no 

one marker-database combination performed better consistently. However, they did find that the 

ITS markers were slightly better than 18S, although they consistently were unable to identify 

Lichtheimia corymbifera, which is commonly seen in the piglet mycobiome (76). With no 
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consensus on which region is best, multiple studies have concluded that using multiple primer 

sets and markers may be advantageous (76, 77).  

 
1.4 Fungal interactions with the host 
 
1.4.1 Recognition and interaction with the innate immune system 
 

Fungal recognition by the host immune system occurs when pattern recognition receptors 

(PRRs) on immune cells recognize pathogen-associated molecular patterns (PAMPs) associated 

with the fungal cell components (78).  Several toll-like receptors (TLR) on phagocytes and 

dendritic cells recognize different parts of the fungal cell wall that act as PAMPs (78). Dendritic 

cell-associated C- type lectin-1 (dectin-1) is expressed on immune cells such as dendritic cells, 

macrophages, and neutrophils. Dectin-1 is able to recognize b-glucan on fungal cell walls 

(Figure 1.1) and activates phagocytosis, the production of reactive oxygen species, and cytokines 

such as interleukin (IL)-6 and tumor necrosis factor-a (TNF-a) (79, 80). However, not all b-

Oglucans and b-glucan presentations are able to induce an immune response via Dectin-1, with 

one study showing that soluble b-glucans did not activate Dectin-1 (79). Instead, they found that 

b-glucan must be presented to Dectin-1 in an immobilized form, such as on the yeast cell wall 

(79). Another study found that b-glucan size was an important factor contributing to cytokine 

production by human dendritic cells, and showed that large b-glucans stimulated dendritic cells 

to produce significantly more IL-1b, IL-6 and IL-23 than smaller b-glucans (81). This may have 

implications on the effectiveness of yeast and yeast cell wall products fed as pre and probiotics 

as preparations containing small or fractionated b-glucans may not produce an immune response, 
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and it is unclear if this is a positive or negative outcome when looking at the effectiveness of 

yeast based pre and probiotics.  

Another important PAMP on fungal cell walls are mannans. Different mannans are 

recognized by different TLRs. Phospholipomannan from Candida albicans has been shown to be 

sensed by TLR2 (82). However, O-linked mannans, also from Candida, are recognized by TLR4 

whereas mannose receptor cluster of differentiation (CD) 206 or CD209 recognizes N-linked 

mannans (83, 84). There are also other Dectin receptors which bind with mannans. Dectin-2 

recognizes high mannose structures such as N-linked mannans and a-mannans, and Dectin-3 

recognizes a-mannans (85). Additionally, fungal DNA is able to stimulate TLR9 (85), and the 

IL-1 receptor (IL-1R) recognizes certain fungi such as Candida albicans in both yeast and 

hyphal form (78). Chitin in the fungal cell wall is also recognized by the innate immune system 

by fibrinogen C containing domain 1 (FIBCD1), which has been shown to control the level to 

which fungi are able to colonize the murine GIT and also helps to reduce fungal driven intestinal 

inflammation (86). 

Once PRRs on immune cells have been stimulated by fungi or fungal components, the 

gene myeloid differentiation primary response 88 (MYD88) is activated (78). This will cause the 

production of pro-inflammatory cytokines, especially IL-12 by dendritic cells, induction of 

respiratory burst and degranulation, and T helper 1 (Th1) cell differentiation (78). Another 

important gene in fungal recognition and immune response is Caspase recruitment domain-

containing protein 9 (CARD9). CARD9 activates the transcription factor nuclear factor kappa B 

(NF-𝜅B) (87), which then causes an inflammatory response (88). CARD9 is essential for host 

protection against fungal pathogens, as CARD9 deficiency is characterized by increase 

susceptibility to fungal infections from organisms such as Candida (89).  
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1.4.2 Interaction with the adaptive immune system   
 

 In addition to the innate response, the adaptive immune system also responds to fungi. 

The T helper cell subtypes Th1 and Th17 promote the phagocytic clearance of fungi by releasing 

the proinflammatory cytokines interferon-𝛾	(IFN- 𝛾) and IL-17A/F (90). Th2 immune responses 

are often associated with fungal persistence and have detrimental impacts on the host during 

fungal infection (90, 91). The role of regulatory T cells is to balance the pro and anti-

inflammatory responses (90). The activation of naïve T cells to specific fungal antigens depends 

on their interaction with dendritic cells that present fungal antigen (90). Th17 cells produce the 

cytokines IL-17A, IL-17F, and IL-22 and are implicated in the inflammatory response to fungi 

(90), and memory T cells for C. albicans are part of the Th17 subset (92, 93). While Th17 

responses are largely influenced by C. albicans in the human intestine, Th17 cells are cross-

reactive to other fungi, which may drive an allergic inflammatory responses in the lung to 

airborne fungi (94). Fungal colonization has been shown to alter the systemic immune system in 

early life, suggesting that fungi play a role in early life immune system development (95)  

1.4.3 Interaction with host epithelial cells  
 

The intestinal lumen is lined with epithelial cells that will come into contact with the 

microbes in the GIT (96). While the field of mycobiome research is still relatively new, research 

into C. albicans can give us insight into how fungi interact with the host epithelial cells, as it is a 

well studied opportunistic pathogen. When C. albicans is in its hyphal form, it is able to adhere 

to host epithelial cells. Adherence occurs when Hyphal Wall Protein 1 (Hwp1) interacts with an 
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unidentified host cell wall protein causing the covalent attachment of C. albicans to the host 

(97). However, Hwp1 is not the only adhesin expressed on the fungal cell wall, the Agglutinin-

Like Sequence (ALS) family of genes are also expressed in fungi in both yeast and hyphal forms. 

 These genes, along with Hwp1 promote biofilm formation both in vitro and in vivo (98). 

Adherence to epithelial cells is followed by either cellular invasion, which is achieved by 

endocytosis or fungal penetration of the host cell wall. Additionally, C. albicans may also 

become disseminated in the host by degrading tight junction proteins such as E-cadherin via 

proteolysis (99).  

1.5 Interaction of fungi with bacteria   
 

Fungi and bacteria live together in the GIT and as such interact with one another. Perhaps 

the most well known example of fungal-bacterial interaction is during antibiotic administration. 

C. albicans is a member of the normal human and pig mycobiota (23, 40). However, when 

antibiotics are given, they decrease the bacterial community in the GIT. In one study, 

administration of vancomycin to mice caused the decrease in Bacteriodales, Deferribacterales, 

Erysipelotrichales, and Clostridales, which then allowed for C. albicans colonization and 

disseminated candidiasis (100). There is also evidence that changes in the fungal community due 

to the administration of antifungals can alter the bacterial community. Decreases in Penicillium 

brevicompactum and Candida tropicalis in the murine gut following antifungal treatment have 

been shown to result in the decreased relative abundance of Bacteroides, Allobaculum, 

Clostridium, Desulfovibrio, and Lactobacillus and increased relative abundance of 

Corprococcus, Anaerostipes, and Streptococcus, which suggests that bacterial and fungal 

communities in the gut are co-dependent (101).  
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1.5.1 Physical interactions between fungi and bacteria  
 

Physical interactions between fungi and bacteria include the attachment of bacteria to 

fungal filaments causing decreased filamentation of C. albicans (101, 102) and the adherence of 

C. albicans to the cell surface of Streptococcus gordonii (103). Additionally, bacteria and fungi 

can form biofilms together. C. albicans and Staphylococcus aureus aggregate to form biofilms 

that help to evade host defense mechanisms and promote antibiotic resistance (104). Biofilms 

containing both fungi and bacteria are metabolically diverse, and it has been suggested that this 

diversity leads to increased virulence (105). However, some multi-kingdom biofilm formation 

may be beneficial to the host. In Burkholderia cenocepacia and C. albicans aggregated biofilm, 

B. cenocepacia has been shown to interfere with the transition to hyphal form, thus potentially 

decreasing the pathogenicity of C. albicans (106).  

1.5.2 Chemical interactions between fungi and bacteria 
 

 Chemical exchanges also exist between bacteria and fungi (102). The quorum sensing 

molecule 3-oxo-C12 homoserine lactone, which is produced by Pseudomonas aeruginosa has 

been shown to inhibit C. albicans hyphae formation without reducing the total amount of C. 

albicans (107). C. albicans has also been shown to form biofilms with Streptococcus mutans, 

which is commonly found in dental carries (108, 109). Communication with quorum sensing 

molecules as well as cross feeding has been shown to occur between these two organisms, 

resulting in increased biomass of biofilms (108). Interactions between fungi and bacteria are 

common outside of the body as well and have been studied to the greatest extent in fermented 

food production. Interaction between Lactobacillus species and Saccharomyces cerevisiae occurs 
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frequently in food systems and one example is the production of growth factors by S. cerevisiae 

such as CO2 and amino acids such as valine and leucine, which promote the growth of 

Lactobacillus species (110). Additionally, lactate and acetate from Lactobacillus can induce S. 

cerevisiae to decrease ethanol production, creating a lower stress environment for the 

Lactobacillus (110). With these well-studied interactions in mind, we can speculate that other 

fungi and bacteria interact chemically in the intestinal tract.  

1.5.3 Interactions within the intestinal microbiome 
 

Supplementing animals and humans with yeast has been shown to alter bacterial community 

composition. Saccharomyces cerevisiae has been shown to alter the piglet bacterial community 

in a dose dependent manner (111). However, b-glucan derived from either yeast or oats showed 

either no or only modest changes in the bacterial community (112, 113). A number of 

interactions have been found between fungi and bacteria in the piglet intestine, with 21 day old 

piglets showing 93 different interactions and 35 day old piglets showing 142 interactions, with 

interactions being identified using a co-occurrence network (32). In the previously mentioned 

study, the fungi Aspergillus and Hyphochia showed the most interactions, with some of them 

being negative such as the interaction between Aspergillus and Ruminococcaceae UCG-004 (32). 

K. slooffiae is also able to alter bacterial community composition, with K. slooffiae 

administration increasing bacterial richness in a dose dependent manner in pigs given K. 

slooffiae 1-3 times starting 5 days after weaning, with doses 1 day apart (44). K. slooffiae also 

increased bacterial a-diversity compared to a placebo and was correlated with increases in the 

select bacterial genera, including Prevotella, Dialister, Acidaminococcus, Christensenellaceae, 

Ruminococcaceae and S24-7 (44). 
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Figure 1.1. Interactions between fungi and the host. Figure was creased with BioRender.com.  

1.6 The role of fungi in health and disease 
 
1.6.1 Impact on sows  
 

 Yeast and yeast fractional products have long been fed to pigs in order to improve health 

and production parameters. By far the most common yeast fed to pigs is S. cerevisiae followed 

closely by Saccharomyces boulardii. There are a number of health benefits associated with 

feeding yeast to pigs. Feeding S. cerevisiae to sows during late gestation has been shown to 

improve the quality of colostrum by increasing the concentration of protein, lactose, and non-fat 

solids, and increase sow plasma concentrations of immunoglobin G (IgG) (114). Galliano et al. 

(2013) found that S. cerevisiae was able to increase IgG concentration in colostrum and milk and 



 21 

that milk IgA levels were maintained for longer in sows fed S. cerevisiae (115). Feeding S. 

cerevisiae to sows has also been shown to shorten farrowing duration, increase feed intake 

during lactation, and minimize backfat loss during lactation, thereby improving sow health (116). 

Supplementation of sows can also impact piglets later in life, with one study showing that piglets 

from sows supplemented with yeast derived b-glucan and casein hydrolysate had decreased 

incidence of diarrhea at weaning, decreased feed intake after weaning, and improved feed 

efficiency (117).  

1.6.2 Impact on suckling piglets  
 

When suckling piglets are fed yeast there are also a number of proposed benefits. Sun et 

al. (2022) found that supplementing piglets with S. boulardii increased IgG levels, which the 

authors suggested may have led to the observed increase in post-weaning performance (116). 

Another study found that supplementing piglets from birth to 28 days of age with S. cerevisiae 

increased piglet body weight and average daily gain, possibly due to changes in the bacterial 

community (111). Creep feed containing active dry yeast has been shown to increase feed 

consumption (118), which is important because increased creep feed consumption has been 

associated with increased post weaning feed intake and increased post weaning performance 

(119).  

1.6.3 Impact on post weaning pigs  
 

The post weaning period is a time of social, environmental, and dietary stress in pigs 

(120). Following weaning, piglets can show decreased barrier function and nutrient adsorption, 

depending on factors such as time of weaning and preweaning feed intake (120). In the post 
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weaning period, diarrhea is common and may be caused by a number of factors including 

proliferation of enterotoxigenic Escherichia coli, microbial dysbiosis, and abrupt changes in diet 

and environment (121, 122). Supplementation with live yeast has been shown to impact the 

health and performance of pigs in the post weaning period. Trckova et al. (2014) found that 

feeding S. cerevisiae to pigs from birth through to the post weaning period and then challenging 

them with enterotoxigenic E. coli resulted in decreased diarrhea scores, decreased duration of 

diarrhea, and decreased shedding of enterotoxigenic E. coli (123). This may be because yeast cell 

wall has been shown to be able to attach to some enteric pathogens such as Salmonella and 

enterotoxigenic E. coli to bind the hosts intestinal epithelium, although binding capabilities 

appear to be strain specific (124). Shen et al. (2009) found that adding dry S. cerevisiae to the 

diets of post weaning pigs altered immune system parameters, with the finding that 

supplemented pigs had decreased IFN-g, decreased T helper cells, and increased jejunal villus 

height and villus height to crypt depth ratios (125). However, this study did not find any 

differences in growth performance, despite altered intestinal morphology (125).  

Yeast does not necessarily have to be live to have an impact on host parameters. Lee et 

al. (2021) looked at including yeast cell wall in the diets following weaning and found that pigs 

fed a diet supplemented with yeast cell wall had a lower incidence of diarrhea, as well as an 

increased villus height to crypt depth ratio in the duodenum and jejunum, decreased IL-1b and 

TFN-a, and increased ileal gene expression of tight junction proteins (126). Hydrolyzed yeast 

derived protein from S. cerevisiae is another product that can be added to feed. In the post 

weaning period, supplementation with this product has been shown to increase body weight, 

average daily gain and average daily feed intake (127). In addition, hydrolyzed yeast derived 

protein also increased jejunal villus height to crypt depth ratio and increased short chain fatty 
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acid concentrations in the intestine (127). In a study that compared the use of three different 

yeast preparations on a number of intestinal and immunological parameters, Jiang et al. (2015) 

found that for early-weaned (14 days of age) piglets, feeding both live yeast as well as super fine 

yeast (baker’s yeast) improved a number of pig health parameters. Feeding live or super fine 

yeast enhanced feed conversion, improved intestinal development, increased serum IgA, IL-2 

and IL-6 levels, and increased the ratio of CD4+/CD8+ ratio, compared to heat killed yeast or 

control pigs (128). It is unclear why the heat killed yeast did not elicit the same responses as the 

live or super fine yeast, since non-viable yeast cell wall products were successful in eliciting 

physiologic changes in other studies.  

1.7 The role of fungi in human health 
 

 In pig research much of the research focus is rightfully placed on pig production and 

growth. However, exploring the impact of fungi on human health, through both human and 

rodent models, can provide us with insight into how yeast impacts the mammalian body.  

