
Uncertainty Methods in Active Reinforcement Learning

by

Rohan Nuttall

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Rohan Nuttall, 2022

Abstract

Some real-world deployments of deep reinforcement learning (RL) may require a

human-in-the-loop. Whether to ask-for-help, obtain new demonstrations and data, or

handle out-of-distribution states, many methods rely on uncertainty estimates from

a neural network to determine when to solicit a human’s assistance. In existing work,

it is common to rely on variance from an ensemble of models as a proxy for when the

agent is uncertain about taking an action, however there has been little investigation

into comparing the e�cacy of other methods. This thesis compares three methods

for uncertainty estimation in the action-advising framework: bootstrapped ensembles,

Monte Carlo dropout and variance networks. Additionally, the methods are assessed

on whether they produce “calibrated” uncertainty estimates. Variance networks are

proposed as being advantageous in the action-advising setting due to their advice

e�ciency and ability to capture uncertainty about the environment dynamics.

ii

Preface

This thesis is an original work by ‘Rohan Calum Nuttall’. No part of this thesis has

been previously published.

iii

Acknowledgements

Thank you to my supervisor, Matthew Taylor, for his guidance and support; his

patience and flexibility allowed me to explore many ideas of interest and make my

graduate studies a fulfilling experience. I learned much from his expertise and research

style. I would like to thank my parents for their unrelenting encouragement and love,

which was especially invaluable while completing a thesis during a global pandemic.

I’m grateful to my fellow graduate students who made the experience a memorable

one: Brad Burega, Vlad Tkachuk, Connor Stephens, Liam Peet-Pare, Alex Ayoub,

David Tao, Jordan Coblin, Erfan Miahi, and Vincent Mai. I’d also like to thank Levi

Lelis and Marlos Machado for sitting on my examination committee and encouraging

rigour in empirical work. Thank you to Jonathan Schae↵er for inspiring me to pursue

graduate studies at the University of Alberta. I have also deeply appreciated the

support of Kunal, Matt, Arthur, Cam, Jay, Josh, Tom, Luca, Jenny, Boyan, Arynn,

Katiana, and Jerome. Finally, I am thankful to Mia for being a source of warmth

and happiness in my life.

iv

Table of Contents

1 Introduction 1

2 Background 4

2.1 Reinforcement Learning . 4

2.2 Deep Q-learning . 5

2.3 Action Advising . 6

2.4 Requesting Confidence-Moderated Advice 7

2.5 Uncertainty Estimation . 8

2.5.1 Bootstrap Ensemble . 8

2.5.2 Monte Carlo Dropout . 8

2.5.3 Variance Networks . 9

2.5.4 Calibration . 9

3 Analyzing Uncertainty in Action Advising 11

3.1 Deep Q-Network (DQN) . 12

3.1.1 Parameter Sweep . 12

3.2 Fixed Uncertainty Threshold . 14

3.2.1 Cartpole Results . 14

3.2.2 Acrobot Results . 19

3.2.3 Mountain Car Results . 22

3.2.4 Lunar Lander Results . 26

3.3 Reward Adaptive Query Threshold 30

v

3.4 Discussion . 34

4 Uncertainty Calibration 36

4.1 Simple linear regression . 37

4.2 Q-values . 38

5 Conclusion and Future Work 41

Appendix A: 47

A.1 Implementation Details . 47

A.2 Hyperparameter Sweeps for Fixed Query Threshold 49

A.3 Adaptive Query Threshold with 8000 Advice Budget 54

vi

List of Tables

3.1 Hyperparameters used for the base DQN algorithm. 13

3.2 Hyperparameters for each method. The best performing parameter for

each method is found by taking the Cartesian product between each

method and each environment’s fixed query threshold, qF , for a total

of 24 settings per method. 14

3.3 Mean reward and standard error during training averaged over 10 eval-

uations rounds and 15 seeds on Cartpole. Total area under the curve

(AUC) is reported in the last column along with asterisks depicting the

statistical significance (P  .001) of the variance network performing

better than the next best method. 16

3.4 Mean advice calls with standard error during training averaged over 10

evaluations rounds and 15 seeds on Cartpole. The lowest advice used

is indicated by bold, but is not statistically significant. 17

3.5 Mean reward and standard error during training averaged over 10 eval-

uations rounds and 15 seeds on Acrobot. Total area under the curve

(AUC) is reported in the last column along with asterisks depicting the

statistical significance (P  .001) of the variance network performing

better than the next best method. 21

3.6 Mean advice calls with standard error during training averaged over

10 evaluations rounds and 15 seeds on Acrobot. All methods exhaust

the advice budget within the first 150 episodes. 22

vii

3.7 Mean reward over and standard error during training averaged over

15 independent random seeds on Mountain Car. Total area under the

curve (AUC) is reported in the last column. The variance network does

not perform better than the ensemble in terms of total AUC. The best

scores are reported in bold, but are not statistically significant. 24

3.8 Mean advice calls with standard error during training averaged over 10

evaluations rounds and 15 seeds on Mountain Car. The lowest advice

used is indicated by bold. 24

3.9 Mean reward and standard error during training averaged over 10 eval-

uations rounds and 15 seeds on Lunar Lander. Total area under the

curve (AUC) is reported in the last column. The ensemble achieves

higher scores than the variance network, but the results are not statis-

tically significant. The best scores are reported in bold. 28

3.10 Total advice calls during training averaged over 10 evaluations rounds

and 15 seeds on Lunar Lander. Lowest advice use is indicated by bold. 29

3.11 Total AUC for each method and environment using a fixed vs. adaptive

query threshold. The highest scores are indicated by bold. 33

3.12 Total advice calls to get to a given percent of the final reward by each

method (budget is 2000). Lowest number of advice calls indicated by

bold. 34

A.1 Hyperparameters used for the base DQN algorithm. 48

A.2 Hyperparameters tested for each method, environment version and

query thresholds. The hyperparameter used for a given figure is in-

cluded in the figure legend. All environments are run with OpenAI

Gym v0.21.0 [39]. 49

viii

List of Figures

3.1 Rendering of Cartpole environment from OpenAI Gym [39]. 15

3.2 The performance of dropout (p = 0.8), bootstrapped ensemble (N =

4), and variance network (� = 0.001) on Cartpole with an advice

budget of 2000. The ensemble and dropout achieve comparable per-

formance, while the variance network performs best using the least

amount of advice (as depicted in the bottom subplot). Every 10

episodes, the average reward from 10 evaluation rounds averaged across

15 independent runs is reported. Shaded regions depict the standard

error across the 15 independent runs. The teacher agent used achieves

a mean reward of 200.0 averaged over 50 episodes. 16

3.3 The average variance during training, averaged over 15 trials, from

dropout (p = 0.8), bootstrapped ensemble (N = 4), and variance

network (� = 0.001) on Cartpole. The fixed query threshold of 0.3,

qF , above which advice is queried is shown in red. It can be seen the

three methods exhibit very di↵erence uncertainty distributions both in

terms of scale and behaviour. 17

3.4 The Pareto frontier for advice budget and sum of reward after 100

episodes is depicted during learning. The mean reward and standard

error after each episode across 15 seeds is summed and plotted along

with the standard error across a variety of budgets. 18

3.5 Rendering of Acrobot environment from OpenAI Gym [39]. 19

ix

3.6 The performance of dropout (p = 0.2), bootstrapped ensemble (N =

4), and variance network (� = 1.0) on Acrobot with an advice budget

of 2000. The variance network and ensemble achieve superior per-

formance than dropout throughout training. Every 10 episodes, the

average reward from 10 evaluation rounds averaged across 15 indepen-

dent runs is reported. Shaded regions represent the standard error.

The teacher agent used achieves a mean reward of -68.5 averaged over

50 episodes. 20

3.7 The uncertainty distributions from dropout (p = 0.2), bootstrapped

ensemble (N = 4), and variance network (� = 1.0) on Acrobot. The

fixed query threshold of 0.05, qF , above which advice is queried is shown

in red. The average uncertainty per episode from all three methods

range significantly in scale, but the variance network exhibits compar-

atively higher volatility. 21

3.8 Rendering of Mountain Car environment from OpenAI Gym. 22

3.9 The performance of dropout (p = 0.2), bootstrapped ensemble (N =

4), and variance network (� = 0.01) on Mountain Car with an advice

budget of 2000. The variance network and ensemble perform similarly,

whereas dropout only begins to solve the task over 100 episodes later.

Every 10 episodes, the average reward from 10 evaluation rounds aver-

aged across 15 independent runs is reported. Shaded regions represent

the standard error. The teacher agent used achieves a mean reward of

-129.3 averaged over 50 episodes. 23

3.10 The uncertainty distributions from dropout (p = 0.2), bootstrapped

ensemble (N = 4), and variance network (� = 0.01) on Mountain Car.

