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Abstract

Natural Language Processing (NLP) develops computatepyaioaches to processing lan-
guage data. Supervised machine learning has become theatdmiethodology of modern
NLP. The performance of a supervised NLP system crucialpedds on the amount of data
available for training. In the standard supervised frantéwib a sequence of words was
not encountered in the training set, the system can onlysgaleiss label at test time. The
cost of producing labeled training examples is a bottledfeckurrent NLP technology. On
the other hand, a vast quantity of unlabeled data is freedjable.

This dissertation proposes effective, efficient, veisatiethodologies for 1) extracting
useful information from very large (potentially web-sgalelumes of unlabeled data and
2) combining such information with standard supervised e learning for NLP. We
demonstrate novel ways to exploit unlabeled data, we shaketapproaches to make use
of all the text on the web, and we show improvements on a yadethallenging NLP
tasks. This combination of learning from both labeled an@dh®ied data is often referred
to assemi-supervised learning

Although lacking manually-provided labels, the statstid unlabeled patterns can of-
ten distinguish the correct label for an ambiguous testin#t. In the first part of this
dissertation, we propose to use the counts of unlabeledrpattas features in supervised
classifiers, with these classifiers trained on varying artwahlabeled data. We propose a
general approach for integrating information from mu#ipbverlapping sequences of con-
text for lexical disambiguation problems. We also show hésndard machine learning
algorithms can be modified to incorporate a particular kihdrior knowledge: knowledge
of effective weightings for count-based features. We alsduate performance within and
across domains for two generation and two analysis taskessing the impact of com-
bining web-scale counts with conventional features. Insénend part of this dissertation,
rather than using the aggregate statistics as featuresyapese to use them to generate
labeled training examples. By automatically labeling gdanumber of examples, we can

train powerful discriminative models, leveraging fineigeal features of input words.
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Chapter 1

Introduction

Natural language processing (NLP) is a field that developspedational techniques for
analyzing human language. NLP provides the algorithms fetliag correction, speech
recognition, and automatic translation that are used bljomdl of people every day.

Recent years have seen an explosion in the availabilityngfuage in the form of elec-
tronic text. Web pages, e-mail, search-engine queriestextemessaging have created a
staggering and ever-increasing volume of language dataceBsing this data is a great
challenge. Users of the Internet want to find the right infation quickly in a sea of irrel-
evant pages. Governments, businesses, and hospitalsondistdver important trends and
patterns in their unstructured textual records.

The challenge of unprecedented volumes of data also peeaaigjnificant opportunity.
Online text is one of the largest and most diverse bodiesnglilstic evidence ever com-
piled. We can use this evidence to train and test broad anéniwwWanguage-processing
tools. In this dissertation, | explore ways to extract meghil statistics from huge volumes
of raw text, and | use these statistics to create intelligélo®® systems. Techniques from
machine learning play a central role in this work; machireriéng provides principled
ways to combine linguistic intuitions with evidence frong hiata.

1.1 What NLP Systems Do

Before we discuss exactly how unlabeled data can help inegkthP systems, it is impor-
tant to clarify exactly what modern NLP systems do and how therk. NLP systems

take sequences of words as input and automatically prodsefellinguistic annotations as
output. Suppose the following sentence exists on the welesthiere:

e “The movie sucked.”

Suppose you work for J.D. Power and Associates Web Inteltigeivision. You cre-
ate systems that automatically analyze blogs and other agéspto find out what people
think about particular products, and then you sell thisrimfation to the producers of those
products (and occasionally surprise them with the resutts)i might want to annotate the
whole sentence for its sentiment: whether the sentencesitiygoor negative in its tone:

e “The movie sucked- (SentimentNEGATIVE”

Or suppose you are Google, and you wish to translate thissemfor a German user.
The translation of the worduckedis ambiguous. Here, it likely does not mean, “to be



drawn in by establishing a partial vacuum,” but rather, “@odisagreeable.” So another
potentially useful annotation is word sense:

e “The movie sucked- The movie suckeGense+S-DISAGREEABLE’
More directly, we might consider the German translatioelitas the annotation:
e “The movie sucked— Der Film war schrecklich.

Finally, if we're the company Powerset, our stated objectiito produce “parse trees”
for the entire web as a preprocessing step for our searcinen@ne part of parsing is to
label the syntactic category of each word (i.e., which argnspwhich are verbs, etc.). The
part-of-speech annotation might look as follows:

e “The movie sucked- The\DT movie\NN suckedVBD

WhereDT means determineNN means a singular or mass noun, arlD means a
past-tense verb. Again, note the potential ambiguity for the tag sfcked it could also
be labeledvBN (verb, past participle). For examplguckedis a VBN in the phrase, “the
movie sucked into the vacuum cleaner was destroyed.”

These outputs are just a few of the possible annotationscérabe produced for tex-
tual natural language input. Other branches and fields of Miay operate over speech
signals rather than actual text. Also, in the natural lageugeneration (NLG) community,
the input may not be text, but information in another formthwthe desired output being
grammatically-correct English sentences. Most of the worthe NLP community, how-
ever, operates exactly in this framework: text comes inotations come out. But how
does an NLP system produce these annotations automag®ically

1.2 Writing Rules vs. Machine Learning

One might imagine writing some rules to produce these atinaotaautomatically. For part-
of-speech tagging, we might say, “if the wordnimvie then label the word adN.” These
word-based rules fail when the word can have multiple tags @w wind, etc. can be
nouns or verbs). Also, no matter how many rules we write gthngl always be new or rare
words that didn’'t make our rule set. For ambiguous words, eédctry to use rules that
depend on the word’s context. Such a rule might be, “if thevipres word isTheand the
next word ends inred then label a?NN.” But this rule would fail for “the Oilers skated,”
since here the tag is nd&tN but NNPS a plural proper noun. We could change the rule
to: “if the previous word isTheand the next word ends ked and the word is lower-case
then label adNN.” But this would fail for “The begrudgingly viewed movie,” kere now
“begrudgingly” is an adverb, not a noun. We might imagineiagldnany many more rules.
Also, we might wish to attach scores to our rules, to printypeesolve conflicting rules.
We could say, “if the word isvind, give the score for being BN a ten and for being a
VB atwo,” and this score could be combined with other context-basedes, to produce a
different cumulative score for each possible tag. The tgggkeoring tag would be taken as
the output.

'Refer to Appendix A for definitions and examples from the P&reebank tag set, the most commonly-
used part-of-speech tag set.



These rules and scores might depend on many propertiesiofiiiesentence: the word
itself, the surrounding words, the case, the prefixes arftkesfof the surrounding words,
etc. The number of properties of interest (what in machiaeniag is called “the number
of feature$) may be quite large, and it is difficult to choose the set ¢éstand weights that
results in the best performance (See Chapter 2, Sectiom2farther discussion).

Rather than specifying the rules and weights by hand, theeicudominant approach
in NLP is to provide a set ofabeledexamples that the system chearn from. That is,
we train the system to make decisions using guidance from labeled &stlabeled data,
we simply mean data where the correct, gold-standard artsagdoeen explicitly provided.
The properties of the input are typically encoded as nurakféatures. A score is produced
using a weighted combination of the features. The learniggrithm assigns weights to the
features so that the correct output scores higher thanrgmooutputs on the training set.
Or, in cases where the true output can not be generated bystes so that the highest
scoring output (the system prediction) is as close as pessilthe known true answer.

For example, feature 96345 might be a binary feature, equahe if “the word is
wind,” and otherwise equal to zero. This feature (efgs345) may get a high weight for
predicting whether the word is a common nobN (e.g. the corresponding weight param-
eter, wogs45, May be 10). If the weighted-sum-of-features score forNihetag is higher
than the scores for the other tags, tiNdN is predicted. Again, the key point is that these
weights are chosen, automatically, in order to maximizégperance on human-provided,
labeled examples. Chapter 2 covers the fundamental eqaatiomachine learning (ML)
and discusses how machine learning is used in NLP.

Statistical machine learning works a lot better than spewfrules by hand. ML sys-
tems are easier to develop (because a computer progranufies-the rules, not a human)
and easier to adapt to new domains (because we need onlyasnnetv data, rather than
write new rules). ML systems also tend to achieve betteioperdince (again, see Chapter 2,
Section 2.1%

The chief bottleneck in developing supervised systemsistAnual annotation of data.
Historically, most labeled data sets were created by experinguistics. Because of the
great cost of producing this data, the size and variety ddltata sets is quite limited.

Although the amount of labeled data is limited, there iseaitlot of unlabeled data
available (as we mentioned above). This dissertation egplearious methods to combine
very large amounts of unlabeled data with standard supahlésarning on a variety of NLP
tasks. This combination of learning from both labeled andheled data is often referred
to assemi-supervised learning

1.3 Learning from Unlabeled Data

An example from part-of-speech tagging will help illus&r&iow unlabeled data can be use-
ful. Suppose we are trying to label the parts-of-speecherfahowing examples. Specifi-
cally, there is some ambiguity for the tag of the verbn

(1) “He saw the Bears won yesterday.”

2Machine learned systems are also more fun to design. At estligear at Johns Hopkins University (June,
2009), BBN employee Ralph Weischeidel suggested that orleeofeasons that BBN switched to machine
learning approaches was because one of their chief desigoeso bored writing rules for their information
extraction system, he decided to go back to graduate school.



(2) “He saw the trophy won yesterday.”
(3) “He saw the boog won yesterday.”

Only one word differs in each sentence: the word before thie wen In Example 1,
Bearsis the subject of the verbwon (it was the Bearsvho won yesterday). Hereyon
should get thevBD tag. In Example 2trophy is the object of the verbwon (it was the
trophy that was won). In this sentencayongets avVBN tag. In a typical training set (i.e.
the training sections of the Penn TreebdMarcuset al,, 1993), we don’t seeBears won
or trophy wonat all. In fact, both the wordBearsandtrophyare rare enough to essentially
look like Example 3 to our system. They might as wellbdmod Based on even a fairly
large set of labeled data, like the Penn Treebank, the ¢degdorwonis ambiguous.

However, the relationship betwe@earsandwon, and betweerirophy andwon is
fairly unambiguous if we look atnlabeleddata. For both pairs of words, | have collected
all 2-to-5-grams where the words co-occur in the Google fpus, a collection of N-grams
from the entire world wide web. An N-gram corpus states haeroéach sequence of words
(up to length N) occurs (N-grams are discussed in detail iap®r 3, while the Google V2
corpus is described in Chapter 5; note the Google V2 cormisdes part-of-speech tags).
| replace non-stopwords by their part-of-speech tag, and the counts for each pattern.
The top fifty most frequent patterns féBears, won and{trophy, wor} are given:

Bears won:

the Bears won their:148
NNP Bears won their:129
The Bears have won CD:128
Bears won ,:124

Bears had won:121

The Bears won their:121
when the Bears won:119
The NNP Bears have won:117
Bears have won the:112
Bears won the JJ:112

Bears , who won:107

The Bears won CD:103
Bears won the NNP NNP:102
The NNP Bears won the:100
the NNP Bears won the:96
Bears have RB won:94

, the Bears have won:93

and the Bears won:91

IN the Bears won:89

Bears also won:87

Bears won 00:86

Bears have won CD of:84

as the NNP Bears won:80
Bears won CD .:80

, the Bears won the:77

Bears won:3215

the Bears won:1252
Bears won the:956

The Bears won:875
Bears have won:874
NNP Bears won:767
Bears won their:443
Bears won CD:436

The Bears have won:328
Bears won their JJ:321
Bears have won CD:305
, the Bears won:305

the NNP Bears won:305
The Bears won the:296
the Bears won the:293
The NNP Bears won:274
NNP Bears won the:262
the Bears have won:255
NNP Bears have won:217
as the Bears won:168
the Bears won CD:168
Bears won the NNP:162
Bears have won 00:160
Bears won the NN:157
Bears won a:153

trophy won

e won the trophy:4868 e won the JJ trophy:825
e won a trophy:2770 e trophy was won:811
e won the trophy for:1375 e trophy won:803



won a trophy for:689 won a trophy and:249
won the trophy for the:631 RB won the trophy:242
trophy was won by:626 who won the trophy:242
won a JJ trophy:513 and won the trophy:240

won the trophy in:511

won the trophy.:493

RB won a trophy:439
trophy they won:421

won the NN trophy:405
trophy won by:396

have won the trophy:396
won this trophy:377

the trophy they won:329
won the NNP trophy:325
won a trophy .:313

won the trophy NN:295
trophy he won:292

has won the trophy:290
won the trophy for JJS:284
won a trophy in:274

won the trophy in 0000:272
won the JJ NN trophy:267

won the trophy,:228
won a trophy ,:215

won a trophy at:199

, won the trophy:191
also won the trophy:189
had won the trophy:186
won DT trophy:184

and won a trophy:178
the trophy won:173

won their JJ trophy:169
JJ trophy:168

won the trophy RB:161
won the JJ trophy in:155
won a JJ NN trophy:155
| won a trophy:153

won the trophy CD:145
won the trophy and:141
trophy , won:141

In this data,Bearsis almost always theubjectof the verb, occurring befor&ron and
with an object phrase afterwards (lit®n theor won their, etc.). On the other hanttpphy
almost always appears as an object, occurring aftgror in passive constructionsr@phy
was wontrophy won by or with another noun in the subject roteophy they worntrophy he
won). If, on the web, a pair of words tends to occur in a particoddationship, then for an
ambiguous instance of this pair at test time, it is reas@ntbélso predict this relationship.

Now think aboutboog A lot of words look likeboogto a system that has only seen
limited labeled data. Now, iflobally the wordsboogandwon occur in the same patterns
in which trophy andwon occur, then it would be clear thhbogis also usually the object
of won and thuswvonis likely a past participle\(BN) in Example 3. If, on the other hand,
boogoccurs in the same patternsBsars we would consider it a subject, and labadnas
a past-tense vertygD).3

So, in summary, while a pair of words, likeophy andwon might be very rare in our
labeled data, the patterns in which these words occurdigtebution of the words), like
won the trophy andtrophy was wonmay be very indicative of a particular relationship.
These indicative patterns will likely be shared by otherpai the labeled training data
(e.g., we'll see global patterns likmught the securitiesnarket was closecktc. for labeled
examples like “the securities bought by” and “the markesetbup 134 points”). So, we
supplement our sparse information (the identity of indiabdwords) with more-general
information (statistics from the distribution of those wsron the web). The word’s global
distribution can provide features just like the featuréetafrom the word’'docal context.
By local, | mean the contextual information surrounding the wordédaoclassified in a
given sentence. Combining local and global sources ofiimétion together, we can achieve
higher performance.

Note, however, that when the local contextimmbiguous, it is usually a better bet to
rely on the local information over the global, distributebrstatistics. For example, if the

30f course, it might be the case tHaiogandwondon’t occur in unlabeled data either, in which case we
might back off to even more general global features, but &edehis issue aside for the moment.



actual sentence said, “My son'’s simple trophy won their ts¢ahen we should guess VBD
for won, regardless of the global distribution wbphy won Of course, we let the learning
algorithm choose the relative weight on global vs. locabinfation. In my experience,
when good local features are available, the learning dlgarivill usually put most of the
weight on them, as the algorithm finds these features to Liststally more reliable. So we
must lower our expectations for the possible benefits oflputistributional information.
When there are already other good sources of informatioitase locally, the effect of
global information is diminished. Section 5.6 presentssexperimental results on VBN-
VBD disambiguation and discusses this point further.

Using N-grams for Learning from Unlabeled Data

In our work, we make use of aggregate counts over a large spwridon't inspect the in-
dividual instances of each phrase. That is, we do not segaiaiocess the 4868 sentences
where ‘won the trophy occurs on the web, rather we use the N-gravon the trophyand

its count, 4868, as a single unit of information. We do thismyebecause it's computation-
ally inefficient to process all the instances (that is, thiremeb). Very good inferences can
be drawn from the aggregate statistics. Chapter 2 desaibasge of alternative methods
for exploiting unlabeled data; many of these can not scalecto-scale text.

1.4 A Perspective on Statistical vs. Linguistic Approaches

When reading any document, it can be useful to think abouddltigor's perspective. Some-
times, when we establish the author’s perspective, we raightestablish that the document
is not worth reading any further. This might happen, for eplanif the author’s perspec-
tive is completely at odds with our own, or if it seems likehetauthor's perspective will
prevent them from viewing evidence objectively.

Surely, some readers of this document are also wonderingt éiv® perspective of its
author. Does he approach language from a purely statisi@apoint, or is he interested in
linguistics itself? The answer: Although | certainly adsitethe use of statistical methods
and huge volumes of data, | am mostly interested in how theseurces can help with
real linguistic phenomena. | agree that linguistics hasssemtial role to play in the future
of NLP [Jelinek, 2005; Haji¢ and Hajitova, 2007 aim to be aware of the knowledge of
linguists and | try to think about where this knowledge migpply in my own work. | try to
gain insight into problems by annotating data myself. Wheatkle a particular linguistic
phenomenon, | try to think about how that phenomenon semwe®h communication and
thought, how it may work differently in written or spoken tarage, how it may work
differently across human languages, and how a particutapatational representation may
be inadequate. By doing these things, | hope to not only m®duore interesting and
insightful research, but to produce systems that work bdtta example, while a search on
Google Scholar reveals a number of papers proposing “layegurlependent” approaches
to tasks such as named-entity recognition, parsing, graptie-phoneme conversion, and
information retrieval, it is my experience that approacties pay attention to language-
specific issues tend to work better (e.qg., in transliterefiliampojamarret al., 2014). In
fact, exploiting linguistic knowledge can even help the Glestatistical translation system
[Xu et al, 2009 — a system that is often mentioned as an example of a puredydiizen
NLP approach.



On the other hand, mapping language to meaning is a very hakg and statistical
tools help a lot too. It does not seem likely that we will sallse problems of NLP anytime
soon. Machine learning allows us to make very good predist{an the face of uncertainty)
by combining multiple, individually inadequate sourcesevfdence. Furthermore, it is
empirically very effective to make predictions based on sthimg previously observed
(say, on the web), rather than trying to interpret everglgorely on the basis of a very rich
linguistic (or multi-modal) model. The observations tha&rgly on can sometimes be subtle
(as in the verb tagging example from Section 1.3) and sonestioivious (e.g., just count
which preposition occurs most frequently in a given cont&ection 3.5). Crucially, even
if our systems do not really model the underlying linguigtiad other mental) processes,
such predictions may still be quite useful for real applmad (e.g., in speech, machine
translation, writing aids, information retrieval, etc.finally, once we understand what
can be solved trivially with big data and machine learnihgight better help us focus our
attention on the appropriate deeper linguistic issuestielong tail of linguistic behaviour
predicted by Zipf’s law. Of course, we need to be aware ofithigdtions of N-gram models
and big data, because, as Mark Steedman wWigesedman, 2008

“One day, either because of the demise of Moore’s law, or lsiftbpcause we
have done all the easy stuff, the Long Tail will come back tortas.”

Not long ago, many in our community were dismissive of apulylarge volumes of
data and machine learning to linguistic problems at all. &ample, IBM’s first paper
on statistical machine translation was met with a famouahoflymous) negative review
(1988) (quoted ifJelinek, 2009):

“The crude force of computers is not science. The paper iplgitreyond the
scope of COLING.”

Of course, statistical approaches are now clearly dominaiLP (see Section 2.1). In
fact, what is interesting about the field of NLP today is thewgng concern that our field
is now too empirical. These concerns even come from researchers #ratthve leaders
of the shift to statistical methods. For example, an upcgmiailk at COLING 2010 by
Ken Church and Mark Johnson discusses the topic, “The Pemduas swung too far. The
revival of empiricism in the 1990s was an exciting time. Batwrthere is no longer much
room for anything else>Richard Sproat adds:

“... the field [of computational linguistics] has devolvedarge measure into a
group of technicians who are more interested in tweakindgebleniques than
in the problems they are applied to; who are far more imprebyea clever
new ML approach to an old problem, than the application ofkmtechniques
to a new problem.”

Although my own interests lie in both understanding lingjaiproblems and in “tweak-
ing” ML techniques, | don't thinkeveryoneneed approach NLP the same way. We need

40ur models obviously do not reflect real human cognitionesimemans do not have access to the trillions
of pages of data that we use to train our models. The main igeaf this dissertation is to investigate what
kinds of useful and scientifically interesting things we danwvith computers. In general, my research aims to
exploit models of human linguistic processing where pdesés opposed to trying to replicate them.

Shttp://nip.stanford.edu/coling10/full-program. htmi# ring

Shttp://www.cslu.ogi.edu/ ~ sproatr/newindex/ncfom.html



Uses Web-Scale N-grams| Auto-Creates Examples
Problem Ch.3 Ch.4 Ch.5 Ch.6 Ch. 7
Preposition selection §35 §4.4.1
Context-sensitive spelling correctiq §3.6 §4.4.2 §54
Non-referential pronoun detection | § 3.7 §4.4.3

Adjective ordering §5.3

Noun-compound bracketing §5.5

VBN-VBD disambiguation §5.6

Selectional preference Ch. 6

Pronoun resolution §6.4.6

Cognate identification Ch.7

Table 1.1: Summary of tasks handled in the dissertatiory pointers to relevant sections,
divided by the main method applied (using web-scale N-geeatuires or automatic creation
of training examples)

both tweakers and theoristdpers andthinkers, those that try to solve everything using
ML/big data, and those that feel data-driven successesl@amgately preventing us from
solving the real problems. Supporting a diversity of viewasyrbhe one way to ensure uni-
versally better funding for NLP research in the fut{i®&eedman, 2008

I hope that people from a variety of perspectives will find stining they can appreciate
in this dissertation.

1.5 Overview of the Dissertation

Chapter 2 provides an introduction to machine learning ifPNdnd gives a review of previ-
ous supervised and semi-supervised approaches relateid thdsertation. The remainder
of the dissertation can be divided into two parts that spaap@drs 3-5 and Chapters 6-7,
respectively. Each chapter is based on a published pagpksoas relatively self-contained.
However, reading Chapter 3 first will help clarify Chaptentsi@&specially Chapter 4.

We now summarize the specific methods used in each chaptereasy reference,
Table 1.1 also lists the tasks that are evaluated in eaclesétbhapters.

Using Unlabeled Statistics as Features

In the first part of the dissertation, we propose to use thatsoof unlabeled patterns as
features in supervised systems trained on varying amotinébeled data. In this part of
the dissertation, the unlabeled counts are taken from wale-dN-gram data. Web-scale
data has previously been used in a diverse range of langesgarch, but most of this
research has used web counts for only short, fixed spans tédoiChapter 3 proposes a
unified view of using web counts for lexical disambiguatidie extract the surrounding
textual context of a word to be classified and gather, fromrgelaorpus, the distribution
of words that occur within that context. Unlike many pred@pproaches, our supervised
and unsupervised systems combine information from melapld overlapping segments of
context. On the tasks of preposition selection and corgersitive spelling correction, the
supervised system reduces disambiguation error by 20-2&%aurrent, state-of-the-art



web-scale systems. This work was published in the procgedih|JCAI-09[Bergsmaet

al., 20091. This same method can also be used to determine whether aypram text
refers to a preceding noun phrase or is insteat-referential This is the first system for
non-referential pronoun detection where all the key infation is derived from unlabeled
data. The performance of the system exceeds that of (pyi@lominant) rule-based
approaches. The work on non-referentialetection was first published in the proceedings
of ACL-08: HLT [Bergsmeet al., 20084.

Chapter 4 improves on the lexical disambiguation classifigdrChapter 3 by using a
simple technique for learning better support vector maehi(EVMs) using fewer train-
ing examples. Rather than using the standard SVM regutamizawe regularize toward
low weight-variance. Our new SVM objective remains a congaadratic function of the
weights, and is therefore computationally no harder tonoge than a standard SVM. Vari-
ance regularization is shown to enable dramatic improvésrieithe learning rates of SVMs
on the three lexical disambiguation tasks that we also ¢aickChapter 3. A version of this
chapter was published in the proceedings of CoNLL 2[Bé&rgsmeet al., 20108

Chapter 5 looks at the effect of combining web-scale N-graaiures with standard,
lexicalized features in supervised classifiers. It extefdswork in Chapter 3 both by
tackling new problems and by simultaneously evaluatingeh®vo very different feature
classes. We show that including N-gram count features caanaé the state-of-the-art
accuracy on standard data sets for adjective orderindjrgpebrrection, nhoun compound
bracketing, and verb part-of-speech disambiguation. Nraportantly, when operating on
new domains, or when labeled training data is not plentifd,show that using web-scale
N-gram features is essential for achieving robust perfocea A version of this chapter
was published in the proceedings of ACL 20Bergsmaet al,, 20104.

Using Unlabeled Statistics to Generate Training Examples

In the second part of the dissertation, rather than usingithabeled statistics solely as
features, we use them to generate labeled examples. By aiitaity labeling a large
number of examples, we can train powerful discriminativedeis, leveraging fine-grained
features of input words.

Chapter 6 shows how this technique can be used to learnisel@gbreferences. Mod-
els of selectional preference are essential for resolwntpstic, word-sense, and reference
ambiguity, and models of selectional preference haveveda lot of attention in the NLP
community. We turn selectional preference into a supedvisassification problem by ask-
ing our classifier to predict which predicate-argument gpaliould have high association
in text. Positive examples are taken from observed presli@egument pairs, while neg-
atives are constructed from unobserved combinations. & #& classifier to distinguish
the positive from the negative instances. Features ardrcoted from the distribution of
the argument in text. We show how to partition the examplegfiicient training with 57
thousand features and 6.5 million training instances. Thdahoutperforms other recent
approaches, achieving excellent correlation with humangbility judgments. Compared
to mutual information, our method identifies 66% more vebleot pairs in unseen text,
and resolves 37% more pronouns correctly in a pronoun reésolexperiment. This work
was originally published in EMNLP 200ergsmeet al., 20083.

In Chapter 7, we apply this technique to learning a model ohgtsimilarity. A
character-based measure of similarity is an important cmapt of many natural language
processing systems, including approaches to translieratoreference, word alignment,
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spelling correction, and the identification of cognatesiated vocabularies. We turn string
similarity into a classification problem by asking our ciéiss to predict which bilingual
word pairs are translations. Positive pairs are generatemratically from words with a
high association in an aligned bitext, or mined from dictigntranslations. Negatives are
constructed from pairs with a high amount of character eyerbut which are not transla-
tions. We gather features from substring pairs consistéhtavcharacter-based alignment
of the two strings. The main objective of this work was to desitate a better model of
string similarity, not necessarily to demonstrate our rodtfor generating training exam-
ples, however the overall framework of this work fits in nicalith this dissertation. Our
model achieves exceptional performance; on nine sepaogteate identification experi-
ments using six language pairs, we more than double thege/gnacision of traditional
orthographic measures like longest common subsequenoerat Dice’s coefficient. We
also show strong improvements over other recent discrifm@gand heuristic similarity
functions. This work was originally published in the prodiegs of ACL 2007[Bergsma
and Kondrak, 2007a

1.6 Summary of Main Contributions

The main contribution of Chapter 3 is to show that we need esifrict ourselves to very
limited contextual information simply because we are wogkivith web-scale volumes of
text. In particular, by using web-scale N-gram data (as spgdo, for example, search
engine data), we can:

e combine information from multiple, overlapping sequencéscontext of varying
lengths, rather than using a single context pattern (Ch&ptand

e apply either discriminative techniques or simple unsuigervalgorithms to integrate
information from these overlapping contexts (Chapter 3).

We also make useful contributions by showing how to:

e detect non-referential pronouns by looking at the distrdsuof fillers that occur in
pronominal context patterns (Section 3.7),

o modify the SVM learning algorithm to be biased toward a sotuthat isa priori
known to be effective, whenever features are based on c@@hepter 4), and

e operate on new domains with far greater robustness thaoaqpes that simply use
standard lexical features (Chapter 5).

o exploit preprocessing of web-scale N-gram data, eithepai&of-speech tags added
to the source corpus (Chapter 5), or by truncating/stemrfiadN-grams themselves
(Section 3.7).

The technigue of automatically generating training exaslas also been used previ-
ously in NLP. Our main contributions are showing:

e very clean pseudo-examples can be generated from aggisgtistics rather than
individual words or sentences in text, and
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e since many more training examples are available when exeapé created automat-
ically, we can exploit richer, more powerful, more fine-ged features for a range
of problems, from semantics (Chapter 6) to string simya@hapter 7).

The new features we proposed include the first use of chatl@etd (string and capi-
talization) features for selectional preferences (Cha®teand the first use of alignment in
discriminative string similarity (Chapter 7).

| really do hope you enjoy finding out more about these and theraontributions of
this dissertation!
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Chapter 2

Supervised and Semi-Supervised
Machine Learning in Natural
Language Processing

“We shape our tools. And then our tools shape us.”
- Marshall McLuhan

This chapter outlines the key concepts from machine legrthiat are used in this dis-
sertation. Section 2.1 provides some musings on why madbaraing has risen to be
such a dominant force in NLP. Section 2.2 introduceslitrear classifier the fundamen-
tal statistical model that we use in all later chapters ofdissertation. Section 2.2, and
the following Section 2.3, address one important goal of tifiapter: to present a sim-
ple, detailed explanation of how the tools of supervised him&clearning can be used in
NLP. Sections 2.4 and 2.5 provide a higher-level discussiamrlated approaches to un-
supervised and semi-supervised learning. In particlt@sd sections relate past trends in
semi-supervised learning to the models presented in tisertion.

2.1 The Rise of Machine Learning in NLP

It is interesting to trace the historical development of gitatistical techniques that are
so ubiquitous in NLP today. The following mostly relies o thrief historical sketch in
Chapter 1 of Jurafsky and Martin's textbobburafsky and Martin, 2040 with insights
from [Church and Mercer, 1993; Manning and Schitze, 1999; Jeli2@05; Fung and
Roth, 2005; Haji¢ and Hajicova, 20p7

The foundations of speech and language processing lie ihG@s and 1950s, when
finite-state machines were applied to natural language aydel Shanno[1944, and sub-
sequently analyzed as a formal language by Noam Chofd€86. During the later 1950s
and 1960s, speech and language processing had split intdistioct lines of research:
logic-based “symbolic” methods and probabilistic “stostied research.

Researchers in the symbolic tradition were both pursuimgpedational approaches to
formal language theory and syntax, and also working withuradtianguage in the logic
and reasoning framework then being developed in the new diedtificial intelligence.
From about 1960 to 1985, stochastic approaches were ggneudof-favour, and remain
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so within some branches of psychology, linguistics andiadl intelligence even today.
Manning and Schiitze believe that

“much of the skepticism towards probabilistic models fardaage (and cog-
nition in general) stems from the fact that the well-knownlyearobabilistic
models (developed in the 1940s and 1950s) are extremelylisiimpBecause
these simplistic models clearly do not do justice to the demity of human
language, it is easy to view probabilistic models in genasahadequate.”

The stochastic paradigm became much more influential adteinthe 1970s and early
1980s when N-gram models were successfully applied to spesognition by the IBM
Thomas J. Watson Research Cerifalinek, 1976; Bahét al., 1983 and by James Baker
at Carnegie Mellon UniversityBaker, 1975. Previous efforts in speech recognition had
been ratherdd hocand fragile, and were demonstrated on only a few speciadibctal ex-
amples’[Russell and Norvig, 2003 The work by Jelinek and others soon made it apparent
that data-driven approaches simplgrk better As Haji¢ and Hajictovd2007 summarize:

“[The] IBM Research group under Fred Jelinek’s leadersbglized (and ex-
perimentally showed) that linguistic rules and Artificiatélligence techniques
had inferior results even when compared to very simplistitisical tech-

niques. This was first demonstrated on phonetic baseforntiseiracoustic

model for a speech recognition system, but later it becamparept that this

can be safely assumed almost for every other problem in thek (feg., Je-

linek [1974). Statistical learning mechanisms were apparently anarlgle
superior to any human-designed rules, especially those) wsiy preference
system, since humans are notoriously bad at estimatinditatave character-

istics in a system with many parameters (such as a natuiglidae).”

Probabilistic and machine learning techniques such asidecirees, clustering, EM,
and maximum entropy gradually became the foundation ofcdppeocessingFung and
Roth, 200%. The successes in speech then inspired a range of empippebaches to
natural language processing. Simple statistical teclkesiquere soon applied to part-of-
speech tagging, parsing, machine translation, word-seissenbiguation, and a range of
other NLP tasks. While there was only one statistical paptteeACL conference in 1990,
virtually all papers in ACL today employ statistical tectnes[Haji¢ and Hajicova, 2047

Of course, the fact that statistical techniques currentiykvibetter is only partly respon-
sible for their rise to prominence. There was a fairly large m time between their proven
performance on speech recognition and their widespreagptaitce in NLP. Advances

in computer technology and the greater availability of dasources also played a role.
According to Church and Mercé¢t993:

“Back in the 1970s, the more data-intensive methods wetteginly beyond the
means of many researchers, especially those working irergifies... Fortu-
nately, as a result of improvements in computer technologlythe increasing
availability of data due to numerous data collection effpthe data-intensive

methods are no longer restricted to those working in afflushistrial labora-
tories.”

Two other important developments were the practical apfiic and commercializa-
tion of NLP algorithms and the emphasis that was placed orirgralevaluation. A greater
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emphasis on “deliverables and evaluati¢@hurch and Mercer, 1993 reated a demand
for robust techniques, empirically-validated on held-data. Performance metrics from
speech recognition and information retrieval were adopiedany NLP sub-fields. People
stopped evaluating on their training set, and started usamdard test sets. Machine learn-
ing researchers, always looking for new sources of datarbegaluating their approaches
on natural language, and publishing at high-impact NLP exanfces.

FlexiblediscriminativeML algorithms like maximum entropfBergeret al., 1994 and
conditional random fieldELafferty et al,, 2001 arose as natural successors to earlier sta-
tistical techniques like naive Bayes and hidden Markov neodgenerativeapproaches;
Section 2.3.3). Indeed, since machine learning algoritfeagecially discriminative tech-
niques, could be specifically tuned to optimize a desiretbpmance metric, ML systems
achieved superior performance in many competitions andatans. This has led to a shift
in the overall speech and language processing landscamgndly, progress in statistical
speech processing inspired advances in NLP; today many §tlritims (such as structured
perceptrons and support vector machines) were first desglfmw NLP and information re-
trieval applications and then later applied to speech tHSksg and Roth, 2005

In the initial rush to adopt statistical techniques, manyPNasks were decomposed into
sub-problems that could be solved with well-understoodraadily-available binary classi-
fiers. In recent years, NLP systems have adopted more sicplest ML techniques. These
algorithms are now capable of producing an entire annaigtike a parse-tree or trans-
lation) as a single global output, and suffer less from th@pagation of errors common
in a pipelined, local-decision approach. These so-cakgaittured prediction” techniques
include conditional random fieldd. afferty et al,, 2001, structured perceptror€ollins,
2004, structured SVMdTsochantaridiset al, 2004, and rerankergCollins and Koo,
2004. Others have explored methods to produce globally-cargistructured output via
linear programming formulatior{®Roth and Yih, 200k While we have also had success in
using global optimization techniques like integer lineemgramming[Bergsma and Kon-
drak, 2007 and re-rankingDou et al,, 2009, the models used in this dissertation are
relatively simple linear classifiers, which we discuss mfibllowing section. This disserta-
tion focuses on a) developing better features and b) auicatigtproducing more labeled
examples. The advances we make are also applicable whenrasiie sophisticated learn-
ing methods.

Finally, we note that recent years have also seen a strong fat the development of
semi-supervisetbarning techniques for NLP. This is also the focus of thesdrtation. We
describe semi-supervised approaches more generally troS&c5.