1.7.1 The role of fungi in gastrointestinal disease 
 

 Inflammatory bowel disease (IBD) involves the chronic inflammation of the 

gastrointestinal tract that can flare and subside over time. In humans, the intestinal fungal 

community is skewed during an IBD flare (129). During periods of active disease, the 

mycobiome has an increased Basidiomycota/Ascomycota ratio, a decreased relative abundance 

of S. cerevisiae and an increase in C. albicans (129). While it is not completely understood how 

C. albicans contributes to IBD severity, it has been proposed that IL-17 mediated inflammation 

may play an important role in IBD pathogenesis (130). Candidalysin is a toxin produced by 
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pathogenic C. albicans in its hyphal form (131). This toxin is able to directly damage epithelial 

membranes, and activates epithelial immunity (131). Additionally, candidalysin accounts for the 

induction of Th17 induced IL-17A, a pro-inflammatory cytokine which is a common feature of 

inflammatory conditions such as IBD (132, 133). Candidalysin may also contribute to other 

autoimmune diseases such as type 1 diabetes and rheumatoid arthritis (134). On the other hand S. 

boulardii has been shown to inhibit IBD by causing the accumulation of IFN-g producing Th1 

cells withing the mesenteric lymph nodes, thereby limiting the infiltration of Th1 cells and 

proinflammatory cytokines in the colon, and inhibiting the inflammation associated with IBD 

(135). Jiang et al. (2017) looked at the roles that S. cerevisiae, C. albicans, and fungal cell wall 

mannans play in protecting against DSS induced colitis and influenza A virus in gnotobiotic 

mice, compared to the established protective effects of commensal bacteria. The authors found 

that C. albicans monocolonization, S. cerevisiae mono-colonization, and fungal mannan 

administration recapitulated the protective effects of commensal bacteria (136). This suggests 

that C. albicans on its own may not be problematic, and that it is the cooccurrence with bacteria 

that may exacerbate IBD. In a dextran sulfate sodium (DSS) induced colitis model, co-

colonization of fungi with bacteria exacerbated colitis, whereas when mice were colonized with 

fungi alone inflammatory markers of colitis were similar to untreated controls (95).   

 C. albicans also colonizes pigs (40), and although it is unclear if poor intestinal health in 

pigs can be attributed to candidalysin. However, pigs may be able to serve as a model for human 

candida induced disease, as pigs do not require antibiotic treatment to promote Candida 

colonization as is the case in mice (137).  

1.7.2 The role of fungi in obesity 
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Obesity is another disease where the fungal community has been implicated as a 

contributing factor. In mice treated with fluconazole to eliminate yeast and promote an increase 

in other fungi such as Cladosporium, there were increased proinflammatory immune markers in 

adipose tissue and reduced glucose tolerance (138). In the same study, germ free animals treated 

with fluconazole did not have the same response, suggesting that it is the alteration in the 

microbial community that is responsible for the disease state (138). However, another study 

found that Candida parapsilosis in combination with a high fat diet was able to induce obesity in 

mice (139). This study also found that the mechanism behind the induced obesity was the 

secretion of lipase by C. parapsilosis, evidenced by the finding that colonization of fungi free 

mice with mutant lipase-negative C. parapsilosis failed to produce obesity (139). Lipase can also 

be secreted by C. albicans, and the presence of genes that encode for lipase production may 

enhance the ability of C. albicans to survive and disseminate to other body sites than the one 

originally infected (140). Pigs may be able to serve as an obesity model for humans. 

Additionally, it is desirable for pigs to deposit lean muscle mass over fat and understanding the 

mechanisms behind obesity and the mycobiome may help us to improve pig growth.  

1.8 Conclusion  
 

The mycobiome is a complex network of fungi that interact with the host as well as other 

members of the intestinal microbiome. In pigs, the microbiome represents a relatively unstudied 

area. There are several knowledge gaps that will be addressed in this thesis. The first knowledge 

gap that will be addressed is surrounding the impact of antibiotics on the fungal community. 

Next this thesis will address the knowledge gap surrounding how the mycobiome changes over 

one production period and compare the mycobiome of pigs raised with intensive rearing 
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practices to their feral counterparts. Finally, this thesis will address the knowledge gap 

surrounding the role of K. slooffiae in piglet health and development. Addressing these 

knowledge gaps may help us to develop supplementation strategies that can improve pig health 

and production performance.  

1.9 Objectives and hypothesis  
 

 Chapter 2 will explore the impact of antibiotics on the mycobiome. The objectives of this 

chapter were to 1) determine the impact of commonly prescribed infant antibiotic treatments on 

the microbial structure of fungal and bacterial communities in the piglet gastrointestinal tract. 2) 

determine the impact of commonly prescribed infant antibiotic treatments on microbial load of 

the piglet gastrointestinal tract. We hypothesized that antibiotics would differently impact fungal 

community structure and increase fungal load compared to control animals.  

 Chapter 3 will explore the composition of the porcine mycobiome over one production 

cycle. The objectives of this chapter were to 1) profile the mycobiome of pigs on 11 days of age, 

the day prior to weaning, 7 days after weaning, and 119 days after weaning, including the 

maternal sows. 2) characterize and compare the mycobiomes of pigs raised in a experimental 

barn to feral pigs and to pigs raised in a commercial facility. We hypothesized that maternal K. 

slooffiae levels would influence mycobiome composition throughout the production cycle and 

that feral pigs would have a mycobiome comprised predominately of soil associated fungi.  

 Chapter 4 will investigate the role of K. slooffiae in piglet development. The objectives of 

this chapter were to 1) investigate the role of K. slooffiae in bacterial succession 2) investigate 

the role of K. slooffiae in intestinal development, 3) investigate the role of K. slooffiae in 

immune system development, and 4) investigate the role of K. slooffiae on the host metabolite 
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pool. We hypothesized that K. slooffiae would alter immune system and intestinal development, 

alter bacterial succession, and have little to no impact on the host metabolite pool.  
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Chapter 2: Maternal mycobiome but not antibiotics alter fungal 
community structure in neonatal piglets 
 
2.1 Introduction 
 

During early life, microbes in the gastrointestinal tract (GIT) play essential roles in host 

health and development. During this critical period of microbial exposure, microbes aid in the 

development of the host immune system (1). Aberrant microbial exposure in early life has been 

associated with long-term adverse outcomes such as autoimmune disease, obesity, and asthma 

(2). The GIT harbours a vast array of microbes including bacteria, fungi, archaea, protozoa, and 

viruses (3). While the impact of bacteria on immune development has been well characterized 

and studied, fungi (the mycobiome) have received less attention. 

 Fungal colonization of both the human and pig GIT occurs shortly after birth (4, 5) and 

fungi can be acquired vertically, horizontally, and environmentally (6, 7) . In humans, the 

mycobiome changes in both composition and abundance during the first two years of life and 

resembles adult mycobiota at approximately 2 years of age (8). In pigs the mycobiome changes 

most dramatically during the weaning transition and looks similar to the mycobiome of adult 

pigs in the post weaning period as early as 24-35 days of age (9). Human bacterial ecosystems 

change in both richness and diversity most dramatically in the first year of life and stabilize 

around 3 years of age (10). Likewise, pigs experience drastic changes in bacterial richness and 

diversity around the weaning transition, with bacterial stability occurring 2-3 weeks post-

weaning (11). However, fungi populations show more inter-individual and intra-individual 

variation than bacterial populations (11). 
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 Early life antibiotic exposure is associated with the development of asthma (12), type-1 

diabetes (13), and inflammatory bowel disease (14) later in life. It is thought that disruptions in 

bacterial colonization during the critical early life period alters immune response, leading to the 

development of disease (15). In a piglet model, we have identified that early life amoxicillin 

results in altered pancreatic development, and divergent responses to immune and metabolic 

challenges compared to placebo treated piglets (16-18). However, the role of antibiotics on 

fungal communities has not been investigated, with the exception of Candida albicans, where 

antibiotics have been shown to alter the intestinal metabolite pool in a way which promotes C. 

albicans growth (19). It should be noted that fungi are immunomodulatory (20) and changes in 

the mycobiome may be a contributing factor in disease development. 

 Pigs serve as a good human model as they are similar in both intestinal structure and 

immune system function (21). In the present study, we used a piglet model to investigate the role 

of antibiotics on fungal community dynamics in early life, with potential implications for both 

human and pig health. The objectives of this study were to characterize the mycobiome in 

response to 3 different antibiotic regimes that are commonly prescribed in early childhood, and 

to quantify changes in the mycobiome in response to antibiotic administration in conjunction 

with changes in bacterial community structure. The 3 antibiotic regimes used for this study 

included amoxicillin, amoxicillin + clavulanic acid, and gentamicin + ampicillin. Amoxicillin 

with/without clavulanic acid were chosen because they are commonly prescribed to children for 

respiratory tract and ear infections (22, 23), and amoxicillin treatment has been shown to result 

in altered phenotypes in our piglet model (16-18). Both regimens have been shown to increase 

the incidence of infection with Candida, a common yeast of the GIT (24). The combination of 

gentamicin and ampicillin was chosen because this combination is recommended for neonates 
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with bacterial sepsis (25), and exposure to aminoglycoside antibiotics, such as gentamicin, is a 

risk factor for invasive Candida infections (26). In the context of this paper the term antibiotics 

refers only to those compounds which target bacteria and not fungi. It is worth noting that 

antibiotics themselves do not kill fungi, but by altering the bacterial community decrease 

competition and allow fungi to flourish and persist in the gut (27). Here we show the impact of 

these antibiotics on the bacterial and fungal communities as well as discuss the role of the 

maternal mycobiome in piglet mycobiome development. 

2.2 Materials and methods  
 

2.2.1 Animals and housing 
 

This animal study was approved by the Animal Care and Use Committee of the 

University of Alberta and conducted in accordance with the guidelines of the Canadian Council 

on Animal Care at the Swine Research and Technology Centre (Edmonton, AB, Canada) under 

animal use protocol number AUP00000922. A total of 32 crossbred piglets Duroc × (Large 

White/Landrace) and 4 Large White/Landrace sows were used in this study. On postnatal day 

(PND) 1, 4 litters of piglets were weighed and 8 piglets from each litter were selected for the 

study based on sex and weight (4 piglets above and 4 piglets below median litter weight, litters 

labelled A-D). Piglets were balanced for sex and weight and remained with their mother for the 

duration of the study. Two piglets from each litter were then assigned to one of 4 treatment 

groups (n = 8): A (amoxicillin, 30 mg/kg/day orally every 12 h on PND 1-8); AC (amoxicillin + 

clavulanic acid, 30 mg/kg/day orally every 12 hours on PND 1-8); GA (gentamicin + ampicillin, 

gentamicin 5 mg/kg/day once daily by intramuscular injection, ampicillin 100mg/kg/day twice 

daily by intramuscular injection, on PND 5-6), or P (flavoured placebo, 30 mg/kg orally every 12 
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hours on PND 1-8). All oral preparations included an artificial maple flavouring and were 

identical except for the addition of antibiotics. Piglets in the GA group also received the placebo 

treatment on PND 1-4 and 7-8 to account for handling stress. An injection control was not used 

as all the piglets in other groups continued to receive oral treatments on PND 5 and 6, and 

therefore experienced a similar amount of handling stress. Fecal swabs and samples were 

collected on PND 3 and PND 8 from each piglet. Fecal samples were collected from defecating 

sows one day after farrowing. Neither piglets nor sows received any antibiotics or other 

medications outside of the study treatment groups. Creep feed was not provided to piglets and all 

sow diets were the same. PND 3 was chosen as the first timepoint as obtaining enough feces to 

get good quality reads from a younger piglet was not possible. A study duration of 7 days was 

chosen because we have previously shown that amoxicillin can cause changes in the bacterial 

component of the microbiome as early as PND 3 and that these changes began normalizing by 

PND 7 (17). Samples were stored at -80°C until further processing. Piglets were weighed on 

PND 1 and PND 8 and were scored for health (Table 1.1) and diarrhea daily throughout the 

study, as previously described (28). 

2.2.2 DNA extraction 
 

Total genomic DNA was extracted from fecal swabs using the DNeasy PowerSoil Pro Kit 

(Qiagen®, CA, USA) as per manufacturer’s instructions with no modifications. Bead beating was 

performed on a FastPrep-24™ (MP Biomedicals, OH, USA) homogenizer at 5 m/s for 45 

seconds. DNA concentration was quantified using a Quant-iT PicoGreen dsDNA kit (Invitrogen, 

CA, USA). 
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2.2.3 Fungal sequencing 
 

Internal transcribed spacer (ITS) 2 sequencing was performed at Microbiome Insights 

(University of British Columbia, BC, CAN). The following primers were used: forward (ITSF) 

5’-CCTCCGCTTATTGATATGC-3’ and reverse (ITSR) 5’-CCGTGARTCATCGAATCTTTG-

3’. A paired-end sequencing run was performed on the Illumina MiSeq platform (Illumina, CA, 

USA) using 2 x 300 cycles. 

Sequencing analysis was performed using Quantitative Insight into Microbial Ecology 

(QIIME) 2 (v2021.4) (29). Only forward reads were utilized to account for variation in the length 

of the ITS2 region and reads were not truncated. The Divisive Amplicon Denoising Algorithm, 

version 2 plugin (30) was used to perform demultiplexing, quality filtering, denoising, and for 

filtering out chimeras. Amplicon sequence variants (ASVs) were aligned using mafft (31). 

Taxonomy was assigned to the resulting ASVs using the classify-sklearn naïve Bayes taxonomic 

classifier (via q2-feature-classifier plugin) (32) against the UNITE database version 8.3 (33). The 

R package phyloseq (v1.34.0) was used to analyze microbial community structure and diversity 

(34). Alpha diversity was measured using Shannon index at a sampling depth of 1000 reads and 

analyzed using Kruskal-Wallis. Alterations in overall fungal community composition was 

measured using Bray-Curtis dissimilarity and Permutational Multivariate Analysis of Variance 

(PERMANOVA), which was visualized using Principal Coordinates Analysis (PCoA) (R, 

v4.0.5). Homogeneity of dispersion was measured using Betadisper function in phyloseq (34). 

2.2.4 Bacterial sequencing 
 

Amplicon libraries of the V3-V4 region of the 16S rRNA gene were constructed in-house 

according to the Illumina 16S Metagenomic Sequencing Library Preparation protocol. DNA 
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concentration was determined using the Quanti-iT™ Pico Green dsDNA Assay kit (Invitrogen, 

CA, USA). The following amplicon primers were used: forward, 5′- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and 

reverse, 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 

-3′. Sequencing was performed on an Illumina Miseq platform using 2 x 300 cycles (Illumina 

Inc., San Diego, CA). Due to declining quality in the reverse read only forward reads truncated at 

208 bp in length were utilized. Sequence assembly was performed as listed for fungi, except 

taxonomy was assigned using the SILVA database version 138.1 (35) and Shannon index was 

measured at a depth of 11000 reads. 