The fixed query threshold of 16, qF , above which advice is queried

is shown in red. The average uncertainty per episode of the variance

network remains significantly higher than dropout or the ensemble. . 25

x

3.11 Rendering of Lunar Lander environment from OpenAI Gym. 26

3.12 The performance of dropout (p = 0.1), bootstrapped ensemble (N =

3), and variance network (� = 0.01) on Lunar Lander with an advice

budget of 2000. All three methods perform similarly, with dropout

showing slightly weaker performance at the end of training. Every

10 episodes, the average reward from 10 evaluation rounds averaged

across 15 independent runs is reported. Shaded regions represent the

standard error. The teacher used achieves a mean reward of 159.0

averaged over 50 episodes. 27

3.13 The uncertainty distributions from dropout (p = 0.2), bootstrapped

ensemble (N = 4), and variance network (� = 0.01) on Lunar Lander.

The fixed query threshold of 16, qF , above which advice is queried

is shown in red. The average uncertainty per episode from all three

methods range significantly in scale, but the variance network exhibits

comparatively higher volatility. 28

3.14 This plot depicts how the Reward Adaptive Query Threshold (RAQT)

mechanism works to dynamically increase the query threshold as the

agent learns. Using this reduces the number of advice calls by 33%

on the Cartpole task with dropout (plotted). Blue shows the dynamic

query threshold, qD, and red shows the cumulative advice calls. . . . 30

3.15 Results from RAQT strategy with a 2000 advice call budget. 32

4.1 Calibration diagnostic plots for a simple linear regression task for the

ensemble (b), dropout (d) and variance network (f). The variance

network yields calibrated uncertainty estimates while the other two

methods underestimate the true uncertainty. Perfect calibration is

referenced by the blue dotted line. 39

xi

4.2 Calibration diagnostic plots obtained by comparing the expected and

empirical frequency of observing Qtrue within a given percentile inter-

val. Plots are from last episode after convergence. None of the three

methods produce well-calibrated uncertainty estimates of the Q-values,

mostly underestimating the true uncertainty. 40

A.1 Sensitivity of uncertainty hyperparameter across various fixed advice

thresholds on Acrobot. 50

A.2 Sensitivity of uncertainty hyperparameter across various fixed advice

thresholds on Mountain Car. 51

A.3 Sensitivity of uncertainty hyperparameter across various fixed advice

thresholds on Lunar Lander. 52

A.4 Sensitivity of uncertainty hyperparameter across various fixed advice

thresholds on Cartpole. 53

A.5 Results from reward adaptive query threshold (RAQT) strategy with

an advice call budget of 8000. 54

xii

Chapter 1

Introduction

Reinforcement learning (RL) is a framework that enables computational agents to

achieve goals from experience [1]. It achieves this by learning a policy that maps

observations to actions in order to maximize a numerical reward signal from an envi-

ronment. However, an agent must explore in order to collect data on the highest value

actions to exploit. This exploration process can be especially costly in real-world do-

mains where data is expensive to obtain, rewards may be sparse (i.e., feedback is only

given when a task is completed, as opposed to on each step of training), or potentially

harmful exploratory actions need to be avoided. Similar to how many applications of

supervised machine learning benefit from (or require) interaction with human users,

in order for reinforcement learning (RL) to operate successfully in the real-world,

it can be desirable to ensure agents can e↵ectively interact with human experts or

non-experts. Existing work has shown success in leveraging human feedback to as-

sist agents with learning complex, hard-to-specify goals [2], accelerate online policy

learning from demonstrations [3], ensure agent alignment with user intentions [4], and

enable agents to solicit advice from humans or other agents when in unsafe situations

[5].

Action advising is a framework for human-in-the-loop reinforcement learning where

a more capable teacher policy may instruct a student policy which action to take

as it learns a task [6] with the goal of ideally outperforming the teacher. As no

1

assumptions need to be made about the similarity between the student and teacher,

action advising is a highly flexible framework for interfacing humans and agents to

collaborate in solving complex, safety-critical tasks. However, since requesting expert

advice can be costly, the student may be restricted by the number of advice calls it

can make. This requires algorithms that can e↵ectively solicit help when it is needed

most. Heuristics for distributing advice such as random advising, early advising, and

importance advising, while placing no constraints on state representation, are limited

by their inability to express an agent’s uncertainty about a particular state [6] [7].

As deep reinforcement learning achieves state of the art performance in challenging

domains such as the board game Go [8], video game play [9], robotics [10], and

a variety of other non-linear control tasks [11] [12], methods for actively querying

expert demonstrations and advice have increasingly leveraged measures of a model’s

epistemic uncertainty (i.e., that which can be reduced with more training data) from

neural networks [13] [14]. Much existing work using deep RL relies on ensemble-

based uncertainty estimates or Monte Carlo dropout as a proxy for when the agent is

uncertain about taking an action [15] [16]. However, there has been little investigation

into comparing the di↵erences between these methods. Furthermore, using estimates

of aleatoric uncertainty (i.e., that which comes from irreducible stochasticity in the

environment) has not been explored in the action advising literature. As deployed

agents may experience out-of-distribution states or stochastic environment dynamics,

using methods that capture this form of uncertainty in the action advising setting is of

critical importance for real-world applications. Beyond action advising, uncertainty

estimates have been used to guide planning [17], perform online parameter tuning [18],

improve sample e�ciency [19], learn risk-averse policies [20], and drive exploration

[21]. Well-calibrated uncertainties have also been shown to improve performance in

model-based RL [22].

One particularly relevant application where uncertainty estimates in the action ad-

vising framework could be useful is to consider the problem of safely deploying a large

2

language model (LLM). As combining RL with LLMs begins to enable goal-directed

tasks ranging from specialized customer service to legal reasoning [23] [24], human

intervention will likely be required. If agents can reliably express when they are un-

certain about taking a certain action, we can move closer towards robust deployments

of RL-based systems. Understanding which uncertainty estimation methods are most

e↵ective at yielding this capability is an important research direction.

Key Research Question: What impact does the choice of uncertainty esti-
mation method have on action advising performance?

As such, this thesis makes the following contributions:

1. Introduces a new method for uncertainty-aware action advising.

2. Analyzes the uncertainty estimates from three methods during training across

several di↵erent tasks.

3. Proposes a new type of query threshold that removes the need for hyperparam-

eter tuning.

4. Assesses the quality of uncertainty estimates in terms of calibration.

This thesis is structured into four further chapters. In Chapter 2, relevant back-

ground concepts in action-advising and uncertainty estimation are introduced. Chap-

ter 3 presents the experimental design and empirical investigations into action advis-

ing with di↵erent uncertainty estimators. Chapter 4 discusses and evaluates each

method according to uncertainty calibration. Finally, Chapter 5 presents key future

research directions for the field.

3

Chapter 2

Background

In this section, we will provide an overview of some of the key concepts related to

this thesis.

2.1 Reinforcement Learning

An RL agent continually interacts with an environment through the computational

framework of a Markov decision process (MDP). A finite MDP is a formalization of

sequential decision making problem described by the tuple hS,A, T ,R, �i. On every

interaction step, the agent receives a state st 2 S and selects an action at 2 A. The

environment transitions to a new state st+1 2 S and the agent receives a reward

rt+1 2 R according to the dynamics function T , which describes the probability,

P (st+1, rt+1|st, at), of the next state and reward occurring given the previous state

and action. The discount rate, �, determines the present value of future rewards.

The goal of the agent is to learn a policy ⇡ : S �! A, which maps states to actions so

as to maximize the expected sum of discounted rewards.

The value of taking an action a in state s and following policy ⇡ thereafter is given

by the action-value function:

q⇡(s, a)
.
= E⇡

" 1X

k=0

�kRt+k+1|St = s, At = a

#
(2.1)

The optimal policy, ⇡⇤, is a policy that is better than or equal to all other policies

4

and share the same optimal action-value function:

q⇤(s, a)
.
= max

⇡
q⇡(s, a) (2.2)

for all s 2 S and a 2 A. This function obeys the Bellman optimality equation which

is an identity that expresses the value of a state-action pair according to that of its

successors:

q⇤(s, a) =
X

s0,r

p(s0, r|s, a)
h
r + �max

a0
q⇤(s

0, a0)
i

(2.3)

In order to learn the optimal action value function, the Bellman equation can be

used as an iterative update. The tabular Q-learning algorithm [25] uses the following

update rule on every interaction with the environment:

Q(St, At) � Q(St, At) + ↵
h
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

i
, (2.4)

where ↵ is the stepsize. However, in large state-action spaces it is impractical to use

a table to represent S ⇥ A, and a function approximator is required to estimate the

action-value function.

