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ABSTRACT 

Hydraulic fracturing treatment has been widely applied to enhance the well productivity in 

tight/shale formations, and history matching method is one of the most commonly used technique 

to help us obtain the information (e.g., fracture geometry and fracture conductivity) of the 

induced fractures. Due to the fact that the history matching work commonly requires running 

numerous fracture models to find the best match between the history production data and the 

simulated production data, it is highly necessary to work out a high computation-efficiency 

method to characterize the transient flow behavior of the hydraulic fractures in order to reduce 

the simulation time. Since the semi-analytical method has natural advantage in terms of 

computational efficiency, various semi-analytical models have been proposed in recent years to 

conduct the history matching work on the hydraulic fractures. At present, the existing semi-

analytical models are normally developed for vertical planar fractures. However, due to the 

appearance of the complex stress field in the formations, a complex fracture can be induced after 

the fracturing treatment. This complex fracture can be a horizontal fracture (HF) with irregular 

geometry, a partially-penetrating-inclined fracture (PPIF), an orthogonal refracture, a reoriented 

refracture, or a non-uniform-width fracture. In order to conduct the history matching work on 

such complex fractures, it is imperative for us to develop the corresponding semi-analytical 

models to characterize the transient flow behavior of these complex fractures. 

In this thesis, the author discretizes the complex fractures into small segments and characterizes 

the fluid flow in the fracture system with the numerical method (implicit finite difference 

method). Whereas, the fluid flow in the matrix system is characterized by an analytical method 

(Green function method). Coupling the numerical fracture flow equations with the analytical 

matrix flow equations yields the semi-analytical models for characterizing the transient flow 
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behavior of the complex fractures, including horizontal fractures, partially penetrating inclined 

fractures, reoriented refractures, and orthogonal refractures. Afterward, the author investigates 

the flow regimes that can be observed during the production period of the fractures by use of the 

proposed semi-analytical models. These flow regimes include wellbore after flow, fracture radial 

flow, bilinear flow, inclined formation linear flow, vertical elliptical flow, vertical pseudo-radial 

flow, inclined pseudo-radial flow, horizontal formation linear flow, horizontal elliptical flow, 

horizontal pseudo-radial flow, and boundary dominated flow. With the aid of these proposed 

models, the author also conducts history matching work on some real field cases to obtain the 

fracture conductivity and fracture dimension.  

In addition, the author proposes a new fracture permeability model to characterize the 

relationship between the fracture permeability, fracture width, proppant-pack porosity, and 

proppant-pack permeability. The results calculated with the fracture permeability model show 

that the fluid flow in a fracture can be divided into viscous-shear dominated (VSD) regime, 

transition regime, and Darcy-flow dominated (DFD) regime. If Darcy parameter is sufficiently 

large, the effect of proppant-pack permeability on fracture permeability can be neglected and the 

fracture permeability can be calculated with viscous-shear-dominated fracture-permeability 

(VSD-FP) equation (i.e., 
2

2= 12p ffk w  ), whereas, if Darcy parameter is sufficiently small, the 

effect of viscous shear on fracture permeability can be neglected and the fracture permeability 

can be calculated with the Darcy-flow-dominated fracture-permeability (DFD-FP) equation (i.e.,

=f pk k ). Both the VSD-FP equation and DFD-FP equation are special forms of the proposed 

fracture permeability model.  
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CHAPTER 1 INTRODUCTION 

1.1 Background  

Hydraulic-fracturing technology has been extensively applied to the low-permeability reservoirs 

to improve the reservoir productivity. History matching method is a commonly used technique to 

enhance our knowledge about the fluid and rock properties. Although the numerical simulation 

method is a powerful tool to conduct history matching work on different fracture patterns, it is 

normally more computationally demanding than the semi-analytical method. In recent years, 

many scholars have developed different semi-analytical approaches that are based on the Green 

function method to conduct the history matching work on different fracture patterns. Gringarten 

and Ramey (1973) derived the Green functions of different instantaneous sources under different 

boundary conditions. With the aids of these Green functions, Gringarten and Ramey (1974a) and 

Gringarten and Ramey (1974b) studied the pressure distribution within a reservoir that is induced 

by an infinite-conductivity vertical fracture and an infinite-conductivity horizontal fracture, 

respectively. By discretizing a vertical fracture into small planes, Rodriguez et al. (1984) 

developed a semi-analytical solution for characterizing the transient flow behavior of a vertical 

well intersecting with a partially penetrating fracture. Due to the presence of pre-existing natural 

fractures, a hydraulic fracturing treatment can create complex fracture networks. Zhou et al. 

(2014) introduced a semi-analytical approach to simulate the well performance from such 

complex fracture networks by use of the plane-source function. Yang et al. (2015) derived a slab-

source function in the Laplace domain and applied this function to construct a semi-analytical 

model to evaluate the performance of a horizontal well with multiple fractures in tight formations. 

More studies about the semi-analytical method can be referred to Luo and Tang (2015), Chen et 

al. (2016), Jia et al. (2016), and Xiao et al. (2017). In addition to the above-mentioned fracture 
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patterns which can be well handled with the existing semi-analytical models, some complex 

fractures, such as horizontal fracture (HF), partially penetrating inclined fracture (PPIF), 

reoriented refracture, orthogonal refracture, and non-uniform width fracture (NUWF), can be 

frequently observed in the real field cases. However, we are still lacking the corresponding semi-

analytical models to simulate the transient flow behavior of such complex fractures.  

1.2 Literature Review 

1.2.1 Horizontal Fracture (HF) 

A hydraulic fracture always opens perpendicular to the least principal stress (Hubbert and Willis, 

1957), which implies that the fractures are normally vertical because the horizontal stresses are 

typically less than the vertical stress. In practice, the HF, however, is far more common than what 

is generally believed.  Field studies have shown that the HFs are frequently observed in shallow, 

tectonically-active and high-reservoir-pressure formations (Wahl and Campbell, 1963; Wahl, 

1965; Chhina et al., 1987; Wright et al., 1997; Nicholl and Glass, 2001; Smith and Montgomery, 

2015). There are heavy oil reservoirs in the south Fort McMurry (Alberta, Canada), locating at a 

depth of 250-300 m and having been widely hydraulically fractured; the fracturing treatments 

likely induce HFs in these reservoirs (AccuMap, 2013). 

1.2.2 Partially Penetrating Inclined Fracture (PPIF) 

Figure 1-1 shows two real field cases that a PPIF is observed. Figure 2a shows the microseismic 

events monitored from the 3
rd

 stage fracturing treatment of Ridgewood-5 well (Johnson et al., 

2010). The interpretation result of the microseismic map illustrates that a sub-horizontal fracture 

is induced after the fracturing treatment. This induced fracture has an inclination angle of 80
o
 

corresponding to the vertical direction, and it has a length of 407 ft and a height of 59 ft.  

However, the target payzone is 68 ft thick, which is 9 ft larger than the fracture height, indicating 
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that this fracture is not only inclined but also partially penetrating. Figure 2b presents the 

downhole tiltmeter data of a fractured vertical well and the interpretation of these monitored data 

(Wright et al., 1998). As is shown in this figure, the interval of the two tilt peaks along the Y-axis 

represents the height of the fracture, indicating that this fracture‟s height is 160 ft, which is 120 ft 

less than the payzone thickness. In addition, the existence of the difference between these two 

peaks along X-axis demonstrates that the fracture is not perfectly vertical.  

          

(a)                                                                        (b) 

Figure 1-1. Field examples where a PPIF is observed: (a) microseismic data show a PPIF with a 

significant inclination angle (adapted from Johnson et al., 2010); and (b) tiltmeter data show a 

PPIF with a poor growth along the inclined direction (adapted from Wright et al., 1998).  

1.2.3 Reoriented Refracture 

Field studies have shown that the stress in the formations frequently exhibits a non-uniform 

depletion due to the production of the initial fractures, leading to a stress reorientation region in 

the vicinity of these fractures (Wright, et al., 1994; Siebrits et al., 1998; Roussel and Sharma, 

2012; Asalkhuzina et al., 2017; Xia et al., 2017). Thus, a refracturing treatment in this stress 

reorientation region can create a reoriented refracture which has a certain azimuth with respect to 

the initial fractures (Wright and Conant, 1995; Wolhart et al., 2007; Aghighi et al., 2009; 

Benedict and Miskimins, 2009; Xu et al., 2017). Figure 1-2 illustrates the fracture orientations in 

the eastern part of the Lost Hills field, which is adapted from Wright et al. (1994). The shaded 

arcs represent the range of the fracture azimuths that were monitored over all of the fractured 
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wells, and the fracture in the elliptical box represents a reoriented refracture. As this figure 

shows, the orientations of the initial fractures are all close to an average azimuth of N55
o
E, 

whereas the refracture exhibits a fracture azimuth around N85
o
E. 

 

Figure 1-2. Fracture orientations in the eastern part of the Lost Hills field (adapted from Wright 

et al., 1994). 

1.2.4 Orthogonal Refracture 

The refracturing treatment has been widely used to repair or replace an inadequate initial 

fracturing treatment (Branch and Drennan, 1991; Lantz et al., 2007; Benedict and Miskimins, 

2009; Potapenko et al., 2009; Ruhle, 2016). The existence of stress reorientation due to the 

production from a good initial fracture provides another motivation for the refracturing treatment 

(Wright et al., 1994; Siebrits et al., 1998; Aghighi et al., 2009; Roussel and Sharma, 2010; Zhao 

et al., 2016). Numerical simulations show that, during the production of a fractured vertical well, 

the stress parallel to the initial fracture will undergo a much faster reduction than that orthogonal 

to the initial fracture. If the stress changes due to the depletion of the formation pressure can 

overcome the effect of the initial horizontal stress deviator, the direction of the minimum 

horizontal stress will be turned into the direction of the maximum horizontal stress within an 
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elliptical area around the initial fracture. As such, a stress reversal region can be observed in the 

vicinity of the wellbore (Siebrits et al., 2000; Weng and Siebrits, 2007; Wolhart et al., 2007; 

Jiang et al., 2016; Gala and Sharma, 2017). As is generally acknowledged that the hydraulic 

fractures always propagate along the direction perpendicular to the direction of least principal 

stress (Hubbert and Willis, 1957; Daneshy, 1978; Medlin and Masse, 1984), a refracturing 

treatment on a fractured well with stress reversal region will probably result in an orthogonal 

refracture to the initial fracture. 

1.2.5 Fracture Permeability 

A hydraulic fracture is commonly packed with proppants, and the fracture permeability can be 

approximated with the proppant-pack permeability if the particle size is sufficiently small 

compared to the fracture width. Table1-1 summarizes some of the equations that have been 

widely used to calculate the proppant-pack permeability (Carman, 1937; Krumbein and Monk, 

1943; Carman, 1956; Berg, 1970; van Baaren, 1979; and Glover et al., 2006).  

Table 1-1. Equations that can be used to calculate the proppant-pack permeability. 

Name Equation 

Notes (the meanings and the units of the 

symbols are only used for the equations 

shown in this table) 

Krumbein and Monk 

equation (Krumbein 

and Monk, 1943) 

 2760 exp 1.31p Dk D    

kp = permeability, D 

D = geometric mean grain diameter, 

mm 

ζD = standard deviation of grain size in 

phi units 

Kozeny-Carman 

equation (Carman, 

1937; Carman, 1956)  

2 3

2

1

p

p

p

cD
k







 

kp = permeability, mD 

c = proportionality and unit factor, 

mD/mm
2
 

D = geometric mean grain diameter, 

mm 

ϕp = porosity  
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Berg equation (Berg, 

1970) 
1.385 2 5.180.8 10p pk D     

kp = permeability, D 

γ = sorting term in phi units 

D = geometric mean grain diameter, 

mm 

ϕp = porosity 

van Baaren equation 

(van Baaren, 1979) 
 3.642 3.6410

m

p d pk D C
   

kp = permeability, mD 

Dd = dominant grain size, μm 

ϕp = porosity 

m = cementation exponent 

C = sorting index which ranges from 

0.7 to 1.0 

RGPZ equation 

(Glover et al., 2006) 

2 3

24

m

p

p

D
k

am


  

kp = permeability, m
2 

D = geometric mean grain diameter, m 

ϕp = porosity 

a = parameter that  

equals to 8/3 for three dimensional 

samples composed of quasi-spherical 

grains 

m = cementation exponent 

In practice, both the proppant-pack properties and the fracture width can exert their influences on 

the fracture permeability. This is espscially true for a propped NUWF, along which the 

permeability distribution can be significantly impacted by the fracture width as well as the 

proppant-pack. However, there is still no existing equation characterizing the relationship 

between the fracture permeability, the proppant-pack properties, and the fracture width.  

1.2.6 Semi-Analytical Method 

At present, there are three types of methods that can be used to characterize the transient flow 

behavior of a fracture, including analytical methods, semi-analytical methods, and numerical 

methods. In practice, the analytical methods are only applicable to characterize the transient flow 

behavior of simple field cases, such as linear flow, radial flow, or infinite conductivity fractures 

(Cinco-Ley and Samaniego-V, 1981; Rodriguez et al., 1984). However, for the scenarios of 

complex fractures, the analytical methods are normally not applicable anymore. Although the 
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numerical method can be used to simulate the transient flow behavior of complex fractures, it can 

be not so attractive to use the numerical method to conduct history matching work on a complex 

fracture. This is because conducting history matching work may require constructing and solving 

hundreds of fracture models to find the best match between the simulated data and the field data. 

Using the numerical method to construct and solve so many fracture models can be very time-

consuming. The semi-analytical method is a combination of the analytical method and the 

numerical method. In the semi-analytical method, we only need to discretize the fracture system. 

Therefore, using the semi-analytical method to construct complex fracture models can be more 

convenient than using the numerical method. In addition, since only the fracture system is 

discretized, compared to the numerical method, the semi-analytical method requires building and 

solving much fewer linear equations at each timestep to characterize the transient flow behavior. 

However, at present, there are still no available semi-analytical models to characterize the 

transient flow behavior of the HF, PPIF, reoriented refracture, and orthogonal refracture.  

1.3 Problem Statements  

The following technical problems require to be addressed in this thesis: 

 The complex fractures, such as HF, PPIF, reoriented refracture, and orthogonal refracture, can 

be frequently observed in the real filed cases. But we are still lacking the corresponding semi-

analytical models to characterize the transient flow behavior of these fractures; 

 Recognizing the flow regimes of a fracture can help us determine the fracture pattern. 

However, the flow regimes that can be observed during the production of an HF or PPIF have 

not been reported in the previous studies; and 

 Since both the fracture width and the proppant-pack properties can impact the fracture 

permeability, it can be inaccurate to approximate the fracture permeability with a constant 
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value of the proppant-pack permeability. At present, there is no available fracture 

permeability model that accounts for the influences of the fracture width and proppant-pack 

properties on the fracture permeability. 

1.4 Objectives 

In this research, the author aims to develop a series of semi-analytical models to simulate the 

transient flow behavior of various complex fractures. The overall research objectives are listed as 

follows: 

 Develop the semi-analytical models for modeling complex fractures, including HF, PPIF, 

reoriented refracture, and orthogonal refracture. As such one can utilize these proposed 

models to conduct the history matching work on these complex fractures; 

 Recognize the flow regimes that can be observed during the production of HFs and PPIFs. 

These recognized flow regimes can help us determine whether a fracture is an HF or a PPIF; 

and 

 Develop a fracture permeability model that can account for the influences of viscous shear 

and proppant-pack properties on the fracture permeability. 

1.5 Thesis Structure 

The structure of this paper-based dissertation can be summarized as follows: 

In Chapter 1, the author introduces the background, literature review of complex fractures, 

problem statements, objectives, and thesis structure. Chapter 2 includes a semi-analytical model 

for characterizing the transient flow behavior of HFs. With the aid of this model, the author 

investigates the flow regimes that can be observed during the production of HFs. The author also 

studies the skin factors that are induced by the HFs. In Chapter 3, the author proposes a semi-

analytical model to study the pressure transient behavior of PPIF. This model is applicable to the 
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scenarios that the fracture pattern cannot be determined a priori. By use of this proposed model, 

the author conducts history matching work on a real field case to obtain the fracture dimensions 

and fracture conductivity. The production of the fluid from the initial fracture can induce stress 

change in the fields. In such case, if the refracture treatment is conducted in the vicinity of the 

initial fracture we can obtain a reoriented refractures, whereas, if the refracturing treatment is 

conducted on the initial fractures, we can obtain an orthogonal refracture.  In Chapters 4 and 5, 

the author develops semi-analytical models to evaluate the performance of reoriented refractures 

and orthogonal refractures, respectively. In practice, the fracture width can be non-uniform along 

the propagation direction of the fractures, and in Chapter 6, the author hence proposes a new 

fracture permeability model to calculate the fracture permeability which is a function of the 

fracture width as well as proppant-pack properties. Chapter 7 includes the contributions out of 

this research and recommendations for future research.  
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THE PRESSURE TRANSIENT BEHAVIOR OF FINITE-CONDUCTIVITY 

HORIZONTAL FRACTURES 
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Summary 

Hydraulic fracturing may induce horizontal fractures in shallow, tectonically-active or high-

reservoir-pressure formations. Studying the pressure transient behavior of the horizontal fractures 

can provide insights into the size and shape of the formations as well as their productivities. 

However, our knowledge about the pressure transient behavior of a horizontal fracture is far from 

adequate. In this study, a semi-analytical model is proposed to characterize the pressure transient 

behavior of finite-conductivity horizontal fractures in bounded reservoirs. Specifically, we 

discretize the horizontal fracture into rectangle plane elements, each of which is treated as a plane 

source (in this work, a plane source indicates a rectangle plane, and the oil flows from the matrix 

to this plane). The transient flow in the fracture systems can be numerically characterized with 

the finite difference method, whereas the transient flow in the matrix system can be analytically 

simulated with the Green function method; as such, the flow behavior both in the fracture and 

matrix can be modeled. Subsequently, we construct the mathematical model by coupling the 

finite-difference formulations for the fracture system and the analytical functions for the matrix 

system. This semi-analytical model is arranged into a matrix format and can be readily solved 

with the Gaussian elimination method. The key features of the proposed approach can be 

summarized as: it can model an irregular horizontal fracture by discretizing the horizontal 

fracture into small elements, such that the real fracture configuration can be better captured; the 

fracture conductivity can be taken into consideration, and the non-uniform influx distribution 

along the fracture can be modeled to better honor the actual flow behavior from the matrix to the 

fracture. We also apply the semi-analytical method to analyze the flow regimes of single-phase 

oil flow from a circular horizontal fracture and an elliptical horizontal fracture in a bounded 

reservoir; the flow regimes such as wellbore after flow, bilinear flow, formation linear flow, early 
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pseudo-radial flow, late pseudo-radial flow, elliptical flow, and boundary dominated flow can be 

observed during oil production. In addition, we examine the influences of formation thickness, 

fracture‟s vertical position, fracture conductivity, and wellbore storage on the pressure dynamics 

of a circular horizontal fracture. It is found that the early pseudo-radial flow results from two 

different flow scenarios: one is near the edge of the horizontal fracture when the formation 

thickness is small, while the other one is surrounding the horizontal fracture in the vertical 

direction when the formation thickness is sufficiently large. The wellbore storage mainly exerts 

influences on the early production period, and its duration tends to be longer as the fracture 

conductivity decreases. Furthermore, the flow regimes and pseudoskin factor are 

comprehensively investigated for an elliptical horizontal fracture and an irregular-shaped 

horizontal fracture that may be induced by the stress heterogeneity in the reservoirs.  

Keywords: Horizontal fracture; Pressure transient behavior; Semi-analytical model; Finite 

conductivity; Non-uniform flux; Irregular geometry 

Keywords: Horizontal fracture; Pressure transient behavior; Semi-analytical model; Finite 

conductivity; Non-uniform flux; Irregular geometry 

2.1 Introduction 

Hydraulic-fracturing technology has been widely applied to the low-permeability reservoirs to 

improve the oil and gas productivity. Pressure transient analysis (PTA) is a commonly used tool 

to enhance our understanding about the flow behavior of hydraulically fractured wells in these 

reservoirs and help the industries evaluate their well performances. Numerical simulation is a 

powerful tool for characterizing the transient flow behavior of different fracture patterns. 

However, it is normally more computationally demanding than the analytical/semi-analytical 
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method. In the past, many scholars have developed different analytical and semi-analytical 

approaches to conduct PTA on different fracture patterns. 

Gringarten and Ramey (1974) modeled the unsteady-state pressure distribution from a single 

infinite-conductivity vertical fracture in horizontally infinite reservoirs. The vertical fracture is 

divided into small segments, and each segment is assumed as a uniform flux source. By coupling 

the transient flow in the fractures and that in the reservoir matrix, Cinco-Ley et al. (1978) 

developed a vertical fracture model which can take the fracture conductivity into consideration. 

In the unconventional reservoirs, a complex fracture network may ensue after the fracturing 

treatment due to the presence of stress anisotropy and pre-existing natural fractures; following 

this scenario, Zhou et al. (2014) proposed a semi-analytical approach to simulate the production 

from complex fracture networks by use of a plane-source function. Yang et al. (2015) evaluated 

the performance of horizontal well with multiple fractures by using a slab-source function in 

Laplace domain; in their method, the fracture configuration can be better characterized by 

discretizing the fracture into thin slabs. Chen et al. (2016) investigated the pressure response of 

multiple-stage fractured horizontal well with secondary-fracture networks; in their work, the 

transient flows in natural fractures, hydraulic fractures, and reservoir matrix are coupled to 

construct a semi-analytical solution. Besides, there are numerous analytical/semi-analytical 

methods that can provide us with the pressure transient information about various vertical 

fracture models, such as bi-wing fractures, multi-stage hydraulic fractures and fracture networks 

(Warren and Root, 1963; Gringarten and Ramey, 1974; Cinco-Ley and Samaniego-V, 1981; 

Chen, 1990; Chen et al., 1991; Ozkan and Raghavan, 1991; Chen and Raghavan, 1997; Valko 

and Amini, 2007; Brown et al., 2009; Ozkan et al., 2011). 
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A hydraulic fracture always opens perpendicular to the least principal stress (Hubbert and Willis, 

1957), which implies that the fractures are normally vertical because the horizontal stresses are 

typically less than the vertical stress. In practice, the horizontal hydraulic fracture, however, is far 

more common than what is generally believed.  Field studies have shown that, the horizontal 

fractures are frequently observed in shallow, tectonically-active and high-reservoir-pressure 

formations (Wahl and Campbell, 1963; Wahl, 1965; Chhina et al., 1987; Wright et al., 1997; 

Nicholl and Glass, 2001; Smith and Montgomery, 2015). There are heavy oil reservoirs in the 

south Fort McMurry (Alberta, Canada), locating at a depth of 250-300 m and having been widely 

hydraulically fractured; the fracturing treatments likely induce horizontal fractures in these 

reservoirs (AccuMap, 2013). Conducting PTA on the horizontal fractures is very important for 

the industries to accurately assess the productivity of such fractures. Unfortunately, there have 

been very limited studies dedicated to thoroughly understanding the pressure transient behavior 

of a horizontal fracture. Gringarten and Ramey (1974) presented a pressure transient solution for 

a circular horizontal fracture with uniform influx and infinite conductivity in an unbounded 

reservoir; their model could accommodate the effects including partial penetration and restricted 

entry. But their assumption of uniform influx into the fracture will cease to be physically 

meaningful when the boundary effect cannot be neglected. Valko and Economides (1997) 

introduced a semi-analytical method to model the pressure response of a circular horizontal 

fracture in a horizontally infinite reservoir, and the influx difference can be considered by 

integrating the withdrawal rates along the radius of the fracture. However, this method also bears 

stringent restrictions because it requires the fracture being exactly circular, which is over 

idealized especially for the reservoirs where the stress heterogeneity is present. Although further 

knowledge about PTA of horizontal fractures can also be found in Ogunsanya et al. (2006) and 
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Larsen (2011), their models require that the fractures are either rectangle or circular; such 

requirement restricts the applications of their methods in modeling the horizontal fracture with 

irregular geometries. In addition, the assumption of uniform influx distribution in their models 

will lead to inaccurate results of the PTA of the horizontal fractures with low or moderate 

fracture conductivity. It is thus of significant importance to develop a more inclusive semi-

analytical model that can well capture the flow dynamics of horizontal fractures. 

In this work, we introduce a semi-analytical method to model the pressure transient behavior of 

horizontal fractures that have arbitrary geometries. Besides, the non-uniform influx distribution 

along the fracture and the fracture conductivity have also been accounted for in the semi-

analytical method in order to better honor the reality. We first validate our method against 

Eclipse on an irregular horizontal fracture model. Subsequently, we apply the semi-analytical 

method to analyze the flow regimes of single phase oil flow from the horizontal fractures in a 

bounded reservoir. The major flow regimes are successfully distinguished from the calculation 

results. Sensitivity analysis is further conducted to investigate the influences of the following 

factors on the pressure transients of a circular horizontal fracture: formation thickness, fracture‟s 

vertical position, fracture conductivity, and wellbore storage. Additionally, the pressure response 

and of an elliptical horizontal fracture and an irregular-shaped horizontal fracture are thoroughly 

studied. The pseudoskin factors, which can be used to determine the difference of production 

capacity between the elliptical/irregular-shaped horizontal fracture and the circular horizontal 

fracture, are also evaluated with the proposed model. 

2.2. Methodology 

This research considers a vertical well with a horizontal fracture that produces single-phase oil 

from a box-shaped reservoir. This box-shaped reservoir has impermeable boundaries for all sides. 
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Since the impermeable boundary condition is used in this proposed model, the entire production 

period, including the boundary dominated flow which only occurs at the late production period, 

can be characterized with this model. We made the following assumptions to obtain a semi-

analytical model to characterize the fluid flow in such a reservoir: 

 The fluid and rock properties are homogeneous and isotropic both in the fracture system 

and matrix system; 

 The bounded reservoir has a box shape and sealed by impermeable boundaries both along 

the horizontal direction and the vertical direction; 

 The horizontal fracture has finite conductivity and is parallel to the upper and lower 

boundary; 

 Only single-phase-oil flow is considered in this model; 

 The horizontal fracture is assumed to have uniform distribution of fracture width and 

fracture conductivity across different parts of the fracture, and the fracture width and 

fracture conductivity remain unchanged as the pressure varies;  

 The temperature variation in the reservoir is neglected; and 

 The influence of gravity is neglected. 

It is noted that, although the assumptions, including single-phase oil flow, isotropic matrix 

permeability, and a horizontal fracture with uniform and constant width and conductivity, are 

used in this proposed model, this model is not limited to model such a simplified scenario. The 

single-phase oil flow can be extended to single-phase gas flow or even two-phase flow (e.g., gas 

condensate) by applying the concept the pseudo-pressure and pseudo time (Singh and Whitson, 

2010). The permeability anisotropy can be considered with the approach introduced by (Spivey 

and Lee, 1998). In addition, the non-uniform distribution of fracture width and fracture 
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conductivity, and the variation of fracture width and fracture conductivity caused by pressure 

change, can be readily incorporated into this model by applying the method introduced by Yu and 

Wu (2016). In practice, one can extend this general model to a specific scenario based on the 

actual reservoir conditions.  

2.2.1 Fluid Flow inside Horizontal Fracture 

As shown in Figure 2-1, we discretize the fracture system into Nf elements to capture the 

configuration of an irregular horizontal fracture. Figure 2-1a presents the irregular horizontal 

fracture in a bounded reservoir, Figure 2-1b illustrates the discretized horizontal fracture, and 

Figure 2-1c shows a fracture element and its neighboring elements. The width of the fracture is 

far smaller than the dimension of the fracture along the horizontal direction; thus, the fluid flow 

in the fracture can be simplified as a 2-dimensional flow. The flow equations for a single fracture 

element that is not connected with the wellbore can be expressed as: 
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                         (2-1) 

where Equation (2-1) is obtained from the continuity equation, which is introduced in Appendix 

2A, ∆x and ∆y are dimensions of the fracture element, w is fracture width, kf is fracture 

permeability, μ is fluid viscosity, B is formation volume factor, qsc is withdrawal rate from the 

reservoir matrix to the fracture element under standard conditions, p is pressure, ctf is total 

compressibility of the fracture system, ϕf is fracture porosity, t is time, β is unit conversion factor 

whose numerical value is 0.0853 and it has a unit of (m
2∙s)/(mD∙d). Applying finite difference 

approximation to Equation (1) and making the variables dimensionless, one can rewrite Equation 

(2-1) as:  
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where the definitions of the variables are tabulated in Table 2-1: pD is dimensionless pressure, pfD 

is dimensionless fracture pressure, pf is fracture pressure, km is matrix permeability, h is reservoir 

thickness, qw indicates the well production rate under standard condition which is a positive 

number, pi is initial reservoir pressure, qD is dimensionless flux, tD is dimensionless time,  lr is 

reference length, ctm is total compressibility in matrix system, ϕm is porosity in matrix system, xD, 

yD and zD are dimensionless lengths, wD is dimensionless fracture width, hD is dimensionless 

formation thickness, rw is radius of wellbore, rD is dimensionless radius of wellbore, γ is a 

dimensionless coefficient, C is wellbore storage coefficient, CD is dimensionless wellbore storage 

coefficient, Cs is a dimensionless variable defined in this work, and CfD is dimensionless fracture 

conductivity.  

In particular, for the well-element (the fracture element that is penetrated by the well), the flow 

equation is written as: 
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            (2-3) 

where qf-wD is dimensionless flux from well-element to wellbore. At each timestep, we need to 

solve for the following unknowns: the dimensionless pressures and withdrawal rates at the 

discretized fracture elements, and the dimensionless flux from the well-element to the wellbore. It 

is noted that the withdrawal rate at each fracture element is represented with a unique influx q
n 

fDi,j
, 

enabling us to consider the non-uniform influx distribution along the whole fracture.  
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(a)                                                                        (b) 

 

 (c) 

Figure 2-1. Discretization of a horizontal fracture: (a) schematic of an irregular horizontal 

fracture in a reservoir; (b) the discretized horizontal fracture represented with multiple fracture 

elements; and (c) one fracture element denoted by (i, j) and its neighboring elements.  

Table 2-1. Definition of dimensionless variables used in this work.  
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2.2.2 Analytical Solution in the Reservoir Matrix 

The horizontal fracture is discretized into Nf fracture elements, and each of the fracture element 

can be treated as a plane source. Based on the results provided in Appendix 2B, in a bounded 

reservoir, the pressure response at position (x, y, z) at time t due to the contribution by a 

continuous plane source with a withdrawal rate of qsc can be calculated by, 
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      (2-4) 

where xe, ye, and ze are dimensions of the reservoir, α is diffusivity, x0, y0, and z0 indicate the 

center position of the plane source, and t0 is the time when the plane source becomes activated. 

During the production period, the withdrawal rate of a fracture element is time-dependent, and 

the pressure response at a given position caused by the horizontal fractures can be obtained by 

collecting the responses from all the fracture elements. As a result, the dimensionless pressure at 

position (xD, yD, zD) at n
th

 timestep can be expressed as: 
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As introduced in Appendix 2B, with the aid of Equation (2-5), we can readily build the 

relationship between the dimensionless pressures of the fracture elements and the dimensionless 

withdrawal rates of the fracture elements as follows: 
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where G is defined in Appendix 2B. 

2.2.3 Solution Methodology 

Based on the well model introduced by Peaceman (1990), we build the relationship between the 

dimensionless bottomhole pressure and the dimensionless pressure of the well-element,  

ln
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where pwD is dimensionless wellbore pressure, pnwD is dimensionless pressure of the well-element, 

req is equivalent radius defined in Peaceman (1990), and reqD is defined as req / lr. In addition, we 

take the wellbore storage effect into account with the method provided in van Everdingen and 

Hurst (1949): 
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D

C
p p q

t

 

  


                                                  (2-8) 
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where γ is a dimensionless variable defined in Table 2-1, and CD is dimensionless wellbore 

storage coefficient. Equation (2-7) and (2-8) can also be rearranged into a matrix form as: 
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On the basis of the continuity of pressure and flux, we combine Equation (2-2) (or Equation (2-3)) 

Equations (2-6) and Equation (2-9) to obtain the following equation in a matrix format: 
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where the matrices of A, a, pfD, qfD, and RHS1 are defined in Appendix 2A, and the matrices B 

and RHS2 are defined in Appendix 2B. Equation (2-11) has 2Nf +2 unknowns (Nf dimensionless 

pressures, Nf dimensionless withdrawal rates, one dimensionless bottomhole pressure and one 

dimensionless flux from the well-element to the wellbore) and 2Nf +2 linear equations. As such, 

the system of the linear equations shown in Equation (2-11) is closed and can be readily solved 

with the Gaussian elimination method. It is worth mentioning that Equation (2-11) is constructed 

for constant production rate condition and this model can also be used to model constant 

bottomhole pressure condition with minor modifications. For constant bottomhole pressure 
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condition, pwD in Equation (2-11) is a constant value. After removing the wellbore storage 

equation in Equation (2-11), there will be 2Nf +1 unknowns (Nf dimensionless pressures, Nf 

dimensionless withdrawal rates, and one dimensionless flux from the well-element to the 

wellbore) and 2Nf +1 linear equations. The dimensionless flux from the well-element to the 

wellbore equals to the well production rate under constant buttonhole pressure condition.  

2.3. Comparison to Commercial Software  

We compare the results calculated by the proposed semi-analytical method against those by a 

commercial software (Eclipse) on an irregular horizontal fracture model. Figure 2-2 shows a top 

view and a side view of the reservoir model where a well is producing oil through an irregular 

horizontal fracture within the reservoir. The dimensions of the reservoir are 1600×1000×40 m, 

and the dimensions of the grids used to discretize the reservoir are 20×20×10 m. The fracture has 

an area of 40800 m
2 

along the horizontal direction,
 
and it is located in the center of the payzone. 

The fracture considered in Eclipse is described with 102 cells, whereas the horizontal fracture 

considered in the semi-analytical method is also discretized into 102 elements and each element 

has dimensions of 20×20m. In the vertical direction, we apply local grid refinement in Eclipse to 

model the fracture, and the fracture width is 0.001 m both in Eclipse and the proposed model. In 

the reservoir model, the fracture conductivity is 500 mD∙m, the oil viscosity is 1mPa∙s, and the 

initial reservoir pressure is 30 MPa. The wellbore storage effect is neglected in this section.  

The proposed method is compared against Eclipse under both the constant production rate 

condition and the constant bottomhole pressure condition. For constant pressure rate condition, 

the comparison is conducted on two scenarios: in scenario #1, the well keeps producing oil with a 

constant production rate of 20 m
3
/day, a matrix porosity of 0.01, and a matrix permeability of 10 

mD; and in scenario #2, the well keeps producing oil with a constant production rate of 100 
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m
3
/day, a matrix porosity of 0.10, and a matrix permeability of 10 mD. Under the constant 

bottomhole pressure condition, the comparison is also conducted on two scenarios: scenario #3, 

the well keeps producing oil with a constant bottomhole pressure of 10 MPa, a matrix porosity of 

0.10, and a matrix permeability of 0.1 mD; and scenario #4, the well keeps producing oil with a 

constant production rate of 10 MPa, a matrix porosity of 0.10, and a matrix permeability of 1 mD. 