2.2.5 Quantitative PCR (qPCR) 
 

Total fungal load was measured using qPCR, which was performed on a StepOnePlus 

Real-Time PCR system (Applied Biosystems, CA, USA). Each reaction was performed in 

duplicate and consisted of 5 µL PerfeCTa SYBR Green Supermix (Quantabio, MD, USA), 0.8 

µL (10 µM/L) forward primer, NL1 (5’- GCATATCAATAAGCGGAGGAAAAG -3’) (36) and 

reverse primer, LS2 (5’- ATTCCCAAACAACTCGACTC -3’) (37), 1.4 µL of nuclease free 

water, and 2 µL template DNA. The following cycling parameters were used: 10 min at 95°C; 40 

cycles of 95°C for 15 sec, 59°C for 15 sec, 72 °C for 15 sec (38). A standard curve was 

generated using DNA extracted from Kazachstania slooffiae in the manner outlined above for 

DNA extraction. The K. slooffiae was isolated from a pig in the same barn where the present 

study took place. K. slooffiae DNA was quantified using the Quanti-iT™ PicoGreen dsDNA 

Assay kit (Invitrogen, CA, USA). 
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Total bacterial load was measured via qPCR as described above. The forward primer, 

SRV3-1 (5’- CGGYCCAGACTCCTACGGG -3’) and the reverse primer, SRV3-2 (5’- 

TTACCGCGGCTGCTGGCAC -3’) (39) were used. The following cycling parameters were 

used: 95°C for 3 min and 40 cycles of 95°C for 10 sec, 60°C for 30 sec. A standard curve was 

generated from the PCR amplicon of pooled genomic DNA which was quantified using the 

Quanti-iT™ PicoGreen dsDNA Assay kit (Invitrogen, CA, USA). 

2.2.6 Statistical analyses 
 

Unless otherwise stated, all statistical analyses were done using GraphPad Prism 9.2.0. 

Differentially abundant taxa between treatments and litters were determined using ANCOM in 

QIIME 2021.4. Identified taxa were subsequently compared between litters using a Kruskal-

Wallis test. Piglet average daily gain was analyzed using a one-way ANOVA. Distance from 

maternal sow to her piglets versus that of a sow of another litter was determined based on Bray–

Curtis dissimilarity using a Mann–Whitney U test. qPCR data was analyzed using PROC 

MIXED with blocking by litter, followed by a Bonferroni post hoc test, using SAS software 

(SAS OnDemand, SAS Institute Inc., NC, USA). 

2.3 Results 
 

2.3.1 Piglet performance was not different among treatment groups or litters 
 

Average daily gain did not differ between piglets based on treatment (P = 0.198) or litter 

(P = 0.848) at day 8 (Table 2.1). All piglets remained healthy with a health score of 0 (Table 

2.2), and no incidence of diarrhea was observed throughout the study. 
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Table 2.1. Mean average daily gain by treatment and litter. 
 

 
 

Table 2.2. Health scoring criteria.  

 
 
2.3.2 Litter but not antibiotics drove mycobiome composition 
 

Antibiotic treatment did not alter fungal 𝛽-diversity (R2 = 0.08, P = 0.565, β-dispersion P 

= 0.116, Figure 2.1a) or 𝛼-diversity (P = 0.834, Figure 2.1b) on PND 8. It was noted however 

that fungal community composition differed by litter. On PND 3 𝛼-diversity differed between 

litters (P = 0.015; Figure 2.2b) but β-diversity did not change between litters (R2 =0.112, P = 

0.352, β-dispersion P = 0.054; Figure 2.2a). By PND 8 both 𝛼-diversity (P < 0.001; Figure 2.2d) 

and β-diversity (R2 =0.246, P < 0.001; β-dispersion P = 0.705; Figure 2.2c) differed between 

litters. Differences in fungal community structure between litters may be explained by 

differences in the relative abundance of Kazachstania (P < 0.001; Figure 2.3a) and 

Nakaseomyces (P < 0.001; Figure 2.3b) on PND 8. Kazachstania made up to 99.9% of the fungal 

community in some piglets by PND 8, whereas other piglets had no Kazachstania (Figure 2.4). 
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Kazachstania was more abundant in litters A and B than in litters C and D on PND 8 (Figure 

2.4). On PND 3 Kazachstania abundance was lower, ranging from 0.4 to 11.2% (Figure 2.5). 

Piglets without Kazachstania had more unclassified fungi and a more diverse mycobiome on 

both PND 3 and 8. Kazachstania abundance also differed drastically in sows, with a range of 0 to 

98.0% (Figures 2.4 and 2.5). Piglets from sows with high Kazachstania abundance had increased 

Kazachstania by PND 8 compared to PND3 (Figure 2.4). On PND 8 the fungal community 

structure of piglets was more similar to their dams than to that of the other dams based on Bray-

Curtis dissimilarity (P < 0.05; Figure 2.6). 

 

Figure 2.1. Fungal diversity following antibiotic treatment. (a) Fungal 𝛽-diversity using 

Bray-Curtis metrics (PERMANOVA, R2 = 0.08, P = 0.565; 𝛽-dispersion, P = 0.116) and (b) 

Shannon diversity index on PND 8 after antibiotic/placebo treatment: amoxicillin (A) (n=6), 

amoxicillin + clavulanic acid (AC) (n=8), gentamicin + ampicillin (GA) (n=7), or flavoured 

placebo (P) (n=8) (Kruskal-Wallis, P = 0.834). Significance was defined as P ≤ 0.05. 
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Figure 2.2. Fungal diversity by litter. (a) PND 3 fungal 𝛽-diversity by litter as measured by 

Bray-Curtis dissimilarity (PERMANOVA, R2 = 0.112; P = 0.352; 𝛽-dispersion, P = 0.054) (b) 

PND 3 𝛼-diversity by litter as measured by Shannon diversity index (Kruskal-Wallis, P = 0.015) 

(c) PND 8 fungal 𝛽-diversity by litter as measured by Bray-Curtis dissimilarity (PERMANOVA, 

R2 = 0.246; P < 0.001; 𝛽-dispersion, P = 0.705) (d) PND 8 𝛼-diversity by litter as measured by 

Shannon diversity index (Kruskal-Wallis, P < 0.001). Litters were represented by A-D (n=6-8 

per litter). Significance was defined as P ≤ 0.05. 
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Figure 2.3. Differential fungal taxa between litters. (a) Kazachstania (Kruskal-Wallis test, P < 

0.001) and (b) Nakaseomyces (Kruskal-Wallis test, P < 0.001) by litter on PND 8 (n = 8 per 

litter). Litters which do not share a letter indicate significance. Significance was defined as P ≤ 

0.05. Error bars represented mean with standard error of the mean. 
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Figure 2.4. Top 11 fungal genera on PND 8. Relative abundance of top 11 fungal genera on 

PND 8 in piglets by litter (n = 8 per litter). Bars representing sows showed fungal relative 

abundance one day post farrowing. A-D indicated sow and corresponding litter. 
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Figure 2.5. Top 11 fungal genera on PND 3. Relative abundance of top 11 fungal genera on 

PND 3 in piglets by litter (n = 8 per litter). Bars representing sows showed fungal relative 

abundance one day post farrowing. A-D indicated sow and corresponding litter. 
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Figure 2.6. Similarity of piglet fungal community to maternal community. Distance from 

maternal sow vs. distance from a sow of a different litter based on Bray-Curtis dissimilarity of 

fungal communities on PND 8. Statistical analyses were analyzed by Mann–Whitney U test. 

Significance was defined as P ≤ 0.05. Error bars represented mean with standard error of the 

mean. All sows had 6-8 piglets representing all treatment groups. 
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2.3.3 Antibiotic treatment impacted bacterial community structure 
 

Antibiotic treatment altered bacterial 𝛽-diversity on PND 8 (R2 = 0.228; P < 0.001; 𝛽-

dispersion, P = 0.706; Figure 2.7a). However, bacterial 𝛼-diversity did not differ following 

antibiotic treatment on PND 8 (P = 0.313; Figure 2.7b). Animals treated with AC had decreased 

abundance of Lactobacillus (P < 0.001; Figure 2.8). On PND 3, litter influenced bacterial 𝛽-

diversity (R2 = 0.201: P < 0.001: 𝛽-dispersion, P = 0.187; Figure 2.9a) but did not impact 𝛼-

diversity (P = 0.287; Figure 2.9b). On PND 8 litter again impacted 𝛽-diversity (R2 = 0.159; P = 

0.015; 𝛽-dispersion, P = 0.521; Figure 2.9c) but not 𝛼-diversity (P = 0.789, Figure 2.9d). On 

PND 8 differences in community structure between litters may be explained in the relative 

abundance of Akkermansia (P < 0.001, Figure 2.10). In litters A and B, piglet microbiomes were 

no closer to their maternal sow than they were to the other sows in the study (P > 0.05, Figure 

2.11a and b). In litter D piglet microbiomes were closer to their maternal sow than to the sows of 

other litter (P = 0.032; Figure 2.11c). Sequencing results from sow C did not pass quality control 

and therefore were not included. Unlike mycobiome composition, the bacterial community 

composition was strongly influenced by antibiotic treatment, though litter effects were still 

observed.  
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Figure 2.7. Bacterial diversity following antibiotic treatment. Bacterial (a) 𝛽-diversity 

(PERMANOVA, R2 = 0.228 ; P < 0.001; 𝛽-dispersion, P = 0.706 ) and (b) 𝛼-diversity as 

measured by Shannon index on PND 8 after treatment with the antibiotics/placebo including 

amoxicillin (n= 8) (A), amoxicillin + clavulanic acid (n= 8) (AC), gentamicin + ampicillin (n= 8) 

(GA), or flavoured placebo (n=8) (P) (Kruskal-Wallis, P = 0.313). Significance was defined as P 

≤ 0.05. 
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Figure 2.8. Relative abundance of Lactobacillus on PND 8 after treatment with antibiotics. 

Amoxicillin (A), amoxicillin + clavulanic acid (AC), gentamicin + ampicillin (GA), or flavoured 

placebo (P) (Kruskal-Wallis, P < 0.001). Significance was defined as P ≤ 0.05. Error bars 

represented mean with standard error of the mean. a, b: Litters not sharing a letter were 

significantly different. 
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Figure 2.9. Bacterial diversity by litter. (a) PND 3 bacterial 𝛽-diversity by litter as measured 

by Bray-Curtis dissimilarity (PERMANOVA, R2 = 0.227; P < 0.001; 𝛽-dispersion = 0.501) (b) 

PND 3 bacterial 𝛼-diversity by litter as measured by Shannon index (Kruskal-Wallis, P = 0.287) 

(c) PND 8 bacterial 𝛽-diversity by litter as measured by Bray-Curtis dissimilarity 

(PERMANOVA, R2 = 0.159; P = 0.015; 𝛽-dispersion = 0.521) (d) PND 8 𝛼-diversity by litter as 

measured by Shannon index (Kruskal-Wallis, P = 0.789). Significance was defined as P ≤ 0.05. 

Litters were defined by A-D and all litters had 7-8 piglets.  
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Figure 2.10. Differential bacterial genus by litter. Relative abundance of Akkermansia on 

PND 8 by litter (n= 8 per litter) (Kruskal-Wallis, P < 0.001). Significance was defined as P ≤ 

0.05. Error bars represented mean with standard error of the mean. Litters that do not share a 

letter were significantly different. 
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Figure 2.11. Similarity of piglet bacterial community to fungal community. Distance from 

maternal sow vs. distance from a sow of a different litter based on Bray-Curtis dissimilarity and 

measured using a Mann–Whitney U test, of bacterial communities on PND 8. Significance was 

defined as P ≤ 0.05. Error bars represented mean with standard error of the mean. All sows had 

6-8 piglets representing all treatment groups.  
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2.3.4 Antibiotic treatment increased ratio of total fungi to total bacteria 
 

 Total bacterial load did not change with antibiotic treatment (P = 0.325; Figure 2.12a), 

however, total fungi tended to be impacted by antibiotic treatment (P = 0.083; Figure 2.12b). As 

a result, antibiotic treatments caused a significant change in the ratio of total fungi to total 

bacteria (P = 0.001, Figure 2.12c). Post-hoc tests revealed that treatment with AC increased the 

ratio of total fungi to total bacteria compared to placebo (P = 0.027; Figure 2.12c).  

 

Figure 2.12. Fungal and bacterial loads. (a) Total bacteria qPCR by treatment (PROC 

MIXED, P = 0.325). (b) Total fungi qPCR by treatment (PROC MIXED, P = 0.083). (c) Ratio of 

total fungi to total bacterial load (PROC MIXED, P = 0.001). A significant reduction in the ratio 

of total fungi to total bacteria was detected between P and AC (Bonferroni, P = 0.027). 

Significance was indicated by * and was defined as P ≤ 0.05. P (n = 5), A (n = 7), AC (n = 8), 

GA (n = 8). Error bars represented mean with standard error of the mean. 
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2.4 Discussion 
 

In this study we sought to determine the impact of common early life antibiotic 

treatments on both fungal community composition and load. Although antibiotic treatments 

altered bacterial community composition on PND 8, we did not observe any changes to fungal 

community composition (Figure 2.1a). While it has been well documented that antibiotic 

treatments can cause Candida overgrowth, thus leading to an altered fungal community 

composition, there appears to be a great deal of individual variation in susceptibility to Candida 

overgrowth (40). This is due to a variety of factors including genetics (41), intestinal metabolite 

profile (19), and host immune status (42). One recent study noted that the human mycobiome 

was altered by antibiotic administration to the greatest degree one month post antibiotic 

treatment, which suggests that there may be a delayed response following antibiotic treatment 

(43). Therefore, it is possible that the pigs used in the present study were either not susceptible to 

fungal dysbiosis following antibiotic treatments or that there was a delayed change in fungal 

community composition that was outside of the study window. While pigs share some 

similarities in microbes, such as Candida, it may be possible that strain-level differences 

between humans and pigs may account for the lack of community change in response to 

antibiotic treatment.  

The numerical reduction of total bacteria and trend of increasing total fungi following 

treatment with AC resulted in an increase in the ratio of total fungi to total bacteria in AC-treated 

animals (Figure 2.12c). Amoxicillin + clavulanic acid is a commonly used antibiotic to treat 

respiratory tract infections during the first year of life (44). Amoxicillin is a β-lactam antibiotic 

which is effective against both Gram-positive and Gram-negative bacteria, including Escherichia 
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coli and Salmonella species (45). However, over time many strains of bacteria have developed 

resistance to β-lactams through the production of β-lactamase. To overcome this resistance, 

clavulanic acid is frequently added to amoxicillin as it acts as a β-lactamase inhibitor (46). While 

we did not see a statistically significant difference in the abundance of total bacteria following 

treatments with any of the antibiotics in the present study, there does appear to be a slight 

decrease in the abundance of total bacteria in pigs treated with AC (Figure 2.12a). This may 

suggest that β-lactam resistance was present. The combination of gentamicin + ampicillin is 

commonly used to treat neonatal sepsis and is commonly prescribed for a two-day period (25). 

However, the short treatment duration may be responsible for the lack of reduction in bacterial 

load in this treatment group. In the present study, the lack of significant reduction in total 

bacteria may be the reason that we didn’t see an increase in total fungi as expected. Additionally, 

we saw a decrease in the abundance of Lactobacillus following treatment with AC. The presence 

of C. albicans has been shown to result in a long-term reduction of Lactobacillus in the gut (47). 