2.2 The Linear Classifier

A linear classifier is a very simple, unsophisticated cohc#je explain it in the context

of text categorization, which will help make the equationsrenconcrete for the reader.
Text categorization is the problem of deciding whether gruirdocument is a member of
a particular category or not. For example, we might want &ssify a document as being
aboutsportsor not.

Let’s refer to the input ag. So for text categorization] is a document. We want to
decide ifd is about sports or not. On what shall we base this decisionalWéys base the
decision on soméaturesof the input. For a document, we base the decision on the words
in the document. We definefaature function ®(d). This function takes the input and
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produces deature vector. A vector is just a sequence of numbers, l{Re34,2.3). We can
think of a vector as having multipléimensionswhere each dimension is a number in the
sequence. S0 is in the first dimension of0, 34,2.3), 34 is in the second dimension, and
2.3 is in the third dimension. For text categorization, eachatision might correspond to
a particular word (although character-based representatire also possib(¢.odhi et al,
2009). Thevalue at that dimension could beif the word is present in the document, and
0 otherwise. These aff@nary feature values. We sometimes say that a fediteeif that
feature value is non-zero, meaning, for text categorinatibat the word is present in the
document. We also sometimes refer to the feature vectoredsdture representation of
the problem.

In machine learning, the feature vector is usually denosed a0z = ®(d).

A simple feature representation would be to have the firsedsion be for the presence
of the wordthe, the second dimension for the presencewfing, and the third for the pres-
ence ofObama If the document read only “Obama attended yesterday’sngurhatch,”
then the feature vector would k6,1, 1). If the document read “stocks are up today on
Wall Street,” then the feature vector would (#20, 0). Notice the order of the words in the
text doesn’t matter. “Curling went Obama” would have the sdeature vector as “Obama
went curling.” So this is sometimes referred to aslihg-of-wordsfeature representation.
That’s not really important but it's a term that is often seeold text when describing
machine learning.

Thelinear classifier, h(z), works by multiplying the feature vectat,= (z1, zo, ...xN)
by a set of learned weights;, = (w1, wo, ...):

h(z)=w-T= wa (2.1)
7

where thedot product (-) is a mathematical shorthand meaning, as indicated, titdt ea
w; is multiplied with the feature value at dimensiorand the results are summed. We
can also write a dot product using matrix notationz@sz. A linear classifier using an
N-dimensional feature vector will sum the productshoimultiplications. It's known as a
linear classifier because this idimear combination of the features. Note, sometimes the
weights are also represented usikg= (A1, ...Ax). This is sometimes convenient in NLP
when we might want to use to refer to a word.

The objective of the linear classifier is to produabelson new examples. Labels are
almost always representedasie choose the label using the output of the linear classifier
In a common paradigm, if the output is positive, that/i&;) > 0, then we take this as a
positive decision: yes, the documehtloesbelong to the sports category, so the label,
equals+1 (the positive class). Ih(z) < 0, we say the document does not belong in the
sports category, ang= —1 (the negative class).

Now, the job of the machine learning algorithm is to learrstheveights. That's really
it. In the context of the widely-used linear classifier, theigihts fully define the classifier.
Training means choosing the weights, aiedting means computing the dot product with
the weights for new feature vectors. How does the algoritbtaadly choose the weights?
In supervised machine learning, you give some examplesatdifie vectors and the correct
decision on the vector. The index of each training examplssiglly written as a super-
script, so that a training set dff examples can be written a$(z!,y'), ..., (z™,yM)}.

For example, a set of two training examples might{be 1,0), +1}, {(1,0,0),—1} for
a positive (-1) and a negative-{1) example. The algorithm tries to choose trerame-
ters (a synonym for the weightsy) that result in the correct decision on this training data
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Figure 2.1: The linear classifier hyperplane (as given by ¥MSwith support vectors
indicated)

when the dot product is computed (here between three weagldtshree features). For our
sportsexample, we would hope that the algorithm would learn, faregle, thatcurling
should get a positive weight, since documents that conterwiord curling are usually
about sports. It should assign a fairly low weight, perhag® aveight, to the wordhe,
since this word doesn’t have much to say one way or the othkeoo§ing an appropriate
weight for theObamafeature is left as an exercise for the reader. Note that eicgn
be negative. Section 2.3 has more details on some of theatiffalgorithms that learn the
weights.

If we take a geometric view, and think of the feature vectsrp@nts inNV-dimensional
space, then learning the weights can also be thought of msrigea separating hyperplane.
Once we have any classifier, then all feature vectors thgbagtive scores will be in one
region of space, and all the feature vectors that get negstiores will be in another. With
a linear classifier, a hyperplane will divide these two regioFigure 2.1 depicts this set-up
in two dimensions, with the points of one class on the le#, hints for the other class on
the right, and the dividing hyperplane as a bar down the raitid|

In this discussion, we've focused on binary classificatisrthe document abosports
or not? In many practical applications, however, we haveentiban two categories, e.g.
sports finance politics, etc. It’s fairly easy to adapt the binary linear classifeethie mul-
ticlasscase. FoiK classes, one common approach isdhe-versus-allstrategy: we have
K binary classifiers that each predict whether a documentrisgba given category or
not. Thus we might classify a document about Obama goingnguas both asportsand
apolitics document. In cases where only one category is possibletlieeclasses are mu-
tually exclusive, such as the restriction that each worcel@amy one part-of-speech tag),
we could take the highest-scoring classifier (the highé¢s)) as the class. There are also
multiclass classifiers, like the approach we use in Chapténa® essentially jointly opti-
mize theK classifiers (e.glCrammer and Singer, 20)1 Chapter 4 defines and evaluates
various multi-class learning approaches.

A final point to address: should we be using a linear classifierour problems at
all? Linear classifiers are very simple, extremely fast, aodk very well on a range of

*From: www.stat.columbia.edu/ ~ cook/movabletype/archives/2006/02/
interesting_cas_1.html
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problems. However, they do not work well in all situationsipfose we wanted a binary
classifier to tell us whether a given Canadian city is eith@vianitoba or not in Manitoba.
Suppose we had only one feature: distance from the Pacifanodewould be difficult to
choose a weight and a threshold for a linear classifier satwid could separate Manitoban
cities from other Canadian cities with only this one featuté we took cities below a
threshold, we could get all cities west of Ontario. If we tdbkse above, we could get
all cities east of Saskatchewan. We would say that the pesaind negative examples are
not separableusing this feature representation; the positives and ivegatan’t be placed
nicely onto either side of a hyperplane. There are lots oflirwar classifiers to choose
from that might do better.

On the other hand, we're always free to choose whateverrieétnction we like; for
most problems, we can just choose a feature space that ddesseibwith linear classifiers
(i.e., a feature space that perhaps does make the trainiageéparable). We could divide
distance-from-Pacific-oceaimto multiple features: say, a binary feature if the disais
between 0 and 100 km, another if it's between 100 and 200, Atso, many learning
algorithms permit us to use thernel trick , which maps the feature vectors into an implicit
higher-dimensional space where a linear hyperplane céerloitide the classes. We return
to this point briefly in the following section. For many nallanguage problems, we have
thousands of relevant features, and good classificatiomssilple with linear classifiers.
Generally, the more features, the more separable the egampl

2.3 Supervised Learning

In this section, we provide a very practical discussion of ltkke parameters of the linear
classifier are chosen. This is the NLP view of machine legrnivhat you need to know to
use it as a tool.

2.3.1 Experimental Set-up

The proper set-up is to have at least three sets of labelaedndan designing a supervised
machine learning system. First, you haveaaning set, which you use to learn youmodel
(yet another word that means the same thing as the weightramgters: the model is the
set of weights). Secondly, you havelevelopment setwhich serves two roles: a) you can
set any of your algorithm’s hyperparameters on this setdipgrameters are discussed be-
low), and b) you can test your system on this set as you ardapéng. Rather than having
a single development set, you could optimize your paramdtgten-fold cross validation
on the training set, essentially re-using the training dataet development parameters.
Finally, you have &old-out setor test setof unseen data which you use for your final
evaluation. You only evaluate on the test set once, to genéra final results of your ex-
periments for your paper. This simulates how your algoritivould actually be used in
practice: classifying data it has not seen before.

To run machine learning in this framework, we typically leby converting the three
sets into feature vectors and labels. We then supply theiritpiset, in labeled feature
vector format, to a standard software package, and thisagacketurns the weights. The
package can also be used to multiply the feature vectors éyvtights, and return the
classification decisions for new examples. It thus can atehafoes calculate performance
on the development or test sets for you.
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The above experimental set-up is sometimes referred tdagch learning approach,
because the algorithm is given the entire training set ak.orctypical algorithm learns
a single, static model using the entire training set in oamiing session (remember: for
a linear classifier, by model we just mean the set of weighkg)s is the approach taken
by SVMs and maximum entropy models. This is clearly différdsan how humans learn;
we adapt over time as new data is presented. Alternativelgnéine learning algorithm
is one that is presented with training examples in sequedine learning iteratively
re-estimates the model each time a new training instancecsuatered. The perceptron
is the classic example of an online learning approach, whileently MIRA [Crammer
and Singer, 2003; Crammet al,, 2004 is a popular maximum-margin online learner (see
Section 2.3.4 for more on max-margin classifiers). In pcagtthere is little difference
between how batch and online learners are used; if newnigaegxamples become available
to a batch learner, the new examples can simply be added &xitfteng training set and the
model can be re-trained on the old-plus-new combined daaa@iher batch process.

It is also worth mentioning another learning paradigm knasactive learning[Cohn
et al, 1994; Tong and Koller, 2002 Here the learner does not simply train passively
from whatever labeled data is available, rather, the lgatag request specific examples
be labeled if it deems adding these examples to the trairehgvsl most improve the
classifier’s predictive power. Active learning could pdtalty be used in conjunction with
the techniques in this dissertation to get the most benefibbthe smallest amount of
training data possible.

2.3.2 Evaluation Measures

Performance is often evaluated in termsaoturacy. what percentage of examples did we
classify correctly? For example, if our decision is whethdocument is aboiportsor not
(i.e.,sportsis thepositive clas$, then accuracy is the percentage of documents that are cor-
rectly labeled asportsor non-sports Note it is difficult to compare accuracy of classifiers
across tasks, because typically the class balance straffglyts the achievable accuracy.
For example, suppose there are 100 documents in our testngktnly five of these are
sportsdocuments. Then a system could trivially achieve 95% acgung assigning every
document thenon-sportdabel. 95% might be much harder to obtain on another task with
a 50-50 balance of the positive and negative classes. Aociganost useful as a measure
when the performance of the proposed system is compared#sealine a reasonable,
simple and perhaps even trivial classifier, such as one tbks$ phe majority-class (the
most frequent class in the training data). We use baselilenever we state accuracy in
this dissertation.

Accuracy also does not tell us whether our classifier is ptedj one class dispropor-
tionately more often than another (that is, whether it hagag). Statistical measures that
do identify classifier biases aRrecision Recall, andF-Score These measures are used
together extensively in classifier evaluatforhgain, suppossportsis the class we're pre-
dicting. Precisiontells us:of the documents that our classifier predicted to be sportsitw
percentage are actually spoftisThat is, precision is the ratio of true positives (elements
we predicted to be of the positive class that truly are pasitivheresportsis the positive
class in our running example), divided by the sum of truetpes and false positives (to-

2Wikipedia has a detailed discussion of these measuisp://en.wikipedia.org/wiki/
Precision_and_recall
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‘ true class

+1 -1
: +1| TP FP
predicted class 1 ‘ EN TN

Table 2.1: The classifier confusion matrix. Assuming “1"he fpositive class and “-1” is
the negative class, each instance assigned a class byifi@lasgither a true positive (TP),
false positive (FP), false negative (FN), or true negafiid)( depending on its actual class
membership (true class) and what was predicted by the teaggredicted class).

gether, all the elements that we predicted to be membersqgidhkitive class)Recall on
the other hand, tells ube percentage of actual sports documents that were alstiqiesl
by the classifier to be sports document$at is, recall is the ratio of true positives divided
by the number of true positives plus the number of false magm(together, all the true,
gold-standard positives). It is possible to achieve 1008alt®n any task by predicting all
instances to be of the positive class (eliminating falseatiegs). In isolation, therefore,
precision or recall may not be very informative, and so theyadten stated together. For a
single performance number, precision and recall are ofterbined into the F-score, which
is simply the harmonic mean of precision and recall.

We summarize these measures using Table 2.1 and the fofj@gimations:

Precision= P
~ TP+FP
TP
Recall= ————
ecal= TP EN

2 * Precision« Recall

F-Score= —
Precisior+ Recall

2.3.3 Supervised Learning Algorithms

We want a learning algorithm that will give us the best accyran our evaluation data
— how do we choose it? As you might imagine, there are mangréifit ways to choose
the weights. Some algorithms are better suited to sometisitisathan others. There are
generativemodels like naive bayes that work well when you have smattesunts of train-
ing data[Ng and Jordan, 2002 Generative approaches jointly model both the input and
output variables in a probabilistic formulation. They rigguone to explicitly model the in-
terdependencies between the features of the model. Theadsar perceptrons, maximum
entropy/logistic regression models, support vector nrag)iand many othealiscrimina-
tive techniques that all have various advantages and disadnia certain situations.
These models are known as discriminative because they émizgd to distinguish the
output labels given the input features (to discriminatevieen the different classes), rather
than to jointly model the input and output variables as ingbperative approach. As Vap-
nik [1999 says, (quoted ifiNg and Jordan, 2092 “One should solve the [classification]
problem directly and never solve a more general problem astarmediate step.” In-
deed,[Roth, 1998 shows that generative and discriminative classifiers batkenuse of
a linear feature space. Given the same representation,ffaeedce between generative
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and discriminative models therefore rests solely in howwlegghts are chosen. Rather
than choosing weights that best fit the generative model erirttining data (and satisfy
the model’s simplifying assumptions, typically concemthe interdependence or indepen-
dence of different features), a discriminative model clesabe weights that best attain the
desired objective: better predictiobSung and Roth, 2005 Discriminative models thus
tend to perform better, and are correspondingly the predeipproach today in many areas
of NLP (including increasingly in semantics, where we rdlyeproposed a discriminative
approach to selectional preference; Chapter 6). Unlikegee approaches, when using
discriminative algorithms we can generally use arbitrargl enterdependent features in our
model without worrying about modeling such interdependendJse of the wordliscrim-
inativein NLP has thus come to indicate both an approach that ogsrfiar classification
accuracy directhyand one that uses a wide variety of features. In fact, one kincafure
you might use in a discriminative system is the predictioowput of a generative model.
This illustrates another advantage of discriminativeieay: competing approaches can
always be included as new features.

Note the clear advantages of discriminative models aréyrealy true for supervised
learning in NLP. There are now a growing number of generaBayesian, unsupervised
algorithms that are being developed. It may be the casettbgigndulum will soon swing
back and generative models will again dominate the supstvigaying field as well, par-
ticularly if they can provide principled ways to incorparatinlabeled data into a semi-
supervised framework.

2.3.4 Support Vector Machines

When you have lots of features and lots of examples, supgotbr machine§Cortes and
Vapnik, 1993 (SVMs) seem to be the best discriminative approach. On@mnemight be
because they perform well in situations, like natural lag®) where many features are
relevant[Joachims, 1999aas opposed to situations where a few key indicators may be
sufficient for prediction. Conceptually, SVMs take a geametiew of the problem, as
depicted in Figure 2.1. The training algorithm chooses tyyelplane location such that
it is maximally far away from the closest positive and negapoints on either side of it
(this is known as thenax-marginsolution). These closest vectors are known as support
vectors. You can reconstruct the hyperplane from this seedfors alone. Thus the name
support vector machindn fact, Figure 2.1 depicts the hyperplane that would beleé by
an SVM, with marks on the corresponding support vectors.

It can be shown that the hyperplane that maximizes the magiresponds to the
weight vector that solves the following constrained optiation problem:

. T 0
min )
subject to : Vi, yi(w -zt >1 (2.2)

where||w|| is the Euclidean norm of the weight vector. Note@||> = w - w. Thei is a
mathematical convenience so that that coefficient goes awkayn we take the derivative.
The optimization says that we want to find the smallest weigltor (in terms of its Eu-
clidean norm) such that our linear classifier's outgi{t{) = w - z) is bigger than one when
the correct label is a positive class (y = +1), and less thawhén the correct label is a
negative class (y = -1). The constraint in Equation 2.2 isaiset way of writing these
two conditions in one line.
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Having the largest possible margin (or, equivalently, tinaléest possible weight vector
subject to the constraints) that classifies the trainingmgtes correctly seems to be a good
idea, as it is most likely tgeneralizeto new data. Once again, consider text categorization.
We may have a feature for each word in each document. Theteisgh words and few
enough documents such that our training algorithm couldipbsget all the training ex-
amples classified correctly if it just puts all the weight ba tare words in each document.
So if Obamaoccurs in a single sports document in our training set, butheoe else in the
training set, our algorithngould get that document classified correctly if it were to put all
its weight on the wordDbamaand ignore the other features. Although this approach would
do well on the training set, it will likely not generalize Wi unseen documents. It's likely
not the maximum margin (smallest weight vector) solutidnwé can instead separate the
positive and negative examples using more-frequent wakdsstoreandwin andteams
then we should do so. We will use less weights overall, anduight vector will have
a smaller norm (fewer weights will be non-zero). It intugiy seems like a good idea to
rely on more frequent words to make decisions, and the SVMnigdtion just encodes
this intuition in a theoretically well-grounded formulai (it's all based on ‘empirical risk
minimization’ [Vapnik, 1999).

Sometimes, the positive and negative examples are notad@paand there will be no
solution to the above optimization. At other times, everh# tata is separable, it may
be better to turn the hard constraints in the above equationsoft preferences, and place
even greater emphasis on using the frequent features. Jhatei may wish to have a
weight vector with a small norm even at the expense of notraéipg the data. In terms of
categorizing sports documents, words lg@reandwin andteamsmay sometimes occur
in non-sports documents in the training set (so we may geesmaming documents wrong
if we put positive weight on them), but they are a better betgetting test documents
correct than putting high weight on rare words lRbama(blindly enforcing separability).
Geometrically, we can view this as saying we might want tovalfome points to lie on the
opposite side of the hyperplane (or at least closer to ityefcan do this with weights on
fewer dimensions.

[Cortes and Vapnik, 199Fjive the optimization program for a soft-margin SVM as:

L 12 e

. - — C (]

ol e
subject to : Vi, £&>0

y'(@-7')>1-¢ (2.3)
The¢? values are known as the slacks. Each example may use sokeRtaaclassification
must either be separable and satisfy the margin constiaimthjch caset = 0) or it may
instead use its slack to satisfy the inequality. The weidjstem of the slacks are minimized
along with the norm ofo.

The relative importance of the slacks (getting the trairemgmples separated nicely)
versus the minimization of the weights (using more generalures) is controlled by tun-
ing C'. If the feature-weights learned by the algorithm areghemetersthen thisC' value
is known as ahyperparameter, since it's something done separately from the regular pa-
rameter learning. The general practice is to try variousaes&for this hyperparameter, and
choose the one that gets the highest performance on theogeweht set. In an SVM, this
hyperparameter is known as tfegularization parameter. It controls how much we penal-
ize training vectors that lie on the opposite side of the hglame (with distance given by
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their slack value). In practice, | usually try a range of ealdor this parameter starting at
0.000001 and going up by a factor of 10 to around 100000.

Note you would not want to tune the regularization parambjemeasuring perfor-
mance on thdraining set, as less regularization is always going to lead to bptéior-
mance on the training data itself. Regularization is a wayréwentoverfitting the training
data, and thus should be set on separate examples, i.eevifleppiment set. However, some
people like to do 10-fold cross validation on the trainingad@ set their hyperparameters.
I have no problem with this.

Another detail regarding SVM learning is that sometimes d@kas sense to scale or
normalize the features to enable faster and sometimes be#timing. For many tasks,
it makes sense to divide all the feature values by the Ewticdhrm of the feature vector,
such that the resulting vector has a magnitude of one. Intapters that follow, we specify
if we use such a technique. Again, we can test whether suelmsftrmation is worth it by
seeing how it affects performance on our development data.

SVMs have been shown to work quite well on a range of tasksoufwant to use a
linear classifier, they seem to be a good choice. The SVM ftation is also perfectly
suited to using kernels to automatically expand the featpexe, allowing for non-linear
classification. For all the tasks investigated in this disdi®n, however, standard kernels
were not found to improve performance. Furthermore, tngirand testing takes longer
when kernels are used.

2.3.5 Software

We view the current best practice in most NLP classificatjgpliaations as follows: Use as
many labeled examples as you can find for the task and domaiteoést. Then, carefully
construct a linear feature space such that all potentiadful combinations of proper-
ties are explicit dimensions in that space (rather thanigitiyl creating such dimensions
through the use of kernels). For training, use the LIBLINEpd&tkagd Fanet al, 2004,
an amazingly fast solver that can return the SVM model in sgés@ven for tens of thou-
sands of features and instances (other fast alternativss but haven't been explored in
this dissertation). This set-up allows for very rapid sgstdevelopment and evaluation,
allowing us to focus on the features themselves, rathertti@learning algorithm.

Since many of the tasks in this dissertation were comple&tdré LIBLINEAR was
available, we also present results using older solvers ascthe logistic regression pack-
age in WekdWitten and Frank, 2045the efficient SVMticlass instance of SVM!uct
[Tsochantaridigt al., 2004), and our old stand-by, Thorsten Joachim’s S¥k4 [Joachims,
19994. Whatever package is used, it should now be clear that instefrthis dissertation,
training simply means learning a set of weights for a lindassifier using a given set of
labeled data.

2.4 Unsupervised Learning

There is a way to gather linguistic annotations without @gsiny training data: unsupervised
learning. This at first seems rather magical. How can a sypteduce labels without ever
seeing them?

Most current unsupervised approaches in NLP are decidedhagical. Probably since
so much current work is based on supervised training froraléabdata, some rule-based
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and heuristic approaches are now being calledupervisedsince they are not based on
learning from labeled data. For example, in Chapter 1, 8ectil, we discussed how a
part-of-speech tagger could be based on linguistic rulasi&based tagger could in some
sense be consideramhsupervisedsince a human presumably created the rules from intu-
ition, not from labeled data. However, since the human pgrybloked atsomedata to
come up with the rules (a textbook, maybe?), calling thisuperviseds a little mislead-
ing from a machine learning perspective. Most people woutdably simply call this a
“rule-based approach.” In Chapter 3, we propose unsupmehsgstems for lexical disam-
biguation, where a designer need only specify the wordsafeatorrelated with the classes
of interest, rather than label any training data. We alsoudis previous approaches that
use counts derived from Internet search engine resultselégproaches have usually been
unsupervised.

From a machine learning perspective, true unsupervisetbagpipes are those that in-
duce output structure from properties of the problem, witiclgnce from probabilistic mod-
els rather than human intuition. We can illustrate this ephanost clearly again with the
example of document classification. Suppose we know therénar classes: documents
about sports, and documents that are not about sports. Wigpeoanate the feature vectors
as discussed above, and then simply form two groups of \&starh that members of each
group are close to each other (in terms of Euclidean disjandé-dimensional space. New
feature vectors can be assigned to whatever groajuster they are closest to. The points
closest to one cluster will be separated from points clagette other cluster by a hyper-
plane in N-dimensional space. Where there’s a hyperplane, then'sheer@rresponding
linear classifier, with a set of weights. So clustering canmriea linear classifier as well. We
don’t know what the clusters represent, but hopefully onthei has all the sports docu-
ments (if we inspect the clusters and define one of them aptrésclass, we're essentially
doing a form ofsemi-supervisetbarning).

Clustering can also be regarded as an “exploratory scighatseeks to discover useful
patterns and structures in dd®antel, 200R This structure might later be exploited for
other forms of language processing; later we will see howtehing can be used to provide
helpful feature information for supervised classifierscti®m 2.5.5).

Clustering is the simplest unsupervised learning algaritin more complicated set-
ups, we can define a probability model over our features (asgiply over othehidden
variables), and then try to learn the parameters of the nsaabdl that our unlabeled data has
a high likelihood under this model. We previously used sutdchnique to train a pronoun
resolution system using expectation maximizati@nerry and Bergsma, 2005 Similar
techniques can be used to train hidden markov models andggherative models.

These models can provide a very nice way to incorporate fatslabeled data. In some
sense, however, doing anything beyond an HMM requires oibe @ bit of probabilistic-
modeling guru. The more features you incorporate in the mdlde more you have to ac-
count for the interdependence of these features explioiypur model. Some assumptions
you make may not be valid and may impair performance. It'sl haknow exactly what's
wrong with your model, and how to change it to make it bettelsoAwhen setting the
parameters of your model using clustering or expectatiorinmaation, you might reach
a point only of local optimum, from which the algorithm caropeed no further to better
settings under your model (and you have no idea you've reatfie point). But, since
these algorithms are not optimizing discriminative perfance anyways, it's not clear you
want the global maximum even if you can find it.
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One way to find a better solution in this bumpy optimizatiompis to initialize or
fix parameters of your model in ways that bias things towarétwlou know you want.
For example[Haghighi and Klein, 2010fix a number of parameters in their entity-type /
coreference model usingototypef different classes. That is, they ensure, e.g., Bush
or Gore are in the PERSON class, as are the nomipagsident, official etc., and that
this class is referred to by the appropriate set of pronotihey also set a number of other
parameters to “fixed heuristic values.” When the unsupedvisarning kicks in, it initially
has less freedom to go off the rails, as the hand-tuning laakedtthe model from a good
spot in the optimization space.

One argument that is sometimes made against fully unsigesehépproaches is that the
set-up is a little unrealistic. You will likely want to evalte your approach. To evaluate
your approach, you will need some labeled data. If you cadywe labeled data for test-
ing, you can produce some labeled data for training. It sebaisemisupervised learning
is a more realistic situation: you have lots of unlabeleégdladit you also have a few labeled
examples to help you configure your parameters. In our umgisge pronoun resolution
work [Cherry and Bergsma, 20h)3ve also used some labeled examples to re-weight the pa-
rameters learned by EM (using the discriminative technkqpavn as maximum entropy).

Another interaction between unsupervised and supervesadihg occurs when an un-
supervised method provides intermediate structural médion for a supervised algorithm.
For example, unsupervised algorithms often generate tbeeumword-to-word alignments
in statistical machine translatidiBrown et al, 1993 and also the unseen character-to-
phoneme alignments in grapheme-to-phoneme convefsiampojamarret al., 2007.
This alignment information is then leveraged by subsegsepérvised processing.

2.5 Semi-Supervised Learning

Semi-supervised learning is a huge and growing area ofisttén many different research
communities. The namsemi-supervised learningas come to essentially mean that a
predictor is being created from information from both laaebnd unlabeled examples.
There are a variety of flavours of semi-supervised learnivag are relevant to NLP and
merit discussion. A good recent survey of semi-supervisetirtiques in general is by
Zhu[2004.

Semi-supervised learning was the “Special Topic of Intéraisthe 2009 Conference
on Natural Language Learning. The organizers, Suzannei®&en and Xavier Carreras,
provided a thoughtful motivation for semi-supervised téag in the call for papers.

“The field of natural language learning has made great stiogder the last 15
years, especially in the design and application of supedvésid batch learning
methods. However, two challenges arise with this kind ofreagh. First, in

core NLP tasks, supervised approaches require typicatjg @mounts of man-
ually annotated data, and experience has shown that resieitsdepend on the

3The line between supervised and unsupervised learningecariitile blurry. We called our use of labeled
data and maximum entropy theupervisecextension” of our unsupervised system in our EM pd@herry
and Bergsma, 2005 A later unsupervisedapproach by Charniak and Elsng@009, which also uses EM
training for pronoun resolution, involved tuning essdittithe same number of hyperparameters by hand (to
optimize performance on a development set) as the numbearafieters we tuned with supervision. Is this
still unsupervised learning?

*http://www.cnts.ua.ac.be/conll2009/cfp.html
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precise make-up and genre of the training text, limitingegahzability of the

results and the reach of the annotation effort. Second, idetitay aspects
of human language acquisition, the role of supervision ardag must be
carefully considered, given that children are not providaglicit indications

of linguistic distinctions, and generally do not attend xpleit correction of

their errors. Moreover, batch methods, even in an unsugehsetting, can-
not model the actual online processes of child learningchvishow gradual
development of linguistic knowledge and competence.”

Theoretical motivations aside, the practical benefit of time of research is essentially
to have the high performance and flexibility of discrimimaty-trained systems, without
the cost of labeling huge numbers of examples. One can allahgs more examples to
achieve better performance on a particular task and domaithe expense can be severe.
Even companies with great resources, like Google and Mifr,ogrefer solutions that do
not require paying annotators to create labeled data. $lisegause any cost of annotation
would have to be repeated in each language and potentialy dgamain in which the sys-
tem might be deployed (because of the dependence on thaspmake-up and genre of
the training text” mentioned above). While some annotajidos can be shipped to cheap
overseas annotators at relatively low cost, finding animtagéxperts in many languages
and domains might be more difficiit.Furthermore, after initial results, if the objective
of the program is changed slightly, then new data would haugetannotated once again.
Not only is this expensive, but it slows down the product dgwment cycle. Finally, for
many companies and government organizations, data praadysecurity concerns pre-
vent the outsourcing of annotation altogether. All labglimust be done by expensive and
overstretched internal analysts.

Of course, even when there is plentiful labeled examplesthadproblem is well-
defined and unchanging, it may still boost performance torjporate statistics from un-
labeled data. We have recently seen impressive gains frorg uslabeled evidence, even
with large amounts of labeled data, for example in the worlAdlo and Zhand2003,
Suzuki and I1sozaKi2009, and Pitler et al[201d .

In the remainder of this section, we briefly outline appreecto transductive learning,
self-training, bootstrapping, learning with heuristigdhbeled examples, and using fea-
tures derived from unlabeled data. We focus on the work tast tharacterizes each area,
simply noting in passing some research that does not fit lgléato a particular category.

2.5.1 Transductive Learning

Transductive learning gives us a great opportunity to tatkerabout document classifica-
tion (where it was perhaps most famously appliefUimachims, 1999, but otherwise this
approach does not seem to be widely used in NLP. Most leaapensate in thénductive
learning framework: you learn your model from the trainieg, &ind apply it to unseen data.
In the transductive framework on the other hand, you assume that, at learning, tyou
are given access to the test examples you wish to classifynflidheir labels).

SAnother trend worth highlighting is work that leveragesganumbers of cheap, non-expert annotations
through online services such as Amazon’s Mechanical T8riowet al, 2008. This has been shown to work
surprisingly well for a number of simple problems. Combinthe benefits of non-expert annotations with the
benefits of semi-supervised learning is a potentially rigador future work.
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Figure 2.2: Learning from labeled and unlabeled examptes) {Zhu, 2005)

Consider Figure 2.2. In the typical inductive set-up, we ladesign our classifier
based purely on the labeled points for the two classeso'th@end+'s. We would draw the
best hyperplane to separate these labeled vectors. Hgwéven we look at all the dots
that do not have labels, we may wish to draw a different hylpag It appears that there
are two clusters of data, one on the left and one on the riglawlbg a hyperplane down
the middle would appear to be the optimum choice to sepdnatenvo classes. This is only
apparent after inspecting unlabeled examples.

We can always train a classifier using both labeled and ulddiexamples in the trans-
ductive set-up, but then apply the classifier to unseen dada inductive evaluation. So in
some sense we can group other semi-supervised approachesatke use of labeled and
unlabeled examples into this category (e.g. work by Wand. ¢2@09), even if they are
not applied transductivelger se

There are many computational algorithms that can make usmlabeled examples
when learning the separating hyperplane. The intuitionraethem is to say something
like: of all combinations ofpossiblelabels on the unseen examples, find the overall best
separating hyperplane. Thus, in some sense we pretend wetlkaedabels on the unlabeled
data, and use these labels to train our model via traditisnpérvised learning. In most
semi-supervised algorithms, we either implicitly or egjily generate labels for unlabeled
data in a conceptually similar fashion, to (hopefully) emtethe data we use to train the
classifier.

These approaches are not applicable to the problems thatisteta tackle in this
dissertation mainly due to practicality. We want to leverdgige volumes of unlabeled
data: all the data on the web, if possible. Most transducigerithms cannot scale to this
many examples. Another potential problem is that for manyNipplications, the space
of possible labels is simply too large to enumerate. For @@nwork in parsing aims to
produce a tree indicating the syntactic relationships @ftbrds in a sentencéChurch and
Patil, 1982 show the number of possible binary trees increases with &étal&h numbers.
For twenty-word sentences, there are billions of possiiglest We are currently exploring
linguistically-motivated ways to perform a high-precisipruning of the output space for
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parsing and other taskBergsma and Cherry, 201.L00ne goal of our work is to facilitate
more intensive semi-supervised learning approaches. i$has active research area in
general.

2.5.2 Self-training

Self-training is a very simple algorithm that has shown s@urising success in natural
language parsingMcClosky et al, 20063. In this approach, you build a classifier (or
parser, or any kind of predictor) on some labeled trainingngdes. You then use the
learned classifier to label a large number of unlabeled featactors. You then re-train
your system on both the original labeled examples and tr@attically-labeled examples
(and then evaluate on your original development and teal).dAgain, note that this semi-
supervised technique explicitly involves generating Isli@ unlabeled data to enhance the
training of the classifier.

Historically, this approach has not worked very well. Anyoes the system makes after
the first round of training are just compounded by re-trajnim those errors. Perhaps it
works better in parsing (and especially with a parse remankkere the constraints of the
grammar give some extra guidance to the initial output ofpdwser. More work is needed
in this area.

2.5.3 Bootstrapping

Bootstrapping has a long and rich history in NLP. Bootstiagps like self-training, but
where we avoid the compounding of errors by exploiting diffe views of the problem.
We first describe the overall idea in the context of algorgHior multi-view learning. We
then consider how related work in bootstrapping from sedsis fis into the multi-view
framework.

Bootstrapping with Multiple Views

Consider, once again, classifying documents. Howeves, éassume that these are online
documents. In addition to the words in the documents tharaseive might also classify
documents using the text in hyperlinks pointing to the doents, taken from other websites
(so-calledanchor tex}. In the standard supervised learning framework, we woustl yise
this additional text as additional features, and train onlabeled set. In a bootstrapping
approach (specifically, theo-training algorithm[Blum and Mitchell, 1998), we instead
train two classifiers: one with features from the documemd, @ne with features from the
anchor text in hyperlinks. We use one classifier to labeltamdil examples for the other to
learn from, and iterate training and classification with classifier then the other until all
the documents are labeled. Since the classifiers tidliegonal viewsof the problem, the
mistakes made by one classifier should not be too detrimemtak learning of the other
classifier. That is, the errors should not compound as thein delf-training. Blum and
Mitchell [1999 give a PAC Learning-style framework for this approach, aind gmpirical
results on the web-page classification task.

The notion of a problem having orthogonal views or repres@nts is an extremely
powerful concept. Many language problems can be viewedigwiay, and many algo-
rithms that exploit a dual representation have been prapogaowsky[1994 first imple-
mented this style of algorithm in NLP (and it is now sometimeferred to as th&arowsky
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algorithm). Yarowsky used it for word-sense disambiguation. He dssdbnshowed that
a bootstrapping approach can achieve performance contpacsfll supervised learning.
An example from word-sense disambiguation will help ilfagt: To disambiguate whether
the nounbassis used in thdish sense or in thenusicsense, we can rely on a just a few
key contexts to identify unambiguous instances of the naumit. Suppose we know that
caught a bassneans the fish sense lsdiss Now, whenever we sesaught a basswe label
that noun for thdishsense. This is the context-based view of the problem. Ther eibw

is a document-based view. It has been shown experimenteltyatl instances of a unique
word type in a single document tend to share the same $&adeet al, 1994. Once we
have one instance difasslabeled, we can extend this classification to the other musst
of bassin the same document using this second view. We can therare-taur context-
based classifier from these new examples and repeat thesprioagew documents and new
contexts, until all the instances are labeled.

Multi-view bootstrapping is also used in information extian [Etzioni et al,, 2005.
Collins and Singef1999 and Cucerzan and Yarowsk$999 apply bootstrapping to the
task of named-entity recognition. Klementiev and Ri®00d used bootstrapping to ex-
tract interlingual named entities. Our research has alen iluenced by co-training-style
weakly supervisedalgorithms used in coreference resoluti@e et al, 1998; Harabagiu
et al, 2001; Mulleret al., 2002; Ng and Cardie, 2003b; 2003a; Bean and Riloff, 260w
grammatical gender determinatib@ucerzan and Yarowsky, 20D3

Bootstrapping from Seeds

A distinct line of bootstrapping research has also evolwadliP, which we calBootstrap-
ping from SeedsThese approaches all involve starting with a small numbexamples,
building predictors from these examples, labeling morevgas with the new predictors,
and then repeating the process to build a large collectiomf@fmation. While this research
generally does not explicitly cast the tasks as exploitirthagonal views of the data, it is
instructive to describe these techniques from the musiwperspective.

An early example is described by Hed5994. Suppose we wish to find hypernyms in
text. A hypernym is a relation between two things such thatthimg is a sub-class of the
other. It is sometimes known as theea relation. For example wound is-atype ofinjury,
Ottawa is-a city aCadillac is-a car etc. Suppose we see the words in text, “Cadillacs and
other cars...” There are two separate sources of informatithis example:

1. The string pair itselfCadillac, car
2. The contextXs and othery's

We can perform bootstrapping in this framework as followsst-we obtain a list of seed
pairs of words, e.gCadillac/car, Ottawa/city wound/injury etc. Now, we create a predic-
tor that will label examples as being hypernyms based purlyhether they occur in this
seed set. We are thus only using the first view of the problé:attual string pairs. We
use this predictor to label a number of examples in actua) eeg. ‘Cadillacsand other

cars cars such aLCadillacs carsincluding Cadillacs etc.” We then train a predictor for
the other view of the problem: From all the labeled examphesextract predictive con-

texts: “Xs and otherY's, Ys such as<s, Ys includingXs, etc.” The contexts extracted in
this view can now be used to extract more seeds, and the saedsen be used to extract
more contexts, etc., in an iterative fashion. Hearst desdran early form of this algorithm,
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which used some manual intervention, but later approaches éssentially differed quite
little from her original proposal.

Google co-founder Sergei Br[1994 used a similar technique to extract relations such
as @uthor, title) from the web. Similar work was also presentedRiloff and Jones, 1999
and[Agichtein and Gravano, 2000 Pantel and Pennacchiof2006 used this approach
to extract general semantic relations (suclpag-of, successionproduction etc.), while
Pasca et al2004 present extraction results on a web-scale corpus. Ancdneotis varia-
tion of this method is Ravichandran and Hovy’s system forifiggbatterns for answering
questiondRavichandran and Hovy, 20D2They begin with seeds such addzart, 1756
and use these to find patterns that contain the answers ttiangesuch asvhen was X
born?

Note the contrast with the traditional supervised mackeaening framework, where
we would have annotators mark up text with examples of hymesnrelations, or question-
answer pairs, etc., and then learn a predictor from thesdddkexamples using supervised
learning. In bootstrapping from seeds, we do not label setgnef text, but rather pairs
of words (labeling only one view of the problem). When we findtances of these pairs
in text, we essentially label more data automatically, drahtinfer a context-based pre-
dictor from this labeled set. This context-based predicem then be used to find more
examples of the relation of interest (hypernyms, authorsooks, question-answer pairs,
etc.). Notice, however, that in contrast to standard sugedvearning, we do not label any
negativeexamples, only positive instances. Thus, when buildingraesd-based predictor,
there is no obvious way to exploit our powerful machineryfémture-based discriminative
learning and classification. Very simple methods are inktessd to keep track of the best
context-based patterns for identifying new examples it tex

In iterative bootstrapping, although the first round ofrinag often produces reasonable
results, things often go wrong in later iterations. The ficaind will inevitably produce
some noise, some wrong pairs extracted by the predictorcditexts extracted from these
false predictions will lead to more false pairs being extdcand so on. In all published
research on this topic that we are aware of, the precisidmecéxtractions decreases in each
stage.

2.5.4 Learning with Heuristically-Labeled Examples

In the above discussion of bootstrapping, we outlined a rurmobapproaches that extend
an existing set of classifications (or seeds) by iteratigigsifying and learning from new
examples. Another interesting, non-iterative scenarithéssituation where, rather than
having a few seed examples, we begin with many positive elesmgf a class or relation,
and attempt to classify new relations in this context. Witlelatively comprehensive set
of seeds, there is little value in iterating to obtain mdralso, having a lot of seeds can
also provide a way to generate the negative examples we peéis€Eriminative learning.
In this section we look at two flavours: special cases whezeetamples can be created
automatically, and cases where we have only positive seedsso create pseudo-negative
examples through some heuristic means.

®There are also non-iterative approaches that also startliwitted seed data. Haghighi and Kldin004
create a generative, unsupervised sequence predictioel nbhod add features to indicate if a word to be classi-
fied is distributionally-similar to a seed word. Like the apgiches presented in our discussion of bootstrapping
with seeds, this system achieves impressive resultsrgjasiih very little manually-provided information.
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Learning with Natural Automatic Examples

Some of the lowest-hanging fruit in the history of NLP arodewresearchers realized that
some important problems in NLP could be solved by generdéibgled training examples
automatically from raw text.

Consider the task of diacritic or accent restoration. Ilrglages such as French or
Spanish, accents are often omitted in informal correspucelein all-capitalized text such
as headlines, and in lower-bit text encodings. Missing r@iscadversely affect both syn-
tactic and semantic analysis. It would be nice to train arofisoative classifier to restore
these accents, but do we need someone to label the accemtadcented text to provide
us with labeled data? Yarowsk$994 showed that we can simply take (readily-available)
accentedtext, take the accents off and use them as labels, and tharpteadictors using
features for everythingxceptfor the accents. We can essentially generate as many labeled
examples as we like this way. The true accent and the texidediie positive example.
The unaccented or alternatively-accented text providgative examples.

We call theséNatural Automatic Examplesince they naturally provide the positive and
negative examples needed to solve the problem. We contrese with problems in the
following section where, although one may have plentifudipee examples, one must use
some creativity to produce the negative examples.

This approach also works for context-sensitive spellingesion. Here we try to de-
termine, for example, whether someone who typdebtheractually meantveather We
take well-edited text and, each time one of the words is usedcreate a training exam-
ple, with the word-actually-used as the label. We then seeeitan predict these words
from their confusable alternatives, using the surroundimgtext for feature$Golding and
Roth, 1999. So the word-actually-used is the positive example (ewghetheror not”),
while the alternative, unused words provide the negatigas (weatheror not”). Banko
and Brill [2001] generate a lot of training data this way to produce their fasme@sults on
the relative importance of the learning algorithm versues dmount of training data (the
amount of training data is much much more important). In @&ap, we use this approach
to generate data for both preposition selection and costnsitive spelling correction.

A similar approach could be used for training systems to segext into paragraphs,
to restore capitalization or punctuation, to do senterm@tlary detection (one must find an
assiduous typist, like me, who consistently puts two spaftes periods, but only one after
abbreviations...), to convert curse word symbols like %*8@k into the original curse,
etc. (of course, some of these examples may benefit from anehamodel rather than
exclusively a source/language model). The only limitat®the amount of training data
your algorithm can handle. In fact, by summarizing the frajrexamples with N-gram-
based features as in Section 2.5.5 (rather than learningdezh instance separately), there
really is no limitation on the amount of data you might leammt.

There are a fairly limited number of problems in NLP where &e st create examples
automatically this way. This is because in NLP, we are uguaterested in generating
structures over the data that are not surface apparentunafigtoccurring text. We return
to this when we discuss analysis and generation problem&apt€r 3. Natural automatic
examples abound in many other fields. You can build a dispatiie classifier for whether
a stock goes up or for whether someone defaults on their loeglypbased on previous
examples. A search engine can easily predict whether saneitirclick on a search result
using the history of clicks from other users for the same yjliwachims, 2002 However,
despite not having natural automatic examples for somdgr) we can sometimes create
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automatic examples heuristically. We turn to this in théofelng subsection.

Learning with Pseudo-Negative Examples

While the previous section described problems where there watural positive and nega-
tive examples (e.g., the correct accent marker is posititéle others, including no accent,
are negative), there is a large class of problems in NLP wiverenly have positive exam-
ples and thus it's not clear how to use a discriminative di@sso evaluate new potential
examples. This is the situation with seed data: you are ptredavith a list of only positive
seeds, and there’s nothing obvious to discriminate these.fr

In these situations, researchers have devised varioustvaysomatically create nega-
tive examples. For example, let us return to the examplepémyms. Although Hear§1992
started her algorithm with only a few examples, this was amegassary handicap. Thou-
sands of examples of hypernym pairs can be extracted autathatrom the lexical database
WordNet[Miller et al, 1994. Furthermore, WordNet has good coverage of the relations
involving nouns that are actually in WordNet (as opposedotiously, no coverage of
relations involving words that aren’t mentioned in WordMetall). Thus, pairs of words
in WordNet that arenot linked in a hypernym structure can potentially be taken &s re
able examples of words that anet hypernyms (since both words are in WordNet, if they
were hypernyms, the relation would generally be labeledies€ could form our negative
examples for discrimination.

Recognizing this, Snow et d2004 use WordNet to generate a huge set of both pos-
itive and negative hypernym pairs: exactly what we needaisiirg data for a large-scale
discriminative classifier. With this resource, we need teratively discover contexts that
are useful for hypernymy: Snow et al. simply include, asuezg in the classifier, all the
syntactic paths connecting the pair of words in a large placsepus. That is, they have
features for how often a pair of words occurs in construdtike,“Xs and otherYs, Ys
such asXs, Ys including Xs, etc.” Discriminative training, not heuristic weightingill
decide the importance of these patterns in hypernymy. Tssifjaany new example pair
(i.e., for nouns that araot in WordNet), we can simply construct their feature vector of
syntactic paths and apply the classifier. Snow €f24105 achieve very good performance
using this approach.

This approach could scale to make use of features derivetvireb-scale data. For any
pair of words, we can efficiently extract all the N-grams iniethboth words occur. This
is exactly what we proposed for discriminating object anbjesct relations foBears won
andtrophy wonin our example in Chapter 1, Section 1.3. We can create fesaftom these
N-grams, and apply training and classification.

We recently used a similar technique for classifying thewrstgender of English nouns
[Bergsmaet al, 20094. Rather than using WordNet to label examples, however, \ed us
co-occurrence statistics in a large corpus to reliablytifiethe most likely gender of thou-
sands of noun phrases. We then used this list to automgtiedkel examples in raw text,
and then proceeded to learn from these automaticallyddbekamples. This paper could
have served as another chapter in this dissertation, bulitkertation already seemed suf-
ficiently long without it.

Several other recent uses of this approach are also wortlionieng. Okanohara and
Tsujii [2007 created examples automatically in order to train a discrative whole-
sentence language model. Language models are designdtius tehether a sequence
of words is valid language (or likely, fluemgood English). We can automatically gather
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positive examples from any collection of well-formed sewts: they are all valid sentences
by definition. But how do we create negative examples? Thevaion of Okanohara and
Tsuijii is to create negative examples frasantences generated by an N-gram language
model N-grams are the standard Markovized approximation to iEmgand their success
in language modeling is one of the reasons for the statisgégalution in NLP discussed in
Section 2.1 above. However, they often produce ill-formeutences, and a classifier that
can distinguish between valid English sentences and N-gnaofel-generated sentences
could help us select better output sentences from our speeofnizers, machine transla-
tors, curse-word restoration systems, etc.

The results of Okanohara and Tsujii’s classifier was pramgisabout 74% of sentences
could be classified correctly. However, they report that tvednglish speaker was able
to achieve 99% accuracy on a 100-sentence sample, indjcdiat there is much room
to improve. It is rare that humans can outperform computers déask where we have
essentially unlimited amounts of training data. Indeedrriang curves in this work indicate
that performance is continuously improving up to 500,0@Mning examples. The main
limitation seems to only be computational complexity.

Smith and Eisnef2004 also automatically generate negative examples. Theyrpertu
their input sequence (e.g. the sentence word order) toeceeatighborhood amplicit
negative evidence. Structures over the observed sentéiocgdshave higher likelihood
than structures over the perturbed sequences.

Chapter 6 describes an approach that creates both pogitiveegative examples of
selectional preference from corpus-wide statistics ofliggge-argument pairs (rather than
only using a local sentence to generate negatives, E8niith and Eisner, 20Q% Since
the individual training instances encapsulate infornrafrom potentially thousands or mil-
lions of sentences, this approach can scale better than gbthe other semi-supervised
approaches described in this chapter. In Chapter 7, weece@atnples by computing statis-
tics over an aligned bitext, and generate negative exarmplesthose that have a high string
overlap with the positives, but which are not likely to beskations. We use automatically-
created examples to mine richer features and demonstridée models than previous work.

However, note that there is a danger in solving problems ¢onzatically-labeled ex-
amples: it is not always clear that the classifier you leadhtrginsfer well to actual tasks,
since you're no longer learning a discriminator on manukbeled examples. In the fol-
lowing section, we describe semi-supervised approactsdrtin over manually-labeled
data, and discuss how perhaps we can have the best of botisvagrincluding the output
of our pseudo-discriminators as features in a supervisatko

2.5.5 Creating Features from Unlabeled Data

We have saved perhaps the simplest form of semi-supenesedihg for last: an approach
where we simply create features from our unlabeled data aedthese features in our
supervised learners. Simplicity is gobd.

The main problem with essentially all of the above approadbehat at some point,

’In the words of Mann and McCalluf2007: “Research in semi-supervised learning has yielded many
publications over the past ten years, but there are sunghsfewer cases of its use in application-oriented
research, where the emphasis is on solving a task, not ooreagpla new semi-supervised method. This
may be partially due to the natural time it takes for new maehéarning ideas to propagate to practitioners.
We believe it is also due in large part to the complexity ancelimbility of many existing semi-supervised
methods.”
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automatically-labeled examples are used to train theitilrsdJnfortunately, automatically-
labeled examples are often incorrect. The classifier woakd to classify these examples
correctly, and subsequently gets similar examples wroagitlencounters at testing. If we
have enough manually-labeled examples, it seems that weth@mltimate mediator of
the value of our features to be performance on these labgledpes, not performance on
any pseudo-examples. This mediation is, of course, exattit supervised learning does.
If we instead creat&aturesfrom unlabeled data, rather than using unlabeled data &decre
newexamplesstandard supervised learning can be used.

How can we include information from unlabeled data as newufea in a supervised
learner? Section 2.2 described a typical feature reprasemt each feature is a binary
indicator of whether a word is present or not in a documenetdassified. When we extract
features from unlabeled data, we add new dimensions to #teréerepresentation. These
new dimensions are for features that represent what we radjlsgecond-ordeinteractions
— co-occurrences of words with each other in unlabeled text.

In very recent papers, both Huang and Yd®2809 and Turian et al[201d provide
comparisons of different ways to extract new features fromaheled data; they both eval-
uate performance on a range of tasks.

Features Directly From a Word’s Distribution in Unlabeled Text

Returning to our sports example, we could have a feature father a word in a given
document occurslsewherein unlabeled data, with the wostore A classifier could learn
that this feature is associated with thgortsclass, because words likeckey baseball
inning, win, etc. tend to occur witBcore and some of these likely occur in the training set.
So, although we may never see the woudling during training, it does occur in unlabeled
text with many of the same words that occur with otbigortsterms, like the wordcore So

a document that contaimsirling will have the second-ordescorefeature, and thusurling,
through features created from its distribution, is stiliadicator ofsports Directly having

a feature for each item that co-occurs in a word’s distrdouts perhaps the simplest way to
leverage unlabeled data in the feature representationndHaad Yate$2009 essentially
use this as their multinomial representation. They find ifgrens worse on sequence-
labeling tasks than distributional representations basgddMMs and latent-semantic anal-
ysis (two other effective approaches for creating featén@s unlabeled data). One issue
with using the distribution directly is that although spigrés potentially alleviated at the
word level (we can handle words even if we haven’t seen themaining data), we increase
sparsity at the feature level: there are more features ito Ixg the same amount of train-
ing data. This might explain whjHuang and Yates, 2008ee improved performance on
rare words but similar performance overall. We return ts tesue in Chapter 5 when we
present a distributional representation for verb parsfdech tag disambiguation that may
also suffer from these drawbacks (Section 5.6).

Features from Similar Words or Distributional Clusters

There are many other ways to create features from unlabelied @ne popular approach
is to summarize the distribution of words (in unlabeled Yating similar words.[Wang
et al, 2004 use similar words to help generalization in dependencyimpgrgMarton et
al., 2009 use similar phrases to help improve the handling of outesfabulary terms in a
machine translation system. Another recent trend is taerfeatures from automatically-
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generated word clusters. Several researchers have useiétheshical Brown et al.1994
clustering algorithm, and then created features for ctustambership at different levels of
the hierarchy[Miller et al, 2004; Kooet al, 200§. Rather than clustering single words,
Lin and Wu[2009 use phrasal clusters, and provide features for cluster raeship when
different numbers of clusters are used in the clustering.

Features for the Output of Auxiliary Classifiers

Another way to create features from unlabeled data is taereatures for the output of
predictions on auxiliary problems that can be trained yoléth unlabeled datdAndo and
Zhang, 200% For example, we could create a prediction for whether thelamenaoccurs
in a document. We can take all the documents wiaee@adoes and does not occur, and
build a classifier using all the other words in the documerniiis Tlassifier may predict
thatarenadoes occur if the wordeockey curling, fans etc. occur. When the predictions
are used as features, if they are useful, they will receigh eight at training time. At
test time, if we see a word likeurling, for example, even though it was never seen in our
labeled set, it may cause the predictor doenato return a high score, and thus also cause
the document to be recognizedsgmorts

Note that since these examples can be created automatitedlyproblem (and other
auxiliary problems in the Ando and Zhang approach) fall ithte category of those with
Natural Automatic Exampless discussed above. One possible direction for future veork i
to construct auxiliary problems with pseudo-negative gxas For example, we could
include the predictions of various configurations of ouresgbnal-preference classifier
(Chapter 6) as a feature in a discriminatively-trained leage model. We took a simi-
lar approach in our work on gendfBergsmaet al, 20094. We trained a classifier on
automatically-created examples, but used the output sfdlaissifier as another feature in
a classifier trained on a small amount of supervised data réulted in a substantial gain
in performance over using the original prediction on its 0@5.5% versus 92.6% (but note
other features were combined with the prediction of theleauyiclassifier).

Features used in this Dissertation

In this dissertation, we create features from unsupervitd in several chapters and in
several different ways. In Chapter 6, to assess whether @ isoctompatible with a verb,
we create features for the noun’s distribution only wather verbs Thus we character-
ize a noun by its verb contexts, rather than its full distiidn, using less features than a
naive representation using the noun’s full distributiopiafile. Chapters 3 and 5 alselec-
tively use features from parts of the total distribution of a wotdage, or pair of words (to
characterize the relation between words, for noun compdwacketing and verb tag dis-
ambiguation in Chapter 5). In Chapter 3, we characterizéests by using selected types
from the distribution of other words that occur in the contelkor the adjective-ordering
work in Chapter 5, we choose an order based on the distribofiche adjectives individ-
ually and combined in a phrase. Our approaches are simpleffiegtive. Perhaps most
importantly, by leveraging the counts in a web-scale N-grampus, they scale to make
use of all the text data on the webh. On the other hand, scalog other semi-supervised
techniques to even moderately-large collections of umdabkext remains “future work” for
a large number of published approaches in the machine fegpamd NLP literature.
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Chapter 3

Learning with Web-Scale N-gram
Models

DANGERS

INDEXED BY THE NUMBER OF GOOGLE RESULTS FOR
“DIED IN A ACCIDENT™

TPESE sooae resurs

SopviNG | I 710
eevarer | I, 575
soreinG | I
SKATERORRDING | I |73
CANPING | (N 66
GARDENING | [ 100
ICE SKATING | (I %Y
KNITTING | | 7
BLOGGING | | 2

XKCD comic: Dangershttp://xkcd.com/369/

3.1 Introduction

Many problems in Natural Language Processing (NLP) candeed as assigning labels to
particular words in text, given the word’s context. If thecdon process requires choosing
a label from a predefined set of possible choices, callahdidate sebr confusion setthe
process is often referred todisambiguatiofRoth, 1998. Part-of-speech tagging, spelling
correction, and word sense disambiguation are all lexisambiguation processes.

OA version of this chapter has been publishedBergsmeet al, 2008b; 2009b
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One common disambiguation task is the identification of wardice errors in text. A
language checker can flag an error if a confusable altembaiter fits a given context:

(1) The system tried to decid@mong, betweenthe two confusable words.

Most NLP systems resolve such ambiguity with the help of gdarorpus of text. The
corpus indicates which candidate is more frequent in sirodatexts. The larger the corpus,
the more accurate the disambiguati@anko and Brill, 2001 Since few corpora are as
large as the world wide webmany systems incorporate web counts into their selection
process.

For the above example, a typical web-based system wouly gusearch engine with
the sequences “decidemongthe” and “decidebetweerthe” and select the candidate that
returns the most pagékapata and Keller, 20Q5 Clearly, this approach fails when more
context is needed for disambiguation.

We propose a unified view of using web-scale data for lexigsdrdbiguation. Rather
than using a single context sequence, we use contexts augaléngths and positions.
There are five 5-grams, four 4-grams, three trigrams and fg@aims spanning the target
word in Example (1). We gather counts for each of these semgsenvith each candidate
in the target position. We first show how the counts can be asddatures in a supervised
classifier, with a count’s contribution weighted by its @iiis size and position. We also
propose a novel unsupervised system that simply sums atsflike (log) counts for each
candidate. Surprisingly, this system achieves most of #iesgpf the supervised approach
without requiring any training data.

Since we make use of features derived from the distributfgratierns in large amounts
of unlabeled data, this work is an instance of a semi-supedvapproach in the category,
“Using Features from Unlabeled Data,” discussed in Chaht&ection 2.5.5.

In Section 3.2, we discuss the range of problems that fit thiedkdisambiguation
framework, and also discuss previous work using the web @spus. In Section 3.3 we
discuss our general disambiguation methodology. Whileiaimbiguation problems can
be tackled in a common framework, most approaches are gmeklfor a specific task.
Like Roth[1999 and Cucerzan and Yarowskf007, we take a unified view of disam-
biguation, and apply our systems to preposition selecBatijon 3.5), spelling correction
(Section 3.6), and non-referential pronoun detectiont{®e@&.7). In particular we spend
a fair amount of time on non-referential pronoun detection. each of these applications,
our systems outperform traditional web-scale approaches.

3.2 Related Work

3.2.1 Lexical Disambiguation

Yarowsky [1994 defines lexical disambiguation as a task where a system rdisstrii-
biguate two or more semantically distinct word-forms whidve been conflated into the
same representation in some medium.” Lapata and KEN@DY divide disambiguation
problems into two groups: generation and analysis. In gdiogr, the confusable candi-
dates are actual words, lilenongandbetween Generation problems permit learning with

1Google recently announced they are now indexing over lomillinique URLS [fttp:/googleblog.
blogspot.com/2008/07/we-knew-web-was-big.html ). This figure represents a staggering amount of
textual data.
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“Natural Automatic Examples,” as described in Chapter ZitiSe 2.5.4. In analysis, we
disambiguate semantic labels, such as part-of-speechregyesenting abstract properties
of surface words. For these problems, we have historicagded manually-labeled data.

For generation tasks, a model of each candidate’s distitoim text is created. The
models indicate which usage best fits each context, enabtindidate disambiguation in
tasks such as spelling correctiifolding and Roth, 1999preposition selectiofChodorow
et al, 2007; Felice and Pulman, 2d07nd diacritic restoratiofiYarowsky, 1994. The
models can be large-scale classifiers or standard N-gragndage models (LMs).

An N-gram is a sequence of words. A unigram is one word, a bigsatwo words, a
trigram is three words, and so on. An N-gram language modeInsdel that computes
the probability of a sentence as the product of the proltegsilof the N-grams in the sen-
tence. The (maximum likelihood) probability of an N-gransisply its count divided by
the number of times it occurs in the corpus. Higher probgisientences will thus be com-
posed of N-grams that are more frequent. For resolving cattie words, we could select
the candidate that results in a higher whole-sentence ilaaeffectively combining the
counts of N-grams at different positions.

The power of an N-gram language model crucially depends erdéta from which
the counts are taken: the more data, the better. Trigram La#is fong been used for
spelling correction, an approach sometimes referred tbeadtys, Damerau, and Mercer
model[Wilcox-O’Hearnet al, 2004. Gamon et al[200 use a Gigaword 5-gram LM
for preposition selection. While web-scale LMs have prowseful for machine translation
[Brantset al., 2007, most web-scale disambiguation approaches compare sgsgifience
counts rather than full-sentence probabilities. Courgsugually gathered using an Internet
search enginfLapata and Keller, 2005; ¥t al., 2009.

In analysis problems such as part-of-speech tagging, atias obvious how a LM can
be used to score the candidates, since LMs do not contairatitidates themselves, only
surface words. However, large LMs can also benefit theseacaiphs, provided there are
surface words that correlate with the semantic labels. rifisdly, we devise some surro-
gates for each label, and determine the likelihood of thesegates occurring with the
given context. For example, Mihalcea and Moldoy4899 perform sense disambiguation
by creating label surrogates from similar-word lists focleaense. To choose the sense of
bassin the phrase “caught a huge bass,” we might condieteor, alto, andpitch for sense
one andsnapper mackerel andtunafor sense two. The sense whose group has the higher
web-frequency count ihasss context is choser.Yu et al,, 2007 use a similar approach to
verify the near-synonymy of the words in teense poolsf the OntoNotes projedHovy
et al, 2004. They check whether a word can be substituted into the plhaaather ele-
ment in its sense pool, using a few sentences where the seakeffhe original element
has been annotated. The substitution likelihood is congpusing the counts of N-grams
of various orders from the Google web-scale N-gram corpiscidsed in the following
subsection).

We build on similar ideas in our unified view of analysis antigation disambigua-
tion problems (Section 3.3). For generation problems, vikegacounts for each surface
candidate filling our 2-to-5-gram patterns. For analysabfgms, we use surrogates as the
fillers. We collect our pattern counts from a web-scale cerpu
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3.2.2 Web-Scale Statistics in NLP

Exploiting the vast amount of data on the web is part of a gngwiend in natural language
processindKeller and Lapata, 2003 In this section, we focus on some research that has
had a particular influence on our own work. We begin by disogsapproaches that extract
information using Internet search-engines, before dsogsrecent approaches that have
made use of the Google web-scale N-gram corpus.

There were initially three main avenues of research thal tlse web as a corpus; all
were based on the use of Internet search engines.

In the first line of research, search-engine page countssaaas substitutes for counts
of a phrase in a corpd&refenstette, 1999; Keller and Lapata, 2003; ChklovskiRauatel,
2004; Lapata and Keller, 20D5That is, a phrase is issued to a search engine as a query,
and the count, given by the search engine, of how many pageaicdhat query is taken
as a substitute for the number of times that phrase occuiiseowéb. Quotation marks are
placed around the phrase so that the words are only matchexd twby occur in their exact
phrasal order. By using Internet-derived statistics, éregporoaches automatically benefit
from the growing size and variety of documents on the worldeniveb. We previously
used this approach to collect pattern counts that indi¢egegender of noun phrases; this
provided very useful information for an anaphora resotugstem Bergsma, 2006 We
also previously showed how a variety of search-engine socemh be used to improve the
performance of search-engine query segmentdi@ngsma and Wang, 20D7a problem
closely related to Noun-Compound Bracketing, which we evgln Chapter 5).

In another line of work, search engines are use to assess tew a pair of words
occur on the same page (or how often they occur close to elheh)pirrespective of their
order. Thus the page counts returned by a search enginekareagface value as document
co-occurrence counts. Applications in this area includerd@ning the phrasal semantic
orientation (good or bad) for sentiment analy§iarney, 2002 and assessing the coherence
of key phrase$Turney, 2003.

A third line of research involves issuing queries to a seamgine and then making
use of the returned documents. ResiiR99 shows how the web can be used to gather
bilingual text for machine translation, while Jones and @Ha00d use the web to build
corpora for minority languages. Ravichandran and H&007 process returned web pages
to identify answer patterns for question answering. In awean-typing system, Pinchak
and Bergsm42007 use the web to find documents that provide information ontypis
for how-questions. Many other question-answering sysigsaeshe web to assist in finding
a correct answer to a questi@rill et al, 2001; Cucerzan and Agichtein, 2005; Raé¢v
al., 2001. Nakov and Heardt2005a; 2005puse search engines both to return counts for
N-grams, and also to process the returned results to extifactnation not available from
a search-engine directly, such as punctuation and cagaitiain.

While a lot of progress has been made using search enginggdotaveb-scale statis-
tics, there are many fundamental issues with this appro&étst of all, since the web
changes every day, the results using a search engine areauilyereproducible. Sec-
ondly, some have questioned the reliability of search engage countiKilgarriff, 2007].
Most importantly, using search engines to extract courrmétion is terribly inefficient,
and thus search engines restrict the number of queries onssze to gather web-scale
information. With limited queries, we can only use limiteddrmation in our systems.

A solution to these issues was enabled by Thorsten Brant®\xdFranz at Google
when they released the Google Web 1T 5-gram Corpus Versibin122006[Brants and
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Franz, 2006 This corpus simply lists, for sequences of words from lertgto to length
five, how often the sequence occurs in their web corpus. ThHeoggus was generated
from approximately 1 trillion tokens of online text. In thdsaita, tokens appearing less than
200 times have been mapped to théNK) symbol. Also, only N-grams appearing more
than 40 times are included. A number of researchers havenheging this N-gram corpus,
rather than search engines, to collect their web-scalistatafVadas and Curran, 2007a;
Felice and Pulman, 2007; Yuret, 2007; Kummerfeld and Cu2808; Carlsoret al., 2008;
Bergsmeet al., 2008b; Tratz and Hovy, 2010Although this N-gram data is much smaller
than the source text from which it was taken, it is still a viasge resource, occupying
approximately 24 GB compressed, and containing billions-gframs in hundreds of files.
Special strategies are needed to effectively query largebeus of counts. Some of these
strategies include pre-sorting queries to reduce passasgi the data, hashirlgiawker
et al, 2007, storing the data in a databak@arlsonet al, 2004, and using a trie struc-
ture[Sekine, 200B Our work in this area led to our recent participation in tO&2 Johns
Hopkins University, Center for Speech and Language Prowgsé/orkshop orlJnsuper-
vised Acquisition of Lexical Knowledge from N-Granesl by Dekang Lirt A number of
ongoing projects using web-scale N-gram counts have afisemthis workshop, and we
discuss some of these in Chapter 5. Lin e{2014 provides an overview of our work at
the workshop, including the construction of a new web-sbatgram corpus.

In this chapter, all N-gram counts are taken from the stah@aogle N-gram data.

One thing that N-gram data does not provide isdtbheumento-occurrence counts that
have proven useful in some applications discussed abowault therefore be beneficial
to the community to have a resource along the lines of the 8odegram corpus, but
where the corpus simply states how often pairs of words (oag#s) co-occur within a
fixed window on the web. | am putting this on my to-do list.

3.3 Disambiguation with N-gram Counts

Section 3.2.1 described how lexical disambiguation, fahlgeneration and analysis tasks,
can be performed by scoring various context sequences asstafistical model. We for-
malize the context used by web-scale systems and then gisatsus statistical models
that use this information.

For a word in textyg, we wish to assign an output;, from a fixed set of candidates,
C = {c1,c2...,cx }. Assume that our target wong, occurs in a sequence of context to-
kens: V={v_4,v_3,v_9,v_1, Vg, v1,v2,v3,v4}. The key to improved web-scale models
is that they make use of a variety of context segments, oémifft sizes and positions,
that span the target wongy. We call these segmentsntext patternsThe words that re-
place the target word are call@attern fillers Let the set of pattern fillers be denoted by
F ={f1, fa, .-, f|r|}- Recall that for generation tasks, the filler set will usyiak identical
to the set of output candidates (e.qg., for word selectidkstds=C'={among,betweer). For
analysis tasks, we must use other fillers, chosen as suesoffatone of the semantic labels
(e.g. for WSD obass C={Sensel, Sense2}, F={tenor,alto,pitch,snapper,mackerel,tunpa

Each length-N context pattern, with a filler in placevqf, is an N-gram, for which
we can retrieve a count from an auxiliary corpus. We retriaments from the web-scale
Google Web 5-gram Corpus, which includes N-grams of lengthto five (Section 3.2.2).

2http://www.clsp.jhu.edu/workshops/ws09/groups/ualkn /

39



For each target word, there are five 5-gram context patterns that may span it. kamk
ple (1) in Section 3.1, we can extract the following 5-grartigras:
system tried to decideg
tried to decidevg the
to decidevg the two
decidevg the two confusable
vo the two confusable words
Similarly, there are four 4-gram patterns, three 3-grantepas and two 2-gram patterns
spanning the target. With#'| fillers, there arel4|F| filled patterns with relevant N-gram
counts. For example, faF={among, between}, there are two filled 5-gram patterns that
begin with the worddecide “decideamongthe two confusable” and “decideetweerthe
two confusable.” We collect counts for each of these, aloiity @il the other filled pat-
terns for this example. WheR={among, between}, there are 28 relevant counts for each
example.
We now describe various systems that use these counts.

3.3.1 SPERLM

We use supervised learning to map a target word and its dottean output. There are
two steps in this mapping: a) converting the word and itsextrinto a feature vector, and
b) applying a classifier to determine the output class.

In order to use the standand y notation for classifiers, we write things as follows:
Letz = ®(V) be a mapping of the input to a feature representationyVe might also
think of the feature function as being parameterized by ¢t@ffillers, F' and the N-gram
corpus, R, so thatz = ® (V). The feature functior® r ) (-) outputs the count (in
logarithmic form) of the different context patterns withettifferent fillers. Each of these
has a corresponding dimension in the feature represemtatid/ = 14|F| counts are used,
then eachr is an N-dimensional feature vector.

Now, the classifier outputs the index of the highest-scodagdidate in the set of can-
didate outputs(C' = {¢1,c2...,cx}. Thatis, we lety € {1, ..., K} be the set of classes
that can be produced by the classifier. The classifieris therefore a-class classifier,
mapping an attribute vectog;, to a classy. Using the standarfiCrammer and Singer,
2001 -style multi-class formulationf{ is parameterized by & -by-N matrix of weights,
W:

Hw(z) = arg{{nax{W,ﬂ T} (3.1)
r=1

whereW,. is therth row of W. That is, the predicted class is the index of the rovWéf
that has the highest inner-product with the attributesThe weights are optimized using a
set of M training examples{(z',y'), ..., (@M, yM)}.