2.2 Deep Q-learning

In deep Q-learning [26], the action-value function is approximated by a neural net-

work with parameters ✓ called a deep Q-network (DQN). The DQN algorithm stores

agent-environment interactions into a replay bu↵er, D, and on each iteration, i, uses

stochastic gradient descent (i.e., using the Adam optimizer [27]) on batches sampled

from this bu↵er to minimize the mean-squared error loss function:

LDQN
i (✓i) = E(s,a,s0,r)vD

h
(r + �max

a0
Q(s0, a0; ✓i�1)�Q(s, a; ✓i))

2
i

(2.5)

A separate neural network called the target network is used to represent

Q(s0, a0; ✓i�1) which remains fixed when optimizing the loss function LDQN
i (✓i). Ev-

5

ery N steps, the parameters from the Q-network are copied to the target network.

However, DQN and other deep reinforcement learning algorithms, despite achieving

human-level performance on some tasks, are known to be sample ine�cient compared

to humans, often taking tens of millions of environment interactions to converge [28].

In addition to seeking methods for enabling these agents to interact with humans,

sample ine�ciency is one of the motivations behind leveraging expert knowledge to

accelerate learning.

2.3 Action Advising

When an expert (i.e., a human or other agent that is optimal or close to optimal) is

available, the action advising framework allows a learning agent — also known as the

student agent — to receive the action that the expert would take in a given state.

Clouse (1997) showed that by integrating such an approach with learning the student

agent can reduce sample complexity and eventually outperform the teacher [29]. It is

only assumed that a common action set and communication channel exists, and that

a limited advice budget is available. Requests for action advice can either be student-

initiated or teacher-initiated. Torrey and Taylor (2013) find that the same amount

of teacher-initiated advice given at di↵erent moments can result in di↵erent learning

performance by evaluating four algorithms: early advising, whereby advice is given to

the agent during the first n states the student encounters; importance advising, which

provides advice if the di↵erence between the maximum and minimum action-values

of the teacher is above some threshold; mistake correcting, which adds an additional

condition to importance advising by intervening if the student’s intended action dis-

agrees with the teacher’s action; and predictive advising, whereby the teacher uses a

classifier to predict the student’s action and intervenes if they disagree for important

states [6].

Recent work has focused more on student-initiated action advising to avoid the need

for a teacher to monitor all the states a student encounters. Ilhan and Liebana (2020)

6

enable the student agent to assess the novelty of a state before asking for advice using

random network distillation [30], and show this performs better than early advising

methods [31]. Another approach, proposed by Da Silva et al. (2020), is to estimate

the uncertainty of a state resulting in the Requesting Confidence-Moderated Advice

(RCMP) algorithm, which outperforms early advising and importance advising both

in terms of asymptotic performance and advice e�ciency [14]. While RCMP uses an

ensemble of neural networks, Ilhan et al. (2021) use Monte Carlo dropout [32] as a

mechanism for computing uncertainty to determine when advice should be reused,

though they do not address whether this uncertainty heuristic is preferred over Da

Silva et al.’s method [7].

2.4 Requesting Confidence-Moderated Advice

The RCMP algorithm computes the student’s uncertainty about a state by using an

ensemble of action-value estimates from neural networks similar to the Bootstrapped

DQN algorithm introduced by Osband et al. (2016) [21]. As the networks are ran-

domly initiated and trained (i.e., using the DQN algorithm explained in Section 2.2)

with di↵erent samples from the replay bu↵er, each one will output a slightly di↵er-

ent estimate of the action values. The variance across the networks are used as an

estimate of uncertainty:

µ(s) =

P
a2A var(Q(s, a))

|A| , (2.6)

where Q(s, a) is a vector of i action value estimates given by each network for state

s and action a and A is the total number of action. The final value prediction used

by the policy is the mean across all networks. If µ(s) is high and the teacher policy

is available (i.e., there is budget left), then RCMP will request advice. However, it

is not clear how the choice of uncertainty estimation method of a neural network

prediction impacts performance in the RCMP framework.

7

2.5 Uncertainty Estimation

There are two primary types of uncertainties that can be modelled: aleatoric and

epistemic uncertainty. Aleatoric uncertainty represents noise inherent in the data

itself and cannot be reduced by collecting more samples. On the other hand, epistemic

uncertainty relates to lack of knowledge about which true model the data is generated

from and can be reduced with enough data and a model of su�cient capacity [33].

2.5.1 Bootstrap Ensemble

Inspired by the statistical bootstrap [34], training N randomly initialized networks

on independent samples from the same replay bu↵er can be used to obtain a distri-

bution over predictions. The variance over the networks’ outputs forms an estimate

of epistemic uncertainty [21], [35]. During training, the variance of the ensemble

(Equation 2.6) will be lower where su�cient samples exist, and higher in areas of the

state-action space where there is less coverage.

2.5.2 Monte Carlo Dropout

Originally proposed as a regularization technique for reducing overfitting in neural

networks [32], dropout has also been used to obtain a measure of epistemic uncertainty

[36]. By setting some hidden units in a neural network to zero with probability p,

a neural network with dropout will result in slightly di↵erent predictions for the

same input. However, in the context of RL, adding such additional variance to the

agent’s Q-value estimates is typically undesirable and can destabilize convergence to

the optimal policy. Therefore, a separate network with dropout applied after each

layer (trained in parallel) with the same architecture as the primary DQN agent is

used to obtain the uncertainty estimate. For a given state, K stochastic forward

passes through the dropout network are made to construct the matrix:

8

D =

2

6666664

Q1(s, a1) Q1(s, a2) . . . Q1(s, aA)

Q2(s, a1) Q2(s, a2) . . . Q2(s, aA)
...

...
. . .

...

QK(s, a1) QK(s, a2) . . . QK(s, aA)

3

7777775

By computing the variance across each column of matrix D, the total uncertainty for

a given state can be obtained using Equation 2.6.

2.5.3 Variance Networks

Unlike dropout and ensembles, variance networks use the negative log-likelihood loss

to learn the target’s noise due to the stochasticity of the environment and as such serve

as a measure of aleatoric uncertainty [33]. The variance network outputs two values:

the mean µQ(s, a) and variance �Q(s, a) of a Gaussian distribution corresponding to

the value of a state-action pair. The parameter � is used to balance the fact that

the negative log-likelihood function down-weights labels with high variance in the

optimization process [19]:

LV N(✓) = E(s,a,s0,r)vD

"⇣
y � µQ✓

(s, a)
⌘2

+ �

⇣
y � µQ✓

(s, a)
⌘2

�2
Q✓
(s, a)

+ ln �2
Q✓
(s, a)

#
, (2.7)

where y = (r+�maxa0 Q(s0, a0; ✓�) is the prediction from the target network described

in Equation 2.5. While dropout and ensembles are commonly used in the action

advising literature as a signal for requesting advice, the use of variance networks has

not been explored.

2.5.4 Calibration

It is desirable to have uncertainty estimates that are not overconfident so as to avoid

scenarios where an agent should have actually asked for advice in a state, but did

not due to the method underestimating the uncertainty. Calibration is a technique

9

that can be used to evaluate the quality of uncertainty estimates. In the regres-

sion setting, it involves assessing whether, say, the 90% confidence interval around

a prediction contains the true outcome 90% of the time [37]. Lakshminarayanan et

al. (2016) showed that dropout can produce poorly-calibrated uncertainty estimates

in the stationary, classification setting [35], but no literature to our knowledge has

investigated calibration in the context of action-values predicted by neural networks.

10

Chapter 3

Analyzing Uncertainty in Action

Advising

In the previous chapter, we introduced the RCMP algorithm, discussed two popular

mechanisms for quantifying uncertainty from deep neural networks, and proposed

variance networks as a new method for enabling uncertainty-aware action advising.

While Monte Carlo dropout and bootstrapped ensembles have been used as prox-

ies for estimating the epistemic uncertainty of the agent [38], learning the variance

from the agent’s environment interactions can provide information about the aleatoric

uncertainty of the environment. This chapter reports results from action advising per-

formance as well as how the uncertainty estimates from these three methods di↵er

during training.

We first determine the best hyperparameters for each method across a variety of

advice thresholds. The base algorithm used in all experiments is the deep Q-network

(DQN) [26], which is described in Section 3.1. Four environments with varying com-

plexity are tested from OpenAI Gym: Cartpole, Acrobot, Lunar Lander, and Moun-

tain Car [39]. Section 3.2 reports on the utility of variance networks compared with

existing methods accordingly to two performance metrics: the number of advice calls

required to reach a certain performance threshold (i.e., advice e�ciency), as well as

the number of episodes to reach a certain threshold (i.e., sample e�ciency). Section

3.3 introduces a new type of query threshold that improves advice e�ciency.

11

3.1 Deep Q-Network (DQN)

The base network architecture of the DQN implementation uses 2 ReLU-activated

hidden layers with 256 units each to estimate the action value function. The explo-

ration rate, ✏, is initially set to 1.0 and decayed linearly to 0.01 after each episode as

referenced along with the other hyperparameters in Table 3.1. On every environment

step, a batch of 64 samples is drawn from a replay bu↵er and used to update the

parameters of the Q-network (referred to as a soft update) with the mean squared

error (MSE) loss and Adam optimizer [27]. The target network is updated every 5

episodes (referred to as a hard update).

The uncertainty estimates for the bootstrapped ensemble are obtained by first

randomly initializing a set of N independent networks (each with its own target

network) with Kaiming initialization [40]. The ensemble is trained by randomly

sampling a new batch, with replacement, for each network from the replay bu↵er.

The average variance across the network outputs is used to estimate uncertainty. For

the Monte Carlo dropout method, dropout with probability p is applied to the final

layer of a separate Q-network (trained in parallel) and the average variance across 10

forward passes is calculated. The variance network is implemented by using a single

network with two heads which learn both the mean and variance of the action value

estimate using the MSE and negative log-likelihood loss controlled by the parameter

� [33]. The uncertainty estimation parameter sweep strategy is described in the next

section.

3.1.1 Parameter Sweep

The hyperparameters used across all the environments for the base DQN algorithm

are reported in Table 3.1. To determine the best hyperparameters for comparing each

uncertainty method, a range of uncertainty thresholds are chosen for each environment

and the performance of each configuration in Table 3.2 is averaged across 15 runs

12

each initialized with a unique random seed. For each run, the sum of the total reward

obtained over 400 episodes is recorded. The best performing parameter for each

method is found by taking the Cartesian product between each method and each

environment’s fixed query threshold, qF , for a total of 24 settings per method. The

performance from the best performing configuration is reported every 10 episodes

by plotting the mean return from 10 evaluation episodes (during which learning is

paused) along with the standard error across 15 independent runs with di↵erent

random seeds.

Table 3.1: Hyperparameters used for the base DQN algorithm.

Hyperparameter Value

Discount Factor (�) 0.995

Epsilon Decay Factor 0.05

Replay Bu↵er Size 10K

Hidden Units 256

Batch Size 64

Soft Update Frequency Every environment step

Hard Update Frequency Every 5 episodes

Optimizer Adam

Learning Rate (r) 0.0003

13

Table 3.2: Hyperparameters for each method. The best performing parameter for
each method is found by taking the Cartesian product between each method and
each environment’s fixed query threshold, qF , for a total of 24 settings per method.

Hyperparameter Value

Dropout Probability (p) 0.1, 0.2, 0.4, 0.8

Ensemble Size (N) 2, 3, 4, 5

Loss Attenuation Factor (�) 0.001, 0.01, 0.1, 1.0

Cartpole (qF) 0.3, 0.5, 0.7, 0.9, 1.2, 1.5

Acrobot (qF) 0.02, 0.05, 0.1, 0.5, 0.8, 1.0

Mountain Car (qF) 0.2, 0.5, 0.7, 1, 2, 3

Lunar Lander (qF) 1, 2, 4, 8, 16, 32

3.2 Fixed Uncertainty Threshold

This section evaluates the three methods using a fixed uncertainty threshold com-

monly used in the literature [7] [14].

3.2.1 Cartpole Results

The Cartpole task, depicted in Figure 3.1, is a dense reward (i.e., a non-zero reward is

given to the agent on every step) control environment which consists of keeping a pole

upright for as long as possible. The agent receives a reward of +1 for every step taken,

and the episode is terminated if the pole angle from the starting position exceeds ±12�

or if the episode length exceeds 200 steps. The action space comprises two discrete

actions: move cart left or right. The state vector has four dimensions: cart position,

cart velocity, pole angle, and angular velocity. The fixed query threshold, qF , for this

task is set to 0.3 and the teacher agent (which is a pre-trained DQN with the same

architecture as the student) used achieves a mean reward of 200.0 averaged over 50

episodes.

Figure 3.2 shows the performance of the three methods on Cartpole with a budget

of 2000 advice calls. Both dropout and the ensemble perform comparably, with the

14

Figure 3.1: Rendering of Cartpole environment from OpenAI Gym [39].

variance network achieving the highest performance. It can be seen that dropout

exhausts the advice budget within the first 25 episodes, while the ensemble only

starts querying for advice after episode 30. This exposes the fact that the uncertainty

distributions for each of these methods can sometimes be drastically di↵erent, as

shown in Figure 3.3. This demonstrates that when a fixed uncertainty threshold is

used in action advising with one of these three methods, it is important to tune qF

to both the environment and the method itself. This motivates the need for adaptive

uncertainty thresholding, which is explored in Section 3.3.

Tables 3.3 and 3.4 report on the performance and advice e�ciencies. It can be

seen that the variance network requires less advice than dropout and the ensemble

to reach higher performance level during training. Interestingly, the scale of the

average uncertainty from dropout increases each episode while the other two methods

fluctuate around the same scale. This accounts for why dropout exhausts most of the

advice budget after the first 25 episodes, as the uncertainty never drops below qF = 0.3

after episode 15.

This section also introduces the fact that dropout, ensemble and variance network

produce very di↵erence uncertainty estimates, resulting in advice being requested at

di↵erent points during training for the same environment. On the Cartpole task with

a fixed query threshold, the variance network achieves higher performance (P  .001)

using less advice than dropout or the ensemble. For all environments, the Welch’s

15

Figure 3.2: The performance of dropout (p = 0.8), bootstrapped ensemble (N = 4),
and variance network (� = 0.001) on Cartpole with an advice budget of 2000. The
ensemble and dropout achieve comparable performance, while the variance network
performs best using the least amount of advice (as depicted in the bottom subplot).
Every 10 episodes, the average reward from 10 evaluation rounds averaged across 15
independent runs is reported. Shaded regions depict the standard error across the 15
independent runs. The teacher agent used achieves a mean reward of 200.0 averaged
over 50 episodes.

Table 3.3: Mean reward and standard error during training averaged over 10 evalua-
tions rounds and 15 seeds on Cartpole. Total area under the curve (AUC) is reported
in the last column along with asterisks depicting the statistical significance (P  .001)
of the variance network performing better than the next best method.

Method Episode 30 Episode 50 Episode 100 Total AUC

Ensemble 51± 13 188± 8 199± 2 1254± 33

Dropout 30± 6 184± 3 198± 2 1212± 19

Variance Network 165± 14 200± 2 200± 1 1463± 27⇤⇤⇤

Baseline 49± 3 172± 1 198± 1 1166± 27

16

Figure 3.3: The average variance during training, averaged over 15 trials, from
dropout (p = 0.8), bootstrapped ensemble (N = 4), and variance network (� = 0.001)
on Cartpole. The fixed query threshold of 0.3, qF , above which advice is queried is
shown in red. It can be seen the three methods exhibit very di↵erence uncertainty
distributions both in terms of scale and behaviour.

Table 3.4: Mean advice calls with standard error during training averaged over 10
evaluations rounds and 15 seeds on Cartpole. The lowest advice used is indicated by
bold, but is not statistically significant.

Method Episode 30 Episode 50 Episode 100

Ensemble 1± 5 862± 72 1653± 61

Dropout 2000± 0 2000± 0 2000± 0

Variance Network 262± 4 312± 3 409± 1

17

Figure 3.4: The Pareto frontier for advice budget and sum of reward after 100 episodes
is depicted during learning. The mean reward and standard error after each episode
across 15 seeds is summed and plotted along with the standard error across a variety
of budgets.

18

t-test is used to test the null hypothesis that the variance network and next best

performing method (in this case, the ensemble) are equivalent. For this environment,

the Pareto frontier is also shown in Figure 3.4 to describe how the variance network

performs better when less advice is available. However, if very large advice budgets

are available then dropout appears to be the best choice.

3.2.2 Acrobot Results

The Acrobot environment consists of two links connected by two joints. The joint

between the two links is actuated. An episode begins with the system hanging down-

wards and the goal of the agent is to swing the end of the lower link past the gray

line depicted in Figure 3.5. A reward of -1 is given on all timesteps and the episode

terminates either when the maximum number of steps (in this case 400) elapses, or

the end of the free link reaches the target height. The discrete, 3-dimensional action

space represents torque of �1, +1, or 0 applied to the actuated joint. The state space

is 6-dimensional, consisting of: the sines and cosines of both joint angles, as well as

their angular velocities. The fixed query threshold, qF , for this task is 0.05 and the

teacher agent used achieves a mean reward of -68.5 averaged over 50 episodes.

Figure 3.5: Rendering of Acrobot environment from OpenAI Gym [39].

