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Abstract

In the era of artificial intelligence, neural models have emerged as a powerful tool

for tackling a wide range of tasks. However, these models are commonly regarded

as black-box systems, making it difficult to understand their internal workings. The

natural language explanation task seeks to elucidate the decisions of a black-box

system by generating human-understandable explanations. The task is important

for natural language understanding systems in many domains such as in the medical

and legal domains. While numerous existing studies are capable of performing the

task, they rely on training in an end-to-end fashion, which still limits them to being

black-box machinery.

In this work, we focus on the natural language explanation task for natural lan-

guage inference. The task aims to explain the relationship between two sentences

with text, namely in the tone of entailment, contradiction, or neutral. We propose

a memory network that utilizes factual knowledge given by weakly supervised rea-

soning and template knowledge extracted by rules and heuristics. Experiments show

that our approach achieves state-of-the-art performance on the e-SNLI dataset. Our

analyses further verify the roles of both factual and template memories.
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Preface

Part of this thesis has been published as Zijun Wu, Zi Xuan Zhang, Atharva Naik, Zhi-

jian Mei, Mauajama Firdaus, and Lili Mou, “Weakly Supervised Explainable Phrasal

Reasoning with Neural Fuzzy Logic,” in Proceedings of the International Conference

on Learning Representations, 2023.

My contribution includes the application of predicted phrasal logical relationships

as factual knowledge to enhance the generation of textual explanations and designing

part of the algorithm for phrase alignment.
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“I don’t have dreams, I have goals. Now on to the next one.”

- Suits
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Chapter 1

Introduction

1.1 Motivation

The advent of the internet has led to an unprecedented overgrowth of data accessibility

for the mass public. The abundance of data has opened many eyes to developing

artificial intelligence (AI) systems that can meaningfully utilize the data for tasks such

as image classification, image generation, text classification, and speech recognition.

Natural language processing (NLP) is one of the most prominent branches of AI. It

combines computer science and linguistics to enable computers to communicate with

human beings. Common NLP tasks include machine translation [9, 33], dialogue

generation [28, 39], paraphrase generation [27, 45], and question-answering [59, 79].

Natural language processing has two primary fields: natural language understanding

and natural language generation. The former focuses on understanding languages

and the latter on generating texts.

Deep learning is a machine learning technique that has been used for building pow-

erful models that have the ability to learn from mass data. NLP systems that utilize

deep learning have been consistently improving on various NLP benchmarks [29, 72]

over the years. While achieving high performance, deep neural models are generally

regarded as black-box machinery, that is, the model outputs its decision without ex-

plaining or showing insights into its decision-making process. This is troublesome for
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SNLI Input (highlights are additionally annotated rationales in e-SNLI

Premise A woman is running a marathon in a park. 

Hypothesis   The woman is running in her backyard.

e-SNLI Explanation Reference

A woman cannot run in her backyard and at the park simultaneously.

SNLI Label

Entailment Neutral Contradiction

Figure 1.1: The explanation-augmented Stanford Natural Language Inference (e-
SNLI) task example.

certain applications that require explicit textual explanations in decision-making, for

example, in medical and legal domains [7, 24].

In this thesis, we focus on the task of explanation-augmented Stanford Natural

Language Inference (e-SNLI, Camburu et al., 2018). SNLI aims to determine the log-

ical relationship—namely, Entailment, Contradiction, and Neutral, abbreviated

as E, C, and N—between two pieces of text [10]. The e-SNLI dataset extends SNLI

with a textual explanation for each sample where the task is to output an explanation

for the logical relationship of two pieces of text. In Figure 1.1, the example shows a

premise and hypothesis that has the SNLI label of Contradiction followed with an

e-SNLI explanation reference of “A woman cannot run in her backyard and at the

park simultaneously”. Additionally, e-SNLI annotators highlight park in the premise

and backyard in the hypothesis to support the rationale of the explanation reference.

The highlight information may seem helpful, but is extraneous for the task, and hurts

the explanation generation performance. Evidence can be found in Table 4.1, where

LiREx [81] tries to utilize this information but achieves worse performance when

compared to the NILE approach, which uses the same base model.

2



1.2 Explanability in Explanation Generation

Neural models are commonly regarded as black-box systems, making it difficult to

understand their decision-making process. In previous work, pretrained language

models are finetuned for explanation generation in addition to SNLI classification

by multi-task learning. Such approaches are trained in an end-to-end fashion, and

unfortunately, are still black-box machinery. Zhao and Vydiswaran [81] propose to

incorporate human-annotated rationales as highlighted in Figure 1.1 for explanation

generation, but this requires extensive efforts of human labeling. Narang et al. [51]

trains a multi-task model by providing the groundtruth NLI label.

In light of these limitations, we believe it is necessary to ensure explicit explain-

ability for the model’s output, albeit it is performing the explanation generation task.

Previous studies have developed methods to interpret a model’s output [2, 62] in a

post-hoc manner. While these methods provide insights into the latent reasoning

process for a model’s response, they heavily rely on rules and human-derived scoring

functions, which in turn sacrifices the robustness. For instance in Figure 1.1, the ex-

planation “A woman cannot run in her backyard and at the park simultaneously.” can

be generated by models that are fine-tuned on e-SNLI. However, previous work cannot

show the model’s decision-making process that led to this output. Our intuition is that

the phrase “ · · · cannot · · · simultaneously” would be a template knowledge that has ap-

peared in the training data, while “A woman · · · run in her backyard and at the park · · · ”

represents the factual knowledge extracted from the sample’s premise and hypothe-

sis. Therefore, we incorporate these types of knowledge into the model, enabling it to

utilize this latent reasoning information. Additionally, we can interpret the model’s

output by examining what information it has utilized. In this way, we are able to

provide explicit explanations of the output for the explanation generation task.

3



1.3 Thesis Contribution

In this thesis, we propose to address the explainability issue in explanation generation.

Our objective is to utilize the attention mechanism to enhance a system’s explain-

ability, enabling humans to comprehend the underlying reason behind the model’s

output by examining its decision-making process in a direct manner.

Specifically, we explicitly model the rationales for explanation generation. We

adopt a fuzzy logic reasoning model [76] that yields a set of phrases and their logical

relations in a weakly supervised manner to obtain factual knowledge in the form of

tuples. In addition, we devise a simple yet effective rule-based approach to extract

template knowledge. We propose memory networks to feed these knowledge into

our explanation generator during training and inference. In details, we treat each

of the factual tuples as memory slots, and perform attention on them. Likewise,

the templates are also treated as a separate memory pad, where we perform another

attention, and fuse the information with the model. We design a decoder to that

integrates the memories for the generation process by introducing intermediate layers

to match the different distributions. In this way, such explicit modeling of knowledge

helps our approach to be more explainable. In contrast to Zhao and Vydiswaran [81]

and Narang et al. [51], we do not require additional human annotations or groundtruth

labels.

To evaluate our approach, we compare it with previous methods on e-SNLI. Since

the evaluation metric was not consistently used in previous work, we unify them by

using two settings on two metrics. Camburu et al. [11] reported inconsistency with

the two settings. However, our experimental results show we outperform previous

state-of-the-art models in terms of both BLEU and SacreBLEU scores. Furthermore,

the results show our approach is also more explainable, aligning with our claim.

In summary, our thesis contributions include:

4



• We propose a method to explicitly model the rationales for explanation gener-

ation that does not require additional human annotation.

• We design a memory network to feed such knowledge to a explanation generator.

• We evaluate our approach on the e-SNLI [11] dataset. Our approach outper-

forms previous state-of-the-art models on all the metrics used in previous work.

1.4 Thesis Organization

In this chapter, we introduced the background of explanation generation for natural

language inference, and stated our motivation and contribution.

Chapter 2 delves into the extensive body of related previous work in the area of

explanation generation. We explore the literature on reasoning in NLP, examining

different approaches and techniques used to enhance the interpretability and explain-

ability of natural language models. Additionally, we go into the domain of memory

networks, which serve as a key component in our proposed approach. By presenting

a comprehensive review of prior work, we establish the context for our research and

highlight its novel aspects.

Chapter 3 introduces our proposed approach for explanation generation. We de-

scribe each component of our method in detail, specifically the design of our memory

network components. We present the adaptation of our design into an existing archi-

tecture and our training method and inference method.

