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ABSTRACT

In Chapter 1 relationships between various classes of
functions, more general than Darboux or connected, are dis-
cussed. PFor example c-3 C.C'“. where a function fi1X —Y
is in C~J if £(C) is connected and is in c* 12 £(3) ¢ (),
for each connected subset C of X.

A function is weakly connected if it takes connected,
open sets to connected sets. If X is locally connected and
£1X— Y is weakly connected, then f is continuous if and
only if £~ 1(vdry G) is closed for each open subset G of Y.
The converse of the above result is also proven.

It X, and X, are locally connected and r-xl X Xo,—Y is
a function weakly connected in each variable separately,
then f is weakly connected. It follows that f is continuous
if and only if £"1(vdry G) is closed for every open subset
G of Y.

In Chapter 2 functions with closed graphs and dense
graphs are characterized in terms of cluster sets and some
sufficient conditions are given for a function to have a
closed graph. Also some sufficient conditions are given for
cluster sets to be connected.

If X is locally connected and Y is rim-compact, then a
weakly connected function f1X —Y with a closed graph is

continuous.
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A theorem is given stating sufficient conditions for a

function to be connected. Another theorem states sufficient
conditions for a function to be in C™2.

In Chapter 3 it is shown that linear operators and
seminorms are weakly connected. This results in some
continuity theorems for these functions.

In Chapter 4 some of the results of the previous
chapters are extended to mul tifunctions.
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INTRODUCTION

A Darboux function is a real valued function of a real

variable which satisfies the intermediate value property.

The expository article (1] discusses these functions in

some detail. In 1875 Darboux showed that these functions are
not necessarily continuous by proving that every derivative
has the intermediate value property and then giving examples
of discontinuous derivatives. In [20] , C. H. Rowe
characterized continuity of real valued functions of a real
variable as follows.

A function f is continuous if and only ifs

(1) 1If x, and x, are any two points of the domain, then
f(x) takes on each value between f(xl) and f(xz) in the in-
terval [x), x,] and,

(i) Por every value of y, the set of points {xaf(x) = y}
is closed.

Since then several authors [2] [lj] have presented gen-
eralizations of Rowe's result. Theorem 1-26 generalizes all
these continuity theorems and is stated as follows.

I1f X is a locally connected space and fiX — Y is a
weakly connected function, then f is continuous if and only
ir f'l(bdry N) is closed for each open subset N of Y.

One of the consequences of this theorem is Corollary 1-38
which gives necessary and sufficient conditions for a real
valued function of two real variables to be continuous.

A function f1R X R —R is continuous if and only if f is
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continuous in each variable separately and there exists a
dense subset D of R such that £-1(t) is closed for every t
in D.

Theorem 1-32 gives the converse to the continuity
theorem for weakly connected functions and thus the follow-
ing characterization of locally connected spaces results.

A topological space is locally connected if and only if
every weakly connected function on X with the property that
the inverse image of every closed, nowhere dense set is
closed, is continuous.

The remainder of Chapter 1 lists and compares several
classes of noncontinuous functions which are defined in
terms of certain families of connected sets. In particular,
Theorem 1-10(a) shows that a function from class C~J is in

class C'“

) 1.0, if £4X — Y is such that £(C) is connected
for every connected subset C of X, then £(C) C £(C) for
every connected subset C of X.

In Chapter 2 cluster sets and partial cluster sets are
defined for functions in terms of nets rather than sequences
as is done in some of the literature and this allows theorems
to be proved without the restriction of first countability
on the spaces. With the aid of these notions some of the
results in the literature are extended to more general spaces
and functions.

In Chapter ) it is shown that linear operators and semi-
norms on topological vector spaces are always weakly connect-

ed functions and this immediately gives gome continuity
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theorems for these functions. Convex functions also satisfy

certain connectedness conditions and this results in Theorem
3-23, a continuity characterisation.

In Chapter 4 many of the theorems of Chapter 1 and 2 are
extended to multifunctions.

Throughout, unless otherwise stated, all topological
spaces will be Tl' If a reference is given in a chapter to
a result in the same chapter, then the chapter number is
omitted; otherwise, it is included.

A function f1X— Y is called nearly continuous
(almost continuous) at x if ;:TIEB is a neighborhood of x
for every neighborhood N of f(x). If f is nearly continuous

at each x in X, then f is called nearly continuous.



CHAPTER ONE
GENERALIZED CONNECTED FPUNCTIONS

Many classes of noncontinuous functions are defined
in terms of the properties that the image (or inverse
image) of a connected set has, where the connected set
considered is from a given subfamily of all the connected
sets. PFor example, the real valued functions on the real
line with the intermediate value property are exactly
those functions which take closed intervals in the domain
to intervals in the range.

The purpose of this chapter is to list, compare and
investigate properties of several such classes of functions
on general topological spaces. In particular, the class of
weakly connected functions, defined below, is studied here
and the main results with respect to this class of functions
are given in Theorem 26 and Theorem 32. Throughout, any

topological space considered is to be a T;-space, unless

stated otherwise, and will bdbe denoted by X or Y. In the

following eight definitions f is a function from a topolog-
ical space X to a topological space Y.

1-1 DEPINITION. If £(K) is connected for each connected

subset K of X, then f is called a connected function or is
said to belong to the class c-2,

1-2 DEPINITION. Let X be a locally connected space and let
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f;bo any family of connected subsets of X such that the sub-
tanily B(x) = {Be€ 8+ B is a neighvorhood of x} is a
local base at x for each x in X. If £(B) is connected for

each B inj? , then f is called connected(f) or connected
with respect to iz.