19

Figure 3.6 shows the performance of the three methods on Acrobot with a budget

of 2000 advice calls. While dropout and the variance network surpass the query

threshold quite early on, it can be seen that the ensemble only begins querying for

advice after episode 50. All methods exhaust the available advice within the first

150 episodes (see Table 3.6) and the variance network achieves best performance over

the course of training. The variance network demonstrates slightly better asymptotic

performance. Interestingly, the uncertainty distributions in Figure 3.7 converge to

the same scale by the final episode.

Figure 3.6: The performance of dropout (p = 0.2), bootstrapped ensemble (N = 4),
and variance network (� = 1.0) on Acrobot with an advice budget of 2000. The vari-
ance network and ensemble achieve superior performance than dropout throughout
training. Every 10 episodes, the average reward from 10 evaluation rounds averaged
across 15 independent runs is reported. Shaded regions represent the standard error.
The teacher agent used achieves a mean reward of -68.5 averaged over 50 episodes.

On the Acrobot task with a fixed query threshold, the variance network again

achieves higher performance (P  .001), but does not use less advice than dropout

or the ensemble.

20

Figure 3.7: The uncertainty distributions from dropout (p = 0.2), bootstrapped
ensemble (N = 4), and variance network (� = 1.0) on Acrobot. The fixed query
threshold of 0.05, qF , above which advice is queried is shown in red. The average
uncertainty per episode from all three methods range significantly in scale, but the
variance network exhibits comparatively higher volatility.

Table 3.5: Mean reward and standard error during training averaged over 10 evalua-
tions rounds and 15 seeds on Acrobot. Total area under the curve (AUC) is reported
in the last column along with asterisks depicting the statistical significance (P  .001)
of the variance network performing better than the next best method.

Method Episode 150 Episode 300 Episode 600 Total AUC

Ensemble �379± 16 �237± 26 �89± 4 �12857± 389

Dropout �335± 23 �255± 31 �90± 4 �13959± 257

Variance Network �307± 28 �162± 26 �86± 3 �11154± 240⇤⇤⇤

Baseline �385± 13 �306± 32 �91± 4 �15176± 341

21

Table 3.6: Mean advice calls with standard error during training averaged over 10
evaluations rounds and 15 seeds on Acrobot. All methods exhaust the advice budget
within the first 150 episodes.

Method Episode 150 Episode 300 Episode 600

Ensemble 2000± 0 2000± 0 2000± 0

Dropout 2000± 0 2000± 0 2000± 0

Variance Network 2000± 0 2000± 0 2000± 0

3.2.3 Mountain Car Results

Mountain Car is a popular classical control testing domain for reinforcement learn-

ing algorithms. It is a sparse reward exploration environment which comprises a car

positioned in a valley, as indicated in Figure 3.8, that must drive up the steep moun-

tainside. However, the car’s engine alone is not powerful enough to overcome the

force of gravity. Therefore, the only way to achieve the goal is to build up inertia

by throttling back and forth within the valley. Eventually, the car will have enough

momentum to escape the valley. On each timestep, the agent receives a reward of -1.

Once the car reaches the top of the mountain and passes the goal marker, the episode

ends. The actions available to the agent are: accelerate forward (+1), accelerate

backwards (-1), and idle (0). The 2-dimensional state space comprises the position

and velocity of the car. The query threshold, qF , used for this environment is 0.7 and

the teacher agent used achieves a mean reward of -129.3 averaged over 50 episodes.

Figure 3.8: Rendering of Mountain Car environment from OpenAI Gym.

22

Figure 3.9: The performance of dropout (p = 0.2), bootstrapped ensemble (N = 4),
and variance network (� = 0.01) on Mountain Car with an advice budget of 2000.
The variance network and ensemble perform similarly, whereas dropout only begins
to solve the task over 100 episodes later. Every 10 episodes, the average reward
from 10 evaluation rounds averaged across 15 independent runs is reported. Shaded
regions represent the standard error. The teacher agent used achieves a mean reward
of -129.3 averaged over 50 episodes.

Figure 3.9 shows the performance of the three action advising methods with a

budget of 2000 compared with the baseline. On this task, again the ensemble and

variance network perform comparably. While the variance network achieves slightly

higher performance at the middle and end of training as shown in Table 3.7, the

advice it takes to reach the intermediate performance thresholds is considerably less

with the ensemble as detailed in Table 3.8. It can be seen in Figure 3.10 that while

the variance network’s average uncertainty initially drops, it quickly increases passed

the fixed query threshold around episode 50 and remains much higher than the other

methods throughout training. Similar to the uncertainty distributions in Acrobot,

while the scale originally di↵er, all three methods appear to follow a similar trend

towards the end of training.

23

Table 3.7: Mean reward over and standard error during training averaged over 15
independent random seeds on Mountain Car. Total area under the curve (AUC) is
reported in the last column. The variance network does not perform better than the
ensemble in terms of total AUC. The best scores are reported in bold, but are not
statistically significant.

Method Episode 150 Episode 300 Episode 600 Total AUC

Ensemble �200± 0 �178± 7 �167± 6 �10818± 117

Dropout �200± 0 �194± 4 �164± 7 �11506± 134

Variance Network �200± 2 �164± 5 �155± 5 �10906± 108

Baseline �200± 2 �200± 4 �200± 6 �11712± 125

Table 3.8: Mean advice calls with standard error during training averaged over 10
evaluations rounds and 15 seeds on Mountain Car. The lowest advice used is indicated
by bold.

Method Episode 150 Episode 300 Episode 600

Ensemble 174± 17 1834± 18 2000± 0

Dropout 780± 53 1903± 16 2000± 0

Variance Network 2000± 0 2000± 0 2000± 0

24

Figure 3.10: The uncertainty distributions from dropout (p = 0.2), bootstrapped
ensemble (N = 4), and variance network (� = 0.01) on Mountain Car. The fixed
query threshold of 16, qF , above which advice is queried is shown in red. The average
uncertainty per episode of the variance network remains significantly higher than
dropout or the ensemble.

On the Mountain Car task with a fixed query threshold, the variance network does

not achieve significantly better performance than the ensemble. The variance network

also exhausts the advice budget within the first 150 episodes.

25

3.2.4 Lunar Lander Results

The goal of the Lunar Lander task is to learn a policy that safely guides the lander

to the pad demarcated by the flags in Figure 3.11. The agent receives a reward of

+100 for coming to rest, �100 for ‘crashing,’ and �0.3 for every step it uses the main

engine. A soft landing receives a reward of 140 and the maximum reward of 200

is from a soft landing on the pad using the least amount of fuel. The four actions

available to the agent are: fire left engine, right engine, main engine, or do nothing.

The state-space is 8-dimensional, comprising the x and y coordinates of the lander,

its linear velocities, angle, angular velocity, and two booleans indicating if its legs

are in contact with the ground. An episode terminates if the lander body contacts

the ground (signalling a crash), goes o↵-screen, or has come to a rest. The query

threshold, qT , for this task is 16 and the teacher used achieves a mean reward of 159.0

averaged over 50 episodes.

Figure 3.11: Rendering of Lunar Lander environment from OpenAI Gym.

Figure 3.12 shows the performance of the three methods with the advice budget

of 2000. Early in training, none of the methods appear to perform substantially

better than the baseline. The ensemble achieves the highest scores midway through

training, only using about half of its available advice compared with the remaining

two methods. Interestingly, its performance of the variance network drops back below

that of the baseline before recovering at the final episode. Table 3.10 shows that the

26

ensemble uses less advice to get to comparable performance as the variance network.

The average uncertainty of the variance network varies widely across training, while

dropout and the ensemble remain roughly stable as shown in Figure 3.13.

Figure 3.12: The performance of dropout (p = 0.1), bootstrapped ensemble (N = 3),
and variance network (� = 0.01) on Lunar Lander with an advice budget of 2000. All
three methods perform similarly, with dropout showing slightly weaker performance
at the end of training. Every 10 episodes, the average reward from 10 evaluation
rounds averaged across 15 independent runs is reported. Shaded regions represent
the standard error. The teacher used achieves a mean reward of 159.0 averaged over
50 episodes.

On the Lunar Lander task with a fixed query threshold, the variance network

performs comparably to the ensemble, but the result is statistically non-significant.

Both achieve higher scores than dropout.

27

Table 3.9: Mean reward and standard error during training averaged over 10 evalu-
ations rounds and 15 seeds on Lunar Lander. Total area under the curve (AUC) is
reported in the last column. The ensemble achieves higher scores than the variance
network, but the results are not statistically significant. The best scores are reported
in bold.

Method Episode 150 Episode 300 Episode 600 Total AUC

Ensemble �27± 10 54± 15 150± 21 1992± 801

Dropout �10± 10 50± 20 132± 12 1858± 517

Variance Network 8± 16 34± 32 143± 34 1967± 950

Baseline �9± 10 41± 9 87± 22 1135± 341

Figure 3.13: The uncertainty distributions from dropout (p = 0.2), bootstrapped
ensemble (N = 4), and variance network (� = 0.01) on Lunar Lander. The fixed
query threshold of 16, qF , above which advice is queried is shown in red. The average
uncertainty per episode from all three methods range significantly in scale, but the
variance network exhibits comparatively higher volatility.

28

Table 3.10: Total advice calls during training averaged over 10 evaluations rounds
and 15 seeds on Lunar Lander. Lowest advice use is indicated by bold.

Method Episode 150 Episode 300 Episode 600

Ensemble 427± 71 1345± 163 2000± 0

Dropout 2000± 0 2000± 0 2000± 0

Variance Network 1924± 42 1982± 18 1993± 8

In this section, three uncertainty methods on four environments are evaluated

using a fixed query threshold. It is discovered that the uncertainty distributions

from each method can vary widely in scale and behaviour, resulting in advice being

queried at di↵erent intervals throughout training. The variance network achieves a

statistically significant (P  .001) higher score on the Cartpole and Acrobot tasks

than the ensemble, while performing similarly to the ensemble on the more challenging

Mountain Car and Lunder Lander tasks. Dropout ranks last in terms of total area

under the curve on all four tasks. One limitation of the fixed query threshold is that

it has to be tuned specifically to the environment and potentially even to the method

itself. The next section discusses results using a new kind of query threshold that

does not require hyperparameter tuning.

29

3.3 Reward Adaptive Query Threshold

The previous section reported action advising performance across four di↵erent tasks

using a fixed uncertainty threshold chosen specifically for each environment. As could

be seen from Figures 3.3, 3.7, 3.10, and 3.13, the bootstrap ensemble, dropout and

variance network produce drastically di↵erent uncertainty estimates during training.

Not only does this make it harder to compare each method’s performance, it intro-

duces the need to tune the query threshold and uncertainty method hyperparameter

to each method. This is a significant limitation of the RCMP framework.

To address this, we propose a new mechanism for action advising which queries

for advice only when the current state’s uncertainty is greater than a proportion, qD,

of the last s steps: Reward Adaptive Query Threshold (RAQT). Furthermore, qD is

dynamically incremented as a function of the total return from the last N episodes

as described in Algorithm 1.

Figure 3.14: This plot depicts how the Reward Adaptive Query Threshold (RAQT)
mechanism works to dynamically increase the query threshold as the agent learns.
Using this reduces the number of advice calls by 33% on the Cartpole task with
dropout (plotted). Blue shows the dynamic query threshold, qD, and red shows the
cumulative advice calls.

Figure 3.14 depicts how, for dropout on Cartpole, this mechanism ensures that as

30

the agent becomes more capable at solving a task (i.e., the reward goes up), the query

threshold increases and the amount of advice requested stabilizes. This is particularly

helpful at addressing the observation that in the case of the experiments on Cartpole

in Section 3.2.1 where even after the agent solves the task, the uncertainty estimates

can continue to increase in the case of dropout. Using RAQT, 33% less advice is used

with dropout on Cartpole than the fixed query threshold as presented in Table 3.4.

Algorithm 1 Reward Adaptive Query Threshold

1: B bu↵er of last N episodic returns
2: U bu↵er of last s uncertainty estimates
3: procedure Tuner(B)
4: Query threshold: qD 0.75
5: Increment factor: f 0.05
6: Maximum query threshold: qmax 0.999
7: Minimum query threshold: qmin 0.5
8: if B[N]�mean(B) < 0 then

9: if qD > qmin then

10: qD qD � f Reduce query threshold
11: end if

12: else

13: if qD < qmax then

14: qD qD + f Increase query threshold
15: end if

16: end if

17: return min(qD, qmax)
18: end procedure

19: procedure Query(U)
20: j 0
21: for i in U do

22: if i < U [s] then
23: j j + 1
24: end if

25: end for

26: if j/length(U) > Tuner(B) then
27: return True
28: else

29: return False
30: end if

31: end procedure

31

As shown in in Figure 3.15, using RAQT allows the methods to query for advice

without the need to choose a hyperparameter specific to the scale of its uncertainty

estimates. In Table 3.11, we can see that the fixed and adaptive query thresholds

perform similarly. The variance network on Cartpole still outperforms dropout and

ensembles with less advice (Table 3.12). However, noting that the advice budget

for the remaining environments is exhausted relatively quickly, in Appendix A.5 the

performance using an advice budget of 8000 is displayed.

(a) (b)

(c) (d)

Figure 3.15: Results from RAQT strategy with a 2000 advice call budget.

32

Table 3.11: Total AUC for each method and environment using a fixed vs. adaptive
query threshold. The highest scores are indicated by bold.

Fixed Adaptive

CartPole

Ensemble 1254± 33 1313± 50

Dropout 1212± 19 1238± 54

Variance Network 1463± 27 1385± 19

Baseline 1166± 27 1166± 27

Acrobot

Ensemble �12857± 389 �11907± 156

Dropout �13959± 257 �14414± 220

Variance Network �11154± 240 �11363± 266

Baseline �15176± 341 �15176± 341

MountainCar

Ensemble �10818± 117 �10796± 191

Dropout �11506± 134 �11338± 203

Variance Network �10906± 108 �10720± 142

Baseline �11712± 125 �11712± 125

LunarLander

Ensemble 1992± 801 934± 472

Dropout 1858± 517 1557± 537

Variance Network 1967± 950 3227± 766

Baseline 1135± 341 1135± 341

33

Table 3.12: Total advice calls to get to a given percent of the final reward by each
method (budget is 2000). Lowest number of advice calls indicated by bold.

CartPole Acrobot MountainCar LunarLander
25
%

Ensemble 501± 70 1412± 72 1166± 221 1594± 123

Dropout 596± 55 2000± 0 1324± 171 1727± 102

Variance Network 279± 23 1124± 34 1676± 156 1954± 47

50
%

Ensemble 754± 84 1412± 72 1166± 221 1889± 64

Dropout 812± 82 2000± 0 1464± 173 1934± 56

Variance Network 279± 23 2000± 0 1785± 140 1985± 16

75
%

Ensemble 754± 84 2000± 0 1166± 221 2000± 0

Dropout 999± 95 2000± 0 1700± 149 2000± 0

Variance Network 430± 45 2000± 0 1883± 82 2000± 0

10
0%

Ensemble 1105± 146 2000± 0 1448± 188 2000± 0

Dropout 2000± 0 2000± 0 1803± 120 2000± 0

Variance Network 536± 68 2000± 0 1971± 30 2000± 0

3.4 Discussion

In this chapter, we showed that while the variance network is able to outperform the

ensemble and dropout on two of four tasks using a fixed query threshold, its advice

e�ciency is not always superior. We also discussed the limitation of needing to tune

a fixed uncertainty threshold to each environment and method and showed that us-

ing an adaptive threshold instead results in comparable performance. The results

presented in Figure 3.15 suggest that out of the three methods evaluated, dropout is

consistently the inferior choice both in terms of advice e�ciency and sample e�ciency.

Furthermore, as shown in Appendix A.2, dropout is also particularly susceptible to

the choice of its hyperparameter. As the ensemble also requires more computational

overhead (i.e., training N independent networks), the variance network can be ad-

vantageous compared to the two other methods evaluated.

Another observation from this chapter is that each method produces quite di↵erent

34

uncertainty estimates during training and across environments — both in terms of

scale and behaviour. One possible explanation for the stark di↵erence between the

uncertainties (and, as such, the number of advice calls made) between the Cartpole

and Lunar Lander task is the complexity of the state-action space. As Cartpole only

has two actions and four state variables (compared with 4⇥ 8 for Lunar Lander), it

could be that faster the agent converges to an optimal policy, the less of the state

space it needs to spend time exploring (the intuition being that less explored parts of

the state space will have higher uncertainties). However, this does not explain why the

uncertainty estimates from dropout continues to increase even as the agent converges

on Cartpole, nor why the uncertainty estimates on Mountain Car continue to diverge.

As the ground truth uncertainty is not typically known, it is challenging to determine

which method produces more accurate estimates. However, this motivates the use of

calibration as a potential means to evaluate the quality of uncertainty estimates.

35

Chapter 4

Uncertainty Calibration

Recognizing that calibration is a tool that can give us a sense of the quality of an

uncertainty estimate, this chapter first evaluates the three methods of this chapter in

a simple regression setting. Then, we assess whether calibration can be informative

for assessing the quality of uncertainty methods in the context of action advising.

