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Abstract 
 

Leukocyte extravasation is a fundamental process of the inflammatory 

responses. The mechanisms that control remodelling of endothelial (EC) shape 

and adhesive contacts during leukocyte transendothelial migration (TEM) are not 

completely understood. We studied the role of EC phosphatidylinositol 3-kinase 

(PI3K) activity in lymphocyte TEM under shear stress conditions. Inhibition of 

EC PI3K activity by its pan inhibitors decreased lymphocyte diapedesis in a step 

after VE-cadherin opening. The importance of PI3K catalytic isoforms (p110α, 

p110β, p110δ and p110γ) were studied in TEM. Treatment of EC with isoform 

inhibitors of p110β, p110δ and p110γ did not affect lymphocyte TEM. Inhibition 

of p110α activity or expression reduced lymphocyte diapedesis. PI3K activity 

was measured in EC exposed to shear stress alone or shear stress on cells where 

ICAM-1 or VCAM-1 were cross-linked. The most significant effect was seen in 

cells cross-linked with ICAM-1 and exposed to shear stress. This suggests that 

cooperation of shear-induced mechanotransduction and ICAM-1 during leukocyte 

interaction with EC facilitates leukocyte diapedesis by inducing PI3K. 

We hypothesized that Rho GTP proteins downstream of PI3K activity are 

involved in leukocyte TEM. We studied the role of IQGAP1, a Rac1/Cdc42 

effector, during lymphocyte TEM. EC IQGAP1 knockdown decreases both 

microtubule (MT) tethered to the adherens junction (AJ) and lymphocyte TEM. 

Similarly, loss of AJ-associated MT induced by brief nocodazole (ND) treatment 

decreases lymphocyte TEM. Neither intervention affected leukocyte migration to 

the interendothelial junctions. These data indicate that IQGAP1 contributes to MT 



 

stability at endothelial junctions and is involved in the junction remodelling 

required for efficient lymphocyte diapedesis. We studied a candidate Rho guanine 

nucleotide exchange factor named FGD5 upstream of IQGAP1. Inhibition of 

FGD5 expression resulted in more sensitivity to apoptotic stimuli and a higher 

rate of apoptosis in resting conditions. Thus, we could not study the importance of 

FGD5 in lymphocyte TEM. Further characterization of FGD5 knockdown cells 

showed that they do not respond to VEGF signalling. These results suggest that 

FGD5 might play an important role in growth factor–mediated EC survival. 
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Chapter 1. Introduction 
 

Vascular tree and endothelium  

In this thesis, we sought to better understand the role of the microvascular 

endothelial cell (EC) in the recruitment of lymphocytes to sites of inflammation. 

This process involves the active participation of the EC to present adhesive and 

chemotactic cues to the circulating lymphocyte. Subsequent entry of the 

lymphocyte into the tissue compartment must require remodelling of the EC 

monolayer and basement membrane. This thesis will focus on the overall biology 

of the EC during this process.  

 Blood vessels consist of arteries, arterioles, capillaries, venules and veins. 

The morphologies of these vessels are adapted differently to cope with the unique 

function of the vessel: arteries have thick muscular walls and accommodate 

boluses of blood delivered by the contracting heart to efficiently carry the 

oxygenated blood to various organs; capillaries are composed of very thin walls 

which facilitate the exchange of nutrients and gas; veins have a thinner wall than 

arteries and contain valves which prevent blood from flowing backward [1]. 

Concordantly, the ECs covering each of these vessels have adapted a unique 

structure [2]. This includes variation in length, thickness, fenestration and 

continuity, as well as intercellular junction composition [2, 3]. For instance, in 

arteries, concordant with their main function of carrying the blood, ECs are 

continuous and have tighter junctions than in veins [4].  
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 EC heterogeneity, and consequently its specialized function, is crucial for 

health. For instance, in the liver, discontinuous and large fenestrations of the 

endothelium are essential for a dynamic filtering of fluids, solutes and particles, 

and the differentiation of EC into a continuous basement membrane is associated 

with the occurrence of disease [5].  The endothelium lies at the interface between 

the blood and the tissue compartments, and plays a major role in the regulation of 

immune responses. Interactions with circulating immune cells outside lymphoid 

organs occurs predominantly at the post capillary venule, which is specialized to 

display chemotactic and adhesive cues to recruit leukocytes to the site of 

inflammation. 

The first requirement of leukocyte trafficking into a target tissue is 

leukocyte interaction with EC, known as leukocyte transendothelial migration 

(TEM). This process is tightly regulated by adhesion molecules and signalling 

events of both ECs and leukocytes. Before describing leukocyte TEM in more 

detail, I will address some of the environmental conditions of ECs such as 

interaction with neighbouring cells, the extracellular matrix and shear stress 

generated by blood flow and how these conditions might affect leukocyte TEM. I 

will also briefly introduce different types of leukocytes and will describe 

examples of immune responses that require leukocyte TEM. 

 

Endothelial cell-cell adhesion 

As described earlier, ECs adopt amazingly different phenotypes in 

different vascular beds. This heterogeneity also includes their intercellular 
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junction composition [2, 6]. For instance, the endothelium in the microvessels of 

the brain versus venules of other organs is less permeable to micro and macro 

molecules, and this is attributed to ECs forming much tighter junctions, 

generating the blood-brain barrier [7]. Endothelial junctions consist of 

transmembrane proteins that are linked to cytoskeleton and signalling molecules 

via their cytoplasmic domains [8, 9]. These complex networks of molecules are 

categorized into adherens junctions (AJ), tight junctions (TJ) and adhesion 

molecules that do not belong to any of these.  

In the vascular tree, postcapillary venules are more responsive to 

inflammatory stimuli and are specialized sites for leukocyte trafficking [10, 11]. 

The junctions of the postcapillary venules were characterized as simple and 

straight connections as apposed to interdigiating complexes found in EC of larger 

veins [12]. To study leukocyte transendothelial migration, we used human 

umbilical vein endothelial cells (HUVEC) because of their similar characteristics 

to postcapillary venules, mainly containing functional AJ and lack of organized 

TJ [13-16]. Thus, in this review, I will briefly introduce TJ and other components 

of EC junctions. AJ components, signalling and regulation, as well as junctional 

molecules that are depicted in leukocyte TEM will be discussed in more detail. 

 

Tight Junctions (TJ) 

TJ contain a complex molecular architecture, which are mainly known for 

providing a tight barrier in the monolayer. By electron microscopy, TJ appear as 

membranes fused together [17]. TJ transmembrane proteins include occludin, 
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claudins and the junctional adhesion molecule (JAM) family [14, 18, 19]. In 

addition to brain, JAM members (JAM-A, -B and -C) are also detected in the 

vasculature of a number of organs, including the liver and kidney [20]. TJ are 

connected to the cytoskeleton via their cytoplasmic component, the zona 

occludens (ZO) (Figure 1) [8, 15]. The importance of functional TJ is apparent 

from the phenotypes of knockout mice. For instance, claudin-5-deficient mice are 

defective in EC brain function and die 10 hours after birth [21].  

Immunofluorescent (IF) staining of ZO and occludin is discontinuous and 

diffused along the cell borders of HUVECs grown in normal conditions [13, 22]. 

Electron microscopy of HUVEC cell borders indicate that only 16% of cell 

borders contain the characteristic morphology of TJ stands (fused membranes), 

and they tend to be localized at the apical side [13]. Conditions that increase TJ 

localization (astrocyte-conditioned medium) increases EC barrier function 

(transendothelial electrical resistance), but not the rate of neutrophil diapedesis 

[13]. Interestingly, conditions that decrease TJ (low growth supplements) do not 

reduce EC barrier function and do not affect neutrophil diapedesis [13]. These 

observations suggest that although the TJ components are expressed in HUVEC 

monolayers, they are poorly developed and unable to make functional TJ.  

 

Adherens junctions (AJ) 

AJ are essential for proper EC barrier function and the generation of 

outside-in signalling that regulates contact inhibition of cell growth and 

angiogenesis [23, 24]. In ECs, AJ are formed by the Ca2+ dependent glycoprotein 
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transmembrane adhesion protein, vascular endothelial cadherin (VE-cadherin) [9, 

25]. The cytoplasmic region of VE-cadherin is highly conserved among 

cadherins, and interacts with several cytoplasmic proteins, the catenins (Figure 1) 

[9]. Early in the embryonic stage, cells start expressing VE-cadherin once 

committed to EC lineage [26]. In adults mice, VE-cadherin antibody injection 

results in lung and heart permeability and death after 24 hours [27]. During 

development, the homophilic VE-cadherin interactions and proper cytoplasmic 

interactions with catenins are essential for EC barrier function and VE-cadherin 

mediated signalling, as both the deletion of VE-cadherin and the expression of a 

truncated VE-cadherin deficient in binding β-catenin result in embryonic lethality 

at day 9.5 [24]. The ECs of these mice were detached from each other at the 

branches and gaps were formed between ECs, while apoptosis was evident in 

some EC. Although vasculogenesis (the formation of primitive blood vessels from 

angioblasts) was normal, angiogenesis (ECs branching from existing vessels and 

remodelling into a network of vessels) was completely abrogated [24]. Impaired 

survival and angiogenesis was attributed to a defect in VEGF signalling, since 

VEGFR2 localization to junctions, interaction with VE-cadherin and 

Phosphatidylinositol-3 kinase (PI3K) and Akt phosphorylation were greatly 

reduced by VE-cadherin deletion or truncation [24]. Since this result was 

reported, many other studies have illustrated the crucial role of AJ cytoplasmic 

components in the regulation of AJ function by the expression of recombinant 

VE-cadherins lacking interaction with various catenins [28, 29].    
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VE-cadherin interacts with β-catenin and plakoglobin (γ-catenin) via a 

membrane-distal site (703-784). Endothelial β-catenin expression is required for 

vascular integrity and survival, as its EC deletion causes embryonic death at 11.5–

13.5 days [30]. β-catenin deficient EC had weaker AJs, and EC permeability was 

increased [30]. β-catenin interaction with VE-cadherin is important in linking VE-

cadherin to actin cytoskeleton, and several pieces of evidence suggest that this 

anchorage is essential for AJ function and that α-catenin is involved [29, 30]. 

Yamada et al. (2005) showed that α-catenin cannot bind β-catenin and actin 

simultaneously [31]. Later, it was shown that a molecule called epithelial protein 

lost in neoplasm (EPLIN) facilitates an α-catenin link to actin, resulting in the 

simultaneous interaction of α-catenin with actin and β-catenin [32]. Whether this 

is the scenario in EC needs further investigation. Another function of β-catenin is 

in the regulation of gene expression. When unbound from VE-cadherin, β-catenin 

can regulate gene expression by translocating to the nucleus and interacting with 

transcription factors [33, 34]. Thus, it is proposed that VE-cadherin can indirectly 

regulate gene expression by keeping β-catenin in junctions.   

VE-cadherin interacts with p120 catenin by its juxtamembrane site (621–

702). In epithelial cells, p120 is recognized as a positive regulator of AJ function 

by stabilizing E-cadherin [35]. In EC, p120 is also required for barrier function 

and its inhibition significantly reduces levels of several cadherins, including VE-

cadherin, along with α- and β-catenins [35-37]. Later, it was shown that p120 

interaction with cadherin is required to prevent the clathrin-mediated 

internalization of cadherin [38]. Specific deletion of endothelial p120 in mice 
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resulted in embryonic death at day 11.5 [39]. These mice had reduced VE-

cadherin and N-cadherin levels, reduced pericyte coverage of vessels, 

haemorrhages and disorganized vascular networks. Cultured primary EC lacking 

p120 had very little VE-cadherin expression, and strikingly, EC barrier function 

was not significantly affected. However, p120 deletion caused a deficiency in EC 

proliferation, which was rescued by exogenous VE-cadherin expression [39]. 

p120 was also shown to be a substrate for tyrosine kinases and in immortalized 

cell lines it can regulate Rho GTPases via binding to the Vav2 (a Rho GTPase 

guanine exchange factor that activates Rho GTPases) [40, 41].  

In confluent monolayers, VE-cadherin is also associated with a 

transmembrane phosphatase, vascular endothelial-protein-tyrosine phosphatase 

(VE-PTP), which is important in AJ regulation [42, 43]. VE-PTP expression is 

observed to be specific to EC and it interacts and dephosphorylates the tyrosine 

kinase receptor, Tie-2 [44]. VE-PTP interacts with VE-cadherin via the 

extracellular domain of both molecules and its inhibition induces EC permeability 

[42, 43]. Stimuli such as vascular endothelial growth factor (VEGF) treatment and 

leukocyte binding prevent VE-cadherin association with VE-PTP and result in 

elevation of phosphorylated AJ [43]. VE-PTP inhibition increases leukocyte 

TEM, which will be discussed in the section on diapedesis.  

Of note is that N-cadherin expression is also detected in EC. Although N-

cadherin is highly expressed in EC, it does not localize to junctions when VE-

cadherin is expressed [45]. N-cadherin localization at ECs that lack VE-cadherin 
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in knockout mice has not been studied. N-cadherin seems to be important in 

adhesion to pericytes and smooth muscle cells [46, 47].  

 

AJ regulation   

As will be described in detail, AJ are regulated by a variety of signalling 

molecules (e.g. Rho GTPases) and cytoskeleton components. These components 

can affect AJ distribution or stabilization by a number of mechanisms. These 

mechanisms include the regulation of AJ endocytosis, proper linkage of VE-

cadherin to catenins and the cytoskeleton or the induction of signalling events 

leading to increased mechanical forces and tension at the junctions [48-50]. The 

state of phosphorylation of AJ is thought to be an important player in AJ 

regulation [43, 49, 51-54]. A detailed description of some of these mechanisms 

and their importance in leukocyte TEM will be given in the next sections. 

  

Other components of EC junctions 

Nectin molecules belong to the immunoglobulin superfamily [55]. The 

nectin family consists of nectin-1, -2, -3, -4 and the poliovirus receptor (PVR). 

The expression of nectin-2, nectin-4 and PVR is detected in EC [56-58]. Nectins 

can mediate cell-cell adhesion by both cis- and trans-dimers [56, 59, 60]. Nectins 

interact with the actin cytoskeleton through interaction with their cytoplasmic 

component, afadin (Figure 1) [60]. In epithelial cells, afadin has been shown to 

bind to activated Rap1 GTPase (a member of Ras family G proteins) and profilin 
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(an inducer of actin polymerization by activating actin monomers) [61]. In 

HUVECs, afadin required Rap1 to localize at the junctions and inhibition of 

afadin expression, or impairing its localization to junctions by Rap1 knockdown, 

prevented accumulation of junctional proteins to interendothelial junctions [62]. 

Further, afadin and Rap1 regulated VEGF mediated signalling by regulating 

interaction of VEGF receptor 2 (VEGFR2) with p110α catalytic subunit of PI3K 

[62]. 

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 

transmembrane glycoprotein that is localized at the junctions of all confluent EC 

types [63]. PECAM-1 participates in EC barrier function [64], and its cytoplasmic 

domain is known to interact with several signalling molecules [65-67]. PECAM-1 

contributes to EC barrier function by its homophilic interactions at the cell-cell 

levels rather than its participation at the cell signalling of junctions [68]. Although 

PECAM-1 knockout mice have no apparent physiological defects, EC junctions 

are less stable and functional during stressful conditions [69, 70].  

S-endo-1 associated antigen (CD146) has been shown to localize to 

junctions in confluent EC monolayers, and its transfection into fibroblasts reduces 

their permeability, suggesting that CD146 participates in the regulation of 

junctions [71]. Furthermore, it is associated with the actin cytoskeleton [71].  

 

 



                                                                                                                     10                                                                                                                

 

Figure 1-1. An illustration of interendothelial junctions’ components. TJ are 

composed of transmembrane proteins occludin, claudin and JAM members, 

connected to actin cytoskeleton via ZO members [8]. Nectin members participate 

in EC adhesion [56, 59, 60]. Afadin connects the nectins to actin and is also 

important in recruitment of other adhesion molecules [61, 62]. AJ mediate EC 

adhesion via its transmembrane protein VE-cadherin, which interacts with actin 

via interaction with catenins [9]. VE-cadherin also interacts with VE-PTP 

phosphatase and VEGFR2 [24, 42, 43]. CD146 is another component of 

interendothelial junctions that it is regulated by actin [71]. Other transmembrane 

proteins localized to interendothelial junctions are PECAM-1 and CD99 [63, 72]. 

Membranes of EC borders are constantly recycled into vesicular structures that 

are named lateral border recycling compartments (LBRC) [73]. Junctional 

molecules PECAM-1, JAM-A and CD99, but not VE-cadherin are shown to 

reside in these compartments[74, 75]. Microtubules are also implicated in 

regulation of interendothelial junctions but the mechanisms are not clear [76, 77]. 
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Extracellular matrix (ECM) 

The ECM consists of a variety of components that are organized into a 

scaffold on which cells adhere. Some of the components of the basement 

membrane include laminins, type IV collagens, nidogen and perlecan [78, 79]. 

Laminin and type IV collagen can self-assemble into a scaffold in which other 

components are incorporated [80, 81]. Laminins are essential for the formation of 

basement membrane, and type IV collagens are important for function and 

stability, as their deletion result in embryonic lethality [82, 83]. The composition 

of ECM modulates cell functions (e.g. cell growth and survival) via interaction 

with specific integrins, which in turn activate different signalling pathways. For 

instance, HUVECs grown on fibronectin and vitronectin proliferate, while 

HUVECs grown on laminin-1 or -4 enter cell cycle arrest [84]. Furthermore, it 

has been shown that signals from integrin and growth factors cooperate to initiate 

cell growth [85]. For example, activation of integrin α5β1 by growing HUVECs 

on fibronectin results in the activation of Rac, which was dependent on focal 

adhesion kinase (FAK), PI3K and Rac guanine exchange factor Sos [85]. 

Moreover, overexpression of Rac1 rescues cell cycle arrest on laminin-grown ECs 

[85]. The integrin-mediated adhesive sites are aggregated in the form of focal 

adhesions, which are highly dynamic and are linked to the cytoskeleton via their 

cytoplasmic interaction with a variety of signalling and cytoskeletal components, 

including FAK, vinculin, talin, and paxillin [86-88].  

During leukocyte TEM, several components of focal adhesions such as 

FAK and paxillin are phosphorylated [89-91]. Furthermore, the stable adhesion of 
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lymphocytes with ECs induces focal adhesion remodelling, which is required for 

efficient lymphocyte TEM [91]. The mechanism(s) by which focal adhesions 

might regulate TEM is not clear.  

 

Shear stress 

ECs are constantly exposed to shear stress, the frictional force produced 

by blood flow. The ability of the endothelium to sense and respond to shear stress 

is important in many physiological (e.g. embryonic cardiovascular development) 

and pathophysiological conditions (e.g. atherosclerosis) [92-94]. In addition, 

leukocyte adhesion and lymphocyte TEM are largely regulated by shear stress 

[95, 96]. Cells respond to shear stress by mechanotransduction, meaning that cells 

are able to sense the mechanical stress to elicit a biochemical response [97-99]. 

For instance, ECs acquire elongated shapes and stress fibres after hours of 

exposure to shear stress, while in static conditions, cells contain fewer stress 

fibres and are rounder [100]. Integrins have been shown to be critical for 

modulation of these changes. One piece of evidence for this is increased 

expression of αVβ3 in the atherosclerotic regions of human arteries, where laminar 

flow is disturbed [101]. In vitro studies illustrated the activation of integrins and 

induction of new integrin ligands upon high shear stresses (≥12Dyn/cm2), which 

resulted in transient Rho inactivation [98]. Rho inactivation was required for 

shear-induced F-actin organization and cell alignment [98]. Moreover, integrin 

activation induced transient Rac activation at the beginning of shear stress, which 

was required for cell alignment and activation of transcription factor NF-κB and 
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concomitant ICAM-1 expression within 6 hours of exposure to shear stress [97]. 

A mechanotransduction complex consisting of PECAM-1 (which transmits the 

force), VE-cadherin (adaptor) and VEGFR2 (which is activated in a ligand-

independent manner and activates PI3K) was identified to be upstream of shear-

induced integrin activation [99]. AJs and PECAM-1, acting as 

mechanotransducers, were also illustrated by other investigators [102, 103]. 

Interestingly, unlike in wild-type mice, NF-κB activation and F-actin organization 

are not detected in the atherosclerotic susceptible regions of PECAM-1-deficient 

mice [99], suggesting a crucial role of this mechanotransduction complex in 

regulating EC shear responses.  

It should be noted that these studies are performed under shear stresses of 

≥12Dyn/cm2. The shear stress, however, in postcapillary venules is about 1-4 

Dyn/cm2 [95]. Whether the described signalling events happen at these low shear 

stresses is not clear. Nevertheless, Cinammon and Alon (2001) have shown that 

lymphocyte TEM requires shear-induced signals in vitro [96].These findings 

emphasize the importance of environmental factors on EC function and illustrate 

the necessity of studying EC biological responses (such as the role in leukocyte 

TEM) in settings similar to physiological conditions.  

 

Tumour necrosis factor-α  (TNF) 

TNF is a potent cytokine that is generated mainly by leukocytes and is 

known to have tumoricidal effects, as well as targeting ECs to induce 
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inflammatory responses [104-106]. TNF induces a number of changes in ECs that 

facilitate leukocyte TEM. It induces the expression of adhesion molecules that are 

important in leukocyte TEM, such as transient early E-selectin (4–6 hours) 

expression and late intracellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1) expression (18–24 hours) [107]. In addition, 

TNF phosphorylation of AJ components, dispersion of tight junction components 

and induction of EC permeability have been reported in HUVECs and human 

lung ECs [108-112]. Furthermore, TNF induces stress fibre formation within 24 

hours of treatment in a RhoA-dependent manner [111, 113, 114]. TNF also 

mediates a biphasic PI3K activity, activation at 10 minutes and then gradual 

increase after 6 hours [112]. PI3K activity seems to be important for TNF-induced 

increase in permeability, but not for stress fibre formation. PI3K-dependent Rac1 

activity is also shown to partially regulate AJ remodelling in response to TNF-

mediated leukocyte diapedesis [112].  

TNF mediates its effect by interacting with its two receptors p75 and p55. 

Both of these receptors are expressed on EC [107]. While both can contribute to 

EC activation, signalling downstream of p55 is sufficient to induce upregulation 

of E-selectin, ICAM-1 and VCAM-1 [107]. 

 

Leukocytes 
 One of the main cell components of the immune system is leukocytes. 

Classically, leukocytes are categorized according to their common progenitors, 

either myeloid or lymphoid lineage [115], which in turn are raised from 
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hematopoietic stem cells of bone marrow [116]. The myeloid lineage includes 

granulocytes (neutrophils, eosinophils and basophils), macrophages (mature 

forms of monocytes), mast cells and dendritic cells [115]. These cells are crucial 

players of innate immunity and are also involved in development of adaptive 

immunity [117]. 

 The lymphoid progenitor gives rise to T and B lymphocytes which are 

responsible for the function of adaptive immunity [115], as well as development 

of autoimmune diseases and allograft rejection.  Naïve T cells (T cells that have 

not encountered an antigen) home to lymphoid organs by passing through high 

endothelial venules (HEV) of lymph nodes [118]. In the secondary lymphoid 

organs, lymphocytes encounter antigens that are presented to them by dendritic 

cells. T cells that recognize an antigen, proliferate and acquire effector functions 

and migrate to inflamed sites or lymph nodes depending on their surface adhesion 

molecules and chemokine receptors [119]. In this thesis, we study the interaction 

of lymphocytes with activated EC which resembles the migration of activated T 

cells into inflamed tissues via postcapillary venules. The next sections will focus 

on details of how EC participate in regulation of leukocyte TEM. 

 

Leukocyte Trafficking 

 Leukocytes that are circulating in blood migrate to various tissues 

(extravasation) under several physiological and pathophysiological conditions. 

During innate immune responses, neutrophils and monocytes migrate towards the 

site of inflammation [120]. Lymphocyte migration into tissues, in turn, happens in 
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adaptive immune responses, allograft rejection and autoimmune diseases [121]. 

For instance, multiple sclerosis and its mouse model, experimental autoimmune 

encephalomyelitis, are initiated by CD4+  T cells migration into central nervous 

system [122]. During this process, the first barrier that leukocytes encounter is 

endothelium of the vasculature. The interaction between EC and leukocytes, 

leukocyte TEM, is tightly regulated by a series of adhesion molecules and the 

intracellular signalling in each cell. Leukocyte TEM is classically categorized into 

leukocytes tethering and rolling on surface of endothelium, leukocyte activation 

and firm adhesion, locomotion (moving of adhered leukocytes to favourable site 

of diapedesis), and diapedesis (Figure 1-2) [123, 124]. There are two diapedesis 

routes shown in vivo and in vitro: a transcellular route in which leukocytes 

traverse through the body of endothelium [125-128], and a paracellular route in 

which leukocytes travel through the inter-endothelial junctions [120]. In vitro, the 

paracellular route has been shown as the main route of diapedesis in HUVECs 

[129, 130], and no transcellular diapedesis is observed in the TEM model that we 

have adopted for our studies [96, 131]. Hence, the focus of this work is on 

paracellular diapedesis.  
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Figure 1-2. A simplified view of leukocyte TEM. Under shear stress generated 

by blood, leukocytes tether and role along EC, then firmly adhere and locomote 

on the surface of endothelium. Finally, leukocytes go under diapedesis and 

migrate towards the underlying tissue.   

 

Tethering and rolling 

Initial contact between leukocytes circulating in the blood and 

endothelium is mediated by flow of leukocytes close to the EC surface rather than 

in the central bloodstream [132]. This flow-mediated interaction, or leukocyte 

margination, is prominent in postcapillary venules and facilitates the active 

recruitment of leukocytes by tethering [132].  

Tethering is formed mainly by mammalian lectins, selectins, and their 

glycoprotein ligands [133, 134]. The selectin family consists of L-selectin 

(constitutively expressed in leukocytes), E-selectin (highly expressed in activated 

Shear Stress 
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EC) and P-selectin (expressed in platelets and EC activated by thrombin, 

histamine or superoxide) [134-137]. These adhesion receptors are capable of 

rapidly engaging with ligands with high tensile strength [138]. The importance of 

selectin-mediated leukocyte adhesion is apparent in the immunodeficiency of 

patients with leukocyte adhesion deficiency type II (LADII). These patients are 

defective in generating fucosylated structures, including selectin ligands, and 

suffer from frequent, severe infections in their soft tissues [139]. In addition, the 

mouse model of this disease illustrates defective leukocyte homing [140]. T 

lymphocyte responses do not seem to be greatly affected by impaired selectin 

adhesion [139, 140]. This can possibly be explained by the observations that 

integrin adhesion molecules, VLA-4 and α4β7, can mediate rolling of 

lymphocytes on EC [141-144]. For leukocytes to stop rolling and firmly adhere to 

ECs, their integrins must be activated by chemokines and there must be 

subsequent adhesion to their ligands [133].  

 

Chemokines 

Chemokines are a family of chemoattractant cytokines that are released by 

tissues in the early phases of infection. Chemokines are divided into four groups 

according to their amino terminal region structure (number and positioning of 

cysteine residues: C, CC, CXC and CX3C) [145]. Chemokines can also be 

categorized depending on whether their expression is constitutive (e.g. Stromal 

cell-derived factor-1 (SDF-1), also known as CXCL12) or inducible (e.g. 

interleukin-8) [146]. Constitutively expressed chemokines are usually involved in 
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development in addition to leukocyte trafficking. SDF-1 is a chemokine that is 

constitutively expressed in bone marrow–derived stromal cells and ECs of the 

bone marrow [147-149]. Genetic deletion of either SDF-1 or its receptor CXCR4 

(ubiquitously expressed) is embryonically lethal [150]. Mice deficient in SDF-1 

have defects in B cell and myeloid generation from bone marrow, as well as 

defects in heart development [150]. Mice deficient in CXCR4 have similar defects 

in addition to defects in cerebellar neuronal layer formation [151]. Although these 

mice had no detectable deficiency in T cell generation or trafficking, previously, 

CXCR4 was shown to be important in T cell trafficking [152].        

In the context of TEM, secreted chemokines are immobilized by binding 

to heparin-like glycosaminoglycans on ECs, which enables them to interact with 

G protein coupled receptors (GPCRs) of leukocytes [153]. The signalling in 

leukocytes via chemokine GPCR leading to integrin activation is termed inside-

out signalling. Integrins can acquire three conformations: low affinity (closed 

headpiece), intermediate affinity (closed headpiece extended) and high affinity 

(open headpiece extended) [154]. The high affinity integrin becomes fully active 

once it interacts with its ligand [155]. 

Chemokines presented on EC and their receptors on leukocytes are 

localized on the microvilli of the cells, which promotes their interaction [156]. 

