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Abstract

Multimedia systems are widely used in consumer electronics environments today, where 

humans can work and communicate through multi-sensory interfaces. Unfortunately smell 

detection is not yet part o f today’s multimedia systems. On the other hand, the interest in 

electronic noses has grown enormously in the last decade and the smell devices have already 

reached the commercial market targeting several sectors o f the world global economy. 

However, these devices are still too expensive for acquisition by general consumers.

In this thesis, we present a complete design, implementation and evaluation o f a low cost 

electronic nose suitable for integration into multimedia systems and capable to discriminate a 

large sub-set o f commonly occurring smells. The proposed electronic nose system consists of 

several hardware and software modules. The hardware modules comprise the mechanisms 

developed to sniff and detect commonly occurring smells. One software module is dedicated 

to control and interface with the hardware mechanisms and three software modules are 

dedicated to smell signal processing, smell pattern recognition and performance evaluation 

over different smell environments.
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Chapter 1

Introduction

An electronic nose can be generally defined as an electronic instrument consisting o f a multi

sensor array module and a pattern recognition module that is capable o f recognizing simple or 

complex odors.

One o f the earliest instruments able to produce electrical signals in the presence o f a smell 

source was reported by M oncrief in 1961 [1]. He used a single coated thermistor as the smell- 

sensing unit but postulated that the use o f an array of six differently coated thermistors would 

increase the range and discrimination between smells. Twenty years later, in 1987, J. W. 

Gardner used for first time the term “electronic nose” in a landmark paper titled “Pattern 

recognition in the Warwick Electronic Nose [2],

Electronic noses have reached the commercial market targeting several sectors o f the world 

global economy such as food, perfumery, health and environmental applications. Human 

noses are also used in commercial applications. However, the measurements realized with 

human nose panels are much more expensive and can be affected by subjective factors such 

as the association o f smell with pleasant or unpleasant memories.

The interest in electronic noses has grown enormously in the last decade and new researchers 

and merchants are joining the machine olfaction community. However, these devices are still 

too expensive for acquisition by the general consumer. As a result these noses are not yet 

suitable for integration with multimedia systems.

1
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1.1 Objectives

This thesis aims to explore the feasibility o f design and construction o f the hardware and 

software modules for a low cost electronic nose. The electronic nose presented here can 

discriminate a large sub-set o f commonly occurring smells such as foodstuffs, beverages, 

plants and perfumes. It can be made accessible to the general consumer, and it can be 

produced using inexpensive off-the-shelf components. More specifically the main objectives 

o f this thesis are as follows:

• Review o f the existing smell detection techniques and their limitations.

• Design and development o f a low cost electronic nose, which is easy to assemble and will 

recognize at least ten different smells from commonly occurring odours.

• Design and development o f a software system to allow the analysis and perfonnance 

evaluation o f several smell signal processing techniques and pattern recognition 

algorithms. The software system must be expandable allowing easy integration o f more 

smell signal processing techniques and smell-pattem analysis methods into the current 

developed framework.

1.2 Main Contributions

In this thesis, we present a complete design, implementation and testing o f an electronic nose 

suitable for integration into multimedia systems, which can be made accessible to general 

consumers at a very low cost.

There are four main contributions o f this thesis into the area o f machine olfaction:

• A low cost electronic nose suitable for integration with multimedia systems has been 

implemented and tested.

• A software system that serves as development infrastructure for further research in 

the area o f smell detection has been implemented and tested (see Section 5.3).

2
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• An efficient smell sniffing technique for machine olfaction applications has been 

proposed, implemented and tested (see Section 4.7).

• An efficient variant (STD) o f the signal derivative technique used for fcature-vector 

extraction has been proposed and tested with good results (see Section 5.2.2.3.3).

1.3 Outline

This thesis studies the feasibility o f design and construction o f a low cost electronic nose 

suitable for integration into multimedia systems. In Chapter 2, a review o f the human 

olfactory system (HOS) and the machine olfaction systems is presented. The anatomy o f the 

HOS and the biological processes to detect the volatile odorant molecules (VOM) is 

presented first, which is followed by a brief discussion on the sensing materials, smell sensor 

types and the simplified architecture of an electronic nose. Finally, a review o f a few selected 

implementations o f different machine olfaction systems is presented.

In Chapter 3, a comprehensive review o f the smell signal processing techniques, pattern 

recognition algorithms and validation procedures commonly used in machine olfaction is 

presented. An exhaustive discussion of commonly used smell-signal processing techniques is 

presented first, which is followed by a detailed review o f two simple but powerful pattern 

recognition techniques. Finally, the performance evaluation techniques commonly used in 

machine olfaction systems are introduced.

In Chapter 4, the proposed low cost electronic nose (eNose) design suitable for integration 

with multimedia systems is presented. A detailed explanation o f the hardware modules and 

the software interface needed to control this hardware is first presented, which is followed by 

a detailed explanation o f the eNose smell sniff-cycle characteristics. Finally, a novel smell 

sniff technique for machine olfaction applications is proposed.

In Chapter 5, the signal processing techniques and the GUI software system modules 

implemented in the proposed electronic nose are presented. The characteristics o f the smell 

signals produced by the eNose hardware is first presented, which is followed by a detailed 

explanation o f each smell-signal preprocessing techniques implemented in the eNose system.

3
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Finally, the GUI software system that computes the signal processing and the analysis o f the 

extracted smell-pattern are briefly reviewed.

In Chapter 6, the performance achieved by the proposed eNose in several machine olfaction 

application areas is presented. The working environments for testing and evaluation are first 

outlined followed by the description of the evaluation procedures. Finally, the performance 

achieved by the eNose in the outlined smell experiments and the influence o f different 

combinations o f signal processing techniques is presented and briefly discussed.

The conclusions and future work is presented in Chapter 7 followed by the References with 

the list o f papers and books referenced in this thesis.
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Chapter 2

Review of Machine Olfaction Systems

An ideal machine olfaction system is a system that closely mimics the human olfactory 

system. The current machine olfaction systems typically use an array o f gas sensors to detect 

the presence o f odorous substances and pattern recognition techniques to identify the smell 

produced by these substances.

In this chapter, we present a comprehensive review o f the human olfactory system (HOS) and 

the machine olfaction systems. The organization o f this chapter is as follows. In Section 2.1, 

we present the anatomy o f  the HOS and the biological processes to detect the volatile odorant 

molecules (VOM). Section 2.2 follows with a brief discussion on the parameters commonly 

used to characterize smells. In section 2.3, we present a few popular smell classification 

systems. In Sections 2.4 and 2.5, several sensing materials, sensing parameters and smell 

sensor types are briefly reviewed. In Section 2.6, we describe a simplified architecture o f an 

electronic nose. In Section 2.6.6, we present a few selected implementations o f different 

machine olfaction systems.

5
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2.1 The Human Olfactory System

The human olfactory system includes more than five millions smell receptors and specialized 

neurons. A simplified schematic of a typical human olfactory system (HOS) is shown in 

Figure 2-1. The smell detection process is as follows. The odorant molecules reach the 

olfactory epithelium after following a spiral trajectory through the turbinated bones. When the 

smell receptors, which are embedded inside the olfactory epithelium, come into contact with 

the odorant molecules, an electrochemical signal is generated and sent to the olfactory bulb. 

In the olfactory bulb, the signal is first preprocessed and then sent to the forebrain systems 

(the thalamus and the hypothalamus) where the final smell recognition takes place.

Olfactory
Neurons
Axons

Olfactory
Bulb

Bone

Olfactory
%■

Epithelium

Volatile Odorant Molecules

Figure 2-1 Schematic o f the Human Olfactory System [3]
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Olfactory Olfactory 
Epithelium Bulb

Mitral cells 
(specialized neurons)Smell Signal

VOM.

Higher
Cortex

Limbic
System

Smell
Receptors Axons

/  Glomeruli
Specialized Neurons (specialized neurons)

Figure 2-2 A simplified schematic o f the smell signal path in the HOS (adapted from [4])

When a VOM excites the smell receptors (see Figure 2-2), the generated electrochemical 

signal travels along the axons and is transferred to the neurons in the olfactory bulb, where it 

travels through different layers of specialized neurons (for preprocessing) until it is outputted 

from the olfactory bulb to the forebrain. The olfactory’ bulb is located in the front o f the brain 

and from it the smell signals are both relayed to brain’s higher cortex (which handles 

conscious thought processes) and limbic system (in central nervous system which generates 

emotional feelings). This makes it possible for smells to evoke powerful emotional responses 

as well as convey factual information [3],

7
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Olfactory
* ' f

Bulb Glomeruli

Olfactory*•

Nei^e

Cribriform 
Bone

Connection 
Neurons

Olfactory
Neurons

Supporting 
Cells

Dendrites 

(smell receptors)

Figure 2-3 The Olfactory Epithelium with detail o f the smell receptors [3]

A detailed schematic of an olfactory epithelium is shown in Figure 2-3. It is observed that the 

olfactory epithelium contains the olfactory receptors, which are the dendrites o f a layer of 

first order specialized neurons. The olfactory neurons are arranged in parallel and have large 

axons that penetrate through the thin holes in the cribriform bone. The axons diverge but 

terminate on the surface o f the olfactory bulb where there is a first layer o f second order 

specialized neurons called glomeruli. The glomeruli neurons interconnect with the axons of 

the olfactory neurons carrying out some primary signal processing.

It is known that a typical HOS contains several millions receptors o f approximately 1000 

different types. These receptors together can detect up to 5,000 different smells with 98% 

accuracy. Human smell detection is based on a combinational scheme where a different 

number and type o f smell receptors are activated in the presence o f a particular smell. As a 

result, small changes in the chemical structure o f a gas will activate a different combination
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o f receptors. That is why octanol smells like oranges, while a similar compound, octanoic 

acid, smells like sweat. It has also been found that large amount o f VOM affect larger number 

o f receptors, which may change the smell perceived from this chemical. In other words, a 

small amount o f VOM might smell flowery while a large amount o f the same VOM might 

smell putrid

2.2 Smell Attributes

A smell is typically characterized by attributes such as Intensity, Character, Hedonic tone and 

Concentration [5].

These attributes are subjective and in most cases depend on the previous personal experience 

o f an individual. Therefore, in order to measure these attributes accurately it is necessary to 

put together several human panels to evaluate and rank them. A brief explanation o f each 

smell attribute is given below.

The intensity o f a smell is difficult to measure as it is influenced by other attributes such as 

character, hedonic tone and concentration. The intensity is measured by comparing the 

intensity o f a given odorous sample to the intensity o f the reference odorant, which is usually 

n-butanol, at different concentrations.

The character is expressed using descriptors such as minthy, earthy and fishy. The character 

o f a smell is the base o f most smell classification systems.

The hedonic tone is subjective and related to the experience o f  the human subjects evaluating 

the smell. The hedonic tone is independent o f the smell character and refers to the degree of 

pleasantness or unpleasantness. It is usually measured by using a 10 points scale (from -5  to 

+5).

The concentration is defined as the mass concentration o f pure odorous substances or odor 

dilution required to reach the detection level. At the concentration o f the detection level a 

given smell has a 50% detection probability.

9
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2.3 Smell Classification

It is difficult to express a smell in terms o f simpler smells as it is done with other perceptual 

attributes such as color. It is widely known that the human visual system has 3 types o f cone 

cells (to detect three primary colors: red, green, and blue). As a result, an arbitrary color can 

be expressed in the form o f these primary colors. However, no evidences have been found 

regarding any primary smell detected by the HOS. Therefore, several smell classification 

systems have been proposed in order to help the communication between individuals working 

in smell research areas and smell related industries.

Some o f these smell classifications systems were proposed more than 200 years ago [6]. 

Linnaeus proposed one o f the earliest smell classifications in 1752. He grouped smells into 

seven classes based on their appeal (see Table 2-1). Zwaardemaker’s classification, made in 

1895 expanded Linnaeus’s classifications to include two classes: Ethereal and Empyreumatic.

Table 2-1 Linnean’s and Zwaardemaker’s smells classifications [3]

L in n a e a n  a n d  Z w a a r d e m a k e r  C l a s s e s E x a m p l e s

Aromatic Camphor, spices, anise, citron, almond

Fragrant Flowers, vanilla, balsam

Ambrosiac Musk, amber

Alliaceous Onion, garlic, acetylene, iodine

Hircine Goaty smells, cheese, sweat, chestnuts

Foul Narcotics, and some bugs

Nauseous Carrion, carrion flower, faeces

Ethereal The fruity ethers o f  perfumes, beeswax, ether

Empyreumatic Roasted coffee, tobacco smoke, naphthalene

In 1923, Lovell proposed another smell classification (see Table 2-2) where smells were 

divided into eight groups based on smell sources. Although this classification is incomplete
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since it does not cover all the commonly occurring smells, it meets the requirements o f most 

consumers such as beekeepers, agriculturalists and naturalists.

Table 2-2 Lovell’s smells classification [3]

L o v e l l  C l a s s e s E x a m p l e s

Sweet Flowers Honey, apricot

Fruit Apple, pear

Aromatic or Spicy Cloves, ginger

Musk Musk mallow

Onion and Alliaceous Onion, garlic

Rank Goat smell

Foul Bugs, opium.

Nauseous Urine, putrid fish

The classifications mentioned above are neither detailed nor complete enough to cover most 

commonly occurring smells. Several classifications, mostly from the standpoint o f perfumery, 

have been developed in the last few decades. There are individual differences in human smell 

perception and the debate on the right classification will continue. However, for the 

multimedia applications, classification o f smells into 50-200 groups will be easily 

manageable, while achieving a reasonably good accuracy.

2.4 Smell Sensing Materials

As smells are typically generated and transmitted by gaseous molecules, gas sensors are used 

for their detection. Gas sensors are generally developed with materials whose properties also 

change when exposed to smell-producing gas. The following properties are typically 

exploited in smell detection [7]:

a) Capacitance
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b) Mass difference

c) Frequency dependent optical absorption or reflection

d) Voltage, temperature and frequency dependent conductivities and complex 
impedances

e) Frequency dependent electrochemical potential differences and currents.

Several materials are used in the fabrication o f sensors and these include metals, 

semiconductors, ionic compounds, and organic compounds such as enzymes and polymers. 

Table 2-3 shows various types o f materials typically used for smell sensors.

Table 2-3 Typical material used as sensors [3]

TY PE OF MATERIAL E x a m p l e s

Metals Pt, Pd, Ni, Ag, Au, In, Ga, Rh, Sb

Semiconductors Si, GaAs, InP, NiFe20,*

Electronic conductors S n 02,Ti02,Ta205

Mixed conductors Ga20 3,W 03,Ir0x

Ionic conductors Z r02, LaF3, C e02, CaF2,Na2C 0 3

Crystals PbPc, LuPc2, (PcAlF)n

Polymers Phthalocyanines, polydiacetylenes

2.5 Smell Sensors

Although, there are several types o f sensors, in industrial gas sensing applications, the 

semiconductor and metal sensors are widely used. P-type semiconductor is effective in 

sensing oxidizing gases whereas the n-type semiconductors are generally used to detect gases 

such as hydrogen and methane.

The metal-oxide semiconductor (MOS) based sensors are also very popular because of their 

low cost and availability. They have been used in several industrial and research applications 

such as beverages, perfumery and food industries. Olaffsson et al [8] used an array o f 4 MOS 

sensors to determine the freshness o f fish (e.g., cod, haddock). Tan et al. [9] used 6 MOS
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sensors to discriminate various kinds o f sausage meats. Aishima applied 6 MOS to 

discriminate cafe arabica and cafe robusta [10] and also to discriminate various types of 

alcoholic drinks [11], Gardner et al. [12] applied 12 MOS sensors to discriminate between 

different blends and roasts o f coffee.

The semiconductor-based gas sensors can be manufactured using microtechnology. The 

sensors manufactured with this technology have several advantages over other bulky sensors, 

such as high productivity, low cost and low power consumption [13]. Note that most gas 

sensing materials have a narrow sensing range for gases. Therefore, many systems designed 

to detect more than one smell producing gases use arrays of micro-sensors instead o f a single 

sensor.

Polymer based smell sensors are also o f widespread use in machine olfaction systems [14], 

[15], [16]. These sensors are attractive because they do not need to be heated at high 

temperatures as the MOS sensors do. Moreover, polymer sensors have high sensitivity to 

different polar compounds in contrast to MOS sensors, which respond poorly to these 

compounds. The main disadvantage o f polymer sensors is their high sensitivity to minor 

changes in the ambient humidity, their poor fabrication reproducibility from batch-to-batch 

and generally slower response times than MOS sensors.

2.6 Electronic Nose Architecture

Electronic noses make use o f gas sensor arrays and well-known pattern recognition 

techniques in order to detect and identify the smells. The sensors in the array have broad and 

overlapping selectivities, which allows for detection o f a wide range o f smells. The sensor 

array response is preprocessed and used by the pattern recognition system as an electronic 

fingerprint to characterize the smell.
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Figure 2-4 Electronic Nose Basic Architecture

The basic architecture o f a typical electronic nose system is depicted in Figure 2-3. The Smell 

Delivery system takes the VOM- example from the smell-source and brings it into contact 

with the array o f smell sensors within the smell-sensing chamber. When the VOM-example 

impacts upon the surface o f the s  different sensors in the array, the chemical reactions 

between the odorant molecules and the active surface o f the sensors modify some physical 

property o f the sensing materials (e.g., electrical resistance). The signal generated by the 

sensor is then modified and converted into a useful electrical signal V(t)  by the sensor 

electronics. The signal V ( t ) is proportional to the sensing parameter changes (see Figure 

2-5). The analog electrical signal is then converted into a digital signal W[k]  in the analog to 

digital module, which permits for rapid computation and recording o f the sensor response 

parameters. Finally, in a computerized stage, the digitized smell-signals are preprocessed and 

fed into the selected pattern recognition algorithm for the final smell recognition.

2.6.1 Smell Delivery System

The delivery system brings the VOM-examples into the sensor chamber. The delivery 

systems can be divided into two broad categories: sample flo w  systems and static sampling. 

In the sample flow systems the sensors are placed in the vapor flow, which allows a rapid 

chemical exchange o f the vapor in the sensor surfaces. In static sampling systems, there is no 

vapor flow around the sensors and the sensors are usually exposed to vapor at constant 

concentration.
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Figure 2-5 A typical metal-oxide sensor response to a VOM pulse

The Sample flow  system  is the most popular smell delivery system method. A generic sample 

flow delivery system may use an automated pump with flux volume, speed control and 

humidity and temperature regulation. These will ensure the repeatability of the measurements 

and minimize sensor’s drifts. Several sample flow system methods such as headspace 

sampling, bubbler and sampling bag methods have been developed. In this thesis, we have 

mostly used headspace sampling method and bubbler methods. However, for a few 

experiments, it was necessaiy to use the sampling bag method (see Section 6.1.3).

The headspace sampling method is an easy method to implement [17], [18]. Here, a carrier 

gas is passed through a concentration vessel containing the smell sample and then into the 

sensor chamber. The carrier gas (usually an inert gas, such as nitrogen) will drag the VOM 

and transport them into the sensor’s chamber. The distance between the smell source surface 

and the tubes that cany out the smell and the carrier gas must be kept constant because the
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vapor concentration inside the concentration flask varies according to its distance from the 

source surface. The bubbler method is very similar to headspace sampling but the carrier gas 

is forced through the liquid smell source and the vapor is generated by bubbling and taken 

away by the carrier gas into the smell sensor chamber. The sampling bag method is usually 

employed when the smell source cannot be brought close to the electronic nose. In this 

method, a bag made o f an inert material such as Tedlar keeps a large volume o f VOM that 

was previously extracted from the smell source. The bag is connected to the smell inlet of the 

delivery system and the VOM examples are then drawed directly from the bag. In this method 

no carrier gas is used.

In static sampling a few micro liters of the liquid smell source is taken manually with a 

syringe and injected into the sensor chamber [19], [20]. A small fan stirs the air inside the 

sensor chamber in order to guarantee uniformity in the mix. The sensor chamber volume is 

much larger than the volume of sample used, typically in the order of a few liters. Static 

measures (steady-state) o f the sensor response are taken after the liquid has totally evaporated 

and the equilibrium has been reached. The static sampling smell delivery system approach is 

time consuming, and may not be very precise.
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Figure 2-6 Smell Delivery System for a Robot Head [21]

A simple implementation o f a sample flow smell delivery system design that was proposed by 

Miwa et al. [21] is shown in Figure 2-6. Here, they mimicked the human respiratory system in 

their implementation of a smell delivery system for their robot head. A small DC motor and a
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ball screw mechanism (similar to that o f an old floppy drive unit). The smell delivery 

component consists o f four sets o f pistons that make the air move into the nose passing 

through the sensors-box and arrives to the lung. The air is then directly breathed out through 

the same input path. The lung volume is 3700 cm3 and the airflow rate is 6100 cm3 per 

second.

2.6.2 Smell Sensing Chamber

The smell-sensing chamber is one of the most important parts o f the smell delivery system. 

Its design determines the response time o f the sensors because a sensor response is influenced 

by its position within the chamber relative to the smell sample flow. The internal volume o f a 

smell-sensing chamber should be as small as possible in order to minimize the effects due to 

the sensors position. However, when the sensor response is slow enough, the impact of 

sensor’s position can be ignored. Two widely used types o f  sensing chamber designs are 

shown in Figure 2-7 and Figure 2-8.

chamber

smell flow I s i  s i  33 S3,

^ 0 - 0 ‘GHfe)
I X  i  |___ 1 ___Vrb-

smell sensors

Figure 2-7 Sensing chamber for inline arranged sensors

A very popular inline arrangement o f the smell sensor within the smell-sensing chamber is 

shown in Figure 2-7. The smell sampled from the concentration vessel flows over the sensors 

surfaces. Theoretically, sensor SI will produce a response before sensors S2 and S3. 

However, it also depends on the response time of sensor SI compared to that o f the sensors 

S2 and S3.
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The materials used to build the sensing chamber should be inert to the gases being tested to 

avoid interference in the measurements. The most popular choices are stainless steels, Teflon 

derivatives and glass. Bach o f these materials has its pros and cons. For example, stainless 

steel is very difficult to machining but it is a good heat conductor and inert to almost all 

chemicals.
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Figure 2-8 Sensing chamber design for parallel sensors arrangement [18]

An implementation o f a sophisticated smell sensing chamber (see Figure 2-8) was developed 

by Nakamoto et al. [18]. Here, both sensors will receive the odorant molecules at the same 

time. Note the small active volume inside the chamber. This characteristic guarantees fast 

response time because all smell molecules are efficiently blown over the sensors surfaces. In 

addition, the dead volume, which is responsible for performance degrading turbulences, is 

minimized. In this design, a flow o f water through special paths embedded in the chamber is 

used to keep the sensors at a controlled temperature.

2.6.3 Smell Sensors Array

The smell-sensing unit o f an electronic nose is built around an array o f several gas sensors 

placed together inside the smell-sensing chamber. This is necessary because the gas sensors 

have partial sensitivities and respond broadly to a range of gases rather to a specific one. 