Figure 2-3 compares the pressure response (under constant production rate condition) and 

production rates (under constant bottomhole pressure condition) obtained with the semi-

analytical method and those obtained with Eclipse. As seen from Figure 2-3, both the pressure 

response plots in Figure 2-3a and the production rate plots in Figure 2-3b obtained with the semi-

analytical approach are in excellent agreement with the results given by Eclipse.  

  

(a)                                                                 (b) 

Figure 2-2. The irregular-shaped horizontal fracture model used in Eclipse. The red cells 

represent the horizontal fracture, while the blue cells represent the reservoir: (a) top view of the 

irregular horizontal fracture model; and (b) side view of the refined cells to model the irregular-

shaped horizontal fracture. 
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(a) 

 

(b) 

Figure 2-3. Comparison between the results obtained by the proposed method against those by 

Eclipse under constant production rate condition and constant bottomhole pressure condition: (a) 

the comparison is conducted under constant production rate condition on two scenarios: in 

scenario #1, the constant production rate is 20 m
3
/day, the matrix porosity is 0.01, and the matrix 

permeability is 10 mD; and in scenario #2, the constant production rate is 100 m
3
/day, the matrix 

porosity is 0.1, and the matrix permeability is 10 mD; (b) the comparison is conducted under 

constant bottomhole pressure condition on two scenarios: in scenario #3, the constant bottomhole 

pressure is 10 MPa, the matrix porosity is 0.1, and the matrix permeability is 0.1 mD; and in 

scenario #4, the constant bottomhole pressure is 10 MPa, the matrix porosity is 0.1, and the 

matrix permeability is 1 mD. 
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2.4. Results and Discussion 

In practice, the growth of a horizontal fracture is closely related with the stress field of the 

reservoir and the fracturing operations. Since the geometry of horizontal fractures could vary 

from one reservoir to another, it is impossible to investigate the transient flow behavior of the 

horizontal fractures with all the possible geometries in this work. Herein, we select two 

representative geometries of the horizontal fracture in the case studies. We thoroughly study the 

pressure transient behavior of a circular horizontal fracture and an elliptical horizontal fracture in 

a bounded reservoir. In addition, we also provide a case study conducted on an irregular-shaped 

horizontal fracture and calculate the pressure response and pseudoskin of this fracture using the 

proposed model.  

Figure 2-4 shows a side view of a horizontal fracture in a formation. In this figure, zvD represents 

the relative vertical position of the horizontal fracture in a formation, and zvD = 0.5 indicates that 

the horizontal fracture is located in the center across the thickness of the payzone. Figure 2-5 

presents the schematics of an elliptical horizontal fracture and a circular horizontal fracture. In 

this figure, aD is dimensionless semi-major axis, and bD is dimensionless semi-minor axis. aD 

being equal to bD represents that the fracture is circular; otherwise, the fracture is elliptical. The 

reference length lf is assigned to be equal to the length of semi-major axis.  

 

Figure 2-4. Side view of a horizontal fracture in a formation, which also shows the definition of 

zvD, i.e., relative vertical position of the fracture in the formation.  
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                                                  (a)                                                        (b) 

Figure 2-5. Schematics of an elliptical horizontal fracture (a) and a circular horizontal fracture 

(b). aD is dimensionless semi-major axis, and bD is dimensionless semi-minor axis. As for a 

circular horizontal fracture aD = bD. 

2.4.1 Flow Regimes of Horizontal Fractures 

Prior to the sensitivity analysis carried out later, we first examine the influence of the number of 

fracture elements discretized on the simulation outputs. We discretize a circular fracture (or an 

elliptical fracture) into 103, 137, 177 and 221 square (or rectangle for an elliptical fracture) 

elements, respectively, and calculate the pressure drops and pressure derivatives of this fracture 

in the bounded reservoir. The following dimensionless data are used: xeD = 20, yeD = 20, hD = 0.2, 

zvD = 0.5, aD = 1, bD =1, wD = 1.33×10
-5

, CfD = 1, Cs = 10, CD =0, and γ = 5.3×10
-7

.  

Figure 2-6 illustrates the influence of the number of fracture elements discretized on the pressure 

drops and pressure derivatives of a circular horizontal fracture. It can be observed from Figure 2-

6 that the pressure drops and pressure derivatives tend to undergo little change if the number of 

fracture elements is more than 137. Therefore, we discretize the horizontal fracture into 137 

elements in the following studies. To analyze the flow regimes that can take place in the 

horizontal fracture, we use the following dimensionless numbers in the benchmark horizontal 

fracture model: xeD = 20, yeD = 20, hD = 0.2, zvD = 0.5, aD = 1, bD =1, wD = 1.33×10
-5

, CfD = 1, Cs 

= 10, CD =5, and γ = 5.3×10
-7

. This benchmark horizontal fracture is circular. 

bD 

aD 

bD 

aD 
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Figure 2-6. Impact of the number of the fracture elements, which are used to discretize a circular 

horizontal fracture, on the pressure drops and pressure derivatives that are calculated with the 

semi-analytical method.  

Figure 2-7 presents the flow regimes that can be distinguished for the oil flow in the benchmark 

circular horizontal fracture model, namely: (1) wellbore after flow, (2) formation linear flow, (3) 

early pseudo-radial flow (4) late pseudo-radial flow, and (5) boundary dominated flow. At the 

very early production period, the wellbore storage exhibits a significant influence on the pressure 

drops as well as the pressure derivatives, and one can observe an inverted “V” shape from the 

pressure derivative curve during this period. Following the wellbore after flow, a half unit slope, 

which indicates a formation linear flow from the matrix to the fracture, can be distinguished from 

the pressure derivative curve. This is similar to the pressure transient behavior of a vertical 

fracture at the early production period (Cinco-Ley and Samaniego-V, 1981). Afterwards, one can 

observe two zero-slope periods, which indicate the early pseudo-radial flow and the late pseudo-

radial flow, respectively. Figure 2-8 illustrates the schematics of the formation linear flow, the 

early pseudo-radial flow, and the late pseudo-radial flow. As is shown in Figure 2-8a, the fluid 

flows perpendicularly to the horizontal fracture in the formation linear flow period. The early 

pseudo-radial flow of the first kind as shown in Figure 2-8b can be observed in the formations 
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that have small thickness, while the early pseudo-radial flow of the second kind as shown in 

Figure 2-8c can be observed only if the formations thickness is sufficiently large.  

 
Figure 2-7. Identification of the flow regimes that can take place in a circular horizontal fracture 

in a bounded reservoir. 

 

      

(a)       

       

(b) 

       

(c) 
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(d) 

Figure 2-8. Schematics of different flow regimes: (a) 3D view and side view of the linear flow; 

(b) 3D view and side view of the first kind of early pseudo-radial flow ; (c) 3D view and side 

view of the second kind of early pseudo-radial flow; and (d) 3D view and top view of the late 

pseudo-radial flow.  

It is noted that the flow regimes of a horizontal fracture can heavily depend on the input values of 

the parameters that are chosen in the cases studies. Figure 2-9 shows the pressure drops and 

pressure derivatives of a horizontal fracture that are calculated with another set of data, i.e., xeD = 

3, yeD = 3, hD = 0.2, zvD = 0.5, aD = 1, bD =0.02, wD = 1.33×10
-5

, CfD = 50, Cs = 10, CD =5, and γ = 

5.3×10
-7

. In this figure, one can also identify five flow regimes, namely: (1) wellbore after flow, 

(2) bilinear flow, (3) formation linear flow, (4) elliptical flow, and (5) boundary dominated flow. 

This horizontal fracture is elliptical and it has a much larger semi-major axis than its semi-minor 

axis, such that one can identify a bilinear flow period on the pressure derivative curve. Figure 2-

10 shows the schematics of different flow regimes of a horizontal fracture. As shown in Figure 2-

10a, the appearance of the bilinear flow indicates that a fracture linear flow and a matrix-fracture 

linear flow take place simultaneously in the reservoir. Figure 2-10b presents the schematic of the 

elliptical flow; during this elliptical flow period, the transient flow of the horizontal fracture is 

very similar to that of a horizontal well (Escobar and Montealegre, 2007). 
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Figure 2-9. Identification of the flow regimes that can take place in an elliptical horizontal 

fracture in a bounded reservoir. 

 

       

(a) 

                                         

(b) 

Figure 2-10. Schematics of different flow regimes of a horizontal fracture: (a) 3D view and side 

view of the bilinear flow; and (b) 3D view and top view of the elliptical flow. 

2.4.2 Sensitivity Analysis of Circular Horizontal Fractures 

Hereafter, we carry out detailed sensitivity analysis to examine the influences of the following 

parameters on the pressure transients of the benchmark circular horizontal fracture model: 

formation thickness, fracture‟s vertical position, fracture conductivity, and wellbore storage.  As 

for the sensitivity analysis conducted on a specific parameter, its values are made different from 
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what is used in the aforementioned benchmark model. Table 2-2 summaries the values of the 

parameter used for the sensitivity analysis. 

Table 2-2. Parameter values used in the sensitivity analysis. 

 Figure 2-11 Figure 2-12 Figure 2-13 Figure 2-14 

xeD 20 20 20 20 

yeD 20 20 20 20 

aD 1 1 1 1 

bD 1 1 1 1 

wD 1.33×10
-5

 1.33×10
-5

 1.33×10
-5

 1.33×10
-5

 

Cs 10 10 10 10 

γ 5.3×10
-7

 5.3×10
-7

 5.3×10
-7

 5.3×10
-7

 

hD 0.2/0.4/0.6/0.8/1 0.2 0.2 0.2 

zvD 0.5 0.1/0.2/0.3/0.4/0.5 0.5 0.5 

CfD 1 1 0.5/1/2/5/10 1 

CD 5 5 5 5/10/15/20/25 

2.4.2.1 Formation Thickness 

Different formation thickness values are considered in the sensitivity analysis: hD = 0.2, 0.4, 0.6, 

0.8 and 1.0. Figure 2-11 shows the pressure drops and pressure derivatives that are calculated 

with the semi-analytical method for the horizontal fracture models with different formation 

thicknesses. As one can observe in this figure, the dimensionless pressure increases as the 

formation thickness increases. But this does not imply that the physical wellbore pressure will 

undergo a higher drop in a thicker formation. This is only because that the dimensionless pressure 

defined in this work is proportional to the formation thickness (See Table 2-1).  

It is interesting to note that, although we can distinguish an early pseudo-radial flow from the 

pressure derivative plots calculated for the dimensionless thickness of 0.2 and 0.6, respectively, 

the mechanisms of these two early pseudo-radial flows are different. The early pseudo-radial 

flow that occurs in the formation thickness of 0.2 is corresponding to the early pseudo-radial flow 

of the first kind as shown in Figure 2-8b, while the early pseudo-radial flow that occurs in the 

formation thickness of 0.6 is corresponding to the early pseudo-radial flow of the second kind as 
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shown in Figure 2-8c. If the formation thickness is small (e.g., hD = 0.2), the early pseudo-radial 

flow of the first kind can be observed near the edge of the horizontal fracture; whereas, if the 

formation thickness is sufficiently large (e.g., hD = 0.6), the early pseudo-radial flow of the 

second kind can be observed surrounding the horizontal fracture along the vertical direction. 

When the formation thickness is 0.4, the pressure derivative plot (i.e., the red curve in Figure 2-

11) presents a transition stage between these two kinds of early pseudo-radial flow. On the 

pressure derivative plot of hD = 0.4, the “dip” section indicates that the early pseudo-radial flow 

of the second kind is imminent, and the zero-slope section indicates that the early pseudo-radial 

flow of the first kind occurs in the formation. If the dimensionless formation thickness reaches up 

to 0.8 or even higher, one can observe a negative-slop section on the pressure derivative plots. 

This implies that there is spherical flow component appearing in the formations.  

  
Figure 2-11. Impact of formation thickness on the pressure drops and their derivatives of a 

circular horizontal fracture. When hD = 0.4, the early pseudo-radial flow of first and a “dip” can 

be observed on the pressure derivative plot.  

2.4.2.2 Vertical Position 

In the real field cases, the horizontal fracture may not be located in the central part across the 

payzone. Herein, we apply the semi-analytical method to examine the influence of the relative 
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vertical positions of the horizontal fracture on the pressure transient behavior. As the formation 

itself is symmetrical over the central plane of the formation, the calculations made for the 

fracture‟s vertical positions of zvD = 0.1, 0.2, 0.3, 0.4 and 0.5 are sufficient for one to draw a 

complete picture about how the fracture‟s vertical position affects the pressure response. Figure 

2-12 illustrates the pressure drops and pressure derivatives of the horizontal fractures at different 

vertical locations across the payzone. It can be seen from Figure 2-12 that only negligible 

differences could be observed from the pressure drop plots. As for the pressure derivative plots, 

the main difference that can be observed appears during the periods of the formation linear flow 

and the early pseudo-radial flow. It can be also observed from Figure 2-12 that the formation 

linear flow ends earlier as the fracture vertical position takes a smaller value. This is because a 

smaller vertical-position value implies that the fracture is closer to the lower payzone boundary; 

this will allow the lower formation boundary to exert an earlier influence on the pressure 

response, resulting in the earlier termination of the linear flow period. In addition, when the 

horizontal fracture is located in a lower position, the distance between the upper formation 

boundary and the horizontal fracture may become large enough to enable the occurrence of the 

early pseudo-radial flow of the second kind. As a result, we can observe an early pseudo-radial 

flow of the second kind from the pressure derivative plot at zvD = 0.1, followed by a “dip” section 

that indicates that an early pseudo-radial flow of the first kind is imminent.  
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Figure 2-12. Impact of the relative vertical position of the circular horizontal fracture on the 

pressure drops and their derivatives. At zvD = 0.1, we can observe an early pseudo-radial flow of 

the second kind as well as a “dip” on the pressure derivative plot. 

  

2.4.2.3 Fracture Conductivity 

Figure 2-13 depicts the pressure drops and pressure derivatives calculated with the semi-

analytical method for the horizontal fracture model at different fracture conductivity of CfD = 0.5, 

1.0, 2.0, 5.0, and 10.0. One can see that the pressure drop increases as the fracture conductivity 

decreases. This is attributed to the fact that a lower fracture conductivity results in a higher flow 

resistance in the fracture. From the pressure derivative plots shown in Figure 2-13, one can 

observe that the duration of the wellbore storage effect tends to be longer as the fracture 

conductivity decreases. This is because, at the very early production period, the oil is mainly 

produced from the wellbore and the fracture, and the fracture can be regarded as an extension to 

the wellbore. A lower fracture conductivity indicates that there is more flow resistance in the 

fracture and the fluid will flow more slowly in the fracture; hence, the duration of the fluid flow 

from the fracture to the wellbore will be prolonged, and thus the duration of the wellbore storage 

period will also be prolonged.  
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Figure 2-13. Impact of the fracture conductivities of the circular horizontal fracture on the 

pressure drops and their derivatives. 

2.4.2.4 Wellbore Storage 

The dimensionless wellbore storage coefficients are varied in an attempt to explore its influence 

on the pressure response of a horizontal fracture. Figure 2-14 presents the pressure drops and 

pressure derivatives calculated by the semi-analytical model with these different dimensionless 

wellbore-storage coefficients of 5, 10, 15, 20 and 25. The pressure drop plots and pressure 

derivative plots shown in Figure 2-14 reveal that: the wellbore storage mainly exerts an influence 

on the early production period; a larger dimensionless wellbore storage coefficient will lead to a 

lower pressure drop and a longer duration of the wellbore storage effect; and the pressure drops 

as well as the pressure derivatives, which are calculated at different values of the dimensionless 

wellbore-storage coefficients, exhibit negligible difference after the wellbore after flow is 

terminated.  
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Figure 2-14. Impact of the wellbore storage coefficients on the pressure drops and their 

derivatives of the circular horizontal fracture. 

2.4.3 Pressure Dynamics of Elliptical Horizontal Fractures 

In practice, due to the impact of the stress heterogeneity in the formations, the propagation of a 

horizontal fracture along different horizontal directions can be very different. In such scenarios, 

an elliptical horizontal fracture might be created after the fracturing treatment. The production 

capacity of an elliptical fracture under steady-state condition has been previously studied by 

Crawford and Landrum (1954), and the effect of elliptical fractures on sweep efficiencies has also 

been investigated by Crawford et al. (1963). In addition, a circular horizontal fracture in a 

reservoir with horizontally heterogeneous permeability can be converted to an elliptical 

horizontal fracture in a reservoir with a homogeneous permeability. However, there is still no 

study made on the pressure transient behavior of an elliptical horizontal fracture. In this section, 

we study the pressure transient behavior of elliptical horizontal fractures with different axis ratios 

(semi-minor axis divide by semi-major axis) and calculate the pseudoskin factors for these 

elliptical fractures. The reference length lf is set to be equal to √ ∙  , where a is the semi-major 

axis and b is the semi-minor axis.  
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Figure 2-15 presents the pressure drops and pressure derivatives calculated with the semi-

analytical model for the elliptical horizontal fractures with different axis ratios. The axis ratio is 

varied from 0.2 to 1, while the area of the elliptical fracture keeps unchanged. From the pressure 

derivative plots shown in Figure 2-15, one can find that the axis ratio mainly exerts an influence 

on the early pseudo-radial flow period. It should be noted that the dimensionless formation 

thickness used in the base case is 0.2, and based on the aforementioned arguments, the early 

pseudo-radial flow can be classified as the early pseudo-radial flow of the first kind which only 

occurs near the fracture edge (See Figure 2-8b). For an elliptical horizontal fracture, the distance 

from the fracture edge to the wellbore is non-uniform, leading to that the early pseudo-radial flow 

along the fracture edge appears at different times. As the axis ratio is decreased, the appearance 

time of the early pseudo-radial flow along the fracture edge becomes more non-uniform; hence, a 

smaller axis ratio renders the early pseudo-radial flow less distinguishable. In addition, the 

dimensionless pressure increases as the axis ratio decreases. This implies that, within relatively 

short production time, a circular fracture in a bounded reservoir has higher productivity than an 

elliptical fracture having the same fracture area. One should be cautious about the preconditions 

underlining these points, including the bounded reservoir and the relatively short production time, 

because if the reservoir is sufficiently large and the production time is sufficiently long, the 

productivity of a circular horizontal fracture and an elliptical fracture could be quite different.  
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Figure 2-15. Impact of the axis ratios of the elliptical fracture on the pressure drops and their 

derivatives 

The infinite-acting period indicates a period during which the reservoir boundaries exert 

negligible influence on the transient flow behavior. If the reservoir is sufficiently large, the 

infinite-acting period can last for a long time. During this period, the difference between the 

dimensionless bottomhole pressure of a circular horizontal fracture (axis ratio equals to 1.0) and 

that of an elliptical horizontal fracture remains unchanged at the late pseudo-radial flow (Valko 

and Economides, 1997). This enables us to reveal the relationship between the dimensionless 

bottomhole pressure of a circular horizontal fracture and that of an elliptical horizontal fracture at 

the late production period. We can use the concept of pseudoskin factor to express the 

dimensionless pressure difference between a circular horizontal fracture and an elliptical 

horizontal fracture (Reynolds et al., 1984): 

    , ,, , , ,w non D vD fD w cir D vD fDS p h z C p h z C                                        (2-12) 

where S is pseudoskin factor, pw,cir is the dimensionless bottomhole pressure of the circular 

horizontal fracture, and pw,non is the dimensionless bottomhole pressure of the non-circular 

horizontal fracture.  



45 
 

Figures 2-16 to 2-18 present the pseudoskin factors of the elliptical horizontal fractures 

calculated with different formation thicknesses, vertical positions, and conductivities. As one can 

see from these figures, the pseudoskin are commonly negative, indicating that at the late 

production period the elliptical horizontal fractures have higher well productivity compared with 

that of a circular horizontal fracture. A smaller pseudoskin factor represents a more significant 

increase in the well productivity. This is quite opposite to what is shown in Figure 2-15, in which 

an elliptical horizontal fracture has lower productivity than a circular horizontal fracture. This is 

attributed to the fact that, at the early production period, the produced oil is mainly from the 

reservoir near the wellbore, and a circular horizontal fracture is favorable for the oil to flow from 

the reservoir to the fracture; whereas, at the late production period, the oil is mainly produced 

from the reservoir section where is distant from the wellbore, and an elliptical fracture can 

penetrate further into the reservoir and stimulate a larger reservoir volume. A similar observation 

can also be found in Kucuk and Brigham (1979), in which one can see that an elliptical wellbore 

exhibits a higher productivity than a circular wellbore with an equivalent wellbore radius.  

Figure 2-16 shows the pseudoskin factors of elliptical fractures with various axis ratios and 

formation thicknesses. As one can see, the pseudoskin factor of an elliptical fracture with a 

smaller axis ratio is smaller than that with a larger axis ratio. This is because the elliptical facture 

with a smaller axis can penetrate further into the reservoir than that with a larger axis ratio, 

resulting in a higher well productivity and a lower pseudoskin. In addition, the pseudoskin factor 

increases as the formation thickness increases, indicating that the elliptical horizontal fractures 

tend to enhance the well productivity more significantly in thinner formations.  
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Figure 2-16. Variation of pseudoskin factors of elliptical horizontal fractures with various axis 

ratios vs. dimensionless formation thicknesses 

Figure 2-17 shows the influence of the fracture‟s vertical position on the pseudoskin factor of the 

elliptical fractures under various axis ratios. As one can see from Figure 2-17, the pseudoskin 

factor keeps unchanged as the fracture‟s vertical position is varied. This is because the fracture‟s 

vertical position poses a major influence on the well productivity during the early production 

period, while it has a negligible influence on the well productivity during the late production 

period.  
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Figure 2-17. Pseudoskin factors of elliptical horizontal fractures with various axis ratios and 

vertical positions. 

Figure 2-18 depicts the pseudoskin factors of elliptical horizontal fractures with various fracture 

conductivities and axis ratios. Figure 2-18 show that the pseudoskin factor decreases as the 

fracture conductivity increases. One can also observe that the pseudo skin factors show a more 

significant decrease if the axis ratio of the elliptical fracture is smaller. For example, if the 

dimensionless fracture conductivity increases from 0.1 to 50, the pseudoskin factor 

corresponding to an axis ratio of 0.2 decreases from -0.000982 to -0.145060, while the 

pseudoskin factor corresponding to an axis ratio of 0.8 only decreases from -0.000015 to -

0.003249. In conclusion, a higher fracture conductivity will lead to a larger difference in the 

productivity between an elliptical fracture and a circular fracture. Such effect is more obvious for 

the elliptical fracture with a lower axis ratio. 
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Figure 2-18. Pseudoskin factors of elliptical horizontal fractures with various axis ratios and 

dimensionless fracture conductivities. 

2.4.4 Pressure Dynamics of an Irregular-shaped Horizontal Fracture 

Figure 2-19a shows the schematic of an irregular-shaped horizontal fracture used in this work. 

Figure 2-19b presents the discretization of this fracture; this fracture has been also discretized 

into 137 elements. The reference length lf is set to be equal to the radius of an imagined circular 

fracture which has an area equal to the area of the irregular-shaped fracture as shown in Figure 2-

19. 

                

(a)                                                              (b) 

Figure 2-19. The irregular-shaped horizontal fracture used in this work: (a) the schematic of the 

horizontal fracture; and (b) the discretization of the irregular-shaped horizontal fracture. 

Well position 
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Figure 2-20 shows the pressure drops and pressure derivative of this irregular-shaped horizontal 

fracture with different dimensionless fracture conductivities. One can observe from Figure 2-20 

that the pressure response of this irregular-shaped horizontal fracture is very similar to that of a 

circular horizontal fracture. We can also identify wellbore after flow, formation linear flow, 

early-pseudo radial flow, late pseudo-radial flow, and boundary dominated flow on the pressure 

derivative curves. In order to obtain a better understanding about the differences in the transient 

flow behavior between this irregular-shaped fracture and that of a circular fracture with an 

equivalent area, we also calculate the late-time pseudoskin factor for this irregular-shaped 

fracture at different dimensionless fracture conductivities. The calculation results are shown in 

Figure 2-21. As one can see from this figure, the pseudoskin factor is decreased as the fracture 

conductivity is increased, which is consistent with the trend presented in Figure 2-18. It is 

interesting to find that the pseudoskin factor is positive when the dimensionless fracture 

conductivity is less than 11, while the pseudoskin factor is negative when the dimensionless 

fracture conductivity is larger than 11. This implies that, with a small dimensionless fracture 

conductivity (e.g., CfD < 11), this irregular-shaped horizontal fracture stimulates a smaller 

reservoir volume than a circular horizontal fracture; whereas, with a large dimensionless fracture 

conductivity (e.g., CfD > 11), this irregular-shaped horizontal fracture stimulates a larger reservoir 

volume than a circular horizontal fracture. 
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Figure 2-20. Pressure responses of the irregular-shaped horizontal fracture (shown in Figure 2-19) 

with different dimensionless fracture conductivities.  

 

 
Figure 2-21. Pseudoskin factors of the irregular-shaped horizontal fracture (shown in Figure 2-19) 

with various dimensionless fracture conductivities. 

2.5. Conclusions 

In this work, a semi-analytical model is introduced and successfully applied to characterize the 

pressure transient behavior of finite-conductivity horizontal fractures in a bounded reservoir. 

With the use of the semi-analytical approach, we elucidate the influences of formation thickness, 
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fracture‟s vertical position, fracture conductivity, and wellbore storage on the pressure transient 

behavior of a circular horizontal fracture. The calculation results lead us to draw the following 

conclusions: 

 The flow regimes that may be observed during the life of production of a circular 

horizontal fracture in a bounded reservoir are as follows: wellbore after flow, formation 

linear flow, early pseudo-radial flow, late pseudo-radial flow, and boundary dominated 

flow; 

 At different formation thicknesses, the early pseudo-radial flows are induced by different 

flow mechanisms. An early pseudo-radial flow can be observed near the edge of the 

horizontal fractures when the formation thickness is small, while the early pseudo-radial 

flow can be observed surrounding the horizontal fracture in the vertical direction when the 

formation thickness becomes sufficiently large; and 

 If the horizontal fracture is located near the lower or upper formation boundary, we can 

observe an early pseudo-radial flow that appears near the edge of the fracture, as well as 

an early pseudo-radial flow that surrounds the fracture along the vertical direction. 

In addition, we study the pressure transient behavior of elliptical horizontal fractures and an 

irregular-shaped horizontal fracture. The major findings include the following: 

 The axis ratio mainly exerts an influence on the early pseudo-radial flow period, and a 

smaller axis ratio renders the early pseudo-radial flow less distinguishable; 

 The pseudoskin factors of the elliptical horizontal fracture are normally negative. This 

implies that an elliptical horizontal fracture can exhibit a higher productivity than a 

circular horizontal fracture at the late production period. 
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 The pseudoskin factor of an elliptical horizontal fracture decreases as its axis ratio 

decreases, indicating that an elliptical horizontal fracture has larger productivity with 

smaller axis ratio; 

 The pseudoskin factor increases as the formation thickness increases, indicating that the 

elliptical horizontal fractures tend to enhance the well productivity more significantly in 

thinner formations; 

 The fracture‟s vertical position has a negligible influence on the pseudoskin factor of the 

elliptical fractures; and 

 The pressure response of the irregular-shaped horizontal fracture is similar to that of a 

circular horizontal fracture. In comparison to a circular horizontal fracture, this irregular-

shaped fracture, which has the same area as the circular fracture, has positive pseudoskin 

factors with small dimensionless fracture conductivity while negative pseudoskin factors 

with larger dimensionless fracture conductivity. 

Nomenclature 

a = is semi-major axis, m 

b = is semi-minor axis, m 

aD = dimensionless semi-major axis 

bD = dimensionless semi-minor axis 

B = formation volume factor 

cf = fracture compressibility, MPa
-1 

cl = liquid compressibility, MPa
-1 

ctf = total compressibility of fracture, MPa
-1 

ctm = total compressibility of matrix, MPa
-1 
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C = wellbore storage coefficient, m
3
/Mpa 

Cs = a dimension coefficient defined in this work.  

h = reservoir thickness, m 

kf = the fracture permeability, mD 

km = matrix permeability, mD 

lr = reference length, m 

Nf = number of the fracture elements 

p = pressure, MPa 

pf =  pressure in the fracture system, MPa 

p0 = reference pressure, MPa 

pw,cir = dimensionless bottomhole pressure of the circular horizontal fracture 

pw,non = dimensionless bottomhole pressure of the non-circular horizontal fracture 

qf-wD = dimensionless flux from well-element to wellbore 

qsc = withdraw rate, m
3
/d 

qw = production rate under standard condition, m
3
/d 

rw = radius of the wellbore, m 

req = equivalent radius, m 

s = Laplace operator 

S = pseudoskin factor 

t0 = time when the source term becomes activated, day 

t = time, day 

ux, uy and uz = Darcy flow rate, m/d 

Vb = bulk volume, m
3
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w = fracture width, m 

x = x-coordinate, m 

y = y-coordinate, m 

z = z-coordinate, m 

zvD = fracture vertical position 

α = diffusivity, m
2
/d 

β = unit conversion factor whose numerical value is 0.0853, (m
2
∙s)/(mD∙d). 

γ = a dimensionless coefficient 

δ = influx of various dimensions, 1, m, m
2
, or m

3
 

μ  = viscosity, mPa∙s 

ρ = fluid density, kg/m
3 

ρsc = fluid density under standard condition, kg/m
3 

ϕ0 = reference porosity 

ϕf = porosity in the fracture 

ϕm = matrix porosity 

Subscripts and superscripts 

f = fracture 

i = initial condition 

m = matrix 

sc = standard condition 

t = total 

w = wellbore 
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Appendix 2A - Numerical Solution for the Oil Flow in the Horizontal Fracture 

The 2D continuity equation is given as (Ertekin et al., 2001): 

        sc sc
x y z

b

q
u u u

x y z V t


   

   
    
   

                             (2A-1) 

where ρ is fluid density, ux, uy and uz are Darcy flow rate, Vb is bulk volume, and for a single 

fracture element Vb = w∆xi,j∆yi,j. Equation (2A-1) is a partial differential equation, and one can 

solve it with finite difference method. Implicit finite difference method is utilized in this work 

because the results of implicit finite difference method are more stable than the explicit finite 

difference method.  The finite difference approximation in this work is based on 5-point scheme, 

which has a truncation error proportional to (∆x)
2 

(or (∆y)
2 

) and ∆t. The implicit finite difference 

approximation based on the 5-point scheme can provide sufficiently accurate results for 

simulating the transient fracture flow. Multiplying Equation (2A-1) by the bulk volume gives: 

       
,, ,, ,, i jx i j y i j sc sci j i ji j

u w y x u w x y q x yw
x y t
   

  
         
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      (2A-2) 

Based on Darcy equation, we have, 

 

fx

x

fy

y

k p
u

x

k p
u

y








 




 



                                                        (2A-3) 

and the formation volume factor is defined as: 

 scB



                                                               (2A-4) 

For a slightly compressible fluid, we have  

  0 01 lc p p                                                    (2A-5) 
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where cl is fluid compressibility, p0 and 𝜌0 are reference pressure and reference density, 

respectively. For the porous media, we have 

 0 01 fc p p                                                      (2A-6) 

The fracture total compressibility is given as: 

 tf f lc c c                                                         (2A-7) 

where ϕ0 is reference porosity, and cf is compressibility of the matrix or fracture. Inserting 

Equations (2A-3) to (2A-7) into Equation (2A-2) yields: 
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                   (2A-8) 

Applying the finite difference approximation to the first term on the left-hand side of Equation 

(2A-8), one can have: 

1 1,, , ,
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     (2A-9) 
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Thus, Equation (2A-9) can be written as: 
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                  (2A-12) 

Similarly, the second term on the left-hand side of Equation (2A-8) can be rewritten as: 

   

,

,

, 1 , , , 1

1 1, ,
2 2

fy

i j

i j

fy fyn n n n

i j i j i j i j

i j i j

xwk p
y

y B y

xwk xwk
p p p p

B y B y




 
 

 

 

  
  

  

    
     

    

                  (2A-13) 

Applying backward-difference approximation on the time derivative, one can obtain: 
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                                                    (2A-14) 

The backward-difference approximation of the flow equation can be written as: 
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              (2A-15) 

Equation (2A-15) can be used to characterize the transient flow in the fracture system. This 

equation is also applicable if the fracture has non-uniform fracture width and fracture 

conductivity distribution. In this work, we assume that the fracture width and fracture 

conductivity are both uniform along the fracture; thus, Equation (2A-15) can be simplified as: 
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            (2A-16) 

In particular, for the well-element, the approximated flow equation can be written as:  
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         (2A-17) 

Non-dimensionalizing the variables in Equation (2A-16) and (2A-17) based on Table 2-1 yields, 
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and 

   

   

, 1, 1, , , 1 , 1

, , ,

2 2

1

2 2

2 1

i j i j i j i j i j i j

i j i j i j

fD fDn n n n n n

fD fD fD fD fD fD

D D s D D s

n n n nD
fD f wD fD fD

D D D s D

C C
p p p p p p

x w C y w C

h
q q p p

x y w C t



   





    
 

   
  

        (2A-19) 

Rearranging Equation (2A-18) and (2A-19) gives the following: 

, 1, , 1

1, , 1 , ,

2 2 2 2

1

2 2

2 2 21

2 2 1

i j i j i j

i j i j i j i j

fD fD fD fDn n n

fD fD fD

D D s D D s D D D s D D s

fD fDn n n nD
fD fD fD fD

D D s D D s D D D s D

C C C C
p p p

x w C y w C t x w C y w C

C C h
p p q p

x w C y w C x y w C t



 

 



 
    

     

   
    

         (2A-20) 

, 1, , 1

1, , 1 , ,

2 2 2 2

1

2 2

2 2 21

2 2 2 1

i j i j i j

i j i j i j i j

fD fD fD fDn n n

fD fD fD

D D s D D s D D D s D D s

fD fDn n n n nD D
fD fD fD f wD fD

D D s D D s D D D s D D D s D

C C C C
p p p

x w C y w C t x w C y w C

C C h h
p p q q p

x w C y w C x y w C x y w C t

 

 

 





 
    

     

    
      

         

 (2A-21) 



60 
 

As such, in Equation (2A-20) and (2A-21), the dimensionless pressures, dimensionless 

withdrawal rates and dimensionless flux from fracture to wellbore on the LHS become the 

unknowns. The flow equations for the Nf facture elements can be then written in a matrix 

form, 
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RHS ,  

where A is a matrix with a dimension of Nf ×2Nf, and it represents the coefficients of the 

dimensionless pressures and the coefficients of dimensionless withdrawal rates of the fracture 

elements in Equation (2A-20) and (2A-21), and nw is the number of the well-element. 
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Appendix 2B - Analytical Solution for the Oil Flow in the Reservoir Matrix 

Figure 2B-1 shows a line source in a bounded reservoir and a plane source in a bounded 

reservoir, respectively. In a 2D reservoir, the pressure response at position x at time t caused by 

an instantaneous line source which is activated at time t0 is given by Gringarten and Ramey 

(1973): 
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where δ is the withdrawal rate per unit length, unit area or unit volume. Equation (2B-1) is 

derived using the Green function method. Similarly, the following equation can be used to predict 

the pressure response at position x at time t caused by an instantaneous plane source which is 

activated at time t0,  
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     (2B-2) 

where ∆x is the width of the plane source.  