1-3 DEFINITION. If £(K) is a connected set for each
connected, open set K in X, then f is called a weakly

connected function.

1-4 DEFINITION. If for each x in X and each open set G
about x there is a neighborhood U C G of x such that £(U) is
connected, then f is called a locally connected function.

1-5 DEPINITION. If £(K) is connected for every connected
subset K of X, then f is said to belong to the class c-3.

1-6 DEPINITION. 1f £(K) C £(KX) for every connected subset
K of X, then f is said to delong to the class c‘“.
1-7 DEFINITION. If K is any closed, connected set in Y

and each x not in £~1(X) has a neighvorhood meeting only
finitely many components of £71(K), then £ is said to belong
to the class K -

1-8 DEPINITION. If K is any connected set in Y and
r1(X) > f‘I(K). then f is said to delong to the class ,J.



1-9 REMARKS. (a) Connected functions are a generalization
of Darboux functions (real valued functions of a real
variable with the intermediate value property) and have
been studied by many of the authors listed in the references.
Only recently have these functions been considered on gen-
eral topological spaces [16] [19] .

(b) Punctions connected with respect to a base Qnro
defined as Darboux(B) functions by A.M. Bruckner and
J.B. Bruckner in [2] and were studied for the case where the
domain is euclidean and the range is a separable metric
space. If the domain space is the real line with the usual
topology and 9 is the base of all open intervals, then a
real valued,connected(B) function is a Darboux function.
Also, a function may be connected with respect to one base
9 but not with respect to another equivalent base 9’. as
Example 15 below shows. In thelr study of approximately
continuous transformations Goffman and Waterman (6] showed
that every such function on a euclidean space X into a
separable metric space Y is connoctod(B). where £is a base

of connected sets with certain properties.

(¢) Por a real valued function f on the real line the
condition that f take open intervals to connected sets is
not equivalent to the condition that f be connected. Por
this reason weakly connected functions may not have been
studied. Some important classes of weakly connected

functions which are not in general connected functions are



linear operators and seminorms and these are studied in a
later chapter.

It is not known if there is an interesting class of
weakly connected functions which are not connected(i;) for
any base £ in the domain space as in Definition 2, However,
any class of connoctod(ia) functions on a locally connected,
regular space is shown below to belong to the class of
weakly connected functions. It is desirable, therefore, to
discover propoftiee of weakly connected functions since
these will apply to each class of connected(fa) functions
for any B,

(d) The class C~J is defined by Bruckner, Ceder and
Weiss [3] for real valued functions of a real variable and
is shown to contain the uniform limits of sequences of
Darboux functions. In particular, a convex function is a
uniform limit of a sequence of Darboux functions. In [3] ,
the class C-J is denoted by Uy

(e) In D.E. Sanderson [21] it is shown that a function
£ in class C-% is characterized by the property that com-
ponents of £71(P) are closed in X if P is closed. The class
of peripherally continuous functions belongs to class C'“
and not to class C-3 in gon:ral ( (15] and Example 1.19). A
function f of a space X into a space Y is called peripher-
ally continuous if and only if for each point x in X and

each pair of open sets U and V containing x and f(x),respect-
ively, there is an open set D in U containing x such that
f(bdry D) C V.



(£) Pan and Struble [5] define a function f to be

connectedness preserving if it is connected and in class K.

(g) It is shown by Sanderson [21] that a function f in
class J is characterized by the property that £-1(K) is

closed if K is closed and connected.

1-10 THEOREM. (a) Every connected function belongs to the

class C-J and c-3 1s a subclass of C-Y.

(b) Bvery connected function is weakly connected and

every locally connected function is also weakly connected.

(¢) Every function in. 8 is also in XK.

Proof: (a) The first statement follows immediately from the
fact that the closure of a connected set is connected. Now,
suppose that £ is in C~). To see that f is in c-% 1t is
sufficient, by Remark 9(e), to prove that £71(P) has closed
components for any closed set P. Let K be a component in
f’l(P). Since K is relatively closed in f'l(F), if x is in
X but not in K, then x is not in £-1(P). The set k U {x} is
a connected subset of X and since f is in Cc~J, (K U {x}) is
connected. But this set is just £(x) U £(x) and cannot be
connected in a T)-space since "f(K) C P* and "f(x) is not in
P* imply that £(K) and £(x) are separated by two disjoint
closed sets P and f(x). Therefore K is closed in all of X.
(b) The first statement is obvious. Now, let f be a
locally connected function and suppose that for some
connected, open subset K of X, f£(K) is separated; i.e.,
f(K) s AUB, where A¥ g FBand ANBegeprnB. If



A =K N £L(A) and B = KN £7H(B), then K = Ay Y By,

A, #9 # B and Ay B) = #. Since K is connected we may
assume, without loss of generality, that Tl N By # g and
may pick x in Kl N B,. Since K is open and f is locally
connected there is a neighborhood U € K of x such that f£(u)
is connected. Since U intersects both A, and B, the subset
£(U) of f£(K) will intersect both A and B. Thus f(uUyN ANB
= J and this contradicts the fact that f£f(u) is connected.

Thus f(K) is connected.

(¢) This is proved by D.E. Sanderson [2]}

1-11 THEOREM. Let X be a locally connected space.

(a) Every connected function on X is connected () for

every 8.
(b) Every weakly connected function on X is a locally

connected function.

Proofs (a) This follows from the fact that every member of
Q is connected and thus the closure of each member of 9 is
connected.