Therefore, by using several sensors the selectivity of the smell recognition system can be 

improved and the system will accurately discriminate among a wider range o f smells.
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2.6.4 Sensor Electronics

The sensor electronic circuits are responsible for interfacing and conditioning the sensor

the changes in the sensor parameters being measured. The conditioning electronics are 

responsible for buffering, amplification and filtering o f the electrical signal produced by the 

interfacing circuitry.

One parameter per sensor type is typically selected by the interfacing electronic in order to 

simplify the circuitry. The conductivity, resistance and frequency changes are the most 

commonly chosen sensing parameters used by electronic noses. However, larger smell-spaces 

can be represented if  several smell sensors o f different types are combined together in the 

sensor array or if more than one sensing parameter per smell sensor is chosen for measuring 

by the interfacing electronic. However, this can lead to an extremely complex electronic 

circuitry [22], [23].

A standard circuit for measuring large resistance changes is the voltage divider, which is 

widely used with metal-oxide gas sensors due to its simplicity. In this circuit (see Figure 2-8) 

the unknown sensor internal resistance R s is connected in serial connection with a known

response. The purpose o f the sensor interfacing is to produce an electrical signal that reflects

.Sensor

Figure 2-9 Voltage Divider for interfacing Metal-Oxide Sensors
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load resistance RL through a constant voltage supply Vcc and ground. Therefore, the current 

through the sensitive element and the load resistance becomes:

I  -  Vcc
s r . + r l

(2 - 1)

Changes in the sensor resistance are then proportional to the VL (the voltage across the load 

resistor R l ). Therefore, by measuring VL and applying Ohm’s law (V  = I R ) we can 

calculate the changes produced in the sensing resistance by the odorant under test. Some 

sensors need additional interfacing circuitry in order to control vital operation parameters, 

such as the work-temperature operating point in metal-oxide gas sensors.

+  5 VOLTS

VH Vcc

SENSING
SURFACE

HEATER

V l

R l

7777

Figure 2-10 Interfacing circuit for Metal-Oxide Sensors (adapted from [24])

A schematic o f the metal-oxide interfacing electronics including the sensors heater circuit 

recommended by the manufacturer [24] is shown in Figure 2-10. Metal-oxide sensors are 

commonly operated in the isothermal mode, in which the work-temperature is kept constant 

during exposure to smells. The simplest method is to implement a pseudo isothermal control, 

in which the sensors heater (a heating resistance buried into the sensing surface) is kept at a
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constant voltage Vn . However, in some implementations where modulation of this voltage is 

achieved a more sophisticated interfacing circuits is used.

2.6.5 Analog to Digital Conversion Module

In this module, the analog voltage signals produced by the sensor interfacing electronics are 

sampled (quantized and digitized) in order to feed them into the computerized modules where 

further digital signal preprocessing and final smell recognition is performed.

Here, the signal V ( t ) produced by sensor s  in response to a given VOM-example e (see 

Figure 2-5) is converted into the digital signal W[k]  such that t -  kTo and \ < k < N k ,  

where To is the selected sampling interval in seconds and Nk is the number o f data points 

acquired per VOM-example.

Sampling rates between one sample-per-second (7 ’o =  l j ) t o  one sample-every-ten-seconds 

( To -  10 s  ) are typically used by the analog-to-digital conversion modules o f most machine 

olfaction systems. This is because, the response voltage signals delivered by the sensor 

interfacing electronics change at slow rates since they reflect the slow chemical processes that 

take place between the odorant molecules and the smell sensing surfaces.

2.6.6 Selected Electronic Nose Systems

A few smell-sensing instruments have been developed in narrow applications. M oncrief [1] 

developed one o f the first smell detection instruments in 1961 for agricultural application, 

where he used a single coated thermistor as the smell sensor. In 1964, Wilkens and Hartman 

[25] developed a smell detector where an array o f eight electrochemical sensors was used.

The first intelligent electronic smell sensing systems appeared in late 1980’s. Gardner [26] 

used pattern recognition techniques to discriminate the output o f electronic smell sensors. 

Hatfield et al  [19] described an integrated circuit based device that performs data acquisition 

from a miniature array o f 32 conducting polymer gas sensors. David et al  [27] designed a 

circuit capable of measuring signals from arrays o f resistive and piezoelectric sensor types in
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the same board. Chueh and Hatfield [28] presented a sensor electronics circuit coupled with a 

hand-held computer that allows real-time field measurement o f gas smells.

Miwa et al. [21] built a robot head that displays a reaction in the presence o f some smells 

(e.g., alcohol and cigarette smoke). The sensor array comprises only 4 metal oxide gas 

sensors. The recognition algorithm uses a look-up table that contains sensor outputs and their 

derivatives. Mizsei and Ress [29] developed a system that converts the output signals o f a gas 

sensor array into pixel elements displayed as a 2-D image. The sensor electronics is based on 

a scanning version o f a vibrating capacitor (Kelvin probe). The sensor array comprised of 

several receptors material strips on a ceramic subtract that are asymmetrically heated.

2.7 Summary

In this chapter, we first presented the anatomy of the human olfactory system and the 

biological processes involved in smell sensing. It was followed by a brief discussion on 

odorant substances, the parameters commonly used to characterize smells and a few smell 

classification systems. The smell sensing materials and the sensing parameters were then 

reviewed before describing the basic architecture o f  an electronic nose. Finally, a few 

implementations o f different machine olfaction systems were presented.
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Chapter 3

Review of Smell Signal Processing Techniques

In the previous chapter we presented the anatomy o f the human olfactory system and the 

basic architecture o f an electronic nose. In this chapter, we present a comprehensive review of 

the smell signal processing techniques, pattern recognition algorithms and validation 

procedures used in the machine olfaction field. These techniques have been used to 

discriminate between various smells, different concentrations o f the same smell and to 

identify individual odorant components in a specific blend o f volatile odorous molecules.

The organization o f this chapter is as follows. In Section 3.1, we present an overview of a 

typical electronic nose signal processing modules. We also define here, some o f the 

mathematical notation that will be used in the rest o f this thesis. In Section 3.2, we present the 

typical sensor response focusing on its transient regions. Section 3.3 presents an exhaustive 

discussion o f the most commonly used smell-signal preprocessing techniques. A brief review 

o f the Principal Component Analysis technique, which is used to remove the collinearity 

between the selected features, is presented in Section 3.4. In Section 3.5, we present details of 

two simple but powerful pattern recognition techniques: the nearest-mean and the nearest- 

neighbor. Finally, in Section 3.6, the performance evaluation techniques commonly used in 

machine olfaction systems are briefly reviewed.
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Figure 3-1 Smell Data Analysis Architecture 

3.1 Smell Pattern Analysis Overview

The general architecture o f  the smell data analysis process for machine olfaction is shown in 

Figure 3-1. In general, machine olfaction systems work in one o f two operation modes: the 

training (learning) mode and the classification (testing) mode. In the learning mode, the 

system is programmed to recognize the set o f smell-classes that are specific to a given smell 

environment. In the classification mode, the system classifies the unknown incoming smells 

into one o f the previously learned smell-classes.

Training an electronic nose in a new smell environment is a three-step process. First, a 

database containing many smell-examples from the smell-classes defined in the smell 

environment is collected. Here, a smcll-example is a data file containing the digitized smell 

sensor response signals Wcs\k]  corresponding to one sample o f the VOM from a given 

smell-source. Second, each example in this database is preprocessed in order to obtain its
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smell-pattern (feature-vector) Z c . Optionally, an additional processing stage can be applied

to reduce the dimensionality o f each feature-vector. Third, the pattern recognition system is 

trained using these smell-pattems. The pattern prototypes that characterize each smell-class 

in the given smell environment are obtained in this step. These class prototypes Pc are saved 

for later use in the classification process.

The classification o f  an unknown smell is a three step process that is typically applied after 

the electronic nose has been trained in the given smell environment. In the first step, the 

unknown VOM-example is sniffed and converted into a digitized VOM-example Wes[k] by

the electronic nose. In the second step, this digitized output (Wes[k])  is sent to the

preprocessing module where it is processed in order to produce its smell- pattern. The same 

preprocessing techniques that were applied during the training process (including the same 

dimensionality reduction technique) are applied in this step. Finally, the unknown smell- 

pattern is sent to the pattern recognition module where it is processed according to the 

specific pattern recognition algorithm and classified into one o f the previously learned class 

prototypes or rejected as a dubious smell.

"'...[‘ I -U *] F, 2,

Digitized 

Smell Signal Vector

Extraction

FeatureBaseline

Manipulation Normalization

Figure 3-2 Smell signal processing stages. We s[k] is the digitized output from the sensors
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The most commonly used smell-signal preprocessing techniques for machine olfaction 

systems are shown in Figure 3-2. The digitized sensor responses Wcs[k] undergo a three-step

preprocessing stage before being fed into the pattern recognition module. These signals are 

first pre-processed relatively to their baselines in the Baseline Manipulation module. The 

most informative features are then extracted from the smell-signal and the feature-vector Fe

is assembled in the Feature-Vector Extraction module. Normalization procedures are finally 

applied to ensure that the magnitudes o f all the features are limited to a specific range of 

values appropriated for input into the selected pattern recognition algorithm. The 

dimensionality o f the normalized feature-vector Z c can then optionally be reduced to a 

smaller size by a feature-extraction technique such as Principal Component Analysis (PCA) 

or Linear Discriminant Analysis (LDA) obtaining the feature-vector Z ', .

In order to facilitate the mathematical formulation for each o f the different signal processing 

techniques that will be reviewed, we use the following notation:

N e : The number o f samples (measurements) contained in a smell-database

N s : The number o f  sensors in the proposed electronic nose

N k : The number o f data points acquired per VOM-example

To : The sampling interval in seconds

The electrical signal generated by sensor s , (l < s  < N s ) in response to the

given VOM-example e , (l < e < N e)

Digitized version o f L .5(/) , where t = kTo and (l < k  < N k )
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X C J[ ^ ] : The output o f  the baseline manipulation preprocessing stage, which is the

baseline-relative version of

Nj-: The number o f features extracted from the response o f a sensor s

N m: The number o f features extracted from the array response X cs [&], where

N m = N J x N s

F{e,  in): The in"' feature extracted from the array response X c J/c] to the smell

example e , such that (l < in < N m)

Fe : The row feature-vector extracted from smell example e , such that

Fe =[F{ e , \ ) ,F{e ,2 ) , . . . ,F{e ,Nm)}

F  : The ( N c x  N m) matrix o f the feature-vectors extracted from all the available

examples N e , such that:

'  ^(1,1) F (  1,2) . • F & N J ’

F (  2,1) F (  2 ,2) . ■ F ( 2 , N J

F ( N J ) F ( N e, 2) . ■ F ( N e, N J _

Z(e ,  m ) : Normalized version o f F(e,  in) (see Section 3.3.3)

Z e : Nonnalized version o f Fe (see Section 3.3.3)
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Z  : The normalized version o f F , such that Z  is a (yVt, x N m) matrix o f the

nonnalized feature-vectors extracted from all the available examples N c

N , : The number o f  new features used to map Z e in a new coordinated system L

defined by a Feature Extraction transformation function such as PCA (see 

3.4.1)

Z' (e , l )

Z'e : The image o f  row vector Z e mapped into the new coordinated system L ,

such that Z'e =[Z ' (e , l ) ,Z ' ( e ,2 ),...,Z '(e ,N ,) ]  and N, < N m (see 3.4.1)

Z ':  The { N ^ x N , )  matrix o f the feature-vectors images mapped into the new

coordinated system L , such that N , < N m and:

■ Z '(  1,1) Z '( l,2 ) . . Z ' { \ , N , )  '

Z '(2 ,l) Z '(2 ,2 ) . • Z ' ( 2 , N , )

1 N
 

 ̂
•

Z ' ( N e,2) . • Z \ N e,N,)_

3.2 Smell-Signal Transient Regions

The smell signal can be divided into three characteristic transient regions: ascending transient, 

steady state and descending transient. In the ascending transient region the sensors output 

rapidly increase in response to the input o f a VOM-example. It typically follows an 

exponential like curve o f the type y - f 5 - a e ~ r t . The steady-state region follows the
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ascending transient, here the signal rising rate slows down and becomes an elbow shaped 

curve as the chemical reactions between the sensor surface and the odorant molecules slowly 

reach the equilibrium state in which the curve finally flattens. The descending transient is 

initiated when the VOM-example is pumped out of the sensor chamber and replaced by clean 

air (e.g. dry and filtered air) or any other reference gas. The descending transient follows a 

logarithmic like curve of the type y  = j3e~ '''.

Fresh Lemon
3.5

T826

O>
a

Steady Stat

Ascendi

Descending Transient

Sensor Ba

0.5  I__
100 200 300

time (in seconds)
400 500 600

Figure 3-3 A typical smell sensor response showing the transient regions

In general, the ascending and descending transients have strong dependency on the smell 

delivery system (i.e., type of carrier, flow rate, relative position of the smell input pipe and 

the sensors, etc.) but also on the smell type, smell concentration, nature of the sensing 

materials and the reaction kinetics. On the other hand, the steady state regions of the sensor 

response depends almost only on the nature o f the smell and sensing materials used and it is
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influenced by the characteristics o f the smell delivery system [26]. However, there are strong 

evidences that smell-pattems extracted from the response transient regions also carry enough 

information for a successful smell classification task [30], [31], [32], [33].

3.3 Smell-Signal Preprocessing Stages

The digitized response o f a sensor array to a VOM-example undergoes a sequence of 

transformations that are realized in order to prepare the multivariate response in a format that 

improves the perfonnance o f the subsequent modules. Three main transformations stages can 

be identified that have been used extensively in machine olfaction systems. First, a baseline 

manipulation technique is applied to reduce the effects o f sensor drifts and temperature 

sensitivity dependences by processing the sensor responses relative to their baselines or initial 

states. Secondly, a feature-vector extraction technique is applied to calculate features that will 

efficiently discriminate different smells. Finally, a third transformation performs local and 

global normalization procedures that prepare the feature vector for subsequent analysis.

3.3.1 Baseline Manipulation

The baseline o f a smell sensor is the stable state reached by the sensor when it has been in 

contact with a reference gas for certain amount o f time. Normal air, filtered air and dry air are 

the reference gases commonly used in electronic noses.

It is a common practice to compute the final value o f the sensor response based on their initial 

or baselines values in an attempt to reduce the effects o f the short-term drifts by canceling the 

signal shifts before extracting the features [14], [34], Here, we present four most popular 

baseline manipulation techniques (see Table 3-1): Difference (D1FF), Relative (REL), 

Fractional change (FRACT) and logarithm technique (LOG).

The DIFF technique subtracts the baseline response (i.e., at k  = 1) from the

actual sensor response fl(vv[£] to a VOM-example (see Equation 3-1). The REL technique

divides the actual sensor response by the baseline response (see Equation 3-2). The FRACT 

combines the two previous procedures: first it subtracts the baseline response from the actual
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sensor response and secondly, it divides this result by the baseline response (see Equation 3-

3). The LOG technique computes the logarithm (to base 10) o f the ratio o f the actual sensor 

response and the baseline response (see Equation 3-4).

The DIFF technique has been reported to provide the best performance in general. Osuna and 

Nagle [34] found that the DIFF technique performed better than the REL and FRACT for 

detecting smells o f canned fruit juices and pops. Gardner at al. [35] studied nine different ad 

hoc baseline procedures, and found that the DIFF technique performed better on several 

bacteria cultures.

Table 3-1 Baseline manipulation techniques

B a s e l in e  T r a n s f o r m a t io n F o r m u l a

DIFF x,M=K, (3-1)

REL

J KA']
(3-2)

FRACT
Y r,.i (3-3)

LOG
' 1 J ir„[i]

(3-4)

3.3.2 Feature Vector Extraction

The goal o f the feature vector extraction module is to find a small set o f features that can 

represent efficiently the smells under analysis. Reducing the number o f features from the 

response signal is necessary in order to reduce the computational complexity.
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Numerous feature-vector extraction techniques and ad-hoc procedures have been 

implemented in machine olfaction applications. These techniques exploit different 

characteristics o f the smell-signal. The earlier techniques exploit the stationary infonnation 

conveyed by the smell-signal. More recent techniques aim to exploit the dynamic information 

contained in the transient regions o f the smell-signal. The dynamic information is typically 

obtained in the time domain or in the frequency domain. Here, we have identified and 

grouped these techniques in the six following categories:

1) Signal Decimation Techniques

2) Signal Steady State Techniques

3) Signal Dynamics Techniques

4) Signal Spectral Techniques

5) Signal Modeling Techniques

6) Temperature Modulation Techniques

Signal Decimation is the simplest approach to reduce the dimensionality of feature-vectors. 

Here, equally spaced sample points are randomly extracted from the quantized and digitized 

original signal and used to assemble each feature-vector. However, some valuable 

information could be lost with this approach since the physical-chemical characteristics o f the 

sensing materials are not taken into account.

The Signal Steady State (SS) technique has been widely used by the machine olfaction 

community since 1980’s and it is still being used extensively [26]. This method exploits the 

stationary information conveyed by the smell signal. One value is extracted from each sensor 

in the array and this is the sensor response measured when the sensors reached their steady 

state in response to a VOM-example. In some implementations, this value is simply the final 

sampled point extracted from the sensor response signal (i.e., before pumping out the VOM- 

example). Besides being a simple technique, it has the additional advantage that the smell
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information extracted with the SS technique depends almost only on the nature o f the smell 

and sensing materials used and it is less influenced by the characteristics o f the smell delivery 

system [25] than other techniques. This characteristic have made it very attractive for the 

machine olfaction community because it eliminates the errors introduced by any variability in 

the smell delivery system

The Signal Dynamics techniques aim to exploit the dynamic information contained in the 

transient regions o f the smell-signal response working in the signal time domain. These 

techniques work directly in the time domain by extracting various signal derivatives values, 

rise-decay time values, maximum and minimum signal values and signal values from ad-hoc 

selected test points [30], [36], [37],

In the Signal Spectral techniques, transforms o f the smell-signal such as Fourier and Wavelet 

are calculated. Appropriated features are then extracted from the transform coefficients [20]. 

As the wavelet transform can represent the non-stationary signals better than the Fourier 

transform, it generally provides a superior perfonnance for smell recognition [38], [33].

The Signal Modeling techniques model the sensor response instead o f extracting features 

from the signal waveform. The model-parameters are then used as the features that 

characterize the smell. Samitier et al. [39] proposed a novel method, that they called METS 

(multi-exponential transient spectroscopy), to find the time-constant distribution in the 

exponential-like decay response that is typical of smell sensors. They tested several 

combinations o f three different alcohols: ethanol, methanol and 2-propanol at different 

concentrations. Osuna et al. [40] reviewed four multi-exponential models (including METS) 

applied to samples from six different odorants: water, ethanol, acetic acid, perfume, fruit juice 

and coffee mixtures. Eklov et al. [36] applied three curve-fitting techniques: polynomial 

functions, exponential functions and auto-regressive curve fitting algorithms to the responses 

o f 4 MOSFET (metal-oxide field effect transistors) smell sensors. They tested hydrogen and 

ethanol at different concentrations ranging between 0 to 50 ppm.

In the Temperature Modulation techniques, the work-temperature is modulated while 

capturing the sensor output in order to improve the detection perfonnance. These techniques
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are commonly applied to metal-oxide gas sensors because these sensors need to be heated at 

very high temperatures in order to detect VOM. Metal-oxide gas sensors detect reducing 

gases because those gases decrease the concentration o f oxygen species in the sensing 

surface. This detection process is temperature dependent for two reasons. First, the surface 

oxygen species have differing stabilities at different temperatures. Secondly, the optimum 

oxidation temperature is different for different reducing gases. Therefore, one single sensor 

becomes equivalent to an array o f n  different sensors if  the sensor response is measured at n 

different temperature steps. Hence, widening the range o f smells that can be detected and at 

the same time producing n  times more discriminative information [41]. Sears et al. [42] were 

able to discriminate between substances such as propane, carbon monoxide, hydrogen and 

alcohols by applying thermal cycling to a single Figaro sensor TGS 819. Heilig et al. [43] 

used a 50 mHz square function to modulate the voltage applied to the heater o f a single 

custom-made metal-oxide sensor. They were able to discriminate between several blends of 

CO, NO2 and ambient air at different concentrations ranging from 1 to 150 ppm by applying 

the Discrete Fourier transform (DFT) to the transients induced. Huang et al. [44] used a 

rectangular function at several frequencies (ranging from 20 mHz to 50 mHz) to modulate the 

heater voltages o f metal-oxide sensors. The authors also used the DFT and were able to detect 

thrichlorophon and acephate gases at 0.1 ppm concentration.

3.3.2.1 Selected Feature-Vectors Implementations

Tim e Constants. Tomas Eklov et al. studied the detection performance o f features extracted 

in the time domain [45]. They measured several time intervals based on the rise time and fall 

time o f the smell signal. Let TonX  represent the time for the smell-signal to reach X  %  of

its maximum value after the VOM input is ON and ToffX  represent the time for the smell- 

signal to fall to X %  of its maximum value after the VOM purging is ON. The authors 

measured TonX  for X  =  {60,90} and TojfX  for X  = {40,10}. These parameters are then 

used to discriminate smells.
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Signal Derivatives. In this method the derivative o f the digitized smell-signal is computed 

and averaged over few selected time intervals. These averages are then used to discriminate 

smells.

Since the acquired smell-signal is a discrete signal, we compute the derivative using an 

approximation method based on the Taylor series. Starting with the first order Taylor series 

we have that f { k n+,) =  f { k n) + f ’(kn\ k n+l - k n) and from here we obtain the Equation 3-5,

which approximates the derivative for any point ki o f a given discrete signal

y f ( k „ +l) - f { k „ )  ( 3 5 )

Cosimo et al. [33] studied the responses o f five metal-oxide sensors that were sampled at 32 

seconds intervals during 20 minutes for a total of 75 sampling points per sensor response. The 

mean derivative was computed over intervals o f 10 sampling points over the entire response 

signal obtaining 7 features per sensor or a total o f 35 features per smell-pattern. They used 

neural networks for the final smell identification obtaining 95 % recognition rate over seven 

combinations o f acetone, hexanal and pentanone mixed with dry air and at 50% humidity.

Second Derivative of the smell-signal. The smell-signal second derivative has also been 

used in order to extract discriminative features. Rousel et al. [30] studied the smell 

discrimination performed by the signal first and second derivatives. The authors used the 

responses o f five metal-oxide sensors to modeled mixtures representing wine with different 

grades of tart or vinegar flavor. The sensor responses were sampled at one-second intervals 

during 15 minutes for a total of 900 sampling points per sensor response. The authors 

measured four parameters from the first and second derivatives o f the ascending and 

descending transients. The parameters extracted were: the maximum value, the time interval 

to the maximum value, the minimum value and the time interval to the minimum value. They 

concluded that the most discriminative features were: the ascending transient maximum 

derivative, the descending transient minimum derivative, the time interval o f the descending 

transient second derivative maximum and the signal maximum.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.3 Feature Vector Normalization

In the previous section, several features have been proposed for smell recognition. Some of 

these features such as the steady state sensor response parameters, which are voltage values, 

are not comparable to features o f the time-interval types such as TonX  (see Section 3.3.2.1).

Therefore, some kind o f scaling is needed in order to put together such a different magnitude. 

A simple technique is to scale the different feature types according to its mean value and 

variance. This technique clearly makes different feature types comparable because each 

feature type is now measured relatively to its mean and variance.

The function o f the Normalization module is to adjust the magnitude o f the individual 

features such that all the features magnitudes are comparable. The normalization techniques 

are also used to limit the range o f values that the features can take.

Normalization techniques are generally grouped into two classes: global and local techniques. 

Global normalization techniques are generally applied to ensure that the magnitudes of the 

different features are comparable. These techniques adjust each individual dimension 

(feature) o f the smell-pattem across all the smel 1-patterns in the training database. Local 

techniques are generally applied to compensate sample-to-sample variations due to small 

changes o f the analyte concentration and sensor drifts. These techniques adjust all the 

dimensions (features) locally within each smell-pattern without accounting for the rest of 

patterns in the database.

In this thesis, we have implemented three widely used normalization techniques [46]: 

dimension auto-scaling (DAS), vector auto-scaling (VAS) and vector nonnalization 

(VNORM). The DAS is a global nonnalization technique that adjusts each individual 

dimension (feature) to have zero mean and unit variance across all the smell-pattenis in the 

training database. The VNORM and the VAS locally adjust all the dimensions (features) at 

the smell-pattem level. VNORM adjusts each individual smell-pattem such as it will lie in a 

hyper-sphere of radius unit while VAS adjusts each individual smell-pattern such as the 

magnitude o f each o f its features will have zero mean and unit variance computed relatively 

to all the feature values o f this particular smell-pattem.
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In the DAS technique the normalized feature-vector coordinates are calculated using the 

following equation

(3 -6 )

Where the mean /ui variance cr,

computed for each dimension along all the smell-patterns in the database. Note that this 

technique focuses in the global relationship among all the features values within each 

dimension along the entire database.

In the VAS technique, the normalized feature-vector coordinates are calculated using the 

following equation.

across the different coordinates per each smell-pattem. Note that this technique focuses on the 

local relationship between all features values within each smell-pattern.

In the VNORM technique, the normalized feature-vector is calculated using the following 

equation.

(3 -7 )

The mean jUc =• ( F ( e , m ) ~ / u o)2 are computed
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(3 -8 )

Note that each Vector Fc is normalized relative to its norm ^  F 2 (e >m ) t0 ensure that it

will lie in a hyper-sphere of radius unit.

3.4 Reducing the Dimensionality of the Feature Space

The feature-vector extraction techniques proposed in the literature for machine olfaction are 

generally ad-hoc techniques based on different physical-chemical characteristics o f the smell- 

signals. These techniques typically produce a large number o f features due to the 

multiplicative effect o f the sensors in the array. For example, if  five derivatives are 

extracted from each sensor response and there are eight sensors in the array, the resultant 

feature-vector will have 40 features. Redundant and noisy features can easily hide in such a 

large features sets producing unexpected bad performance o f the pattern recognition system. 

It is well-known in the pattern recognition field that there is an optimal set o f features that 

produce the peak performance and beyond this number the system classification performance 

degrades instead o f improving. This effect is known as the “curse o f dimensionality” [47].

In general, reducing the number of extracted features from a very large feature set can 

improve the system performance for two reasons. First, the performance o f a classifier 

degrades when the number o f training examples is small compared to the number o f features 

extracted [47], [48], Secondly, the features used in machine olfaction applications due to 

different sensors are typically highly correlated [14]. Therefore, screening out these 

redundant features will reduce the noise and improve the performance o f the classifier.

Feature extraction is a dimensionality reduction technique where a given set o f candidate 

features is reduced to a smaller set. Feature extraction techniques typically apply a given 

transformation function that maps the original set into a new coordinates system. The best- 

known technique used for feature extraction is the Principal Component Analysis (PCA) [49].
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The PCA has also been used as an unsuperviscd pattern recognition algorithm in several 

electronic nose systems.

3.4.1 Principal Components Analysis

The PCA is a dimensionality reduction technique widely used in image and signal processing. 

It has also been applied in smell-signal processing [50], [51]. The PCA is a linear 

transformation technique that aims to find a new set o f orthogonal axis (principal 

components) for the input space given by the smell-pattems. The new axes arc aligned in the 

direction of maximum variances o f the input space variables. The first axis (first PC 

eigenvector) is in the same direction o f the highest variance found in the input data. The 

second axis is in the same direction o f the second maximum variance and so on. The PCA 

transformation o f a given input space o f feature-vectors Z  into the new feature space Z ' is 

calculated using the following equation [47]

Z '  = Z x H  (3 -9 )

In Equation 3-9, the matrix Z ,  is the (Are * N m) matrix containing the N c input feature- 

vectors and the matrix Z ' ,  is the ( N l, x N , )  matrix containing the images o f the feature- 

vectors Z e in the new coordinated system o f dimension N t such that N, < N m.

The transformation matrix H  is an orthonormal {Nm x N f ) matrix, where N m is the

dimension o f the input space and N t is the dimension o f the new representation space such

that N/ < N m. The columns o f  H  are the N ,  largest eigenvectors computed from the

( N m x N m) covariance matrix S  of the N e input feature-vectors in the input space (smell-

database). The columns o f H  are also known as the principal components and define the 

axes o f the new coordinated system. The elements in each column-vector are the cosines of 

the angles between each new axis and all the old axes.
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3.5 Pattern Recognition Module

The analysis of the data generated by the electronic nose focuses in finding hidden 

relationships between a set o f independent variables (i.e., the features extracted from the array 

response) and a set of dependant variables (i.e., smell class or component concentration). 

Three major techniques can be identified: Regression, Clustering and Classification [46]. In 

regression analysis techniques the objective is to predict some selected properties of an 

analyte such as the different components of a mix. The clustering techniques aim to find 

structural relationships among different smells. The classification techniques focus on the 

identification of an unknown sample from a set o f learned smells. In this thesis, we have used 

the classification techniques to detect smells. Therefore, we present a brief overview o f two 

selected classification techniques.

In order to facilitate the mathematical formulation of the classifiers that will be reviewed, we 

add the following notation to the list defined earlier in this chapter (see 3.1):

N  j :

N „ :

K -

Z  u = [Z  [u ,I),Z  (u,2),...,Z  (u ,N ,)] ,  (1 < u < N u) and N , < N m

40

The number of smell-classes contained in the training set

The number o f examples for each smell-class such that N e = N c x TV ., 

where N c is the number o f smell-classes. We assume that there is identical

number o f smell-pattern examples in each smell-class in order to simplify 

computation.

The number o f unknown examples contained in the testing set

The feature-vector o f an unknown VOM-example, which has been fully 

preprocessed and mapped into the new coordinated system L , such that
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P(c,l)\  The Ith coordinated the Prototype Feature-Vector for smell class c

computed by the Nearest Mean Classifier, such that (l < / < ) and

(l < c < N c)

Pc : The Prototype Fcature-Vector for smell class c  computed by the Nearest

Mean Classifier, such that Pc = [ P ( c , l ) , />(c ,2 ),...,P (c ,A r/ )]

P  : The {N c x N i ) matrix o f all the Prototype Feature-Vectors for the smell

classes N c contained in the training set (computed by Nearest Mean 

Classifier) such that:

'  ^ ( U ) P(  1,2) .

P (2 ,l) P(  2,2) . • P(2,N ,)

/ W ) P ( K 2 )  • • P iN etN,)_

3.5.1 Nearest Neighbor Classifier

The Nearest Neighbor (NN) rule is a powerful classifier that can be used to generate highly 

nonlinear classifications with small sized data sets [52].

In the training phase, all the training smell-examples are allocated in a list in memory. All 

examples belonging to a given class c are placed together and the smell classes are sorted in 

ascending order.

In the testing phase, the feature-vector o f an unknown VOM-example is compared to all the 

feature-vectors allocated in the lookup table assembled during the training phase. The 

unknown VOM-example is then classified into the same smell-class o f its closest feature- 

vector. The Euclidean distance is typically used as proximity measure since it calculates the 

minimum distance between two vectors in a multidimensional feature space. The distance
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between an unknown feature-vector Z'„ and the feature-vector Z'c o f a given example e  in 

the lookup table is calculated using the following equation.

= j £ ( Z ' M - Z ' ( e , / ) ] ?  Vu.e (3 - 10)

The class label cu for the unknown feature-vector Z \ t is computed using the following 

equation.

cu = A r g c(M in (d „,e))’ f o r  ( l ^ e < N e) f o r  a n y  "u"  (3 - 11)

In Equation 3-11, the function Min(.) returns the minimum distance value computed between 

the unknown example u and each o f the N e examples in the training set and the function 

Zrgc(.) returns the class label number o f the example e ,  which produced the smallest distance 

value to the unknown example u . For the implementation o f  this classifier the first column 

o f each feature-vector in the training and data sets are filled with the class label number of 

this example.

Although the NN classifier appears to be a heuristic classifier, it is in fact a formal 

nonparametric approximation o f the Bayes decision rule. It has been theoretically 

demonstrated that the probability of error for the NN classifier will not be worse than twice 

the Bayes error, which is the best any classifier can achieve [53]. The main disadvantages 

limiting the use o f NN in machine olfaction applications are its large storage requirements 

and high computational cost. The NN classifier must keep the entire training data set in 

memory while in testing mode because the array of feature-vectors in each class constitutes 

the smell-class Feature-Vector Prototype (PFV). Every time that a new example is analyzed a 

full search and sorting through all the PFVs (in the case o f NN this is the entire training set) is 

necessary in order to find the closest neighbor to the incoming example.
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3.5.2 Nearest Mean Classifier

The Nearest Mean classifier (N-MEAN), which is also known as the minimum distance 

classifier, is a simple classification technique that can be successfully used when the smell- 

pattems are well separated [54],

In the N-MEAN classifier, the Prototype Feature-Vector (PFV) for a given smell-class c is 

represented by the mean feature-vector computed along all the feature-vectors that share the 

given smell-class. Hence, during the training phase the mean feature-vector for each smell 

class c in the training set is computed. The coordinates o f the Prototype Feature-Vector Pc 

for a given smell-class c  are calculated using the following equation.

Ve such that ( ( c - l ) x A f j + l ) < e < ( c x W . )  w here

c  is the class label num ber

N j  is the num ber o f  exam ples in class c

N , is the num ber o f  features

N c is the num ber o f  sm ell - classes in the train ing set

N c = N c x  N j  is the num ber o f  exam ples in  the train ing set

In the testing phase, the classification is performed by calculating the Euclidean distance 

between an unknown feature-vector and each o f the Prototype Feature-Vectors computed 

from the training database. The unknown smell-pattern is then assigned to the class label 

number of its closest PFV. The Euclidean distance is commonly used as proximity measure 

since it calculates the minimum distance between two vectors in a multidimensional feature 

space. The distance between an unknown feature-vector and a given PFV is calculated using 

the following equation.

f o r  1 < I < N , f o r  any "c" (3 -12 )
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d ,f = S t(Z '(u ,l ) -P (c ,i )Y  V h ,c (3 - 13)

3.6 Performance Evaluation Criterion

In the previous sections, we have reviewed several signal processing and pattern recognition 

techniques that are commonly used in machine olfaction. In this section we present the 

evaluation criterion typically used to evaluate the performance o f the smell recognition 

subsystem o f an electronic nose.

The smell recognition subsystem o f an electronic nose is defined here as the system 

constituted by a given combination o f smell-signal preprocessing techniques (see Section 3.3) 

and a given pattern recognition technique (see Section 3.5).

The smell recognition systems are generally evaluated using the detection efficiency (also 

known as predictive accuracy) criterion [34], which is defined as follows

T] =
^ N um ber o f  correctly c la ssified  exam ples  ̂  

N u m b er o f  exam ples in the Testing Set
xlOO (3 -14 )

A simple method to calculate the detection efficiency t] o f a given smell recognition system 

consists o f three steps. First, all the available examples are split into two sets: the training set 

and the testing set. Second, the training set is used to design (train) the classifier. Third, the 

detection efficiency is calculated over the testing set using the Equation 3-14.

3.6.1 Statistical Re-sampling

In the previous section, we presented a simple method to calculate the detection efficiency t) 

o f a given smell recognition system but we did not mention that the size o f the testing set and 

training sets affect the reliability o f the detection efficiency r/ estimation [47]. However, the 

number o f available examples collected in machine olfaction applications is typically very 

small. Therefore, statistical re-sampling methods such as cross-validation (N-CV) are
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commonly used to reliably estimate the detection efficiency o f a given recognition system 

[55],[56].

The N-fold cross-validation (N-CV) re-sampling method splits the available examples into

partitions are pasted together and used to design (train) the classifier. This process is repeated 

until all the N  partitions have been used to evaluate the classifier. The detection efficiency

is then computed as the average o f correctly classified examples obtained over the N  

partitions tested.

A particular case o f the N-CV method is the Leave-one-out (LOO) re-sampling method. In 

LOO, N = Ne (where N c is the number o f examples in the database) and the size o f the

testing partition is to one. Both methods produce similar results when the number o f available 

examples is large but for small number o f examples LOO produces a more reliable estimation 

o f the detection efficiency. In this thesis, we used N-CV with those smell-databases having 

more than 50 examples in each smell-class and LOO otherwise.

The following equation is used to calculate the detection efficiency for N-CV or LOO re

sampling methods

and C is the number o f correctly classified examples in the test partition "p"

N  = N p partitions. One o f  the partitions is put aside for testing while the remaining (N - l )

(3 -15)

where N, is the number o f examples in each testing partition "p
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3.7 Summary

In this chapter, we first presented an overview o f the signal processing and pattern analysis 

stages usually implemented in machine olfaction systems. Following was the presentation of 

a typical smell sensor response signal and an exhaustive review o f the most commonly used 

smell-signal processing techniques. Next, an introduction to the popular dimensionality 

reduction technique Principal Component Analysis and a review o f  two powerful pattern 

recognition techniques were presented. Finally, a methodology for the validation and 

performance evaluation o f  electronic nose was briefly discussed.
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Chapter 4

The Proposed Electronic Nose

In chapters two and three, we have presented a comprehensive review o f olfaction systems, 

signal processing techniques, pattern recognition algorithms and validation procedures used 

in machine olfaction. A majority of the commercial electronic noses are designed for narrow 

applications such as wastewater analysis, quality control o f foodstuffs and detection o f spilled 

chemicals in industry. These systems have usually very high cost. As a result these noses are 

not suitable for integration with multimedia systems.

In this chapter, we present a low cost electronic nose design suitable for integration with 

multimedia systems. The organization of this chapter is as follows. In Section 4.1 we briefly 

introduce the different modules o f the proposed electronic nose (eNose). Section 4.2 presents 

the smell space targeted by the eNose. Section 4.3 provides a detailed explanation of the 

eNose hardware modules. In Section 4.4, we present a graphical user interface that allows 

controlling and interfacing the eNose hardware modules. Section 4.5 describes the eNose 

sniff-cycle characteristics and Section 4.6 proposes a novel sniff technique, which is followed 

by the summary.
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4.1 Introduction

The proposed electronic nose (eNose) consists o f two main subsystems: the hardware 

subsystem and the software subsystem.

Hardware System | Software System

I

Best
Performing

Combination

Chamber

Sensor

Smell
Delivery

Control
Panel

Sensor
Electronics

Pattern
Analyzer
Module

Signal
Processing

Module

Figure 4-1 Schematic o f the proposed eNose

Figure 4-1 shows a simplified schematic o f the proposed electronic nose. The hardware 

subsystem consists o f three modules: Smell Delivery system, Sensor Chamber and the Sensor 

Electronics. The Control Panel is a graphical user interface program that allows the 

controlling and interfacing o f the all hardware modules. The software subsystem consists of 

three modules: Signal Processing, Pattern Analyzer and Results Plotter. The Signal 

Processing module is a graphical user interface program that can compute many combinations 

o f signal processing techniques on a given smell-database. The Pattern Analyzer is a 

graphical user interface program that computes the smell detection efficiencies of the 

different signal processing combinations. The Results Plotter module is used offline to 

produce comparative bars plots and tables with the detection efficiencies scored by the 

different combinations.
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4.2 The eNose Smell Space

The goal o f the proposed eNose is to detect and discriminate a sub-set o f natural occurring 

smells from common items such as foodstuffs, beverages, plants, perfumes and essential oils. 

It was noted in Section 2.3, that natural occurring smells are complex smells, which are 

constituted for more than one type o f odorant molecule. Various areas o f application of 

electronic noses were considered when selecting the smells for testing: perfumery, food and 

beverages industiy, environmental, and agricultural sectors. Finally, a temporary smell space 

was conceived in order to test the general performance o f e-nose. The smell space proposed 

for the low cost eNose prototype presented here expands over a wide range o f smells aiming 

to the possible use o f the eNose in the above-mentioned areas.

Table 4-1, shows the smell space defined to train and evaluate the performance of the 

proposed eNose. The smell space used here expands over a wide range o f smells aiming to 

evaluate the possible use o f the eNose in different applications such as perfumery, food and 

beverages industry, environmental, and agricultural applications.

Table 4-1 eNose Smell Space

S m e l l S o u r c e

Fragrant smells Essential oils

Aromatic smells Spices, coffees

Fishy smells Cod oil, sardines

Fruity smells Fruit juices

Hircine smells Cheese

Beverages smells Pops, colas, beers

Nauseous smells Livestock manure

4.3 Hardware System

In this section, we describe the hardware components used in the design o f the proposed 

electronic nose. The primary design goal was to keep the costs low while achieving 

maximum smell detection efficiency.
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Figure 4-2 A simplified schematic of the eNose hardware

Figure 4-2 depicts the hardware parts of the eNose and the interconnection between them. 

The main eNose hardware components are: Concentration flask (F), Smell Delivery System 

(solenoid valves: VI, V2, V3; sensor chamber: S; air pumps: P I, P2), Smell Sensors Array 

(located inside the chamber S), Sensor Interface Board (SI), Control Interface Board (Cl) and 

the Data Acquisition Board (A/D).

The smell detection operation is as follows. The source of VOM is placed in the 

concentration flask F from where a small air sample is drawn by the smell delivery system 

and brought into the sensor chamber S. The smell sensors inside the chamber generate output 

voltages depending on the VOM. These output voltages are received in the Sensors Interface 

board SI and digitized by the Data Acquisition board (A/D). These digitized sensor responses 

are then saved on disk or processed further depending on the eNose operation mode.
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4.3.1 Concentration Flask

The function o f the concentration flask is to isolate and create a proper headspace for the 

smell source under test. Figure 4-3 shows a picture and the schematics o f the jars used as 

concentration flasks and Table 4-2 contains the detailed description o f the concentration flask 

parts.

Figure 4-3 Parts o f the Concentration Flask

Regular food storage 500 ml glass jars are used as concentration flasks [57]. Two orifices, 

with 'A inches diameter each, were made to the metallic top lid o f every flask. A 15 cm vinyl 

tube is introduced through one o f the orifices up to two centimeters above the bottom. The 

second orifice is connected to the eNose smell inlet by a 30 cm long vinyl tube. When a liquid 

smell source is being sampled, the ambient air is fed through pipe T1 producing a bubbling 

effect in the smell source. The stirring caused by the bubbles increase the release o f VOM 

from the smell source. Similar stirring effect is also produced for a grounded smell source 

substance such as ground coffee.
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Table 4-2 Concentration Flask (parts description)

L a b e l D e s c r ip t io n S p e c i f ic a t i o n s

F Glass Flask (Home Canning) Volume = 500 cm3, Height = 13 cm,

T1 Air Input Vinyl Tube Length =  15 cm, Diameter = % inches

T2 Odorant Vapors Output Vinyl Tube Length = 25 cm, Diameter =  'A inches

0 Odorant Source Substance Volume ~ 160 cm3

L Airtight Metallic Lid Diameter = 70 mm

4.3.2 Smell Delivery System

The smell delivery system has two important functions. It brings the VOM from the smell 

source into the smell-sensing chamber. In addition, it flushes the smell out cleaning the 

chamber for the next sample o f VOM. A picture o f the Smell Delivery System and a detailed 

schematic are depicted in Figure 4-4 and a description with the specifications o f the main 

components is presented in Table 4-3.

The Smell Delivery System has been built with two air pumps, three solenoid valves, two T- 

shaped brass connectors, 'A inches external diameter (0.170 inches internal diameter) vinyl 

tubing and nine short hand-made Teflon couplings. The Teflon couplings were used to 

interconnect all the components o f the Smell Delivery System. Teflon material was selected 

because it is non-reactive to most chemicals and is odorless. The vinyl tubes were placed in 

those sections o f the Smell Delivery System where the memory o f a previous smell could not 

affect the performance o f the tests. For example, all the smell exhaust connections to the air 

pumps were made o f vinyl tubing.
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Figure 4-4 Picture (a) and schematic (b) o f the Smell Delivery System (top view)

The air pumps PI and P2 are used to create a vacuum in the smell-sensing chamber S and the 

vacuum is transmitted to the Concentration Flask F through the pipeline system, Therefore a 

sample o f VOM is inhaled from the smell source and it is blown over the smell sensor heads. 

The solenoid valves are used to keep the VOM isolated inside the chamber giving time for the 

sensors to reach their steady states. Two of these valves are connected to the inlet pipe. One 

valve is used to bring the VOM inside the chamber while the other valve is used to bring
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inside the clean ambient air used to purge the smell out o f the chamber. Note that the function 

o f the two air pumps is identical and they are used together to create a stronger vacuum.

Table 4-3 Components o f the smell delivery system

L a b e l C o m p o n e n t  d e s c r ip t io n S p e c if ic a t io n s

S Sensor Chamber Aluminum Box 

Volume = 495 cm3

VI, V2, V3 Miniature Solenoid Valves [60] Model Burkert 6011 

Port Diameter = 14 inches

C ,T Couplings: Teflon coupling, T-Brass coupling External Diameter =  14 inches

PI, P2 Air Pumps Model Elite799 [61] Home aquarium pumps. Each 
pump flow-rate is 1000 cmVmin. 
System flow-rate is 33 cmVs.

4.3.3 The smell sensors used

Several types o f sensors were considered for the eNose. However, the Taguchi metal-oxide 

gas sensors were selected as these sensors are commercially available at a reasonable price, 

and they can detect a wide range o f gases. The Taguchi gas sensors are primary produced for 

industrial applications such as toxic gas detection, combustible gas detection and smoke 

detectors. Taguchi gas sensors are also known as Figaro sensors as they are manufactured and 

commercialized by the Japanese company Figaro Engineering Inc. [24]. The pictures of four 

Figaro sensors are shown in Figure 4-5.

T G S  S25 T G fi 380 TOkS 2602 TOkS 2104

Figure 4-5 Photograph o f a few selected Figaro gas sensors
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Figaro (Taguchi) sensors are generally sensitive to reducing gases such as CO, NH3 and H2S. 

It has been found that many o f these sensors are also sensitive to many volatile vapors from 

organic compounds (VOC), solvents, food, and different species o f alcohol. Figaro sensors 

are also capable o f detecting polluting smells such as cigarette smoke and the exhaust of 

(gasoline and diesel) automobiles.