Figure 2B-2 shows a plane source in a 3D bounded reservoir. According to the Newman product 

principle, the pressure response of an instantaneous plane source in a 3D reservoir can be 

obtained by the product of a plane source in X direction and a plane source in Y direction and a 

line source in Z direction: 
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 (2B-3) 

The pressure response at point (x, y, z) at time t due to the contribution by a continuous plane 

source with a withdrawal rate of qsc can be calculated by: 
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       (2B-4) 

where 
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= =
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q t Bq t
q t

x y x y
                                           (2B-5) 

Thus, Equation (2B-4) can be written as: 
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           (2B-6) 

In the production period, the withdrawal rate of a plane source is time-dependent. The pressure 

response at position (x, y, z) at time t
n
 caused by a time-dependent continuous plane source is,  
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      (2B-7) 

Since we discretize the horizontal fracture into Nf fracture elements, the pressure response at a 

given position (x, y, z) should be the summation of the pressure responses caused by all of the 

elements, leading to the following: 
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       (2B-8) 

Equation (2B-8) can be written in a dimensionless form,  
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   (2B-9) 

Based on Equation (2B-9), one can have, 
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    (2B-10) 
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Combining Equation (2B-9) with Equation (2B-10), one can have: 
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    (2B-11) 

As for a given fracture element, we use the dimensionless pressure at the center of this fracture 

element to represent the average pressure within this fracture element. Based on Equation (2B-

11), the dimensionless pressure at the center of the fracture element can be obtained by: 
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   (2B-12) 

where, (x0D,g, y0D,g , z0D,g) indicates the position of the center of the g
th

 fracture element (g= 1, 

2,…Nf), and pfD,g indicates the dimensionless average pressure of the g
th

 fracture element. For 

convenience, Equation (2B-12) can be also written as: 
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   (2B-14) 

Moving the unknowns in Equation (2B-13) to the left-hand side, one can have: 
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As a result, one can formulate the dimensionless pressures of the fractures elements and 

dimensionless withdrawal rates of the fracture elements into a matrix form: 
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(a)                                                                    (b) 

Figure 2B-1. A line source and a plane source in a 2D reservoir: (a) a line source in a bounded 

reservoir; and (b) a plane source in a bounded reservoir.  

 

 

 
Figure 2B-2. A plane source in a 3D bounded reservoir.  
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Summary 

Field studies have shown that, if an inclined fracture has a significant inclination angle from the 

vertical direction or the fracture has a poor growth along the inclined direction, this fracture 

probably cannot fully penetrate the formations, resulting in a partially-penetrating inclined 

fracture (PPIF) in these formations. It is necessary for the petroleum industries to conduct 

pressure transient analysis on such fractures to properly understand the major mechanisms 

governing the oil production from these fractures. In this work, we develop a semi-analytical 

model to characterize the pressure transient behavior of a finite-conductivity PPIF. We discretize 

the fracture into small panels, and each of these panels is treated as a plane source. The fluid flow 

in the fracture system is numerically characterized with finite difference method, while the fluid 

flow in the matrix system is analytically characterized on the basis of Green‟s function method. 

As such, a semi-analytical model for characterizing the transient flow behavior of a PPIF can be 

readily constructed by coupling the transient flow in the fracture and that in the matrix. With the 

aid of the proposed model, we carry out a detailed study about the transient flow behavior of the 

PPIFs. Our calculation results show that, a PPIF with a finite conductivity in a bounded reservoir 

may exhibit the following flow regimes: wellbore afterflow, fracture radial flow, bilinear flow, 

inclined formation linear flow, vertical elliptical flow, vertical pseudo-radial flow, inclined 

pseudo-radial flow, horizontal formation linear flow, horizontal elliptical flow, horizontal 

pseudo-radial flow, and boundary dominated flow. A negative slope period can appear on the 

pressure derivative curve, which is ascribed to a converging flow near the wellbore. Even with a 

small dimensionless fracture conductivity, a PPIF can exhibit a horizontal formation linear flow. 

In addition to PPIFs, the proposed model can also be used to simulate the pressure transient 
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behavior of fully penetrating vertical fractures, partially penetrating vertical fractures, fully 

penetrating inclined fractures, and horizontal fractures.  

3.1. Introduction 

Hydraulic-fracturing technology has been widely used to improve the well productivity in the 

low-permeability reservoirs. It has been generally acknowledged that the hydraulic fractures are 

perpendicular to the least principal stress (Hubbert and Willis, 1957; Daneshy, 1978; Medlin and 

Masse, 1984; Chun and Ghassemi, 2012). Since the least principal stress is not always parallel or 

perpendicular to the plane of the formations, the fracture treatment can induce an inclined 

fracture in the formations (Daneshy, 1973; Wright, 1994; Cipolla and Wright, 2000).  

Numerical simulation is a powerful tool for evaluating the performance of the vertical and 

horizontal fractures (Conlin et al., 1990; Al-Anazi et al., 2013). However, in terms of modeling 

an inclined fracture, the numerical simulation is time-consuming and inconvenient to use because 

it requires applying the local-grid-refinement technique or unstructured grids to capture the 

configuration of such fractures. In recent studies, various semi-analytical models have been 

proposed to characterize the transient flow behavior of complex fractures (Medeiros et al., 2008; 

Medeiros et al., 2010; Yu et al., 2016). Cinco-ley et al. (1975) derived an instantaneous plane 

source function to model the transient flow of a slightly compressible fluid toward a fully-

penetrating inclined fracture (FPIF) by assuming the fracture has an infinite conductivity. In their 

work, the influence of fracture‟s inclination angle together with the formation thickness on the 

pressure response of the FPIF is comprehensively investigated. Dinh and Tiab (2009) developed 

a step-by-step procedure for pressure transient analysis of an FPIF; they found that the FPIF 

exhibits flow regimes similar to the counterpart of a vertical fracture. Following the work of 

Cinco-ley et al. (1975), Dinh and Tiab (2010) introduced a type-curve-matching technique to 
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interpret the pressure transient data of an FPIF, and successfully obtained the rock and fluid 

properties with this technique. Habte et al. (2010) studied the pressure response of a uniform-flux 

hydraulic fracture which is both inclined and asymmetrical; they claimed that three flow regimes 

(i.e., linear flow, early-radial flow and pseudo-radial flow) can be observed when the asymmetry 

is not significant. Rbeawi and Tiab (2012a) predicted the pressure dynamics of a horizontal well 

with multiple FPIFs based on a plane source function; a set of type curves of pressure drops and 

pressure derivatives were obtained in their work. Jia et al. (2016) further developed a semi-

analytical model to study the pressure transient behavior of the FPIFs. In their model, the flux 

variation along the horizontal direction in the fracture, as well as the fracture conductivity, can be 

taken into account.  

Even though great effects have been invested to study the pressure transients of the inclined 

fractures, most of these works ignore the scenario that an inclined fracture cannot always fully 

penetrate the formations. Figure 3-1 shows two real field cases that a partially-penetrating 

inclined fracture (PPIF) is observed. Figure 3-1a shows the microseismic events monitored from 

the 3
rd

 stage fracturing treatment of Ridgewood-5 well (Johnson et al. 2010). The interpretation 

result of the microseismic map illustrates that a sub-horizontal fracture is induced after the 

fracturing treatment. This induced fracture has an inclination angle of 80
o
 corresponding to the 

vertical direction, and it has a length of 407 ft and a height of 59 ft.  However, the target payzone 

is 68 ft thick, which is 9 ft larger than the fracture height, indicating that this fracture is not only 

inclined but also partially penetrating. This real field case presents that an inclined fracture 

cannot fully penetrate a formation if it has a sufficiently large inclination angle with respect to the 

vertical direction. Figure 3-1b presents the downhole tiltmeter data of a fractured vertical well 

and the interpretation of these monitored data (Wright et al. (1998). As is shown in this figure, 
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the interval of the two tilt peaks along the Y-axis represents the height of the fracture, indicating 

that this fracture‟s height is 160 ft, which is 120 ft less than the payzone thickness. In addition, 

the existence of the difference between these two peaks along X-axis demonstrates that the 

fracture is not perfectly vertical. Figure 3-1b shows such a scenario that, albeit a fracture has an 

insignificant inclination angle, it cannot fully penetrate a formation if this fracture has a poor 

growth along the inclined direction. More reports on the sub-horizontal fractures or poorly grown 

fractures along the inclined direction can be referred to Minner et al. (2002), Jeffrey et al. (2009), 

Baig and Urbancic (2012), Pandey and Agreda (2014), and Mukuhira et al. (2016). 

 

(a)                                                                        (b) 

Figure 3-1. Field examples where a PPIF is observed: (a) microseismic data show a PPIF with a 

significant inclination angle (adapted from Johnson et al., 2010); and (b) tiltmeter data show a 

PPIF with a poor growth along the inclined direction (adapted from Wright et al., 1998).  

Since the PPIFs truly exist in the real field cases, it is necessary to develop a corresponding 

technique to conduct pressure transient analysis of the PPIFs. Cinco-ley et al. (1975) derived an 

inclined plane source function based on Newman product method. Although this function was 

mainly used to characterize the pressure transient behavior of an FPIF in their work, they claimed 

that this derived function could also be used to model a PPIF in an infinite reservoir. Based on 

the plane source function provided in Cinco-ley et al. (1975), Rbeawi and Tiab (2012b) and 

Rbeawi and Tiab (2013) investigated the performance of a horizontal well intersected with 

multiple PPIFs. They defined the flow regimes predicted by their models and studied the 
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influence of inclination angle and penetrating ratio on the pressure response. These previous 

works provide us with a preliminary knowledge about the transient flow behaviors of the PPIFs. 

However, all these works assume that the fractures have infinite conductivity and ignore the 

pressure drop and flux variation along the fractures, which will lead to inaccurate results for 

pressure transient analysis of low/moderate-conductivity PPIFs. Currently, the literature lacks a 

technique which can provide us with a comprehensive insight into the pressure transient behavior 

of a PPIF that has finite conductivity and nonuniform flux distribution. 

In this work, we provide a thorough investigation of the pressure dynamics of a finite-

conductivity PPIF on the basis of a semi-analytical model. With the aid of the proposed model, 

we depict the flux distribution along the fracture to illustrate the variation of flux distribution at 

different fracture conductivities. Subsequently, we identify the flow regimes of the PPIF and 

analyze the influences of inclination angle, penetrating ratio, fracture conductivity and wellbore 

storage on the pressure transient behavior.  

3.2. Methodology 

In this work, we study the pressure transient behavior of a vertical well intersected with a 

rectangle-shaped PPIF in a box-shaped reservoir, as shown in Figure 3-2. It is worth mentioning 

that, although only a rectangle-shaped PPIF is studied in this work, the proposed model can also 

be used to model the pressure transient behavior of a PPIF with an arbitrary geometry by 

discretizing the fracture into small panels. In practical applications, a reliable fracture geometry, 

which is based on the interpretation of microseismic and tiltmeter data, could be used to best 

capture the real fracture geometry for transient flow analysis. As shown in Figure 3-2, this 

fracture is parallel to X-axis, θ is the inclination angle of the fracture with respect to the vertical 
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direction (i.e., Z-axis), X, Y, and Z are the axes. In order to construct a semi-analytical model, we 

make the following assumptions:  

 The reservoir is box-shaped and sealed by impermeable boundaries; 

 The properties in the matrix and fracture systems are assumed to be homogeneous; 

 This model is derived in an isotropic permeability matrix system;  

 Since the fracture width is far smaller than the fracture length, the oil flow in the fracture 

system is simplified as a 2D flow; 

 The PPIF has a rectangular shape and assigned to be located at the center of the reservoir; 

 The oil is produced with a constant rate and the oil enters the wellbore only through the 

fracture; 

 In the fracture system, the flux variations both along the horizontal direction and inclined 

direction are taken into account; 

 The wellbore storage effect is considered in the model. 

 

Figure 3-2. Schematic of a PPIF intersecting with a vertical well in a box-shaped reservoir. 

3.2.1 Definition of the Dimensionless Parameters 

For the convenience of analysis and discussion, we define the following dimensionless variables: 
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where pD is dimensionless pressure, β is unit conversion factor which equals to 0.0853, km is 

matrix permeability, h is formation thickness, pi is initial reservoir pressure, p is pressure, qw is 

well production rate under standard condition, B is formation volume factor, μ is oil viscosity, pfD 

is dimensionless fracture pressure, pf is fracture pressure, tD is dimensionless time, t is time, ϕm is 

matrix porosity, ctm is matrix total compressibility, xf/2 is half fracture length along the horizontal 

direction, qD is dimensionless flux, q is flux rate from the matrix to fracture, qf-wD is 

dimensionless flux from fracture to the wellbore, qf-w is flux from fracture to the wellbore under 
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standard condition, xD, yD, and zD are dimensionless Cartesian coordinates, x, y, and z are 

Cartesian coordinates, lD is dimensionless space position along the inclination direction of the 

fracture, l is space position along the inclination direction of the fracture, hD is dimensionless 

formation thickness, wD is dimensionless fracture width, w is fracture width, rwD is dimensionless 

wellbore radius, rw is wellbore radius, reqD is dimensionless equivalent radius, req is equivalent 

radius, γ is a dimensionless coefficient defined in this work, CwD is dimensionless wellbore 

storage coefficient, Cw is wellbore storage coefficient, Cs is dimensionless coefficient defined in 

this work, ϕf is effective porosity in the fracture system, ctf is fracture‟s total compressibility, Cf  is 

fracture conductivity, kf is fracture permeability, CfD is dimensionless fracture conductivity, λ is 

penetrating ratio, and hf is fracture height.  

3.2.2 Numerical Formulation of the Fracture System 

As mentioned in the assumptions, the flux variations both along the horizontal direction and the 

inclined direction are taken into account in the proposed model; thus, the fracture should be 

discretized along both directions. Figure 3-3 shows the discretized fracture. In this figure, xf is 

fracture length along horizontal direction, lf is fracture length along inclined direction, and hf is 

fracture height in vertical direction. We discretize the PPIF into Nf (Nf = Ni × Nj) panels and these 

panels have the same dimension of ∆x × ∆l, where ∆x and ∆l represent fracture panel‟s lengths 

along the horizontal direction and inclination direction, respectively. The transient flow equation 

for the fracture system can be expressed as: 

 
2 2

2 2

f f f tf f

f f

p p c pB q

x l x lwk k t



 
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  
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,                                   (3-10)                                  

where l indicates the spatial position along the inclination direction of a PPIF, the third term on 

the left-hand side of Equation (3-10) represents the influx from the matrix to the fracture. 

Converting Equation (3-10) into dimensionless format and applying finite difference 
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approximation to this equation, one can have the approximated flow equation for panel (i, j) at 

the n
th

 timestep: 
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where i = 1⋯ Ni, and  j = 1⋯ Nj. Applying Equation (3-11) to the Nf fracture panels and arranging 

these fracture flow equations into a matrix format yields:  

1

1 2

n n n n

f f wD fq 

    A p B q B C p ,                                        (3-12) 

where ⨀ is Hadamard product operator, qf-wD  is dimensionless flux from fracture to the wellbore, 

and the matrices of A, pf, B1, q
n
, B2, and C are defined in Appendix 3A.  

 

Figure 3-3. Discretization of the PPIF along both the horizontal axis and inclined axis.  

3.2.3 Analytical Solution of the Matrix System 

The PPIF is discretized into Nf panels in our work, and each of the fracture panels can be 

regarded as a plane source. Based on the Green‟s function and Newman product method, one can 

obtain the pressure response at an arbitrary position within the reservoir which is caused by a 
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continuous plane source. As is presented in Appendix 3B, the analytical solution of an inclined 

plane source, fracture panels (i, j), in a bounded reservoir can be written as: 
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,                    (3-13) 

where α is diffusivity defined as α = km / μϕmctm, xe, ye, and ze are reservoir dimensions, x0i,j
 

represents the center position of the fracture panel (i, j) along x-axis, li,j represents space position 

along the inclination direction of fracture panel (i, j), y(li,j) and z(li,j) represent y and z coordinates 

at space position li,j. Equation (3-13) characterizes the pressure response caused by a single 

fracture panel, and one can calculate the pressure response caused by the entire PPIF by 

collecting the pressure response from all the panels. The equation is given as:  
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On the basis of Equation (3-14), the pressure response caused by a PPIF at an arbitrary position 

in a bounded reservoir can be readily calculated; thus, if we use the pressure at a panel‟s center 

position to approximate this panel‟s average pressure, the dimensionless pressure of fracture 

panel (I, J), where I = 1⋯ Ni and J = 1⋯ Nj，has the following relationship with the fluxes of the 

Nf fracture panels: 
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     (3-15) 

Applying Equation (3-15) to all of the fracture panels, we can have Nf equations which reveal the 

relationship between the dimensionless pressure and dimensionless fluxes of the fracture panels. 

These matrix flow equations can also be arranged into a matrix format, which is given as follows: 

n n

f  p Gq D ,                                                         (3-16) 

where the matrices of G and D are defined in Appendix 3A.  

3.2.4 Wellbore Storage and Wellbore Representation 

In this work, the wellbore storage effect is considered with the method provided by van 

Everdingen and Hurst (1949): 

  11 n n nwD
wD wD f wDn

D

C
p p q

t

 

  


,                                            (3-17) 
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where pwD is dimensionless bottomhole pressure, γ and CwD are defined in Equation (3-6). 

According to the well model introduced by Peaceman (1983), the dimensionless bottomhole 

pressure and dimensionless pressure of the well-panel have the following relationship: 

ln
eqDn n nD

wD wpD f wD

fD wD

rw
p p q

C r
  ,                                           (3-18) 

where pwpD is dimensionless pressure of the well-panel, wD, CfD, reqD and rwD are defined in 

Equations (3-5) and (3-8). The equivalent radius req in a homogeneous permeability reservoir can 

be calculated with the following equation given by Peaceman (1983): 
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                                              (3-19) 

3.2.5 Solution Methodology 

Based on the continuity of the flux and pressure, one can group the fracture flow equations, 

matrix flow equations, wellbore storage effect equation and wellbore representation equation to 

construct a system of linear equations to characterize the transient flow behavior of a PPIF. This 

system of linear equations can be written as follow: 
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                                   (3-20) 

In this system of linear equations, there are the following unknowns at each timestep: 

 Nf dimensionless pressures of the fracture panels: pfDi,j, i = 1⋯ Ni, and  j = 1⋯ Nj; 

 Nf dimensionless fluxes that flow from the matrix to the fracture panels: qDi,j, i = 1⋯ Ni, 

and  j = 1⋯ Nj; 
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 1 dimensionless flux from the well-panel to the wellbore: qf-wD; 

 1 dimensionless bottomhole pressure: pwD.  

The governing equations at each timestep include the following: 

 Nf fracture flow equations which are given by Equations (3-12); 

 Nf matrix flow equations which are given by Equation (3-16); 

 1 wellbore storage effect equation which is given by Equation (3-17); 

 1 wellbore representation equation which is given by Equation (3-18). 

In total, there are 2Nf + 2 unknowns and 2Nf + 2 governing equations, and one can solve these 

equations with the Gaussian elimination method.  

3.3. Validation of the Proposed Model 

Prior to the validations being carried out later, we first examine the influence of the number of 

discretized fracture panels on the simulation outputs. We discretize the PPIF into 135 (15×9), 143 

(13×11), 165 (15×11), 187 (17×11), and 195 (15×13) panels, respectively, and calculate the 

pressure response of the PPIF in a bounded reservoir. The following dimensionless fracture and 

reservoir data are used in this model: xeD = 20, yeD = 20, hD = 0.5, xfD = 2, θ = 45
o
, λ = 0.5, CfD = 

5, Cs = 10, CwD = 0, wD = 1×10
-5

, and γ = 1.30×10
-8

. Figure 3-4 presents the pressure drops and 

pressure derivatives calculated with the proposed model under different numbers of fracture 

panels. As one can see, the pressure drops and pressure derivatives undergo negligible changes 

when the number of fracture panels is more than 165; therefore, the number of fracture panels of 

165 (15×11) is used in the following studies.  
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Figure 3-4. Impact of the number of fracture panels on the outputs of the semi-analytical model.  

3.3.1 Validation against Semi-analytical Models 

We first validate the proposed model against those of Cinco-ley et al. (1975) and Rbeawi and 

Tiab (2013), respectively. It is noted that since the two existing methods, i.e., Cinco-ley et al. 

(1975) and Rbeawi and Tiab (2013), assume the fracture has infinite conductivity and neglect the 

flux variation along the fracture, the comparison is conducted on a PPIF model with infinite 

conductivity and uniform flux distribution. The dimensionless data used in this part are as 

follows: xeD = 20, yeD = 20, hD = 1, xfD = 2, θ = 15
o
, λ = 0.1, CwD = 0, wD = 1×10

-5
, and γ = 

1.30×10
-8

. Figure 3-5 compares the results obtained with the proposed model against those 

obtained with Cinco-ley et al. (1975) and Rbeawi and Tiab (2013). Overall, the calculated results 

from our model agree well with those from Cinco-ley et al. (1975) and Rbeawi and Tiab (2013), 

except a deviation showing up at the late production stage. This is because that the plane source 

function used in Cinco-ley et al. (1975) and Rbeawi and Tiab (2013) is derived under an infinite 

boundary condition, while the plane source function used in this work is derived under a bounded 

reservoir condition, The deviation occurs at the late production time indicates the boundary effect.  
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Figure 3-5. Comparison between the pressure drops and pressure derivatives calculated by the 

proposed model and those by Cinco-ley et al. (1975) and Rbeawi and Tiab (2013). 

3.3.2 Validation against Numerical Software 

In practice, the fracture conductivity is normally not infinite and the flux distribution along the 

fracture cannot be simplified as uniform; therefore, we also validate the proposed model against a 

numerical simulator (Eclipse) which can take the fracture conductivity and flux variation into 

consideration. Figure 3-6.a gives a top view of the overall grid system of the reservoir model 

built in Eclipse. As shown in Figure 3-6.a, the PPIF is located at the center of the reservoir, and 

local-grid-refinement technique is applied to model the fracture. Figure 3-6.b shows a side view 

of the locally refined grid system. The red cells are assigned with a higher permeability to 

represent the PPIF. The reservoir has a dimension of 1000×1000×5 m, and we discretize the 

reservoir into 50×50×5 cells. A local grid system comprised of 5×1×3 cells is refined into a 

system of 5×300×60 cells to model the fracture. The validation is conducted on two scenarios. 

Scenario #1 considers a matrix permeability (km) of 1 mD, and scenario #2 considers a matrix 

permeability (km) of 100 mD. The other fluid and rock properties used both in Eclipse and the 
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proposed model are as follows: ctm = 0.0012 MPa
-1

, ϕm = 0.2, kf = 200 mD, Cw = 0 bbl/psi, Cf = 

10 mD∙m, ctf = 0.0012 MPa
-1

, ϕf = 0.2, pi = 30 MPa, qw = 5 m
3
/d, μ = 1 mPa∙s, B = 0.985 (dead 

oil), rw = 0.05 m, xf = 100 m, lf = 20.22 m, and θ =81.5
o
. Figure 3-7 compares the pressure drops 

and pressure derivatives calculated with the proposed model and Eclipse, respectively. One can 

find that the results obtained with the proposed model agree well with the results obtained with 

Eclipse on both scenarios. The validations shown in Figures 3-5 and 3-7 indicate that the 

proposed semi-analytical model is reliable in modeling the pressure transient behavior of a finite-

conductivity PPIF in a bounded reservoir.  

 
(a) 

 

(b) 

Figure 3-6. Reservoir model build in the Eclipse: (a) top view of the overall grid system; and (b) 

side view of the locally refined grid system. 
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Figure 3-7. Comparison between the pressure drops and pressure derivatives calculated by the 

proposed model and those by Eclipse on two scenarios: scenario #1 km = 1 mD, and scenario #2 

km = 100 mD. 

3.4. Result and Discussion 

In this section, we first show the calculated flux distribution along the PPIF with different 

fracture conductivities. Subsequently, we identify the flow regimes that can be observed during 

the production of a PPIF and study the influences of fracture‟s inclination angle, penetrating ratio, 

fracture conductivity, and wellbore storage on the pressure response. The following 

dimensionless numbers are used in the benchmark PPIF model: xeD = 20, yeD = 20, hD = 0.5, xfD = 

2, θ = 45
o
, λ = 0.7, CfD = 5, Cs = 10, CwD = 20, wD = 1×10

-5
, B = 1.2, and γ = 1.30×10

-8
.  

3.4.1 Flux Distribution along the Fracture 

In the previous studies, the uniform-flux models, together with the 2D-nonuniform-flux models, 

have been widely used for characterizing the transient flow behavior of the hydraulic fractures 

(Cinco-Ley and Samaniego-V, 1981; Rodriguez et al. 1984; Larsen and Hegre, 1994; Restrepo 

and Tiab, 2009; Zhou et al. 2014). The uniform-flux models are normally applied to simulate the 

transient flow of infinite-conductivity fractures by assuming that the fractures have uniform flux 
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distribution along both the horizontal and inclined directions; while the 2D-nonuniform-flux 

models, which take into account the flux variation along the horizontal direction of the fracture 

but still neglect the flux variation along the inclined direction, have been frequently utilized to 

model the pressure response of fully-penetrating fractures with finite conductivity. Since most of 

these models involving inclined fractures neglect the flux variation along the inclined direction, 

there is one question that requires to be answered: whether it is necessary to consider the flux 

variation along the inclined direction when modeling the pressure transient behavior of a finite-

conductivity PPIF. Figure 3-8 compares the pressure responses of the benchmark PPIF model 

which are calculated with the assumptions of uniform flux, nonuniform flux along the horizontal 

direction but uniform flux along the inclined direction, and nonuniform flux along both the 

horizontal direction and inclined direction, respectively. As one can see from this figure, a 

significant difference can be observed on the pressure drop curves and pressure derivative curves 

calculated with different assumptions. In practice, the flux variation along both the horizontal 

direction and the inclined direction should be physically present in the PPIF. Therefore, the 

proposed model, which can take into account the flux variation along both directions, can provide 

more realistic simulation results. 
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Figure 3-8. Comparison of pressure responses which are calculated based on the assumptions of 

uniform flux, nonuniform flux along horizontal direction but uniform flux along the inclination 

direction, and nonuniform flux both along the horizontal direction and inclined direction, 

respectively. 

We also examine the effects of fracture conductivity on the flux distribution along the PPIF. 

Figure 3-9 shows the flow distribution of the PPIF with dimensionless conductivities varying 

from 0.1 to 100 at the dimensionless time of 1×10
-4

. At low fracture conductivities, such as CfD = 

0.1 in Figure 3-9a, the fluid enters the fracture mainly through the center of the PPIF, 

corresponding to the position of the wellbore. The maximum dimensionless flux, which is as high 

as 0.6532, can be observed at the wellbore, whereas the flux at the position away from the 

wellbore is negligible. This is ascribed to the fact that a smaller fracture conductivity will lead to 

a larger flow resistance in the fracture. As the fracture conductivity is increased, the flux variation 

along the fracture becomes smaller. At dimensionless fracture conductivity of 100, the maximum 

dimensionless flux is about 0.0124 that can be observed at the wellbore, while the minimum 

dimensionless flux is about 0.0044 which occurs at the fracture edge along the inclined direction 

(see Figure 3-9d).  



92 
 

                                  
(a)                                                                        (b) 

  
(c)                                                                          (d) 

Figure 3-9. Flux distribution of the PPIF with different fracture conductivities at tD = 1×10
-4

: (a) 

CfD = 0.1; (b) CfD = 1; (c) CfD = 10; and (d) CfD = 100. 

Figure 3-10 presents the flux distribution of the PPIF with dimensionless conductivities varying 

from 0.1 to 100 at the dimensionless time of 1×10
-3

. It is interesting to note that, as the fracture 

conductivity is increased, the flux along the fracture edge (i.e., lD = 0 and lD = 0.5) is increased, 

while the flux at the wellbore is decreased. In Figure 3-10d, the highest dimensionless flux, 

0.0085, occurs at the fracture edge rather than the wellbore. This can be explained as follows: for 

a high-conductivity PPIF, the fluid near the wellbore will be rapidly drained. Subsequently, the 

produced fluid is mainly from the reservoir that is distant from the wellbore, and the fluid enters 

the fracture mainly through the fracture edge; therefore, for a high-conductivity fracture, the 

highest flux can occur at the fracture edge. The nonuniform flux distributions shown in Figures 3-

9 and 3-10 provide a further justification that the flux variations both along the horizontal 

direction and the inclined direction should not be neglected in order to accurately model the 

transient flow behavior of a PPIF. 
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(a)                                                                        (b) 

  
(c)                                                                          (d) 

Figure 3-10. Flux distribution of the PPIF with different fracture conductivities at tD = 1×10
-3

: (a) 

CfD = 0.1; (b) CfD = 1; (c) CfD = 10; and (d) CfD = 100. 

 

3.4.2 Flow Regimes of a PPIF 

The flow regimes can be distinguished by identifying the slopes on the pressure derivative curves. 

For instance, 1/4-slope indicates bilinear flow, 1/3-slope indicates elliptical flow, and 1/2-slope 

indicates linear flow (Cinco-Ley and Samaniego-V, 1981; Issaka et al., 2000; Chacon et al., 

2004). Figure 3-11 depicts the pressure drops and pressure derivatives of the benchmark PPIF 

that are calculated with the proposed semi-analytical model. In this figure, one can distinguish the 

following flow regimes during the production of the finite-conductivity PPIF in a bounded 

reservoir: (1) wellbore afterflow, (2) inclined formation linear flow, (3) inclined pseudo-radial 

flow, (4) horizontal elliptical flow, (5) horizontal pseudo-radial flow, and (6) boundary 

dominated flow. The wellbore afterflow only occurs at the early production period, which reflects 

the influence of the wellbore storage on the pressure transient behavior. Figure 3-12 illustrates 

the flow behavior of various flow regimes that can possibly occur in a reservoir with a PPIF: 
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inclined formation linear flow, inclined pseudo-radial flow, horizontal elliptical flow, and 

horizontal pseudo-radial flow. The half-unit slope on the pressure derivative curve indicates that 

the flow regime is inclined formation linear flow. During this period, the fluid flows 

perpendicularly from the matrix to the fracture, as shown in Figure 3-12a. A schematic of the 

inclined pseudo-radial flow is shown in Figure 3-12b. During this period, the fluid flows radially 

to the fracture axis along the inclined direction. Following the inclined pseudo-radial flow, the 

pressure derivative plot exhibits a 1/3-slope, signifying that a horizontal elliptical flow, which has 

limited height around a PPIF, appears in the reservoir (see Figure 3-12c). Figure 3-12d illustrates 

the fluid flow at the horizontal pseudo-radial flow period, during which the fluid flows radially to 

the Z-axis along the vertical well. This flow regime can be observed only if the reservoir is large 

enough. Afterwards, the fluid flow enters the pseudo-steady state once the reservoir boundary 

starts exerting its influence on the pressure dynamics, leading to a unit slope on the pressure 

derivative curve; this corresponds to the boundary dominated flow.  

 
Figure 3-11. Identification of the flow regimes that can be observed during the production of the 

benchmark PPIF in a bounded reservoir.  
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(a) 

      

(b) 

       

 (c) 

      

(d) 

Figure 3-12. The flow behaviors of various flow regimes occurring during the production of 

PPIF: (a) inclined formation linear flow from 3D view and side view; (b) inclined pseudo-radial 

flow from 3D view and side view; (c) horizontal elliptical flow form 3D view and top view; and 

(d) horizontal pseudo-radial flow from 3D view and top view.  
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In practice, the flow regimes that can be observed during the production of a PPIF are heavily 

dependent on the input values of the parameters that are chosen in the case studies. Figure 3-13 

shows the pressure drops and pressure derivatives of a PPIF with a penetrating ratio of 0.3. All of 

the other input values are kept the same as those in the benchmark PPIF model. From this figure, 

one can find the following flow regimes on the pressure derivative plot: (1) wellbore afterflow, (2) 

vertical elliptical flow, (3) vertical pseudo-radial flow, (4) horizontal elliptical flow, (5) 

horizontal pseudo-radial flow, and (6) boundary dominated flow. Figure 3-14 depicts the flow 

behavior of the vertical elliptical flow and the vertical pseudo-radial flow. It is noted that the 

upper and lower boundaries can exert significantly early-time effect on the flow regimes of a 

PPIF. Since this PPIF has a small penetrating ratio (0.3), the interval between the upper/lower 

formation boundary and the fracture is large enough to enable the appearance of an elliptical flow 

along the vertical direction (i.e. vertical elliptical flow), as in Figure 3-14a. As the production 

proceeds, this vertical elliptical flow gradually turns into a vertical pseudo-radial flow (i.e., 

pseudo-radial flow along the vertical direction, see Figure 3-14b), leading to the appearance of a 

zero slope period on the pressure derivative curve (see Figure 3-13).  
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Figure 3-13. Identification of the flow regimes that can be observed during the production of a 

PPIF with a penetrating ratio of 0.3 in a bounded reservoir.  

 

      

(a) 

      

(b) 

Figure 3-14. The flow behaviors of various flow regimes occurring during the production of 

PPIF: (a) vertical elliptical flow from 3D view and side view; and (b) vertical pseudo-radial flow 

from 3D view and side view. 
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Figure 3-15 illustrates the pressure drops and pressure derivatives of another PPIF model. Its 

difference with the benchmark PPIF model is that the penetrating ratio has been changed to 0.9 

while the dimensionless fracture conductivity has been changed to 20. The following flow 

regimes can be identified on the pressure derivative plot: (1) wellbore afterflow, (2) fracture 

radial flow, (3) inclined pseudo-radial flow, (4) horizontal formation linear flow, (5) horizontal 

pseudo-radial flow, and (6) boundary dominated flow. It is interesting to note that a new flow 

regime, fracture radial flow, can be observed on the pressure derivative plot after the flow regime 

of wellbore afterflow. This flow regime can be observed only if the fracture conductivity and 

fracture inclined length are sufficiently large. Figure 3-16a illustrates the fracture radial flow, 

showing that the fluid in the fracture radially flows to the wellbore during this period. In addition, 

since this fracture has a high penetrating ratio (0.9), it is not possible for the vertical pseudo-

radial flow to appear in the reservoir; therefore, the second zero-slope period should correspond 

to the inclined pseudo-radial flow, as indicated in Figure 3-12b. Following the inclined pseudo-

radial flow, a horizontal formation linear flow is observed on the pressure derivative curve. 

Figure 3-16b shows the schematics of the horizontal formation linear flow which appears with 

limited height along the horizontal direction. Afterwards, one can also observe the horizontal 

pseudo-radial flow and boundary dominated flow.  
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Figure 3- 15. Identification of the flow regimes that can be observed during the life of production 

of a PPIF with a penetrating ratio of 0.9 and dimensionless fracture conductivity of 20 in a 

bounded reservoir.  

 

 

(a) 

      

(b) 

Figure 3-16. The flow behaviors of various flow regimes occurring during the production of 

PPIF: (a) fracture radial flow from 3D view; and (b) horizontal formation linear flow from 3D 

view and side view.  
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It is worth noting that, the flow regimes of a PPIF are similar to those of a vertical fracture if the 

coordinate system of a PPIF is rotated and gets adjusted to the coordinate system of a vertical 

fracture. For a vertical fracture, one can observe the formation-linear flow, elliptical flow, and 

pseudo-radial flow on the pressure derivative plot. If the horizontal dimension of a PPIF is 

sufficiently small, a PPIF from the top view is similar to a vertical fracture; therefore, it is 

reasonable to observe a horizontal formation linear flow (Figure 3-16b), horizontal elliptical flow 

(Figure 3-12c), and horizontal pseudo-radial flow (Figure 3-12d) during the production of a PPIF. 

In addition, a PPIF (Figure 3-14a) from the side view is similar to a vertical fracture from the top 

view; thus, with appropriate values of the parameters, we should also observe the inclined 

formation linear flow (Figure 3-12a), vertical elliptical flow (Figure 3-14a), and vertical pseudo-

radial flow (Figure 3-14b) along the vertical direction of a PPIF. 

3.4.3 Sensitivity Analysis 

Thereafter, using the developed model, we carry out detailed sensitivity analysis studying the 

influences of the following parameters on the pressure transient behavior: fracture‟s inclination 

angle, penetrating ratio, and fracture conductivity. Table 3-1 shows the values of the 

dimensionless parameters used in the sensitivity analysis. The values in bold text shown in Table 

3-1 are the values used in the benchmark model. 

Table 3-1. Dimensionless parameters used in the sensitivity analysis. 

Inclination angle, θ Penetrating ratio, λ 
Dimensionless fracture 

conductivity, CfD 

15
o
 0.1 0.5 

30
o
 0.3 1.0 

45
o
 0.5 2.0 

60
o
 0.7 5.0 

75
o
 0.9 10.0 
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3.4.3.1 Inclination Angle 

The influence of the inclination angle on the pressure transient behavior is studied on two 

scenarios. The first scenario considers a PPIF with varied inclination angle but fixed fracture 

dimension, while the second scenario considers a PPIF with varied inclination angle but fixed 

penetration ratio. Figure 3-17 illustrates the pressure drops and pressure derivatives of the PPIF 

with different inclination angles and fixed fracture dimension. From the pressure derivative 

curves in Figure 3-17, one can observe a 1/4-slope period or 1/2-slope period after the wellbore 

afterflow, which indicate the appearance of bilinear flow and inclined formation linear flow, 

respectively. During the bilinear flow, two flows occur simultaneously, i.e., a linear flow from 

the matrix to the fracture together with a linear flow from the fracture to the wellbore. A more 

detailed introduction about the bilinear flow can be referred to Cinco-Ley and Samaniego-V 

(1981). It is interesting to note that, a negative slope period can be observed after the bilinear 

flow (or inclined formation linear flow) with a larger inclination angle (e.g., θ = 75
o
). This is 

ascribed to a converging flow around the PPIF. Figures 3-18a and 3-18b show the side view of 

the schematics of the spherical flow around a point sink and converging flow around a PPIF. 

Comparing these two figures, one can see that the converging flow contains spherical flow 

component whose slope is -1/2 (Culham, 1974), resulting into a negative slope on the pressure 

derivative curve of a PPIF. Figure 3-18c shows the side view of a converging flow around a PPIF 

with a small inclination angle. The converging flow in Figure 3-18c exhibits less spherical flow 

component, and thus the negative slope period is less distinguishable for a small inclination angle 

(see Figure 3-17). Following the converging flow period, a 1/2-slope, which indicates a 

horizontal formation linear flow, appears on the pressure derivative curve with an inclination 

angle of 75
o
. It is noted that a vertical fracture can exhibit a horizontal formation linear flow only 
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if the dimensionless fracture conductivity is sufficiently large; the studied dimensionless fracture 

conductivity (CfD = 5) cannot satisfy the conditions causing the occurrence of the horizontal 

formation linear flow for a vertical fracture. Therefore, as the inclination angle decreases from 

75
o
 to 15

o
, the PPIF becomes closer to be vertical, and the flow regimes switch from a horizontal 

formation linear flow (1/2-slope) to a horizontal elliptical flow (1/3-slope).  

  
Figure 3-17. Impact of inclination angle on the pressure drops and pressure derivatives of a PPIF 

with fixed fracture dimension. 

 

      

(a)                                                      (b) 
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(c) 

Figure 3-18. Schematics of the spherical flow and converging flow: (a) side view of spherical 

flow around a point sink; (b) side view of converging flow around a PPIF with a large inclination 

angle; and (c) side view of converging flow around a PPIF with a small inclination angle. 

Figure 3-19 depicts the pressure drops and pressure derivatives of the PPIF with different 

inclination angles but fixed penetrating ratio. As shown in this figure, a negative slope period, 

corresponding to a converging flow, can also be observed after the inclined formation linear flow 

for the fractures with large inclination angles (e.g., θ = 60
o
 and 75

o
). In addition, the horizontal 

formation linear flow is also changed into a horizontal elliptical flow as the inclination angle is 

varied from 75
o
 to 15

o
. These two observations imply that: first, in a hydraulically fractured 

reservoir (no natural/secondary fracture), a negative slope period on the pressure derivative curve 

denotes that the hydraulic fracture is possible to be a PPIF with a large inclination angle; and 

second, since the PPIF with small dimensionless fracture conductivity (e.g., CfD = 5) can exhibit a 

horizontal formation linear flow, the fracture conductivity can be over-estimated if a PPIF is 

mistakenly recognized as a vertical fracture.  
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Figure 3-19. Impact of inclination angle on the pressure drops and pressure derivatives of a PPIF 

with a fixed penetrating ratio. 

3.4.3.2 Penetrating Ratio 

Different penetrating ratios, i.e., λ = 01, 0.3, 0.5, 0.7, and 0.9, are examined in an attempt to 

explore its influence on the pressure response of the PPIF. The pressure drops and pressure 

derivatives at different penetrating ratios, which are calculated with the proposed model, are 

presented in Figure 3-20. As one can see from the pressure drop curves, the penetrating ratio 

mainly influences the intermediate and late production periods of the pressure response. The 

pressure drop tends to be decreased as the penetrating ratio is increased. This is because the 

fracture has a larger contact area with the reservoir at a larger penetrating ratio, leading to a lower 

flow resistance between the reservoir and the fracture. In addition, as for the scenario with a 

penetrating ratio of 0.1, the PPIF has a small length along the inclination direction. Thus, the 

fluid tends to converge to the wellbore along the vertical direction. If the fracture conductivity is 

small (e.g., CfD = 5), the fluid will also converge to the wellbore along the horizontal direction, 

leading to a 3D converging flow near the wellbore. This renders a negative slope period 
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appearing on the pressure derivative curve with λ = 0.1. It is also observed from Figure 3-20 that 

a negative slope period appears on the pressure derivative curve with a penetrating ratio of 0.9. 

Whereas, with the other penetrating ratios (λ = 0.3, 0.5, and 0.7), the negative slope period is 

absent. Figure 3-21 compares the flux distribution along the PPIF with a penetrating ratio of 0.5 

against that with a penetrating ratio of 0.9 at dimensionless time of 1×10
-4

. As one can see in this 

figure, the fluxes near the wellbore with λ = 0.9 are larger than those with λ = 0.5. This signifies 

that, with a penetrating ratio of 0.9, the converging flow around the wellbore is more noticeable 

and the negative slope period is more distinguishable.  

 

Figure 3-20. Impact of penetrating ratio on the pressure drops and pressure derivatives of a PPIF. 
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Figure 3-21. Comparison of the flux distribution of the PPIF with a penetrating ratio of 0.5 

against that with a penetrating ratio of 0.9. 

3.4.3.3 Fracture Conductivity 

Figure 3-22 presents the pressure response of a PPIF at different fracture conductivities, i.e., CfD 

=0.5, 1, 2, 5, and 10. As one can see from this figure, the fracture conductivity exerts a significant 

influence on the pressure drops as well as the pressure derivatives throughout the entire 

production period. A higher fracture conductivity leads to a smaller pressure drop, which is 

ascribed to a lower flow resistance in the fracture. One can also find that the negative slope 

period is more distinguishable with smaller dimensionless fracture conductivity. This can be 

explained as follows: the fluxes near the wellbore with smaller CfD are larger than those with 

larger CfD (see Figure 3-9); hence, with a smaller dimensionless fracture conductivity, a 

converging flow around the wellbore is more likely to occur, and thus the negative slope period 

can appear on the pressure derivative curve with small dimensionless fracture conductivity.  

 

Figure 3-22. Impact of fracture conductivity on the pressure drops and pressure derivatives of a 

PPIF. 
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3.4.4 Application of the Proposed Model 

In practice, a “critical” depth about 2000 ft can be regarded as the threshold, below which the 

hydraulic fracture is normally vertical (Wright et al., 1997). Whereas, as for a shallow formation 

which is located at a depth less than 2000 ft, the vertical stress can be close to the horizontal 

stress; therefore, a fully penetrating vertical fracture (FPVF), partially penetrating vertical 

fracture (PPVF), fully penetrating inclined fracture (FPIF), PPIF, or even horizontal fracture (HF), 

can be induced after the fracturing treatment (see Figure 3-1a, in which a PPIF is induced at a 

depth of 516 m/1693 ft). If the tiltmeter monitoring or the microseismic monitoring is not utilized 

to determine the propagation, both along the horizontal direction and the vertical direction, of the 

fracture, it is difficult to recognize the fracture pattern from production data. In such cases, the 

utilization of a single fracture model for fitting the historical production data can lead to 

inaccurate results, while applying all the fracture models to fit the production data and find out 

the best-match curve can be a heavy workload. However, the proposed model can address this 

issue without prior knowledge about the fracture pattern. This is because, a vertical/horizontal 

fracture can be regarded as a PPIF with an inclination angle of 0
o
/90

o
, and a fully penetrating 

fracture can be regarded as a PPIF with a penetrating ratio of 1. This indicates that this proposed 

model cannot only simulate exactly PPIFs, but also FPVFs, PPVFs, FPIFs, and HFs. Therefore, 

the proposed model is more advantageous since it can be used to fit the historical production data 

of a fractured well in the cases where the fracture pattern is not known beforehand. 

Due to the fact that there is no available production data of a PPIF in previous studies, in this 

section, this proposed model is used to fit the pressure buildup data from a PPVF, which can be 

regarded as a PPIF with an inclination angle of 0
o
. The known values of the parameters are 

summarized in Table 3-2 (Rodriguez et al., 1984). The matrix permeability of km = 4.59 mD is 
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obtained with radial flow analysis by Rodriguez et al. (1984). The unknown parameters include 

horizontal fracture length (xf), penetrating ratio (λ), fracture conductivity (Cf), and skin factor (S). 

The skin factor S can be expressed as: 

 wD wDS P p  ,                                                           (3-21) 

where PwD is real dimensionless wellbore pressure which considers the skin factor. The history-

matching work is conducted by varying these four unknown values of parameters. Table 3-3 

shows the values of the parameters determined by history matching of the production data. 

Figure 3-23 shows the measured pressure buildup data and the pressure buildup data calculated 

with the history-matched model. One can see from Figure 3-23 the calculated pressure buildup 

data show an excellent agreement with the pressure buildup data in Rodriguez et al. (1984). It is 

noted in Table 3-3 that a negative skin (-0.745) is obtained. This is because our proposed model 

assumes that the wellbore is restrictedly connected to the fracture, whereas the wellbore can be 

fully connected to the vertical fracture. This is the reason leading to that the pressure drop 

calculated with the proposed model can be higher than the real pressure drop, leading to a 

negative skin during the history matching. In addition, the values of the parameters (including Cw, 

Cs, and w) cannot be obtained with the history matching work since they only exert their 

influences on the pressure response at the very early production period and the measured pressure 

build-up data do not cover this period. 

Table 3-2. Known values of the parameters of a PPVF in Rodriguez et al. (1984). 

Parameter Value Parameter Value 

qw, m
3
/d 31.8 ctm, MPa

-1
 7.25×10

-4
 

h, m 78.6 ϕm 0.3 

B, m
3
/m

3
 1.4 rw, m 0.0762 

μ, mPa∙s 3 𝜃 0
o
 

 

Table 3-3. History matching results for the pressure buildup data.  

Parameter Value Parameter Value 
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xf, m 55.8 λ 0.45 

Cf, mD∙m 768.4 S -0.745 

 

  
Figure 3-23. Comparison of the pressure buildup data in Rodriguez et al. (1984) and calculated 

ones using the history-matched model. 

3.5. Conclusions 

In this work, we develop a novel semi-analytical model to study the pressure transient behavior 

of a finite-conductivity PPIF in a bounded reservoir. With the aid of the proposed model, we 

depict the flux distribution along the fracture with different fracture conductivities and 

distinguish the flow regimes that can be observed during the production of a PPIF. In addition, 

we investigate the influence of inclination angle, penetrating ratio, and fracture conductivity on 

the pressure responses. Furthermore, we apply this proposed model to a real field case. These 

case studies lead us to draw the following conclusions: 

 Under given reservoir and fracture properties, a PPIF with a finite conductivity in a 

bounded reservoir may exhibit the following flow regimes: wellbore afterflow, fracture 

radial flow, bilinear flow, inclined formation linear flow, vertical elliptical flow, vertical 
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pseudo-radial flow, inclined pseudo-radial flow, horizontal formation linear flow, 

horizontal elliptical flow, horizontal pseudo-radial flow, and boundary dominated flow; 

 A converging flow near the wellbore can occur during the production of a PPIF, leading 

to a negative slope period on the pressure derivative curve. The negative slope period can 

be observed for three types of PPIF: first, the PPIF has a sufficient large inclination angle; 

second, the penetrating ratio of the PPIF is sufficiently small or sufficiently large; and 

third, the dimensionless fracture conductivity of the PPIF is sufficiently small;  

 The PPIF can exhibit a horizontal formation linear flow even with a small dimensionless 

fracture conductivity (e.g., CfD = 5). This implies that if a PPIF is mistakenly recognized 

as a vertical fracture, the fracture conductivity will be over-estimated;  

 In addition to PPIFs, this proposed model can also be used to simulate the pressure 

transient behavior of FPVFs, PPVFs, FPIFs, and HFs. Hence the proposed model can be 

utilized in the cases where the fracture pattern is not known a priori; and  

 By rotating the coordinate system of a PPIF, a PPIF in a bounded reservoir can be 

converted to a PPVF with an arbitrary azimuth in a bounded reservoir; such that this 

proposed semi-analytical model can also be used to simulate the pressure transient 

behavior of a PPVF with an arbitrary azimuth in a bounded reservoir.  

Nomenclature 

∆l = fracture panel‟s length along the inclination direction, m 

∆lD = dimensionless fracture panel‟s length along the inclination direction, m 

∆x = fracture panel‟s length along the horizontal direction, m 

∆xD = dimensionless fracture panel‟s length along the horizontal direction, m 

a, b, c, A= parameters defined in Appendix 3A 
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A, B1, B2, C, D, G, pf, q
n
 = matrices defined in Appendices A and B 

B = formation volume factor, m
3
/m

3
 

Cf  = fracture conductivity, mD∙m 

CfD = dimensionless fracture conductivity 

Cs = dimensionless coefficient defined in this work 

ctf = fracture total compressibility,  MPa
-1

 

ctm = matrix total compressibility, MPa
-1

  

Cw = wellbore storage coefficient, bbl/psi 

CwD = dimensionless wellbore storage coefficient 

h = formation thickness, m 

hD = dimensionless formation thickness 

hf = fracture height, m 

kf = fracture permeability, mD 

km = matrix permeability, mD  

l = space position along the inclination direction of the fracture, m 

lD = dimensionless space position along the inclination direction of the fracture 

lf = fracture length along inclined direction  

li,j = space position along the inclination direction of fracture panel (i, j), m 

Nf = number of panels of the discretized fracture 

Ni = number of panels of the discretized fracture along horizontal direction 

Nj = number of panels of the discretized fracture along inclined direction 

 p = pressure, MPa 

pD = dimensionless pressure 
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pf = fracture pressure, MPa 

pfD = dimensionless fracture pressure 

pi = initial reservoir pressure, MPa 

pw = bottomhole pressure 

pwD = dimensionless bottomhole pressure 

PwD = real dimensionless wellbore pressure 

pwpD = dimensionless pressure of the well-panel 

q = flux rate form the matrix to the fractureunder standard condition, m
3
/d 

qD = dimensionless flux 

qf-w = flux from fracture to the wellbore under standard condition, m
3
/d 

qf-wD = dimensionless flux from fracture to the wellbore 

qw = well production rate under standard condition, m
3
/d 

req = equivalent radius, m  

reqD = dimensionless equivalent radius 

rw = wellbore radius, m 

rwD = dimensionless wellbore radius  

S = skin factor 

t = time, d 

tD = dimensionless time 

w = fracture width, m 

wD = dimensionless fracture width 

x, y and z = x-, y-, and z-coordinate 

x0, y0, z0 = center position coordinates of the line/plane source, m 
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x0D, y0D, z0D = dimensionless center position coordinates of the line/plane source 

xD, yD and zD = dimensionless coordinate  

xe, ye, and ze = reservoir dimension, m 

xf = fracture length along horizontal direction, m 

xf/2 = half fracture length along horizontal direction, m 

y(li,j), z(li,j) = the space coordinates at position li,j, m 

α = diffusivity coefficient, m
2
/d 

β = unit conversion factor which equals to 0.0853 

γ = dimensionless coefficient  

δ = the instantaneous flux 

θ = inclination angle 

λ = penetrating ratio  

μ = oil viscosity, mPa∙s 

ϕf = effective porosity in the fracture system 

ϕm = matrix porosity 

Subscripts and superscripts 

f = fracture 

i = initial condition 

m = matrix 

sc = standard condition 

t = total 

w = wellbore 
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Appendix 3A - Numerical Formulation for the Oil Flow in the Fracture System 

In the fracture system, the transient flow equation for the oil flow can be written as: 

2 2

2 2

f f f tf f

f f

p p c pB q

x l x lwk k t



 

  
  

    
                                 (3A-1) 

Writing Equation (3A-1) in a dimensionless form, one can have: 

2 2

2 2

2fD fD fDD sD
D

D D D D fD fD D

p p pw Ch
q

x l x l C C t

  
  

    
                               (3A-2) 

At the time level t
n 

D, applying finite difference approximation to the first term on the left-hand 

side of Equation (3A-2) gives: 

1, , 1, ,

1 1, ,
2 2

2

2

1 1, ,
2 2

1 1 i j i j i j i j

i j i j

n n n nn n
fD fD fD fDfD fD fD

D D D D D D Di j i j

p p p pp p p

x x x x x x x

 

  

         
                           

  (3A-3) 

Since the fracture panels have a uniform dimension in this work, Equation (3A-3) can be 

simplified as: 

 
1, , ,

2

2 2

1
2

i j i j i j

fD n n n

fD fD fD

D D

p
p p p

x x 


  

 
                                    (3A-4) 

Similarly, the second term on the left-hand side of Equation (3A-2) can be rewritten as: 

 
, 1 , , 1

2

2 2

1
2

i j i j i j

fD n n n

fD fD fD

D D

p
p p p

l l  


  

 
                                      (3A-5) 

Applying backward-difference approximation on the time derivative term, one can have: 

 
, ,

11
i j i j

fD n nD s D s
fD fDn

fD D fD D

pw C w C
p p

C t C t




 
 

                                   (3A-6) 

Inserting Equations (3A-4), (3A-5) and (3A-6) into Equation (3A-2), one can have: 
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                   (3A-7) 

Rearranging Equation (3A-7) gives the following: 

, 1, 1,

, 1 , 1 , ,

2 2 2 2

1
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                     (3A-8) 

For convenience, we define the following parameters: 

1, 1, , 1 , 12 2
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D D
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x l
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                                     (3A-9) 
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                                         (3A-10) 

, 1, 1, , 1 , 1i j i j i j i j i jA a a a a c                                              (3A-11) 

As such, Equation (3A-8) can be rewritten as: 

, 1, 1, , 1 , 1 , ,

1

, 1, 1, , 1 , 1i j i j i j i j i j i j i j
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
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It is noted that,  
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In particular, the approximated flow equation for the well-panel should be written as:    

 
, 1, 1, , 1 , 1 , ,

1

, 1, 1, , 1 , 1i j i j i j i j i j i j i j

n n n n n n n n

i j fD i j fD i j fD i j fD i j fD D f wD fDA p a p a p a p a p b q q cp
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

            (3A-14) 

Applying Equations (3A-12) and (3A-14) to all of the fracture panels and arranging these fracture 

flow equations into a matrix format gives:  
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 1

1 2

n n n n

f f wD fq 

    A p B q B C p ,                                       (3A-15) 

where ⨀ is Hadamard product operator, A is a matrix of the coefficients Ai,j, ai-1,j, ai+1,j, ai,j-1, and 

ai,j+1, whose dimension is nf × nf,  

 ,     (3A-16) 

where (iw, jw) indicates the position of the well-panel, the subscripts Nf ×1 indicates the 

dimensions of the corresponding matrices, and the position of constant b in matrix B2 is consistent 

with the position of pressure p
n 

fDiw,jw
 in matrix p

n 

f . 
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Appendix 3B – Analytical Solution for the Oil Flow in the Matrix System 

The instantaneous line source function and the instantaneous plane source function have been 

introduced in detail by Gringarten and Ramey (1973).  These two functions are given as follows: 

the instantaneous line source function in 1-dimension (1-D) bounded reservoir: 

  2 2
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                  (3B-1) 

and the instantaneous plane source function in 1-D bounded reservoir: 
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where δ is the instantaneous flux, α is diffusivity which is defined as α = km/μϕmct, xe is reservoir 

dimensions along the 1-D X direction, and x0 represents the center position of the line/plane 

source. A line source in a 3-D reservoir (see Figure 3B-1) can be visualized as the intersection of 

a plane source along X direction, a line source along Y direction, and a line source along Z 

direction. As introduced by Carslaw and Jaeger (1959) and Gringarten and Ramey (1973), the 

pressure function of an instantaneous line source in such a 3-D bounded reservoir can be 

described with Newman product method as: 

A line source function in 3-D 

= A plane source function in  direction 

 A line source function in  direction

 A line source function in  direction

X

Y

Z





                                   (3B-3) 

Inserting Equations (3B-1) and (3B-2) into Equation (3B-3) gives the instantaneous line source 

function in a 3-D bounded reservoir: 
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where ye and ze are the reservoir dimensions along Y and Z directions, y0 and z0 represent the 

center position of the line source along Y and Z directions. Figure 3B-2 shows a side view of a 

plane source, i.e., fracture panel (i, j). One can obtain the plane source function by integrating 

Equation (3B-4) along the inclined direction: 
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,             (3B-5) 

where x0i,j
 represents the center position of the fracture panel (i, j) along x-axis, ∆l is the fracture 

length along the inclination direction, li,j represent the spatial position along the inclination 

direction of fracture panel (i, j), and y(li,j) and z(li,j) indicate the space coordinates at position li,j. 

For a continuous plane source which has a constant flux rate, the pressure function is written as: 
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,            (3B-6) 

where (η1, η2) indicates that the plane source is continued from time η1 to time η2. In practice, the 

flux rate of each fracture panel is time-dependent. Based on the superposition principle, one can 

calculate the pressure response caused by an inclined plane source that has a time-dependent flux 

rate with the following equation: 
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                 (3B-7) 

Equation (3B-7) can be used to calculate the pressure response caused by a single fracture panel, 

while the pressure response caused by the entire fracture should be the summation of the pressure 

response from all of the panels, leading to the following: 
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          (3B-8) 

Rewriting Equation (3B-8) into a dimensionless form leads to: 
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        (3B-9) 

Based on Equation (3B-9), we can calculate the dimensionless pressure at an arbitrary position in 

the bounded reservoir. As such, at time t
n 

D, the dimensionless pressure at the center position of 

fracture panel (I, J) can be expressed as: 



122 
 

 

 

1, , , , ,

, ,

0 0 0

1 1 1

2 2

0 0

2
1

2 2

2

2
, , ,

4 1
1 exp sin cos cos

2

1 2 exp cos

j ki
D

kI J I J I J I J i j
D

i j I J

j Ni N k n t
n k

fD D D D D D
t

i j kD eD eD

n

D DD DeD D

mD eD eD eD eD

D

eD

p x y z t q
y x y

m x m xm tx m x

x m x x x x

m

y



   



 



 

  








    
   

     

 
   

 

  



 

 

,, ,

,

, ,

,

0

0
1

2 2
0

2
1

cos

1 2 exp cos cos d d

D D i ji j I J

Di j

i j I J

i j

l l D D D

l
m eD eD

D D DD
D D

m eD eD eD

m y l m y

y y

m z l m zm
l

z z z

 

  











 
 
 
  

 
  

    
   





         (3B-10) 

For convenience, we define that: 
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          (3B-11) 

As such, Equation (3B-10) can be rewritten as:  
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It is noted that, at each timestep, all the parameters in term G
k 

i,j are known; hence the value of G
k 

i,j 

can be readily calculated by substituting the values of these parameters into Equation (3B-11). 

Applying Equation (3B-12) to all of the fracture panels and arranging these matrix flow equations 

into a matrix format gives: 

n n

f  p Gq D ,                                                    (3B-13) 
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where the matrices p
n 

f and q
n
 are defined in Equation (3A-16),  

 ,                              (3B-14) 

and 

                                            (3B-15) 

 

 
Figure 3B-1. 3D view of a line source in a bounded reservoir.  
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Figure 3B-2. Side view of an inclined plane source in a bounded reservoir.  
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Summary 

In order to improve the field productivity, the industries can create new fractured wells to 

reduce the interval between the initial fractures (initial fracture indicates a fracture that is 

induced during the initial fracturing treatment). Production from the initial fractured wells can 

induce stress reorientation in the vicinity of the fractures. As such, a refracturing treatment in 

the stress reorientation region can lead to a reoriented refracture which has a certain azimuth 

with respect to the initial fractures. This azimuth can even be 90 degrees if the stress 

reorientation is sufficiently large. In addition to the conventional parameters (including 

refracture‟s length, refracture‟s conductivity, and the in-situ conditions), there are two more 

factors, the reorientation azimuth and the interference from the initial fracture, can exert 

significant influence on the transient flow behavior of the reoriented refractures. In such a case, 

the conventional analytical/semi-analytical models which neglect these two factors are no 

longer applicable to characterize the transient flow behavior from such a refracture.  

In this work, we develop a novel semi-analytical model to characterize the transient flow 

behavior of a reoriented refracture considering the interference from the initial fractures. In this 

model, the fractures are explicitly represented with discretized segments. We apply finite 

difference approximation to the initial fractures and refractures, respectively, to simulate the 

transient flow in the fracture system. In addition, the fluid flow in the matrix system can be 

characterized by Green function and Newman product method. Based on the continuity of flux 

and pressure, we couple the fracture flow equations with the matrix flow equations to construct a 

semi-analytical model. With the aid of the proposed model, we conduct a thorough investigation 

of the transient flow behavior of reoriented refractures. It is observed that, at the early production 

period, two fracture pseudo-steady-state flows can appear due to the interference from the initial 



132 
 

fractures. The formation linear flow and bilinear flow can also be observed during the production 

period of a refractured well. In an anisotropic-permeability reservoir, the refracture‟s azimuth and 

position can exert a significant impact on the productivity of the fractures. There is a region in the 

vicinity of the initial fractures, within which an orthogonal refracture can lead to the highest field 

productivity.  

4.1. Introduction 

The field productivity in the tight and shale formations commonly undergo a rapid decline 

following the initial fracturing treatment [1, 2, 3]. As such, the refracturing treatment has been 

widely applied in such formations to improve the field productivity. The refracturing treatment 

can be summarized into two categories: first, refracturing a poor-growth initial fracture (a poor-

growth fracture represent a fracture that has small fracture-length); and second, creating new 

fractures to reduce the interval between the initial fractures. This work focuses on the second 

category of the refracturing treatment. Field studies have shown that the stress in the formations 

frequently exhibits a non-uniform depletion due to the production from the initial fractures, 

leading to a stress reorientation region in the vicinity of these fractures [4, 5, 6, 7, 8]. Thus, a 

refracturing treatment in this stress reorientation region can create a reoriented refracture which 

has a certain azimuth with respect to the initial fractures [9, 10, 11, 12, 13]. This azimuth can 

even be 90 degrees if the stress reorientation is sufficiently large.  

Warpinski and Branagan introduced the concept of altered-stress fracturing and claimed that a 

fracturing treatment taking advantage of the stress reorientation can create a favorable fracture 

orientation [14]. On the basis of the numerical simulation approach, Elbel and Mack investigated 

the stress changes caused by the production from the initial fractures. They also stated that the 

reorientation of the refracture is almost sure to occur if the horizontal stresses are essentially 
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equal [15]. Palmer studied the stress changes induced by the propped hydraulic fractures with 

an emphasis of its influence on the propagation of the refractures in coalbed-methane reservoirs 

[16]. These studies provided theoretical evidence of the reoriented refractures, and the existence 

of the reoriented refractures was subsequently verified in the Lost Hills field and the Codell 

formation [10, 17]. Figure 4-1 illustrates the fracture orientations in the eastern part of the Lost 

Hills field, which is adapted from Wright et al. [17]. The shaded arcs represent the range of the 

fracture azimuths that were monitored over all of the fractured wells, and the fracture in the 

elliptical box represents a reoriented refracture. As this figure shows, the orientations of the 

initial fractures are all close to an average azimuth of N55
o
E, whereas the refracture exhibits a 

fracture azimuth around N85
o
E.  

 

Figure 4-1.  Fracture orientations in the eastern part of the Lost Hills field (adapted from [17]). 

Since the reorientation of the refractures frequently occurs after the refracturing treatment, it is 

highly necessary to characterize transient flow behavior of the reoriented refractures. 

Characterizing the fluid transient flow can help the industries conduct history matching or predict 

production from such fractures. However, using the numerical method to characterize the fluid 
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transient flow of the reoriented refractures can be time-consuming. This is especially true when 

one wants to conduct history matching work on a refracture, which can require numerous runs of 

a reservoir model. Due to the facts that the semi-analytical method is efficient in computation and 

is convenient in constructing a fractured reservoir model, in recent years many semi-analytical 

models have been proposed to characterize the transient flow behavior from various fractures, 

including vertical fractures, inclined fractures, horizontal fractures, multi-stage fractures, and 

fracture-networks [18, 19, 20, 21,22]. However, there is still no available semi-analytical model 

to simulate the transient flow behavior of a reoriented refracture.  

In this work, we introduce a semi-analytical model to characterize the transient flow behavior of 

a reoriented refracture. With the aid of this proposed model, we distinguish the different flow 

regimes of a reoriented refracture. The flux distribution along the refracture is examined at early 

production period. As such, one can have a direct insight into the interference of the initial 

fractures on the refractures. Hereafter, we carry out a thorough investigation about the influences 

of refracture‟s azimuth, refracture‟s position, and permeability anisotropy, on the field 

productivity. In addition, we depict the optimal reoriented azimuth map of a refracture with the 

consideration of the interference from the initial fractures.  

4.2. Methodology 

This work considers a reoriented refracture in the vicinity of the initial fractures. Figure 4-2 

shows an example of a fracture system containing a reoriented refracture and four initial fractures. 

In this figure, the initial fractures exhibit a relatively uniform azimuth while the refracture 

undergoes a significant reorientation with respect to the initial fractures. We discretize the initial 

fractures into n1 segments and the refracture into n2 segments. In order to characterize the 

transient flow behavior of the refracture, we make the following fundamental assumptions: 
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 The reservoir is infinite in X-Y plane and sealed by impermeable upper and lower 

boundaries; 

 The initial fractures and the refractures fully penetrate the reservoir along the vertical 

direction; 

 The well is producing single-phase oil; 

 The initial reservoir pressure is a constant throughout the entire reservoir; 

 The reservoir thickness, porosity, oil viscosity, and oil compressibility are both constant 

and homogeneous in the reservoir; 

 The oil enters the wellbore only through the fractures; and 

 The influence of the fracturing treatment on the reservoir pressure is neglected. 

 

Figure 4-2. Discretization of the initial fractures and the reoriented refracture. 

Since the permeability anisotropy along the horizontal direction is also considered in this work, 

we first convert the anisotropic-permeability system into an equivalent isotropic-permeability 

system by using the approach introduced by Spivey and Lee [23]. Table 4-1 summaries the 

parameters used in the anisotropic-permeability system and their counterparts in the equivalent 

isotropic-permeability system. In this table, the parameters used in the anisotropic-permeability 

system are written in uppercase, whereas their counterparts in the equivalent isotropic-

permeability system are written in lowercase (excluding CF and Cf which indicate the fracture 
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conductivity in the anisotropic-permeability system and in the equivalent isotropic-permeability 

system, respectively).  

Table 4-1. Conversion from an anisotropic-permeability system to an equivalent isotropic-

permeability system.  

Anisotropic system Equivalent isotropic system 

Kmx, Kmy (Kmy=RK Kmx) 
0.5=m mx my K mxk K K R K  

X 
0.25m
K

mx

k
x X R X

K
   

Y 
0.25m

K

my

k
y Y R Y

K

   

Z z = Z 

Lf 
0.5 2 0.5 2cos sinf f K Kl L R R    

Wf 

 0.5

1 arctan tanKR   

 0.5

2 arctan tanKR   

 0.5 2 0.5 2

2 1sin cos cosf f K Kw W R R       

CF 0.5 2 0.5 2cos sinf F K KC C R R    

 

For the sake of convenience, we define the following dimensionless parameters: 
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In addition, at constant BHP condition, we have: 

i w
wD

i r

p p
p

p p





,

i f

fD

i r

p p
p

p p





                                                  (4-6) 

 2

w
wD

m i r

q B
q

k h p p







, 

 2

fw

fwD

m i r

q B
q

k h p p







, 

 2

f

fD

m i r

q B
q

k h p p







           (4-7) 

whereas, at constant production rate condition, we have: 
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The meaning of the terms showing up in the above equations can be referred to the nomenclature 

section.  
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4.2.1 Analytical Formulation of the Matrix Flow 

The fractures are discretized into small segments and for each fracture segment there are two 

unknowns (i.e., fracture pressure, pf, and flux rate from the matrix to the fracture segment qf). In 

the matrix system, the relationship between pf and qf can be analytically characterized. In an 

infinite reservoir, the pressure change at time t at position (x, y) induced by a fully penetrating 

continuous line source (see Figure 4-3a) can be calculated with the Green function provided in 

Gringarten and Ramey [24]: 

   
   

 
2
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1
2 2

0 0
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     
     

    
              (4-11) 

where ∆p indicates pressure change, the integration from η1 to η2 represents that the line source is 

continued from t = η1 to t = η2,  and q is flux per unit length (m
2
/d) from the matrix to the fracture. 

The fractures are discretized into small segments, as shown in Figure 4-3. For each fracture 

segment (see Figure 4-4b), q has the following relationship with qf: 

  d
l l

f
l

q q l l


                                                             (4-12) 

where ∆l is the length of a fracture segment. With the aid of Equation (4-11), we can calculate the 

pressure change induced by a fracture segment by integrating Equation (4-11) along the 

propagation direction of this fracture segment: 
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If the fracture segment is sufficiently small, the flux distribution along a single fracture segment 

can be approximately represented with an average value. Thus, Equation (4-13) can be rewritten 

as: 
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Inserting the dimensionless parameters into Equation (4-14) gives: 
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            (4-15) 

For convenience, we use GfD (xD, yD, tD) to represent the integral term of Equation (4-15). As 

such, Equation (4-15) can be rewritten as: 

   , , , ,D D D D fD fD D D Dp x y t q G x y t                                             (4-16) 

where pD is dimensionless pressure, qfD is dimensionless flux rate. The pressure change at the 

central position of a fracture segment can be calculated by collecting the changes induced by all 

of the fracture segments throughout the entire production period. As such, before the refracturing 

treatment we have: 
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where i = 1, 2…n1 (xfD, yfD) indicates the central position of a fracture segment, and the 

superscripts k and n indicate the k
th

 and n
th

 timestep.  

After the refracturing treatment we have: 
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where j = 1, 2…n2, and K indicates that the refractures are created at the end of the K
th

 timestep. 

Applying Equations (4-17) through (4-19) to all of the fracture segments and arranging these 

equations into a matrix format yields: 

before the refracturing treatment,  

 
1 1 1 1, 1=n k k

f D f D f f D p G q RHS                                                   (4-20) 

and after the refracturing treatment,  
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                                      (4-21) 

where the matrices p, q, G, and RHS are defined in Appendix 4A.  

    
(a)                                                (b) 

Figure 4-3. Schematics of a line source and a plane source: (a) top view of a line source in x-y 

plane (this line source fully penetrates the reservoir along the z-axis); and (b) top view of a 

fracture segment in x-y plane (this plane source fully penetrates the reservoir along the z-axis). 

4.2.2 Numerical Formulation of the Fracture Flow 

Flow Equation. The fracture width is far smaller than the fracture length, such that the transient 

flow in the fracture can be simplified as 1D flow. The 1D fracture flow equation that considers 

the flux from the matrix to the fracture is given as: 



141 
 

 ,f f

f f f

f tf

p pq l t B
w w

l l h c t




  
  

   
                                           (4-22) 

The fractures are discretized into small segments, and the segments of each fracture have uniform 

length, width, and properties; hence, Equation (4-22) can be numerically solved by applying 

finite difference approximation: 
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Substituting the dimensionless definitions into Equation (4-23) gives: 
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Equation (4-24) can also be rearranged as: 

2 2

1

, 1 , , 1 , ,

2
2

fD fD s fD fD fD sn n n n n

fD i fD i fD i fD i fD in n

fD D fD fD D

l w C l l w C
p p p q p

C t C C t




 

   
         

               (4-25) 

In particular, the flow equation of the fracture segment that is connected to the wellbore (which is 

shown in Figure 4-4a) can be written as: 
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               (4-26) 

and the flow equation of the fracture segment at the fracture tip (which is shown in Figure 4-4b) 

can be written as: 
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                   (4-27) 

In addition, a reoriented refracture can result in an intersection between the initial fracture and the 

refracture (see Figure 4-5a). In such a case, the intersected fracture segment (i or j) is refined into 
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two smaller segments (i.e., i- and i+; j- and j+), as shown in Figure 4-5b. The flow equation that 

characterizes the transient flow behavior of the refined segment i- is given as: 
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  (4-28) 

where 
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  (4-29) 

where the subscripts a = i-1 or i-, and b = i+, j- or j+. An equation that is similar to Equation 

(4-28) can be used to characterize the transient flow in the other three refined segments i+, j-, and 

j+. Applying the fracture flow Equations (4-25) through (4-28) to the fracture segments and 

arranging them into a matrix format gives: 

before the refracturing treatment, 
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and after the refracturing treatment, 
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A p B q C q D p
                                   (4-31) 

where ⨀ is Hadamard product operator, and the definitions of the matrices of Af, Bf, Cf, Df, and 

qfwD can be referred to Appendix 4B.  
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(a)                                                   (b) 

Figure 4-4. Fracture segments that are located at special positions: (a) fracture segment that 

connects to the wellbore; and (b) fracture segment at the fracture tip.  

      

(a)                                                   (b) 

Figure 4-5. Fracture segments at the intersection position: (a) fracture segments of the initial 

fracture and the refracture before being refined; and (b) fracture segments of the initial fracture 

and the refracture after being refined. 

Production Constraints. The fractured well can produce oil under constant BHP condition or 

constant production rate condition. The constant BHP condition at the wellbore can be expressed 

as: 

 f l WB wp p                                                               (4-32) 

where WB represents the position of the wellbore; thus, the relationship between the production 

rate and the BHP can be written in the following dimensionless format: 
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                                              (4-33) 

where i and i-1 indicate the two fracture segments that are connected to the wellbore. The 

constant production rate condition can be characterized with:  

f f w f

l WB l WB
f

p p q w h

l l k
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 
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 
                                             (4-34) 

The wellbore storage effect can be taken into account based on the method provided by van 

Everdingen and Hurst [25] under constant production rate condition. As such, we can have the 

following equation at constant production rate condition: 
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                               (4-35) 

Equation (4-33) can also be arranged into a matrix format as follows: 

before the refracturing treatment,  
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                                             (4-36) 

and after the refracturing treatment,  
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Similarly, Equation (4-35) can also be arranged into a matrix format as follows: 

before the refracturing treatment,  
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and after the refracturing treatment,  
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where the matrix Mf is defined in Appendix 4B, and the matrices BHPf, Ff, Hf, Lf, pwD, and qwD 

are defined in Appendix 4C. 

4.2.3 Solution Methodology 

On the basis of the continuity of flux and pressure, one can group the matrix flow equations, 

fracture flow equations and the production constraint equations to construct systems of linear 

equations that characterize the transient flow behavior of the refractures. At each timestep, we 

have the following unknowns in the systems of linear equations: 

before the refracturing treatment, 

 n1 dimensionless pressures of the initial fracture panels, pf
1
D; 

 n1 dimensionless fluxes from the matrix to the initial fracture panels: qf
1
D; 

 2N1 dimensionless fluxes from the initial fractures to the wellbore, qfw
1
D; 
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 N1 dimensionless production rates at constant BHP condition (or N1 dimensionless BHPs 

at constant production rate condition): pw
1
D (or qw

1
D).  

and after the refracturing treatment, 

 n1+n2 dimensionless pressures of the fracture panels, pf
1
D and pf

2
D; 

 n1+n2 dimensionless fluxes from the matrix to the fracture panels: qf
1
D and qf

2
D; 

 2N1+2N2 dimensionless fluxes from the fractures to the wellbore: qfw
1
D and qfw

2
D; 

 N1+N2 dimensionless production rates at constant BHP condition (or N1+N2 dimensionless 

BHPs at constant production rate condition): qw
1
D and qw

2
D (or pw

1
D and pw

2
D).  

We also have the following equations at each timestep: 

before the refracturing treatment, 

 n1 matrix flow equations given by Equation (4-17); 

 n1 fracture flow equations given by Equation (4-25); 

 3N1 equations that characterize the production constraint conditions given by Equation 

(4-33) or Equation (4-35). 

and after the refracturing treatment, 

 n1+n2 matrix flow equations given by Equations (4-18) and (4-19); 

 n1+n2 fracture flow equations given by Equation (4-25); 

 3N1+3N2 equations that characterize the production constraint conditions given by 

Equation (4-33) or Equation (4-35). 

The systems of linear equations are close before or after the refracturing treatment.  We solve 

them with the Gaussian elimination method. Appendix 4D provides these systems of linear 

equations in matrix format. 
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4.3. Validation of the Proposed Model 

We validate the aforementioned model against a numerical simulator (Eclipse) under both 

constant production rate condition and constant BHP condition. In order to simulate the transient 

flow behavior of the fractures in an infinite reservoir, the reservoir model used in the Eclipse is 

set up with a sufficiently large size with dimensions of 5000×5000×15 m
3
.  We also conduct 

sensitivity analysis on the grid size and we find that if the reservoir is discretized into more than 

500×500×3 cells (each cell has a dimension of 10×10×5 m
3
), the results from eclipse exhibit 

negligible difference with different numbers of cells. Therefore, the grid size used in Eclipse is 

10×10×5 m
3
.
 
Figure 4-6a shows a top view of the local grid system that contains the two 

fractures, and Figure 4-6b shows the refined cells that are used to characterize the fractures. As 

one can see in Figure 4-6a, the refracture is orthogonal to the initial fracture. The wellbores are 

located at the centers of the fractures and the distance between the wellbores is 70 m. Both the 

initial fracture and the refracture have a length of 50 m and a width of 0.1 m. The fluid and rock 

properties used are given as follows: ctm = 0.0012 MPa
-1

, ϕm = 0.2, Kmx = 0.2 mD, Kmy = 0.1 mD, 

pi = 30 MPa, μ = 1 mPa∙s, Cw = 0, B = 0.985 (dead oil). The initial fracture and the refracture 

have the same properties and production constraints: Kf = 1000 mD, ctf = 0.0012 MPa
-1

, ϕf = 0.2, 

qw = 0.5 m
3
/d (constant production rate condition), and pw = 5 MPa (constant BHP condition). 

The simulation is conducted with two production periods with each period lasting 500 production 

days. During the first production period, only the initial fracture is put into production and the 

cells that are used to characterize the refracture are assigned with a permeability equal to the 

matrix permeability. During the second production period, both the initial fracture and the 

refracture are put into production, and the cells of the refracture are assigned with a permeability 

of 1000 mD.  
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(a)                                                              (b) 

Figure 4-6. Grid system used in the Eclipse model: (a) top view of the local grid system that 

characterizes the initial fracture and the refracture; and (b) zoom-in view of the refined grids. 

Before we compare the results obtained with the proposed model to those obtained with Eclipse, 

we first examine the impact of the number of fracture segments on the outputs of our model. We 

discretize the fractures, including the initial fracture and the refracture, into 22, 26, 30 and 34 

segments, respectively, and calculate the transient flow behavior of the fractures with the above-

mentioned parameter values. Figure 4-7 presents the pressure responses of the refracture (Figure 

4-7a) and the field production rates (Figure 4-7b) that are calculated with the different numbers of 

fracture segments. In Figure 4-7, the field production rate qt is defined as: 

 
1 2

1 2
1 1

m m

m N m N

t w w
m m

q q q
 

 

                                                     (4-40) 

and the time t2 is defined as: 

 2 1t t t                                                               (4-41) 

where t is production time, and t1 is the production time before the refracturing treatment (i.e., 

500 days). Figure 4-7 shows that the simulation outputs become unchanged if the number of the 

fracture segments is larger than 30; therefore, we use 30 fracture segments in the subsequent 

calculations. Figure 4-8 compares the pressure responses of the refracture (Figure 4-8a) and the 

Initial fracture 

Refracture 
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field production rates (Figure 4-8b) calculated with the proposed model against those calculated 

with Eclipse. As seen from this figure, the results obtained with the proposed model are in good 

agreement with those obtained with Eclipse. This implies that the proposed model is reliable in 

characterizing the transient flow behavior of a reoriented refracture. 

  

(a)                                                              (b) 

Figure 4-7.  Impact of the number of fracture segments on the outputs of the semi-analytical 

model: (a) pressure drops and pressure derivatives under constant production rate condition; and 

(b) field production rates under constant BHP condition. 

    

       (a)                                                                         (b) 

Figure 4-8. Comparison between the pressure response and field production rates calculated with 

the proposed model and those by Eclipse:  (a) pressure drops and pressure derivatives under 

constant production rate condition; and (b) field production rates under constant BHP condition. 
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4.4. Results and Discussion 

In this section, a two-fracture system which contains a single initial fracture and a single 

refracture is studied. We distinguish the flow regimes that can be observed during the production 

period of a reoriented refracture. Hereafter, we study the influences of refracture‟s reoriented 

azimuth, refracture‟s position, and permeability anisotropy on the productivity of the fractures. 

Furthermore, we determine the reoriented azimuths of a refracture that can lead to the highest 

field productivity. The following benchmark dimensionless values for the initial fractures and the 

refractures are used in the following studies: Wf1D = 0.0001, Wf2D = 0.0001, Lf1D = 2, Lf2D = 2, γ = 

1.069×10
-8

, Cs = 1, CwD = 1, and the refracture is put into production at the dimensionless time of 

10. It should be noted that although only a two-fracture system is studied in this work, this 

proposed model can also be used to characterize the transient flow behavior of multiple-fracture 

systems. 

4.4.1 Flow Regimes 

We consider a single initial fracture and a single reoriented refracture in order to illustrate the 

flow regimes that can be observed during the production period of a refracture. The ratio of the 

horizontal permeability RK (RK = Kmy/Kmx) is 1. The flow regimes of the reoriented refracture are 

investigated under the constant production rate condition on two scenarios. Scenario #1 considers 

a refracture which is distant from the initial fracture and has a small dimensionless fracture 

conductivity, whereas scenario #2 considers a refracture which is in the vicinity of the initial 

fracture and has a large dimensionless fracture conductivity. Figure 4-9 shows the schematic of 

the fracture system. The used data of the initial fracture are as follows: Xfw1D = 0, Yfw1D = 0, CF1D 

= 10, 𝜃f1 = 0
o
). The used data of the refracture in the two scenarios are as follows: scenario #1, 

Xfw2D = 20, Yfw2D = 0, CF2D = 1, and 𝜃f2 = 90
o
; and scenario #2, Xfw2D = 1.5, Yfw2D = 0.5, CF2D = 20, 
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and 𝜃f2 = 150
o
. Figure 4-10 presents the pressure drop curves and the pressure derivative curves 

that are obtained with the proposed model for these two scenarios. As shown in Figure 4-10a, one 

can distinguish the following flow regimes in scenario #1: (1) wellbore after flow, (2) fracture 

pseudo-steady-state flow, (3) bilinear flow (1/4-slope), (4) early pseudo-radial flow, and (5) late 

pseudo-radial flow. It is noted that there are two pseudo-radial flow periods in this scenario. The 

early pseudo-radial flow occurs around the refracture, while the late pseudo-radial flow occurs 

around both the initial fracture and the refracture.  

 
Figure 4-9. Schematic of the fracture system.  
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(a) 

 
(b) 

Figure 4-10. Identification of the flow regimes that can be observed during the production period 

of a reoriented refracture: (a) flow regimes of scenario #1; and (b) flow regimes of scenario #2. 

As for the scenario #2 (Figure 4-10b), one can observe the following flow regimes: (1) wellbore 

after flow, (2) early fracture pseudo-steady-state flow, (3) late fracture pseudo-steady-state flow, 

(4) formation linear flow (1/2-slope), and (5) late pseudo-radial flow. The fracture pseudo-steady-

state flow can be observed only if the wellbore storage effect is sufficiently small. An interesting 

observation is that there are two fracture pseudo-steady-state flow periods in Figure 4-10b. This 

is attributed to the interference from the initial fracture. Figure 4-11 presents the flux 

distributions along the refracture and the pressure maps during these two fracture pseudo-steady-

state flow periods. In Figures 4-11a and 4-11c, one can find that the wellbore position (lf2D = 1) 

and the fracture toes (lf2D = 0, and 2) exhibit a relatively higher flux than the other positions along 

the fracture. A similar observation can also be found in Yang et al. [21]. A positive flux indicates 

that the fluid flows from the matrix to the fracture, while a negative flux indicates that the fluid 

flows from the fracture to the matrix. As one can see in Figure 4-11a, the flux distribution during 
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the early fracture pseudo-steady-state flow can be divided into three sections: sections #1 and #3, 

the flux is increased as the time elapses; and section #2, the flux is decreased as the time elapses. 

One can also distinguish these three sections on the pressure map in Figure 4-11b. In Figure 4-

11c which presents the flux distribution during the late fracture pseudo-steady-state flow period, 

the flux distribution along the refracture can be divided into two sections, namely, section #1 (the 

flux is decreased as time elapses) and section #2 (the flux is increased as time elapses). These two 

sections can also be distinguished on the pressure map in Figure 4-11d. In both Figures 4-11a and 

4-11c, it is observed that the left branch of the refracture lateral that is nearer to the initial fracture 

exhibits smaller flux compared to the right branch of the refracture lateral. 

     

 (a)                                                                           (b) 

     

(c)                                                                           (d) 

Figure 4-11. Flux distributions along the refracture and the pressure maps during these two 

fracture pseudo-steady-state flow periods: (a) flux distribution along the refracture during the 

Section #1 

Section #2 

Section #3 

Section #1 

Section #2 
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early fracture pseudo-steady state flow; (b) pressure map during the early fracture pseudo-steady 

state flow; (c) flux distribution along the refracture during the late fracture pseudo-steady state 

flow; (d) pressure map during the late fracture pseudo-steady state flow. 

4.4.2 Sensitivity Analysis 

The sensitivity analysis is also conducted with a single reoriented refracture and a single initial 

fracture. The influences of refracture‟ position, refracture‟s azimuth, and permeability anisotropy, 

on the transient flow behaviors are investigated under the constant BHP condition. In addition to 

the benchmark dimensionless values, we have Xfw1D = 0, Yfw1D = 0, CF1D = 10, 𝜃f1 = 0
o
, CF2D = 10, 

and the other dimensionless values used in the sensitivity analysis are tabulated in Table 4-2.  

Table 4-2.  Dimensionless values used in Section 4.2 sensitivity analysis. 

 (Xfw2D, Yfw2D) 𝜃f2 RK 

Section 4.2.1 (1.77, 1.77) 0, 45
o
, 90

o
 0.1, 1 , 10 

Section 4.2.2 

(2.50, 0),  

(1.77, 1.77),   

(0, 2.50) 

45
o
 0.1, 1 , 10 

Section 4.2.3 

(2.50, 0),  

(1.77, 1.77),  

 (0, 2.50) 

0, 45
o
, 90

o
 1 

4.4.2.1 Effect of Refracture’s Azimuth and Permeability Ratio 

Figure 4-12 shows the dimensionless field production rates with different refracture‟s azimuths 

and different permeability ratios, and Figure 4-13 shows the dimensionless pressure maps for all 

these cases at dimensionless time of 20. As one can see in Figure 4-12a, with an RK of 0.1, the 

field productivity will be most significantly enhanced if the refracture is orthogonal to the X-axis. 

As seen from Figures 4-13a to 4-13c, an orthogonal refracture (Figure 4-13c) can more 

significantly expand the low-pressure (or high-dimensionless-pressure) area than the refracture 
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that is not exactly orthogonal (Figures 4-13a and 4-13b). Figures 4-12b presents the 

dimensionless field production rates with different refracture‟s azimuths in a homogeneous 

permeability system (RK = 1). In this figure, the field productivity undergoes slight changes as the 

azimuth is varied. From Figures 4-13d to 4-13f, one can also observe that the low-pressure (or 

high-dimensionless-pressure) area has not been much impacted by the variation in the 

refracture‟s azimuth. Figures 4-12c shows that, with an RK of 10, a smaller reoriented azimuth 

can lead to a higher field productivity. Figures 4-13g to 4-13i compare the pressure maps with 

different refracture‟s azimuths with an RK of 10. It can be readily observed that the low-pressure 

(or high-dimensionless-pressure) area with a non-reoriented refracture (Figure 4-13g) is larger 

than those with a reoriented refracture (Figures 4-13h and 4-13i).  

 
(a)                                                                           (b)  

 
(c)                                                                            
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Figure 4-12. Dimensionless field production rates with different refracture‟s azimuths and 

different permeability ratios: (a) dimensionless field production rates with RK = 0.1 and varied 

refracture‟s azimuth; (b) dimensionless field production rates with RK = 1 and varied refracture‟s 

azimuth; (c) dimensionless field production rates with RK = 10 and varied refracture‟s azimuth. 

   

(a)                                     (b)                                      (c) 

   

 (d)                                     (e)                                      (f) 

   

(g)                                     (h)                                      (i) 

 
Figure 4-13. Dimensionless pressure maps with different refracture‟s azimuths and different 

permeability ratios: (a) RK = 0.1, θf2 = 0
o
; (b) RK = 0.1, θf2 = 45

o
; (c) RK = 0.1, θf2 = 90

o
; (d) RK = 1, 

θf2 = 0
o
; (e) RK = 1, θf2 = 45

o
; (f) RK = 1, θf2 = 90

o
; (g) RK = 10, θf2 = 0

o
; (h) RK = 10, θf2 = 45

o
; (i) 

RK = 10, θf2 = 90
o
. 
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4.4.2.2 Effects of Refracture’s Position and Permeability Ratio 

Figure 4-14 illustrates the dimensionless field production rates with different refracture‟s 

positions and different permeability ratios, and Figure 4-15 depicts the dimensionless pressure 

maps for all these scenarios at dimensionless time of 20. The studied positions of the refracture 

include: position #1 (Figures 4-15a, 4-15d, and 4-15g), Xfw2D = 2.50, Yfw2D = 0; position #2 

(Figures 4-15b, 4-15e, and 4-15h), Xfw2D = 1.77, Yfw2D = 1.77; and position #3 (Figures 4-15c, 4-

15f, and 4-15i), Xfw2D = 0, Yfw2D = 2.50. As shown in Figures 4-14a, with an Rk of 0.1, the filed 

productivity is increased as the refracture‟s position is changed from position #1 to position #3. 

This is attributed to that, the interference from the initial fracture towards the refracture is 

decreased as the refracture‟s position changes from position #1 to position #3 (see Figures 4-15a 

to 4-15c). In the homogeneous reservoir where RK = 1, both the filed productivity (see Figure 4-

14b) and the low-pressure area (see Figures 4-15d to 4-15f) undergo slight changes as the 

refracture‟s position is changed. As shown in Figures 4-14c where RK = 10, the field productivity 

with position #1 illustrates a higher value than those with positions #2 and #3. This observation 

can be readily explained with the pressure maps shown by Figures 4-15g through 4-15i, where 

one can see that the interference between the fractures is increased as the refracture‟s position is 

varied from position #1 to position #3.  

 
(a)                                                                           (b) 
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(c)                                                                            

Figure 4-14. Dimensionless field production rates with different refracture‟s positions and 

different permeability ratios: (a) dimensionless field production rates with RK = 0.1 and varied 

refracture‟s position; (b) dimensionless field production rates with RK = 1 and varied refracture‟s 

position; (c) dimensionless field production rates with RK = 10 and varied refracture‟s position. 
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(d)                                     (e)                                      (f) 
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(g)                                     (h)                                      (i) 

 
Figure 4-15. Dimensionless pressure maps with different refracture‟s positions and different 

permeability ratios: (a) RK = 0.1, position #1; (b) RK = 0.1, position #2; (c) RK = 0.1, position #3; 

(d) RK = 1, position #1; (e) RK = 1, position #2; (f) RK = 1, position #3; (g) RK = 10, position #1; 

(h) RK = 10, position #2; (i) RK = 10, position #3.  

4.4.3 Optimal Reorientation Azimuth 

In practice, with the refracture being located at a relative position with respect to the initial 

fracture, different reorientation azimuths of the refracture can lead to different filed productivities. 

We assume that the reorientation azimuth that can lead to the highest field productivity is the 

optimal reorientation azimuth. Consequently, we carry out a comprehensive study of the optimal 

reorientation azimuth of the refracture. It should be noted that the reorientation of a refracture 

should be heavily dependent of the stress field; but in this section, the study is conducted with the 

assumption that the optimal reorientation azimuth can be induced for all of the studied cases 

under a given stress field.  

Figure 4-16 shows the top view of the optimal-reorientation-azimuth maps of the refracture at 

different relative positions with respect to a single initial fracture. In addition to the benchmark 

dimensionless parameters, the following values are used: Xfw1D = 0, Yfw1D = 0, CF1D = 10, 𝜃f1 = 0
o
, 

and CF2D = 0.1, 1, 10, and 100. The refracture‟s azimuth is varied from 0
o
 to 180

o 
with an interval 

of 5
o
. Since the refracture‟s position and reorientation azimuth are symmetric with respect to the 

wellbore of the initial fracture, a quarter of the coordinate system is sufficient to represent the 

entire coordinate system. It is observed in Figure 4-17 that, there is a region in the vicinity of the 

initial fracture, within which an orthogonal refracture is optimal for the field productivity. For 

convenience, this region is called as „orthogonal refracture region‟ in the following text. In a real 

field case, a stress reversal around the initial fracture can be induced due to the production from 
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the initial fracture [6, 26]. Such stress reversal is favorable for creating an orthogonal refracture. 

Therefore, in the filed application, the operators can utilize the induced stress reversal region to 

create an orthogonal refracture to optimize the productivity of the refracture. Beyond the 

orthogonal refracture region, the optimal reorientation azimuth is increased along the counter-

clockwise direction. In addition, comparing the orthogonal refracture regions shown through 

Figures 4-17a to 4-17d, one can see that the area of the orthogonal refracture region is decreased 

as the refracture‟s conductivity is increased.  

 
(a)                                                                           (b) 

   

(c)                                                                           (d) 
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Figure 4-16. Optimal refracture‟s azimuth with different dimensionless conductivities of the 

refracture: (a) optimal refracture‟s azimuth with CF2D = 0.1; (b) optimal refracture‟s azimuth with 

CF2D = 1; (c) optimal refracture‟s azimuth with CF2D = 10; (d) optimal refracture‟s azimuth with 

CF2D = 100. 

4.4.4 Suggestions on Industrial Applications 

Although only a 2-fracture system is studied in this work, this proposed semi-analytical model 

can also be used to characterize the fluid transient flow of multiple-fracture systems. In addition, 

natural fractures can also be incorporated into this proposed model. In order to simulate the fluid 

transient flow in a naturally fractured reservoir, the natural fractures can be treated as initial 

fractures that have a constant production rate of 0. Figure 4-17a presents the distribution of 

fractures (including 4 natural fracture, 1 initial fracture, and 1 refracture) in a reservoir from a top 

view. The dimensionless conductivities of the 4 natural fractures are 1000. Figure 4-17b 

compares the dimensionless production rates of the scenario without natural fractures against that 

with natural fractures. From this figure, one can find that the field production rates of the scenario 

with natural fractures are higher than those without natural fractures.  

For the real field applications, one can make minor modifications on this proposed model to 

account for the specific reservoir conditions. For example, the gas condensate flow can be 

simulated by applying the concept of pseudo-pressure and pseudo-time, the pressure-dependent 

fracture conductivity can be taken into consideration with the method introduced by Yu et al. 

(2016) [27]. 



162 
 

  

(a)                                                                           (b) 

Figure 4-17. A calculation example of applying the proposed semi-analytical model to a 

naturally fractured reservoir: (a) top view of the fracture distribution in a reservoir; and (b) 

comparison between dimensionless productions of the scenario with natural fractures and those 

without natural fractures. 

4.5. Conclusions 

In this work, we develop a semi-analytical model to characterize the transient flow behavior of 

reoriented refractures. This proposed model can be used to evaluate the performance of the 

refractures with the aid of a geomechanical model, or can be applied to conduct history matching 

work. On the basis of this proposed model, we carry out a thorough investigation on the flow 

regimes that can be observed during the production period of the refracture. We also study the 

influences of refracture‟s azimuth, permeability anisotropy, and refracture‟s position on the field 

productivity. Subsequently, we obtain the optimal reorientation azimuth map of the refractures 

around an initial fracture. These case studies lead us to draw the following conclusions: 

 A new semi-analytical model is developed that can be used to characterize the flow 

transient flow behavior of reoriented refractures; 

 Both the formation linear flow and bilinear flow can be observed during the production 

period of a refracture with certain refracture conductivities. At the late production period, 

Initial fracture 

Refracture 

Natural fracture 

Natural fracture 
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two pseudo-radial flow can appear: one is around the refracture and one is around both the 

initial fracture and refracture;  

 In an anisotropic-permeability reservoir, both the refracture‟s azimuth and refracture‟s 

position can significantly influence the productivity of the field and fractures. Their 

influence on the well performance will be less pronounced if the reservoir permeability is 

homogeneous; 

 In the vicinity of the initial fracture, there is an orthogonal region, within which an 

orthogonal refracture can lead to the highest field productivity. The area of the orthogonal 

refracture region is decreased as the refracture‟s conductivity is increased. 

Nomenclature 

∆l = the length of a fracture segment, m 

B = formation volume factor 

C = wellbore storage coefficient, bbl/psi 

CD = dimensionless wellbore storage coefficient 

CF = fracture conductivity in the anisotropic permeability system, mD∙m 

Cf = fracture conductivity in the equivalent isotropic permeability system, mD∙m 

CF1D = dimensionless initial fracture conductivity in the anisotropic permeability system 

CF2D = dimensionless refracture conductivity in the anisotropic permeability system 

CFD = dimensionless fracture conductivity in the anisotropic permeability system 

CfD = dimensionless fracture conductivity in the equivalent isotropic permeability system 

Cs = dimensionless coefficient defined in this work 

ctf = fracture‟s total compressibility, MPa
-1

 

ctm = matrix total compressibility, MPa
-1
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h = formation thickness, m 

km = matrix permeability in the equivalent isotropic permeability system, mD 

Kmx, and Kmy = matrix permeability in the anisotropic permeability system, mD 

l = length along the propagation direction of the fracture in the isotropic-permeability system, m 

lD = dimensionless length along the propagation direction of the fracture in the equivalent 

isotropic-permeability system 

lf = fracture length in the equivalent isotropic permeability system, m 

lfD = dimensionless fracture length in the equivalent isotropic permeability system, m 

lr = reference length, m 

Lf = fracture length in the anisotropic permeability system, m 

Lf1D = dimensionless initial fracture length in the anisotropic permeability system 

Lf2D = dimensionless refracture length in the anisotropic permeability system 

LfD = dimensionless fracture length in the anisotropic permeability system 

N1 = the number of initial fractures 

N2 = the number of refractures 

pD = dimensionless pressure 

pf = fracture pressure, MPa 

pfD = dimensionless fracture pressure 

p
n 

f1D,i = dimensionless fracture pressure of the i
th

 initial fracture segment at the n
th

 timestep 

p
n 

f2D,j = dimensionless fracture pressure of the j
th

 refracture segment at the n
th

 timestep 

pi = initial reservoir pressure, MPa, 

pr = reference pressure, MPa 

pw = bottomhole pressure, MPa 
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pwD = dimensionless bottomhole pressure 

q = flux per unit length from the matrix to the fracture, m
2
/d 

qf = flux rate from the matrix to a fracture segment, m
3
/d 

qf1D = dimensionless flux rate from the matrix to the initial fracture 

q
k 

f1D,I = dimensionless flux from the matrix to the I
th

 initial fracture segment at the k
th

 timestep 

qf2D = dimensionless flux rate from the matrix to the refracture 

q
k 

f2D,J = dimensionless flux from the matrix to the J
th

 refracture segment at the k
th

 timestep 

qfD = dimensionless flux rate from the matrix to a fracture segment 

qfw = flux from fracture to the wellbore, m
3
/d 

qfwD = dimensionless flux from fracture to the wellbore 

qr = reference production rate, m
3
/d 

qw = well production rate, m
3
/d 

qwD = dimensionless well production rate 

QD = dimensionless cumulative production 

rw = radius of the wellbore, m 

RK = permeability ratio in the anisotropic permeability system, Kmy/Kmx 

t = time, day 

tD = dimensionless time 

wf = fracture width in the equivalent isotropic permeability system, m 

wfD = dimensionless fracture width in the equivalent isotropic permeability system  

Wf = fracture width in the anisotropic permeability system, m 

Wf1D = dimensionless initial fracture width in the anisotropic permeability system 

Wf2D = dimensionless refracture width in the anisotropic permeability system 
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WfD = dimensionless fracture width in the anisotropic permeability system 

x, y and z = coordinates in the equivalent isotropic permeability system, m 

x0, y0 = coordinates of a line source in the equivalent isotropic permeability system, m 

x0D, y0D = dimensionless coordinates of a line source in the equivalent isotropic permeability 

system 

xD, yD and zD = dimensionless coordinates in the equivalent isotropic permeability system 

xf1D,i, yf1D,i = dimensionless coordinates of the central position of the i
th

 initial fracture segment in 

the equivalent isotropic permeability system 

xf2D,j, yf2D,j = dimensionless coordinates of the central position of the j
th

 refracture segment in the 

equivalent isotropic permeability system 

X, Y, and Z = coordinates in the anisotropic permeability system, m 

XD, YD, and ZD = dimensionless coordinates in the anisotropic permeability system 

Xfw1D, and Yfw1D = dimensionless coordinates of the wellbore of the initial fracture in the 

anisotropic permeability system 

Xfw2D, Yfw2D = dimensionless coordinates of the wellbore of the refracture in the anisotropic 

permeability system 

β = unit conversion factor which has a numerical value of 0.0853 

γ = a dimensionless coefficient defined in this work 

ηf = βkf /μϕfctf, fracture diffusivity coefficient, m
2
/d 

ηm = βkm /μϕmctm, matrix diffusivity coefficient, m
2
/d 

μ = oil viscosity, mPa∙s 

ϕf = effective porosity in the fracture system 

ϕm = matrix porosity 
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𝜃 = fracture azimuth with respect to X-axis in the anisotropic permeability system 

𝜃f1 = initial fracture azimuth with respect to X-axis in the anisotropic permeability system 

𝜃f2 = refracture azimuth with respect to X-axis in the anisotropic permeability system 

⨀ = Hadamard product operator 

Subscripts 

f
 m 

1 = the m
th

 initial fracture 

f
 m 

2 = the m
th

 refracture 

f1 = initial fracture 

f2 = refracture 

m = matrix 

t = total 
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Appendix 4A – Definition of the Matrices Used to Characterize the Matrix Flow. 

The matrices of p, q, G, and RHS are defined as follows: 
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Appendix 4B – Definition of the Matrices Used to Characterize the Fracture Flow. 
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where the boxes enclosing the coefficients represent that the corresponding fracture segments are 

connected to the wellbore.  
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The matrices Af
2
, Bf

2
, Cf

2
, Df

2
, and qf

2
wD have similar definitions with those of Af

1
, Bf

1
, Cf

1
, Df

1
, 

and qf
1
wD. The only difference is that the properties of the refracture should be used in the 

matrices that have the subscript of „f2‟. 
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Appendix 4C – Definition of the Matrices Used to Characterize the Production Constraints. 
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where Mf 
m 

1
is defined in Equation (4B-6). 
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The matrices BHPf
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in the matrices that have the subscript of „f2‟. 

  



175 
 

Appendix 4D – Systems of the Linear Equations that Characterize the Transient Flow Behavior 

of the Refractures.  

Before the refracturing treatment, we have: 

for the constant BHP condition, 
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and for the constant production rate condition, 
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After the refracturing treatment, we have: 

For the constant BHP condition, 
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and for the constant production rate condition, 
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CHAPTER 5 A SEMI-ANALYTICAL MODEL FOR EVALUATING THE 

PERFORMANCE OF A REFRACTURED VERTICAL WELL WITH AN 

ORTHOGONAL REFRACTURE 
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Summary 

The production from a fractured vertical well will lead to a redistribution of the stress field in the 

formations. If the induced stress changes are sufficiently large to overcome the effect of the 

initial horizontal stress deviator, the direction of the minimum horizontal stress can be turned into 

the direction of the maximum horizontal stress within an elliptical region around the initial 

fracture, resulting in a stress reversal region near the wellbore. In such cases, a refracturing 

treatment can create a refracture that propagates orthogonally to the initial fracture due to the 

stress reversal. As such, the high-pressure area of the formation can be stimulated by the 

refracture and the productivity of the refractured well can be improved. In this work, we develop 

a semi-analytical model to evaluate the performance of a refractured vertical well with an 

orthogonal refracture. In order to simulate the well performance throughout the entire production 

period, we divide the well production into three stages: the first stage - the well is producing oil 

with the initial fracture; the second stage - the well is shut down for the refracturing treatment; 

and the third stage - the well is producing oil with both the initial fracture and the refracture. In 

addition, by discretizing the initial fracture and the refracture into small segments, the 

conductivity of the fractures can be taken into account and the geometry of the fracture system 

can be captured. We use the Green‟s function method to analytically simulate the reservoir flow 

while use the finite difference method to numerically simulate the fracture flow; therefore, a 

semi-analytical model can be constructed by coupling the reservoir flow equations with the 

fracture flow equations. This proposed model is applied to different wellbore and reservoir 

conditions. The calculated results show that this proposed model is versatile as it can simulate 

various wellbore constraints, including the conditions of constant bottomhole pressure, varying 

bottomhole pressure, constant production rate, and varying production rate. The permeability 



182 
 

anisotropy of the reservoir system, as well as the non-uniform conductivity distribution along the 

fracture, can also be incorporated into this proposed model. In addition, we demonstrate that this 

proposed model can be used to simulate other types of refractured vertical well with minor 

modifications. 

5.1. Introduction 

The refracturing treatment has been widely used to repair or replace an inadequate initial 

fracturing treatment (Branch and Drennan, 1991; Lantz et al., 2007; Benedict and Miskimins, 

2009; Potapenko et al., 2009; Ruhle, 2016). The existence of stress reorientation due to the 

production from a good initial fracture provides another motivation for the refracturing treatment 

(Wright et al., 1994; Siebrits et al., 1998; Aghighi et al., 2009; Roussel and Sharma, 2010; Zhao 

et al., 2016). Numerical simulations show that, during the production of a fractured vertical well, 

the stress parallel to the initial fracture will undergo a much faster reduction than that orthogonal 

to the initial fracture. If the stress changes due to the depletion of the formation pressure can 

overcome the effect of the initial horizontal stress deviator, the direction of the local minimum 

horizontal stress will become the direction of the far-field maximum horizontal stress within an 

elliptical area around the initial fracture. As such, a stress reversal region can be observed in the 

vicinity of the wellbore (Siebrits et al., 2000; Weng and Siebrits, 2007; Wolhart et al., 2007; 

Jiang et al., 2016; Gala and Sharma, 2017).  

As generally acknowledged, the hydraulic fractures are always perpendicular to the least 

principal stress (Hubbert and Willis, 1957; Daneshy, 1978; Medlin and Masse, 1984), a 

refracturing treatment on a fractured well with stress reversal region will result in an orthogonal 

refracture to the initial fracture. Figure 5-1a presents the propagation of a refracture as a function 

of time, which is interpreted from the field tiltmeter data (Siebrits et al., 2000). As one can see, 
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although this refracture initially orientates along a direction that has a small angle with respect to 

the initial fracture, it immediately turns towards a direction that is near-orthogonal to the initial 

fracture. Figure 5-1b exhibits another orthogonal refracture system monitored in Daqing oilfield, 

China (Liu et al., 2008). This orthogonal refracture changes the propagation direction after it 

reaches a certain position distant from the initial fracture. These two real field cases provide a 

partial validation of the concept of the orthogonal refracture. Figure 5-2 illustrates a schematic of 

a sufficiently large orthogonal refracture with a stress reversal region near the wellbore, where 

ζhmax is the maximum horizontal stress and ζhmin is the minimum horizontal stress. As is shown in 

this figure, this refracture propagates orthogonally to the initial fracture until it reaches the 

isotropic points where the horizontal stresses are equal along different directions. Beyond the 

isotropic points, the maximum horizontal stress switches back to its original direction, causing 

the refracture to gradually turn towards the initial fracture orientation (Siebrits et al., 1998; Weng 

and Siebrits, 2007; Roussel and Sharma, 2012). In practice, if the fracture growth is dominantly 

impacted by toughness, the tendency to curve can be reduced by increasing the fracture toughness. 

If the fracture toughness is sufficiently large, the orthogonal section of the refracture can be 

extended to a certain position beyond the isotropic point. As depicted in Figure 5-2, the 

orthogonal section of the refracture penetrates beyond the stress reversal region (Siebrits et al., 

1998; Siebrits et al., 2000). Overall, an orthogonal refracture is composed of three sections, 

namely, the orthogonal section (solid red line), the transition section (dash yellow line), and the 

parallel section (solid green line). It is noted that the transition section and the parallel section can 

be absent in the real field cases if the stress reversal region is sufficiently large or the refracture 

has a poor growth, as presented in Figure 5-1a.  
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The orthogonal refracture can propagate a distance from the initial fracture and penetrate into the 

high-pressure region in the formations. This is the scenario of the most successful refracturing 

treatments, especially in the formations with a favorable permeability anisotropy. Since the 

orthogonal refracture can significantly improve field productivity without requiring new wells, it 

is economically worthwhile for the industry to take advantage of the stress reversal region to 

induce an orthogonal refracture. Warpinski and Branagan (1989) introduced the concept of 

altered-stress fracturing and claimed that a refracture could exhibit a certain azimuth with respect 

to the initial fracture because of the stress reorientation in the formations. On the basis of the 

results from numerical simulations, Elbel and Mack (1993) demonstrated that an orthogonal 

refracture can be created due to the stress reversal near the wellbore. They also suggested that the 

optimum refracturing time should be taken into account to maximize the orthogonal section of 

the refracture. Roussel (2013) proposed guidelines for selecting the candidate wells that have 

potential to induce orthogonal refractures by analyzing production data. Further knowledge about 

the orthogonal refractures can also be found in Siebrits et al. (1998), Weng and Siebrits (2007), 

and Roussel and Sharma (2010). Even though great efforts have been invested to study the 

mechanisms of inducing an optimal orthogonal refracture, there still lacks a corresponding model 

to evaluate the production performance of such a refractured well. 
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 (a) 

 

(b) 

Figure 5-1.  Field examples where an orthogonal refracture is observed: (a) the schematic 

indicates the propagation of an orthogonal refracture as a function of time, and the black arrow 

indicates the azimuth of the initial fracture (Siebrits et al., 2000); and (b) an orthogonal refracture 

system monitored in Daqing field (Adapted from Liu et al., 2008).  

 
Figure 5-2. Schematic of an orthogonal refracture induced by a stress reversal region (adapted 

from Siebrits et al., 1998). 

 Numerical simulation is a useful and powerful tool to characterize the transient flow behavior of 

fractured wells. When one relies on numerical simulations to conduct history matching work or 

optimize the refracturing treatment, a few hundreds or even thousands of simulations need to be 

Orthogonal fracture system 
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run. The heavy load of setting up the numerical models and the low computational efficiency 

make the numerical simulation approach less attractive in this case (Zhou et al., 2014; Yang et al., 

2015). In recent years, semi-analytical approaches have been extensively used to evaluate the 

performance of complex fractures. Zhou et al. (2014) simulated the production from a complex 

fracture network on the basis of a plane source function. Luo and Tang (2015) studied the 

pressure transient behavior of multi-wing fractures connected to a vertical well. Chen et al. (2016) 

investigated the pressure response of a multistage fractured horizontal well that connects with 

secondary-fracture networks. Yu and Wu (2016) proposed a semi-analytical model to predict the 

production from nonplanar hydraulic fractures. Although the existing semi-analytical models can 

be used to model various complex fracture systems, the refracture, which is created after the 

initial fracture is being put into production, cannot be accommodated by these models. Currently, 

there are still no semi-analytical models available for characterizing the transient flow behavior 

of a refractured well.  

In this work, we develop a semi-analytical model that can be used to characterize the transient 

flow behavior of a refractured well with an orthogonal refracture. This proposed model is applied 

to different wellbore and reservoir conditions. We also show that, in addition to the orthogonal 

refracture, this proposed model can be extended to model other refracture patterns with minor 

modifications. Furthermore, in order to briefly introduce how to apply the proposed model to a 

real field case, we fit the production data of an orthogonally refractured well by using such a 

proposed model.  

5.2. Methodology 

This study considers a refractured well with an orthogonal refracture in a box-shaped reservoir. 

The entire production period, including the first stage (the well is producing oil with the initial 
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fracture), the second stage (the well is shut down for the refracturing treatment), and the third 

stage (the well is producing oil with both the initial fracture and the refracture), is simulated in 

this model. We assume that the fracture system is located at the center of the formation and is 

symmetrical with respect to the wellbore; thus, a half of the fracture system is sufficient to 

represent the entire fracture system. Figure 5-3 shows the schematic of a half fracture system 

with both the initial fracture and the orthogonal refracture. In this figure, Lf1 represents the length 

of the unilateral initial fracture. The real propagation of a refracture in the transition section can 

be monitored by tiltmeter technique. In this work, we assume that the transition section of the 

refracture can be approximated with a quarter ellipse for simplicity. This ellipse has a semi-axis 

of a along y-axis and a semi-axis of b along x-axis. In addition, the length of the orthogonal 

section of the refracture is represented by Lf2o, and the length of the parallel section of the 

refracture is represented by Lf2p. As such, the structure of the refracture can be characterized by 

Lf2o, a, b, and Lf2p. We discretize the unilateral initial fracture into n1 segments and the unilateral 

refracture into n2 segments. In order to construct a semi-analytical model to characterize the 

transient flow from such a refractured well, we make the following assumptions: 

 the reservoir is box-shaped and sealed by impermeable boundaries with a length of Xe 

along the x-axis and a width of Ye along the y-axis; 

 both the initial fracture and the refracture are fully penetrating the reservoir in the vertical 

direction; 

 the reservoir is homogeneous with a constant thickness, porosity, permeability, and initial 

reservoir pressure; 

 the well is producing single-phase oil with constant viscosity and compressibility. 

 influence of the fracturing treatment on the reservoir pressure is neglected; 
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 oil enters the wellbore only through the fractures; and 

 effect of gravity is negligible. 

Since the anisotropy of the reservoir permeability is considered in the proposed model, we first 

convert the anisotropic permeability system into an equivalent isotropic permeability system 

based on the method introduced by Spivey and Lee (1998). Table 5-1 lists the parameters in the 

anisotropic permeability system and their counterparts in the equivalent isotropic permeability 

system. In this table, kmx and kmy represent the reservoir permeability along x and y directions in 

the anisotropic system; km represents the reservoir permeability in the equivalent isotropic system; 

X, Y, and Z represent the coordinates in the anisotropic system; x, y, and z represent the 

coordinates in the equivalent isotropic system; Lf, Wf, and Kf are fracture length, fracture width 

and fracture permeability in the anisotropic system, respectively; and lf, wf, and kf  are their 

counterparts in the isotropic system.  

Table 5-1. Conversion from an anisotropic permeability system to an equivalent isotropic 

permeability system.  

Anisotropic system Equivalent isotropic system 

kmx, kmy m mx myk k k  

X m

mx

k
x X

k
  

Y 
m

my

k
y Y

k
  

Z z = Z 

Lf 

 

2 2cos sinm m
f f

mx my

k k
l L

k k
    
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Wf 

1 arctan tanmx

my

k

k
 

 
  

 
 

 

2 arctan tan
my

mx

k

k
 

 
  

 
 

 

 

 2 2

2 1sin cos cosm m
f f

mx my

k k
w W

k k
       

Kf 
f f

f f

f f

W l
k K

w L
  

𝜃 is fracture azimuth corresponding to x-axis 

 

 

Figure 5-3. Discretization of the unilateral initial fracture and the unilateral refracture.  

5.2.1 Transient Flow in the Fracture System 

The fracture width is far smaller than the fracture length such that the transient flow in the 

fracture system can be simplified as a 1D flow. The 1D flow equation, considering the source 

term, is given as 

 f f f

f f f

f tf

p q B p
w w

l l h c t




  
  

   
,                                                  (5-1) 
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where ηf is diffusivity coefficient defined as ηf = βkf /μϕfctf, β is unit conversion factor whose 

numerical value is 0.0853, μ is oil viscosity, ϕf is effective porosity in the fracture system, ctf is 

total compressibility of fracture system, pf is fracture pressure, l is the position along the direction 

of the fracture propagation, qf is flux per unit length (m
2
/d) from the reservoir to the fracture, B is 

formation volume factor, h is formation thickness, and t is time. Substituting the properties of the 

initial fracture and the refracture into Equation (5-1) yields 

1 1 1

1 1 1

1 1 1 1

f f f

f f f

f f f tf

p q B p
w w

l l h c t




  
      

                                           (5-2) 

and  

2 2 2

2 2 2

2 2 2 2

f f f

f f f

f f f tf

p q B p
w w

l l h c t




  
      

,                                         (5-3) 

where the subscripts „f1‟ and „f2‟ represent the initial fracture and the refracture, respectively. 

The production of the fractured well is divided into three stages and the inner boundary 

conditions of the initial fracture are 

 

 

 
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

  


 

,                                                  (5-4) 

where lf1 = 0 indicates the position of the wellbore, pw is the bottomhole pressure, T1 is the end of 

the first production stage, qw is well production rate, and T2 is the end of the second production 

stage. The refracture is created during the second stage and starts producing oil at the start of the 

third stage; hence, the inner boundary condition of the refracture can be written as 

 
2

2 20
    

f
f wl

p p t T

  .                                                     (5-5) 

Applying the finite difference approximation to Equations (5-2) and (5-3) gives 
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and  
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,             (5-7) 

where i = 1, 2…n1, j = 1, 2…n2, and k = 1, 2…n. It is noteworthy that Equation (5-7), which 

characterizes the transient flow in the refracture, should not be used if the production time t
k
 is 

smaller than T2. The transient flow equations for the fracture segments can be arranged into a 

matrix format. Combining these flow equations with the boundary conditions, we can obtain the 

following systems of equations that characterize the transient flow in the fracture system 

throughout the entire production period: 

for the first stage (i.e., 0 < t
k
 ≤ T1), 
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1 1 1_ 1 1_ 1
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                                           (5-8) 

for the second stage (i.e., T1 < t
k
 ≤ T2), 

-1
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1,1

k k k k k k

f f f q f f t f
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                                           (5-9) 
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and for the third stage (i.e., t
k
 > T2), 

-1

1 1 1_ 1 1_ 1
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2 2 2_ 2 2_ 2
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,                                         (5-10) 

where qwf1 is flow rate from a unilateral initial fracture to the wellbore, and qwf2 is flow rate from 

a unilateral refracture to the wellbore. The definitions of the matrices c
k 

f2, p
k 

f2, c
k 

f2_q, q
k 

f2, c
k 

f2_t, c
k 

f1, p
k 

f1, c

k 

f1_q, q
k 

f1, and c
k 

f1_t, and the detailed derivations of the equations presented in Equations (5-8), (5-9) 

and (5-10) can be found in Appendix 5A. 

5.2.2 Transient Flow in the Reservoir System 

The fracture system is discretized into small segments and each of these fracture segments can be 

regarded as a plane source. Assuming that the flux rate from the reservoir to a fracture segment 

during a single timestep can be approximated with an average value qf, the pressure change at 

position (x, y) and time t caused by a single fracture segment can be written as 
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,                    (5-11) 

where ∆p is pressure change caused by a fracture segment, (𝜏1, 𝜏2) represents that the flux is 

continued from 𝜏1 to 𝜏2, ∆lf is length of this fracture segment, (xf, yf) represents the center position 

of this fracture segment, ϕm is reservoir porosity, ctm is total compressibility of the reservoir, xe 
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and ye represent the reservoir dimensions, and ηm is diffusivity coefficient of the reservoir system 

which is defined as ηm = βkm /μϕmctm. The detailed derivation of Equation (5-11) can be found in 

Appendix 5B. On the basis of Equation (5-11), we can calculate the pressure change at the center 

position of the fracture segments: 

for the first stage and the second stage (i.e., 0 < t
k
 ≤ T2), 
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and for the third stage (i.e., t
k
 > T2), 
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,      (5-13) 

where I = 1, 2…n1, J = 1, 2…n2, ∆p
k
 represents pressure change at time t

k 
of the initial fracture „f1‟ 

or the refracture „f2‟, the subscript „I‟ (or „J‟) of the ∆p term indicates that the pressure change 

occurs at the central position of the I
th

 segment of the initial fracture (or the J
th

 segment of the 

refracture). The G term represents the integral term of Equation (5-11) and is defined in detail in 

Appendix 5B. With the aid of Equations (5-12) and (5-13), we can build the relationship between 

the flux and the pressure of these fracture segments: 

for the first stage and the second stage (i.e., 0 < t
k
 ≤ T2), 
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and for the third stage (i.e., t
k
 > T2), 
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where the matrices of G and A are defined in Appendix 5B.  
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5.2.3 Solution Methodology 

Based on the continuity of the flux and pressure, we can couple the transient flow equations of 

the fracture system with those of the reservoir system. As such, we can construct the following 

semi-analytical model to characterize the transient flow behavior of a refractured well throughout 

the entire production period: 

for the first stage (i.e., 0 < t
k
 ≤ T1), 
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for the second stage (i.e., T1 < t
k
 ≤ T2), 
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and for the third stage (i.e., t
k
 > T2), 
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These above systems of equations are closed and can be solved using Gaussian elimination 

method. It should be noted that this proposed model can be readily used to simulate different 

wellbore conditions, including constant bottomhole pressure, constant production rate, varying 

bottomhole pressure, and varying production rate. For example, for the varying bottomhole 

pressure case, p
k 

w is known but varied at each timestep and one can obtain the production rate q
k 

w 

by solving this proposed model.  

5.3. Validation of the Proposed Model 

Before we validate the new developed model, the impact of the number of fracture segments on 

the simulation outputs is examined. We discretize the unilateral initial fracture and the unilateral 

refracture into 5 and 5, 10 and 10, 15 and 15, and 20 and 20 segments, respectively, and calculate 

the performance of the refractured well with the proposed model. The parameter values used in 

this section are: pi = 30 MPa, Xe = 500 m, Ye = 400 m, h = 15 m, kmx = 0.02 mD, kmy = 0.01 mD, 

ϕm = 0.2, ϕf1 = 0.2, ϕf2 = 0.2, ctm = 0.0012 MPa
-1

, ctf1 = 0.0012 MPa
-1

, ctf2 = 0.0012 MPa
-1

, Lf1 = 

100 m, Lf2o = 50 m, a = 10, b = 10 m, Lf2p = 30 m, Cf1 = 10 mD∙m, Cf2 = 10 mD∙m, Wf1 = 0.1 m, 

Wf2 = 0.1 m, μ = 1 mPa∙s, B = 0.985 (dead oil), pw = 5 MPa during the first and third stages, T1 = 

980 d, and T2 = 1000 d. Figure 5-4 presents the production rates and cumulative productions of 

the refractured well which are calculated with the proposed model with different numbers of 

fracture segments. This figure shows that the production rates and cumulative productions 

undergo negligible difference when the number of the unilateral initial fracture segments and the 

unilateral refracture segments are larger than 15; therefore, we discretize the unilateral initial 

fracture and the unilateral refracture into 15 segments in the following studies. 
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Figure 5-4.  Impact of the number of fracture segments on the outputs of the semi-analytical 

model.  

Afterward, we validate the proposed semi-analytical model against a numerical simulator 

(Eclipse). Figure 5-5a gives a top view of the global grid system used to simulate the initial 

fracture and the refracture in Eclipse. Figures 5-5b to 5-5d present an enlarged view of the local 

grid system where the red cells represent the fracture system. As shown in these figures, we use 

refined grids to capture the structure of the fractures and both the fracture width and the fracture 

conductivity used in Eclipse are consistent with those used in the semi-analytical model. Figure 

5-6 compares the production rates and cumulative productions which are calculated with the 

proposed model against those calculated with Eclipse. One can observe that the results obtained 

with the proposed model agree well with the results obtained with Eclipse, indicating that the 

proposed model is reliable in evaluating the performance of a refractured well. It should be noted 

that the computational time of the semi-analytical model is highly dependent on the programming 

language and the skill of the programmer. Since the code used for solving the semi-analytical 

model has not been optimized for achieving a high-level computational efficiency, we do not 

compare the computational time of the semi-analytical model to that of the professional reservoir 

simulator (i.e., Eclipse). 
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(a)                                                         (b) 

      

(c)                                                         (d) 

Figure 5-5. Top views of the grid system used in the Eclipse: (a) the global grid system; (b) an 

enlarged view of the transition section in the grid system; (c) an enlarged view of the intersection 

of the initial fracture and refracture in the grid system; (d) an enlarged view of the tip of the 

refracture in the grid system.  

 
Figure 5-6. Comparison between the production rates and cumulative productions calculated 

with the proposed model and those by Eclipse.  
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5.4. Results and Discussion 

In this work, we apply this proposed model to an orthogonally refractured well under different 

wellbore and reservoir conditions. Furthermore, we fit the production data of an orthogonally 

refractured well in order to demonstrate how to apply the proposed model to a real field case. 

5.4.1 Case Studies 

Using the proposed semi-analytical model, we calculate the performance of a refractured well 

with different wellbore conditions, different permeability anisotropy, and different non-uniform 

fracture conductivity. Since the geometry of the orthogonal refracture is highly dependent on the 

production-induced pressure distribution, it is necessary to consider the change of the refracture‟s 

geometry due to the change in the influencing parameters. In this work, we use the method 

introduced by Roussel and Sharma (2012) to estimate the geometry of the orthogonal refracture. 

As such, the geometry of the orthogonal refracture can be estimated with the following equations 

(Roussel and Sharma, 2012): 
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,  (5-19) 

where d is the distance from the isotropic point to the wellbore. It is noted that Roussel and 

Sharma (2012) assumed that the orthogonal refracture is composed of two straight fractures 

whose lengths are Lf2o+a and Lf2p+b, whereas in this work we assume that there is a transition 

section between the orthogonal section and the parallel section. In order to estimate the geometry 

of the transition section, we further assume that 

 20.5 f pb L ,  (5-20) 
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which is similar to the equation a = 0.5Lf2o that is presented in Equation (5-19). Combining 

Equation (5-19) with Equation (5-20) yields a system of linear equations. Since the value of Lf1 is 

given, this system of equations can be solved if the value of d is known.  

In practice, the value of d is impacted by multiple reservoir and fracture parameters, such as the 

reservoir boundary conditions, horizontal stress deviator, production-induced pressure gradients, 

and the deformation of the rock caused by the fracturing treatment (Roussel and Sharma, 2012). 

However, considering all these influencing factors to accurately calculate d is much beyond the 

scope of this work. Roussel and Sharma (2012) demonstrated that the value of d tends to grow at 

the early production period as the pressure front moves further into the reservoir, whereas the 

value of d will decrease during the late production period as the pressure gradient goes down 

throughout the reservoir; therefore, in the benchmark reservoir model, we assume that the 

isotropic point can be observed at the position represented by 

 
p

y






,  (5-21) 

where γ is a constant. With such an assumption, in the benchmark reservoir model, the isotropic 

point will move further from the wellbore during the early production period, whereas it will 

move closer to the wellbore during the late production period. As such, the tendency of the 

change of the isotropic point is consistent with that shown in Roussel and Sharma (2012). It 

should be noted that this assumption is only applied for simplification purposes, and the cases 

studies presented in this work are only aimed to show that this proposed model is applicable to 

simulate various scenarios. In practical applications, one should incorporate a proper 

geomechanical model to predict the geometry of the refracture and the position of the isotropic 

point for a specific reservoir.  
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On the basis of the proposed semi-analytical model, one can also obtain the pressure distribution 

within the reservoir, such that the position of the isotropic point in the reservoir can be 

approximately determined. Afterward, the geometry of the orthogonal refracture can be estimated 

with Equation (5-19) together with Equation (5-20). The following benchmark values of 

parameters are used in this section:  γ = -0.05 MPa/m, Xe = 500 m, Ye = 400 m, h = 15 m, kmx = 

3×10
-3

 mD, kmy = 3×10
-3

 mD, ϕm = 0.2, ϕf1 = 0.2, ϕf2 = 0.2, ctm = 0.0012 MPa
-1

, ctf1 = 0.0012 MPa
-

1
, ctf2 = 0.0012 MPa

-1
, Lf1 = 100 m, Cf1 = 10 mD∙m, Cf2 = 10 mD∙m, Wf1 = 0.001 m, Wf2 = 0.001 m, 

μ = 1 mPa∙s, B = 0.985 (dead oil), pi = 30 MPa, pw = 5 MPa during the first and third stages under 

constant bottomhole pressure condition, qw = 1 m
3
/d during the first and third stages under 

constant production rate condition, T1 = 980 d, and T2 = 1000 d. Table 5-2 lists the values of the 

parameters that are varied for the case studies and the corresponding values of d, Lf2o, a, b, and 

Lf2p that are obtained by identifying the pressure gradient in the reservoir.  

Table 5-2. Varied values of the parameters used in the case studies and the corresponding values 

of d, Lf2o, a, b, and Lf2p. 

parameters values d Lf2o a b Lf2p 

Wellbore 

constraints 

Constant pw 47.4 47.4 23.7 3.0 5.9 

Varying pw 47.1 47.1 23.6 3.1 6.2 

Constant qw 37.0 37.0 18.5 8.2 16.4 

Varying qw 37.0 37.0 18.5 8.2 16.4 

Rk 

0.1 19.4 19.4 9.7 17.0 34.0 

1 47.4 47.4 23.7 3.0 5.9 

10 38.0 38.0 19.0 7.6 15.3 

Non-uniform 

Cf1 and Cf2 

Uniform 40.8 40.8 20.4 6.2 12.5 

Linear decrease 41.3 41.3 20.7 6.0 12.0 

Quadratic decrease 41.4 41.4 20.7 5.9 11.9 
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5.4.1.1 Wellbore Condition 

Figure 5-7a illustrates the bottomhole pressure profiles under constant bottomhole pressure 

condition and varying bottomhole pressure condition. Figure 5-7b presents the production rates 

profiles and cumulative production profiles that are calculated with the bottomhole pressure 

profiles shown in Figure 5-7a. Figure 5-8a shows the production rate profiles under constant 

production rate condition and varying production rate condition. Figure 5-8b exhibits the 

bottomhole pressure profiles that are calculated with the production rate profiles presented in 

Figure 5-8a. The results shown in Figure 5-7b and Figure 5-8b imply that this proposed model 

can be used to simulate different wellbore constraints, including constant bottomhole pressure, 

varying bottomhole pressure, constant production rate, and varying production rate. The constant 

bottomhole pressure condition is used in all the following case studies.  

    
(a)                                                        (b) 

Figure 5-7. Bottomhole pressure profiles and production profiles under constant bottomhole 

pressure condition and varying bottomhole pressure condition: (a) bottomhole pressure profiles; 

and (b) production rate and cumulative production profiles. 
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(a)                                                        (b) 

Figure 5-8. Production rate profiles and bottomhole pressure profiles under constant production 

rate condition and varying production rate condition: (a) production rate profiles; and (b) 

bottomhole pressure profiles. 

5.4.1.2 Permeability Anisotropy 

Figure 5-9 shows the production rates and cumulative productions that are calculated with the 

proposed model at different permeability anisotropies. The dotted lines represent the cumulative 

productions and production rates without refracturing treatments. Different permeability ratios Rk 

(kmx/kmy) = 0.1, 1 and 10 are used in the calculations to explore the influence of permeability 

anisotropies on the well performance. Since km = (kmxkmy)
1/2

, the equivalent isotropic permeability 

remains unchanged in these three cases. As seen in Figure 5-9, the cumulative production of a 

refractured well at the highest Rk undergoes a maximum increase (from 1457 m
3
 to 2450 m

3
), 

while the cumulative production of a refractured well at the lowest Rk undergoes a minimum 

increase (from 3390 m
3
 to 3666 m

3
). This is because the initial fracture propagates along the x-

axis while the refracture propagates mainly along the y-axis; therefore, a higher Rk (higher kmx but 

lower kmy) is more favorable for enhancing the productivity of the refracture. Figure 5-10 

compares the pressure maps on the 1600
th

 day with and without refracturing treatment with 

different values of Rk. It is interesting to note that, the value of d has the maximum value with Rk 

= 1 (see Table 5-2). This is because we assume that the isotropic point can be observed at the 

position with a certain pressure gradient (see Equation(5-21)) in the benchmark reservoir model. 
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Under the constant bottomhole pressure condition, the pressure gradient in the reservoir will 

increase during the early production period but decrease during the late production period. With 

Rk = 0.1, the pressure along the y-axis decreases rapidly over the entire production period and the 

pressure gradient exhibits a decreasing trend at the fracturing time 980
th

 day. As such, the value 

of d with Rk = 0.1 has the smallest value among these three scenarios. Since the reservoir 

permeability component kmy with Rk = 1 and 10 is smaller than that with Rk = 0.1, the pressure 

along the y-axis decreases in a slower manner while the pressure gradient still keeps an increasing 

trend. Therefore, the smallest value of d can be observed with Rk = 0.1, whereas the largest value 

of d can be observed with Rk = 1. In practice, since the stress change is highly dependent of the 

pressure gradient, the stress reversal region will also shrink after it reaches a maximum value 

(Roussel and Sharma, 2012).  

 

Figure 5-9.  Impact of the permeability anisotropy on the production rates and cumulative 

productions.  
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(a)                                                        (b) 

     

(c)                                                        (d) 

     

(e)                                                        (f) 

 
Figure 5-10. Comparison of the pressure maps (MPa) on the 1600

th
 day with and without 

refracturing treatment with different permeability anisotropies: (a) pressure map without 

refracturing treatment with Rk = 0.1; (b) pressure map with refracturing treatment with Rk = 0.1; 

(c) pressure map without refracturing treatment with Rk = 1; (d) pressure map with refracturing 

treatment with Rk = 1; (e) pressure map without refracturing treatment with Rk = 10; and (f) 

pressure map with refracturing treatment with Rk = 10.  
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5.4.1.3 Non-Uniform Fracture Conductivity 

In a real field case, the conductivity distribution along the fractures can be non-uniform; therefore, 

we compare the well performance of three scenarios: 1) the conductivity is uniform along the 

initial fracture and the refracture; 2) the conductivity is linearly decreased along the initial 

fracture and the refracture; and 3) the conductivity is quadratically decreased along the initial 

fracture and the refracture. In scenarios 2 and 3, the minimum fracture conductivity with a value 

of 0 can be observed at the fracture tips, whereas the maximum fracture conductivity can be 

observed at the wellbore. Among these three scenarios, the average conductivity remains 

unchanged. Figure 5-11 shows the production rates and cumulative productions that are 

calculated for these three scenarios. It can be seen from Figure 5-11 that both the production rates 

and the cumulative productions show slight differences among the three scenarios.  

 

Figure 5-11. Impact of the conductivity distribution on the production rates and cumulative 

production. 

5.4.2 Comparison with Other Refracture Patterns 

In practice, the production of a fractured well does not always induce a stress reversal region near 

the wellbore. The real propagation of a refracture can be very different from what is shown in 

Figure 5-2. Figure 5-12 presents the structure of another four refracture patterns: refracture 
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pattern #1 (Figure 5-12a), a refracture that is not exactly orthogonal to the initial fracture; 

refracture pattern #2 (Figure 5-12b), a refracture that is initiated at the tip of the initial fracture; 

refracture pattern #3 (Figure 5-12c), a refracture propagates orthogonally to the initial fracture 

from the wellbore and a refracture propagates parallel to the initial fracture from the tip of the 

initial fracture; refracture pattern #4 (Figure 5-12d), a refracture propagates non-orthogonally to 

the initial fracture from the wellbore and a refracture propagates non-parallel to the initial 

fracture from the tip of the initial fracture. By applying minor modifications, one can use the 

proposed model to simulate the productions of these four refracture patterns. In order to make a 

proper comparison between the well performance of an orthogonal refracture and those of the 

other four refracture patterns, we neglect the impact of the stress field on the geometry of the 

refracture. In addition, the transition section and the parallel section are absent in the orthogonal 

refracture. The comparison is conducted with the same total unilateral refracture length of 50 m. 

The azimuth angle θ is assumed to be 45
o
 for the refracture patterns (a), (b) and (d).  

 
(a)                                                                        (b) 

 
(c)                                                                        (d) 

Figure 5-12. Schematics of other refracture patterns that are different from the orthogonal 

refracture (θ is azimuth of the refracture with respect to the initial fracture): (a) refracture pattern 



207 
 

#1, a refracture that is not exactly orthogonal to the initial fracture; (b) refracture pattern #2, a 

refracture that is initiated at the tip of the initial fracture; (c) refracture pattern #3, a refracture 

propagates orthogonally to the initial fracture from the wellbore, and a refracture propagates 

parallel to the initial fracture from the tip of the initial fracture; and (d) refracture pattern #4, a 

refracture propagates non-orthogonally to the initial fracture from the wellbore, and a refracture 

propagates non-parallel to the initial fracture from the tip of the initial fracture. 

Figure 5-13 compares the production rates and cumulative productions of these five refracture 

patterns. As shown in Figure 5-13, the orthogonal refracture and refracture pattern #2 lead to 

higher increases in the productivity of the refractured well. The cumulative production of the 

orthogonal refracture is higher than that of refracture patterns #2 at the early production period 

after the refracturing treatment, while it is lower than that when the production time is beyond the 

1950
th

 day. This is attributed to the following: at the early production period after the refracturing 

treatment, the produced fluid is mainly from the reservoir area that is near the wellbore; thus, the 

orthogonal refracture that is initiated from the wellbore is favorable for the well production and 

yields a higher productivity at the early period after the refracturing treatment. However, if the 

production time is sufficiently long, the reservoir pressure near the wellbore will be significantly 

depleted and the fracture pattern #2 (that can penetrate into a deeper part of the reservoir) can 

give a higher well productivity. Figure 5-14 illustrates the pressure maps of the production well 

on the 1600
th

 day with and without refracturing treatment under different refracture patterns. 

Figure 5-14 shows that the orthogonal refracture and the fracture pattern #2 can stimulate the 

high-pressure area of the reservoir more effectively compared to the other refracture patterns. 

However, note that the results shown in Figures 5-13 and 5-14 do not indicate that the fracture 

pattern #2 is more effective than an orthogonal refracture in improving the well productivity. In 

the real field cases, the effectiveness of a specific refracture pattern is highly dependent of the 

reservoir properties and the geomechanical conditions. 
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Figure 5-13. Impact of the refracture patterns on the production rates and cumulative production. 

    

(a)                                                        (b) 

    

(c)                                                        (d) 
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(e)                                                        (f) 

 
Figure 5-14. Comparison of the pressure maps (MPa) on the 1600

th
 day with and without 

refracturing treatment at different refracture patterns: (a) pressure map without refracturing 

treatment; (b) pressure map with an orthogonal refracture; (c) pressure map with refracture 

pattern #1; (d) pressure map with refracture pattern #2; (e) pressure map with refracture pattern 

#3; and (f) pressure map with refracture pattern #4. 

5.4.3 Field Case Application 

Figure 5-15 shows the production profile of a refractured well in Wattenberg field (Roussel and 

Sharma, 2013). By analyzing the production data, Roussel and Sharma (2013) claimed that a 

stress reorientation highly likely appeared in the vicinity of the wellbore. In order to obtain the 

properties of the fluid and fractures, we perform history matching on this refractured well by 

using the proposed semi-analytical model. Unfortunately, there is no more available information 

about this refractured well or the reservoir properties. In order to briefly introduce how to apply 

the proposed model to a real field case, we use the parameters of a production well which is also 

located in Wattenberg field to help fit the production data. The parameters values are as follows: 

km = 0.05 mD, ϕm = 0.14, pi = 31 MPa, and h = 6.1 m (Roussel and Sharma, 2013). In addition, 

we assume that the refractured well is located at the center of a square-shaped drainage area and 

produces oil with a constant bottomhole pressure both before and after the refracturing treatment. 

The constant bottomhole pressure before the refracturing treatment is 10 MPa, while the constant 
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bottomhole pressure after the refracturing treatment is 3 MPa, both of which are randomly but 

properly assigned. It is noted that the production rates shown in Figure 5-15 exhibit an increasing 

tendency after the 4000
th

 day, which should not occur at a constant bottomhole pressure 

constraint; thus, the fitting of the production data is only conducted from the beginning to the 

4000
th

 day.  

The fitting of the production data is carried out with assumed formation properties and 

bottomhole pressures, which aims to demonstrate how to apply the proposed model to a real field 

case. In practical applications, the real formation properties and bottomhole pressures should be 

used for the fitting of production data. In addition to the assumed parameter values, the following 

parameter values remain unknown: the length of the square-shaped drainage area Xe, oil viscosity 

μ, total compressibility ctm, unilateral initial fracture length Lf1, initial fracture conductivity Cf1, 

the four parameters that characterize the structure of the refracture (Lf2o, a, b, and Lf2p), and 

refracture conductivity Cf2.  

With the assumed constant bottomhole pressures and formation properties, we firstly fit the 

production data for the time period before the refracturing treatment. The values of Xe, μ, ctm, Lf1, 

and Cf1 are varied until a good agreement between the results calculated with the proposed model 

and the production data is achieved. Subsequently, we proceed to fit the production data after the 

refracturing treatment with the assumed parameter values and the previously obtained Xe, μ, ctm, 

Lf1, and Cf1. Figures 5-16 and 5-17 compare the fitted production rates against the real production 

rates in linear and log-log plots. As observed in these two figures, the stimulated production rates 

and the real production rates agree well with each other. Table 5-3 lists the parameter values that 

are obtained by fitting the production data. One can also distinguish a half-unit slope period on 

the log-log plot before the refracturing treatment, which indicates that the flow regime is 
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formation linear flow (Bello and Wattenbarger, 2008). Additionally, the rapid decline period in 

the log-log plot implies that the production rate is influenced by the drainage boundary.   

Table 5-3. Values of the various parameters obtained by fitting the production data 

Parameter Value 

Length of the square drainage area Xe, m 600 

Total compressibility ctm, MPa
-1

 0.0022 

Oil viscosity, mPa∙s 0.4 

Half-length of  the initial fracture Lf1, m 250 

Length of the orthogonal section of the refracture Lf2o, m 100 

Length of the parallel section of the refracture Lf2p, m 33 

Length of the semi-axis along the y-axis a, m 50 

Length of the semi-axis along the x-axis b, m 17 

Initially fracture conductivity Cf1, mD∙m 8000 

Refracture conductivity Cf2, mD∙m 5000 

 

 
Figure 5-15. Production rates of an orthogonally refractured well (Roussel and Sharma, 2013). 
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Figure 5-16. Comparison of the real production rates against the fitting production rates in linear 

plot. 

 
Figure 5-17. Comparison of the real production rates against the fitting production rates in log-

log plot. 

5.5. Conclusions 

In this work, we develop a novel semi-analytical model to evaluate the performance of a 

refractured well with an orthogonal refracture. With the aid of the proposed model, we 

investigate the performance of a refractured well with different fracture conductivity, 

permeability anisotropy, and non-uniform fracture conductivity. We also compare the 

productivity of an orthogonal refracture against that of other refracture patterns. Subsequently, 
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we fit the production data of an orthogonally refractured well to demonstrate how to apply the 

proposed model to a real field case. The calculated results lead us to draw the following 

conclusions: 

 this proposed semi-analytical model is versatile as it can simulate various wellbore 

constraints, such as the conditions of constant bottomhole pressure, varying bottomhole 

pressure, constant production rate, and varying production rate;  

 the anisotropy of reservoir permeability and non-uniform conductivity distribution along 

the fracture can be incorporated into this model; 

 in addition to an orthogonal refracture, one can also apply this proposed model to 

characterize the fluid transient flow of other types of refractured vertical wells with minor 

modifications;  

 for practical applications, one can couple this proposed model with geomechanical 

models to predict the production of  orthogonally refractured wells; and  

 since the semi-analytical method has a natural advantage over the numerical method in 

terms of computational speed, this model can be used to carry out simulations involving 

numerous runs (e.g., optimizing the refracturing treatment and conducting history 

matching work). 

Nomenclature 

a = semi-axis of the ellipse along the y-axis used to approximate the transition section of the 

refracture, m 

b = semi-axis of the ellipse along the x-axis used to approximate the transition section of the 

refracture, m 

B = formation volume factor 
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ctf1 = initial fracture total compressibility, MPa
-1

 

ctf2 = refracture total compressibility, MPa
-1

 

ctm = reservoir total compressibility, MPa
-1

  

Cf1 = initial fracture conductivity, mD∙m 

Cf2 = refracture conductivity, mD∙m  

Cs = dimensionless coefficient defined in this work 

d = distance from the isotropic point to the wellbore, m 

h = formation thickness, m 

kf2= refracture permeability in the equivalent isotropic permeability system, mD 

km = reservoir permeability in the equivalent isotropic permeability system, mD  

kmx = reservoir permeability along the x-axis in the anisotropic permeability system, mD  

kmy = reservoir permeability along the y-axis in the anisotropic permeability system, mD 

kf1= initial fracture permeability in the equivalent isotropic permeability system, mD 

Kf1 = initial fracture permeability in the anisotropic permeability system, mD 

Kf2 = refracture permeability in the anisotropic permeability system, mD 

lf1 = position along the initial fracture, m 

lf2 = position along the refracture, m 

Lf1 = half length of the initial fracture, m 

Lf2o = length of the orthogonal section of the refracture, m 

Lf2p = length of the parallel section of the refracture, m 

pf1 = pressure of the initial fracture, MPa 

pf2 = pressure of the refracture, MPa 

pi = initial reservoir pressure, MPa 
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pw =  bottomhole pressure, MPa 

qf1 = flux rate per unit length from the reservoir to the initial fracture, m
2
/d 

qf2 = flux rate per unit length from the reservoir to the refracture, m
2
/d 

q
k 

f1,i = average flux rate from the reservoir to the ith segment of the initial fracture during the k
th

 

timestep, m
3
/d 

q
k 

f2,j = average flux rate from the reservoir to the jth segment of the refracture during the k
th

 

timestep, m
3
/d 

qw = well production rate, m
3
/d 

qwf1 = flow rate from a unilateral initial fracture to the wellbore, m
3
/d 

qwf2 = flow rate from a unilateral refracture to the wellbore, m
3
/d 

Rk = kmx/kmy, permeability ratio 

t = time, d 

T1 = the end of the first production stage, d 

T2 = the end of the second production stage, d 

wf1 = initial fracture width in the equivalent isotropic permeability system, m 

wf2 = refracture width in the equivalent isotropic permeability system, m 

Wf1 = initial fracture width in the anisotropic permeability system, m 

Wf2 = refracture width in the anisotropic permeability system, m 

x, y and z = x-, y-, and z-coordinate in the equivalent isotropic permeability system 

X, Y and Z = X-, Y-, and Z-coordinate in the anisotropic permeability system 

β = unit conversion factor which equals to 0.0853 

γ =pressure gradient, MPa/m 

δ = flux rate per unit length, area, or volume, m
2
/d, m/d, or 1/d 
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ηf1 = diffusivity in the initial fracture, m
2
/d 

ηf2 = diffusivity in the refracture, m
2
/d 

ηm = diffusivity in the reservoir system, m
2
/d 

θ = refracture azimuth corresponding to the initial fracture 

μ = oil viscosity, mPa∙s 

ξ = x or y 

ζhmax = maximum horizontal stress, MPa 

ζhmin = minimum horizontal stress, MPa 

η = the time that the flux happens, d 

ϕf1 = effective porosity in the initial fracture 

ϕf2 = effective porosity in the refracture 

ϕm = reservoir porosity 
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Appendix 5A - Numerical Formulation of the Oil Flow in the Fracture System 

In the fracture system, the transient flow equation for the oil flow in the initial fracture and the 

refracture can be written as (Ertekin et al., 2001) 
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At the k
th

 (k = 1, 2…n) timestep, applying finite difference approximation to the first term on the 

left-hand side of Equation (5A-1) yields 
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where i = 1, 2…n1, and  
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The source term in Equation (5A-1) can be rewritten as 
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,                                           (5A-5) 
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where q
k 

f1,i is average flux rate from the reservoir to the i
th

 segment of the initial fracture during 

the k
th

 timestep. Applying backward-difference approximation on the time derivative term in 

Equation (5A-1), we can have 

 1 1, 1

1 1, 1,

f f i k k

f f i f ik

p w
w p p

t t




 
 

,                                             (5A-6) 

where, 

 1k k kt t t    .                                                       (5A-7) 

Inserting Equations (5A-3), (5A-5) and (5A-6) into Equation (5A-1) and rearranging this 

equation gives 

1 1 1 1 1, 1,

1, 1,

1 1 1 11 1
2 2

1 1 1 1 1, 1, 1

1, 1 1, 1 1,

1 11 1
2 2

f f f f f i f ik k

f i f ik

f tf f fi i i

f f f f f i f ik k k

f i f i f ik

f fi i

w w l wB
q p

h c l l t

w w l w
p p p

l l t

 



 

 



 

 

       
                      

    
              

.                (5A-8) 

For convenience, we define the following parameters:  

1 1

11,
2

1 1
2

f fk

f i
f i

w
c

l






 
    

,                                                (5A-9) 

1 1 1 1 1, 1,

1,

1 11 1
2 2

f f f f f i f ik

f i k

f fi i

w w l w
c

l l t

 

 

     
                 

,                            (5A-10) 

1 1

11,
2

1 1
2

f fk

f i
f i

w
c

l






 
    

,                                                 (5A-11) 

1_ ,

1 1

k

f q i

f tf i

B
c

h c

 
   
 

,                                                     (5A-12) 

and 
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1, 1,

1_ ,

f i f ik

f t i k

l w
c

t


 


.                                                    (5A-13) 

In particular, 

1 1 1, 1,

1 1,1,
2

1 1
2

1 1 1, 1,

1 1 1,1,
2

1 1
2

if 0,  0 and  

if ,  0 and 

f f f i f ik k
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f i
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f i kf i
f i

w l w
i c c
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

    
             

.                 (5A-14) 

As such, Equation (5A-8) can be rewritten as 

 1

1 1, 1 1, 1, 1 1, 1 1_ , 1, 1_ , 1,1, 1,
2 2

k k k k k k k k k k

f i f i f i f i f q i f i f t i f if i f i
c p c p c p c q c p 

  
    .                  (5A-15) 

Applying Equation (5A-15) to the n1 segments of the initial fracture and arranging these 

equations into a matrix format gives 

 
-1

1 1 1_ 1 1_ 1

k k k k k k

f f f q f f t f c p c q c p ,                                                (5A-16) 

where 

11 1

11

1,1 11,1
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1 1,2 11,2 1,2
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1

1 1, 1 11, 1 1, 1
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1_ ,1

1_

1_ , 1

k

f t

k

f t
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c
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 
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c .  

Applying the same procedures introduced above to Equation (5A-2), we can obtain the 

approximated flow equation that characterizes the transient flow in the refracture: 
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2 2 2 2 2, 2,

2, 2,

2 2 2 21 1
2 2

2 2 2 2 2, 2, 1
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,        (5A-17) 

and the system of flow equations that is written in a matrix format: 

-1

2 2 2 _ 2 2 _ 2

k k k k k k

f f f q f f t f c p c q c p ,                                              (5A-18) 

where j = 1, 2…n2, qf2,j is the flux from the reservoir to the j
th

 segment of the refracture, the 

matrices of c
k 

f2, p
k 

f2, c
k 

f2_q, q
k 

f2, and c
k 

f2_t have similar definitions to c
k 

f1, p
k 

f1, c
k 

f1_q, q
k 

f1, and c
k 

f1_t. The only 

difference is that the subscript „f2‟ indicates the properties of the refracture should be used in 

these matrices.  

Based on the Darcy equation, the inner boundary conditions (i.e., Equations (5-4) and (5-5)) can 

be rewritten as 

 

 

 

1,1 1,1

1,1 1 1

1,1

1,1 1 2
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f
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
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                                  (5A-19) 

and 

 2,1 2,1

2,1 2 2

2,1

2
   

k k

f f w k k

f wf

f

k p p
w h q t T

B l


 


,                                    (5A-20) 

where qwf1 is flow rate from a unilateral initial fracture to the wellbore, pw is bottomhole pressure 

and qwf2 is flow rate from a unilateral refracture to the wellbore.  
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In addition, as we assume that the oil enters the wellbore only through the fractures, we can have 

the following relationship between the well production rate (qw) and the flux rate from the 

unilateral initial fracture (qwf1) and the unilateral refracture (qwf2): 

 

 

 

1 1

1 2

1 2 2

2 0

0

2 2

k k k

w wf

k k

w

k k k k

w wf wf

q q t T

q T t T

q q q t T

   



  


  

                                        (5A-21) 
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Appendix 5B – Analytical Solution for the Oil Flow in the Reservoir System 

The Green‟s function of an instantaneous line source in a 1-dimension bounded reservoir is given 

as (Gringarten and Ramey; 1973) 

 
 2 2

2
1

1
, 1 2 exp cos cos

fmm tm

me e e e
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     

   
 ,         (5B-1) 

where δ represents flux rate per unit length, area, or volume, ξ = x or y, η indicates that the 

instantaneous flux happens at time η. Based on the Newman product method, the pressure change 

of the point source in a 2-dimension bounded reservoir can be obtained by multiplying a line 

source function along x-direction with a line source function along y-direction. As such, we can 

have the instantaneous point source function in a 2-dimension reservoir, which is written as 

 

 

 

2 2

2
1

2 2

2
1

, , 

1
1 2 exp cos cos

1
1 2 exp cos cos

m tm

fm

me e e e

fm

me e e e

c
p x y t

B

m xm t m x

x x x x

m ym t m y

y y y y





   

   









 

   
   

   

   
   

   





.                (5B-2) 

The fractures are discretized into small segments. The pressure change at position (x, y) caused 

by a single fracture segment with an average flux rate of qf can be readily calculated by 

integrating Equation (5B-2) along the direction of the fracture segment from t = η1 to t = η2 ((η1, η2) 

indicates that the flux is continued from t = η1 to t = η2): 
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.                           (5B-3) 
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In particular, if the fracture segment is parallel to the x-axis, Equation (5B-3) can be written as 
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.               (5B-4) 

If the fracture segment is parallel to the y-axis, Equation (5B-3) can be written as 
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.          (5B-5) 

For convenience, the pressure change is written in a uniform format as 

 , , fp x y t q G  ,                                                     (5B-6) 

where G denotes the integral terms on the right-hand side of Equations (5B-3), (5B-4), and (5B-

5). As such, at the k
th

 timestep, the pressure change at the center position of the I
th

 (I = 1, 2…n1) 

segment of the initial fracture before the refracture is put into production can be expressed as 

 
1 1

, ,

1, 1, 1, 1, , 1, ,

1 1 1 1

, ,
i n i ns k s k

k k s s k s s k

f I f I f I f i i I f i i I

i s i s

p x y t q G q G
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 

   

    ,                           (5B-7) 

where ∆p
k 

f1,I represents the pressure change at the position (xf1,I, yf1,I) at the k
th

 timestep; the 

subscripts „i‟ and „I‟ of the G term in Equation (5B-7) indicates that the flux of the i
th

 fracture 

segment (xf1,i, yf1,i) should be used to calculate the pressure change at position (xf1,I, yf1,I); the 

superscript „s‟ and „k‟ of the G term indicates that the time integral is from t
s-1

 to t
s
 and the 
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investigated time is t
k
; the second summation term on the right-hand side of Equation (5B-7) 

represents the pressure change caused by the other unilateral initial fracture; and „-i‟ indicates the 

i
th

 fracture segment of the other unilateral initial fracture. Since the well is located at the center of 

the reservoir and the fracture system is symmetrical with respect to the wellbore, the flux and 

pressure of the i
th

 fracture segment should be equivalent to those of the -i
th

 fracture segment; thus, 

Equation (5B-7) can be simplified as 
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   .                                (5B-8) 

The pressure change at the center position of the I
th

 (I = 1, 2…n1) segment of the initial fracture 

after the refracturing treatment can be expressed as 
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and the pressure change at the center position of the J
th

 (I = 1, 2…n2) segment of the refracture 

can be expressed as 
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where in Equations (5B-9) and (5B-10), K represents the K
th

 timestep at the end of which the 

second stage is terminated. The pressure change can also be expressed as 

 
k k

f i fp p p   ,                                                      (5B-11) 

where pi is reservoir initial pressure. Combing Equation (5B-11) with Equations (5B-8) to (5B-

10), we can construct the following systems of equations to characterize the relationship between 

the flux and the pressure in the fracture system: 
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SI Metric Conversion Factors 

day × 8.640 E+04 = s 

m
2
/day × 1.157* E-05 = m

2
/s 

m
3
/day × 1.157* E-05 = m

3
/s 

m
3
/MPa × 1.000 E-06 = m

3
/Pa 

MPa × 1.000 E-06 = Pa 

mPa∙s × 1.000 E-03 = Pa∙s 

* Conversion factor is exact 
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CHAPTER 6 A NOVEL ANALYTICAL FRACTURE PERMEABILITY 

MODEL DEPENDENT ON BOTH FRACTURE WIDTH AND PROPPANT-

PACK PROPERTIES 
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Summary 

For an empty fracture, the fracture permeability (kf) is mainly influenced by the effect of viscous 

shear and can be analytically estimated if the fracture width (wf) is known a priori (i.e., 

2

2= 12f fwk  , where β2 is unit conversion factor). For an adequately propped fracture, the 

fracture permeability is mainly influenced by the proppant-pack properties and can be 

approximated with the proppant-pack permeability ( =f pk k , where kp is proppant-pack 

permeability). It can be readily inferred that as the effect of viscous shear fades (or the effect of 

proppant-pack becomes pronounced), there should be a regime within which both the fracture 

width and the proppant-pack properties exert significant influences on the fracture permeability. 

However, the functional relationship between fracture permeability, fracture width, and proppant-

pack properties is still elusive. In this work, we propose a new fracture permeability model to 

account for the influences of the proppant-pack permeability, proppant-pack porosity (ϕp), and 

fracture width on the fracture permeability. This new fracture permeability model is derived from 

a modified Brinkman equation. The results calculated with the fracture permeability model show 

that with different values of Darcy parameter the fluid flow can be divided into viscous-shear 

dominated (VSD) regime, transition regime, and Darcy-flow dominated (DFD) regime. If Darcy 

parameter is sufficiently large, the effect of proppant-pack permeability on fracture permeability 

can be neglected and the fracture permeability can be calculated with viscous-shear-dominated 

fracture-permeability (VSD-FP) equation (i.e., 
2

2= 12p ffk w  ), whereas, if Darcy parameter is 

sufficiently small, the effect of viscous shear on fracture permeability can be neglected and the 

fracture permeability can be calculated with Darcy-flow-dominated fracture-permeability (DFD-

FP) equation (i.e. =f pk k ). Both the VSD-FP equation and DFD-FP equation are special forms of 
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the proposed fracture permeability model. For the existing empirical/analytical fracture 

conductivity models that neglect the effect of viscous shear, one can multiply these models by the 

coefficient of viscous shear in order to make these models capable of estimating the fracture 

conductivity with large values of Darcy parameter.  

6.1. Introduction  

If the fluid flow velocity is sufficiently high in a porous media, the effect of viscous shear cannot 

be neglected and the fluid flow will be in a transition regime between Darcy flow and Navier-

Stokes (N-S) flow. In practice, such flow is normally characterized by the Brinkman equation 

(Brinkman, 1949). In a hydraulically fractured reservoir, a high flow velocity can be observed in 

the propped fracture. In such cases, the Brinkman equation is preferred to characterize fracture 

flow than Darcy‟s law. However, solving the Brinkman equation is far more computationally 

demanding than solving Darcy‟s equation. In addition, it is normally not convenient to find out 

whether Darcy‟s law or the Brinkman equation is optimal for a specific case before performing 

the simulation. Therefore, it is highly necessary to account for the influence of viscous shear on 

the effective permeability of a propped fracture, such that the fracture flow can be simply 

characterized by inserting the effective fracture permeability into Darcy‟s law.  

A propped fracture can be divided into two sub-systems, including the proppant pack and the 

fracture walls. The proppant pack provides the fluid with a pathway to flow through the fractures, 

and the ability of the proppant pack to transmit the fluid can be characterized by proppant-pack 

permeability. The fracture walls influence the flow velocity via the effect of viscous shear, and 

such an effect can be quantified if the fracture width is determined a priori. Although it is widely 

known that the fracture permeability is a function of the proppant-pack properties together with 

the fracture width, such a functional relationship is still elusive. 
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For an unpropped vertical fracture, the fluid flow in the fracture can be regarded as plane 

Poiseuille flow, and the flux rate can be calculated with (Sutera and Skalak, 1993):  

 

3

1 2

d

12 d

f

f

w p
q h

L
 


   (6-1) 

Based on Darcy‟s law the flux rate can also be calculated with (Darcy, 1856): 

 1

d

d

f

f f

k p
q w h

L



   (6-2) 

Substituting Equation (6-1) into Equation (6-2) yields the permeability of an unpropped fracture, 

which is written as: 

 

2

2

12

f

f

w
k


   (6-3) 

If a fracture is propped and the fracture permeability is mainly affected by the viscous shear from 

the fracture walls, the porosity of the proppant pack should be added to Equation (6-3), and we 

will have: 

 

2

2

12

p f

f

w
k

 
   (6-4) 

In particular, for an empty fracture ϕp = 1, Equation (6-4) can be reduced to Equation (6-3). For 

convenience, if the fracture permeability can be calculated with Equation (6-4), we consider that 

the fluid flow is in a viscous-shear-dominated (VSD) regime and Equation (6-4) is called 

viscous-shear-dominated fracture-permeability (VSD-FP) equation in this study. On the other 

hand, if the fracture width is sufficiently large, the viscous shear from the fracture walls can be 

neglected and the fracture permeability can be approximated with the proppant-pack permeability, 

which is expressed as follows:  

 f pk k   (6-5) 
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Hence, estimating the fracture permeability can be simplified to estimating the proppant-pack 

permeability. For the sake of convenience, the flow regime in such scenarios is named as Darcy-

flow-dominated (DFD) regime and Equation (6-5) is called Darcy-flow-dominated fracture-

permeability (DFD-FP) equation in this study. Table 6-1 summaries some of the equations that 

have been widely used to calculate the proppant-pack permeability (Krumbein and Monk, 1943; 

Carman, 1956; Berg, 1970; van Baaren, 1979; Carman, 1997; Glover et al., 2006). At present, 

although both VSD-FP equation and the DFD-FP equation have been widely used to estimate the 

fracture permeability, it is difficult to determine which equation is optimal for a specific scenario. 

In other words, as the fracture width is increased, the influence of the viscous shear from the 

fracture walls on the fluid flow becomes less pronounced, and the method of calculating the 

fracture permeability is transitioned from VSD-FP equation to DFD-FP equation. Figure 6-1 

presents the results of a calculation example in a log-log plot to compare the fracture permeability 

that is calculated with VSD-FP equation against the fracture permeability that is calculated with 

the DFD-FP equation. The fracture permeability is calculated with different fracture width and a 

constant proppant-pack permeability. Based on Figure 6-1, one can readily put forward the 

following questions: does there exists a smooth transition (see the black dashed line in Figure 6-1) 

between the results of VSD-FP equation and those of the DFD-FP equation? If there exists, how 

to describe such a transition? 

Table 6-1. Equations that can be used to calculate the proppant-pack permeability. 

Name Equation 

Notes (the meanings and the units of the 

symbols are only used for the equations 

shown in this table) 

Krumbein and Monk 

equation (Krumbein 

and Monk, 1943) 

 2760 exp 1.31p Dk D    

kp = permeability, D 

D = geometric mean grain diameter, 

mm 

ζD = standard deviation of grain size in 

phi units 
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Kozeny-Carman 

equation (Carman, 

1937; Carman, 1956)  

2 3

2

1

p

p

p

cD
k







 

kp = permeability, mD 

c = proportionality and unit factor, 

mD/mm
2
 

D = geometric mean grain diameter, 

mm 

ϕp = porosity  

Berg equation (Berg, 

1970) 
1.385 2 5.180.8 10p pk D     

kp = permeability, D 

γ = sorting term in phi units 

D = geometric mean grain diameter, 

mm 

ϕp = porosity 

van Baaren equation 

(van Baaren, 1979) 
 3.642 3.6410

m

p d pk D C
   

kp = permeability, mD 

Dd = dominant grain size, μm 

ϕp = porosity 

m = cementation exponent 

C = sorting index which ranges from 

0.7 to 1.0 

RGPZ equation 

(Glover et al., 2006) 

2 3

24

m

p

p

D
k

am


  

kp = permeability, m
2 

D = geometric mean grain diameter, m 

ϕp = porosity 

a = parameter that  

equals to 8/3 for three dimensional 

samples composed of quasi-spherical 

grains 

m = cementation exponent 
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Figure 6-1. A calculation example showing the fracture permeability that is calculated with 

VSD-FP equation and DFD-FP equation. 

In practice, the industry prefers to refer directly to the fracture conductivity for describing the 

fracture transmitting capability. Lacy et al. (1998) experimentally investigated the proppant 

embedment and fracture conductivity in soft formations. In their work, the embedment is studied 

as a function of proppant size, carrier fluid type, closure pressure, and leak-off rate. Fredd et al. 

(2001) explored the mechanisms by which the water-fracturing treatment provides sufficient 

fracture conductivity. The results of their work demonstrate that the fracture conductivity can be 

significantly influenced by the degree of fracture displacement, the size and distribution of 

asperities, and rock mechanical properties. More experimental works about the propped fracture 

conductivity can be found in Pope et al. (1996), David (2000), Nguyen et al. (2000), Weaver et al. 

(2010), Alramahi and Sundberg (2012), Zhang et al. (2014), and Awoleke et al. (2016). On the 

basis of the experimental results, various empirical formulations have been proposed to calculate 

the fracture conductivity. However, such empirical formulations bear two major deficiencies: 

firstly, the regressed coefficients are highly dependent on the input experimental data. This 

implies that the accuracy of such empirical models might not be satisfactory in certain field cases, 

and it can be a heavy load if one wants to update the coefficients by conducting new experiments; 

and secondly, the empirical models normally lack clear explanation on the mechanism by which 

the influencing factors exert their effects on the fracture conductivity. In addition, it should be 

noted that some of these conductivity-test experiments were conducted with a relatively large 

fracture width, which indicates that the viscous shear from the fracture walls may not show its 

effect during these tests. Hence, for a fracture that has a sufficiently small width, it can be 

inappropriate to infer its conductivity on the basis of such test results.  
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In order to avoid the deficiencies of the empirical models, researchers also derive analytical 

models to estimate the fracture conductivity on the basis of theoretical studies. Darin and Huitt 

(1960) developed an analytical model to consider the effect of partial-monolayer proppant pack 

on the fracture conductivity. Their model was derived from the Kozeny-Carman equation (1937) 

and was further validated against experimental methods. Li et al. (2015) proposed mathematical 

models for calculating the proppant embedment and fracture conductivity. In their models, the 

proppant deformation and the change in fracture aperture can also be considered. Zhang et al. 

(2016) derived a theoretical model from Berg‟s correlation (1970) to calculate fracture 

conductivity in shale. This model relates the fracture conductivity to proppant size, packing, 

sorting, crushing, grain rearrangement, proppant embedment, and water-induced damage. 

However, in all these theoretical models, the fracture permeability is approximated with 

proppant-pack permeability, which is reasonable only if the effect of viscous shear from the 

fracture walls can be neglected. Under such a restriction, these developed models can be 

inapplicable to the scenario where the effect of viscous shear cannot be neglected.  

Based on the aforementioned arguments, we can conclude that: firstly, the fracture permeability 

is a function of proppant-pack properties as well as fracture width, but such a functional 

relationship has not been well elucidated; secondly, if the conductivity test is conducted with a 

large fracture width, it can be inappropriate to use such test results to infer the conductivity of a 

fracture that has a small width; and lastly, the theoretical fracture-conductivity models are 

normally developed by approximating the fracture permeability with the proppant-pack 

permeability, implying that such models are not applicable if the effect of viscous shear cannot be 

neglected.  It is thus highly necessary to develop a more versatile fracture permeability model 

that is applicable to a wide range of field conditions. 
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In this study, we derive a new fracture permeability model by considering the effect of viscous 

shear and the effect of proppant-pack properties on the fracture permeability. This new fracture 

permeability model is derived from a modified Brinkman equation, and it is validated against an 

analytical method and a numerical method. With the aid of this model, we can identify the flow 

regimes that can be observed in a fracture. 

6.2. Methodology 

At the start of this section, we first review the derivation of the Brinkman equation. Darcy‟s law 

describing the fluid flow velocity through porous media is given as: 

 
1k p



  v   (6-6) 

In an empty space, neglecting the inertial terms, the N-S equation for incompressible fluid is 

simplified to: 

 
2

2

p



   v   (6-7) 

The Brinkman equation (Brinkman, 1949) is obtained by combining Equation (6-6) and Equation 

(6-7): 

 
2

2 1

0,   0p
k

 

 
     v v v   (6-8) 

As shown in Equation (6-8), the Brinkman equation is a mix of Darcy‟s law and the N-S equation. 

The fundamental difference between the Brinkman equation and the N-S equation is that the 

Brinkman equation characterizes the fluid flow at a macroscopic scale as in Darcy‟s law, while 

the N-S equation describes the fluid flow at a microscopic scale. In addition, the Brinkman 

equation can extend Darcy‟s law to account for the dissipation of kinetic energy which is caused 

by viscous shear as in the N-S equation. However, it should be noted that the flow velocity (v) in 
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Equation (6-6) represents the superficial velocity which is the rate of flow through the surface 

element of a unit area, whereas the flow velocity (v) in Equation (6-7) represents the real flow 

velocity at the microscopic level. This indicates that the combination of Equation (6-6) and 

Equation (6-7) is reasonable only if the superficial flow velocity is very close to the real flow 

velocity. The subsequent discussion also demonstrates that the results from the Brinkman 

equation are only applicable to the scenarios where the volume fraction of the solid in the porous 

media is sufficiently small (Durlofsky and Brady, 1987; and Belhaj, et al., 2003). This is because 

the superficial flow velocity is closer to the real flow velocity at a smaller volume fraction of the 

solid.  

At present, scholars have made various modifications on the Brinkman equations to expand its 

application scope. For example, the Brinkman equation used in Comsol is very powerful and 

versatile (Comsol, 2019). In this work, since we aim to investigate the influence of viscous shear 

on the permeability of a propped fracture, only minor modification is applied to the original 

Brinkman equation. In a porous media, the real flow velocity (vr) has the following relationship 

with the superficial flow velocity (vs): 

 
s

r

p


v
v   (6-9) 

Thus, in this work, the Equation (6-7) is modified to: 
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and the original Brinkman equation can be modified as: 
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As such, the flow velocities (v) in Equations (6-6), (6-10) and (6-11) have the same meaning and 

all denote the superficial flow velocity. In order to account for the impact of viscous shear on the 

fracture permeability, we make the following assumptions: 

 The fluid is incompressible and the viscosity of the fluid is constant; 

 The fluid flow is a laminar flow and is in a steady state; and 

 The effect of gravity is neglected. 

It is worth noting that the above assumptions have also be made for deriving the VSD-FP 

equation. On the basis of the assumptions, Equation (6-8) can be reduced to: 
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where l1 indicates the direction parallel to the fracture wall and l2 indicates the direction 

orthogonal to the fracture wall (see Figure 6-2). In addition, we have the following boundary 

conditions: 
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The general solution of Equation (6-12) is: 
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where A1 and A2 are constants that need to be determined. Inserting the boundary conditions 

(Equation (6-13)) into Equation (6-14) gives: 
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Inserting Equation (6-15) into Equation (6-14) yields: 
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The flux rate q through the cross-section of the fracture can be obtained by integrating Equation 

(6-16) from l2 = 0 to l2 = wf, which results in: 
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 (6-17) 

Combination of Equation (6-17) and Equation (6-2) leads to the following fracture permeability 

model: 
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  (6-18) 

If the viscous shear from the fracture walls can be neglected, we will have  
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Inserting Equation (6-19) into Equation (6-18) gives 

 f pk k   (6-20) 

This implies that the fracture permeability equals to the proppant-pack permeability if the effect 

of viscous shear from the fracture walls can be neglected. Such a result is consistent with the real 

observations. In addition, if there is no slippage at the fracture walls due to the effect of viscous 

shear, we will have v0 = 0 m/d and Equations (6-16) and (6-18) can be reduced to: 
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and 
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  (6-22) 

Equation (6-22) characterizes the relationship between the fracture permeability, proppant-pack 

permeability, proppant-pack porosity, and fracture width. In this work, since the effect of the 

viscous shear from the fracture walls is considered, the investigations in the following sections 

are conducted on the basis of Equations (6-21) and (6-22). It should be noted that, in practice, the 
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proppant-pack permeability, proppant-pack porosity, and fracture width are highly dependent of 

proppant concentration, proppant sorting, proppant diameter, closure pressure, and rock softness, 

etc. Therefore, the influencing factors, including but not limited to these properties, have not been 

directly considered in this work. For practical application, such factors can be readily 

accommodated into our proposed model if the empirical/analytical relationship between these 

factors and fracture properties (including proppant-pack permeability, proppant-pack porosity, 

and fracture width) is constructed beforehand. 

For an unpropped fracture, there is no proppant in the fracture and kp can be regarded as infinite. 

Based on Taylor series expansion, Equation (6-22) can be rewritten as: 
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In addition, if the fracture width is sufficiently large (or the value of 
2p fk w  is sufficiently 

small), the term 
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in Equation (6-22) approaches 

0. Thus we can have: 



245 
 

  

2 2

2

2
1 csch coth

1 0

=

p p p

f p f f

f p p p

p

p

k
k k w w

w k k

k

k

   

 

      
                  

     (6-24) 

This indicates that the VSD-FP equation and the DFD-FP equation are both special forms of the 

proposed fracture permeability model.  

 

Figure 6-2. Schematic of fluid flow in the proppant pack between the fracture walls. 

6.3. Model Validation 

Due to the fact that there is no available experiment data or proposed method in the previous 

studies that can be used to validate the proposed fracture permeability model, the validation of 

the proposed fracture permeability model is conducted on two assumed propped fracture models. 

Fracture model #1 is shown in Figure 6-3. In Figure 6-3, the fracture is propped with 

impermeable slabs, and the fluid can flow in the channels between the slabs. Since the fracture 

permeability of such a propped fracture can be analytically calculated with the method introduced 

by Spiga and Morini (1994), we can validate the proposed fracture permeability model by 

comparing the results calculated with the proposed model against those calculated with the 

method of Spiga and Morini (1994). One of the major reasons for using such a fracture to 

validate the fracture permeability model is that, for this specific scenario, both the proppant-pack 

permeability and the fracture permeability can be analytically calculated.  
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Spiga and Morini (1994) derived the following equation to calculate the average flux velocity 

along a single rectangle channel (see Figure 6-3): 
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where,  
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As such, the total flux rate q through a fracture, whose cross area is wf × hf, can be obtained by: 
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Comparing Equation (6-27) to Darcy‟s Equation (6-2), we can have the fracture permeability 

written as: 
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With the aid of Equation (6-28), one can obtain the fracture permeability based on the method of 

Spiga and Morini (1994). In addition, the proppant-pack permeability should be independent of 

the fracture width. Neglecting the impact of the fracture wall, the permeability of a single channel 

between the slabs can be calculated with Equation (6-3), leading to: 
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whereas the permeability of the entire proppant-pack can be obtained by: 
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Inserting Equation (6-30) into Equation (6-22), one can also calculate the fracture permeability 

with the proposed fracture permeability model. As such, we can validate the proposed fracture 

permeability model by comparing the results of the proposed model to those obtained from the 

method of Spiga and Morini (1994). The values of the parameters used for validating the fracture 

permeability model are as follows: wc = 1×10
-3

 m, ϕ = 0.2, β2 is a unit conversion factor whose 

numerical value is 1.01×10
15

, and wf is varied from 1×10
-5

 m to 1×10
-1

 m. Figure 6-4 compares 

the fracture permeability that is calculated with the proposed model against the fracture 

permeability that is calculated with the method of Spiga and Morini (1994). From Figure 6-4, one 

can find that the fracture permeability calculated with the proposed fracture permeability model 

has an excellent agreement with that calculated with the method of Spiga and Morini (1994), 

which partly verifies the correctness of the newly proposed fracture permeability model. 

 
Figure 6-3. Schematic of an assumed propped fracture (wc is width of the channel, and wf is 

fracture width).  
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Figure 6-4. Comparison between the fracture permeability of the fracture shown in Figure 6-3 

that is calculated with the proposed model and the fracture permeability that is calculated with the 

method of Spiga and Morini (1994). 

Moreover, the validation is also conducted on a numerical fracture model (i.e. model #2) which is 

shown in Figure 6-5. This model is constructed with Comsol. In this figure, the cylinder holes 

represent proppants, the upper and lower surfaces (surfaces orthogonal to the z-axis) represent 

fracture walls, and the front and back surfaces (surfaces orthogonal to the y-axis) are 

impermeable walls. The fluid flows into the fracture model through the inlet surface and flows 

out of the fracture model through the outlet surface. The radius of the cylinder along x-y plane is 

5 ×10
-4

 m, the length of model #2 along x-axis (Lx) is 1.15 ×10
-2

 m, the length of model #2 along 

y-axis (Ly) is 4 ×10
-3

 m, the aperture between the upper and lower surfaces (this aperture is 

equivalent to fracture width wf) is varied from 1×10
-5

 m to 1×10
-2

 m, the flow rate is 864 m/d, and 

the viscosity of the fluid is 1 mP∙s. The pressure distribution in this model is calculated with the 

N-S equation in Comsol. Therefore, the permeability of the porous media can be calculated based 

on Darcy‟s law if the average pressures at the surfaces of the inlet and outlet are measured. The 

proppant-pack permeability is calculated by neglecting the slippage at the upper, lower, front, and 

back surfaces, whereas the fracture permeability is calculated by neglecting the slippage at front 
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and back surfaces while considering the slippage at upper and lower surfaces. Since the proppant-

pack permeability is independent of aperture, the proppant-pack permeability is only calculated 

with an aperture of 1×10
-3

 m. Table 6-2 lists the measured average pressures at the inlet and 

outlet surfaces as well as the corresponding apertures between the upper and lower surfaces. 

On the basis of the measured data in Table 6-2, the proppant-pack permeability can be calculated 

as follows: 
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The porosity of the proppant-pack can be obtained by: 
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Hence, the fracture permeability can be calculated with the proposed fracture permeability model 

by inserting the results of Equations (6-31) and (6-32) and the corresponding aperture into 

Equation (6-22). In addition, the fracture permeability can be calculated with the same method as 

Equation (6-31) based on the measured data in Table 6-2. Figure 6-6 compares the results from 

the proposed fracture permeability model against those calculated from the Comsol simulation 

outputs. It is found that the results from the proposed model agree well with the results from the 

Comsol outputs. The results shown in Figures 6-4 and 6-6 imply that the proposed fracture 

permeability model is capable of characterizing the effects of viscous shear and proppant-pack on 

the fracture permeability.  

Table 6-2. Data used in the model built by Comsol for validating the proposed fracture 

permeability model. 

Porous media 
Aperture, 

10
-3

 m 

Average pressure at the 

inlet surface, 10
-6

 MPa 

Average pressure at the 

outlet surface, 10
-6

 MPa 

Proppant pack 1.00 14.38 0.00 
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Fracture 

0.01 31416.00 1.86 

0.02 7969.80 0.88 

0.04 2052.20 0.39 

0.06 959.59 0.29 

0.08 554.60 0.21 

0.10 380.64 0.19 

0.50 34.07 0.03 

1.00 21.21 0.01 

5.00 15.06 0.01 

10.00 14.61 0.01 

 

 
Figure 6-5. A propped fracture model constructed in Comsol for validation purpose. 

 

Proppant 

Upper surface, fracture wall 

Lower surface, fracture wall 

Inlet 

Outlet 
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Figure 6-6. Comparison between the fracture permeability that is calculated with the proposed 

model and the fracture permeability that is calculated with the results of Comsol. 

6.4. Results and Discussion 

For the sake of convenience, we define the following dimensionless parameters in this section: 
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and 
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The Darcy parameter is defined as (Parvazinia et al., 2005): 
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Inserting Equations (6-33) through (6-35) into Equations (6-21) and (6-22) yields: 
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and 
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  (6-37) 

In Equation (6-36), the second term on the right-hand side indicates the impact of viscous shear 

on the flow velocity. vD = 1 indicates that the fluid flow is totally governed by Darcy‟s law. With 

the aid of the proposed fracture permeability model, we carry out a comprehensive study on the 

influences of proppant-pack permeability and fracture width on the fracture permeability. We 

also investigate the velocity profiles in propped fractures with different values of Darcy 
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parameter. Furthermore, we apply this proposed fracture permeability model together with a 

semi-analytical model to conduct a post-fracture analysis on a field case. 

6.4.1 Sensitivity Analysis 

Figure 6-7 presents the fracture permeability (blue solid line) that is calculated by use of the 

proposed fracture permeability model with a constant proppant-pack permeability (kp = 1×10
5
 

mD), constant proppant-pack porosity (ϕp =0.2), and different fracture widths (wf is varied from 

1×10
-6

 m to 1×10
-2

 m). In Figure 6-7, the red dashed line shows the fracture permeability that is 

calculated with VSD-FP equation and the yellow dashed line illustrates the fracture permeability 

that is calculated with DFD-FP equation. From Figure 6-7 one can find that the change of the 

fracture permeability can be divided into three regimes:  

 VSD regime: this regime can be observed if the fracture width is sufficiently small. 

During this regime, the results of the proposed fracture-permeability model have a good 

agreement with those of VSD-FP equation, and the influence of proppant-pack 

permeability on the fracture permeability can be neglected; 

 Transition regime: this regime bridges the VSD regime with the DFD regime. During this 

regime, both the viscous shear and proppant-pack exert significant influences on the 

fracture permeability; 

 DFD regime: if the fracture width is sufficiently large, the fracture permeability 

approaches the proppant pack permeability and the results from the proposed fracture 

permeability model agree well with those from DFD-FP equation. The effect of viscous 

shear on the fracture permeability can be neglected during this regime. 

Figure 6-8 shows the fracture permeability (blue solid line) that is calculated based on the 

proposed fracture permeability model with a constant fracture width (wf = 1×10
-4

 m), constant 
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proppant-pack porosity (ϕp =0.2), and different proppant-pack permeability (kp is varied from 

1×10
3
 mD to 1×10

9
 mD). In this figure, the red dashed line indicates the fracture permeability 

that is calculated with VSD-FP equation and the yellow dashed line implies the fracture 

permeability that is calculated with DFD-FP equation. In Figure 6-8, one can also identify three 

regimes, including the DFD regime, the transition regime, and the VSD regime.  

 

Figure 6-7. Fracture permeability that is calculated with constant proppant-pack permeability, 

constant proppant-pack porosity, but different fracture widths. 

 

Figure 6-8. Fracture permeability that is calculated with constant fracture width, constant 

proppant-pack porosity, but different proppant-pack permeability. 
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The relative absolute deviation between the results of the proposed model and those of VSD-

FP/DFD-FP equation can be calculated by: 

 1 2

2

= 100%
K K

K



   (6-38) 

where ε is relative absolute deviation, K1 is fracture permeability that is calculated with VSD-FP 

equation or DFD-FP equation, and K2 is fracture permeability that is calculated with the proposed 

model. Inserting Equations (6-4), (6-5), (6-35), and (6-37) into Equation (6-38) yields: 

if K1 is calculated with VSD-FP equation (i.e., Equation (6-4)), 

 
1

= 1 100%
1 1

12 1 2 csch cotha a

a a

D D
D D

  
      
      

       

  (6-39) 

and if K1 is calculated with DFD-FP equation (i.e., Equation (6-5)), 
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       

  (6-40) 

Taking 5% as the threshold value, if ε is less than 5%, one can think that the fracture permeability 

can be calculated with VSD-F equation or DFD-FP equation. Setting 

 5%   (6-41) 

and inserting Equations (6-39) and (6-40) into Equation (6-41), one can obtain: 

if K1 is calculated with VSD-FP equation (i.e., Equation (6-4)), 
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  (6-42) 

and if K1 is calculated with DFD-FP equation (i.e., Equation (6-5)), 
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  (6-43) 

The solutions of Equations (6-42) and (6-43) are Da ≥ 2.00 and Da ≤ 5.67×10
-4

, respectively. This 

indicates that, taking 5% as the threshold value for the relative absolute deviation, if Da ≥ 2.00, 

the effect of proppant-pack permeability on the fracture permeability can be neglected and the 

fracture permeability can be calculated with VSD-FP equation, whereas, if Da ≤ 5.67×10
-4

, the 

effect of viscous shear on the fracture permeability can be neglected and the fracture permeability 

can be calculated with DFD-FP equation.  

6.4.2 Velocity Profiles 

With the aid of Equation (6-36), we calculate the dimensionless superficial flow velocity along 

the cross-section of a fracture with different values of Da (Da = 1×10
-5

, 1×10
-4

,
 
1×10

-3
, 1×10

-2
, 

and 1×10
-1

); the calculated results are shown in Figure 6-9. As defined in Equation (6-34), vD = 1 

represents that the fluid flow is Darcy flow. As one can see from Figure 6-9, with a small value 

of Da (e.g., Da = 1×10
-5

), the viscous shear exerts a small impact on the fluid flow, and the flow 

velocities approach a constant value of 1. In addition, with a large value of Da (e.g., Da = 1×10
-1

), 

the flow velocity is significantly jeopardized due to the impact of viscous shear. This indicates 

that with small values of Da the fluid flow in fractures is dominated by Darcy flow, whereas with 
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large values of Da the fluid flow is significantly influenced by viscous shear. As the Darcy 

parameter is increased, the regime of the fluid flow in the fractures is varied from DFD regime to 

VSD regime. At present, the fracture permeability has been commonly approximated with the 

proppant-pack permeability for conducting the post-fracture analysis and developing analytical 

fracture conductivity models (Li et al., 2015; Zhang et al., 2016). Such an approximation is 

reasonable only if the value of Da is sufficiently small and the fluid flow in the fracture is in DFD 

regime. However, in real filed cases, the fluid flow in the fractures can be in the transition regime 

or even VSD regime, and neither the effect of viscous shear nor the effect of proppant-pack on 

the fracture permeability can be neglected. A large value of Da can be observed in the following 

scenarios: firstly, if the rock is sufficiently soft, the fracture width can be very small because of 

the embedment of the proppants; and secondly, if the proppant concentration is sufficiently small, 

the proppant-pack permeability can be very large (e.g., a natural fracture, in which the proppant 

concentration is 0 and the proppant-pack permeability is infinite, can be regarded as an extreme 

case).  

 
Figure 6-9. Dimensionless flow velocities that are calculated with different values of Darcy 

parameter along the cross-section of a fracture. 
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6.4.3. Applications of the Proposed Fracture Permeability Model 

In this section, we investigate the effect of viscous shear from fractures walls on the well 

performance. We also apply the proposed fracture permeability model to conduct history 

matching work on a fractured well. The simulation work in this section is conducted with a semi-

analytical model which is modified from the model introduced by Teng and Li (2019). Compared 

with the numerical method, the semi-analytical models tend to be more conveniently used for 

constructing the fractures models and also more computationally efficient. The details of 

constructing the semi-analytical model are introduced in Appendices 6A, 6B, and 6C.  

Field studies and simulation results show that the width of a hydraulic fracture is normally not 

uniform along both the vertical and horizontal directions (Morita et al., 1988; Gu and Leung, 

1993; Swaby and Rawnsley, 1997; Wright et al., 1998). Therefore, the fracture model used in this 

section has a non-uniform width distribution, as shown in Figure 6-10. In Figure 6-10, Xf is half 

fracture length, Wf is fracture width at the wellbore location, and Hf is fracture height at the 

wellbore location. For the purpose of simplification, we assume that the cross-sections of the 

fracture along the x-y, x-z, and y-z planes are all ellipses, such that the fracture width distribution 

can be readily calculated if the values of Xf, Wf, and Hf are given. The fluid in the reservoir is 

single-phase oil and the properties of the fluid and rock are maintained as constant. The 

benchmark values of the parameters used in the simulations are as follows: kp = 1×10
5
 mD,  Xf = 

100 m, Wf = 2.5×10
-4

 m, Hf = 50 m, ϕp = 0.1, ctf = 0.0012 MPa
-1

, ze = 60 m, km = 2 mD, ctm = 

0.0012 MPa
-1

, ϕm = 0.1, Cw = 0.1 m
3
/MPa, B = 1.2, rw = 0.05 m, μ = 5 mPa∙s, qw = 10 m

3
/d for the 

constant production rate case, and pw = 10 MPa for the constant bottomhole pressure case. At the 

late production period or in the scenario of sufficiently soft rock, the embedment of the proppant 

can be significant and the fracture width can be very small (Alramahi and Sundberg, 2012). 
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When the fracture width is sufficiently small, the effect of the viscous shear from the fracture 

walls cannot be neglected. In order to investigate the effect of viscous shear on the well 

performance, Wf in the benchmark model is assigned with a small value. For comparison purpose, 

the well performance is also studied by neglecting the effect of the viscous shear. In the cases 

where the effect of viscous shear is neglected, the fracture permeability is approximated with the 

proppant-pack permeability (i.e., kf = kp).  

 

Figure 6-10. Schematic of a half of non-uniform width fracture. 

Figure 6-11 compares the fracture conductivity (Cf = kf×wf) calculated by neglecting the effect of 

viscous shear against that calculated by considering the effect of viscous shear. As seen from 

Figure 6-11, the fracture conductivity that considers the effect of the viscous shear (Figure 6-11b) 

is overall smaller than the fracture conductivity that neglects the effect of viscous shear (Figure 6-

11a). Their difference is particularly noticeable at the edges of the fracture. This is because the 

fracture width is smaller at the fracture edge than that at the wellbore, which leads to a more 

significant effect of viscous shear at the fracture edge. Figure 6-12a compares the well 

production rate calculated by considering the effect of viscous shear against the well production 

rate calculated by considering the effect of viscous shear under constant bottomhole pressure 

condition, while Figure 6-12b compares the well bottomhole pressure calculated by considering 

the effect of viscous shear against the well bottomhole pressure calculated by considering the 

effect of viscous shear under constant production rate condition. Figure 6-12 shows that both the 

production rate plots and the bottomhole pressure drop plots exhibit significant differences 
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between the cases under comparison. This implies that the effect of viscous shear from the 

fracture walls on the well performance cannot be neglected if the fracture width is sufficiently 

small (or the Darcy parameter is sufficiently large).  

Furthermore, we apply the semi-analytical model together with the fracture permeability model to 

fit the pressure buildup data of a partially-penetrating fractured well. The fitting work is 

conducted with a non-uniform width fracture which is shown in Figure 6-10. The parameter 

values known in this case are given as follows (Rodriguez et al., 1984): qw = 31.8 m
3
/d, ze = 78.6 

m, B = 1.4, μ = 3 mPa∙s, ctm = 7.25 × 10
-4

 MPa
-1

, ϕm = 0.3, and rw = 0.076 m. The matrix 

permeability of km = 4.59 mD is determined by radial flow analysis (Rodriguez et al., 1984). For 

simplification, we assume that the proppant-pack permeability is uniform along this fracture; as 

such, the unknown parameters include Wf, Xf, Hf, kp, and ϕp. Figure 6-13 compares the filed 

production data against the simulated production data using the semi-analytical model together 

with the proposed fracture permeability model. As one can see from this figure, the simulated 

pressure transient data exhibit excellent agreements with the field production data. Table 6-3 

summaries the values of the unknowns that are obtained by fitting the history production data. It 

should be noted that identifying the best fit between the simulated data and the field case can be 

very subjective, and the fitting results are highly dependent of the assumed fracture geometry. By 

fitting the field data, the authors only aim to show that the proposed fracture permeability model 

can be utilized to conduct post-fracture analysis.  

 

(a) 
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(b) 

Figure 6-11. Comparison between the fracture conductivity (mD∙m) that neglects the effect of 

viscous shear and the fracture conductivity that considers the effect of viscous shear: (a) fracture 

conductivity distribution neglecting the effect of viscous shear; and (b) fracture conductivity 

distribution considering the effect of viscous shear. 

 

  

(a)                                                                           (b) 

Figure 6-12. Comparison between the well performance that neglects the effect of viscous shear 

and the well performance that considers the effect of viscous shear: (a) comparison of production 

rate under constant bottomhole pressure condition; and (b) comparison of bottomhole pressure 

drop under constant production rate condition. 
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Figure 6-13. Comparison of the pressure transient data from Rodriguez et al. (1984) against the 

fitted one using the semi-analytical model together with the proposed fracture permeability model. 

Table 6-3. Values of the parameters that are obtained by fitting the pressure buildup data. 

Parameters Value  

Wf 1.00×10
-2

 

Xf 25.67 

Hf 62.17 

kp 5.50×10
5
 

ϕp 0.35 

 

 

6.4.4. Recommendation on Real-World Applications of the Proposed Fracture Permeability 

Model 

The term in the bracket of Equation (6-37) reflects the effect of viscous shear on the effective 

fracture permeability. Hence, the coefficient of viscous shear λ can be defined as follows: 

 
1 1

=1 2 csch cotha

a a

D
D D


    

        
     

  (6-44) 

As such, the fracture permeability can be obtained by multiplying the proppant-pack permeability 

by the coefficient of viscous shear, which can be expressed as: 
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 f pk k   (6-45) 

The following recommendations can be made to guide how to apply the proposed fracture 

permeability model to the following real-world scenarios: 

1. If the fracture conductivity tests are conducted with a relatively large fracture width (i.e., the 

viscous shear on the fracture permeability/conductivity is negligible), the empirical fracture 

conductivity equation obtained by these tests can be inapplicable to the scenarios of small 

fracture width (or large Darcy parameter). In such cases, one can multiply the empirical 

fracture-conductivity equation by the coefficient of viscous shear to make it applicable to 

small-width fractures; 

2. The assumption of approximating the fracture permeability with the proppant-pack 

permeability restricts the application scope of some analytical fracture-permeability models 

(e.g., the models proposed in Li et al. (2015) and Zhang et al. (2016)). The application scope 

of such models can be expanded by multiplying these models by the coefficient of viscous 

shear; 

3. Although the proposed fracture permeability model only relates the fracture permeability to 

proppant-pack permeability, proppant-pack porosity, and fracture width, other effects 

(including but not limited to closure stress, embedment, proppant sorting, and proppant size) 

can be readily incorporated into this model. For example, the effects of sorting and proppant 

size on the fracture permeability can be considered by inserting the Berg equation (see Berg 

equation (1970) in Table 6-1) into the proposed fracture permeability equation (i.e., Equation 

(6-22)).  
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6.5. Conclusions 

In this work, we derive a new analytical fracture permeability model which can take into account 

the effect of viscous shear from fracture walls on the effective permeability of a propped fracture. 

Such fracture permeability model characterizes the relationship between the fracture permeability, 

proppant-pack permeability, proppant-pack porosity, and fracture width. We first validate the 

correctness of the new fracture permeability model and then apply such model to history match 

the measured production data of a fractured well. The following conclusions can be drawn based 

on the results obtained: 

1. The fluid flow in a fracture can be divided into three regimes, including DFD regime, 

transition regime, and VSD regime. As the Darcy parameter is increased, the flow regime is 

transitioned from DFD regime to VSD regime; 

2. The proposed analytical model fills the gap between the VSD-FP equation and the DFD-FP 

equation. Both the VSD-FP equation and the DFD-FP equation are special forms of the 

proposed fracture permeability model; taking 5% as the threshold value of relative absolute 

difference, if Da ≥ 2.00, the effect of proppant-pack permeability on the fracture permeability 

can be neglected and the fracture permeability can be calculated with VSD equation, whereas, 

if Da ≤ 5.67×10
-4

, the effect of viscous shear on the fracture permeability can be neglected 

and the fracture permeability can be calculated with DFD equation; 

3. For the empirical and analytical fracture permeability/conductivity models that neglect the 

effect of viscous shears, one can multiply these models by the coefficient of viscous shear. By 

doing so, these model can be applied to estimate the fracture permeability/conductivity even 

if the Darcy parameter in the fracture is sufficiently large.  

Nomenclature 
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a, b = parameters defined in Equation (6-26) 

A1 and A2 = constant  

B =  formation volume factor 

ctf = total compressibility of the fracture system, MPa
-1 

ctm = total compressibility of the matrix system, MPa
-1 

Cf = fracture conductivity, mD∙m 

Cw = wellbore storage coefficient, m
3
/MPa 

Da = Darcy parameter defined in Equation (6-35) 

G = a term defined in this work 

hf = fracture height, m 

Hf = fracture height at wellbore, m 

k = permeability, mD 

kc = channel permeability, mD 

kf = fracture permeability, mD 

km = matrix permeability, mD 

kp = proppant-pack permeability, mD 

l1 = direction that is parallel to the fracture wall, m 

l2 = direction that is orthogonal to the fracture wall, m 

l2D = dimensionless position along the direction that is orthogonal to the fracture wall 

L = length, m 

Lx = length of model #2 along x-axis 

Ly = length of model #2 along y-axis 

nw =  number of fracture segments that are connected to the wellbore 
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Nf = total number of the fracture segments 

∆p = pressure difference, MPa 

p = pressure, MPa 

pf =  fracture pressure, MPa 

pin = pressure at the inlet surface, MPa 

pout = pressure at the outlet surface, MPa 

pw = bottomhole pressure, MPa 

q = volume flux rate, m
3
/d 

qf = flux rate from matrix to the fracture, m
3
/d 

qf-w = flux rate from the fracture to the wellbore, m
3
/d 

qw = well production rate, m
3
/d 

rp = radius of the cylinder, m 

rw = wellbore radius, m 

∆t = time interval, d 

t = time, d 

T = transmissibility, m
3
/(d∙MPa) 

v = flow velocity, m/d 

v0 = flow velocity at fracture walls, m/d 

vave = average flow velocity, m/d 

vD = dimensionless Darcy velocity 

wc = width of the channel, m 

wf = fracture width, m 

wfD = dimensionless fracture width 
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Wf = fracture width at wellbore, m 

∆x = length of the fracture segment along x-axis, m 

∆z = length of the fracture segment along z-axis, m 

x0, y0, z0 = central position of a fracture segment, m 

Xf = half fracture length, m 

ze = formation thickness, m 

β1 = 0.0853, unit conversion factor 

β2 = 1.01×10
15

, unit conversion factor 

δ = flux per unit length or area 

ε = relative difference 

ηm = β1km /(μϕmctm), diffusivity, m
2
/d 

λ = coefficient of viscous shear 

μ = viscosity, mPa∙s 

η = time the instantaneous source occurs, d 

ϕm = matrix porosity 

ϕp = proppant-pack porosity 
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Appendix 6A – Formulations of the Fracture Flow 

The fracture flow is characterized with a numerical method; hence, we discretize a unilateral non-

uniform-width fracture into Nf small segments, as shown in Figure 6A-1. Since we assume that 

the fracture is symmetrical with respect to the wellbore, a unilateral fracture is sufficient to 

represent the entire fracture.  

In this work, we set that the x-axis is parallel to the horizontal propagation direction of the 

fracture, and the z-axis is parallel to the vertical propagation direction of the fracture. An arbitrary 

fracture segment (i, j) has a dimension of (∆xi,j ×∆zi,j ×wf,i,j). Due to the fact that the fracture 

width is much smaller than the fracture length and the fracture height, only 2D flow is considered 

in the fracture. For the fracture segment (i, j), the finite difference equation of the 2D flow is 

given as (Ertekin et al., 2001): 
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  (6A-1) 

where T is transmissibility which can be obtained by, 
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   (6A-2) 

and the other terms Ti-½,j, Ti,j+½, and Ti,j-½ can also be obtained with equations similar to Equation 

(6A-2). In particular, if the fracture segment (i, j) is connected to the wellbore (e.g., the wellbore 

is located at the position of fracture segment (i-1, j)), Equation (6A-1) can be rewritten as: 
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Whereas, if the fracture segment (i, j) is at the boundary of the fracture (e.g., fracture segment 

(i+1, j) is non-existing), Equation (6A-1) can be rewritten as: 
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Applying Equations (6A-1), (6A-3), or (6A-4) to all of the fracture segments, we will have Nf 

linear equations at each timestep. 

              

                 (a)                                                                  (b) 

Figure 6A-1. Schematic of a discretized unilateral non-uniform-width fracture: (a) side view, top 

view and cross view of the discretized unilateral non-uniform-width fracture; and (b) zoom-in 

view of the small fracture segments.  
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Appendix 6B – Formulations of the Matrix Flow 

The non-unform-width fracture is discretized into small segments, and each fracture segment can 

be regarded as a plane source. On the basis of the Newman product method, the instantaneous 

plane source function of such a fracture segment can be obtained by:  
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   (6B-1) 

Gringarten and Ramey (1973) derived different source functions under different boundary 

conditions. The instantaneous plane source function in a 1D infinite reservoir along the x-axis is 

given as (Gringarten and Ramey, 1973): 
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  (6B-2) 

The instantaneous line source function in a 1D infinite reservoir along the y-axis is given as 

(Gringarten and Ramey, 1973): 
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  (6B-3) 

And the instantaneous plane source function in a 1D bounded reservoir along the z-axis is given 

as (Gringarten and Ramey, 1973): 

  
 2 2

0

2
1

4 1
, 1 exp sin cos cos

2

mm tm e

me e e e e

m tc z m zz m z m z
p z t

z z m z z z z

    

 





    
     

   
   (6B-4) 

Inserting Equations (6B-2) through (6B-4) into Equation (6B-1) gives: 
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  (6B-5) 

In Equations (6B-2) to (6B-5), δ indicates the flux per unit length or area. For a continuous plane 

source which has a constant flux rate qf, we have: 

 
fq

x z
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  (6B-6) 

In addition, η indicates the time at which the instantaneous flux occurs. For a continuous plane 

source which is continued from time η1 to time η2, the continuous source function can be obtained 

by integrating Equation (6B-5) from η1 to η2. As such, a continuous plane source function can be 

obtained: 
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  (6B-7) 

In Equation (6B-7), (x0, y0, z0) represents the central position of the plane source, and ∆x, ∆z 

represents the dimension of the plane source. A flux of fracture segment (i, j) which is continued 
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from time t
k-1 

to t
k
 can cause a pressure drop at time t

n
 at fracture segment (I, J). On the basis of 

Equation (6B-7), this pressure drop can be expressed as: 
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  (6B-8) 

For convenience, we use the term G
n,k 

I,J (i, j) to represent the term on the right-hand side of 

Equation (6B-8), such that Equation (6B-8) can be rewritten as: 

  ,

, , , , ,n k n k

f I J i j I Jp q G i j    (6B-9) 

The pressure drop at the fracture segment (I, J) at time t
n
 can be obtained by collecting the 

pressure drops caused by all of the fracture segments from time t = 0 to t = t
n
, which can be 

written as: 
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          (6B-10) 

where the second term on the right-hand side of Equation (6B-10) indicates the pressure drop 

caused by the other unilateral non-uniform-width fracture. Fracture segment (-i, -j) indicates a 

fracture segment of the other unilateral non-uniform-width fracture corresponding to the fracture 

segment (i, j). Since we assume that the non-uniform-width fracture is symmetrical with respect 

to the wellbore, the fracture segment (-i, -j) should have the same flux rate and pressure with the 

fracture segment (i, j); thus, Equation (6B-10) can be simplified as: 
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Applying Equation (6B-11) to all of the fracture segments, we will have Nf linear equations at 

each timestep.  

  



273 
 

Appendix 6C – Wellbore Equation 

If the fracture segment (i, j) is connected to the wellbore, the flux rate from the fracture segment 

to the wellbore can be obtained by: 

 1 , , , , ,
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f w i j

i j

k w z p p
q

B x
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  (6C-1) 

Applying Equating (6C-1) to the nw fracture segments that are connected to the wellbore, we will 

have nw linear equations. In addition, considering the wellbore storage, we can have the following 

well production rate equation (van Everdingen and Hurst, 1949): 
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w f w i j w
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p p
q q C
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




 


   (6C-2) 

The constant “2” in Equation (6C-2) indicates the summation of flux from the two unilateral 

fractures. It should be noted that, since the wellbore equation is handled with the numerical 

method, this model can be used to simulate various wellbore conditions (e.g., constant production 

rate condition, constant bottomhole pressure condition, varying production rate condition, and 

varying bottomhole pressure condition). In this work, only constant production rate condition is 

studied. 

At each timestep, gathering the fracture flow equations, matrix flow equations, and the wellbore 

equations, we will have a system of linear equations which has 2Nf+nw+1 equations and 

2Nf+nw+1 unknowns; therefore, this system of linear equation is close and can be solved.  
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CHAPTER 7 CONTRIBUTIONS AND RECOMMENDATIONS 

  



278 
 

This is a paper-based thesis, and each chapter contains its own conclusions. Presented in this 

chapter are the major contributions of this thesis and the recommendetions for future research.  

7.1 Scientific and Practical Contributions to the Literature and Industry 

 In this thesis, the author proposes the semi-analytical models to characterize the transient 

flow behavior of HFs, PPIFs, reoriented refractures, and orthogonal refractures. Due to 

the nature of the semi-analytical method, these models can be used to efficiently predict 

the production of these complex fractures or conduct history matching work on these 

complex fractures. The details of constructing these models are well introduced in the 

thesis, such that one can readily replicate these models for real applications; 

 The flow regimes of HFs and PPIFs are thoroughly investigated. The observed flow 

regimes of HF and PPIF are much more complex than what can be observed during the 

production of a vertical fracture. These recognized flow regimes can help one determine 

whether a studied fracture is a HF/PPIF or not; 

 The productivity of the reoriented refracture and the orthogonal refracture can be 

influenced by many factors (i.e., permeability anisotropy, fracture geometry, azimuth of 

the refracture, etc). One could use the proposed semi-analytical molde of reoriented 

refractures to optimize the refracturing treatment; and 

 A new fracture permeability model is proposed to characterize the relationship between 

the fracture permeability, fracture width, proppant-pack porosity, and proppant-pack 

permeability. By use of this new fracture permeability model, one can extend the 

proposed semi-analytical models to the scenarios involving non-uniform-width fractures.  
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7.2 Recommendations for Future Work 

 In this thesis, all the semi-analytical model are developed for the single-phase oil flow, 

which is over-simplified for the real field cases. One can extend these models for the 

scenarios of multiphase flow by applying the concepts of pseudo-pressure and pseudo-

time; 

 Although various rapid semi-analytical models have been proposed to characterize the 

transient flow behavior of complex fractures, such models normally have not been widely 

applied for real applications. A pressure transient analysis software that is based on semi-

analytical methods is commercially promising and worthwhile of being developed; 

 The geometry and the orientation of the refracture can significantly influence the 

productivity of the refractures. One can develop an empirical method to estimate the 

geometry and the orientation of the refractures; and 

 For the proposed fracture permeability model, only the effects of proppant-pack 

permeability, proppant-pack porosity, and fracture width on the fracture permeability are 

considered. In future work, more influencing factors, such as slippage and non-Newton 

fluid, can be taken into account. 
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