The chemokine signal from EC glycocalyx to rolling adherent leukocyte enhances 

binding, and promotes motility on the surface of the endothelium. This generates 

signalling events in leukocytes that leads to activation of integrin adhesion 

molecules of leukocytes in milliseconds [157]. Interestingly, soluble chemokines 



                                                                                                                     20                                                                                                                

can only mediate partial activation of integrins and must be presented to 

leukocytes by the endothelium glycocalyx in solid phase for optimal signal 

transduction [96, 155]. Since integrins are only fully active once they adhere to 

ligand, this ensures a spatial and temporal regulation of integrin activation 

necessary for firm adhesion of leukocytes to EC [155]. 

 

Firm adhesion (arrest) and locomotion  

 The main adhesion molecules involved in firm adhesion of leukocytes to 

EC are leukocytes integrins and their receptors on EC. The importance of 

integrins in inflammation is apparent in patients with leukocyte adhesion 

deficiency type I. The integrin chain in these patients is mutated and they suffer 

from a range of infections in their soft tissues including skin and mucosa [158, 

159]. In the next sections, some of the in vivo and in vitro data that support 

importance of integrin ligands, ICAM-1 and VCAM-1 will be discussed. 

    

Intercellular adhesion molecule (ICAM)-1 

ICAM-1 is an immunoglobulin cell-surface protein with a short 

cytoplasmic domain that lacks intrinsic kinase activity and known protein-protein 

interaction domains [160]. However, ICAM-1 can interact with cytoskeletal 

associated proteins such as α-actinin and ezrin [161, 162], and ICAM-1 

crosslinking mediates a number of signalling pathways which will be explained 

later. ICAM-1 upregulation in response to inflammatory molecules is observed in 
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vivo and in vitro [163, 164]. ICAM-1 interacts with its ligands, β2 integrins 

Lymphocyte function-associated antigen (LFA)-1 (αLβ2), expressed on all 

leukocytes, and MAC1 (αMβ2), expressed on myeloid cells [165-167].  

The leukocyte integrins, like all other integrins, are heterodimers that must 

be activated in order to mediate a response. While in unstimulated leukocytes, 

LFA-1 is predominantly in a low affinity state, upon interaction with chemokines 

it acquires an intermediate affinity [155]. LFA-1 is fully activated upon 

immediate interaction with ICAM-1 under physiological shear stress conditions 

[155], and this is required for TEM as blocking specific high-affinity LFA-1 

reduces lymphocyte TEM by about 70% [168]. Concomitantly, LFA-1/ICAM-1 

distribution changes upon this active interaction. During neutrophil TEM, evenly 

distributed LFA-1 on arrested leukocytes redistribute into a ring-like structure 

around leukocytes undergoing diapedesis [169]. LFA-1 redistribution into clusters 

of linear tracks associated with ICAM-1 enriched docking structures has also been 

shown [170]. However, in elegant experiments by Alon and colleagues, the 

ICAM-1/LFA-1 enriched docking structures were only inducible by addition of 

mn2+, which artificially activates integrins [168]. Further, they found these 

structures to interfere with lymphocyte TEM [168]. Instead, using freshly isolated 

T cells and live cell imaging, they observed ICAM-1-GFP clustering underneath 

the crawling T cells. The fraction of LFA-1 interacting with EC surface are in 

high-affinity conformation and are distributed into dot-like structures [168]. 

Although the pattern of ICAM-1/LFA-1 distribution seems to vary depending on 

leukocyte subtype, chemokines and other experimental conditions [168-170], all 
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of these experiments suggest complex crosstalk and signalling events going on in 

both EC and leukocyte with the endpoint of facilitating leukocyte TEM.  

Antibody blocking studies have shown that preventing ICAM-1 

interaction with LFA-1 on HUVECs reduces locomotion and consequent 

diapedesis of monocytes and lymphocytes, but does not affect adhesion [96, 124]. 

However, in some TEM models leukocyte diapedesis is only greatly blocked by 

interfering with both ICAM-1 and VCAM-1 functions [171].    

Another member of ICAM family which also interacts with LFA-1 is 

ICAM-2. ICAM-2 is constitutively expressed in resting cells and its expression is 

not inducible [172]. Further, its cytoplasmic domain does not generate any 

intracellular signalling such as RhoA activation or stress fibre formation [173, 

174]. However, there is some evidence of ICAM-2 participation in TEM: An in 

vitro study looking at brain ECs isolated from knockout mice deficient in ICAM-

1, ICAM-2 or both indicated while ICAM-1 deletion reduces locomotion and 

diapedesis of T cells to about 60% and ICAM-2 deletion does not affect 

locomotion and diapedesis, blockade of both ICAM-1 and ICAM-2 reduces 

locomotion and diapedesis of T cells by about 90% [175]. Although this study did 

not test the contribution of ICAM-1-generated signalling in diapedesis, others 

have shown that ICAM-1 cytoplasmic domain is required for leukocyte TEM 

[160, 176]. ICAM-1 knockout mice are viable and they have some immune 

deficiencies such as recruitment of neutrophils to sites of peritonitis [177]. T cell 

recruitment to cardiac tissue was defective in ICAM-1 knockout mice infected 

with a parasite [178] and also lymphocyte counts in blood were high in ICAM-1 
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knockout mice and had defects in generating lymphocyte allogeneic responses 

[177, 179]. β2 integrin knockout mice, which are used as a model for LAD I 

disease, have impaired neutrophil and T cell extravasation to skin lesions [180]. 

 

Vascular cell adhesion molecules (VCAM-1)  

VCAM-1 is a transmembrane glycoprotein belonging to the 

immunoglobulin gene superfamily [181]. Its interaction with its ligand is 

important for development, since VCAM-1 deficient mice and mice deficient in 

α4 integrin die at the embryonic stage due to similar abnormalities—mainly 

cardiac abnormalities and placenta disruption [182, 183].  

In ECs, VCAM-1 expression is greatly increased by cytokine stimulation, 

and has been shown to mediate the adhesion of all leukocytes to VCAM-1 

transfected cells but neutrophils [181]. VCAM-1 interacts with leukocytes by its 

ligands, very late antigen-4 (VLA-4, α4β1) and α4β7 [184, 185]. Upon interaction 

with lymphoblasts, EC VCAM-1 forms cuplike structures enriched in actin, 

membrane-actin cytoskeleton linkers, ezrin and moesin and other actin regulating 

proteins such as α-actinin and VASP [186]. In contrast, neither VCAM-1 

clustering nor VLA-4 redistribution was observed during the crawling of freshly 

isolated T cells on ECs under shear stress; instead, α4 staining showed its 

enrichment at the rear of the cell [168]. It is not clear whether these different 

observations are due to leukocyte type, and the physiological significance of the 

described VLA-4 pattern is not clear. 
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Several studies using the antibody blocking approach have suggested that 

VCAM-1 does not play a significant role in leukocyte TEM [96, 171] or have a 

small separate roles in leukocyte adhesion [124, 175] and diapedesis [124]. 

However, blocking both VCAM-1 and ICAM-1 interaction with their ligands 

greatly reduces leukocyte adhesion and diapedesis (greater than their sum) [96, 

171]. In addition, several reports have suggested that VCAM-1 crosslinking or 

interaction with its ligand generates distinct signalling pathways in EC, which 

facilitates leukocyte diapedesis (details will be discussed later) [187, 188].  

 

Diapedesis 

CD146 

 CD146 is expressed on ECs and lymphocytes [71, 189]. During 

lymphocyte TEM, CD146 seems to mediate lymphocyte rolling on EC, since its 

blockade by antibody inhibited lymphocyte rolling and adhesion [190]. However, 

recently, it was shown that CD146 expression is important in monocyte 

diapedesis [191]. CD146 is upregulated by up to 48 hours of TNF treatment and 

its localization is redistributed to EC junctions and also at the apical site. Further 

blockade of CD146 function with antibody or inhibition of its expression by RNA 

interference, did not affect adhesion of monocytes but resulted in about 40% 

decrease in monocyte TEM across HUVECs [191]. The exact mechanism of 

CD146 regulation during leukocyte TEM and also its function in vivo is not clear. 
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Nectin/afadin 

As described, nectin/afadin adhesion molecules associate with signalling 

molecules, the cytoskeleton and TJ components [60, 61, 192]. These interactions 

suggest that nectin/afadin might be important in the remodelling of 

interendothelial junctions and signalling events during leukocyte diapedesis. 

Indeed, PVR localization at junctions plays an important role for monocyte 

diapedesis [58]. DNAX accessory molecule (DNAM)-1 is a member of the 

immunoglobulin superfamily and is expressed on T lymphocytes, natural killer 

lymphocytes (NK) and monocytes [193]. PVR and nectin-2 both act as ligands for 

DNAM-1 and these interactions signal to NK lymphocytes to stimulate cell lysis 

[194]. During monocyte interaction with ECs, PVR is the major ligand for 

DNAM-1, and blockade of either DNAM-1 or PVR using several antibodies 

prevented monocyte diapedesis to about 80% [58]. The blockade seems to happen 

before VE-cadherin gap formation [58]. DNAM-1 is a signal transduction 

molecule (suggested because of its ability to become tyrosine phosphorylated 

upon binding to its antibody), and can also interact with LFA-1 in normal 

lymphocytes [195]. Although the relevance of DNAM-1 phosphorylation in 

leukocyte diapedesis is not known, this observation might mean that ICAM-

1/LFA-1 interaction during leukocyte TEM signals to DNAM-1 and facilitates 

leukocyte diapedesis by mediating PVR/DNAM-1 interaction. Further, DNAM-

1/PVR interaction might generate signalling events in EC that facilitate leukocyte 

diapedesis. 
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Platelet-endothelial cell adhesion molecule (PECAM)-1 

PECAM-1 is another member of the immunoglobulin superfamily; its 

involvement in neutrophil and monocyte TEM is shown in many TEM models 

[73, 74, 196-200]. However, PECAM-1 deficient mice do not have major defects 

in inflammatory responses [201], and the role of PECAM-1 in TEM seems to be 

dependent on the leukocyte type and cytokines, as lymphocyte TEM is not 

dependent on PECAM-1 [201-203]. Its deletion of its cytoplasmic domain does 

not block leukocyte TEM, suggesting that PECAM-1 is not involved in EC 

signalling that leads to leukocyte TEM [204].  

PECAM-1 is one of the adhesion molecules that have been found in lateral 

border recycling compartments (LBRC) [73]. These compartments are below the 

plasma membranes of the cell borders, are not sealed vesicles, and are 

constitutively recycled to the junctions [73]. Adhesion molecules PECAM-1, 

CD99 and JAM-A, but not VE-cadherin, are located in these compartments [73, 

75]. During diapedesis, these compartments are specifically targeted to the 

leukocyte migration channel in a Src-, kinesin- and microtubule-dependent 

manner, and are required for both transcellular and paracellular TEM [73-75, 

205]. Interestingly, constitutive membrane recycling was not found to be blocked 

by microtubule inhibition; instead this seems to be actin dependent [74]. The fact 

that the targeted membrane recycling around migration channel regulation differs 

with the constitutive membrane recycling is a great example of meticulous 

signalling and active participation of the endothelium in diapedesis. How exactly 

LBRC facilitates diapedesis is not clear. It is suggested that these compartments 
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might mediate more homophilic adhesion bonds by bringing unbound adhesion 

molecules to the surface, and/or they might increase the plasma membrane at the 

junctions, which might also contribute to VE-cadherin separation [73, 74]. 

 

CD99 

CD99 is a heavily glycosylated protein that is expressed in leukocytes 

[206] and ECs [72]. CD99 endothelial expression and localization at junctions 

was first described by Muller and colleagues (2002) [72]. Using function-

blocking antibodies, they demonstrated that endothelial CD99 is greatly involved 

in diapedesis but not adhesion, as its blockade inhibited about 90% of monocyte 

TEM across HUVECs. Later, other in vivo and in vitro studies confirmed CD99’s 

importance in monocyte, neutrophil and lymphocyte TEM [207-209]. CD99 

mediates homophilic interactions with leukocytes during TEM, and its blockage 

seems to trap leukocytes at the interendothelial junctions in a step distal to 

PECAM-1 and independent of PECAM-1 [72].  

 

Junction adhesion molecules (JAMs) 

As described earlier, JAMs are transmembrane proteins found at TJs. The 

function-blocking antibody to JAM-A inhibits monocyte TEM across mouse lung 

and heart ECs in vitro, and reduces monocyte and neutrophil accumulation to the 

brain and lung [14, 210]. Later, it was shown that JAM-A can interact with LFA-1 

and regulate lymphocyte and neutrophil TEM across HUVECs [211]. In addition, 
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JAM-B interacts with the integrin VLA-4; however, the physiological 

significance of this interaction has not been tested [212]. JAM-C has also been 

implicated in leukocyte TEM in vivo and in vitro [213-215]. JAM proteins’ 

importance in TEM seems to be dependent on inflammatory conditions, as well as 

on other unidentified conditions, since JAMs’ involvement in TEM was not 

detected by all investigators [124, 169, 216]. One proposed condition is 

compensatory effects from other JAM members [217]. For instance, Corada and 

colleagues (2005) studied the importance of endothelial and polymorphonuclear 

leukocytes JAM-A in leukocyte recruitment into inflamed peritoneum or in the 

heart after ischemia reperfusion injury using bone marrow transplanted JAM-A 

knockout mice [217]. Endothelial JAM-A was not required for leukocyte TEM, 

while JAM-A-deficient leukocytes were not able to transmigrate [217]. However, 

another study using JAM-A knockout mice and mice with specific deletion of 

endothelial JAM-A in a model of post-ischemic injury of the liver showed that 

endothelial JAM-A is crucial for neutrophil TEM but has a moderate effect on 

lymphocyte TEM [218]. It was proposed that this discrepancy might be due to a 

low expression of JAM-B and JAM-C in the liver, and therefore a lack of 

compensation by other JAM members [217].  

 

Endothelial morphological and signalling changes during TEM  

Interaction between ECs and leukocytes has been investigated for more 

than 100 years; in the last 50 years, the focus has been on the morphological 

changes of leukocytes. Active participation of ECs in leukocyte TEM and the 
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great structural and signalling endothelial changes are just being appreciated. 

Originally, EC changes were hinted at by crude staining of both ECs and 

leukocytes, which illustrated actin enrichment and α-catenin enrichment around 

the migration channel [219]. Later studies illustrated that VCAM-1 and ICAM1 

crosslinking results in the formation of cuplike structures enriched in actin, 

membrane-actin cytoskeleton linkers, ezrin and moesin and other actin regulating 

proteins such as α-actinin and VASP [186]. Another study showed that the 

ICAM-1-mediated docking structure formation requires intact microtubules, actin 

and cytosolic free Ca2+, and these structures are highly associated with diapedesis 

[129, 170]. Further, it was shown that upon ICAM-1 crosslinking, a guanine 

exchange factor for RhoG is recruited to the cup structures [220]. RhoG is 

activated after ICAM-1 crosslinking and inhibition of its activity reduces cup 

formation and leukocyte (an immortalized cell line) TEM without affecting 

leukocyte adhesion [220]. The function of these structures is not clearly known. In 

addition to their association with diapedesis, it is also shown that they are 

involved in leukocyte firm adhesion under high shear stresses [221]. Although 

enrichment of several adhesion molecules during TEM has been reported by 

others, these three-dimensional docking structures are not observed in all TEM 

models [74, 169]. In any case, these observations suggested formation of a 

signalling platform that might facilitate leukocyte diapedesis by initiating 

necessary changes in endothelium.  

  Studies looking at endothelial signalling during TEM started in the early 

1990s. The original experiments illustrated ICAM-1 binding and localization to F-
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actin, as well as association with α-actinin [162, 222]. In more physiological 

settings, it was shown that ICAM-1 crosslinking of brain endothelium mediates 

the phosphorylation of several proteins, including cortactin, an actin binding 

protein, as well as focal adhesion kinase (FAK) and paxillin, which is dependent 

on Rho activity [89, 223]. Further, Rho activity and intact F-actin of brain 

endothelium was shown to be important in diapedesis but not for adhesion of T 

lymphocytes to EC [224]. An attempt to identify a mechanism for opening of the 

EC junction during TEM led to identifying myosin light chain (MLC) 

phosphorylation, actin stress fibre formation and changes in myosin II patterns 

during the adhesion of neutrophils to HUVECs [225]. These events and neutrophil 

TEM were dependent on cytoplasmic Ca2+, calmodulin and MLC kinase (MLCK) 

activity [225]. Earlier studies also showed that neutrophil and lymphocyte 

interactions with cytokine-activated HUVECs greatly increase cytosolic Ca2+, 

which is essential for diapedesis but not adhesion of leukocytes to ECs [226, 227].  

Recently, endothelial nitric oxide synthase (eNOS) phosphorylation and 

nitric oxide production downstream of ICAM-1 clustering was shown [228]. 

ICAM-1 crosslinking activates eNOS via an AMP-activated protein kinase 

(AMPK), and PI3K is not activated by ICAM-1 crosslinking in static conditions 

[228]. eNOS signalling was shown to be required for VE-cadherin tyrosine 

phosphorylation and lymphocyte diapedesis across immortalized mouse brain ECs 

[228]. A recent study has shown that elevated nitric oxide can mediate nitration of 

a Rho GTPase-activating protein, p190RhoGAP-A [229]. This inactivates the 

RhoGAP, which causes elevation of RhoA activation and increased junction 
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permeability [229]. This suggests that eNOS activation during leukocyte TEM 

might mediate the opening of EC junctions by affecting Rho GTPase activities.   

The importance of AJ remodelling and whether the disappearance of VE-

cadherin is a passive or active phenomenon have been tested by many 

investigators. Injection of function-blocking antibodies against VE-cadherin in 

mice increases the rate of neutrophils migrating to an inflamed peritoneum [230]. 

Early in vitro studies showed an overall reduction of AJ triggered by neutrophil 

adhesion to HUVECs [231, 232], but not T lymphocyte adhesion [231]. These 

observations were possibly due to a nonspecific function of proteases produced 

during PMN preparation. Indeed, later studies illustrated a specific and transient 

loss of VE-cadherin during transmigration, but not the locomotion of leukocytes 

[233, 234]. The mechanism(s) that govern this and the true nature of VE-cadherin 

disappearance are not clear. Phosphorylation of AJ components has been 

proposed as one mechanism for AJ remodelling during diapedesis. Adhesion of 

leukocytes or specific ICAM-1 crosslinking induces activity of tyrosine kinases 

Src and PYk2 and phosphorylation of VE-cadherin at Y658 and Y731 in 

HUVECs [53, 235]. Mutation of these sites prevented their phosphorylation and 

reduced leukocyte TEM. In rat brain ECs, ICAM-1 crosslinking also induces VE-

cadherin phosphorylation, albeit in a Src-independent manner; furthermore, 

mutation of Y658 did not affect lymphocyte TEM [54]. A recent study indicated 

that PI3K catalytic subunit p110α is required for PYk2 activity and 

phosphorylation of VE-cadherin at Y731 [112]. However, inhibition of Pyk2 

expression by itself does not affect lymphocyte TEM [112], suggesting that other 



                                                                                                                     32                                                                                                                

mechanisms in addition to VE-cadherin phosphorylation are involved in 

migration channel formation. These authors also reported Rac activation 

downstream of PI3K class IA activation during leukocyte TEM [112]. 

There are several proposals for how VE-cadherin phosphorylation would 

facilitate diapedesis. Phosphorylation might reduce the binding of VE-cadherin to 

catenins and consequently the cytoskeleton, thus causing weak junctions. This is 

based on the induction of AJ phosphorylation by other factors that induce 

permeability and direct observations of junction destability by VE-cadherin 

phosphorylation [49, 51, 52]. However, ICAM-1 crosslinking did not mediate less 

association of VE-cadherin with any of the catenins [54]. Another possibility is 

that VE-cadherin phosphorylation at the p120 site might destabilize AJ by 

inducing internalization of VE-cadherin during diapedesis. In fact, overexpression 

of p120 greatly increased VE-cadherin levels and reduced TEM [53]. 

Unexpectedly, the authors could not detect any endocytic event during TEM. 

Phosphorylation of plakoglobin is also observed during neutrophil or lymphocyte 

adhesion to ECs [43]. Plakoglobin phosphorylation is associated with VE-PTP 

dissociation from VE-cadherin and this seems to be important in leukocyte TEM, 

since the inhibition of VE-PTP increases leukocyte TEM [43]. It is not clear how 

exactly plakoglobin phosphorylation facilitates leukocyte diapedesis. 

It is also proposed that AJ opening is regulated by actomyosin-based 

cytoskeletal contractility induced by RhoA [89, 224, 236]. Myosin light chain 

phosphorylation and induced permeability are also observed downstream of Rac 

GTPase [50]. 
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Another proposed mechanism for AJ opening during TEM involves 

reactive oxygen species (ROS, such as H2O2) [52]. VCAM-1 crosslinking leads to 

Rho and Rac activation [188]; VCAM-1 mediated Rac activation induces ROS in 

HUVECs, which is important for gap formation but not stress fibre formation 

[188]. ROS production downstream of NADPH oxidase is also observed in 

VCAM-1 crosslinking of high endothelial venules [187].  

Another mechanism of VE-cadherin opening might relate to the function 

of LBRC. The extra plasma membrane that is targeted to the migration channel 

might dilute out the adherens junctions’ components, since they are not present in 

these vesicles [75]. 

 

Phosphatidylinositol-3 kinase (PI3K) 

Phosphatidylinositol lipids 

Understanding how the extracellular environment regulates cell activities 

has been an area attracting major interest in biology. Phosphatidylinositol lipids 

(PtdIns; also referred to as phosphoinositides) have been identified as major 

components of the signal transduction pathways that transfer signalling cues from 

membrane to cytoplasm [237]. PtdIns consists of inositol-1-phosphate attached to 

diacylglycerol via its phosphate group. There are three hydroxyl sites on the 

inositol head group that can be potentially phosphorylated in cells. PI3K 

phosphorylates the 3-hydroxyl group on three substrates: PtdIns, PtdIns4P and 

PtdIns(4,5)P2 [238-240]. PI3K are categorized into three classes: the PI3KI-
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favoured substrate in cells is PtdIns(4,5)P2 generating PtdIns(3,4,5)P3 (PIP3); 

PI3KII uses PtdIns4P to make PtdIns(3,4)P2; and PI3KIII’s substrate is PtdIns, 

and it generates PtdIns3P [238, 239, 241]. Regulation and function of each of 

these PI3Ks is greatly complex and varies in different cell types and cell context. 

In this review, I will focus on PI3KI’s structure and regulation, mainly in EC 

functions related to leukocyte TEM.  

 

PI3K class I 

Originally, class I PI3K heterodimers were divided into classes IA 

(catalytic subunits p110α, p110β and p110δ) and IB (catalytic subunit p110γ). 

Class IA catalytic subunits interact with five different p85 regulatory isoforms 

(p85α, p55α, p50α, p55γ and p85β) downstream of a tyrosine kinase receptor or a 

cytoplasmic tyrosine kinase [242-246]. Class IB interacts with p101 or p84 (also 

called p87PIKAP) regulatory subunit downstream of GPCRs [247-250]. Recently, 

this classification has been challenged by observations that implicate p110β 

downstream of GPCR [251-254] and indirect mechanisms such as activation of 

Ras by GPCRs can potentially induce the indirect activation of class IA subunits 

by GPCRs [255-257]. PI3K is negatively regulated by phosphatases. One 

important phosphatase for PIP3 is the phosphatase and tensin homolog deleted on 

chromosome 10 (PTEN) [258, 259]. PTEN-deficient mice die at embryonic day 

9.5. PTEN-deficient cells are less sensitive to apoptotic stimuli and have high 

PI3K activity [259].  
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PI3K class IB structure and function in leukocyte trafficking 

There are two regulatory subunits that interact with the p110γ catalytic 

isoform: p101 and p84 [247, 249, 260]. p101 contains a Gβγ binding site and a 

p110γ binding site. In vivo, p101 mediates p110γ activation via Gβγ by recruiting 

p110γ to membrane [261]. The other class IB regulatory subunit, p84, is 

differentially expressed in relation to p101. For instance, in the heart, p84 

expression is five times higher than that of p101 [249]. p101/p110γ have been 

shown to induce much greater PI3K activity than the p101/p84 heterodimer [249]. 

Whether this scenario applies to different cell events and cell types and expression 

of p84 in EC is not clear.  

During leukocyte TEM, chemokines induce PI3K activity in leukocytes 

[262]. p110γ was found to be important in leukocyte recruitment since leukocytes 

from p110γ knockout mice do not respond to chemokines evident by lack of PIP3 

production and Akt phosphorylation [263-265]. In addition, they have impaired 

migration towards a chemotactic stimulus and recruitment to infection sites [263-

265]. Later, p110γ was detected in EC and a part of defect in neutrophil 

recruitment to site of inflammation was attributed to EC [266]. It turned out that 

EC in mice chimeric for p110γ activity (p110γ -/- TNFα stimulated EC 

interacting with wild-type neutrophils) are defective in efficient capturing of 

circulating neutrophils via E-selectins [266, 267]. Further, in response to a viral or 

antigen challenge, p110γ null mice do not develop footpad swelling as severe as 

control mice, suggesting p110γ importance in T cell mediated responses [265]. 

Since lymphocytes do not require selectins for TEM [143, 268], this T cell 
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response defect might be due to separate mechanisms, and the importance of 

endothelial p110γ in this model was not tested.  

 

PI3K class IA structure 

PIK3R1 (encodes p85α, p55α and p50α which are produced by mRNA 

transcribed from alternative promoters) and PIK3R2 (encoding p85β) are widely 

expressed while PIK3R3 (encodes p55γ) is more restricted [269, 270]. The 

regulatory subunit consists of several domains. All p85 isoforms contain two Src-

homology-2 (SH2) domains which both have affinity for doubly phosphorylated 

tyrosines on tyrosine kinase receptors or cytoplasmic tyrosine kinases, hence 

engage p85 to tyrosine kinase signalling [242, 243, 271]. The N-terminal SH2 

domain of p85α can also interact with the helical region of p110α which is 

suggested to be importance in negative regulation of p110α [272]. The domain 

between the two SH2 domains (intervening domain, iSH2) interacts with catalytic 

[270] subunits and mediates stable dimer formation [273]. p85α and p85β contain 

a domain called BH domain (also referred to as RBD domain) with homology to 

GTPase-activating proteins (GAPs) [274]. This domain interacts with Rac-GTP 

and Cdc42-GTP without causing their GTP hydrolysis [275, 276]. This interaction 

can explain how PI3K can be an effector of Rac1/Cdc42 [277, 278].  

All p110 catalytic subunits contain adaptor binding domain (ABD), the 

Ras-binding domain (RBD), membrane binding domain (C2), a helical domain 

and the catalytic domains [272]. 
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Regulatory subunits modulate the activity of PI3K in several ways. First, 

they stabilize the catalytic isoforms, which is exemplified by the rapid thermal 

degradation of p110α in the absence of a regulatory subunit [279]. Second, they 

keep the catalytic subunit in a low basal activity state [272, 279]. Once PI3K 

interacts with pYXXM motifs, this inactive conformation switches to the fully 

activated enzyme. 

 

PI3K IA tissue distribution and function 

In rodents, p85α protein is expressed ubiquitously, while its splice 

variants p50α and p55α have a restricted tissue distribution being enriched in the 

kidney, lung and brain [269, 270]. p85β is expressed at low levels in most cells 

[270]. p55γ is expressed in the embryonic tissues and in adult mice it is expressed 

at high levels in brain, lung, kidney and testis [270]. The expressions of catalytic 

isoforms p110α and p110β are broad, while p110δ is expressed in hematopoietic 

and nervous systems and in ECs [267, 280]. p110γ is also present mostly in 

leukocytes and detected in endothelium [266, 281].  

A number of transgenic mice have been generated to study the role of each 

PI3K subunit. However, some of these knockouts led to altered expression of 

other subunits of PI3K and unexpected increased PIP3 generation. For instance, 

knockout of p85α leads to increased expression of p50α and p55α along with 

increased PIP3 production [282]. In addition, deletion of p85α, p50α and p55α 

result in a great reduction of expression of PI3K IA catalytic subunits [283-285]. 
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Interpreting observations with mice lacking p110α is also difficult, since it was 

associated with p85 upregulation, which might act in a dominant negative fashion 

[286]. However, in elegant experiments, Graupera et al. inactivated global p110α 

by replacing endogenous p110α with a kinase-dead allele. These mice had growth 

retardation and although they had normal heartbeats and blood flow in central 

vessels, they were defective in angiogenic remodelling, which resulted in 

embryonic lethality at day 12.5 [251]. Remarkably, p110α inactivation in ECs 

alone was sufficient to cause lethality at the same age. Specific deletion of 

endothelial p110α resulted in defective angiogenesis, as was made evident by 

poorly remodelled vessels in the head and trunk and the absence of angiogenic 

sprouts [251]. Further, in vitro studies indicated that p110α activity in resting EC 

is highest among all p110 isoforms and also VEGF stimulated PI3K activity and 

cell events such as in vitro angiogenesis and migration is almost entirely 

dependent on p110α [251]. Additionally, RhoA activity under basal and serum 

stimulated conditions was reduced by p110α deletion or pharmacological 

inactivation to a great extent and Rac1 activity was decreased modestly [251].  

P110β knockout embryos die at day 3.5. The stoichiometry of PI3K was 

not assessed in these mice [287]. Mice with specific P110β deficiency in EC were 

viable and fertile and did not have any apparent vascular defects, consistent with 

dominant role of p110α activity in EC [251].  

P110δ [288, 289] and p110γ [263, 265] knockout mice are viable. Also, 

specific deletion of P110δ in EC did not affect mice viability or vascular 

functions [251] 
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Endothelial p110δ and p110γ activity are both required for neutrophil 

trafficking by mediating transition from tethering and rolling of neutrophils to 

firm adhesion [266, 267]. Recently, however, Ridley and colleagues (2010) 

showed that endothelial p110α activity is required for efficient T lymphoblast and 

monocyte diapedesis [112].   

 

PI3K effectors 

 PI3K is implicated in a great variety of cell functions. This can be 

explained by the vast number of proteins that interact with PIP3 and are 

considered as PI3K effectors. PI3K regulation of the cytoskeleton is mediated 

mostly via Akt and activation of Rho GTPases, which will be the focus of this 

review. 

    

Akt kinases (Akt) 

Akt (also known as protein kinase B, PKB) serine/threonine kinases are 

well-known downstream effectors of PI3K [290, 291]. There are three isoforms of 

Akt: Akt1 (PKBα) is ubiquitously expressed; Akt2 (PKBβ) is mostly found in 

insulin-sensitive tissues; and Akt3 (PKBγ) is mostly expressed in the testis and 

brain. These isoforms are encoded by three different genes but have similar 

structural domains, including a PH domain that mediates translocation to 

membrane and interaction with PIP3, the product of PI3K [290, 292].  
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Full activation of Akt is associated with its phosphorylation at two sites: 

threonine 308 and serine 473. T308 phosphorylation seems to induce the catalytic 

active conformation and phosphorylation at S473 stabilizes Akt to expose the 

catalytic domain to downstream substrates [293]. S473 phosphorylation also 

seems to enhance T308 phosphorylation [294]. PI3K regulate Akt 

phosphorylation and activation as follows. Upon PIP3 generation at the 

membrane, a PH domain containing protein called PDK1 (PIP3-dependent protein 

kinase-1) is recruited to PIP3 [295], and Akt is recruited to PIP3 via its PH 

domain. Akt recruitment to PIP3 causes a conformational change in Akt [296], 

which along with Akt close proximity to PDK1 mediates Akt phosphorylation at 

T308 and S473 by another kinase. The regulation and kinases that mediate 

phosphorylation of S473 are not as clear. Mammalian target of rapamycin 

complex 2 (mTORC2) is one of the enzymes that have been shown to 

phosphorylate S473 [294, 297, 298]. There is evidence that mTORC2 requirement 

for S473 is cell-type and stage-specific: While during embryogenesis, mTORC2 

is essential for survival and S473 phosphorylation, in adult skeletal muscles, 

mTORC2 is not required for S473 phosphorylation [299, 300]. During stress, 

DNA-dependent protein kinase seems to be involved in S473 phosphorylation 

[301-303]. It is also shown that integrin-linked kinase (ILK) can phosphorylate 

S473 [304]. 

Once fully phosphorylated, Akt regulates many cellular pathways by 

phosphorylating a variety of substrates (about 50 putative Akt substrates have 

been identified so far) [305]. Akt participates in cell survival by inactivating pro-
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apoptotic pathways, including Bcl-2-agonist of death (BAD) and phosphorylation 

of the Forkhead family of transcription factors (FoxOs) [306, 307]. Akt is 

negatively regulated by PTEN, and this regulation is physiologically significant 

since mutations in PTEN leads to hyperactive PI3K/Akt, decreased sensitivity to 

apoptosis and increased tumour formation [259, 308-311]. 

 Akt activation is also implicated in F-actin remodelling. mTORC2 

signalling is shown to mediate cell spreading and actin polymerization in a 

fibroblast cell line [312], and Hela cells via protein kinase C (PKCα)-dependent 

pathway [313]. 

 

Rho GTPases  

Rho GTPases belong to the Ras superfamily of GTPases and are 

implicated in many cellular functions such as cell division and survival, changes 

in cell shape, cell motility and regulation of cell-cell and cell-matrix interactions 

[86, 314-316]. These small monomeric GTPases are molecular switches that 

regulate many cellular functions by cycling between GTP- and GDP-bound states 

[317]. When bound to GTP they bind to their downstream effectors and forward 

an upstream signalling response hence they are considered in their active state and 

once the GTP is hydrolyzed to GDP they become inactive [317]. This “on” and 

“off” state is tightly regulated by three main classes of molecules: Guanine 

nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and Rho 

guanosine nucleotide dissociation inhibitors (GDIs) [318-320]. So far, at least 20 
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members of Rho family proteins have been identified in humans; among them, 

RhoA, Rac1 and Cdc42 are the best-characterized members.  

 

Rho Guanine nucleotide exchange factors (RhoGEFs) 

The human genome contains at least 83 RhoGEFs [321]. RhoGEFs 

activate Rho GTPases by facilitating the exchange of GDP to GTP [318]. One 

family of RhoGEFs is diffuse B cell lymphoma (dbl)-family [318]. The dbl family 

members contain a dbl homology (DH) domain, which mediates the RhoGEF 

activity, and a pleckstrin homology (PH) domain which interacts with 

phospholipids [322, 323]. Members of this family, Tiam and βPIX, are involved 

in the EC barrier protective effects of an oxidized lipid, OxPAPC, upstream of 

Rac1 and Cdc42 [324]. In addition, Tiam-1 is implicated in VE-cadherin 

regulation of Rac1 [325]. 

Members of a subgroup of Dbl family contain the G protein signalling 

domain (RGS), which mediates the interaction of GEF with the Gα subunit of the 

heterotrimeric G proteins [326, 327].  

An atypical RhoGEF is Dock180 (dedicator of cytokinesis 180), which 

acts as a RhoGEF for Rac1 by forming a complex with ELMO1 (engulfment and 

cell motility 1) [328, 329]. DOCK180 lacks DH and PH domain but can interact 

with PIP3 by two DHR (DOCK homology region) domains [330, 331]. Global 

Dock180 deletion or mutation in mice is lethal upon birth due to skeletal muscle 

defects and cardiovascular defects [332, 333]. Dock180 is involved in cell 

motility and phagocytosis via Rac1 regulation [334]. Its functions in motility and 
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vascular development have also been reported in the ECs of zebra fish and mice 

[333, 335].   

GEF activity is mediated by subcellular localization, which mainly 

happens by recruitment via PH domains or DHR domains for Dock180 to 

membrane-bound PIP3 [322, 331]. An example of this is that Rac1 activation, 

after serum, requires Tiam-1 localization to the membrane [336]. GEF 

phosphorylation is also implicated in GEF activation. For instance, only 

phosphorylated Vav-1 can induce Rac activation in vitro and in COS-7 cells 

[337]. Phosphorylation (tyrosine residue) seems to relieve an autoinhibition in the 

structure, and exposes the DH domain [338]. PIP3 increases Vav activation by 

enhancing Vav phosphorylation and also recruiting Vav to the membrane [339, 

340]. 

Another interesting mechanism of regulation that is observed in RGS 

containing GEFs is regulation by the Gα subunit of heterotrimeric G proteins. 

p115RhoGEF binds to Gα12 and Gα13, which induces GTPase activity of Gα 

subunits, while the GEF activity towards RhoA is increased [326, 327]. This 

mode of regulation is important in EC function since p115RhoGEF is shown to 

regulate thrombin-induced EC barrier dysfunction and microtubule disassembly 

[76]. p115RhoGEF is also implicated in TNF-induced activation of Rho and EC 

permeability in immortalized mouse brain cell line [341]. 
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Rho GTPase activating proteins (RhoGAPs)  

RhoGAPs are a large family of molecules that regulate Rho GTPases by 

stimulating their intrinsic GTPase activity which causes inactivation of Rho 

GTPases [320]. An example of RhoGAP importance in Rho GTPase function is 

seen in EC that p73 RhoGAP is knocked down. p73 was identified as a 

specifically expressed vascular GAP (smooth muscles and EC) [342]. The 

knockdown of p73 results in high Rho (but not Rac or Cdc42) activity and high 

stress fibres. Furthermore, inhibition of p73 resulted in defective angiogenesis due 

to defects in proliferation and migration [342]. RhoGAPs are also implicated in 

EC barrier function regulation. For instance, p190RhoGAP is localized to EC 

junctions after treatment with the barrier-stabilizing compound oxidized 

phospholipids, OxPAPC, in a Rac-dependent manner [343]. p190 RhoGAP 

knockdown in vitro and in vivo attenuated barrier protective effects of OxPAPC. 

These observations indicate the importance of negative regulation of Rho 

GTPases in physiological conditions. They also show orchestrated function of 

Rho GTPAses: In response to a stimulus, Rac is activated [344], which mediates 

barrier protective effects, and RhoA activity is downregulated to further enhance 

these effects. Recently, p190RhoGAP was shown to become inactivated, resulting 

in elevated RhoA activity in caveolin-1 knockout mice [229]. These mice had 

impaired barrier function, which was associated with upregulated eNOS activity 

because of lack of caveolin-1, resulting in elevated nitric oxide, nitrated and 

inactivated p190RhoGAP [229]. 
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Rho GDP-dissociation inhibitors (RhoGDIs)  

RhoGDIs prevent spontaneous GTP binding by interacting with the switch 

domains of Rho GTPases, locking them in the inactive form and also by shielding 

their membrane tag [319]. So far, only three GDIs members are discovered. While 

GDIα is ubiquitously expressed, GDIβ expression is restricted to haematopoietic 

cells and GDIγ is seen in the brain, pancreas, lung, kidney and testis [345-348]. 

During treatment of ECs with reagents that impair EC barrier function, such as 

thrombin, Rho activation is associated with RhoGDI phosphorylation, allowing 

the dissociation of RhoGDI from Rho and making it available for activation by 

GEFs [349].   

 

Rho family 

Rho family consists of three isoforms: RhoA, RhoB and RhoC. Most 

original studies on Rho have used clostridial enzyme C3 transferase, which 

inhibits all Rho isoforms. In ECs, similar to fibroblasts, RhoA activation induces 

stress fibre formation [114, 314]. RhoB is implicated mostly in endocytic 

trafficking. In EC, inhibition of RhoB results in apoptosis during angiogenesis in 

vitro and in vivo, which seems to be due to a defect in Akt nuclear trafficking 

[350]. RhoC in ECs seems to regulate cell migration because the specific 

inhibition of RhoC in human ECs moderately reduces EC motility and in vivo 

inhibition of RhoC results in reduced angiogenesis [351]. Although RhoA 

knockout mice have not been reported, RhoA has been characterized more 

extensively, and we will focus on the RhoA regulation of the EC barrier below. 
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Rac Family 

Based on sequence similarity, Rac1, Rac2, Rac3 and RhoG are placed in 

the Rac family [352]. While Rac1 and RhoG are ubiquitously expressed, Rac2 

and Rac3 expressions are specific to haematopoietic and brain cells, respectively 

[353]. The physiological significance of Rac1 activity is apparent, since the global 

knockout of Rac1 results in embryonic death at day 9.5 [354]. These mice had 

great defects in the formation of all germ layers and their epiblasts grown in 

culture had deficiency in terms of adhesion to matrix, lamellipodia formation and 

migration; furthermore, they exhibited a great amount of apoptosis [354].  

The importance of endothelial Rac1 in mediating EC responses, such as in 

regulation of EC cytoskeleton and barrier function, downstream of growth factors 

and cytokines such as VEGF, TNF-α, histamine and thrombin has been shown by 

many studies [48, 114, 315, 355, 356]. The importance of Rac1 in EC function is 

confirmed by mice knockout studies. Specific endothelial deletion of Rac1 results 

in embryonic death at day 9.5 in mice [357]. Endothelial Rac1 deletion resulted in 

defects in the development of major vessels and the complete lack of small 

vascular branches. In vitro culturing of these EC showed no effect on viability or 

proliferation; however, Rac1 knockdown ECs were completely insensitive to 

VEGF- and sphingosine-1-phosphate-stimulated migration, tubulogenesis and 

adhesion [357]. In addition, increases in monolayer permeability by VEGF and 

sphingosine-1-phosphate were blocked by Rac1 deletion [357]. The importance of 
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EC Rac1 activity in junction remodelling is also confirmed by many investigators, 

as discussed later [355, 358, 359].  

 

Cdc42 

Cdc42 is well known for its role in formation of the filopodia, actin-rich, 

finger-like protrusions of membrane that might be important in sensing the 

environment [86]. Another well-established function of Cdc42 is in cell 

polarization [360]. Cdc42 has an indispensable role during development since the 

global knockout of Cdc42 in mice leads to embryonic lethality at day 5.5 [361]. 

The embryonic stem cells derived from blastocysts were not defective in 

proliferation, viability and signalling downstream of MAP kinases. However, 

cells developed a round shape and the actin cytoskeleton had a diffused and 

disorganized pattern while the wild-type cells could develop stress fibres, 

lamellipodia and filopodia. These cells were defective in adhesion and migration 

and were not able to generate de novo actin filaments in vitro in response to PIP2 

[361]. Transgenic mice with specific Cdc42 deletion in ECs are not reported. The 

specific role of Cdc42 in EC junction regulation will be discussed below [362, 

363].      

It is of note that several reports have pointed to the sequential activation of 

Rho GTPases. In fibroblasts, the microinjection of constitutively active Cdc42 

results in Rac1 activation [86]. Rac activation also leads to Rho activation [86, 

315]. These observations suggest that Cdc42 might regulate some Rho GTPase-

dependent pathways, indirectly, by regulation of Rac and Rho proteins. 
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Rho GTPases’ Regulation of Cell Junctions 

In epithelial cells, inhibition of the global Rho family by C3 transferase, or 

the dominant negative expression of RhoA, Rac1 and Cdc42, results in deficient 

E-cadherin localization to junctions [364, 365]. Although inhibition of these Rho 

GTPases in ECs did not affect VE-cadherin localization to junctions [366], there 

are a number of reports that point to the crucial role of Rho GTPases in the EC 

barrier function, as follows. RhoA is generally considered a negative regulator of 

EC [367, 368]; however, a basal level of Rho seems to be required for intact EC, 

as the long-term inhibition of Rho kinase reduces EC barrier function and causes 

fragmentation of VE-cadherin localized at the junction [369]. Rho is also essential 

for the function of TNF, thrombin and histamine on cell permeability as shown by 

inhibition of Rho family by toxins, specific inhibition of RhoA or inhibition of the 

downstream effector Rho kinase [111, 114, 355, 367].  

Many growth factors and cytokines, such as VEGF, TNF, histamine and 

thrombin also require activation of Rac1 for remodelling the EC junctions and 

inducing EC permeability [48, 50, 114, 355, 356]. Interestingly, Rac1 activation 

seems to both enhance and reduce endothelial barrier function depending on the 

stimuli: Dominant negative expression of Rac1 and Cdc42, or inhibition of their 

expression by RNAi reduces the effects of the barrier-stabilizing compound 

OxPAPc on permeability, possibly by perturbing cortical actin rim formation 

[324] and/or by downregulation of RhoA by phosphorylating and activating 

p190RhoGAP [343]. In addition, Rac1 can enhance VE-cadherin stabilization and 
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actin rim structures at the junctions downstream of agonists that induce cAMP 

levels [29]. On the other hand, Rac1 inhibition or inhibition of its downstream 

activator, PAK, prevents VEGF-induced VE-cadherin internalization and 

permeability [48]. Here, Rac/Cdc42 downstream of VEGFR2 activates PAK, 

which leads to phosphorylation of VE-cadherin. Phosphorylated VE-cadherin acts 

as a docking site to recruit β-arrestin and induce clathrin-dependent VE-cadherin 

internalization [48]. Work in Schwartz’s laboratory have shown that PAK reduces 

the barrier function mainly by mediating tension at the junctions via inducing 

myosin light chain phosphorylation [50, 356, 370]. These observations implicate 

complex Rho GTPases’ roles depending on cell context.  

Cdc42 seems to play an important role in the stabilization and restoration 

of endothelial barrier function. This is supported by in vitro and in vivo studies 

indicating that late Cdc42 activation after thrombin stimulation associates with the 

recovery of ECs, and the dominant negative expression of Cdc42 delays the 

reannealing of EC junctions [362]. Conversely, Broman et al. (2006) used a 

model of inducing junction destabilization by transfecting ECs with a cytoplasmic 

domain of VE-cadherin in vivo and in vitro [363]. This fragmented VE-cadherin 

induced gap formation and permeability by competing with endogenous VE-

cadherin to bind α and β catenins. Cdc42 was activated in these cells and 

dominant negative expression of Cdc42 reduced junction destabilization. Cdc42 

seemed to regulate F-actin interaction with AJs by preventing association of α 

and β catenin [363]. The authors suggest that Cdc42 regulation of junctions might 

be different depending on cellular context and the downstream engaged effectors. 
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Nevertheless, activation of Cdc42 when AJ are disrupted might initiate regulatory 

pathways that induce the annealing of EC junctions. 

Rho GTPases are also implicated in leukocyte TEM, as described in the 

leukocyte trafficking chapter. 

 

Rho GTPase Effectors 

Activated Rho GTPases mediate biological responses via their effectors. 

Based on in vitro, in vivo and proteomic analysis, there are about 70 molecules 

that are known/proposed (based on structure) as Rho GTPases’ effectors [371]. 

Regulating localization, mediating conformational changes or influencing effector 

interaction with other proteins are all methods that Rho GTPases use to regulate 

effectors’ functions, and consequently, downstream signalling pathways [371]. 

p21-activated kinases (PAKs, serine/threonine kinases) acting downstream of 

Rac1 and Cdc42 are well established [320, 372, 373]. In ECs, PAK mediates actin 

rearrangement and focal adhesion remodelling induced by VE-cadherin ligation 

[325]. IQGAP1 is another Rac1/Cdc42 effector that is shown to act in ECs, and 

which will be described in detail.  
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Actin Cytoskeleton 

Actin Structure and Regulation 

Dynamic actin cytoskeleton remodelling is the underlying process of 

many cellular events such as regulation of cell-cell/cell-matrix interactions and 

cell motility, which in turn is important for biological responses, including 

angiogenesis, wound healing and leukocyte trafficking [325, 374-377]. In cells, 

actin exists in globular (G-actin) and filamentous (F-actin) forms, and its 

dynamics is regulated by controlling the balance between these two in response to 

stimuli [314, 315]. In resting ECs, filamentous actin is reported to organize as 

dense peripheral bands (more pronounced in aortic EC than HUVEC) and fine 

stress fibres along the cells [378-380]. Actin stress fibres are bundles of actin and 

non-muscle myosin that generate isometric forces and are connected to focal 

adhesions and possibly adherens junctions [381, 382].  

Actin can bind to ATP, and ATP-bound G-actin binds to F-actin via the 

barbed end (the fast growing end), and once the ATP is hydrolysed, the monomer 

leaves the filament [383]. Cells use a great number of proteins (actin binding 

proteins, ABPs) to tightly regulate de novo F-actin generation. ABPs control actin 

dynamics at several stages: nucleation (formation of small actin oligomers), 

elongation, severing filaments, capping/uncapping barbed ends, and sequestering 

actin monomers [383-385].  

Original experiments (using inhibitors, dominant negative and 

constitutively active expression) found Rho GTPases downstream of stimuli such 



                                                                                                                     52                                                                                                                

as growth factors and cytokines to have an essential role in actin cytoskeleton 

remodelling [86, 314-316, 386]. Later, Rho GTPase activation was directly linked 

to actin remodelling by showing the Cdc42-dependent N-WASP regulation of 

actin polymerization [387]. One of the main nucleating factors that mediates 

branched F-actin is Arp2/3 complex [388]. However, it has been shown that by 

itself Arp2/3 is a weak nucleating factor and, for full activity, requires interaction 

with nucleating factor proteins such as Wiskott Aldrich Syndrome protein 

(WASP) superfamily proteins [389, 390]. In resting cells, N-WASP is 

autoinhibited by intramolecular interactions. Binding of activated Cdc42 mediates 

a conformational change in N-WASP that leads to actin polymerization via 

Arp2/3 complex [387, 391].  

Another family of nucleating factor proteins are formins, comprising 

diaphanous formins, mDia1, mDia2 and mDia3. mDia proteins are shown to 

colocalize with activated Rho and profilin in the membrane ruffles of motile cells 

and induce fine linear actin filaments [384]. Similar to WASP proteins, most 

members of formins are autoinhibited and become active by activated Rac, Cdc42 

and Rho [392-394]. Formins are involved in processes such as stress fibres and 

filopodia formation [384, 395]. mDia acts downstream of Rho to stabilize and 

orient microtubules [396]. In addition, after mDia1 activation by Rho, IQGAP1 

mediates localization of mDia1 to phagocytic cups, and this localization is 

essential for actin polymerization and phagocytosis [397]. These data, along with 

the recent observation that mDia depletion by RNAi induces microtubule 

depolymerization [398], implicates mDia proteins as important actin/microtubule 
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linkers in a Rho GTPase–dependent manner. Although mDia do not seem to 

regulate the EC barrier function in the resting condition, they are involved in 

inhibition of VEGF-induced EC permeability by angiopoietin-1, an EC barrier 

stabilizing agent [399]. The mechanism involves angiopoietin-1 activation of its 

receptor, Tie-2, which results in RhoA and mDia activation. Once mDia is 

activated it recruits Src away from VEGFR2 and thus prevents VE-cadherin 

phosphorylation by VEGF [399].   

Another important mechanism of actin regulation by Rho GTPases is via 

the regulation of myosin light chain (MLC)-dependent stress fibre formation. 

RhoA regulates actin remodelling via its downstream effector Rho kinase, which 

phosphorylates and inactivates MLC phosphatase, resulting in increased MLC 

phosphorylated levels and stress fibre formation [400]. RhoA effectors can also 

activate LIM kinase, which is an actin binding kinase that phosphorylates cofilin, 

an ABP that depolymerizes F-actin and inhibits its activity [401]. LIM kinase can 

also become activated downstream of Rac/Cdc42 and PAK activation [402].  

As described earlier, endothelial F-actin cytoskeleton and localization of 

several actin associated proteins are greatly remodelled during leukocyte TEM. 

However, the exact mechanisms of actin regulation during TEM is not clear. 

 

Microtubules (MTs) 

 Another component of cytoskeleton, MTs, are composed of α/β tubulin 

heterodimers assembled in a hollow tube. The tubulin assembly rate into filaments 
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is faster at one end, the plus end, than at the other end, the minus end. The minus 

end is associated and stabilized by microtubule organizing center (MTOC) [403].  

MT plus ends generally face the cell cortex and are highly dynamic, 

alternating between phases of growth and shrinkage [404]. This phenomenon is 

called dynamic instability and is mainly regulated by MT-associated proteins 

(MAPs) [405]. Among MAPs, there are microtubule-plus-end tracking proteins 

(+TIPs) such as CLIP-170 and adenomatous polyposis coli (APC), which 

transiently bind to the plus end of MTs [406]. In addition to the regulation of MT 

dynamics, +TIPS, are involved in MT crosstalk to actin and MT capture to 

cortical sites [406-409].  

 MT motor proteins such as kinesin and dynein are a subfamily of MAPs 

that participate in cell function by transporting signalling molecules, vesicles and 

organelles [410-412]. These motors are enzymes that move on MT filaments by 

converting the chemical energy of ATP hydrolysis to mechanical energy [413].  

The overall participation of MT in cell events is usually studied by broad 

MT depolymerization with MT depolymerizing agents such as nocodazole and 

colchicine. These studies indicated that in ECs, MT depolymerization results in 

myosin light chain phosphorylation, Rho activation, actin stress fibre formation 

and formation of gaps in junctions within 30 minutes [414-416]. This 

dysfunctional EC monolayer permits higher leukocyte TEM in dermal and arterial 

ECs [416, 417]. However, this effect seems to be dependent on cell context 

because MT can be depolymerized without a significant effect on the morphology 

of AJ [74, 170, 418]. As described earlier, heterogeneity in the structure and 
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regulation of different ECs and the extent of MT depolymerization might 

contribute to AJ sensitivity to MT depolymerization. 

MT involvement in the regulation of EC responses to some agonists has 

also been shown. For instance, TNFα and thrombin require MT to induce 

pulmonary arterial EC permeability [76, 77]. MT might play a role in part through 

the regulation of a RhoA GEF, GEF-H1, which becomes active when released 

from MT [419]. It was shown that GEF-H1 depletion by RNA interference 

prevents EC responses to thrombin such as actin stress fibre formation and 

increased permeability [420].  

Few publications have looked at MAPs in AJ regulation. In epithelial 

cells, a subpopulation of dynein directly interacts and localizes with β-catenin at 

the epithelial junctions in an actin-dependent manner [421]. β-catenin 

overexpression results in loss of MT at the cell junctions suggesting that dynein 

captures MT at the junctions [421]. In ECs, dynein is not localized at the junctions 

of resting monolayers but is transiently localized to newly formed AJ after a 

calcium clamp disassembly [422]. The relevance of dynein localization for AJ 

assembly was not tested in this study. Another means of AJ anchorage to MT is 

through p120 catenin. p120 catenin interacts with the MT motor, kinesin, and thus 

links N-cadherin to MT [423]. Further, in immortalized epithelial cells, this 

linkage is required for N-cadherin accumulation to newly formed AJ as 

expression of p120 catenin deficient in kinesin binding prevents AJ formation 

[423]. The exact mechanism of MT regulation of AJ still needs further work due 

to puzzling observations such as requirement of MT for E-cadherin clustering and 
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distribution in junctions, while its transport or expression does not require MT 

[404]. 

Although these observations illustrate the importance of MT for transport 

and localization of AJ components to junctions and provide a mechanism for the 

anchorage of MT to AJ, there are virtually no studies on VE-cadherin regulation 

by various MAPs. As described earlier, kinesin has been shown to regulate 

leukocyte TEM by mediating the targeted recycling of LBRC to the migration 

channel [74], but the function of kinesin in the basal regulation of AJ in ECs has 

not been studied.  

Rho GTPases and MTs have been shown to be involved in the regulation 

of each other in many cell events. MT can regulate the activity of Rho by 

interaction with the GEF-H1, as described [419]. Rho GTPases can regulate MT 

function and structure as well. Rho and its effector mDia can interact with MTs 

and induce MT stabilization and orientation at leading edges of immortalized 

fibroblasts [396]. MTOC reorientation on the edge of a wounded fibroblast or 

astrocyte monolayer requires active Cdc42, dynein and dynactin [424, 425]. In 

addition, Rac activation is necessary for MT dynamics at the leading edge of a 

migrating cell, and this seems to be dependent on activation of Rac effector PAK 

and IQGAP1, which regulates MT dynamics in several ways [426, 427]. PAK1 

can phosphorylate and inactivate an MT-destabilizing protein, Op18/stathmin 

[427]. PAK1 can also induce polymerization of MTs by phosphorylating a 

cofactor that is involved in the assembly of tubulin heterodimers into filaments, 

specifically tubulin cofactor B [426]. Finally, PAK1 interacts and phosphorylates 



                                                                                                                     57                                                                                                                

dynein light chain 1 [428], and this is important in the regulation of vesicle 

formation and trafficking during macropinocytosis [429]. MT capture and 

stabilization at the junctions can also be regulated by interaction with +TIP, 

CLIP-170, and an effector of Rac1/Cdc42, IQGAP1, as discussed in the 

following. 

 

IQ motif containing GTPase activating protein 1 

(IQGAP1) 

IQGAP1 is a 189 kDa conserved protein in the eukaryotes, and contains 

several protein-binding domains interacting with a number of signalling 

molecules and the cytoskeleton [430]; the main ones are as follows. At the amino 

terminus, the calponin homology domain (CHD) mediates interaction with F-actin 

[431]. The IQ domain consists of tandem repeats of four IQ motifs which bind to 

calmodulin [432, 433]. The Ras GTPase–activating protein (GAP)-related domain 

(GRD) binds to Rac1 and Cdc42, and despite what its name implies, it lacks GAP 

activity and instead it enhances the activity of Cdc42 [432, 434]. The carboxy 

terminus contains a RasGAP domain which can mediate interaction with CLIP-

170 [435], APC [406], β-catenin [436] and E-cadherin [437].  

Original observations pointed to IQGAP1 interaction with active Rac1 and 

Cdc42, as well as calmodulin [432, 434]. While IQGAP1 localization to insulin-

induced membrane ruffling areas and F-actin crosslinking was Rac1 and Cdc42 

dependent, its localization to cell-cell junctions was not [431, 434]. Further, 
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IQGAP1 was confirmed to localize to cell-cell junctions and was shown to 

interact with E-cadherin and β-catenin [437]. Overexpression of IQGAP1 reduced 

the association of α-catenin with E-cadherin, suggesting IQGAP1 involvement in 

the regulation of AJ strength by controlling AJ linkage to the actin cytoskeleton 

[437]. Further, it was shown that activated Rac1 and Cdc42 inhibit the interaction 

of IQGAP1 with β-catenin, which frees β-catenin to interact with α-catenin and 

thus link AJ to the cytoskeleton [436].  

IQGAP1 had been also implicated as an important regulator of MT 

dynamics. In fibroblasts, IQGAP1 partially localizes with MT at the leading edge, 

and this is mediated by CLIP-170 [435]. Expression of a mutant form of IQGAP1 

that cannot bind CLIP-170 results in an altered MT structure [435]. IQGAP1 and 

CLIP-170 form a complex with Rac1 or Cdc42 and capture MT at the leading 

edge, thus mediating a polarized leading edge [435]. Later, APC was also found 

in this complex and inhibition of either molecule impaired actin enrichment and 

microtubule stabilization [406]. Of note, in addition to localization at the 

junctions and regulation of β-catenin [438, 439], APC binds and stabilizes MT 

[440-443]. IQGAP1 importance in MT capture and stabilization has been 

confirmed in some other cell types [398, 444]. 

In ECs, in basal conditions, IQGAP1 colocalizes with VE-cadherin and 

VE-cadherin localization at the junctions seems to require IQGAP1 [445]. 

IQGAP1 directly interacts with VEGFR2 and IQGAP1 expression is required for 

VEGF signalling and VEGF-induced migration and proliferation [446]. 

Furthermore, IQGAP1 deficiency prevents VEGF-mediated recruitment of 
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VEGFR2 to the AJ complex, VE-cadherin phosphorylation and capillary tube 

formation [445]. IQGAP1’s importance in VEGF-induced angiogenesis has also 

been shown in vivo [447]. While in normal conditions, IQGAP1 knockout mice 

have no apparent defect except late gastric hyperplasia development [448]; in 

ischemic tissues of IQGAP1 knockout mice there is a defect in angiogenesis and 

tissue repair [449]. In addition, in ischemic limbs of wild-type mice, IQGAP1 

expression and infiltrating macrophages were increased [445, 449]. IQGAP1 

knockout mice were deficient in macrophage recruitment and ROS production 

[449]. Defects in macrophage infiltration in IQGAP1 knockouts were further 

confirmed by observing reduced macrophages in nonbacterial peritonitis sites and 

in vitro. Bone marrow reconstitution experiments indicated that both leukocytes 

and ECs are required for tissue repair and macrophage infiltration. While 

macrophages lacking IQGAP1 were defective in migration and adhesion, the 

authors did not investigate the mechanisms by which endothelial IQGAP1 

participates in macrophage infiltration [449]. 

 These observations all indicate IQGAP1 as a Rac1/Cdc42 effector and a 

scaffolding protein, coordinating and linking several signalling pathways or 

cytoskeleton components and targeting the complex to a spatially defined cellular 

domain, thereby generating a cell response. They also implicate IQGAP1 in 

dynamic regulation of the AJ. 
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Hypotheses  

 At the time of designing this project, little was known about the 

mechanisms behind regulation of leukocyte diapedesis by the endothelium. While 

the importance of the actin cytoskeleton was hinted at by the observation of actin 

remodelling during leukocyte TEM and also by involvement of Rho in leukocyte 

TEM, the role of PI3K (and specifically the role of each catalytic isoform) as an 

important regulator of Rho GTPases and actin remodelling was not studied [89, 

223, 224]. Further, the participation of Rho GTPases in dynamic regulation of the 

EC cytoskeleton and AJ during leukocyte TEM was unknown. In addition, the 

role of MTs in leukocyte TEM had only been reported in terms of prolonged MT 

depolymerizing conditions, which resulted in great EC barrier dysfunction [416, 

417]. This type of approach would not allow for the study of MT dynamics at the 

interendothelial junctions during leukocyte TEM. Finally, there were no studies 

on the importance of MAPs in EC junction regulation and leukocyte diapedesis. 

Thus, this study aimed to test the model showed in Figure 1-3. We sought to 

address the following hypotheses: 

1. Endothelial PI3K activity is required for lymphocyte TEM. 

2. The activity of specific catalytic isoforms of EC PI3K class IA is 

important for leukocyte diapedesis. 

3. EC PI3K activity required for lymphocyte diapedesis is induced 

by mechanotransduction following leukocyte interaction with EC 

under shear stress.  
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4. Endothelial MT-associating protein, IQGAP1, a Rho GTPase 

effector, regulates the EC AJ for efficient lymphocyte TEM. 

5. Putative endothelial-enriched RhoGEF, FGD5, participates in 

leukocyte TEM upstream of IQGAP1.    

 

 

Figure 1-3. Proposed signalling events that lead to PI3K-dependent leukocyte TEM. 

Interaction of leukocytes with EC under shear stress mediates PI3K activation. PI3K 

different catalytic isoforms might participate differently in leukocyte TEM. The product 

of PI3K, PIP3, recruits and activates RhoGEFs leading to activation of Rho GTPases. 

Rho GTPases contribute to leukocyte TEM via specific functions (e.g. MT stabilization, 

F-actin remodelling, or direct regulation of interendothelial junction components) exerted 

via their effectors.  
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Chapter 2. Endothelial PI3 Kinase Activity Regulates 
Lymphocyte Diapedesis1 

 

Introduction 
 

Traffic of lymphocytes from the blood to the tissue compartment underlies 

the cellular immune responses that mediate allograft rejection and many 

autoimmune diseases. Vascular endothelial cells (EC) at a site of inflammation 

provide a series of solid-phase cues to the lymphocyte that prompt tissue 

localization. Work by numerous investigators over the past decade has identified 

and characterized the role of various adhesion molecules and chemokines 

displayed by the EC, that provide the cues to promote the initial capture of the 

lymphocyte from the bloodstream and adhesion to the surface of the vascular 

endothelium [1]. Subsequent lymphocyte migration on the surface of the 

endothelium followed by diapedesis across the endothelial monolayer at the 

interendothelial cell junctions may be cued by different or overlapping signals [2, 

3]. 

 In addition, evidence has accumulated that leukocyte adhesion signals the 

EC to actively remodel both its adhesive contacts and cell shape during leukocyte 

diapedesis. For example, leukocyte adhesion stimulates increased rigidity of the 

EC cortical F-actin cytoskeleton and the development of F-actin rich projections 

                                                
1 This work has been published in: Am J Physiol Heart Circ Physiol 293: H3608-

H3616, 2007 
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to surround the leukocyte in a ‘docking structure’ [4, 5]. This docking structure 

promotes adhesion of the leukocyte to the luminal surface of the endothelium 

under shear stress conditions [6]. In addition, remodeling of the F-actin 

cytoskeleton and actin-associated interendothelial adherens junctions has been 

observed as the leukocyte completes the subsequent diapedesis step [7, 8]. The 

cues to the EC and the signaling events that mediate these late steps of leukocyte 

migration across the endothelial barrier remain poorly defined. 

Phosphatidyl inositol 3- (PI3) kinase-dependent signal transduction 

pathways are candidates to mediate some of the events that underlie leukocyte 

diapedesis. Class I PI3 kinases are lipid kinases that use phosphatidylinositol 4,5-

bisphosphate as substrate and have received particular attention in the context of 

the immune system. Class I PI3 kinases are subdivided into classes IA and IB that 

are coupled downstream of tyrosine kinase or G-protein coupled receptors by 

association with the p85 or p101 regulatory subunits, respectively [9]. Activation 

of class I PI3-kinases results in display of phosphatidylinositol-3,4,5-

trisphosphate (PIP3) on the inner leaflet of the cell membrane. PIP3 enrichment 

allows membrane localization of proteins that contain plextrin homology (PH) 

domains, such as Akt or GTP/GDP exchange factors for Rho family GTP binding 

proteins [10]. In this way PI3 kinase activity is able to recruit effector molecules 

in a spatially restricted fashion. 

PI3 kinase-dependent cell polarization enables directional actin 

polymerization and leukocyte motility in response to chemotactic stimuli [11]. 

Hence, early work identified defective polymorphonuclear leukocyte recruitment 
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to inflammatory sites in mice deficient in the class IA PI3 kinaseδ and the class 

IB PI3 kinaseγ [12, 13]. Vascular ECs share expression of PI3 kinaseδ and PI3 

kinaseγ catalytic isoforms with bone marrow-derived cell lineages [14, 15]. 

Surprisingly, in elegant experiments that studied acute inflammatory responses in 

PI3 kinaseδ- or PI3 kinaseγ-deficient mice reconstituted with wild type bone 

marrow, PI3 kinase activity in EC was found to be required for a robust 

inflammatory response [15]. Intravital microscopy revealed a defect in the 

conversion of selectin-dependent, rolling adhesive interactions to stable, firm 

adhesion of the leukocyte to the endothelium. Unlike polymorphonuclear 

leukocytes, lymphocytes exploit immunoglobulin-superfamily adhesion 

molecules on the endothelium to mediate these events [16-18]. The role of 

endothelial PI3 kinase in lymphocyte transmigration is unknown.  

In the present series of experiments we observed that inhibition of EC PI3 

kinase activity decreased lymphocyte transendothelial migration through an EC 

monolayer in vitro. Remodeling of existing endothelial F-actin structures is 

required to support lymphocyte transit across an endothelial cell monolayer under 

physiologic shear stress. However, PI3 kinase inhibition did not block endothelial 

cortical F-actin remodeling or ‘docking structure’ formation as a consequence of 

EC ICAM-1 ligation. Moreover, neither inhibition of EC PI3 kinase activity nor 

endothelial F-actin remodeling inhibited surface migration of the lymphocytes on 

the luminal surface of the endothelium, but rather blocked the final diapedesis 

step of lymphocyte transendothelial migration. 
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Materials and Methods 
 
Reagents 

  M199, RPMI, FBS, ECGS and HBSS were from Invitrogen (Burlington, 

ON). SDF-1α was from R&D (Minneapolis, MN). TNF-1α was from Biosource 

(Camarillo, CA). Fluorophore-conjugated antibodies against CD4 (clone RPA-

T4), CD8 (clone RPA-T8), CD3 (clone UCHT1), CD49d (clone 9F10), CD14 

(clone 61D3), CD19 (clone HIB19), CD54 (clone HA58), CD106 (clone STA), 

and control IgG were from eBioscience (San Diego, CA). Anti-CD31 (clone 

JC/70A) was from Dako (Mississauga, ON), anti-p85a (clone AB6) was from 

Upstate (Lake Placid, NY), and anti-JAM-C (clone 208206) was from R&D 

Systems (Minneapolis, MN). Monoclonal anti-ICAM-1 mAb (clone P2A4) was 

isolated from hybridoma supernatant (Developmental Studies Hybridoma Bank, 

Iowa City, IA) and digested to Fab by ImmunoPure Fab preparation Kit (Pierce, 

Rockford, IL). Rabbit polyclonal anti-VE-cadherin antibody was from Cayman 

(Ann Arbor, MI). Fluorophore-conjugated secondary antibody was from Jackson 

Immunoresearch (West Grove, PA). Celltracker Red (Molecular Probes, Eugene 

OR) was used to label lymphocytes as directed by the manufacturer. In vivo actin 

assay kit was obtained from Cytoskeleton (Denver, CO). Wortmannin, 

LY294002, and 1L-6-Hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-

octadecylcarbonate (Akt inhibitor I), Y27632 were from EMD Biosciences (La 
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Jolla, CA). Control (cat # 1027281) and p85a-specific siRNAs (cat # 

SI02225405), and HiPerFect transfection reagent were from Qiagen (Mississauga, 

ON). Secondary anti-mouse IgG (Jackson Immunoresearch) and ECL (GE 

Healthcare; Buckinghamshire, UK) reagents were used for Western 

Blotting.FITC-phalloidin and all other reagents were from Sigma (St. Louis, MO).  

 

Lymphocytes 
 

Human PBLs were isolated from healthy donors under a protocol 

approved by the University of Alberta Health Research Ethics Board. PBL were 

isolated by density separation over a Ficol gradient (Lymphoprep, Axis-Shield 

Poc AS, Oslo, Norway). Contaminating monocyte/macrophages were depleted by 

incubation in 150mm plastic petri dishes (Fisher) for 1 hour at 37°C in RPMI + 

10% FBS. The non-adherent PBL were washed off and resuspended in binding 

buffer (HBSS, 0.2% BSA, 1mM Ca+2, 1mM Mg+2) and adjusted to ~1x107 

cells/ml. The PBL were studied by flow cytometry to characterize CD4-, CD8-, 

CD3-, CD49d-, CD14- and CD19-positive populations.  The PBL preparations 

routinely contained more than 85% CD3-positive T lymphocytes, ~5% CD19-

positive B lymphocytes, ~5% CD16 or CD56-positive NK cells, and <1% 

monocytes. 

 

Endothelial Cell Culture 
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Human umbilical vein endothelial cells (HUVECs) were isolated and 

cultured as described [19]. For use in an experiment, passage 4-5 HUVEC were 

replated at confluent density onto 35mm dishes coated with a thin layer of 

matrigel (1 mg/mL; Corning Inc., Corning, NY) and cultured for 48 hours. 

HUVEC were treated with TNF-α (200 U/mL, 20 h), then prior to assembly of 

the parallel plate flow chamber apparatus, HUVECs were incubated with SDF-1α 

at 100 ng/mL  as described [20]. 

 Where indicated, HUVEC were pre-treated with jasplakinolide (300 nM), 

wortmannin (10 uM) or LY294002 (30 uM) for 1 hour, Akt inhibitor I (as 

indicated) for 3 hours, or Y27632 (as indicated) for 30 minutes at 37°C then the 

EC monolayers were washed 3 times before SDF-1α was adsorbed to the EC 

surface. Chemical inhibitors were used at concentrations that maintained HUVEC 

viability >85% of mock-treated controls as assessed by the XTT assay of 

mitochondrial activity as described [21]. HUVEC expression of ICAM-1, 

VCAM-1, CD31 and JAM-C was monitored using indirect immunofluorescence 

and quantitated using flow cytometry. No changes were observed with the small 

molecule inhibitors. We detected no difference in SDF-1α adsorbed to HUVEC 

pretreated with DMSO or LY294002 using cell surface ELISA. The relative 

cellular G-actin and F-actin in DMSO or jasplakinolide-treated HUVEC was 

determined by Western blot using an actin quantitation kit according to the 

manufacturers instructions (Cytoskeleton Inc). 
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Endothelial Cell Transfection 
 
 HUVEC were plated at approximately 50% confluence in M199 with 2% 

FBS and endothelial cell growth supplement (ECGS), without antibiotics, 24 

hours before transfection. Fifty nM control or p85a-specific siRNA was 

transfected using HiPerFect according to the manufacturers instructions. The 

monolayers were grown to confluence in 35 mm tissue-culture plates and used in 

experiments 72 hours after transfection. Endothelial p85a expression was 

monitored by Western Blot in each experiment using p85a-specific mAb. 

 

Videomicroscopy Imaging   
 

Laminar flow adhesion assays were done as described previously [22] 

using 35 mm tissue-culture plates as the lower surface of a parallel-plate laminar 

flow chamber (127µm gap; Glycotech, Rockville, MD). The chamber was 

mounted on the stage of an inverted phase-contrast microscope (Leica DM IRB, 

Leica Microsystems, Richmond Hill, ON), and lymphocyte/endothelial cell 

interactions were observed through a 20x objective and captured using a CCD 

camera (Pixelink, Vitana Corporation, Ottawa, ON) at 12 frames/sec for a 20 

minute period. 

Lymphocytes were perfused over the EC monolayer at low shear flow (0.5 

dyne/cm2) and allowed to accumulate on the ECs (accumulation phase). The flow 

rate was then increased to 1 dyne/cm2 and was kept constant throughout the assay 

by perfusion of fresh binding buffer at 37°C (shear application phase). Analysis of 

lymphocyte motion was done manually using Quicktime Pro (Apple, Cupertino, 
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CA) on all accumulated cells in video fields selected to contain more than 50 

adherent lymphocytes per field. Lymphocytes entering or leaving the field of view 

after the initial frame were not included in the analysis. Throughout the analysis 

period of 20 minutes, >90% of adherent PBL remained in the field of view. The 

movement of adherent lymphocytes was categorized into (1) locomotion: 

lymphocytes that migrate more than one cell body on the surface of the 

endothelial monolayer or (2) transmigration: lymphocytes that undergo a change 

from phase-bright to phase-dark appearance as described previously [20]. 

Lymphocyte migration across the EC monolayer was evident when the focal 

plane of the lymphocyte lay in the gel underlying the EC monolayer. In addition, 

the track of individual migrating lymphocytes was analyzed to determine if the 

cell migrated across an interendothelial cell junction. The data are reported as a 

fraction of the originally accumulated lymphocytes. In aggregate, the fraction of 

adherent lymphocytes under control conditions showing a motile or 

transmigration phenotype were 61 ± 3% and 26 ± 4%  (mean ± SEM) 

respectively. 

 

Fluorescence Microscopy Imaging 
 

To characterize docking structure formation, HUVECs were grown to 

confluence on matrigel-coated glass coverslips and were treated with TNF-a as 

above. HUVECs were then pre-treated with DMSO carrier or with LY294002 as 

indicated. Latex beads (Bang Laboratories, Fishers, IN) adsorbed with anti-

ICAM-1 mAb (clone P2A4) were allowed to attach to the EC for 20 minutes, then 
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the monolayer was fixed with 2% PFA in PBS/ 2 mM Ca+2, permeabilized with 

20 mM Hepes, 300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, 0.5% Triton X-100; 

pH 7.4 buffer and stained with FITC-phalloidin (Sigma) for 30 minutes to 

visualize F-actin structures.  Each adherent bead was scored by an observer 

blinded to the treatment group as associated with a docking structure if F-actin 

was present in a crescent or circle around the perimeter of the bead or 

immediately underneath the bead as described  [5, 23].  

To evaluate lymphocyte localization at interendothelial junctions and 

interposition between adjacent EC, lymphocytes were perfused over EC 

monolayers as described above and shear stress was applied for 10 minutes. The 

laminar flow chamber was disassembled, and gently washed with PBS/ 2 mM 

Ca+2, then fixed with PFA as above. EC were stained with polyclonal antibody 

that recognizes the extracellular domain of VE-cadherin and FITC-conjugated 

anti-rabbit secondary antibody. DIC and fluorescence images of 3 fields in each 

experiment were collected using a LSM 510 confocal microscope  (Zeiss Ltd, 

Toronto, ON) set to acquire images at 0.5 um intervals in the z-plane. 

Discontinuities in the linear VE-cadherin staining immediately underlying or 

adjacent to an adherent lymphocyte were identified. The fraction of adherent 

lymphocytes overlying VE-cadherin junctions and the fraction associated with 

VE-cadherin discontinuity of more than 1 um were scored by an observer blinded 

to the treatment group.  
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Flow Cytometry 
 

The expression of surface molecules by HUVEC and PBL were monitored 

by flow cytometry [21]. Analysis was performed using a Becton Dickinson (San 

Jose, CA) FACScan using CellQuest software. 

 

Statistics 
 

The mean fraction of lymphocytes migrating on the EC surface, in contact 

with interendothelial cell margins, or undergoing TEM among the treatment 

versus control groups among several experiments was calculated and tested for 

statistical significance (P<0.05) by paired Students t-test using SPSS (SPSS, 

Chicago, IL). To evaluate the position of lymphocytes at the interendothelial 

junction, data from 4 experiments was pooled and tested for significance using 

Chi-square (SPSS). 

 

Results 
 

Endothelial cell PI3 kinase activity is required for efficient lymphocyte 
TEM 
 

Loss-of-function mutations of PI3 kinase or inhibition of PI3 kinase 

activity has been observed to attenuate neutrophil-mediated inflammation in vivo, 

but the effect on other leukocyte subsets and the mechanism of the defect in 

recruitment has not been fully characterized [15, 24, 25]. In the first series of 

experiments we sought to determine if inhibition of EC PI3 kinase affected 
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lymphocyte transendothelial migration. We adopted the technique of Cinamon to 

study the migration of lymphocytes adherent to a confluent tumor necrosis factor 

(TNF)-treated HUVEC monolayer under laminar flow conditions in vitro [20]. 

Freshly isolated human PBL were perfused over the monolayer and allowed to 

accumulate on the surface of the EC at a low shear stress. The shear stress was 

then increased to 1 dyne/cm2, and lymphocyte movement was recorded using 

phase-contrast videomicroscopy. Transmigration across the HUVEC monolayer 

was evident as a transition in the lymphocyte to a phase-dark appearance and 

determined at the end of the experiment by confirming that the plane of focus of 

the lymphocyte was in the Matrigel substratum below the EC monolayer (Figure 

2-1). HUVEC were pretreated with vehicle or either of the PI3 kinase inhibitors 

wortmannin or LY294002 prior to assembly into the laminar flow apparatus. We 

observed that the fraction of adherent lymphocytes that underwent 

transendothelial migration across wortmannin- or LY294002-treated EC 

monolayers was markedly reduced, but the fraction of lymphocytes that moved on 

the surface of the endothelial monolayer was not inhibited (Figure 2-2A). 

Wortmannin pretreatment of lymphocytes did not inhibit transendothelial 

migration (Figure 2-2C). 

Further, we used RNAi to the p85a regulatory subunit, common to the α, 

β, and δ catalytic isoforms of class IA PI3 kinases, to confirm the results obtained 

using the pharmacologic inhibitors of PI3 kinase activity. We observed marked 

inhibition of endothelial p85 expression (Figure 2-2B) after treatment with 

specific siRNA, and tested confluent p85-deficient EC monolayers for the 
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efficiency of lymphocyte transmigration (Figure 2-1D, 2-2A). Lymphocyte 

transmigration across p85-deficient monolayers, but not migration on the surface 

of the monolayer, was inhibited. These observations indicate that endothelial PI3 

kinase activity is required during the process of transendothelial migration and is 

partly dependent on p85 regulation. 

 

Endothelial cell F-actin remodeling facilitates lymphocyte 
transendothelial migration 
 

PI3-kinase-mediated generation of phosphatidylinositol (3,4,5) 

trisphosphate (PIP3) locally regulates the activity of a variety of actin-associated 

proteins to indirectly regulate F-actin turnover [26]. F-actin polymerization is 

thought to be important in the development of a docking structure that is 

associated with stable adhesion and leukocyte transendothelial migration [6, 27, 

28]. Therefore we sought to determine if inhibition of EC F-actin remodelling had 

a similar effect on lymphocyte transendothelial migration as inhibition of 

endothelial PI3 kinase activity. Endothelial cells were pretreated with vehicle or 

jasplakinolide before assembly into the parallel-plate laminar flow apparatus to 

inhibit remodeling of F-actin structures in the living EC. We observed that 

jasplakinolide pre-treatment significantly reduced the fraction of lymphocytes 

able to transmigrate across the EC monolayer (Figure 2-3). However, there was 

no difference in lymphocyte migration on the surface of the EC monolayer. 

Jasplakinolide is a macrolide marine toxin that specifically binds and 

inhibits the remodeling of established F-actin microfilaments [29]. To confirm 
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that jasplakinolide pretreatment of the HUVEC at the concentrations used in these 

experiments was sufficient to stabilize EC F-actin, we tested the ability of 

cytochalasin D  to depolymerize F-actin in EC lysates in vitro. Figure 2-3B shows 

that HUVEC pretreated with jasplakinolide have a greater fraction of actin 

incorporated in F-actin structures than carrier-treated HUVEC monolayers. 

Moreover F-actin from the jasplakinolide-treated HUVEC was resistant to 

cytochalasin D-mediated depolymerization. Taken together then, these results 

indicate that stabilization of the HUVEC F-actin cytoskeleton impairs lymphocyte 

transendothelial migration. 

 

Strong adhesion of lymphocytes to EC requires EC cytoskeletal 
remodeling but is independent of PI3 kinase activity 
 

Previous work has identified an association between the formation of a 

‘docking structure’ by the endothelium at sites of mononuclear leukocyte 

adhesion and subsequent leukocyte transendothelial migration [28]. In the next 

series of experiments we sought to determine if EC PI3 kinase activity or 

remodeling of the endothelial F-actin cytoskeleton was required to stabilize 

lymphocyte adhesion and to form the docking structure. Freshly isolated human 

PBL were allowed to adhere to TNF-pretreated HUVEC, then lymphocyte 

adhesion to the EC monolayer was determined under conditions of increasing 

shear stress. Figure 2-4A demonstrates that inhibition of endothelial PI3 kinase 

activity does not change the adhesiveness of PBL to TNF-pretreated EC, but that 
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jasplakinolide pretreatment of EC inhibits stable lymphocyte adhesion under high 

shear stress conditions.  

To directly confirm that inhibition of endothelial PI3 kinase activity does 

not disturb F-actin remodeling required for docking structure formation, we 

examined the formation of F-actin rings after adhesion of latex beads to the EC 

surface (Figure 2-4B). These data indicate that inhibition of EC PI3 kinase does 

not affect formation of the docking structure or reorganization of endothelial F-

actin at the site of bead adhesion. Taken together, these data indicate that 

inhibition of endothelial PI3 kinase does not significantly alter functional or 

structural characteristics of lymphocyte adhesion to TNF-pretreated EC. 

 

Endothelial cell Rho but not Protein kinase B is required for efficient 
lymphocyte TEM 
 

PI3 kinase activity to generate PIP3 – enriched domains of plasma 

membrane can serve to create a docking site for the sub-cellular localization of 

effector molecules, such as Protein kinase B/ Akt  and Rho GTP binding protein 

exchange factors via interaction with PH domains of the protein [30]. PI3 kinase 

activation of Akt has been implicated in regulation of cortical actin remodeling 

acting upstream of the Rac GTP binding protein [31]. However, we observed that 

inhibition of EC Akt had no effect on either lymphocyte surface migration or 

diapedesis (Figure 2-5). Therefore the effects of endothelial PI3 kinase inhibition 

on lymphocyte transendothelial migration appear to be independent of signaling 

through the Akt pathway. 
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The RhoA GTP binding protein is variably reported to regulate docking 

structure formation to promote leukocyte adhesion, or stress fiber formation and 

myosin contractility to generate centripetal tension that may contribute to the 

release of interendothelial cell adhesion during leukocyte diapedesis. Since 

LY294002-mediated inhibition of PI3 kinase inhibited lymphocyte 

transendothelial migration, we next tested the hypothesis that Rho GTP binding 

protein signaling was involved. We observed that inhibition of EC Rho kinase 

with Y27632 had a modest inhibitory effect on lymphocyte transendothelial 

migration under shear stress conditions (Figure 2-5), but the magnitude of the 

inhibition was consistently less than that seen with PI3 kinase inhibition. 

Nevertheless, this is consistent with the model that Rho kinase-dependent 

signaling occurs downstream of PI3 kinase activity to facilitate lymphocyte 

transendothelial migration. 

 

Lymphocyte penetration of endothelial intercellular junctions requires 
endothelial PI3 kinase activity and F-actin remodeling 
 

Leukocytes preferentially transit an endothelial monolayer at 

interendothelial cell junctions [3, 28, 32, 33]. Since endothelial PI3 kinase 

inhibition did not block docking structure formation, we determined the fraction 

of motile and stationary adherent lymphocytes that contacted the interendothelial 

cell margins of control, jasplakinolide- and LY294002-treated EC monolayers. As 

shown in Figure 2-6A, analysis of the videomicrographs indicates a similar 

fraction of lymphocytes localized to the interendothelial cell margins among 
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vehicle- and inhibitor-treated endothelial monolayers. Furthermore, a similar 

number of lymphocytes migrated along interendothelial cell margins among each 

group (data not shown).  

To confirm these observations, we used fluorescence microscopy to 

analyze the fraction of lymphocytes associated with interendothelial VE-cadherin-

rich adherens junctions in EC monolayers fixed after 10 minutes of interaction 

under shear stress conditions. In agreement with our analysis of the 

videomicrographs, we detected no difference in the fraction of adherent 

lymphocytes in contact with the endothelial adherens junctions among control or 

LY294002-pretreated EC monolayers (56±4 vs 51±9% respectively; p=NS). 