Indeed, for many applications such as supply chain optimization, medical diagnos-

tics and autonomous driving, accurate uncertainty estimates are crucial for ensuring

the outputs of modern machine learning systems are reliable [41]. If the confidence

interval or probability for a label predicted by a neural network does not reflect the

ground truth likelihood, it will be unable to indicate when it’s likely to be incorrect

and is said to be mis-calibrated [42]. A well-calibrated uncertainty estimate means

that a 90% confidence interval will contain the true outcome 90% of the time. Mis-

calibration can typically occur because of model bias: the predictor is not able to

assign the correct probability to every confidence interval [37].

In the context of model-based reinforcement learning, it has been shown that using

calibrated transition probabilities improves performance [22]. Whereas previous work

has focused on the calibration performance in the stationary, i.i.d problem setting [35],

this chapter looks at how calibrated the uncertainty estimates are for the Q-values

themselves in action advising.

36

4.1 Simple linear regression

We begin by first demonstrating how each of the methods compare on a simple linear

regression task. A dataset D = {xn, yn}Nn=1 of size N = 2000 training examples is

produced using the function y = x+✏(x), where the inputs x are drawn uniformly from

the interval (-4, 4). Input-dependent noise is sampled from a Gaussian distribution

✏(x) ⇠ N (0, �(x)) where:

�(x) =

8
><

>:

0.5, x 2 (�4.0,�1.5)
1, x 2 (�1.5, 1.5)
3, x 2 (1.5, 4.0)

(4.1)

As in the previous chapters, a neural network (f) is used to model the predictive

distribution p✓(y|x), where ✓ represents the neural network parameters. Over 400

epochs, the Adam optimizer with a step size of 0.001 is used to train the models

consisting of two fully connected hidden layers of 64 ReLU units each. By using

the mean and variance µ✓, �✓ obtained from each method, we can construct the

distribution Fn(xn) ⇠ N (µ✓, �✓).

In the regression setting, perfect calibration can be defined as:

PN
n=1 I{yn  F�1

n (p)}
N

= p for all p 2 [0, 1], (4.2)

where F�1
n (p) = inf{y : p  Ft(y)}, Ft(y) is the cumulative distribution function of f ,

and p is the expected confidence interval. In order to produce a plot that quantifies

the calibration of a method’s uncertainty estimates, we choose m confidence levels

0  p1  · · ·  pm  1. For each confidence level, we compute

p̂m =
|{yn|Fn(yn)  pm, n = 1, . . . , N |

N
(4.3)

to obtain the empirical frequency of points contained within the specified interval.

The calibration error is defined as:

37

CE =
MX

m=1

(pm � p̂m)
2 (4.4)

Figure 4.1 shows the results from plotting {(pm, p̂m)}Mm=1. It can be seen that the

bootstrap ensemble has the worst calibration performance that CE = 5.35, followed

by dropout with CE = 2.71. As the calibration curves for both of these methods

are below the line of identity, they are said to be under-calibrated. That is, they

consistently underestimate the true uncertainty of the dataset. However, the variance

network achieves near perfect calibration (CE = 0.003). Given that �(x) is Gaussian

noise, it is be expected that a variance network of su�cient capacity should fit the

empirical variance.

4.2 Q-values

In the case of Q-value uncertainty, the story is quite di↵erent. As bootstrapping

can be e↵ective when the underlying distribution is unknown [18], it is perhaps not

surprising that the ensemble has a low calibration error on some of the environments

as shown in Figure 4.2 as compared with dropout and the variance network. The

same procedure is used to compute the calibration curves as in Section 4.1, with one

modification made to the dataset construction step. As the true labels are required to

produce p̂m, every ten episodes during the evaluation round, we perform 100 rollouts

from the start state s0, compute the discounted sum of rewards and store them as

Qtrue(s0, a0), where a0 is the first action in the action space the environment.

38

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Calibration diagnostic plots for a simple linear regression task for the
ensemble (b), dropout (d) and variance network (f). The variance network yields
calibrated uncertainty estimates while the other two methods underestimate the true
uncertainty. Perfect calibration is referenced by the blue dotted line.

39

It is interesting to point out that despite the variance network utilizing more advice

(Figure A.5) – and having higher average uncertainty estimates than dropout and

the ensemble – it still underestimates the true uncertainty on all tested environment

except Cartpole. On Lunar Lander, fact that the ensemble has a CE = 1.11 whereas

the variance network is CE = 5.66 suggests that calibrated uncertainty estimates

may not be as important in the action advising setting.

(a) (b)

(c) (d)

Figure 4.2: Calibration diagnostic plots obtained by comparing the expected and em-
pirical frequency of observing Qtrue within a given percentile interval. Plots are from
last episode after convergence. None of the three methods produce well-calibrated
uncertainty estimates of the Q-values, mostly underestimating the true uncertainty.

40

Chapter 5

Conclusion and Future Work

In this thesis, we explored how the uncertainty estimates from three di↵erent meth-

ods a↵ect action-advising performance: bootstrap ensembles, Monte Carlo dropout

and variance networks. We showed that the variance network, which captures in-

formation about aleatoric uncertainty, can outperform the other methods on two of

the four discrete control environments investigated. Each method yields a di↵erent

distribution of average uncertainty during training, which impacts where and when

advice is queried. Observing this, we introduced a new kind of adaptive query thresh-

old that dynamically increases the query threshold as a function of reward and argue

this should be favoured in action advising over the fixed query thresholds used in

literature as it does not require environment-dependent hyperparameter tuning. Fi-

nally, we conclude that none of the methods evaluated produce calibrated uncertainty

estimates for Q-values.

There are many interesting future avenues for research:

• While we focused on discrete control environments, results with continuous con-

trol algorithms and on pixel-based environments warrant further investigation.

• We used variance as a proxy for uncertainty, but it could be interesting to

contrast measures like coe�cient of variation, entropy or approximations of

value of information [43] [44].

41

• Instead of treating advice equally to the agent’s own interaction data, using dif-

ferent advice bu↵er strategies (i.e. priority, weighting, etc.) could be explored.

• It is known that distributional RL [45] also yields value-based uncertainty esti-

mates, but using these for action advising has not been explored. Furthermore,

combining the three methods to capture both epistemic and aleatoric uncer-

tainty could be useful.

• Integrating the availability of the teacher(s) within the state of the agent and

devising methods to learn when to ask for help could be interesting – especially if

the agent is exposed to the cost of requesting advice, or the budget, is available.

• Given that the variance network is calibrated in the stationary setting, cali-

brated state or reward model estimates could be obtained and tested as an al-

ternative for action-advising based on Q-value uncertainty in complex domains.

Especially as reward models are trained from human preferences, well-calibrated

uncertainties are particularly important and with could be a particularly com-

pelling area of research.

• A deeper study into the nature of uncertainty estimates produced by each of

the methods discussed in this thesis could yield insights as to why each method

produces di↵erent distributions.

42

Bibliography

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, Second. The
MIT Press, 2018.

[2] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” Advances in Neural
Information Processing Systems, 2017.

[3] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement learning
with human demonstrations of varying ability,” International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

[4] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg,
“Scalable agent alignment via reward modeling: A research direction,”
vol. abs/1811.07871, ArXiv, 2018.

[5] S. Reddy, A. D. Dragan, S. Levine, S. Legg, and J. Leike, “Learning human
objectives by evaluating hypothetical behavior,” Internatoinal Conference on
Machine Learning, 2020.

[6] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising agents in
reinforcement learning,” International Conference on Autonomous Agents and
Multiagent Systems, 2013.

[7] E. Ilhan, J. Gow, and D. P. Liebana, “Action advising with advice imitation in
deep reinforcement learning,” International Conference on Autonomous Agents
and Multiagent Systems, 2021.

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” vol. 550, pp. 354–359, 2017.

[9] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D.
Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson,
J. W. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J.
Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang,
“Dota 2 with large scale deep reinforcement learning,” vol. abs/1912.06680,
2019.

[10] A. R. Mahmood, D. Korenkevych, B. Komer, and J. Bergstra, “Setting up a
reinforcement learning task with a real-world robot,” International Conference
on Intelligent Robots and Systems, 2018.

43

[11] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds,
R. Hafner, A. Abdolmaleki, D. de las Casas, and et al., “Magnetic control of
tokamak plasmas through deep reinforcement learning,” 2022.

[12] M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado, S. Moitra,
S. S. Ponda, and Z. Wang, “Autonomous navigation of stratospheric balloons
using reinforcement learning.,” Nature, 2020.

[13] S.-A. Chen, V. Tangkaratt, H.-T. Lin, and M. Sugiyama, “Active deep q-
learning with demonstration,” Springer Maching Learning, 2020.

[14] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Uncertainty-
aware action advising for deep reinforcement learning agents,” Association for
the Advancement of Artificial Intelligence, 2020.

