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ABSTRACT
We present a series of computational simulations of the auditory lexical decision
task using the jTRACE and TISK models of spoken word recognition. Simulation 1
replicates high accuracy in word recognition and similar performance of these mo-
dels using the small, default dictionary. Simulation 2 expands the set of words and
phonemes, leading to issues in representing certain phonemes in jTRACE. Simula-
tion 3 expands the lexicon of competitors and we find that TISK struggles to select
the target word as the winner. Finally, Simulation 4 shows that the decision crite-
ria employed leads to many false positives when pseudowords are presented to the
model. None of the model estimates of the time cycle when the winner should be
selected predicted participant response latency in the auditory lexical decision task.
We discuss these findings and offer suggestions as to what a contemporary model of
spoken word recognition should be able to do.
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1. Introduction

When someone calls your name or shouts a warning, you, as the listener, recognize the
message in less than a second, duration of the acoustic signal included. This remarkable
process of spoken word recognition has been an important topic of investigation within
the field of psycholinguistics and numerous explanations of how it unfolds have been
offered. Most current models of spoken word recognition adopt the metaphor of word
activation — the notion that a signal stretch “activates” items in the lexicon based on
their matching characteristics — from the so-called first-generation models, such as
the logogen model (Morton, 1969) or the frequency ordered bin search model (Forster
& Bednall, 1976; Taft & Forster, 1975). As the signal incrementally unfolds in time,
the items compete in their activation, until finally a winner is selected.

In the past three decades, models of spoken word recognition have become increa-
singly detailed and complex. This increase in complexity has likely been enabled by
the concurrent development of accessible computational power. In other words, mo-
dels of spoken word recognition are now predominantly computational, rather than
purely verbal models. However, computational models that allow simulation ordina-
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rily received their most thorough testing in the very process of their creation, even
though model testing is crucial to improve them and to generate hypotheses for beha-
vioral experiments or corpus investigations. Furthermore, performing computational
simulations may lead to simulation outcomes that were not intuitively expected based
on the verbal theory and the computational setup (see Magnuson, Mirman, & Harris,
2012). Nonetheless, reports on large scale computational simulations are rare because
(1) they were computationally demanding (as they still are today), (2) models usu-
ally lacked an approachable interface (many still do today), and (3) the data from
behavioral experiments was limited in size and variety.

In this paper, we simulate human performance in the auditory lexical decision task
using a computational model of spoken word recognition. We use the TRACE II model
of spoken word recognition (in the remainder of the text referred to as TRACE; McClel-
land & Elman, 1986), or more precisely, its Java reimplementation called jTRACE
(Strauss, Harris, & Magnuson, 2007) and the more recently developed TISK model
(Hannagan, Magnuson, & Grainger, 2013; You & Magnuson, 2018) which is quite si-
milar to the TRACE model. Both instantiations have a relatively accessible interface
allowing for independent, third-party use. We compare model performance to the data
collected in a large scale behavioral study called the Massive Auditory Lexical Decision
(MALD) project (Tucker et al., 2019). To the best of our knowledge, these are the first
simulations, and certainly of this scale, to test the performance of jTRACE and TISK
in estimating how long the selection of the correct word should take depending on the
activation-competition process. To that end, we link two hypotheses: (1) participant
response latency in an auditory lexical decision task is taken as an indication of the
time it takes for the process of selecting the winning candidate to completed, and (2)
activation-competition models of SWR assume that a winning candidate should be se-
lected from a group of competitors once its activation level is in some way significantly
higher than the activation levels of other competitors. In other words, in the present
paper we test whether jTRACE and TISK activation-competition patterns and iso-
lation of a winning candidate are predictive of the assumed activation-competition
process occurring in the listener when they perform an auditory lexical decision task.

1.1. The TRACE model

The TRACE model of spoken word recognition was developed by McClelland and
Elman (1986). TRACE accepts mock-speech input as a string of phonemes. Each
phoneme in the language is described in terms of its values on seven acoustic pseudo-
features (such as voiced, vocalic, or burst), forming the feature level of the model. As
the signal unfolds in discrete time slices, pseudofeature values are registered at each
time slice, forming a spatial trace of activation. Based on the pseudofeature values
registered at the feature level, phoneme units at the phoneme level are activated and
compete, forming a trace of their own. By default, every phoneme takes up 12 time
slices. At the same time (or more precisely, space), activation at the word level is
contingent on the activation of phoneme units. Finally, traces of word activations are
formed across the time slices. During the activation-competition process, even com-
petitors that did not match the beginning of the target word are considered (e.g.,
both cabin and handle are competitors to candle), which is in contrast with another
notable model, COHORT (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh,
1978). Every unit on the phoneme and the word level is duplicated many times in
order to account for the incremental characteristic of the mock-speech input. Besides
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excitatory connections between the lower and the upper levels (and similar top-down
connections which are by default excluded), TRACE also includes lateral inhibition
on all levels.

The TRACE model has been used to simulate a variety of experimental findings
since it was first introduced, including the original publication (McClelland & Elman,
1986). Notable independent simulations include, for example, reports on lexical seg-
mentation simulations (Frauenfelder & Peeters, 1990) and the impact competitors have
on the recognition point, i.e., the time slice in which the word is recognized (Frauen-
felder & Peeters, 1998). However, these initial simulations were performed on a small
number of example items as proofs of concept. Since then, the model was used to simu-
late other language phenomena, and is probably best known for successfully simulating
eye-movement data from experiments utilizing the visual world paradigm task (e.g.,
Allopenna, Magnuson, & Tanenhaus, 1998; Dahan, Magnuson, & Tanenhaus, 2001;
Dahan, Magnuson, Tanenhaus, & Hogan, 2001).

The model was not without criticism. For example, certain authors argued against
conceptual solutions used by TRACE, such as the existence of feedback, i.e., top-
down effects between the word and the phoneme level (Marslen-Wilson & Warren,
1994; Norris, McQueen, & Cutler, 2000), or at least reported findings that the model
does not fully account for (see, e.g., Chan & Vitevitch, 2009; Frauenfelder & Content,
2000; Gaskell, Quinlan, Tamminen, & Cleland, 2008; McMurray, Tanenhaus, & Aslin,
2009; Smith, Monaghan, & Huettig, 2017). The biggest issue with TRACE, however,
is simply how computationally unfeasible it is due to its complex architecture, an
issue stressed by the creators of Shortlist (Norris, 1994). Duplicating units to capture
their order in “time” creates a very complex network which has difficulties supporting
more than a highly limited set of phonemes and words. Even so, “the original TRACE
model, with 14 phonemes and 212 words would require 15,000 units and 45 million
connections” (Hannagan et al., 2013, pp. 4), and the model is unable to successfully
handle lexicons containing more than 1,000 words.

Regardless of its limitations, TRACE is a powerful tool, and it is still one of the most
developed models of spoken word recognition. In the past three decades, the model
has remained influential. It is without exception described in overviews of models
of spoken word recognition (see, e.g., Jusczyk & Luce, 2002; Magnuson et al., 2012;
McQueen, 2007; Protopapas, 1999; Scharenborg & Boves, 2010; Vitevitch, Siew, &
Castro, 2018; Weber & Scharenborg, 2012) and is widely used to contextualize or
explain experimental findings. Still, the vast majority of hundreds of publications
referencing TRACE only briefly mention the model: as of 2011 less than 40 papers
report an actual simulation (Chawla & Chillcock, 2019). Most simulations in fact
appeared once the model became more accessible as it received its computational
implementation in Java (Strauss et al., 2007). This instantiation is named jTRACE
and it maintained near-identical performance to the original. Easier use also allowed
researchers to even expand some of its options, such as by including a larger set of
phonemes (Mayor & Plunkett, 2014) or Mandarin tone (Shuai & Malins, 2017).

1.2. The TISK model

The Time-Invariant String Kernel (TISK) model was introduced by Hannagan et al.
(2013). The model was designed to correspond to TRACE and be able to match its
performance, but with one important change — whereas TRACE solves the issue of
the signal being incremental in time by creating time-specific duplicates of phoneme
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and word nodes (effectively translating time into space), TISK uses time-invariant
nodes which are essentially combinations of two phones (diphones). This change allows
TISK to sidestep the already noted inefficiency of TRACE caused by a huge number of
connections needed for realistic phoneme inventories and lexicon sizes (see McClelland
& Elman, 1986; Norris, 1994; Strauss et al., 2007).

With TISK, input units are directly translated into temporally-ordered phonemes
which are then mapped to atemporal single phones and all possible diphone combina-
tions given the input string. For example, the word “bit” creates the phoneme level
b - i - t which activates atemporal phones /b/, /i/, and /t/, but also diphone combi-
nations /bi/, /bt/, /it/, /ti/, /tb/, /ib/. This means that certain words, for example
“dog” and “god”, activate exactly the same diphones. In order to avoid such overlap,
the model gives higher weights to diphone combinations that match input order, so
diphone /do/ would receive higher activation in the word “dog” than in “god”, and
/sn/ would receive higher activation in the word “snap” versus the word “naps” (for
more detail see Hannagan et al., 2013). Phones and diphones then activate atemporal
unique lexical units (words). Lateral inhibition is present at the phone/diphone and
at the word level.

Initial testing of TISK was performed using the same 14 phonemes and the 212-
word lexicon (called slex ) from TRACE and jTRACE. Besides successfully simulating
visual world paradigm data, the authors also simulated and compared free single word
recognition in the two models. Three criteria for winner selection were used: (1) abso-
lute activation threshold, where the winner is the first word to reach certain activation
level (You & Magnuson, 2018, report that the value used in the simulation was .75),
(2) relative activation threshold, where the winner is the first word to have an activa-
tion higher by .05 than the runner-up, and (3) a time-dependent criterion, in which
the winner is the first word that had the highest activation for 10 consecutive cycles.
The authors found that both jTRACE and TISK had accuracy rates higher than 95%
in free word recognition, except for TISK with the absolute activation threshold crite-
rion, which was accurate in 88% of words. Additionally, the correlations between the
time cycle in which the winner was selected were moderate to high for the two models,
being .68, .83, and .88 for each criterion respectively. In short, TISK performs quite
similarly to jTRACE in some key simulations. Unfortunately, simulation estimates
were not compared to actual participant responses.

You and Magnuson (2018) implemented TISK in Python 3, offering detailed gui-
delines to its use. To the best of our knowledge and up until the time this paper has
been finalized, TISK has only been implemented once, even if many more mentions
of the new model have been made. Magnuson and You (2018) showed that top-down
effects can also be implemented in TISK and expanded the parameter set to include
word-to-phoneme weights. The simulations were performed using the same lexicons
adopted from TRACE and jTRACE, and the authors found patterns for which they
claimed match the findings of previous empirical studies. Furthermore, the authors
introduced changes to the parameter set values which did not significantly affect the
relationship between jTRACE and TISK simulations.

1.3. The present study

One of the staple experimental tasks used to investigate spoken word recognition is
the auditory lexical decision task. This task is a straightforward way to assess whether
a certain stimulus or participant characteristic plays a role in the process of spoken
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word recognition by observing whether it is predictive of response accuracy and la-
tency. Findings from experiments using the auditory lexical decision task have been
used for decades to drive the discussion about the spoken word recognition process
(for an overview including earlier studies see Goldinger, 1996), and the task, although
sometimes augmented by including, e.g., noise, context, or additional online measu-
res, continues to be used (e.g., Balling & Baayen, 2008; Goldstein & Vitevitch, 2017;
Sauval, Perre, & Casalis, 2018; Ventura, Morais, Pattamadilok, & Kolinsky, 2004).

Recently, researchers started to more directly address an issue present in the process
of item selection in psycholinguistic studies. Since stimuli for the lexical decision (and
many other) tasks are selected from the population of words (or other items) in a
language, no control over their characteristics can be imposed — effectively making
many psycholinguistic studies quasi-experiments. Ordinarily, this forced researchers to
carefully select items so that they are equal in a large number of relevant characteristics
and different only in the characteristic under investigation. This procedure made the
item sets small and potentially special in comparison to the breadth and variability
found in the language from which these items were hand-picked. Further limitations
were created by the attention span of an average participant (limited session time)
and the sheer number of available participants. Auditory lexical decision studies were
not exempt.

Although there is no way to exert strict control over natural language, another op-
tion is to collect data from a large number of participants responding to a large number
of stimuli, with few restrictions in participant and stimulus sampling. This so-called
megastudy approach allows for more comfort when generalizing the findings, statis-
tical control of relevant variables, and impartial testing of findings obtained through
targeted experiments (Balota, Yap, Hutchison, & Cortese, 2012; Keuleers & Balota,
2015; Kuperman, 2015). Megastudies collecting data from lexical decision tasks now
exist for both visual (e.g., Balota et al., 2007; Ferrand et al., 2010; Keuleers, Lacey,
Rastle, & Brysbaert, 2012) and auditory modalities (e.g., Ernestus & Cutler, 2015;
Ferrand et al., 2018; Tucker et al., 2019). Megastudies have another useful purpose:
they are well-suited to be used as benchmarks for computational models, since they
represent an impartial dataset of participant behavior that is also large enough to
include much more variety than a targeted experiment.

We have seen that TRACE has extensively been used to simulate certain findings
from psycholinguistic experiments, such as the time-course of word activation in the
visual world paradigm experiments (e.g., Allopenna et al., 1998; Dahan, Magnuson, &
Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, & Hogan, 2001). However, TRACE
simulations that directly compare model estimates to participant response accuracy
and response latency to particular words in the auditory lexical decision task are rare.
McClelland and Elman (1986) show the time course of word recognition on the example
of a single word “product”, with a small, unrealistic number of competitors (“produce”
being the closest competitor and “products” not being included). Other than this, we
found only two targeted simulations in which TRACE output was compared to actual
behavioral data from a lexical decision task. Chan and Vitevitch (2009) only mention
jTRACE simulations in the discussion section to convey that using the model on a
small number of items does not distinguish between two particular groups of word
stimuli while participants in a behavioral experiment do. Marslen-Wilson and Warren
(1994) used a lexical decision task alongside two other tasks to investigate whether
subcategorical mismatches affect spoken word recognition in spliced stimuli. The aut-
hors also presented TRACE simulations complementing their behavioral experiments.
Due to limitations imposed by the phonemes described in TRACE, the lexical decision
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simulations were performed on 5 sets of words and 5 sets of pseudowords only (a total
of 30 different items). Their results showed that the unfolding of TRACE activations
(i.e., response probabilities) did not match the patterns in responses to three different
types of spliced words used in the lexical decision study. The purpose of the simulation
was to investigate patterns of activations of specific kinds of word/pseudoword splices,
averaging across conditions. A decision criterion for the word/pseudoword decision was
never defined. Another interesting finding was that in the case of spliced pseudowords
where the first part of the pseudoword was taken from an actual word, TRACE con-
tinued to highly activate that word, which would potentially lead to a high number of
false positive responses.

The literature seems to favor the visual-world paradigm over other experimental
paradigms, such as the auditory lexical decision task. One reason for favoring the
visual world paradigm over the auditory lexical decision task might be that in the
visual world paradigm the participants choose their response from one of a few options,
allowing the simulation lexicon to be limited only to the presented options. Similarly,
in the simulation reported by Marslen-Wilson and Warren (1994), the focus was on
observing differences between three stimulus (splice) types of the same word; by design,
only the activation of a single word candidate was considered for each item. This
in turn does not require large lexicons or complete phoneme sets in computational
simulations, neither of which could be supported by (j)TRACE. Contrary to that, a
stimulus presented in an auditory lexical decision experiment can be any word (or even
a pseudoword!) of the language, and the competition processes includes all plausible
candidates at any given point in time as the acoustic signal unfolds. Ultimately, the
lack of simulations that allow for realistic unrestricted competition, and furthermore
the lack of direct comparison with actual participant data, means that it has not
been reported in the literature how well TRACE and its instantiations can match
the competition process occurring when actual human listeners perform the task. For
comparison, simulations using lexicons of more than 20,000 words have been reported
for other notable models of SWR, such as Shortlist A and B (Norris & McQueen, 2008;
Norris, McQueen, & Cutler, 1995) or DIANA (ten Bosch, Boves, & Ernestus, 2015).
We believe that simulations using large (realistic) lexicons are extremely important in
the investigation of spoken word recognition.

In this report, we present a series of simulations of participant performance in an
auditory lexical decision task using jTRACE and TISK. To the best of our knowledge,
these are the first such simulations using large lexicons in these two prominent models.
Estimates generated by jTRACE and TISK should simulate the activation-competition
process and therefore be predictive of participant response latency. The main goal of
the study is to learn about the process of spoken word recognition and to inform
TRACE/TISK and other models of spoken word recognition by observing how these
models perform when used to simulate a large scale auditory lexical decision study.

In the first simulation, we attempt to replicate the basic finding from Hannagan
et al. (2013) that jTRACE and TISK are successful and provide similar estimates
in free word recognition when the default dictionary of 212 words (slex ) is used. We
augment this replication by comparing model estimates to actual behavioral data. In
the second simulation, we use a different set of 442 words for which we have a larger
number of participant responses, making the central tendency estimates for human
responses more reliable. An increase in the number of words and their variety also
expanded the phoneme set beyond the 14 default phonemes described in TRACE’s
slex. We investigate how jTRACE and TISK perform with a larger phoneme inventory,
while still being confined to a relatively small word set. In the third simulation, we

6



put word competition under stricter scrutiny. The default dictionaries do not include
a large number of close competitors for every target. Therefore, we preselect close
competitors and create separate lexicons for every target to observe close competition.
Finally, in the fourth simulation we test model performance when an input string (a
pseudoword) is not present in its lexicon. A general discussion brings together the
findings from these simulations and offers suggestions as to what a contemporary
model of spoken word recognition should be able to do.

All of the data from behavioral experiments, materials (lexicons) used for simulati-
ons, simulation scripts for jTRACE and TISK, and R scripts used for data preparation
and analysis are available as supplementary material at https://doi.org/10.7939/r3-
52m3-a502.

2. Behavioral experiments

The data used in our simulations comes from the Massive Auditory Lexical Decision
(MALD) project. MALD is described in Tucker et al. (2019), including detailed infor-
mation about the participants, stimuli and their recording procedure, and the experi-
mental procedure. Here, we only provide the most important information. Besides the
main dataset described below, we also use the data from a branch of the project which
was created to replicate and extend the findings from the Goh, Yap, Lau, Ng, and Tan
(2016) study. The full datasets are also available at this link: mald.artsrn.ualberta.ca.

2.1. MALD1 experiment

The MALD project includes responses by many participants to many auditory re-
cordings of actual English words and phonotactically licit pseudowords. We use data
from the MALD1 database, which includes responses from native monolingual English
listeners only.

2.1.1. Sample

The MALD1 participants were 231 monolingual English listeners recruited from the
University of Alberta (180 females, 51 males; age M = 20.11, SD = 2.39). The parti-
cipants received partial course credit for participation in the experiment.

2.1.2. Stimuli

Stimuli were recordings made by one 28-year-old male speaker of Western Canadian
English. A total 26,800 words and 9,600 pseudowords were split into 67 word and 24
pseudoword sets each containing 400 unique items. Each word set was then paired with
two different pseudoword sets to create a total of 134 experimental lists containing 800
items (400 words + 400 pseudowords each).

2.1.3. Procedure

The experiment was conducted in sound-attenuated booths equipped with a computer
monitor, headphones, and a button box. The participants were presented with stimuli
using the E-Prime experimental software (Schneider, Eschman, & Zuccolotto, 2012).
Each stimulus was preceded by a 500 ms fixation cross. The task for the participants
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was to decide whether the stimulus they heard was a word of English or not by
pressing one of two designated buttons on the button box. The participants made
the “word” response with their dominant hand and the “non-word” response with
their non-dominant hand. Responses could be made during stimulus presentation,
which would interrupt it and the experiment would proceed to the next fixation cross
and stimulus. The participants had three seconds to respond and if no response was
registered in this time the experiment would proceed to the next fixation cross and
stimulus. Stimulus order was randomized per participant.

Each participant completed a single experimental list during the session. However,
the participants could return for up to three sessions, each time responding to a new
experimental list which did not contain word and pseudoword sets they have already
encountered. A total of 284 sessions (experimental lists) were completed.

Currently, the MALD1 dataset includes responses from well over 200 participants.
However, since each participant responds to a smaller subset of a large number of
words, the number of responses to a particular word rarely exceeds five. When only
correct responses are taken into consideration, estimates of a general tendency (mean)
of participant response latencies become less reliable.

2.2. MALD semrich experiment

In contrast to the MALD1 dataset, MALD semrich dataset, collected to replicate the
Goh et al. (2016) study, offers responses from 27 participants to all the stimuli in the
experiment. This allows for greater reliability of mean response latency estimation, but
still uses a large-enough set of 442 English nouns and 442 MALD pseudowords, ena-
bling calculations of correlation between behavioral tendencies in responses and model
estimates. Logged frequency distribution from the Corpus of Contemporary Ameri-
can English (COCA; Davies, 2009) in the two word sets (slex and MALD semrich)
had a similar, near-normal distribution, although the mean logged frequency in the
MALD semrich set was slightly lower than in slex words.

2.2.1. Sample

Twenty-seven monolingual native speakers of Canadian English (15 females, 12 males;
age M = 20.67, SD = 2.79) participated in the experiment. The participants were stu-
dents at the University of Alberta and received partial course credit for participating
in the experiment.

2.2.2. Stimuli

Stimuli were word and pseudoword recordings created as part of the MALD project
(Tucker et al., 2019) described above. Out of 468 nouns used in Goh et al. (2016)
study, 442 were available within MALD stimuli. We randomly selected 442 MALD
pseudoword recordings to complement the word stimuli.

2.2.3. Procedure

The same procedure was followed as for the MALD1 experiment. The only differences
were that the list included 884 items in total, instead of 800, and that the participants
completed only this list in a single session.

8



3. Central tendencies in participant response latencies

A computational model of spoken word recognition simulating an auditory lexical
decision experiment is attempting to predict per-item general tendencies in participant
responses, i.e., resemble an average performance on a certain item. There are many
ways in which an “average performance” could be calculated, but also a number of
factors that affect participant responses which are not necessarily considered in the
computational model. We decided to represent general tendencies in behavioral data
in three ways, each of which takes into account an additional source of variation
in participant response latency — potentially assisting the model in making better
predictions.

First, we use the most simple measure of mean logged response latency per item.
Only correct responses are included in the calculation and the response latencies are
logged to approximate a normal distribution. This measure removes some of the indivi-
dual variation between participants and also some random variation between particular
responses, giving a more general estimate of how much time it takes to recognize a
certain item. In the remainder of the text, we will refer to this measure as mRT .

Second, we take into account the so-called “local effects” by de-trending participant
responses (ten Bosch, Ernestus, & Boves, 2018). Local effects encompass variation that
happens due to the participant’s state, rather than their longer-lasting characteristics.
Some of these effects include fatigue, attention fluctuation, but also the aftereffects of
being exposed to the previous experimental stimuli. These effects have traditionally
been taken into account by including the response latency to the previous stimulus as
a predictor of the current response latency. More recently, researchers rely on novel
statistical techniques, such as calculating and accounting for autocorrelation when
using generalized additive mixed modelling (see, e.g., Baayen, Vasishth, Kliegl, &
Bates, 2017).

A model of spoken word recognition is not susceptible to local effects in the manner
a participant would be, as a model does not get tired, learn, strategize, or have its
mind wander. For example, Mirman, McClelland, Holt, and Magnuson (2008) had to
specifically label a two-level attention manipulation in order to simulate an ambiguous
phoneme identification experiment that was investigating attention effects. When there
is no clear manipulation of attention, TRACE and other computational models of
spoken word recognition are unable to account for it, and that variation becomes
strictly noise.

In this study, we follow the procedure from ten Bosch et al. (2018), who proposed
a method of accounting for local effects by de-trending the data ordered by trial.
Taking the logged response latencies, the calculation estimates the optimal number
of previous responses (trials) that should be considered when estimating the “true”
latency of the current trial response (Equation 1). The “predicted” reaction time
(predRT ) represents a weighted average of a number of previous stimuli. A parameter
α determines the number of previous stimuli that have an impact on the predicted
reaction time. If α = 1 then only the first preceding response latency is used, and
smaller fractions of 1 indicate a larger number of previous stimuli being taken into
account. Finally, the de-trended response latency (dRT ) for a particular response r is
calculated as the difference between the predicted (predRTr) and the recorded (RTr)
response latency.
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predRT1 = RT1

∀r > 1 : predRTr = α ·RTr−1 + (1− α) · predRTr−1

dRTr = RTr − predRTr
(1)

The optimal value of parameter α is selected by estimating average pairwise correla-
tions of participant response latencies to the same stimuli. Since de-trending removes
some of the variation due to, for example, attention loss or fatigue, correlations between
participant responses should increase after the procedure has been applied. In other
words, the de-trending procedure eliminates some of the variation stemming from the
fact that participants tend to respond with similar speed to consecutive trials. The
highest average correlations between participant response latencies were r = .19 in
MALD1 and r = .23 in MALD semrich for α = .1, indicating that responses to ten
previous stimuli should be taken into account. We used this value to calculate mean
de-trended response latencies to particular stimuli, and we refer to this measure as
dRT .

Third, a number of item characteristics have been shown to predict participant
response latencies in auditory lexical decision tasks. Effects of some of those predictors
can be expected to emerge independently in an incremental activation-competition
model given the lexicon of competitors. Such predictors are, for example, phonological
neighborhood density, uniqueness point, or the number of phonemes or syllables (word
length/duration). Others, however, probably would not — the number of morphemes
a word has, its frequency (if not included in the model), and a host of other semantic
variables are not included in the simulation, but shape participant responses. Not
considering their values makes it more difficult for the computational model of spoken
word recognition to match participant performance.

Therefore, we also created statistical linear models to predict dRT . We include
jTRACE/TISK estimates as predictors and observe whether their addition increases
the linear model fit. In the case of MALD1, the only variable that was considered
alongside jTRACE/TISK estimates was logged frequency from COCA (Davies, 2009).
The number of morphemes was not included as nearly all slex words are monomorphe-
mic. The effects of phonological neighborhood density, phonological uniqueness point,
and word “length” variables (number of syllables, number of phonemes, and the du-
ration of the stimulus in milliseconds) are expected to emerge from the competition
process. However, since jTRACE and TISK are supposed to simulate the activation-
competition process, not just word length, we also tested whether their estimates
contribute more to predicting dRT than a simple length variable does. We chose the
variable number of phonemes for this purpose, as all phonemes in jTRACE are of
equal “duration” in terms of time-slices, and since the phoneme is the basic unit used
in TISK.

In the case of MALD semrich, the model also included the number of morphemes
and three semantic richness variables that are significant predictors of response latency
to these items (see Goh et al., 2016): concreteness (Brysbaert, Warriner, & Kuperman,
2014), valence (Warriner, Kuperman, & Brysbaert, 2013), and the number of semantic
features (McRae, Cree, Seidenberg, & McNorgan, 2005). These variables were not
considered in MALD1 as they are only available for a limited number of MALD words,
but for all MALD semrich words.

To summarize, we estimated how well jTRACE/TISK estimates match participant
responses in three ways: (1) by comparing them to mRT , which is the mean logged
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response latency for each item, (2) by comparing them to dRT , which is the mean
de-trended logged response latency for each item, and (3) by observing whether a
jTRACE/TISK estimate is predictive of dRT alongside other important predictors
in a statistical linear model. To check whether using data from both MALD1 and
MALD semrich is warranted, we correlated mRT and dRT estimates for the 442 words
appearing in both sets. In the case of mRT , the correlation was r = .47, while in
the case of dRT it was expectedly higher and equaled r = .55. In both cases, the
correlation was only moderate, meaning that the central tendency estimates were
somewhat different in the two data sets.

4. Simulation 1

In the first simulation we wanted to replicate the findings from Hannagan et al. (2013)
regarding the successfulness and performance similarity of jTRACE and TISK in spo-
ken word recognition. Crucially, we expand the simulation by also comparing estimates
obtained from the two models to participant response latencies from the MALD1 da-
taset.

4.1. Simulation setup

4.1.1. jTRACE setup

Hannagan et al. (2013) and You and Magnuson (2018) did not report the parameter
values used in their simulations comparing jTRACE and TISK. In Simulation 1, we
used four different sets of parameters for jTRACE. These four sets of parameters were
selected by observing the default values of jTRACE parameters, the values reported
in the original TRACE paper (McClelland & Elman, 1986), and also the parameter
values from a simulation provided in the jTRACE gallery called “word recognition”.
The parameters recorded in these sources varied in two regards. First, the alignment
was set to either “specified” with the time slice equal to 4 or to “MAX-ADHOC”.
Details about the two alignments can be found in an appendix to the jTRACE user
manual. Second, the value of the resting word activation (rest.w) was set to either -.01
or -.1. Table 1 shows the values of these two parameters in the four jTRACE parameter
sets we created. All other parameters were set to their default jTRACE values and
are available in our supplementary material. Our decision was further supported by
the simulations conducted by Magnuson, Mirman, Luthra, Strauss, and Harris (2018),
where the authors claim that the parameters used are robust, and also by a comment
made by Strauss et al. (2007, pp. 4) stating that “in most simulations, most or all
parameters are left at their default values”.

Table 1. The variation in the four jTRACE parameter sets used. All other parameter values were set to

jTRACE default values.

Parameter set alignment rest.w
jTRACE-A specified -.01
jTRACE-B specified -.1
jTRACE-C MAX-ADHOC -.01
jTRACE-D MAX-ADHOC -.1

The default phoneme set of 14 phonemes and the default lexicon of 212 words (slex )

11



were used in the current simulation. The 212 words were both the target words and the
lexicon of competitors considered for each word. After consulting the results figures
from the original simulations, the number of cycles for simulating each word was set
to 100. We extracted activation values for the top 20 competitors at every time cycle,
and then calculated what the winning word should be. Since TRACE has no built-in
moment of recognition (Strauss et al., 2007), we used the same criteria as Hannagan et
al. (2013): (1) absolute criterion that selects the first word to reach activation level .75,
(2) relative criterion that selects the first leading candidate to have an activation level
higher than the runner-up by .05, and (3) time-dependent criterion that selects the
first word to have the highest activation for 10 consecutive cycles as the winner. For
all three criteria we noted the time slice in which the winning candidate was selected.

4.1.2. TISK setup

The TISK simulation also used the default dictionary of 212 words called slex and
the 14 phonemes that occur in it. The same criteria for selecting the winner as in
the jTRACE simulation were used. The simulation parameters were taken from three
sources. The first set of parameter values (TISK-A) came from the example code
provided by You and Magnuson (2018). The second and third sets were retrieved from
Magnuson and You (2018), and we used both the set without feedback (TISK-B) and
with feedback included (TISK-C). The exact values of these parameters are given in
a table in the supplementary material.

4.1.3. RT comparison

Model estimates of the time cycle when the winner should be selected were compared
to mRT , dRT , and used as predictors in the previously described statistical linear
models. Out of 212 slex pronunciations, 189 were recorded in MALD so although
the simulations included the entirety of slex, our response latency comparison was
restricted to these 189 words. We also noted that there is a number of phonemic
homophones in the MALD stimuli that are present in slex. Words such as “ark” and
“arc” or “troop” and “troupe” have the same pronunciation as recorded in the CMU
dictionary which we used for pronunciation referencing (Weide, 2005). Since we cannot
know which homophone was intended to be a part of slex, and since we do not want
to assume that the MALD audio recordings for these homophones are identical, we
simply picked the word with higher frequency in COCA (Davies, 2009) when comparing
MALD data to simulation estimates.

To reiterate, we used jTRACE with four parameter sets (A, B, C, and D) and
TISK with three parameter sets (A, B, and C). In all cases, we used three decision
criteria (the absolute, relative, and time-dependent criterion). The estimates generated
in these simulations were compared to general tendencies in MALD1 data represented
by mRT , dRT , and also in a statistical linear model.

4.2. Results

We first performed a visual inspection of model performance by creating activation-
competition plots for both jTRACE and TISK simulations. Figure ?? shows example
plots generated based on jTRACE and TISK activations in time. As can be seen, the
simulations adequately matched the predictions shared by TRACE and most contem-
porary models of spoken word recognition — a number of competitors rise in activation
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(y-axis) as more of the signal is presented (x-axis). After a while, most competitors
will decrease in activation and a small group will continue to rise. In the example we
provide, the black line represents the target word “shield”, and it is apparent that it
stands out in comparison to other competitors in later time cycles. We did not name
each competitor in Figure ??, but in all simulations the competitors that received hig-
her activations seemed sensible. In the case of jTRACE, they were words like “she”,
“sheet”, “sheep”, and “dull” (there are no words other than “shield” ending with /ld/
in slex, so there were no rhyme competitors available). In TISK simulations, high acti-
vation is also reached by, e.g., “lid” and “blood”, since a match in unordered diphone
combinations is important in gaining activation in this model.

FIGURE 1 approximately here, label: fig:1; caption: An example of the com-
petition process in the jTRACE and TISK models based on activation values for the
word “shield” given in black and 19 closest competitors given in gray. Activation is
given on the y-axis, and the time cycle is given on the x-axis. Parameter sets used are
given as titles for each plot. The silence phoneme as a word competitor in jTRACE is
presented with a dotted black line.

Another detail noticeable in Figure ?? is that even though the target word has the
highest activation, it does not reach the threshold of .75 except when TISK-A was
used. Indeed, free word recognition accuracy across models and model parameters was
low when the absolute criterion accuracy was used. For jTRACE, the accuracy was
only 10% for parameter sets B and D, and 12% for parameter sets A and C, regardless
of the alignment used. For TISK-A accuracy was 86%, but for TISK-B and TISK-C
none of the words in the lexicon were correctly recognized. Most often it was the case
that the activation level of .75 was never reached by any of the competitors (see the
bottom right plot in Figure ??), as higher activation levels under those settings can
only be obtained with longer words. Therefore, we lowered the absolute criterion to
.4, enabling nearly all of the words to reach this activation level and increasing word
recognition accuracy (see below).

Additionally, jTRACE has an entry in the lexicon for silence, and this competitor
would often qualify as the winner when the relative and the time-dependent criteria
are used — before any other word could become the leading candidate. This was often
the case when the MAX-ADHOC alignment was used, as can be seen in the top right
plot in Figure ??, for jTRACE-D. Besides the target word given in black, the silence
is represented by a dotted black line. It is visible that silence is the leading candidate
between cycles 10 and 40, and by more than .05 activation value, qualifying it as the
winner using both the relative and the time-dependent criterion. Therefore, we further
adjusted our criteria to simply ignore the silence as a potential winner (although we
kept it as a competitor and calculated its activation level).

Table 2 shows accuracies for different combinations of models, parameter sets, and
decision criteria when simulations are run with the changes noted above. We see that
the absolute criterion achieved high accuracies with the change in the jTRACE model.
With TISK, accuracies improved, but were still not very high, so perhaps a further
reduction in the threshold may be required. The other two criteria performed very
well, except when the specified alignment was used in jTRACE (parameter sets A and
B).

Correlations between response latency estimates in simulations were likewise varied,
ranging from no correlation to r = 1. High correlations were noted between estimates
generated by the same model (jTRACE or TISK) and, in the case of jTRACE, using
the same alignment (especially between parameter sets C and D). Correlations between
jTRACE and TISK estimates were the highest when jTRACE-A and B were used with
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Table 2. Free word recognition accuracies of slex words present in MALD1 for the different parameter sets

and winner selection criteria used in the two models.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

jTRACE

A 95 82 64
B 92 94 76
C 97 98 99
D 92 99 99

TISK
A 79 97 99
B 42 97 99
C 61 97 98

the relative and the time-dependent criteria. In that case, certain high correlations were
between approximately r = .7 and r = .85, depending on the TISK parameter set.
The calculated correlations are too numerous for all of them to be presented here, but
are available in the supplementary material.

The correlation between any of the model estimates and participant responses is
much lower. When mRT is used, the correlation ranges between r = −.07 and r = .09.
With dRT, we see some small improvement as all of the correlations increase slightly
and three of the model estimates have a correlation above the .1 value (Figure ??).
jTRACE-C with the time-dependent criterion and TISK-A with the relative criterion
used have a correlation of r = .1 with dRT. TISK-B with the absolute criterion used
has the highest correlation with dRT (r = .17), but it should be noted that this setup
has a low accuracy rate in free word recognition.

FIGURE 2 approximately here, label: fig:2; caption: The highest correlations
between participant performance and computational model estimates of the time cycle
when the winner should be selected recorded in Simulation 1. The time cycle when
the model selected the winning word is given on the x-axis, and dRT is given on the
y-axis.

Finally, we fitted separate linear models with dRT as the dependent variable and
each of the model estimates as the predictor. We included logged frequency as a
predictor, as our simulations did not take it into account. None of the model estimates
were significant predictors of dRT. We also noted that in these models the effect of
word logged frequency was often non-significant as well. The models are available in
our supplementary material.

4.3. Discussion

The initial simulation provided us with important information about implementing
jTRACE and TISK to model responses to words in an auditory lexical decision task.
The basic expectations of model performance were met as the activation-competition
plots exhibited all of the expected properties of the activation-competition process,
with most competitors decreasing in activation, and a singular winner emerging from
a smaller group of more persistent competitors later on. Furthermore, we achieved
acceptable and even very high accuracy in free word recognition for some of the para-
meter settings that we used, although we must have had certain parameters different
to the simulation reported in Hannagan et al. (2013) and You and Magnuson (2018),
given that we had to, for example, reduce the absolute criterion threshold. We also
noted a high correlation between jTRACE and TISK estimates in at least some of the
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setups we used. Together, these results seemed encouraging as we successfully matched
previous model simulations.

However, the computational model estimates for the most part failed to match
participant performance in the auditory lexical decision task. There were no notable
correlations between any of the computational model estimates and mean logged par-
ticipant response latency per word, de-trended or not. Linear models with frequency
included as a predictor showed that the computational model estimates are not sig-
nificant predictors of participant response latency. Apparently, the model failed to
capture and match the same difficulties participants have when responding to words
in the experiment.

At the same time, we saw that word frequency also failed to predict de-trended
response latencies, even though its effects are well-documented. Given these results,
we wanted to compare model estimates to a larger set of more reliable estimates of
central tendencies in participant responses. A set of only 189 words, some of which are
excluded when the model selects the wrong winner, may be a poor benchmark for the
computational model. Furthermore, these 189 words were not all responded to by the
same participants, introducing between-participant variability in the central tendency
estimate.

5. Simulation 2

Simulation 1 showed that the even though the high performance and similarities be-
tween jTRACE and TISK were somewhat replicated, the computational model es-
timates did not correlate with general tendencies in participant responses from the
MALD1 dataset. However, MALD1 includes only a small number of responses per
item, and it could be that the calculated general tendencies were less reliable due to
between-participant variability. In Simulation 2 we provide a similarly small dataset
of words to which we have more than a few participant responses per item. We used
MALD semrich which provides us with up to 27 responses for each of the 442 nouns
in the stimulus set.

Importantly, MALD semrich also includes words containing phonemes other than
the original 14 phonemes in the TRACE model. Such a list of words forced us to
expand the phoneme set for both models, and allowed us to inspect the performance
of jTRACE/TISK under these new conditions. Although jTRACE and TISK seem
to perform similarly in Simulation 1, we decided to continue using both models in
Simulation 2 as they do not represent their input in the same manner. jTRACE uses
pseudofeatures and TISK uses phonemes, so the inclusion of additional phonemes may
influence the performance of these two computational models differently.

5.1. Simulation setup

5.1.1. jTRACE setup

The target words and the lexicon of competitors were replaced in comparison to Simu-
lation 1. Instead of using slex, we use the 442 MALD semrich words as target words
and as lexicons of competitors. The computational model parameter sets and decision
criteria were the same as those used in Simulation 1. Given our initial observations of
the absolute criterion threshold being too high and the silence sometimes emerging as
the winner, we again reduced the absolute criterion value to .4 and excluded silence
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as the potential winner in jTRACE.
An important issue that arose in Simulation 2 was how to represent the set of

phonemes that are not described in the default phoneme set available in jTRACE.
Both the original TRACE model and jTRACE have only 14 phonemes and the silent
phoneme described in terms of their seven pseudofeature values. Mayor and Plunkett
(2014) expanded this set to include additional phonemes of English and we adopted
their phoneme pseudofeature values for our simulations. The only exceptions were
diphthongs, affricates, and the r-colored vowel which cannot be represented directly in
the TRACE model. The reason for this is that pseudofeatures used in TRACE must
have constant values assigned throughout the phoneme duration. In turn, diphthongs,
affricates, and the r-colored vowel require for certain characteristics (such as burst
or diffuseness for affricates) to change as the phoneme unfolds in time. We decided
to represent these phonemes the same way Mayor and Plunkett (2014) did — as
combinations of two phonemes with their duration reduced to six time slices, i.e., half
of the standard phoneme duration (see Table 1). We hoped that this setup would at
least to a degree maintain the relationship between particular speech sounds and their
acoustic (pseudo)features. With the new phonemes included, we could now represent
all 39 phonemes occurring in the CMU dictionary (Weide, 2005) and therefore in
MALD as well. The symbols used to represent all new phonemes and pseudofeature
values assigned to them can be found in our supplementary material.

Table 3. Affricates, diphthongs, and the r-colored vowel as operationalized in jTRACE. The duration of
component phonemes was halved.

ARPAbet IPA Components
CH Ù t+S
JH Ã d+Z
AW aU a+U
AY aI a+I
EY eI e+I
OW oU O+U
OY OI O+I
ER Ç e+r

5.1.2. TISK setup

The same parameter sets and decision criteria were used as in Simulation 1. In the case
of TISK, any singular symbol present in the lexicon is considered a separate phoneme.
We therefore simply used 1-letter ARPAbet notation for the TISK simulations. Since
MALD semrich includes words longer than the longest word in slex, the number of
time cycles used in TISK simulations was not limited to 100. Instead, this parameter
was left blank, which by default automatically sets it to fit the longest competing
word.

5.1.3. RT comparison

Model estimates of the time cycle when the winner should be selected were again
compared to mRT , dRT , and used as predictors in the previously described statistical
linear models. However, in contrast to Simulation 1, in Simulation 2 we used behavioral
data from the MALD semrich dataset, rather than from MALD1 dataset. All other
aspects of this analysis were identical to those from Simulation 1.
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5.2. Results

Table 4 shows the accuracies in free word recognition for all model parameters and
decision criteria used. jTRACE accuracies are all lower than in Simulation 1, while
TISK accuracies are all higher than in Simulation 1.

Table 4. Free word recognition accuracies of MALD semrich words for the different parameter sets and winner

selection criteria used in the two models.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

jTRACE

A 77 72 51
B 77 82 68
C 79 70 52
D 83 83 65

TISK
A 82 100 99
B 74 100 100
C 90 99 100

We first examined the potential causes for jTRACE to perform worse. The expla-
nation that the lexicon now includes a larger number of words and phonemes did not
seem sufficient, as TISK performed better using the same lexicon. The actual cause of
lower accuracy in jTRACE simulations were probably diphthongs, affricates, and the
r-colored vowel. The average accuracy across all parameter sets and decision criteria
was 86% for the words that do not contain these phonemes, and only 55% for the
words that do contain them. This discrepancy is sufficient to lower overall accuracies
significantly because as many as 46% of MALD semrich words contain at least one
of these phonemes. Affricates, diphthongs, and the r-colored vowel are even more fre-
quent in the CMU dictionary, as at least one of these speech sounds is found in as
many as 53% of approximately 116 thousand unique pronunciations.

In TISK, all phonemes are represented merely as symbols, so it is not surprising
that accuracy remained high even for words containing phonemes jTRACE struggled
with. What is interesting, however, is that we see a further increase in accuracy in
comparison to model performance when slex was used, even though the sheer number
of words and the number of phonemes in the lexicon increased. Although strange at
first, this result makes sense when we count the number of close competitors each of
the words had in slex versus in the MALD semrich dataset. Using a TISK command,
we extracted the number of cohort competitors and rhymes, i.e., items that share the
first two or the last two speech sounds with the target, and the number of words in the
lexicon that are embedded in their entirety in the target word. On average, slex words
have seven such close competitors, as the authors designed slex to include at least
some level of competition. When the MALD semrich words (which were not designed
to investigate competition) are used, the average number of close competitors is less
than three, making for easier competition.

This is exemplified in the activation-competition process for the word “cherry”
(Figure ??). We see that when jTRACE-A is used all words have very low activations
(best competitors were “tent”, “telephone”, “toy”, “pear”, “hair”, and only towards
the last of the 20 were “chair” and “cherry”). When jTRACE-C was used, we see a
winner emerge other than the word “cherry”, and it was an unlikely winner “stereo”.
The lower two plots show that TISK had no issue assigning high activation to some
competitors, and they were the winning target word “cherry”, “chair”, and “cheese”.

FIGURE 3 approximately here, label: fig:3; caption: An example of the com-
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petition process in the jTRACE and TISK models when MALD semrich words are
used. The figure presents activation values for the word “cherry” given in black and
19 closest competitors given in gray. Activation is given on the y-axis, and the time
cycle is given on the x-axis. Parameter sets used are given as titles for each plot.

Estimates generated by jTRACE mostly correlated well with each other, and the
correlation between TISK estimates were even higher than in Simulation 1 (all higher
than r = .8 and often close to r = 1, except for the absolute criterion in TISK-C,
which acted differently in comparison to other setups). However, correlations between
estimates coming from the two models further show the discrepancies in jTRACE and
TISK simulations. The highest correlations were again obtained when the relative and
the time-dependent criterion were used with any jTRACE parameter set. The values of
notable correlations ranged between approximately r = .4 and r = .65, depending on
the particular setup. Other correlations were lower, and sometimes even non-existent.

The correlations between mRT and dRT on one side and computational model
estimates on the other did not differ much. They also increased in comparison to Si-
mulation 1, ranging from r = −.08 and r = .2. Ten correlation coefficients were higher
than r = .1, whereas in Simulation 1 only three setups had such a high value. The
highest correlations were recorded using the relative criterion in TISK-A and TISK-
B (for detailed information regarding correlations, please consult the supplementary
material).

We then fitted a statistical linear model with dRT as the dependent variable and
frequency, concreteness, valence, and number of semantic features as predictors. All
of these variables acted as significant predictors of dRT, with the semantic predictors
contributing approximately 6% to the variance explained. Then we created separate
linear models in which we added one of the jTRACE/TISK computational model
estimates. In the case of jTRACE, none of the computational model estimates were
significant predictors of dRT. In the case of TISK, all of them were, again except
when the absolute criterion was used in TISK-C. The linear model summary for the
time-dependent criterion using TISK-C is given in Table 5 as an example.

Table 5. Summary of a linear model predicting dRT with a number of standard predictors and TISK-C
estimates of the cycle when the winner is selected using a time-dependent criterion.

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.500 0.118 4.233 2.88e-05
Frequency -1.66e-06 4.15e-07 -4.012 7.22e-05
Concreteness -0.109 0.025 -4.411 1.33e-05
Valence -0.013 0.005 -2.426 0.016
N semantic features -0.005 0.001 -3.285 0.001
time-dependent TISK-C 0.001 2.96E-04 3.044 0.002
Multiple R-squared: 0.17, Adjusted R-Squared: 0.16
F-statistic: 16.31 on 5 and 390 df, p-value: 1.287e-14

However, once we introduced the number of phonemes into the linear models already
containing the predictors mentioned previously and TISK model estimate, the number
of phonemes was a significant predictor of dRT and the effects of TISK model estimates
ceased to be significant. TISK estimates of the time cycle when the winner should be
selected correlated highly with the number of phonemes in the word (excluding the
absolute criterion in TISK-C), ranging from r = .77 to r = .83.
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5.3. Discussion

The second simulation presented a much richer environment for jTRACE and TISK
simulations. We used a novel set of words in the lexicon, expanded the phoneme set,
provided more reliable estimates of central tendencies in participant responses, and
introduced the number of morphemes and semantic richness measures as additional
predictors of participant response latency alongside frequency and computational mo-
del estimates.

jTRACE did not fare well under these new conditions. Free word recognition accu-
racies were lower than in the first simulation and estimates obtained from correctly
recognized words did not predict participant response latencies. jTRACE also devia-
ted from TISK model estimates, with the correlations between the two models being
noticeably lower. A large portion of errors occurred for words that include affricates,
diphthongs, and the r-colored vowel. We see no fitting way of representing these pho-
nemes in jTRACE under its current framework. At the same time, approximately half
of English words contain them. Simply put, it does not seem possible for jTRACE to
correctly represent word competition when the lexicon is not limited to a small set
of preselected word candidates containing only certain phonemes, while the auditory
lexical decision task (and many other tasks and everyday scenarios) does not incur
such preselecting.

Unlike jTRACE, TISK performed better in free word recognition than in the first
simulation, even with a larger lexicon and more phonemes. This is likely due to fewer
close competitors present in the MALD semrich lexicon than in slex. We also registered
very high correlations between TISK estimates, indicating that changes in parameter
values do not affect winner selection under the selection criteria used.

However, we do notice that once again the absolute criterion was a poorer approach
to selecting the winning candidate — a certain activation level may never be reached
for very short words, and for longer words there is a risk that a plausible candidate
may reach the threshold before the target word has made itself distinct. This finding
supports a general notion that the overall activation level is not sufficient for selecting
a candidate as the winner. Rather, the selection should favor a relative approach, either
in terms of relative difference between the winner and the runner-up, or in terms of
a candidate leading in activation for long enough. Another potential approach not
utilized in our simulations would rely on entropy of top candidates’ activation levels,
where the winner is selected if the entropy is low.

TISK estimates also correlated with mRT and dRT better than in Simulation 1.
This result may be attributed to a more reliable estimate of participant response
latencies than when MALD1 data was used, but also may be due to the reduced
number of close competitors considered or due to a larger, new set of words being
used. Crucially, TISK estimates seemed predictive of participant response latencies,
but only until the number of phonemes a word has was introduced into the linear
models. It is entirely expected for the TISK model estimates to be related to length
characteristics of words such as duration or the number of syllables, and especially the
number of phonemes, as the phoneme is the basic unit used in TISK. Still, TISK is an
activation-competition model, and it should also be expected that it offers more than
what a simple number of phonemes in a word tells us when estimating the process of
activation and competition.

We saw that accuracy in TISK increased, while the generated model estimates did
not reflect competition, but rather the number of phonemes in a word. Both of these
findings may be reflecting of low ecological validity of the competitor set used, as
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the number of close competitors per word in the MALD semrich set is very small.
Using a larger set of close competitors for every word may allow us to assess free word
recognition accuracy in TISK in the more realistic circumstances of difficult, close
competition. A more ecologically valid competition could also allow TISK to better
represent the activation-competition process in the human listener, which in turn could
yield computational estimates that are more in line with participant response latencies.

6. Simulation 3

In Simulation 3 we attempted to represent a more ecologically plausible competition
scenario. Previous simulations had limited lexicons and the target words only com-
peted against other words in those lexicons. The results of Simulation 2 showed that
a larger number of close competitors may influence free word recognition accuracy.
More importantly, computational model estimates did not predict general tendencies
in participant response latency well — the contribution of the computational model
estimates, where significant, could be completely replaced with the sheer number of
phonemes in the word. Such poor performance in predicting human response latencies
may also have been caused by lax competition. Therefore, the main goals of Simula-
tion 3 were to provide a challenging word set for the computational model to better
test its accuracy, and to allow the model to calculate estimates from a dataset that
better represents actual competition, in turn potentially making it a better predictor
of participant response latencies.

6.1. Simulation setup

Our initial intention was to use both jTRACE and TISK with a variety of establis-
hed parameter value sets to simulate the activation-competition process in all 26,800
MALD1 words. However, given the outcomes of Simulation 1 and 2, in Simulation 3
we only used TISK, not jTRACE, and focused solely on MALD semrich words. The
main reason for using only TISK is that jTRACE was unable to correctly recognize
many words in Simulation 2 due to poor representation of diphthongs, affricates, and
the r-colored vowel. There was no reason to assume jTRACE would perform better
with closer competition than it did using only MALD semrich words as competitors.
Additionally, we have seen in Simulation 1 that jTRACE and TISK produce compara-
ble estimates, and this was demonstrated by the authors of TISK as well (Magnuson,
Mirman, et al., 2018), so we assumed that results obtained in TISK should translate
well to jTRACE should it be able to represent these phonemes.

6.1.1. TISK setup

TISK has been tested on lexicons of up to 20 thousand words and the processing time
per word remained very short, being less than a second (You & Magnuson, 2018).
However, the CMU dictionary contains a bit over 116 thousand unique pronunciations
and our computer was unable to successfully initialize a TISK model when all of them
were included. Instead, we used the same TISK command mentioned in Simulation
2 to extract close competitors from the CMU dictionary according to the TRACE
model (cohorts, rhymes, and embeddings, that is, items that share the first two or the
last two speech sounds with the target, and the number of words in the lexicon that
are embedded in their entirety in the target word) for each of the 442 MALD semrich
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words. In other words, each MALD semrich word had its own unique lexicon — the
only words in the lexicon for each input word were the close competitors of that word.
We then created separate TISK models for each of the target words and its close
competitors using the same three TISK parameter sets (A, B, and C).

As in the previous simulations, we extracted the winning candidate and the time
cycle in which the winner was detected using three decision criteria (absolute, relative,
and time-dependent). However, since we saw in Simulation 1 that the absolute criterion
set at 0.75 was too high for most words to reach, we were concerned that the model
may perform poorly not due to close competition, but due to the wrong decision
threshold being used. To circumvent that potential issue, we calculated the time-cycle
when the winner should be selected using ten different decision thresholds for each of
the three decision criteria. In the case of the absolute criterion, the thresholds used
ranged from .3 to .75, increasing by .05; relative criterion thresholds ranged from .01
to .19, increasing by .02; time-dependent criterion thresholds ranged from 6 to 24,
increasing by 2 as well.

6.1.2. Exploration of competitor structure effects

If close competition impedes word recognition in TISK, an additional question of
interest arises concerning the number and the structure of close competitors needed for
the model to make a mistake. To test this, we also conducted separate toy simulations
on three arbitrarily selected words (“sofa”, “belt”, and “clarinet”). We observed how
the activation-competition process and winner selection change as the number of close
competitors increases and as the considered competitors are closer competitors to
the target word. Regarding competitor “closeness”, neither jTRACE nor TISK, to
the best of our knowledge, have a definition of which competitor is “closer” to the
target (all cohorts, rhymes, and embeddings are treated equally, as close competitors).
Therefore, we estimated how close of a competitor a certain word is to the target word
based on how highly the competitor was activated at word offset when all of the close
competitors were included. We then created three subsets of the close competitor lists
for “sofa”, “belt”, and “clarinet” based on these simulations. The first subset included
the 200 least activated close competitors (i.e., contained a high number of competitors,
but no closest competitors). The second subset included the 20 most activated close
competitors (i.e., contained a low number of competitors but all of them were top
competitors to the target word). The third subset included the 20 least activated
competitors (i.e., contained a low number of the least activated close competitors to
the target word). In other words, in this part of Simulation 3 we coarsely vary and
explore the effects of the number and the closeness of a word’s close competitors on
word recognition accuracy.

6.1.3. RT comparison

The same approach as in Simulation 2 was used.

6.2. Results

After creating custom competitor lists for each word, free word recognition accuracy
dropped severely (Figure ??). Changing the decision criteria thresholds, for the most
part, did not improve model accuracy. Absolute decision criterion remained the least
successful of the three decision criteria, never reaching 30% accuracy in any of the pa-
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rameter sets and thresholds used. Higher threshold values further decreased accuracy.
Relative decision criterion threshold increase likewise only decreased model accuracy,
and highest accuracies were recorded when a difference between the leading candi-
date and the runner-up was merely .01. Finally, changing the decision threshold for
the time-dependent criterion yielded no differences in free word recognition accuracy,
indicating that if the correct word becomes the leading candidate, it will remain the
winner indefinitely.

FIGURE 4 approximately here, label: fig:4; caption: TISK model accuracies
in free word recognition per decision criterion (separate figures) and parameter set
(separate lines) used. The percent of correctly recognized words is given on the y-axis,
while the decision threshold is given on the x-axis.

We then investigated why the word recognition accuracy using TISK dropped so
significantly in comparison to the perfect or near-perfect accuracy rates recorded in
certain Simulation 2 setups. The number of close competitors per target word increa-
sed dramatically in comparison to previous simulations, as can be seen in Figure ??a,
ranging from 17 (for the word “owl”) to 2,243 (“deer”). The average number of close
competitors was 605, which is close to a hundred times more than in slex. In total,
as many as 83,122 (71%) out of the 116,726 unique pronunciations in the CMU dicti-
onary acted as a close competitor to at least one of the 442 MALD semrich words.
Furthermore, the number of competitors was significantly lower in those words that
were correctly recognized by the model, regardless of the decision criterion or the para-
meter set used. As an example, Figure ??b shows a box-plot when the time-dependent
criterion with the decision threshold of 10 was used in TISK-B.

FIGURE 5 approximately here, label: fig:5; caption: Figure (a) is the histogram
of the number of close competitors (cohorts, rhymes, and embeddings) extracted from
the CMU dictionary for the 442 MALD semrich words, with many words having hund-
reds of close competitors. Bottom figures show that the model more often correctly
selected the target word as the winner when there were fewer close competitors (b)
and when the number of phonemes in the target word was smaller (c). The accuracies
were taken from the simulation using TISK-B parameter set and the time-dependent
criterion with the threshold equaling 10.

However, Figure ??b also shows that certain words with more than 500 close com-
petitors are still recognized correctly by the model, while others with few competitors,
like the word “owl” with only 17, were not. Figure ??c indicates that the model st-
ruggled to correctly recognize shorter words, which have a higher probability of (full)
phoneme overlap with other English words. Therefore, we wanted to explicitly test
whether it is the number of close competitors, or their composition, that causes in-
accuracies in selecting the winning candidate in TISK. We present the activation plots
for the word “belt” as an example (Figure ??). When only a small number of very
close competitors are included in the model, even though the target word “belt” wins
according to the relative and the time-dependent criterion, overall activations remain
very low for all competitors (Figure ??b). A similar pattern was observed for “clarinet”
(although with a bit higher and less equal activation values) and “sofa”. On the other
hand, a model created using only the worst close competitors shows a pattern of acti-
vation that better resembles the expected ideal, while still allowing the target words
to be selected as winners (Figure ??c). Increasing the number of close competitors to
200 leads to another flatlining of activations — even if the close competitors are not
the best possible competitors to the target word, their number can weigh down the
activation for all considered words (Figure ??d). (It should be noted that it is entirely
possible to have a large competitor pool that is very dissimilar to the target word, as
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in Simulations 1 and 2, in which case the activations are shaped as expected). Again,
“clarinet” and “sofa” show similar activation patterns.

FIGURE 6 approximately here, label: fig:6; caption: An example of the compe-
tition process for the target word “belt” in the TISK-B model when different close
competitors are included. Activation is given on the y-axis, and the time cycle is given
on the x-axis. The target word is given in black and other competitors are given in
gray. The upper left figure labeled “All competitors” presents activation values for all
750 close competitors to the target word “belt”, with no particular peaking competi-
tor. Upper right figure labeled “Top 20 competitors” shows activations from a model
which only included the top 19 competitors to the target word and the target word,
again with very low activation values. The bottom left figure labeled “Bottom 20 com-
petitors” shows the activation values from a model which only included the bottom
(worst) 19 competitors to the target word and the target word, showing expected acti-
vation patterns and a clear win from the target word. The bottom right figure labeled
“Bottom 200 competitors” similarly included bottom (worst) 199 competitors to the
target word “belt” and the target word, and in this case there are again no distinct
peaking words, similarly to the figure in the upper left corner when all competitors
were used.

Next we tested whether the change in the competitor list also affected the time
cycle when the winner is selected by comparing model estimates to those obtained in
Simulation 2. In all setups, the time cycle when the winner is selected increased between
simulations, with the increase being minimally 17 time cycles for TISK-A when the
relative decision criterion is used, and maximally 30 time cycles with TISK-B when
the time-dependent criterion is used. Importantly, not only did the time cycle simply
increase, it also changed differently for different words. The correlations between the
time cycles when the winner is selected for the same setups in Simulations 2 and 3
ranged from r = .28 (absolute criterion in TISK-A) and r = .61 (relative criterion in
TISK-B).

Finally, we observed how model estimates from Simulation 3 correlate with partici-
pant response latency. We only considered those setups that had an accuracy rate of
at least 20%. The results showed that the two setups that correlated the highest with
participant responses were TISK-B with the relative decision criterion threshold set at
.03 and TISK-B with the time-dependent criterion threshold set at 24. The accuracy
rates for these two setups were 27% and 30%, respectively, and they correlated with
dRT somewhat higher than what we observed in Simulation 2 — r = .27 and r = .26
(Figure ??). Unfortunately, as in Simulation 2, both of these model estimates only
act as significant predictors of dRT in a statistical linear model until the number of
phonemes in the word is introduced as a predictor.

FIGURE 7 approximately here, label: fig:7; caption: The highest correlations
between participant performance and computational model estimates of the time cycle
when the winner should be selected recorded in Simulation 3. The time cycle when
the model selected the winning word is given on the x-axis, and dRT is given on the
y-axis.

6.3. Discussion

The goal of Simulation 3 was to provide the TISK model with a plausible competition
scenario, both to test its accuracy, and to allow it to better match participant per-
formance. We created separate lexicons of close competitors for every MALD semrich
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word and found that English words have many close competitors, far more than the
instantiations of TRACE usually account for. With such an increase in the number
of close competitors in the lexicon, word recognition accuracy drops significantly, ma-
king the model practically unable to successfully recognize the input, regardless of the
decision criterion and threshold.

The decline in accuracy is not caused solely by the number of competitors, as we
have seen that the model is successful with, for example, the 442-word MALD semrich
lexicon in Simulation 2, and also with certain words that have many competitors in
Simulation 3. Additionally, the result that shorter words are more difficult to be cor-
rectly recognized implies that the potential for greater overlap with other words in
the lexicon may impede the selection of the target word as the winner. Our targeted
simulations showed that even if the correct word is selected as the winner using the
relative and the time-dependent criterion, the activation-competition ceases to resem-
ble its standard depictions when a small number of close competitors are selected.
On the other hand, 200 competitors, even if they are the least close of the close com-
petitors, altered the activation-competition process in our example words. It seems
that both the number and the composition of the close competitors (and especially a
combination of the two) may provide insurmountable challenges to the model under
the current setup.

Changing the list of competitors for every word affected not just model accuracy, but
the time cycle in which the winner is selected. Closer competition forced the model
to select the winning word later than in Simulation 2 regardless of the setup. This
is not surprising, as the decision criteria require one word (the target word) to make
itself distinct from other competitors, and that is more difficult if multiple words share
many of the phonemes with the target word. Furthermore, the increase was different for
different words, and the correlations between Simulation 2 and Simulation 3 estimates
were rarely strong.

This change in model estimates did not translate into much better correlation with
participant response latency. Although the correlation between model estimates and
dRT somewhat increased, it remained of a low degree. Most importantly, as in Simu-
lation 2, model estimates were unable to predict participant response latency better
than the number of phonemes in the word. In other words, we see a clear impact of
realistic, close competition on free word recognition accuracy in TISK and on the mo-
del estimates of when the winner should be selected. However, these model estimates,
when the correct word is selected, remain mostly related to the number of phonemes
in the word, and do not seem to be able to predict how long the word recognition
process should be in the human listener.

7. Simulation 4

In Simulation 4 we investigate how TISK performs when presented with a word that is
not present in the lexicon, that is, when the model is presented with a pseudoword. The
decision criteria employed by a model of SWR may be successful in picking a certain
target word as the winner, but at the same time may lead to many pseudowords being
wrongly recognized as existing words. Previous simulations have shown that TISK
performs very well in free word recognition, regardless of the phonemes used, when
the competitor set does not include too many close competitors to the target word (i.e.,
in Simulation 2). We once again give the model its best chance at high performance,
and observe whether the decision criteria can discard pseudowords as not present in
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the lexicon under those same, lax competition conditions used in Simulation 2.

7.1. Simulation setup

Simulation 4 is effectively a repetition of simulations performed using TISK described
in Simulation 2, but instead of MALD semrich words, we presented the model with
MALD semrich pseudowords. The lexicon of competitors was still the same set of 442
MALD semrich words and we used the same parameter sets and the same decision
criteria as in Simulation 2.

In Simulation 4, we did not estimate the time cycle when the decision should be
made that the input is a pseudoword. The reason for this was simply because there
are no guidelines made by either TRACE or TISK stating how this decision should
be made. Therefore, we also made no comparisons between TISK model estimates
and participant response latencies to pseudowords in MALD semrich. The purpose of
Simulation 4 was to test whether using the decision criteria that yielded high word
recognition accuracy would also cause the model to incorrectly flag pseudoword input
as a word.

To make the simulation as comparable to Simulation 2 as possible, we excluded all
pseudwords that were longer than the longest MALD semrich word. We also excluded
all the pseudowords that contained phonemes that were not present in the word list.
The total number of retained pseudowords was 416.

7.2. Results

MALD semrich words had on average three close competitors (cohorts, rhymes, and
embeddings) present within the other 442 words; MALD semrich pseudowords on
average had 2.56 close competitors within those words. Among these, 101 (24%) pseu-
dowords had no close competitors. In other words, it seemed that it should be fairly
easy for TISK to recognize that the input does not match any of the words present in
the lexicon.

The results presented in Table 6 show that the relative and the time-dependent
criterion perform poorly regardless of the parameter set used. When parameter sets
B and C are used with the relative decision criterion we do see a bit of an increase
in the number of cases when no word has been selected as the winner, but 4 out of 5
pseudowords still activate a word in the lexicon highly enough for the input signal to
be recognized as that word. The best results are obtained using the absolute criterion
and parameter sets B and C. The accuracy obtained in these conditions (88 and 93%)
might even match participant performance in the auditory lexical decision task fairly
well.

Table 6. Accuracy in discarding MALD semrich pseudowords when MALD words are used as the lexicon of
competitors for different parameter sets and decision criteria in TISK.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

TISK
A 1 3 0
B 88 16 0
C 93 19 0
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7.3. Discussion

Simulation 2 showed that, with lax competition, using TISK parameter set C and the
standard decision criteria leads to very high free word recognition. In Simulation 4,
we used the same parameter sets and decision criteria and presented TISK with pseu-
doword input. Our results show that the current setup would lead to an unacceptably
large number of mistakes when the relative and the time-dependent decision criteria
are used. These errors happen even in those pseudowords that have practically no
close competitors in the lexicon that could confuse the model. The absolute criterion
performed significantly better (at least when parameter sets B and C were employed).
However, previous simulations have shown that the absolute criterion performs the
worst in free word recognition with word input, while also being highly dependent on
word length and the number of time cycles in the simulation. We discuss these findings
in more detail in the following section.

8. General discussion

In the first simulation, we showed that both jTRACE and TISK perform with high
accuracy in free word recognition when the default lexicon of 212 words and 14 pho-
nemes is used. The two models also performed quite similarly, especially in certain
setups. However, the model estimates did not correlate well with participant response
latency. In the second simulation, we expanded the phoneme set to 39 phonemes.
jTRACE was unable to successfully represent diphthongs, affricates, and the r-colored
vowel (as combinations of two shorter phonemes), and word recognition accuracies
dropped significantly. In contrast, word recognition in TISK was even higher than in
the first simulation. The correlations between TISK estimates when the winner should
be selected and participant response latency increased slightly. Still, TISK model es-
timates could completely be replaced by the number of phonemes in the word when
predicting response latency. In the third simulation, using TISK only, words competed
only against their close competitors. Word recognition accuracies decreased severely
and TISK model estimates could again be replaced by the number of phonemes in
the word when predicting participant response latency. In the fourth simulation, we
show that the decision criteria which yielded very high free word recognition results
in Simulation 2 also lead to a large number of false positive responses when TISK
is presented with a pseudoword. In short, we found that jTRACE simulations were
impeded by poor phoneme representation, that TISK simulations were impeded by
close competition, and that neither model provided estimates of when the winning
word should be selected that contributed to better prediction of participant response
latency, regardless of the setup used. Furthermore, it seems that the decision criteria
are not fitting for making a lexical decision task, that is, choosing whether the input
signal is present in the lexicon or not. Although we were relatively unsuccessful in
simulating participant performance in the auditory lexical decision task, the simula-
tions presented in this paper provided several important insights into the direction
in which contemporary models of spoken word recognition should develop, as well as
some hypotheses about the spoken word recognition process.

The fact that jTRACE and TISK estimates did not predict participant response
latency in our simulations is not an immediate proof of model failure. Magnuson et al.
(2012) discuss heuristics for model evaluation, differentiating between issues with the
linking hypothesis, parameters used, model implementation, and the theory itself. We
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believe that the computational model and the participants were presented with similar
tasks and, as much as possible for these two computational models, similar input, i.e.,
that the time cycle in which a winner is selected based on the activation-competition
process in jTRACE and TISK should roughly correspond to the average time it takes
participants to respond to the word stimulus in the auditory lexical decision task,
especially if word characteristics such as frequency or concreteness are accounted for.
However, we must also address model implementation and the parameter sets used
before assessing the theories behind jTRACE and TISK.

A model of spoken word recognition should be able to represent as much of the
variability present in the actual acoustic speech signals as possible. Not only does this
allow the model to simulate more of the speech perception phenomena, it also makes
it more plausible as it is presented with the same information a human listener is
presented with. The best way to achieve this is to use the acoustic signal as input
for the model. In jTRACE (TRACE II), the signal is instead represented using a
number of acoustic pseudofeatures, and their values define the phoneme set. Although
this solution is well-founded and allowed the model to be used in simulations that
propelled the field forward, three decades since the model was created and more than
a decade since jTRACE was developed as its reimplementation, arguably the biggest
issue with using jTRACE is its input representation (i.e., input implementation).

Limits imposed on the lexicon size can be remedied by creating subsets of close
competitors, as we did using TISK. A limitation in the set of phonemes that can be
represented in the model, however, is not as easily sidestepped. In jTRACE, every
occurrence of a phoneme is necessarily equal to every other occurrence of that same
phoneme. Phoneme overlap introduced to account for coarticulation slightly alters the
signal depending on the preceding and the following phoneme, but it is not uncommon
for a phoneme to find itself in the same immediate environment in multiple words, and,
regardless, the central part of the phoneme as represented in jTRACE always remains
the same. This makes jTRACE unable to account for the fine changes in the acoustic
characteristics of speech sounds that affect spoken word recognition (e.g., Andruski,
Blumstein, & Burton, 1994; Salverda, Dahan, & McQueen, 2003), and makes the
model miss the variability created by various other speaker and contextual factors,
phenomena that Fine-Tracker (Scharenborg, 2008, 2009) was specifically developed to
simulate. Certain targeted phoneme changes can be made in jTRACE explicitly, but
these are made for the purposes of simulating effects on the phoneme level, and cannot
reasonably be a part of a large-scale simulation at the word level. Therefore, some of
the important topics of investigation in the field of spoken word recognition, such as
representing reduction in speech (Ernestus & Baayen, 2007; Ernestus & Warner, 2011;
Tucker, 2011; Tucker & Ernestus, 2016) or accounting for other fine variation in the
acoustic signal remain outside the realm of abilities of jTRACE, as they can only be
presented via coarse changes in pseudofeature values or phoneme splicing.

Additionally, all of the phonemes are practically steady-state phonemes in jTRACE.
The pseudofeature values do rise at the beginning and decrease towards the end of a
phoneme’s presentation, but this change is a fixed value, and the number of time cycles
assigned to ramping on and ramping off are necessarily identical for all pseudofeatures.
Besides this representation not fitting the reality of the acoustic signal, as, for example,
even monophthongs often have a degree of formant value change throughout their
production (Hillenbrand, 2013; Hillenbrand, Getty, Clark, & Wheeler, 1995; Nearey &
Assmann, 1986), it also disables the model from representing diphthongs or affricates,
which are defined by the change in their acoustic (pseudo)features as they unfold. The
solution we adopted, the one also used by Mayor and Plunkett (2014), was to create
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phonemes of half duration and put them together, e.g., create /Ù/ by combinging /t/
and /S/. This solution is not perfect and, more importantly, it does not seem to allow
jTRACE to correctly recognize the target word in our simulations. There may be other
solutions. One is, of course, to develop a system in which pseudofeature values rise
and fall independently from one another as the phoneme unfolds. Another solution
would be to treat a phoneme in jTRACE as internally a-temporal. For example, /Ù/
would have a relatively high value for both burst and frication at the same time, and
these values would ramp on and ramp off together, even though the “burst” part of
/Ù/ happens before the “frication” part. Regardless of the approach taken, jTRACE
needs to be able to represent all of the speech sounds in a language or it can only be
used to run simulations on limited toy word sets. If this limitation is not also present
in the experimental task (as it can be, for example, in the visual world paradigm), any
comparison between model estimates and experiment data can only be conceptual,
not direct.

TISK does not have this problem as all of the phonemes of English (or any other
language) can be represented in it. Our simulations have shown that there is no de-
crease in word recognition accuracy between TISK Simulation 1 and Simulation 2,
even though the number of phonemes increased from 14 to 39. TISK does this by as-
suming that the phoneme recognition process is already complete, and uses phoneme
strings as input. This approach does come at a cost, and we are unsure whether dis-
posing with acoustic pseudofeatures is a step in the right direction. All of the acoustic
variability within speech sounds (phonemes) is obliterated with this approach. This
approach, however, conflicts with studies which show the importance of sub-phonemic
differences (e.g., Andruski et al., 1994; Marslen-Wilson & Warren, 1994) and proso-
dic cues (e.g., Kemps, Wurm, Ernestus, Schreuder, & Baayen, 2005; Salverda et al.,
2003) for speech recognition. Furthermore, the competition process treats all phone-
mes as equally probable competitors, as in the Neighborhood Activation Model (Luce
& Pisoni, 1998), making /sæt/ an equal competitor to /bæt/ as /pæt/, even though
/bæt/ and /pæt/ should sound much more similar. Finally, the process which leads to
a successful recognition of constituent speech sounds in a word is by no means trivial
or easily solved for, and therefore needs to be explained.

Fine-Tracker (Scharenborg, 2008, 2009), SpeM’s (Scharenborg, Norris, Bosch, &
McQueen, 2005) more contemporary successor, already uses the acoustic signal as in-
put. The most recent additions to the group of models that simulate spoken word
recognition, DIANA (ten Bosch, Boves, & Ernestus, 2015) and the discriminative lexi-
con model based on linear discriminative learning (Baayen, Chuang, Shafaei-Bajestan,
& Blevins, 2019), do the same. The authors of jTRACE and TISK themselves notice
the issue of the field not moving away from what was intended to be a temporary
solution, i.e., using pseudofeatures or phonemes as intermediary layers and assuming
these were already successfully recognized, and have already started developing their
own solution (EARSHOT) that also relies on actual acoustics (Magnuson, You, et al.,
2018).

Combining TISK with a system that recognizes phonemes from the acoustic signal,
as in DIANA or Fine-Tracker, could greatly enrich the model and perhaps make its
estimates more similar to participant responses. Pilot simulations using DIANA with
MALD data indicate that the model can be quite successful in recognizing novel speech
input (Nenadić, ten Bosch, & Tucker, 2018). The highest accuracy DIANA attained
in free word recognition was approximately 95% with a lexicon of competitors of close
to 25,000 words (ten Bosch, Boves, & Ernestus, 2015). Additionally, in comparison
to jTRACE and TISK, DIANA shows significantly higher correlations to participant
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behavior in the auditory lexical decision and word repetition tasks, ranging from r = .4
to r = .76 (Nenadić et al., 2018; ten Bosch, Boves, & Ernestus, 2015; ten Bosch,
Boves, Tucker, & Ernestus, 2015; ten Bosch, Ernestus, & Boves, 2014). However, we are
currently investigating the contribution of signal duration to this correlation (similarly
to how the number of phonemes highly corresponds to TISK estimates).

A model of spoken word recognition should attempt to provide a representation of
the structure of the mental lexicon. There is now a growing body of research showing
that semantic variables play a role even in isolated spoken word recognition (Goh
et al., 2016; Sajin & Connine, 2014; Tucker et al., 2019). We noted the same albeit
modest contribution in the statistical models predicting MALD response latency in
this study. However, the mental lexicon is ordinarily presented as a simple list of
unconnected units in models of SWR — “lexical access” is treated separately from
“meaning access” (Gaskell & Marslen-Wilson, 2002). Currently, jTRACE and TISK
can at best include top-down frequency effects to modulate activation.

Rare exceptions to this sort of representation of the mental lexicon are the Dis-
tributed Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997) and an approach to
modeling spoken word recognition based on discriminative learning (Baayen et al.,
2019). DCM and the discriminative lexicon describe units in the lexicon as semantic
vectors. In these models, the semantic vectors can be correlated, allowing maps of me-
aning to be formed. In turn, the competition process and final competitor activations
are in part shaped by item characteristics other than frequency. Including a well-
developed representation of the mental lexicon is not a primary concern for jTRACE
and TISK, but it will be beneficial to future development of models of SWR.

A model of spoken word recognition should provide guidelines to model parameter
values. We already mentioned in the introduction and when describing the simulation
setup that the parameters in jTRACE and TISK are rarely changed and considered
robust. We could only add another comment that the parameters are in “delicate
equilibrium” and that their change may unpredictably affect the outcome of the simu-
lation, recounted by the authors of jTRACE (Strauss et al., 2007, pp. 30). Therefore,
in all our simulations, we relied on suggested (established and used) parameter sets
for both jTRACE and TISK. Our results show that, in general and regardless of the
setup, within-model estimates of when the winner should be selected tend to be high,
and word recognition accuracies tend to be comparable. For example, nearly all TISK
setups in Simulation 2 produce very similar results (even if the activation-competition
process, when plotted, does not look the same). This lead us to think that perhaps al-
tering TISK parameter values does not greatly impact the qualitative result (selection
of the winning word); the parameter values may indeed be very robust. However,
certain setups sometimes performed strikingly worse. For example, TISK-B with the
absolute criterion in Simulation 2 and jTRACE-A with the time-dependent criterion
in Simulation 1 had notably lower accuracies then other parameter sets with the same
decision criterion used, indicating that some changes may greatly impact the results.

At this point, we can only state that the ordinarily used jTRACE and TISK para-
meter sets are not successful in simulating the auditory lexical decision task. Indeed,
Magnuson et al. (2012) mention that the necessity to change model parameters for
every simulation can be used as an argument against a model. However, it stands to
reason that different parameter sets may be required for simulating different expe-
rimental tasks — similarly to how participants (probably) adopt different strategies
when confronted with different experimental tasks. Since this is the first time, to the
best of our knowledge, that simulations of the auditory lexical decision task were per-
formed by comparing model estimates of the time cycle when the winner is selected
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to participant responses, it may simply be that different, new parameter values are
required.

Therefore, the parameter space of jTRACE and TISK still needs to be further ex-
plored. We did not test all possible (plausible) parameter values, and there may yet
be a setup that will lead to both higher word recognition accuracy and perhaps better
correlation with participant response latency. jTRACE and TISK have a large number
of parameters, and each can be fine-tuned using value continua. This makes the num-
ber of parameter value combinations exceedingly, unfeasibly large to be tackled using
some sort of a hypothesis-driven manual system — considering possible combinations
even when we wish to test merely five different values for each parameter would require
thousands of simulations. (We attempted various informed manual searches, not re-
ported in this paper, in order to improve the activation-competition process as visible
in the figures and word recognition accuracy, but we were unsuccessful.) We believe
that contemporary computational power and machine learning approaches may allow
researchers to test the full breadth of parameter combinations in search for the optimal
solution. Only then would we be able to state with some certainty whether jTRACE
and TISK can produce estimates that match participant response latency in the au-
ditory lexical decision task, and then further investigate whether that parameter set
can be successfully applied to other comparable datasets without significant changes.

A model of spoken word recognition should incorporate a decision component. DI-
ANA (ten Bosch, Boves, & Ernestus, 2015) is a good example of an end-to-end model
of spoken word recognition, as the model defines the decision-making process as well,
allowing the researchers to explicitly test whether that aspect of the model is fitting
experimental data. Currently, jTRACE and TISK have no built-in function or recom-
mendation as to how the winning word should be selected. In our simulations, we used
the three decision criteria used by the developers of jTRACE and TISK to compare
the two models (Hannagan et al., 2013), and we even tried modifying the decision
thresholds. However, there are many other ways in which the winner could have been
selected — and none of these choices, including the ones we used, can be said to be
an integral part of jTRACE or TISK. Our simulations have shown that the relative
and the time-dependent criterion seem to be better than the absolute criterion in se-
lecting the target word as the winner. This is an important finding, as it seems that
the sheer activation level should not be sufficient in spoken word recognition; words
and competing candidates differ in their length (number of phonemes) and the density
of the competitor pool, and some reach activation levels others do not. In other words,
it seems that the decision should be made on the principle that a certain word is sim-
ply the best candidate there is (for long enough), regardless of the level of activation
generally registered for different words.

However, relative approaches come with a risk. In the auditory lexical decision task,
participants are presented with both words and pseudowords. A decision process that
correctly selects the target word as the best (winning) competitor from a group of
competitors may still select a certain word as the winner even if the input is not
in the lexicon (a pseudoword). Simulations with pseudowords act as another test for
the decision criterion employed — if a decision criterion recognizes words successfully,
but at the same time leads to a word being selected as the winner even though the
input is not present in the lexicon, then the decision process needs to be altered. This
concern was well represented in our results from Simulation 4: the absolute criterion
performed fairly well in lax competition, while the relative and the time-dependent
criteria yielded an unacceptably large number of false positive responses.

One option to circumvent the issue of a word being selected with pseudoword input
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could be to combine decision criteria and select a competitor as the winning word
only if it is the best candidate for sufficiently long, but has also reached an absolute
activation level that marks it as “sufficiently word-like”. Another option is to treat the
“word/not word” and “which word?” as two separate decisions (as is currently done
in DIANA): perhaps the decision when the leading candidate should be selected as the
winning candidate is not necessarily the same decision as the one stating whether the
input is present in the lexicon or not. With the decision criteria used in our report, it
remains unclear when the “not a word” decision should be made if no candidates ever
reach the threshold, as should happen if the input is not a word in the lexicon.

A model of spoken word recognition should be easily accessible and allow even
users with lower proficiency in programming to conduct simulations. Assessing model
performance and further model development fully depend on conducting simulations
and matching the findings with data from behavioral experiments. A model that is
accessible to the wider research public can be tested on numerous and varying datasets,
where simulations can be replicated. Furthermore, the model can then be tested in
its ability to match findings from a wide variety of experimental tasks investigating
spoken word recognition, subject to the interest of a particular research group. As we
have seen, a certain model with certain parameters may be successful in simulating
data from one task, with the same model and setup failing to match participant data
from another task.

The jTRACE reimplementation of the TRACE II model allowed many researchers
to conduct their own simulations, leading to a significant increase in the number of
studies that report computational simulations (Chawla & Chillcock, 2019). Choosing
jTRACE and TISK for our simulations was in part governed by the fact that there
are not many models of spoken word recognition that a researcher can independently
delve into, without the assistance of the developer. However, as the authors of jTRACE
note, we still found using jTRACE scripts to be “unfortunately cumbersome” (You &
Magnuson, 2018, pp. 876), and its graphic user interface to have numerous errors. In
turn, TISK is arguably the most approachable model of spoken word recognition at
this time. We have tested and confirmed the claim made by the authors that a user
with some experience using platforms such as R (R Core Team, 2018) can successfully
navigate TISK simulations in Python, even if they have no experience with that pro-
gramming language (You & Magnuson, 2018). There are certain features which would
be useful to have as part of the standard TISK code, but an advanced (or a persistent)
user can expand the code on their own for other purposes. This makes jTRACE and
TISK, with their faults, invaluable assets to the field of computational modelling of
spoken word recognition.

Finally, it may be that no changes in the model implementation or parameter values
would yield high word recognition accuracy and results that fit participant responses.
In our attempts to simulate the auditory lexical decision task, the most striking ob-
servation was how close the competition between words actually was. The number
of very similar competitors that are extracted for every target word using the cri-
teria from notable models such as TRACE (McClelland & Elman, 1986), COHORT
(Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), or NAM/PARSYN
(Luce, 1986; Luce, Goldinger, Auer, & Vitevitch, 2000; Luce & Pisoni, 1998) seems to
be creating extensive subsets.

COHORT reduces the list of competitors after the initial two or three phonemes
and keeps excluding competitors upon mismatch (but see COHORT II, where slight
initial mismatch is allowed; Marslen-Wilson, 1987; Marslen-Wilson, Brown, & Tyler,
1988). However, it may be that the cohort size is unfeasibly large at the very begin-
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ning of reducing the list. The mean number of close competitors extracted from the
CMU dictionary using the TISK command for the 442 MALD semrich words is ap-
proximately 650, and ranges between 17 and 2,243 close competitors per target word.
In comparison, mean number of phonological neighbors (including all the words that
are one phoneme edit away from the target word, also based on the CMU dictionary)
in all MALD words is only 13, and ranges between 0 and 240 phonological neighbors.
Using only NAM neighbors as competitors may therefore benefit model accuracy,
and perhaps even the correlation to participant response latency. On the other hand,
phonological neighborhoods may be quite extensive in highly inflective languages like
Finnish.

Certain suggestions were already made to remedy the issue of competition inclu-
ding too many words. In Shortlist A and B (Norris, 1994; Norris & McQueen, 2008)
a smaller number of candidates is selected at each time step and they are the only
ones considered in the competition process. In Shortlist B, simulations include over
20,000 competitors to every word, while the focus remains on the small number of
“shortlisted” closest competitors only. TISK can also accommodate large lexicons,
but still not the entirety of the CMU dictionary, at least with our computational
resources. Since we wanted to investigate close competition, in Simulation 3 we ma-
nually preselected the lexicon of only close competitors from the CMU dictionary for
every target word, effectively “shortlisting” candidates following TRACE’s approach to
what should comprise close competitors. The results of the simulation showed that the
activation-competition process ceases to resemble the expected distribution when only
20 of the closest competitors are used in the TISK lexicon. Therefore, an application of
a manual “shortlisting” solution based on TRACE categorization of close competitors
in TISK would still require additional parameter changes to those currently employed
in order to obtain acceptable results.

The finding that having 20 closest competitors in the lexicon of competitors pre-
vents TISK from properly performing may have implications to other models of SWR
as well. Both Shortlist B and DIANA (ten Bosch, Boves, & Ernestus, 2015), similarly
to TISK, allow for large lexicons of 20 to 30 thousand words to be employed. Howe-
ver, we have seen that having a sizable lexicon of 20 or 30 thousand words does not
guarantee that all (or most) of the close competitors to the target word are inclu-
ded — 71% of 116 thousand CMU words were a close competitor to at least one of
only 442 MALD semrich words. This indicates that some close competitors would be
missing if 20 or 30 thousand word lexicons are used (note: based on TRACE criteria
of what comprises close competitors). Ideally, in models of SWR there would be no
need to preselect competitors or to create “shortlists” of competitors, but it seems
that technical limitations and computational feasibility would likely force researchers
to make certain assumptions and adapt their lexicons, at least for now. Furthermore,
the question of competitor selection is at the core of many models of SWR. Future si-
mulations should compare multiple competitor selection approaches (e.g., TRACE vs.
COHORT vs. Shortlist vs. NAM, etc.) and increase the number of close competitors
for every word based on these criteria. It would be very interesting to see how not just
large, but also close competition affects model performance in cases of Shortlist B and
DIANA, as we have seen it have substantial impact on TISK performance under the
current parameter setups used.

Another approach is to assume that the decision is only made once the entirety of
the signal is present, which is in line with behavioral data — especially in the case of
the auditory lexical decision task (Ernestus & Cutler, 2015; Tucker et al., 2019), where
a presumed “word” stimulus could become a pseudoword at any point and less than
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3% of all responses are made before signal offset. If we take into account some time
for the response to be made — e.g., 200 ms, which is the amount assumed by DIANA
(ten Bosch, Boves, & Ernestus, 2015) — 20% of all responses to words are made before
this time elapses in the MALD1 dataset. Perhaps the “entire signal” should instead
refer to the uniqueness point of the word, and we find in MALD1 that practically no
responses are made before the temporal uniqueness point of the word, even when 200
ms are added to represent time needed for executing the response. Although additional
investigation is needed to better describe the cause for early responses and what is
considered “sufficient information” (e.g., the entire signal or the uniqueness point),
it is apparent that certain models of SWR are shifting their focus from the early
activation-competition process towards the word offset. The current implementation
of the discriminative lexicon (Baayen et al., 2019) abandons the incremental aspect
of the process of spoken word recognition. In DIANA (ten Bosch, Boves, & Ernestus,
2015) the simulations include estimates for the time it takes to make the decision which
word is the winning word after the signal offset, as it is assumed that in many cases
the decision cannot be made until that point. However, we have seen that the solution
that disregards the temporality (incrementality) of the signal in TISK, at least with
the current simulation setup, was not successful in simulating MALD data.

Yet another possibility is for the listener (and therefore the model) to consider lar-
ger chunks of the continuous acoustic signal (more than what would correspond to,
e.g., the first two phonemes in the TRACE model). This would reduce the number of
plausible competitors, and the model could assess whether a winning word is found,
again, at larger time steps than those currently employed. Once it is clear that the
signal is complete (i.e., past the signal offset), the decision-making process would pick
the best match from the list of remaining (hopefully few) competitors. In other words,
the incrementality of the process of spoken word recognition is maintained, but the
estimates of competitor activation are based on longer (larger) chunks of the acoustic
signal. In a way, TISK already does this by taking into account all of the possible dip-
hone combinations in the word. We also see this inclination in certain learning models
of SWR (see Magnuson et al., 2012). Adaptive Resonance Theory (ART; Goldinger &
Azuma, 2003; Grossberg, Boardman, & Cohen, 1997; Grossberg & Myers, 2000) stores
chunks that can be phonemes, syllables, or even entire words if they co-occurred often
enough in the learning process. In the discriminative lexicon approach, (Baayen et al.,
2019) the acoustic input is represented using the so-called frequency band summary
features (Arnold, Tomaschek, Sering, Lopez, & Baayen, 2017) that are calculated for
larger portions of the acoustic signal of a word, e.g., in two or three chunks for a
three-syllable word.

Many more simulations, alongside behavioral study findings, are required to test
these assumptions and solutions. It is clear that the field of computational modelling
of spoken word recognition cannot advance without actual simulations that will adapt
model parameters and the models themselves, which in turn is fully dependent on the
models being accessible. The most pressing changes that need to be made, especially
considering jTRACE and TISK, would include using actual acoustic signal as input, a
detailed investigation of how parameter values and decision criteria impact simulation
outcomes, and simulations of various experimental tasks and datasets.
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Nenadić, F., ten Bosch, L., & Tucker, B. V. (2018). Implementing diana to model isolated
auditory word recognition in english. In Proc. interspeech 2018 (pp. 3772–3776).

Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition,
52 (3), 189–234.

Norris, D., & McQueen, J. M. (2008). Shortlist B: A bayesian model of continuous speech
recognition. Psychological Review , 115 (2), 357–395.

Norris, D., McQueen, J. M., & Cutler, A. (1995). Competition and segmentation in spoken-
word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition,
21 (5), 1209.

Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recognition:
Feedback is never necessary. Behavioral and Brain Sciences, 23 (3), 299–325.

Protopapas, A. (1999). Connectionist modeling of speech perception. Psychological Bulletin,
125 (4), 410-436.

R Core Team. (2018). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Sajin, S. M., & Connine, C. M. (2014). Semantic richness: The role of semantic features in
processing spoken words. Journal of Memory and Language, 70 , 13–35.

Salverda, A. P., Dahan, D., & McQueen, J. M. (2003). The role of prosodic boundaries in the
resolution of lexical embedding in speech comprehension. Cognition, 90 (1), 51–89.

Sauval, K., Perre, L., & Casalis, S. (2018). Phonemic feature involvement in lexical access in
grades 3 and 5: Evidence from visual and auditory lexical decision tasks. Acta Psychologica,
182 , 212–219.

Scharenborg, O. (2008). Modelling fine-phonetic detail in a computational model of word
recognition. In The 9th Annual Conference of the International Speech Communication
Association (pp. 1473–1476).

Scharenborg, O. (2009). Using durational cues in a computational model of spoken-word
recognition. In The 10th Annual Conference of the International Speech Communication
Association (pp. 1675–1678).

Scharenborg, O., & Boves, L. (2010). Computational modelling of spoken-word recognition
processes: Design choices and evaluation. Pragmatics & Cognition, 18 (1), 136–164.

Scharenborg, O., Norris, D., Bosch, L., & McQueen, J. M. (2005). How should a speech
recognizer work? Cognitive Science, 29 (6), 867–918.

Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-prime reference guide [Computer
software manual]. Pittsburgh.

Shuai, L., & Malins, J. G. (2017). Encoding lexical tones in jtrace: a simulation of monosyllabic
spoken word recognition in mandarin chinese. Behavior Research Methods, 49 (1), 230–241.

Smith, A. C., Monaghan, P., & Huettig, F. (2017). The multimodal nature of spoken word
processing in the visual world: Testing the predictions of alternative models of multimodal
integration. Journal of Memory and Language, 93 , 276–303.

Strauss, T. J., Harris, H. D., & Magnuson, J. S. (2007). jTRACE: A reimplementation and

37



extension of the trace model of speech perception and spoken word recognition. Behavior
Research Methods, 39 (1), 19–30.

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. Journal of
Verbal Learning and Verbal Behavior , 14 (6), 638–647.

ten Bosch, L., Boves, L., & Ernestus, M. (2015). DIANA, an end-to-
end computational model of human word comprehension. In The 18th In-
ternational Congress of Phonetic Sciences (ICPhS 2015). Retrieved from
https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0480.pdfl

ten Bosch, L., Boves, L., Tucker, B., & Ernestus, M. (2015). DIANA: Towards computational
modeling reaction times in lexical decision in North American English. In Interspeech
2015: The 16th Annual Conference of the International Speech Communication Association
(p. 1576-1580).

ten Bosch, L., Ernestus, M., & Boves, L. (2014). Comparing reaction time sequences from
human participants and computational models. In Interspeech 2014: The 15th Annual
Conference of the International Speech Communication Association (pp. 462–466).

ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human
participants in auditory experiments. In The 19th annual conference of the international
speech communication association (p. 971-975). Hyderabad, India: ISCA.

Tucker, B. V. (2011). The effect of reduction on the processing of flaps and/g/in isolated
words. Journal of Phonetics, 39 (3), 312–318.

Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019).
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