To characterize the point diapedesis is impeded during lymphocyte transit 

of the interendothelial junction, we used confocal microscopy to study the 

junction-associated lymphocytes, fixed after 10 minutes of interaction with EC 

monolayers under shear stress.  We grouped the lymphocytes into those that were 

located in the z-axis above the level of the endothelial VE-cadherin, completely 

below the endothelial VE-cadherin, or those that extended both above and below 

the adherens junction (Figure 2-7). Results from 4 independent experiments were 

pooled for analysis. We observed that 43 vs. 18% (n=526 lymphocytes; p<0.001) 

of lymphocytes migrating across control versus LY294002-pretreated monolayers 

had completed diapedesis and were completely below the level of VE-cadherin 

staining. A similar fraction (10 vs 11%) of lymphocytes were seen in the 

migration channel between adjacent EC in control and LY294002-pre treated 

monolayers. In contrast, 71% of lymphocytes associated with interendothelial cell 
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junctions among LY294002-pretreated EC monolayers were localized above the 

level of VE-cadherin vs. 48% among control monolayers (p<0.001). Of those 

lymphocytes adherent over endothelial adherens junctions, 22% traversing 

LY294002-treated monolayers were associated with a >2um gap in the VE-

cadherin barrier vs 9% crossing control monolayers (p=0.003). Since VE-cadherin 

has been shown to be excluded from the developing migration pore as the 

leukocyte begins diapedesis [8], this suggests that the lymphocytes are able to 

initiate separation of the interendothelial junctions despite EC PI3 kinase 

inhibition, but are inefficient in extending processes to interpenetrate adjacent EC.  

Finally, as a measure of the ability of the EC to accommodate lymphocyte 

interposition between adjacent EC, the time taken by a lymphocyte to complete 

transit of the EC monolayer from the point of initial interposition between 

adjacent LY294002- or jasplakinolide- treated endothelial cells was determined 

from the videomicrographs. As shown in Figure 2-6B, lymphocytes that 

successfully completed diapedesis across EC monolayers treated to inhibit PI3 

kinase activity or F-actin remodeling transited the monolayer slower than 

lymphocytes transmigrating  across control monolayers.  

Taken together these data indicate that neither inhibition of EC PI3 kinase 

activity nor F-actin remodelling affected the ability of the lymphocytes to migrate 

on the surface of the endothelium to the favoured site of most transendothelial 

migration events at the interendothelial cell junction. However lymphocyte 

interposition between the adjacent EC to complete the diapedesis step was 
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impaired. These observations suggest that endothelial PI3 kinase activity is 

required during lymphocyte diapedesis at the interendothelial cell junction. 

 

Discussion 
 

Molecules that mediate leukocyte movement from the blood to the tissue 

compartment have been identified as potential targets for therapeutic intervention 

in inflammation. Our observations describe the requirement for vascular 

endothelial cell PI3 kinase activity, one such molecular target, to support 

lymphocyte diapedesis across human vascular endothelial cells. Further we 

demonstrate that remodeling of the existing endothelial F-actin structures is also 

required. We observe that inhibition of either endothelial phosphoinositide 

generation or F-actin remodeling impairs lymphocyte transendothelial migration 

without blocking surface migration toward interendothelial cell junctions. 

Nevertheless, careful analysis of the developing interendothelial migration 

channel indicates that endothelial PI3 kinase inhibition does not impair the 

development of a gap in the endothelial adherens junction, an early event 

associated with migration channel formation. Taken together, these observations 

indicate that endothelial PI3 kinase activity and remodeling of endothelial cortical 

F-actin structures is necessary at the interendothelial cell junction site of 

diapedesis to facilitate transendothelial migration.  

We inhibited endothelial PI3 kinase activity using two pharmacologic 

inhibitors of all class I PI3 kinase catalytic isoforms. In addition, we used RNAi 

to knockdown expression of the p85a regulatory subunit in EC, commonly used 
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by the class IA PI3 kinase isoforms. Although both the pharmacologic and RNAi 

approaches inhibited lymphocyte TEM, the magnitude of the decrease was 

modest after p85a inhibition. This indicates that endothelial PI3 kinase activity 

during lymphocyte transmigration is regulated through the p85a subunit, and 

implicates endothelial class IA PI3 kinase activity in remodeling of the 

interendothelial cell junction during lymphocyte transmigration. However, 

redundancy with class IB PI3K activity, or among the alternate p85b, p55, or p50 

regulatory subunits of class IA PI3 kinases as described earlier [34, 35] may have 

salvaged activity through the pathway in the absence of p85a expression. 

In contrast to the effect of inhibition of endothelial PI3 kinase activity on 

lymphocyte transmigration, we saw little effect of lymphocyte PI3 kinase 

inhibition. Although earlier work identified reduced migration of lymphocytes 

lines in Boyden chamber assays after PI3 kinase inhibition [36, 37], under the 

short physiological timeframes of transmigration under shear stress, lymphocyte 

PI3 kinase activity appears to be dispensable [20]. Recent work identifies an 

alternate signal pathway to polarize lymphocytes through the atypical exchange 

factor Dock2 to Rho GTP binding protein activation in response to chemotactic 

chemokine stimulation [38, 39]. Chemokines stimulate the class IB PI3 kinaseγ 

isoform in lymphocytes [40], but deficiency of PI3 kinase activity in vivo has 

minimal effect on T cell movement [41] or homing to lymphoid organs [12, 42]. 

Recent work in vivo has identified an important role for class IB PI3-

kinaseγ and class IA PI3-kinaseδ activity in the development of neutrophil-

dependent inflammation [24, 43]. Intravital microscopy identifies impaired 
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conversion from a loose adhesive interaction to stable adhesion between wild type 

neutrophils and vascular endothelial cells deficient in PI3K-δ or -γ activity in the 

murine cremasteric vein model [15]. This suggests that endothelial cells use PI3 

kinase to stabilize the interaction between the leukocyte and endothelium in the 

presence of shear forces.  

F-actin-rich projections of the endothelial cell develop around adherent 

leukocytes in vitro and have been proposed to serve this function [6]. However, 

we observed no effect of endothelial PI3 kinase inhibition on either the strength of 

the adhesive interaction between the adherent lymphocyte and the endothelial 

surface under flow conditions, or on F-actin polymerization surrounding beads 

that crosslink the endothelial adhesion molecule, CD54. Whereas neutrophils use 

adhesion molecules of the selectin class and subsequently engage CD54, 

lymphocytes engage both CD106 and CD54 on the endothelial cell to mediate 

rolling and tight adhesion [17, 18]. The difference in the adhesion molecules 

employed by the two types of leukocyte may account for the apparent difference 

in the requirement for endothelial PI3 kinase activity for tight adhesion and 

warrants further investigation. 

Leukocyte transendothelial migration across the interendothelial junctions 

is associated with gaps in VE-cadherin [32]. Indeed, VE-cadherin is dynamically 

excluded from the interendothelial cell junction underlying an adherent leukocyte 

as the migration channel develops [8]. We observe that lymphocytes accumulate 

on the surface of LY294002-treated endothelial monolayers and are associated 

with gaps in VE-cadherin of comparable dimensions to gaps we have observed 
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associated with lymphocyte migration. Interestingly, the lymphocytes are not seen 

to extend processes below the level of the adherens junction marker, suggesting 

that a LY294002-sensitive barrier exists subsequent to and independent of VE-

cadherin gap formation. Our observation that the transit time to cross the EC 

monolayer is prolonged among lymphocytes that successfully transmigrate 

LY294002- or jasplakinolide-pretreated EC is consistent with a model that PI3 

kinase activity and F-actin remodeling are linked.  

A similar defect in transmigration, with leukocytes delayed above the 

interendothelial cell junction, has been reported under conditions of blockade of 

endothelial intercellular junction proteins JAM-C [44], CD31 [45], or the 

poliovirus receptor [46], whereas CD99 blockade inhibits mononuclear cell 

transmigration at a somewhat later step, and monocytes are observed to be 

trapped in the migration channel [47]. PI3 kinase activity has been indirectly 

linked to engagement of CD31 in endothelial cells, but truncation of the 

cytoplasmic domain of CD31 does not block leukocyte transmigration [48, 49]. 

Our observations lend support to the idea that discrete steps can be identified 

during leukocyte diapedesis. Further work is required to determine if engagement 

of endothelial junction molecules promote PI3 kinase activity in EC.  

Activation of PH-domain containing proteins such as Akt or Rho GEFs is 

linked to PI3 kinase-dependent PIP3 display on the plasma membrane. Activated 

Akt associates with the actin cytoskeleton [50] and participates in F-actin 

remodeling [30]. However, we observe no effect of endothelial Akt inhibition on 

lymphocyte transendothelial migration. In contrast, inhibition of Rho kinase, a 
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downstream effector molecule of the monomeric GTP binding protein RhoA, 

modestly inhibited lymphocyte TEM. RhoA activity is regulated indirectly by PI3 

kinase activity through membrane localization of Rho-specific GTP/GDP 

exchange factors to membrane sites enriched in PIP3 [51]. The coordinated 

activity of several Rho family members is implicated in adherens junction 

remodeling [52]. The effect of PI3 kinase inhibition to block lymphocyte 

transmigration is consistently greater than the effect of RhoA or Rho kinase 

inhibition, suggesting other Rho family members may also participate in 

remodeling the interendothelial cell junction. 

In summary, endothelial PI3 kinase activity is required for efficient 

lymphocyte transendothelial migration. The defect in lymphocyte TEM created by 

inhibition of endothelial PI3 kinase is not at the formation of the docking 

structure. Lymphocytes migrate on the surface of the endothelium and contact 

interendothelial cell borders and are associated with gaps in VE-cadherin in the 

absence of endothelial PI3 kinase activity, but fail to complete diapedesis across 

the interendothelial cell junctions. This suggests that in addition to gap formation 

in the VE-cadherin barrier, a second rate-limiting event is involved during 

lymphocyte interpenetration of the adjacent EC as the EC accommodates 

leukocyte transmigration. Therefore our experiments have identified a role for 

endothelial PI3 kinase activity in lymphocyte diapedesis at a late step in the 

transmigration pathway. 
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Figures 
 

 

 

Figure 2-1. Lymphocyte adhesion and transendothelial migration across 

confluent endothelial cell monolayers. Representative photomicrographs of 

lymphocytes adherent to A) control, B) LY294002, C) jasplakinolide, or D) 

p85alpha specific si RNA pretreated HUVEC monolayers after the application of 

1 dyne/cm2 laminar shear stress for 20 minutes as described in Methods. An 

example of a phase-dark lymphocyte that has migrated across and under the 

endothelial monolayer is indicated by the black arrowhead; an example of a 

surface-adherent lymphocyte is indicated by the white arrowhead. A lymphocyte 

captured in the migration channel is indicated by the arrow. 
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Figure 2-2. Inhibition of endothelial PI3 kinase inhibits lymphocyte 

transendothelial migration. A) Quantitation of the fraction of adherent 

lymphocytes that locomote on the luminal surface of the endothelial cell 

monolayer (closed) or transmigrate across the monolayer (open). Lymphocyte 

migration across HUVEC monolayers pretreated with wortmannin (10 uM) or 

LY294002 (30 uM) was performed as in Methods. Endothelial expression of the 

p85-alpha regulatory subunit of class IA PI3 kinases was knocked down by RNAi 

as indicated in Methods (mean ± SEM, n=4 experiments; * indicates p<0.05 vs. 

control). B) p85-alpha  specific si RNA decreases HUVEC p85-alpha expression 

by Western blot as described in Methods. C) Inhibition of lymphocyte PI3 kinase 

activity with wortmannin does not decrease either lymphocyte locomotion or 

transendothelial migration (mean ± SEM, n=3 experiments).  
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Figure 2-3. Endothelial F-actin remodeling is required for lymphocyte 

transendothelial migration. A) The fraction of adherent lymphocytes migrating 

on the surface (closed) or transmigrating (open) across carrier-, cytochalasin D-, 

or jasplakinolide-pretreated HUVEC monolayers under 1 dyne/cm2laminar shear 

stress was determined as in Methods (mean ± SEM, n=5 experiments; * indicates 

p<0.05 vs. control). B) Jasplakinolide stabilizes the endothelial F-actin 

cytoskeleton. HUVEC were treated with DMSO carrier or jasplakinolide 300 nM 

for 1 hour, then the cells were lysed, and an aliquot of each lysate was treated 

with cytochalasin D to depolymerize F-actin. The Globular (G) vs Filamentous 

(F) actin was resolved as indicated in Methods. The data are representative of 3 

experiments.  
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Figure 2-4. Endothelial cell F-actin stabilization but not PI 3 kinase 

inhibition impairs docking structure development. A) Lymphocytes adherent 

to TNF-pretreated EC were subjected to progressive increases in shear stress, and 

the fraction of remaining adherent lymphocytes was determined as indicated 

(mean ± SEM, n=3 experiments; * p<0.05). HUVEC were treated with (square) 

DMSO, (circle) LY294002, or (triangle) Jasplakinolide as described in Methods. 

B) The fraction of anti-CD54-coated latex beads bound to carrier- or LY294002-

pretreated EC associated with FITC-phalloidin F-actin structures was determined 

(mean ± SEM, n=3 experiments; p=ns).  
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Figure 2-5. Endothelial Rho kinase but not Akt activity is required for 

lymphocyte transendothelial migration. Lymphocyte transendothelial migration 

through HUVEC monolayers pretreated as in Methods with A) Akt inhibitor I or 

B) Y27632 was analyzed as in Figure 2-2. The surface locomotion fraction 

(closed) and transmigration fraction (open) was determined (mean ± SEM, n=3 

experiments; * indicates p<0.05 vs control).  
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Figure 2-6. Inhibition of endothelial PI3 kinase or F-actin remodeling does 

not impair lymphocyte contact with the interendothelial cell margins but 

prolongs transit time through the migration channel. A) HUVEC monolayers 

were treated with carrier, jasplakinolide, LY294002 or Y27632 as in Methods, 

then the fraction of lymphocytes adherent overlying or migrating on the luminal 

surface across interendothelial junctions under laminar shear stress was 

determined by analysis of videomicroscopy images (mean±SEM, n= at least 3 

experiments; p=NS). B) The time to complete transit across HUVEC monolayers 

was determined by analysis of videomicroscopy images of control, LY294002, or 

jasplakinolide treated HUVEC monolayers (mean±SEM, n= at least 3 

experiments; * indicates p<0.05 vs. control).  
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Figure 2-7. Inhibition of endothelial PI3 kinase does not prevent focal 

disassembly of the endothelial adherens junction. A) A lymphocyte (cytoplasm 

stained with CellTracker Red) migrating across a control HUVEC monolayer is 

seen to extend between and beneath EC adherens junctions (VE-cadherin stained 

green). The center panel illustrates the xy dimension, the upper panel the xz and 

the left panel the yz dimension respectively along a line passing through the 

migration channel. The basal surface of the EC monolayer in the z dimension is to 

the right or bottom of the yz or xz orthogonal projections respectively. B) A 

lymphocyte adherent to a monolayer treated with LY294002 is associated with a 

gap in the adherens junction but fails to extend beneath the level of endothelial 

VE-cadherin. Quantitation of 526 adherent lymphocytes grouped by position in 

the migration channel is described in the text  
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Chapter 3. ICAM-1 cross-linking under shear stress 

generates PI3K activity and endothelial p110α  catalytic 

isoform participates in lymphocyte diapedesis 

 

Introduction 

Lymphocyte transendothelial migration (TEM) is a central phenomenon in 

many immune responses and dysregulation of lymphocyte TEM contributes to 

autoimmune disorders and allograft rejection. As described in the introduction, 

the mechanisms that regulate leukocyte penetration to inter-endothelial junctions, 

diapedesis, are not fully understood. PI3K is identified as an important molecule 

in leukocyte trafficking. Several lines of evidence including our own work have 

shown that endothelial PI3K is required for leukocyte diapedesis [1-4]. PI3K 

regulate cellular events including actin cytoskeleton remodeling in a spatially 

restricted manner via PIP3-meidated localization of GTP/GDP exchange factors 

for Rho family GTPases [5].  

Class I PI3K are heterodimers that are divided into classes IA (catalytic 

subunits p110α, p110β and p110δ) and IB (catalytic subunit p110γ). Class IA 

catalytic subunits interact with five different p85 regulatory isoforms downstream 

of either a tyrosine kinase or a cytoplasmic tyrosine kinase, while class IB 

interacts with p101 or p87 regulatory subunit downstream of G protein coupled 

receptors. However, recent studies suggest that this is not always the case. For 

instance, p110β is mainly coupled to GPCR not a tyrosine kinase [6-9] also 



                                                                                                                     182                                                                                                                

indirect mechanisms such as activation of Ras by GPCRs can potentially induce 

activation of class IA subunits by GPCRs [10-12]. 

PI3K class IB, activated downstream of GPCRs by binding to βγ subunits 

of G proteins, is expressed and participates in many endothelial responses such as 

proliferation, migration and changes in vascular permeability in response to 

chemokines and it is also involved in neutrophil trafficking by firm adhesion of 

neutrophils on the endothelium surface [2, 8, 13, 14] 

There are growing evidence that p110 isoforms selectively regulate 

different biological responses. The mechanism(s) that confer isoform specificity is 

not clear. In EC, isoform specificity has also been observed. In porcine aortic 

endothelial cells, p110α is required for platelet derived growth factor mediated 

actin cytoskeleton remodeling while p110β is involved in actin reorganization 

induced by insulin [15]. However, in vivo studies indicate that specific 

endothelial deletion of p110β and p110δ does not affect mice viability and 

fertility. Further, PI3K activity in immortalized cardiac EC isolated from these 

mice and also HUVECs indicated that these isoforms participate minimally in 

PI3K activity of EC [9]. p110β contributed to PI3K activity induced by SDF, 

downstream of GPCR [9]. On the other hand, p110α activity was essential for 

vascular development and its inactivation caused embryonic lethality [9]. p110α 

was the main isoform participating in migration (RhoA dependent) induced by 

VEGF signaling. In addition to great inhibition of RhoA activity, inhibition of 

p110α also moderately reduced Rac1 activity [9].  
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At the time of starting this project, little was known about the role of p110 

isoforms in lymphocyte TEM. Endothelial p110δ and p110γ activity are both 

required for neutrophil trafficking by mediating transition from tethering and 

rolling of neutrophils to firm adhesion [2, 3]. Since lymphocytes can use 

immunoglobulin superfamily members to both tether and firmly adhere to EC, we 

hypothesized that p110 isoforms contribute to lymphocyte TEM differently. 

Further, the role of p110 isoforms in leukocyte diapedesis is not clear. Recently, 

Ridley and colleagues (2010) investigated the role of P110 isoforms in regulation 

of inter-endothelial junctions upon TNF stimulation. They showed that 

endothelial p110α activity is required for efficient T lymphoblst and monocyte 

diapedesis [4].  

The aim of this study was also to look at the role of each EC p110 isoform 

in lymphocyte TEM. In addition, we tested the ability of ICAM-1 and VCAM-1 

in the absence or presence of shear stress to induce PI3K activity. Our results 

indicate that endothelial p110α activity is required for efficient lymphocyte 

diapedesis. Further, cross-linking of ICAM-1 in activated endothelial cells in 

presence of shear stress induces PI3K activity. 

 

Materials and Methods 

Reagents 

M199, RPMI, FBS, ECGS and HBSS were from Invitrogen (Burlington, 

ON). SDF-1a was from R&D (Minneapolis, MN). TNF-1a was from Biosource 
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(Camarillo, CA). Monoclonal anti-ICAM-1 mAb (clone P2A4) and anti-VCAM-1 

(clone P3C4) were isolated from hybridoma supernatant (developed by Wanyner, 

E. A. from the Developmental Studies Hybridoma Bank, NICHD, Iowa City, IA). 

Rabbit anti mouse was from Jackson Immunoresearch (West Grove, PA). PP242 

was from Sigma-Aldrich (St. Louis, MO). Protein-A coated beads (4.9 µm) was 

from Bang Laboratories, Fishers, IN. Non-silencing siRNA, P110α siRNA and 

Hiperfect were from Qiagen (Mississauga, Ont. Canada) 

  

Endothelial cell culture 

Human umbilical vein endothelial cells (HUVECs) were isolated and 

cultured as described [16]. For use in an experiment, passage 4-5 HUVEC were 

replated at confluent density onto 35mm dishes coated with a thin layer of 

matrigel (1 mg/mL; Corning Inc., Corning, NY) and cultured for 48 hours. 

HUVEC were treated with TNF-α (10 ng/mL, 20 h), then prior to assembly of the 

parallel plate flow chamber apparatus, HUVECs were incubated with SDF-1α at 

100 ng/mL as described [17]. 

Where indicated, the following HUVEC pre-treatments were done: 3 µM 

PI3K-γ inhibitor (AS605240, 5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione; 

Calbiochem ;Darmstadt, Germany). 1µM PIK-75, 3µM TGX-115 and 3µM 

IC87114 (all were gifts from Shokat laboratory, UCSF, San Francisco) for 30 

minutes at 37°C then the EC monolayers were exposed to SDF-1α containing the 

inhibitors. Monolayers were washed 3 times and then used in TEM assays as 

described previously [1].  
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Cross-linking surface molecules 

To study PI3K activity after receptor cross-linking, HUVECs were seeded 

on 12-well gelatin coated dishes and were starved overnight by medium 

containing 1%M199, 60% growth supplements, and 10ng/ml TNF-α. Then cells 

were washed 2 times with M199 and incubated with 10 µg/ml antibodies against 

CD58, ICAM-1 or VCAM-1 for 30 minutes. Cells were washed in binding buffer 

(Hanks buffer containing Hepes, BSA, Mg++ and Ca++), incubated with rabbit anti 

mouse coated beads (~5 beads/cell were coated with 1mg/ml antibody in 4°C 

overnight), centrifuged immediately to ensure homogeneous binding of beads and 

then incubated in 37°C for indicated times and harvested immediately. To 

measure PI3K activity on cells exposed to shear stress or shear stress combined 

with receptor cross-linking, HUVECS were seeded in a contained area on gelatin 

coated 150 mm dishes. Cells were treated similarly as above except that beads 

were incubated for 90 minutes to ensure maximal binding of beads. Then cells 

were exposed to 1 dyne/cm2, for indicated times using a parallel plate flow 

chamber (cytoshear flow chamber 75mm by 38mm, CytoDyne, La Jolla, CA). 

The ratio of phospho-serine 473 Akt to total Akt was measured by densitometry 

(Quantity One, BioRad Laboratories) and used as a read out for PI3K activity. 
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RNA interference 

The expression of p110α was inhibited by siRNA transfection. HUVECs 

were seeded 24hr before transfection at 50% confluency. Cells were transfected 

with 50 nmol/L either non-silencing siRNA, or P110α 

(CTGAGTCAGTATAAGT) using Hiperfect according to manufacturers 

instruction on two consecutive days and used for experiments 72hr after first 

transfection. P110α expression was consistently decreased 85-90% of control.  

 

Western blot 

HUVEC monolayers were lysed by adding hot 2X loading buffer (24mM 

Tris pH 6.8, 10% glycerol,1% SDS, 6mM 2-mercaptoethanol, 0.05% 

Bromophenol Blue) and scraping and further boiling at 95°C for 8 minutes. About 

fifty micrograms of lysate was resolved on SDS-PAGE, then blotted onto 

nitrocellulose (Biorad) as recommended by manufacturer. For 

immunoprecipitation, cells were harvested with RIPA buffer (10 mM Tris, 

pH=7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 5 mM NaF, 2 mM Na3VO4, 

0.1% SDS, 0.5% Na deoxycholate, 1% Triton X-100, 10% glycerol, 1 mM 

PMSF), with added proteinase cocktail and incubated using protein G sepharose 

beads (Sigma).  
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Statistics 

The mean fraction of lymphocytes migrating on the EC surface, or 

undergoing TEM among the treatment vs. control groups among several 

experiments was calculated and tested for statistical significance (P<0.05) by 

paired Students t-test. All the data are shown as mean±SEM. To evaluate PI3K 

activity changes by cross-linking, trends in each group were compared by linear 

regression analysis (Prism, GraphPad Software, Inc).   

 

Results 

Inhibition of endothelial PI3-kinase class IB activity does not perturb 

lymphocyte transendothelial migration 

We observed in our initial experiments that p85 knockdown reduces 

lymphocyte TEM, but less completely than the broad-spectrum small molecule 

inhibitors of PI3K, LY-294002 and wortmannin. We hypothesized that 

endothelial p110γ might be involved in lymphocyte TEM. To determine if EC 

p110γ participates in lymphocyte TEM, HUVEC monolayers were treated with 

AS605240 (IC50 at 8nM), which selectively inhibits p110γ activity, and then 

lymphocyte TEM was studied using a real time in vitro model that allows direct 

observation of interactions between freshly isolated T lymphocytes and cytokine-

activated HUVEC under physiological shear stress as described in Methods. 

Pretreatment of EC with p110γ inhibitor did not affect lymphocyte TEM (Figure 
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3-1; p=not significant; 3 independent experiments). This observation suggests that 

p110γ activity is not required for lymphocyte TEM. 

 

Endothelial PI3-kinase class IA activity is required for efficient 

lymphocyte transendothelial migration 

p110γ inhibition did not affect lymphocyte TEM and p85 inhibition 

reduced lymphocyte TEM, suggesting that PI3K IA is involved in lymphocyte 

TEM. To inhibit p110δ activity, cells were treated with IC87114. This compound 

is highly selective for p110δ (IC50 value of 0.1 µM) having about 100-fold 

selectivity between p110δ and other isoforms [18]. Lymphocyte TEM was not 

affected by treatment of EC with this inhibitor (Figure 3-2A).  

To inhibit p110β EC were treated with TGX-115. This compound inhibits 

p110β activity by IC50 value of 0.1 µM and p110δ activity by IC50 value of 1 µM 

[18]. Since inhibition of p110δ did not affect lymphocyte TEM, any effects 

observed by this inhibitor, at concentration we used (3 µM), should be due to 

blockade of p110β activity. Treatment of EC with this inhibitor did not affect 

lymphocyte TEM (Figure 3-2B). 

Next, we looked at importance of p110α activity in lymphocyte TEM. We 

used PIK-75, which has an IC50 value for p110α ~10 nM and has about 10 and 

100-fold selectivity between p110α and p110β and p110δ, respectively [18]. 

Treatment of EC with PIK-75 reduced lymphocyte TEM, significantly (Figure 3-

2C; 74 ± 5.5% of control; p<0.05) without affecting lymphocyte surface motility. 
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To further confirm the involvement of endothelial p110α in lymphocyte TEM, 

p110α expression in EC was inhibited by RNAi, as described in Methods. p110α 

expression was efficiently reduced as shown in Figure 3-2D. Although 

lymphocyte motility on the surface of endothelium was not disturbed by p110α 

knockdown, p110α knockdown HUVECs did not support lymphocyte TEM as 

efficient as EC transfected with non-silencing siRNA (Figure 3-2E; 80 ± 2.2% of 

control; p<0.05). These data indicate that endothelial PI3K IA activity through 

p110α is important for lymphocyte diapedesis. 

 

Endothelial mTOR is not required for lymphocyte TEM 

PI3K participates in various cellular events via different pathways. Since 

our previous studies suggest that PI3K regulate lymphocyte diapedesis by 

mediating actin remodeling and consequently remodeling of adherens junctions, 

we looked at PI3K downstream pathways that mediate actin remodeling. One of 

these pathways involves mTORC2 [19-21], mTOR is a large serine/threonine 

kinase that is in complex with multiple proteins. We inhibited mTOR activity 

using pp242, an ATP competitive inhibitor that targets both mTORC1 and 

mTORC2. Pretreatment of EC with pp242 resulted in lymphocytes detaching after 

firm adhesion (Figure 3-3A; p=not significant; 4 independent experiments), 

suggesting that mTOR activity is involved in stable adhesion of lymphocytes to 

EC. Reanalyzing data after exclusion of detached lymphocytes indicated that EC 

mTOR activity is not required for lymphocyte TEM (Figure 3-3B;  p=not 

significant; 4 independent experiments). 
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Cross-linking ICAM-1 or VCAM-1 does not induce PI3K activity 

During leukocyte TEM, the integrin adhesion molecules of leukocytes, 

LFA-1 and VLA-4, interact with ICAM-1 and VCAM-1, respectively, which 

mediates firm adhesion of leukocytes to endothelium and it initiates signaling 

events in EC that can facilitate leukocyte diapedesis [22-28]. Our observation that 

endothelial PI3K activity is required for lymphocyte diapedesis suggests that upon 

lymphocyte-endothelial interaction under shear stress, there would be cues from 

either lymphocytes or shear stress that induce specific increase in PI3K activity. 

To test this hypothesis, we cross-linked either ICAM-1 or VCAM-1 using beads. 

This model has been extensively used to mimic integrin-mediated clustering of 

the adhesion molecule. We also cross-linked CD58 (LFA-3) as a control since this 

molecule is expressed as a glycosylphosphatidylinositol (GPI)-anchored form and 

does not induce signaling via its cytoplasmic domain. Confluent TNF activated 

HUVECs were starved overnight and incubated with mouse antibody against the 

adhesion molecule of interest. Then cells were incubated with rabbit anti-mouse 

coated beads up to 30 minutes as described in Methods. Cells were harvested and 

phospho-Akt to total Akt levels were detected by Western blotting. CD58 or 

ICAM-1 cross-linking did not induce a significant increase in phospho-Akt levels. 

Although VCAM-1 cross-linking induced phospho-Akt levels, especially after 30 

minutes of cross-linking this observation was not consistent in all experiments 

(Figure 3-4; p=not significant; 4 independent experiments). These results suggest 
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that ICAM-1 or VCAM-1 ligation by themselves do not produce a robust PI3K 

signalling.  

  

Applying shear stress alone on endothelium does not increase PI3K 

activity  

While exposure of aortic EC to high shear stress (5 dyne/cm2 or higher) 

can induce a significant increase in PI3K activity [29-31], the effect of lower 

shear stress that microvascular EC are exposed to on PI3K activity is not clear. 

Cinamon (2001) reported that shear stress is essential for leukocyte diapedesis 

[32]. Thus, we hypothesized that lower shear stress might also induce PI3K 

activity in EC. Confluent TNF activated HUVECs were starved overnight and 

then were exposed to 1 dyne/cm2 shear stress for the indicated times. Under these 

experimental settings we did not observe a significant increase in PI3K activity 

(Figure 3-5). 

 

Cross-linking ICAM-1 on EC in presence of shear stress induces PI3K 

activity 

Next, we tested the combined effect of shear stress and cross-linking of 

either ICAM-1 or VCAM-1 on PI3K activity. Confluent TNF activated HUVECs 

were starved overnight and then ICAM-1 or VCAM-1 were cross-linked followed 

by shear stress application for the indicated times, as described in Methods. 

Comparing to CD58 ligated cells, ligation of ICAM-1 induced PI3K in a time 
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dependent manner (Figure 3-5A; 101±7.5% vs. 143±18% after 10minutes and 

110±13% vs. 177±25% after 30 minutes, data are normalized to CD58 0min; 

p<0.05; 4 independent experiments). Ligation of VCAM-1, on the other hand, 

failed to mediate change in PI3K activity comparing to CD58 ligation (Figure 3-

5B; 101±7.5% vs. 123±8.8% after 10 minutes and 119±14.5% vs. 162±23% after 

30 minutes, data are normalized to CD58 0min; p=not significant; 4 independent 

experiments). These data suggest that during lymphocyte TEM, interaction of 

LFA-1 adhesion molecule of lymphocytes with ICAM-1 mediates signaling 

events in EC that results in PI3K activation. 

 

Discussion 

In addition to its role in leukocyte trafficking, the PI3K signaling pathway 

is an important player in many other endothelial events such as growth, motility 

and angiogenesis. Thus, its complete inhibition for therapeutic reasons might 

produce many other defects in organisms. Therefore, a complete understanding of 

the role of each PI3K subunit and their overall regulation is a valuable step in 

designing more specific anti-inflammatory drugs. Previously, we showed that 

inhibition of expression of p85α regulatory subunit in EC reduced lymphocyte 

diapedesis [1]. In this study we showed that inhibition of p110α activity by a 

specific inhibitor reduced lymphocyte diapedesis. In addition, inhibition of p110α 

expression in EC also decreased lymphocyte diapedesis. All together, these data 

indicate that endothelial PI3K class IA through p110α isoform regulate 

lymphocyte diapedesis by mediating inter-endothelial junction remodeling 
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necessary for accommodation of lymphocyte passage. We could not detect any 

changes in lymphocyte TEM upon inhibition of p110β, p110δ or p110γ. During 

the completion of this project, Ridley and colleagues (2010) published data also 

showing that endothelial p110α participates in lymphocyte paracellular but not 

transcellular migration [4]. Cain, et al., (2010) report the defect by inhibition of 

p110α activity or expression to be at inter-endothelial junction remodeling and 

VE-cadherin phosphorylation and they propose that p110α might coordinate 

adherens junction-changes with actin cytoskeleton.  

To obtain insights about possible mediators of PI3K activity during 

lymphocyte TEM, we studied PI3K activity downstream of adhesion molecules 

ICAM-1 and VCAM-1 in the absence and presence of shear stress. VCAM-1 

cross-linking generates inconsistent results that we cannot explain at this point. 

Similar to our findings, Martinelli, et al., (2009) could not detect PI3K activation 

upon cross-linking of ICAM-1 in their static conditions [33].  

In EC, a mechanotransduction complex consisting of PECAM-1, VE-

cadherin and VEGFR2 was identified upstream of shear-induced integrin 

activation [31]. At low shear stress in our settings we were not able to detect a 

significant rise in PI3K, suggesting that the described mechanotransduction 

complex is not activated. However, ICAM-1 cross-linking in presence of shear 

stress significantly induces PI3K activity after 10 minutes. Shear stress might 

increase the cross-linking efficiency by generating extra force on beads, hence 

enhancing ICAM-1 signaling. However, this is not the case for VCAM-1. Another 
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possibility is that ICAM-1 cross-linking and shear stress both participate in 

induction of PI3K activity in a synergistic manner.  

 The importance of ICAM-1 interactions with its ligands LFA-1 and Mac-1 

in inflammatory responses is apparent by recurrence of a range of infections in 

soft tissues and skin of LAD I patients and also in a mouse model lacking β 

integrin [34, 35]. Also, in vitro studies have shown that ICAM-1 mediated 

signaling is required for leukocyte diapedesis [22, 24, 33, 36-38]. VE-cadherin 

phosphorylation and/or RhoA activation are the proposed mechanisms by which 

ICAM-1 participate in leukocyte diapedesis [22, 24, 36, 39, 40]. ICAM-1-

mediated signaling events, including PI3K activation, might also regulate opening 

of other junctional molecules such as nectin memebrs, which will be discussed 

later.    

Since class IA PI3K is generally activated by tyrosine kinases, 

involvement of p110α in lymphocyte TEM, suggests that a tyrosine kinase 

becomes activated downstream of ICAM-1 which would mediate PI3K activity. A 

number of Tyrosine kinases have been shown to participate in leukocyte TEM 

including Src and FAK that are activated downstream of ICAM-1 [24, 33, 40].  

In summary, endothelial PI3K IA regulates lymphocyte TEM via its 

p110α isoform. EC p110α inhibition of expression or activity does not affect 

lymphocyte surface motility but reduces their ability to undergo diapedesis, 

suggesting that P110α activity participates in EC junction remodeling required for 

passage of lymphocytes. Further, ICAM-1 ligation in the presence of shear stress 
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induces PI3K activity. Further work needs to be done to clarify whether the 

observed PI3K activity is completely p110α dependent or not.  
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Figures 

 

             

Figure 3-1. Endothelial PI3K class IB is not required for lymphocyte 

transendothelial migration. TNF activated HUVECs were pretreated with 3 µM 

P110γ inhibitor (AS605240) for 30 minutes and then lymphocyte TEM was 

assayed under shear stress as in Methods; (mean±SEM; p=not significant; 4 

independent experiments).  
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Figure 3-2. Endothelial PI3K class IA activity is required for efficient 

lymphocyte transendothelial migration. TNF activated HUVECs were 

pretreated with A) 3µM P110δ inhibitor (IC87114); B) 3µM P110β inhibitor 

(TGX-115); or C) 1µM p110α inhibitor (PIK-75) for 30 minutes and then used in 

lymphocyte TEM assays as described in Methods. D) HUVECs transfected with 

non-silencing siRNA or p110α siRNA were immunoprecipitated with p85 and 

membranes were probed for p110α. Image is a representative of 4 independent 

experiments. Knockdown and Immunoprecipitation was done by Qiu-Xia Zhang. 

E) p110α knockdown HUVECs or control were used in lymphocyte TEM assay 

as in Methods (mean±SEM; *=P<0.05; 4 independent experiments). 
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Figure 3-3. Endothelial mTOR is not required for lymphocyte TEM. TNF 

activated HUVECs were pretreated with 10 µM PP242 and then lymphocyte TEM 

was assayed as in Methods. A) Fraction of lymphocytes in each indicated group. 

B) Reanalaysis of experiments by excluding the detached lymphocytes 

(mean±SEM; P=not significant; 4 independent experiments). 
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Figure 3-4. Cross-linking ICAM-1 or VCAM-1 does not induce PI3K activity. 

CD58, ICAM-1 or VCAM-1 on TNF activated starved HUVECs were cross-

linked for the indicated times as described in Methods. Phosphorylated-Akt and 

total Akt were measured by densitometry and the ratio was normalized to CD58 

0min values (mean±SEM; P=not significant; 4 independent experiments). 
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Figure 3-5. Cross-linking ICAM-1 and VCAM-1 on EC in presence of shear 

stress. TNF activated starved HUVECs were exposed to shear stress alone or 

were cross-linked with CD58, ICAM-1 (A), and VCAM-1 (B) and then cells were 

exposed to shear stress for the indicated times. Data were analyzed as described 

(mean±SEM; P<0.05; 4 independent experiments). 
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Chapter 4. Endothelial IQGAP1 Regulates Efficient 

Lymphocyte Transendothelial Migration2 

 

Introduction 

Leukocyte extravasation is fundamental to the development of many 

immune responses including solid-organ allograft rejection. In this process, 

leukocytes leave the bloodstream and migrate into tissues through the endothelial 

cells (EC) that line the walls of vessels, i.e. leukocytes undergo transendothelial 

migration (TEM). Whereas the specific adhesion molecules, chemoattractants and 

possibly signaling pathways involved in TEM are unique among different 

subgroups of leukocytes and vascular beds, the interaction between leukocytes 

and EC during TEM can be generalized into a multicascade event, described in 

recent reviews [1-3]. EC and leukocyte adhesion molecules mediate tethering and 

rolling of leukocytes on EC followed by chemokine-mediated leukocyte 

activation, then firm adhesion to the EC. Finally, adherent leukocytes crawl on the 

surface of endothelium, undergo diapedesis, and enter tissues by mechanisms that 

are not fully understood. 

Leukocyte transmigration may occur by either a transcellular, through EC, 

or paracellular route, between adjacent EC[4-6]. The latter is associated with 

structural changes in the interendothelial adhesion structures and EC 

                                                
2 This work has been published in Eur. J. Immunol. 2010. 40: 204-213 
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cytoskeleton[5, 7, 8]. Cross-linking of adhesion molecules such as CD54 or 

CD106 is shown to mediate signals that lead to EC actin cytoskeleton 

remodeling[9-12]. These signaling cascades promote structural changes in 

interendothlelial junctions, that might be required for efficient leukocyte 

penetration of the endothelium, including redistribution of molecules enriched at 

the junction such as platelet endothelial cell adhesion molecule (PECAM-1; 

CD31), junctional adhesion molecule (JAM) or components of the VE-cadherin 

complex around the migration channel and targeted recycling of sub-plasma 

membrane vesicles underlying the migration pore [5, 6, 13-19]. Thus, in addition 

to VE-cadherin gap formation, poorly defined events that may involve remodeling 

of other interendothelial or endothelial-matrix adhesive contacts, the cytoskeleton 

of the lateral wall of the EC, or fusion of cortical vesicles with the plasma 

membrane likely occur to accommodate the lymphocyte during diapedesis. 

IQGAP1 is a scaffolding molecule that participates in cell-cell adhesion, 

cell motility and polarization by interacting with both cytoskeletal and signaling 

molecules. IQGAP1 interacts with actin by a calponin homology domain[20], 

indirectly with microtubules (MT) through interaction with CLIP-170, a 

microtubule-Plus-End-Tracking-protein[21-23], and localizes to the adherens 

junctions (AJ) cadherin complex by its c-terminus domain[24-27]. IQGAP1 

integrates Ca2+/calmodulin with Rho GTP-binding protein signaling at spatially 

restricted areas of the cell[26, 28]. Functionally, recent work implicates IQGAP1 

in remodeling of VE-cadherin-dependent interendothelial contacts during VEGF-

stimulated angiogenesis[27]. 
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Microtubules regulate the intercellular AJ in epithelial cells. A population 

of MT extend to AJ and are involved in concentrating E-cadherin at the 

intercellular junction[29]. Further, MT-based motors, dynein and kinesin, are 

shown to interact with constituent proteins of AJ complex, β-catenin and p120 

catenin[30, 31], hence may also participate in dynamic regulation of AJ[19]. 

Remodelling of the interendothelial cell junction during TEM may involve 

MT. Under static conditions, MT depolymerization of dermal EC is found to 

promote monocyte and neutrophil TEM[32, 33]. However, under shear stress, 

Carman and Springer observed a 3-4 fold decrease in monocyte TEM across MT-

depolymerized HUVEC, and impaired formation of a “docking structure” 

associated with transcellular diapedesis[4]. Recently, Mamdouh et al also 

observed a decrease in lymphocyte and monocyte paracellular TEM in static 

conditions by inducing endothelial MT depolymerization[19]. They suggested 

that endothelial MT are required for targeting a lateral border recycling 

compartment to the migration channel. 

In this study, we sought to investigate the role of endothelial IQGAP1 in 

lymphocyte TEM under shear stress conditions that closely model the physiologic 

environment of lymphocyte diapedesis[34]. We analyzed the effect of IQGAP1 

knockdown on actin and MT of confluent EC. The results indicate that IQGAP1 

knockdown in EC monolayers decreases MT captured at the interendothelial 

junctions and decreases lymphocyte diapedesis. Further, drug-induced MT 

depolymerization decreases paracellular lymphocyte diapedesis. These results 
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indicate that endothelial IQGAP1 tethers MT to interendothelial junctions and 

participates in junction remodeling during lymphocyte transendothelial migration. 

 

Materials and Methods 

Reagents 

M199, RPMI, HBSS, FBS, ECGS and Matrigel were from Invitrogen 

(Burlington, ON). Nocodazole and FITC-phalloidin were from Sigma (St. Louis, 

MO). Stromal cell derived factor-1 alpha (SDF-1α, CXCL12) and Phycoerythrin-

conjugated CD144 were from R&D (Minneapolis, MN). Tumor necrosis factor-

alpha (TNF-α) was from Biosource (Camarillo, CA). To isolate CD3+ 

lymphocytes, StemSep negative selection system from StemCell Technologies Inc 

(Vancouver, BC) was used. Mouse anti-β-tubulin was from Biomeda and rabbit 

anti-VE-cadherin was from Cayman (Cedarlane laboratories, Mississauga, ON). 

Rabbit IQGAP1 antibody was from Santa Cruz Biotechnology (Santa Cruz, CA). 

Monoclonal PECAM-1 antibody was from Endogen, Woburn, MA. Monoclonal 

CD99 was from MyBiosource (San Diego, CA). Monoclonal JAM-1 was from 

GenTex (Irvine, CA). Fluorophore-conjugated antibodies were from Jackson 

Immunoresearch (West Grove, PA). All secondary antibodies were tested for 

nonspecific binding. CellTrackers were from Molecular Probes (Eugene, OR). 

Hiperfect, non-silencing siRNA, IQGAP1 siRNA (sequence: 

AAGGAGACGTCAGAACGTGGC) and APC siRNA (sequence: 

CCGGTGATTGACAGTGTTTCA) were from Qiagen Inc (Mississauga, ON).  
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Cell culture 

Human umbilical vein endothelial cells (HUVEC) and peripheral blood 

lymphocytes (PBL) were isolated and cultured as described previously[35]. 

HUVECs were grown on 35 mm dishes coated with 1mg/ml Matrigel 72 hr prior 

to TEM experiments, and treated with 10ng/ml TNF-α 20-24 hr before assembly 

of the parallel plate flow chamber apparatus. Where indicated, HUVEC were 

loaded with 10µmol/L nocodazole (ND) or equivalent DMSO dilution for 3 

minutes and washed extensively before the experiments. Where indicated, the EC 

monolayer was treated with ND as above, and conditioned binding buffer was 

collected after 10 minutes. Lymphocytes were resuspended in this conditioned 

medium and used for TEM assay. 

 

RNA interference 

To inhibit IQGAP1 or APC expression, HUVEC were transfected twice 

on consecutive days with either 10 nmol/L non-silencing or 10 nmol/L validated 

IQGAP1 or APC siRNA using Hiperfect according to the manufacturer’s 

direction. IQGAP1 and APC expression was optimally inhibited 96 hr and 72 hr 

after first transfection, respectively. IQGAP1or APC inhibition was tested by 

western blotting as described previously[36]. 
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Analysis of lymphocyte TEM under shear stress        

Lymphocyte TEM was studied by parallel-plate laminar flow adhesion 

assay as described previously[35]. Briefly, Lymphocytes were perfused over the 

EC monolayer at low shear flow (0.5 dyne/cm2) and allowed to accumulate on the 

ECs. The flow rate was then increased to 1 dyne/cm2 throughout the assay (10 or 

20 minutes). The adherent lymphocytes were scored for surface motility (include 

both lymphocytes that migrate more than one cell body on the surface of the EC 

monolayer and those that transmigrate) or transmigrating lymphocytes (cells that 

undergo a change from phase-bright to phase-dark appearance). The data are 

reported as a fraction of the originally accumulated lymphocytes. Lymphocyte 

encounters with interendothelial junctions were determined by following the track 

of each lymphocyte on the videomicrographs over the characteristic phase-bright 

band between adjacent EC. In a second technique, lymphocytes were stained with 

CellTracker Orange according to the manufacturers instructions, then were made 

to interact with HUVEC monlayer in the parallel-plate flow chamber. After 10 

minutes of shear stress application, the chamber was disassembled, and the cells 

were stained for VE-cadherin as described below.  

To study diapedesis, the location of each lymphocyte relative to VE-

cadherin staining was analysed using a LSM 510 confocal microscope (Zeiss, 

Toronto, ON) set to acquire images at 0.4 um intervals in the z-plane. 

Lymphocytes were considered to be associated with gap formation in the AJ if a 

break in endothelial VE-cadherin staining at least 2 µm wide was directly 
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superimposed on the lymphocyte footprint.  Lymphocytes were scored by blinded 

observer for the relationship in the z-plane to the VE-cadherin signal. 

To study the PECAM-1 enrichment around lymphocytes in the process of 

diapedesis, PECAM-1bright naïve T cells (CD45RA+) cells were depleted using 

CD45RA TAC (StemCell Technologies Inc, Vancouver, BC). The cells were 

stained with CellTracker Blue and were made to interact with the HUVEC 

monlayer in the parallel-plate flow chamber. After 10 minutes of shear stress 

application, the chamber was disassembled, and the cells were double stained for 

VE-cadherin and PECAM-1.  

 

Immunofluorescence analysis 

       Confluent HUVEC monlayers seeded on Matrigel-coated glass coverlips 

were treated with either DMSO or ND. Cells were fixed, permeabilized and 

blocked as described previously[36]. The cells were then double-stained using 

anti-β-tubulin and anti-VE-cadherin primary and fluorophore-conjugated 

secondary antibodies. To determine MT and AJ morphology in cells treated with 

non-silencing or IQGAP1 RNAi, transfected HUVEC were trypsinized and 

seeded on coverslips at confluency. The monolayer was stained with either β–

catenin or double-stained for MT and VE-cadherin. MT density adjacent to AJ 

was measured using image analysis software (OpenLab, Lexington, MA). 

Regions of interest were defined extending 3 µm into the cell cortex from VE-

cadherin-positive junctions to quantitate MT staining intensity in at least 30 cells 

in each experiment. To evaluate F-actin cytoskeleton changes, confluent HUVEC 
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monolayers were fixed and permeabilized and F-actin was stained by FITC-

phalloidin. To determine the effect of TNF-α treatment and shear stress on 

junction staining, HUVECs were treated with TNF-α and subjected to shear stress 

in  conditions as described for TEM assay but with no lymphocytes. Then cells 

were fixed and permeabilized and stained for VE-cadherin, PECAM-1 and JAM-

1. CD99 was stained without permeabilization. 

 

Microtubule/Tubulin and G-actin/F-actin In Vivo Assay 

The ratios of free vs. polymerized tubulin and G-actin vs. F-actin in EC 

were quantitated using kits according to the manufacture’s instruction 

(Cytoskeleton, Denver, CO).  

 

Statistics 

The mean fraction of lymphocytes migrating on the EC surface, or 

undergoing TEM among the treatment vs. control groups among several 

experiments was calculated and tested for statistical significance (P<0.05) by 

paired Students t-test (SPSS, Chicago, IL). All the data are shown as mean±SEM. 

To evaluate the position of lymphocytes at the interendothelial junctions, data 

from four independent experiments were pooled and tested for significance using 

Chi square analysis (SPSS).  
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Results 

IQGAP1 is localized to interendothelial junctions 

IQGAP1 has been shown to colocalize with AJ cadherin complex and 

regulate cadherin-mediated cell-cell adhesion[24, 26, 27]. In EC, we observed 

IQGAP1 enrichment at the interendothelial junctions (Figure 4-1B). To study the 

role of EC IQGAP1 in lymphocyte TEM, endothelial IQGAP1 expression was 

inhibited by RNAi. IQGAP1 siRNA transfection of HUVEC consistently reduced 

IQGAP1 protein expression more than 80% (Figure 4-1A and Figure 4-1B vs. 

1C). However, confluent IQGAP1-knockdown EC monolayers developed normal 

AJs, reflected by β-catenin (Figure 4-1E) and VE-cadherin (Figure 4-2D) 

localization at the junctions, similar to the control monolayers (Figure 4-1D and 

Figure 4-2C). Further, analysis of cell surface expression of VE-cadherin and 

PECAM-1 by flow cytometry identified no change in IQGAP1-knockdown vs. 

control cells (data not shown). Functionally, electrical impedance across an 

IQGAP1-knockdown vs. the control monolayer was unchanged (data not shown). 

Taken together, these data indicate IQGAP1 is not required for the surface 

expression or assembly of endothelial junction components.  

 

Loss of IQGAP1 perturbs tethering of microtubules at adherens 

junctions 

Next, we sought to characterize the effect of IQGAP1 knockdown on EC 

cytoskeletal components since IQGAP1 regulates dynamic F-actin 
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polymerization[23, 37, 38] and MT capture at the cell cortex[21-23]. Biochemical 

analysis of free and polymerized tubulin within EC determined IQGAP1 

knockdown decreased the ratio of polymerized tubulin to free tubulin levels in the 

cytosolic extracts (Figure 4-2A and 4-2B). Further, measurements of MT density 

underlying junctions by immunofluorescent double-staining of VE-cadherin and 

tubulin indicated that tubulin fluorescence intensity per µm2 area adjacent to the 

VE-cadherin band among IQGAP1 knockdown EC (Figure 4-2D vs. Figure 4-2C) 

decreased by ~40% (Figure 4-2E). These data indicate that IQGAP1 knockdown 

induced loss of polymerized MT at the interendothelial junctions. 

To evaluate the effect of IQGAP1 knockdown on the actin cytoskeleton of 

confluent EC, the population of F-actin and G-actin in cells was measured. 

Quantification of results by densitometry did not show any effect in F-actin 

content by IQGAP1 knockdown (Figure 4-2F). Consistent with the biochemical 

assay, F-actin distribution did not change between IQGAP1 knockdown cells vs. 

control cells by immunofluorescence microscopy (Figure 4-2G vs. 4-2H). 

  

Endothelial IQGAP1 expression is required for efficient lymphocyte 

TEM 

To determine if EC IQGAP1 participates in lymphocyte diapedesis, 

lymphocyte TEM across HUVEC monolayers transfected with non-silencing or 

IQGAP1 siRNA was studied using a real time in vitro model that allows direct 

observation of interactions between lymphocytes and cytokine-activated HUVEC 

under physiological shear stress[34]. Freshly isolated T lymphocytes were 
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perfused over a TNF-α treated HUVEC monolayer as described in Methods. 

There were no detectable changes in AJ morphology (Supplementary figure 4-1) 

or in distribution of PECAM-1, JAM-1 and CD99 (Supplementary figure 4-2 and 

data not shown) of either IQGAP1 knockdown or control endothelium after TNF-

α treatment and shear stress. Under these conditions, 50%-70% of adherent 

lymphocytes transmigrated across the monolayer by the paracellular route. 

Consistent with previous reports, we saw little transcellular migration across the 

activated HUVEC monolayer[39, 40]. EC IQGAP1 knockdown decreased 

lymphocyte TEM to about 70% of control (Figure 4-3A), while the fraction of 

lymphocytes that locomoted on the surface of EC monolayer was not affected by 

IQGAP1-knockdown (Figure 4-3A).  

We hypothesized that EC IQGAP1 deficiency might alter lymphocyte 

locomotion to favored sites of diapedesis. We evaluated lymphocyte movement 

toward interendothelial junctions by two methods. First, analysis of 

videomicrographs indicated a similar fraction of lymphocytes encounter at least 

one interendothelial junction during locomotion on the surface of the EC 

monolayer between IQGAP1-knockdown EC and EC transfected by non-silencing 

siRNA (83±4% vs. 85±3% (mean±SEM); p=NS, n=6 independent experiments). 

Second, immunofluorescence microscopy studies of co-cultures of lymphocytes 

adherent to EC monolayers, fixed after 10 minutes of applied shear (pooled from 

4 independent experiments including more than 200 lymphocytes) did not show 

any difference in the fraction of adherent lymphocytes in contact with VE-

cadherin-stained junctions between control and IQGAP1 knockdown monolayers 
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(84% vs. 72%; p=NS). These observations suggest that EC IQGAP1 might 

regulate the diapedesis stage.  

 

Knockdown of EC IQGAP1 decreases lymphocyte penetration of 

interendothelial junctions 

To assess diapedesis in more detail, TEM through the EC monolayer was 

evaluated by confocal microscopy. After 10 minutes of interaction under shear 

stress conditions, the flow chamber was disassembled, and the co-culture of EC 

and pre-labeled lymphocytes was fixed and stained for VE-cadherin. 

Lymphocytes were classed in three groups according to the position of the 

lymphocyte to EC VE-cadherin: lymphocytes that were in contact with VE-

cadherin were considered above the junction if no part of lymphocyte was lower 

than VE-cadherin staining in the z dimension (Figure 4-3B); lymphocytes that 

extended through a transmigration channel but still had a uropod above VE-

cadherin staining were considered to be within the junction (Figure 4-3C); 

lymphocytes completed diapedesis if the whole lymphocyte was below the level 

of VE-cadherin (Figure 4-3D). Results of four independent experiments 

evaluating more than 200 lymphocytes associated with EC AJs were pooled for 

analysis. In agreement with the analysis of the videomicroscopy experiments, we 

observed the fraction of lymphocytes beneath IQGAP1-deficient EC was 

decreased to ~60% of control (Figure 4-3E, p<0.01). Furthermore, the fraction of 

lymphocytes that were in the suprajunction position was 1.6 fold higher among 

lymphocytes migrating across IQGAP1-knockdown vs. control endothelial 
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monolayers (Figure 4-3E, p<0.01). Taken together, these results indicate that EC 

IQGAP1 participates in lymphocyte diapedesis but it is not involved in 

lymphocyte locomotion on the surface of endothelium. 

IQGAP1 is known to associate with APC at the intercellular junctions and 

couple MT via a complex with CLIP-170 [23, 41]. Hence we determined the 

effect of endothelial APC knockdown on lymphocyte TEM. Using siRNA, APC 

was depleted to 80-90% of control level (3 independent experiments). We 

observed lymphocyte TEM across APC-knockdown monolayers was decreased to 

75± 2% ((mean±SEM); 3 independent experiments; p<0.01) versus control 

monolayers. Taken together with the observation that IQGAP1 knockdown 

decreases EC MT density, these data suggest that IQGAP1, via APC, may act to 

tether MT to sites at the interendothelial junctions, perhaps to facilitate junction 

remodeling during TEM.  

 

Endothelial MT depolymerization decreases lymphocyte TEM 

Next, we sought to directly determine whether MT depolymerization 

inhibits lymphocyte TEM across interendothelial junctions in a manner similar to 

IQGAP1 or APC knockdown. Endothelial MT were briefly depolymerized using 

nocodazole (ND), as described in Methods. ND treatment of the monolayer 

mediated depolymerization of MT as shown by assay of polymerized vs. free 

tubulin in EC (Figure 4-4A and Figure 4-4B). Effective MT depolymerization by 

ND treatment was confirmed by immunofluorescence staining of tubulin (Figure 

4-4D vs. 4-4C). Unlike prolonged ND treatment which causes VE-cadherin band 
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fragmentation and actin stress fiber formation (supplementary figure 4-3), 

interendothelial junctions remained structurally intact by brief ND treatment since 

VE-cadherin (Figure 4-4F) and beta-catenin (not shown) staining was unchanged 

compared to control monolayers (Figure 4-4E). Moreover, TNF-α treatment and 

shear stress did not affect AJ morphology (Supplementary figure 4-4) or 

distribution of VE-cadherin, PECAM-1, CD99 and JAM-1 (Supplementary figure 

4-5 and data not shown) of ND treated EC versus controls. Flow cytometry 

analysis indicated similar VE-cadherin and PECAM-1 cell surface expression in 

DMSO and ND treated EC (data not shown). ND treatment did not affect the 

content or distribution of the F-actin cytoskeleton, as assessed by G-actin/F-actin 

assay in EC (Figure 4-4G and Figure 4-4H) and immunofluorescence staining 

(Figure 4-4J vs. 4-4I), respectively.   

Under these conditions, pretreatment of EC with ND decreased TEM to 

~65% of control (Figure 4-5A, p<0.01), while the fraction of lymphocytes that 

locomoted on the EC surface was not affected (Figure 4-5A). To determine if 

residual amounts of ND remaining after washing ND-treated EC could affect 

lymphocyte MT to alter function, lymphocytes were resuspended in the 

conditioned medium as described in Methods and studied for TEM. We observed 

no changes in lymphocyte motility or diapedesis (Figure 4-5A).  

Analysis of live-cell videomicroscopy indicated a similar fraction of 

lymphocytes encountered at least one interendothelial junction during movement 

on control or ND-treated monolayers, (83±5% vs. 87±3% (mean±SEM); p=NS, 

n=5 independent experiments). Further, analysis of immunofluorescence images 
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of co-cultures of lymphocytes adherent to EC monolayers, fixed after 10 minutes 

of applied shear, was consistent with the videomicroscopy results. We observed 

no difference in the fraction of adherent lymphocytes in contact with VE-cadherin 

stained junctions between control and ND treated monolayers (76±4% vs.75±5% 

(mean±SEM); p=NS, n=6 independent experiments). These results indicate that 

loss of cortical endothelial MT does not influence movement of lymphocytes to 

the interendothelial junction, suggesting that endothelial MTs play a role in 

lymphocyte interpenetration of adjacent EC.  

 

EC microtubule depolymerization inhibits lymphocyte penetration of 

interendothelial junctions 

The location of lymphocytes within the interendothelial junction, in EC 

treated with ND or vehicle reagent, was analyzed by confocal microscopy as 

described above. Data from lymphocytes adherent to control (n=367) or ND-

treated (n=341) monolayers in 3 independent experiments was pooled. Analysis 

of the position of the lymphocytes revealed that the fraction of lymphocytes in a 

suprajunction position was 1.3 fold higher among MT-depolymerized EC 

monolayers vs. control (Figure 4-5B; p<0.01). The fraction that completed 

diapedesis in the ND-treated group was reduced to ~60% of the DMSO-treated 

group (Figure 4-5B; p<0.01). Thus, both videomicroscopy and confocal imaging 

techniques indicate that endothelial MTs are required for efficient diapedesis, but 

are not essential for lymphocyte locomotion on the EC surface. Further, loss of 
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IQGAP1 expression and MT depolymerization both cause lymphocytes to 

accumulate above the AJ. 

 

EC IQGAP1 knockdown or EC MT depolymerization do not affect 

adherens junction gap formation during diapedesis 

Leukocyte diapedesis is associated with specific and transient gap 

formation in AJ[13, 14, 18], hence, we investigated whether loss of EC IQGAP1 

or MT depolymerization affected gap formation associated with suprajunction-

localized lymphocytes. We observed 22±3% of lymphocytes adherent to control 

monolayers were associated with a gap>2µm in diameter. Neither IQGAP1-

knockdown nor ND treatment change the fraction of lymphocytes associated with 

VE-cadherin gap formation (110±36% vs 98±15% of control (mean±SEM); 

siIQGAP1 vs ND treatment; 4 independent experiments). Further, we examined 

the frequency of gaps enriched in PECAM-1 distributed around transmigrating 

lymphocytes. In these experiments, we studied TEM of PECAM-1-dim memory T 

cells.  We observed 32±9% ((mean±SEM); 3 independent experiments) of 

lymphocytes migrating across control EC monolayers were associated with a VE-

cadherin gap enriched in CD31 (Supplementary figure 4-6). Gaps in VE-cadherin 

forming in IQGAP1 knockdown EC monolayers showed similar PECAM-1 

enrichment (103±10% of control; mean±SEM in 3 experiments).  
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These data indicate that, like IQGAP1, the endothelial MT cytoskeleton 

facilitates lymphocyte diapedesis, but does not appear to be critical for 

displacement of VE-cadherin from the nascent migration channel 

 

Discussion 

Each stage of leukocyte TEM is regulated by signaling pathways mediated 

in both leukocytes and endothelial cells that facilitate progress to the next stage. 

For instance, engagement of the adhesion molecule ICAM-1 during firm adhesion 

leads to signaling events that result in actin remodeling, VE-cadherin 

phosphorylation and subsequently, paracellular leukocyte diapedesis [13, 16, 17]. 

Thus, molecules localized at the interendothelial cell junctions are candidate 

proteins to regulate paracellular transmigration of leukocytes. In this study, we 

examined the involvement of endothelial IQGAP1 in this process, since this 

molecule localizes at the cell-cell junctions and regulates dynamic assembly of 

cytoskeleton components: actin filaments and microtubules.  

The major observations of this study are that IQGAP1, and 

interendothelial junction-associated MT, regulate paracellular TEM of 

lymphocytes. IQGAP1 knockdown both impairs lymphocyte TEM and decreases 

cortical MT density underlying the AJ of HUVEC in vitro. Similarly, knockdown 

of APC, a component of the protein complex linking IQGAP1 and MT, decreases 

lymphocyte TEM. Brief treatment of EC with ND has the similar effects on both 

lymphocyte TEM and cortical MTs. These interventions promote accumulation of 

lymphocytes on the luminal surface of the EC monolayer, above the level of VE-
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cadherin. Surprisingly, a similar fraction of such lymphocytes were associated 

with an underlying gap in the VE-cadherin band among IQGAP1-knockdown, 

MT-depolymerization, and control monolayers. 

IQGAP1 has been implicated to participate in dynamic interendothelial 

junction remodeling after VEGF stimulation[27]. IQGAP1 couples VEGFR2 to 

the β–catenin/VE-cadherin complex to facilitate VEGF-stimulated events such as 

tyrosine phosphorylation of VE-cadherin. VEGF stimulation increases IQGAP1 

association with VE-cadherin, and loss of IQGAP1 expression reduces the 

assembly of the VEGFR2/VE-cadherin complex, involved in disassembly of 

endothelial AJ. In contrast to this reported data, however, we did not observe any 

changes in the basal assembly of AJ components in IQGAP1 knockdown EC 

monolayers or barrier function of the IQGAP1 knockdown monolayer. In our 

experiments, the IQGAP1-deficient HUVEC were plated at confluence, then 

maintained in complete media with 20% FBS for 48 hours to promote junction 

maturation. Hence, in the current experiments, effects of IQGAP1 knockdown on 

cell migration or repopulation at subconfluent densities were minimized. 

IQGAP1 is known to associate with E-cadherin, regulate actin assembly, 

and coordinate the tethering of MT during polarized cell migration through 

interaction with MT plus-end binding proteins[21, 22, 24, 37, 38]. Our data 

implicate the participation of MT in endothelial IQGAP1-dependent junction 

remodeling during lymphocyte diapedesis. First, following knockdown of 

IQGAP1, we observed a decrease in polymerized tubulin and MT density near AJ 

in cells lacking IQGAP1 expression. Although the effect of IQGAP1 knockdown 
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on EC MT is modest, the effect is confirmed by both biochemical and semi 

quantitative imaging techniques. Second, APC knockdown elicits similar effects. 

Third, direct pharmacologic induction of MT depolymerization mimicking the 

effect of IQGAP1 knockdown inhibited lymphocyte TEM. In each case, 

lymphocytes were seen to accumulate over the luminal surface of the nascent 

migration channel in a similar position. Taken together, these three lines of 

evidence are consistent with a model that IQGAP1 and the junction-associated 

MT network participates in remodeling of the EC at the interendothelial junction 

during leukocyte TEM.  

Previous work identified that endothelial MT are critical for development 

of an actin-based docking structure underneath the adherent lymphocyte, that 

might function to promote lymphocyte adhesion under arterial shear stress and 

transendothelial migration[4, 42]. IQGAP1 is enriched at intercellular junctions, 

hence is not anticipated to participate in docking structure formation. Moreover, 

our data identify no defect in lymphocyte encounters with intercellular junctions. 

The current observations indicate that functionally, endothelial MT act to enable 

paracellular diapedesis of the HUVEC monolayer by adherent lymphocytes.  

Previously, it has been reported MT loss produced by prolonged ND 

incubation of EC results in increased neutrophil and monocyte transendothelial 

migration associated with VE-cadherin loss, actin stress fiber formation and gap 

formation at interendothelial junctions[32, 33]. However, under the conditions 

used in these experiments, our immunofluorescence microscopy and flow 

cytometry results did not identify a change in VE-cadherin cell surface expression 
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or localization at junctions after brief ND treatment. Further, our data illustrate the 

structural and functional integrity of the monolayer under condition of IQGAP1 

knockdown. The discordant results in TEM assays emphasizes the importance of 

careful evaluation of monolayer integrity with each manipulation. Similar to our 

observations, other groups reported intact EC monolayer and decreased monocyte 

or lymphocyte diapedesis under static conditions after endothelial MT 

depolymerization[4, 19].  

In the current experiments, we report on endothelial MT function during 

lymphocyte diapedesis under shear stress. Our results confirm a role for 

endothelial MT to remodel the interendothelial cell junction under these short, 

physiologic timeframes. Further, our data extends these observations to indicate 

that the MT array associated with the interendothelial junction is not critically 

required for separation of the VE-cadherin junction, since neither IQGAP1 

knockdown nor ND treatment altered the fraction of lymphocytes associated with 

nascent migration channel formation. At present the events that occur to facilitate 

leukocyte transendothelial migration after opening a VE-cadherin gap are unclear. 

These findings are reminiscent of reports of the effect of CD99 blockade [43, 44]. 

CD99 appears to function at a point after the development of a gap in VE-

cadherin to facilitate completion of the diapedesis step. Interestingly, we identify 

no change in the total distribution of endothelial CD99 following either IQGAP1 

knockdown or ND treatment. Mamdouh et al (2008) showed monocyte and 

lymphocyte diapedesis is associated with MT dependent-targeted recycling of 

membrane vesicles in which PECAM-1 but not VE-cadherin are components of 
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this membrane vesicle compartment[19]. Our data are compatible with a model 

that IQGAP1 is involved in the recycling of membrane vesicles that might 

facilitate lymphocyte diapedesis by increasing the membrane surface area or, 

alternatively, bringing more free junctional molecules such as CD99 to the 

surface. Future work will be needed to establish such a link. Our observation that 

VE-cadherin gap formation is not affected by loss of IQGAP1 or MT favors the 

model that VE-cadherin gap formation is regulated by a separate mechanism. 

In our experiments we found that only about a third of lymphocytes that 

are associated with a VE-cadherin gap are surrounded by a ring of PECAM-1. 

Previously, it was reported that PECAM-1 is enriched around lymphocytes 

transmigrating through human microvascular endothelial cells[6]. This 

discrepancy might be due to the subset of lymphocytes that were analyzed. We 

depleted naive T cells (CD45RA+), that have been shown to express PECAM-1, 

in order to be able to specifically analyze endothelial PECAM-1 enrichment [45]. 

Alternatively, it may be that only the fraction of PECAM-1 enriched lymphocytes 

in our samples are actively undergoing diapedesis. This cannot be distinguished 

by imaging fixed co-cultures. Nevertheless, IQGAP1 does not seem to be required 

for PECAM-1 enrichment around lymphocytes.  

Our findings suggest a model of upstream regulation of IQGAP1 

activation for interendothelial junction remodeling during lymphocyte TEM. 

IQGAP1 is an effector of calcium signaling, tyrosine kinases and Rho GTP 

binding proteins[28]. Previous work identified the participation of 

phosphatidylinositol 3-kinase (PI3K) activity in junction remodeling during 
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paracellular TEM of lymphocytes[46]. Phosphatidylinsositol-3,4,5-triphosphate, 

the product of PI3K activity, enables recruitment of PH domain-containing 

molecules such as GDP/GTP exchange factors for Rho GTP binding proteins. 

Future work to further define specific intermediates of this pathway will be 

required.  

In summary, our results indicate that endothelial IQGAP1 and MT are 

involved in remodeling interendothelial junctions to accommodate lymphocyte 

diapedesis under physiologic shear stress. Conversely, lymphocyte locomotion on 

the EC monolayer and localization to the interendothelial junctions does not 

require either endothelial IQGAP1 or cortical intact MT. 
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Figures 

                  

 

Figure 4-1. Adherens junctions remain intact after IQGAP1 knockdown. A) 

IQGAP1 expression in HUVEC was inhibited by RNA interference and its 

expression was measured by western blotting. EC transfected with non-silencing 

siRNA (B) and (D) or IQGAP1 siRNA (C) and (E) were replated on coverslips 

and stained for IQGAP1 (B) and (C) or β-catenin (D) and (E). The scale bar is 10 

µm. Images are representative of 6 independent experiments. 
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Figure 4-2. IQGAP1 inhibition reduces MT extension to the cell cortex but 

does not affect the actin cytoskeleton. (A) The fractions of free and polymerized 

tubulin in IQGAP1 knockdown EC or control cells were separated and measured 

as described in Methods. (B) The ratio of polymerized tubulin to free tubulin 

quantified by densitometry in 4 independent experiments (mean±SEM; 

*=p<0.05). MT morphology in EC transfected with non-silencing (C) or IQGAP1 

siRNA (D) was assessed by immunofluorescent double staining of MT (red) and 

VE-cadherin (green), the insets indicate higher magnification of cortical MT 

adjacent to the interendothelial cell junction. (E) Quantitation of intensity of 

cortical MT below VE-cadherin stained junctions (3 µm thick regions) in 3 

independent experiments, (mean±SEM; *=p<0.05). The populations of G-actin 

and F-actin in EC monolayers transfected with non-silencing or IQGAP1 siRNA 
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were measured by G-actin/F-actin in vivo assay as described in Methods; (F) 

illustrates the ratio of G-actin to F-actin quantitated in 3 independent experiments 

by densitometry (mean±SEM; p=NS). EC transfected with non-silencing siRNA 

(G) or IQGAP1 siRNA (H) were stained for actin. Images are representative of 3 

independent experiments. The scale bar is 10 µm.  
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Figure 4-3. Endothelial IQGAP1 knockdown decreases lymphocyte 

diapedesis. (A) EC were transfected with non-silencing or IQGAP1 siRNA, then 

lymphocyte TEM was assayed under shear stress as in Methods; (mean±SEM; 

*=p<0.05, 6 independent experiments). EC transfected with non-silencing or 

IQGAP1 siRNA interacted with pre-labelled lymphocytes, then the co-culture was 

fixed and stained for VE-cadherin and studied by confocal microscopy as in 

Methods. Each panel shows stacks of confocal microscopy images in the xy 

(lower left), xz (top) or yz (right) dimension in a plane through the adherent 

lymphocyte. Lymphocyte location according to VE-cadherin was scored as (B) 

suprajunction, (C) intrajunction, or (D) completed diapedesis. The arrow in (C) 

identifies a lymphocyte protrusion extended under VE-cadherin. The scale bar is 5 

µm. (E) The distribution of lymphocytes by location among control (n=240) or 

IQGAP1 knockdown cells (n=210) in pooled data from 4 independent 

experiments (p<0.01 by Chi square test).  
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Figure 4-4. Inhibition of cortical MT extension in HUVEC by ND treatment. 

(A) The population of free and polymerized tubulin in DMSO or ND treated EC 

was separated and measured as described in Methods. (B) The ratio of 

polymerized tubulin to free tubulin quantitated by densitometry in 3 independent 

experiments (mean±SEM; **=p<0.01). DMSO or ND treated EC monolayers 

were fixed, permeabilized and stained for tubulin (C, D) or VE-cadherin (E, F) to 

assess MT depolymerization and AJ integrity, respectively. (G) The populations 

of G-actin, G, and F-actin, F, in DMSO or ND treated EC were measured by G-

actin/F-actin in vivo assay as described in Methods. (H) The ratio of G-actin to F-

actin quantified in 4 independent experiments by densitometry (mean±SEM; 

p=NS). DMSO (I) or ND (J) treated EC monolayers were stained for actin as 

described in Methods. Images are representative of four independent experiments. 

The scale bar is 10 µm.  
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Figure 4-5. Depolymerization of cortical endothelial microtubules decreases 

lymphocyte TEM without affecting lymphocyte motility. (A) HUVEC were 

loaded with either DMSO or ND, washed extensively, then lymphocyte TEM was 

analyzed as in Figure 4-3. To determine the effect of ND residual amounts after 

washout, HUVEC were left untreated while lymphocytes were resuspended in 

ND-treated HUVEC conditioned medium as in Methods. The data are mean ± 

SEM of 5 independent experiments analyzed by video microscopy, ** = p<0.01. 

Lymphocyte TEM across ND or DMSO-treated EC monolayer was assessed by 

confocal microscopy as in Figure 4-3B to 4-3E. (B) illustrates the distribution of 

n=267 lymphocytes (control EC) vs. n=341 (ND EC) pooled from 6 independent 

experiments (p<0.01 by Chi square test).  

 

 

 

 

 



                                                                                                                     237                                                                                                                

Supplementary Figures 

 

 

Supplementary figure 4-1. HUVEC transfected with IQGAP1 siRNA (B and D) 

or non-silencing siRNA (A and C) were seeded on coverslips and stained for VE-

cadherin. Photomicrographs of resting monolayers (A and B) or monolayers 

subjected to pretreatment with TNF-α and shear stress (C and D) are shown. 

Images are representative of 3 independent experiments. 
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Supplementary figure 4-2. HUVEC transfected with IQGAP1 siRNA (B, D, F) 

or non-silencing siRNA (A, C, E) were pretreated with TNF-α and subjected to 

shear stress in the absence of lymphocytes, then stained for PECAM-1 (A and B), 

JAM-1 (C and D) or CD99 (E and F) as described in methods. Images are 

representative of 3 independent experiments. 
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Supplementary figure 4-3. HUVEC seeded on coverslips were treated with ND 

(C-H) for indicated times or DMSO (30min) (A and B) and double stained for F-

actin (A, C, E, G) and VE-cadherin (B, D, F, H). Images are representative of 3 

independent experiments 
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Supplementary figure 4-4. HUVEC seeded on coverslips were treated with ND 

(B and D) or DMSO (A and C) and stained with VE-cadherin. Photomicrographs 

of resting monolayers (A and B) or monolayers pretreated with TNF-α and 

subjected to shear stress (C and D) are shown. Images are representative of 3 

independent experiments. 
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Supplementary figure 4-5. TNF-α treated HUVEC were treated with ND (B, D, 

F) or DMSO (A, C, E) and subjected to shear stress in the absence of 

lymphocytes, then stained for PECAM-1 (A and B), JAM-1 (C and D) or CD99 

(E and F) as described in methods. Images are representative of 3 independent 

experiments. 
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Supplementary figure 4-6. An example of a lymphocyte associated with VE-

cadherin gap (more than 2µm length) that is surrounded by a ring of PECAM-1. 

HUVEC transfected with IQGAP1 siRNA or non-silencing siRNA then treated 

with TNF-α and SDF-1α were interacted under shear stress with lymphocytes 

stained by CellTracker Blue. The co-culture was fixed and double stained for VE-

cadherin (A, green) and PECAM-1 (B, red) and studied by confocal microscopy. 

Image is a representative of 3 independent experiments. 
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Chapter 5. The role of FGD5, an endothelial-enriched 

guanine nucleotide exchange factor, in cell-matrix 

adhesion and survival 

 

Introduction 

PI3K integrate a variety of signals from the extracellular environment that 

modulate endothelial function. For example the principal endothelial growth 

factor, VEGF, signals through PI3K to Akt to promote EC survival [1]. In 

parallel, cytoskeletal dynamics are regulated by PI3K through RhoGEFs [2-4]. 

Activated Rho GTPases are able to participate in many cellular processes such as 

cell morphology changes, cell division and angiogenesis, through specific 

effectors [5-8]. In a previous study, we identified IQGAP1, a Rac1/Cdc42 

effector, as an important component of inter-endothelial junction remodeling 

required for efficient lymphocyte diapedesis [9]. In a search for GEFs that would 

mediate Rac1/Cdc42 activation and consequently IQGAP1 activation during 

lymphocyte diapedesis we identified FGD5 as an attractive candidate since it is 

highly enriched in EC [10-13]. This study aimed to characterize EC that are 

deficient in FGD5 expression. 

Rho GTPase members have been implicated in cell survival in a number 

of survival pathways. One mechanism is nuclear trafficking of Akt [14]. RhoB 

has been shown to participate in cell survival during angiogenesis via a 
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mechanism distinct from VEGF [14]. Inhibition of RhoB activity reduces Akt 

stability and to a greater extent, its trafficking into nucleus [14]. Akt 

phosphorylates and promotes Forkhead family of transcription factors’ (FOXOs) 

exit from nucleus [15, 16], hence preventing expression of pro-apoptotic proteins 

such as Fas ligand by FOXOs [15].  

Another possible mechanism by which Rho GTPases participate in cell 

survival is by mediating actin remodeling. For example, TNF treatment of 

opossum kidney cells reduces serum starvation-induced apoptosis [17]. This was 

associated with PI3K dependent activation of Rac1 and Cdc42 activity, F-actin 

remodeling and NF-κB translocation to nucleus [17]. Transfection of cells with 

dominant negative Cdc42 resulted in reduced NF-κB translocation to nucleus and 

prevented anti-apoptotic effects of TNF [17]. 

A third mechanism of Rho GTPases role in cell survival is illustrated by 

importance of IQGAP1 in VEGF responses [18, 19]. As described in introduction, 

IQGAP1 induces VEGFR2 complex formation with VE-cadherin and hence 

mediates VEGF-dependent Akt phosphorylation, induction of cell proliferation, 

and cell motility [18, 19]. 

 A fourth mechanism of Rho GTPases’ contribution to cell survival is by 

participating in anchorage-mediated signalings. These signalings are essential for 

survival and are generated by integrins activation upon interaction with matrix 

[20]. Upon cell adhesion to matrix Cdc42 and Rac1 are transiently activated and 

mediate cell spreading [21, 22]. The physiological significance of integrin-

mediated Rac1 signaling is apparent by embryonic lethality of a β1 integrin 
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cytoplasmic mutation defective in activation of FAK [23, 24]. This mutation does 

not affect adhesion of embryonic fibroblasts but they are defective in transmitting 

the adhesion signal to cytoplasm through FAK [23]. Cells carrying this mutation 

were defective in proliferation and had a high rate of apoptosis [24]. 

Overexpression of Rac1 (downstream of FAK/PI3K) rescued survival defects 

while dominant negative Rac1 induced similar effects as seen in cells carrying 

integrin mutation [24]. Importance of Rac1-mediated cell proliferation 

downstream of PI3K is also shown in EC [25].  

 Finally, Rho GTPases might contribute to cell survival by activation of 

PI3K. Rac1 and Cdc42 are implicated upstream of PI3K in some cell events by 

interaction with p85 regulatory subunit [26-29]. Activated Rac1/Cdc42 might in 

turn regulate PI3K activity by a positive feedback by direct interaction with the 

Rho-GAP homology (BH) domain of p85 regulatory subunit of PI3K and 

induction of PI3K activity in vitro [27, 28]. Evidence for the potential biological 

significance of Rho GTPases’ positive feed-forward effect on PI3K activity is 

demonstrated by Cdc42 acting upstream of PI3K in glucose uptake of adipocytes 

in response to insulin [26]. In addition, during phagocytosis, in phagocytic cups, 

Cdc42 contributes to partial PI3K activation and PIP3 generation [29]. 

Rho GTPases activity is regulated by Guanine nucleotide exchange factors 

(GEFs), GTPase activating proteins (GAPs) and Rho guanosine nucleotide 

dissociation inhibitors (GDIs) [30]. GEFs activate Rho GTPases by facilitating 

the exchange of GDP to GTP and are the best studied regulators of Rho GTPases 

[31]. FGD5 is a putative Cdc42 GEF that belongs to the subfamily of FGD [32]. 
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The first member of the FGD sub-family, FGD1, was identified as the gene 

responsible for Faciogenital Dysplasia (FGD) (Pasteris et al., 1994). Further, 

FGD1 contains a Dbl homology (DH) domain and a pleksterin homology (PH) 

domain (found in dbl subfamily of GEFs) and was shown to have Cdc42-GEF 

activity [33, 34]. All FGD members also contain FYVE domain, which interacts 

with Phosphatidylinositol 3-phosphate and is involved in membrane trafficking 

and endosome mediated signaling [35, 36]. PH domains adjacent to DH domain 

not only are important in recruitment of protein to membrane by binding to PIP3 

but also enhance GEF activity [37] . 

GEF-Cdc42 activities of most members of FGD family are tested in vivo 

[33, 34, 38-42]. In addition, FGD4 (frabin) regulates Rac1, indirectly via Cdc42, 

and may have Cdc42-independent functions [32, 42, 43]. It is not clear how FGD4 

mediates Cdc42-independent functions but it is suggested that the FAB domain of 

FGD4 (other members do not contain this domain) that mediates interaction with 

F-actin is involved [44]. 

FGD5, however, is not characterized yet. FGD5 expression was found 

highly enriched in endothelium of zebrafish, mice and human [10-13], suggesting 

that FGD5 might be important in EC specific functions such as angiogenesis. In 

this study, we sought to investigate FGD5 function in HUVECs as a putative 

regulator of Cdc42 upstream of IQGAP1. Unexpectedly, we found FGD5 

expression to be important for EC survival and adhesion. Mechanistically, FGD5 

seems to regulate PI3K/Akt pathway upon VEGF stimulation which may explain 

how FGD5 participates in cell survival. 
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Materials and Methods 

Reagents 

M199, HBSS, FBS and ECGS were from Invitrogen (Burlington, ON). Human 

Tumor necrosis factor-alpha (TNF) was from Cedarlane laboratories 

(Mississauga, ON). Cycloheximide (CHX) and propidium iodide (PI) were 

purchased from Sigma-Aldrich (St Louis, MO). VEGF-A was from R&D Systems 

(Minneapolis, MN). phospho-AKTS473, phospho-FOXO1S319, and FOXO1 were 

from Cell Signaling Technology (Danvers, MA). Tubulin-a was from Millipore 

Corporation (Temecula, CA). Goat FGD5 antibody and Akt were from Santa 

Cruz Biotechnology (Santa Cruz, CA). Fluorophore-conjugated antibodies were 

from Jackson Immunoresearch (West Grove, PA). Hiperfect, non-silencing 

siRNA and FGD5 siRNA (sequence:TTGGATgACATGGACCATGAA) were 

from Qiagen Inc (Mississauga, ON).  

 

Cell culture 

Human umbilical vein endothelial cells (HUVECs) were isolated and 

cultured as described previously [45]. HUVECs under passage 6 were used for 

experiments. To detect VEGF-induced signals, transfected cells were starved 

overnight with M199 containing 1% FBS. Cells were washed twice with M199 

and third wash was left on cells for 10 minutes in incubator. M199 containing 

vehicle control or 20 ng/ml VEGF was added to cells for indicated times and then 

cells were harvested as described. 
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RNA interference 

To inhibit FGD5 expression, HUVEC were seeded at 50% confluency and 

transfected twice on consecutive days with either 50 nmol/L siNon-silencing 

(siNS) or 50 nmol/L siFGD5 using Hiperfect according to the manufacturer’s 

direction. FGD5 expression was optimally inhibited 72 hr after first transfection. 

FGD5 inhibition was tested by western blotting and real-time PCR. 

 

Real-Time PCR 

 RNA isolation and real-time PCR was done by Qiu-Xia Zhang. RNA was 

isolated by RNeasy mini kit (Qiagen, Mississauga, ON). Real time PCR was 

performed using Fast 7500 thermocycler (Applied Biosytems). Three mg of total 

RNA were reversed transcribed into cDNA using qScript synthesis kit (Quanta) 

and the primers were designed using PrimerExpress 3.0 (Applied Biosystems) 

software and purchased from IDT (Toronto, ON).  

 

Apoptosis 

Apoptosis was measured in cells in resting conditions and in response to 

apoptotic stimuli. To induce apoptosis, cells were incubated with a combination 

of cycloheximide (CHX, 3 µg/ml) and TNF (10ng/ml) for 3hours (for caspase-3 

detection) or overnight (for subdipolid DNA detection) in reduced serum 

conditions (1% FBS). To measure activated caspase-3, Green Caspase-3 Staining 

kit from Promokine (Heidelberg, Germany) was used. Resting HUVECs or after 
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3hr CHX+TNF were incubated with the FITC-conjugated caspase-3 inhibitor, 

DEVD-FMK, for 30min at 37°C. Cells were trypsinized and combined with the 

floating cells in the medium. To measure apoptosis in suspended cells, cells were 

trypsinized first, suspended in complete medium in eppendorf tubes and FITC- 

caspase-3 inhibitor was added. After several washes cells were analyzed by flow 

cytometry. 