Vc

Vh t>

GND *

o  VRl

Label Description Specs

TGS 8 xx TGS 2xxx

Vc Circuit Voltage Max 24 V Max5V

v„ Heater Voltage M ax5V

Rl Load Resistor Min. 450 fi

hi Heater Current 130mA 55 mA

Figure 4-6 Electrical schematic and specifications o f Figaro sensors (adapted from [24])

Figure 4-6 shows the electrical schematic and the specification o f two types o f Figaro gas 

sensors. These sensors need high temperatures in the range o f 400° C  in order to sense gases 

and they are built with a heater resistance embedded into the sensing surface that allows them 

to reach these temperatures. The exact temperature at which a specific sensor works vary 

according to the gasses targeted. The sensor response can be obtained connecting a voltage 

divider resistor R L in serial connection with the sensing surface o f the sensor (see Section 

2.6.4).

Figaro sensors detect reducing gases. Reducing gases are those gases that have affinity to 

oxide themselves. When the sensors are heated in the presence o f clean air, different species

o f oxygen such as 0 2 , 0 ~  and 0 2~ are adsorbed onto the tin dioxide surface withdrawing 

electron density from the semiconductor material [41]. As a result the electrical resistance of 

the semiconductor increases and the sensor reaches its baseline state. A given reducing gas 

that comes in contact with the sensors surface can be detected because this gas will combine 

with the oxygen species adsorbed on to the sensing surface. As a result the electron density of
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the semiconductor material is increased and consequently the electrical resistance o f the 

semiconductor is decreased.

The relationship between sensor resistance and concentration o f a given reducing gas is 

expressed by the following equation.

where Rs represents the electrical resistance of the semiconductor, A is the sensitivity 

constant of the sensor to the given reducing gas, C  is the concentration of the gas under test 

and a  represents the slope o f the Rs curve.

4.3.4 The smell sensor array

In this thesis we have used eight different Figaro metal-oxide gas sensors to build the sensors 

array. The picture and schematics of the sensors array board is shown in Figure 4-7. The 

sensors in the array, and their targeted gases are listed in Table 4-4. The labels shown in the 

first column o f this table correspond to the labels shown in the schematics of Figure 4-7. The 

third column of this table shows the gases to which the sensor in column two is more 

sensitive. The third column o f this table shows the smells that can be associated with the 

gases targeted by the sensor in column two.

Sensors TGS 826 and TGS 825 are chosen because o f their high sensitivity to fishy and 

sulfurous smells, respectively. These sensors have a very specific and narrow smell detection 

range. The sensor TGS 2620 is sensitive to a narrow range o f smells that include wood 

fermentation and alcohols.

The sensor TGS 2602 has high sensitivity to various odorous gases and volatile organic 

compounds. Its smell space overlaps the smells detected by the above-mentioned sensors 

(ammonia, sulfur, alcohols and wood fermentation smells). We expect that the wide smell 

range o f sensor TGS 2602 will complement the information gathered by the data processing 

module improving the characterization o f a given smell.

(4 -1 )
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Table 4-4 List of the Selected Smell Sensors

L a b e l S e n s o r T a r g e t e d  G a s e s S m e l l s  l ik e

SI TGS 880 Volatile vapors from food Food (while cooking)

S2 TGS 2620 Volatile org. vapors Aromatic solvents, alcoholic beverages

S3 TGS 825 Hydrogen sulfide (H2S) Rotten-egg

S4 TGS 2602 Air contaminants Responsive to many smells

S5 TGS 826 Ammonia (NI13) Old rotten urine and fish

S6 TGS 2104 Gasoline exhausts Irritating and suffocating smells

S7 TGS 883T Water vapors from food Soups, brewed coffee

S8 TGS 2610 Hydrocarbons in general Smell of ripening of fruits

Sensors TGS 826 and TGS 825 are chosen because o f their high sensitivity to fishy and 

sulfurous smells, respectively. These sensors have a very specific and narrow smell detection 

range. The sensor TGS 2620 is sensitive to a narrow range o f smells that include wood 

fermentation and alcohols.

The sensor TGS 2602 has high sensitivity to various odorous gases and volatile organic 

compounds. Its smell space overlaps the smells detected by the above-mentioned sensors 

(ammonia, sulfur, alcohols and wood fermentation smells). We expect that the wide smell 

range o f sensor TGS 2602 will complement the information gathered by the data processing 

module improving the characterization o f a given smell.

The sensor TGS 2610 is chosen because o f its high sensitivity to hydrocarbons. The smell 

that we perceive from ripe fruits is the combined effect o f volatile organic compounds 

emitted during the ripening process [58], especially hydrocarbon derivative groups like 

propanol and butanol. Therefore, such smells can be detected easily using this sensor.

The sensors TGS 880 and TGS 883T are chosen as they are sensitive to volatile and water 

vapors that are produced by food while cooking.
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Sensor TGS 2201 targets smell produced in city streets and bars (e.g., gasoline and cigarettes 

smoke) that are commonly occurring smells in daily life.

The Figaro gas sensors come in two different encapsulation formats named TGS 26xx and 

TG S 8xx. The size o f TGSSxx sensor type is generally bigger and consumes more power 

than type TGS 26xx.

%

(a)

&
&

S4 S2 S3

V  *A * *• • •
S8 S6 S5 S7

O F

©  ~  TGS 8xx A — Tliennistor 
* -  TGS 26 x x

(b)

Figure 4-7 Picture (a) and schematic (b) o f the smell sensors array
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Figure 4-7 shows a picture (a) and the schematics (b) o f  the sensor array board. The 

schematics (b) represent a top view o f the sensing chamber. The chamber has been opened to 

show the sensor array inside it. The rectangle ABCD represents the top view o f the sensing 

chamber. The rectangle EFGH represents the printed circuit board (PCB) shown in Figure 4-7 

(b). There are eight Figaro smell sensors (SI, S2...S8) plus two temperature sensors 

(represented by the two triangles) mounted on the board. The dimensions o f the sensors array 

board are ( 1 0 x 4 )  cm2. The smell sensors are arranged in two parallel rows that are inline 

with the air current that carries the VOM. The VOM inlet (I) is in the left o f the schematic. 

This inlet tube also carries the clean air that is blown to purge the smell out o f the sensing 

chamber. The pumps (not shown here) are connected to the outlet tube (O) and they draw the 

air from the sensing chamber when a smelling cycle is activated.

Solderless bases are used to allow for easy interchangeability o f the sensors. The sensors are 

clustered into two groups according to their encapsulation type. A temperature sensor was 

soldered in the center o f each o f these clusters (see Figure 4-9). The sensors load resistances 

and heater control circuits are placed in the sensors interface and control interface boards. 

There are two reasons for placing these circuits outside the smell sensors array board. The 

first reason is to adjust the smell sensor baselines without opening the chamber. The second 

reason is to avoid contamination with the smell that the electronic components may produce 

when they are working in a hot environment.

4.3.5 Temperature Sensors

It is well documented that the response of metal-oxide gas sensors is affected by minor 

changes in the ambient temperature [14], Three temperature sensors are included in the eNosc 

circuits in order to monitor and record the temperatures inside/outside the chamber. The 

temperatures in the laboratory and inside the chamber are recorded together with each smell 

sampled. However, temperature was not an issue because all the smell experiments were 

realized in stable laboratory conditions.

Table 4-5 shows the temperatures recorded during a sniff cycle. The ambient temperature 

during this experiment was 24° C . The temperatures were recorded at the end o f each event.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4-5 Temperature changes observed during a sniff cycle

EVENT

TEMPERATURE

TG S8X X  c l u s t e r TGS 26X X  CLUSTER

One hour resting, no smell inhaled 52°C 43° C

Ten seconds inhaling a smell 49° C 42° C

Five minutes flushing the smell out 41°C 38°C

Recording the inside and ambient temperatures may be useful in smell experiments outside 

the laboratory. These temperatures can be added to the feature-vector aiming to compensate 

the drifts produced by the ambient temperature changes.

Figure 4-8, shows the evolution o f the temperature o f the TGS 8xx smell sensors cluster 

during a sniff cycle. The VOM inhaling period lasted 10 seconds and the smell-purging 

period lasted 300 seconds.

The temperature sensors were built using disk thermistors type 5K-5 produced by Semitec 

[59]. Thermistors are devices that change their electrical resistance depending on the 

temperature. The temperature measured by a thermistor can be calculated using the following 

equation

i\ =  R2 x exp f »  ( '  l Y i  B x --------
V U TU J

(4 -2 )

w here

r, is the th erm isto r resistance at te m p e ra tu re ’7,"

R 2 = 5 .0 K jQ  is the therm isto r resistance at 25 °C tem peratu re  (T2 = 2 9 8  kelvin) 

B = 4 .1  KJO is a constant
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Figure 4-8 Evolution of the temperature inside the chamber during a smelling cycle
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Figure 4-9 Schematic o f the electrical circuit for the temperature sensors
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Figure 4-9 shows the schematic o f the two temperature sensors (Th) mounted in the sensor 

array board. The temperature sensors were built using disk thermistors type 5K-5 produced 

by Semitec [59],

4.3.6 Smell Sensing Chamber

The function o f the smell-sensing chamber is to keep the smell sensors isolated from any 

undesirable smell occurring in the neighborhood o f the electronic nose. In our eNose, the 

Smell Sensing Chamber is built on a (1 1 x 9 x 5 )  cm3 rectangular aluminum box (i.e., with a

total volume o f 495 cm 3). An aluminum lid is screwed to the bottom o f the box. A custom 

made Teflon gasket is sandwiched between the lid and the box to make the chamber airtight. 

Four big C-Clamping screws were added in order to ensure the air tightness o f the smell- 

sensing chamber. Teflon was selected for the gasket because it is an odorless material with 

some plasticity and a very smooth surface that makes it very hard for the smell molecules to 

stick on it producing contamination and consequently affecting the results o f further testing.

Figure 4-10 shows a picture o f the inside view o f the Smell Sensing Chamber. The chamber is 

shown upside down with the bottom lid removed. The inlet pipe (I) and the outlet pipe (O) 

are aligned and in opposite sides. The smell sensor array is screwed to the bottom lid (not 

shown in the figure) and in line with these pipes. The sample o f VOM is introduced in the 

chamber from the inlet pipe (I) when the pumps draw the air inside the chamber from the 

outlet pipe (O). The VOM are blown over the top of the smell sensors.

A metallic box was chosen for two reasons. Machined metals have smoother surfaces than 

most plastics and hence it is easier to flush all the smell molecules out o f the chamber. The 

second reason is that temperature differences between the incoming smell and the hot air 

inside the chamber can be minimized, as a metallic material is better as heat conductor than 

plastic or glass. Among the metals, the steel has a very smooth surface. Unfortunately, it is 

very hard and costly to do machining on it and the steel boxes are not easily found over the 

counters. In this thesis, we have used aluminum as base material for the smell-sensing 

chamber because it is cheaper and easier to get.
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Figure 4-10 Photograph o f the opened Smell Sensing Chamber

4.3.7 Sensors Interface Board

The main function o f the Sensor Interface Board is to supply load resistors, ground reference 

and constant voltage to the output circuits o f the smell sensors. There is one load resistor per 

each smell sensor in the array. Having the load resistors placed outside the chamber permits 

to adjust sensors baselines while keeping the sensors resting in stable conditions.

Figure 4-11 shows a photograph o f the Sensor Interface board. The ribbon cable (gray color) 

in the upper left brings the ground references through the load resistors to all the smell 

sensors outputs. The external thermistor is assembled in this board, it can be noted in the right 

o f the ribbon cable connector. The multicolor ribbon cable connects the sensors outputs to the 

analog inputs o f the data acquisition board.
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Figure 4-11 Photograph of the Sensor Interface Board

7 *

SENSORS ARRAY

5 VOLTS

SENSORS INTERFACE BOARD 

Figure 4-12 Schematic of the sensors interface circuits

Figure 4-12 shows the simplified schematic o f the sensor interface circuits and their 

interconnection with the sensors array board. Table 4-6 shows the descriptions and 

specifications o f the electronic components used in the design o f the sensors interface 

circuits.
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Table 4-6 Sensor Interface board electronic specifications

L a b e l D e s c r ip t io n V a l u e  ( in  K o h m s )

Sx A given sensor “x” from the sensors array

Rl* Load for Sensor TGS 880 5.53

R2 Load for Sensor TGS 2620 2.94

R3 Load for Sensor TGS 825 8.82

R4 Load for Sensor TGS 2602 3.58

R5 Load for Sensor TGS 826 5.61

R6 Load for Sensor TGS 2104 4.86

R7 Load for Sensor TGS 882 20.3

R8 Load for Sensor TGS 2610 7.62

* All resistors are implemented using 50 Kohms potentiometers

4.3.8 Control Interface Board

The function o f the Control Interface Board is to interface and to amplify the output signals 

from the Data Acquisition Board. The output signals from the Data Acquisition Board are 

used to control the Smell Delivery System and the sensors heater circuits.

Figure 4-13 Control Interface Board
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Figure 4-13 shows a picture o f  the Control Interface board. The multicolor ribbon cable in the 

lower part o f the picture brings in the control signals from the computer. The marked area in 

the left (blue) corresponds to the electronic components that drive the solenoid valves. The 

marked area in the right (green) corresponds to the components that drive the sensors heaters 

voltages. The pumps are switched by an external relay (not showed in the figure). For security 

reasons, this relay is embedded in the pumps’ power cable. An open collector chip (SN7416) 

buffers the control signal for this relay.

AO

' W

D2

+12 Volts + 5  Volts

1 Kohm 
-^V---- £

NTE 152

180 Ohms 
Relag Coil

6.7 Kohms 
— W  MPSA - 18

H

GND
—

SENSORS HEATERS CONTROL CIRCUIT

S x

SENSORS ARRAY

Figure 4-14 Schematics o f the heater control circuit

Figure 4-14 shows the schematic o f the sensors heaters control circuit. In normal operation a 

5 volts constant voltage drives the sensor heaters. In this mode, the signal (D2) is logic “0”, 

the transistor (MPSA-18) if  switched OFF, the relay coil is not activated and the 5 volts 

constant voltage source is connected to the sensors heaters through pin (H). In the heater 

modulation mode, the signal (D2) is logic “ 1”, the transistor (MPSA-18) if switched ON, the 

relay coil is activated and the medium power transistor (NTE 154) drives the sensors heaters. 

This transistor amplifies the current o f the function signal generated by the data acquisition 

board.
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Table 4-7 Control Signals Descriptions

L a b e l D e s c r ip t io n S ig n a l  t y p e

AO Function Generator Signal Analog signal

D2 Heater Relay Control Input Digital signal

H Sensor Heaters Driver Signal Analog signal

D 3 -D 6 Solenoid Valve Control Input for Valves: VI, V2, V3, V4 Digital signal

< I < ■u Solenoid Valve Driver Signals Analog signal

Table 4-7 shows detailed description o f the control signals used in the sensor-heater control 

circuits and the solenoid valves driver circuits. Figure 4-15 shows the drivers for the solenoid 

valves. The solenoid valves used have 12 volts coils that work at 350 mA direct current.

V I - V 4

D 3 - D 6

S oleno id  
.Valve Coil

10 Kohm s 

MPSA - 12

+ 12 U olts

SOLENOID VALVE CIRCUIT x 4

Figure 4-15 Solenoid valves driver circuits
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4.3.9 Cooling Fan

The cooling fan reduces the high temperatures produced by the sensor heaters inside the 

smell-sensing chamber. A four inches diameter fan type that is typically used in personal 

computers was selected. The cooling fan is situated perpendicular to the longest axe in the left 

hand side o f the chamber and at about ten centimeters from its wall. The fan creates a forced 

constant air current that dissipates the heat out o f the chamber walls and consequently reduces 

the temperature inside the chamber. The internal temperature drops from 70 °C  to 52° C  

when using the cooling fan.

4.3.10 Data Acquisition Board

The primary function o f the Data Acquisition board is to acquire and digitize the analog 

sensors response signals and the temperature sensors signals. It also produces the analog 

voltage signal used to modulate the work temperature o f the smell sensors. Finally, it 

produces the digital signals that control the operation o f the smell delivery system.

C l: Control Interface Board 

SI: Sensors Interface Board 

RB: Ribbon Cables (1,2,3) 

A/D: Connection Plate

Figure 4-16 Data Acquisition board connections to the Sensor and Control Interface boards
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Figure 4-16 shows the interconnections o f the Data Acquisition Board (not showed here), the 

Sensor Interface board (SI) and the Control Interface board (C l) through the connection plate 

(A/D) o f the Data Acquisition board. The ribbon cable (RB-1) brings in the sensors response 

from the Sensors Interface board (SI) to the Data Acquisition board. The ribbon cable (RB-2) 

connects the sensor output pins to the load resistors in the Sensor Interface board (SI). The 

ribbon cable (RB-3) carries the control signals emitted by the Data Acquisition board to the 

Control Interface board (Cl).
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Figure 4-17 Simplified schematic o f the Data Acquisition board

Figure 4-17 shows the simplified schematic o f the input/output pin-out system o f the Data 

Acquisition board. In Table 4-8, there is a detailed description o f the input and output signals 

referenced in the schematic of Figure 4-17.

The multifunction board model NI PCI-6014 [62] was selected for the proposed eNose 

because this board offers great performance at a reasonable price. This board handles up to 16 

analog inputs, 2 analog outputs and 8 digital bi-directional lines. The manufacturer also offers 

full compatibility with Matlab that was the framework selected to develop the software 

systems for the proposed eNose.
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Table 4-8 Data Acquisition board signals

L a b e l D e s c r ip t io n

R l— R8 Sensors Response

DO Air Pumps Control

D1 Air Blower (not used in this eNose prototype)

D2 Heater Relay Control

D3 Solenoid Valve #1

D4 Solenoid Valve #2

D5 Solenoid Valve #3

D6 Solenoid Valve #4 (not used in this eNose prototype)

AO Function Generator Output

A1 Peltier Pump Control (not used in this eNose prototype)
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Figure 4-18 The Low Cost Electronic Nose

4.3.11 The entire eNose hardware system

Figure 4-18 shows a photograph o f the low cost electronic nose implemented in this thesis. 

The picture shows the concentration flask (F), the smell-sensing chamber (S), one o f the air 

pumps (P), the two input solenoid valves, the four 4 inches carpenter clamps (T), the control 

interface board (C), the sensors interface board (I) and the connection plate o f the A/D data 

acquisition board (J). The solenoid valve (V2) controls the VOM input from the 

concentration flask (F). The solenoid valve in the left o f V2 controls the input o f fresh air 

needed to flush the VOM out of the chamber. The pumps (P) draw the air from the sensing 

chamber (S) trough solenoid valve (VI), which cannot be seen in this picture. The computer 

screen (O) shows a magnified offline view o f the smell-signals. In this case two consecutive 

trains o f a square signal control the sensors heater voltages during the steady state response of 

the sensors.
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4.4 The Control Panel

The Control Panel is a graphical interface software application designed to allow controlling 

and interfacing with the hardware subsystem o f the eNose (See Figure 4-19). The graphical 

interface consists o f several virtual gadgets such as edit and list boxes, push buttons, multiple- 

choice buttons, checkmarks, and a virtual oscilloscope. These gadgets are organized in 

independent sub-modules. Each sub-module controls a specific function o f the eNose 

hardware. This software module was developed using MATLAB visual environment and 

contains 6000 source code lines.

Figure 4-19 shows the Control Panel. In this picture, colored frames are drawn over this 

picture to highlight each sub-module. The most important sub-modules are: Sensors Viewer 

(1), Data Acquisition control (2), Smell Delivery control (3), Sensor Heaters control (4), Sniff 

Cycle control (5,6,7,8).

In the Sensors Viewer (1) sub-module we have simulated an oscilloscope screen where the 

sensors responses can be viewed as they are being acquired. Below the Sensors Viewer are 

the controls to show magnified views o f the sensors signals.

In the D ata A cquisition contro l (2) sub-module we can set the sampling frequency (0.01 Hz 

-  5000Hz) and duration (0.1 second -  2 hours) for the signal acquisition engine. The sensors 

to be sampled must be first selected using the list box (Select Sensors) in the center. The 

sensors responses are saved in a memory variable but they can also be saved in a disk file. 

The directory path and name o f  this file can be set through a standard Windows interface.

The Smell Delivery contro l (3) sub-module is used to manually activate the components of 

the smell delivery system (see Section4.3.2). Checkmark gadgets represent these components, 

checking the gadget turns the component on and otherwise the component is off. The 

temperature sensors readings are displayed in the three edit boxes located in the central part 

o f this sub-module.

The Sensor H eaters control (4) sub-module controls the voltage source for the sensors 

heaters. In this sub-module, we have embedded a function generator program. A gamut o f
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functions such as sinusoidal, square, sawtooth, triangle and step are currently implemented in 

this software. The function parameters such as the frequency, duty cycle and amplitudes are 

set using the edit boxes in this sub-module. The signal produced by this software is sent out 

to the sensors heaters through pin AO o f the Data Acquisition board (see Figure 4-14, Table 

4-7, Figure 4-16, Table 4-8 in Sections 4.3.8and 4.3.10).

The Sniff Cycle control (5,6,7,8) sub-module also known as P rogram m ing M odule is used 

to set the parameters needed to perform automatic sniff cycles. The Programming Module 

was designed as a synchronic state machine with programmable state-duration. In the column 

o f edit boxes (5), we set the duration (in seconds) o f each o f the seven states o f the sniff 

cycle. In the checkmarks columns (6), we define the activation and the deactivation states for 

the data acquisition engine and the sensors heaters control sub-module.

In the A utom atic Sniff contro l (7), we define the number o f consecutive sniff cycles 

(smelling cycles) that the eNose will automatically perform. In multiple cycles, the eNose 

will execute as many cycles as indicated in the edit box. This operation mode has been 

implemented to allow the collection o f large smell-databases without user intervention.
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Figure 4-19 The eNose Control Panel Interface 
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4.5 The eNose Sniff Cycle

In the previous sections we have presented the design o f the hardware and software interface 

subsystem o f the proposed eNose. In this section we present the sniff-cycle proposed for our 

eNose. In this thesis, we define a sniff-cycle as the set of consecutive operations needed in 

order to physically obtain and electronically measure a sample o f VOM from a given smell 

source.

This thesis proposes a novel and fully programmable sniff-cycle. The proposed sniff-cycle is 

divided into seven states (see Figure 4-20). The duration time o f each state as well as most of 

the operations performed by the eNose in each state are fully programmable. This is an 

important feature that permits the use o f the eNose in many different smell environments.

Four programmable operations are included in the proposed sniff-cycle. The data acquisition 

engine and function generator can be fully programmed to activate/deactivate in any state. 

The sniff-cycle can be programmed to stop the Inhale state when the sensors reach certain 

threshold voltage (see Section 4.6). This operation can only be programmed for the Inhale 

state. The sniff-cycle can be also programmed to restart a new sniff-cycle immediately after 

the Recovery state has ended. This operation can only be programmed in the Recovery state.

Figure 4-20 shows the structure o f the proposed sniff cycle in relation to a hypothetical 

response signal. In this schematic we have used arbitrary units to describe the duration of 

each state. The number o f sampling points recorded from the sensor response signal in each 

state can be calculated using the following equation

N x = Tx x F sampling (4 -3 )

where
X  e { B L , I , S S , E , R }

N x  is the number o f sampling points acquired during the sniff - cycle state" X "
Tx  is the duration time o f the sniff - cycle state " X "

Fsampling ’s l̂c sampling rate or frequency o f the data acquisition process.
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Figure 4-20 The structure o f the eNose sniff-cycle

In the smell experiments realized we used the sampling rate o f 1 Hz (i.e., one sample-per- 

second). This sampling frequency was good enough for recording the responses o f the metal- 

oxide sensors used in the proposed eNose without loosing important information. Hence, 

calculating the number o f sampling points in each eNose sniff-cycle state is a straightforward 

operation that equals to the duration time programmed for each state.

Table 4-9 describes the details o f the sniff-cycle structure and the names and operations 

performed in each state. In Table 4-9, the first column refers to each o f the sniff-cycle states 

labeled in the schematic o f Figure 4-20. The third column o f this table presents the default 

operations that are performed in the given state. These default operations cannot be modified.
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Table 4-9 Details of the sniff-cycle structure

LABEL STATE
NAME

DEFAULT OPERATIONS AND 
DEFAULT STATE DURATIONS

COMMENTS

BL Baseline No default operations. Duration: 
10s. It can be shortened up to 1 
second.

Sensors baselines must be recorded 
before starting the inhalation of a new 
smell.

I Inhale Valves (VI, V2, see Section 
4.3.2) and the air pumps are 
switched ON. Duration: 10s

In ten seconds, eNose inhales 330 ml of 
VOM from the concentration flask. The 
volume of the sensing chamber is 500 ml. 
(see Sections 4.3.2 and 4.3.6).

PI Post
inhale

All valves and air pumps are 
switched OFF. Duration: 5s

SS Steady No default operations. Duration: 
300s

It was observed that the slowest sensors 
reach their saturation in around 200s after 
the VOM input. Therefore, Tss = 300^ 
was chosen in all our experiments.

PE Pre
exhale

No default operations. Duration: 
5s

E Exhale Valves (VI, V3, see Section 
4.3.2) and the air pumps are 
switched ON. Duration: 300s

R Recovery All valves and air pumps are 
switched OFF. Duration: 900s

4.6 The Sm art-Sniff Cycle

The Sm art-Sniff-Cycle is a novel sniffing technique proposed in this thesis. The objective of 

this special sniff cycle is to avoid the poisoning o f the sensors that was observed in some 

smell experiments. The sensors and the smell delivery system can be poisoned when certain 

VOM from strong smell sources such as ground pepper and some essential oils are inhaled. 

The VOM of these substances (when inhaled for more than two or three seconds) produce 

over saturation o f the smell sensors and it is difficult to recover their baselines afterwards. 

These VOM also stick on the sensing chamber walls aggravating the problem and it usually 

takes very long time (in some cases hours) to clean the system from these smells.
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In this thesis, we propose a simple solution to this problem. In the Inhaling state, the sensors 

signals are monitored and compared in real time to a given threshold voltage. The threshold 

default value is set to 0.1 volts but it can be changed to any value in the range 0-5 volts. As 

soon as any o f the sensors reach this threshold (above its baseline voltage) the Inhaling state 

is terminated and the eNose switch to the next state of the sniff cycle. The Inhaling state is 

also terminated if its programmed duration time is reached before any o f the sensors reaches 

the threshold.

4.7 Summ ary

In this chapter, we presented the design and implementation o f a low cost electronic nose 

suitable for integration with multimedia systems. We presented a brief discussion about the 

general architecture including the hardware and software modules o f the proposed eNose. 

We then provided a description o f the smell-space used in this thesis. This was followed by 

the detailed explanation o f the hardware modules o f the eNose. The software application that 

allows for controlling and interfacing these hardware modules was also discussed in great 

detail. Finally, we presented the eNose smell sniff-cycle and a novel smell sniff technique.

78

with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

The eNose signal processing system

In the previous chapter, we presented the hardware design o f a low cost electronic nose that is 

suitable for integration with multimedia systems. In this chapter we present the signal 

processing techniques and the GUI processing software framework developed for this 

electronic nose.

The organization o f this chapter is as follows. Section 5.1 describes the different transient 

regions o f the smell signals produced by the eNose hardware. Section 5.2 presents a detailed 

explanation o f the signal preprocessing techniques implemented in the eNose software 

system. Section 5.3 describes the GUI software system that computes the signal processing 

and smell-pattem analysis in the eNose, which is followed by the summary.

5.1 The Smell-Signal Transient Regions

In this section we define the transient regions o f the smell-signal response that are used by the 

proposed signal preprocessing techniques in order to extract the static and dynamic features 

from the smell signal. A typical smell-signal response can be divided into three transient 

regions: the ascending transient, the steady state transient and the descending transient (see 

Figure 5 -1).

Figure 5-1 shows a schematic comparing the timing structure o f the eNose sniff-cycle versus 

the smell-signal transient regions. The ascending transient region (AT) is defined as the
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sensors responses recorded during the 60 seconds after the smell inhaling state (I) started. In 

this region the sensors are responding rapidly to the input o f VOM. The steady state transient 

region (ST) is defined as the sensors responses recorded from sampling point (N BL + 6 l )  to 

the end o f the Pre-exhale state (PE). In this region the dynamics o f the chemical interactions 

between the sensor and the odorant tend slowly to stabilize producing a distinctive elbow in 

the smell-signal. The proposed descending transient region (DT) is defined as the response 

enclosed from the beginning o f the exhaling period to the end o f this period. In this region, 

the sensors responses decay rapidly during the first third and then slowly tend to reach a 

horizontal line. Two actions are combined here, the rapid extraction o f the VOM out o f the 

chamber and the strong current o f clean air blowing over the sensor. The first action clearly 

diminishes the sensors responses voltages because the concentration o f VOM is dramatically 

reduced. The second action tries to increase the sensors responses voltages because an air 

current is blown over the sensor heads, see the reference manuals at Figaro web site [24].

In Figure 5-1, the “x” axis represents sample points instead o f  seconds because in the eNose 

experiments, we used the sampling frequency F s =  1 H z  (i.e.. one-sample-per-second).

Therefore, converting from duration-time to number-of-samples-points is a straightforward 

one-to-one operation.

Table 5-1 describes the labels used to represent each transient region depicted in Figure 5-1 

and the formulas for calculating the starting sampling-point and ending sampling-point for 

each o f these three proposed transient regions. These formulas are based in the duration times 

o f the proposed sniff-cycle states. The variable N  x  represents the number o f signal sampling 

points recorded in the X  state o f the eNose sniff-cycle. For example, N BL is the number of 

sampling points recorded in the Baseline state (BL).
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Figure 5-1 Smell signal transient regions for eNose

Table 5-1 Description o f the eNose smell-signal transient regions

LABEL REGION
NAME

STARTING SAMPLE ENDING SAMPLE

AT Ascending
Transient M t t + 1 ) ( i V + 6 0 )

ST Steady-
State
Transient

(A V + 6 0  + 1) i^BL  +  Npj + N ss +  N PE)

DT Descending
Transient

{ ^ bl+ N/ + N Pl +  N ss + N pe + 1) { ^ bl + N j + N PI + N ss + NpE + N e )
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5.2 The Sm ell-Signal Preprocessing Techniques

In this section, we present the implementation details o f the different signal preprocessing 

techniques proposed in this thesis. These techniques can be divided into three broad 

categories: baseline manipulation, feature-vector extraction and feature-vector normalization 

(see Section 3.3).

In baseline manipulation, the sensor responses are processed relatively to their baselines. In 

the feature-vector extraction stage, the more relevant features are extracted from the sensors 

responses and a vector constituted by these features is assembled to represent the response to 

the given smell. Lastly, in the feature-vector normalization stage, the coordinates (features) of 

feature-vector assembled in the previous stage are adjusted and scaled such that all the 

features magnitudes are comparable. Table 5-2 shows the smell-signal preprocessing 

techniques implemented in the eNose software system

Table 5-2 Smell-signal preprocessing techniques used in this thesis

BASELINE
MANIPULATION

FEATURE-VECTOR EXTRACTION NORMALIZATION

Difference (DIFF) Steady-State (SS) Vector Array (VNORM)

Relative (REL) Time Constants (TC) Vector Auto-scaling (VAS)

Fractional (FRACT) Whole Signal Derivatives (WSD) Dimension Auto-scaling (DAS)

Logarithmic (LOG) Ascending Transient Derivatives (ATD)

Steady State Transient Derivatives (STD)

Descending Transient Derivatives (DTD)

Discrete Fourier Transform (DFT)

Temperature Modulated Whole Signal 
Derivatives (TMWSD)

Temperature Modulated Discrete Fourier 
Transform (TMDFT)
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In order to facilitate the mathematical fonnulation for the different signal processing

techniques, we use the following notation:

N c : The number o f measurements from VOM- examples contained in a smell-

database

N s : The number o f sensors in the proposed electronic nose

N k : The number o f data points acquired from each VOM-example

K,s (0 : The electrical signal generated by sensor s ,  in response to the

given VOM-example e,  (l < e < N e)

: Digitized version of Ves{t),  where t = kTo and (l < k < N k)

W BLc,s : The mean value o f the baseline response o f sensor s , (l < s <  N s),  recorded

during sniff-cycle started to sniff the VOM o f example e,  (l < e < N e)

• T ta  output o f the baseline manipulation preprocessing stage, which is the

baseline-relative version of Wc s [A']

Nj- : The number o f features extracted from the response o f a sensor s

N m: The number o f features extracted from the array responseArCJ[A:], where

N m = N f x N s

F(e ,  m): The m'h feature extracted from the array response to the smell

example e , such that (l < m < N m)
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The row feature-vector extracted from smell example e , such that 

F, = l F ( e , l ) , F ( e , 2 ) , - , F ( e , N j

The duration time (in seconds) programmed for the X  state o f the eNose 

sniff-cycle (see Section 4.5)

The number o f signal sampling points recorded in the X  state o f the eNose 

sniff-cycle (see Section 4.5). For example, N BL is the number of sampling 

points recorded in the baseline state (BL) of the eNose sniff-cycle.

The sampling frequency for the data acquisition process. F s = 1 H z  (i.e., 

one-sample-per-second).

5.2.1 Baseline Manipulation

The sensors baselines are the sensor responses to a reference smell. The reference smell used 

in our eNose was the laboratory normal ambient air. The baseline manipulation techniques 

use the baseline values o f the sensors (always recorded before each sample of VOM is 

inhaled) to preprocess the whole response signals. This preprocessing stage aims to 

compensate for occasional sensors drifts caused by small variations in the ambient 

temperature from one sniff to the next (see Section 3.3.1). The smell sensor response to a 

given smell is in general fixed and relative to the initial baseline value when the baseline 

drifts is caused by minor temperature changes. The baseline manipulation techniques do not 

effectively compensate for large variations in the sensors baselines.

The first state of the eNose sniff-cycle is the Baseline State. In this state the sensors respond 

to the reference air that was used to purge the VOM inhaled in the previous sniff. In this 

implementation, each sensor baseline value is calculated as the average of these sensor 

response values recorded in the Baseline State of the eNose sniff-cycle. The following 

equation is used to calculate the sensor array baseline mean values
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(5-1)

where N BL is the number of sampling points acquired in the baseline state BL.

In the eNose software system, we implemented the four Baseline Manipulation techniques 

presented in Section 3.3.1: Difference (DIFF), Relative (REL), Fractional change (FRACT) 

and Logarithmic (LOG). Table 5-3 shows the equations used to describe the four choices of 

preprocessing techniques implemented in this stage. The selected technique is applied to the 

digitized sensors signals and the resultant preprocessed signal X cs\k \  is used as the

input to the next preprocessing stage (i.e., the feature-vector extraction stage).

Table 5-3 The eNose baseline manipulation techniques

B a s e l in e  m a n ip u l a t io n FORMULA

DIFF

REL

FRACT

LOG
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5.2.2 Feature-Vector Extraction

The goal o f the feature vector extraction module is to find a small set o f features that can 

represent efficiently the smells under analysis. These techniques exploit relevant 

characteristics o f the smell-signal such as the stationary information present in the signal 

steady state and the dynamic information contained in the signal transient regions.

In this thesis, seven different feature-vector extraction techniques were implemented in the 

eNose software system. These techniques aim to extract the stationary and dynamic smell 

information from the sensors responses to a VOM-example. The proposed techniques are 

grouped in four categories: the Signal Steady State techniques, the Signal Dynamics 

Techniques, Signal Spectral Techniques and the Temperature Modulation Techniques (see 

Section 3.3.2).

5.2.2.1 Steady-State Technique

The Steady-State (SS) technique extracts the stationary information from the signals given 

when the sensors acquire a stable state in response to a VOM input. In our experiments, the 

slowest sensors reached their saturation in around 200 seconds after the VOM input. Based in 

these results, we propose to calculate the SS as the mean value o f the sensors responses 

recorded over the last sixth o f the steady state o f the eNose sniff-cycle.

The number o f features N f  extracted by the SS technique from each sensor is equal to one 

(i.e., Nj- = 1). Consequently, total number o f features N m obtained from each observation of 

the eight sensors array is eight. These eight features are put together in order to assemble a 

feature-vector Fe . The feature-vector Fe is said to have dimensionality eight because it has

eight coordinates (features). The coordinates o f the feature-vector Fe produced by the SS 

preprocessing technique are calculated using the following equation
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^ , m ) = A | 'xjk] Ve,5
^  S S  k = a

(5-2)

where m  = s , a  = N BL +  N ,  + N p, +

5.2.2.2 Time Constants Technique

The Time Constants (TC) technique extracts time values measured from the smell-signal 

rising and falling curves. In this thesis, we implement the TC technique proposed by Tomas 

Eklov et al. (see Section 3.3.2.1). In this technique, the number o f features N f  extracted

from each sensor is equal to four (i.e . ,N f  = 4 ) .  Consequently, the total number of 

features N m obtained from each observation o f the N s = 8 sensors array is N m =  32 . These 

32 features are put together in order to assemble a feature-vector Fe . The features 

(coordinates) o f the feature-vector Fe produced by the TC preprocessing technique are 

obtained using the following algorithm.

The feature TonY  represents the time for the smell-signal to reach 7  %  o f its maximum value 

after the VOM input is ON. Two values o f 7  %  are proposed, 7  = 60%  and 7  = 90% . 

The following equation is used to calculate these two features TonY

w here a  = (N bl + 1) and  b =  (N bl + N ,  + N „  +  N ss + N PE ), ( l < h < N k).

The feature T ^ Y  represent the time for the smell-signal to fall to X  %  o f its maximum 

value after the VOM purging is ON. Two values o f 7  % are proposed, 7  = 40%  and 

7  = 10% . The following equation is used to calculate these two features V

aZkZb V c,s (5 -3 )
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(5-4)

w here k s D T region and  (l < h < N k).

In Eq. 5-3 and Eq. 5-4, the function Max(-) returns the maximum value reached by each o f 

the sensors in the array in response to a given VOM-examplc e . The function A r g k(-) 

returns the time (in seconds) for each sensor signal X e s [&] to reach the percentage Y  %  of

its maximum value.

5.2.2.3 Signal Derivatives Techniques

In Signal Derivatives techniques, the slope o f the smell-signal is computed over several time

major steps in this technique are summarized in the following algorithm.

SD algorithm

Step - 0, the size o f the time interval k n and the value o f constant k 0 are defined in this step.

These parameters are in general different for each particular implementation o f the signal 

derivatives technique. These parameters must be calculated according to each particular 

implementation o f the signal derivatives technique and given to this algorithm as input 

parameter values.

Step - 1, the derivative o f the whole smell-signal is computed using an approximation method 

based on the Taylor series (see Section 3.3.2.1). The following equation is used to compute 

the smell-signal derivative X'e s [&]

intervals (see Section 3.3.2.1). These slope values are then used to discriminate smells. The
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w here l< :k<*N k.

Step - 2, the signal derivative X'CtS\k\ ' s divided into N f  identical time intervals and the 

average derivative over each interval is calculated using the following equation

(5 -6 )

w ith  a  = k 0 + ( h - 1 )kn +1 and b = k Q+ h kn such that 1 < h <  N f  

w here

Wchs is the average value o f  each sensor signal derivative X'cs [/c] over tim e interval "h"

N f  is the num ber o f  features to be extracted from  each sensor signal

a  is the starting  sam pling po in t o f  interval"/?"

b is the ending sam pl ing po in t o f  in te rv a l" h"

k n is the size o f  the in terval given in num ber o f  sam pling  points

k 0 is a constan t that depends on the feature - ex traction  technique used

Step - 3, the feature-vector Fe is assembled using the N j  parameters that were extracted 

from each sensor signal. The following equation is used

F  =  W ' W 2 ... W Nf 1 Ve , e,s e,s cts J  e,s (5 -7 )

w here N f  is the num ber o f  features extracted from  each sensor signal.
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5.2.2.3.1 Whole Signal Derivatives Technique

In this thesis, we have implemented the derivative technique proposed by Cosimo et al. (see 

Section 3.3.2.1). Henceforth, this technique is referred to as WSD (Whole Signal Derivatives) 

as the derivative is calculated over the whole signal. The major steps in this technique are 

explained as follows.

The Whole Signal Derivative (WSD) technique divides the smell-signal into seven intervals 

o f equal size and calculates the average o f the derivatives computed over each o f the seven 

intervals. The size of each interval k n is calculated using the following equation

(5 -8 )
N f

w here N f  is the num ber o f  features to be extracted from  each sensor signal.

In the WSD technique, the number o f features N j  extracted from each sensor response is 

equal to seven (i.e., N f  = 7 ). Consequently, the total number o f features N m obtained from 

each observation o f the N s =  8 sensors array is N m = 5 6 . These 56 features are put together 

in order to assemble a feature-vector Fe . The features (coordinates) o f the feature-vector Fc 

produced by the WSD preprocessing technique are calculated using the SD algorithm  (see 

Section 5.2.2.3) with the value o f parameter k0 = N BL.

The WSD technique has the disadvantage of producing a feature-vector of large 

dimensionality (large number o f features). This large number o f features could degrade the 

performance o f the pattern recognition system if the number o f  examples per class is not large 

enough (see Section 3.4). Therefore, in this thesis, we propose three modified versions o f the 

WSD technique that reduce the number o f features extracted by dividing the smell-signal in 

the three transient regions defined in Section 5.1. The comparative performance o f the Signal 

Derivative method applied in each different transient region can also help to define which
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transient region is best for the smell discrimination. The next three sections present these 

three proposed modifications o f the WSD method.

5.2.2.3.2 Ascending Transient Derivatives Technique

The Ascending Transient Derivatives (ATD) technique computes the average o f the 

derivative over three equally sized intervals from the ascending transient region (AT). The 

size o f the interval k„ is calculated using the following equation

(5 - 9)
yv

where N f  is the number of features to be extracted from each sensor signal, and N AT 

is the number o f sampling points in the Ascending Transient (AT) region.

In the ATD technique, the number o f features N f  extracted from each sensor response is 

equal to three (i.e., N f  =  3 ). Consequently, the total number o f  features N m obtained from 

each observation o f the N s = 8 sensors array is N m = 2 4 . These 24 features are put 

together in order to assemble a feature-vector Fc . The features (coordinates) o f the feature- 

vector Fe produced by the ATD preprocessing technique are calculated using SD algorithm  

(see Section 5.2.2.3) with the value o f parameter k 0 = N BL

5.2.2.3.3 Steady State Transient Derivatives Technique

The Steady State Transient Derivatives (STD) technique computes the average o f the 

derivative over two equally sized intervals from the steady state transient region (ST). The 

size o f the interval /c„ is calculated using the following equation
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(5-10)

w here N f  is the num ber o f  features to  be extracted  from  each sensor signal, and N ST 

is the num ber o f  sam pling points in the Steady State T ransien t (ST) region.

In the STD technique, the number o f features N f  extracted from each sensor is equal to two 

(i.e., N f  = 2 ) .  Consequently, the total number o f features N m obtained from each 

observation o f the N s = 8 sensors array is N m =  16. These 16 features are put together in 

order to assemble a feature-vector Fc . The features (coordinates) o f the feature-vector Fe 

produced by the STD preprocessing technique are calculated using SD algorithm  (see 

Section 5.2.2.3) with the value of parameter k 0 = {N bl + 60 + 1).

5.2.2.3.4 Descending Transient Derivatives Technique

The Descending Transient Derivatives (DTD) technique computes the average o f the 

derivative over three equally sized intervals from the descending transient region (DT) only. 

The size o f the interval k n is calculated using the following equation

w here N f  is the num ber o f  features to be extracted  from  each sensor signal, and N DT 

is the num ber o f  sam pling points in the D escending T ransien t (D T) region

In the DTD technique, the number o f features N f  extracted from each sensor is equal to 

three (i.e., N f  = 3).  Consequently, the total number o f features N m obtained from each 

observation o f the N s = 8 sensors array is N m = 2 4 . These 24 features are put together in

(5 -1 1 )
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order to assemble a feature-vector Fc . The features (coordinates) o f the feature-vector Fe 

produced by the DTD preprocessing technique are calculated using SD algorithm  (see 

Section 5.2.2.3) with the value o f parameter k 0 = (N bl + N ,  +  N PI + N ss +  N PE + 1).

5.2.2.4 Discrete Fourier Transform Technique

In this technique a feature-vector is represented by its DFT coefficients. In this thesis, the first 

ten coefficients were selected because almost all the signal power is concentrated in these 

coefficients (see Figure 5-2).

Figure 5-2 shows the plot o f the first 100 coefficients obtained with the application o f the 

DFT transform to the response signal o f Figaro sensor T880. A sample o f VOM from fresh 

lemon is used in this eNose experiment. Note, that the first few coefficients have the greatest 

power values. This characteristic pattern is observed in all the different smell experiments 

realized with our eNose.

x iq4 Fresh Lemon

  T880
4.5

3.5

tosoD.

0.5

100
fourier coefficients

Figure 5-2 Power spectrum o f TGS 880 sensor response to a VOM lemon sample
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In the DFT technique, the number o f features N f  extracted from each sensor is equal to ten 

( i .e . , / ^  = 1 0 ) . Consequently, the total number o f features N m obtained from each 

observation o f the N s =  8 sensors array is N m =  80 . These 80 features are put together in 

order to assemble the feature-vector Fe .

5.2.2.5 Temperature Modulation Techniques

In the Temperature Modulation (TM) techniques, the work-temperature is modulated while 

capturing the sensor output in order to improve the detection performance. These techniques 

are commonly applied to metal-oxide gas sensors because these sensors need to be heated at 

very high temperatures in order to detect VOM (see Temperature Modulation techniques in 

Section 3.3.2).

Modulation Function used in the eNose smell experiments

In this thesis, we propose a simple work-temperature modulation function. The objective of 

the proposed function is to turnoff the heating circuit after most o f the sensors have already 

reached the steady state (see Figure 5-3). The proposed function consists on a zero volts pulse 

o f  20 seconds duration. The zero pulse is applied 150 seconds after the smell sample was 

inhaled and the smell purging starts 100 seconds after the heater voltage is switched-back to 5 

volts.