Chapter 4 is dedicated to the comprehensive discussion of our evaluation and anal-

yses. We start by describing our experimental setup, including the datasets used

and evaluation metrics employed. Following up, we present our experimental results,

highlighting the performance and effectiveness of our proposed approach. To provide

in-depth insights, we further conduct additional quantitative experiments and present

case studies that further verify our approach.

5



Chapter 5 concludes the thesis by summarizing the key findings and contributions

of our research. We examine the limitations and discuss future work.
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Chapter 2

Background & Related Work

2.1 Natural Language Generation

Natural language generation (NLG) refers to tasks generating natural language text

from different forms of input information ranging from structured tables [37, 54] to

plain texts [27, 39]. The goals of NLG systems include generating coherent, context-

specific, grammatically correct, and any other quality aspects of natural language.

For example, style transfer [36, 47, 70] is an NLG task with the objective of changing

the tone or characteristics of the given text while preserving its context. An instance

of this task is to transfer a piece of text to the Shakespearean form: from “You are a

star in the night sky” to “Thou art a star in the night sky”.

There are various forms of input for NLG. The task of speech recognition aims

to convert spoken language into written text where the input information is usually

a recording file composed of digital sound data [6, 26]. The image captioning task

involves generating a textual description for an image, with the image as the input.

The table-to-text task focuses on translating the data within a table into plain text,

taking table information as the input [3, 30]. Even though inputs may vary in format,

NLG models can effectively transform them into a representation suitable for its

internal processing [37, 54].

Currently, encoder-decoder models are the prevailing approach that has been com-

monly applied to NLG tasks, outperforming many other model architectures [4, 8,

7



69]. The encoder translates the input into a vector representation of a predefined di-

mension, capturing the contextual information of the given sequence. Subsequently,

the decoder takes the contextual representations and decodes them by generating

words one after another.

Sequence-to-sequence (Seq2Seq) models are a specific type of the encoder-decoder

framework. It is designed to handle input and output sequences of variable lengths.

The pioneering work [68] utilizes recurrent neural networks (RNNs) to model the

discrete nature of text. Based on this model, later work [21] develop the attention

mechanisms to model the soft dependencies between contextual encodings [15, 21].

The transformer model [71] revolutionizes the use of attention mechanisms in neural

models. Unlike traditional Seq2Seq designs, the transformer solely relies on a com-

bination of attention mechanisms, eliminating the need for recurrence. The model’s

capability of capturing dependencies and handling varying sequence lengths advances

the field of NLG, achieving state-of-the-art results in many tasks.

In the following sections, we will discuss the advantages and disadvantages of dif-

ferent neural models for NLP, starting with the foundational model: RNN.

2.1.1 Recurrent Neural Network

The recurrent neural network (RNN) is derived from the traditional feed-forward

neural network (FFNN) where it introduces the concept of hidden states, allowing

the architecture to better model discrete and sequential data [31, 63]. The calculation

of RNN proceeds in terms of time steps.

Let {x𝑡}𝑇𝑡=1 be all the inputs from time step 1 to 𝑇 where x𝑡 ∈ R𝑑 is the vector

representation of some sample at time step 𝑡. The hidden state of each time step h𝑡

of a vanilla RNN is passed on from the previous time step

h𝑡 = RNN(x𝑡 ,h𝑡−1)

= 𝑓 (W𝑥x𝑡 +Wℎh𝑡−1 + bℎ)
(2.1)

8



where 𝑓 is an activation function, W𝑥 ∈ Rℎ×𝑑 is the weight matrix for the input,

Wℎ ∈ Rℎ×ℎ is the weight matrix for the hidden state, and bℎ is the bias.

The RNN architecture effectively models the dependencies of sequences. However,

it lacks the finer-grained design of aligning words between sequences. This leads

to the birth of RNN-based Seq2Seq with attention model [21], where it features an

attention mechanism to model the alignment of words between sequences. Given a

sequence {x𝑡}𝑇𝑡=1 and its target {y𝑡′}𝑇
′
𝑡′=1, the goal of the Seq2Seq model is to estimate

the conditional probability 𝑝(𝑦1, · · · , 𝑦𝑇 ′ |𝑥1, · · · , 𝑥𝑇 ). The model features an encoder

and a decoder. The encoder encodes all the input in {x𝑡}𝑇𝑡=1 to obtain a contextual

state of ℎ𝑇 with Equation 2.1. Subsequently, the decoder decodes the context by

y′
𝑡′ = softmax(y′

𝑡′−1,h𝑡−1;W𝑑𝑒𝑐) (2.2)

where y′
𝑡′ is the current decoded probability distribution over the vocabulary, y′

𝑡−1 is

the vector representation of the previous decoded output, h𝑡′−1 is the previous time

step hidden state, and W𝑑𝑒𝑐 is the set of weight matrices of the decoder. For the

first time step 𝑡′ = 1, the hidden state h𝑡′−1 is set to h𝑇 and y′

0
is set to be the

representation of a special end of string token e.g. [EOS] [68].

It is intuitive that as the time step advances, the hidden state h𝑡 gradually gets

overwritten by more recent information, leading to the loss of earlier input context.

Consequently, the decoder’s initial step suffers from a limited understanding of the

input due to its reliance on the final context h𝑇 . This is known as the Seq2Seq’s

information bottleneck problem. As RNN models sequential data by training with

backpropagation through time [66], it also suffers from the vanishing and exploding

gradient problem [18, 55]. When calculating the gradient using the chain rule at each

time step, the gradient can either amplify significantly or diminish to nearly zero as

it propagates. This characteristic hinders an RNN’s ability to effectively learn long

sequences. The introduction of Long Short-Term Memory (LSTM) [31] was designed

to solve this problem. However, the inability lies within the RNN’s way of sequential

9
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Attention 

Layer

Decoder

Encoder

Figure 2.1: RNN with an attention mechanism.

modeling itself. In other words, naively passing the information from the previous

time step to the next is insufficient for solving the task of long sequence modeling [74].

2.1.2 Sequence-to-sequence with Attention

In an effort to alleviate the sequence length constraint, Dzmitry et al. [21] propose a

novel approach of jointly learning the alignment between input and output sequences,

as illustrated in Figure 2.1. Their inspiration derives from the machine translation

task, where the target language exhibits a direct correspondence with a specific section

of the input language. Consequently, the need arises to effectively model the align-

ment between the sections of a given sample and its corresponding target. While this

intuition may appear straightforward, conventional Seq2Seq approaches had previ-

ously only accounted for coarser alignments, where one full sequence corresponded to

another full sequence. It is with the integration of the attention mechanism that the

modeling reaches a more refined and granular level.
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Figure 2.2: The Transformer architecture.

Formally, attention calculates a context vector c𝑡 at each time step 𝑡, which is

dependent on all the hidden states of the input sentence (h1, · · · ,h𝐾) in the encoder

c𝑡 =

𝐾
∑︂

𝑘=1

𝛼𝑡𝑘h𝑘 (2.3)

𝛼𝑡𝑘 =
exp(𝑒𝑡𝑘 )

∑︁𝐽
𝑗=1 exp(𝑒𝑡 𝑗 )

(2.4)

𝑒𝑡𝑘 = 𝑎(s𝑡−1,h𝑘 ;W𝑎) (2.5)

where 𝛼𝑡𝑘 is the attention weight of each hidden state h𝑘 , s𝑡−1 a hidden state of the

decoder computed with an activation function 𝑞 as s𝑡 = 𝑞(s𝑡−1, y𝑡−1, c𝑡), and 𝑎 is an

alignment function parameterized by weight matrix W𝑎.

In this way, the decoder has an improved understanding of dependencies since the

output of a time step is dependent on the previous time step and a weighting of the

input. After the model converges, it is able to softly align the output to the input

sequence’s representation by the learned weightings 𝛼𝑡𝑘 of every time step.

RNN with attention greatly improves the performance on NLG tasks [73, 77].

However, since the encoder needs a forward pass at every time step, the attention

mechanism increases the training time by multiples.
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2.1.3 Transformer

Shown in Figure 2.2, the transformer architecture [71] is a groundbreaking milestone

in natural language processing, revolutionizing the way of modeling dependencies by

removing the recurrence that was used in previous language modeling. Through the

employment of a self-attention mechanism, the transformer encodes the entire input

sequence in parallel, enabling more efficient processing compared with the traditional

recurrent architecture. Self-attention [15, 43, 53] refers to the process of calculating

attention weights between vector representations within the same input sequence, fa-

cilitating the capture of important dependencies between tokens. By contrast, RNNs

with attention solely compute what is commonly referred to as cross-attention, rep-

resenting the attention interaction between the encoder and decoder, as expressed in

Equation 2.5. The transformer has emerged as the most successful architecture in the

field, with its state-of-the-art performances dominating the field of NLG [16, 42, 58].

Depicted in Figure 2.3, the attention mechanism in the transformer is known as

“Scaled Dot-Product Attention Multi-Head Attention”. Let H𝑞 = [h1; · · · ;h𝑄],

H𝑘 = [h1; · · · ;h𝐾], and H𝑣 = [h1; · · · ;h𝑉 ] be the hidden state matrices where

H𝑞 ∈ R𝑑hid×𝑑𝑞 , H𝑘 ∈ R𝑑hid×𝑑𝑘 , and H𝑣 ∈ R𝑑hid×𝑑𝑣 . 𝑑hid is the model’s hidden di-

mension, while 𝑑𝑞, 𝑑𝑘 , and 𝑑𝑣 are sequence lengths. Since the sequence might be the

input sample or the target tokens, there exists different sequence lengths. The hidden

state matrices are initially projected by different linear layers as

Q = W𝑄H𝑞 (2.6)

K = W𝐾H𝑘 (2.7)

V = W𝑉H𝑣 (2.8)

where Q is the query matrix, K is the key matrix, and V is the value matrix. W𝑄,

W𝐾 and W𝑉 are weight matrices. Subsequently, the attention is computed between
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these three matrices as

Attention(Q,K,V) = softmax

(︃

QK𝑇

√
𝑑𝑠

)︃

V (2.9)

with
√
𝑑𝑠 being a scaling factor. Notably, the dot product employed during the at-

tention calculation is more straightforward, as it does not necessitate an additional

intermediate training step, unlike the feed-forward neural network (FFNN) in Equa-

tion 2.5. This simplicity in the attention calculation contributes to computational

efficiency and streamlines the learning process.

In the encoder-decoder transformer architecture, there are three types of attention

mechanisms: self-attention in the encoder, self-attention in the decoder, and cross-

attention in the decoder. Each demonstrates distinct behaviors based on their specific

objectives.

The self-attention mechanism in the encoder operates on the same input hidden

state matrix as

SelfAttn(H) = Attention(W𝑄H,W𝐾H,W𝑉H) (2.10)

This novel feature of parallel processing, as opposed to sequential processing in mod-

els like RNNs, eliminates the issue of missing the previous context from distant time

steps. Consequently, the transformer’s encoder possesses an effective infinite context

window [1, 20, 35], allowing it to capture long-range dependencies in the input se-

quence. Although RNNs also possesses an infinite context window, the bottleneck

design of RNNs impedes their ability to model long-term relationships adequately.

On the other hand, the self-attention mechanism in the decoder takes in the hidden

state matrix of the label during training. It is equipped with a masking mechanism

to prevent the attention calculation of previous tokens to access information of the

future tokens. The mask is applied as

MaskedAttention(Q,K,V) = softmax

(︃

AttentionMask

(︃

QK𝑇

√
𝑑𝑘

)︃)︃

V (2.11)
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where AttentionMask assigns −∞ to the attention scores of future tokens for each

token. In this way, the scores will become 0 through the calculation of exp{·} in

softmax.

The cross-attention computation in the decoder differs from the self-attention cal-

culation due to the interaction between the encoder and the decoder. Specifically, the

hidden state matrix from the encoder is utilized as the input to calculate the key and

value matrices, and the query matrix is computed using the decoder’s representation

matrix as

CrossAttn(Hdec,Henc) = Attention(W𝑄Hdec,W
𝐾Henc,W

𝑉Henc) (2.12)

where Hdec and Henc are the matrix representations from the decoder and encoder,

respectively. This distinction in computation enables the model to effectively capture

and leverage internal dependencies between the encoder and decoder representations,

facilitating a more comprehensive understanding of the input sequence and generating

contextually relevant outputs. This approach intuitively emulates the behavior of a

database performing a similarity search with a query. Specifically, the query and key

matrices calculate the attention weights by measuring the importance of each encoded

input token representation through a dot product. Subsequently, the mechanism

performs a weighted sum, utilizing the attention weights and value matrix, to obtain

an aggregated vector that captures the contextual information of the input. This

process effectively retrieves information that the decoder deems significant from the

encoder.

Originally, the transformer model is an encoder-decoder model. However, it can

also be an encoder-only model [19] or an decoder-only model [57]. Since the decoder

and the encoder utilize different attention mechanisms, their applications become

distinctively different.

The encoder-only transformer model is mainly applied to classification tasks. Pri-

mary, its self-attention layer allows each token to calculate attention with all the
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Figure 2.3: The scaled dot product attention in the Transformer architecture.

input tokens. Subsequently, the output from self-attention passes through an multi-

layer perceptron (MLP). Finally, the encoder outputs all the hidden states. In this

way, the whole computation process is done in parallel, which enables faster training

in the encoder transformer. Unlike RNNs, where sequential computations necessitate

waiting for the output from preceding steps, the encoder’s parallelism significantly

lowers the training time.

Conversely, the decoder-only transformer is popular for generation tasks as its

objective is to predict the next word given a piece of text. While this architecture

shares similar design with the decoder in an encoder-decoder architecture, it differs in

key ways. Specifically, each decoder block of the decoder-only architecture only has a

masked self-attention layer and an MLP layer. It omits the cross-attention layer that

is presented in the decoder of the encoder-decoder architecture, as there is no encoder

to interact with . To generate an output, the model first process the input through

a masked self-attention layer, and then passes through an MLP layer. In this way,

the model generates output sequentially, performing text generation in a step-by-step

fashion.
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2.1.4 Memory Network

The end-to-end memory network [67] was proposed to tackle a classification problem:

the question-answering task. Its architecture is derived from reference [75] but is able

to describe long-term dependencies by incorporating a memory mechanism and an

attention mechanism. Given each sample of the question-answering task comprises

a set of sentences and a corresponding question, the utilization of memory to store

the information of the sentence set and the application of attention mechanisms to

locate the correct answer introduces a non-trivial and sophisticated aspect to the

model. This combination of memory and attention mechanisms allows the end-to-end

memory network to effectively handle complex question-answering scenarios, where

understanding long-range dependencies is key to identifying the answer.

Let X = {x𝑖}𝑁𝑖=1 be a set of sentences and q be the question. The sentences are first

embedded with two embedding functions 𝑓𝐶 and 𝑓𝐴 parameterized by W𝑎 ∈ R𝑑𝑥×𝑑hid

and W𝑐 ∈ R𝑑𝑥×𝑑hid , respectively. This process yields two memory matrices M,C ∈
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R
𝑑hid×𝑁 , given by

M = 𝑓𝑎 (X;W𝑎) (2.13)

C = 𝑓𝑐 (X;W𝑐) (2.14)

The memory matrix M is then queried by the embedding of the question u =

𝑓𝑏 (q;W𝑏) to an attention probability for each embedding vector m𝑖

𝑝𝑖 = softmax(u𝑇m𝑖) (2.15)

The output of the memory network is computed as

o =

∑︂

𝑖

𝑝𝑖c𝑖 (2.16)

𝑎 = softmax(W(𝑜 + 𝑢)) (2.17)

In this way, the system can be trained end-to-end with added dependencies from

its attention mechanisms. Such an approach is also extended to sentiment classifica-

tion [32], dialogue systems [49], etc.

In addition to the end-to-end memory network, other types of memory networks

have been proposed to address different problems. For instance, Asghar et al. [5]

introduce a real-valued memory bank to effectively store distributed knowledge for

domain adaptation. Meanwhile, Graves et al. [25] present an indirectly parameter-

ized, read-and-write memory, designed to facilitate recurrent information processing.

Closely related to these studies is the concept of episodic memory, where previously

encountered samples are stored for experience replay [13, 46, 60].

Building on the inspiration derived from the studies mentioned above, our ap-

proach focuses on designing a memory network tailored to store factual and template

knowledge. This knowledge is then accessed during the decoding process, further

enhancing the functionality of our model.
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2.2 Reasoning Mechanisms in NLP

For the past few years, reasoning in NLP has been steadily gaining popularity [41,

44]. Natural language reasoning is the process of making inferences based on exist-

ing knowledge from the given textual information. There are a few common types

of reasoning: inductive, deductive, and abductive. Inductive reasoning is a bottom-

up approach to forming a general conclusion from specific premises [34]; deductive

reasoning is a top-down approach using forming a specific conclusion from general

premises [65]; and abductive reasoning is the process of where the most sensible hy-

potheses are inferred from ambiguous premises [12]. However, the types of reasoning

in many NLP studies may not have a clear boundary due to the approximations in

vector spaces. In this section, we investigate the realm of reasoning in NLI due to its

close relevance to our work.

A pivotal contribution by MacCartney and Manning [48] expands the repertoire of

relations beyond the commonly studied Entailment, Neutral, and Contradiction

categories. By proposing seven well-defined natural logic relations, their work offers a

finer granularity of understanding for the NLI task, yet challenging models to capture

the intricate logic presented in natural language.

Feng et al. [22] build on this foundation by devising a neural natural logic model

equipped with an attention mechanism. They aim to predict the seven-category

natural logic relationships at the word level. However, later work reports that this

model falls short in achieving satisfactory reasoning performance [76].

Mahabadi et al. [50] propose a parameter-free interactive layer that utilizes fuzzy

logic to model the three relations. Within their framework, three scoring functions

are employed to compute the relationship scores between the premise and hypothesis.

Although the interactive layer performs worse compared with an MLP, it successfully

reduces the number of model parameters from millions to eighteen. Notably, the study

applies fuzzy logic formulas solely to the real-vectored representations, resulting in
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the provision of vague and implicit reasoning. Thus, this approach still lacks explicit

interpretation, falling short of the expressive reasoning desired.

While existing research has significantly advanced our understanding of reasoning

in NLI, there remains a need to explore more interpretable and expressive models to

achieve comprehensive and explicit reasoning capabilities.

2.3 Natural Language Explanation

The natural language explanation (NLE) task aims to explain the decision of a black-

box system by generating explanations [64]. The task is sometimes accompanied by a

classification task as some previous work requires the model to explain its output [14,

64].

Shown in Figure 1.1, the e-SNLI task [11] includes good quality references for the

NLE task. Camburu et al. [11] deploy an LSTM-based architecture [17] as a baseline

model to tackle the task. The model first performs the NLI classification task and

augments the result vector with the bottleneck information to perform explanation

generation similar to Equation 2.2. In this way, the NLI information is added to the

model, and performance multi-task learning in an end-to-end fashion. The authors

also propose to first generate the explanation, and then solve the classification task by

conditioning the output only on the explanation. Such a method greatly improves the

NLE performance but lowers the classification accuracy compared with the previous

approach. This is comprehensible since some generated explanations may not be

coherent, and potentially adds noise to the model.

Kumar and Talukdar [40] introduce the NILE approach, which focuses on utilizing

the explanations for the NLI task only; the intermediate NLE performance is not eval-

uated with automatic metric. Inspired by the baseline model [11], NILE carries out

the NLE task as the initial step, employing three decoders to generate explanations

for each of the E, C, and N labels. These explanations are then scored, and the label

prediction is based on the candidate with the highest score. The model demonstrates

19



competitive performance in the NLI task but only shows human evaluation for the

NLE generation.

Several other pertinent studies within the domain use additional data to improve

on the NLE task. For instance, the LIREx approach [81] adopts supplementary an-

notated rationales to enhance the generation of explanations. Similar to NILE, they

use the explanations to improve on the NLI task and only systematically evaluate the

classification performance. However, this methodology provides some insights into

how explanations can be facilitated through the incorporation of additional annota-

tions. Furthermore, the WT5 model [51] is built upon the T5 model to perform both

the sentence classification and the NLE task for multiple domains by fine-tuning a T5

with multiple explanation generation datasets. This approach leverages the power of

pre-trained language models to truly address explanation generation, enriching the

landscape of research in this field.

While the mentioned systems may excel in generating explanations, it is important

to note that the nature of such finetuning approaches renders the explanation gen-

erator per se unexplainable. In contrast to the aforementioned methods, we present

a novel memory network architecture that effectively integrates factual and template

knowledge, acquired through a weakly supervised approach. This integration signifi-

cantly enhances the overall explainability of our proposed method.

2.4 Summary

This chapter provides a comprehensive overview of natural language generation (NLG)

by first introducing its concepts, and then its landscape of tasks. Subsequently, we

focus on reviewing revolutionary approaches that offer novel modeling techniques for

NLG. For each approach, we analyze the specific problems it addresses, which were

unresolved by previous work, as well as the challenges associated with the new meth-

ods. Furthermore, relevant models that bear significance to our own work are also

covered within this discussion.
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The following section examines various reasoning techniques in NLP, where we

provide details of the novelty of each method and highlight their contributions to

the field of reasoning. Moreover, we pinpoint the disadvantages of each approach to

provide a better picture of the field of reasoning.

The final section discusses our task of natural language explanation, with a focus

on the e-SNLI dataset. We inspect the existing work in this field, outlining their areas

of excellence as well as identifying aspects that may require improvement. Moreover,

we diligently compare each work, considering various aspects such as the input infor-

mation, methodology, and the evaluation metrics they used in their systems.
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Chapter 3

Approach

3.1 Overview

In this chapter, we propose an approach that effectively captures the underlying

rationale information from the data, eliminating the need for human annotation. We

employ a phrasal logic relationship detection approach that extracts factual knowledge

tuples, detailed in Section 3.2. In Section 3.3, we present a memory network that

utilizes these factual tuples. Likewise, we propose a method in Section 3.4 to extract

template information and incorporate them as slots into a memory pad. Finally, we

show the integration of these networks into a carefully engineered decoder architecture

for the explanation generation process in Section 3.5.

3.2 Phrasal Logic Relationship Detection

In previous research [76, 82], an Explainable Phrasal Reasoning (EPR) approach is

developed to determine phrasal logic relationships for the natural language inference

(NLI) task1. My thesis employs this line of work and takes its output as factual

knowledge. The EPR method involves several key steps to enhance the reasoning

capabilities of a model. The method starts by devising a set of rules that aim at

1My contribution to EPR lies in the Phrase Detection and Alignment section, where I proposed
and implemented the algorithm for obtaining the phrase alignment. Specifically, a phrase pair
(p𝑚,h𝑛) is considered to be aligned if h𝑛 is selected as the closest phrase to p𝑚, and p𝑚 is the
closest to h𝑛 in terms of similarity scores.
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detecting and aligning phrases in both the premise and hypothesis. Subsequently, the

work proposes a neural fuzzy logic model to predict the logical relationship between

each pair of aligned phrases. Specifically, EPR first embeds each of these phrases

individually into vector representations and feeds them to an multilayer perceptron

(MLP) to produce three-dimensional score vectors to represent the probability of

each relation. The scores are then converted into probabilities using the Softmax

function. To determine the overall sentence label, the work adopts an inductive

reasoning approach by introducing novel custom fuzzy logic formulas tailored to each

of the E, C, and N relationships.

Consider {(p𝑘 , h𝑘 )}𝐾𝑘=1
⋃︁{(p𝑘 , h𝑘 )}𝐾

′
𝑘=𝐾+1 to be all the detected phrase pairs. The

phrases are aligned for 𝑘 = 1, · · · , 𝐾, while 𝑘 = 𝐾+1, · · · , 𝐾′ are unaligned phrases. An

unaligned premise phrase is paired with the special token h⟨EMPTY⟩ and an unaligned

hypothesis phrase is paired with the special token p⟨EMPTY⟩. Then, the EPR defines

the fuzzy logic scores for E, C, and N as

𝑆sentence(E|P,H) =
[︁

∏︂𝐾 ′

𝑘=1
𝑃phrase(E|p𝑘 , h𝑘 )

]︁
1

𝐾′ (3.1)

𝑆sentence(C|P,H) = max𝑘=1,··· ,𝐾 𝑃phrase(C|p𝑘 , h𝑘 ) (3.2)

𝑆sentence(N|P,H) =
[︁

max𝑘=1,··· ,𝐾 ′ 𝑃phrase(N|p𝑘 , h𝑘 )
]︁

·
[︁

1 − 𝑆sentence(C|P,H)] (3.3)

The entailment rule posits that the premise entails the hypothesis if all the phrase

pairs demonstrate an Entailment relationship. Conversely, the contradiction rule

states that the premise and hypothesis are classified as Contradiction if there exists

at least one phrase pair that exhibits a contradictory relationship. Meanwhile, the

neutral rule indicates that the premise is deemed Neutral to the hypothesis when

a Neutral phrase pair exists, and there are no contradicting phrase pairs present.

The nature of fuzzy logic permits the above rules to be a real-valued score between

0 and 1, which allows a more nuanced way of reasoning compared to the traditional

binary logic. Therefore, fuzzy logic is well-suited to tolerate the ambiguity of natural
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Phrase in 𝐩 Phrase in 𝐡 Label

a woman the woman E

running a 
marathon running E

in a park in her 
backyard C

Factual Memory

Figure 3.1: Example of the factual memory

language. Additionally, as fuzzy logic formulas output real-valued scores, it is able to

facilitate backpropagation, which in turn enables EPR to perform end-to-end training.

Finally, the scores are normalized into probability by dividing the sum of all the

scores

𝑃sentence(L|·) = 𝑆sentence (L|·)
𝑆sentence (E|·)+𝑆sentence (C|·)+𝑆sentence (N|·) (3.4)

where L ∈ {E, C, N} is the groundtruth sentence-level label.

EPR is trained with cross-entropy loss by minimizing − log 𝑃sentence(L|·) with the

groundtruth sentence-level label. In this way, the logical reasoning component is

trained end-to-end in a weakly supervised manner using backpropagation.

3.3 Factual Memory

In this thesis, we propose to utilize such predicted phrasal logical relationships as

factual knowledge to enhance the generation of textual explanation. As illustrated

in Figure 3.1, EPR yields a set of tuples {(p𝑘 , h𝑘 , l𝑘 )}𝐾𝑘=1, where l𝑘 is the predicted

phrasal label (E, C, or N) for the aligned phrases, p𝑘 and h𝑘 .

We apply Sentence-BERT (SBERT, Reimers and Gurevych, 2019) on individual

phrases to obtain the phrasal embeddings as

p𝑘 = SBERT(p𝑘 ) (3.5)

h𝑘 = SBERT(h𝑘 ) (3.6)
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Template Label

⋯ implies ⋯ E

⋯ same as ⋯ E

⋯ not ⋯ C

⋯ cannot ⋯ same 
time C

⋯ does not imply 
⋯

N

just because ⋯
does not mean ⋯ N

Template Memory

Figure 3.2: Example of the template memory

The phrase-level NLI label is encoded as a one-hot vector by

l𝑘 = onehot(l𝑘 ) (3.7)

We concatenate these representations to form a vector for the factual tuple (p𝑘 , h𝑘 , l𝑘 ):

m𝑘 = [p𝑘 ;h𝑘 ; l𝑘 ] (3.8)

where [·; ·] represents column vector concatenation.

We compose the vectors as a factual memory matrix:

M 𝑓 = [m⊤
1 ; · · · ;m⊤

𝐾] (3.9)

where M 𝑓 ∈ R𝐾×𝑑 and 𝑑 is the dimension of m𝑘 . The knowledge of factual memory

will be fed to the decoder by an attention mechanism, detailed later.

In this way, we are able to enhance an encoder-decoder model with interpretable

factual knowledge of phrases and their relationships, given by weakly supervised rea-

soning.

3.4 Template Memory

We observe that NLI explanations often share similar expressions, which suggests

there are common structures among the human-annotated explanation references.
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Therefore, we design a simple yet effective approach to extract these expressions and

integrate them into our model by a template memory.

To extract a template, we take the following steps and provide our rationale:

1. Mask words in the reference explanation that also occurs in either the premise

or hypothesis.

According to our observation, such overlapping words are typically content-

specific. This is not a specific phenomenon that only occurs in the e-SNLI

dataset. Fundamentally, templates are designed for repeated use across a

range of samples in a broader sense. Consider the following case: “Premise:

A person on a horse jumps over a broken down airplane. Hypothesis: A

person is training his horse for a competition. Reference: the person is not

necessarily training his horse.” We mask the overlapping words “person”,

“is”, “training”, “his”, and “horse”, and obtain “the · · · not necessarily

· · · ”.

2. Remove words that belong to a predefined set of stop words.

Words such as a and the are ubiquitous in English. For many tasks in NLP,

they do not carry much meaningful context. In our case, these redundant

words add noise to our templates. By removing the stop word “the” from

the case in the previous step, the template is much cleaner in the form of

“· · · not necessarily · · · ”.

3. Apply procedures 1 and 2 for all the samples in the dataset.

As we iterate through all the samples, we keep a dictionary for the count

of each template and its category.

4. Keep a list of top-𝑘 most frequent templates for each of the E, C, and N categories.
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Our goal is to extract the most representative templates, which is given

by the count. To our observation, infrequent templates may be noisy. For

example, the extracted template “· · · he always · · · ” under the label E,

“· · · cannot and simultaneously · · · ” under the label C, or “· · · doesn’t

mean he · · · ” under the label N; these templates are infrequent templates

tailored for particular input samples. Therefore, by capturing the most

contextually representative template, we likely encompass the majority of

the templates in e-SNLI.

We apply SBERT to embed the extracted templates (denoted by T = {t𝑐}𝐶𝑐=1).

A template memory slot is m𝑐 = [SBERT(t𝑐); onehot(l𝑐)], where l𝑐 ∈ {E, C, N} is

the category of the template. The entire template memory matrix is thus M𝑝 =

[m⊤
1
; · · · ;m⊤

𝐶
] ∈ R𝐶×𝑑′ , where 𝑑′ is the dimension of m𝑐.

Different from factual knowledge, we restrict the attention to templates that have

the same label as predicted by EPR [76], detailed in Section 3.5. This ensures that

only relevant templates are used for generating an explanation.

3.5 Decoder Architecture

Our decoder follows a standard Transformer architecture [71] but is equipped with

additional attention mechanisms to factual and template memories (Figure 3.3).

Consider the 𝑖th decoding step. We feed the factual memory to an MLP as

M̃ 𝑓 = MLP(M 𝑓 ). We compute attention a 𝑓 over M̃ 𝑓 with the embedding of the input

y𝑖−1, and aggregate factual information c 𝑓 for the rows m 𝑓 𝑡 in M 𝑓 :

a 𝑓 = softmax(M̃ 𝑓 y𝑖−1) (3.10)

c 𝑓 =
∑︂𝐾

𝑘=1
𝑎 𝑓 𝑘m̃

⊤
𝑓 𝑡 (3.11)

where 𝑎 𝑓 𝑘 is the 𝑘th element of the vector a 𝑓 and m̂𝑡 is the 𝑘th row of the matrix

M̃ 𝑓 .
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On the other hand, another attention mechanism fetches template information in

a similar way by M̃𝑝 = MLP(M𝑝) and a𝑝 = softmax(M̃𝑝 y𝑖−1), but the attention is

masked:

a𝑝 = softmax(AttentionMask(ã𝑝)) (3.12)

where AttentionMask selects only the templates that have the same label as EPR’s

predicted sentence NLI label. This is accomplished by assigning −∞ to some index(es)

in the vector ã𝑝, resulting in exp{·} being 0 for softmax computation. This attention

aggregates template information, denoted by c𝑝, where c𝑝 =

∑︁𝐾
𝑘=1 𝑎𝑝𝑘m̃

⊤
𝑝𝑡 for the

rows 𝑚𝑝𝑡 in M̃𝑝. It is simply added to factual information as c = c 𝑓 + c𝑝, which is

then fed to a subsequent layer

g𝑖 = LayerNorm(MLP( [c;y𝑖−1]) + c) (3.13)

Our Transformer decoder layer starts with self-attention

q̃𝑖 = SelfAttn(g𝑖)

= Attention(W𝑄g𝑖,W
𝐾g𝑖,W

𝑉g𝑖) (3.14)

Then, residual connection and layer normalization are applied as

q𝑖 = LayerNorm(q̃𝑖 + g𝑖) (3.15)

A cross-attention mechanism obtains input information by

v𝑖 = CrossAttn(q𝑖,H)

= Attention(W𝑄q𝑖,W
𝐾H,W𝑉H) (3.16)

where H is the representation given by the encoder. v𝑖 is fed to the Transformer’s

residual connection and layer normalization sub-layer.

Multiple Transformer layers, mentioned above, are stacked to form a deep architec-

ture. The model is trained with the standard cross-entropy loss against the reference

explanation as in previous work [40, 51, 81].
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Figure 3.3: Our decoder architecture.

In this way, we enhance the model with factual information given by the EPR

weakly supervised reasoning and the template information from our rule-based ex-

traction. Experiments will show that our approach greatly improves the on the BLEU

metrics score by 2 points (Section 4.5), achieving a new state of the art result. Hence,

we are able to verify that the EPR indeed yields meaningful phrasal factual phrase

pairs and the templates provide useful underlying information.

3.6 Training and Inference

We train our model using the cross-entropy loss, which involves minimizing the equa-

tion

𝐽𝜃 = −
∑︂𝑇

𝑡=1
log �̂�𝜃 (𝑤𝑡 |𝑤<𝑡) (3.17)
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for each sample. Here, 𝑤𝑡 is the target next word given the prefix in the ground truth,

and �̂�𝜃 denotes the predicted probability parameterized by 𝜃. The memory networks

are jointly trained with the backbone model in an end-to-end fashion.

For a given sample during the inference stage, we use EPR to extract phrase pairs

with their logical relationship to form the factual memory. While template memory is

not changed, it is masked by EPR’s predicted label (either E, C, or N). These memory

information is fed to the decoder to generate the NLI explanation.

3.7 Summary

In this chapter, we provided a comprehensive explanation of our approach, starting

with phrasal logic relationship detection. EPR supplies phrase pairs that are either

aligned or unaligned. Subsequently, we utilized these phrase pairs by first converting

them into vector representations, and then constructing these vectors into memory

matrices to serve as factual knowledge. The memory matrix is then fed to the de-

coder. Regarding the template memory, we extracted templates from the dataset and

converted them into vector representations. These vectors were then composed into a

template memory matrix and fed to our decoder. The decoder fetches the factual and

template information by applying attention mechanisms to the memory matrices. In

this way, we were able to enhance the model with factual information given by the

EPR’s weakly supervised reasoning and the template information from our rule-based

extraction.

In conclusion, we comprehensively outlined our approach in this chapter with in-

tricate details of each and every component within our design. In this way, we are

able to support a thorough understanding of our research.
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Chapter 4

Experiments

4.1 Overview

In this chapter, we start by presenting the details of the e-SNLI dataset in Section 4.2.

Then, we go through the specific settings of our metrics in Section 4.3. We describe

the important implementation details of our approach in Section 4.4. After setting up

the background, we present our main results in Section 4.5, and then follow up with

our ablation study in Section 4.6. We further show analysis and case study of our

model architecture in Sections 4.7 and 4.8. In Section 4.9, we analyze the different

architectural designs of our decoder. Then, we follow up with a more in-depth analysis

of our memory component design in Section 4.10.

4.2 Dataset

We evaluate our model on the e-SNLI dataset [11], which contains 550K training sam-

ples, 10K validation samples, and 10K test samples. All samples possess a label from

the SNLI dataset. Each training sample has one reference explanation, whereas each

validation or test sample contains three reference explanations. In addition, rationales

are provided for each reference explanation. The rationales are used to establish the

integrity of the annotated explanations. For example, a test case “Premise: An old

man with a package poses in front of an advertisement. Hypothesis: A man poses in

front of an ad.” has three explanations with highlighted rationales:
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1. Explanation: “An ad is the short form for advertisement.” Rationales: “Premise:

An old man with a package poses in front of an *advertisement*. Premise: A

man poses in front of an *ad*.”

2. Explanation: “A man poses in front of an ad is the same as a man poses in front

of advertisement because ad is an abbreviation for advertisement.” Rationale:

“Premise: An old man with a package poses in front of an *advertisement*.

Hypothesis: A man poses in front of an *ad*.”

3. Explanation: “The word ‘ad’ is short for the word ‘advertisement’.” Rationales:

“Premise: An old *man* with a package *poses* *in* *front* *of* an *adver-

tisement*. Hypothesis: A *man* *poses* *in* *front* *of* an *ad*.”

Previous literature [81] uses these rationales to improve performance. However, we

do not use them, and only use the references for training and evaluation.

4.3 Metrics

In previous work, evaluation methods were inconsistent: citation [11] evaluates output

with BLEU on two references, citation [51] evaluates output with SacreBLEU on two

references, and citations [40, 81] report human evaluations of generated output on 100

generated explanations. In this thesis, we consider the above variants of BLEU scores,

including both two-reference and three-reference BLEU and SacreBLEU scores. In

this way, we are able to provide a robust set of evaluation metrics.

4.3.1 BLEU

The BLEU score [52] has been widely used in various NLP tasks, ranging from ma-

chine translation [21, 68] to dialogue generation [23, 80]. This evaluation method

outputs a score between 0 and 1, quantifying the similarity between a candidate text

and its reference.
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Let the candidate text be 𝑤𝑐 = (𝑤1, · · · , 𝑤𝐿) and the reference text be 𝑤𝑟 =

(𝑤1, · · · , 𝑤𝑀) after tokenization where L and M are the sequence length. An uni-

gram of 𝑤𝑐 would be (𝑤𝑖), a bi-gram would be (𝑤𝑖, 𝑤𝑖+1), and a n-gram would be

(𝑤𝑖, · · · , 𝑤𝑖+𝑙−1)). A set of n-gram of 𝑤𝑐 would be n-gram(𝑤𝑐) = {(𝑤𝑖, · · · , 𝑤𝑖+𝑙−1)}𝐿−𝑙+11
.

The precision of n-grams is defined as

𝑝𝑛 =

∑︁𝐿−𝑙+1
𝑖=1 Clip(1{n-gram(𝑤𝑐)𝑖 ∈ 𝑤𝑟})

n-gram(𝑤𝑐)
(4.1)

For the candidate text, the count of 1{n-gram(𝑤𝑐)𝑖 ∈ 𝑤𝑟} is clipped to match the

maximum number of times an n-gram appears in the reference text. For example,

consider 𝑤𝑐 = (“the”, “the”, “the”) and 𝑤𝑟 = (“the”, “times”). In this case, the

count of “the” for calculating BLEU would be 1 since there is only one occurrence of

“the” in 𝑤𝑟 . Consequently, the BLEU score of this example would be 1
3
.

Then, the BLEU score is defined as

𝐵𝑃 =

{︄

1 if |𝑤𝑐 | ≥ |𝑤𝑟 |,
exp(1 − |𝑤𝑟 |/|𝑤𝑐 |) otherwise.

(4.2)

BLEU = 𝐵𝑃 exp

(︄

𝑁
∑︂

𝑛=1

𝑤𝑛 log 𝑝𝑛

)︄

,

𝑁
∑︂

𝑛=1

𝑤𝑛 = 1 (4.3)

where BP is the brevity penalty for length, 𝑁 is the n value for n-gram, and 𝑤𝑛 is the

weight hyper-parameter for each n-gram score. In other words, the BLEU score can

be seen as the weighted geometric mean of all the modified n-gram precisions with

the brevity penalty. For our use of the BLEU score, we follow previous papers [11,

51] and set the 𝑁 to 4 and 𝑤𝑛 to 1/𝑁.

4.3.2 Multi-reference BLEU

BLEU evaluates whether each token in the candidate text is present in any of the

reference texts when multiple references are available. Additionally, the clipping

process ensures that the maximum count of the candidate n-gram does not exceed

its maximum occurrence in any of the reference texts. In this framework, only the
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precision aspect of the n-gram calculation is modified. Let 𝑤𝑠 = {𝑤𝑟𝑘 }𝐾𝑘=1 be a set of

references. The precision is calculated as

𝑝𝑛 =

∑︁𝐿−𝑙+1
𝑖=1 Clipmax(ws) (1{𝑛 -gram(𝑤𝑐)𝑖 ∈ ∪({𝑤𝑟𝑘 }𝐾𝑘=1}))

𝑛 -gram(𝑤𝑐)
(4.4)

Let the candidate be 𝑤𝑐 = (“the”,“times”,“paper”) and the references be 𝑤𝑟1 =

(“the”,“good”,“deed”), 𝑤𝑟2 = (“let”,“times”,“fly”), and 𝑤𝑟3 = (“reading”,“a”,“paper”).

