
Information Networks and Conservation Auctions:

Evidence from Laboratory Experiments

by

Daiwei Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Agricultural and Resource Economics

Department of Resource Economics and Environmental Sociology

University of Alberta

c©Daiwei Zhang, 2016



Abstract

Conservation auctions have become a popular mechanism for gathering information

about farmers’ willingness to accept (WTA) compensation for the adoption of beneficial

management practices (BMPs), allowing governments and environmental authorities

to foster the adoption of these practices. In real life, farmers that participate in such

auctions may not only know their own adoption costs but also those of other socially

connected participants (e.g. neighbors). However, there is very limited literature on

how information networks influence farmers’ behaviors in conservation auction. This

thesis tries to answer this question by conducting laboratory experiments containing

multiple bidding rounds.

We find that: i) learning exists in multiple bidding rounds auction and may lead to

efficiency loss; ii) networks in general may decrease auction efficiency as low-cost par-

ticipants who are more likely to win try to increase bids when information about other

participants’ costs is available; iii) specific network structures, such as regular lattice

and Erdos-Renyi, help reduce information rents gained by participants; iv) participants

are only influenced by connections within two degrees of separation; and v) auction effi-

ciency is expected to increase in auctions with information networks in which high-cost

participants are highly connected and low-cost participants are isolated. These findings

provide guidelines and suggestions for conservation auction design and policy decisions.
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Chapter 1

Introduction

1.1 Background

As the impacts of human activities on the environment are increasing, it is important

for scholars and policy makers to make an effort to understand and develop mechanisms

to mitigate these negative impacts. In agricultural management, farmers can engage in

environmentally friendly farming practices as a way to help preserve ecological environ-

ments. These beneficial management practices (BMPs) can help farmers to maintain

agricultural production while minimizing environmental damage. BMPs contribute to

a farm’s overall sustainability by improving soil, water, air quality as well as wildlife

habitats (Alberta Agriculture, Food and Rural Development, 2004). Some examples

of BMPs include, but are not limited to, establishing vegetation along stream banks,

constructing manure tanks or fences along waterways, and implementing reduced tillage

(Boxall et al., 2013).

Given that BMPs help to improve agricultural sustainability on farmlands and sur-

rounding communities, various government programs have been developed to promote

BMP adoption. In Canada, the Environmental Farm Plan (EFP) program provided

farmers with an opportunity to voluntarily participate in identifying both environmental

benefits and potential risks on their farmlands. However, BMPs often come with high
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adoption costs when compared to traditional practices. For instance, farmers may need

to face upfront construction costs and ongoing maintenance costs, therefore, observed

adoption rates of BMPs tend to be significantly low due to this increase in costs (Boxall

et al., 2013). Under this circumstance, government programs with financial incentives

and technical support have been implemented alongside voluntary programs. The Na-

tional Farm Stewardship Program (NFSP) in Canada offered cost-sharing incentives

and technical assistance to farmers who implement BMPs to address environmental

risks on their farmlands. Even so, according to Boxall et al. (2013), both payments and

percentages of cost share offered were too low to provide sufficient incentives to boost

BMPs adoption to significant levels. Therefore, information on farmers’ willingness to

accept (WTA) compensation is crucial when framing these programs and policies.

1.2 Conservation Auctions

In recent years, conservation auctions have become a popular approach for governments

to collect WTA information and could facilitate the implementation of BMPs. These

auctions encourage economic agents (farmers or landowners) to reveal their true and

private preferences about the value of environmental goods and services (Cason et al.,

2003). In other words, it helps government to minimize public expenditures and achieve

desirable conservation outcomes at the same time (Banerjee et al., 2009). Conservation

auctions are reverse auctions where there are multiple sellers (bidders) and just one

buyer (auctioneer). In the auction, farmers submit a bid stating how much they are

willing to accept as financial compensation for adopting BMPs. Typically, the govern-

ment is the buyer and sets a limited budget for the auction. After all bids are submitted,

they are ranked from low to high according to a measure of dollars per environmen-

tal benefit. Bids are then accepted from the lowest to the highest until the budget is

exhausted. As a result, there can be multiple winners in a conservation auction.
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One example of conservation auctions is the US Department of Agriculture’s Con-

servation Reserve Program (CRP). The CRP offered farmers 10-15 year contracts to

divert land from crop production and thus increase the provision of environmental goods

and services (Cason et al., 2003). It employed a sealed bid discriminatory-price auction

in which winners receive financial compensation in the amount of their bids.1 Farm-

ers were engaged in a cost-sharing program for establishing trees or grass covers on

their farmlands as well as an annual payment determined by their bids (Claassen et al.,

2008). In Canada, a conservation auction was used to promote wetlands restoration in

the Assiniboine River Watershed of east-central Saskatchewan (see Hill et al., 2011).

Similar to the CRP, the auction involved a sealed bid discriminatory-price mechanism

and offered landowners 12-year term agreements to maintain restored wetlands for con-

servation easements. Another application of real world conservation auctions are the

BushTender trials operated by the Australian government to promote conservation of

native vegetation on private lands (Stoneham, 2003). In the United Kingdom, programs

such as the Conservation Stewardship Scheme and the Nitrate Sensitive Areas Scheme

applied reverse auctions to determine how much to compensate landowners who were

willing to take environmental actions on their lands and who proposed the best quality

land management plans (Cason and Gangadharan, 2004).

1.3 Information Networks

Recent analyses of economic systems suggest the existence of complex connections be-

tween economic agents and, as a result, their behaviors can be greatly influenced by

their networks of relationships – or social networks (Wichmann, 2015). Social networks

are often defined by a finite number of individuals (or actors) and a set of links among

them through which information, goods, and services may flow (Maertens and Barrett,

1This contrasts with uniform-price auctions where all winners receive the same payment.
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2013). The literature is rife with evidence about the importance of social connections

and many researchers have incorporated the impacts of social networks into their stud-

ies (see Jackson (2008) for a review). In the area of agricultural technology and farming

practice adoption, the effects of networks are likely to operate through the exchange

of information among farmers. For example, Conley and Udry (2001) examined the

impact of network learning in the progress of agricultural innovations and found that

farmers were heavily influenced by the information they received from their connec-

tions. They find that the process of information exchange was complex and could not

be explained by simple statistics. Foster and Rosenzweig (1995) find that farmers with

neighbors that have experience with high-yielding seed varieties have higher profitabil-

ity and rates of adoption. Moreover, Ward and Pede (2014) and Krishnan and Patnam

(2014) find that neighbors are more important than extension services in influencing

landowner behavior.

This thesis explores the premise that farmers have not only information about their

own adoption costs, but also information about the adoption costs of other farmers

they are connected with in the information network. Farmers can receive this informa-

tion through communications or they can estimate costs based on type of crops and

livestock, size of farmlands as well as quality of soil and water. This exchange of cost

information defines information sharing networks. This work is interested in exploring

how such networks can influence the performance of conservation auctions. We hy-

pothesize that farmers adjust their bidding decisions based on the knowledge of each

other’s adoption costs. For example, a farmer with a leading position in a commu-

nity have more connections than farmers who are relatively isolated; therefore, he has

higher chances of possessing more information. With each farmer’s different position

in a community and different levels of knowledge of cost information, it is reasonable

to expect that the information network can affect auction efficiency.
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1.4 Objective and Approach

The primary goal of this thesis is to understand how information sharing network

among bidders affects bidding behavior in conservation auctions. In doing so, we wish

to see how incorporating networks into conservation auctions can help increase auction

efficiency and, as a result, improve auction design to achieve maximum financial and

environmental benefits. We examine this question by conducting a set of laboratory

experiments in which cost information is shared through different network structures.

These network structures are generated using the following two random network forma-

tion models (Erdos-Renyi and Watts-Strogatz), a free-scale network model (Barabasi-

Albert), and two regular network topologies: lattice and star.2 Participants connected

within the information network are able to see each other’s BMP adoption costs. No

other types of communications were allowed during the experiments. Participants are

asked to submit bids reflecting their compensation requests to adopt new farming prac-

tices after learning their own costs and their connections’ costs (if they have any).

1.5 Summary of Results

Our results suggest that information networks influence bidding behavior in several

ways. First, information networks help to reduce information rent seeking behavior

when adoption costs are high. When costs are at a relatively low level, participants

with networks bid higher than participants without networks; however, when adoption

costs increase, participants with networks reduce their bids to the point that their bids

are lower than bids in auctions without networks. Second, different network struc-

tures have different impacts on auction behaviors. The regular lattice network and

the Erdos-Renyi network are found to reduce participants’ information rents while the

Barabasi-Albert network leads to an increase in information rents for low-cost partici-

2Chapter 3 provides a detailed discussion of the models used to construct information networks.
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pants. Third, the number of connections of each participant affects bidding behavior.

Having one additional connection whose cost is lower than the participant’s own cost re-

duces rent demanded, while having one additional connection with higher adoption cost

leads to an increase in rent requests. Fourth, participants who have central positions in

the information network and high adoption costs have significantly lower information

rents compared to others. Finally, first degree connections and second degree connec-

tions3 generate different impacts on bidding behaviors. When costs of a participant’s

first degree connection increase, he faces less competition and has a higher chance to

have his bid accepted in the auction and as a result demands higher information rents.

In contrast, an increase in the costs of second degree connections leads to a reduced

information rent requests. This is because when the costs of second degree connections

increase, their first degree connections increase their bids, and in response, the partic-

ipant decreases his bid (or increases the bid by a smaller amount than his first degree

connection) to increase the likelihood of winning the auction.

These results represent new insights to the conservation auction literature and they

contribute to integrating social network analysis, an emerging field in economics, with

a large environmental conservation literature. They also provide avenues for policy

makers to understand how farmers with knowledge of each other’s adoption cost may

act in reverse auctions. For instance, auctions in which information networks connect

high-cost participants tend to reduce information rent requests. These are the types of

networks that enable efficiency gains.

1.6 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 provides a

literature review that presents background information about conservation auctions,

3First degree connections are direct links between two participants. Second degree connections are
links between first degree connections and others, e.g. friends of friends.
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discusses previous experimental work about auction performance, and surveys a small

literature of social networks associated with auctions. Chapter 3 describes the methods

employed in this study, including a discussion of the experimental design, an explanation

of the models used to generate information networks, and a summary of characteristics

of the networks used in thesis. Chapter 4 presents the experimental data and regression

results. Chapter 5 summarizes our study, discusses the implications of the experimental

results, and indicates directions for future research.
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Chapter 2

Literature Review

2.1 Background

Conservation auctions are widely used by governments and organizations as a mecha-

nism to increase levels of environmental goods and services on private lands (Iftekhar

et al., 2014). In Canada, researchers have implemented conservation auctions to discover

individuals’ willingness to accept (WTA) compensation for the adoption of environmen-

tally friendly programs. For example, Hill et al. (2011) performed a reverse auction for

wetland restoration in Saskatchewan to explore how conservation auctions perform in

Canada. Farmers that resided in the watershed areas were selected as potential par-

ticipants. The auction contained two rounds allowing the opportunity for participants

to change their bids after the first round. Auction budget information was provided to

participants as well as the information about an environmental benefit (EB) index that

was used to rank their bids in terms of dollars per EB. Their results showed that al-

though only a small proportion of eligible farmers participated in the auction, the value

of the submitted bids exceeded the auction budget by a great amount. They also sug-

gested that annual conservation programs may provide more incentives for landowners

as opposed to the long-term (12-years) program employed in this auction.
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Brown et al. (2011) implemented a single-round conservation auction using a uniform-

price design to examine Canadian rural landowners’ WTA for the implementation of en-

vironmental programs on their lands. As pointed out by Schilizzi and Latacz-Lohmann

(2005), using uniform-price auctions may discourage high-cost landowners’ participa-

tion due to the low probability of winning or risk-aversion associated with high uncer-

tainty. To address this issue, they assessed a value to each targeted land before auction

implementation and converted all bids to percentages of this land value. In order to

prevent participants from bidding strategically, successful participants were paid the

lowest rejected bid (which would be higher than their own bids), thus encouraging

bidders to reveal their true WTA. Communication between participants was allowed

before the auction but prohibited during the auction. Their results showed that bids

are more likely to reflect true WTA for participants who had previous knowledge of

relative opportunity costs.

There is also an important literature examining conservation auction efficiency

around the world. Kirwan et al. (2005) estimated the cost-effectiveness of the bidding

mechanism in the Conservation Reserve Program (CRP) in the US. They examined

the relationship between farmers’ proposed rents (bid minus cost) and their bid score,

which was calculated based on environmental benefits index (EBI). They found that

farmers’ net benefit had increased throughout time, and these amounts may be es-

sential to encourage farmers to enroll in CRP and reveal their WTA. They suggested

that another cost-effective option to the CRP could be incorporating a Pigouvian tax

or subsidy to minimize societal costs, although it may result in large wealth transfers

between taxpayers and farmers.

Claassen et al. (2008) reviewed and analyzed several US agri-environmental pro-

grams in order to determine the level of environmental benefits generated. Based on

previous programs’ research and data, they claimed that, generally, conservation auc-

tions helped to increase environmental cost-effectiveness. However, auction efficiency
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and actual environmental outcomes greatly depend on many factors, such as the level

of auction competition, information on soil quality, location of land as well as program

incentives and program targets.

Jack et al. (2009) studied how conservation auctions could help to estimate an

ecosystem-service supply curve for controlling soil erosion issues on Indonesian coffee

farms. They performed a uniform-price procurement auction in two villages, with 82

participants in total. Participants were first asked to submit their bids, then the auc-

tioneer announced bidder-identification numbers of provisional winners. Participants

had the opportunity to revise and resubmit bids in several rounds before a final alloca-

tion decision was made. They explained that this auction design would help participants

to increase familiarity with auction mechanism and provide them with an opportunity

for learning. Information on number of rounds in an auction was also given to par-

ticipants. Their results showed that conservation auctions overcome many weaknesses

in existing valuation methods. They revealed accurate ecosystem-service supply curves

and thus assisted policymakers to implement environmental-friendly services and pro-

grams.

Iftekhar et al. (2014) studied the impact of different levels of competition on Aus-

tralian conservation auction performance. Levels of competition were measured in terms

of number of bidders and level of conservation targets, i.e. larger number of bidders

and lower level of conservation targets represented higher levels of competition. Due to

the larger number of scenarios in their work, they performed computational simulation

experiments instead of laboratory experiments. In each simulated auction, participants

were first asked to submit bids indicating their WTA. Next, the auctioneer provisionally

selected winning bids which generated minimum procurement cost. Participants were

then asked to revise their bids given this temporary result, and these steps continued

until a certain number of rounds were reached in one auction. They found that higher

levels of competition in a conservation auction help to reduce procurement costs and
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increase auction efficiency.

The majority of conservation auctions carried out so far employed a single bidding

round. However, there is not a consensus in the literature regarding the issue of multiple

bidding rounds. Some papers argue that multiple bidding rounds may lead to partic-

ipants’ behaving strategically (Cooper and Fang, 2008; Bernard, 2005), while others

claim that it has the potential to increase auction efficiency (Cason and Gangadharan,

2004). Rolfe et al. (2009) implemented two field experiments and one real conservation

auction in Australia to compare multiple bidding rounds with single bidding round

auctions. First, in two field experiments, 12 and 9 landholders (respectively) were se-

lected as participants to take part in 4 rounds and 3 rounds of auctions (respectively).

Participants were asked to submit their bids based on opportunity costs which came

from their knowledge of the land and their experiences of farm management. Their

bids were ranked by environmental benefits per dollar, and after each round, the first

3 best bids were announced and participants with these bids received $20, $10 and $5

as prizes. Second, a real-life conservation auction was performed with 112 landholders

targeted as potential participants. The auction budget was $350,000. It contained 3

bidding rounds which were held four weeks apart. Participants were provided with a

map with the bid areas and their relative bid positions compared to other bids. The re-

sults of this auction indicated that relative bid prices dropped between rounds, creating

potential efficiency gains. This indicated that efficiency was improved between rounds,

which means more environmental benefit units were purchased with less money. There-

fore, they claimed that using multiple bidding rounds can generate efficiency gains by

reducing participants’ bid values.

Schilizzi and Latacz-Lohmann (2012) evaluated the relative performance of uniform-

price (UP) and discriminatory-price (DP) auctions using data from two Scottish fishing

vessel decommissioning auctions in 2001 and 2003. Since the auctions were carried

out using DP format, they first derived a DP cost curve by calibrating results from
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laboratory experiments conducted by Schilizzi and Latacz-Lohmann (2007). Then they

used the DP cost curve to derive the UP cost curve for this analysis. By treating

these two auctions independently, they found that the DP format outperformed the

UP format in the 2001 auction, while the UP type showed better performance than the

DP type in the 2003 auction. They concluded that the ambiguous results were affected

by two factors: rent to cost ratio as well as bidder heterogeneity. They pointed out

that an increase in similarity of bidders would lead to the loss of effectiveness of a DP

auction.

2.2 Laboratory Experiments

Due to the limited availability of real conservation auction data, laboratory experiments

are often employed by researchers to mimic field auction procedures and examine auc-

tion performance. Cason and Gangadharan (2004) conducted two laboratory experi-

ments to examine how different auction designs would affect bidding behavior. The first

experiment was aimed to investigate the relationship between information available to

participants and their incentives to reveal their opportunity costs. This experiment

consisted of 11 sessions with 5-10 periods in each session. Each session lasted about 2

hours and had 8 participants. In 6 sessions, participants were provided with information

about the environmental benefits of the land use change they would sell if they decided

to participate, while in other 5 sessions this information was not available. Multiple

bidding rounds were used in this experiment. Participants had the opportunity to revise

their bids after each round, and only the bids from final rounds were used to determine

auction results. They found that, in general, providing environmental benefit informa-

tion allowed participants to bid strategically and thus increase landowners’ profits and

reduced market performance. The second experiment focused on whether the pricing

rule had an impact on participants’ profits. 15 sessions of discriminative price auctions
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and 15 sessions of uniform price auctions were carried out with 36 periods in each ses-

sion. In uniform price auctions, successful participants were paid with the first rejected

bid. For this experiment, no information about environmental benefit was provided

and a single bidding round was used. Overall, their results showed that discriminative

price auction had an advantage in market performance measures, and that the uniform

price auction performed better in providing incentives to reveal true opportunity costs.