Since only a few of the piglets in the present study had Candida present we were not able to say 

whether Candida increased following antibiotic treatment, however it is possible that the 

increased ratio of total fungi to total bacteria is promoting an environment in which 

Lactobacillus is suppressed. 

Interestingly, litter effect was the main driver of fungal community composition in the 

current study rather than antibiotic exposure. Using Bray-Curtis dissimilarity, it was noted that 

on PND 8 piglets had mycobiomes that more closely resembled their maternal sow mycobiome 

than the mycobiome of other sows. This suggests that maternal fungal colonization is the driving 

factor in piglet mycobiome development. These results are contrary to what is seen in human 

infants, with one study observing that infants in their first month of life were no more similar to 
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their own mothers than to a randomly selected mother, suggesting external environment plays a 

larger role versus maternal mycobiome in mycobiome composition (47). Compared to human 

infants, piglets have more exposure to maternal feces due to the environment in which they live. 

Piglets engage in coprophagy of these feces, with one study showing a rate of consumption of 

sow feces of approximately 20g/day (48). Coprophagy has been shown to increase piglet feed 

intake, weight gain, and white blood cell count compared to piglets deprived of maternal feces in 

the first 7 post-natal days (49). These differences may be due to the acquisition of microbes from 

the sow via coprophagy. Therefore, it is possible that compared to humans, piglets are obtaining 

more of their mycobiome from their mother’s feces. However, maternal bacterial colonization 

did not drive piglet bacterial colonization in the same way in the present study. 

On PND 8 Nakaseomyces was present in litter B in all 8 piglets, ranging from 0.009% to 

19.4% of the fungal community, but was absent from other litters (Figure 2.3b). Sow B did not 

have any Nakaseomyces present. Nakaseomyces is the name given to a clade of pathogenic 

Candida species which includes Candida glabrata, Candida nivariensis, and Candida 

bracarensis (50).The drivers behind Nakaseomyces detection in litter B remain unclear, and no 

clinical illness was observed in these piglets. The other fungal species responsible for differences 

in community structure on PND 8 was Kazachstania (Figure 2.3a). K. slooffiae is one of the 

most abundant fungi in pigs, and is present in pigs reared under varying conditions and in 

different locations (51, 52). K. slooffiae is thought to be commensal and several benefits to the 

host have been noted including increased short-chain fatty acid production, symbiotic 

relationships with beneficial bacteria such as Lactobacillus, and it possesses a favorable amino 

acid profile for pig growth (5, 53-55). Piglets’ levels of Kazachstania colonization reflected the 

levels of Kazachstania in their respective sows, which was highly variable. Given the potential 
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benefits of Kazachstania colonization, future work should focus on the long-term health 

outcomes in animals with low colonization levels during the early life period as well as the 

impact of maternal Kazachstania colonization on piglet health outcomes. 

A litter effect was also present in bacterial communities. In this case, on PND 8 it 

appeared to be driven by Akkermansia. It is worth noting that Akkermansia was the most 

abundant in litter D, which was also the litter with very low Kazachstania colonization. One 

previous study has noted a potential interaction between Akkermansia and yeast fermentate (56). 

Ducray et al. (2019) found that supplementing rats with a yeast fermentate prebiotic from 

Saccharomyces cerevisiae prevented a heat stress associated rise in Akkermansia. However, it is 

unclear what effect live yeast would have on Akkermansia colonization and merits further 

exploration. 

2.5 Conclusion 
 

 In conclusion, antibiotic treatment altered bacterial but not fungal community 

composition. However, AC was found to increase the ratio of total fungi to total bacteria load in 

fecal content. It was found that the maternal mycobiome played a major a role in shaping the 

piglet mycobiome and a strong litter effect was observed on fungal communities on PND 8. This 

research indicates that the mycobiome of piglets is highly variable and dependent on litter of 

origin, and that future research of the piglet mycobiome should account for variations between 

litters.  
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Chapter 3: Tracking the fecal mycobiome through the lifespan of 
production pigs and a comparison to the feral pig 
 
3.1 Introduction 
 

The gastrointestinal tract (GIT) is home to a vast array of microbes including bacteria, 

archaea, viruses, protozoa and fungi (1). While fungi make up less than 0.1% of total microbial 

reads in the human GIT (1), fungi contribute to host health and development and have been 

shown to be immunomodulatory (2, 3). The collection of fungi in the GIT is termed the 

mycobiome and although it has gained increased attention in recent years is largely understudied.  

  In both humans and pigs, yeast are the most common fungi in the GIT (4, 5). In pigs, the 

mycobiome has been well profiled up to 35 days of age (5-7). However, studies tracking the 

fungal community of a pig through the production cycle have not been completed. We have 

previously found that the maternal mycobiome drives piglet mycobiome assembly (8). 

Specifically, we found that differences in fungal community structure between litters were driven 

by sow Kazachstania slooffiae abundance (8). K. slooffiae is a commensal yeast found in pigs 

across geographic locations and under different types of production systems (9-12). Previous 

studies have found that K. slooffiae is most abundant in post-weaning pigs (5, 7, 13), although 

we have previously noted the presence of K. slooffiae in pigs as young as 3 days of age (8).  K. 

slooffiae may contribute to pig health by altering intestinal bacteria, increasing short chain fatty 

acids in feces, and acting as a source of amino acids (especially lysine) and vitamin C (14, 15). 

There is also a recent growing interest in “wild” microbiomes as a result of their potential 

to protect against disease. The feral pig therefore represents an interesting comparison for the 

identification of organisms that may have been lost as a result of high levels sanitation in 
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conventional pig production. Domestic wild boar were originally imported to Canada in the 

1980s for livestock diversification where most animals were cross-bred with domestic pigs and 

in some cases with mini-pigs and pot-bellied pigs (16). Since then, they have escaped or have 

been released from the farms and these feral pigs are now free-ranging across over one million 

km2 of Canada (17, 18). Feral pigs now roam the Canadian prairies where they wreak havoc on 

crop land and pose a very concerning disease risk to domestic pigs (19-21). While sanitation 

practices help to prevent disease among pigs, there may also be alterations in the bacterial and 

fungal communities. Indeed, one study has shown that exposure to soil is able to accelerate 

maturation of the bacterial community (22). It is not currently known how domestication affects 

the pig mycobiome. 

Drawing on previous research, we can assume that K. slooffiae provides at least some 

benefit to the pig. While K. slooffiae is an important member of the mycobiome, there are other 

fungi that may also contribute to host health. However, it is unclear how the mycobiome changes 

over a production cycle, nor is it clear how the domestic pig may differ when compared to feral 

pigs in terms of the mycobiome. In this study we seek to understand these questions by: 1) 

tracking the pig mycobiome through the lifespan (production cycle), including the sows; 2) 

profiling the mycobiome of feral pigs; and 3) profiling the mycobiome of sows raised in a 

commercial facility.  

3.2 Materials and methods 
 

3.2.1 Animal use and care 
 

This animal study was approved by the Animal Care and Use Committee of the 

University of Alberta (Edmonton, AB, CAN) and conducted in accordance with the guidelines of 
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the Canadian Council on Animal Care under AUP00002214. Feral pig capture and handling 

protocols were approved by the University of Saskatchewan Animal Research Ethics Board 

under AUP20150024 and the Saskatchewan Ministry of Environment under permit 17FW027. A 

total of 36 pigs were used from the Swine Research and Technology Center (SRTC) at the 

University of Alberta (Edmonton, AB, CAN). The pigs at SRTC represent pigs raised under 

experimental farm conditions, although they were raised with commercial production practices. 

Sows (n=12; Large White/Landrace) had fecal samples taken 3 days after farrowing. Piglets 

(n=24; Large White/Landrace x Duroc) had fecal swabs taken at 11 days of age (D11), 1 day 

prior to weaning (W-1), 7 days post weaning (W+7), and 119 days post weaning (W+119). 

W+119 represents a pig at market weight and the end of a production cycle. As we previously 

documented the pig mycobiome up to 8 days of age (8), we opted to focus on time points after 8 

days of age. 2 piglets, whose weights were close to the median litter weight, were selected per 

sow to follow through the trial. Piglets were housed with their mother and littermates until 21 

days of age when weaning occurred. Following weaning, piglets were housed with only their 

litter mates until 4 weeks following weaning when they were housed in groups separate from any 

of their litter mates. 5 pigs in the study received antibiotics (penicillin) prior to D11 due to an 

outbreak of scours in the farrowing room. Piglets were introduced to creep feed at 14 days of 

age. Fecal samples were taken from additional sows (n=8; Large White) from a commercial farm 

3 days after farrowing for mycobiome analysis. Feral pigs were captured from 2 locations: 

Moose Mountain and Melfort, Saskatchewan, Canada. Pigs were located via helicopter and 

captured with a net gun. Following capture, the pigs were euthanized via captive bolt, and 

intestinal contents collected. Ileum content was collected 5 cm from the ileocecal junction and 

cecal content was collected from the tip of the cecum. A total of 12 ileum samples and 12 cecal 
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samples were selected for mycobiome analysis, of which 4 pigs had both ileum and cecum 

samples sequenced. The selection of feral pig samples was limited by availability as remaining 

samples had been utilized for a previous study. 

3.2.2 DNA extraction 
 

Total genomic DNA was extracted using the DNeasy PowerSoil Pro kit (Qiagen®, CA, 

USA) with no modifications. Bead beating was performed on a FastPrep-24™ (MP Biomedicals, 

OH, USA) homogenizer at 5 m/s for 45 seconds.  

3.2.3 Fungal sequencing 
 

Internal transcribed spacer (ITS) 2 sequencing was performed at Microbiome Insights 

(Richmond, BC, CAN). Sequencing was done using the following primers: forward (ITSF) 5’-

CCTCCGCTTATTGATATGC-3’ and reverse (ITSR) 5’-CCGTGARTCATCGAATCTTTG-3’. 

Paired-end sequencing was done on the Illumina MiSeq platform (Illumina, CA, USA) using 2 x 

300 cycles.  

Sequencing analysis was performed using Quantitative Insight into Microbial Ecology 

(QIIME) 2 (v2022.11) (23). Only forward reads were used and reads were truncated at 240 base 

pairs. The Divisive Amplicon Denoising Algorithm (v2) plugin was used to perform 

demultiplexing, quality filtering, denoising, and for filtering out chimeras (24). Mafft was used 

to align Amplicon Sequence Variants (ASVs) (25). Taxonomy was assigned to ASVs using the 

classify-sklearn naïve Bayes taxonomic classifier (via the q2-feature-classifier plugin) (26), and 

the UNITE database (v8.4) was used (27). 



 71 

3.2.4 Statistical analysis  
 

K. slooffiae level in sows was broken into low, medium, and high by assigning levels at 

natural breaks, with low being ≤ 10% total reads (n=7), medium being the lone sow at 35% and 

high being ≥ 70% (n=4). Random sow was found using the randomize function in Excel. 

Differences in the percentage of K. slooffiae and the distance to maternal sow versus a random 

sow was calculated using a Mann-Whitney U test in GraphPad Prism 9.5.1 based on Bray-Curtis 

distance. Phyloseq (v1.34.0) was used in R to analyze microbial community structure and 

diversity (28). Differences in fungal community composition were measured using Bray-Curtis 

dissimilarity and Permutational Multivariate Analysis of Variance (PERMANOVA), and was 

visualized using Principal Coordinates Analysis (PCoA) (R, v4.0.5). Homogeneity of dispersion 

was measured using Betadisper function in phyloseq (28). a-diversity was calculated in QIIME 

(v2022.11) and was statistically analyzed using Kruskal-Wallis in in GraphPad Prism 9.5.1 with 

Dunn’s multiple comparisons. Prior to a-diversity analysis reads were rarefied to 1700 reads. 

Differential abundance was calculated using Analysis of Composition of Microbiomes 

(ANCOM) in QIIME (v2022.11) and were compared using a Kruskal-Wallis test with Dunn’s 

multiple comparisons in GraphPad Prism 9.5.1. Differences in average daily gain (ADG) were 

compared using a Kruskal-Wallis test with Dunn’s multiple comparisons in GraphPad Prism 

9.5.1. Correlations between pig K. slooffiae and weight were computed using a Spearman’s 

correlation in GraphPad Prism 9.5.1. 
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3.3 Results 
 

3.3.1 Sow K. slooffiae colonization level shapes piglet mycobiome during early and later life, but 
not around the weaning transition  
 

Levels of K. slooffiae varied amongst sows. All but one of the sows fell into one of two 

categories: ≤ 10% K. slooffiae (n=7) or ≥ 70% K. slooffiae (n=4). One sow had 35% K. slooffiae. 

On D11, piglets tended to cluster depending on if the sows were colonized with high, 

medium or low levels of K. slooffiae (Figure 3.1a, P = 0.087, b-dispersion P = 0.181). By W-1 

piglets no longer clustered based on their sows K. slooffiae status (Figure 3.1b, P = 0.297, b-

dispersion P = 0.726). On W+7, sow K. slooffiae status also made no difference to the 

mycobiome (Figure 3.1c, P = 0.859, b-dispersion P = 0.509). However, by W+119, sow K. 

slooffiae status influenced pig mycobiome composition (Figure 3.1d, P = 0.046, b-dispersion P = 

0.278). There was an effect of day on the percentage of K. slooffiae present in the mycobiome (P 

< 0.001). On day 11, piglets had higher mean K. slooffiae than on W+7 (Figure 3.2, P < 0.001) 

and sows had more K. slooffiae than piglets on W+7 (Figure 3.2, P = 0.013).  
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Figure 3.1. b-diversity based on Bray-Curtis dissimilarity of the mycobiome based on sow 

Kazachstania slooffiae level. (a) Piglets 11 days of age (D11) showed a trend in clustering by 

sows K. slooffiae status (P = 0.087, b-dispersion P = 0.181). (b) Piglets on the day before 

weaning (W-1) did not cluster by sows K. slooffiae status (P = 0.297, b-dispersion P = 0.726). 

(c) Pigs 7 days following weaning (W+7) did not cluster by sow K. slooffiae status (P = 0.859, b-

dispersion P = 0.509). (d) At 119 days following weaning, i.e. the end of a production cycle, pigs 

clustered by their mothers K. slooffiae status (P = 0.046, b-dispersion P = 0.278). Trends were 

defined as P < 0.1, and significance was defined as P ≤ 0.05.  
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Figure 3.2. Percentage of K. slooffiae at different time points across a production cycle. Data 

is presented as the mean at each time point +/- SEM. There was a significant impact of time on 

percentage of K. slooffiae (P < 0.001). * indicates P ≤ 0.05 and ** indicates P < 0.001. 

Significance was defined as P ≤ 0.05. 

 

The amount of K. slooffiae a sow was colonized with did not correlate with the weight of 

the piglets on D11 (P = 0.903, r = -0.0263), W-1 (P = 0.720 , r = -0.0852) W+7 (P = 0.783, r = -

0.0606) or W+119 (P = 0.945, r = -0.0148). The amount of K. slooffiae a pig was colonized with 

did not associate with pig weight on D11(P = 0.703, r = -0.0821), W-1 (P = 0.163, r = -0.3149), 

W+7 (P = 0.140 r = -0.3171) or W+119 (P = 0.574, r = -0.121). 