Since all the words in 𝑤𝑐 appeared separately in all the references. The BLEU score

for this example would be 1.

4.3.3 SacreBLEU

The SacreBLEU score [56] is a special case of the BLEU score that was developed for

reproducibility. SacreBLEU is computed as:

SacreBLEU = 𝐵𝑃 exp

(︄

1

𝑁

𝑁
∑︂

𝑛=1

log 𝑝𝑛

)︄

(4.5)

where 𝑝𝑛 is defined by Equation 4.4 and BP is given by Equation 4.2. The score

calculation is identical to BLEU, but it does not allow user to change the weights.

Unlike BLEU, SacreBLEU does not permit user-supplied tokenization rule. In-

stead, it applies a fixed text preprocessing scheme featuring a set of improved tok-

enization rules. Additionally, SacreBLEU aligns its parameters, such as smoothing

applied to zero-count n-grams, to those defined by the Conference on Machine Trans-

lation (WMT).

In this way, SacreBLEU is able to standardize BLEU scores across different papers

for reproducible results.

4.4 Implementation Details

We start the implementation process by retrieving 𝐾 factual tuples {(p𝑘 , h𝑘 , l𝑘 )}𝐾𝑘=1
with EPR.We then use the pre-trained model paraphrase-MiniLM-L6-v2 from SBERT [61]1

1https://www.sbert.net/docs/pretrained models.html
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Model Info BLEU SacreBLEU

L H 2 refs 3 refs 2 refs 3 refs

ExplainThenPredictAttention [11]§ – – 27.58 – – –

NILE [40]∥ ✓ – 28.57 37.73 32.51 41.78

NILE [40]† ✓ – 28.67 37.84 32.74 42.06

FinetunedWT5220M [51]§ ✓ – – – 32.40 –

FinetunedWT511B [51]§ ✓ – – – 33.70 –

LIREx [81]∥ ✓ ✓ 17.22 22.40 21.24 26.68

Finetune T560M – – 27.75 36.78 31.74 40.89

+ Factual64M – – 29.14 37.81 33.23 41.96

+ Template63M – – 29.22 37.87 33.05 41.96

+ Both65M – – 29.55 38.38 33.45 42.68

Table 4.1: Main results. Previous work uses auxiliary information (L: the groundtruth
NLI label; H: human-annotated rationales), but we use neither. §Numbers taken from
previous papers. †Evaluated by checkpoints. ∥Our replication with provided code.

to embed these tuples into 384-dimensional embeddings. Similarly, we first extract

𝐶 template expressions {t𝑐}𝐶𝑐=1 with our extraction method detailed in Section 3.4,

and use SBERT to embed them as 384-dimensional embeddings. To match the T5

small’s 512 model dimensions, we use an multilayer perceptron (MLP) to project the

embeddings from 384 to 512. Finally, we construct the factual memory matrix by

concatenating the factual embeddings as M 𝑓 ∈ R𝐾×512 and the template memory by

concatenating the template embeddings as M𝑝 ∈ R𝐶×512.

During training, we use the pretrained T5 small model with a batch size of 32. We

utilize the Adam optimizer [38] with an initial learning rate of 3e-4, and set the decay

rates as 𝛽1 = 0.9, 𝛽2 = 0.999. We apply learning rate warm-up for the first 2 epoch,

and make the learning rate linearly decay for 10 epochs to decrease it to 3e-6. We

continue training the model until the validation BLEU score does not increase for 2

consecutive epochs.
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4.5 Main Results

Table 4.1 shows explanation generation performance on e-SNLI. It’s important to note

that evaluation metrics across previous studies were not consistent, that is, some [11]

use BLEU, and others [51] use SacreBLEU. To ensure consistency and fair comparison,

we replicated their approaches using either their provided code or checkpoints. For

large pretrained models, we quote results from the WT5 [51]. Our model is based on

T5-small with 60M parameters, due to resource limitation. Despite using a smaller

model, we still achieve competent performance on the task.

As seen, most previous studies use groundtruth NLI labels and/or highlighted

rationales (Fig. 1.1). This requires human annotations, which are resource-consuming

to obtain and may often be unavailable when predicting the explanation. By contrast,

our factual knowledge leverages a weakly supervised reasoning approach [76], and our

templates are extracted with simple rules. We use no additional information but

still outperform all previous work in terms of all metrics. This demonstrates the

effectiveness of our approach as we are able to generate higher-quality explanations

while not relying on any human-annotated knowledge.

Narang et al. [51] finetune a T5 model with multiple explanation tasks, namely, the

explanations for sentiment analysis, question answering, reading comprehension, as

well as e-SNLI. Their model is called WT5, having 220M or 11B parameters depending

on the underlying T5 model. Profoundly, we achieve higher performance with 60M-

parameter T5-small, which is 3.3x and 170x smaller in model size than the two WT5

variants [51]. This signifies the importance of knowledge grounding in explanation

generation.

4.6 Ablation Study

In order to gain a deeper understanding of the individual contributions of various

components in our proposed approach, we conduct an ablation study, as illustrated
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Figure 4.1: Analysis of the template memory size.
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Reference explanations (1) If the several people here are naked, then they cannot 

be in scrubs or a skirt and blouse. (2) If people are in scrubs, a skirt, and a blouse they 

are not naked. (3) People can't wear blue scrubs and be naked simultaneously.

Input Premise : Several people in blue scrubs and one in a skirt and black blouse.

Hypothesis : Several people are naked.

Memory net content

Label Contradiction (not used during our explanation generation)

Several people
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Premise phase Hypothesis phase EPR label Attention score

Output explanation People cannot be naked and in scrubs at the same time.
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Figure 4.2: Case study of the factual memory. The heat map shows the step-by-step
and average attention weights to the factual memory tuples (vertical axis).

in Table 4.1. We finetune a plain T5. Its performance is similar to ExplainThen-

PredictAttention [11], which is a model that first generates an explanation and then

predicts an SNLI label based solely on the generated explanation using an attention

mechanism. However, it performs worse than NILE and WT5.

To explore the effect of each individual memory component, we apply factual mem-

ory and template memory separately. As seen, each memory individually improves
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the performance by 1–1.5 BLEU scores, which indicates that both factual knowledge

and template knowledge plays a crucial role in our approach.

Furthermore, by combining the two memory modules, we obtain a further im-

provement of ∼ 0.5 BLEU score and outperform all previous work. This suggests the

effectiveness of our approach.

4.7 Analysis of the Template Memory Size

To evaluate the template memory’s impact on the model performance, we conduct

quantitative experiments with various template memory sizes. We utilize the T5-

small model without the factual memory so as to exclude its effect. We specifically

choose the numbers of templates for evaluation from {0, 30, 100, 300, 600}, where the

size of 0 indicates the T5-small baseline.

As depicted in Figure 4.1, a small template memory can already benefit the model.

The results also show that the performance continues to increase with more and

more templates. However, due to efficiency concerns, we choose the template size of

300. This allows us to achieve satisfactory results without excessive computational

overhead.

4.8 Case Study of the Factual Memory

In Figure 4.2, we present a case study on the factual memory. The template memory

is excluded to eliminate its effect since the aim of this study is to analyze how the

proposed memory network performs in attending to structured factual tuples. As

seen, EPR’s [76] weakly supervised reasoning approach yields meaningful structured

factual tuples, namely, Several people entailing Several people, naked contradicting in

a skirt and black blouse, and in blue scrubs unaligned (matched with a special token

[EMPTY]). Our proposed factual memory network attends to these factual tuples. A

more detailed heat map illustrates that our model assigns the most attention weights
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Design BLEU SacreBLEU

2 refs 3 refs 2 refs 3 refs

After cross-attention 29.42 37.96 33.72 42.23

Before cross-attention 29.21 38.25 33.17 42.63

Before self-attention 29.55 38.38 33.45 42.68

Table 4.2: Analysis of different architecture for memory network in the decoder.

averaging 0.55, to the contradicting tuple in a skirt and black blouse and naked. Con-

sequently, the model generates the explanation “People cannot be naked and in scrubs

at the same time.” This confirms that our memory network learns meaningful atten-

tion to the factual knowledge, which also improves the explainability of explanation

generation per se.