Tisdell (2007) incorporated biophysical models into laboratory experiment to in-

vestigate the relative performance of three policy instruments in controlling sediment

runoff in Australia. The three instruments were: i) a closed call auction, ii) a cap and

trade market, and iii) command and control regulation. Three experimental sessions

were carried out: one per policy instrument. Eleven university students were recruited

as participants in each session. Participants were paid with a $10 show-up fee and ad-

ditional earnings were based on their performance. The results suggested that the cap

and trade market instrument performed better in terms of total program cost and pro-

duction. Also, the first-price auction tended to result in participants’ strategic behavior

when compared to a second-price auction.

Schilizzi and Latacz-Lohmann (2007) investigated the performance of two conser-

vation auction types: budget-constrained (BC) and target-constrained (TC) against

the benchmark of an outcome-equivalent fixed-price payment. Two laboratory experi-

ments were carried out in the University of Kiel and the University of Western Australia

(Perth). The Kiel experiment recruited 88 first-year agricultural economics students

that were placed either in the BC group or in the TC group. For the BC group, each

session had 3 auction rounds and each round had a budget of e3900. Each participant

had a unique opportunity cost which was randomly selected from a uniform distribu-

tion between e5 and e264. Participants not only had information about their own

opportunity cost but also information about their position in the cost quartile. The

opportunity cost was reshuffled between each round. After bids were ranked from low
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to high, winners were paid the difference between their bid and cost. For the TC group,

the number of winners in the BC group was used as the experimental target while other

settings remained the same. The Perth experimental design was almost identical to Kiel

experiment, except for the number of participants that changed to 53, and the bud-

get was changed to e2300. After comparing results to the fixed-price program, their

research reached three main conclusions. First, both types of conservation auctions

outperformed fixed-price program in a single round setting. Second, the repetition of

auction rounds reduced its advantage to fixed-price program given the fact that par-

ticipants learned from previous auction results. Third, the BC auction is more robust

compared to the TC auction in repeated auction designs.

Kawasaki et al. (2012) conducted laboratory experiments to compare the relative

performance of DP and UP auctions in an imperfect monitoring environment. Ninety-

six undergraduate economics students were recruited as participants in 6 sessions of

experiments. Each session had 25 rounds, 16 participants and lasted for 90 minutes.

As a target-constrained auction, participants were told that only 8 (out of a total of

16 participants) would be able to win the auction. Each participant was assigned

with a unique cost which was randomly selected from a uniform distribution between

$233 and $1167. Each participant was given an initial endowment of $3000. Costs

were reshuffled between rounds for the fairness of auctions and participants knew the

distribution of costs. After bids were submitted, each participant was informed of

the 8th bid and whether they had won the auction or not. Winners could choose to

maintain compliance by paying their cost and they had 15% chance of getting audited.

If a winner was audited and he did not pay the cost, he then would face a fine of $3000.

Their findings suggested that when the issue of noncompliance exists, DP auction are

more likely to cause adverse selection. The UP auction design tended to perform better

in terms of budgetary cost-effectiveness and auction efficiency.
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Boxall et al. (2013) performed a budget-constrained reverse auction laboratory ex-

periment to compare three bid-selection rules and two pricing rules. Opportunity costs

of each participant was calculated using survey results from an actual agricultural wa-

tershed. The experiment consisted of 12 sessions with 12 participants and 16 periods

in each session. The three bid-selection rules were: i) maximization of environmental

benefit, ii) maximization of program coverage, and iii) maximization of participation.

Two pricing rules were uniform-price and discriminatory-price. Their findings suggest

that among these three bid-selection rules, maximization of participation generated

the highest abatement costs and highest rent capture, while maximization of envi-

ronmental benefit led to the lowest abatement costs and rent capture. In addition,

their experimental results showed that uniform-price auction performed better than

discriminatory-price auction in terms of cost efficiency.

Banerjee et al. (2015) conducted laboratory experiments to compare auctions with

and without spatial information on program targets. Their experiments included 12

sessions with 6 participants in each session, and each session had 13 periods (including

1 practice period). All participants were sitting in a circle and their positions stayed

the same throughout a session. This design allowed them to build reputations between

adjacent participants and have the chance to learn as the auction proceeded. After par-

ticipants submitted their bids, a score was calculated in order to choose the winners.

There were two treatments employed in this experiment. One treatment was providing

participants with their scores as well as the positions of winners at the end of each pe-

riod, while this information was hidden in the other treatment. Their results indicated

that revealing bidder’s spatial information would increase participants’ familiarity with

the auction and thus lead to greater rent-seeking behavior. On the other hand, auction

efficiency was not significantly affected by providing spatial information.

Fooks et al. (2016) performed laboratory experiments to find out the effect of differ-

ent experimental mechanisms on conservation auctions. They proposed that a socially

15



optimal outcome could be achieved when buyers (agencies) set up spatial targeting

goals and sellers (farmers) receive network bonuses at the same time. Their experiment

consisted of 10 sessions with 12 participants in each session. Participants were evenly

divided into 3 groups which represented a geographic region of farms. Each partic-

ipant was assigned 3 non-adjacent parcels in their region (each parcel represented a

farm land), and they could choose to either retain or sell some or all of their parcels.

Retained parcels received constant revenue while sold parcels, if accepted by buyer,

received a contract payment. In this experiment, spatial targeting, as one treatment,

had two mechanisms: i) buyer paid bonuses to winning parcels based on their spatial

structure; ii) buyer assigned a value to each parcel based on a spatial targeting rule.

Network bonuses varied between sessions. Their results showed that using the spatial

targeting treatment alone led to an improved social and environmental welfare outcome;

while using network bonuses treatment alone led to a reduced welfare outcome. Also,

the effect of interacting spatial targeting and network bonuses on welfare outcomes was

positive. Therefore, they concluded that by adding spatial targeting to a competitive

auction with network bonuses could generate greater welfare results.

2.3 Social Networks and Auctions

We are not aware of any paper in the literature that examines network effects in reverse

auctions. There are, however, a few papers that investigate network effects in non-

reverse auctions. Dass et al. (2014b) examined the role that networks play among

bidders in online auctions. They examined second price auctions for fine art where

bidding had an ascending format, i.e. once a bid was submitted; the next submitted

bid had to be greater than the previous bid. The auction had a predetermined duration

and once the bidding window closed the highest bidder wins the item. They examined

networks created from the interactions between bidding and counter-bidding (instead
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of bidders knowing each other in real life), i.e. a bidding network as opposed to a social

network. In other words, they modeled the changing interactions of bids and counter-

bids as a network. For example, if participant A submits a bid and B follows with a

counter bid, then A and B are “connected”. Network size increases as more bidders enter

the auction, while its average degree centrality declines as auction progressed. Their

results showed that network structures significantly contribute to bidders’ behaviors

and help to predict final sales prices better than simple economic indicators. They also

claimed that network analysis helps to identify key bidder’s behavior which would be

beneficial for auction house managers to achieve higher final sales prices.

Magnan et al. (2015) implemented auctions to examine how learning through social

networks influence the demand for an agricultural technology in India. Their research

was designed in two stages. First, they performed an experimental auction to identify

potential adopters and randomly selected participants to adopt. Next, a second auction

(one year later) was used to estimate network effects on demand. They concluded that

participants of the second auction that were connected to a benefiting adopter were

willing to pay 50% more for the technology, while having a non-benefiting adopter

had no effect. However, because the levels of technology benefits were different to

each individual, network effects can be limited. Therefore, they suggested that policies

should focus on improving connections between farmers and their information flows.
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Chapter 3

Methods

We designed and implemented a laboratory experiment that allowed us to examine the

effects of various types of networks that share adoption cost information on bidding

behavior of participants. In comparison to costly field implementations, laboratory

experiments provide researchers with a low-cost way to examine auction performance

in a simple context-free environment (Plott, 1997). Instead of analyzing networks that

already exist in participants and are potentially endogenous to bidding strategies, we

impose several network structures on the cost information sharing relationships, which

permits an econometric investigation of different dimensions of network effects on bids.

This chapter presents the experimental design, discusses the types of network structures

used, and describes the characteristics of each network used in our experiment.

3.1 Experimental Design

The experimental design adopted in this thesis imitates real conservation auctions.4

Participants play the role of farmers (sellers of environmental quality) that bid for

compensation to adopt costly BMPs, and the experimentalist plays the role of the

4The experimental instructions are available in Appendix A.
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government or auctioneer (buyer of environmental quality). The experiment was im-

plemented in the REES experimental laboratory, University of Alberta, using laptop

computers with ZTREE economic experiment software (Fischbacher, 2007). University

of Alberta students and staff were recruited as participants using the ORSEE online

recruitment system (Greiner, 2015). Subjects registered in the system could only par-

ticipate in one experimental session to minimize the effect of strategic bidding from

learning.

Participants enrolled in sealed bids conservation auctions. To simplify the exper-

imental design, we assumed participants have the same unit and type of farmland;

therefore, bids submitted would be based on dollar amounts per unit. Each participant

was assigned with a cost of adopting BMPs, and this cost is the amount they would

need to pay to implement the BMP if they win in the auction. Participants are not

allowed to submit bids below their opportunity costs as this would lead to experimental

losses. Costs were randomly selected from a uniform distribution ranging from $5 to

$30. A budget cap amount of $85 was established for every experimental auction, but

this budget was not revealed to participants. This value assured that approximately

60% of participants would win an auction if they bid their costs.