[15] Z. Kenton, A. Filos, O. Evans, and Y. Gal, “Generalizing from a few environ-
ments in safety-critical reinforcement learning,” vol. abs/1811.07871, ArXiv,
2019.

[16] B. Lütjens, M. Everett, and J. P. How, “Safe reinforcement learning with model
uncertainty estimates,” International Conference on Robotics and Automation,
2019.

[17] Z. Abbas, S. Sokota, E. J. Talvitie, and M.White, “Selective dyna-style planning
under limited model capacity,” International Conference on Machine Learning,
2020.

[18] M. White and A. M. White, “Interval estimation for reinforcement-learning
algorithms in continuous-state domains,” Conference on Neural Information
Processing Systems, 2010.

[19] V. Mai, K. Mani, and L. Paull, “Sample e�cient deep reinforcement learning via
uncertainty estimation,” International Conference on Learning Representations,
2022.

[20] W. R. Clements, B.-M. Robaglia, B. van Delft, R. B. Slaoui, and S.
Toth, “Estimating risk and uncertainty in deep reinforcement learning,”
vol. abs/1905.09638, ArXiv, 2019.

[21] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy, “Deep exploration via boot-
strapped dqn,” Conference on Neural Information Processing Systems, 2016.

[22] A. Malik, V. Kuleshov, J. Song, D. Nemer, H. Seymour, and S. Ermon, “Cali-
brated model-based deep reinforcement learning,” vol. abs/1906.08312, ArXiv,
2019.

[23] R. Bommasani, D. A. Hudson, and E. A. et al., “On the opportunities and risks
of foundation models,” vol. abs/2108.07258, ArXiv, 2021.

[24] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. J. Lowe, C. Voss, A. Radford,
D. Amodei, and P. Christiano, “Learning to summarize from human feedback,”
vol. abs/2009.01325, ArXiv, 2020.

44

[25] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Springer Machine Learning,
2004.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis, “Human-level control through deep reinforcement learning,” Nature,
2015.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
vol. abs/1412.6980, ArXiv, 2015.

[28] M. Hessel, J. Modayil, H. V. Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D.
Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow: Combining improve-
ments in deep reinforcement learning,” Association for the Advancement of
Artificial Intelligence, 2018.

[29] J. Clouse, “On integrating apprentice learning and reinforcement learning,”
University of Massachusetts, 1997.

[30] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration by random
network distillation,” vol. abs/1810.12894, ArXiv, 2019.

[31] E. Ilhan and D. P. Liebana, “Student-initiated action advising via advice nov-
elty,” vol. abs/2010.00381, ArXiv, 2021.

[32] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” 2014.

[33] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learn-
ing for computer vision?,” Conference on Neural Information Processing Sys-
tems, 2017.

[34] B. Efron and R. Tibshirani, “An introduction to the bootstrap,” 1993.

[35] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable pre-
dictive uncertainty estimation using deep ensembles,” Conference on Neural
Information Processing Systems, 2017.

[36] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” ser. Proceedings of Machine Learning
Research, International Conference on Machine Learning, 2016.

[37] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learn-
ing using calibrated regression,” International Conference on Machine Learning,
2018.

[38] A. Sedlmeier, T. Gabor, T. Phan, L. Belzner, and C. Linnho↵-Popien,
“Uncertainty-based out-of-distribution detection in deep reinforcement learn-
ing,” ArXiv, vol. abs/1901.02219, 2019.

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” ArXiv, 2016.

45

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” International Conference
on Computer Vision, 2015.

[41] J. Z. Liu, J. W. Paisley, M. Kioumourtzoglou, and B. A. Coull, “Ac-
curate uncertainty estimation and decomposition in ensemble learning,”
vol. abs/1911.04061, arXiv, 2019.

[42] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” vol. abs/1706.04599, International Conference on Machine
Learning, 2017.

[43] D. Arumugam and B. V. Roy, “The value of information when deciding what
to learn,” NeurIPS, 2021.

[44] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” Association for the Advancement of Artificial
Intelligence, 2008.

[45] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on
reinforcement learning,” ICML, 2017.

46

Appendix A:

A.1 Implementation Details

In this section, the implementation of the methods used in this thesis are summarized.

Q-Network architecture: DQN [26] is the base architecture for all experiments.

The architecture consists of two ReLU-activated hidden layers with 256 units each to

estimate the action value function. The number of input units for the network is the

dimension of an environment’s state-space, and the output units are the number of

actions available to the agent.

Training procedure: On every environment step, a batch of 64 samples is drawn

from a replay bu↵er and used to update the parameters of the Q-network with the

mean squared error (MSE) loss and Adam optimizer [27]. The target network, Qt, is

updated every 5 episodes. The exploration rate, ✏, is initially set to 1.0 and decayed

linearly to 0.01 after each episode as referenced along with the other hyperparameters

in Table A.1.

Ensemble: The uncertainty estimates for the bootstrapped ensemble are obtained

by first randomly initializing a set of N independent networks (each with its own

target network). The ensemble is trained by randomly sampling a new batch, with

replacement, for each network from the replay bu↵er. The average variance across

the network outputs is used to estimate uncertainty.

Monte Carlo dropout: Dropout with probability p is applied to the final layer of

a separate Q-network trained in parallel with the primary Q-network used for acting.

47

The average variance across 10 forward passes is calculated and used as the proxy for

uncertainty.

Variance network: The variance network is implemented by using a single net-

work with two heads which learn both the mean and variance of using the MSE and

negative log-likelihood loss controlled by the parameter � [33]:

LV N(✓) = E(s,a,s0,r)vD

"⇣
y � µQ✓

(s, a)
⌘2

+ �

⇣
y � µQ✓

(s, a)
⌘2

�2
Q✓
(s, a)

+ ln �2
Q✓
(s, a)

#
,

Table A.1: Hyperparameters used for the base DQN algorithm.

Hyperparameter Value

Discount Factor (�) 0.995

Epsilon Decay Factor 0.05

Replay Bu↵er Size 10K

Hidden Units 256

Batch Size 64

Soft Update Frequency Every environment step

Hard Update Frequency Every 5 episodes

Optimizer Adam

Learning Rate (r) 0.0003

48

Table A.2: Hyperparameters tested for each method, environment version and query
thresholds. The hyperparameter used for a given figure is included in the figure
legend. All environments are run with OpenAI Gym v0.21.0 [39].

Hyperparameter Value

Dropout Probability (p) 0.1, 0.2, 0.4, 0.8

Ensemble Size (N) 2, 3, 4, 5

Loss Attenuation Factor (�) 0.001, 0.01, 0.1, 1.0

CartPole-v1 (qF) 0.3, 0.5, 0.7, 0.9, 1.2, 1.5

Acrobot-v1 (qF) 0.02, 0.05, 0.1, 0.5, 0.8, 1.0

MountainCar-v0 (qF) 0.2, 0.5, 0.7, 1, 2, 3

LunarLander-v2 (qF) 1, 2, 4, 8, 16, 32

A.2 Hyperparameter Sweeps for Fixed Query

Threshold

This section presents results from the parameter sweeps performed to select the un-

certainty method hyperparameter for the fixed uncertainty threshold experiments in

Chapter 3.

49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Sensitivity of uncertainty hyperparameter across various fixed advice
thresholds on Acrobot.

50

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Sensitivity of uncertainty hyperparameter across various fixed advice
thresholds on Mountain Car.

51

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Sensitivity of uncertainty hyperparameter across various fixed advice
thresholds on Lunar Lander.

52

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Sensitivity of uncertainty hyperparameter across various fixed advice
thresholds on Cartpole.

53

A.3 Adaptive Query Threshold with 8000 Advice

Budget

The methods discussed in Chapter 3 often exhaust the advice budget. For reference,

the evaluation curves using an advice budget of 8000 is shown for the reward adaptive

query threshold.

(a) (b)

(c) (d)

Figure A.5: Results from reward adaptive query threshold (RAQT) strategy with an
advice call budget of 8000.

54

	Introduction
	Background
	Reinforcement Learning
	Deep Q-learning
	Action Advising
	Requesting Confidence-Moderated Advice
	Uncertainty Estimation
	Bootstrap Ensemble
	Monte Carlo Dropout
	Variance Networks
	Calibration

	Analyzing Uncertainty in Action Advising
	Deep Q-Network (DQN)
	Parameter Sweep

	Fixed Uncertainty Threshold
	Cartpole Results
	Acrobot Results
	Mountain Car Results
	Lunar Lander Results

	Reward Adaptive Query Threshold
	Discussion

	Uncertainty Calibration
	Simple linear regression
	Q-values

	Conclusion and Future Work
	Appendix A:
	Implementation Details
	Hyperparameter Sweeps for Fixed Query Threshold
	Adaptive Query Threshold with 8000 Advice Budget