3.3.2 Piglets cluster by litter except on the day before weaning  
 

Piglets clustered by litter on D11 (Figure 3.3a, P = 0.006). Around the weaning transition 

(W-1), piglets no longer clustered by litter (Figure 3.3b, P = 0.184). By W+7, piglets tended to 

cluster by litter (Figure 3.3c, P = 0.087). On W+119, piglets clustered by litter (Figure 3.3d, P = 
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0.007). On D11 piglets were closer to their maternal sow than a random sow (Figure 3.4a, P < 

0.001), however, on W-1, W+7, and W+119 there was no difference between the distance to the 

maternal sow and a random sow (Figure 3.4b, P = 0.418; Figure 3.4c, P = 0.116; Figure 3.4d, P 

= 0.511).  

 

Figure 3.3. b-diversity of pigs by sow based on Bray-Curtis dissimilarity. (a) Piglets at 11 

days of age (D11) clustered with their littermate (P = 0.006, b-dispersion P < 0.001). (b) Pigs on 

the day prior to weaning (W-1) no longer clustered by sow ID (P = 0.184, b-dispersion P = 1.0). 

(c) Pigs at 7 days following weaning (W+7) tended to cluster by sow ID (P = 0.087, b-dispersion 

P < 0.001). (d) Pigs 119 days following weaning (W+119) clustered by sow ID (P = 0.007, b-

dispersion P < 0.001). 
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Figure 3.4. Distance of piglets to their maternal sow versus the distance to a randomly 

selected sow. (a) On D11 piglets were closer to their maternal sow than they were to their a 

randomly selected sow (P < 0.001). (b) On the day before weaning piglets were no closer to their 

maternal sow than to a randomly selected sow (P = 0.418). (c) 7 days after weaning, pigs were 

no closer to their maternal sow than to a randomly selected sow (P = 0.116). (d) At 119 days 

following weaning, pigs were no closer to their maternal sow than to a randomly selected sow (P 

= 0.511). Data is presented as mean +/- SEM. Significance was defined as P ≤ 0.05. * indicates P 

< 0.001. 

 

 

*
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3.3.3 Both a-diversity and b-diversity were altered by pig age 
 

Mycobiomes clustered based on time point (Figure 3.5a, P = 0.001, b-dispersion P = 

0.253), however, there was no clear distinction based on younger or older pigs, with no clear 

break at weaning. a-diversity decreased with time (Figure 3.5b, P < 0.001). For the 5 pigs that 

receive antibiotics no apparent effect on mycobiome b-diversity at any timepoint was observed 

(P = 0.359). 

 

Figure 3.5. b-diversity and a-diversity of the mycobiome over time. (a) b-diversity of pigs at 

all time points as measured by Bray-Curtis dissimilarity. Pigs clustered based on time point (P = 

0.001, b-dispersion P = 0.253). (b) a-diversity of pigs at different timepoints as measured by 

Shannon diversity index (P < 0.001). * indicates P ≤ 0.05 and ** indicates P < 0.001. Box and 

whisker plot shows mean with 95% confidence interval. Significance was defined as P ≤ 0.05. 
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3.3.4 K. slooffiae is more prevalent in intensively raised pigs than feral pigs 
 

K. slooffiae was among the 10 most dominant fungi at all time points in the experimental 

piglets and in experimental sows (Figure 3.6a-d and Figure 3.7a). In commercial sows, K. 

slooffiae was the most dominant fungi (Figure 3.7b). While K. slooffiae was present in all feral 

pigs in both gut sections, it was not among the 10 most dominant fungi (Figure 3.7c and d). The 

mycobiome of feral pigs was more complex than that of both experimental and domestic pigs. 

Following singleton removal, there were a total of 224 genera in experimental pigs, 123 genera 

in commercial pigs, and 280 genera in feral pigs. Additionally, feral pigs clustered separately 

from commercial and experimental pigs (Figure 3.8c, P = 0.002, b-dispersion P = 0.01). 

ANCOM revealed several differential genera between experimental, commercial, and feral pigs: 

Kazachstania, Saccharomyces, Aspergillus, Monilia, Kalmanozyma, Xeromyces, Naganishia, 

Hyphopichia, and Diutina. Kazachstania and Saccharomyces were more abundant in both 

commercial and experimental pigs than feral pigs (Figure 3.8a, P < 0.01) and there was no 

difference between experimental and commercial pigs (Figure 3.8a, P =0.90). Aspergillus was 

more abundant in commercial pigs than in feral pigs (Figure 3.8b, P < 0.001) and not in 

commercial versus experimental or in experimental versus feral (Figure 3.8b, P = 0.052 and P = 

0.08). Monilia was only present in commercial pigs and was therefore significantly higher in this 

group than in experimental or feral pigs (Figure 3.8b, P < 0.001). Kalmanozyma and Xeromyces 

were only found in commercial and experimental pigs and not in feral pigs, and was therefore 

more abundant in these groups (Figure 3.8b, P < 0.001). Naganishia was more abundant in 

commercial pigs than in feral pigs and in commercial versus experimental pigs (Figure 3.8b, P < 

0.01) but not in experimental versus feral pigs (Figure 3.8b, P = 0.327). Hyphopichia was more 

abundant in commercial pigs than in experimental or feral pigs (Figure 3.8b, P < 0.001) but not 
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in experimental versus feral (Figure 3.8b, P > 0.999). Finally Diutina was more abundant in 

commercial pigs than in experimental or feral pigs (Figure 3.8b, P < 0.001 and P = 0.01) but not 

in experimental versus feral pigs (Figure 3.8b, P = 0.222). 
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Figure 3.6. Top 10 genera across time points. (a) Top 10 genera in experimental pigs at 11 

days of age. (b) Top 10 genera on the day prior to weaning. (c) Top 10 genera at 7 days post 

weaning. (d) Top 10 genera at 119 days post weaning. 
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Figure 3.7. Top 10 taxa in sows from experimental and commercial farms and feral pigs. (a) 

Top 10 most abundant genera in experimental sows. (b) Top 10 most abundant genera in 

commercial sows. (c) Top 10 most abundant taxa in the ileum feral pigs. All taxa are genera 

unless otherwise noted. The prefix f_ indicates a fungal family. Feral pigs are from two different 

locations – Melfort and Moose Mountain Saskatchewan Canada. (d) Top 10 most abundant taxa 

in the cecum of feral pigs. All taxa are genera unless otherwise noted. The prefix  f_ indicates a 

fungal family and the prefix o_ indicates a fungal order. Feral pigs are from two locations – 

Melfort and Moose Mountain Saskatchewan Canada.  
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Figure 3.8. Comparison of commercial, experimental, and feral pigs. (a) Kazachstania and 

Saccharomyces as identified by ANCOM as being differential. (b) All other differential taxa as 

identified by ANCOM. (c) b-diversity based on Bray-Curtis dissimilarity of the mycobiome of 

commercial, experimental and feral pigs. (d) b-diversity based on Bray-Curtis dissimilarity of 

the mycobiome of feral pigs by location and intestinal section. Significance was defined as P ≤ 

0.05. 

3.3.5 The feral pig mycobiome differed based on location of pig  
 

Feral pigs clustered based on their geographical location (Figure 3.8d, P = 0.047, b-

dispersion P = 0.059) but not based on the ileum versus the cecum (Figure 3.8d, P = 0.114, b-
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dispersion P = 0.379). ANCOM analysis revealed the genus Gibellulopsis as the only differential 

taxa between the two locations.  

3.4 Discussion 
 

This study brings new advances to our understanding of the pig mycobiome throughout 

life. We found that fungal exposure in early life shapes mycobiome composition later in life, a 

finding which may have consequences for production performance and disease risk. 

Additionally, we showed that the feral pig mycobiome is more complex than the mycobiome of 

intensively raised pigs, and that the feral pig mycobiome contains the key taxa K. slooffiae, albeit 

at a lower level. This provides further evidence that K. slooffiae is a core microbe of the pig.  

We found that pigs had differences in their mycobiomes based on their age. This trend is 

similar to what has previously been described for bacterial populations (5, 7). However, unlike 

the aforementioned studies, which saw a clear break between pig mycobiome surrounding the 

weaning transition, this break was not present in our study; likely due to K. slooffiae colonization 

in pre-weaning piglets. In the present study K. slooffiae made up a larger percentage of the young 

pig mycobiome, converse to studies indicating that it becomes detectable in large numbers after 

weaning (5-7, 12, 13).  

The K. slooffiae levels of the maternal sow drove piglet K. slooffiae levels early and late 

in life but did not impact the level of K. slooffiae around the weaning transition. Indeed, W+7 

was the time point with the lowest mean K. slooffiae levels suggesting perturbation of the 

mycobiome around the weaning transition. Additionally, piglets clustered by litter, and were 

therefore more similar to their littermate on D11 and W+119 with disruption right before and 

after weaning. This suggests that what piglets are exposed to in the farrowing pen can have long-
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term impacts. A similar trend has been seen in terms of bacterial composition, where what 

piglets are exposed to in the farrowing pen impacts their bacteriome later in life (29). This is 

particularly important because in humans composition of the mycobiome has been shown to 

contribute to several different diseases including inflammatory bowel disease, multiple sclerosis, 

colon cancer, and asthma (30-33). While it is not clear how the mycobiome affects pig health and 

performance long-term, it is possible that there is some impact, as the bacterial community has 

been previously implicated in pig performance (34, 35). It also remains unclear why some pigs 

have large amounts of K. slooffiae and others do not. The overgrowth of other fungi such as 

Candida has been shown have a genetic component (36) as well as a host metabolome 

component (37). Therefore, it is possible that there are a number of host factors which may help 

determine the level to which K. slooffiae is able to colonize and that dissimilarity between 

mycobiomes may have a genetic component. 

 We have previously shown that piglets have mycobiomes that are more similar to their 

maternal sows than to that of other sows at 8 days of age (8). In the present study we show that 

this result is consistent, with piglets having mycobiomes that are more similar to their maternal 

sow than to that of a random sow at 11 days of age. However, by the day prior to weaning they 

no longer have mycobiomes that are closer to their maternal sow than to a random sow, despite 

still being housed in a pen with their mother. This is contrary to what is seen in humans, where 

the infant fecal mycobiome is no more similar to their own mothers mycobiome than that of a 

randomly selected mother (38). The reason for this difference likely comes down to the 

environment in which piglets live, where they are in contract with the maternal feces, and are 

therefore able to obtain microbes from their mothers through repeated exposure. However, as 

piglets age and begin to consume solid feed, their mycobiomes become less like their mothers, 



 85 

suggesting that the diet contributes to mycobiome composition, a finding which has been 

previously noted (5). 

The weaning transition is a health-challenging time for piglets (39). During the weaning 

transition, piglets will transition to solid feed, encounter stress from social-mixing, and develop 

transient intestinal malabsorption (40-42). We found that piglets on W-1 and W+7 showed the 

most variability in that they did not cluster with their litter mate and did not cluster by sow K. 

slooffiae level. Microbial dysbiosis during the weaning transition has previously been noted in 

bacterial communities as piglets begin to transition to a solid diet high in cereal grain (43). Given 

that piglets return to clustering with their litter mate and by sow K. slooffiae level later in life, we 

can assume that something similar is happening to the mycobiome. In our model, piglets were 

introduced to creep feed at 14 days of age. The amount of creep feed consumed is variable 

among piglets (44), therefore differences in creep feed consumption may explain the variability 

in mycobiome compassion among littermates at W-1.  

Sows from commercial barns displayed a similar pattern of K. slooffiae colonization of 

Kazachstania to experimental sows, with some sows having a high abundance and others having 

a low abundance. This suggests that in intensively raised pigs, K. slooffiae is a commonly 

abundant microbe, which multiple studies have previously noted (5-7, 12, 13, 45).  

The mycobiome of feral pigs differed from that of domestic pigs. Perhaps the most 

glaring difference was the presences of Vishniacozyma as the most dominant genera of fungi in 

the ileum and second most dominant in the cecum. While this microbe is also present in the 

experimental pigs and in commercial sows, Kazachstania is instead the most dominant genera in 

intensively raised pigs. This is likely because feral pigs are in contact with more soil as they are 
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free roaming and feed on crops and crop stubble (46). Indeed, many members of the feral pig 

mycobiome are microbes regularly found on plants or in soil. This is similar to what has been 

described in Tibetan pigs fed a high forage diet, where the most prominent genus was Russula 

(47), which is often found in soil (48). While Russula was not a common finding in the feral pigs 

in the present study, it was present in two individuals in small amounts. Vishniacozyma may not 

actually colonize the intestine but instead may be a passenger that simply travels through the 

GIT, as is potentially the case for the Cladosporium found in another study (7, 49). 

Vishniacozyma victoriae, the species of Vishniacozyma found in the present study, was originally 

found in Antarctica, although it has also been isolated from living environments in other 

locations, and was found to grow between 4 °C and 20 °C (50). Likewise, it has been found that 

Vishniacozyma victoriae is incapable of growth at human body temperature (37 °C) (51). It 

remains unclear what impact Vishniacozyma has on the pig GIT.  

Not all the fungi present in the feral pig are unable to colonize. Candida was the most 

abundant genera in the cecum of feral pigs, and Candida species have been previously identified 

in the feces of pigs (12, 45, 47). Candida species are able to grow at body temperature (52) and 

are usually considered opportunistic pathogens (53). In healthy humans Candida coexists with 

commensal bacteria, where Lactobacillus has an antagonistic relationship and causes the loss of 

pathogenicity factors (54). However, Candida is also able to overgrow and cause sepsis, 

typically in hosts who are immunocompromised (55). In pigs, Candida tropicalis has been 

shown to cause mucosal disease of the GIT (56) and invasion of the oral cavity and stomach 

(57), although the vast majority of pigs appear unaffected. Interestingly, the commercial pigs as a 

whole have much less Candida than the feral pigs, however most pigs have at least some 

Candida, and a couple of individuals have up to 96.7% of their mycobiomes made up by 
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Nakaseomyces, a clade made up of pathogenic Candida species (58). This suggests that there is 

some individual susceptibility to high levels of Candida colonization, which has previously been 

shown in humans and is influenced by genetics, the host metabolite pool, and antibiotic use (36, 

59).  

3.5 Conclusion 
 

We found that the amount of K. slooffiae piglets were exposed to in the farrowing pen 

dictated their K. slooffiae status up to 119 days post-weaning. Additionally, we found that piglets 

had more comparable mycobiome compositions to their litter mates in early life as well as at the 

end of one production cycle. Data from this work indicates a potential transient disruption to the 

mycobiome during the weaning, where littermate groupings no longer exist, paralleling the 

dysbiosis that has been documented in bacterial taxa. Overall, this study provides evidence of the 

importance of early life exposure on long-term mycobiome composition in pigs and how 

conventionally raised pigs mycobiomes differ significantly in composition and complexity from 

their feral counterparts. This suggests that early life may be an influential time to change the 

mycobiome in the long-term. 
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Chapter 4: Kazachstania slooffiae alters the metabolome, immune 
system, and intestinal development in a gnotobiotic pig model 
 

4.1 Introduction 
 

Piglets are born with an undeveloped immune system (1) and gastrointestinal tract (GIT) 

(2). One critical component driving both immune system and intestinal development is the 

colonization of the GIT with microbes (3, 4). The GIT is home to a vast array of bacteria, 

archaea, fungi, protozoa and viruses (5), which together can be termed the microbiota. While the 

role of bacteria in these processes has been well documented, the role of fungi (the mycobiome) 

in both immune system and intestinal development is much less well characterized. However, 

fungi have been shown to be immunomodulatory (6).  In mice colonization with fungi has been 

shown to shape immune system development in early life (7), although the mechanism through 

which this occurs is unclear. However, to the authors knowledge this is the only study examining 

the impact of fungi on immune system development performed in a controlled environment.  