We utilized a discriminatory auction design in which bids were ranked from the

lowest to the highest, and then are accepted from low to high until the budget would

be exhausted. Winners received compensation equal to their bids and subsequently

must pay their adoption costs. Participants played several auction rounds. The result

of each auction were provided to participants at the end of each round. The computer

screens displayed information about whether their bids were accepted or not as well as

their total payoffs. Participants were not allowed to communicate before and during

the experiment.

Incorporating networks into the design assumed that participants of some sessions

were connected through a cost information network. In a network session, if two partic-
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ipants were connected based on a pre-selected (exogenous) network, they then shared

each other’s cost information. That is, the computer screen displayed not only a par-

ticipants own adoption costs, but also the adoption costs of other individuals in the

participant’s network. This information was available to participants before they sub-

mitted their bids. For example, in the network below (Figure 3.1), Participant 1 is

connected with Participants 2, 4 and 8; therefore the four of them can see each other’s

cost information when deciding to submit a bid. Participant 4 only sees the cost of

Participant 1, while participant 2 sees the cost of 1 and 5. Participant 3 is isolated in

this network, hence she does not know anyone’s cost information except for her own.

Figure 3.1: Example of an information network

We conducted 19 sessions with 8 participants per session. Each session contained

4 practice rounds and 16 real rounds (4 blocks with 4 rounds in each block). Networks

were used in 14 sessions, while the other 5 sessions were not associated with networks

and served as control sessions for analysis. For the purpose of equity, adoption cost for

each participant was reshuffled at the beginning of each block of 4 rounds to improve the
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chances that all subjects faced low cost and high cost situations at least once. Network

structure changes once after 8 rounds (excluding practice rounds). The specific networks

selected to share cost information and their properties are discussed in the next section.

Participants received a $5 show-up fee for participating in the experiment. Ad-

ditional earnings were available and were based on their auction performance. Their

payoffs for each round were calculated as follows: if their bid was accepted in the auc-

tion, then their payoff equaled their bid amount minus their cost, and if their bid was

not accepted then their payoff was $0. At the end of the experiment, four rounds (one

round from each block) were randomly selected for payment. Therefore, the total pay-

ment each participant received consisted of the $5 participation fee plus the sum of the

payoffs of the selected auctions.

3.2 Generating Experimental Networks

This thesis used three types of network formation models to generate cost information

sharing networks. All networks had the same size of 8 nodes (or individuals). Links

connecting these nodes were generated using the following network models: i) two mod-

els of random network formation (Erdos-Renyi and Watts-Strogatz); ii) one scale free

model (Barabasi-Albert); and iii) two regular network structures (lattices and stars).

These network models are discussed below.

Erdos-Renyi Model

The Erdos and Renyi (1959) model of network formation generates graphs where

each pair of nodes are connected independently and with equal probability p. When p

is close to 1, the model is more likely to generate graphs with several links. Wichmann

(2015) points out that the Erdos-Renyi model trades off network density and intransi-
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tivity since probability p is associated with the expected density5 and 1− p represents

the expected intransitivity6 of a network. For this study, we simulate networks with

p ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

Watts-Strogatz Model

The Erdos-Renyi model has some limitations such as that it does not take local

clustering and power law formation into account, which makes it less applicable to

real-world situations. The Watts and Strogatz (1998) model is a small-world model7

based on the Erdos-Renyi model and it tries to solve the two limitations mentioned

above in a simple way. This model constructs a lattice network in which each node

is connected to K neighbors, with half of K neighbors on each side. Then each link

is rewired with a probability p. When p equals 0, the model forms a regular lattice

network and when p equals 1, this model collapses to the Erdos-Renyi model. When

holding K constant, changing probability p alters network intransitivity while keeping

density constant (Wichmann, 2015). Our experiments used Watts-Strogatz networks

generated from parameters K ∈ {2, 4} and p ∈ {0.1, 0.2, 0.3, 0.4}.

Barabasi-Albert Model

The third model is the Barabási and Albert (1999) model. It incorporates two

properties that are not included in the previous models: growth and preferential at-

tachment. In real world situations, the number of nodes in a network tends to increase

over time and nodes with more connections are more likely to receive new links. The

5Network density is defined as the ratio of the number of links and the number of possible links.
6Network intransitivity is the probability that adjacent nodes of a node are not connected. Hence,

high intransitivity indicates low clustering in a network.
7Small-world models are networks that are highly clustered, yet have small path lengths (Watts

and Strogatz, 1998). Path length is the distance between any two nodes in a network.
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Barabasi-Albert model captures these characteristics using a power law distribution to

generate scale-free networks. The probability of a new node to be connected to an

old node is given by Pi ∼ k−α

i
, where ki is the degree8 of agent i in the current time

step and α is known as the scaling parameter (Wichmann, 2015). As pointed out by

Barabási and Albert (1999), scale free networks are widely observed throughout the

World Wide Web (connections between website pages), academic citations, as well as

interpersonal social relationships. Our experiment generates Barabasi-Albert networks

with scaling parameter α ∈ {1, 2, 2.5, 3, 6}.

Regular Lattice

A regular lattice is a special case of the Watts-Strogatz model. As mentioned above,

when p equals 0, it forms a symmetric regular lattice shape allowing each node to have

the same number of connections.

Star Model

The last network type is the star network. It forms a simple network where there is

a central node which is connected to all other nodes. This structure applies to situations

when there is a leader in the community who has influence on all other members of a

group, while others have little communications among themselves.

8The degree of a node is the number of connections of the node.
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3.3 Chosen Information Networks and Their

Characteristics

The experiments reported in this thesis utilized 22 networks distributed as follows:

• 7 Erdos-Renyi networks

• 6 Watts-Strogatz networks

• 6 Barabasi-Albert networks

• 2 Regular Lattice networks

• 1 Star network

There are many measurements that can be used to describe and compare net-

works. Below we list and discuss eight types of network statistics commonly used in

the literature: degree, density, transitivity, diameter, average path length, eigenvector,

betweenness and closeness.

Degree

Degree is the most straightforward and perhaps the simplest concept of measuring

a node’s centrality (Freeman, 1978). As the most basic structural property, the degree

of a node is simply the count of its adjacent links, and therefore its number of direct

contacts (Csardi and Nepusz, 2006).

Density

Density of a network is the ratio of the number of links and the number of possible

links (Csardi and Nepusz, 2006). The number of links is also defined as the degree of a

node (see above); thus, density of a network can also be called the average degree of a

network.
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Transitivity

Transitivity measures the probability that adjacent nodes of a node are connected

(Csardi and Nepusz, 2006). Sometimes it is also named as the clustering coefficient.

High transitivity implies high clustering of nodes in a network.

Diameter

Diameter of a network is the length of the longest distance between any two nodes

(Csardi and Nepusz, 2006).

Average path length

Average path length calculates the average distance between any two nodes in a

network (Csardi and Nepusz, 2006).

Eigenvector Centrality

Eigenvector centrality is a measure of the influence of a node in a network. It

assigns a score to every node based on a concept that nodes with high scores are the

ones connected to many other nodes which are, again, connected to many others and so

on (Csardi and Nepusz, 2006). The eigenvector score of node i is the i-th element of the

eigenvector associated with the largest eigenvalue of the network matrix (see Jackson,

2008).

Betweenness Centrality

Betweenness centrality is defined by the number of shortest paths going through a

node or a link (Csardi and Nepusz, 2006), where a shortest path between two nodes is

a path with the minimal number of nodes. It estimates the importance of a node when

connecting other nodes (Jackson, 2008).
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Closeness Centrality

Closeness centrality calculates how many steps are required to access every other

node from a given node (Csardi and Nepusz, 2006). It captures how easily a node can

be reached by other nodes (Jackson, 2008).

Table 3.1 shows the network models and characteristics for each network employed

in the experiment. Net 1 to Net 7 were created based on the Erdos-Renyi model with

different probability values. As probability increases, the network’s average degree,

density and average closeness all increase. This is because higher probability generates

more links between nodes. In network 1, p is as small as 0.05, and its transitivity value

is not available because this network has no second degree connections, as illustrated

in Figure 3.2. Net 8 to Net 13 are based on the Watts-Strogatz model with different

K and p values. As previously discussed, when p increases while holding K constant,

network transitivity changes (see Table 3.1). Net 14 to Net 19 were generated using the

Barabasi-Albert model. Note that these networks have the same average degree, density

and transitivity values, independent of values of the scaling parameter α. Transitivity

values are equal to zero indicating that there is no chance that adjacent nodes of a

node are connected in these networks. Net 20 and Net 21 give us two Regular Lattice

networks. Net 20 has K = 2 and therefore forms a circle. As a result, it has transitivity

equal to zero. Both networks have the same average eigenvector value which explains

the influences of a node in these networks are the same. Net 22 has a star structure

with only one central node connecting to every other node. It is noteworthy that this

network has the same degree, density and transitivity values as the ones generated using

the Barabasi-Albert model.
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Table 3.1: Summary Statistics of Experimental Networks

Name Model
Average

degree
Density Transitivity Diameter

Average

path

length

Average

Eigen-

vector

Average

Between-

ness

Average

Close-

ness

Net 1 Erdos-Renyi (p = 0.05) 0.50 0.071 NA 1 1.000 0.500 0.000 0.019
Net 2 Erdos-Renyi (p = 0.1) 1.25 0.179 0.750 2 1.167 0.375 0.006 0.022
Net 3 Erdos-Renyi (p = 0.2) 1.75 0.250 0.000 4 2.000 0.621 0.125 0.047
Net 4 Erdos-Renyi (p = 0.3) 2.50 0.357 0.391 3 1.619 0.628 0.077 0.052
Net 5 Erdos-Renyi (p = 0.4) 3.00 0.429 0.120 3 1.607 0.740 0.101 0.089
Net 6 Erdos-Renyi (p = 0.5) 3.50 0.500 0.467 2 1.500 0.621 0.083 0.098
Net 7 Erdos-Renyi (p = 0.6) 4.25 0.607 0.619 2 1.393 0.808 0.065 0.105
Net 8 Watts-Strogatz (K = 2, p = 0.1) 2.00 0.286 0.000 5 2.286 0.662 0.214 0.064
Net 9 Watts-Strogatz (K = 2, p = 0.2) 2.00 0.286 0.667 3 1.538 0.434 0.042 0.029
Net 10 Watts-Strogatz (K = 2, p = 0.3) 2.00 0.286 0.429 2 1.500 0.464 0.048 0.037
Net 11 Watts-Strogatz (K = 4, p = 0.1) 4.00 0.571 0.429 2 1.429 0.834 0.071 0.100
Net 12 Watts-Strogatz (K = 4, p = 0.3) 4.00 0.571 0.509 3 1.500 0.701 0.083 0.098
Net 13 Watts-Strogatz (K = 4, p = 0.4) 2.00 0.286 0.400 2 1.467 0.546 0.042 0.037
Net 14 Barabasi-Albert (α = 1) 1.75 0.250 0.000 4 2.214 0.520 0.202 0.068
Net 15 Barabasi-Albert (α = 2) 1.75 0.250 0.000 5 2.429 0.598 0.238 0.062
Net 16 Barabasi-Albert (α = 2.5) 1.75 0.250 0.000 4 2.214 0.520 0.202 0.068
Net 17 Barabasi-Albert (α = 2.5) 1.75 0.250 0.000 4 2.321 0.587 0.220 0.064
Net 18 Barabasi-Albert (α = 3) 1.75 0.250 0.000 4 2.214 0.467 0.202 0.068
Net 19 Barabasi-Albert (α = 6) 1.75 0.250 0.000 4 2.286 0.498 0.214 0.066
Net 20 Regular Lattice(K = 2) 2.00 0.286 0.000 4 2.286 1.000 0.214 0.063
Net 21 Regular Lattice(K = 4) 4.00 0.571 0.500 2 1.429 1.000 0.071 0.100
Net 22 Star 1.75 0.250 0.000 2 1.750 0.456 0.125 0.085
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Figure 3.2: Network 1

The discussion above highlights the variety of network topologies adopted in the

experiment. These networks were randomly assigned to different sessions. Table 3.2

shows the distribution of networks among experimental sessions. A visual illustration

of each network is available in Appendix B.

Table 3.2: Distribution of Networks among Experimental Sessions

Session Rounds 1-8 Rounds 9-16

1 Net 4 Net 4
2 Net 3 Net 2
3 Net 5 Net 6
4 No Network No Network
5 No Network No Network
6 No Network No Network
7 Net 22 Net 21
8 Net 20 Net 22
9 Net 11 Net 12
10 Net 10 Net 8
11 No Network No Network
12 Net 5 Net 22
13 Net 18 Net 14
14 Net 15 Net 16
15 Net 7 Net 1
16 Net 13 Net 9
17 Net 19 Net 17
18 No Network No Network
19 Net 11 Net 16
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Chapter 4

Results

This chapter presents the results of the experimental research. All econometric es-

timates reported in this section were obtained using data from real rounds, not the

practice rounds. Since the participants submitted bids in several rounds, standard

errors associated with parameter estimates are clustered at the participant level such

that hypothesis tests are robust to unspecified heteroskedasticity and within-participant

serial correlation.

4.1 Overview of Experimental Data

Subjects in the experiment received, on average, $16.5 for participation (performance

payoff plus fixed $5 show-up fee). Sessions lasted for approximately 35 minutes. The

preliminary analysis of the data revealed a few extremely high bids and we deemed

these as outliers. It is well known that these extreme values can have a significant

influence in econometric analyses (Osborne and Overbay, 2004). Therefore, in order

for the results to represent the majority of participants, our analysis does not include

bids that are higher than $52.5 (this number represents a markup of 200% on average

cost). These extreme bids are shown in Table 4.1.
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Table 4.1: Outliers

Subject ID Bid Cost Rent Session Period

31 80 22.3 57.7 4 4
35 55.6 22.8 32.8 5 1
82 60 22.7 37.3 11 2
82 60 22.6 37.4 11 5
115 100 25.7 74.3 15 3
115 1000 25.7 974.3 15 4
144 53 26.5 26.5 18 13
147 111 29.3 81.7 19 10
147 111 29.3 81.7 19 11
151 100 26.4 73.6 19 15
151 150 26.4 123.6 19 16

Table 4.2 shows summary statistics of bids, costs and information rents. The ex-

periment collected 2421 observations from 19 sessions each with 8 participants, with 16

auctions rounds per session.9 Costs were randomly selected from a uniform distribution

in the range of $5 to $30 such that expected cost is $17.5. The table shows that mean

experimental cost is $17.28, which is very close to the theoretical average. The mean

bid in the experiment is $21.71, so on average, the markup on cost is 25.64%. Average

information rent sought by bidders in the experiment is therefore $4.44 per bidder.

Table 4.2: Summary Statistics

Variable Mean Std. Dev. Min. Max.

Bid 21.711 5.109 6 50
Cost 17.278 6.936 5 30
Rent 4.436 4.322 0 27.4

Figure 4.1 shows the distribution of all submitted bids in our experiment. The

distribution of bids is relatively symmetric around its average of $21.71. Figure 4.2

shows the right skewed distribution of information rents, which is not surprising as low

cost participants have a higher probability of winning than high cost participants and

as a result demand higher information rents.

92421 = (19 × 8 × 16) − 11 outliers.

30



Figure 4.1: Bids Distribution

Figure 4.2: Rents Distribution
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4.2 Demographics

Our first regression analysis of bidding behavior examines the relationship between

participants’ demographics and the demand for information rents. Table 4.3 shows a

regression of expected rents10 on age, gender, an indicator for being a student (base

is staff) and dummy variables for agricultural and economics academic majors (for

students). The estimation results indicate that we cannot reject the null of no effect of

demographics on information rents.

Table 4.3: Effect of Demographics on Information Rents

(1) (2) (3)
Age -0.009 0.018

(0.015) (0.038)
Female -0.115 -0.083

(0.277) (0.333)
Student -0.172

(0.425)
Agricultural major 0.143

(0.375)
Economics major 0.427

(0.385)
Constant 4.433*** 4.861*** 3.859***

(0.139) (0.697) (1.028)
N 2421 2421 2071
Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.

4.3 Learning

Our next set of regressions explore the possibility of learning effects in this experiment.

Table 4.4 presents the results of three regressions of rents on period dummies; one

10Note that the data represents expected information rents as participants only receive these rents
if they have their bids accepted.
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using all observations, one using low cost observations (i.e. observations in the lower

25th quantile of the experiment’s cost distribution), and a final regression that uses

only data from high cost observations (i.e. observations in the top 25th quantile of

the experiment’s cost distribution). Overall, no statistically significant learning trend

is found; however, we find interesting learning behavior when we separate observations

into different cost groups. We find that low cost participants tend to increase their rent

seeking behavior as they bid through each auction of the experiment. This indicates that

low cost participants are learning about the experimental budget and the acceptance

threshold and are seeking higher payoffs in each auction. On the other hand, high

cost participants reduce their information rent demands in the initial periods of the

experiment suggesting that, initially, they are trying to win the auction. However, the

coefficient on the indicators of auctions 5-16 are not statistically different from those

of the first auction, suggesting that high cost participants quickly learn that they have

a low probability of winning the auction. Also, note that, as expected, baseline rents

(as indicated by the constant) are lower for high cost participants ($1.44) than for low

cost participants ($6.61).

Since our experimental design allows costs to change after each 4 periods, forming

4 blocks of 4 auctions in total, we also investigate learning using block indicators. We

regress rents on four block dummy variables without a constant such that estimated

block coefficients represent average rents of the 4 auctions in the corresponding blocks.

Results are shown in Table 4.5. Overall, average rent is around $4.43, with rents tending

to be higher in block 2. Low cost participants behave similarly to overall participants

and have slightly higher rents in block 2. Average demand for rents from high cost

observations equal $0.86 in the first block, and they hover around $1.38 in blocks 2-4.
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Table 4.4: Learning in Different Periods

Overall Low cost High cost

Period 2 0.163 1.181*** -0.762***
(0.272) (0.386) (0.263)

Period 3 0.202 2.341*** -0.784**
(0.289) (0.564) (0.336)

Period 4 0.224 2.254*** -0.793**
(0.292) (0.641) (0.397)

Period 5 0.622 2.006* 0.459
(0.458) (1.075) (0.516)

Period 6 0.596 2.510*** -0.214
(0.486) (0.930) (0.404)

Period 7 0.700 3.290*** -0.338
(0.485) (0.899) (0.583)

Period 8 0.706 3.121*** 0.086
(0.476) (0.851) (0.735)

Period 9 0.073 1.681 0.156
(0.469) (1.135) (0.434)

Period 10 0.175 2.441** -0.244
(0.490) (0.988) (0.437)

Period 11 0.156 3.038*** -0.521
(0.503) (1.027) (0.432)

Period 12 0.183 3.624*** -0.604
(0.512) (0.988) (0.439)

Period 13 -0.453 0.870 0.189
(0.441) (0.980) (0.689)

Period 14 -0.032 2.038* 0.429
(0.475) (1.040) (0.816)

Period 15 0.026 2.948*** 0.123
(0.459) (1.006) (0.517)

Period 16 0.003 3.466*** -0.344
(0.485) (1.010) (0.400)

Constant 4.223*** 6.605*** 1.444***
(0.331) (0.767) (0.299)

N 2421 604 569
Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.5: Learning in Different Blocks

Overall Low cost High cost

Block 1 4.370*** 8.049*** 0.863***
(0.308) (0.617) (0.141)

Block 2 4.879*** 9.337*** 1.442***
(0.324) (0.431) (0.269)

Block 3 4.370*** 9.301*** 1.142***
(0.328) (0.602) (0.254)

Block 4 4.109*** 8.936*** 1.546***
(0.302) (0.593) (0.370)

N 2421 604 569
Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.

4.4 Network Structure

Our key research question in this experiment is to learn about possible cost information

sharing network effects on bidding behaviors in a reverse conservation auction. Figure

4.3 shows a scatter plot of bids and costs with two fitted lines, one representing bids

in network treatments and the other for bids not in network treatments.11 From the

graph we can see that when cost is low, bids with networks tend to be higher than bids

without networks. However, when cost increase, the two lines change positions and bids

with networks are lower than bids without networks. The gap between the fitted bid

lines and the cost line (or 45 degree line where bid equals cost) represents information

rents. In general, expected information rents are high when costs are low, and decrease

when costs are high. The graph shows that networks that share cost information can

help reduce information rent seeking behavior when cost gets higher, but they actually

increase bids when costs are low.

11The fitted lines represent smooth regression lines obtained from a regression of bids on a cost
polynomial.
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Figure 4.3: Bids and Costs (with & without networks)

Table 4.6 shows the results of a regression of information rents on a network treat-

ment indicator. As shown in the table, overall, the network effect is not statistically

significant, and this result applies to participants with low or high costs. Therefore,

pooling all experimental data together, we do not find statistical evidence that average

bidding when some participants may have cost information about others is not differ-

ent from behavior when information is not shared through networks. Nevertheless, the

estimate of the network coefficient is positive for low cost observations and negative

for high cost observations, confirming our intuition that low cost participants take ad-

vantage of network information and increase their bids; and that high cost participants

decrease their bids to increase their probability of winning the auction when they learn

the costs of others.
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Table 4.6: The Effect of Networks on Rents

Overall Low cost High cost

Network -0.379 0.451 -0.683
(0.363) (0.696) (0.419)

Constant 4.712*** 8.587*** 1.765***
(0.333) (0.605) (0.400)

N 2421 604 569

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Next, we explore possible effects of different network structures on information

rents. Table 4.7 shows the results of five models that regress rents on specific network

indicators, restricting observations to data of the baseline sessions (no network) and

the corresponding network session. We find that information rents in sessions with the

regular lattice and Erdos-Renyi networks are statistically significantly lower than rents

of the baseline sessions. Specifically, in the regular lattice network, participants’ average

rent is $1.45 lower than rent without cost information sharing network and in the Erdos-

Renyi networks, participants’ average rent is $0.81 lower than rent without a network.

We do not find statistically significant effects of the other network structures (Star,

Barabasi-Albert, and Watts-Strogatz) on bidding behavior. These results indicate that

having cost information sharing networks in an auction can help reduce information

rents; however, this reduction depends on network topology.

Table 4.7: The Effect of Network Type on Rents

Regular Lattice Star Barabasi Erdos Watts

Network -1.447** -0.432 0.291 -0.814* -0.159
(0.636) (0.760) (0.438) (0.422) (0.453)

Constant 4.712*** 4.712*** 4.712*** 4.712*** 4.712***
(0.335) (0.334) (0.334) (0.334) (0.334)

N 763 827 1079 1209 1083

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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We investigate bid heterogeneities between low and high cost observations by es-

timating models reported in Table 4.7 using the corresponding low/high cost observa-

tions. Results are shown in Table 4.8 where separate estimates are obtained for each

network structure. We find that the regular lattice structure reduces low-cost partici-

pants’ rent by $2.54 and this effect decreases to $1.14 for high-cost participants. The

Erdo-Renyi network reduces high-cost participants’ rent by $0.97. Interestingly, low-

cost participants with Barabasi-Albert networks actually increase their rents by $1.81

on average. These results are consistent with the fitted lines in Figure 4.3, where low-

cost participants with a network have higher information rents than those participants

without networks, and in contrast, high-cost participants with networks have lower

information rents.
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Table 4.8: The Effect of Each Network Type on Rents (low cost vs high cost)

Regular Lattice Star Barabasi Erdos Watts
low high low high low high low high low high
cost cost cost cost cost cost cost cost cost cost

Network -2.537** -1.143** 0.413 -0.748 1.810** -0.298 0.103 -0.970** 0.407 -0.615
(1.093) (0.460) (1.301) (0.463) (0.881) (0.493) (0.835) (0.424) (0.794) (0.508)

Constant 8.587*** 1.765*** 8.587*** 1.765*** 8.587*** 1.765*** 8.587*** 1.765*** 8.587*** 1.765***
(0.611) (0.405) (0.610) (0.404) (0.609) (0.402) (0.609) (0.402) (0.608) (0.402)

N 188 167 208 187 272 255 268 265 260 251

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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In a conservation auction, participants are competing for information rents. We

can obtain expectations about the signs of costs of connections on information rents

by assuming that participants’ rents are strategic substitutes (i.e., to undercut the

competition, i decreases his bid in response to an increase of j’s bid). When costs of a

participant’s 1st degree connections increase (i.e. 1st degree rents decrease), she faces

less competition and has more room to obtain rents. As a result, we expect the average

cost of 1st degree connections to have a positive impact on rents. On the other hand,

when the average cost of a participant’s 2nd degree connection increases, we expect

her 1st degree connections to increase their bids. In response, she could either increase

her bid at a lesser amount than her 1st degree connections to gain more profit, or she

could decrease their bid to make sure she wins. Either way we expect a decrease in

information rents. Hence the expected sign of the average cost of 2nd degree connections

is negative.

Table 4.9 shows the relationship between participants’ rents and their connections’

costs. From Model 1 we can see that when the cost of 1st degree connections increases

by $1, participants increase their rents by 11 cents. When considering the effect of 2nd

degree connections, Model 2 shows that when average cost of 1st degree connections

increases by $1, participants increase their rents by 21 cents, and when average cost of

2nd degree connections increases by $1, participants will decrease their rents by 37 cents.

Therefore, we can say that 2nd degree connections indirectly influence participants’

behavior in an auction. Model 3 indicates that the cost of 3rd degree connections do

not influence participants’ bidding behavior.

We further explore the impacts of the costs of 1st degree connections on bidding

behavior. We examine how information rents change in response to variation in the

lowest and highest cost in a participant’s network. Results are presented in Table 4.10.

A $1 increase in the lowest cost within participants’ 1st degree connections increases

information rents by 11 cents. Similarly, when the highest cost of the 1st degree con-
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nections increase by $1, rents grow by 9 cents. This result suggests that participants’

behavior respond to changes in both the lowest and highest costs of members in their

direct network. However, after controlling for average cost (Models 3 and 4), we cannot

reject the null of no effect of extreme costs (highest and lowest) on rents.

Table 4.9: The Effect of Connections’ Costs on Rents

(1) (2) (3)

Average cost of 1st degree connections 0.106*** 0.213*** 0.093
(0.029) (0.028) (0.077)

Average cost of 2nd degree connections -0.368*** -0.382***
(0.046) (0.044)

Average cost of 3rd degree connections 0.142
(0.090)

Constant 2.620*** 6.949*** 6.832***
(0.465) (0.939) (0.945)

N 1786 1786 1786

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.10: The Effect of 1st Degree Connections on Rents
(lowest cost vs. highest cost)

(1) (2) (3) (4)

Lowest cost of 1st degree connections 0.105*** 0.013
(0.030) (0.054)

Highest cost of 1st degree connections 0.091*** -0.017
(0.023) (0.045)

Average cost of 1st degree connections 0.122** 0.151**
(0.055) (0.060)

Constant 2.956*** 2.449*** 2.105*** 2.130***
(0.383) (0.433) (0.474) (0.471)

N 1698 1698 1698 1698

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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4.6 Number of Connections

Our previous results show that, in auctions where networks are used to share cost

information, the average cost of 1st degree connections is an important determinant of

information rents. Next, we are interested in understanding whether or not the number

of connections a participant has plays a role in influencing auction behavior. Table 4.11

presents results of regression models of the effect of the total number of connections,

the number of connections with lower cost, and the number of connections with higher

cost on information rents. In Model 1, we do not find a statistically significant effect

of the number of connections on rents. However, Model 2 estimates indicate that

the number of connections with lower cost has an effect on rents. Specifically, on

average, one additional connection with lower cost decreases rents by $1.64. In addition,

Model 3 shows that participants’ rents increase, on average, by $1.39 for each additional

connection with higher cost. These effects increase after we control for the number of

connections. By including number of connections as a right-hand variable in both

regressions, as noted in Model 4 and 5, the marginal effect of a low cost connection

increases (in absolute value) to -$2.25 while the marginal effect of a high cost connection

increases to $2.25.

4.7 Network Centrality

A final test of the effect of cost information sharing networks on information rents

comes from examining the effect of participants’ relative position in the network on

bidding behavior. Participants with more connections have an information advantage

compared to participants who are isolated or have fewer connections. We rank partic-

43



Table 4.11: The Effect of Number of Connections on Rents

(1) (2) (3) (4) (5)

Number of connections -0.031 0.980*** -1.271***
(0.146) (0.119) (0.134)

Number of connections -1.636*** -2.251***
with lower cost (0.150) (0.154)
Number of connections 1.394*** 2.251***
with higher cost (0.122) (0.154)
Constant 4.405*** 6.257*** 2.697*** 4.678*** 4.678***

(0.362) (0.263) (0.185) (0.300) (0.300)

N 1786 1786 1786 1786 1786

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.

ipants in each auction based on their degree centrality to examine the effect of having

a privileged network position on information rents. Degree centrality measures the

number of connections a participant has as a proportion of the network size. As all

sessions in our experiments had 8 participants, the most central participant is simply

the participant that has the largest number of connections.

When pooling across all auctions with networks, the estimates shown in table 4.12

suggest that we cannot reject the null hypothesis of no difference in behavior between

central and other participants of the auction. Model 2 compares participants who have

low cost and are central in a network with participants who are not in central position

and whose costs do not fall into the lower 25th quantile. It shows that on average,

central participants with low costs demand $4.79 more in information rents from the

auctioneer compared to others.

In contrast, Model 3 compares participants who have high cost and are central

in a network with participants who are not in central position and whose costs do

not fall into the upper 25th quantile. It reveals that on average, central participants

with high costs earn $3.86 less in rents compared to others. Model 4 only focuses on

participants who have low cost while Model 5 concentrates on high-cost participants
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solely. Although we do not find a statistically significant effect in the low-cost group,

we do find as exhibited in Model 5, that on average, information rents of high-cost

central participants are 48 cents lower than rents of other high-cost participants who

are not central in a network. This result suggests that high-cost central participants

are aware of their competitive disadvantage and reduce their bids to try to win the

auction. Thus it implies that the auctioneer’s budget is important in an auction, not

just the information rents.

Table 4.12: The Effect of Network Centrality on Rents

(1) (2) (3) (4) (5)

Most central participant(s) -0.115 -0.419 -0.476**
(0.401) (0.705) (0.230)

Most central participant(s) × Low cost 4.790***
(0.660)

Most central participant(s) × High cost -3.862***
(0.220)

Constant 4.362*** 3.958*** 4.610*** 9.167*** 1.224***
(0.178) (0.154) (0.163) (0.374) (0.172)

N 1786 1786 1786 456 430

Standard errors clustered at the participant level in parenthesis.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Chapter 5

Discussion

This final chapter summarizes the main findings of this research and provides a discus-

sion of their policy implications as well as directions for future research.

5.1 Summary and Implications

First, our results show that demographics and the students’ majors do not affect rent

seeking behavior. To the extent that these experimental findings are translated to the

real world, these results suggest that auction design should not be influenced by the

farmers’ experience or academic background. However, we should be cautious about

transferring results from experiments involving a body of students with low levels of

variation in various demographic characteristics to the real world.

Second, we find that there is significant learning for low-cost participants as they

increase their rent-seeking demands throughout the experiment. High-cost participants

quickly learn that they are not competitive and reduce their compensation demands in

the initial rounds. This result suggests that auctions implemented in multiple rounds

may suffer efficiency losses as low-cost participants learn their relative cost position in

the bidder pool and demand higher levels of compensation. On one hand, high-cost

participants are not likely to participate, however, low-cost participants tend to bid
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high in these settings. Therefore, the design of sequential auctions should consider the

issue of self-selection where highly rent-seeking participants select themselves into an

auction leading to undesirable environmental outcomes.

Learning in repeated auctions is a phenomenon that has been widely reported in the

literature. For instance, Shoemaker (1989) found that in the US Conservation Reverse

Program, farmers had the potential to learn the bid caps and gain economic rents

through repeated auction periods. This then led to a reduction in economic efficiency

and less desirable environmental outcomes. Bernard (2005) developed an experiment

that conducted repeated second-price auctions to find the impact of learning. The

author claimed that repeated auction trials could result in participants’ loss of valuable

information, especially on products they were unfamiliar with. Cooper and Fang (2008)

also found evidence of learning in second-price auction experiments, where participants

learned through sequential auction rounds to avoid overbidding.

Third, we find qualitative evidence that cost information sharing networks in gen-

eral increase rent requests of low-cost bidders and decrease rent requests of high-cost

bidders. This finding suggests that networks may decrease the efficiency of the auction

as participants that are likely to win (low-cost participants) increase bids, and only

participants that are likely to lose decrease bids. Normally, conservation auctions have

higher operation costs than other programs promoting BMPs (Boxall et al., 2013). Our

results indicate that in order to keep auction implementation expenses at a low rate, and

conditioned on adoption costs, it may be beneficial to implement auctions in economies

with thin networks, as the more likely network effect is a decrease in efficiency due to

an increase in the size of bids from low-cost participants.

To further explore the relationship between information sharing networks and bid-

ding behavior, the thesis also explores the effects of different information network struc-

tures. Our fourth finding is that behavior is different in auctions where cost information

is shared through a regular lattice network. In these auctions, average rent requests
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are $1.45 lower than the rents in the baseline auctions where there are no information

networks. This effect represents a 33% reduction of mean compensation demanded.

Surprisingly, this negative effect is stronger for low-cost participants (-$2.54) than for

high-cost participants (-$1.14). This is an interesting demonstration that the efficiency

of real-world auctions may depend on the structure of information networks. This re-

sult indicates that conservation auctions may be more efficient in environments in which

bidders share cost information through a regular lattice network. This is an interesting

finding as this network structure is similar to one in which the exchange information

operates through spatially connected farms. This would be the case, for example, of

in rural settlements where farmlands are located along a road, or a circular rural set-

tlement where lands form a central space and each farmland has a similar number of

adjacent neighbors.

In addition to the regular lattice network, we also find that cost information sharing

in Erdos-Renyi networks induces a negative impact on average rent requests, especially

for high-cost participants. In these auctions, participants’ average rent requests are

$0.81 lower compared to rents in auctions where information networks do not exist.

This is an intriguing result as the Erdos-Renyi network structure is expected to be very

different from that of a regular lattice network. One network is completely random and

link formation is independent (Erdos-Renyi) while the other is structurally symmetrical

(Lattice). It is a puzzle to us why only such extreme models are able to affect bidding

and further research is needed to shed some light on this issue.

Fifth, we examine how cost effects propagate through the information network.

Our results indicate that only first and second degree connections impose a significant

effect on participants’ rent requests, and the cost effect of third degree connections is not

statistically significant. This result suggests that despite the possibility of very complex

pathways through which cost information may directly or indirectly navigate a network,

only information within two degrees of separation matters for bidding behavior. This
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finding of “localized effects” is in line with results in the literature. For example,

Krishnan and Patnam (2014) argues that farmers are more likely to be influenced

by their neighbors than extension agents in regards to technology adoption. In the

simulation study of Wichmann (2015), the author concludes that focusing on the subset

of agents within two-order of distance from the target agent is sufficient to provide

information necessary for network study and analysis, despite the existence of complex

network structures.

Our sixth finding is that the number of connections of a bidder affects her in-

formation rent request. For every additional connection with lower cost, the average

information rent demanded decreases by $1.64. For every additional connection with

higher cost, these rents increase by $1.40. Participants increase their rent requests when

they know they are more likely to win. Therefore, to decrease auction spending, it is

beneficial to have participants connected to as many lower-cost neighbors as possible.

In other words, when choosing where to implement an auction, policy makers should

favor information networks in which high-cost participants are highly connected, and

low-cost participants are more isolated.

Finally, we find that participants who are central in a network and have high adop-

tion cost have significantly lower information rents when compared to others. These

central high-cost participants decrease rent requests by $3.86. On the other hand, cen-

tral and low-cost participants increase rent requests by $4.79. This result has a similar

implication to our previous results. Conditioned on adoption costs, conservation auc-

tions are expected to be more efficient when central participants are the ones with

higher costs.

In summary, the results above show new sources of variation of bids in conservation

auctions and provide guidance for researchers to further evaluate the environmental

performance of these market instruments. These results should be of interest to orga-

nizations and agencies worldwide who are involved in the design and implementation
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of conservation auctions. Examples of such actors in Canada are organizations such as

Ducks Unlimited, Alberta Land Institute, as well as provincial governments, as these

entities have been engaged, for example, in the implementation of conservation auctions

promoting wetland restorations (Brown et al., 2011; Hill et al., 2011). These results

can also benefit the managers of environmental programs overseas. These programs

include the US Conservation Reserve Program, the Australian BushTender Trail and

the UK Conservation Stewardship Scheme (Cason et al., 2003; Stoneham, 2003; Cason

and Gangadharan, 2004; Claassen et al., 2008).