This differs a little from the linear classifier that we pretegl in Section 2.2. Here we
actually haveK linear classifiers. Although there is only one setMoffeatures, there is
a different linear combination for each row . Therefore, the weight on a particular
count depends on the class we are scoring (correspondimng tmiv of W, r), as well as
the filler, the context position, and the context size, alivbich select one of the4|F|
base features. There are therefore a total40f'| K count-weight parameters. Chapter 4
formally describes how these parameters are learned usimgjtaclass SVM. Chapter 4
also discusses enhancements to this model that can endtae gerformance with fewer
training examples.
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Here, we simply provide some intuitions on what kinds of viaesgwill be learned. To
be clear, note thdl/,., therth row of the weight-matridW, corresponds to the weights for
predicting candidate,.. Recall that in generation tasks, the ééand the sef’ may be
identical. So some of the weights iV, will therefore correspond to features for patterns
filled with filler f.. Intuitively, these weights will be positive. That is, welWwiredict
the classamongwhen there are high counts for the patterns filled with therfdimong
(c,=fr=among. On the other hand, we will choose not to piaiongif the counts on
patterns filled withbetweenare high. These tendencies are all learned by the learning
algorithm. The learning algorithm can also place highemhlte weights on the more
predictive context positions and sizes. For example, fanymasks, the patterns that begin
with a filler are more predictive than patterns that end wifitler. The learning algorithm
attends to these differences in predictive power as it mia@snprediction accuracy on the
training data.

We now note some special features used by our classifier.dftarp spans outside the
current sentence (whew, is close to the start or end), we use zero for the correspgndin
feature value, but fire an indicator feature to flag that théepa crosses a boundary. This
feature provides a kind of smoothing. Other features arsibles for generation tasks,
we could also include synonyms of the output candidateslassfilFeatures could also be
created for counts of patterns processed in some way (engeKting one or more context
tokens to wildcards, POS-tags, lower-case, etc.), provide same processing can be done
to the N-gram corpus (we do such processing for the nonaefiat pronoun detection
features described in Section 3.7).

We call this approach @ERLM because it iSUPER/ised, and because, like an inter-
polated language model (LM), it mixes N-gram statistics ifecent orders to produce an
overall score for each filled context sequenceiPSRLM’s features differ from previous
lexical disambiguation feature sets. In previous systatispute-value features flag the
presence or absence of a particular word, part-of-speedi;gsam in the vicinity of the
target[Roth, 1998. Hundreds of thousands of features are used, and pruningcahd
ing can be key issud<arlsonet al., 2001. Performance scales logarithmically with the
number of examples, even up to one billion training examBamko and Brill, 200LL In
contrast, PERLM'’s features are all aggregate counts of events in an exitéweb) cor-
pus, not specific attributes of the current example. It hdg bfi F'| K parameters, for the
weights assigned to the different counts. Much less trgidiata is needed to achieve peak
performance. Chapter 5 contrasts the performance of fiassivith N-gram features and
traditional features on a range of tasks.

3.3.2 SYMLM

We create an unsupervised version afP&RLM. We produce a score for eaditler by
summing the (unweighted) log-counts of all context pateiited with that filler. For
example, the score f@mongcould be the sum of all 14 context patterns filled wathong
For generation tasks, the filler with the highest score isnias the label. For analysis tasks,
we compare the scores of different fillers to arrive at a decisSection 3.7.2 explains how
this is done for non-referential pronoun detection.

We refer to this approach in our experiments asi&M.

For generation problems whefé=C', SUMLM is similar to a naive bayes classifier,
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but without counts for the class pridrNaive bayes has a long history in disambiguation
problems[Manning and Schitze, 19B%o it is not entirely surprising that ouru$iLM
system, with a similar form to naive bayes, is also effective

3.3.3 TRIGRAM

Previous web-scale approaches are also unsupervised. ug@sine context pattern for
each filler: the trigram with the filler in the middlév_;, f,v; }. | F'| counts are needed for
each example, and the filler with the most counts is takeneathel[Lapata and Keller,
2005; Liu and Curran, 2006; Felice and Pulman, 200@sing only one count for each
label is usually all that is feasible when the counts are agath using an Internet search
engine, which limits the number of queries that can be natde With limited context, and
somewhat arbitrary search engine page counts, perfornisiticeted. Web-based systems
are regarded as “baselines” compared to standard appsfacipata and Keller, 20Q5or,
worse, as scientifically unsoufiilgarriff, 2007]. Rather than using search engines, higher
accuracy and reliability can be obtained using a large cogautomatically downloaded
web document$Liu and Curran, 2006 We evaluate the trigram pattern approach, with
counts from the Google 5-gram corpus, and refer to itRESRAM in our experiments.

3.3.4 RaTiIOLM

Carlson et al[2009 proposed an unsupervised method for spelling correctiah dtso

uses counts for various pattern fillers from the Google Bag@orpus. For every context
pattern spanning the target word, the algorithm calcultiesratio between the highest
and second-highest filler counts. The position with the égghatio is taken as the “most
discriminating,” and the filler with the higher count in thgsition is chosen as the la-
bel. The algorithm starts with 5-grams and backs off to loarelers if no 5-gram counts

3In this case, we can think of the features, as being the context patterns, and the clagsas being the
fillers. In a naive bayes classifier, we select the classay,tths the highest score under:

H(z) = arglrglax Pr(y-|z)

r=1

= arglélax Pr(y-)Pr(Z|y-) Bayes decision rule
r=1

= argiﬁlax Pr(y-) H Pr(zi|y-) naive bayes assumption
r=1 P

1

= arglrzl{llax log(Pr(y-)) + Z log(Pr(zi|yr))

7

= argﬁlax log(Pr(y-)) + Z logent (23, yr) — logent(yy)
r=1 N

7

= arg‘lrﬁllax g(yr) + Z logent (x4, fr) yr = fr

7

where we collect all the terms that depend solely on the dfassg(y,). Our SUMLM system is exactly
the same as this naive bayes classifier if we dropgihe) term. We tried various ways to model the class
priors using N-gram counts and incorporating them into auia¢ions, but nothing performed as well as simply
dropping them altogether. Another option we haven't exgdiois simply having a single class bias parameter
for each class)- = g(y-), to be added to the filler counts. We would tune #hés by hand for each task
where IMLM is applied. However, this would make the model require edabeled data to tune, whereas
our current ¥MLM is parameter-free and entirely unsupervised.
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are available. This position-weightingiZ. feature-weighting) technique is similar to the
decision-list weighting i Yarowsky, 1994. We refer to this approach assRoLM in our
experiments.

3.4 Evaluation Methodology

We compare our supervised and unsupervised systems orelpeemental tasks: preposi-
tion selection, context-sensitive spelling correctiomg aon-referential pronoun detection.
We evaluate usingccuracy the percentage of correctly-selected labels. As a baselin
(BAsE), we state the accuracy of always choosing the most-frequlass. For spelling
correction, we average accuracies across the five confsgsiisn We also provide learning
curves by varying the number of labeled training examples worth reiterating that this
data is used solely to weight the contribution of the différi@ler counts; the filler counts
themselves do not change, as they are always extractediefult Google 5-gram Corpus.

For training SYPERLM, we use a support vector machine (SVM). SVMs achieve good
performance on a range of tasks (Chapter 2, Section 2.3.4)usd# a linear-kernel mul-
ticlass SVM (the efficient SVWticlass instance of SVM <t [Tsochantaridiset al.,
2004). It slightly outperformed one-versus-all SVMs in prelitary experiments (and a
later, more extensive study in Chapter 4 confirmed that tpesleminary intuitions were
justified). We tune the SVM'’s regularization parameter om development sets. We ap-
ply add-one smoothing to the counts used imv&M and SUPERLM, while we add 39 to
the counts in RTIOLM, following the approach of Carlson et 42009 (40 is the count
cut-off used in the Google Corpus). For all unsupervisedesys, we choose the most fre-
guent class if no counts are available. Fong.M, we use the development sets to decide
which orders of N-grams to combine, finding orders 3-5 opitifoapreposition selection,
2-5 optimal for spelling correction, and 4-5 optimal for Amferential pronoun detection.
Development experiments also showear®© LM works better starting from 4-grams, not
the 5-grams originally used {iCarlsonet al.,, 2009.

3.5 Preposition Selection

3.5.1 The Task of Preposition Selection

Choosing the correct preposition is one of the most diffitagks for a second-language
learner to master, and errors involving prepositions ¢ansta significant proportion of
errors made by learners of EnglifBhodorowet al, 2007. Several automatic approaches
to preposition selection have recently been develdpetice and Pulman, 2007; Gamon
et al, 2009. We follow the experiments of Chodorow et §007, who train a classi-
fier to choose the correct preposition among 34 candidates[Chodorowet al., 2007,
feature vectors indicate words and part-of-speech tagsthegreposition, similar to the
features used in most disambiguation systems, and unl&adgregate counts we use in
our supervised preposition-selection N-gram model (8r@&i3.1).

4Chodorow et al. do not identify the 34 prepositions they Wfe.use the 34 from the SemEval-07 prepo-
sition sense-disambiguation taltktkowski and Hargraves, 2007about, across, above, after, against, along,
among, around, as, at, before, behind, beneath, besideelet by, down, during, for, from, in, inside, into,
like, of, off, on, onto, over, round, through, to, toward#&hw
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Figure 3.1: Preposition selection learning curve

For preposition selection, like all generation disambiguatasks, labeled data is es-
sentially free to create (i.e, the problem hestural automatic exampleas explained in
Chapter 2, Section 2.5.4). Each preposition in edited sex¢sumed to be correct, automat-
ically providing an example of that preposition’s class. &&ract examples from the New
York Times (NYT) section of the Gigaword corp[Graff, 2003. We take the first 1 million
prepositions in NYT as a training set, 10K from the middle ae@elopment set and 10K
from the end as a final unseen test set. We tokenize the congugentify prepositions by
string-match. Our system uses no parsing or part-of-speggling to extract the examples
or create the features.

3.5.2 Preposition Selection Results

Preposition selection is a difficult task with a low baselimdoosing the most-common
preposition ¢f) in our test set achieves 20.3%. Training on 7 million exawpChodorow
et al.[2007 achieved 69% on the full 34-way selection. Tetreault anddohomw [2009
obtained a human upper bound by removing prepositions fextnaind asking annotators
to fill in the blank with the best preposition (using the catreentence as context). Two
annotators achieved only 75% agreement with each other @hdhe original text.

In light of these numbers, the accuracy of the N-gram modelgspecially impressive.
SUPERLM reaches 75.4% accuracy, equal to the human agreementrilaifferent data).
Performance continually improves with more training exeapbut only by 0.25% from
300K to 1M examples (Figure 3.1).usLM (73.7%) significantly outperforms Ri1oLM
(69.7%), and nearly matches the performance 0PERLM. TRIGRAM performs worst
(58.8%), but note it is the only previous web-scale appr@agiied to preposition selection
[Felice and Pulman, 2007 All differences are statistically significant (McNematst,
p<0.01).

The order of N-grams used in thes8 LM system strongly affects performance. Us-
ing only trigrams achieves 66.8% accuracy, while using &ityrams achieves just 57.8%
(Table 3.1). Note that the performance with only trigran®.866) is not equal to the per-
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Max

Min 2 3 4 5
2 50.2 63.8 704 72.6
3 66.8 721 73.7
4 69.3 70.6
5 57.8

Table 3.1: MLM accuracy (%) combining N-grams from ordelin to Max
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Figure 3.2: Preposition selection over high-confidencesst#) with and without language
constraints (-FR,-DE)

formance of the standardRTGRAM approach (58.8%), because the standariGRAM
approach only uses a single trigram (the one centered onédpesition) whereas@iLM
always uses the three trigrams that span the confusable word

Coverage is the main issue affecting the 5-gram model: dhl§@3 of the test examples
had a 5-gram count fany of the 34 fillers. 93.4% of test examples had at least one Argra
count and 99.7% of examples had at least one trigram count.

Summing counts from 3-5 results in the best performance emévelopment and test
sets.

We compare our use of the Google Corpus to extracting pagetsdom a search
engine, via the Google API (no longer in operation as of Au@099, but similar services
exist). Since the number of queries allowed to the API isricst, we test on only the
first 1000 test examples. Using the Google CorpuaGRAM achieves 61.1%, dropping to
58.5% with search engine page counts. Although this is al slifférence, the real issue is
the restricted number of queries allowed. For each exarSplaL M would need 14 counts
for each of the 34 fillers instead of just one. For trainingP&RLM, which has 1 million
training examples, we need counts for 267 milliamqueN-grams. Using the Google API
with a 1000-query-per-day quota, it would take over 732 yearcollect all the counts for
training. This is clearly why some web-scale systems usk kuited context.
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We also follow Carlson et a]2001] and Chodorow et a[2007 in extracting a subset of
decisions where our system has higher confidence. We onbopeoa label if the ratio be-
tween the highest and second-highest score from our ci&ssi@bove a certain threshold,
and then vary this threshold to produce accuracy at differeverage levels (Figure 3.2).
The SUPERLM system can obtain close to 90% accuracy when deciding éa @Dex-
amples, and above 95% accuracy when deciding on half the@&amThe RIGRAM
performance rises more slowly as coverage drops, reaclitige&curacy when deciding
on only 57% of examples.

Many of SUPERLM’s errors involve choosing between prepositions thatuariéely to
be confused in practice, e.gvith/without Chodorow et al[2007 wrote post-processor
rules to prohibit corrections in the case of antonyms. Nio&t the errors made by an En-
glish learner also depend on their native language. A Frepelaker looking to translate
au-dessus deas one option in some dictionariesbove A German speaker looking to
translateliber has, along witreabove many more options. When making corrections, we
could combine 8PERLM (a sourcemodel) with the likelihood of each confusion depend-
ing on the writer’s native language ¢aannelmodel). The channel model could be trained
on text written by second-language learners who speak, astdafiguage, the particular
language of interest.

In the absence of such data, we only allow our system to makedatmns in English
if the proposed replacement shares a foreign-languagsldtamm in a particular Freelang
online bilingual dictionary \ww.freelang.net/dictionary/ ). Put another way,
we reduce the size of the preposition confusion set dyndiyidapending on the preposi-
tion that was used and the native language of the speakerrtidydar preposition is only
suggested as a correction if both the correction and theatigreposition could have been
confused by a foreign-language speaker translating acpkatiforeign-language preposi-
tion without regard to context.

To simulate the use of this module, we randomly flip 20% of est-set prepositions to
confusable ones, and then apply our classifier with the afer¢éioned confusability (and
confidence) constraints. We experimented with French amth&@elexicons (Figure 3.2).
These constraints strongly benefit bothP&RLM and TRIGRAM, with French constraints
(—FR) helping slightly more than German-(DF) for higher coverage levels. There are
fewer confusable prepositions in the French lexicon coegbéon German. As a baseline,
if we assign our labels random scores, adding the French &nchd® constraints results
in 20% and 14% accuracy, respectively (compareg‘ztg 2.9% unconstrained). At 50%
coverage, both constrainedSERLM systems achieve close to 98% accuracy, a level that
could provide very reliable feedback in second-languagelag software.

3.6 Context-Sensitive Spelling Correction

3.6.1 The Task of Context-Sensitive Spelling Correction

Context-sensitive spelling correction, or real-word gmalapropism detectiofGolding
and Roth, 1999; Hirst and Budanitsky, 2008 the task of identifying errors when a mis-
spelling results in a real word in the lexicon, e.g., ussitgwhensightor cite was intended.
Contextual spell checkers are among the most widely-usdel td€hnology, as they are in-
cluded in commercial word processing softwh@hurchet al., 2007.

For every occurrence of a word in a pre-defined confusionliket{among, betweeh),
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we select the most likely word from the set. The importanc&iihg large volumes of
data has previously been notianko and Brill, 2001; Liu and Curran, 2008mpressive
levels of accuracy have been achieved on the standard comfets, for example, 100% on
disambiguating botHaffect, effect and {weather, whethérby Golding and Roth1999.
We thus restricted our experiments to the five confusion(sétsventy-one in total) where
the reported performance [Golding and Roth, 1999s below 90% (an average of 87%):
{among, betwegn {amount, numbdr, {cite, sight, sité, {peace, pieck and{raise, rise.
We again create labeled data automatically from the NYTigomf Gigaword. For each
confusion set, we extract 100K examples for training, 10Kdevelopment, and 10K for a
final test set.

3.6.2 Context-sensitive Spelling Correction Results

Figure 3.3 provides the spelling correction learning cumwaile Table 3.2 gives results
on the five confusion sets. Choosing the most frequent lalsebhges 66.9% on this task
(BASE). TRIGRAM scores 88.4%, comparable to the trigram (page count) sespbrted

in [Lapata and Keller, 2005 SuPERLM again achieves the highest performance (95.7%),
and it reaches this performance using many fewer trainimgngkes than with preposition
selection. This is because the number of parameters grathidhvei number of fillersimes
the number of labels (recall, there aré|F'|K count-weight parameters), and there are
34 prepositions but only two-to-three confusable spedliniote that we also include the
performance reported {iGolding and Roth, 1999although these results are reported on a
different corpus.

SuPERLM achieves a 24% relative reduction in error ovextro LM (94.4%), which
was the previous state-of-the-d@arlsonet al, 200§. SumLM (94.8%) also improves
on RATIOLM, although results are generally similar on the differeatfusion sets. On
{raise,risg, SUPERLM’s supervised weighting of the counts by position and siaes not
improve over ¥MLM (Table 3.2). On all the other sets the performance is higfar
example, or{famong,between the accuracy improves by 2.3%. On this set, counts for
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Set Base [Golding and Roth, 1999 TRIGRAM SUMLM  SUPERLM
among/between 60.3 86.0 80.8 90.5 92.8
amount/number 75.6 86.2 83.9 93.2 93.7

cite/sight/site | 87.1 85.3 94.3 96.3 97.6
peace/piece | 60.8 88.0 92.3 97.7 98.0
raise/rise 51.0 89.7 90.7 96.6 96.6
Average 66.9 87.0 88.4 94.8 95.7

Table 3.2: Context-sensitive spelling correction accyés) on different confusion sets

fillers near the beginning of the context pattern are moreoimant, as the object of the
preposition is crucial for distinguishing these two clasgbetweerthe two” but “among
thethree”). SUPERLM can exploit the relative importance of the different gimsis and
thereby achieve higher performance.

3.7 Non-referential Pronoun Detection

We now present an application of our approach to a difficudtlysis problem: detecting
non-referential pronouns. In factu8eERLM was originally devised for this task, and then
subsequently evaluated as a general solution to all ledisambiguation problems. More
details on this particular application are available in A@L 2008 papefBergsmeet al,,
20084.

3.7.1 The Task of Non-referential Pronoun Detection

Coreference resolution determines which noun phrases imcantgent refer to the same
real-world entity. As part of this task, coreference regohusystems must decide which
pronouns refer to preceding noun phrases (called antets@dmmd which do not. In par-
ticular, a long-standing challenge has been to correctgsify instances of the English
pronounit. Consider the sentences:

(1) You can make it in advance.

(2) You can make it in Hollywood.

In Example (1)jt is an anaphoric pronoun referring to some previous noursphiike
“the sauce” or “an appointment.” In Example (2),is part of the idiomatic expression
“make it” meaning “succeed.” A coreference resolution egsshould find an antecedent
for the firstit but not the second. Pronouns that do not refer to preceding pbrases are
callednon-anaphoricor non-referentialpronouns.

The wordit is one of the most frequent words in the English languageguating for
about 1% of tokens in text and over a quarter of all third-persronouns. Usually between
a quarter and a half afinstances are non-referential. As with other pronounspiteeeding
discourse can affedt’s interpretation. For example, Example (2) can be int¢gareas
referential if the preceding sentence is “You want to makeozia?” We show, however,

Se.qg. http://ucrel.lancs.ac.uk/bncfreqg/flists.html
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| Pattern Filler Type | String \

#1: 3rd-person pron. sing. it/its
#2: 3rd-person pron. plur, they/them/their
#3: any other pronoun he/him/his/

I/me/my etc.
#4: infrequent word token (UNK)
#5: any other token *

Table 3.3: Pattern filler types

that we can reliably classify a pronoun as being refereptialon-referential based solely
on the local context surrounding the pronoun, using theniecies described in Section 3.3.

The difficulty of non-referential pronouns has been ackeogkd since the beginning
of computational resolution of anaphora. Holhb879 notes his algorithm does not handle
pronominal references to sentences nor cases whecurs in time or weather expres-
sions. Hirst[1981, page 1l7emphasizes the importance of detecting non-referent@l pr
nouns, “lest precious hours be lost in bootless searchésxXial referents.” Muellei2004
summarizes the evolution of computational approaches tereferentialit detection. In
particular, note the pioneering work of Paice and Hu$i87, the inclusion of non-referential
it detection in a full anaphora resolution system by Lappin laealss[1994, and the ma-
chine learning approach of Evaf001].

3.7.2 Our Approach to Non-referential Pronoun Detection

We apply our web-scale disambiguation systems to this takk.in the above approaches,
we turn the context into patterns, withas the word to be labeled. Since the output classes
are not explicit words, we devise some surrogate fillers lliistrate for Example (1), note
we can extract the context pattern “make * in advance” andcsfample (2) “make * in
Hollywood,” where “*” represents the filler in the positiori . Non-referential instances
tend to have the worid filling this position in the pattern’s distribution. Thisk&cause non-
referential patterns are fairly unique to non-referenpi@nouns. Referential distributions
occur with many other noun phrase fillers. For example, inGlo®gle N-gram corpus,
“make it in advance” and “make them in advance” occur rougidéysame number of times
(442 vs. 449), indicating a referential pattern. In cortfrasake it in Hollywood” occurs
3421 times while “make them in Hollywood” does not occur &atBhis indicates that some
useful statistics are counts for patterns filled with thedgdtrandthem

These simple counts strongly indicate whether another waurreplace the pronoun.
Thus we can computationally distinguish between a) prosdhbat refer to nouns, and b)
all other instances: including those that have no ante¢etike Example (2), and those
that refer to sentences, clauses, or implied topics of diseo

We now discuss our full set of pattern fillers. For identifyinon-referentialt in En-
glish, we are interested in how ofténoccurs as a pattern filler versus othmuns As
surrogates for nouns, we gather counts for five differerdsela of words that fill the wild-
card position, determined by string match (Table 8.3Jhe third-person plurahey (#2)
reliably occurs in patterns where referentitahlso resides. The occurrence afy other

®Note, this work was done before the availability of the P@§ged Google V2 corpus (Chapter 5). We
could directly count noun-fillers using that corpus.
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pronoun(#3) guarantees that at the very least the pattern filler mua.nA match with the
infrequent word tokeqUNK) (#4) (explained in Section 3.2.2) will likely be a noun be-
cause nouns account for a large proportion of rare words orgus. Gatheringny other
token(#5) also mostly finds nouns; inserting another part-okespeusually results in an
unlikely-to-be-observed, ungrammatical pattern.

Unlike our work in preposition selection and spelling cotien above, we process our
input examples and our N-gram corpus in various way to impgenerality. We change
the patterns to lower-case, convert sequences of digitseté $ymbol, and run the Porter
stemmelPorter, 19807 Our method also works without the stemmer; we simply trumcat
the words in the pattern at a given maximum length. With sintpincation, all the pattern
processing can be easily applied to other languages. Toaeerare names, we convert
capitalized words longer than five characters to a sp&tia(named entity) tag. We also
added a few simple rules to stem the irregular vér$ave do, andsaid and convert the
common contractiondt, ’s, 'm, re, 've, 'd, and’ll to their most likely stem. When we
extract counts for a processed pattern, we sum all the céomnisatching N-grams in the
identically-processed Google corpus.

We run SYPERLM using the above fillers and their processed-pattern castde-
scribed in Section 3.3.1. Forus1LM, we decideNonRef if the difference between the
SuMLM scores forit andtheyis above a threshold. FOrRIGRAM, we also threshold the
ratio betweerit-counts andhey-counts. For RTIOLM, we compare the frequencies ibf
andall, and decideVon Ref if the count ofit is higher. These thresholds and comparison
choices were optimized on the development set.

3.7.3 Non-referential Pronoun Detection Data

We need labeled data for training and evaluation of our syst&€his data indicates, for
every occurrence of the pronoun whether it refers to a preceding noun phrase or not.
Standard coreference resolution data sets annotate allptoases that have an antecedent
noun phrase in the text. Therefore, we can extract labelgdnoes oft from these sets.
We do this for the dry-run and formal sets from MUJ-1®97, and merge them into a
single data set.

Of course, full coreference-annotated data is a precicssuree, with the pronouit
making up only a small portion of the marked-up noun phragésthus created annotated
data specifically for the pronout We annotated 1020 instances in a collection of Science
News articles (from 1995-2000), downloaded from the S@eNews website. We also
annotated 709 instances in the WSJ portion of the DARPA TERSProject[Harman,
1994, and 279 instances in the English portion of the EuroparpGslikoehn, 2005. We
take the first half of each of the subsets for training, the gemrter for development and
the final quarter for testing, creating an aggregate set ¥0#0 training, 533 development
and 534 test examples.

A single annotator 4,) labeled all three data sets, while two additional annosahot
connected with the projectdg and A3) were asked to separately re-annotate a portion of
each, so that inter-annotator agreement could be caldulate and A, agreed on 96%
of annotation decisions, whild-As, and A>-As, agreed on 91% and 93% of decisions,
respectively. Th&appastatistic[Jurafsky and Martin, 2000, page 31%ith Pr(E) com-
puted from the confusion matrices, was a high 0.904¢rA,, and 0.79 and 0.81 for the

"Adapted from the Bow-toolkitMcCallum, 1996.
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Figure 3.4: Non-referential detection learning curve

other pairs, around the 0.80 considered to be good reliabilihese are, perhaps surpris-
ingly, the onlyit-annotation agreement statistics available for writtet. t&'hey contrast
favourably with the low agreement for categorizihgn spoken dialogMuller, 2004 .

3.7.4 Non-referential Pronoun Detection Results
Main Results

For non-referential pronoun detectiona&e (always choosing referential) achieves 59.4%,
while SUPERLM reaches 82.4%. RrioLM, with no tuned thresholds, performs worst
(67.4%), while RIGRAM (74.3%) and BMLM (79.8%) achieve reasonable performance
by comparing scores far andthey. All differences are statistically significant (McNemar’s
test, p<0.05), except betweenlERLM and SUMLM.

In very similar results froniBergsmaet al,, 20081 (but under slightly different exper-
imental conditions; Section 3.7.5), they®eRLM classifier was shown to strongly outper-
form rule-based systems for non-referential detectiorgssca range of text genres.

Learning Curves

As this is our only task for which substantial effort was regttb create training data, we are
particularly interested in the learning rate affE=RLM (Figure 3.4). After 1070 examples,
it does not yet show signs of plateauing. Her&PSRLM uses double the number of
fillers (hence double the parameters) that were used inirspadbrrection, and spelling
performance did not level-off until after 10K training expl@s. Thus labeling an order of
magnitude more data will likely also yield further improvents in LY PERLM.

3.7.5 Further Analysis and Discussion

We now describe some work frofBergsmeet al., 20088 that further analyzes the perfor-
mance of the non-referential classifier. The performanagdigquoted in this section are
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Figure 3.5: Effect of pattern-word truncation on non-refgialiit detection.

not directly comparable to the above work because they ushffieaent split of training
and testing data, and because experiments were condudted meaximum entropy classi-
fier rather than an SVM. However, this previous work nevéede provides useful insights
into the performance of @*ERLM on this task. Full details are available [Bergsmaet
al., 20080. To analyze the output of our system in greater detail, we alsw report on the
precision, recall, and F-score of the classifier (definedeictisn 2.3.2).

Stemming vs. Simple Truncation

Since applying an English stemmer to the context words {@e8t7.2) reduces the porta-
bility of the distributional technique, we investigatedkthse of more portable pattern ab-
straction. Figure 3.5 compares the use of the stemmer tdysinopcating the words in the
patterns at a certain maximum length. Using no truncatioma({téred) drops the F-Score
by 4.3%, while truncating the patterns to a length of fouyairiops the F-Score by 1.4%,
a difference which is not statistically significant. Simplencation may be a good option
for other languages where stemmers are not readily availdihle optimum truncation size
will likely depend on the length of the base forms of wordshattianguage. For real-world
application of our approach, truncation also reduces thie tsizes (and thus storage and
look-up costs) of any pre-compiletdpattern database.

A Human Study

We also wondered, what is the effect of making a classifindb@ased solely on, in aggre-
gate, four words of context on either sideiofAnother way to view the limited context is
to ask, given the amount of context we have, are we makingnojoti use of it? We answer
this by seeing how well humans can do with the same informatiur system uses 5-gram
context patterns that together span from four-to-thetéefour-to-the-right of the pronoun.
We thus provide these same nine-token windows to our humigjiects, and ask them to
decide whether the pronouns refer to previous noun phrasest,dbased on these contexts.
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|System | P | R | F | Acc |
SUPERLM | 80.0| 73.3| 76.5| 86.5
Human-1 | 92.7| 63.3| 75.2| 87.5
Human-2 | 84.0| 70.0| 76.4 | 87.0
Human-3 | 72.2| 86.7 | 78.8 | 86.0

Table 3.4: Human vs. computer non-referenitialetection (%).

Subjects first performed a dry-run experiment on separatelag@ment data. They were
shown their errors and sources of confusion were clarifigekyTthen made the judgments
unassisted on a final set of 200 test examples. Three humaiosnped the experiment.
Their results show a range of preferences for precisiorugarscall, with F-Score and Ac-
curacy broadly similar to SPERLM (Table 3.4). These results show that our distributional
approach is already getting good leverage from the limitedext information, around that
achieved by our best human.

Error Analysis

Itis instructive to inspect the twenty-five test instandes bur system classified incorrectly,
given human performance on this same set. Seventeen of dmykfive system errors
were also made by one or more human subjects, suggestirggrsgstors are also mostly
due to limited context. For example, one of these errors waghie context: “it takes
an astounding amount...” Here, the non-referential nadfithe instance is not apparent
without the infinitive clause that ends the sentence: “.tinoé to compare very long DNA
sequences with each other.”

Six of the eight errors unique to the system were cases whersyistem falsely said
the pronoun was non-referential. Four of these could halegresl to entire sentences or
clauses rather than nouns. These confusing cases, for botarts and our system, result
from our definition of a referential pronoun: pronouns widrhal or clause antecedents are
considered non-referential. If an antecedent verb or el&iseplaced by a nominalization
(Smith researched.to Smith’s research then a neutral pronoun, in the same context, be-
comes referential. When we inspect the probabilities predby the maximum entropy
classifier, we see only a weak bias for the non-referentedscbn these examples, reflect-
ing our classifier’'s uncertainty. It would likely be possilib improve accuracy on these
cases by encoding the presence or absence of precedingalizations as a feature of our
classifier.

Another false non-referential decision is for the phrase fhachine he had installed
it on.” Theit is actually referential, but the extracted patterns (elge Had install * on”)
are nevertheless usually filled with (this example also suggests using filler counts for
the word “the” as a feature whehis the last word in the pattern). Again, it might be
possible to fix such examples by leveraging the precedirmpdise. Notably, the first noun-
phrase before the context is the word “software.” Thereranst compatibility between the
pronoun-parent “install” and the candidate antecedenfiwsoe.” In a full coreference
resolution system, when the anaphora resolution modula lst®ng preference to link
to an antecedent (which it should when the pronoun is indefedential), we can override a
weak non-referential probability. Non-referentitadietection should not be a pre-processing
step, but rather part of a globally-optimal configuraticees done for general noun phrase
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anaphoricity bylDenis and Baldridge, 2007

The suitability of this kind of approach to correcting soni@or system’s errors is es-
pecially obvious when we inspect the probabilities of theiimaim entropy model’s output
decisions on the test set. Where the maximum entropy clkassifikes mistakes, it does so
with less confidence than when it classifies correct examfllee average predicted prob-
ability of the incorrect classifications is 76.0% while thegge probability of the correct
classifications is 90.3%. Many incorrect decisions areya@adgwitch sides; our next step
will be to use features based on the preceding discoursehancbindidate antecedents to
help give the incorrect classifications a helpful push.

3.8 Conclusion

We proposed a unified view of using web-scale N-gram modelekical disambiguation.
State-of-the-art results by our supervised and unsumehggstems demonstrate that it is
not only important to use the largest corpus, but to get marininformation from this
corpus. Using the Google 5-gram data not only provides batteuracy than using page
counts from a search engine, but facilitates the use of monéexgt of various sizes and
positions. The RIGRAM approach, popularized by Lapata and KelR909, clearly under-
performs the unsupervisedJ8 LM system on all three applications.

In each of our tasks, the candidate set was pre-defined, @nthty data was available
to train the supervised system. Whil&s&RLM achieves the highest performance, the
simpler SUMLM, which uses uniform weights, performs nearly as well a®SrRLM, and
exceeds it for less training data. Unlike&=RrRLM, SUMLM could easily be used in cases
where the candidate sets are generated dynamically; fongrato assess the contextual
compatibility of preceding-noun candidates for anaphesalution.
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Chapter 4

Improved Natural Language
Learning via
Variance-Regularization Support
Vector Machines

LEON ARDO MICHELANGELO

DONATELLO RAPHAEL
NOTORIETY AS A

XKCD comic: Ninja Turtleshttp://xkcd.com/197/ . The beauty of
this comic is that it was also constructed using co-occeeeasounts from the
Google search engine. That is, the artist counted the nuwibpages for
Leonardoandturtle vs. the number of pages faeonardoandartist.

The previous chapter presentedf&ERLM, a supervised classifier that uses web-scale
N-gram counts as features. The classifier was trained astaatags SVM. In this chap-

9A version of this chapter has been publishedBergsmzet al., 20104
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ter, we present a simple technique for learning better SVBisgufewer training exam-

ples. Rather than using the standard SVM regularizatioregelarize toward low weight-

variance. Our new SVM objective remains a convex quadratictfon of the weights, and
is therefore computationally no harder to optimize thanamadard SVM. Variance regu-
larization is shown to enable improvements in the learnatgs of the SVMs on the three
lexical disambiguation tasks studied in the previous arapt

4.1 Introduction

Discriminative training is commonly used in NLP and speexisdale the contribution of
different models or systems in a combined predictor. Formgte, discriminative train-
ing can be used to scale the contribution of the language haodktranslation model in
machine translatiohOch and Ney, 2002 Without training data, it is often reasonable to
weight the different models equally. We propose a simplbrtegie that exploits this intu-
ition for better learning with fewer training examples. Végularize the feature weights in
a support vector machif€ortes and Vapnik, 199%oward a low-variance solution. Since
the new SVM quadratic program is convex, it is no harder tonoge than the standard
SVM objective.

When training data is generated through human effort, fdsggning saves time and
money. When examples are labeled automatically, throughfasdbackJoachims, 2002
or from textual pseudo-exampl¢Smith and Eisner, 2005; Okanohara and Tsujii, 2007
faster learning can reduce the lag before a new system islusef

We demonstrate faster learning on the same lexical disaratian tasks evaluated in
the previous chapter. Recall that in a lexical disambiguatask, a system predicts a label
for a word in text, based on the word’s context. Possibleltab&lude part-of-speech
tags, named-entity types, and word senses. A number of bigaation systems make
predictions with the help of N-gram counts from a web-scaigile@ry corpus, typically
acquiring these counts via a search-engine or N-gram cqgrction 3.2.1).

Ultimately, when discriminative training is used to set gfgs on various counts in
order to make good classifications, many of the learnedfeateights have similar values.
Good weights have low variance.

For example, consider the task of preposition selectionystesn selects the most likely
preposition given the context, and flags a possible errodiagrees with the user’s choice:

e | worked in Russidrom 1997 to 2001.
e | worked in Russia during 1997 to 2001.

Chapter 3 presenteduBeRLM, which uses a variety of web counts to predict the cor-
rect preposition. B8PERLM has features foCounT(in Russiafrom), CounT(Russiafrom
1997, CounT(from 1997 t9, etc. If these are higtirom is predicted. Similarly, there are
features forCounT(in Russiaduring), CounT(Russiaduring 1997, CounT(during 1997
to). These features prediduring. All counts are in the log domain. The task has thirty-
four different prepositions to choose from. A 34-way cléissiis trained on examples of
correct preposition usage; it learns which context passtiand sizes are most reliable and
assigns feature weights accordingly.

In Chapter 3, we saw that a very strong unsupervised baséloveever, is to simply
weight all the count features equally. In fact, the supediapproach required over 30,000
training examples before it outperformed this baseline.cdntrast, we show here that
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by regularizing a classifier toward equal weights, a sugetVipredictor outperforms the
unsupervised approach after only ten examples, and doesllagitih 1000 examples as the
standard classifier does with 100,000.

Section 4.2 first describes a general multi-class SVM. Witltalbase vector of infor-
mation used by the SVM thattributes A standard multi-class SVM creates features for
the cross-product of attributes and classes. E.g., thbu#iCounTt(Russiaduring1997) is
not only a feature for predicting the prepositidaring, but also for predicting the 33 other
prepositions. The SVM must therefore learn to disregardynraelevant features. We ob-
serve that this is not necessary, and develop an SVM thatusdyg the relevant attributes
in the score for each class. Building on this efficient framewywe incorporate variance
regularization into the SVM'’s quadratic program.

We apply our algorithms to the three tasks studied in Ch&ptereposition selection,
context-sensitive spelling correction, and non-refeaépronoun detection. We reproduce
the Chapter 3 results using a multi-class SVM. Our new maagtgeve much better accu-
racy with fewer training examples. We also exceed the acguwha reasonable alternative
technique for increasing the learning rate: including thgot of the unsupervised system
as a feature in the classifier.

Variance regularization is an elegant addition to the spiitmethods in NLP that im-
prove performance when access to labeled data is limitedtioBe4.5 discusses some
related approaches. While we motivate our algorithm as a twdgarn better weights
when the features are counts from an auxiliary corpus, theseother potential uses of
our method. We outline some of these in Section 4.6, and ritb&r directions for future
research.

4.2 Three Multi-Class SVM Models

We describe three max-margin multi-class classifiers agid torresponding quadratic pro-
grams. Although we describe linear SVMs, they can be extkbta@onlinear cases in the
standard way by writing the optimal function as a linear coration of kernel functions
over the input examples.

In each case, after providing the general technique, weerd¢le approach to our
motivating application: learning weights for count feasiin a discriminative web-scale
N-gram model.

4.2.1 Standard Multi-Class SVM

We define ak-class SVM following[Crammer and Singer, 20D1This is a generalization
of binary SVMs[Cortes and Vapnik, 1995We have a sef(z',y'), ..., (@M, yM)} of M
training examples. Each is an N-dimensional attribute vector, ande {1,..., K} are
classes. A classified/, maps an attribute vectar, to a classy. H is parameterized by a
K-by-N matrix of weights,W:

Hw(z) = argﬁlax{W,ﬂ T} (4.1)

r=1

whereW,. is therth row of W. That is, the predicted label is the index of the row\Wt
that has the highest inner-product with the attributes,
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We seek weights such that the classifier makes few errorsaonrg data and general-
izes well to unseen data. There dféV weights to learn, for the cross-product of attributes
and classes. The most common approach is to Kaseparate one-versus-all binary SVMs,
one for each class. The weights learned forstteSVM provide the weight$V,. in (4.1).

We call this approaclovAa-svm. Note in some settings various one-versus-one strategies
may be more effective than one-versusfalbu and Lin, 200P

The weights can also be found using a single constrainedhizgatiion [Vapnik, 1998;
Weston and Watkins, 1998 Following the soft-margin version ifCrammer and Singer,
2001:

K m
1 _ .
1 — Wz 2 C !
W,gnl,l.?,fM 2 Zz:; [Wil]" + ;5
subject to : Vi ¢ >0
- Wy &= W20 21— € @2

The constraints require the correct class to be scored higae other classes by a certain
margin, with slack for non-separable cases. Minimizingwleéghts is a form of regular-
ization. Tuning the_-parameter controls the emphasis on regularization vesepration
of training examples.

We call this thek-svm. The k-svM outperformed theovA-svm in [Crammer and
Singer, 200}, but sedRifkin and Klautau, 2004 The popularity ok-svm is partly due to
convenience; it is included in popular SVM software l&em-multiclass andLIBLINEAR
[Fanet al., 2009.

Note that with two classess-svM is less efficient than a standard binary SVM. A
binary classifier outputs class 1 i’( £ > 0) and class 2 otherwise. ThesvMm encodes
a binary classifier usin§l’; = w andW, = —w, therefore requiring twice the memory
of a binary SVM. However, both binary and 2-class formulagidnave the same solution
[Weston and Watkins, 1998

Web-Scale N-gramk -svm

K-SVM was used to combine the N-gram counts in Chapter 3. This wvaSiRERLM
model. Recall that for preposition selection, attributesrewweb counts of patterns filled
with 34 prepositions, corresponding to the 34 classes. Regposition serves as tliidder

of eachcontext pattern Fourteen patterns were used for each filler: all five 5-grdmg
4-grams, three 3-grams, and two 2-grams spanning the mosdibe predicted. There are
N =14 % 34 = 476 total attributes, and therefol€ N = 476 x 34 = 16184 weights in theW
matrix.

Figure 4.1 depicts the optimization problem for the prefimsiselection classifier. For
theith training example, the optimizer must set the weights $hahthe score for the true
class {from) is higher than the scores of all the other classes by a mafdinOtherwise, it
must use the slack parametgr, The score is the linear product of the preposition-specific
weights, W, and all the features;’. For illustration, seven of the thirty-four total classes a
depicted. Note these constraints must be collectivelgféadi across all training examples.

A K-svwMm classifier can potentially exploit very subtle informatifor this task. Let
W;,, and Wi, tore D€ Weights for the classas andbefore. Notice some of the attributes

1http://svmIight.joa(:hims.org/svm_muIti(:lass.html
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Figure 4.1: Multi-class classification for web-scale N+granodels

weighted in the inner produc@before -z andW;,, - = will be for counts of the preposition
after. Relatively high counts for a context witfter should deter us from choosirg
more than from choosingefore. These correlations can be encoded in the classifier via
the corresponding weights after-counts inWW;,, and Wbefo,,e. Our experiments address
how useful these correlations are and how much trainingidataeded before they can be
learned and exploited effectively.

4.2.2 SVM with Class-Specific Attributes

Suppose we can partition our attribute vectors into sulbevedhat only include attributes
that we declare as relevant to the corresponding class: (zi,...,7x). We develop
a classifier that only uses the class-specific attributesiénstore for each class. The
classifier uses aV-dimensional weight vectorp, which follows the attribute partition,
w = (wy, ..., Wk ). The classifier is:

Hy(z) = argglax{w,« Ty} (4.3)
r=1

We call this classifier thes-svM (an SVM with ClassSpecific attributes).
The weights can be determined using the follow (soft-margptimization:

1, Ly
min —ww+C)y &
w7$17"'7§m 2 ;
subject to : Vi €8>0
Vr £y, Wyi - Ty — Wy - Ty 21— & (4.4)

There are several advantages to this formulation. Forematster than havind< NV
weights, it can have onlyW. For linear classifiers, the humber of examples needed to
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reach optimum performance is at most linear in the number aifjhis[Vapnik, 1998;

Ng and Jordan, 2002 In fact, both the total number and numberaative features per
example decrease by. Thus this reduction saves far more memory than what could be
obtained by an equal reduction in dimensionality via prgrirfrequent attributes.

Also, note that unlike th&-svm (Section 4.2.1), in the binary case the-svM is
completely equivalent (thus equally efficient) to a staddayM.

We will not alwaysa priori know the class associated with each attribute. Also, some
attributes may be predictive of multiple classes. In sudesawe can include ambiguous
attributes in every sub-vector (needingtD(K-1) total weights if D attributes are dupli-
cated). In the degenerate case where every attribute igcdtga,cs-svMm is equivalent to
K-SVM; both haveX N weights.

Optimization as a Binary SVM

We could solve the optimization problem in (4.4) directlyngsa quadratic programming
solver. However, through an equivalent transformation atbinary SVM, we can take
advantage of efficient, custom SVM optimization algorithms

We follow [Har-Peledet al., 2003 in transforming a multi-class example into a set of
binary examples, each specifying a constraint from (4.4 eWend the attribute sub-vector
corresponding to each class to Nedimensional. We do this by substituting zero-vectors
for all the other sub-vectors in the partition. The attrédbuector for therth class is then
z. = (0,...,0,7,,0,...,0). This is known as Kesler's Construction and has a long histor
in classification Duda and Hart, 1973; Crammer and Singer, 4008e then create binary
rank constraints for a ranking SVidoachims, 20J2(ranking SVMs reduce to standard
binary SVMs). We creat& instances for each multi-class exampi, {/*), with the trans-
formed vector of the true class,;, assigned a higher-rank than all the other, equally-ranked
classeszy, . Training a ranking SVM using these constraints gives timeesaeights
as solving (4.4), but allows us to use efficient, custom SVitgre? Note thek-SvMm
can also be trained this way, by including every attributeviary sub-vector, as described
earlier.

Web-Scale N-gramcs-svMm

Returning to our preposition selection example, an obvattrbute partition for thes-svm
is to include as attributes for predicting prepositioonly those counts for patterns filled
with prepositionr. Thusz;,, will only include counts for context patterns filled wiitnand
Zpe fore Will Only include counts for context patterns filled witiefore With 34 sub-vectors
and 14 attributes in each, there are ohly 34 = 476 total weights. In contrask-svm had
16184 weights to learn.

It is instructive to compare thes-svm in (4.3) to the unsupervisedum LM approach
in Chapter 3. That approach can be written as:

H(z) = arg?nax{i Ty} (4.5)

r=1

20ne subtlety is whether to use a single sl&ékfor all K-1 constraints per exampldéCrammer and Singer,
2001, or a different slack for each constraldbachims, 2002 Using the former may be better as it results in
a tighter bound on empirical righ sochantaridigt al.,, 2003.
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wherel is an N-dimensional vector of ones. Thisds-svMm with all weights set to unity.
The counts for each preposition are simply summed, and wh&tone scores the highest
is taken as the output (actually only a subset of the coustsised, see Section 4.4.1). As
mentioned earlier, this system performs remarkably weB@reral tasks.

4.2.3 Variance Regularization SVMs

Suppose we choose our attribute partition well and trairctievm on a sufficient number
of examples to achieve good performance. It is a reasonafpetiiesis that the learned
weights will be predominantly positive. This is becausehesighb-vectorz,, was chosen
to only include attributes that are predictive of clasfJnlike the classifier in (4.1) which
weighs positive and negative evidence together for eass dlacs-svm, negative evidence
only plays a roll as it contributes to the score of competilagses.

If all the attributes are equally important, the weightsuidtddoe equal, as in the unsu-
pervised approach in (4.5). If some are more important tliaers, the training examples
should reflect this and the learner can adjust the weightsrdiogly® In the absence of
this training evidence, it is reasonable to bias the classidiward an equal-weight solution.

Rather than the standard SVM regularization that minimizesxorm of the weights as
in (4.4), we therefore regularize toward weights that havevariance. More formally, we
can regard the set of weights;, ..., wy, as the distribution of a discrete random variable,
W. We can calculate the mean and variance of this variable fi®rfistribution. We seek
a variable that has low variance.

We begin with a more general objective and then explain hopeaiic choice of co-
variance matrixC, minimizes the variance of the weights. We propose the asizelr:

1 Ly
min —w' Co+C» ¢
1D7£17"'7§m 2 ;
subject to : Vi £ >0
vr# Wy Ty — - T =1 = € (4.6)

whereC is a normalized covariance matrix such thaf ; C; ; = 0. This ensures uniform
weight vectors receive zero regularization penalty. Salteovariance matrices are posi-
tive semi-definite, the quadratic program (QP) remains ewiin @, and thus amenable to
general purpose QP-solvers.

Since the unsupervised system in (4.5) has zero weightnaajghe SVM learned in
(4.6) should do as least as well as (4.5) as we tun&tparameter on development data.
That is, asC approaches zero, variance minimization becomes the sg@etivie of (4.6),
and uniform weights are produced.

We use covariance matrices of the form:

C = diag(p) — pp" (4.7)

wherediag(p) is the matrix constructed by puttingon the main diagonal. Herg,is an
arbitrary N-dimensional weighting vector, such that> 0 and) . p; = 1. The vectorp
dictates the contribution of eaety to the mean and variance of the weightsiinlt is easy

toseethad, ; Ci; = >, pi — >, > pipj = 0.

3E.g., recall from Chapter 3 that the true preposition mighbbtter predicted by the counts of patterns that
tend to include the preposition’s grammatical object, patterns that include more right-context.
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We now show thato” (diag(p) — pp’ )w expresses the variance of the weightszin
with respect to the probability weighting The variance of a random variable with mean
E[W] = pis:

Var[W] = B[(W — u)*] = EW?] - E[W}?

The mean of the weights using probability weightings E[W] = @’ p = pw. Also,
E[W? = w” diag(p)w. Thus:

Var[W] = o” diag(p)w — (0" p)(pw)
= " (diag(p) — pp)@

In our experiments, we deem each weight to be equally impbttathe variance cal-
culation, and set; = &, Vi =1,...,N.

The goal of the regularization in (4.6) usiKdgfrom (4.7) can be regarded as directing
the SVM toward a good unsupervised system, regardless abiigraints (training exam-
ples). In some unsupervised systems, however, only a sabiet attributes are used. In
other cases, distinct subsets of weights should have loiana, rather than minimizing
the variance across all weights. There are examples of #iesdions in Section 4.4.

We can account for these cases in our QP. We provide separate in our quadratic
function for the subsets ab that should have low variance. Suppose we créasebsets
of w: @y, ...0r, wherew; is w with elements set to zero that are not in sulysetVe then
minimize 1 (&7 C1&; + ... + @7 Cr@y). If the terms in subsef have low varianceC;
= C from (4.7) is used. If the subset corresponds to attributasare not priori known
to be useful, an identity matrix can instead be usgg,= I, and these weights will be
regularized toward zero as in a standard SYM.

Variance regularization therefore exploits extra knoygkebdy the system designer. The
designer decides which weights should have similar vakmedthe SVM is biased to prefer
this solution.

One consequence of being able to regularize different ssib$aveights is that we can
also apply variance regularization to the standard miagscSVM (Section 4.2.1). We can
use an identityC; matrix for all irrelevant weights, i.e., weights that correspond to class-
attribute pairs where the attribute is not directly relévanthe class. In our experiments,
however, we apply variance regularization to the more effigt s-svm.

We refer to acs-svM trained using the variance minimization quadratic progesthe
VAR-SVM.

Web-Scale N-gram \AR-SVM

If variance regularization is applied to all weights, dfiies CounTt(in Russiaduring),
CounT(Russiaduring 1997), andCounTt(during 1997 tg will be encouraged to have simi-
lar weights in the score for claskiring. Furthermore, these will be weighted similarly to
other patterns, filled with other prepositions, used in twes for other classes.
Alternatively, we could minimize the variance separatetgrall 5-gram patterns, then
over all 4-gram patterns, etc., or over all patterns withlarfih the same position. In our

*Weights must appear ir1 subsets (possibly only in th&; = I subset). Each occurs in at most one in
our experiments. Note it is straightforward to expressakig single covariance matrix regularizer ovemwe
omit the details.
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experiments, we took a very simple approach: we minimizedviriance of all attributes
that are weighted equally in the unsupervised baselines.fdature is not included in an
unsupervised baseline, it is regularized toward zero.

4.3 Experimental Details

We use the data sets from Chapter 3. Recall that in each céassdier makes a decision for
a particular word based on the word’s surrounding contekie attributes of the classifier
are the log counts of different fillers occurring in the comteatterns. We retrieve counts
from the web-scale Google Web 5-gram CorpBgsants and Franz, 2006which includes
N-grams of length one to five. We apply add-one smoothingltooaints. Every classifier
also has bias features (for every class). We simply includesre appropriate, attributes
that are always unity.

We USELIBLINEAR [Fanet al, 2009 to train K-svMm and ovA-svM, and SVMk
[Joachims, 20dao traincs-svm. For VAR-SVM, we solve the primal form of the quadratic
program directly ifCPLEX, 2003, a general optimization package.

We vary the number of training examples for each classifiére 0-parameters of all
SVMs are tuned on development data. We evaluate wstogracy. the percentage of test
examples that are classified correctly. We also provide tlearacy of the majority-class
baseline and best unsupervised system, as defined in CBapter

As an alternative way to increase the learning rate, we angmelassifier's features
using the output of the unsupervised system: For each chassnclude one feature for
the sum of all counts (in the unsupervised system) that girdfulat class. We denote these
augmented systems withfaas ink-svm™* andcs-svmT.

4.4 Applications

4.4.1 Preposition Selection

Following the set-up in Chapter 3, a classifier selects agsiépn from 34 candidates,
using counts for filled 2-to-5-gram patterns. We again ugestime 100K training, 10K
development, and 10K test examples. The unsupervised agpsums the counts of all 3-
to-5-gram patterns for each preposition. We thereforelagige the variance of the 3-to-5-
gram weights in ¥R-svM, and simultaneously minimize the norm of the 2-gram weights

Results

The majority-class is the prepositiaf, it occurs in 20.3% of test examples. The unsuper-
vised system scores 73.7%. For further perspective on tiessis, recall thafChodorow

et al, 2007 achieved 69% with 7M training examples, wh[€etreault and Chodorow,
2009 found the human performance was around 75%. However, tlessiis are not di-
rectly comparable as they are on different data.

Table 4.1 gives the accuracy for different amounts of trjrdata. Here, as in the other
tasks,k-svM mirrors the learning rate from Chapter 3. There are sevestihdt phases
among the relative ranking of the systems. For smaller atsafriraining data<1000 ex-
amples)-svM performs worst, while WR-SvM is statistically significantly better than all
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Training Examples
System 10 100 1K 10K 100K
OVA-SVM | 16.0 50.6 66.1 71.1 735
K-SVM 13.7 50.0 65.8 72.0 74.7
K-svMT | 22.2 56.8 70.5 73.7 75.2
CS-SVM 271 588 69.0 735 74.2
cssvM™ | 39.6 648 715 74.0 744
VAR-SVM | 73.8 74.2 747 74.9 749

Table 4.1: Accuracy (%) of preposition-selection SVMs. Upervised (8MLM) accuracy
is 73.7%.

Training Examples
System 10 100 1K 10K 100K
CS-SVM 86.0 935 951 957 95.7
cssvMT | 91.0 949 953 95.7 957
VAR-SVM | 949 953 956 95.7 95.8

Table 4.2: Accuracy (%) of spell-correction SVMs. Unsupeed (SUMLM) accuracy is
94.8%.

other systems, and always exceeds the performance of topemssed approach.Aug-
menting the attributes with sum counts (thesystems) strongly helps with fewer examples,
especially in conjunction with the more efficieas-svm. However, \AR-SVM clearly
helps more. We noted earlier thaa®-svM is guaranteed to do as well as the unsupervised
system on the development data, but here we confirm that ialsEnexploit even small
amounts of training data to further improve accuracy.

Cs-svM outperformsk-svm except with 100K examples, whileva-svmM is better
thank-svm for small amounts of dathk-svm performs best with all the data; it uses the
most expressive representation, but needs 100K examptaake use of it. On the other
hand, feature augmentation and variance regularizatiovige diminishing returns as the
amount of training data increases.

4.4.2 Context-Sensitive Spelling Correction

Recall that in context-sensitive spelling correction, deery occurrence of a word in a pre-
defined confusion set (e.g.cite, sight, cité), the classifier selects the most likely word
from the set. We use the five confusion sets from Chapter 3;doeibinary and one is

a 3-way classification. We use 100K training, 10K developthand 10K test examples

for each, and average accuracy across the sets. All 2-tas® gounts are used in the
unsupervised system, so the variance of all weights is agiged in \AR-SVM.

SSignificance is calculated usingyd test over the test set correct/incorrect contingency table

®[Rifkin and Klautau, 2004argueovAa-svM is as good ag-svM, but this is “predicated on the assumption
that the classes are ‘independent’,” i.e., that examptas frlass 0 are no closer to class 1 than to class 2. This
is not true of this task (e.Give fore IS ClOSEr tOT 4 #1er thanzy, etc.).
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Training Examples

System 10 100 1K
CS-SVM 59.0 71.0 84.3
CcS-svmMT 59.4 74.9 845
VAR-SVM 70.2 76.2 845

VAR-sVM+FreeB| 64.2 80.3 84.5

Table 4.3: Accuracy (%) of non-referential detection SVMssupervised (SMLM) ac-
curacy is 79.8%.

Results

On this task, the majority-class baseline is much highe®%6 and so is the accuracy of
the top unsupervised system: 94.8%. Since four of the fieaet binary classifications,
wherek-svM andcs-svM are equivalent, we only give the accuracy of tt@svm (it
does perform better thaw-svm on the one 3-way set). AR-SvM again exceeds the un-
supervised accuracy for all training sizes, and generaijopms as well as the augmented
cs-svM™ using an order of magnitude less training data (Table 4.®#jer@nces from<1K
are significant.

4.4.3 Non-Referential Pronoun Detection

We use the same data and fillers as Chapter 3, and preproeebksgiam corpus in the
same way.

Recall that the unsupervised system picks non-referehtiad¢ difference between the
summed count oft fillers and the summed count tieyfillers is above a threshold (note
this no longer fits Equation (4.5), with consequences dssaibelow). We thus separately
minimize the variance of thi pattern weights and thihey pattern weights. We use 1K
training, 533 development, and 534 test examples.

Results

The most common class isferential, occurring in 59.4% of test examples. The unsuper-
vised system again does much better, at 79.8%.

Annotated training examples are much harder to obtain fettdisk and we experiment
with a smaller range of training sizes (Table 4.3). The penfince of MR-SVM exceeds the
performance ok-svM across all training sizes (bold accuracies are signifigdogtter than
eithercs-svm for <100 examples). However, the gains were not as large as weopad h
and accuracy remains worse than the unsupervised systemneheising all the training
data. When using all the data, a fairly large C-parametefiopas best on development
data, so regularization plays less of a role.

After development experiments, we speculated that the padormance relative to the
unsupervised approach was related to class bias. In thetatks, the unsupervised system
chooses the highest summed score. Here, the differericanidtheycounts is compared to
athreshold Since the bias feature is regularized toward zero, thelikeutihe other tasks,
using a lowC-parameter does not produce the unsupervised system, feonp@nce can
begin below the unsupervised level.
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Since we wanted the system to learn this threshold, even tigaty regularized, we re-
moved the regularization penalty from the bias weightifgtthe optimization freely set the
weight to minimize training error. With more freedom, thewaassifier \AR-SVM+FreeB)
performs worse with 10 examples, but exceeds the unsupdraisproach with 100 train-
ing points. Although this was somewhat successful, devuadppetter strategies for bias
remains useful future work.

45 Related Work

There is a large body of work on regularization in machinergy, including work that
uses positive semi-definite matrices in the SVM quadratigram. The graph Laplacian
has been used to encourage geometrically-similar feakotrs to be classified similarly
[Belkin et al, 200d. An appealing property of these approaches is that theypocate
information from unlabeled examplegWanget al, 2009 use Laplacian regularization
for the task of dependency parsing. They regularize sudhféhtures for distributionally-
similar words have similar weights. Rather than penalizenpse differences proportional
to a similarity function as they do, we simply penalize weigdriance.

In the field of computer vision[Tefaset al., 2001 (binary) and[Kotsia et al., 2009
(multi-class) also regularize weights with respect to aat@nce matrix. They use labeled
data to find the sum of the sample covariance matrices from eass, similar to linear
discriminant analysis. We propose the idea in general, astémtiate with a differenC
matrix: a variance regularizer over. Most importantly, our instantiated covariance matrix
does not require labeled data to generate.

In a Bayesian settingRainaet al., 2004 model feature correlations in a logistic regres-
sion classifier. They propose a method to construct a cov@iaatrix for a multivariate
Gaussian prior on the classifier's weights. Labeled datafloer, related tasks is used to
infer potentially correlated features on the target taske lin our results, they found that
the gains from modeling dependencies diminish as mordigaoiata is available.

We also mention two related online learning approaches.il&ito our goal of regu-
larizing toward a good unsupervised systd@rammeret al., 2004 regularizew toward
a (different) target vector at each update, rather thanotigtnminimizing ||w||>. The tar-
get vector is the vector learned from the cumulative effégirevious updates,Dredzeet
al., 2009 maintain the variance of each weight and use this to guidenttiae updates.
However, covariance between weights is not considered.

We believe new SVM regularizations in general, and variaegeilarization in partic-
ular, will increasingly be used in combination with relatetP strategies that learn better
when labeled data is scarce. These may include: using neorergl features, e.g. ones
generated from raw texMiller et al, 2004; Kooet al, 2009, leveraging out-of-domain
examples to improve in-domain classificatid@litzer et al., 2007; Daumé lIl, 200J7 active
learning[Cohnet al, 1994; Tong and Koller, 2002and approaches that treat unlabeled
data as labeled, such as bootstrapdivigrowsky, 1995, co-training[Blum and Mitchell,
1999, and self-trainindMcCloskyet al., 20063.

4.6 Future Work

The primary direction of future research will be to apply ¥er-svm to new problems
and tasks. There are many situations where a system desigaein intuition about the
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role a feature will play in prediction; the feature was p@diadded with this role in mind.
By biasing the SVM to use features as intendedR\sVM may learn better with fewer
training examples. The relationship between attributes dasses may be explicit when,
e.g., arule-based system is optimized via discriminatiaerling, or annotators justify their
decisions by indicating the relevant attribuf@sidanet al., 2007. Also, if features ara
priori thought to have different predictive worth, the attribugduescould be scaled such
that variance regularization, as we formulated it, has #wsrdd effect.

Other avenues of future work will be to extend theR/svM in three directions: effi-
ciency, representational power, and problem domain.

While we optimized the XR-svm objective in CPLEX, general purpose QP-solvers
“do not exploit the special structure of [the SVM optimizat] problem,” and consequently
often train in time super-linear with the number of traine@mplegJoachimst al., 2009.

It would be useful to fit our optimization problem to effici€slVM training methods, espe-
cially for linear classifiers.

VAR-SVM's representational power could be extended by using maatiSVMs. Ker-
nels can be used with a covariance regular[#@tsia et al, 2009. SinceC is positive
semi-definite, the square root of its inverse is defined. Weloarefore map the input exam-
ples using(C‘%aE), and write an equivalent objective function in terms of lefiunctions
over the transformed examples.

Also, since structured-prediction SVMs build on the maltiss frameworkTsochan-
taridiset al., 2009, variance regularization can be incorporated naturattyrimore-complex
prediction systems, such as parsers, taggers, and aligners

VAR-SVM may also help in new domains where annotated data is lackiag-Svm
should be stronger cross-domain tharsvMm; regularization with domain-neutral prior-
knowledge can offset domain-specific biases. Learned weagtors from other domains
may also provide cross-domain regularization guidancedidiss the connection between
domain adaptation and regularization further in Sectign 5.

4.7 Conclusion

We presented variance-regularization SVMs, an approadbaiming that creates better
classifiers using fewer training examples. Variance re@aton incorporates a bias for
known good weights into the SVM’s quadratic program. TherRMsvM can therefore
exploit extra knowledge by the system designer. Since thectibe remains a convex
guadratic function of the weights, the program is compatetily no harder to optimize
than a standard SVM. We also demonstrated how to design-oha#s SVMs using only
class-specific attributes, and compared the performanttesohpproach to standard multi-
class SVMs on the task of preposition selection.

While variance regularization is most helpful on tasks withny classes and features,
like preposition selection, it achieved gains on all ouks$awhen training with smaller
sample sizes. It should be useful on a variety of other NLBIpros.
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Chapter 5

Creating Robust Supervised
Classifiers via Web-Scale N-gram
Data

“It is said Hugo was on vacation when Les Misérables (whilover 1200
pages) was published. He telegraphed the single-chamaetssage “?’ to his
publisher, who replied with a single ‘[citation needed]
http://en.wikipedia.org/wiki/Victor_hugo

In this chapter, we systematically assess the value of ugaigrscale N-gram data in
state-of-the-art supervised NLP classifiers, i.e., di@ssiusing conventional, non-count-
based features. We compare classifiers that also includechude features for the counts
of various N-grams, where the counts are obtained from a nelwwsgale auxiliary corpus.
We show that including N-gram count features can advancst#te-of-the-art accuracy on
standard data sets for adjective ordering, spelling ctoecnoun compound bracketing,
and verb part-of-speech disambiguation. More importamtlyen operating on new do-
mains, or when labeled training data is not plentiful, wevslitat using web-scale N-gram
features is essential for achieving robust performance.

5.1 Introduction

As noted in Chapter 3, many NLP systems use web-scale N-gransfKeller and Lapata,
2003; Nakov and Hearst, 2005a; Braetsl., 2007. [Lapata and Keller, 20Q%lemonstrate
good performance on eight tasks using unsupervised wedgtbasdels. They show web
counts are superior to counts from a large corpus. In Ch&ptee proposed unsupervised
and supervised systems that use counts from Google’s N-goapus[Brants and Franz,
2004. In general, past research has shown that web-based medfemp particularly well
on generationtasks, where systems choose between competing sequencetpuof text
(such as different spellings), as opposedmalysistasks, where systems choose between
abstract labels (such as part-of-speech tags, parse dregbether a pronoun is referential
or not).

In this chapter, we address two natural and related questibiich these previous stud-
ies leave open:

9A version of this chapter has been publishedBergsmaet al, 20104
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1. Is there a benefit in combining web-scale counts with taadsird features used in
state-of-the-art supervised approaches?

2. How well do web-based models perform on new domains or vidlesled data is
scarce?

We address these questions on two generation and two angdggis, using both ex-
isting N-gram data and a novel web-scale N-gram corpus tichides part-of-speech in-
formation (Section 5.2). While previous work has combinezbvgcale features with other
features in specific classification problefivodjeskaet al,, 2003; Yancet al, 2005; Vadas
and Curran, 2007b; Tratz and Hovy, 201@e provide a multi-task, multi-domain compar-
ison.

Some may question why supervised learning with standatdriesis needed at all for
generation problems. Why not solely rely on direct evidefioen a giant corpus? For
example, for the task of prenominal adjective ordering (8r&.3), a system that needs to
describe a ball that is both big and red can simply checkhilgated is more common on
the web thamed big and order the adjectives accordingly.

It is, however, suboptimal to only use simple counts fromrsrg data. For example,
ordering adjectives by direct web evidence performs 7% &tinan our best supervised
system (Section 5.3.2). No matter how large the web becotinee will always be plau-
sible constructions that never occur. For example, thezecarrently no pages indexed
by Google with the preferred adjective ordering furdraggled 56-year-old [professor]
Also, in a particular domain, words may have a non-standaeje. Systems trained on
labeled data can learn the domain usage and leverage oglainies, such as suffixes and
transitivity for adjective ordering.

With these benefits, systems trained on labeled data hawemeethe dominant tech-
nology in academic NLP. There is a growing recognition, hasvethat these systems are
highly domain dependent. For example, parsers trained nataied newspaper text per-
form poorly on other genreGildea, 200). While many approaches have adapted NLP
systems to specific domaib$suruokaet al., 2005; McCloskyet al., 2006b; Blitzeret al,,
2007; Daume lIl, 2007; Rimell and Clark, 200&ese techniques assume the system knows
on which domain it is being used, and that it has access teseptative data in that do-
main. These assumptions are unrealistic in many real-vgitlgtions; for example, when
automatically processing a heterogeneous collection bfpages. How well do supervised
and unsupervised NLP systems perform when used uncustbnaaeof-the-boxon new
domains, and how can we best design our systems for ropest-domairperformance?

Our results show that using web-scale N-gram data in swgEvsystems advances
the state-of-the-art performance on standard analysiggandration tasks. More impor-
tantly, when operating out-of-domain, or when labeled @gatent plentiful, using web-scale
N-gram data not only helps achieve good performance — itsisregizl.

5.2 Experiments and Data

5.2.1 Experimental Design

We again evaluate the benefit of N-gram data on multi-classsiication problems. For
each task, we have some labeled data indicating the comgauitofor each example. We
evaluate withaccuracy. the percentage of examples correctly classified in test. date
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§ | In-Domain (IN) | Out-of-Domain#1 (01) | Out-of-Domain #2 (02)

5.3 | BNC [Malouf, 2004 Gutenberg (new) Medline (new)

5.4 | NYT [Bergsmeet al., 20094 Gutenberg (new) Medline (new)

5.5 | WSJ[Vadas and Curran, 200Fa Grolier[Lauer, 1995h Medline[Nakov, 2007

5.6 | WSJ[Marcuset al., 1993 Brown [Marcuset al, 1993 | Medline[Kulick et al., 2004

Table 5.1: Data, with references, for task$i6.3: Prenominal Adjective Ordering,5.4:
Context-Sensitive Spelling Correcticgh5.5: Noun Compound Bracketing, afé.6: Verb
Part-of-Speech Disambiguation.

§ | IN-Train | IN-Dev | IN-Test| O1| O2
53| 237K| 13K| 13K| 13K |9.1K
54| 100K | 50K | 50K |7.8K| 56K
5.5 2.0K 72 95 | 244 429
5.6 23K | 11K| 1.1K| 21K|6.3K

Table 5.2: Number of labeled examples in in-domain trainoeyelopment and test sets,
and out-of-domain test sets, for tasks in Sections 5.3-5.6.

use ondn-domainand twoout-of-domaintest sets for each task. Statistical significance is
assessed with McNemar’s tes 0.01.

We provide results for various unsupervised approachesatsudthe majority-class
baseline for each task.

For our supervised approaches, we represent the examglest@® vectors, and learn
a classifier on the training vectors. There are two featuassels: features that use N-grams
(N-GMm) and those that do not @ix). N-GM features are real-valued features giving the log-
count of a particular N-gram in the auxiliary web corpus. Sdare just like the features we
used for the disambiguation problems in the previous twptra. LEX features are binary
features that indicate the presence or absence of a partgithg at a given position in the
input. The name EX emphasizes that they identify specific lexical items. Tlséantiations
of both types of features depend on the task and are desaénilfeelcorresponding sections.

Each classifier is a linear Support Vector Machine (SVM)ingd usingLIBLINEAR
[Fanet al, 2009 on the standard domain. We use the one-vs-all strategy viteza aire
more than two classes (in Section 5.4). We plot learningesite measure the accuracy of
the classifier when the number of labeled training exampeies. The size of the N-gram
data and its counts remain constant. We always optimize ¥id'sS(L2) regularization
parameter on the in-domain development set. We presettsesth L2-SVM, but achieve
similar results with L1-SVM and logistic regression.

5.2.2 Tasks and Labeled Data

We study two generation tasks: prenominal adjective ondefSection 5.3) and context-
sensitive spelling correction (Section 5.4), followed W tanalysis tasks: noun compound
bracketing (Section 5.5) and verb part-of-speech disamaltign (Section 5.6). Tables 5.1
and 5.2 summarize the sources and sizes of data used in tegre&pts. For the out-of-

domain Gutenberg and Medline data used in Sections 5.3 dnavB.generate examples
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ourselves. We chose Gutenberg and Medline in order to provide chalfenglistinct do-
mains from our training corpora. Our Gutenberg corpus s sif out-of-copyright books,
automatically downloaded from the Project Gutenberg vieBsThe Medline data consists
of a large collection of online biomedical abstracts. Wecdbs how labeled adjective and
spelling examples are created from these corpora in thegmonding sections.

5.2.3 Web-Scale Auxiliary Data

The most widely-used N-gram corpus is the Google 5-gram @ojBrants and Franz,
2004.

For our tasks, we also ugeoogle V2 a new N-gram corpus (also with N-grams of
length one-to-five) that we created from the same oneeintivord snapshot of the web
as the Google 5-gram Corpus, but with several enhancem&htse include: 1) Reduc-
ing noise by removing duplicate sentences and sentenchsawitgh proportion of non-
alphanumeric characters (together filtering about 80%eturce data), 2) pre-converting
all digits to the0 character to reduce sparsity for numeric expressions, pimtl8ding the
part-of-speech (POS) tag distribution for each N-gram. 3$berce data was automati-
cally tagged with TnT[Brants, 2000, using the Penn Treebank tag sHtin et al, 2014
provide more details on the N-gram data and N-gram seardh. t@ther recent projects
that have made use of this new data inclddieand Lin, 2009; Bergsmat al, 2010a;
Pitler et al.,, 201(.

The third enhancement is especially relevant here, as wesathe POS distribution
to collect counts for N-grams of mixed words and tags. Fongta, we have developed
an N-gram search engine that can count how often the adjantiprecedenteghrecedes
another adjective in our web corpus (113K times) and howndftfllows one (11K times).
Thus, even if we haven't seen a particular adjective paeatly, we can use the positional
preferences of each adjective in order to order them.

Early web-based models used search engines to collectriN-gpants, and thus could
not use capitalization, punctuation, and annotations ssgbart-of-speecfKilgarriff and
Grefenstette, 20Q3For example, recall that we had to develop fillers to serVewasogates
for nouns” for the non-referential pronoun detection systeresented in Chapter 3, as
nouns were not labeled in the data directly. If we had a P@§eté web corpus, we could
have looked up noun counts directly. Using a POS-tagged waius goes a long way to
addressing earlier criticisms of web-based NLP.

5.3 Prenominal Adjective Ordering

Prenominal adjective ordering strongly affects text rédidg For example, whilehe un-
precedented statistical revolutiaa fluent,the statistical unprecedented revoluti@not.
Many NLP systems need to handle adjective ordering robubilynachine translation, if
a noun has two adjective modifiers, they must be orderedattyrria the target language.

http:/webdocs.cs.ualberta.ca/ ~bergsma/Robust/  provides our Gutenberg corpus, a link to
Medline, and also the generated examples for both Guterametd/edline.

Zwww.gutenberg.org . All books just released in 2009 and thus unlikely to occuthie source data for
our N-gram corpus (from 2006). Of course, with removal oftseoe duplicates and also N-gram thresholding,
the possible presence of a test sentence in the massiveestatecis unlikely to affect resultCarlsonet al.,
2009 reach a similar conclusion and provide some further justifoo.
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Adjective ordering is also needed in Natural Language Gaiwgr systems that produce in-
formation from databases; for example, to convey inforamafin sentences) about medical
patients Shaw and Hatzivassiloglou, 1999

We focus on the task of ordering a pair of adjectives indepetiy of the noun they
modify and achieve good performance in this setting. Faliguthe set-up ofMalouf,
200d, we experiment on the 263K adjective pairs Malouf extradteth the British Na-
tional Corpus (BNC). We use 90% of pairs for training, 5% festing, and 5% for devel-
opment. This forms our in-domain data.

We create out-of-domain examples by tokenizing Medline@uténberg (Section 5.2.2),
then POS-tagging them with CRFTagd@han, 2006 We create examples from all se-
quences of two adjectives followed by a noun. Likéalouf, 2004, we assume that edited
text has adjectives ordered fluently. As was the case forogrepn selection and spelling
correction, adjective ordering also permits the extractbnatural automatic exampless
explained in Chapter 2, Section 2.5.4. We extract 13K anH 8Lit-of-domain pairs from
Gutenberg and Medline, respectivély.

The input to the system is a pair of adjectivés,, az ), ordered alphabetically. The task
is to classify this order as correct (the positive classhooirect (the negative class). Since
both classes are equally likely, the majority-clésselineis around 50% on each of the
three test sets.

5.3.1 Supervised Adjective Ordering
LEX features

Our adjective ordering model withex features is a novel contribution of this work.

We begin with two features for each pair. an indicator featiar a;, which gets a
feature value ofi-1, and an indicator feature fa#, which gets a feature value efl. The
parameters of the model are therefore weights on specictdys. The higher the weight
on an adjective, the more it is preferred in the first positidra pair. If the alphabetic
ordering is correct, the weight any should be higher than the weight ap, so that the
classifier returns a positive score. If the reverse ordeisngreferred,ao should receive
a higher weight. Training the model in this setting is a nradfeassigning weights to all
the observed adjectives such that the training pairs arénmadly ordered correctly. The
feature weights thus implicitly produce a linear orderirfcalb observed adjectives. The
examples can also be regarded as rank constraints in andiisative ranker{Joachims,
2004. Transitivity is achieved naturally in that if we correctiyder pairsz < b andb < ¢
in the training set, then < ¢ by virtue of the weights on andc.

While exploiting transitivity has been shown to improveeadive ordering, there are
many conflicting pairs that make a strict linear ordering djeatives impossibl¢Malouf,
200d. We therefore provide an indicator feature for the pait,, so the classifier can
memorize exceptions to the linear ordering, breakingtsbrider transitivity. Our classifier
thus operates along the lines of rankers inpheference-based settiddilon and Mobhri,
2009.

3BNC is not a domairper se(rather a balanced corpus), but has a style and vocabulstipatifrom our
OOD data.

“Like [Malouf, 2004, we convert our pairs to lower-case. Since the N-gram datades case, we merge
counts from the upper and lower case combinations.
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System IN o1 | 02
[Malouf, 2004 91.5| 65.6| 71.6
webc(ay,az) vs. c(az,a;) | 87.1| 83.7 | 86.0
SVM with N-Gm features | 90.0 | 85.8| 88.5
SVM with LEX features 93.0| 70.0| 73.9
SVM with N-GM + LEX 93.7| 83.6| 85.4

Table 5.3: Adjective ordering accuracy (%). SVM and [MaloR®00] trained on BNC,
tested on BNC (IN), Gutenberg (O1), and Medline (O2).

Finally, we also have features for all suffixes of length #4ttetters, as these encode
useful information about adjective claBdalouf, 200Q. Like the adjective features, the
suffix features receive a value #fl for adjectives in the first position andl for those in
the second.

N-GM™ features

[Lapata and Keller, 20Q5ropose a web-based approach to adjective ordering: take th
most-frequent order of the words on the wela , a2) vs. c(ag, a;). We adopt this as our
unsupervised approach. We merge the counts for the adjsaicurring contiguously and
separated by a comma.

These are the most useful &iv features; we include them but also other, tag-based
counts from Google V2. Raw counts include cases where onbeohdtljectives is not
used as a modifier: “thepecial presentvas” vs. “thepresent specialssue.” We in-
clude log-counts for the following, more-targeted patérnc(a; as N.*), c(as a; N.*),
¢(DT aj ag N.*), ¢(DT a2 a1 N.*). We also include features for the log-counts of each
adjective preceded or followed by a word matching an adjedag: c(a; J.*), ¢(J.* a1),
c(ag 3.%), ¢(3.* az). These assess the positional preferences of each adjetnadly, we
include the log-frequency of each adjective. The more feeguadjective occurs first in
57% of pairs.

As in all tasks, the counts are features in a classifier, saripertance of the different
patterns is weighted discriminatively during training.

5.3.2 Adjective Ordering Results

In-domain, with both feature classes, we set a strong nemdatd on this data: 93.7%
accuracy for the Nsm+LEX system (Table 5.3). We trained and teskdthlouf, 200Q’s
program on our data; ourdx classifier, which also uses no auxiliary corpus, makes 18%
fewer errors than Malouf’s system. Our web-basedM-model is also superior to the
direct evidence web-based approachlafpata and Keller, 20Q5scoring 90.0% vs. 87.1%
accuracy. These results show the benefit of both our nevalizéd and our new web-based
features.

Figure 5.1 gives the in-domain learning curve. With fewariring examples, the sys-
tems with N-Gwm features strongly outperform theek-only system. Note that with tens of
thousands of test examples, all differences are highlyifsignt.

Out-of-domain, [Ex’s accuracy drops a shocking 23% on Gutenberg and 19% on Med-
line (Table 5.3).[Malouf, 200Q’s system fares even worse. The overlap between training

®In this notation, capital letters (and reg-exps) are mategainst tags while; anda, match words.
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Figure 5.1: In-domain learning curve of adjective orderitagsifiers on BNC.
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Figure 5.2: Out-of-domain learning curve of adjective onug classifiers on Gutenberg.

and test pairs helps explain. While 59% of the BNC test paisevseen in the training
corpus, only 25% of Gutenberg and 18% of Medline pairs weee getraining.

While other ordering models have also achieved “very posults’ out-of-domain
[Mitchell, 2009, we expected our expanded set afX_features to provide good gener-
alization on new data. Insteadgk is very unreliable on new domains.

N-GM features do not rely on specific pairs in training data, and thmain fairly robust
cross-domain. Across the three test sets, 84-89% of exanmalé the correct ordering
appear at least once on the web. On new domains, the learr@d $i/stem maintains an
advantage over the unsuperviséd, , as) Vs. c(ag, a1 ), but the difference is reduced. Note
that training with 10-fold cross validation, the &lv system can achieve up to 87.5% on
Gutenberg (90.0% for Nsm + LEX).

The learning curves showing performance on Gutenberg ardiidéeg(but still training
on BNC) is particularly instructive (Figures 5.2 and 5.3peTLEX system performs much
worse than the web-based models across all training sizesouf top in-domain system,
N-GM + LEX, as you add more labeled examples, performance begiagasingout-of-
domain. The system disregards the robust N-gram countdsashitre and more confident
in the LEX features, and it suffers the consequences.
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Figure 5.3: Out-of-domain learning curve of adjective omuig classifiers on Medline.

5.4 Context-Sensitive Spelling Correction

We now turn to the generation problem of context-sensitpalisig correction. For those
who have read the previous two chapters, you're obvioushjliar with the task: For every
occurrence of a word in a pre-defined set of confusable waditds geaceandpiece, the
system must select the most likely word from the set, flaggiogsible usage errors when
the predicted word disagrees with the original.

Our in-domain examples are again from the New York Times (Njdartion of Giga-
word, as described in Chapter 3. Recall that these comgres® tconfusion sets where
accuracy was below 90% {iGolding and Roth, 1999 There are 100K training, 10K de-
velopment, and 10K test examples for each confusion set.ré3uits are averages across
confusion sets.

Out-of-domain examples are again drawn from Gutenberg agdlive. We extract all
instances of words that are in one of our confusion setsgahdth surrounding context.
By assuming the extracted instances represent correce usaglabel 7.8K and 56K out-
of-domain test examples for Gutenberg and Medline, resmhet

We test three unsupervised systems: 2)ARAM (Chapter 3): use one token of context
on the left and one on the right, and output the candidate thenconfusion set that occurs
most frequently in this patteriLapata and Keller, 2045 2) SUMLM (Chapter 3), where
we measure the frequency of the candidates in all the 3gmbt patterns that span the
confusable word. For each candidate, we sum the log-codirt patterns filled with the
candidate, and output the candidate with the highest t8tdlhebaselinepredicts the most
frequent member of each confusion set, based on frequendies NYT training data.

5.4.1 Supervised Spelling Correction

Our Lex features are typical disambiguation features that flagip@spects of the con-
text. We have features for the words at all positions in a @awandow (called collocation
features by Golding and Roth, 1999, plus indicators for a particular word preceding or
following the confusable word. We also include indicatays dll N-grams, and their posi-
tion, in a 9-word window.

For N-Gm count features, we follow Chapter 3. We include the log-tewf all
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System IN o1 | 02

Baseline 66.9| 44.6 | 60.6
TRIGRAM 88.4| 78.0| 87.4
SUMLM 94.8| 87.7| 94.2

SVM with N-GM features| 95.7 | 92.1| 93.9
SVM with LEX features | 95.2| 85.8| 91.0
SVM with N-GM + LEX 96.5(91.9| 94.8

Table 5.4: Spelling correction accuracy (%). SVM trainedNoviT, tested on NYT (IN)
and out-of-domain Gutenberg (O1) and Medline (O2).
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Figure 5.4: In-domain learning curve of spelling correataassifiers on NYT.

N-grams that span the confusable word, with each word in drdusion set filling the
N-gram pattern. These features do not use part-of-speeagltowling our previous work,
we get N-gram counts using the original Google N-gram Carpus

While neither our IEX nor N-Gm features are novel on their own, they have, perhaps
surprisingly, not yet been evaluated in a single model.

5.4.2 Spelling Correction Results

The N-GM features outperform thedx features, 95.7% vs. 95.2% (Table 5.4). Together,
they achieve a very strong 96.5% in-domain accuracy. ThR¥ishigher than the best
unsupervised approachy8LM. Web-based models again perform well across a range of
training data sizes (Figure 5.4).

The error rate of EX nearly triples on Gutenberg and almost doubles on Medliae (T
ble 5.4). Removing NcM features from the Nsm + LEX system, errors increase around
75% on both Gutenberg and Medline. ThexX_features provide no help to the combined
system on Gutenberg, while they do help significantly on hedl Note the learning
curves for Nem+LEX on Gutenberg and Medline (Figures 5.5, and 5.6) do not dighka
decrease that we observed in adjective ordering (Figude 5.2

Both the baseline anddx perform poorly on Gutenberg. The baseline predicts the
majority class from NYT, but it's not always the majority stain Gutenberg. For example,
while in NYT siteoccurs 87% of the time for thigite, sight, sitefonfusion setsightoccurs
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Figure 5.6: Out-of-domain learning curve of spelling cotien classifiers on Medline.
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90% of the time in Gutenberg. Theek classifier exploits this bias as it is regularized
toward a more economical model, but the bias does not tnattstee new domain.

5.5 Noun Compound Bracketing

About 70% of web queries are noun phragarret al., 2004 and methods that can reliably
parse these phrases are of great interest in NLP. For exampleb query fozebra hair
straightenershould be bracketed gzgebra (hair straightener))a stylish hair straightener
with zebra print, rather tha(zebra hair) straightener)a useless product since the fur of
zebras is already quite straight.

The noun compound (NC) bracketing task is usually cast asiside whether a 3-
word NC has a left or right bracketing. Most approaches asipervised, using a large
corpus to compare the statistical association between paird in the NC. The adjacency
model[Marcus, 198D proposes a left bracketing if the association between womesand
two is higher than between two and three. The dependencylrficglser, 1995hcompares
one-two vs.one-three We include dependency model results using PMI as the ag&nti
measure; results were lower with the adjacency model.

As in-domain data, we usi/adas and Curran, 200[7a Wall-Street Journal (WSJ)
data, an extension of the Treebank (which originally lefsMBt). We extract all sequences
of three consecutive common nouns, generating 1983 exarfipi@ sections 0-22 of the
Treebank as training, 72 from section 24 for development%nfifom section 23 as a test
set. As out-of-domain data, we use 244 NCs from Grolier Elopgzia[Lauer, 1995hand
429 NCs from MedlindNakov, 2007.

The majority clasbaselineis left-bracketing.

5.5.1 Supervised Noun Bracketing

Our LEX features indicate the specific noun at each position in thgocaind, plus the three
pairs of nouns and the full noun triple. We also add featuresiie capitalization pattern of
the sequence.

N-GMm features give the log-count of all subsets of nouns in thepmamd: (N1), (N2),
(N3), (N1 N2), (N1 N3), (N2 N3), and (N1 N2 N3). Counts are fr@nogle V2. Following
[Nakov and Hearst, 2005awe also include counts of noun pairs collapsed into a single
token; if a pair occurs often on the web as a single unit, drgjly indicates the pair is a
constituent.

[Vadas and Curran, 200[7ase simpler features, e.g. they do not use collapsed pair
counts. They achieve 89.9% in-domain on WSJ and 80.7% oneGrfadas and Curran,
20071 use comparable features to ours, but do not test out-of-thoma

5.5.2 Noun Compound Bracketing Results

N-GM systems perform much better on this task (Table 5.55NN-LEX is statistically sig-
nificantly better than Ex on all sets. In-domain, errors more than double withous M-
features. [Ex performs poorly here because there are far fewer trainisgneles. The
learning curve (Figure 5.7) looks much like earlier in-dameurves (Figures 5.1 and 5.4),
but truncated before gx becomes competitive. The absence of a sufficient amount of la
beled data explains why NC-bracketing is generally reghesea task where corpus counts
are crucial.
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System IN o1 | 02
Baseline 70.5| 66.8| 84.1
Dependency model 74.7| 82.8| 84.4
SVM with N-GMm features| 89.5| 81.6 | 86.2
SVM with LEX features | 81.1| 70.9| 79.0
SVM with N-Gm + LEX | 91.6| 81.6 | 87.4

Table 5.5: NC-bracketing accuracy (%). SVM trained on W8stetd on WSJ (IN) and
out-of-domain Grolier (O1) and Medline (02).
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Figure 5.7: In-domain NC-bracketer learning curve

All web-based models (including the dependency model) exxé&l.5% on Grolier,
which is the level of human agreeméhauer, 1995b N-GM + LEX is highest on Medline,
and close to the 88% human agreemidtdkov and Hearst, 200haOut-of-domain, the
LEXx approach performs very poorly, close to or below the baseiccuracy. With little
training data and cross-domain usage, N-gram featuresseatal.

5.6 Verb Part-of-Speech Disambiguation

Our final task is POS-tagging. We focus on one frequent affidwliftagging decision: the
distinction between a past-tense vevisip) and a past participlev@N). For example, in
the troops stationed in Iracthe verbstationedis aVvBN; troopsis the head of the (noun)
phrase. On the other hand, fine troops vacationed in Iraghe verbvacationeds avBbD
and also the head. Some verbs make the distinction exmizih@svBD ate VBN eater),
but most require context for resolution. This is exactly ek we presented in Section 1.3
as an example of where unlabeled data can be useful. Reglhthverb irBears woris a
vBD while the verb introphy wonis avBN.

ConflatingvBN/vBD is damaging because it affects downstream parsers and seman
role labelers. The task is difficult because nearby POS tagde identical in both cases.
When the verb follows a noun, tag assignment can hinge ondvkmbwledge, i.e., the
global lexical relation between the noun and verb (Emopstends to be the object of
stationedbut the subject ofacationed.® Web-scale N-gram data might help improve the

SHMM-style taggers, like the fast TnT tagger used on our welpus, do not use bilexical features, and so
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VBN/vBD distinction by providing relational evidence, even if trexly, noun, or verb-noun
pair were not observed in training data. This is what we shioweection 1.3.

We extract nouns followed bywaN/vBD in the WSJ portion of the Treebafkarcus
etal, 1993, getting 23K training, 1091 development and 1130 test eXxesrfpom sections
2-22, 24, and 23, respectively. For out-of-domain data, ee2dK examples from the
Brown portion of the Treebank and 6296 examples from taggedliMe abstracts in the
PennBiolE corpu$Kulick et al., 2004.

The majority clasdaselineis to choose/sD.

5.6.1 Supervised Verb Disambiguation

There are two orthogonal sources of information for preaicysn/vBD: 1) the noun-verb
pair, and 2) the context around the pair. Botha\t-and LEX features encode both these
sources.

LEX features

For 1), we use indicators for the noun and verb, the noun-pait) whether the verb is on

an in-house list ofaid-verb (likewarned announcedetc.), whether the noun is capitalized
and whether it's upper-case. Note that in training data3%7/of capitalized nouns are

followed by avBD and 98.5% ofaid-verbs arevBDs. For 2), we provide indicator features
for the words before the noun and after the verb.

N-GM™ features

For 1), we characterize a noun-verb relation via featurethpair’s distribution in Google
V2. Characterizing a word by its distribution has a longdrigtin NLP; we apply similar
techniques teelations like [Turney, 2008, but with a larger corpus and richer annotations.
We extract the 20 most-frequent N-grams that contain bahnthun and the verb in the
pair. For each of these, we convert the tokens to POS-tagspefor tokens that are among
the 100 most frequent unigrams in our corpus, which we irelndvord form. We mask
the noun of interest a¥ and the verb of interest & This converted N-gram is the feature
label. The value is the pattern’s log-count. A high countgatterns like(N that V) (N
have V)suggests the relation isv®D, while patterngN that were V)(N V by) (V some N)
indicate avBN. (Again, refer to Section 1.3 for some more example patjerss always,
the classifier learns the association between patternslassks.

For 2), we use counts for the verb’s context co-occurrindn\@iwsD or VBN tag in our
web corpus (again exploiting the fact our web corpus conttags). E.g., we see whether
VBD cases likeroops ateor VBN cases likeroops eaterare more frequent. Although our
corpus contains manyBN/VBD errors, we hope the errors are random enough for aggregate
counts to be useful. The context is an N-gram spanniny#nveD. We have log-count
features for all five such N-grams in the (previous-word,moxerb, next-word) quadruple.
The log-count is indexed by the position and length of therdlig We include separate
count features for contexts matching the specific noun anavfen the noun token can
match any word tagged as a noun.

perform especially poorly on these cases. One motivationdowork was to develop a fast post-processor to
fix VBN/VBD errors.
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System IN o1 | 02
Baseline 89.2| 85.2| 79.6
ContextSum 925|91.1| 90.4
SVM with N-Gm features| 96.1 | 93.4 | 93.8
SVM with LEX features | 95.8 | 93.4| 93.0
SVM with N-Gm + LEX | 96.4| 93.5| 94.0

Table 5.6: Verb-POS-disambiguation accuracy (%) traimed/&J, tested on WSJ (IN) and
out-of-domain Brown (O1) and Medline (O2).
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Figure 5.8: Out-of-domain learning curve of verb disamhiipn classifiers on Medline.

ContextSum We also use these context counts in an unsupervised syStamextSum.
Analogously to the 8MLM system from Chapter 3, we separately sum the log-coumts fo
all contexts filled withvBD and thernvBN, outputting the tag with the higher total.

5.6.2 Verb POS Disambiguation Results

As in all tasks, NeM+LEX has the best in-domain accuracy (96.4%, Table 5.6). Out-of-
domain, when N-grams are excluded, errors only increasedrb4% on Medline and 2%
on Brown (the differences are not statistically signifiga/hy? Figure 5.8, the learning
curve for performance on Medline, suggests some reasonsomiteN-GM+LEX from
Figure 5.8 as it closely follows M.

Recall that we grouped the features into two views: 1) noen-¢N,V) and 2) context.
If we use just (N,V) features, we do see a large drop out-ofi@a: LEX (N,V) lags N-Gm
(N,V) even using all the training examples. The same is tgirguonly context features
(not shown). Using both views, the results are closer: 93@%l-cMm and 93.0% for [EX.
With two views of an example, £x is more likely to have domain-neutral features to draw
on. The effects of data sparsity are reduced.

Also, the Treebank provides an atypical number of labeledrgtes for analysis tasks.
In a more typical situation with less labeled examples; M strongly dominates Ex, even
when two views are used. E.g., with 2285 training examplesMN-LEX is statistically
significantly better than Ex on both out-of-domain sets.

All systems, however, perform log-linearly with traininge. This differs especially
from our generation tasks where thed¥s performance had levelled off much earlier. In
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other tasks we only had a handful of &M features; here there are 21K features for the
distributional patterns of N,V pairs. With more feature need more labeled data to
make the NeM features work properly. A similar issue with such high-dirsienal global
features is explored ifHuang and Yates, 2009Reducing this feature space by pruning or
performing transformations may improve accuracy in andofutomain.

5.7 Discussion and Future Work

Of all classifiers, [Ex performs worst on all cross-domain tasks. Clearly, manyhef t
regularities that a typical classifier exploits in one daméd not transfer to new genres.
N-GM features, however, do not depend directly on training exespand thus work better
cross-domain. Of course, using web-scale N-grams is nobrtheway to create robust
classifiers. Counts from any large auxiliary corpus may aksip, but web counts should
help more[Lapata and Keller, 20Q5 Section 5.6.2 suggests that another way to mitigate
domain-dependence is to have multiple feature views.

[Banko and Brill, 200l argue “a logical next step for the research community woeld b
to direct efforts towards increasing the size of annotat&ding collections.” Assuming we
really do want systems that operate beyond the specific anoai which they are trained,
the community also needs to identify which systems behava &fgure 5.2, where the
accuracy of the best in-domain system actually decreashswaire training examples. Our
results suggest better features, such as web pattern coumgshelp more than expanding
training data. Also, systems using web-scale unlabelea wi#itimprove automatically as
the web expands, without annotation effort.

In some sense, using web counts as features is a form of dadajstation: adapt-
ing a web model to the training domain. How do we ensure theatufes are adapted
well and not used in domain-specific ways (especially witmynizatures to adapt, as in
Section 5.6)? One option may be to regularize the classpiecically for out-of-domain
accuracy. We found that adjusting the SVM misclassificaienalty (for more regulariza-
tion) can help or hurt out-of-domain. Other regularizasi@re possible. In fact, one good
option might be to extend the results of Chapter 4 to crossaiio usage. In this chapter,
each task had a domain-neutral unsupervised approach. WM& eocode these systems
as linear classifiers with corresponding weights. Rathemn thtypical SVM that minimizes
the weight-normj|w|| (plus the slacks), we could regularize toward domain-ra¢uteights,
and otherwise minimize weight variance so that it prefeissdiistem in the absence of other
information. This regularization could be optimized onatiee splits of the training data,
in an effort to simulate the lexical overlap we can expechwiparticular test domain.

5.8 Conclusion

We presented results on tasks spanning a range of NLP rbseggeration, disambigua-
tion, parsing and tagging. Using web-scale N-gram datadngs accuracy on each task.
When less training data is used, or when the system is usedlifiernt domain, N-gram
features greatly improve performance. Since most sumVidLP systems do not use
web-scale counts, further cross-domain evaluation magatesome very brittle systems.
Continued effort in new domains should be a priority for theneunity going forward.

This concludes the part of the dissertation that exploréaguseb-scale N-gram data
as features within a supervised classifier. | hope you edjitye
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Chapter 6

Discriminative Learning of
Selectional Preference from
Unlabeled Text

“Saying ‘I'm sorry’ is the same as saying ‘I apologize.” Eptat a funeral.”
- Demetri Martin

6.1 Introduction

Selectional preferences (SPs) tell us which argumentslausiple for a particular predi-
cate. For example,latter, areportor ane-mailare all plausible direct-object arguments for
the verb predicatavrite. On the other hand, zebra intransigenceor nihilism are unlikely
arguments for this predicate. People tenéxade confidencleut they don’t tend texude
pencils Table 6.2 (Section 6.4.4) gives further examples. SPs efmrhsolve syntactic,
word sense, and reference ambigdiGlark and Weir, 2002 and so gathering them has
received a lot of attention in the NLP community.

One way to determine SPs is from co-occurrences of predieated arguments in text.
Unfortunately, no matter how much text we use (even if, abéngrevious chapters, we're
using Google N-grams, which come from all the text on the walgny acceptable pairs
will be missing. Bikel[2004 found that only 1.49% of the bilexical dependencies con-
sidered by Collins’ parser during decoding were observathduraining. In our parsed
corpus (Section 6.4.1), for example, we fiaat with nachos burritos, andtacos but not
with the equally tastguesadillas chimichangasor tostadas Rather than solely relying on
co-occurrence counts, we would like to use them to generédizinseen pairs.

In particular, we would like to exploit a number of arbitragd potentially overlapping
properties of predicates and arguments when we assign SBspragose to do this by
representing these properties as features in a lineaifegsand training the weights using
discriminative learning. Positive examples are taken framserved predicate-argument
pairs, while pseudo-negatives are constructed from umeédecombinations. We train a
support vector machine (SVM) classifier to distinguish tlsifives from the negatives.
We refer to our model’s scores as Discriminative SelectiBneference (3P). By creating
training vectors automatically, € enjoys all the advantages of supervised learning, but

%A version of this chapter has been publishedBergsmaet al, 20083
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without the need for manual annotation of examples. Ourgeeg work here is therefore
an example of a semi-supervised system that uses “LearnitigHeuristically-Labeled
Examples,” as described in Chapter 2, Section 2.5.4.

We evaluate Bpon the task of assigning verb-object selectional prefereWie encode
a noun’s textual distribution as feature information. Téarhed feature weights are linguis-
tically interesting, yielding high-quality similar-wolists as latent information. With these
features, BPis also an example of a semi-supervised system that crezdésds from
unlabeled data (Section 2.5.5). It thus encapsulates thetin thrusts of this dissertation.

Despite its representational powersPscales to real-world data sizes: examples are
partitioned by predicate, and a separate SVM is traineddoh @artition. This allows us to
efficiently learn with over 57 thousand features and 6.5iomlexamples. BpPoutperforms
recently proposed alternatives in a range of experimentspatter correlates with human
plausibility judgments. It also shows strong gains over auwdlinformation-based co-
occurrence model on two tasks: identifying objects of vanl@s unseen corpus and finding
pronominal antecedents in coreference data.

6.2 Related Work

Most approaches to SPs generalize from observed prediocgiieient pairs to semantically
similar ones by modeling the semantic class of the argunfigfaywing Resnik[1994. For
example, we might have a clabtexican Foodand learn that the entire class is suitable for
eating. Usually, the classes are from WordNdtller et al, 1994, although they can also
be inferred from clusteringRoothet al, 1999. Brockmann and Lapati2003 compare

a number of WordNet-based approaches, including Rd48i84, Li and Abe[1994, and
Clark and Weif2004, and found that more sophisticated class-based approdchest
always outperform frequency-based models.

Another line of research generalizes using similar wordgpp®se we are calculating
the probability of a particular noum,, occurring as the object argument of a given verbal
predicate,v. Let Pi(n|v) be the empirical maximum-likelihood estimate from obsdrve
text. Dagan et al.1999 define the similarity-weighted probability, £y, to be:

Prsiw(n|v) = Z Simv’, v)Pr(n|v') (6.1)

v’ €SIMS(v)

whereSimv’, v) returns a real-valued similarity between two verbsndv (normalized
over all pair similarities in the sum). In contrast, HZ007 generalizes by substituting
similar argumentswhile Wang et al[2005 use the cross-product of similar pairs. One key
issue is how to define the set of similar wordsyS(w). Erk [2007 compared a number
of techniques for creating similar-word sets and found thath the Jaccard coefficient
and Lin [1998d’s information-theoretic metric work best. Similarity-sothed models
are simple to compute, potentially adaptable to new domaind require no manually-
compiled resources such as WordNet.

Selectional preferences have also been a recent focusezrobers investigating the
learning of paraphrases and inference riileantelet al., 2007; Roberteet al,, 2007. In-
ferences such asX[wins Y] = [X playsY]” are only valid for certain arguments and
Y. We follow Pantel et al[2007 in using automatically-extracted semantic classes to help
characterize plausible arguments.
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As described in Chapter 2, discriminative techniques adelyiused in NLP. They
have been applied to the related tasks of word predictionlamglage modeling. Even-
Zohar and Rotth2004 use a classifier to predict the most likely word to fill a pasitin a
sentence (in their experiments: a verb) from a set of catebdaets of verbs), by inspecting
the context of the target token (e.qg., the presence or abssdraparticular nearby word in
the sentence). This approach can therefore learn whichfispaguments occur with a
particular predicate. In comparison, our features arerskocoder. we learn whatinds
of arguments occur with a predicate by encoding featurehi@farguments. The work
of van den BoscH2004d extends the work of Even-Zohar and R42004d to all-word
prediction. Recent distributed and latent-variable medédo represent words with feature
vectors[Bengioet al, 2003; Blitzeret al,, 2003. Many of these approaches learn both the
feature weights and the feature representation. Vectost bmukept low-dimensional for
tractability, while learning and inference on larger ssaseimpractical. By partitioning our
examples by predicate, we can efficiently use high-dimerwdjsparse vectors.

6.3 Methodology

6.3.1 Creating Examples

To learn a discriminative model of selectional preferenee,create positive and negative
training examples automatically from raw text. To create plositives, we automatically
parse a large corpus, and then extract the predicate-argupags that have a statistical
association in this data. We measure this association ymimg-wise Mutual Informa-
tion (MI) [Church and Hanks, 1990 The MI between a verb predicate, and its object
argumenty, is:
Pr(v,n) Pr(n|v)

Ml (v,n) = log W = log Pr(n) (6.2)
If Ml >0, the probabilityv andn occur together is greater than if they were independently
distributed.

We create sets of positive and negative examples sepafatedgch predicate;. First,
we extract all pairs where M, n)>7 as positives. For each positive, we create pseudo-
negative examplesy, n’), by pairingv with a new argumenty’, that either has MI below
the threshold or did not occur with in the corpus. We require each negativeto have
a similar frequency to its correspondimg This prevents our learning algorithm from fo-
cusing on any accidental frequency-based bias. We miX imegatives for each positive,
sampling without replacement to create all the negativea frarticular predicate. For each
v, ﬁ of its examples will be positive. The threshotdrepresents a trade-off between
capturing a large number of positive pairs and ensuringetipas's have good association.
Similarly, K is a trade-off between the number of examples and the commdé effi-
ciency. Ultimately, these parameters should be optimipetesk performance.

Of course, some negatives will actually be plausible argumthat were unobserved
due to sparseness. Fortunately, discriminative methkdsbft-margin SVMs can learn in
the face of label error by allowing slack, subject to a tuaaklularization penalty (Chap-
ter 2, Section 2.3.4).

If Ml is a sparse and imperfect model of SP, what casP@ain by training on MI’'s
scores? We can regardsP as learning a view of SP that is orthogonal to MI, in a co-
training senséBlum and Mitchell, 1998 Ml labels the data based solely on co-occurrence;
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DspPuses these labels to identify other regularities — onesetktahd beyond co-occurring
words. For example, many instancesrofvhere Ml(eat n)>7 also have M(buy, n)>7

and Ml(cook n)>7. Also, compared to other nouns, a disproportionate nhumbeab
nouns are lower-case, single-token words, and they raogitai digits, hyphens, or begin
with a human first name likBoh DspPencodes these interdependent properties as features
in a linear classifier. This classifier can score any noun dausible argument oéat if
indicative features are present; Ml can only assign higlugplality to observed €atn)

pairs. Similarity-smoothed models can make use of the aeijiels across similar verbs,
but not the finer-grained string- and token-based features.

Our training examples are similar to the data createdof®udodisambiguatiorthe
usual evaluation task for SP modgErk, 2007; Keller and Lapata, 2003; Roath al,,
1999. This data consists of triple®, n,n’) wherev, n is a predicate-argument pair ob-
served in the corpus and»’ has not been observed. The models score correctly if they
rank observed (thus plausible) arguments above corresgpudobserved (thus implausi-
ble) ones. We refer to this d&airwise DisambiguationUnlike this task, we classify each
predicate-argument pair independently as plausibleéiogible. We also use Ml rather than
frequency to define the positive pairs, ensuring that thdipepairs truly have a statistical
association, and are not simply the result of parser erropise?!

6.3.2 Partitioning for Efficient Training

After creating our positive and negative training pairs, weast select a feature represen-
tation for our examples. Le® be a mapping from a predicate-argument fairn) to

a feature vector® : (v,n) — (¢;...¢;). Predictions are made using a linear classifier,
h(v,n) = w - ®(v,n), wherew is our learned weight vector.

We can make training significantly more efficient by using ecig form of attribute-
value features. Let every featugg be of the forme¢;(v,n) = (v = 0 A f(n)). That
is, every feature is an intersection of the occurrence ofracpdar predicatep, and some
feature of the argument(n). For example, a feature for a verb-object pair might be, “the
verb iseatand the object is lower-case.” In this representation,ufest for one predicate
will be completely independent from those for every othexdirate. Thus rather than a
single training procedure, we can actually partition tharegles by predicate, and train a
classifier for each predicate independently. The predidiecomes:”(n) = @ - ®¥(n),
wherew” are the learned weights corresponding to predicated all feature®?(n)=f(n)
depend on the argument orly.

Some predicate partitions may have insufficient examplesr&ining. Also, a pred-
icate may occur in test data that was unseen during trainfighandle these cases, we
cluster low-frequency predicates. For assigning SP to-abejbct pairs, we cluster all verbs
that have less than 250 positive examples, using clusteesrgied by the CBC algorithm
[Pantel and Lin, 2002 For example, the low-frequency verbwarcerate parole, and

For a fixed verb, Ml is proportional to Keller and Lap42003’s conditional probability scores for pseu-
dodisambiguation ofv, n,n’) triples: Pfv|n) = Pr(v,n)/Pr(n), which was shown to be a better measure
of association than co-occurrence frequerfi¢y, n). Normalizing by Pfv) (yielding MI) allows us to use a
constant threshold across all verbs. MI was also recendlgl tmr inference-rule SPs by Pantel et{aD07.

2hY (n) should not be confused with the multi-class classifierseprsl in previous chapters. There, the
in W, - Z indexed a class and’,. - z gave the score for each class. All the class scores neededcunputed
for each example at test time. Here, for a giverthere is only one linear combination to comput: - f(n).

A single binary plausible/implausible decision is madeloahasis of this verb-specific decision function.
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court-martial are all mapped to the same patrtition, while frequent velesdirestandex-
ecuteeach have their own partition. About 5.5% of examples arsteted, corresponding
to 30% of the 7367 total verbs. 40% of verbs (but only 0.6% @inegles) were not in any
CBC cluster; these were mapped to a single backoff partition

The parameters for each partitiom’, can be trained with any supervised learning
technique. We use SVM (Section 6.4.1) because it is efiedatisimilar high-dimensional,
sparse-vector settings (Chapter 2, Section 2.3.4), anarhefficient implementatiofloachims,
19994. In an SVM, the sign of.”(n) gives the classification. We can also use the scalar
h¥(n) as our Dsp score (i.e. the positive distance of a point from the sepayedVM
hyperplane).

6.3.3 Features

This section details our argument featurgs,), for assigning verb-object selectional pref-
erence. For a verb predicate (or partitiergnd object argument, the form of our classifier

is hY(n) = @ - £(n) = Y2, w! fi(n).

Verb co-occurrence

We provide features for the empirical probability of the naaccurring as the object argu-
ment of other verbs, Pr|v’). If we were to only use these features (indexing the feature
weights by each verb'), the form of our classifier would be:

°(n) = whPr(nfv)) (6.3)

Note the similarity between Equation (6.3) and Equatiod)(6Now the feature weights,
w?,, take the role of the similarity functior§im(v’,v). Unlike Equation (6.1), however,
these weights are not set by an external similarity algarjthut are optimized to discrim-
inate the positive and negative training examples. We needestrict ourselves to a short
list of similar verbs; we include By;(n|v") features for every verb that occurs more than 10
times in our corpusw?, may be positive or negative, depending on the relation betwe
andv. We also include features for the probability of the nounundong as thesubjectof
other verbs, Ri,;(n|v"). For example, nouns that can be the objeaaifwill also occur as
the subject ofasteandcontain Other contexts, such as adjectival and nominal predicates
could also aid the prediction, but have not been investijate

The advantage of tuning similarity to the application otnast has been shown previ-
ously by Weeds and Wej2009. They optimize a few meta-parameters separately for the
tasks of thesaurus generation and pseudodisambiguation.agproach discriminatively
sets millions of individual similarity values. Like WeedscaWeir[2009, our similarity
values are asymmetric.

String-based

We include several simple character-based features obilme string: the number of tokens,
the capitalization, and whether the string contains didgiyghens, an apostrophe, or other
punctuation. We also include a feature for the first and t@sdri, and fire indicator features
if any token in the noun occurs on in-house lists of given rgni@mily names, cities,
provinces, countries, corporations, languages, etc. W fale a feature if a token is a
corporate designation (likac. or Itd.) or a human one (likér. or SheiR.
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Semantic classes

Motivated by previous SP models that make use of semantsseta we generate word
clusters using CB{Pantel and Lin, 2002on a 10 GB corpus, giving 3620 clusters. If a
noun belongs in a cluster, a corresponding feature firesndfuam is in none of the clusters,
ano-classfeature fires.

As an example, CBC cluster 1891 contains:

sidewalk, driveway, roadway, footpath, bridge, highwaad, runway, street, alley,
path, Interstate, ...

In our training data, we have examples likégden highwaywiden roadandwiden motor-
way. If we see that we can widen a highway, we learn that we can alderva sidewalk,
bridge, runway, etc.

We also made use of the person-namef/instance pairs autattyaéixtracted by Fleis-
chman et al[2003 .2 This data provides counts for pairs such as “Edwin Mokasjler’
and “William Farley,industrialist” We have features for attonceptsand therefore learn
their association with each verb.

6.4 Experiments and Results

6.4.1 Setup

We parsed the 3 GB AQUAINT corpUs/orhees, 200Rusing Minipar[Lin, 19984, and
collected verb-object and verb-subject frequenciesdimgl an empirical Ml model from
this data. Verbs and nouns were converted to their (posegibillji-token) root, and string
case was preserved. Passive subjebtscar was boughtwere converted to objectbgught
car). We set the Ml-threshold;, to be 0, and the negative-to-positive ratio, to be 2.

Numerous previous pseudodisambiguation evaluationsinalyde arguments that oc-
cur between 30 and 3000 timfsrk, 2007; Keller and Lapata, 2003; Roathal,, 1999.
Presumably the lower bound is to help ensure the negativerengt is unobserved because
it is unsuitable, not because of data sparseness. We wistetour model on arguments
of any frequency, including those that never occurred intthming corpus (and there-
fore have empty co-occurrence features (Section 6.3.3¢) pkceed as follows: first, we
exclude pairs whenever thunoccurs less than 3 times in our corpus, removing many
misspellings and other noise. Next, we omit verb co-ocauedeatures for nouns that oc-
cur less than 10 times, and instead fire a low-count featufen\we move to a new corpus,
previously-unseen nouns are treated like these low-caoaintirig nouns. Note there are no
specific restrictions on the frequencyirs.

This processing results in a set of 6.8 million pairs, didideto 2318 partitions (192 of
which are verb clusters (Section 6.3.2)). For each panmtitice take 95% of the examples for
training, 2.5% for development and 2.5% for a final unseeinsits We provide full results
for two models: BP.... Which only uses the verb co-occurrence features, aswl;pwhich
uses all the features mentioned in Section 6.3.3. Featlues/are normalized within each
feature type. We train our (linear kernel) discriminativedeals using SVNi?"* [Joachims,
19994 on each partition, but set meta-paramet€réregularization) ang (cost of posi-
tive vs. negative misclassifications: maxjat2) on the macro-averaged score across all

3Available athttp://www.mit.edu/ ~mbf/instances.txt.gz
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System MacroAvg MicroAvg Pairwise
P R F P R F | Acc Cov
[Daganet al., 1999 0.36 0.90 0.51|0.68 0.92 0.78| 0.58 0.98
[Erk, 2007 0.49 0.66 0.56 0.70 0.82 0.76 0.72 0.83
[Keller and Lapata, 2003 0.72 0.34 0.46| 0.80 0.50 0.62| 0.80 0.57
DSP.o0c 0.53 0.72 0.61 0.73 0.94 0.82| 0.77 1.00
DSk, 0.60 0.71 0.65| 0.77 0.90 0.83| 0.81 1.00

Table 6.1: Pseudodisambiguation results averaged aceuds example NlacroAvg,

weighted by word frequencyMicroAvg), plus coverage and accuracy of pairwise com-
petition (Pairwise).

development partitions. Note that we can not use the denedapset to optimize and K
because the development examples are obtaiftedsetting these values.

6.4.2 Feature weights

It is interesting to inspect the feature weights returnedby system. In particular, the
weights on the verb co-occurrence features (Section §808)de a high-quality, argument-
specific similarity-ranking of other verb contexts. Themparameters foeat for ex-
ample, place high weight on features like(#braise), Pr(n|ration), and P(n|garnish).
Lin [19983’s similar word list foreat misses these but includsteep(ranked 6) andit
(ranked 14), because these have simdlabjectsto eat Discriminative, context-specific
training seems to yield a better set of similar predicatas, the highest-ranked contexts
for DSP.,.. ON the verkjoin,*

lead 1.42, rejoin 1.39, form 1.34, belong to 1.31, found 1iit 1.29, guide 1.19,
induct 1.19, launchsub) 1.18, work at 1.14

give a better 84s(join) for Equation (6.1) than the top similarities returned bin, 19984:

participate 0.164, lead 0.150, return to 0.148, say 0.8J8ir0.142, sign 0.142, meet
0.142, include 0.141, leave 0.140, work 0.137

Other features are also weighted intuitively. Note thatte#ipation is a strong indicator
for some arguments, for example the weight on being lowse-tahigh fobecomg0.972)
andeat (0.505), but highly negative faccuse(-0.675) andembroil (-0.573) which often
take names of people and organizations.

6.4.3 Pseudodisambiguation

We first evaluate BP on disambiguating positives from pseudo-negatives, coimgpdo
recently-proposed systems that also require no manuaihypded resources like WordNet.
We convert Dagan et al1999’s similarity-smoothed probability to MI by replacing the

*Which all correspond to nouns occurring in the object positf the verb (e.g. Rg;(n|lead)), except
“launch (sub)” which corresponds to Rgs; (n|launch).
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empirical Ptn|v) in Equation (6.2) with the smoothed 3r from Equation (6.1). We also
test an Ml model inspired by EfR2007:

Mlgim(n,v) = log Z Sin‘(n/,n)%

n’eSiMs(n)

We gather similar words usirldiin, 19984, mining similar verbs from a comparable-sized
parsed corpus, and collecting similar nouns from a broa@e®R corpus of English text.

We also use Keller and Lapdt2003’s approach to obtaining predicate-argument counts
from the web. Rather than mining parse trees, this techmigpieves counts for the pattern
“V Det N” in raw online text, whereV is any inflection of the verbDet is the a, or the
empty string, andN is the singular or plural form of the noun. We compute a wesedav|
by collecting P¢n,v), Pr(n), and Pfv) using all inflections, except we only use the root
form of the noun. Rather than using a search engine, we obtaints from the Google
Web 5-gram Corpus (Chapter 3, Section 3.2.2).

All systems are thresholded at zero to make a classificatimike Dsp, the compar-
ison systems may not be able to score each example. The rifiyadlanoothed examples
will be undefined if Svs(w) is empty. Also, the Keller and Lapat2003 approach will
be undefined if the pair is unobserved on the web. As a reakodafault for these cases,
we assign them a negative decision.

We evaluate disambiguation using precision (P), recal] &Ryl their harmonic mean,
F-Score (F). Table 6.1 gives the results of our comparisonthé MacroAvgresults, we
weight each example equally. FiglicroAvg we weight each example by the frequency of
the noun. To more directly compare with previous work, we atproducedPairwise Dis-
ambiguationby randomly pairing each positive with one of the negatives then evaluat-
ing each system by the percentage it ranks correctly (Aam)tiie comparison approaches,
if one score is undefined, we choose the other one. If bothratefined, we abstain from a
decision. Coverage (Cov) is the percent of pairs where aidecivas madé.

Our simple system with only verb co-occurrence featuresp.[)., outperforms all
comparison approaches. Using the richer feature setip,Presults in a statistically sig-
nificant gain in performance, up to an F-Score of 0.65 and avis® disambiguation ac-
curacy of 0.81. Dsp,; has both broader coverage and better accuracy than all ¢iogpe
approaches. In the remainder of the experiments, we &sg;,Land refer to it simply as
DsP.

Some errors are because of plausible but unseen argumergsibed as test-set pseudo-
negatives. For example, for the vathmage DsPs three most high-scoring false positives
are the noungetliner, carpet andgear. While none occur wittdamagein our corpus, all
intuitively satisfy the verb’s selectional preferences.

MacroAvgperformance is worse thavlicroAvg because all systems perform better on
frequent nouns. When we plot F-Score by noun frequency (Eigul), we see that &
outperforms comparison approaches across all frequertmiéschieves its biggest gains

SFor both the similar-noun and similar-verb smoothing, wly @mooth over similar pairthat occurred in
the corpus While averaging over all similar pairs tends to undereatérthe probability, averaging over only
the observed pairs tends to overestimate it. We tested Imattadopt the latter because it resulted in better
performance on our development set.

®l.e. we use the “half coverage” condition from H2007.

"The differences betweend®,;; and all comparison systems are statistically significartNEtnar’s test,
p<0.01).
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Figure 6.1: Disambiguation results by noun frequency.

on the low-frequency nouns. A richer feature set allove > make correct inferences on
examples that provide minimal co-occurrence data. Thesalao the examples for which
we would expect co-occurrence models like Ml to fail.

As a further experiment, we re-trainedsBbut with only the string-based features
removed. Overall macro-averaged F-score dropped from t0.6664 (a statistically sig-
nificant reduction in performance). The system scored yeddéntically to Dsp on the
high-frequency nouns, but performed roughly 15% worse emibuns that occurred less
than ten times. This shows that the string-based featuesisngortant for selectional pref-
erence, and particularly helpful for low-frequency nouns.

Finally, we note that some suggestions for improving pseuda evaluations have
been proposed in a very recent paper by Chambers and Juf&fskynbers and Jurafsky,
201d. For example, our evaluation in this section only considgrseerpairs in the sense
that our training and testing pairs are distinct. It may beenealistic to evaluate on all
pairs extracted from a corpus, in which case we can direcifgpare to co-occurrence (or
conditional probability, or Ml), as in the following sectis.

6.4.4 Human Plausibility

Table 6.2 compares some of our systems on data used by R&8a# (also Appendix 2 in
Holmes et al[1989). The plausibility of these pairs was initially judged bdsm the ex-
perimenters’ intuitions, and later confirmed in a human erpent. We include the scores
of Resnik’s system, and note that its errors were attribtiiesense ambiguity and other
limitations of class-based approacH&esnik, 19962 The other comparison approaches
also make a number of mistakes, which can often be traced tsguided choice of similar
word to smooth with.

We also compare to our empirical Ml model, trained on our @dsorpus. Although

8For examplewarn-enginescores highly because engines are in the @asisy, and physical entities (e.g.
people) are often objects afarn. Unlike DspP, Resnik’s approach cannot learn that fearn, “the property of
being a person is more important than the property of beirgngity” [Resnik, 1998
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| Verb Plaus./Implaus. [| Resnik | Dagan etal] Erk | M | Dsp |

see friend/method 5.79/-0.01 | 0.20/1.40 | 0.46/-0.07 || 1.11/-0.57| 0.98/0.02
read article/fashion 6.80/-0.20 | 3.00/0.11 | 3.80/1.90 || 4.00/— 2.12/-0.65
find label/fever 1.10/0.22 | 1.50/2.20 | 0.59/0.01 || 0.42/0.07 | 1.61/0.81
hear story/issue 1.89/1.89 | 0.66/1.50 | 2.00/2.60 || 2.99/-1.03| 1.66/0.67
write letter/market 7.26/0.00 | 2.50/-0.43 | 3.60/-0.24 || 5.06/-4.12| 3.08/-1.31
urge daughter/contrast| 1.14/1.86 | 0.14/1.60 | 1.10/3.60 || -0.95/— -0.34/-0.62
warn driver/engine 4.73/3.61 | 1.20/0.05 | 2.30/0.62 || 2.87/— 2.00/-0.99
judge contest/climate 1.30/0.28 | 1.50/1.96 | 1.70/1.70 || 3.90/— 1.00/0.51
teach language/distance 1.87/1.86 | 2.50/1.30 | 3.60/2.70 || 3.53/— 1.86/0.19
show sample/travel 1.44/0.41 | 1.60/0.14 | 0.40/-0.82 || 0.53/-0.49| 1.00/-0.83
expect visit/mouth 0.59/5.93 | 1.40/1.56 | 1.40/0.37 1.05/-0.65| 1.44/-0.15
answer request/tragedy || 4.49/3.88 | 2.70/1.50 | 3.10/-0.64 || 2.93/— 1.00/0.01
recognize author/pocket 0.50/0.50 | 0.03/0.37% | 0.77/1.30 || 0.48/— 1.00/0.00
repeat comment/journal|| 1.23/1.23 | 2.30/1.40 | 2.90/— 2.59/— 1.00/-0.48
understand  concept/session|| 1.52/1.51 | 2.70/0.25 | 2.00/-0.28 || 3.96/— 2.23/-0.46
remember  reply/smoke 1.31/0.20 | 2.10/1.20 | 0.54/2.60 || 1.13/-0.06| 1.00/-0.42

Table 6.2: Selectional ratings for plausible/implausithiect objects (Holmes, 1989). Mis-
takes are marked with an asterisk (*), undefined scores areechavith a dash (—). Only
Dspris completely defined and completely correct.

. Unseen Verb-Object Freq.
Seen Criterial Al | — | —5 | —3 | N
MI > 0 0.44| 0.33| 0.57| 0.70| 0.82
Freq.> 0 0.57| 0.45| 0.76| 0.89| 0.96
Dsp> 0 0.73| 0.69| 0.80| 0.85| 0.88

Table 6.3: Recall on identification of Verb-Object pairsnfran unseen corpus (divided by
pair frequency).

Resnik[1994 reported that 10 of the 16 plausible pairs did not occur inraiging corpus,
all of them occurred in ours and hence MI gives very reas@nabbres on the plausible
objects. It has no statistics, however, for many of the imgilsle ones. BpPcan make finer
decisions than MI, recognizing that “warning an engine” isrenabsurd than “judging a
climate.”

6.4.5 Unseen Verb-Object Identification

We next compare Ml and §p on a much larger set of plausible examples, and also test
how well the models generalize across data sets. We took tremdIDsp systems trained

on AQUAINT and asked them to rate observed (and thus likedlygible) verb-object pairs
taken from an unseen corpus. We extracted the pairs by patgrSan Jose Mercury News
(SIM) section of the TIPSTER corplidarman, 199P Each unique verb-object pair is a
single instance in this evaluation.

Table 6.3 gives recall across all pafdl) and grouped by pair-frequency in the unseen
corpus (1, 2, 3>3). Dspaccepts far more pairs than Ml (73% vs. 44%), even far more
than a system that accepts any previously observed vedutobpmbination as plausible
(57%). Recall is higher on more frequent verb-object pdius,70% of the pairs occurred
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Figure 6.2: Pronoun resolution precision-recall on MUC.

only once in the corpus. Even if we smooth Ml by smoothingnRr) in Equation 6.2
using modified KN-smoothingChen and Goodman, 190&he recall of M0 on SIM
only increases from 44.1% to 44.9%, still far belove® Frequency-based models have
fundamentally low coverage. As further evidence, if we th@lmodel of Ml on the SIM
corpus and use it in our pseudodisambiguation experimesttith 6.4.3), M0 gets a
MacroAvgprecision of 86% but &acroAvgrecall of only 129

6.4.6 Pronoun Resolution

Finally, we evaluate BpPon a common application of selectional preferences: chgdbie
correct antecedent for pronouns in tERagan and Itai, 1990; Kehlet al., 2004. We study
the cases where a pronoun is the direct object of a verb pteglic A pronoun’s antecedent
must obeyv’s selectional preferences. If we have a better model of 8%hould be able
to better select pronoun antecedefits.

We parsed the MUC-[1997 coreference corpus and extracted all pronouns in a direct
object relation. For each pronoysn,modified by a verby, we extracted all preceding nouns
within the current or previous sentence. Thirty-nine amajghpronouns had an antecedent
in this window and are used in the evaluation. For eadbt N (p)™ by the set of preceding
nouns coreferent with, and letN (p)~ be the remaining non-coreferent nouns. We take
all (v,n") wheren™ € N(p)*™ as positive, and all other paits,n~), n~ € N(p)~ as
negative.

We compare Ml and Bpon this set, classifying everfy, n) with Ml >T' (or DSP>T)
as positive. By varying’, we get a precision-recall curve (Figure 6.2). Precisiolois

°Recall that even the Keller and Lapd200d system, built on the world’s largest corpus, achieves only
34% recall (Table 6.1) (with only 48% of positives and 27% bfpairs previously observed, but note, on
the other hand, that low-count N-grams have been filtered ffee N-gram corpus, and therefore perhaps this
effect is overstated).

10Note we're not trying to answer the question of whether sigleal preferences are usefifang et al.,
2009 or not[Kehleret al., 2004 for resolving pronouns when combined with features for megefrequency,
gender, syntactic role of the candidate, etc. We are onhguisiis task as another evaluation for our models of
selectional preference.
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| System | Acc |
Most-Recent Nounl 17.9%

Maximum Ml 28.2%
Maximum Dsp 38.5%

Table 6.4: Pronoun resolution accuracy on nouns in curneptavious sentence in MUC.

because, of course, there are many nouns that satisfy thiegteds SPs that are not coref-
erent. DsP>0 has both a higher recall and higher precision than acceptiagy pair pre-
viously seen in text (the right-most point on MI'). The DspP>T" system achieves higher
precision than MbT for points where recall is greater than 60% (wheredd). Interest-
ingly, the recall of M0 is higher here than it is for general verb-objects (Secti@n).
On the subset of pairs with strong empirical associationt)| Ml generally outperforms
Dspat equivalent recall values.

We next compare MI and &p as stand-alone pronoun resolution systems (Table 6.4).
As a standard baseline, for each pronoun, we choose the ewesttmoun in text as the pro-
noun’s antecedent, achieving 17.9% resolution accurdug baseline is low because many
of the most-recent nouns are subjects of the pronoun’s Jadsp, and therefore resolution
would violate syntactic coreference constraints. If weas®othe previous noun with the
highest MI as antecedent, we get an accuracy of 28.2%, wihdesing the previous noun
with the highest BPachieves 38.5%. Bpresolves 37% more pronouns correctly than Ml.

6.5 Conclusions and Future Work

We have proposed a simple, effective model of selectiorefepence based on discrimina-
tive training. Supervised techniques typically achievitdsgoerformance than unsupervised
models, and we duplicate these gains wittFDHere, however, these gains come at no ad-
ditional labeling cost, as training examples are generattaimatically from unlabeled text.

Dspallows an arbitrary combination of features, includingtveo-occurrence features
that yield high-quality similar-word lists as latent outpuThese lists not only indicate
which verbs are associated with a common set of nouns; tleeyderinsight into a chain of
narrative events in which a particular noun may particiatg., a particular noun may be
bought thencooked thengarnished and then likelyeater). Dsp therefore learns similar
information to previous approaches that seek such nagratrents directly and explicitly
[Bean and Riloff, 2004; Chambers and Jurafsky, 2008wever, note that we learn the
association of events across a corpus rather than only intiaygar segment of discourse,
like a document or paragraph. One option for future work imtmlel the local and global
distribution of nouns separately, allowing for finer-gin(and potentially sense-specific)
plausibility predictions.

The features used in$P only scratch the surface of possible feature mining; inform
tion from WordNet relations, Wikipedia categories, or flatacorpora could also provide
valuable clues for selectional preference. Also, if anyeosystem were to exceedsBs
performance, it could also be included as one ePB features.

It would be interesting to expand our co-occurrence featureluding co-occurrence
counts across more grammatical relations and using cowmtsexternal, unparsed corpora
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like the world wide web. We could also reverse the role of nand verb in our training,
having verb-specific features and discriminating sepré¢e each argument noun. The
latent information would then be lists of similar nouns.

Finally, one potentially very exciting direction for fumiwork would be to automati-
cally collect and create features for onlimeagesreturned for the noun query. It would
be amazing to be able to predict noun-verb plausibility [yuom the basis of a system’s
learned visual recognition of compatible features (elgs tollection of images seems to
depict something that can be eaten, etc.).

DSP provides an excellent framework for such exploraticesabse it generates many
training examples and can therefore incorporate fine-gdginverlapping and potentially
interdependent features. We look at another system th#tbses properties in the following
chapter.

95



Chapter 7

Alignment-Based Discriminative
String Similarity

“Kimono... kimono... kimono... Ha! Of course! Kimono is cenfrom the
Greek word himona, is mean winter. So, what do you wear in timentime
to stay warm? A robe. You see: robe, kimono. There you go!”

- Gus PortokalosMy Big Fat Greek Wedding

This chapter proposes a new model of string similarity tixglaits a character-based
alignment of the two strings. We again adopt a discrimimagipproach. Positive pairs are
generated automatically from word pairs with a high asdmrian an aligned bitext, or
else mined from dictionary translations. Negatives aresttanted from pairs with a high
amount of character overlap, but which are not translati®asin this work, there are three
types of information that allow us to generate examplesratizally: statistics from a
bitext, entries in a dictionary, and characters in the g&inThis information is unlabeled
in the sense that no human annotator has specifically laloelgdates in the data. It is
useful because once a definition is adopted, examples caeneeaged automatically, and
different methods can be empirically evaluated on a lewa}iph field.

7.1 Introduction

String similarity is often used as a means of quantifying ltkelihood that two pairs of
strings have the same underlying meaning, based purelyeonhifracter composition of
the two words.[Strubeet al, 2004 use edit distancf_evenshtein, 1966as a feature for
determining if two words are corefererifaskaret al., 2004 use French-English common
letter sequences as a feature for discriminative word ad&nt in bilingual texts.[Brill
and Moore, 200Dlearn misspelled-word to correctly-spelled-word siniflas for spelling
correction. In each of these examples, a similarity measamemake use of the recurrent
substring pairings that reliably occur between words hgitie same meaning.

Across natural languages, these recurrent substringspamnelences are found in word
pairs known as cognates: words with a common form and meaairass languages. Cog-
nates arise either from words in a common ancestor languagdight/Licht, night/Nacht
in English/German) or from foreign word borrowings (etgampoline/toranporinin En-
glish/Japanese). Knowledge of cognates is useful for a mumibapplications, including

9A version of this chapter has been publishedBergsma and Kondrak, 2007a
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word alignmenfKondraket al., 2003, sentence alignmeiiSimardet al., 1992; Church,
1993; McEnery and Oakes, 1996; Melamed, 128 learning translation lexicofislann
and Yarowsky, 2001; Koehn and Knight, 2002 he related task of identifyinggansliter-
ationshas also received much recent attentfigtementiev and Roth, 2006; Zelenko and
Aone, 2006; Yooret al, 2007; Jiampojamaret al, 201J. Extending dictionaries with
automatically-acquired knowledge of cognates and tri@mations can improve machine
translation system&night et al., 1995.

Also, cognates have been used to help assess the readabdifpreign language text
by new language learnefglitdenbogerd, 2005 Developing automatic ways to identify
these cognates is thus a prerequisite for a robust autoneati@ability assessment.

We propose an alignment-based, discriminative approadtritty similarity and we
evaluate this approach on the task of cognate identificaBaation 7.2 describes previous
approaches and their limitations. In Section 7.3, we ermar technique for automatically
creating a cognate-identification training set. A novelea$pf this set is the inclusion of
competitive counter-exampléar learning. Section 7.4 shows how discriminative feagure
are created from a character-based, minimum-edit-distafignment of a pair of strings.
In Section 7.5, we describe our bitext and dictionary-basgaeriments on six language
pairs, including three based on non-Roman alphabets. lmo&et.6, we show significant
improvements over traditional approaches, as well asfggni gains over more recent
techniques byRistad and Yianilos, 1998[Tiedemann, 1999 [Kondrak, 2004, and[Kle-
mentiev and Roth, 2006

7.2 Related Work

String similarity is a fundamental concept in a variety ofdseand hence a range of tech-
nigues have been developed. We focus on approaches thabvéavepplied to words, i.e.,
uninterrupted sequences of characters found in naturgiléege text. The most well-known
measure of the similarity of two strings is the edit distancé.evenshtein distandé.ev-
enshtein, 1966 the number of insertions, deletions and substitutionsired to transform
one string into another. In our experiments, we nsemalizededit distance (NED): edit
distance divided by the length of the longer word. Other peaxponeasures include Dice’s
Coefficient (DICE)[Adamson and Boreham, 1974nd the length-normalized measures
longest common subsequence ratio (LC$RElamed, 199B the length of the longest
common subsequence divided by the length of the longer wset(bylMelamed, 1998,
and longest common prefix ratio (PREFIXondrak, 2005, the length of the longest
common prefix divided by the longer word length (four-letpgefix match was used by
[Simardet al,, 1997). These baseline approaches have the important advarftage re-
quiring training data. We can also include in the non-lezgréategoryKondrak, 200¥s
longest common subsequence formula (LCSF), a probabitistiasure designed to mitigate
LCSR'’s preference for shorter words.

Although simple to use, the untrained measures cannot @addpe specific spelling
differences between a pair of languages. Researchers leneddre investigated adaptive
measures that are learned from a set of known cognate pRistad and Yianilos, 1998
developed a stochastic transducer version of edit disteearaed from unaligned string
pairs. [Mann and Yarowsky, 20Q1saw little improvement over edit distance when ap-
plying this transducer to cognates, even when filtering thesducer’s probabilities into
different weight classes to better approximate edit ditafiTiedemann, 1999used var-
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ious measures to learn the recurrent spelling changes éetteglish and Swedish, and
used these changes to re-weight LCSR to identify more cegnaith modest performance
improvements[Mulloni and Pekar, 20d6developed a similar technique to improve NED
for English/German.

Essentially, all these techniques improve on the baselipeoaches by using a set of
positive (true) cognate pairs to re-weight the costs of edérations or the score of se-
guence matches. Ideally, we would prefer a more flexible @y that can learn positive
or negative weights osubstringpairings in order to better identify related strings. Ong-sy
tem that can potentially provide this flexibility is a digoinative string-similarity approach
to named-entity transliteration BiKlementiev and Roth, 2006Although not compared to
other similarity measures in the original paper, we show tiia discriminative technique
can strongly outperform traditional methods on cognatatitieation.

Unlike many recent generative systems, the Klementiev astti Rpproach does not
exploit the known positions in the strings where the charactmatch. For exampl€Brill
and Moore, 200Pcombine a character-based alignment with the expectataimization
(EM) algorithm to develop an improved probabilistic erroodel for spelling correction.
[Rappoport and Levent-Levi, 20D&pply this approach to learn substring correspondences
for cognates[Zelenko and Aone, 20QGecently showed &lementiev and Roth, 2006
style discriminative approach to be superior to alignmezaged generative techniques for
name transliteration. Our work successfully uses the al@gmt-based methodology of the
generative approaches to enhance the feature set fomdisative string similarity. In work
concurrent to our original contribution [Bergsma and Kondrak, 2007&oon et al[2007
apply a discriminative approach to recognizing trandiiens at the phoneme level. They
include binary features over aligned phoneme pairs, butad@se features over phoneme
subsequencess would be the analog of our work.

Finally, [Munteanu and Marcu, 200%ropose a similar approach to detsentences
that are translations in non-parallel corpora. The heattti@f algorithm is a classifier that
inspects a pair of sentences and decides if they are tremmslatLike us, they also align
the sentences and compute features based on the alignmgthiey use more general fea-
tures (e.g., number of words in a row that are aligned, etther than, say, phrase pairs
that are consistent with the alignment, which would be tmeatianalogue of our method.
Although we originally developed our approach unaware efc¢bnnection to this work,
the two approaches ultimately face many similar issues amdldped similar solutions. In
particular, they also automatically generate traininggpiom both true sentence transla-
tions (positives) andompetitivecounter examples (negatives). Since they can also generate
many examples using this technique, it is surprising theyndit also explore much richer,
finer-grained features like those explored in this chapter.

7.3 The Cognate Identification Task

Given two string lists,F and I, the task of cognate identification is to find all pairs of
strings (e, f) that are cognate. In other similarity-driven applicatiofsand F' could be
misspelled and correctly spelled words, or the orthogi@phd the phonetic representation
of words, etc. The task remains to link strings with commoranieg in £ and F' using
only the string similarity measure.

We can facilitate the application of string similarity togr@tes by using a definition
of cognation not dependent on etymological analysis. Famgte,[Mann and Yarowsky,
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Foreign Languagé” Wordsf € F CognatedZy, False Friend€/y_

Japanese (Rdmaiji) napukin napkin nanking, pumpkin, sngckneaking
French abondamment abundantly abandonment, abatememnderment
German prozyklische procyclical polished, prophylagtimphylaxis
Spanish viudos widows avoids, idiots, video, videos, aius!

Table 7.1: Foreign-English cognates and false frienditigiexamples.

2001 define a word paire, f) to be cognate if they are a translation pair (same mean-
ing) and their edit distance is less than three (same forn®.adépt an improved defini-
tion (suggested bjMelamed, 199pfor the French-English Canadian Hansards) that does
not over-propose shorter word pairg, f) are cognate if they are translations and their
LCSR > 0.58. Note that this cutoff is somewhat conservative: thgliEh/German cog-
natedight/Licht (LCSR=0.8) are included, but not the cognagesht/acht(LCSR=0.4).

If two words must have LCSR 0.58 to be cognate, then for a given wgfide F', we
need only consider as possible cognates the subset of word$aving an LCSR withf
larger than 0.58, a set we cdll;. The portion ofE'; with the same meaning &5 £y, are
cognates, while the part with different meanings,_, are not cognates. The words _
with similar spelling but different meaning are sometimabet false friends The cognate
identification task is, for every word € F', and a list of similarly spelled word&';, to
distinguish the cognate subggf . from the false friend sef,_.

To create training data for our learning approaches, anétemte a high-quality la-
beled test set, we need to annotate some of(fhe; € E;) word pairs for whether or
not the words share a common meaning. In Section 7.5, weimxqla two high-precision
automatic annotation methods: checking if each pair of wda) were aligned in a word-
aligned bitext, or (b) were listed as translation pairs inliadual dictionary.

Table 7.1 provides some labeled examples with non-emptyategand false friend
lists. Note that despite what it may appear from these ex@snftis is not a ranking task:
even in highly related languages, most wordg‘imave emptyE,_ lists, and many have
empty £y as well. Thus one natural formulation for cognate identiftzais a pairwise
(and symmetric) cognation classification that looks at grsh( f, e ) separately and indi-
vidually makes a decision:

+(napukin,napkin)

— (napukin,nanking)

— (napukin,pumpkin)

In this formulation, the benefits of a discriminative apmioare clear: it must find sub-
strings that distinguish cognate pairs from word pairs witherwise similar form.[Kle-
mentiev and Roth, 2006although using a discriminative approach, do not providsrt
infinite-attribute perceptron with competitive counteamples. They instead use translit-
erations as positives and randomly-paired English andi&usgords as negative exam-
ples. In the following section, we also improve [dlementiev and Roth, 200y using a
character-based string alignment to focus the featuregdigorimination.

7.4 Features for Discriminative String Similarity

As Chapter 2 explained, discriminative training learns assifier from a set of labeled
training examples, each represented as a set of featurdse pmevious section we showed

99



how labeled word pairs can be collected. We now address metbrepresenting these
word pairs as sets of features useful for determining cogmat

Consider the Rdmaji Japanese/English cogndtegoresu,stress)The LCSR is 0.625.
Note that the LCSR o$utoresuwith the English false friendtoriesis higher: 0.75. LCSR
alone is too weak a feature to pick out cognates. We need todbthe actual character
substrings.

[Klementiev and Roth, 2006enerate features for a pair of words by splitting both
words into all possible substrings of up to size two:
sutoresu= { s, u,t, 0,1, €, s, u, su, ut, to, ... $u
stress = {s,t,r,es,s,sttrre es, $s
Then, a feature vector is built from all substring pairs frdm two words such that the
difference in positions of the substrings is within one:
{s-s, s, s-st, Su-s, Su-t, su-st, Su-tr... r-s, r-s, r-ps..
This feature vector provides the feature representatied imssupervised machine learning.

This example also highlights the limitations of the Kleniemand Roth approach. The
learner can provide weight to features likes or s-stat the beginning of the word, but
because of the gradual accumulation of positional diffeeenthe learner never sees the
tor-tr andes-escorrespondences that really help indicate the words aneateg

Our solution is to use the minimum-edit-distance alignnmaftihe two strings as the
basis for feature extraction, rather than the positionatespondences. We also include
beginning-of-word (*) and end-of-word ($) markers (referto asboundary markensto
highlight correspondences at those positions. The(paitoresu, stress) can be aligned:

Asutoresu$
\\ | /.~
Astress$

For the feature representation, we only extract substraigs phat are consistent with this
alignment! That is, the letters in our pairs can only be aligned to eablraand not to
letters outside the pairing:

{"-"s-"s, s-5, su-s, ut-t, t-t,... es-es, s-s, sujss...

We definephrasepairs to be the pairs of substrings consistent with the algmt. A similar
use of the term “phrase” exists in machine translation, @lpérases are often pairs of word
sequences consistent with word-based alignmigéashnet al., 2003.

By limiting the substrings to only those pairs that are cstesit with the alignment, we
generate fewer, more-informative features. Computallignasing more-precise features
allows a larger maximum substring siZethan is feasible with the positional approach.
Larger substrings allow us to capture important recurrialgtibns like the “u” in the pair
sut-stobserved in Japanese-English.

[Tiedemann, 1999and others have shown the importance of using the mismatchin
portions of cognate pairs to learn the recurrent spellingnges between two languages.
In order to capture mismatching segments longer than ouirmax substring size will
allow, we include special features in our representatidied¢anismatches Mismatches
are phrases that span the entire sequence of unalignedcigrardetween two pairs of

—_

1If the words are from different writing systems, we can get éfignment by mapping the foreign letters
to their closest Roman equivalent, or by using the EM alparito learn the editiRistad and Yianilos, 1998
In recent work in recognizing transliterations betweerfiedéint writing system§Jiampojamarret al, 2014,
we used the output of a many-to-many alignment mddielmpojamarret al., 2007 to directly extract the
substring-alignment features.
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aligned end characters (similar to the “rules” extractedMulloni and Pekar, 20d§. In

the above examplesu$-ssp is a mismatch with “s” and “$” as the aligned end characters.
Two sets of features are taken from each mismatch, one ttlatlies the beginning/ending
aligned characters as context and one that does not. Fompéxafor the endings of the
French/English paiéconomique,economijo)e include both the substring paitgie$.ic$
andque:cas features.

One consideration is whether substring features shouldrizeybpresence/absence, or
the count of the feature in the pair normalized by the lengith@longer word. We investi-
gate both of these approaches in our experiments. Als@ th@o reason not to include the
scores of baseline approaches like NED, LCSR, PREFIX or Dd€Eeatures in the repre-
sentation as well. Features like the lengths of the two wartdkthe difference in lengths
of the words have also proved to be useful in preliminary grpents. Semantic features
like frequency similarity or contextual similarity mightsa be included to help determine
cognation between words that are not present in a translkbicon or bitext.

7.5 Experiments

Section 7.3 introduced two high-precision methods for geimeg labeled cognate pairs:
using the word alignments from a bilingual corpus or usirgehtries in a translation lex-
icon. We investigate both of these methods in our experimdnteach case, we generate
sets of labeled word pairs for training, testing, and dgwelent. The proportion of posi-
tive examples in the bitext-labeled test sets range betdetr and 1.8%, while ranging
between 1.0% and 1.6% for the dictionary data.

For the discriminative methods, we use a popular suppotorvetachine (SVM) learn-
ing package called SVi#"t [Joachims, 1999aAs Chapter 2 describes, SVMs are maximum-
margin classifiers that achieve good performance on a rdrtgsks. In each case, we learn
a linear kernel on the training set pairs and tune the paemtedt trades-off training error
and margin on the development set. We apply our classifidiettest set and score the pairs
by their positive distance from the SVM classification hypane (also done bfBilenko
and Mooney, 200Bwith their token-based SVM similarity measure).

We also score the test sets using traditional orthograpimitasity measures PREFIX,
DICE, LCSR, and NED, an average of these four, Btondrak, 2005s LCSF. We also
use the log of the edit probability from the stochastic decad[Ristad and Yianilos, 1998
(normalized by the length of the longer word) dfidedemann, 199% highest performing
system (Approach #3). Both use only the positive examplesliirtraining set. Our evalu-
ation metric is 11-pt average precision on the score-sqragdists (also used bjKondrak
and Sherif, 2008.

7.5.1 Bitext Experiments

For the bitext-based annotation, we use publicly-avadlakbrd alignments from the Eu-
roparl corpus, automatically generated by GIZA++ for Freimglish (Fr), Spanish-English
(Es) and German-English (DEoehn, 2005; Koehn and Monz, 2d08nitial cleaning of

these noisy word pairs is necessary. We thus remove all witilisnumbers, punctuation,
a capitalized English word, and all words that occur fewantten times. We also remove

2The cognate data sets used in our experiments are availabigpa/www.cs.ualberta.ca/
~bergsma/Cognates/
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Figure 7.1: LCSR histogram and polynomial trendline of [ere&nglish dictionary pairs.

many incorrectly aligned words by filtering pairs where tlonpwvise Mutual Information
between the words is less than 7.5. This processing leavebulary sizes of 39K for
French, 31K for Spanish, and 60K for German.

Our labeled set is then generated from pairs with LCSB.58 (using the cutoff from
[Melamed, 199D. Each labeled set entry is a triple of a) the foreign wpytl) the cognates
E; and c) the false friend&’;_. For each language pair, we randomly take 20K triples
for training, 5K for development and 5K for testing. Eaclpleiis converted to a set of
pairwise examples for learning and classification.

7.5.2 Dictionary Experiments

For the dictionary-based cognate identification, we usedfreSpanish, German, Greek
(Gr), Japanese (Jp), and Russian (Rs) to English translptigs from the Freelang pro-
gram? The latter three pairs were chosen so that we can evaluat®endistant languages
that use non-Roman alphabets (although the Rémaji JapaBomanized by definition).
We take 10K labeled-set triples for training, 2K for testangd 2K for development.

The baseline approaches and our definition of cognationreqamparison in a com-
mon alphabet. Thus we use a simple context-free mappingrigecoevery Russian and
Greek character in the word pairs to their nearest Romawvalgni. We then label a trans-
lation pair as cognate if the LCSR between the words’ Roneghigpresentations is greater
than 0.58. We also operate all of our comparison systemsese tRomanized pairs.

7.6 Results

We were interested in whether our working definition of cagma(translations and LCSR
> 0.58) reflects true etymological relatedness. We lookeldeak CSR histogram for trans-
lation pairs in one of our translation dictionaries (Figutd). The trendline suggests a
bimodal distribution, with two distinct distributions afanslation pairs making up the dic-
tionary: incidental letter agreement gives low LCSR for ther, non-cognate portion
and high LCSR characterizes the likely cognates. A thresbbD.58 captures most of the
cognate distribution while excluding non-cognate paitsishypothesis was confirmed by
checking the LCSR values of a list of known French-Englisnages (randomly collected

3http://www.freelang.net/dictionary/
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System Prec
Klementiev-Roth (KR) I£2 58.6
KR L<2 (normalized, boundary markers)62.9
phrased_<2 61.0
phrased <3 65.1
phrased. <3 + mismatches 65.6
phrased. <3 + mismatches- NED 65.8

Table 7.2: Bitext French-Englistievelopment satognate identification 11-pt average pre-
cision (%).

Bitext Dictionary

System Fr Es De Fr Es | De Gr Jp Rs

PREFIX 34.7| 27.3| 36.3|| 45.5| 34.7| 25.5| 28.5| 16.1| 29.8
DICE 33.7| 28.2| 33.5|| 44.3| 33.7| 21.3| 30.6| 20.1| 33.6
LCSR 34.0| 28.7| 285|| 48.3| 36.5| 18.4| 30.2| 24.2| 36.6
NED 36.5| 31.9| 32.3|| 50.1| 40.3| 23.3| 33.9| 28.2| 41.4
PREFIX+DICE+LCSR+NED 38.7| 31.8| 39.3|| 51.6| 40.1| 28.6| 33.7| 229 | 37.9
[Kondrak, 200% LCSF 29.8| 289 29.1|| 39.9| 36.6| 25.0| 30.5| 33.4| 45,5
[Ristad and Yianilos, 1998 | 37.7| 32.5| 34.6|| 56.1| 46.9| 36.9| 38.0| 52.7| 51.8
[Tiedemann, 1999 38.8| 33.0| 34.7|| 55.3| 49.0| 24.9| 37.6| 33.9| 45.8
[Klementiev and Roth, 2006/ 61.1 | 55.5 | 53.2 || 73.4| 62.3| 48.3| 51.4| 62.0| 64.4
Alignm-Based Discrim. 66.5| 63.2| 64.1|| 77.7| 72.1| 65.6 | 65.7| 82.0| 76.9

Table 7.3: Bitext, Dictionary Foreign-to-English cognéentification 11-pt average pre-
cision (%).

from a dictionary for another project): 87.4% were above&30\We also checked cognation
on 100 randomly-sampled, positively-labeled French-Bhglairs from both the dictionary

and bitext data (i.e. translated or aligned and having LGSR58). 100% of the dictionary

pairs and 93% of the bitext pairs were cognate.

Next, we investigate various configurations of the disanaive systems on one of our
cognate identification development sets (Table 7.2). Thginal [Klementiev and Roth,
2004 (KR) system can be improved by normalizing the feature cowrthe longer string
length and including the boundary markers. This is theesftone with all the alignment-
based approaches. Also, because of the way its featuresmseucted, the KR system is
limited to a maximum substring length of two{12). A maximum length of three £3) in
the KR framework produces millions of features and prohiitraining times, while K3
is computationally feasible in the phrasal case, and ise®g@recision by 4.1% over the
phrases K2 systent* Including mismatchesesults in another small boost in performance
(0.5%), while using an edit distance feature again incepseformance by a slight margin
(0.2%). This ranking of configurations is consistent acedsthe bitext-based development
sets; we therefore take the configuration of the highesirsg@ystem as our Alignment-
Based Discriminative system for the remainder of this paper

4At the time of this research, preliminary experiments usiagn longer phrases (beyonecB) produced
a computationally prohibitive number of features for SVMreing. Deploying feature selection techniques
might enable the use of even more expressive and powerfuwiréegets with longer phrase lengths.
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Figure 7.2: Bitext French-English cognate identificatiearhing curve.

We next compare the Alignment-Based Discriminative sctwehe various other im-
plemented approaches across the three bitext and sixrdiciidnased cognate identification
test sets (Table 7.3). The table highlights the top systewngnboth the non-adaptive and
adaptive similarity scorers.In each language pair, the alignment-based discriminafpe
proach outperforms all other approaches, but the KR systeonshows strong gains over
non-adaptive techniques and their re-weighted extensidhs is in contrast to previous
comparisons which have only demonstrated minor improvésnsith adaptive over tradi-
tional similarity measurefKondrak and Sherif, 2006

We consistently found that the original KR performance ddad surpassed by a system
that normalizes the KR feature count and adds boundary msarkeross all the test sets,
this modification results in a 6% average gain in performanas baseline KR, but is still
on average 5% below the Alignment-Based Discriminativéntéque, with a statistically
significantly difference on each of the nine s@ts.

Figure 7.2 shows the relationship between training data s performance in our
bitext-based French-English data. Note again that theehieohn and Ristad & Yanilos
systems only use the positive examples in the training d&ar alignment-based simi-
larity function outperforms all the other systems acrosalyethe entire range of training
data. Note also that the discriminative learning curvesssho signs of slowing down:
performance grows logarithmically from 1K to 846K word air

For insight into the power of our discriminative approache provide some of our
classifiers’ highest and lowest-weighted features (Tab4¢. 7Note the expected corre-
spondences between foreign spellings and Engksty {-ph), but also features that lever-

SUsing the training data and the SVM to weight the componefiseoPREFIX+DICE+LCSR+NED scorer
resulted in negligible improvements over the simple avei@your development data.

SFollowing [Evert, 2003, significance was computed using Fisher's exact tegt €0.05) to compare the
n-best word pairs from the scored test sets, whewas taken as the number of positive pairs in the set.
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Lang. Feat. Wi. Example

Fr (Bitext) ées- ed +8.0 vérifiees:verified
Jp (Dict.) ru- | +5.9 penaruti:penalty
De (Bitext) k-c +5.5 kreativ:creative

De Btxt eren$- e$ +5.2 ignorieren:ignore
Fr Btxt lement$- ly$ +5.2 | admirablement admirably
Es (Bitext) ar- ating +5.0 acelerar:accelerating
Rs (Dict.) irov - _ +4.9 motivirovat:motivate
Gr (Dict.) f-ph +4.1 symfonia:symphony
Gr (Dict.) kos-c +3.3 anarchikos:anarchic
Gr (Dict.) 0s$- y$ -2.5 anarchikos:anarchy
Jp (Dict.) ou-ou -2.6 handoutai:handout
Es (Dict.) _-un -3.1 balance:unbalance
Fr (Bitext) s$- ly$ -4.2 fervents:fervently
Fr (Dict.) er$-er$ -5.0 former:former

Es (Bitext) mos- s -5.1 toleramos:tolerates

Table 7.4: Example features and weights for various Aligniaigased Discriminative clas-
sifiers (Foreign-English, negative pairsitalics).

age derivational and inflectional morphology. For exam@egek-English pairs with the
adjective-ending correspondenkes-¢ e.g. anarchikos:anarchic are favoured, but pairs
with the adjective ending in Greek and noun ending in Englistf-y$, are penalized; in-
deed, by our definitionanarchikos:anarchys not cognate. In a bitext, the featuses-ed
captures that feminine-plural inflection of past tense sénl-rench corresponds to regular
past tense in English. On the other hand, words ending in plaiSh first person plural
verb suffix-amosare rarely translated to English words ending with the suffixcausing
mos-sto be penalized. The ability to leverage negative featuezssned from appropriate
counter examples, is a key innovation of our discriminatreenework.

Table 7.5 gives the top pairs scored by our system on the Hired and three of the
dictionary test sets. Notice that unlike traditional samily measures that always score
identical words higher than all other pairs, by virtue of &ature weighting, our discrimi-
native classifier prefers some pairs with very charactersgtelling changes.

We performed error analysis by looking at all the pairs owstey scored quite con-
fidently (highly positive or highly negative similarity)ubwhich were labeled oppositely.
Highly-scored false positives arose equally from 1) actusgnates not linked as transla-
tions in the data, 2) related words with diverged meaningg,tbe only error in Table 7.5:
makaroniin Greek actually meanspaghettin English fnakaronadas macaron), and 3)
the same word stem, a different part of speech (e.g. the deglsh adjective/nousyn-
onymos:synonyjn Meanwhile, inspection of the highly-confident false negs revealed
some (often erroneously-aligned in the bitext) positivegwith incidental letter match
(e.g. the French/Englistecettes:proceedghat we would not actually deem to be cognate.
Thus the errors that our system makes are often either §tigaily interesting or point out
mistakes in our automatically-labeled bitext and (to adegxtent) dictionary data.
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Fr-En Bitext Es-En Bitext De-En Bitext
film:film agenda:agenda akt:act
ambassadeur:ambassador natural:natural asthma:asthma
bio:bio margenes:margins lobby:lobby
radios:radios hormonal:hormonal homosexuell:homosexual
abusif:abusive radon:radon brutale:brutal
irrefutable:irrefutable higiénico:hygienic inzidenz:incidence
Gr-En Dict. Jp-En Dict. Rs-En Dict.
alkali:alkali baiohoronikusu:bioholonics aerozol:aerosol
makaroni:macaroni mafia:mafia gondola:gondola
adrenalini:adrenaline | manierisumu:manierisme rubidiy:rubidium
flamingko:flamingo ebonaito:ebonite panteon:pantheon
spasmodikos:spasmodic oratorio:oratorio antonim:antonym
amvrosia:ambrosia mineraru:mineral gladiator:gladiator

Table 7.5: Highest scored pairs by Alignment-Based Disicréttive classifier (negative pair
in italics).

7.7 Conclusion and Future Work

This is the first research to apply discriminative string ikinity to the task of cognate
identification. We have introduced and successfully agmie alignment-based framework
for discriminative similarity that consistently demoradtrs improved performance in both
bitext and dictionary-based cognate identification on amglage pairs. Our improved
approach can be applied in any of the diverse applicatioresevinaditional similarity mea-
sures like edit distance and LCSR are prevalent. We havaradsie available our cognate
identification data sets, which will be of interest to gehetang similarity researchers.

Furthermore, we have provided a natural framework for futtwgnate identification
research. Phonetic, semantic, or syntactic features dmuldcluded within our discrimi-
native infrastructure to aid in the identification of cogesain text. In particular, we could
investigate approaches that do not require the bilinguetictiaries or bitexts to gener-
ate training data. For example, researchers have aut@iatileveloped translation lexi-
cons by seeing if words from each language have similar &egjes, contexttKoehn and
Knight, 2003, burstiness, inverse document frequencies, and datébdistns [Schafer
and Yarowsky, 2002 Semantic and string similarity might be learned jointlyttwa co-
training or bootstrapping approa¢klementiev and Roth, 2006 We may also compare
alignment-based discriminative string similarity with @ama complex discriminative model
that learns the alignments as latent strucfiieCallumet al, 2009.

Since the original publication of this work, we have alsoleggpthe alignment-based
string similarity model to the task of transliteration idifination [Jiampojamarret al,,
2014 with good results. In that work, we also proposed a new motistring similar-
ity that uses a string kernel to implicitly represent subgtpairs of arbitrary length, lifting
one of the computational limitations of the model in this juiea.

In addition, we also looked specifically at the cognate ifieation problem from a
multilingual perspectivéBergsma and Kondrak, 200[ZbWhile the current chapter looks
to detect cognates in pairs of languages, we provided a mielibgy that directly forms
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setsof cognates across groups of languages. We showed improtemeer simple clus-
tering techniques that do not inherently consider the itiaitg of cognate relations. We
developed our multi-lingual approach via the global infexe framework of integer linear
programming. We followed Roth and Y{l2004 in using binary{0, 1} ILP variables to
represent the decisions made by our system (cognate or nghate), and we optimized as
our objective function the sum of the costs/scores of thésitets, with constraints for tran-
sitivity and one-to-one mappings across languages. Ourdiation was partly based on
similar solutions for other tasks hf3arzilay and Lapata, 2006; Denis and Baldridge, 2007
Application of these techniques should improve the dedaaf translatedentenceas well
[Munteanu and Marcu, 2005since transitivity across languages also applies, ofssguat
the sentence level.
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Chapter 8

Conclusions and Future Work

8.1 Summary

This dissertation outlined two simple, scalable, effectimethods for large-scale semi-
supervised learning: constructing features from webesbikbram data, and using unla-
beled data to automatically generate training examples.

The availability of web-scale N-gram data was crucial for ouproved web-scale
feature-based approaches. While the Google N-gram datarigisally created to sup-
port the language model of an MT system, we confirmed thatd&ia can be useful for
a range of tasks, including both analysis and generatioblgms. Unlike previous work
using search engines, it is possible to extract millions ebsscale counts efficiently from
N-gram data. We can thus freely exploit numerous overlapapimd interdependent contexts
for each example, for both training and test instances. ©h&mpresented a unified frame-
work for integrating such N-gram information for variouxiteal disambiguation tasks.
Excellent results were achieved on three tasks. In paaticule proposed a novel and suc-
cessful method of using web-scale counts for the identifinadf non-referential pronouns,
a long-standing challenge in the anaphora resolution camtgnu

In Chapter 4, we introduced a new form of SVM training to natig the dependence of
the discriminative web-N-gram systems on large amountsagiihg data. Since the unsu-
pervised system was known to achieve good performance withl eveights, we changed
the SVM'’s regularization to prefer low-weight-variancdutimns, biasing it toward the un-
supervised solution. The optimization problem remainedravex function of the feature
weights, and was thus theoretically no harder to optimiaa tastandard SVM. On smaller
amounts of training data, the variance-regularization Spvformed dramatically better
than the standard multi-class SVM.

Chapter 5 addressed a pair of open questions on the use afaatbelata in NLP. First,
we showed there was indeed a significant benefit in combinigigrscale counts with the
traditional features used in state-of-the-art superveggoitoaches. For example, we pro-
posed a novel system for adjective ordering that exceedstéte-of-the-art performance,
without using any N-gram data, and then we further improvedperformance of this sys-
tem by adding N-gram features. Secondly, and perhaps mucé importantly, models
with web-based features were shown to perform much betser ttaditional supervised
systems when moving to new domains or when labeled trainitig Was scarce (realistic
situations for the practical application of NLP technolpgy

In the second part of the dissertation, we showed how to atioatly create labeled ex-
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amples from unlabeled data in order to train better modetelgictional preference (Chap-
ter 6) and string similarity (Chapter 7). The discriminatsiassifiers trained from this data
exploited several novel sources of information, includaingiracter-level (string and capi-
talization) features for selectional preferences, antlifea derived from a character-based
sequence alignment for discriminative string similarifyhile automatic example genera-
tion was not applied to web-scale unlabeled data in this wibghromises to scale easily
to web-scale text. For example, after summarizing webesdata with N-gram statistics,
we can create examples using only several gigabytes of assgd, N-gram-text, rather
than using the petabytes of raw web text directly. So autisnexample generation from
aggregate statistics promises both better scaling anderlekata (since aggregate statistics
naturally exclude phenomena that occur purely due to chance

The key methods of parts one and two are, of course, comeatilhnother way: it
would be straightforward to use the output of the pseudodch models as features in
supervised systems. This is similar to the approach of AmdicZinang 2004, and, in fact,
was pursued in some of our concurrent wiBlergsmeet al., 20094 (with good results).

8.2 The Impact of this Work

We hope the straightforward but effective techniques prteskin this dissertation will help
promote simple, scalable semi-supervised learning asueefyiaradigm for NLP research.
We advocate such a direction for several reasons.

First, only via machine learning can we combine the milliohgparameters that inter-
act in natural language processing. Second, only by leiregagilabeled data can we go
beyond the limited models that can be learned from smalij+asammotated training sets.

Furthermore, it is highly advantageous to have an NLP sys#tamboth benefits from
unlabeled data and that can readily take advantage of evesmumtabeled data when it be-
comes available. Both the volume of text on the web and theepofwcomputer architecture
continue to grow exponentially over time. Systems that udebeled data will therefore
improveautomaticallyover time, without any special annotation, research, omesging
effort. For example, idPitler et al,, 2014, we presented a parser whose performance im-
proves logarithmically with the number of unique N-gramsiweb-scale N-gram corpus.
A useful direction for future work would be to identify othgiroblems that can benefit from
the use of web-scale volumes of unlabeled data. We couldhibpthereby enable an even
greater proportion of NLP systems to achieve automatic aévganments in performance.

The following section describes some specific directionsfditure work, and notes
some tasks where web-scale data might be productively igsglo

Once we find out, for a range of tasks, just how far we can get i data and ML
alone, we will have a better handle on what other sourcemgtiistic knowledge might
be needed. For example, we can now get to around 75% accurgmgposition selection
using N-grams alone (Section 3.5). To correct prepositiwarg with even higher accu-
racy, we needed to exploit knowledge of the speaker’s n&tivguage (and thus their likely
preposition confusions), getting above 95% accuracy mmnner (but also sacrificing a
small but perhaps reasonable amount of coverage). It&eiplN-gram data alone would
ever allow us to select the correct preposition in phrases fi like to swim before/after
school.” Similarly, we argued that to perform even bettenon-referential pronoun detec-
tion (Section 3.7), we will need to pay attention to widerrsegts of discourse.
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8.3 Future Work

This section outlines some specific ways to extend or appigliris from this thesis.

8.3.1 Improved Learning with Automatically-Generated Examples

In part two of this thesis, we achieved good results by autimally generating training
examples, but we left open some natural questions arisorg this work. For example,
how many negatives should be generated for each positive?ddave ensure that training
with pseudo-examples transfers well to testing on real g@es? While the size of the
learning problem prevented extensive experiments at the the research was originally
conducted, recent advances in large-scale machine lgaemable much faster training.
This allows us to perform large-scale empirical studiesdress the above questions. In
combination with the usual advances in computer speed antbnyglarge-scale empirical
studies will become even easier. In fact, some have everestegtjthat large-scale learning
of linear classifiers is now essentiallysalved probleniYu et al,, 2014. This provides even
greater impetus to test and exploit large-scale lineargselassifiers in NLP.

8.3.2 Exploiting New ML Techniques

Another interesting direction for future research will e tdevelopment of learning al-
gorithms that exploit correlations between local and dldeatures (see Chapter 1 for an
example of local and global features feBN/vBD disambiguation). Often the local and
global patterns represent the same linguistic constmicéiad their weights should thus be
similar. For example, suppose at test time we encounterttrese, “it was the Bears who
won.” Even if we haven’t seen the pattermgunwho verld’ as local context in the training
set, we may have seen it in thwbal context of avBD training instance. Laplacian regular-
ization (previously used to exploit the distributional garity of words for syntactic parsing
[Wanget al, 2004) provides a principled way to force global and local feasut@ have
similar weights, although simpler feature-based techesclso existDaumeé I, 2007. In
particular, combining Laplacian regularization with tteakng of featurevalues(to allow
the more predictive, local features to have higher weigh8l promising direction to ex-
plore. In any case, identifying an effective solution heveld have implications on other,
related problems, such as multi-task learniRginaet al,, 2004, domain adaptatiobMc-
Closkyet al, 2014 and sharing feature knowledge across langufigesy-Kirkpatrick and
Klein, 2014.

8.3.3 New NLP Problems

There are a number of other important, but largely unexgdlokt.P problems where web-
scale solutions could have an impact. One such problem igldbextion of functional

relations for information extraction. A functional relati is a binary relation where each
element of the domain is related to a unique element in thernath. For example, each
person has a unique birthplace and date of birth, but mayrattgle children, residences,
and alma maters. There are a number of novel contextual ttaesould flag these rela-
tions. For example, the indefinite articla&antend not to occur with functional relations;
we frequently observa cousin ofin text, but we rarely sea birthplace of The latter is

functional. Based on our results in Chapter 5, a classifigrhioing such simple statistics
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with standard lexical features could possibly allow roldusictional relation identification
across different domains and genres.

8.3.4 Improving Core NLP Technologies

| also plan to apply the web-scale semi-supervised framlewmicore NLP technologies
that are in great demand in the NLP community.

| have previously explored a range of enhancements to promesolution systems
[Cherry and Bergsma, 2005; Bergsma, 2005; Bergsma and LD6; Bergsmaet al,
2008b; 2008a; 2009a My next step will be to develop and distribute an efficienates-
of-the-art, N-gram-enabled pronoun resolution systenadademic and industrial applica-
tions. In conversation with colleagues at conferencesyé tiaund that many researchers
shy away from machine-learned pronoun resolution systeenause of a fear they would
not work well on new domains (i.e., the specific domain on Wwhite research is being
conducted). By incorporating web-scale statistics intmpun resolvers, | plan to produce
a robust system that people can confidently apply whereatatk

| will also use web-scale resources to make advances imngarsie cornerstone tech-
nology of NLP. A parser gives the structure of a sentencentiiyeng who is doing what
to whom. Parsing digs deeper into text than typical inforamatetrieval technology, ex-
tracting richer levels of knowledge. Companies like Goagid Microsoft have recognized
the need to access these deeper linguistic structures anthaking parsing a focus for
their next generation of search engines. | will create amrate open-domain parser: a
domain-independent parser that can reliably analyze ansege text. A few approaches
have successfully adapted a parser to a specific domain,asugbneral non-fictiobMc-
Closkyet al, 20061 or biomedical textRimell and Clark, 2008 but these systems make
assumptions that would be unrealistic when parsing texthietarogeneous collection of
web pages, for example. A parser that could reliably proeesriety of genres, without
manual involvement, would be of great practical and sdientalue.

| will create an open-domain parser by essentially adagbrgl the text on the web,
again building on the robust classifiers presented in Ch&ptd>arsing decisions will be
based on observations in web-scale N-gram data, ratherdbserved (and potentially
overly-specific) constructions in a particular domain. t©os algorithms could also be
used to extract web-scale knowledge for difficult parsingiglens in coordination, noun
compounding, and prepositional phrase attachment. Waském domain parsing will also
require the development of new, cross-domain, task-basddations; these could facilitate
comparison of parsers based on different formalisms.

| have recently explored methods to both improve the spediigbty-accurate graph-
based parsef@8ergsma and Cherry, 20lL¢thus allowing the incorporation of new features
with less overhead) and ways to incorporate web-scalesstatiinto the subtask of noun
phrase parsingPitler et al,, 2014. In preliminary experiments, | have identified a number
of other simple N-gram-derived features that improve $glitence parsing accuracy.

| also plan to investigate whether open-domain parsingdcbel improved by manu-
ally annotating parses of the most frequent N-grams in ouwrweb-scale N-gram corpus
(Chapter 5). Recall that the new N-gram corpus includesgiaspeech tags. These tags
might help identify N-grams that are likely to be both symiaconstituents and syntacti-
cally ambiguous (e.g. noun compounds). The annotationddoelldone either by experts,
or by crowdsourcing annotation via Amazon’s MechanicalkTuk similar technique was
recently successfully demonstrated for NBloodgood and Callison-Burch, 20110
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My focus is thus on enabling robust, open-domain systenwigir better features and
new kinds of labeled data. These improvements should camdanstructively with recent,
orthogonal advances in domain detection and adaptiti@Closkyet al., 2014.

8.3.5 Mining New Data Sources

While web-scale N-gram data is very effective, future NLEht®ology will combine in-
formation from a variety of other structured and unstrustudata sources to make bet-
ter natural language inferences. Query logs, parallehdpilal corpora, and collaborative
projects like Wikipedia will provide crucial knowledge feyntactic and semantic analysis.
For example, there is a tremendous amount of untapped iatamin the Wikipedia edit
histories, which record all the changes made to Wikipedgepa As a first step in har-
vesting this information, we could extract a database dfspalling corrections made to
Wikipedia pages. This data could be used to train and testdyeling correction systems
at an unprecedented scale.

Furthermore, it also seems likely that information from thassive volume of online
images and video will be used to inform automatic languageegssing. Many simple
statistics can also be computed from visual sources anddstpurst like N-gram counts, in
precompiled databases. For example, we might extract Mgsariptors using algorithms
like the popular and efficient SIFT algorithfhowe, 1999, convert these descriptors to
image codewords (i.e., the bag-of-words representatiomades), and then store the code-
word co-occurrence counts in a large database.

In fact, services like the Google Image Search and Flickté®Bbaring websites effec-
tively already link caption words to images in a databases $arvice could be exploited
for building special language models, for example, for d@eal preference. When cre-
ating features for nouns occurring with particular verlos,éxample (as in Chapter 6), we
might query the image search service using the noun stritigedeeyword, and then create
SIFT-style features for the retrieved images. Could wedmaiinodel, for example, of things
that can be eaten, purely based on visual images of edibttesdes?

In general, | envision some breakthroughs once NLP movesnrakgolving text pro-
cessing in isolation and instead adopts an approach tlegfrates advances in large-scale
processing across a variety of disciplines.

— Thanks for reading the dissertation!
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Appendix A

Penn Treebank Tag Set

Tag | Description Examples

$ | dollar $-$—$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$
“ opening quotation mark | ‘*“
" closing quotation mark | '”
( opening parenthesis ([{
) closing parenthesis )1}
, comma ,

— | dash -

sentence terminator 1?
: colon or ellipsis -

CC | conjunction, coordinat{ 'n and both but either et for less minus neither nor or plushsoefore

ing times v. versus vs. whether yet

CD | numeral, cardinal mid-1890 nine-thirty forty-two one-tenth ten million 0.5 forty-
seven 1987 twenty '79 zero two 78-degrees eighty-four 1X6’6I25
fifteen 271,124 dozen quintillion DM2,000 ...

DT | determiner all an another any both del each either every half la many maci
neither no some such that the them these this those

EX | existential there there

FW | foreign word gemeinschaft hund ich jeux habeas Haementeria Herr K'angus
lutihaw alai je jour objets salutaris fille quibusdam pagpthdonte
terram fiche oui corporis ...

IN | preposition or conjunc-{ astride among uppon whether out inside pro despite on bydmaut

tion, subordinating below within for towards near behind atop around if like Ub&low
next into if beside ...

JJ | adjective or numeral, or{ third ill-mannered pre-war regrettable oiled calamitoust Beparable

dinal ectoplasmic battery-powered participatory fourth stiHbe-named
multilingual multi-disciplinary ...

JJR | adjective, comparative | bleaker braver breezier briefer brighter brisker broademjzer bus-
ier calmer cheaper choosier cleaner clearer closer cotemmner
costlier cozier creamier crunchier cuter ...

JJS | adjective, superlative calmest cheapest choicest classiest cleanest clearsssttmmmon-
est corniest costliest crassest creepiest crudest catdssd deadliest
dearest deepest densest dinkiest ...

LS | listitem marker AA.BB.CC.DEFFirstGHIJK One SP-44001 SP-44002 S
44005 SP-44007 Second Third Three Two a b c d first five four
six three two

MD | modal auxiliary can cannot could couldn’t dare may might must need ought s
should shouldn’t will would

NN | noun, common, singulaf common-carrier cabbage knuckle-duster Casino afghantbkedo-

or mass stat investment slide humour falloff slick wind hyena oigéersubhu-
manity machinist ...

pne

hal

From: http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.ht

ml
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NNP

NNPS

NNS

PDT
POS
PRP

PRP$
RB

RBR

RBS

RP

SYM

TO

UH

VB

VBD

VBG

VBN

VBP

VBZ

WDT
WP
WP$
WRB

noun, proper, singular

noun, proper, plural

noun, common, plural

pre-determiner
genitive marker
pronoun, personal

pronoun, possessive
adverb

adverb, comparative

adverb, superlative

particle

symbol

“to” as preposition or in-
finitive marker
interjection

verb, base form

verb, past tense

verb, present participle o
gerund

verb, past participle
verb, present tense, nd

3rd person singular

verb, present tense, 3r
person singular

WH-determiner
WH-pronoun
WH-pronoun, possessive
Wh-adverb

Motown Venneboerger Czestochwa Ranzer Conchita Trump

ODI Darryl CTCA Shannon A.K.C. Meltex Liverpool ...
Americans Americas Amharas Amityvilles Amusements Anarc
Syndicalists Andalusians Andes Andruses Angels Animalghémy
Antilles Antiques Apache Apaches Apocrypha ...
undergraduates scotches bric-a-brac products bodyguaimits
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