4.9 Analysis of the Decoder Architectural Design

We conduct extensive experiments to evaluate the architecture of our decoder. Specif-

ically, we place our memory networks at different positions in the decoder. We con-

sider three places: (1) Before self-attention; (2) Before cross-attention; and (3) After

cross-attention. For each architecture, only the placement of our memory network

component has changed; the content of both memories remains the same. In this way,

our evaluation is rigorously controlled to establish scientific conclusions. We run each

experiment once with the same experimental setting outlined in Section 4.4.

As seen in Figure 4.2, placing the memory network before self-attention gives the

best performance for almost all the metrics, which shows that applying our memory

networks earlier in the architecture yields the best performance. In other words, the

model learns the best when our factual and template knowledge is provided earlier in

the architecture.

When we focus on using three references for both BLEU and SacreBLEU evalua-

tions, we observe that as our networks are positioned later in the decoder, performance

39



Design Model BLEU SacreBLEU Average

2 refs 3 refs 2 refs 3 refs

Sequential memory
Factual → Template 28.47 37.36 32.52 41.82 35.04

Template → Factual 27.35 36.13 31.31 40.40 33.80

Individual memory Factual + Template 29.55 38.38 33.45 42.68 36.02

Table 4.3: Analysis of different designs for the memory network component.

consistently decreases. By contrast, when using only two references, performance

shows fluctuations. This observation suggests that evaluations with two references

may introduce more variability.

4.10 Analysis of the Memory Component Design

Given that our model incorporates two memory networks, the arrangement of these

networks is crucial to harness their full capabilities. In this section, we conduct a study

of our memory component design. Specifically, we consider two different methods:

1. Sequence memory uses the output of the previous memory network as the next

memory’s query. For example, with “Factual → Template”, factual memory

is utilized by Equation 3.10, but template memory is queried by the factual

information as a𝑝 = softmax(M̃𝑝 c 𝑓 ).

2. Individual memory, described in Section 3.5.

By exploring these configurations, we aim to identify the best-performing arrangement

for our memory networks.

As illustrated in Figure 4.3, the memory pad arrangement in the Sequential mem-

ory significantly influences its performance. On average, the “Factual → Template”

arrangement is 1.2 points higher than ‘Template → Factual”. Nevertheless, as the

individual memory design has an average score of 36.02, it scores at least one point

higher than any of Sequential memory variants. Consequently, we can conclude that

the individual memory design is superior. as Moreover, we conduct a study on the
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Figure 4.3: Experiments of with and without layer normalization on the validation
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other crucial part of our memory network component—namely, layer normalization

(LayerNorm). This technique is a popular method for normalizing the distributions

within a neural model and smoothing the gradient to enable better model general-

ization [78]. Intuitively, the need for such normalization arises because we employ

Sentence-BERT to obtain memory matrices and T5-small to perform explanation

generation, which results in a distribution mismatch. Therefore, we need LayerNorm

to harmonize the distribution between the two.

We conduct experiments on the validation set with our model, where we run each

variation for 21 epochs with the same experimental setting to draw scientific conclu-

sions. As seen in Figure 4.3, the model performs much better when the normalization

layer is present, which aligns with our expectations. In conclusion, LayerNorm is

essential for our method as it can assist with matching the distribution between our

memory matrices and the explanation generation model.

4.11 Summary

In this chapter, we began by introducing the e-SNLI dataset, which is an extension

of the SNLI dataset for the explanation generation task. The dataset contributed

more than 600k human-annotated references. We followed up with the evaluation
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metrics associated with e-SNLI. For each metric, we explained their tokenization

and evaluation method. Furthermore, we highlighted the similarities and differences

between the metrics.

In the succeeding section, we offered detailed records of our implementation. This

is crucial as it encompasses the essence of reproducibility for research in NLP. We

supplied the minutiae to the preprocessing steps, the models we utilized, and the

hyper-parameters we used.

Subsequently, we discussed our experiments in detail. We presented our main result

with a table that includes evaluations of previous work based on either replication,

checkpoints, or both, along with the results from our model. The table included the

multi-reference BLEU and SacreBLEU metrics, mentioned in Section 4.3. We com-

pared previous work with our own, assessing the difference in the utilization of data

and the model performance. In Section 4.6, we provided the ablation experiments,

where we displayed the results of ablated models and examined their performance

alongside our main results. Subsequently, we analyzed the template memory in terms

of different numbers of templates with a figure and presented a case study of the

factual memory.

Finally, we investigated our architectural design by positioning the memory net-

works at various locations in the decoder. Our results indicated that our design choice

yields the highest overall performance. Additionally, we examined our memory com-

ponent design. The experiments included sequentially stacking, parallel computation,

and individual computation of the memory networks. The individual computation,

which is our approach, consistently attained the highest scores across all metrics,

suggesting that our design is well-justified.
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Chapter 5

Conclusion

5.1 Thesis Summary

In this thesis, we tackle the issue of explainability explanation generation. The task

aims to explain the decision of an unexplainable system by generating natural lan-

guage explanations. Although previous work has succeeded in generating explana-

tions, whether as an intermediate or end task, these efforts have generally involved

merely fine-tuning existing models. As a result, the systems remain unexplainable

black boxes.

To overcome this challenge, we adopt a weakly supervised approach and design a

rule-based method to capture the underlying rationale information for NLE. Subse-

quently, we integrate these information into separate memory pads, which are then

incorporated into a carefully engineered decoder architecture. We further equip the

decoder with attention mechanisms to facilitate interactions between the decoder and

our memory networks. In this way, we can train the whole model in an end-to-end

fashion. This approach enables us to enhance a black-box model’s explainability in

NLE, and simultaneously improving performance on metrics adopted from previous

work.

We conduct comprehensive experiments to evaluate our approach. Our model

achieves state-of-the-art performance across different variants of the BLEU metric.

Furthermore, our ablation study shows that each memory alone can improve our base-
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line model, suggesting the significance of each module and demonstrating the efficacy

of our modeling. We conduct additional analyses of various aspects of our approach.

The analysis of our template memory size indicates that our memory is utilizing an

optimal number of templates. Moreover, the case study of our factual memory dis-

plays that our decoder learns meaningful attention to the factual knowledge, thus

validating our claim of improving the explainability of explanation generation. Our

subsequent analyses of our architectural and memory component design confirm that

our framework outperforms alternative design in terms of performance.

In conclusion, this thesis introduces model that significantly improves both the

explainability and performance metrics in Natural Language Explanation. Through

comprehensive experiments, ablation studies, and additional analyses, we demon-

strate that our approach is well-designed.

5.2 Limitations and Future Work

Our method does not predict the sentence-level SNLI labels directly. This is not a

limitation of our method, as we may easily perform multi-task learning to obtain

the labels, which is also the common practice in previous work [11, 40, 51, 81].

Instead, our focus is on generating textual explanations for SNLI. Notably, many

of the common practice views e-SNLI as an augmentation dataset for improving

SNLI. However, their explanation generation performance may be sub-optimal (seen

Figure 4.1), and may only marginally perform better than older approaches.

One potential limitation of our approach is that we rely on the previous study [76]

for obtaining the factual tuples in a weakly supervised manner. However, we do

not believe this affects the validity of our method because 1) EPR [76] achieve high

accuracy in phrase detection and logical relation prediction, which are ready to use

for downstream tasks; and 2) we are the first to show that such structured tuples are

useful for textual explanation generation, which, along with our template extraction

and the memory network, constitutes the focused contribution of our thesis.

44



We look to a few possible future directions: inducing factual and template knowl-

edge end to end and performing explanation generation for other domains. Currently,

we rely on preprocessing to obtain factual and template tuples, which means that our

knowledge space is static. This may be restrictive to the explainability we can achieve.

Instead, if the model can learn such tuples and present them in a dynamic manner,

for example, using one-hot vectors, we would possibly accomplish even better ex-

plainability. Another meaningful future direction would be to generate explanations

for many different domains, such as medical reports, legal documents, and program-

ming languages. By extending to other domains, our system will become much more

generalizable. However, we may need to first improve the methodology of generating

knowledge as our knowledge retrieval methods are constrained to e-SNLI.
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