During initial colonization at birth, facultative anaerobes such as Escherichia dominate 

(8). This is because the neonatal intestine is initially aerobic, and the intestine will become 

anaerobic over a period of days as colonization succession progresses (9). Within days, the piglet 

microbiota will start to harbor more Lactobacillus and Bacteroides as the piglet consumes a milk 

based diet. At 7 days of age, the microbiota is dominated by Lactobacillus (8). Although it 

should be noted that succession patterns studies vary across studies, and are influenced by factors 

such as diet and rearing environment (10, 11). One day after birth, piglets are dominated by 

Cladosporiaceae, Malasseziaceae, Dipodascaceae, and Nectriaceae (12). By 7 days of age, 

piglet mycobiome is dominiated by Sporidiobolaceae, Filobasidiaceae, and Trichosporonaceae, 
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although it should be noted that the mycobiome is quite variable in pigs this age (12). The 

mycobiome does not shift to Saccharomycetaceae dominance (which includes Kazachstania), 

until after weaning. (12) 

Fungi, typically in the form of yeast, have long been fed to livestock for a variety of 

purposes. Feeding Saccharomyces cerevisiae to pigs has been shown to improve growth 

performance, decrease diarrhea, and modulate immune response (13). Additionally, feeding live 

S. cerevisiae has been shown to increase villus height and villus to crypt depth ratio in the 

duodenum and jejunum of piglets (14), suggesting that yeast is able to alter intestinal 

development. In rats, feeding the fermentate of S. cerevisiae protected intestinal barrier integrity 

during heat stress (15). Microbial metabolites can impact the host in a variety of ways and 

feeding S. cerevisiae to beef steers has been shown to increase the amount of plasma 

indoleacrylic acid (16), a metabolite that is able to suppress inflammatory responses and enhance 

epithelial barrier function (17). However, Saccharomyces makes up less than 1% of the 

commensal mycobiota (18), and studies which focus on supplementing endogenous pig microbes 

are lacking. 

In the pig, Kazachstania slooffiae is the most abundant yeast (18). Kazachstania has been 

isolated from pigs in multiple geographic locations and production systems (12, 19, 20). K. 

slooffiae is thought to be beneficial to pigs as it increases short chain fatty acids (SCFA) in the 

intestine and has been found to alter the intestinal microbiota (21). Positive interactions have 

been noted between K. slooffiae and Prevotella and Lactobacillus (18). In vitro K. slooffiae 

shows inhibited growth in the presence of supernatant from Enterococcus faecalis (22), 

suggesting that complex interactions exist between K. slooffiae and other microbes in the GIT. 

We have previously found that K. slooffiae abundance is highly variable among pigs, with some 
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pigs having no K. slooffiae and others having upwards of 90% of their mycobiomes composed of 

K. slooffiae (23). Additionally, we found that piglets from sows who were high in K. slooffiae 

also tended to be high in K. slooffiae and those from sows who were low in K. slooffiae were 

also low (23). It remains unclear what the impact is of having a K. slooffiae dominated 

mycobiome is on host health and development.  

In this study, we investigate the role of K. slooffiae in bacterial succession, metabolite 

production, and intestinal and immune system development, using a gnotobiotic pig model.  

4.2 Materials and methods 
 
4.2.1 Derivation of germ free piglets  
 

This animal study was approved by the Animal Care and Use Committee of the 

University of Alberta (Edmonton, AB, CAN) and conducted in accordance with the guidelines of 

the Canadian Council on Animal Care under AUP00002777. A caesarean section was performed 

on a sow on day 112 of gestation. Following removal from the uterus, piglets had their umbilical 

cords clamped and were immediately passed through a dip tank containing PREPODYNE® 

GEN (West Pentone, QC, CAN) and into a sterile transfer isolator. A total of 15 piglets were 

obtained. Piglets were divided into one of two treatment groups: Defined Bacterial Community 

only (DBC; n=6), Defined Bacterial Community + K. slooffiae (DBCK; n=6). Piglets were 

balanced for sex and size. Three additional piglets that were not balanced for sex or size were 

maintained germ free to confirm germ free rearing. 
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4.2.2 Defined bacterial community and colonization 
 

 Bacteria were isolated from feces or cecal content from pigs 7 days or older residing at 

SRTC (Edmonton, AB, CAN). For detailed culture media and gas conditions of isolates see 

Lantz (2022) (25). Isolates were preserved in isolate broth supplemented with 25% glycerol. The 

defined bacterial community consisted of the following organisms: Bacteroides eggerthii, 

Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides xylaninosolvens, Blautia 

faecicola, Clostridium colicanis, Lactobacillus amylovorus, Lactobacillus delbrueckii, 

Lactobacillus johnsonii, Limosilactobacillus mucosae, Limosilactobacillus reuteri, 

Ligilactobacillus ruminis, Prevotella copri, Streptococcus hyointestinalis, Streptococcus 

pasteurianus, Turicibacter sanguinis and Escherichia coli. Bacterial cultures were grown for 24-

72h at 37 °C under anaerobic conditions with gas consisting of 70% N2, 20% CO2, and 10% H2. 

500 µL of each bacterium was pooled together with the addition of 25% glycerol and stored at -

80 °C until use. K. slooffiae was grown in yeast extract broth consisting of yeast extract (Fisher 

Scientific, ON CAN, 10g/L) and glucose (20g/L) for 48h at 37 °C, then washed and resuspended 

in sterile phosphate buffered saline (PBS). The final concentration of K. slooffiae was roughly 

3.0 x 104 CFU/mL.  

Piglets in both the DBC and DBCK groups were given the DBC on days 1 and 3 of age 

and piglets in the DBCK group were given K. slooffiae on days 1, 3, and 5 of age. All microbes 

were given orally by syringe. Piglets were fed irradiated pooled sow colostrum, from sows 

residing at SRTC, every 3 hours ad libitum for the first 24 hours. After 24 hours, piglets were 

switched to irradiated milk replacer (Brown’s Feeds Piglet Milk Replacer, HiBrow ltd., AB, 

CAN), and fed ad libitum by bottle every 3h.   
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4.2.3 Sample collection 
 

Piglets were humanely euthanized on post-natal day 8 for sample collection. Digesta was 

collected from the jejunum (1 meter distal to the stomach), ileum (5 cm proximal from ileocecal 

junction), cecum (from cecal tip), and colon (5 cm from rectum). Digesta was either snap frozen 

in liquid nitrogen and stored at -80 °C, or for bacterial and yeast culture was placed into 

Fastidious Anaerobe Agar (Neogen, MI, USA) + 0.05% cystine or sterile PBS respectively. 

Tissue was collected from the ileum and colon from the same locations and was preserved in 

10% formalin for histological assessment. Blood was collected via venipuncture into EDTA 

tubes (Fisher Scientific, ON, CAN ). Mesenteric lymph nodes (MLN) were collected into Krebs 

Ringer Bicarbonate buffer (KRH) consisting of NaCl (303.6 g/L), HEPES (Fisher Scientific, ON, 

CAN, 104.0 g/L), KCl (15.6 g/L), CaCl2 ( 6.2 g/L), NaH2PO4 (5.68 g/L), MgSO4 (6.74 g/L), 

Bovine Serum Albumin (Sigma-Aldrich, MO, USA, 5g/L) and antibiotic/antimycotic (Gibco, 

MT, USA,10 mL/L), then stored on ice and transported to the laboratory.  

4.2.4 Culture 
 

 Total anaerobes were cultured on Fastidious Anaerobe Agar (Neogen, MI, USA) under 

anaerobic gas conditions for 48h at 37 °C. K. slooffiae was cultured on yeast extract glucose agar 

consisting of yeast extract (Fisher Scientific, ON CAN, 10g/L), glucose (20g/L), and agar 

(15g/L) under aerobic conditions for 48h at 37 °C. 

4.2.5 Quantitative polymerase chain reaction (qPCR) 
 
 
 Total bacterial load was measured via qPCR using the StepOnePlus Real-Time PCR 

system (Applied Biosystems, CA, USA). Each reaction was performed in duplicate and consisted 
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of 5 µL	PerfeCTa SYBR Green Supermix (Quantabio, MD, USA), 0.5 µL (10 µM/L) forward 

primer, SRV3-1 (5’- CGGYCCAGACTCCTACGGG -3’) and 0.5 µL (10 µM/L) reverse primer 

(5’- TTACCGCGGCTGCTGGCAC -3’) (26), 2 µL nuclease free water and 1 µL template DNA. 

A standard curve was generated from the PCR amplicon of pooled genomic DNA. The following 

cycling parameters were used: 95 °C for 3 min followed by 95 °C for 25 sec and 60 °C for 30 sec 

for 40 cycles.  

4.2.6 Bacterial community characterization  
 

Amplicon libraries of the V3-V4 region of the 16S rRNA gene were constructed 

according to the Illumina 16S Metagenomic Sequencing Library Preparation protocol (Illumina 

Inc., CA, USA). DNA was quantified using the Quanti-iT™ Pico Green dsDNA Assay kit 

(Invitrogen, CA, USA). Amplicon primers used were as follows: forward, 5′ 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and 

reverse, 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC -

3′. Sequencing was performed on the Illumina Miseq platform using 2 x 300 cycles (Illumina 

Inc., CA, USA). The forward read was truncated at 260 base pairs and the reverse read was 

truncated at 220 base pairs. The Divisive Amplicon Denoising Algorithm (v2) plugin for 

QIIME2 was used to perform demultiplexing, quality filtering, denoising, and chimera filtering 

(26). Mafft was used to align Amplicon Sequence Variants (ASVs) (27). Taxonomy was 

assigned to ASVs using the classify-sklearn naïve Bayes taxonomic classifier (28). Sequences 

were classified using the SILVA database version 138.1 (29).  
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4.2.7 Histology 
 

Approximately 1 cm of tissue was collected from the ileum 5 cm proximal to the 

ileocecal junction and approximately 1 cm of tissue was collected from the colon 5 cm from the 

rectum. Tissue was immediately placed in 10% neutral buffered formalin at room temperature 

for 24h then placed into 70% ethanol. Fixed tissue was then embedded in paraffin wax and 

sectioned into 5 µm slices and stained with hematoxylin and eosin. Sections were visualized 

using the EVOS FL Auto Imaging System (Thermo Scientific, ON, CAN). Villus height was 

measured from the villus base to the villus apex. Crypt depth was measured from the base of the 

crypt to the crypt opening. 5 measurements were made per slide and the average was used for 

statistical analysis.  

4.2.8 Metabolomics 
 

 Metabolomic analysis was performed on digesta from the ileum and plasma at The 

Metabolomics Innovation Center (TMIC) (University of Alberta, Edmonton, CAN) using the 

TMIC Prime Assay plus butyric acid and acetic acid, which measured 143 metabolites. Liquid 

Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Direct Infusion-Tandem Mass 

Spectrometry (DI-MS/MS) were performed using the Agilent 1260 series ultra-high-performance 

liquid chromatography system (Agilent Technologies, CA, USA) along with an AB SCIEX 

QTRAP® 4000 mass spectrometer (Sciex Canada, Concord, ON, CAN). 

 Samples were thawed on ice and homogenized. The TMIC prime assay used a 96 deep-

well plate with a filter plate attached. For all metabolites except for organic acids and lipids, 10 

µL of each sample was loaded onto the center of the filter on the upper 96-well plate and dried in 
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a stream of nitrogen. Following drying, 50 µL of 5% phenyl-isothiocyanate was added to each 

well for 20 minutes at room temperature for derivatization. Following incubation, the spots were 

once again dried using a stream of nitrogen for 1.5 hours. 300 µL of extraction solvent 

containing methanol and 5 mM ammonium acetate was then added to each well of the plate 

which was then shaken at 300 rpm for 30 minutes at room temperature. The plate was then 

centrifuged at 50 x g for 5 minutes to collect the extracts in the bottom collection plate. Amino 

acids and their derivatives and biogenic amines and their derivatives were then diluted with 150 

µL of LC-MS water prior to LC-MS injection. The remaining extracts were diluted with 400 µL 

of direct flow injection buffer for DI-MS/MS. For lipid analysis 5 µL of extracts were pipetted 

directly into the 96-deep-well plate followed by the addition of 490 µL of direct flow injection 

buffer and then shaken at 500 rpm for 15 minutes prior to DI-MS/MS. Isotope-labeled internal 

standards were utilized.  

For analysis of organic acids 150 µL of ice-cold methanol and 10 µL of isotope-labeled 

internal standard mixture was added to 50 µL of sample overnight for protein precipitation. This 

mixture was then centrifuged at 13000 x g for 15 minutes. 50 µL of the supernatant was then 

loaded into the center of the 96-deep-well plate followed by the addition of 3-

nitrophenylhydrazine. After incubation for 2 hours, 25 µL of 2 mg/mL butylated hydroxytoluene 

stabilizer and 350 µL of water were added for LC-MS analysis. 

4.2.9 Immune Cell Isolation  
 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood using 

density centrifugation using Histopaque 1077 (Sigma-Aldrich, MO, USA) and were counted and 

diluted to 1.5 x 106/mL as previously described (30). Cells from MLN were obtained by passing 
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tissue through 100 nm nylon mesh as previously described (31) with the exception that as with 

PBMCs, cells were diluted to 1.5 x 106/mL.   

4.2.10 Flow cytometry 

Immune cell subsets were identified from whole blood and MLNs as previously 

described (32). Briefly, cells were incubated at 4° C for 30 minutes with pre-labeled monoclonal 

antibodies (Table 4.1) and were then washed with 5% HyClone fetal bovine serum (Cytiva, MA, 

USA) in PBS and fixed with 1% paraformaldehyde. The exception to this protocol was the 

FoxP3 antibody, where cells were first treated to permeabilize the membrane using the 

eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set (Invitrogen, MA, USA) 

according to manufacturer instructions. The fixed cells were then analyzed within 48h by flow 

cytometry using a LSR-Fortessa flow cytometer (BD, NJ, USA). Further analysis was performed 

in FlowJo (v9) (Supplementary Figure 1) 

Table 4.1. Panels used for flow cytometry.  
Panel PerCP PECy7 FITC PE APC 

1 CD3 (BD, 
561478) 

CD4 (BD, 
561473) 

CD8 (BD, 
551303) 

gd T 
Lymphocytes 
(BD, 561486) 

CD27 (Bio Rad, 
MCA5973APC)   

2 CD3 (BD, 
561478) 

CD4 (BD, 
561473) 

CD8 (BD, 
551303) 

CD45RA (Bio 
Rad, 
MCA1751PE) 

CD27 (Bio Rad, 
MCA5973APC)   

3  CD4 (BD, 
561473) 

SLAII (Bio Rad, 
MCA2314F) 

CD21 (BD, 
557327) 

   

4 CD3 (BD, 
561478) 

   CD335 (Bio 
Rad, 
MCA5972APC) 

5   CD4 
(Invitrogen, 
MA5-16854) 

CD25(Bio 
Rad, 
MCA1736GA) 
+ Goat anti 
Mouse IgG 
(Bio Rad, 
STAR117F) 

FOXP3 
(eBioscience, 
17-5773-82) 
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4.2.11 Ex-vivo Cytokine Production  
 

Cytokine production from PBMCs and MLNs were measured following incubation for 

48h at 37°C in cells which were either unstimulated or stimulated with either lipopolysaccharide 

(LPS) (Invitrogen, MA, USA, 2 µL/ mL) or phytohaemagglutinin (PHA) (Sigma-Aldrich, MO, 

USA, 5 mg/mL). Cells were diluted to a concentration of 1.5 x 106/mL and incubated in RPMI 

1640 media (Gibco, MT, USA) supplemented with 5% HyClone fetal bovine serum, 2.5 mM 2-

mercaptoethanol, 25 mM HEPES, and 1% antibiotic/antimycotic and adjusted to a pH of 7.4 

(31). Cytokines were measured by multiplex enzyme-linked immunosorbent assay (13-Plex 

Porcine Discovery AssayÒ, Eve Technologies, AB, CAN).  