 To confirm apoptosis, the fraction of subdiploid DNA content in cells was 

measured by propidium iodide as described previously [46]. Briefly, trypsinized 

adherent cells and the floating cells in the medium were pulled and fixed in 70% 

Ethanol. Cells were resuspended in 500µl PBS+ 500µl 0.2MNaHPO4 (pH 7.8) + 

0.005% Triton X-100. Then cells were stained with 40µg/ml PI + 1mg RNase and 

analyzed by flow cytometry.  

 

Western blot 

HUVEC monolayers were washed once with ice cold PBS and then lysed 

immediately in hot 2X loading buffer (60 mM Tris pH 6.8, 25% glycerol, 2% 

SDS, 15mM 2-mercaptoethanol and 0.1% bromophenol blue) followed by 

additional 7 minute boiling at 95°C. Lysates were resolved on SDS-PAGE, and 

then blotted onto nitrocellulose (Biorad) as described. The membranes were 

immunoblotted for phosphorylated proteins overnight at 4°C in 5% BSA, TBS-

Tween20 blocking solution, and then proteins were visualized using ECL (GE 

Life Sciences, Baie d’Urfe, PQ). The membranes were stripped using Restore 

buffer (Thermo Scientific, Rockford, IL), and reprobed for the total protein. 
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Results 

HUVECs express FGD5 and inhibition of expression sensitizes EC to 

apoptosis 

 FGD5 expression in several endothelial types such as EC of HUVECs, 

arteries and lung microvascular EC has been detected by microarray analysis and 

data base mining and its expression doesn’t seem to vary in different types of EC 

[11]. We confirmed FGD5 expression in resting HUVECs using western-blotting 

and real-time PCR (Figure 5-1). In order to study FGD5 function in EC, we 

inhibited its expression using siRNA. No potential Off-target mRNAs for this 

siRNA was found by the siRNA distributor. Knockdown (kd) of FGD5 was 

confirmed by western-blotting and real-time PCR (Figure 5-1B and 5-1C). 

Unexpectedly, we observed FGD5 kd monolayers were less confluent than 

control cells, transfected with an unrelated siRNA (non-silencing, siNS) (Figure 

5-2B versus Figure 5-2A). We were not able to detect FGD5 localization in EC 

because the available FGD5 antibodies produced immunofluoresnce stainings that 

did not decrease upon FGD5 kd. This suggests that the antibodies are not able to 

recognize the non-denatured protein.  

To test the importance of FGD5 expression in resistance to apoptosis, cells 

were subjected to pro-apoptotic stimuli. The induction of apoptosis in EC by 

combination of TNF and cycloheximide (CHX) (inhibitor of protein synthesis) is 

well characterized [47, 48]. Thus, we treated control (Figure 5-2C) or FGD5 kd 

cells (Figure 5-2D) with CHX+TNF for 3 hours and measured one of the 

characteristic effectors of apoptosis, activated (cleaved) caspase-3. While 
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16±2.4% of control cells in resting conditions contain activated caspase-3, 

28±4.5% of FGD5 kd cell have activated caspase-3 (Figure 5-2E; Mean ±SEM; 

p<0.01). CHX+TNF treatment induced apoptosis in control cells and to a greater 

extent in FGD5 kd cells (Figure 5-2E; 33±7% versus 54±3.6%; mean ±SEM; 

p<0.05). We also examined the effect of a second pro-apoptotic stress, loss of 

anchorage on FGD5 kd cells. While control cells were insensitive to anchorage 

loss (30 min), FGD5 kd cells started going under apoptosis (Figure 5-2E; 

19±2.3% versus 43±4.5%; p<0.01).  

In order to confirm FGD5 kd are more sensitive to CHX+TNF, a late 

event of apoptosis (DNA fragmentation) was measured by staining DNA with 

propidium iodide [46]. Since DNA fragmentation requires longer time than 

activation of caspase-3, we treated transfected cells with CHX+TNF overnight. In 

resting conditions 17±3% and 24±3% of control and FGD5 kd cells contained 

subdiploid levels of DNA, respectively (Figure 5-2F; Mean ±SEM; p=not 

significant). Subdiploid DNA levels increased to 29±3% and 54±4% in control 

and FGD5 kd cells treated with CHX+TNF overnight, respectively (Figure 5-2F; 

Mean ±SEM; p<0.05). These observations, strongly suggest that FGD5 plays an 

important role in protection of cells against environmental stress. 

 

FGD5 may regulate EC adhesion to matrix 

 Rac1 and Cdc42, downstream of phosphorylated FAK and PI3K, are 

important regulators of integrin-mediated cell spreading, adhesion and signaling, 

which leads to cell survival [21, 22, 24, 25]. Thus, we hypothesized that FGD5, as 
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a putative GEF for Cdc42, might mediate cell survival by regulating cell 

adhesion. To test this hypothesis, cells transfected with siNS or siFGD5 were 

replated at equal numbers on gelatin (denatured collagen I that absorbs fibronectin 

from FBS and mediates adhesion via α5β1 and αVβ3 integrins [49, 50]) and after 1 

hour cells were trypsinized and counted (dead cells were excluded by trypan 

blue). While 90±3.7% of control cells adhered to fibronectin, only 64±3.9% of 

FGD5 kd cells adhered to matrix (Figure 5-3A versus 5-3B, quantified in Figure 

5-3C; Mean ±SEM ; p<0.05). To confirm these data and determine FGD5 kd 

ability to specifically bind to fibronectin, cell adhesion to fibronectin was 

monitored by measuring changes in monolayer resistance after seeding using 

ECIS (Electric Cell Substrate Impedance Sensing) (Figure 5-3D). In control cells 

monolayer resistance increased by rate of 4.6±0.57% Ohm/min while increase in 

FGD5 kd monolayer resistance was 2.4 Ohm/min (Figure 5-3E; Mean ±SEM; 

p<0.05). Although these results suggest a role for FGD5 in cell adhesion, 

considering the observation that FGD5 kd cells start undergoing apoptosis when 

in suspension, reduction of adhered cells might be due to an indirect effect 

(reduced population of healthy cells). Thus, determining FGD5 function in 

adhesion was not pursued further. 

 

Inhibition of FGD5 expression reduces EC response to VEGF 

stimulation 

 As explained, Rho GTPases can contribute to PI3K/Akt survival pathway 

by several mechanisms including regulation of VEGFR2/VE-cadherin/PI3K 
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complex [18], activation of PI3K [26-29], and nuclear transport of Akt [14]. We 

hypothesized that FGD5 kd increases cell sensitivity to apoptotic stimuli by 

impairing the PI3K/Akt pathway. We looked at the ability of FGD5 kd cells to 

stimulate PI3K pathway upon VEGF stimulation. In accordance with previous 

publications in transfected control starved cells, VEGF treatment induced robust 

Akt phosphorylation [1], however, FGD5 kd cells were greatly defective in 

inducing Akt phosphorylation (Figure 5-4A; quantified in Figure 5-4B; P<0.01). 

One mechanism by which Akt prevents apoptosis is by phosphorylation and 

prevention of FOXOs translocation into nucleus [15]. Similar to Akt, VEGF 

stimulation resulted in phosphorylation of FOXO1 in control cells, however, 

FGD5 kd cells were not able to induce FOXO1 phosphorylation higher than basal 

levels, upon VEGF stimulation (Figure 5-4A; quantified in Figure 5-4C; P<0.05).  

 To identify the blockade point in VEGF signaling pathway of FGD5 kd 

cells, we tested VEGF stimulation of mitogen activated protein (MAP) kinase, 

extracellular signal regulated-kinase (ERK). VEGF stimulation significantly 

increased ERK1/2 phosphorylation within 5 minutes (Figure 5-4A; P<0.05) as 

expected [51]. Interestingly, FGD5 kd cells also had a robust ERK 

phosphorylation (Figure 5-4A; quantified in Figure 5-4D; P<0.05), suggesting 

that FGD5 expression is not required for MAP kinase VEGF-mediated activation 

and FGD5 defect is specific for PI3K activation.  
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Discussion 

 Rho GTPases are implicated in regulation of a number of EC processes in 

response to interaction with matrix, neighbor cell or stimuli such as VEGF [22, 

24, 52-54]. Rho GTPases are also shown to participate in leukocyte TEM [55-58] 

and our results also implicate Rac1/Cdc42 in lymphocyte diapedesis via their 

effector IQGAP1 [9]. We hypothesized that FGD5 mediates 

Rac1/Cdc42/IQGAP1 activation during leukocyte TEM. However, we were not 

able to study the role of FGD5 in lymphocyte TEM because EC lacking FGD5 

where defective in mediating a confluent monolayer, a prerequisite for leukocyte 

transendothelial migration (TEM) assays. In the present study, we have shown 

that FGD5 inhibition sensitizes cells to apoptosis, delays adhesion to fibronectin, 

and prevents Akt and FOXO1 phosphorylation, but not MAPK phosphorylation, 

upon VEGF stimulation.  

 To characterize FGD5 kd cells, we exposed EC to two apoptotic stimuli, 

combined TNF and CHX, and also short time anchorage removal. Both stresses 

resulted in significant induction of apoptosis in FGD5 deficient cells. Further, 

FGD5 kd cells are not able to activate Akt in response to VEGF. This suggests 

that FGD5 depletion affects PI3K/Akt mediated survival in EC. 

 There are several potential mechanisms that might explain FGD5 

importance in cell survival. VEGFR2 requires interaction with VE-cadherin and 

PI3K to mediate PI3K signaling [59] and VEGFR2 signaling to MAPK also 

requires interaction of VE-cadherin with VEGFR2 [60]. We did not detect any 

defects in MAPK signaling upon VEGF stimulation. This indicates that FGD5 
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does not participate in VGFR2 activation and VE-cadherin/VEGFR2/PI3K 

complex formation upstream of Rac1/Cdc42/IQGAP1 [18]. Another potential 

mechanism of FGD5 participation in PI3K/Akt signaling is via activation of Rho 

GTPases (RhoB) that regulate stability and nuclear trafficking of Akt [14]. 

However, We have not detected any significant change in total Akt levels after 

FGD5 kd, suggesting that Akt stability is not impaired. Another mechanism of 

FGD5 involvement in PI3K/Akt regulation is via activation of Rho GTPases’ that 

further activate PI3K in a positive feed-forward mechanism. For instance Cdc42 

activation of PI3K is involved in regulatation of glucose uptake in adipocytes in 

response to insulin [26] and phagocytosis, in phagocytic cups [29]. Thus, FGD5 

might activate Cdc42 during VEGF stimulation, which further enhances PI3K 

activity and consequently induces Akt phosphorylation. Another mechanism for 

contribution of Rho GTPases to PI3K/Akt and cell survival is downstream of 

FAK phosphorylation upon cell adhesion to matrix [24]. Our results implicate a 

potential role for FGD5 in matrix adhesion. However, the FGD5 kd non-adherent 

cells might be a population that have started going under apoptosis during harvest. 

Further, FGD5 inhibition does not affect FAK expression or phosphorylation 

levels in resting conditions (data not shown). FGD5 expression might regulate 

FAK phosphorylation and consequent PI3K/Akt activation, upon a stimulus such 

as interaction with matrix and needs further investigation.  

Whether FGD5 is a specific GEF for Cdc42 or it can activate other Rho 

GTPases needs further investigation. To test whether FGD5 contributes to PI3K 

activitation, PI3K activity needs to be directly measured by detection of PIP3 
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generation in control cells versus FGD5 knockdown cells. The technical 

difficulties we are faced in these experiments are lack of antibodies that would 

work for immunoprecipitation and immunofluorescent studies. In addition, in 

some experiments, we have difficulty in detecting FGD5 bands in our control 

samples. Identifying more siRNA sequences that are able to mediate FGD5 

inhibition and also performing rescue experiments will help confirming our data. 

In rescue experiments, cells will be transfected with an siRNA sequence targeted 

against the 3′ untranslated region (UTR) of FGD5. Then cells will be transfected 

with FGD5-GFP vectors to express FGD5.    

In summary, this study has started identifying FGD5 functions in 

endothelial cells. Identification of the Rho GTPases functions that are regulated 

by FGD5 is valuable for designing therapeutic drugs that will specifically target 

EC functions.  
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Figures           

 

 

Figure 5-1. FGD5 is expressed in HUVECs and its expression is effectively 

inhibited by siRNA. A) FGD5 expression in cell lysates of HUVECs from 

different donors determined by Western blotting. B) HUVEC were transfected 

with siRNA against non-silencing (siNS) or FGD5 (siFGD5) and expression 

levels were detected by Western blotting (C) and real-time PCR (D, performed by 

Qiu-Xia Zhang). (A) and (B) images are representative of 6 independent 

experiments. (C) Data are mean±SEM of three independent experiments, 

normalized to siNS cDNA amounts, * indicates p< 0.05. 
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Figure 5-2. FGD5 expression protects cells from apoptosis. Phase contrast 

images of cells transfected with siNS (A and C) or siFGD5 (B and D) in resting 

conditions (A and B) and in CHX+TNF treated condition (C and D). E) Apoptosis 

was measured by flow cytometry detection of fluorescently labeled activated 

caspase-3 in resting adherent cells, cells treated with CHX+ TNF, and cells in 

suspension (30 min). F) Transfected cells in complete medium or in CHX+ TNF 

(overnight) were harvested and subdiploid DNA content was measured as 

described in methods. Data are means ± SEM of 4 independent experiments. * 

and ** indicate p values of less than 0.05 and 0.01, respectively in the indicated 

groups.  
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Figure 5-3. FGD5 expression is required for efficient adhesion of EC to 

fibronectin Matrix. siNS (A) or siFGD5 (B) transfected HUVEC were seeded at 

equal density on gelatin coated dishes. After 30min cells were trypsinized and 

counted. C) Mean fraction of cells in each group adhered to matrix. Data are 

mean±SEM of three independent experiments *= p<0.05. D) A representative 

experiment illustrating the tempo of cell adhesion in the first 2 hours after seeding 

cells transfected with siFGD5 or siNS in duplicate wells. Adhesion is quantitated 

by electrical impedance measurements. E) Quantification of EC adhesion in 

control versus FGD5 knockdown among 4 independent experiments. Data are 

mean±SEM, *=p<0.05.   
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Figure 5-4. Akt but not MAPK signaling downstream of VEGF requires 

expression of FGD5. Serum starved transfected HUVECs (siNS or siFGD5) were 

stimulated with 20ng/ml VEGF for the indicated times and the levels of 

phosphorylated Akt and FOXO1 was determined by immunoblotting. Membranes 

were stripped and reprobed for the total protein. A) Micrographs are 

representatives of 5 and 4 independent experiments for Akt and MAPK, 

respectively. B), C) and D) are quantification of ratio of indicated phosphorylated 

protein to total protein by densitometry. Data are mean±SEM of at least 4 

independent experiments. * and ** indicates p<0.01 and p<0.05, respectively.  
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Chapter 6. General Discussion 

 Endothelium of vasculature actively participate in inflammatory responses 

by presenting cues to circulating leukocytes to capture them and further regulate 

their transmigration to underlying organ. The mechanisms that regulate EC inter-

endothelial junction remodeling during leukocyte diapedesis has turned out to be 

very complex and the exact mechanisms for leukocyte passage at interendothelial 

junctions are not completely understood. In this project we sought to better 

understand the role of cytoskeleton and its associated proteins in remodeling of 

inter-endothelial junctions required for lymphocyte diapedesis. The principle 

findings of this thesis are as follows: 

1. Endothelial F-actin remodeling, PI3K activity and RhoA activity are 

required for efficient lymphocyte TEM. 

2. Blockade of endothelial PI3K does not affect lymphocyte motility, 

localization to interendothelial junctions, and opening of VE-cadherin, 

but lymphocytes are not able to enter the migration channel. 

3. Endothelial PI3K class IA participates in lymphocyte diapedesis via 

activation of p110α catalytic isoform. 

4. ICAM-1 cross-linking under low shear stress generates PI3K activity. 

5. Depletion of Rac1/Cdc42 effector, IQGAP1, in EC impairs MT 

extension to interendothelial junctions and prevents lymphocyte 

diapedesis, but not lymphocyte motility and localization to 

interendothelial junctions. 
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6. Inhibition of MT extension by MT depolymerizing agent nocodazole, 

prevents leukocyte diapedesis, but not lymphocyte motility and 

localization to interendothelial junctions. 

7. Inhibition of endothelial enriched putative RhoGEF, FGD5, sensitizes 

EC to apoptotic stimuli and impairs VEGF-mediated Akt activation.    

 We studied the role of endothelial PI3K activity and its catalytic isoforms 

activity during lymphocyte TEM. Pan inhibition of PI3K did not affect 

lymphocytes motility on EC surface but greatly reduced lymphocyte diapedesis. 

The observation that lymphocytes were associated with a higher number of VE-

cadherin openings suggest that PI3K activity mediates leukocyte passage in a 

stage after VE-cadherin opening and also VE-cadherin opening does not require 

PI3K activity.  

VE-cadherin loss during leukocyte diapedesis might be regulated by more 

than pathway. Several studies have associated the specific and transient loss of 

VE-cadherin during diapedesis with phosphorylation of AJ components after 

ICAM-1 cross-linking [1, 2]. However, Ridley and colleagues recently showed 

that PI3KIA p110α isoform mediates TNF-induced permeability and leukocyte 

TEM via activation of tyrosine kinase Pyk2, which mediates VE-cadherin 

phosphorylation and possibly VE-cadherin loss [3]. This mode of regulation 

argues for a global change in EC inter-endothelial junction upon TNF stimulation 

versus a specific and transient loss of VE-cadherin mediated by leukocyte 

interaction with EC, as reported previously [4, 5]. These observations suggest that 

PI3K- p110α activity downstream of TNF-induced signaling and EC 
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permeability, although important, is not the only mechanism for regulation of 

specific AJ remodeling during leukocyte diapedesis. Consistently, our results also 

show p110α as the dominant catalytic isoform during leukocyte TEM. However, 

our results favors the specific PI3K activation after shear stress combined with 

ICAM-1 cross-linking, which would lead to specific and transient changes in 

inter-endothelial junctions to facilitate leukocyte diapedesis.  

ICAM-1 mediated interactions are important for leukocyte TEM. Impaired 

interaction of ICAM-1 with its ligand in β2 integrin knockout mice, a mouse 

model for LAD I disease, reduces neutrophil and T cell extravasation to skin 

lesions [6]. Further, cytoplasmic domain of ICAM-1 is essential for generation of 

signaling events that are associated with increased leukocyte TEM [1, 2, 7-9]. Src 

tyrosine kinase activation participates in neutrophil TEM [2, 9]. Another possible 

tyrosine kinase that might mediate PI3K activation is FAK. FAK activation 

during leukocyte interaction and after ICAM-1 cross-linking has been reported 

previously [7, 10, 11]. Also, consistent with previous observations, our results 

show shear stress actively participates in leukocyte-mediated endothelial signaling 

and consequently leukocyte TEM [12]. Hence, we propose ICAM-1 cross-linking 

under shear stress might induce PI3KIA activity via activation of a cytoplasmic 

tyrosine kinase. Activated PI3K generates PIP3, which recruits RhoGEFs and 

induces activation of Rho GTPases RhoA and Rac1/Cdc42 [13-15]. Activated 

Rho GTPases in turn participate in remodeling of EC junctions and leukocyte 

diapedesis (Figure 6-1). 
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Figure 6-1. Proposed model of PI3K-dependent lymphocyte TEM. Upon lymphocyte 

firm adhesion to endothelium under shear stress, ICAM-1 ligation induces PI3KIA 

activity (mediated by p110α) in EC. PI3K product PIP3 mediates Rho GTPase activation 

via recruitment and activation of RhoGEFs to membrane. The Rac1/Cdc42 effector, 

IQGAP1, participates in lymphocyte diapedesis by capturing MT to interendothelial 

junctions. MT regulate leukocyte diapedesis via regulation of targeted recycling of LBRC 

around the migration channel. In addition, Rac1/Cdc42 and RhoA might contribute to 

lymphocyte diapedesis by regulation of actin remodeling and consequently 

destabilization of interendothelial junction components. 
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There are a number of lines of evidences for participation of Rho GTPases 

in regulation of AJ remodeling and leukocyte TEM [3, 7, 8, 16]. First, RhoA 

activation after ICAM-1 cross-linking has been observed, previously [7, 8]. Our 

results also show involvement of Rho kinase in lymphocyte diapedesis. Since the 

effect of global PI3K inhibition on lymphocyte diapedesis is greater than Rho 

kinase inhibition we propose that other Rho GTPases might be involved in 

regulation of leukocyte diapedesis downstream of PI3K activation. Second, Rac1 

activation and generation of H2O2 downstream of VCAM-1 cross-linking is 

shown to mediate transmigration of immortalized monocytes across HUVECs 

[16]. However, in our system cross-linking of VCAM-1 did not generate PI3K 

activity, suggesting that Rac1 activation might be regulated differently in different 

TEM models. Third, combined inhibition of Rac1 and Pyk2 reduces leukocyte 

diapedesis [3]. Our results also suggest that Rac1/Cdc42 participate in leukocyte 

diapedesis by regulation of the activity of their effector, IQGAP1, which mediates 

capturing of MT to EC junctions and lymphocyte diapedesis. Consistent with our 

results, IQGAP1 linkage to MT via CLIP-170 and its importance in stabilization 

of MT tips is shown by other investigators [17-19]. In addition, Cdc42 upstream 

of IQGAP1 is shown to be involved in MT stabilization [20]. 

 One possible mechanism, by which PI3K might regulate leukocyte 

diapedesis, is via regulation of LBRC compartments, indirectly. This is an 

attractive hypothesis because in our hands VE-cadherin opening does not require 

PI3K activity. Similarly, VE-cadherin opening and the targeted membrane 

insertion from the LBRC at the migration channel were two distinct pathways 
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[21]. This hypothesis is based on two observations. First, targeted insertion of 

LBRC and monocyte diapedesis was greatly decreased by broad tyrosine kinase 

and Src kinase inhibition [22]. Second, PI3K might regulate IQGAP1 activation 

via regulation of Rac1/Cdc42. IQGAP1 in turn might regulate targeted recycling 

of LBRC via capturing of MT at interendothelial junctions. Interestingly, 

IQGAP1 was shown to be able to directly bind to PIP3 [23]. However, it is not 

clear whether IQGAP1 can act as an effector of PIP3 independent of Rac1/Cdc42 

activation. Determining the importance of PI3K, Rac1/Cdc42 and IQGAP1 in 

targeted insertion of LBRC will clarify the mechanisms of leukocyte diapedesis to 

a great extent.  

Another possible mechanism by which PI3K activity might regulate 

lymphocyte diapedesis is by regulation of other adhesion molecules in inter-

endothelial junctions such as PVR of nectin family and CD146. PVR is 

implicated in leukocyte diapedesis via interaction with its ligand, DNAM-1 [24]. 

Nectins have been shown to interact with other components of EC junctions and 

also actin binding protein, profilin, via their cytoplasmic component, afadin [25-

28]. Also, CD146 is implicated in leukocyte diapedesis and shown to interact with 

actin cytoskeleton [29, 30]. Thus, future experiments will focus on the effect of 

p110 inhibition of expression or activity on localization of these adhesion 

molecules in TNF activated HUVECs. It will not be informative to examine 

distribution of CD146 during leukocyte diapedesis, since lymphocytes also 

express CD146 [31]. CD146 distribution can be studied by expression of 

fluorescent-tagged CD146. PVR seems to be dimly expressed in leukocytes, thus 
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specific changes in PVR localization during leukocyte diapedesis might be 

detectable via confocal imaging [24].   

Involvement of IQGAP1 in lymphocyte diapedesis suggest that actin and 

microtubule cooperate to regulate leukocyte diapedesis. During cell motility 

IQGAP1 and APC form a complex with Rac1 and Cdc42, which in addition to 

stabilization of MT, mediate actin enrichment at the site of leading edge [32, 33]. 

IQGAP1 regulates actin enrichment by activation of N-WASP along with Cdc42 

in a synergistic manner [34]. IQGAP1 also participates in actin enrichment around 

phagocytic cups by localizing Rho-induced Dia1 to phagocytic cups, which in 

turn induces formation of unbranched actin [33]. Our results indicate that the ratio 

of G-actin to F-actin is not changed in IQGAP1 knockdown EC in resting 

conditions. However, in response to stimuli such as leukocyte interaction, 

IQGAP1 might induce actin enrichment around migration channel. Consistent 

with our results, the importance of actin remodeling during leukocyte diapedesis 

and actin enrichment at the migration channel has been reported by several other 

investigators [8, 35, 36]. Endothelial actin enrichment at the migration channel is 

proposed to generate motile force necessary for leukocyte passage but the exact 

mechanism(s) that regulate actin enrichment and its interplay with other events at 

the inter-endothelial junctions such as loss of VE-cadherin is not clear.  

In this project we have not shown direct requirement of PI3K activity and 

Rac1/Cdc42 activity upstream of IQGAP1 and is beyond the scope of this thesis. 

Establishing this pathway requires the following experiments. First, testing for 

activation of Rac1 and Cdc42 in TNF activated p110α knocked down HUVECs 
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that are cross-linked with ICAM-1 under shear stress will determine whether 

these GTPases’ activities require PI3K-p110α activity. Second, F-actin 

visualization by immunofluorescence staining of p110α, and IQGAP1 knocked 

down HUVECs cross-linked with ICAM-1 under shear stress will give 

information about requirement of these molecules for F-actin remodeling during 

leukocyte TEM. Finally, to pinpoint IQGAP1 dynamics and investigate upstream 

regulators of IQGAP1, expression of a fluorescent-tagged IQGAP1 will help track 

IQGAP1 distribution during leukocyte TEM and identifying whether IQGAP1 

localization is sensitive to blockade of candidate upstream molecules.  

IQGAP1 can interact with a great number of signaling molecules and 

cytoskeleton-associating molecules [17, 23, 32, 37-41]. Identifying specific 

regulators and exact function of IQGAP1 in a given cell type, will enable us to 

gain more specificity in designing therapeutic drugs. In a search for specific Rho 

GTPases activators upstream of IQGAP1, we identified FGD5 as a putative 

Cdc42 GEF that is highly expressed in EC [42-44]. However, unexpectedly, 

inhibition of expression of FGD5 by RNAi resulted in increased sensitivity to 

apopototic stimuli and cells did not respond to VEGF stimulation, apparent by 

lack of Akt and FOXO-1 phosphorylation. IQGAP1 has also been implicated in 

VEGF signaling by binding to VEGFR2 and mediating VE-cadherin/VEGFR2 

complex and angiogenesis in vitro and in vivo [45-47]. FGD5 project is work in 

progress and requires confirmation with another siRNA sequence. One possibility 

for the observed phenotype of FGD5 knockdown is FGD5 might be a RhoGEF 

for more than one Rho GTPase. This hypothesis can be tested by overexpression 



                                                                                                                     288                                                                                                                

of FGD5 in an immortalized cell line and testing activity of Rho GTPases, RhoA, 

Rac1 and Cdc42. Another possibility is that FGD5 is a specific GEF for Cdc42 

and lack of activity of Cdc42 by FGD5 knockdown impairs activation of other 

Rho GTPases [48, 49]. Although depletion of Cdc42 in mice is embryonic lethal, 

the isolated embryonic stem cells are not defective in proliferation and are not 

apoptotic in resting conditions [50]. Further, they develop round shapes and are 

defective in developing stress fibers, lamellipodia and filopodia, consistent with 

possibility of impaired activity of other Rho GTPases [50]. These observations 

suggest that Cdc42 is essential for remodeling of actin cytoskeleton. Upon TNF 

treatment, remodeling of actin cytoskeleton downstream of PI3K dependent 

Cdc42 activation is required for anti-apoptotic effects of TNF [51]. Determining 

whether FGD5 mediated Cdc42 activation participates in cell survival by 

regulation of either actin [50] or MT dynamics [20] is another future project. 

Targeting FGD5 is another possible therapeutic strategy to regulate endothelial 

functions such as angiogenesis. 

In conclusion, in this project we have identified complex regulation of the 

endothelium cytoskeleton in regulation of leukocyte diapedesis. We have 

identified a PI3K-dependent step after VE-cadherin opening that regulates 

lymphocyte diapedesis. We also showed that endothelial IQGAP1 expression and 

inter-endothelial junction associated MT are required for efficient lymphocyte 

diapedesis. Further, we have started to characterize FGD5, a highly endothelial 

enriched RhoGEF, that might be an important modulator of EC survival and 

function such as angiogenesis.  
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