Our results also suggest that where conservation auctions are contemplated that

the auctioning agency have some understanding of the size and structure of information

sharing networks that characterize the relationships among residents within the area

of interest. In our experiment we imposed network structures exogenously and really

do not have an idea of which structure we employed is a likely match to those in the

real world. This points to a need for research on information sharing networks in

rural farming communities in which policy makers desire changes in land management

behaviour to generate significant environmental improvements.

5.2 Limitations and Further Research

This research faces several limitations. First, as our results are based on experiments,

external validity may be a concern as noted above. Debates around the generalizability

of experimental findings are common in social science disciplines.12 These debates are

especially acute in economics (perhaps the most “quantitative” social discipline). Roe

and Just (2009) present an interesting discussion about internal and external validity

in economics. They view the use of field data and laboratory experiments as the most

12For example, refer to Lynch (1982) and Winer (1999) for a discussion of external validity of
experiments in consumer research and marketing, Berkowitz and Donnerstein (1982) for a discussion
in the field of psychology, Johnson (1998) in anthropology, to name a few.
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common approaches to empirical research and argue that these two methods fall on

opposite ends of a spectrum of research approaches, with the interior of this spectrum

being characterized by intermediary approaches such as natural and field experiments.

Movements towards the interior spectrum tend to ease tensions between internal and

external validity, but also lead to limitations (e.g less research control and reduced

replicability). For this work, the other end of the spectrum (field data) was not a

viable methodological alternative for two main reasons: i) data availability (we are

not aware of field data on conservation auctions paired with network information); ii)

econometric identification (field data would be problematic as real-world networks are

likely endogenous to farmers’ behaviors such as bidding). There is, however, evidence in

the literature that the issue of external validity of experimental work may not be very

problematic in auction settings. Boxall et al. (2008) argue that producers and students

act in a similar manner in experimental conservation auctions. Previous experimental

work in the literature suggest that experimental auctions tend to be externally valid

(Brookshire et al., 1987; List and Shogren, 1998). Nevertheless, as an alternative ap-

proach, one could pursue an analysis of networks and bidding using an approach at the

interior of the research spectrum (e.g. a randomized control trial). This was, however,

not a feasible option due to several constraints that thesis project faces (e.g. time and

budgetary constraints).

Second, this thesis examines one particular channel through which networks can

influence conservation auctions: strategic behavior in a non-cooperative setting where

BMP adoption cost information is shared through a network. There are other ways

that social networks could affect the efficiency of conservation auctions. For example,

in several cases, it is reasonable to expect farmers participating in an auction to be

socially connected, perhaps because their farms are located in the same geographical

region being targeted for BMP adoption. In these cases, farmers may cooperate and

agree on collusive strategies to extract more rents from the auctioneer. The role of
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social networks as a collusion facilitator should the focus of future research.

Third, and finally, our experimental design abstracts away from three aspects of the

bidding process. One is that participants are not allowed to submit bids below their

costs. In real life, however, farmers may have “green” motivations and, as a result, this

biding strategy could arise as a rational one. If these preferences are “contagious” and

may travel through social networks, it would be possible for central actors with green

bidding behavior to significantly influence auction performance. A second limitation of

the experiments of this thesis is that participants cannot opt out of the auction and

must submit bids in all cases. In the real world, participation rates in conservation

auctions are often low and may be related to characteristics of social networks. Third,

the experiment independently assigns BMP adoption costs to participants. In reality,

there might be a correlation between costs of farmers connected in an information

network. For instance, if information flows between geographically adjacent farms,

adoption costs of these areas may be similar as they are located in the same region and

therefore face similar weather and soil characteristics. These are questions that should

also be the focus of future research.
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Appendix A

Experimental Instructions

Thank you for participating in this experiment.

This is an experiment in individual decision-making. You will be asked to play a

computer game and make decisions in several rounds. If you follow the instructions

carefully and make good decisions, you will have the opportunity to earn a considerable

amount of money. You will be paid for your participation in CASH at the end of the

experiment. Your earnings for today’s experiment will include a $5 show-up fee, and

additional earnings will depend partly on your decisions and partly on the decisions of

other players.

You cannot talk to other players during the experimental session. It is important

that you strictly follow the rules. If you disobey the rules, you will be asked to leave

the experiment. If you have a question at any time during the experiment, please raise

your hand and we will come over to your desk and answer it in private.

Background

The government wants to encourage farmers to adopt new farming practices. The

adoption of these practices is costly to farmers. The government has set aside a lim-

ited budget to pay farmers to adopt these practices. The government does not know
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farmers’ adoption costs and has not decided how much to pay each farmer. Instead,

farmers get to decide how much they would like to be paid to adopt the new practice.

All farmers submit their requests for financial compensation to the government in an

auction. After all requests are submitted the government will accept the best requests

until the budget is exhausted. Going forward, we will refer to these requests as bids.

Procedure for Playing the Auction

In today’s experiment you will play the role of a farmer. Different farmers have

different adoption costs. At the beginning of an auction you will learn how much your

cost of adopting the new practice is. After learning your cost you will be asked to

submit your bid demanding compensation to adopt the new farming practice.

If your bid is successful, that is, if the government accepts your bid and you receive

payment to adopt, you will have to pay your adoption cost. Therefore, the computer

will not allow you to submit a bid lower than your adoption cost as this would not be

beneficial to you.

How Bids Are Accepted?

An auction has 8 players. All players submit bids requesting dollar compensation

to adopt the new farming practice. Once all bids are submitted, the computer will

rank all 8 bids from lowest to highest to determine which players will receive payment.

The bids will then be accepted from the lowest one upward until the auction budget

is exhausted. Notice that according to this procedure more than one player may have

bids accepted. At the end of an auction, the computer program will inform you whether

your bid was successful or not.

The auction budget will remain the same throughout the experiment; however, no

player will ever know the budget amount. Each player will only know whether their

own bid is accepted or not. In addition, your bid is your private information and will
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not be revealed to other players.

The Auction Payoff

If your bid is accepted, you receive payment equal to your bid and you have to pay

your adoption costs. Therefore, your dollar payoff is:

Payoff = Your Bid - Your Adoption Cost.

If your bid is not accepted, you do not receive payment and you do not have to pay

your adoption cost. Therefore, your dollar payoff is:

Payoff = 0.

The computer will not allow you to submit a bid lower than your adoption cost as this

would not be beneficial to you.

The Structure of the Session

The session is made up of 20 auctions. Initially, there will be 4 practice auctions.

These auctions are for you to familiarize yourself with the software and the procedure

for playing the auction. The practice auctions will not be counted in the determination

of your experimental earnings.

After the practice auctions, you will play 16 real auctions that will determine your

earnings for today’s experiment. These 16 auctions are divided in 4 blocks of 4 auctions.

After the last auction ends, you will be asked to answer a short survey.

The Costs of Adoption

The computer will randomly assign a different adoption cost to each player. The

adoption cost can be any amount between $5 and $30, with each amount between $5

and $30 being equally likely. You will see your adoption cost on the computer screen
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before you submit your bid. The costs of ALL players will change after every block of

4 auctions.

Information about the costs of OTHER players may or may not be available to you.

At the beginning of the experiment the computer randomly decides who will learn the

costs of others. If you learn the cost of other players they will also learn your cost. If

you cannot see the cost a player on the computer screen, he/she will not be able to

see yours. After the second block of auctions, the information available to you about

the costs of other players may change. The computer will again randomly decide which

players will learn the costs of others.

Notice that both adoption costs and information sharing are determined at random

so that everyone has a fair chance to have bids accepted.

Your Experimental Earnings

Your earnings for today’s experiment will be calculated based on 4 of the 16 real

auctions. At the end of the experiment, the computer will randomly select four auctions

for payment. In particular, it will select one auction from each auction block. Your

final earnings will be the sum of the payoffs from these 4 randomly selected auctions

plus the $5 show-up fee.

Therefore, even though you will make 20 bidding decisions (including 4 practice

auctions), only 4 of these will end up affecting your earnings. You will not know in

advance which auctions will be chosen for payment, but each auction has an equal

chance of being selected. Therefore, it is in your best interest to try to do well in all

auctions.

Before we begin, do you have any questions?

Good luck and thank you for your participation.
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Appendix B

Illustrations of the Experimental

Networks
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Figure B.1: Network 1 (Erdos-Renyi)

Figure B.2: Network 2 (Erdos-Renyi)
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Figure B.3: Network 3 (Erdos-Renyi)

Figure B.4: Network 4 (Erdos-Renyi)
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Figure B.5: Network 5 (Erdos-Renyi)

Figure B.6: Network 6 (Erdos-Renyi)
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Figure B.7: Network 7 (Erdos-Renyi)

Figure B.8: Network 8 (Watts-Strogatz)
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Figure B.9: Network 9 (Watts-Strogatz)

Figure B.10: Network 10 (Watts-Strogatz)
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Figure B.11: Network 11 (Watts-Strogatz)

Figure B.12: Network 12 (Watts-Strogatz)
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Figure B.13: Network 13 (Watts-Strogatz)

Figure B.14: Network 14 (Barabasi-Albert)
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Figure B.15: Network 15 (Barabasi-Albert)

Figure B.16: Network 16 (Barabasi-Albert)
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Figure B.17: Network 17 (Barabasi-Albert)

Figure B.18: Network 18 (Barabasi-Albert)
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Figure B.19: Network 19 (Barabasi-Albert)

Figure B.20: Network 20 (Regular Lattice)
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Figure B.21: Network 21 (Regular Lattice)

Figure B.22: Network 22 (Star)
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