4.2.12 Statistical analysis 
 

All statistics were performed in GraphPad Prism (version 9.5.0) unless otherwise stated. 

Differences between culture data, total bacteria, bacterial taxa, histological measurements, 

immune cell phenotype, and cytokines were investigated using a Mann-Whitney U test. 

Differences in overall bacterial communities were investigated using the R package phyloseq 

(v1.34.0) (33). Bacterial data was visualized by Principal Coordinate Analysis (PCoA) based on 

Bray-Curtis dissimilarity and analyzed for differences using Permutational Multivariate Analysis 

of Variance (PERMANOVA) (R, v4.0.5). Metabolomic analysis was performed using 

MetaboAnalyst 5.0. Data were log transformed and mean centered. Metabolites of interest were 

identified by fold change analysis with anything greater than 1 log2 fold change being 

considered as a metabolite of interest. Raw metabolite concentrations were then used for 

statistical analysis where they were tested for normality using a Shapiro-Wilk test and then 
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analyzed using either a T-test for normally distributed metabolites or a Mann-Whitney test for 

metabolites that were not normally distributed.  

Enrichment analysis was performed in MetaboAnalyst 5.0 using the KEGG database for 

all metabolites of interest with the exception of lipids. Correlation analysis between metabolites 

and microbes or cytokines was done using a Spearman’s correlation. Significance was defined as 

P ≤ 0.05 and trends were considered P < 0.1. A principal component analysis (PCA) plot was 

generated in MetaboAnalyst 5.0 and was evaluated for differences using Permutational 

Multivariate Analysis of Variance (PERMANOVA) (R, v4.0.5). 

4.3 Results 
 

4.3.1 Colonization with K. slooffiae increases total anaerobes 
 

All animals in the DBCK group had K. slooffiae growth, indicating that colonization with 

K. slooffiae was successful, whereas K. slooffiae was not detected in the DBC group. No 

microbes were detected in the germ free group, indicating that maintenance of sterile rearing 

conditions was achieved. K. slooffiae colonized at the lowest level (mean = log 5.6) in the 

jejunum (P = 0.004) and at similar levels in the ileum, cecum, and colon (mean = log 6.4 – 6.6) 

(Figure 4.1a). Total anaerobes, enumerated on FAA, were higher in the DBCK group in both the 

ileum (P = 0.015) and cecum (P = 0.041) (Figure 4.1b and 4.1c). Additionally, qPCR results 

revealed that K. slooffiae colonization increased total bacterial load in both the ileum (Figure 

4.1d, P = 0.037) and cecum (Figure 4.1e, P = 0.009). 
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Figure 4.1. K. slooffiae colonization increased total anaerobes and total bacteria. Culture 

data showing K. slooffiae abundance by location in DBCK animals (a), and total anaerobes in 

both DBC and DBCK animals in the ileum (b) and cecum (c). Log copy number of the 16s 

rRNA gene (total bacteria) per g of content via qPCR in the ileum (d) and cecum (e). 

Significance was defined as P ≤ 0.05.  

4.3.2 K. slooffiae alters bacterial community composition 
 

 The addition of K. slooffiae to the bacterial community altered bacterial b-diversity in the 

cecum (Figure 4.2c, P = 0.048) and tended to be altered in the ileum (Figure 4.2b, P = 0.056) and 

colon (Figure 4.2d, P = 0.053). There was no change in b-diversity in the jejunum (Figure 4.2a, 

P = 0.857). Additionally, the relative abundance of different taxa was altered by the addition of 

K. slooffiae. In the ileum E. coli was significantly higher in the DBCK group (Figure 4.3b, P = 
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0.041), while L. reuteri was higher in the DBC group (Figure 4.3b, P = 0.009). In the cecum E. 

coli was higher in the DBCK group (Figure 4.3c, P = 0.032) and L. mucosae was higher in the 

DBC group (Figure 4.3c, P = 0.008). In the colon E. coli was higher in the DBCK group (Figure 

4.3d, P = 0.002) as was S. hyointestinalis (Figure 4.3d, P = 0.041), while S. pasteurianus tended 

to be higher in the DBC group (Figure 4.3d, P = 0.065). In the jejunum there were no differences 

between any of the taxa. Although, there was no difference between which bacteria colonized 

DBC and DBCK pigs, the following microbes were missing from all animals: B. eggerthii, B. 

xylaninosolvens, B. faecicola, C. colicanis, L. amylovorus, L. johnsonii, L. ruminis, and P. copri. 
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Figure 4.2. Impact of K. slooffiae on b-diversity. Differences in bacterial communities as 

shown by PCoA based on Bray-Curtis dissimilarity in the (a) jejunum (P = 0.857), (b) ileum (P 

= 0.056), (c) cecum (P = 0.048), and (d) colon (P = 0.053). Significance was defined as P ≤ 0.05 

and trends were defined as P < 0.1. 
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Figure 4.3. K. slooffiae alters the relative abundance of bacteria in the intestine. Relative 

abundance of bacteria in the jejunum (a), ileum (b), cecum (c), and colon (d). * indicates P ≤ 

0.05 and # indicates P < 0.1.  

 
 
 
 
 
 

B. t
het

aio
ta

om
icr

on

B. v
ulg

at
us 

E. c
oli 

L. d
elb

ru
ec

ki

L. m
uco

sa
e

L. r
eu

te
ri

S. h
yo

in
te

st
in

ali
s

S. p
as

te
uria

nus

T. s
an

guin
is

0

20

40

60

80

Jejunum
%

 R
el

at
iv

e 
A

bu
nd

an
ce

 o
f B

ac
te

ria
l R

ea
ds

a) b)

d)c)
B. t

het
aio

ta
om

icr
on

B. v
ulg

at
us 

E. c
oli 

L. d
elb

ru
ec

ki

L. m
uco

sa
e

L. r
eu

te
ri

S. h
yo

in
te

st
in

ali
s

S. p
as

te
uria

nus

T. s
an

guin
is

0

20

40

60

80

100

%
 R

el
at

iv
e 

A
bu

nd
an

ce
 o

f B
ac

te
ria

l R
ea

ds

Ileum

*

DBCK

DBC
*

B. t
het

aio
ta

om
icr

on

B. v
ulg

at
us 

E. c
oli 

L. d
elb

ru
ec

ki

L. m
uco

sa
e

L. r
eu

te
ri

S. h
yo

in
te

st
in

ali
s

S. p
as

te
uria

nus

T. s
an

guin
is

0

20

40

60

80

Cecum

%
 R

el
at

iv
e 

A
bu

nd
an

ce
 o

f B
ac

te
ria

l R
ea

ds

*
*

B. t
het

aio
ta

om
icr

on

B. v
ulg

at
us 

E. c
oli 

L. d
elb

ru
ec

ki

L. m
uco

sa
e

L. r
eu

te
ri

S. h
yo

in
te

st
in

ali
s

S. p
as

te
uria

nus

T. s
an

guin
is

0

20

40

60
%

 R
el

at
iv

e 
A

bu
nd

an
ce

 o
f B

ac
te

ria
l R

ea
ds

Colon

*

*
#



 108 

 
4.3.3 K. slooffiae increases villus height: crypt depth ratio 
 

 The villus height to crypt depth ratio was increased in the DBCK group (Figure 4.4c, P = 

0.028). There was no change in the direct comparison of villus height between DBC and DBCK 

groups (Figure 4.4a, P = 0.310) or in crypt depth (Figure 4.4b, P = 0.132). In the colon there was 

no difference in crypt depth (Figure 4.4d, P = 0.589). Representative histological measurements 

can be seen in Figure 4.5. 

 

Figure 4.4. K. slooffiae colonization altered the ratio of villus height to crypt depth in the 

ileum. (a) Villus height in the ileum. (b) Crypt depth in the ileum. (c) Ratio of villus height to 

crypt depth in the ileum. (d) Crypt depth in the colon. Significance was defined as P ≤ 0.05. 
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Figure 4.5. Histological assessment. Examples of histological measurements in the ileum of 

DBC treated animals (a). The ileum of DBCK treated animals (b). The villus height to crypt 

depth ratio is increased in the DBCK group. (c) shows the histological measurement of crypts in 

the colon of  

4.3.4 K. slooffiae alters ileal and plasma metabolome 

 Colonization with K. slooffiae increased the concentration of butyric acid (Figure 4.6a, P 

= 0.032), fumaric acid (Figure 4.6a, P = 0.05), taurine (Figure 4.6a, P = 0.015), and putrescine 

(Figure 4.6a, P = 0.004). While the following metabolites were not significantly different 

between treatments despite being identified by fold change analysis: spermidine (Figure 4.6a, P 

= 0.589), citrulline (Figure 4.6a, P = 0.137), HPHPA (Figure 4.6a, P = 0.309), and SMC 18:0 
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(Figure 4.6a, P = 0.132). Conversely, pigs without K. slooffiae had increased levels of citric acid 

(Figure 4.6a, P ≤  0.001). K. slooffiae colonized animals were also enriched for the following 

pathways in ileal digesta: arginine biosynthesis, glutathione metabolism, arginine and proline 

metabolism, taurine and hypotaurine metabolism (Figure 4.6b, P ≤ 0.05). The abundance of 

putrescine in ileal digesta was negatively correlated with Tumor Necrosis Factor a (TNFa) 

(Figure 4.6c, P = 0.001). However, multivariate analysis revealed that there was no separation of 

metabolomes based on K. slooffiae colonization (Figure 4.7a, P = 383)  

 In plasma, pigs without K. slooffiae had increased methionine (Figure 4.6d, P = 0.003) 

and betaine (Figure 4.6d, P = 0.002), and there was a trend in increased propionic acid in animals 

colonized with K. slooffiae (Figure 4.6d, P = 0.093). K. slooffiae colonized animals were 

enriched for the following pathways: glycine, serine, and threonine metabolism, and cystine and 

methionine metabolism (Figure 4.6e, P ≤ 0.05). Multivariate analysis showed that there was no 

difference in the metabolome of animals colonized with K. slooffiae versus those not colonized 

with K. slooffiae (Figure 4.7b, P = 0.323).  
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Figure 4.6. K. slooffiae increases key intestinal metabolites in the ileum and alters the 

plasma metabolome minimally (a) Log2 fold changes in ileal metabolites between DBC and 

DBCK animals. (b) Enriched pathways in the ileum. (c) Correlation between ileal putrescine and 

TNFa. (d) Log2 fold changes in plasma metabolites between DBC and DBCK. (e) Enriched 

pathways in plasma.  
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Figure 4.7. K. slooffiae colonization did not alter the overall ileal or plasma metabolomes. 

(a) PCA plot of the ileal metabolome between DBC and DBCK. (b) PCA plot of plasma 

metabolome between DBC and DBCK groups.  

4.3.5 K. slooffiae alters T cell populations in mesenteric lymph nodes 
 

K. slooffiae colonization decreased the number of total CD3+ (T cells) MLN cells (P = 

0.006) as well as CD3+CD4+ (helper T cells) cells (P = 0.02). There were no changes in the 

number of CD3+CD8+ (cytotoxic T cells) (P = 0.70), CD3+CD4+CD8+ (double positive) (P = 

0.48), gd T cells (P = 0.13), or in CD4+CD25+Foxp3+ (regulatory T cells) (P = 0.81) (Figure 

4.8a). The number of CD3+CD45RA+ (naïve T cells) tended to be higher in DBCK animals (P = 

0.065) and the number of CD3+CD8+CD45RA+ (naïve killer T cells) was higher in the DBCK 

group. There were no differences in CD3+CD4+CD45RA+ (naïve helper T cells) (P = 0.781) or 

in CD3+CD4+CD8+CD45RA+ (naïve double positive T cells) (P = 0.132) (Figure 4.8b). The 

number of CD3+CD27+ (stimulated T cells) (P = 0.039) and CD3+CD4+CD27+ (stimulated 

helper T cells) (P = 0.026) were both lower in the DBCK, while there were no differences 
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between groups in the number of CD3+CD8+CD27+ (stimulated killer T cells) (P ≥ 0.999) or 

CD3+CD4+CD8+CD27+ (double positive stimulated T cells) (P = 0.240) (Figure 4.8c). There 

were no differences in CD4-CD21+SLAII+ B cells (naïve and activated B cells) (P = 0.31) or 

CD4-CD21-SLAII+ (plasma B cells) (P = 0.48) (Figure 4.8d). Additionally, there were no 

changes in CD3-CD335+ (Natural killer (NK) cells) (P = 0.59) (Figure 4.8e) in MLN. In PBMCs 

there were no differences between groups in T cells or T cell subsets, B cells, or NK cells. 

 

Figure 4.8. K. slooffiae alters immune system development. Immune cell subsets in 

mesenteric lymph node cells. (a) T cell subsets. (b) Naïve T cell subsets. (c) Stimulated T cell 

subsets. (d) B cell subsets. (e) Natural killer cells. Significance is indicated by * and was defined 

as P ≤ 0.05. A trend is indicated by # and was defined as P < 0.1. 
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4.3.6 K. slooffiae alters cytokine production 

Compared to DBC, animals in the DBCK group had higher levels of plasma interleukin 

(IL)-2 (P = 0.02) and IL-18 (P = 0.02) and lower levels of TNFa (P = 0.002) (Figure 4.9a). In 

MLN cells stimulated with LPS, DBCK animals had increased IL-18 (P = 0.04) and IL-10 (P = 

0.04) (Figure 4.9b). Stimulation of MLN cells with PHA resulted in lower IL-2 (P = 0.002), IL-

12 (P = 0.03) and TNFa (P = 0.004) in the DBCK group compared to animals in the DBC group, 

and higher IL-18 (P = 0.02) (Figure 4.9c) in the DBCK group. 
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Figure 4.9. K. slooffiae alters cytokine production. (a) Cytokine levels in plasma (b) cytokine 

production by mesenteric lymph node cells following stimulation with lipopolysaccharide (c) 

cytokine production by mesenteric lymph node cells following stimulation with 

phytohaemagglutinin.  Significance is indicated by * and was defined as P ≤ 0.05. 

 
4.4 Discussion 
 

In this study we sought to determine the impact of K. slooffiae colonization on immune 

system and intestinal development. We found that K. slooffiae was able to colonize all piglets in 

the DBCK group, although some individual variation was present in the amount of K. slooffiae 

present. This is consistent with the greater individual variation in fungal community composition 

than bacterial community composition in humans (34), suggesting that some fungi may colonize 
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better in some individuals than others. It has been noted by other studies that K. slooffiae is 

virtually absent until the time of weaning (12, 35). However, we previously found that K. 

slooffiae was present in pigs as young as 3 days of age, if present in the dam (23). While this 

suggests that there is some individual variation in the time of K. slooffiae colonization, we felt 

that introducing K. slooffiae at 24h after birth was representative of the colonization patterns pigs 

in at least some environments. The abundance of total anaerobes and total bacteria were 

increased in K. slooffiae colonized animals. We speculate that this is due to K. slooffiae reducing 

the oxygen content in the intestinal tract, thereby allowing for the growth of anaerobic bacteria. 

Yeasts are facultative anaerobes (36). It has been suggested that other early colonizing 

facultative anaerobes such as E. coli, help to decrease the oxygen content in the GIT and thereby 

create a hospitable environment for strict anaerobes to colonize (37). Alternatively, yeast cell 

wall could be acting as a prebiotic (38), and therefore allowing for the increase in total bacteria 

in K. slooffiae colonized animals.  

We determined that there were changes in the bacterial community due to K. slooffiae 

colonization. This is in consistent with multiple studies that have shown that the bacterial 

community can be altered by feeding S. cerevisiae to pigs (39, 40). Although not the focus of the 

current study, there are several reasons why some members of the DBC were not able to 

colonize. Several of the organisms, such as Prevotella, are strict anaerobes and may not have 

been able to tolerate the inoculation process (41). Additionally, microbes in the GIT exist in 

complex communities where cross-feeding is often an important factor for microbial survival and 

growth (42). Appropriate substrate for bacterial survival may have been lacking, for example, the 

presence of fiber is important for Prevotella to colonize the GIT (44). Therefore, outside of the 

communities in which they normally exist, some of the microbes in the DBC may have not been 
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able to survive and proliferate. Regarding specific differences in taxa between the DBC and 

DBCK groups, the increase of E. coli in the ileum, cecum, and colon was not expected, as yeast 

supplementation is typically associated with lower levels of Escherichia in digesta (44). 

However, Escherichia make up part of the normal piglet GIT microbial population (45), with 

Escherichia being differentially abundant in the pre-weaning intestine versus the postweaning 

intestine (46). The pigs in the previously mentioned study were of post-weaning age compared to 

the 7-day-old piglets in the present study, and it is therefore possible that the increase in 

Escherichia is unique to early life or that the increase is transitory. It is worth noting that the 

overall relative abundance of Escherichia in the present study is still generally lower than that 

documented in other studies in conventional pigs (45, 46).  

The ratio of villus height to crypt depth is an indicator of small intestinal development 

and a marker of good intestinal health (47, 49). The present study found that colonization with K. 

slooffiae increased villus height: crypt depth, therefore suggesting that K. slooffiae may promote 

development of the intestine and gut health. Additionally, butyrate, which was found to be 

increased in the ileum of K. slooffiae colonized animals, has been shown to increase the villus 

height: crypt depth in weanling pigs (49).  

The presence of K. slooffiae led to increases in several beneficial metabolites in the 

intestine. Butyrate is an important metabolite for intestinal health, as it acts as an energy source 

for intestinal cells (50), mediates inflammation, and helps to maintain the gut epithelial barrier 

(51). Putrescine can also act as an energy source in the intestine (52) and additionally can 

decrease the incidence of diarrhea in weanling pigs and has an anti-inflammatory function (53). 

We also observed a trend in increased fold change in propionic acid in plasma in K. slooffiae 

colonized animals. Circulating propionic acid has been associated with increased insulin 
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sensitivity in humans (54). In pigs, supplementation with live yeast has been shown to improve 

insulin sensitivity, which helped pigs tolerate heat stress more efficiently than pigs not 

supplemented with yeast (55). While measuring metabolites in the colon would have been 

beneficial, there was not enough digesta remaining following 16S analysis to complete 

metabolomics on digesta from the colon.  

Immune cell phenotype was altered by K. slooffiae. While the overall abundance of 

CD3+ and CD3+CD4+ T helper cells was lower in K. slooffiae colonized animals, we do not 

believe that this represents an immunocompromised state as the percent of CD3+ and 

CD3+CD4+ cells are both slightly lower than the cell populations found in other studies. 

Pietrasina et al. (2020) found that 28 day old piglets had a mean abundance of 59.75% CD3+ 

lymphocytes and a mean of 32.52% CD3+CD4+ lymphocytes in blood (56). While these pigs are 

older than the pigs in the present study, another study found that 7 day old piglets had a mean 

CD3+ lymphocyte population of 57.65% and a mean CD3+CD4+ population of 18.88%, both in 

peripheral blood (57). Germ-free animals do not have fully developed immune systems, and even 

following microbial colonization display an increased susceptibility to infections, indicating that 

some level of immunocompromise is present (58). Therefore, it was not unexpected that the pigs 

in the present study had lower levels of lymphocyte subsets. We also found that K. slooffiae 

colonized animals had lower levels of CD3+CD27+ and CD3+CD4+CD27+ in MLN. CD27 

expression is induced via activation of the CD3 T cell receptor (59). Increased populations of 

naive CD3+ and CD3+CD8+ cells were also observed in the MLN of K. slooffiae colonized 

animals. Therefore, it appears that K. slooffiae colonization induces a more naïve immune 

phenotype, although it remains unclear what is driving this phenotype. 
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Cytokine levels in plasma were altered by K. slooffiae colonization, with increased levels 

of plasma IL-2 and IL-18 as well as decreased TNF-a. Higher IL-2 levels have previously been 

documented in pigs fed S. cerevisiae compared to controls (14). IL-2 is involved in immune 

tolerance through the induction T cell differentiation to T regulatory cells, and it has been shown 

that administering IL-2 is therapeutic against multiple autoimmune and inflammatory diseases 

(60). S. cerevisiae has also been shown to decrease TNF-a gene expression in piglets challenged 

with enterotoxigenic E. coli (61). Another yeast species, Saccharomyces boulardii, has been 

shown to decrease TNF-a levels in mice using an ulcerative colitis carcinogenesis model (62). It 

is proposed that the anti-inflammatory effects of Saccharomyces species occur through either 

reducing the activation of nuclear factor kappa B (NF-κB) or the inhibition of mitogen-activated 

protein (MAP) kinases (64). Therefore, K. slooffiae may act in a similar way. 

In MLN cells stimulated ex vivo with LPS, cells from animals from the DBCK group had 

increased secretion of IL-10 and IL-18. Since we also saw an increase in E. coli in the DBCK 

group, the response to LPS stimulation may be because the immune cells have received more 

exposure to LPS from E. coli. The presence of pro-inflammatory IL-18 suggests that immune 

cells from K. slooffiae colonized animals can mount an inflammatory response against LPS more 

quickly than those not colonized with K. slooffiae. Ex vivo stimulation of MLN cells with PHA 

caused lower TNFa and IL-12 in pigs colonized with K. slooffiae. This suggests that the immune 

cells exposed to PHA exert less of an inflammatory response upon T cell activation, as PHA is a 

selective T cell mitogen (64). However, IL-18 was also higher in DBCK animals, suggesting that 

there is still some inflammatory response, however, the overall nature of the response remains 

unclear. 
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4.5 Conclusion 
 

 This study provides evidence that colonization with commensal yeast, specifically K. 

slooffiae, can have significant impacts on the gut environment; including interactions with the 

bacterial community and metabolite production, resulting in altered gut architecture and immune 

development. While the current study would suggest a beneficial impact on the pig, future work 

is needed to investigate the role of K. slooffiae in pigs raised under commercial conditions and 

under states of disease challenge.  
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Chapter 5: General discussion  
 

 The fungal community represents a largely unstudied portion of the host microbiome. In 

pigs the mycobiome is dominated by the yeast K. slooffiae (1-5). K. slooffiae is a commensal 

yeast that has been found in diverse geographic conditions and from pigs reared under different 

production practices (1-10). As such, K. slooffiae can be considered a core microbe of the pig 

mycobiota. K. slooffiae has a number of reported benefits including increasing the concentration 

of SCFAs in the intestine, acting as a protein source (especially the limiting amino acid lysine), 

and promoting intestinal glycolysis (11, 12). In chapter 2 of this thesis we report that the 

maternal mycobiome, especially with respect to K. slooffiae, is a driver of piglet mycobiome 

composition. With this result in mind chapter 3 explored how mycobiome composition changes 

over one production cycle, with special attention paid to K. slooffiae. We found that sow K. 

slooffiae levels shaped the piglet mycobiome in early life as well as at the end of a production 

cycle, with an upset around weaning. This has potential implications for pig production, as it 

suggests that what piglets are exposed to in the farrowing pen can have long-term impacts on 

their microbiome. While the long-term impacts of K. slooffiae colonization remain unclear, 

research regarding the use of S. cerevisiae is far more common. S. cerevisiae has been shown to 

increase serum IgG levels, increase average daily gain, reduce post weaning diarrhea, alter 

systemic immune system parameters and increase the ratio of villus height to crypt depth in the 

intestine (13-16). These studies offer some insight into the impact that yeast can have on pigs, 

however S. cerevisiae makes up less than 1% of the commensal mycobiota in pigs not 

supplemented with S. cerevisiae (2) and studies focusing on the impact of pig derived 

commensal organism are lacking. With the finding that K. slooffiae status is passed from sow to 
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piglet, future research should be done to determine the reason for differences in K. slooffiae 

colonization levels amongst pigs. Additionally, future research should be done to see if 

supplementing K. slooffiae to pigs early in life results in long-term colonization with K. slooffiae, 

even if they come from sows who did not exhibit high levels of K. slooffiae colonization. A 

study using cross-fostering could be performed to see if it is exposure or genetic factors which 

influence piglet K. slooffiae colonization levels.  

While mycobiome research is still less common than studies focusing on the bacterial 

community, progress has been made into the understanding of the role of fungi in health and 

development through the use of gnotobiotic models (17, 18). Gnotobiotic studies allow us to look 

at the impacts of individual microbes while removing the background “noise” created by all of 

the other microbes (19). Using a gnotobiotic pig model gave us the ability to look at the role that 

K. slooffiae, a pig derived commensal organism, had on the pig, without the confounding 

variable of host adaptation that would have been present in a gnotobiotic rodent model. In 

chapter 4, we used a gnotobiotic pig model to look at the impact of K. slooffiae on bacterial 

succession, the host metabolite pool, and intestinal and immune system development. We found 

that K. slooffiae had significant impacts on the intestinal environment, including alterations in 

bacterial community structure, metabolite production, intestinal architecture and immune system 

development. These findings suggest that K. slooffiae is a beneficial microbe to pigs. However 

future research is needed to determine the mechanisms through which K. slooffiae acts on the 

host. Mono-colonization studies with K. slooffiae may help to distinguish between host 

physiologic changes due to K. slooffiae itself or due to changes in the bacterial community as a 

result of K. slooffiae colonization. Gnotobiotic studies using other fungi should be done to 

determine if the impacts discussed in this thesis are universal to fungi or unique to K. slooffiae. 
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By comparing the impact of allochthonous fungi found in the feral pig to autochthonous fungi 

such as K. slooffiae, we may be able to determine the impact of colonization versus transient 

fungi on host physiology. Investigating the impact of high or low K. slooffiae colonization as 

seen in chapters 2 and 3, on immune system parameters such as T cell populations and cytokine 

production, may have provided insight into the role of K. slooffiae in the host under more 

conventional conditions. Additionally, studies under a state of disease challenge should be done 

to see how K. slooffiae alters disease resilience by way of immune system and intestinal 

development.  

5.1 Limitations 
 

 There were several limitations present in this thesis. In chapter 2, the duration of the 

study was 7 days. We found that after 7 days there was no impact of antibiotic treatment on 

fungal community structure. However, a study completed after the completion of our study 

found that there were changes to the human mycobiome at 1 month post antibiotic treatment, 

indicating that there may be a delayed response (20). Therefor we may have missed the window 

for fungal community change.  

 In chapter 3 we were limited by feral pig sample availability, as the samples had been 

used for a previous study. However, we were still able to get a representative sample that showed 

only minimal differences between feral pigs from different locations and no difference between 

the intestinal sections tested.  

In chapters 2 and 3 the primers used in fungal sequencing may have limited the detection 

of common piglet fungi such as L. corymbifera, which is not amplified by the ITS2 primers used 

in these studies. In order to combat these limitations future studies utilizing shotgun 
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metagenomic sequencing should be performed in order to capture the entire porcine fungal 

community. Additionally, the method of DNA extraction may have selected against harder to 

extract fungi. The conclusions in these two studies were also both based on relative abundance 

data with minimal quantification, therefore it was not possible to determine if the total amount of 

K. slooffiae or other fungi differed numerically or just in terms of relative abundance to the rest 

of the fungal community. Chapters 2 and 3 did not investigate the role of sow milk or colostrum 

in fungal community composition. Sow milk has been shown to contain bacteria that may 

contribute to piglet microbiome development (21). However, one study showed that there was no 

culturable fungi in sow milk (5). Therefore, although there may be some individual variation in 

term of the presence of fungi in sow milk, we do not believe that sow milk is a major contributor 

to the piglet mycobiome.  

 In chapter 4 we were limited to a maximum of 6 piglets per group due to the design of the 

gnotobiotic isolators. Additionally, we were limited by the total number of pigs in the litter, as 

only one sow was used for this study. By using only one sow, we have limited availability to 

balance perfectly for size and sex. However, using only 1 sow allowed us to not have a litter 

effect as this was constant throughout the pigs.  

5.2 Implications  

 The research presented in this thesis has several implications for the swine industry. We 

have shown that K. slooffiae is maternally transmitted and showed that what piglets are exposed 

to during early life can have long term implications in terms of mycobiome composition. We 

have also shown that K. slooffiae is an active participant in the intestine of young pigs and found 

that it may be beneficial to young pigs. With these findings in mind, it may be possible, after 
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further research to test efficacy, to develop K. slooffiae supplements for pigs that can be fed to 

sows so that K. slooffiae can be passed to the piglets. This has several benefits including 

decreased labor for producers, as they would not have to dose individual piglets as well as 

decreased costs to producers since only the sows would require supplementation.  

5.3 Conclusions 

 

In summary, this thesis provides further support that K. slooffiae is a core member of the 

porcine mycobiota and provides novel insight that early life mycobiome assembly is driven by 

the maternal mycobiota, especially with respect to K. slooffiae. Most importantly, it clearly 

shows that K. slooffiae is an active contributor to the gut environment and appears to be 

beneficial to the pig. Exposure in early life results in altered bacterial community structure, 

metabolite production, intestinal architecture, and immune system development. 
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Appendix A: Supplementary figures 

 

 

Supplementary Figure 1. Gating strategy for flow cytometry analysis.  