Figure 5-3 shows the temperature modulation function response o f the sensors array to a 

VOM sample o f Coca Cola. The zero pulse is sent when almost all the sensors have reached 

their steady states. The width o f this pulse was set to 20 seconds. This time was selected 

because it is long enough to produce a change in the sensors response values and small 

enough to allow rapid recovery o f their previous state.
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Figure 5-3 Array sensors response to the proposed modulation function

Table 5-4 describes the sniff-cycle settings used with the proposed temperature modulation 

function. The first and second columns describe each sniff-cycle state and its proposed 

duration time. The fourth column indicates the function generator activation/deactivation 

states. The zero volts voltage source is connected to the sensors heaters at the beginning of 

the Steady (SS) state and disconnected at the beginning o f the Pre-Exhale (PE) state. 

Therefore, a zero volts voltage step is sent to the heaters and kept during 20 seconds. The fifth 

column indicates when the data acquisition engine is recording the sensor signals. The data 

acquisition engine starts recording at the beginning o f the Baseline (BL) state and stops 

recording at the beginning o f  the Recovery (R) state. Therefore, the sensors signals are 

recorded for 580 seconds, from the beginning o f the sniff-cycle until the end o f the smell is 

purged out o f the sensing chamber.
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Table 5-4 Sniff Cycle settings for the proposed Temperature Modulation Function

SNIFF CYCLE 
STATE

DURATION PUMPS FUNCTION
g e n e r a t o r :

ZERO PULSE

DATA

ACQUISITION
ENGINE

Baseline (BL) 1 0 s - - Start

Inhale (I) 1 0 s Start -

Post-Inhale (PI) 150s Stop -

Steady (SS) 2 0 s - Start

Pre-Exhale (PE) 1 0 0 s -- Stop

Exhale (E) 300s Start -

Recovery (R) 300s Stop - Stop

i) Hybrid Technique TMWSD

The Hybrid technique TMWSD proposed in this thesis is a combination o f the WSD 

technique with a TM technique that uses the proposed work-temperature modulation function. 

It applies the WSD technique to the signal region enclosing the transients induced in the 

sensors signal responses by the proposed modulation function.

The TMWSD computes the average o f the derivative over seven equally sized time intervals 

on the signal region enclosing the induced transients. The size o f each interval k n is 

calculated using the following equation

K  =
{ N s s + N p e -  1)

N,
(5 -1 2 )

where N f is the number o f features to be extracted from each sensor signal.
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In the TMWSD technique, the number o f features N f  extracted from each sensor is equal to 

seven (i.e., N f  =1).  Consequently, the total number o f features N m obtained from each 

observation o f the N s = 8  sensors array is N m = 56 . These 56 features are put together in 

order to assemble a feature-vector Fe . The features (coordinates) o f the feature-vector Fe 

produced by the TMWSD preprocessing technique are calculated using SD algorithm with 

the value o f constant K 0 =  N  Bt + N, + N pl + 1

ii) Hybrid Technique TMDFT

The Hybrid technique TMDFT proposed in this thesis is a combination o f the DFT technique 

with a TM technique that uses the proposed work-temperature modulation function. It applies 

the DFT technique to the signal region enclosing the transients induced in the sensors signal 

responses by the work-temperature modulation function.

TMDFT extracts the first ten coefficients descriptors from the response o f each sensor in the 

array. The descriptors arc obtained after applying the Fourier transform to the transients 

induced in the sensors signal responses by the work-temperature modulation function. In this 

thesis, we chose the first ten coefficients because almost all the signal power is concentrated 

on these coefficients (see Figure 5-4 and Figure 5-5).

In the TMDFT technique, the number o f features Nj- extracted from each sensor is equal to 

ten (i.e., N f  = 10). Consequently, the total number o f features N m obtained from each 

observation o f the N s = 8  sensors array is N m = 80 . These 80 features are put together in 

order to assemble the feature-vector Fe extracted from each example e .

Figure 5-4 shows the plot o f  the first 30 coefficients obtained from the application o f the DFT 

transform to the sensors array response signals obtained using TMDFT technique. A sample 

o f VOM from Coca Cola is used in this eNose experiment. Note, that the first few 

coefficients have the greatest power values.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cola-Coke
3 5 0 0

3 0 0 0

2 5 0 0

2000

5 0 0

1000

50 0

20 30
fo u r ie r  c o e f f ic ie n ts

Figure 5-4 Power spectrum o f the eight sensors signals responses to Coca Cola
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Figure 5-5 Power spectrum o f the eight sensors signals responses to Pepsi Cola
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Figure 5-5 shows the plot o f the first 30 coefficients obtained from the application o f the FFT 

transform to the sensors array response signals obtained using TMDFT technique. A sample 

o f VOM from Pepsi Cola is used in this experiment. The maximum signal power is 

concentrated in the first few coefficients.

Note the differences between the power spectra from Coca Cola and Pepsi Cola. For example, 

coefficients 5 to 10 from the Coke spectrum plot are slightly greater that same coefficients 

from the Pepsi power spectrum plot.

5.2.3 Feature-Vector Normalization

In the previous section, several features have been proposed for smell recognition. Some of 

these features such as the steady state (SS) sensor response parameters, which are voltage 

values, are not comparable to features o f the time-interval types such as TonX  (see Section 

5.2.2.2).

The feature-vector normalization techniques transform the distribution o f the original values 

that the extracted features can take by adjusting them to fit into a new dynamic range 

ensuring that all the features magnitudes are comparable. Three commonly used feature- 

vector normalization techniques are implemented in the eNose (see Section 3.3.3): vector 

auto-scaling (VAS), dimension auto-scaling (DAS) and vector normalization (VNORM).

5.3 The eNose Software System

In this thesis, we propose an automated software platform to compute the combination of 

signal-processing techniques that achieves the highest classification rates for any given smell- 

space. The proposed system can extract several different types o f feature-vectors from a given 

smell-database and then compute their detection efficiencies over two popular classifiers (see 

Sections 3.5.1 and 3.5.2): the Nearest Neighbor (NN) and the Nearest Mean (N-MEAN). In 

this software, the statistical re-sampling techniques (see Section 3.6.1) n-fold cross-validation 

(N-CV) and leave-one-out (LOO) are used in combination with these two classifiers in order
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to obtain more realistic estimations o f the detection efficiency o f each feature-vector type (see 

Section 3.6).

The automated software platform consists o f three independent software modules: the Smell 

Signal Processing module, the Pattern Analyzer module and the Results Plotter module. The 

Smell Signal Processing module is used to automatically compute many combinations of 

signal processing techniques on a given smell-database. The Pattern Analyzer is used to 

automatically compute the smell detection efficiencies o f the different combinations of 

signal-processing techniques. The Results Plotter module is used to produce bar plots and 

tables with the detection efficiencies scored by the different combinations.

The design strategy was to produce an expandable software platform with automatic 

processing capabilities. A simple design solution based on three independent applications is 

implemented here. These applications are developed over a similar backbone code and 

communicate between them using the disk file system. The backbone code supports the basic 

input/output file operations and the user interface operations of the application. The specific 

functionalities o f each application are coded as independent subroutines inserted in the 

backbone code.

The software implementation is based on list boxes that are used to display the different tasks 

and configuration choices that the given application can perform. Each item in a list box is 

linked using a “CASE” instruction to the function subroutine that implements its 

functionality. The automatic processing capabilities are activated when more than one 

multiple items are selected in any given list box. The application will then automatically 

perform all possible combinations o f the selected items in all the list boxes. The system 

functionality can be expanded performing the following two basic steps. First, the 

programmer must insert the name o f the task into the proper list box and into the 

corresponding CASE instruction. Second, the programmer must insert the programming code 

that implements the functionality of the new task as a new subroutine into the main program 

module. All the software modules were implemented using MATLAB visual development 

environment.
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5.3.1 Smell Signal Processing Module

The Smell Signal Processing Module is a software module designed to automatically compute 

many combinations o f signal processing techniques on a given smell-database (see Figure

5-6). The Smell Signal Processing Module was developed with MATLAB visual environment 

and contains 2880 lines o f source code. This software module opens the given smell-database 

and processes it in order to obtain at least one feature-vector per each smell-example 

contained in this database. Different types o f feature-vectors can be extracted from the same 

smell-database. Each feature-vector type is extracted by applying a different combination of 

signal preprocessing techniques. The software generates one data file per each applied 

combination. This data file is called the Combination-File. The combination-file contains the 

feature-vectors produced with the given combination. Each combination-file contains as 

many feature-vectors (of same type) as smell-examples e are in the given smell-database. 

All the combinations o f signal processing techniques selected by the researcher can be 

applied automatically to the given smell-database. Therefore, several combination-files can 

be automatically generated and saved in the disk for later use.
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Figure 5-6 The Smell-Signal Processing Module

Figure 5-6 shows the graphic user interface o f the Smell Signal Processing module. All the 

smell-signal processing techniques implemented in the eNose (see Section 5.2) are listed in 

the three boxes in the center o f this interface. The first box in the left is not working in this 

software version. This selection box is designed for future use with different choices of the 

sensing parameters (e.g., resistance, conductance and raw voltage). The implemented smell- 

signal processing techniques are organized in three stages: baseline manipulation, feature- 

vector extraction and feature-vector normalization. Each selection box corresponds to one of 

these processing stages. The user must select at least one item from each box depending on 

the preprocessing technique that will be applied in this stage. The smell-signal is then 

processed orderly according to these three selected techniques and a feature-vector per each 

smell-example in the database is computed. The user can also select multiple items in each 

box. Therefore, programming many different combinations o f smell-signal processing 

techniques. These combinations will be automatically applied (one after the other) to the 

given smell-database.

1 0 2
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5.3.2 Pattern Analyzer Module

The Smell-Pattern Analyzer Module is a software application designed to automatically 

compute many combinations o f  smell-pattern analysis techniques on a given combination-file 

(see Figure 5-7). The Smell-Pattern Analyzer Module was developed with MATLAB visual 

environment and contains 4700 lines o f source code. This software module opens the selected 

combination-file and uses the smell-pattems to design and test the selected classifier. The 

smell-pattems are randomly divided into several subsets depending on the selected re

sampling technique. These subsets are alternatively used for designing (training) and testing 

the classifier. The classification rates obtained are averaged over all the iterations in order to 

compute the detection efficiency /; o f the given combination. The software also summarizes 

all the computed confusion matrices in one. The results are saved in a data file called the 

Statistics-Filc and this file is saved in disk for later use. There is one statistics-file per 

combination-file. The user can select more than one combination-file to be analyzed. The user 

can also select both classifiers as well as more than one re-sampling technique. Therefore, 

several statistics-files per combination-file can be automatically generated.

File

Smell D a ta b a s e  P ath  

D a ta b s e  F o ld er

Com bination 
of P re p ro c e s s in g  

Algorithm s.

C om bination 

of A nalysis  

A lgorithms.

Figure 5-7 The Pattern Analyzer Module 
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Figure 5-7 shows the graphic user interface o f the Smell Pattern Analyzer module. In this 

module we implemented the pattern recognition techniques (see Section 3.5): NN and N- 

MEAN, the statistical re-sampling techniques (see Section 3.6.1): N-CV and LOO and the 

dimensionality reduction technique PCA (see Section 3.4.1). These pattern analysis 

techniques are organized in three stages (boxes): dimensionality reduction (Features- 

Extraction box), pattern recognition (Classification A lgorithm  box) and re-sampling 

techniques (Rc-sam pling A lgorithm  box). The user must select at least one item from each 

box corresponding to the pattern analysis technique that will be applied in this stage. The 

smell-pattems are then processed orderly according to these three selected techniques and 

detection efficiency value 77 is scored per selected combination-file in the database. The user 

selects the combination-files to be processed from the list box in the center of the panel- 

window (Com bination of P reprocessing Algorithm s).

5.3.3 Results Plotter

The Results Plotter Module (see Figure 5-8) is a software application designed to organize 

and produce comparative bar plots and tables with the detection efficiencies scored by the 

different combinations-files. The Results Plotter Module was developed with MATLAB 

visual environment and contains 2060 lines o f source code. This software module opens the 

selected statistics-files and organizes them in order to be able to produce bars plots or tables 

displaying the detections efficiencies 77 (or the error rates depending on the user selection) 

scored by each combination-file. The number o f rows in this table corresponds to the number 

o f statistics-files selected by the user. The table can be sorted in descending (or ascending 

order) therefore the first row corresponds to the combination that scored the highest detection 

efficiency among the selected combination-files (see Table 5-5). The table also displays 

additional information about the smell-pattern analysis techniques and the combination-files 

selected for display. The bars plot graph displays various subplots corresponding to the 

number o f feature-vector extraction techniques selected for comparison (see Figure 5-9).

Figure 5-8 shows the graphic user interface o f the Results Plotter module. The software of 

this application can produce comparative plots and tables with the detection efficiencies 

achieved by different combinations-files extracted from the selected smell-database. The

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comparison is constrained to only those combination-files that have been analyzed using the 

same smell-pattern analysis techniques. The user must then first define the constraining 

combination o f smell-pattern analysis techniques. The user selects these techniques on the 

row o f five boxes shown on the upper side of this interface. These five boxes list all the 

smell-pattern analysis techniques used with the selected smell-database. The statistics-files 

that comply with this constrain will be then automatically listed in the large box (Select 

C om bination of Preprocessing Algorithms). The user selects from this box all the statistics- 

files that will be compared. The row o f three boxes in the center o f this interface list all the 

smell-signal processing techniques tested on the selected smell-database. These boxes define 

the smell-signal preprocessing techniques that are of interest in this comparison. The user can 

select one or more items in each o f these boxes. This action will automatically adjust the 

statistics-files listed in the large box.
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Figure 5-8 The Results Plotter Module

Table 5-5 shows an example o f a table printout produced by the Results Plotter module. In the 

first column o f the bottom half are listed the names o f the combination-files being compared. 

The name the combination-file corresponds to the techniques used in this combination. For 

example, the name _RAW_REL_WSD_DAS for the first file means that the smell-patterns in 

this file were produced with the baseline manipulation technique REL (Relative), the feature- 

vector extraction technique WSD (Whole Signal Derivative) and the normalization technique 

DAS (Dimension Auto Scaling). The upper half o f this printout shows the smell-pattern 

analysis techniques used for this comparison.
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Table 5-5 Example of a table printout produced by the Results Plotter

Smell Database Folder: C:\SmclI Test Results\Coffce

Analysis Algorithms Used: _NOFEXT_NOFSEL_N-MEAN_N-CV(5)_NoTRIALS(l)_

Feature Scl. Algorithm = NOFSEL

Feature Ext. Algorithm = NOFEXT

Classifier Algorithm = N-MEAN

Resampling Algorithm = N-CV

NoTestExamples = 120

NoTrainExamples = 840

_Signal Processing

ErrorRateAvg NoFeatures

_RAW_REL_WSD_DAS 0.05 64

_RAW_FRACT_WSD_DAS 0.051667 64

_RAW_LOG_WSD_DAS 0.058333 64

_RAW_DIFF_WSD_DAS 0.061667 64

_RAW_REL_SS_VNORM 0.13167 8

_RAW_LOG_SS_VNORM 0.13667 8

_RAW_FRACT_SS_VNORM 0.14333 8

_RAW_DIFF_SS_VNORM 0.14667 8

_RAW_DIFF_SS_VAS 0.18433 8

_RAW_LOG_SS_DAS 0.17 8

_RAW_LOG_SS_VAS 0.175 8

_RAW_LOG_WSD_VNORM 0.17667 64

_RAW_DIFF_WSD_VAS 0.18 64

_RAW_REL_WSD_VAS 0.18167 64

*************************************************

Figure 5-9 shows an example o f a bars-plot graph produced by the Results Plotter module. 

The bars-plot graph consists on one or more subplots depending o f the number o f feature- 

vector extraction techniques selected for comparison. Each subplot is a two-dimensional bars 

plot. In each subplot, one or more clusters o f bars are drawn over the “x” axis and the error 

rate (or the detection efficiency as per the user selection) in the “y” axis. Each axis “x” cluster 

corresponds to one o f the baseline manipulation techniques used in the selected combination- 

files. The bars in the cluster correspond to the feature-vector normalization techniques used in
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each combination. Each bar has a different color representing a different feature-vector 

normalization technique.

1 I VNORM

FRACT

WSD
0.8  -

0.6  - 

0 .4  -

T-m  nil im
DFF FRACT LOG R a

Baseline Transformation Procedure 

Figure 5-9 Example of a bars-plot graph produced by the Results Plotter

5.3.4 The eNose Data Flow

In this Section we present the data structure and the data exchange between the different 

components o f the eNose software framework. The data processing and smell pattern analysis 

operations available in the eNose software platform are performed in four independent stages 

(see Figure 5-10).

In the first stage, the eNose Control Panel is programmed to acquire many sniff samples (in 

consecutive order) from a given smell source. This is to produce a large number of smell- 

examples from this smell-source. Each smell-example is saved on the disk in a data file called 

the smell-file. The smell-files corresponding to the same smell-source are consecutively 

numbered. The folder containing these smell-files is called the smell-class folder. This first
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stage must be repeated as many times as smell-classes are defined in the targeted smell-space. 

For each time this process is repeated a new smell-class folder will be created.

In the second stage, the smell-class folders must be manually assembled into a smell- 

database. A smell-database consists o f one or more smell-class folders. The smell-database is 

itself a folder at a higher hierarchical level than the smell-class folders. The folders (smell- 

classes) that constitute a given smell-database are arranged in correspondence to the smell- 

classes in the targeted smell-space.

In the third stage, the Smell Signal Processing module is programmed to open the assembled 

smell-database in order to compute the smell-pattems (feature-vectors) corresponding to the 

smell-examples contained in this database. A data file is generated per each combination of 

signal preprocessing techniques applied to the smell-database. This data file is called the 

combination-file and it is automatically saved on the disk for later use. In general, more than 

one combination-file should be produced in order to compare the detection efficiencies of 

different combinations o f signal processing techniques.

In the fourth stage, the Pattern Analyzer module is programmed to open a selected number of 

combination-files in order to compute their smell detection efficiencies. A data file with the 

achieved detection efficiency is generated per each combination-file. This data file also 

contains additional information such as the number of features in the smell-pattern, the re

sampling technique used, the classifier used and number o f iterations performed. This data 

file is called the Statistics-File and it is automatically saved on the disk for later use.

Finally, the results o f the different processing and pattern analysis stages performed over a 

given smell-database can be retrieved at any time by using the Results Plotter module. This 

module opens the selected statistics-files and produces bar plots and tables with the detection 

efficiencies scored by the different combinations o f smell-signal processing techniques.

Figure 5-10 shows the schematic o f the data structure and the data exchange between the 

different components of the eNose software framework. The data processing and smell 

pattern analysis operations available in the eNose software platform are performed in four

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



independent stages: smell data collection, smell database preparation, smell signal processing 

and smell pattern analysis. Finally, the results with the smell detection efficiencies computed 

over all the smell-signal processing combinations applied to a given database can be printed 

or plotted with the Results Plotter module.
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Figure 5-10 The eNose Software System data flow

5.4 Summary

In this chapter, we presented the signal processing techniques and the software system 

implemented in the eNose. First, the different transient regions o f the smell signals produced 

by the eNose hardware were described. This was followed by a detailed explanation o f the 

signal preprocessing techniques implemented in the eNose software system. Finally, the GUI
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software system that computes the signal processing and smell-pattem analysis in the eNose 

was described.

I l l
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Chapter 6

Performance Evaluation

In chapters 4 and 5, we have presented the proposed electronic nose (eNose) and the software 

system for smell signal processing and smell pattern analysis. The eNose can collect many 

examples from a given smell-source, process these examples with up to 140 different 

combinations o f signal processing techniques and estimate the detection efficiency o f each 

combination using the analysis algorithms embedded in the eNose software system.

In this chapter, we evaluate the performance achieved by our eNose in various machine 

olfaction application areas. The organization of this chapter is as follows. In Section 6.1, we 

present the proposed smell experiments and the smell databases used in this performance 

evaluation. The smell database collection methods, the smell sampling methods and the 

different sniff cycles used are explained in great detail. In Section 6.2, we briefly introduce 

the evaluation procedures and discuss the results obtained in the proposed smell experiments 

and examine the influence o f different combinations o f signal processing techniques in the 

smell detection efficiency achieved by our eNose.
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6.1 Experimental Setup

In this thesis we evaluate the performance achieved by our eNose in common machine 

olfaction applications such as discrimination o f different smells, discrimination of very 

similar smells and smell discrimination under modulation o f  the sensors work-temperatures. 

We also test the feasibility o f using eNose to detect smells in the open ambient (i.e., the 

concentration flask is not used) and the detection efficiency o f a novel smell sniff mode 

proposed in this thesis (see Section 4.6).

In this section, we present the smell experiments, the smell-databases and the smell-sampling 

methods used to evaluate the performance o f the eNose. Each experiment is based in one or 

more smell-databases specially designed to fulfill the objective o f this experiment. The smell- 

databases are collected using the eNose automatic smell-sampling mode and several smell- 

sampling techniques are applied.

6.1.1 Proposed Smell Experiments

The proposed smell experiments are perfonned using a wide gamut o f smells that occur in our 

daily life. The selected smells are commonly occurring smells produced by natural sources 

such as fresh lemon juice, fresh sliced onions, grounded coffees and grounded pepper. The 

smells produced by manufactured food products such as Beers, Colas and Cheeses are also 

used in our experiments.

The objective o f the smell-experiments is to evaluate our eNose performance in different 

application areas. We also evaluate, the performance achieved with the modulation o f the 

sensors work-temperatures and the perfonnance achieved with the novel smart-sniff inhaling 

cycle. We have designed five sets o f experiments to evaluate the performance o f the eNose 

under different circumstances.

The E xperim ent #1 evaluates the discrimination capabilities o f eNose for different smells. 

Four smell-databases are used in this experiment. These databases contain smells from natural
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sources such as spices, fruits and livestock manures. It also includes smell sources from 

manufactured foods such as cheeses. The smells in each database are widely different.

The Experim ent #2 evaluates the discrimination capabilities of eNose for very similar 

smells. Four smell-databases are used in this experiment. These databases contain smells 

from natural sources that have been processed such as ground coffees, nuts and fruit juices, 

and smell sources from manufactured beverages such as beers and colas. The smells in each 

database are very similar.

The E xperim ent #3 evaluates the use o f the eNose as an instrument capable o f doing 

fieldwork and environmental tests. One factor that greatly affects fieldwork measurements 

with electronic noses is the high degree o f variability in the concentration of VOM acquired 

between consecutive sniffs. Four smell-databases are used in this experiment. The databases 

were designed using an open ambient smell-sampling method. These databases contain smells 

from natural sources such as fruits and from manufactured beverages such as beers and colas. 

The smells in each database are very similar between them. These smells were collected from 

the atmospheric ambient and no concentration flask was used (see Section 6.1.3).

The Experim ent #4 evaluates the novel eNose sniff technique called “sm art-sniff’ (see 

Section 4.6). Two smell-databases are used in this experiment. One o f the databases contains 

miscellaneous smells from natural sources such as spices, fruits, flowers, herbs, vegetables, 

essential oils and fish oils. These smells range from very strong smells (that can poison the 

sensors) such as black pepper and sweet orange essential oils to very weak smells such as 

peanut butter. It also contains smells from manufactured beverages such as beers, colas, pops, 

wine and vinegar. The second database contains very concentrated smells (that can poison 

the sensors) from processed natural sources such as essential oils from flowers. The smells in 

each o f these databases are in general not similar between them. These smells have been 

collected using smart-sniff-cycles A and B (see Section 6.1.4).

The Experim ent #5 evaluates smell discrimination under modulation o f the sensors work- 

temperatures. One smell-database is used in this experiment. This database contains smells 

from manufactured beverages such as colas. The smells in this database are very similar
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between them. These smells have been collected using the TM sniff-cycle (see Section 

6.1.4).

Table 6-1 summarizes the five categories o f smell experiments.

Table 6-1 Smell Experiments performed for the eNose performance evaluation

EXP. NO. OBJECTIVES TESTED SMELL DATABASES

1 Discrimination of widely different 
smells

Cheese (3 classes)

Spice (3 classes)

Livestock Manure (3 classes) 

Fruit Juice (5 classes)

2 Discrimination of similar smells Coffees (6  classes) 

Beers (4 classes) 

Colas (4 classes) 

Nuts (3 classes)

3 Smell detection in the open 
ambient

Coias-from-Can (4 classes) 

Beers-from-Can (2 classes) 

Colas-no-Headspace (3 classes) 

Fruits-no-Headspace (3 classes)

4 Smart-sniff smell inhaling mode Fragrances (3 classes) 

25_Smells (25 classes)

5 Temperatures modulation TM Cola (4 classes)

6.1.2 Smell-Database Collection Method

In this thesis we define a smell-database as a group o f smell-examples that have been 

organized in one or more smell-classes (see Section 5.3.4). A smell-example is defined as the 

digitized response o f the sensors array to a VOM sample from a given smell-source. The
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smell-class label is defined as the number that identifies each smell-source in a given smell- 

database.

The smell-source was deposited in the concentration flask and the VOM samples were 

collected (sniffed) from the headspace created on top o f the concentration flask. The vacuum 

created in the concentration flask by each sniff is filled up with fresh air from the 

surroundings. This fresh air passed through the smell-source (liquid and grounded) producing 

a bubbling effect that helped to release more VOM. These VOM accumulated in the top of 

the flask for the next sniff (see Section 4.3.1).

The smell-examples o f a given class are all sniffed from the same smell-source. The smell- 

source is consecutively sampled (sniffed) until the programmed number o f examples has been 

reached. This operation typically lasted 24 hours in most o f the experiments realized.

This collection method has several advantages. First, it is automatic and hence it frees the 

researcher from constant monitoring o f the data collection process. Second, it produces a 

large smell database necessary to obtain more realistic performance estimates. Third, it 

reproduces a smell scenario that is closer to real life situations as many natural smell-sources 

do not smell exactly the same after several hours exposed to ambient but still the human nose 

is able to recognize them.

6.1.3 Smell Sampling Methods

The smell-source volume typically tested was 160 ml. However in some experiments (smart- 

sniff) this volume was set to 30 ml, and in the case o f essential oils only two drops (on a 

cotton swab) o f the smell-source was used.

The solid smcll-sourccs such as cheese, fresh lemon and fresh onion are cut into two or three 

pieces o f approximately 1cm3 and then deposited in the concentration flask. The fresh air inlet 

tube was placed very close to the bottom and between the smell-source pieces.

The grounded smcll-sourccs such as coffees, pepper, herbs and small beans were deposited 

into the concentration flask. The concentration flask was filled with the substance up to one
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third o f its volume (i.e., a volume o f approximately 160 ml). The fresh air inlet tube was 

buried into the substance.

T he liquid smcll-sourccs such as colas, beers, fruit juices and vinegar were deposited into 

the concentration flask. The concentration flask was filled with the liquid up to one third of 

its volume. The fresh air inlet tube was immerged into the liquid very close to the bottom.

The sam pling bag m ethod was used in the collection o f the livestock manure smells. In this 

case, the eNose sampled the smells directly from Tedlar bags. The bags were filled in the 

field with the air coming out the exhaust vents in the bams. Each bag has a volume of 

approximately 20 liters, which allows for about 50 sniffs (10 seconds o f inhaling draws 

approximately 333 ml o f gas).

T he open am bient m ethod is used in the fieldwork feasibility (discrimination o f smells in 

open ambient) experiments. The concentration flask was used but it was let open. The eNose 

sniffed over the smell source in the open. The eNose smell inlet was placed at approximately 

10 centimeters above the smell-source. This method was applied to the “Fruits-no- 

Headspace” and the “Colas-no-Headspace”. A slight modification of the open ambient 

method was also used. In this variant, the eNose sniffs above the smell-source original 

container. The eNose smell inlet was placed at approximately 2 centimeters above the can 

opening. This method was applied to the “Beers-from-Can” and the “Colas-from-Can”.

6.1.4 The Smell Sniff Cycle Settings used

In preliminary smell experiments realized with the eNose we observed that the metal-oxide 

sensors responded smoothly and slowly to most sources o f VOM. These sensors needed, in 

general, more than 60 seconds to reach 70% of their steady state response values. Therefore, a 

sampling rate o f 1 Hz (i.e., one sample per second) was chosen for the remaining smell 

experiments because at this sampling rate the smell-signal is acquired without loosing any 

important information.

The eNose sniff-cycle is fully programmable (see Section 4.5). This characteristic allows 

defining many different configurations for sniffing the VOM from different smell sources. In
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this thesis we use four types o f  sniff-cycles namely: standard sniff-cycle, smart-sniff-cycle A, 

smart-sniff-cycle B and the TM-sniff-cycle. The Steady state o f all the proposed sniff-cycles 

was set to 300 seconds. This duration time is chosen in order to guarantee that all the sensors 

will reach their steady states in all the smell experiments.

Table 6-2 shows in detail the settings for each o f the sniff-cycle types used for collecting the 

smell databases used in the experiments. Each column represents a sniff-cycle type. The first 

seven rows represent the seven states that constitute any given sniff-cycle. The last row shows 

the portion o f the sensors response signals that is recorded in the given sniff-cycle type 

whereas the row before shows the total length (i.e., including the recovery time) o f the given 

sniff-cycle type. The Inhale duration time showed for the smart-sniff cycles A and B 

represents the dynamic range achieved by the different smells tested in the Experiment #4 

(see Section 6.1.1). The Inhale duration time set for the sm art-sniff cycle types A and B is 20 

seconds. This setting is the maximum duration time that the Inhale state will last in case that 

none o f the sensors reaches the threshold (see Section 4.6). In these cases the duration o f the 

Inhaling state is variable and dependent of: the sensitivity o f the sensors, the threshold 

specified, the concentration o f the smell-source and the type o f smell-source. A threshold of 

0.1 volt was specified for all the smart-sniff experiments realized. The eNose did not reach 

the maximum duration time specified for the Inhaling state in any o f the experiments 

performed to test the smart-sniff mode. However, note that, a smaller Inhaling duration time 

was generally needed for testing the first sample o f a given smell-source than the last sample 

o f the same source. For example, the first sample o f VOM taken from English Rose fragrance 

oil was being inhaled for only 2.03 seconds while the last sample (example number 52) taken 

from the same smell-source scored 6.06 seconds.

The stan d ard  sniff-cycle settings (see second column o f Table 6-2) were chosen after several 

preliminary tests with all smells selected for the eNose performance evaluation. The Duration 

times of Exhale and Recovery states are chosen to be 300 seconds each because these settings 

allow the fastest recovery o f the eNose sensors when testing the selected smells. In general, 

the lowest baseline values can only be reached after having the sensors inactive for very long 

periods o f time such as a 72 hours recovery time. However, it was observed that 300 seconds 

was in general enough time for the sensors to reach working baseline values. These working
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baselines are marginally higher than the bottom baselines but the sensors consistently reach 

them in each experiment.

Table 6-2 Sniff Cycle Settings for the eNose experiments (times are expressed in seconds)

N . SNIFF CYCLE TYPES 

SNIFF CYCLE STATES N .

STANDARD SNIFF 

CYCLE
SMART 
SNIFF 
CYCLE A

SMART 
SNIFF 
CYCLE B

TM SNIFF 
CYCLE

Baseline 10 10 10 10

Inhale 10 0 - 1 0 * 0 - 1 0 * 10

Post-inhale 5 5 5 150

Steady 300 300 300 2 0

Pre-exhale 5 5 5 100

Exhale 300 700 300 300

Recovery 300 1000 900 300

Cycle length 930 2040 1540 890

Response recorded length 630 1040 640 590

* Depending on how fast the sensors respond

The sm art-sniff-cycle-A is a generic type o f sniffing cycle. These settings (see third column 

of Table 6-2) were chosen to fit a wide gamut o f smell-source types. The smell-sources 

targeted with the “smart-sniff-cyclc-A” range from smells that are easily flushed from the 

sensing chamber to smells characterized by their persistence (or stickiness), which make them 

very difficult to flush out of the sensing chamber. In a preliminary test realized with these 

“sticky” smells, the eNose delivery system got poisoned and it was very hard to clean it out. 

In these experiments VOM samples o f grounded pepper and essential oil o f sweet orange 

were inhaled for only 1 0  seconds but the sensors were not able to recover their baselines 

before approximately 1 0  hours o f alternative cycles o f flushing and recovery that were set at 

various different duration times. We also noticed that recovery times are in general dependent
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of the duration of the Exhaling state. In general, long recovery times are needed after long 

exhaling times. One of the causes of this dependency is the temperature of the sensors, which 

drops abruptly during long flushing times. Other causes can be found in the characteristics of 

the smell-source VOM. In general, the oily smell-sources release VOM that adhere strongly 

on the walls of the system and the sensing surfaces of the sensors. These VOM are hard to 

flush. However, setting long recovery time helps the sensors to burn completely these VOM.

The smart-sniff-cycle-B settings (see fourth column of Table 6-2) were chosen to fit the 

smells produced by fragrance oils. Fragrance oils are essential oils that have been diluted in 

non-odorous oils such as grape seed oil. Therefore, these smell-sources are less concentrated 

than pure essential oils and the risk of poisoning the eNose is smaller. However, fragrance 

oils still need a longer recovery time than the lighter smells that were collected using the 

standard sniff-cycle.

We observed that those smell sources that could poison the sensors such as ground pepper 

and sweet orange essential oils typically produce the strongest and fastest responses of the 

smell sensors and in general these substances are hard to flush out of the chamber. However, 

not all substances that produce strong and fast responses can be classified as sticky or hard to 

flush out substances for example alcohol and coffee produce very strong responses but the 

sensors are able to recover their baselines in a reasonable time.

The TM  sniff-cycle (Temperature Modulation sniff-cycle) settings (see fifth column o f Table

6 -2 ) are tailored to fit the requirements of a zero-voltage pulse temperature modulation 

function (see Section 5.2.2.5). The settings for this sniff-cycle are selected in order to emulate 

as much as possible a standard sniff-cycle with an embedded zero-voltage pulse in the middle 

o f the steady state. The objective is to visually compare the smell-signal produced from the 

same smell-source by a standard sniff-cycle and a TM sniff-cycle (see Figure 6-1).

Figure 6-1 shows the smell sensors responses to same smell-source (Coca Cola) produced by 

a standard sniff-cycle (a) and a TM sniff-cycle (b). Note that both response signals look very 

similar except for the smell-signal transitions induced by the zero-voltage pulse in the middle 

o f the steady states reached by the sensors in (a).
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Figure 6-1 TM sniff-cycle (a) and standard sniff-cycle (b) responses to Coke VOM
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6.1.5 The Collected Smell-Databases

The smell environments for the eNose experiments are simulated in fifteen different smell- 

databases collected in this thesis (see Table 6-3). Some o f these databases represent 

characteristic smell types such as Coffee, Beer, Cola and Nut smell. In other cases the 

databases were assembled according to a specific sniff-cycle such as TM-sniff-cycle and 

smart-sniff-cycles. Some databases were also assembled according to a known property that 

the smells in the group share such as spicy smells, foul smells and hircine smells. In general, 

these smells do not smell similar. For example, clove and cumin belong to the spice category 

but they have very distinct smells. Finally, the smell-sampling method was the criteria used to 

assemble databases such as Colas-from-Can and Colas-no-Headspace in order to test the 

fieldwork feasibility o f the eNose. A detailed explanation o f each o f the collected smell- 

databases follows.

Table 6-3 describes the fifteen smell-databases collected in this thesis. Entries in column 2 

and 3 show the sniff- cycle type and the smell sampling method used to collect each of the 

described databases. The column 4 shows the number o f smell-classes in the database and the 

column 6  shows the total number o f smell-examples collected in each database.

Table 6-4, Table 6-5 and Table 6 - 6  describe the smell-classes contained in each o f the 

collected databases. Table 6-4 contains the descriptions o f the databases used in Experiment 

#1 and Experiment #2. Table 6-5 contains the descriptions o f the databases used in 

Experiment #3. Table 6 - 6  contains the descriptions o f the databases used in Experiment #5 

and Experiment #4. In these tables, each column represents a smell-database and the rows 

correspond to the smell-classes contained in this database. The last column o f Table 6 - 6  

corresponds to the “25_Smells” database. This database contains 25 smell-classes and they 

are described together in only one row in order to save table space.
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Table 6-3 Smell Databases

DATABASE SNIFF CYCLE SMELL
SAMPLING
METHOD

No. OF 
C l a s s e s

No. OF 
SAMPLES

Cheese Standard Headspace 3 300

Spice Standard Headspace 3 300

Manure Standard Tedlar Bag 3 150

Fruit Juice Standard Headspace 5 500

Coffee Standard Headspace 6 600

Beer Standard Headspace 4 400

Cola Standard Headspace 4 400

Nut Standard Headspace 3 300

Colas-from-Can Standard Open Ambient 4 32

Beers-from-Can Standard Open Ambient 2 16

Colas-no-
Headspace

Standard Open Ambient 3 48

Fruits-no-
Headspace

Standard Open Ambient 3 48

Fragrances Smart-Sniff B Headspace 3 156

25_Smells Smart-Sniff A Headspace 25 225

TM Cola TM sniff-cycle Headspace 4 400

The Cheese and Spice smell databases contain 300 smell-examples each. Each database 

consists o f three different smell-classes (see Table 6-4). There are 100 smell-examples 

collected per smell-class. The cheese smell-source was sampled using the solid smell-source 

sampling method (see Section 6.1.3). Two pieces o f approximately 1cm3 each were deposited 

in the concentration flask. The spice smell-source was sampled as follows. The concentration 

flask was filled up to one third of its volume. The standard sniff-cycle settings were used in 

the collection o f these databases.
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Table 6-4 Database classes for Experiments #1 and #2

CHEESE SPICE MANURE FRUIT
JUICE

COFFEE BEER COLA NUT

Blue Clove Dairy Apple Arabica Becks Coke Almond

Italian Oregano Poultry Grape Brazil Moisten IGA Hazelnut

Oka Tabasco Swine Grapefruit Colombia Labatt Pepsi Peanut

Orange Sumatra Molson Safeway

Tomato Cubita

Indiana

Table 6-5 Database classes for Experiment #3

C o l a s

( f r o m

CAN)

BEER (FROM 
CAN)

C o l a s (n o

HEADSPACE)
F r u it  (n o  
h e a d s p a c e )

Coke Labatt Coke Fresh Lemon

IGA Molson Pepsi Apple Juice

Pepsi Safeway Orange Juice

Safeway

The Livestock M anure database contains 150 smell-examples from three smell-classes: 

Swine manure, Poultry manure and Cattle manure. Fifty smell-examples per smell-class are 

collected. The eNose sampled the manure smells directly from Tedlar bags (see Section 

6.1.3). The sampling o f manure smells was possible thanks to the collaboration o f Dr. John 

Feddes professor in the Department o f Agriculture, Food & Nutritional Science o f the 

University o f Alberta.
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Table 6-6 Database classes for Experiments #5 and #6

TM COLAS F r a g r a n c e s 25_SM ELL

Coke English Rose Alcohol, Fresh Onion, Corona Beer, Fresh 
Lemon, Lemon essential oil, Orange Juice,

IGA Lily of the 
Valley

Cubita Coffee, Fish Oil, Sardines in water, 
Jasmine essential oil, Lavender essential oil,

Pepsi

Safeway

Violet Mountain Ashes flower, Rosemary herb, 
Peanut butter, Coke, Pepsi, Sprite, Grounded 
Black Pepper, Cinnamon, Cocoa, Honey, 
Balsamic Vinegar and Red Wine

The F ru it Juices smell database contain 500 smell-examples. This database consists o f five 

different smell-classes (see Table 6-4). There are 100 smell-examples collected per smell- 

class. The juices were selected from brand name manufacturer Sun-Rype Products Ltd. with 

the exception o f the tomato juice that was selected from Heinz Company. The fruit juices 

were sampled using the liquid smell-source sampling method (sec Section 6.1.3). The 

standard sniff-cycle settings were used in the collection o f this database.

The Coffee, Beer, Cola and N ut smell databases contain respectively 600, 400, 400 and 300 

smell-examples from six, four, four and three different smell-classes each. Each database 

represents a different type of smell but its constituent classes smell very similar between them 

(see Table 6-4). There are 100 smell-examples collected per smell-class. The standard sniff- 

cycle settings were used in the collection o f these databases.

The Coffees smells are selected from four blends of Nabob Coffee Co. and two Cuban coffee 

brand names: Cubita and Indiana. The Cola smell-classes are selected from three brand names 

colas: Coca Cola, Pepsi Cola and IGA cola. The three nut smell-sources selected are: Almond 

butter, Hazelnut butter and Peanut butter.

The Beer smells selected are from four brand name beers: Becks, Holsten, Labatt and 

Molson. Low alcohol content beers were selected in order to diminish the interference that 

alcohol produces in the response o f the sensors.
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The C olas-from -Can and  B cers-from -Can databases contain only eight smell-examples per 

smell-class. The reason o f  such small amount o f examples is due to the low volume o f VOM 

released by the colas after being more than 2 hours in the open ambient. The Colas-from-Can 

database contains four smell-classes whereas Bcers-from-Can contains two smell-classes (see 

Table 6-5). The smell-examples were sampled directly from the can and no concentration 

flask was used. The smell inlet tube was held near the opening o f the can (see the open 

ambient sampling method in Section 6.1.3). The objective o f these databases is to help 

evaluate the fieldwork feasibility o f the eNose.

The Colas-no-H cadspace and  Fruits-no-H eadspacc databases contain only eight smell- 

examples per smell-class (see Table 6-5). The smell-examples were sampled in the open 

ambient (see Section 6.1.3). The concentration flask was used but it was let open. The eNose 

sniffed the VOM at 10 centimeters above the smell-source. The objective o f these databases 

is to help evaluate the fieldwork feasibility o f the eNose.

T he T em peratu re M odulated Colas (TM  Colas) database contains the same smell-classes 

than the Colas database (see Table 6-6). The objective o f this database is to evaluate the 

performance o f smell-patterns extracted with the modulation o f  the sensors work-temperature.

6.2 Results and Discussion

The previous sections o f this chapter provided details of the experimental setup used to 

evaluate the performance o f the eNose in several application areas. In these sections, we 

explained in great detail the characteristics o f each smell database, the smell sampling and 

collection methods used and the proposed smell experiments. This section begins with an 

explanation o f the general evaluation procedure used in this thesis and then we start 

discussing the results obtained in the smell-experiments. First, we discuss the results 

achieved by the eNose using the standard signal processing combination DIFF_SS_VNORM. 

Secondly, we examine the results achieved by all possible combinations o f the signal 

processing techniques implemented in the eNose software system. For each database, the best 

and worst performing combination are selected and their performances compared to the 

performance achieved by the standard combination. Finally, the results o f each combination
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are graphically analyzed trying to find trends that could be important for the smell 

discrimination.

6.2.1 Evaluation Procedure

In this thesis, we use the smell detection efficiency rj defined in Section 3.6 to evaluate the 

eNose performance. The smell detection efficiency rj is computed in each o f the collected 

smell-databases and averaged over the databases that belong to each particular experiment. 

These averages are then used to rank the performance o f the eNose in each o f the proposed 

tests.

The detection efficiency rj is calculated based in the classification rates obtained with the 

Nearest Neighbor (NN) and the Nearest-Mean (N-MEAN) classifiers. These classifiers are 

designed and tested using five-fold cross-validation (5-CV) or leave-one-out (LOO) statistical 

re-sampling methods. The 5-CV re-sampling method is applied to the smell-databases with 

more than 50 examples per smell-class otherwise the LOO method is used.

The smell-signal processing combination DIFF_SS_VNORM (see Section 5.2) was selected 

in order to comparatively evaluate the performance achieved by the eNose in each 

experiment. This combination is chosen because it is the most commonly used combination 

of signal processing techniques in machine olfaction. This combination was used to evaluate 

eNose in all except two o f the proposed smell-experiments. The smell discrimination under 

modulation o f the sensors work-temperatures uses the DIFF_TMWSD_VNORM and 

DIFF_TMDFT_VNORM combinations.

6.2.2 Performance of DIFF_SS_VNORM combination

The results o f the eNose performance evaluation using the standard combination 

DIFF_SS_VNORM are summarized in Table 6-7. In this table, we present a comparative list 

o f the detection efficiencies computed using the N-MEAN and the NN classifiers. The 

detection efficiency values shown here are the averages o f the detection efficiencies 

computed over all the databases selected in each smell experiment. As expected the NN
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classifier shows better performance than N-MEAN classifier. The NN classifier can generate 

highly nonlinear classification boundaries in contrast to the N-MEAN classifier that can only 

be used successfully when the smell-pattems are very well separated (see Section 3.5.1 and 

Section 3.5.2). In order to better assess the eNose performance we chose to do the evaluations 

based in the results produced by the N-MEAN classifier.

Table 6-7 Experiment Results

EXP. # OBJECTIVE TESTED

AVERAGED DETECTION 
EFFICIENCY

( DIFF_SS_VNORM )

N-MEAN NN

1 Discrimination of different smells 95.4 % 99.9 %

2 Discrimination of similar smells 91.1 % 99.2 %

3 Smell detection in the open ambient 76.6 % 88.3 %

4 Smart-sniff smell inhaling mode 87.0 % 97.5 %

5 Temperatures modulation 84.0 % 99.1 %

Table 6-7 shows the general detection efficiencies achieved by the eNose in each o f the five 

smell experiments. These values are obtained after averaging the detection efficiencies scored 

over all the databases used in each smell experiment.

The general detection efficiency achieved by the eNose in all the experiments is between 76 -  

95 % (see Table 6-7). This performance can be considered superior even in comparison to 

expensive commercial electronic noses. The best results were obtained in the Experiment #1. 

In this experiment we used odor-sources that smelled very different and they were easily 

discriminated by our eNose. The results obtained in the Experiment #2 are second in the 

ranking but still are very good. The smells used in this case were very similar and it was very 

difficult to discriminate even by a human subject. However, our eNose discriminated theses 

similar smells very well achieving more than 90% of smell detection efficiency. The result
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obtained in the Experiment #3 was the lowest detection efficiency (76%). However, due to 

the variability in the concentration o f the VOM samples sniffed by eNose in this experiment, 

the achieved efficiency is very good. In the Experiment #4, we evaluated the smart-sniff 

inhaling technique proposed in Section 4.6. A detection efficiency o f an 87% was obtained in 

this experiment. This is a very good result considering the large number and diverse types of 

smell-sources tested. These sources ranged from very weak and almost imperceptible smells 

such as an open can o f coke to very strong ones such as lemon and sweet orange essential 

oils. Finally, the results obtained with the temperature modulation techniques in the 

Experiment #5 were lower than expected. A better result was expected because in almost all 

the reviewed literature this kind o f techniques has been used with very good results. We 

believe that this result can be improved further. However, more detailed study regarding 

modulation functions, the features to characterize the smell and the smells tested is necessary 

to achieve a better performance.

Table 6-8 shows the details o f the detection efficiencies obtained for each database in the 

smell experiments. The standard combination DIFF_SS_VNORM is used for the 

computations o f the detection efficiencies in these databases. The N-MEAN and the NN 

classifiers are used to compute two different values of the detection efficiency per database. 

In this evaluation, we used only the values computed by the N-MEAN classifier to evaluate 

the eNose performances (see Section 6.2.2). The Spice, the Cheese and the Fruit Juice 

databases score the highest detection efficiencies. These three databases contain different 

smells. The Colas-from-Can database scored the lowest detection efficiency with a 53.1 %. 

The Colas-no-IIeadspace scored much better with an 80%. However, in the case of the Colas- 

no-Headspace the smell-source has a larger surface area in contact with the ambient than the 

case o f Colas-from-Can which surface area is limited to the small opening in the can (see 

section 6.1.3).
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Table 6-8 Detailed Results of the eNose Performance Evaluation Experiments

EXP. # OBJECTIVES TESTED DATABASES

DETECTION 
EFFICIENCY 

( DIFF_SS_VNORM)

N-MEAN NN

1 Discrimination of different smells Cheese (3 smells) 

Spice (3 smells) 

Manure (3)

Fruit Juice

100% 

100% 

85.3 % 

96.6 %

100% 

100% 

100% 

99.6 %

2 Discrimination of similar smells Coffees (6 classes) 

Colas (4 classes) 

Beers (4 classes) 

Nuts (3 smells)

85.3 % 

87.7 % 

99.5 %

92.3 %

98.8 % 

99.0 % 

100% 

99.3 %

3 Smell detection in the open ambient Colas-from-Can

Beers-from-Can

Colas-no-Headspace

Fruits-no-Headspace

53.1 %

90.0 %

80.0 % 

83.3 %

75.0 %

95.0 % 

93.3 %

90.0 %

4 Smart-sniff smell inhaling mode Fragrances

25_SmeIls

79.3 % 

92.8 %

100% 

95.1 %

5 Temperatures modulation TM Colas:
DIFF_TMDFT_VNORM

DIFF_TMWSD_VNORM

84.5 % 

84.0 %

99.7 %

99.7 %

6.2.3 Performance of other combinations

In this section, we evaluate 140 different combinations o f signal processing techniques over 

each of the collected smell-databases. The best and worse performing combinations in each 

smell-database are selected and their performances compared to those achieved by the 

standard combination presented in the previous section. We also apply the well-known 

feature extraction method PCA (see Section 3.4.1) to each o f the best performing 

combinations aiming to reduce the dimensionality o f the features-vectors produced by these
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combinations. Reducing the dimensionality o f the extracted smell-pattems is very important 

in order to avoid over-fitting the classifier on the training patterns (see Section 3.4).

These 140 combinations are the maximum number o f possible combinations that can be made 

using the entire set o f signal processing techniques implemented in the eNose software 

system. The smell-examples are processed in three preprocessing stages: a) baseline 

manipulation, b) feature-vector extraction and c) feature-vector normalization. In this 

software system, we implemented four baseline manipulations techniques, seven feature- 

vector extraction techniques and three feature-vector normalization techniques (see Section 

5.2). Hence, the number o f total combinations can be calculated as (4x  7 x 3 )  =  84 . However, 

we also take into account the cases when no technique is applied in the two preprocessing 

stages: baseline manipulation and feature-vector normalization. Therefore, the total number 

o f combinations is ((4 +  l )x (7 )x (3  + l)) =  140.

The name o f each combination o f signal processing techniques is composed by three 

acronyms separated by underscores. Each acronym position in this name corresponds to one 

o f the three preprocessing stages (see Table 5-2 in Section 5.2) applied to the smell-examples. 

Therefore, a combination name represents: a) the baseline manipulation technique, b) the 

feature-vector extraction technique and c) the feature-vector normalization technique applied 

to produce the smell-pattems used in each o f the given tests. In the cases where “no technique 

is applied” the acronyms used are: NOBM (for no baseline manipulation) and NONR (for no 

feature-vector normalization). For example: the combination name DIFF_STD_VNORM 

represents the patterns extracted using a) the difference (D1FF) baseline manipulation 

technique, b) the steady transient derivatives (STD) feature-vector extraction technique and c) 

the vector array normalization (VNORM) feature-vector normalization technique.

The features extracted with the PCA method are used to assemble a new feature-vector to 

represent the smells under test. These new smell-pattems are then re-sampled and the smell 

detection efficiency 77 is calculated again using the N-MEAN classifier. The final number of 

features extracted with each PCA analysis is defined by the number o f principal components 

that accounted for at least 98% o f the total variance o f the patterns from the database under 

analysis. For example (see Table 6-9), the feature-vectors extracted with the combination
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DIFF_STD_VNORM from the Cheese database were reduced from a dimension o f 16 

coordinates (features) to only 6 new coordinates (new features or scores obtained with the 

PCA analysis). This means that these 6 new features account for at least the 98 % o f the total 

variance o f the new features-vectors. On the other hand, the feature-vectors extracted with the 

combination DIFF_STD_VNORM from the M anure database were reduced to an even 

smaller dimension o f only 4 coordinates because these four principal components account for 

at least 98% o f the total variance.

Table 6-9 and Table 6-10 show the best and worst performing combinations in each database. 

They were selected from 140 different combinations o f signal processing techniques that 

were applied to each smell database. The combination displayed in the first column is the 

combination that scored higher in the given database. In case o f more than one combination 

with same higher score, we chose the combination which feature-vector extraction technique 

appears with more frequency. The column “ A L L  F E A T U R E S ”  displays the number o f features 

extracted and the detection efficiencies scored on the N-MEAN classifier by the selected 

combinations displayed in the second column. The column “ P C A ”  displays the number of 

features extracted after applying Principal Component Analysis (PCA) to the selected 

combinations and the detection efficiencies scored by these features (the extracted features in 

the new coordinated system) evaluated on the same classifier. Finally, the seventh column 

shows the smell-databases that correspond to the best and worse combinations from the same 

row.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6-9 The best and worst performing combination for Experiments #1 and #2

EXP.
#

COMBINATION NAME 
(SECTION 6.2.3)

(+ )  B e s t  (-) WORSE

ALL FEATURES PCA

DATABASE

No.
FEAT.

DETECTION
EFFICIENCY

No.
FEAT.

DETECTION
EFFICIENCY

1

(+) DIFFSTDVNORM  

(-) DIFF_DFT_VAS

16

80

100% 

88.6 %

6 99.6 % Cheese

(+) DIFF_STD_VNORM 

(-) FRACT_DFT_NONR

16

80

100% 

59.3 %

5 99.6 % Spice

(+) DIFF_STD_VNORM 

(-) DIFF_SS_VNORM

16

8

100% 

84.6 %

4 100% Manure

(+) NOBM_SS_VAS 

(-) FRACT_DFTNONR

8

80

100% 

52.2 %

3 100% Fruit Juice

2

(+) DIFF_STD_DAS 

(-) DIFF_DFT_NONR

16

80

98.1 % 

48.8 %

6 97.6 % Coffees

(+) LOG STD VNORM 

(-) REL_DFT_NONR

16

80

100% 

75.2 %

5 99.7 % Beers

(+) LOG_WSD_VAS 

(-) REL_DFT_NONR

56

80

92.2 % 

38%

7 83.5 % Colas

(+) DIFF_ATD_VAS 

(-) FRACT_DFT_NONR

24

80

96.3 %

68.3 %

6 98% Nuts

Table 6-9 and Table 6-10 corroborate the performance evaluation results obtained with the 

standard combination (see Table 6-7). Table 6-9 and Table 6-10 also show that the general 

detection efficiency o f the eNose can always be improved by selecting the appropriate 

combination of signal processing techniques. Note that for each one of the 15 smell-databases 

analyzed with the standard combination (see Table 6-8) there exists a combination (in Table 

6-9 and Table 6-10) that produces a higher detection efficiency score.
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Table 6-10 The best and worst performing combination for Exp. #3, #4 and #5

EXP.
#

COMBINATION NAME 
(SECTION 6.2.3)

(+ )  B e s t  (-) WORSE

ALL FEATURES PCA

DATABASE

NO.
F e a t .

DETECTION 
EFFICIENC Y

NO.
F e a t .

DETECTION
EFFICIENCY

3

(+) NOBM_SS_VNORM 

(-) REL DFT DAS

8

80

71.8%

21.8%

5 71.8% Colas-from-
Can

(+) DIFF_TC_NONR 

(-) REL STD NONR

32

16

100%

45%

Beers-from-
Can

(+) NOBM_SS_VAS 

(-) RELD FTD A S

8

80

100%

30%

5 96.6 % Colas-no-
Ileadspace

(+) LOG ATD VAS 

(-) NOBM_DFT_NONR

24

80

100% 

46.6 %

7 96.6 % Fruits-no-
Headspace

4

(+) DIFF_STD_VNORM 

(-) FRACT_ATD_NONR

16

24

100% 

56.1 %

5 96.7 % Fragrances

(+) DIFF_WSD_VAS 

(-) REL_DFT_NONR

56

80

97.7 % 

44.4 %

25_Smells

5
(+)
NOBM_TMDFT_VNORM 

(-) LOG_TMWSD_VAS

80

56

85% 

41 %

5 66.2 % TM Colas

6.2.4 Graphical Analysis of different combinations

In this section we analyze graphically the results of each combination in order to find which 

characteristics dominate the relations between a smell-database and the signal processing 

techniques used to extract the smell-patterns.

We use a row o f small bars plot graphics to represent the smell detection efficiency achieved 

by the different combinations of signal processing techniques applied to a given smell- 

database. There are one or more subplots aligned along the same row. The number o f sub

plots corresponds to the number o f feature-vector extraction techniques displayed. Each
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subplot is itself a two-dimensional bars plot. In this subplot, one or more clusters o f bars are 

drawn along the “x” axis. Each cluster corresponds to a different baseline manipulation 

technique and each bar in the cluster corresponds to a different feature-vector normalization 

technique. The height o f each bar represents the detection efficiency achieved by a particular 

combination o f signal processing techniques. The bars are drawn between 0 and 1 

corresponding to 0% and 100% smell detection efficiency respectively.

In order to produce a better visual comparison, we put together in the same Figure all the bars 

plots corresponding to a particular experiment. Therefore, each row in this figure represents 

all the combinations applied to one of the smell-databases selected for this particular 

experiment. Each column o f bars plots in the figure represents one o f the feature-vector 

extraction techniques applied in this experiment. In order to compact these graphics, we do 

not show those combinations involving any dummy application o f processing techniques. For 

example, the combination DIFF_SS_NONR is not showed because NONR means “no 

normalization” was applied, even though the feature-vector extraction technique SS and the 

baseline manipulation technique DIFF were applied. This constrain reduces the number of 

combinations showed from 140 to only 84 (see Section 6.2.3). However, in our experiments 

we tested all the possible combinations including the dummy ones and in some cases the 

absence o f any processing technique leads to better results (see fourth row 

“NOBM_SS_VAS” in Table 6-9).

Figure 6-2 shows graphically the performance achieved by the 24 out o f the 40 different 

combinations o f signal processing techniques tested in Experiment #5. In this experiments we 

tested smel 1-sources that are sampled using the temperature modulation (TM) feature-vector 

extraction techniques proposed in this thesis. A quick glance to this figure reveals a general 

good performance achieving in general more than 80% detection efficiency. The TMDFT 

feature-vector extraction techniques produced the one greatest detection efficiency value (see 

Table 6-9) but the TMWSD technique scored in general better. To arrive to this conclusion 

could have taken more time if  we have not used this graphical evaluation method. The 

normalization techniques: VNORM and VAS together and the baseline manipulation 

techniques: DIFF, FRACT and REL are used in almost all the combinations that produced the
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best smell detection efficiencies for these two feature-vector extraction techniques (TMDFT 

and TMWSD).

Figure 6-3 shows graphically the performance achieved by 84 out o f the 140 different 

combinations o f signal processing techniques tested in Experiment #1. A quick glance to this 

figure reveals that in general a good performance could have been achieved using any o f the 

140 combinations. This result was expected considering the fact that all the smells tested in 

this experiment are very different between each other. The worse performances were 

achieved with the Fruit Juice database. The WSD, STD and ATD (in this order) feature- 

vector extraction techniques produced the best results while the DFT, DTD, SS and TC 

techniques produced in general the worse results. The baseline manipulation techniques 

performed evenly in almost all combinations.

Figure 6-4 shows graphically the performance achieved by 84 out o f the 140 different 

combinations o f signal processing techniques tested in Experiment #2. In this experiments we 

tested different smcll-sources that produce very similar smells that are very difficult to 

discriminate by a human nose. A quick glance to this figure reveals that in general the 

performance was not as good as the performance achieved in the Experiment #1. The Colas 

database as expected presented the most difficult smell discrimination followed by the 

Coffees database. The WSD, SS and STD (in this order) feature-vector extraction techniques 

produced the best results. The normalization techniques VNORM and VAS were almost 

always present in the combinations that produced the best smell detection efficiencies. The 

baseline manipulation techniques performed evenly in almost all combinations.

Figure 6-5 shows graphically the performance achieved by 84 out o f the 140 different 

combinations o f signal processing techniques tested in Experiment #3. In this experiments we 

tested smell -sources that, are sampled in open ambient conditions. The performance achieved 

is worse than in the two previous experiments. This is an expected result due to the fact that 

the concentration o f the VOM inhaled, even from the same smell-source, varies greatly from 

one sniff to the next. It is well known that the sensors response is dependent o f the 

concentration o f VOM inhaled (see Equation 4-1). The WSD, STD and SS (in this order) 

feature-vector extraction techniques produced the best results. The normalization techniques:
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VNORM and VAS were almost always present in the combinations that produced the best 

smell detection efficiencies. The baseline manipulation techniques performed evenly in 

almost all combinations.

Figure 6-6 shows graphically the performance achieved by 84 out o f the 140 different 

combinations o f signal processing techniques tested in Experiment #4. In this experiments we 

tested smell -sources that are sampled using the smart-sniff inhaling mode proposed in this 

thesis. The two databases tested have very different characteristics. The Fragrances database 

is constituted by a few but very strong smells produced by essential oils. The 25_Smells 

database is constituted by a wide gamut o f smells ranging from very weak smells to very 

strong ones. A quick glance to this figure reveals a general good performance achieving 

between 60% and 70% detection efficiency in the worse cases. The STD, ATD and WSD (in 

this order) feature-vector extraction techniques produced the best results. The normalization 

techniques: VNORM and VAS together with the baseline manipulation techniques: DIFF and 

LOG were almost always present in the combinations that produced the best smell detection 

efficiencies.

TMDFT TMWSD

M l d a s

I 1 VNORM

1- DIFF
2- FRACT
3- LOG
4- REL

0.9 0.9

IS0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

TM Colas

Figure 6-2 Bars plot o f  the detection efficiencies achieved in Experiment #5
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Figure 6-5 Bars plot o f the detection efficiencies achieved in Experiment #3

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2260

22^0

2245



Fr
ag

ra
nc

es

a

Q

S</>

co (o  ch oo d d o

E
CO ou_ < O jfeo : ogO u i £

t-  (N  CO 4

Figure 6-6 Bars plot o f the detection efficiencies achieved in Experiment #4

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2260

^088

^



6.2.5 Conclusions

In this chapter we have analyzed the performance of eNose with many different combinations 

o f signal processing techniques. After applying these techniques an a variety o f smell 

databases, we can conclude that the smell environment (i.e., the smell-database) targeted by a 

particular application must be matched with a specific combination of signal processing 

techniques in order to achieve maximum performance.

We found that the feature-vector extraction techniques STD, proposed in this thesis (see 

Section 5.2.2.3.3), provided in general very good performance. On the other hand, the 

feature-vector extraction techniques: DFT and TC produced poor performance.

The STD technique is based on the WSD signal derivatives extraction technique. The STD 

technique achieved superior or similar smell detection efficiency in 10 out of the 14 databases 

where it was used. The smell detection efficiency scored in these four databases was just 

slightly smaller than the values scored with the WSD technique (see Colas-From-Can and 

Fruit-No-Headspace in Figure 6-5 and Colas and Nuts in Figure 6-4). The STD technique is 

also 3.5 times less compute intensive than WSD due to a smaller number of features extracted 

with this feature-vector (16 features) compared to that of WSD (56 features). Finally, the fact 

that fewer features constitute the smell-pattern produced with STD helps to reduce the risk of 

over-fitting the classifier [47], [48] on the small size training sets that are typical in machine 

olfaction applications.

The smart-sniff technique, proposed in this thesis (see Section 4.6), also produced very good 

performances with 87% averaged detection efficiency for two different smell-databases. This 

is a very good result considering the large number and diverse types o f smell-sources tested. 

These smell-sources ranged from almost imperceptible to very strong smells.

We also found that the use of any o f the normalization techniques is a primary factor for a 

good smell detection efficiency score. For example, the combinations using the 

normalization techniques: “VNORM” and “VAS” consistently produced good detection 

efficiency scores. On the other hand, almost all the worse scores achieved in our experiments
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were based in combinations that did not use a normalization technique (look in Table 6-9 and 

Table 6-10 for combinations that end with the acronym “NONR”).

Finally, the Baseline Manipulation Techniques do not seem to have great influence in the 

results scored in our performance evaluation experiments. For example, three out o f the seven 

winner combinations in Table 6-10 do not use any Baseline Manipulation techniques 

(acronym “NOBM ”). Observing bar plots in Figure 6-3 to Figure 6-2, we also cannot find any 

general and clear tendency where Baseline Manipulation technique produces better or worse 

detection efficiency as almost all o f them produce relative same performance. However, a 

small tendency can be noticed in Figure 6-2, where the logarithmic (LOG) technique 

diminishes the performance in the two cases compared. A weak tendency can also be noticed 

in the database “25_Smells” in Figure 6-6, where it seems that the difference (DIFF) 

technique and the logarithmic (LOG) technique produce the best results in the seven cases 

compared.

6.3 Summ ary

In this chapter, we presented the performance evaluation o f our eNose. First, we introduced 

the objectives o f this performance evaluation, the evaluation procedure and a detailed 

explanation o f the proposed smell experiments. Following we presented the proposed 

methods for collecting the smell databases, sampling the VOM from the smell sources and the 

smell sniff settings used. We then presented the results o f the perfonnance evaluation 

experiments and examined the influence o f different combinations o f signal processing 

techniques in the smell detection efficiency.
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Chapter 7

Conclusions and Future Work

Electronic noses have been around for more than twenty years and the research in this field 

has been growing steadily during all this time. In recent years an exponential jump has taken 

place and electronic noses reached the commercial markets targeting several sectors of the 

world global economy such as food, perfumery health and environmental applications. 

However, these devices are designed for specific applications and they are still too expensive 

for acquisition by the general consumer. As a result these enoses are not yet suitable for 

integration with multimedia systems.

In this thesis, we have presented the design and implementation of an electronic nose using 

inexpensive off-the-shelf components: as is shown in Chapter 4 a low electronic nose suitable 

for integration into multimedia systems that can detect tens of commonly occurring smells 

have been developed. We have also developed a software system to allow the analysis, testing 

and performance evaluation of several smell signal processing techniques and pattern 

recognition algorithms (see Section 5.3). This software system is expandable allowing the 

addition of more smell-signal processing techniques and smell-pattem analysis methods into 

the currently developed framework.

A simple solution for the poisoning problem that typically affects the electronic noses when 

strong smells are sniffed has been proposed and tested (see Section 4.6).

We have found that each different smell environment must be matched to a specific
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combination o f signal processing techniques in order to achieve maximum smell 

discrimination performance: as shown in Section 6.2.3.

We also found that using the derivative values from the signal steady state transient region 

(STD) produce in general better smell discrimination efficiency than using derivative values 

from the whole signal (see Section 6.2.5).

7.1 Summ ary of Contributions

There are four main contributions of this thesis into the area o f  machine olfaction:

• A low cost electronic nose suitable for integration with multimedia systems has been 

implemented and tested.

• A complete software system to allow the analysis, testing and performance evaluation of 

several smell signal processing techniques and pattern recognition algorithms has been 

implemented and tested. This software infrastructure can be also used as a development 

platform for further research in the area of smell detection (see Section 5.3).

• A novel smell sniffing technique for machine olfaction applications has been proposed, 

implemented and tested (see Section 4.6).

• An improvement to the whole smell-signal derivatives (WSD) feature-extraction 

technique has been proposed and successfully tested. The proposed technique (STD) 

produces equal or better performances than WSD extracting only two derivative values 

from each smell-signal in contrasts to the seven values extracted by the WSD technique 

(see Section 5.2.2.3.3).

7.2 Future W ork

To reduce the recovery time between two consecutive smell sniffs is an important goal to 

address in future research. Reducing this recovery time will allow the use o f the eNose in
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online applications such as quality control in production lines, etc. The speed o f the sniff- 

cycle can be improved by reducing the size and number o f the smell sensors and the volume 

o f the smell-sensing chamber. Therefore, more research is needed to identify which sensors 

are redundant in most smell environments and try to keep the smaller sensors in the array.

More research is needed regarding the TM feature-vector extraction techniques implemented 

in the eNose. In this thesis, we tested a simple temperature modulation function combined 

with two conventional feature-vector extraction techniques (see Section 5.2.2.5). However, 

more complex voltage modulation functions can be used such as sinusoidal, square or triangle 

at several frequencies and amplitudes [44].

It is well known in the machine olfaction field that the water vapor in the ambient has huge 

impact in the sensors response and degrades considerably the smell detection efficiency of 

electronic noses. We did not address these issues because our experiments were realized in 

stable lab conditions. This is definitively a line for future research with the eNose.

The response o f the smell sensors is in general dependent on the concentration o f VOM. In 

most o f the smell experiments, we used same volume o f the smell source aiming to keep 

similar concentration levels among the smells tested. It would be an interesting future work to 

test the eNose performance using variable concentration of VOM.

Another factor o f consideration for future work is the background-smells in the ambient. The 

background-smell is a source o f interference and noise that can degrade considerably the 

performance o f the electronic nose devices. A solution typically implemented in expensive 

devices is to flush out the sensors chamber with an inert gas such as nitrogen before each 

sniff. In the eNose, the exhaust pipes were placed far from the smell inlet and the smell 

source was kept isolated in the concentration flask to avoid the background smells from 

mixing with the air used for flushing out the chamber.

Finally, an important future line o f work is the design and construction o f a portable 

electronic nose for smell data collection in the field, which could be used in applications such 

as environmental monitoring and other agricultural applications.
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