(b) Since X is locally connected there exists a base
for the topology of X consisting of connected, open sets.

The result is now immediate.

1-12 THEOREM. Let X be locally connected and regular.

(a) Por any B a connected(B) function on X ie a

locally connected function, and thus

(b) Por any B a connected(8) function on X is a weakly




connected function.
Proofs (a) In a regular space the closures of members of
Q(x) make a local base for x. Thus for any open set G
about x there exists a B in P(x) such that BC G. Then,
since f is connected(8 ), £(B) is connected.

(b) This follows from (a) and from 10(bd).

In the diagram below, which summarizes Theorems 10, 11,
and 12, an arrow, say from c-J to C'“. indicates that C~3
is a subset of C'“. No arrow indicates no comparison in

general and in these cases examples are given below.

1-13 DIAGRAM.

c-3 - 4

&
Q

# connected(B)

weakly connected nf connec ted K

w ——3 = applies to general topological spaces.

" ~~> " applies to locally connected spaces.

» ——3 " applies to locally connected, regular spaces.

# This class is defined for locally connected domain
only and it is the class of all functions f on X for which
there exists a Bsuch that £ is connected(B).



In the following examples "R will denote the real

numbers and "I" the closed unit interval [0,1] each with the
usual topology.

1-14 EXAMPLE. If the domain space is not regular, then a

connected(f) function need not be weakly connected or

locally connected. Let X be the unit interval with the
minimal 'l‘l-topology. This space is locally connected but
not regular and if £1X — I is the identity function, then
£ is connected( V| ) for any B but is not weakly connected or
locally connected. This is so since for any B in B, and
for any B, B is all of X and since f(X) = I, f is con-
nected(B). However, an open set in X has a finite comple-

ment and such sets are not in general connected in I.
QUESTION. Does there exist a weakly connected function on a
locally connected, regular space which is not connected(B)

for any 8

1-15 EXAMPLE. A weakly connected function on a locally

connected, regular space may be connected with respect to

4

one base B but not with respect to another base £. A

-uleconmctod function need not be connected. Let

£iR— R be the function defined by £(x) = g¢in 1/x, if
x>0, £(0) =1 and £(x) =0, if x ¢ 0. Let B be the base
for the usual topology consisting of all open intervals
Which do not have the zero as an end point and let B ve the



equivalent base consisting of all the open intervals.
Consider (-1,0) = B' in f?i Since £(B') = f([-1,0]) = {b-13.
which is not connected, f is not connected(B’). Since
intervals of the form (a,0) do not occur in 9, f is

connected (B )+ By Theorem 12(b), f is a weakly connected
function. Note that f is not in C'“ either.

1-16 EXAMPLE. A function on a locally connected, regular

domain may be in c~2 and not in K. Define a function

wil — I by

a, +a, + *¢¢ 4+ a
w(x) = 1im sup 1 2 no,
n

forn=1, 2, 3, *°*°, where x = O.a1a2a3 *¢+ is the binary
expansion of x. The function w is a connected function
which takes every interval in I to all of I, (C. Kuratowski,
Topologie, Warsaw, 1952). Because of this property the
inverse image of any point y is dense in I. Also wl(y)
cannot contain any interval, for then, we would have
w(w"l(y)) = I. Thus w-l(y) is totally disconnected and any
neighborhood of any point not in w-l(y) contains infinitely
many components of wl(y). Consequently, w is not in K.

1-17 EXAMPLE. A function may be in class 4 and not be

locally connected or in C'“. Any one-to-one function from

a T,-space to a totally disconnected space is in class J ,
as stated in Sanderson, [21] . In particular, the identity
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function from the reals with the usual topology to the reals
with the half ope. (open on the right) interval topology is
in 4, but is not weakly connected or in c-k,

1-18 EXAMPLE. A function may be in Cc-3 but not be weakly

connected or in C~2. The following example is found in F.B.

Jones, [11] . Let x«, 3, 7, *** denote a Hamel basis for the
real numbers. Every real number x can be expressed uniquely
in the form x = acl + b4 + c) + ¢++, where the numbers
a, b, ¢, **+ are either 0 or rational and at most a finite
number of them are different from zero. Define a function
f from the reals to the reals by f(«) =1, £f(3) = £()y) =
*s* = 0 and f(x) =a £(%X) + b £(B) + ¢ £(y") + ¢+, Thus
f(x) = a. Since a, b, ¢, °*°* are rationals it follows that
for each real number x, f(x) is either zero or rational.
Also f is of the form f(x + y) = f(x) + f(y) and thus is
convex; i.e., £(&3Y) ¢ t_(;)_;_f_(x) By Theorem 4.5 of
Bruckner, Ceder and Weiss, [3] , f is in c-J,

By Theorem 1 of F.B. Jones, [11] , the graph of f is
dense in the plane. Thus the image of any open interval
(a, b) in R is a dense subset of R consisting of some or all
of the rationals. In summary, f((a, b)) is not a single
point nor is it a non-degenerate, connected set and so f is

not weakly connected.

1-19 EXAMPLE. A function may be in C-% wut not in c-2.

Define a function fsR — R by f(x) = 1, if x ig rational and
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f(x) = 0, if x is irrational. The function f is in ¢t
since the image of any interval and the closure of the image

are always {0, 1} . Prom this it also follows that f is not

weakly connected or in c-3.

1-20 EXAMPLE. A function may be in X but not in 4. Let

Xy and x, be two real numbers such that Xy < x, and let
f1R — R be a function defined by f(xl) = X5 f(xz) = x, and
f(x) = x, otherwise. This function is not in .§ because if

K is the interval (x,, x, + 1), then 1) = {x} U (x5,

x, + 1] and f']'(l() = [xz. X, + 1] e It can be readily shown
that f is in K.

1-21 EXAMPLE. On non-locally connected spaces a function

may be weakly connected, but not locally connected. The

identity map from a non-locally connected space onto itself
is a homeomorphism and is thus a connected and weakly con-

nected function, but is not a locally connected function.

The remainder of this chapter is concerned with some
properties of weakly connected functions. The main results
are a continuity theorem for weakly connected functions and

a characterization of local connectedness of a space.

1-22 DEPINITION. A function f1X — Y is said to satisfy

the property H if each point image f(x) is separable in Y
from each closed set C in its complement by a set K (pos-
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sibly void) such that £-1(K) does not contain x; i.e.,
Y-K = AUB,f(x) €A, CCB, ANB=g =ANBand A ¥ g #B.
In G.T. Whyburn,[25), the range space Y is defined to

be peripherally f-normal provided each point image f(x) is

separable in Y from each closed set C in its complement by

a set K having a closed inverse under f. Property H of f is

implied by peripheral f-normality of Y, but the converse is

not true as the following example shows.

1-23 EXAMPLE. With the usual topology on R define a function
£iR — R by f(x) = sin 1/x, if x > 0, £(0) = 2 and £f(x) = 0,
if x ¢ 0. R is not peripherally f-normal as can be seen by
considering any point x € R such that f(x) = 3/4 and the
closed set C = [0, 1/4] U {2} in the complement of f(x).

C and f£(x) can be separated only by a set K with 0 in f'l(K)
- 1(x) and thus £-1(K) is not closed. To see that f
satisfies the property H it is a simple matter to check the
two cases x = 0 and x ¥ 0.

Theorem B of G.T. Whyburm, (25] restated for functions
is as follows. If X is locally connected, any connected
function f1X —Y for which Y is peripherally f-normal, is
continuous. The following theorem, then, becomes a general-
ization. This theorem may be easily extended from functions
to multifunctions also, in which case the extension would

be a direct generalization of Theorem B,

1-24 THEOREM. If X is locally connected and the weakly
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connected function f£1X — Y satisfies property H, then f is

continuous.

Proofs Let V be any proper open set about an arbitrary
point image f(x). Since Y-V is a closed set not containing
f£(x), there exists, by hypothesis, a set K separating f(x)

and Y-V such that £-1(K) does not contain x. Let Y-K = AUB,
where f(x) is in A, Y-VC Band ANB =g = AN B. Since X

is locally connected there exists a connected, open neigh-

borhood N of x such that f-l(K) ANAN=g. Prom this it
follows that f£(N) N K = g, Now, f(N) is a connected set

and since it contains f(x), which is a subset of V, it can-
not intersect Y-V, for otherwise, A U B would separate f(N).
Thus f(N) C V and f is continuous at x. Since x is artitrary

f is continuous.

1-25 COROLLARY. If X is locally connected and f is a weakly

connected function on X to a regular space Y, then f is

continuous if and only if f'l(bdgy G) is closed for each

open set G C Y.

Proofs It is sufficient to show that f has the property H.
If C is a closed set not containing f(x), then Y-C is open
and there exists an open neighborhood M of f(x) such that

M C Y-C. Then K(= bdry M) separates f(x) and C and since
f'l(K) is closed, f has the property H. If f is continuous,
then f'l(bdry GC) is closed since bdry G is closed.

By a proof similar to that of the above theorem, but
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not involving the notion of Property H, the above corollary
may be strengthened by not requiring regularity of the range
space. This result, given below, becomes a generalization
of Theorem 3 of Bruckner and Bruckner [2] and part of
Theorem C of Klee and Utz [13].

1-26 THEOREM. If X is locally connected and f1X —Y is a

weakly connected function, then f is continuous if and only

if f"l(bdry G) is closed for each open subset G of Y.

Proofs We show continuity of f at an arbitrary point x. 1If
G is any open set about f(x), then f'l(bdry G) is closed and
does not contain x. Since X is locally connected there
exists a connected, open neighborhood U of x with U N
f'l(bdry C) = g and by hypothesis f(U) is connected. low
£(U) N (bdry G) = ¢, but £(U) contains f(x) and since bdry G
separates f(x) and Y-G it must be that f(U) C G.

1-27 REMARKS. The following is also true and the proof is
similar to the proof of Theorem 26.

If X is locally connected at x and if f1X — Y is a

weakly connected function such that for some local base 7/ of

£(x), £~1(vdry M) is closed in X for each Min?77, then f

is continuous at x. In fact the result will also hold true

L (marw M1
if we require only that £ *(bdry M) does not contain x.

1-28 COROLLARY. If X and Y are both locally connected and

f1X —Y is a one-to-one, onto function such that both f and
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t! are weakly connected and if both f and £~1 take closed,

nowhere dense sets to closed sets, then f is a homeomorphism.

Proof: Por any open set N the boundary of N is a closed,

nowhere dense set and thus Theorem 26 applies to both f and

-1,

1-29 COROLLARY. If f is a real valued,weakly connec ted

function on a locally connected space X, then f is contin-

uous if and only if f‘l(t) is closed for each t in R.

In Lipinski [14], it is shown that if X is locally
connected and £1X — R is a connected function for which
there exists a dense subset D of R such that £~1l(y) is
closed for each y in D, then f is continuous. As a further
corollary to Theorem 26 and the last of the Remarks 27, we
have the following extension of Lipinski‘'s result.

1-30 COROLLARY. Let X be locally connected and let fiX— R

be a weakly connected function. Then f is continuous if and

only if there exists a dense subset D of R such that for

each open subset V about f(x), for each x in X, there exists

a subset K of D, consisting of at most two points, separat-

ing f(x) and R-V such that f'i(K) does not contain x.

Proofs The sufficiency of the condition follows by noting
that it is possible to choose a local base at f(x) consisting
of open intervals with end points in D and then applying the

second of Remarks 27.
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It is natural now to ask the following question which
is a slight variant of that posed by Lipinski in [14).

QUESTION. 1Is X locally connected if each weakly connected
real valued function on X is continuous whenever it has the

property as in Corollary 29 or 30?

Por the case where X is a metric space a positive
answer is given by Klee and Utz [13]. In [23)A.K. Steiner
proved further that the answer is in the affirmative if X is
completely regular. A partial solution for the above
question is also obtainable if it is assumed that each
component of X is locally connected to begin with.

To see this let K be a component of X and define a
function f1X — R by f(x) = 1 if x is in K and f(x) = 0 if
x in not in K. The conditions of Corollary 30 are satisfied
by f and thus f is continuous. Therefore f'l(O)(- X-K) is
closed and K is open. Similarly every other component of X

is open and thus X is locally connected.

1-31 THEOREM. A space X is locally connected if and only if

every weakly connected function on X is locally connected.

Proofs If X is locally connected, then by Theorem 11(b)
every weakly connected function is locally connected. If X
is not locally connected, then the identity function from X

onto X is weakly connected, but is not locally connected.
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1-32 THEOREM. Let X be a topological space and suppose

that every weakly connected function f on X, with the

property that the inverse image of every closed, nowhere

dense subset of the range is closed, is a continuous func-

tion. Then X is a locally connected space.

Proof:s Let G be any open subset of X and let K be a com-
ponent of G. Define a topological space Y as follows.

Choose two points x and y of X such that x is in K and y is

inG — K. LetY= (X — G) Ll{x} Ll{y} and let the open
sets of Y be Y, #, {x}, {y} and {x, y}. The resulting top-
ological space is one in which ¥ — {x. y} is the only

closed, nowhere dense set and all subsets are connected
except the set {x, y}. Define a function f1X — Y by

f(a) = a, for a in X — G, f(a) = x, for a in K, and

f(a) =y, for a in G — K. This function is weakly con-
nected(in fact connected) and the inverse image of every
closed, nowhere dense subset of Y is closed in X. By
hypothesis, then, f is continuous and thus f-l(x)(= K) is
open, since {x} is open in Y. Since G and K were arbitrary
it follows that components of open sets are open in X,

making X locally connected.

1-33 COROLLARY. A topological space X is locally connected

if and only if every weakly ccnnected function on X, with

the property that the inverse image of every closed, nowhere

dense set is closed, is continuous.

Proofs If X is locally connected, Theorem 26 applies since
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a set is closed and nowhere dense if and only if it is the

boundary of an open set. The converse is given in the

previous theorem.

Relationships among the various classes of functions
defined earlier are desirable and the next chapter will
investigate this more fully. The following theorem is of
that nature and indicates when a weakly connected real

valued function of a real variable is in class C‘Z.

1-3% THEOREM. A function fiR — R is in class C~2 if and

only if it is weakly connected and in class c-4.

Proofs Every connected function is weakly connected and in

class C'u

» by Theorem 10. Conversely, if f is weakly con-
nected and in class C™*, consider an interval of the form
(a, b). We have f((a, b)) C f([a, b)) c f([a, b)) < £((a, b))
and since f((a, b)) is connected by hypothesis, f([a, b))

is also connected. The argument is the same for any other

interval.

Pervin and Levine [19] ehowed that if £1X) X X, — Y
is a connected mapping, with all spaces Hausdorff, then f is
connected in each variable separately; i.e., £(x, B) is
connected for all x in X, and all sets B connected in X, and
f(A, y) is connected for all y in X, and all sets A connected
in X,. The converse of this is not true.

The following is
a similar theorem about weakly connected functions.
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1-35 THEOREM. Let X, and X, be locally connected spaces and

let faxl x X, — Y be a function which is weakly connected

in each variable separately; i.e., f(x,, C,) and f(Cl.__xZ)_

are connected for each connected, open subset C. of X; and

for each X, in Xi. i=1, 2. Then f is weakly connected.

Proofs 1If Ulci x1 and UZ C X2 are connected, open sets,
then Ul X U, is connected, open in X; X X, and f(UlX Uz) is
connected. This is so because f(Ul X UZ) = f[ {U (x x Uz)}
U(le xo)a X € Ul}] -U[f(x x Uz)a X € Ul} V) f(Ul X xo)
for a fixed x, in U,. This is a union of connected sets
each having a non-empty intersection with a connected set
f(Ul x xo). Now X, X X, is locally connected and each point
(xl. xz) in X, * xz has a neighborhood base consisting of
sets of the form Ul>< U, as above. Thus f is a locally
connected function and by Theorem 10(b), f is a weakly con-
nected function.

The converse of the above theorem is not true as the

following example shows.

1-36 EXAMPLE. A weakly connected function of two variables

which is not weakly connected in each variable separately.

Define a function ft1I X I — I by f(x, y) =y, if y ¥ 0 and
f(x, 0) = w(x), where w is the function defined in Example
16. This function is weakly connected since if G is a con-
nected, open set in I X I which does not intersect

{(x, y)ry = O}. then f projects G to a connected set in I.
If G intersects ((x. y)iy = 0}- then the intersection



20

contains an open interval. The image under f of this open
interval, and thus of G, is all of I. The function is not
weakly connected in each variable separately, since

{1} x [0, 1/2) is a connected set and [0, 1/2) is connected,
open in I, but the image of this set is not connected since
£((1, 0)) = w(1) =1 and £({1} X (0, 1/2)) = (0, 1/2).

1-37 COROLLARY. Let xl and xz be locally connected spaces
and let fnxl)( xz-—+y be a function which is weakly connect-
ed in each variable separately. Then f is continuous ir
and only if f'l(bdry G) is closed for every open subset G
of Y.

1-38 COROLLARY. A real valued function of two real variables
is continuous if and only if it ie continuous in each var-
iable separately and there exists a dense subset D of the

reals such that £~1(t) is closed for every t in D.
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CHAPTER TWO
CLUSTER SETS AND GENERALIZED CONNECTED FUNCTIONS

The notion of the cluster set of a function at a point
has been used in analysis; see [1], [3], and has recently
been extended to functions on spaces more general than
euclidean spaces; see [16]and [19]. In this chapter cluster
sets and partial cluster sets are defined for functions in
terms of nets rather than sequences as is done in some of
the references and this allows theorems to be proved without
the restriction of first countability on the spaces. With
the aid of these notions some of the results in the litera-

ture are extended to more general spaces and functions.

A net will be denoted by (xd). (or (x(d)) ), where D is
the directed domain of the net and xd is the value of the
net at d in D. Usually the Zlirected set is understood, and

to conserve on notation it will not be mentioned.

2-1 DEFINITION. The cluster set at x of a function fi1X —Y

is the set of all y in Y for which there exists a net (x,),
converging to x, such that the net (t(xd)) converges to y.
This set is denoted by C(f1x) and we note that f(x) is in
C(f3x) for every x in X.

2-2 DEPINITION. Let A be any subset of X and let f1X — Y

be a function. The partial cluster set of f at x with
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respect to A, denoted by CA(t;x). is the set of all y in Y
for which there is a net (xd) in A converging to x such that
the net (f(xd)) converges to y. Note that a partial cluster
set with respect to some set may be empty.

2-3 DEPINITION. PFor a function f1X — Y and for y in Y, let
T(f3y) be the set of all x in X such that there exists a net
(xd) converging to x for which the net (f(xd)) converges to
y. Note that if f is not onto, then T(f;y) may be empty for
some y not in f(X).

2-4 THEOREM. Por a function f1X — Y and for any subset A

of X, C,(fi1x) = N{f(N N A)iN 18 in 'n}, where 77 is a
system of neighborhoods of x.

Proof: 1If z is in CA(f;x). then there exists a net (xd) in
A which converges to x such that the net (f(xd)) converges
to z. Now, (xd) is in N N A eventually for every neighbor-
hood N in 72 and so (f(x4)) is in f£(N N A) eventually for
every N. But this means that z is in m for every N,
or z is in (\{f—(—N——nA)'N is U\n}-

Conversely, z in O {HFT\T).N is in ??} implies that
z is in f(N N A) for every N in 9. Por every neighborhood
M of z we can pick a point z(M,N) in f(NNA) N M and a
point x(M,N) in NN A such that f(x(M,N)) = z(M,N). The net
(x(M,N)) is in A and converges to x, and the net (z(M,N))

converges to t. Thus z is in CA(“x)'
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2-5 COROLLARY. If 7lie any neighborhood system of a point x
in X, then C(f3x) = (\{f(N)uN is in ‘72}. Every partial

cluster set and every cluster set of a function at a point

is a closed set in X.

2-6 THEOREM. Por a function £1X — Y and for any y in Y,

T(Lf3y) = ﬂ{f’I(M)nM is in 7/22. where Tl is a neighborhood
system of v in Y.

Proofs If x is in T(f3y), then there exists a net (xd)
converging to x such that (f(xd)) converges to y. Let 7 be
a neighborhood system of y. Then (f(x,)) is eventually in M
for every M in 777 and thus (xd) is eventually in £=1(M) for
every M in . since (x4) converges to x, x is in f—'l(_M)
for every M. Therefore x is in ﬂ{f—'l_(;)m is in M}

If 2z is in n{r"T(?)m is 1n7n}. then z is in each

£~) (M), where 7 is a neighborhood system of some y in Y. If
‘N is a neighborhood system of z, then N N f'l(M) #$ g for
any N in 7?7 and M in 9. Por each ordered pair (M,N), we can
thus choose a point x(M,N) in N such that f(x(M,N)) is in M.
The resulting net (x(M,N)) converges to z and the net
(£(x(M,N)) converges to y. Therefore z is in T(f;y).

2-7 COROLLARY. Por any function fi1X — Y and for any y in

Y, the set T(f3y) is closed in X.

2-8 THEOREM. Por any subset A of X and for a function

f1X — Y, CA(flx) C ;(—.A)
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Proofs If y is in C,(fsx), then there is a net (x4) in A
which converges to x and the net (f(xd)) converges to y.

Since f(xd) is in f£(A) for each d, it follows that y is in
£(A).

2-9 THEOREM. The graph of a function f1X — Y is closed in

X X Y with the product topology if and only if C(fix) = £(x)

for each x in X.

Proofs The graph of f is closed if and only if whenever
(xd) is a net in X which converges to x and (f(xd)) converges

to y, then y = f(x). The result follows readily from this

statement.

2-10 THEOREM. Por any function fsX — Y the graph of f is

closed in X X Y if and only if T(f3y) = £~1(y) for all y in Y.

Proofis Suppose that T(fijy) = £~1(y) for every y in Y and
let (xd) be a net which converges to x with the net (f(xd))
converging to y. Then x is in T(fiy) and consequently,
y = f(x). This means that the graph of f is closed.
Conversely, suppose that the graph of f ig closed.,
Since it is always true that f’l(y) C T(f1y), we need show
only that T(f3y) C f'l(y). for any y in Y. Por any x in
T(f1y) there exists a net (x,) converging to x such that the
net (f(xd)) converges to y. Since the graph is closed, we
have y = f(x) or x is in f'l(y) and consequently, T(fi3y) C
rly).
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2-11 THEOREM. The graph of a function fiX—Y is dense in

X XY if and only if C(f3;x) = Y for each x in X.

Proofs Suppose C(fix) = Y for each x in X. Por any (x,y)
in X XY let Ux)< Vy be a neighborhood of (x,y), where U,
is a neighborhood of x and Vy is a neighborhood of y. By
hypothesis, y is in C(fijx). So there exists a net (xd) con-
verging to x such that (f(xd)) converges to y. Since (xd)
is eventually in U  and (f(xd)) is eventually in Vy. it
follows that ((xd. f(xd))) is eventually in UX‘X»Vy. There-
fore the graph of f is dense in X X Y.

Conversely, suppose that the graph of f is dense in
X X Y. Por arbitrary x in X and y in Y it suffices to show
that y is in C(f3x). Por every neighborhood about (x,y)
there is a member (xd. f(xd)) of the graph of f in that
neighborhood. The net ((xy, f(x,))), 8o chosen, converges
to (x,y) and so (xd) converges to x and (f(xd)) converges to

y. This means that y is in C(fix).

Some relationships between cluster sets and partial
‘cluster sets are now investigated. If A4 is a certain family
of subsets of a space X, then the collection of all C,(fix)

such that A is inJ and x is in X is called the family of
all cluster sets on 4. If X itself is h\J‘, then the
collection contains all the cluster sets C(fj;x). Throughout,
it is understood that the function fi1X — Y is fixed.

2-12 REMARKS. Let C(X) denote the family of all non-
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degenerate, connected subsets of X and suppose that X is
such that C(X) is not empty. The conditions of “"cluster
sets on C(X) being connected” and of "cluster sets being
connected” are not related in general. The following is an

example where the cluster set of a function f at a point is

connected for every point in the domain of f, but for some

of the points the cluster sets on C(X) may not all be con-

nected.

Let f1R —>R be the function of Example 1-15, defined
by f(x) = sin 1/x, if x > 0, £(0) = 1 and f(x) = 0, if x ¢ 0.
It is easy to see that for each x in R, C(f3x) is connected.

However, [-1, 0] is in C(R) and CE']-- q (£30) = {0. l}which

is not a connected subset.

The following example shows that gll the cluster sets

on C(X) may be connected yet there exists an x in X such

that C(f3x) is not connected.

Let X be the following subset of the plane with the

relative usual topology. X = L/{Anun =0, 1, 2, -..},
where A, = {(x. y)e -1 ¢ x £ 1, y = 0}, and

A= {(xo y)o1/m Cix1 <1, y = /),
forn=1, 2, 3, *°°.
Let Y be the following subset of the plane with the relative
usual topology. Y = {(xo y)y |x| =1, y=1l/n, n=1, 2, "'}
v {(-1. o), (1, 0)} v {(0. 0)}. Define a function
f1X— Y by £(z) = (0, 0), for z in Ay f(z) = (-1, 1/n), if
z is in {(x. y)r -1 ¢ x £ -1/n, y = l/n},and £(z) = (1, 1/n),
if z is in {(x. y)r1/né¢x &1, ys= l/n}. This is a weakly
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connected function and we note further that C(X) consists of
all nondegenerate intervals. It is easy to see that for any
z in X and for any A in C(X), CA(faz) is either # or f(z)
and is thus connected. However, if z = (0, 0), then C(f;z)

= {(-1. 0), (0, 0), (1.0)}. which is not a connected set.

The following theorem shows that for a large class of

spaces the two notions are comparabdle.

2-13 THEOREM. Let X be a space in which all components are

open; in particular, X may be connected or locally connected.

If cluster sets on the family of all connected, oper sets

are all connected, then the cluster set of a function at a

point is connected for each point in X.

Proof: Each x in X is contained in some connected, open set
K which is taken to be the component containing x. It is
clear that CK(flx) c c(f3x). If y is in C(f3x), there exists
a net (xd) converging to x such that (f(xd)) converges to y
and since (xd) is eventually in K, y is in CK(f;x). There-
fore C, (fi1x) = C(f3x) and since C (fix) is connected, C(fix)

is connected.

2-14 THEOREM. Let f be a function from the reals to the

f
reals and denote by # the set of all non-degenerate inter-

vals in R which contain a certain fixed point x as a left

end point. Define A similarly for the same point x. If

> -
Ca(f1x) is connected for every Ain AUA, then C(fix) is
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connected.

Proofs Por any A in J4*. CA(f;x) C Cc(f3x) and for any A' in
A, Cpr(fsx) C C(f3x). Therefore, CA(fsx)U Cpr(f3x) C
c(f£sx). If y is in C(f3x), there exists a net (x4) converg-
ing to x such that (f(x,)) converges to y. There is a subnet
(xb) of (xd) such that (x,) converges to X from the right
(without loss of generality). Since (f(xb)) converges to Y,
it follows that y is in CA(fsx) and thus we have CA(fax)‘J
CA.(f;x) = C(f3x). The element f(x) is common to the two
connected terms on the left and thus C(f3x) is connected.

The first example in Remark 12 shows that the converse

of this theorem is not true.

The following theorem and its corollaries give some
sufficient conditions for cluster sets to be connected. The
results are extensions of Theorem 3.7 of Pervin and
Levine [19] in the sense that the function is more general
than the connected function and the topological spaces are
more general. Note that a real valued, weakly connected
function with a locally connected domain has connected

cluster sets.

2-15 DEPINITION. A function £f1X — Y is said to be gubdb-
continuous if whenever a net (xy) converges to some x in X,
then the net (f(xd)) has a subnet which converges to some
y in Y.

Subcontinuity of a function was defined by R.V. Puller 6},
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2-16 THEOREM. Let X be locally connected and let Y be a

normal space. If fi1X — Y is a function which is

(1) weakly connected (or in C'3). and

(ii) sudbcontinuous,

then C(f3x) is connected for every x in X.

Proofs Suppose that for some x, C(f3;x) is the disjoint
union of two non-empty sets A and B such that ANB=g=

A NB. Since C(f3x) is closed both A and B are closed and
by normality of Y there exist two disjoint open sets OA and
Op» containing A and B, respectively, whose closures are
also disjoint. If?? is the neighborhood system of x con-
sisting of connected, open sets, then C(fjx) = f\{f(—N-)oN is
in 72} and each f£(N) is connected. If f is weakly connected
it is immediate that for each N in 77, f£(N) ¢ OAU Ope

When f is in C~2 we use the following argument. If

£(N) C 0, U 0p, then f(N) C 0,V Og = 0, U 0p. But since
f(N) is connected, it must be contained in one and only one
of'b: or 0—B Ir £(N) 6_6;. then ?(Ti)ﬂOB = ¢ and this is
impossible since B C f(N) N 0p. Similarly, f(N) cannot be
contained in 0,. Thus £(N)E 0, v 0.
Por each N in 77 choose a point y(N) in £(N) N

(Y - (OAU 0g)) and an x(N) in N such that f£(x(N)) = y(N).
The net (x(N)) so obtained converges to x. By hypothesis
the net (f(x(N))) has a subnet which converges to some point
y in Y and since this subnet is in Y-(OA V 0g), which is a
closed set, it follows that y is in Y - (OAU OB)° The cor-

responding subnet of (x(N)) converges to x and thus y is in



30
c(f3x). This contradicts C(f3x)C 0, U Oy and thus we con-
clude that C(f3x) is connected.

The above theorem cannot be extended to the class of

functions C"+ as Example 1-19 shows.

2-17 COROLLARY. Let X be locally connected and Y a compact,

T,-space. If £1X — Y is a weakly connected function, or is

in 0'3. then C(f3;x) is connected for each x in X.

Proofs This follows readily since a compact, T,-space is

normal and f is subcontinuous since Y is compact.

With a few obvious modifications in the proof of
Theorem 2-16 we obtain the following results.

2-18 THEOREM. If X is a locally connected, locally compact

space and Y is a T,-space and if £3X — Y is a weakly con-

nected function (or is in class c-3) which takes compact

sets to compact sets, then C(f31x) is connected for each x in

X.

2-19 THEOREM. If X is a locally connected, first countable

space and Y is a normal, first countable space and if fi1X—Y

is a weakly connected function, or is in class C'j. and takes

compact sets to compact sets, then C(fix) is connected for

each x in X.

Proofs The fact that the set consisting of the elements of
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a convergent sequence and a limit point of the sequence is a

compact 82t is used.

The remainder of this chapter is devoted to investi-
gating what combination of conditions on a function in one
class make it a function which belongs to another defined
class. The classes of functions considered will be those
defined in Chapter 1 as well as the classes of continuous
functions, connectivity functions and functions with a
closed graph. In view of the nature of the domain spaces of
most of the examples given in Chapter 1 one would expect
that any extra conditions for a function from one class to
be in another would have to be those on either the range

space or on the function itself.

2-20 THEOREM. Let Y be a locally connected, regular space

and let £f1X — Y be a function in class .J ; i.e., £-1(K) D

£-1(K) for every connected subset K of Y. Then the graph of

f is closed in X X Y.

Proof:s By Remarks 1-9(g), £~1(K) is closed for every closed,
connected set K. By Theorem 2-10 it is sufficient to show
that T(fi1y) = tl(y) for every y in Y. Por any y in Y there
is a neighborhood system 2& of y consisting of closed, con-
nected sets N. Then T(fiy) = f\{;:r?;)uN is in ??y}a

N {rt is 1 = - L(N{NIN & s
{f (N)sN is nm} (NN is in ?Zy}) £~*(y) and
consequently the graph of f is closed.
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2-21 REMARK. In the above proof it was required only that
the inverse images of members of a certain neighborhood
system of a point be closed and not that the inverse image

of all closed, connected sets be closed.

2-22 EXAMPLE. The converse of the above theorem is not true.

Let f1R — R be the function defined by f(x) = 1/x, for
x> 0 and £(x) = -1, for x £ 0. The graph of f is closed

but f"l([l,OD)) = (0, 1] which is not closed. