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Qbstract

Supersymmetry has been develoﬁed to solve many
theoretigal problems of the Standard Model,‘specifically the
Gauge Hierarchy Principle. Supersymmetry pfedicts partner
-particles for eac!bparticle. None of these partners have yet
been observed.

These new pa;ticles, however, may induce new radiative
correctioﬁs. We have done a calculation that uses radiative
corrections due to sdpersymmetry,ih the decay of the muon,

- u*+e'v, v, in order to get lower bounds on the masses of
5upersymmétric particles.

Recently there has been a renewed interest in composite
models., For sqpsrsymmetric composite models the effective

—

low energy interactions induced by compositeness may appear

suppressed by fewer powers of the composite mass scale than
in the nonsupersymmetrxc case. Doing caIculatxons 1nvolv1ng
two decaks, m-e'v,, uN+eN, we set limits on a composxte

energy scale in SUSY/composite models by again using-their

effects oh radiative corrections.
) .
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1. INTRODUCTION TO SUPERSYMMETRY

1.1 Introduction

Ever since the discovery of supersymmetry'™’ in the
early seventies, through to its modern manifestations,*® and
onward to its natural appearance in superstring theory,®®
supersymmetry has been of ever increasing interest ﬁo
particle physicists. This interest comes in spite of no
direct experimental evidence of any of supersymmetry's
predictions. The real reason behind the interest in super-
symmetry is purely theoretical, as it resolves many of the
problems of the standard model.

Gauge theories have become the backbone of particle
physics. They are totally dominant as a description of the
fundamental interactions. The first successful gauge theory
that was proposed was QED as a description of electro-
magnetism, It is based-on a local abelian gauge theory which
leaveé the Lagrangian invariant under the gauge group u().
The theory was apparently plagued with numerous infinities,
but means were devised whereby these infinities could be
disposed of through reno:malization and regularization.
Agreement with experiment was spectacular and QED remains
the most successful theory to date. With the extension of
the gauge principle to non-Abelian gauge theories by Yang
and Mills?, the moderp era of gauge theo;ies was born.

The nex:'gaqge EheoryAto be developed was the

electroweak theory unifying the electromagnetic and weak

)



forces. This theory was proposed independently in 1967 and
1968 by Weinberg'® and Salam''. It unifies the weak and
elecyromagnetic forces in a Yang-Mills gauge theoF§ with the
w', 2° and photon acting as gaﬁge bosons. The important
breakthrough, however, was the principle of spontaneous
symmetry breakiné. Previous to the Weinberg-Salam model
Yang-Mills theories invariant under SU(2) had been developed
with gauge bosons of Charges +1,0. However, the bosons had
to be massless, contradicting experiment. For a continous
parameter u® > 0 in the L;grangian the ground state of the
system possesses the full symmetry of the Lagrangian and the
quanta that appear in the theory are four real scalar bdsons
of mass u. However, for w® < 0 the symmetry of the ground
state is broken and one obtains one scalar quantUm with
positive mass, the Higgs boson, and.three massless scalar
Goldstone bosons.'? Now Goldstone bosong are not seen
experimentally, but this is taken care of in a nice-fashion.
When one adds the four vector gauge quanta (2 degrees of
freedom eacﬁ) of a Lagrangian invariant under SU(2)xU(1) (3
quanta from‘SU(Z) and 1 from U(1) ) to the three scalar
quanta from symmetry breaking (where the massless scalar
bosons have 1 degree of freedom) one obtains three massive
vector gauge bosons (3 degrees of freedom), leaving one
vector gauge boson massless.'’'® These correspond to the W°,
2° and photon respectively. A description of this can be
found in Commins and Bucksbaum.'’ Again problems with

renormalization of these theories was suspected until 1971
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when t'Hooft'® proved that this symmetry breaking mechanism
produced renormali2able formulations of massive Yang-Mills
theories.

Non-Abelian gauge theories provided the basis for the
~description of the strong force as well. This theory, dubbed
Quantum Chromodynamics (QCD), is based on‘a non-Abelian
SU(3) of colour charge. This time the SU(3).  remains exact
and the eight vector bosons called gluons are massless. The
direct product of these gauge groups, SU(3).xsu(2) xu(1),
with the Weinberg and Salam model as generalized by GIM for
the incorporation of hadrons'? forms a not quite unified
description of the strong, electromagnetic and weak
interactions known as the Standard Model. The one thing the
theory lacks is a description of the relative strengths of
the strong, electromagnetic and weak forces. However, it is
quite consistent with experimental findings. -

With the direct observation of the intermediate vector
bosons, W, Z°, of the Weinberg-Salam theory,?®?* gauge
theories are well entrenched in ekplaining the fundamental
interactions. What lies beyond the’Standard Model has been
the subject of\much interest and speculation. The most
natural way of ex%ending the standard model is to inbed it
in a "unifying" gauge group. Thekfirst such attempt was
proposed by Georgi and Glashow in 1974.%° They imbedded the
standard model in the simplest possible Lie group, SU(5),
with the resulting theory having one coupling constant at

the unifying mass scale. It also produces 24 vector bosons,

4
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12 being the: standard photon, wz, 2°, and gluons, the other
12 being much heavier. préver, the n1cest part, wh1ch is
why these models were created, was that it f1xed many
'parameters and relatienships'that prev1ouslx had to be
'determined by experiment. One of the major predictions’ of
the theor?hwas its prediction of proton decaf, which is
mediated by one of‘the 12 new vector bosons. Unfortunately
expe:imental limits on proton decay seem to indicate that
this model's predictionbfdr the proton lifetime is too
short.? Other than this, the SU(S)Lmodel holds up
‘remarkably to experiment.' |
,As.it turns out,»though, it is theoretical

considerations that arg the greatest challenge to Grand
Un1£1ed Theor1es (GUTS). The best known such challenge is
the "Gauge Hlerarchy Problem." Perhaps this could better be
known as the "Particle Physigist Employment Program" (PPEP)

as in 1ts s1méle;:\}s{g\jt states no useful physics appearf

between O(1 2) GeV and 0(10'%) GeV.?’ More elegantly stateg;

to split the'gdrand unified and'weak mass scales by 0(10'?)

dne“must»fihe tune Higgs sector paramete:s to 0(25) digit
accuracy. This is hardly the work of .a naturally predictive

theory. o , ( -

~

One has (For reyiews see the papers by Ellis®-?® and
.Nilles.?’) quadratichlly divergent contributions to the
. Higgs propagator. . S
. R . : .
| L - ,
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The contribution from Fig 1.1 gives a mass shift.

sm? = 0(a™) (A=O(m, or m,) ). | EQ. 1.1

Other mechanismsralso tend tdwpull the Higgs mass to O(Mf)
“or 0(Mp?)

As a final blow 'to the old ideas, we have the inability
to incorporate gravitational interactions (the final
frontie;) into a Yang-Mills type gauge theory. Clearly some
new ideas were needed to make Grénd Unification a much more
complete idea. One of these new ideas happehs to be
supersymmetry.

The basic approach to extending our unified géuge /
theories based on Lie'groups is to ing;ease thevsymmegfy,
which restricts the theory, and thus increases the |
predictive‘power of the theory. A theorem of Colemé; and
Mandulaﬁ tellé us thdt in more than 141 dimensioﬁs to have
a non-trivial g—matrix, the only possible consg;ved |

quantities that transform as tensors under the Lorentz group

are the following:

The usual space time symmetries P, Energy-Momentum
| ‘ g * M,  Lorentz-Invariance
Lorentz Invariant Quantum Q; electric charge etc.

a

Numbers
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\ s . : .
Thus it would appear that for an interacting field theory no ¢

new symmetries could be added as the tﬁeory would become
trivial and lose all its bredictiqe power. It would seem we
are at the end of the rope. What else can one do? Well. you
can always change ropes. If one extends®' the theories based
on Lie algebras to ones based on graded Lie algebras one can
still construct a conserved currenf even in the presence of
interactioﬁg and hence have a non-trivial theory. fheories
based on the§e graded Lie algebras have come to be known as
Supetsymmeﬁéic Gauge‘Theorieé. They represent the next, but
not the last step, in unified theories. | |
One of the recent developments’(or resuﬁréctions'--
depénding how you see it) of particle phyéfgs thér gives
further support to supersymmetry is supé;5§figgs; These are
theories of one dimensional extendedfquéhféifnfhighé: g
d1mens1ons whlch‘have a gauged (local)'SQpé;éymméﬁfy‘
1mply1ng supergrav1tat10nal 1nteract10ns,vas ‘well as local
1nternal gauge 1nteract10ns. The most popular gauge group
for string theories at present is EyxEy. Now. Eq has maximal
subgroup SU(3)xE;, and Es represents a natural grand unified

gauge group with N=1 SUSY. 32-3¢ one such possible breakdogn

of Eg at low energ1es would be SU(3)xSU(2)XU(1)xU(1)
It would now appear that. at least theoretically one . has
incentive for supefgyﬁhetry from above and below. For this
redson mahy particle physicists look forward to experimental
evidence supporting or cgntradicting SUSY. On this note I

will now proceed to some of the basic precepts and algebra



‘of suﬁersymmetry.
1.2 The Algebra of Supersymmetry

| In'1974, Wess 'and 2umino? invented a Lagréngian with a
remarkab}e-new sym;etry. This symmetry transformed bosons |
into fermions and vicé—versa,zThe Lagrangian is in terms of
a (dim i) complex scalar field ¢', a (dim 3/2) chiral
fermion y{ and a (dim 2) aux111a:y complex scalar field F'.
It also contains a superpotent1ai" W&@ ). which- for a

renormalizable theory must be: s L

W = ci9' + m 8¢l + g, 0 000k, ~ Eq. 1.2

The Lagrangian is then:

Lsusy = Ly ""prz * Lyux J
Le - = 03,010% + T, (il + B
4 :
= L Y AW |'pe
‘Lpg =) [. a¢‘]Fl + [3¢‘ F} ] | ,Eq' 1.3
N

(vi)TCy - ] <'urg>qu)]

[a¢:a ) [a¢ 13¢)

4,

The Lagrangian is invariant, up to a total divergence{ under

A

the following transformation characterized by a comstant

anticommuting Majorana spinor e:

| o - )
6¢’ = ew[x‘ : : .

1 1 YS 1 ‘
5vi = ](F - id¢! )e - Eq. 1.4
SF! = -iegy!

' One can use this to show (Appendix B) that (&. 8., - 5¢2§h)¢
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gives

[€1Q,€,Q] = e y*e,P, Eq. 1.5
or . |

{Q.,Q,} = (-vy*C),P,, . ' Eq. 1.6

. r
the q}gebra of‘ghe group, where Q is t;e‘generatog‘of the
group. .
However, fog‘a much more concisé method of showing the
algebra, I will use the method employed by S.D. Joglekar.‘35
‘.Fifstly, the algebra of SUSY is an extension of the fahiliar

~

Poincaré algebra which obeys the laws:

(p,,P,] = 0 ~
M,,,P,] = -ig,,P, * ig,,P, | BEq. 1.7
[M,,,M,,] = ig, M, - ig, M, - ig, M, + ig,M,,.

Now we must find the place of our generator Q. We shall
characterize SUSY tranfofmations_as e’®, Now éince A = ey},
dim e = -% (dim A = 1, dim ¥ = 3/2), which implies dim Q =
%, since €Q must be dimensionless. Furthermore €0 must be'"
spinless and commuting. Hence:

1. DimQ = %

v 2. Q must carry spin %

3. Q is an‘anticommqung object.
Now Q must transform as a spinor under Lorentz
tr;nsformatiﬁns, SO .
WM, qemiwtM,, L okio, W' lg, | . " Eq. 1.8
Taking an infinitesimal transformation, we have

[Q.M,,] = %(0,,0), = wlo,,),0, . Eq. 1.9
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Next we consider'[Q;,Pu]. This has dimension 3/2. However,;
ther'e are no operators of dimension 3/2 under consideratiog
(Dim P=1, dim M, = dim rxp = Oy. Thus

(Q,.,P,] =0 | c Eq. 1.10
This says the Q, are unaffected by space-time translations.
This comes from the fact P, Q, are supertranslations in
superspace.

Lastly we have {Q,,Q,} which has dimension 1.
Furthermore, {Q,,Q,} is an (a,B) element of a 4x4 matrix
that is symme:rfc'in a,B. Recalliné.y“c and ¢,,C provide the
basis for 4x4 symmetric matrices we write .

{Q,,Q,} = A(y*C),P, + B(o*'C) M, . Eg. 1.11

where Dim B = 1, Dim A = 0. Now

110,,0,1,p,1 = {Q,,00,,R,1} + {[Q,,P,1,Q,} = 0. Eq. 1.12
Thus .
B(0*C),,[M,,,P,] = 0 | - Eq. 1.13

which implﬁes B = 0. Fixing the (as yet arbitrary)
normalizadion of Q one gets i

/
{Qung} =/’_(Y“C)ngpu° EqQ. 1.14
/ :

e
3

The negafive sign is there since it is related to the norm -

of the states, which must be positive.

!

/ * 13 ’ . I3
So our extension to Poincaré-algebra is-characterized

by |
[Qarp“j =0 <'
[0, M,,] = 1(0,,).,Q . Eq. 1.15

{Qary‘cQg} = —(Y“C)ﬂﬂpn'
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One last characteristic of Q, is that since e is a
Majorana spinor, Q, must be one as well, Q, satisfies
Q, = C.4Q | o EQ. 1.16
Tﬁis implies
{Q,,8,} = {Q:,-Q,C;}} = -{0,,Q,}C;} | Eq. 1.

= ‘Y“C)‘” 75 u = (yu)aﬂpu

17 —

The above rules apply only for N=1 SUSY. For extensions
of SUSY generated by sets of Majorana-spinors Q,, j=1,2...N.
The -third rule of Eqn 1.15 is replaced by,

{Q,,1Q5;} = =8,;(y*C) P, + C4Zi5 *+ (y5C) 2", “ Eq'””“?' 1.18
where the generators Z,; and i'xyf are antisymmetric in i,3.
They are called central charges and commute with all the.
generators of the ;ystem. Only Ns4 is possible for gauge
theories since Q; changes helicity by % a unit. For
theories including gravity N<8 is possible. We will only -~
deal with N=1

1.3 Auxxl1ary Field Equations

We consider the "F" term in the Lagrangian

L, = ZF;F‘ + }'? + [“1 F, | | Eq. 1.»19
and use the Euler-Lagrange equation

a_ﬂ%y—%%- 0, Eq. 1.20
to give |

F; + gf; = 0, ) “Eq. 1.21a
Fi + [“‘ = 0. ,, Eq. 1.21b



1"

This leaves the F term as

o '\\

This is the potential term of our Lagrangian. The full

1]

t
H]
!
3

Le Eq. 1.22

il
]
1 AN
=
ev

Lagrangian rewritten now is:

Leysy = Lke * Lpor + Lyw

Le = o | 2t0,0 + i3} |
1

Lpor = 'L ‘aW Eq. 1.23
- _” aZW [ [_iz.‘_’____]' j cx]
LYUK = A a¢‘a¢) WR \lfﬂ + a¢la¢l wawﬂ .

For a gauge invariant SUSY theory the Légfangian that
appears is slightly different. It also has 5 second
auxiliary field "D" which can be eliminated in the same
fashion as "F". The complete gauge invariant SUSY Lagrangian
may be found in Appendix C.

For gauge invariant theories th;t do not require
renormalizabilfty one will find higher order terms., I will
not discuss these here, but the relevant Lagrangian may be

found in Chapter 3,

1.4 Sparticles _ .

For N=1 SUSY one has the foilowing supermultiplets of
particles;

Gauge (1,%)

Chiral (%,0). . g
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Here the charges Q, carry no quantum numbers, so the
partners must share the same quantum numbers with their
sparticles. This means no known particle may be the spartner
of another. As a result we have a rich spectroscopy of

particles given in Table 1.1 [From ref(5)].

Table 1.1 Supersymmetric Sspectroscopy

0(15)GeV

B )
quark g squark g

-

lepton 1 slepton 1 0(15)GeV

photon vy photino vy

0(2)GevVv

gluan g

0(15)GeV

" Higgsino H® 0(15)GeV

Higgsino H°

The two Higgs doublets H, , of opposite hypércharges are

needed to give masses to leptons and charge +2/3 and charge
-1/3 quarks, as well' as to cancel triangle anomalies. The
lower.limits on masses come from non-observation of direct

production from e‘e” annihilation (mainly e‘e” » Z°K°). All

results are model dependent.



13

Due to non-observation of the spartners, one is' led to
conclude that most or all of the spartner masses must be
large. This is in direct contradiction to unbroken SUSY
which reqﬁires that all of partners have identical masses to
their sparficles. Thus SUSY must be broken enough to allow
the sparticles to obtain a large mass. This bregking may be

spontaneous,‘ayhamical, or by explicit "soft" o erators, -
- }‘ .

without losing the desired features of the theory.

£

v

numerous to mention here. For an excellent revi#jy
X7

‘ 3 : g4

paper by Ellis.?® Despite the wealth of difiere@%

There is

a wealth of different schemes for symmetry br ng much too

see- the
.\ ,
{scenarios
SR

e s

¢

many of the models have similiar feat@éé

Uy

. SR M
generally predict the masses of some of the spartﬁ%is around

4,

0(100 GeV). ¢

1.5 Couplings
We can now look at the general form of couplings of
chiral supermultipleté. (Here we will follow the thations
of ref. (5)]
¢ = ( ¢, of spin %, ¢, of spin 0 ) Eq. 1.24
It is conventional to work with identical helicities for all
the chiral feriions y,; generally they all will Be
left-handed. Thus instead of using some species of
right-handed fermions ¥, (ie. q,, ey ), we will use its
conjugate antiparticle field:
Ve » (W) = C(PR)T ' Eq. 1.25

' 73
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standardizing helicities leads to more convenient forms for
the couplings. However, since the Lagrangian is hermitian it
contains both pérticles and antiparticles of opposite
helicities (ie. the Lagrangian would contain both left and
right handed parts).

The non-gauge couplings of chiral smultiplets ¢, are
fixed by choosing a polynomial W(¢) called the super-
potential. In order for the theory to be renormalizable it
must be éhbic: |
W = a,¢'¢) + b,0'el. Eq. 1.26
Yukawa interactions involving twé fermions are obtainéé by
differentiating out two of the spin zero ¢ ,'s in W and

. \.;,

replacing them by their fermionic partners, ¥, in &,. Thus:
AW

= ——— (Vgi]) + H.C. Eq. 1.27
2020 2 q

= a, (Vgy]) + b, ¢ (IF'¥]) + H.C.

Y

The first term on the R.H.S. of Egn 1.27 is the fermion mass
matMx, while the second term is a true Yukawa interaction.
Multiple scalar boson interactions are obtained by;

T |aw |? 5
Vi ® g 3¢ '2 | a,;0, *+ bxoi6, |°. Eq. 1.28

1
The first term of the R.H.S. gives the scalar boson mass

squared matrix.

(mn)fj; aika:j. (mpmy*) ;. Eq. 1.29
It is immediately obvious that this is equal to the fermign
mass squared matrix.”The second term of the equation gives
the quartic scalar interactions like one gets from a Higgs

Potential.
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The fermion gauge interactions come directly from the
standard gauge interactions as N=1 SUSY adds ho internal
guantum numbers. Thus for left-handed fermions, ¥,, in
different representations, T}, of the gauge group with
generators a, one has the standard gauge interaction;

g (P y“Tev. )AL, * Eq. 1.30
As a direct result of no internal quantum numbers, one can
write down couplings for the scalar partners, ¢,, of the
fermions, ¥,, in the chiral multiplet, ¢ ;

g (o' 8uT26, )AL, | Eg. 1.31
There are also gaugino interactions obtained by substituting
one of the ¢ (or ¢) and the gaugé boson A% by their super-
symmetric partners: (For A® this means A%~x".) ‘
L, _ = V29(¢!T2)(X*¥,) + h.c. : Eq. 1.32
where (Xx®y) is the Lorentz scalar combination of the two
fermions. Egns. 1.30 thru 1.32 are valid for both ]
left-handed fields, -both the normal y, and the conjugate
field y¢. As a result egns. 1.31 and 1.32 draw a distinction
between ¢, and ¢¢ despite the fact ¢ is a spin zero field
and has no intrinsic spin. Thué if a conjugate éﬁ does not
couple to a conjugate neutrino, v{ via a gauge boson W,

neither will a conjugate (s)electron ef(e,°) couple to a

-

conjugate sneutrino, »$, via a gaugino, W, (gauge boson, W).
In addition to the expected interactions there are also
additional scalar quartic interactions

N
Vo = wg?)  |eiTie.l’ Eq. 1.33
a,e . -
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dech contribute to the full potential,
»
Vo=V, + v, Eq. 1.34

The full interaction Lagrangian and the resulting Feynmann

rules are given in Appendix C.

1.6 Masges
»In general, for mass matrices of the squarks and

sleptons, we can have mixing in both flaybur and chirality

(L-R) space. Before SUSY is broken, one has conventional

Higgs-fermion Yukawa interactions derived from a

superpotential term;

w(¢) = b,z,9.9:H Eq. 1.35

which with the aid of Egn 1.28 gives

- Vy = byl 1GH|? + IqfH|? + [qgl® 1 Eq. 1.36

Now using a Higg's vacuum expectation value’i']H|0>=v such

that m, = b,,v, one obtains the following contributions for

the (q,,q,) mass matrix; -

[q¢ aq;) m? 0 q 1 Eq. 1.37

-~

0 qu QR

Clearly this mass matrix can be diagonalized in flavour

space simultaneously with the conventional qua;k matrix, and

" one finds as expected from egn 1.29, that the squark'. .
(slepton) mass is equal tqﬁthe quark (lepton) mass. This 1is

clearly not so experimentally, so to rescue the situation

one must break SUSY.



Phenomenologicaliy acceptable models exist with
spontaneously broken supergravity and manifest themselves in
the low energy theory as softly explicitly broken global
supersymmetry. Since we are only interested in the low
energy sector [0(100 GeV)], we will concern ourselves with
global supersymmetry which looks like an ofdinary gauge
theory with particular couplings, seen earlier, and masses,
where the mass scales come from "explicit soft breaking
terms” nthat originate in the aforementioned supergravity
theories. Thus we can now go on to some generél mass
matrices.

The mass degeneracy is removed by introducing SUSY

breaking mass squared terms of the general form:

Sl e m A m ] ~ Eqg. 1.38

Each of the mass matrices ﬁ; and m,? can’ a priori be a
general matrix in flavour and "helicity" space. However,
careful analysis® has shown that this leads to unacceptable
flavour changing neutral current interactions and tge
gaugino interactions would no longer be flavour diagonal _
giving catastrophically large contributions to the K,-K,
mass matrix. Phenomenological considerations severely
constrain the form of the mass matrices, and as a result of

more'detailed analysis® one gets the following flavour

diagonalized form;



> 18
[qp ail L'm* + m?  Ammg ' a, Eq. 1.39
| A Rz +m2 )| 4
m?, m? = R*m?, "and L?#R? in general, A = O(1)
=~ 0(20 to 1000)GeV. ’

1.7 Implication§ and Intentions
Supersymmetry, by its introduction, has at least

doubled the number of fundamental partlcles and introduced
many new coupllngs. To the chagrln of many, none of these
part1cles have been found. However, much work has gone into
mépping out the pheﬁomenologicaleconsed;ences and physical

,,implications of SUSY. An "R-parity" (essentially a charge
carried only by superparteers) survives, at least as a
discrete syaaetry, in moet versions of\SUSY”.and dictates
that superpartners ate produced only in association. The
constraints on the masSés g}ven in Tatle 1.1 come from
non-obSeréation>of bair‘prgduction at existing e'e”
machines, and represents one of many'ways that direct 3
‘evidecce for SUSY has been searched for. As well, in:manﬂ;k";‘l
theories the 11ghtest supersymmetric part1c1e (LSP) is
quasi- stable and thus may be detected in cosmolog1cal
searcﬂes. | | ’ '

| In the :econd chapter of this thesis we perform a
calculation that searches for possible 1nd1rect effects of
SUSY via tad}atiye corrections., Specifically we have

- calculated sppersymmetric radiative‘corrections to muon

<

3
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decay. For a similiar treatment of =, decay and-the super-
symmetric lamb shift, one can see the work of Campbell and
Scot.t:.”'“3

In Chapter 3 we pérfor@msome calculations where we have
assumed a composite nature”r§rjleptons and hadrons. Here we
have assumed thé‘existence of supersymmetry and ussa a
supersymmetr1c comp051te model to calqulate radiative
corrections that appear suppressed by fewer orders of the
~ composité mass scale tho.. in non-supersymmetric composite
models. Thislis due to the fact that if we calculated a pure
composite desay aur results would be of order j;, where M is
a binding energy for the compusiteness. For our combined
SUSY/composite model decay our results are of order ﬁh;
wvhere Mg is a'supersymmetric mass presumably.mpch smaller
than M. Although we make use of compositeness, we make -use
of no partlcular comp051te model, but rather treat
compos1teness as a black box. Th1s will make our discussion
quire general.

Chapter 4 will end this thesis with a summary of

results and conclusions.



2. SUPERSYMMETRIC RADIATIVE CORRECfIONS TO MUON DECAY

2.1 ;ntroductjon

Although fhe energy to observe supersymmetry directly
may not be évailable as yet, there afe other ways to observe
supersymmetry. One.such way is to calculate the effects of
radiative corrections at the one loop level that are
introduced because of the exchange of,supersymﬁetric o
particles and then compare these‘with experimental
parameters. o

Effectsxyith this origin have alreédy been studied in
the literaturé. One loop corrections to .the lepton anomalous
mag ietic moment have been examined,?®"*? and put constréiqts
on the slepton and electroweak gauge fermion masses. |
Radiatively ‘induced strong interaction parity violation has
been evaluated, % and puts severe constraints on the mass
splittihg Between left and right chiral squarks. Radiatively
induced flavou; changing neutral.interactions have-been
calculated in these t:heories',‘s’47 ana constrain the masses,
mass splittings, and mixiﬁg angles for scalars and their
coupling to gauge fermions. Finally one loop corrections to
pion decay and the supersymmetric lamb shift have been |
calculated,?’ giving limits on the masses of scalar
particles and gauge fermions. i

We célculate one loop corrections to muon decay.

Comparisons of the scalér/psuedoscalaf portions of the decay

with experiment give limits on the masses of scalar

: | 20
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particles and gauge fermions.

2.2 Mass Mixing Revisited

In chapter one we learned that the'mass squared matrix
for squarks and ;&eptons will in general be a 2nx2n matrix,
where n is the number of quarks or leptons of a given
cha In the wdrﬁ discuséed here we have no need for
flavour (mixing) indices, which‘would always appear summed
over at intermediate ‘stages in our process, giving a result
of order unity.(GIM-unsupressed). Thus we have the mass
squared matrix we wrote doﬁn in chapter one

(B B L2m2 + m?  Amm, T E, Eq. 1.39

ey
{0

"Amm, R?m? + m? E.
which for L?~R? and m>>m, reduces to
(g 2] m? A%, £, Eq. 2.1

a? o’ tq
where m is the mass of the scalar particle and A = mm, , ﬁ,
being the mass of the associaﬁed fermion. In some models,
spontaneously broken supergravity gives a major contribution
to m? that is independent of the particlé. In pérticu}ar,

o

for a specific class of'modeléﬁghis is the gravitino mass
squared. Thus in general one can set m? equal to some large

mass squared, M}, which is independent of the particle. It

is the A% term that interests us though. It provides the
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mixing parameter that allows us to flip chiralities and
‘calculate normallf'supressed rates.

For the low energy processes we will consider, the
momentum transfers are assumed to be small. The resulting
amplitude can then be described by a local operator of the
light external particles, describing an effective contact
interaction.*®** By bounding the matrix elements for these
operators from comparison with experiment we can then get

constaints on the supersymmetric content of the theory.

&

2.3 Muon Decay

We will now look at the decay u'=e’v v, or u'~e’v,v,.
This will be of some interest sirice we will be able to
calculate possible deviations from V-A. This can be achieyed
by flipping the helicities of the sleptons, in particular
the selectron, so.as to aqhieve a right-handed electron
(left-handed anti;electron).

First let us consider Fig. 2.1, which leads to the .

largest contribution.

g{

vch < ¥ ¥ < pe,n

| . ] é
I Ky v ~L
A '
] 2 .
x A2 kA, Fig. 2.1
' '
- 1
A Hy v En
' '

- 1]

i )_ 1 M > e-
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Using \
wl=\b7 ’ i
¢ i
w2=\l’u“

as our neutrino and anti-neutrino wavefunction, and v,, ¥,

as our electron and muon wavefunctions respectively, we

write down the resulting amplitude:

o AmD ~ (-v2)*(vV2)? il o d'k V,R{K+M,) Ly,
p (V2)? J (27)¢ v(kz_&a)
V.L(K+M )Ry, | | 2 1
(k2-M2) . | (k*-MZ ) % (k*-Mi ) Eq. 2.2
! A 2 1

(k-8 )~ (k3-F3, )

In determining this amplitude we have used the Feynmann
rules from Appendix C, and have ignored all external

momenta. Putting ﬂ7=0 and using symmetric integration we

get: . -
Amp ~ -2e’g?[¥,y*Ly,1[V.v, Ry, IxI : Eq. 2.3
where -
a%k k2 Az A2
1= J e . Eq. 2.4

(2m)* K2 (k=92 (k292 ) (k2= ) (k2-MEL ) (-, )

which by assuming a common mass for the remaining sparticles

simplifies to -
1 = J d'k 88,7 . i L, Eq. 2.5
: (2m)* (k2-Mg?)5 19272 M

The calculation of the integral is performed in Appendix D.
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Therefore, one gets

2 2

1 eA
*w,][V,v,R . Egq. 2.6

96w 2 [WzY Y. ‘t’] Ms q

(I have dropped a factor of i here)

We now Fierz reorder this using the Fierz transform found in

Appendix E:

(V,yLy,)[V,y,R¥Y,] = -2[Y,Ry, 1V Ly,] Eq. 2.7
which gives, |
2 2 ZA 2
[wznw]WL\b] Eq. 2.8

Amp ~
RN 4 s

Lastly making the identification that
2

j%-' ghzr , , _ Eg. 2.9
and 4,2, 4,7 are of the order of mMg, mM; respectively, one
obtains

m,m MJ |
Amp ~7 py z[wznw 10V Ly, ] —— S Eq. 2.10

We now move onto the second possible diagram and

consider Fig. 2.2.

——
Vo < = W . $ v,
N L ey
: .
3 a,? é a,* Fig. 2.2
A, bé,
u” ) ! - ; s o
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It has
g 2L L sinfe, o a%
(AP W2)? 9 coss, J (2m)*
T.ROKGHMOLY, | [V L(K+MIRY, | Eq. 2.11
(k2-M2) (k2-M2) ’
Al | A 2

2 g2 2 _wm? 22 2_w2 V'
(k*-Mg ) (k*-Mg ) (k*-Mj ) (k‘-Mj, )

il
One could consider leaving out the chiral mass mixing term
on the u line, but then one would have LKL=0 leaving the

integral odd in k. Simplifying we have

, sin’f, ’
Amp ~ -2g° ————[¥,y*Ly, 1 [¥.7, Ry, IxI, Eq. 2.12
cos‘é,
where
d‘k k?Aa,20° -; B4}
- J PN - Eq. 2.13
(27r)°.(k2-M52)6 48077 M

which leaves after Fierz reordering and the use of Egn 2.9

with
2
e = M,? - EqQ. 2.14
cos?é,
Gy Gy 8sin?f, Ngz ,
Amp ~ - — — R L —_—M, . Eq. 2.15
p 73 73 1547 ——[¥,Ry, 1 [V LV, ] 2 q

There could only be one other contribution (Fig 2.3),
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Fig 273

A )
- - = x- <= -+
Q‘.

o A EL TEE

h 4
1]

« but this involves chiral mass mixing of a sneutrino which is
expected to be negligible.
Adding the two amplitudes (Eqns. 2.10 and 2.15) we

obtain the total amplitude due to'SUSY one loop diagrams:

A -1 Gere? | 8sin?é, Gr,, 2]mem“Mw2
mp ~ — —=|— + ——— M|
P~ %zl 15 vz ¢ oM

S BT

We can now compare this to the general four-fermion

interaction for muon decay.*
GP"-. - [
Lipe = - ;E&Z[Weriw|][w2ri(Gi+GiYS)wu]’ £ 2.7
1

This gives us ‘
1 re? 8sin?6, G, Z]mem;sz
R veroa

Gg=Gg=-Gp=-G, = 2—;-2— 6—- + ET-— ;/—E_ Ms‘ ’ Eg. 2.18

which upon substitution of known quantities gives us

8
Gs -2—*—’2—5‘—0— Eq. 2.19

where M; is given in MeV. Now also from Stoker*’ we have

(Gg=G3)? + (GL=Gp)? < 0.066 Eq. 2.20
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which gives
|Gg| < 0.091. Eq. 2.21
This gives us a lower bound on Mg of

8
Mgt > SO0 = 2.2x109 (Mev)!

M, > 200 MeV. ' Eq. 2.22
Obviouslf this lower bound is much lower than lower

bounds established by oﬁher methods. Whatﬂye find is that

radiative corrections to muon decay give us no useful

information in terms of supersymmetric masses.



3. COMBINED SUSY/COMPOSITE MODEL DECAYS

3.1 Introduction

Recently there has been a renewed interest in composite
models for quarks and leptons. In this thesis we make claims
to no particular model, or even the existence of composite-
ness itself. Rather we devise a means by which to calculate
a lower bound to any possible mass scale for a composite
system. In this method we shall treat compositeness as a
black box and will perform our calculation simply by

considering all gauge invariant possibilties.

Fig. 3.1

When one calculat%s a straight composite decay, as
exemplified by fig. 3.1, one finds that the amplitude is

proportional to 1 where M is an energy scale for the

'y
compositeness, T:is comes from simple dimensional analysis.
Since the action, S = Jd‘x L, must be dimensionless, one has.
from the matter Lagrangian for fermions, L, = v¥#y, giving

S = Jd‘x(¢3¢), that dim{y]=3/2, as dim[d*'x]=-4 and

dim{3]=+1. Now our amplitude for the decay will go like

L = A(Y¥) (Y¥), which implies from S = Jd‘x A(UV) (Y¥), that

dim(A)=-2, or in other words A « j;, since M is the only

28
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available mass Bcale. Having our amplitude proportional to

j; means that its contribufion is going to be small. One may

ngw isk; is there any way to reduce this to a &

pqu%&tionality? The answer is yes, and the solution is to
#on

Gl
intréduce supersymmetry.

The matter Lagrangian for a scalar, L, = (3,¢)'(3“¢) or

L, = ¢'3%¢, implies that dim(e]=1 in order to make the action

dimensionless.

v, _ -
R

‘ Fig. 3.2
u R TR

Thus a decay like fiqure 3.2, which goes like L = B(Jy) (¢'¢)

implies from S = Jd‘x B(¢*¢)(Yy), that dim(Bl=-1 so that

1
B“M.

;Q
v
. < - ---"
¥ 4
; e
u S Y

Our complete decay, diagrammed in fig. 3.3, would then

A
<
L. ]

3

Fig. 3.3

Y

Y
(1]

go as ﬁ%;, since the mass of the superpartner scalars and
spinors appearing in the loop are characterized by the

supersymmetry breaking scale M.
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We nov have a dfcay that goes as ﬁh:' For models where
the supersymmetry breaking scale is much less than the scale
of compositeness (ie. Mg<<M), our chance of observing
contributions from compositeness is enhanced. In this
chapter we will make just such an attempt for muon decay,

n,, decay, and uN-eN conversion. C

3.2 gene:al Supersymmetric Lagrangian

In order to use our black box approach We must know all
the possible couplings that can téke place. We can discover
these possible couplings from the Lagrangian. However, since
we no longer require renomalizability we are not restricted
to the Lagrangian of Appendix C. Rather the Lagrangian is

superseded by a more general Lagrangian given by  Weinberg.®’

—~—

It is:
L = J,,0,0,2%¢) + J;) g@fl %’%}—]'
+ 3, V.8, } Eq. 3.1
+ ()7 ‘wg[“ Tl J;;{gj ajd ]
1 29,°00,00,

. . 3
chwz;r[[“ Ty ] - gik] a%aa:l.a%. ]

. a’d 23d .
iy W[M 36,730, =®n ~ 39,00, 00, a"""]
199, n

LDTCWITCT (5555 T

. g1 2% 3%d ]

b 3¢,'3¢,3¢, 3¢,0¢,%0¢,’°

vhere
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J,, = EETSET“. s Eq. 3.2

The f term is an exact analog of the superpotential Nie.

f=£(9)), Qhereas d=d(¢,¢"). Now we are specifically

ifterested in the part of the Lagrangian that will generate

two scalars and twb fermions with the added consideration

that since we want to have a dimension five effective

interaction we will have no derivative terms (ie. terms with
‘

2.6,), which require a dimension six d term. This leaves us

with the third and fourth lines of eqgn. 3.1:

¥

. 3%t L (af 9%d
L = (‘)TC’[———-——“-J'( ] } Eg. 3.3
Y Ve 3¢,09, 109y ] 39,230,009, d
32 1° ...[af |*_ 93d
wem [ ]- onfE | :
IL wl), a¢\a¢) Kk a¢k a¢ma¢‘ca¢]o

Furthermore, in order to produce 2 scalars and 2 fermions we
will need dim=5 f and d terms. This means f is of the form
0660 and d is of the form ¢°¢¢ or ¢¢'e’.

One last and extremely important constraint oq}the £
and d terms is that they must be gauge invariant. The only
possible dim=5 terms that are SU(3)xSU(2)xu(1) invariant and

which are also invariant under "R-parity" are:®*®

(L,ESH; "), (Q.DEH!®) 4 (Q_USH; ) 4
(L LHIH]), (Q.Q.USDS) (QUSL.ES)
(0, Q.0.L.) (USUSDEES) , .

Here the supermultiplets are denoted by capital letters: the
spin % component of the left chiral scalar superfield
- Q.=(U,,D.) is the guark doublet q,=(u,,d.); the spin %

4 \



components of the left chiral scalar §g@erfield Ut, ﬁf are
the cdhjugate particles uf, & of the singlet quarks. H; and
H! are colour-singlet electroweak-doublet :left-chiral Higgs

superfields. Also of value to us will be dim=3 and 4 f
: b ]

terms, the SU(3)xSU(2)xU(1) and "R-parity"” invariant oneé

are:%%-% L -

(HiH,),

(H.L.E), ( H,Q.Df )¢ (HLQ.UP) (-
. a N

The dim=4 f and d terms represent the proper
dimensionality for a dimensionless action. Any higher or
lower dimension terms must carry the proper prbportionality
constant to correct for the dimensions. Thus a dim=5 term
requires a (mass)™' term to correct for the extra dimension.
This is where our ﬁ proportionality comes in.

Now for the second term in each line of egn. 3.3, that
~'is the terms involving 4, we will want a dim=5 d term as
" i 2°a
| s T 09,'00,00;
because we require two scalars; we need a dim=4 f term for.
of '

. to go with‘the‘dim=5 d term. This, then, requires a
'Y o R )
dim=4 d term for J;) to complete the whole term. Now dim=4 d

A}
terms are just kinetic terms. They must be in the form ¢°*¢.

this is the minimum nonvanishing d term for Now

Since all dim=5 d terms are of the form H, _ _ or Hj —-_
where the blanks &re the two fermions we require, the dim=4

4 term for J;) must be HH} or H{H[°.
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Fig. 3.4

These will look Something like fig. 3.4, which represents a
¥

contribution to Higgs exchange diagrams which, since we know

"little about Higg's exchange, we are not particularily

interested in any corrections to it.

This leaves us solely with the first térm iﬁ'each line
of egn. 3.3, which dealé~only with one f term. These are
quite simple to handle. All we need is a dim=5 fjterm which

has the four chiral smultiplets we need. All such pOSsible'

gauge invariant f terms were given above.
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.

3.3 SUSY/Composite Model for u Decay

b 2 —_

u ? - - - + v,
vi -

1 e

v, - Rl A > e’
Fig. 3.5
u >
Zy

To investigate muon decay we are interested in diagrams
such as fig. 3.5 and all other permutations of this diegrem.
The dim=5 f term that is required for this woulcd be one that
ievolves four leptons. Quite simply thefe is no such gauge
invariant f term.

Although I mentioned earlier that any possible d terms

will beinggs exchange contributions I will proceed to~
investigate possible d terﬁs in order to give an examﬁle_of
the choosing process. One can choose e'dimensionality 5d
term like @ =& L.ESH;*, but then you also require a
dimensionalit§ 4 f term/like f = H/ L Ef in order to get fhe
right external states: This in turn requires the d;tefm for
Jia to be d = @?HL‘, whicggbs_not gguge invariant. Therefore
one cannot construct a term like this. '

OGne can also inveetigate possible dim=6 (quartic) d



35

‘terms. Although these will have a j; dependence, they will

é
be coupled to a dim=3 f term (quadratic) that has M

dependence. The only possible dim=3 term we can choose is
£, = M'L{H]

which means the d term for J,, has to be

d, = H{H;".
So the d term muct be
1

dJ = FHL.
Now the final three positions must be leptons, either L, or

Ef. We also require two incoming and two outgoing states.
The L, in the f, term is one incoming term, so we require
one more incoming and two outgoing terms. This éombined with
the need for one or three isodoublets heans the remaining
positions must be L/ L'L; or LIEFE{* (E{ is an outgoing state.
So |

4, = »14—2 HI'LIL'L, or ;412— HI°*LIESES®.

These are both gauge invariant terms, but once again they
represeﬁt contributions to H{gg's exchal pdiagrams, so we
are not particularily inté;és%gd in them.

This exhéusts all the pcssibilitieé_for using a
combined SUSY/composite model for u~e’v,», . It also exhausts
anyﬂpossibilitiés for doing u'+e’e’e” since the fact that_two
of the leptons were neutrinos was never used.

Thus this method gives no limits on either of these

cases.
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3.4 Application of SUSY/Composite Model to w,, Decay

[1- 3]
(]|

5 Fig. 3.6

o
4
©
»

‘Figure 3.6 shows just one of six possible contributions

to m,, decay from a SUSY/composite model. The remaining 5

contributions are just the 5 remaining permutations of the 4

external lines. The compositeness is shown in Fig 3.7.

L ey

v

Fig. 3.7

SN S

o
N

In all these calculations we will use

£ = & QUIL.ES.

This gives us the proper incoming and outgoing states. Using
this f one gets thescontribution from fig. 3.7 by:
T
T )" (e >
: : Eq. 3.4

-3,c(T)" [a¢ 5 '

= -5 (F.u) (83 0%).
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Now the scalar terms cohple like:

c /- ¢y Vsz] [‘C°VF_ ¢eceLWi
zrﬁi__ch (T03) (- (e)TC'C(T)T) 6y e
cos?é, Lo
= —2;fggg:cgc; [V (Wi¥z)er] v dec Eq. 3.5
= -ZC§ZZGWCEC§ Lgﬂ;%@:enl ¢uL¢e§-

We used -cj since_the coupling constant for the left-handed
conjugate is equal to minus the right-handed coupling
constant (ie. c{ = -cp). c' is the coupling constant of f‘to
z°.

We now proceed on with the amplitude:

. g’ : J d*k | FR(K+M;) Re
Amp ~ 2icjcf —/— & (dRu —_—
P PR cos?e, M) (2m)¢ - k2-M:
1 1
S = Eq. 3.6
(k2-F2) (k2-M2) a
~ Zic”c‘-—gi——— EVE-Q[HRUQ]['ERe].xI
VR cos?g, M '
where _
I_Jd"k" ! Eq. 3.7
(2m)¥ (k3-Mg?)?  32m?Mg? | C

Symmetric integration and a common supersymmetric mass have
been used in the simplication of the integral. The integral

is evaluated in Appendix D. Thus

1 g? 1

1672 cos?§, MMs

Amp  ~ CiCj (dRu) (vRe) . Eg. 3.8

When we take all 6 possible diagrams into account one

getsd



)

c 9 g

Amp Toa cosia. M (3Ru) (FRe) , ' Eq. 3.9
where ’
C = clcy + clc¥ - wclel - wcich + wnciel + ncien
= -é + %sinzew - %%sin‘eH ‘ A Eq. 3.10
= 0,143

The other diagrams were calculated in much the same manner
as the first one, however, the last four must be Fierz
reordered using

(3Re) (¥Ru) = =%(3Ru) (FRe) - g(To,,u) (FRo*"e)

= -»(dRu) (VRe) o Eq. 3.11
since |
do,,u = 0
as 0, is a spin 2 operator and the pion is spin zero.

Lastly, one should also consider fig. 3.8.

3

u —_
u } - - - P - ‘e e
o i v | Fig. 3.8
3 (“
a - —'—(“- T > Ve

One has for this diagram:
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AL M )R
amp ~ 21D 5 | LU T

(2m)* k2-M2
1 1
Eg. 3.12
(K3-M2) (k2-H3) d
o hjer o J ax_. (3Ru) (7Re)
3 M) (2m)¢ (k2-M?) (k2-M2) (k?-M3)
which as M »My+Mg, M <<Mg
-4 82 P:17 a —
R v MM (dRu) (vRe). » Eq. 3.13
This amplitude would be negligible for
e M Mo o Eq. 3.14
g2 M Sinew MS ! ' *

which we assume to be true. We thus will ignore this

contribution.

The total decay amplitude is thus represented by egn.

3.9

. C g 2 1 _
Am ~ (dRu) (vRe) Egn. 3.9
P 1672 cos?g, MMs d

Using egns. 2.9 and 2.14 this simpifies to
A c_ G M (3Ru) (FRe) Eq. 3.15
m ~ TS = Tha u yRe . .
P 2n? Y2 MMs ' d
G, M,?
gg— 75 —L [JyullT(1+ys)e]

since du=0 as the pion is a pseudoscalar particle.
Now one can parahetri:e the four fermion local
interaction by:

GF ’ -— ’
L ~ = [(dy,ysu) (¥ y*(1-v5)e) £} %
V2 : ? - . Eq. 3.16

+ (dygu) (v, (1+y5)e)f .J] + R.H. terms.

The ratio
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F(r*=e’y,)
F(n*+uv,)

can be written (Shankar).®?

mvaP
R =Ry 1+ 22—+

]
) | / | n, a, Eq. 3.17

Where R, is the ratio from standard weak interactions alone
(with radiative corrections included),
R, = 1.233x107¢,

Also defining

<0[@y yeuln (k)> = 2leds
‘Y“YSU T T T —
VZm, Eq. 3.18¢
m ‘a '
<0|dygu|n*(k)> = ===
| ¥s I m'

and from current algebra
aP mv
— = — x 14, ' Eq. 3.19
a, mu+md )
So now

m'
R = Ry| 1+28— f;L} // m : Eq. 3.20

m, [ 1+28-~ £6. |- .

m
Comparisons of egns. 3.14 and 3.15 gives
2 .
C M, .

fe = hary ———. E L] 3.21
PL gx?2 MM £

Using experimental values, and ignoring the contribution

m, X m, 52
from 28— £}, , since — << 1, Shankar gets
m

£S, < 1.4x107S,

This implies

L L. < 1,4x107¢ Eq. 3.22
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which for M;=M;, gives
M > M, (1.3x10%) = (90GeV)(1.3x10°%)

M > 1x10° GeV. Eq. 3.23

3.5 Composite Model Limits for uN-eN

In our black box composite model approach there is
nothing that says we must conserve lepton number. All we
must do is make sure our coupling is gauge invariant. This
will be useful in that we can now calculate possible decays
where u™»e”, in particﬁlar we will investigate uN-eN. To do -
this we will have to investigate possible u;quark and 4
quark contributions. We will start with u quark

contributions.

Fig. 3.9

[« U

——

kFig. 3.9 represents 1 of 6 possible diagrams to

3

repreéent‘this decay. The remaining 5 are the remaining
permutations of the 4 external lines. Taking

E o= QUUELES,

for the above diagram one gets



(¥2)7C'y) 5%—%5—- = d(ef)TCuy (Bye0,,)

1, —
- ‘E(ERUL)¢Uﬁ¢UL

and

i ’ L~
"WLC(W)T[“ 59, ] = —y(€Lup)olcel -

This is then coupled to

o 9
(-v2)ctl-c) g (Paud) (au)olgel,
2

g e
= -2clcy o570, [-(vz)7CT'C(U) "1 [P 3u dofcel,
gZ
= -2cicy cosi0. (Up(v3Pz)udolcel,

S,imiliarly, the second term couples like
2

(V2)2%ci(-c¥) __________g
cos?d,

: g
= =-2cich ;—5;?5— [UL(‘J’iwi)UR]¢uf¢uL-

W

(ufyy) (UL\l/z )¢UC¢UL

The amplitude is then

2

g lj dk [[GL(K*EZ)Lu (5L4)
cos?g, M J (2m)¢ k?-M2

uR(K+M JRu
| ki-M | & “)] (k2-FE) Mu)2

Amp ~ 2icjcy

: g M J‘ d'k 1
= 2iciey ——— =
L"? cos?s, M (2m)* (k2-Mg?)3

x [(TLu) (L) + (GRu) (8Ru) ]

1 g? 1

CLCRTx? 2
*° cos?e, MMs

[ (WLu) (eLu)+(URu) (eRu) ],

42

Eq. 3.24

Eq. 3.25

Eq. 3.26

Eq. 3.27

where once again the integral is calculated in Appendix D.



43

When all 6 possible u quark contributions are

considered one gets

C g !

Amp ~ - (ELU)(ELu)*(GRu)(ERV)', Eq. 3.28
where
C = -cich - cich * wncich * nelch - keYeH - neiet
1 5 . 13 :
=3 * -6-51n26w -y in'é, Eq. 3.29
= 0.240.

Once again the final four are Fierz reordered using

»RxR + éRo“xau

RxR

v!

Eq. 3.30
LxL

n

wnLxL + %Lo“xau

The o0*” term is then neglected since it will not induce a,
coherent contribution to u+e conversion in the ground state
nucleus. Using eqns. 2.9 and 2.14 the amplitude becomes,

A - LG M’ [ (ULu) (eLu) +(URu) (eRu) ) E 3.31
mp 211'2;/5MMS AuLlu eLu URU eru ’ q. N

Again the pseudo-scalar term will not induce a coherent

contribution to u-e conversion in the ground state nucleus,

SO
A c_ G M [ (Gu) (eLu) + (Tu) (eRu)]
m ~s T T uu eLyu uu eRru
P 4n2 2 MM Eq. 3.32-
_C G MS oo
~ 1.2 73 MMy (uu) (eu)



We can now move onto contributions from d quarks,.

4 - -
4 e e - u
Fig. 3.10a
Z
| .
d —————————t . - - - e
3 - - u
W Fig. 3.10b
u
d ...... e

The first possibility represented by fig 3.10a can be thrown
out immediately since one can not find a suitable £ term
that involves incoming and outgoiné d quarks. The second
possibility represented by fig 3.10b requires a little more
investigation. Since the composite part of this diagram is
exactly the same as in the u quark cpntribution (fig. 3.9),
we again get

S (Epuy) (00, )

and
1
M
However, the W does not couple to ¢, therefore, no

(€ up) (olcog ).

contribution.
Our amplitude is just the u quark contribution given by

egn. 3.32
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c_ Gy Mz‘1 - -
Amp ~ - =T 75 MM, (ew) (uu), Eq. 3.32

For uN-eN, the effective four-fermi interaction is

Lege = 7 g% : gie(1 + alys)uS' + g;?(? +‘«;ys)uP‘, Eq. 3.33
1 =01

where -

s% = w(uu + dd)

S' = w(uu - dd)

and . Eq. 3.34%

P’ = wluycu + aygd)‘

U
i

r(Uysu - dysd).
Once again, the pseudo-scalar term will not induce a

coherent contribution to u+e conversion in the ground state

nucleus. Thus the interaction reduces to

GF
Leyeg = - —é Eq. 3.35
Now for our particula%.v ; we have g,=g%=g,, and a=0, so
that
Gy - -
Lyt = ~ yg.g,(eu)(uu), Eq. 3.36
‘which implies, by comparison with egn 3.32, that
2
C M,
= — ==, Eq. 3.37
I 7 gt MM d
From experiment we have (Bryman®’)
_F(uTi » e Ti) -12
R = A8 < 621072, Eq. 3.38

where the process IN(uTi-all) is for our purpose F(uN-vN").



46

L tT “'7
Now theoretically, qu a=0, g,=go=g,, we havé:5‘  -y

| 1 _wy(2) (z-N) 12
R=———-——()2[1+ ] Eq. 3.39
2 F(uN*ﬂp) gs 3A R ] q
wh{ch for Ti" has thé following values:
2=22
N=26
A=48

w,(22)

='228,5%
'F(MN*VN) .

This means

F(uN*vN')f Z-N) -2
2z 2R —m——— 1
(?") R " ]

< 2(6x.10"2)—1— T - —4—,]_2,

‘ 228 144
or ) o B _ Eq. 4.40
g, s 2x1077.
~ Now using our value forlégr ! ,‘ .

g9, =< 2= - ;, © Eq. 3.37

wé have: ‘ \ ' .
. M2 ' i} o
ML 21 | . o Eq. 3.41

Using M,sMs this reduces to

e M » ’ A ‘ A
‘ﬁf= L = 2 2x10%Gev. - o Eq. 3.42
4r? 9, o : ’ v T

Both our .decays, 7, decay}andjuN'* eN, appear to give
fairly strong constaints on a dompo#ite model energy scale,
' both giving binding energies of O(10°® GeV). T constraints

—
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from n,, decay are the most important. It is a flavour
diagonal decay and thus one cannot insert some arbitrary ,

flavour conserving mechanism to suppress the rate. It would

appear that ény supersymmetric composite model would have an

energy>scale well above presently available energies.

i



4. SUMMARY AND CONCLUSIOﬂS

"In thls thesis we calculated contributions to one 1oop
rad1at1ve correct1ons from supersymmetry in order to get a
bound on Supersymmetric masses. Specifically we calculated
one loop correctlons to muon decay. However, this only gave
us ‘a lower bound of 300 MeV, a somewhaé’useless lower bound
in that non-observation through direct methods gives us a
lower -bound well above this. The reason why this method of

" investigating radiative corrections failed us here is that.

: ) . mm, ) :
its contribution was proportional to ;2 . This leads to a

. . - dhe-]
‘very small contribution that even better experimental limits

will nat be able to detect. The calculation does, however,
serve a useful pﬁrbdse. For one; it allows me to demonstrate
a indifeCt method of observing supetéymmetry by ‘its eftect
on low energy processes, a method that has had better
success37 39747 4 calculatlng 11m1ts on supersymmetric masses
'iln thecpast. Secondly, it warns us about the downfalls of
'vu51ng muon decay for such calculations, since you invariabily

mu
2

get the small : contrlbutlon.

Our second investlgat1on was an invastigation of

possible contributions of compositeness to radiative

i

correctlons in low energy processes, Since just a basic

" composite hodellealculatlon goes as é;, in order to get av—_ _

_réay With the 1ntroduct10n of scalar fermions, one
.& o

model

~ f"’ T

1
ach1gvgf a contribution that goes as MMs' and since the

M,? M
5pec1£1c proport10nal1ty we get 1s ﬁﬁ; > -L, this works
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extremely well. The result we obtain from this is a kower%w
bound of around 10° GeV for a composite energy scale. Thi;
is a fairly high limit on the mass scale, and precludes
possible direct observation of super-compositeness for quite
some while.

In terms of the over all picture, particle physics )
still awaits the direct observation of supefsymmexric
particles in the range just above 50 GeV. Without this

supersymmetry,sgilL lacks credibility. However, there is

great hope t“atzgﬁﬁéé“ﬁﬁtticles will be found in this range.

b4 Ty
RV AR

Meanwﬁile, cg;;osi%eness has been replaced by string
theory in the hearts of‘most theorists. If we consider
strings as a form of "compositeness”, it has an eneféy scale.
to observe it at the Planck energy, well above any

experimental means of detection. So the search for an )

experimentally verifiable grand unified theory continues,”

After all, you can't do physics if you don't have GUTS.
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APPENDIX A -- SPINORS AND C-CONJUGATION

Conventions in this thesis will follow those of Bjorken —— -

and Drell,®® Specifically, the Dirac equation is:

(p,y* - m)y = 0. Eq. A-1
The y“'s obey the commutation relation

{y*, vy} = g, Eq. A-2
g*” being the metric +---.

The most common representation for the y*'s being

y° ;~ 1 0 y' o= 0 o' Eg. A-3
I I
where
1= 1 0 | Eq. A-4
e
)
is a 2x2 matrix, and the o's are the fami’ Pauli

matrices.

EqQ:-A-5
0} = 1 0o 1.
o -1 | _
Other frequently appearing 4x4 matrices are:
vs = iv%y'y?y? = [ o l,
1 0
orr = %[YurY’]l v Eq. A-5

57
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giving

&
3

A free Dirac particle boosted from the rest frame
spinor x 1is,

\l/ = X . Eq. A—6

Q|
o

+X-

m
3

The Pauli adjoint is defined by
v = v'yO. Eq. A-7

One can find other useful relations in Appendix A of Bjorken

PR

and Drell's Relativistic Quantum Mechanics.®

The projection operators are

T = s 1+ ¥
P, =L =——=—: Pp = R = —%—.
1-7s
v = ox 2]
1+y
Vp = RY = [—=|¥

Furthermore,
¥, = VR

Vp = VL
giving

127 = VLY + YRV




= wﬂ“bl. Py
and
Uy*y = JRy*L¥ + JYLy“RY Eq.
= vt * Varty,
Al

as
Ry* = y*L

Eq.
Ly* = y*R
and
L’ = L

Eq.
R’= R.
Useful relations are
RO, = O,L Eq.
LO, = O,R
for O, = v*, ysv"
a%d
RO, = OR Eqg.
LO, = O,L -

. AN . b ’
for C)l = 1, Y, gs’ b Q‘Z
Another important conéepi is charge conjugation.

conjugate field is defined by:
¥e = C(P)T Eq.
g = -vrc
where C is defined by
Cy*C™' = =(y*)7. Eq.

In our representation

A-12

A-13

A-14

A-15

A-16

The

A-17

59
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N
C= C'= €T = C' = iy}, , .. EqQ. A-19
so : |
N AT A L | . Eq. A-20
For chiral fermioné;
€ b= C(WR,L)T j ' | . Eq. A-21
¢ = = (p,TC. ' N
Notice the inverse relations_are.also
Vg = C(PG,T ‘ ' . .Eg. A-22
Vg = '—(¢§,L)TC".
One other useful relationship is ”
-co,ct = -(0)T - | Eq. A-23
'for'Oi = y4, 0%’ |
and.
_coct = (07 - - Eq. A-24

for 0, = 1, ’..Y,s’ 7“75..

We will also encounter objects known as Majorana
Spiﬁors. They are defined\by: |
| n® = q : ' ‘ .‘:qu‘.A"ZS
ie) n = C(MT

m = -(9)7C,
and can bé constructed from chiral spinors as follows:
no= vyt WS | | ﬁ Eq. A-26

IR



iv) €7 ys¢€,

APPENDIX B -- Q ANTI-COMMUTATION LAW

In this appendix we sé@fput to calculate

(651662 - 5626e1)¢, giving [€,Q,€,Q] = E}y“eé?u. We will need

several relations first. We will dgflid these .using the falt

that e is a Majorana spinor so AN

e = € = C(?)T * Eq.
The needed relations are:

-€,"C7'Ce T

1) ege,

—e TE T
€, €, Eq.

1]

= €,€,

since €,,e, anticommute.

1
1

i) €,y5€, = €,Ys5€,, \ ' Eq.

since v, = y;, and it commutes with C.

iii)  €,y¥e, ~€,7C 'y Ce T

]

L]

e,T(y*)TET , | Eq.

'—-6-17“62

]

-€ 2TC_ 1:}A’“YSC?1T

n

= _?1751'"52
= €,Y"ys€,
and finally y

- € 2TC_10“'C?‘T

v)  €,0*e,
= e,"(0%")Te,T . Eq.
= -€,0"e,.

Recéllihg our infinigesima}(Fran§{ormatioh tha£ the

A

B-1

B-2

B-3

B-4

= ezT(Y“)TYSE1T Eq.fB"S

B-6



Frg =

Lagrangian is invariant under

bo' = TUL
[ 1= IR e
Swp = |5 |(Fi-id¢')e . Eq. B-7
o Q—-’
§F' = -iegyl.
Now:
Be Be ¢t = 8o (Eul)
= 2[ -Ysl(Fi‘iﬁqﬁ‘)—e‘
so ' q
(561652 - 6526e1)¢i , | Eq. B-8
_ (1= . o [1-
- &[] (rigete, - [T (Fiide e,
— 1- 1+ _
=ve,[[ YS]FI + i Ys Fo! ]fz _ e,[ 5](F"i5¢‘)ez
= ¢,if¢le,
= ?‘y‘€29u¢i'
*
Doing the same with F! ‘ -

Se 8e Fl " = 8 (-iE€,F0})

Py

—i?zil[ [1—:7—5](?“—1-14?)}, ]

[‘** [ 7 - oot ],

SO e T

»

(55‘812 - 8‘26CI)F1 A 7. - »Eq. B-9

_ 1+ . o _ 1+ , ‘
iw, [ (gFt-imeide, + iF, || (BFi-iget)e
2 ; 2 o2

[ e[ 7[5

€,ifFie,

(AN

]
n
-
[
~n
»n
0
e ]
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Lastly we do
e 65\0[’,'

[ L———— (F'-iy*d ¢’T'] | | =q. 710
_75][ STy - v, () e,

I A - e e

Must use Fierz transform. From Appendix E.

LxL = ®LxL + %La“,xa“'.

Thus
[(,y)L(Py') ILe, N Eq. B-11

= -w[e,y*Le, JLP V' - —[e‘y 0%e ]La“ KA

where the extra minus sign comes from the zncti-commuting
spihors. Also
(€,LP,y') (Ly¥e,) | Eq. B-12

= ~1(€,Ly*e, ) LB Y} - %(?‘0““7“62)[,005 u\b‘

Thus.

Sebe 0 = mlEy'Le, + € Lye,)P YL | : Eq. B-13
. . -81[-"-1‘7“0“%2 + €,0%%y%e,]0,,P ..WL <
= ‘/&(‘c-,y“ez)‘P“wi ' R

+ .%.?l[yuaaﬂ.’.aaﬂyu]ez'(oaa Vi) - .

We will now need . 0

€,7"0%%e, = "-e.'zTC'17“CC"YG_°‘°C?,T,‘ ; | i} v
=‘-e:T(7V)T(o‘”)T_ T  f . ' Eq. B-14

l;;Pll .

= €,0%y%¢,. 5@

fv‘
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‘Finally, one gets
(5¢‘6c2 - 5c25c‘)'p[i‘ ' . K . ,
oy .
= (e,y"e,)PY;. + 'é'?l[Y""“ + 0%%y*)e,0,,P, Vi

'%?1[0“7“ + y*0*% e 0,,P ¥
= (€,7%¢,)P VL. . | Eq. B-15
We have finally shown that

[?|Q1?2Q] = ?|Y“e2p“ Eq. B-16

To get the anti-commutation law use

{AB,CD] = ABCD - CDAB Eq. B-17
= -AC{B,D} + {A,C}DB + A{B,C}D |
» - C{A,D}B.
". (‘“,l ‘
Thus 9\{-‘_[’/}
4 [FIEQa'?uQa] = —?la?zg{Q,:Q,} Eq. B-18

since

{€,, e} =0

(7,9, = (75,00 = 0.

’ Furthermore,

€ytey = ey CeT = €, (¥4C) ez, Eq.-;B%ﬁe
: giving‘k> N
"?u?zg{Q.;Q,} = ?‘G?ZQ(YMC)aﬁPu

which ihplies

7 {Q,Q,) = —(y*C) P, ' Eq. B-20
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APPENDIX\C\Q\ fyLL LAGRANGIAN AND FEYNMANN RULES

The general gauge invariant SUSY Lagrangian®®:® is;

L = Loavge * Larren * VLSCALAR * Liyykawar " Eq. C-1
where
Le = -uF2 Fr® + wx®y* (D2PxP) | * Eg. C-2
L, = (D,¢)? (D*¢)' + i¥y,y*D, ¥} . Eq. C-3
“V2gX91T* ¥ ~V2g¥,, 7%
- a W .
L = = [ ] ¢ '———'—] ol Eq. C-4
' A FYSEYS T (3giagr | PHV 2
T 3w ] %W Sor s
= ——— | (y})TC Y} - ~————f] c(g 7 Eq. C-5
4]_ [a¢’a¢1 Vi 2] 36 9] vic(dy, ‘ q. C
T (oW |*{3W B omai
Ls = 2 [a¢i] [a¢x] - ry (geiTied - &0 Eq. C-6

where ¢® appears only for invariant abelian subalgebras,
W = de’i + mxj¢1¢3 + ngk‘pl‘ﬁ)'pk Eq. C-7

is the superpotential, a and b are adjoint indices, i and j

are complex representation indices (ie. (¢*)* = (¢°),), and;
D¢ = (3, - igT-A)¢,

DV, = (3, - igT-A,) v,

so : Eqg. C?B
‘Dyg = (3, + igTT A, )5,

(D,x)® = 3,x* + gfp.ANXS,

and

Fe, = 3,A% - 3,A% + gfp ADAS Eg. C-9

~and this theory is invariant under gauge invariant SUSY

transformations.

+

a3

5



Now from Ly-we get the "Gauge-Yukawa" coupling to gaude
fermions x®. We consider a Dirac fermion ¥ = y, + Vy, whose

chiral pieces transform under a gauge group

sy} = i6°Tpiy)
Eq. C-10

vy et 16°T3 L, |

whex-gggif'),i,R are the generators of the fepresentation of V. g
Furthermore, in‘a supersymmetric theory the chiral
compénents of Yy appear in left/right chiral multiplets
(¢, ps¥,.a) - The Gauge-Yukawa couplings are then

Lg-y iv2g [eaXiTRWAE ~ VaxXiTRpH

ivZg [ep XaT2ivl - Vi, xiTyel)

]

+

Eq. C-11

ivZg [¢f, TRXRYI - ¥, Lx*THo%]

+ iyvZg Lo, THRLY) - TReTHL],
where g is the gauge coupling constant. We have also
slightly redefined the scalar wavefunction in going from L,
to Lg.,, putting ¢-+i¢. We now obtain the following vertices

by simply multiplying L,y by 1.
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The rules shown in fig. C-1 are the basic Feynmann
rules that were adapted for each particular calculation.

The propagators for the scalars and fermions are;

, -i673,
o dmeees F----- -k e
- | ' Fig.
a —> b “1%%

g-m



APPENDIX D -- THE INTEGRALS

In this thesis we make use of several integral of the

form 4
J a‘k : 4 J‘ a‘k K2 . D-1
an . . -
(21)° (Ki-M?)" (200 (k2-m)" d

In this appendix I demonstrate a method to evaluate these.

For demonstration I will use the integral found in Egn. 2.1.

- J d*k 1
T (2m)f (kE-M?)S

Eq. D-2

if a’k dk,
(2m) ¢ [ky2-k2-M?)°
We can evaluate the integral over k, by investigating

® . dx, @ P dx
J o J : — Eq. D-3
-~ (x¢-af)s -» (x-a+ie)’(x+a-ie)®

Fig., D-1

69



Using Cauchy's Theorem one gets:

J‘w dx _ -2ri @ [ 1 ]
- (x2-a?)s 4! gx¢ (x-a)® lx-e
~27i 5:6:7-8 )
i Tl Eq. D-4
. 235 mi
T 128 597

Thus we now need only calculate

d’k ®  k2dk
oL e 54. D73
(k2+M?) 0 (k2eM2)Y/

which we can evaluate using a formula from Gradshteyn and

Ryzhik.5%®
J” x4 o {Q]“' C(u/v)C(n+1-u/v) Eq. D-6
O (prqx’)™! wp™t 14 Fin+1)
So
O L Jan (M) p(3/2)r(3)
0 (K2+M?)9/? 2 (M2)%2 T T(9/2)
e 327 1 -
= 705 " Eg. D-7
Finally
J d'k 1 _ ] 3571 32 m_
(2m)* (k2-M?)° (2r)¢ 128 105 s
-1 1
S S . D-8
19272 M? «

Similiarly, we find that

'k ’ Sp— Eq. D-9
J 2m)t (e-m)3 320M -
For
d'k K- J a’k J dk koK Eq. D-10
= 0 q. D=
(2m)* (k2-M?)¢ ‘ (ko2-k?-M?)®

we split it into two integfals, namely



L 4]

7

I d X’ d J ax ~ Egq. D-11
X ——— an — . D-
(x'-a?)® (x?-a?)® d
which we evaluate in the same manner as before, i.e. one Was
j‘ x%dx _-2ni @ [ x? ]
(x-a+ie)®(x+a-ie)® S axs (x+a)s lx-a
. L mi -
airibed Eq. D-12
In the end we get a final result
J 'k K - T - Eq. D-13
(2m)* (k2-M?)® 480 72 Mms° 4
One last integral we wish to evaluate is
d'k 1 1 1
= S = Eg. D-14
J (2m)¢ (k?-M2) (k2-M2) (k?*-Mj) 4 =
We can evaluate this with the use of a formulé given by
Shankar®?:
d‘k (kZ)n s n+2 z mzn’zln(mz)
J (2m)% -2y 1L12)’“ ,.\‘1 2 ; Eq. D-15
2m) M (k*=m}) 167 [}’:‘”(P,)(mJ m?)
This gives us '
d*k
_I- s 2 1~z 2 1'2 2 1'2 Eq. D-16
(2m)¢ (k?-M2) (k*-MD) (k*-M3)
_ - [ M24n (M?) N h;auzwln(ﬁlﬁ) . M24n (M2) ]
16w L (M2-M2) (M3-M?) (M2-M2) (MI-M2) (M2-M3) (MZ-M3)

which for M, << M, M,

i An(M3)-4n(M})
16m° ﬁg—fdi

’ Eq.

D-17
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R o k : [ 72
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SN %

which, using L'Hopitals Rule, %ur‘?ﬂ?“’réduces, f.or “ 4

M, * My = Mg, to x
-1 1
b
16m2 M .
B




¥ APPENDIX E -- FIERZ IDENTITIES

# In this thesis we make use of Fierz reordering. The
Fierz identities derive from the observation that the direct

product of any two matrices, A ,B,, , may be decomposed into
a sum of other direct products®

A B _ =

! (r)
117 km Cn:\) Dkr] . Eq. E-1
; ,

When this is applied to particular combinations of

7
—
r

y-matrices, and various conditions are imposed, like their

. . L .
behavior under Lorentz transformations, one finds

w10 = onl Tl + (o) nyedyg v (v*) (), Eq. E-2
| = () i (1,ys) e, * %(0*) (0,0, ) ,
which we write in the following shorthand
IxI = W{IxI + ygxygs + y*xy, - y“ygxy,ys * 0*x0, } Eq. E-3

sk
I1f we now-want something like RxL one multiplies egn E-2 by

.

Rpﬁquto oE;aln

LXR ¢ = W{RLxI + RysLxys + Ry*Lxy, - Ry'ysLxy,vs Eq. E-4
. ="+ gRe*’Lxo,,}

which using the properties.,of L,R reduces to

" LxR = wly*Lxy, - y*vsLxv,vs)
o ¥ i E

l- ; s% = A/‘[YuLXYM‘ + Y“LXYHYSJ‘ Eq. E-5

K - . B . %
= ulynxy, (1) ) A

= By'L x Y“R.
. -0f course, the converse is also true

Coy*L x ¥,R £ 2LxR. EQ. E-6

+ Similiarly, one has
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Y

LxL = %LxL + %La“"‘%..

RxR = 1/RxR + %Ra“'xa“,;

Eq.

E-7
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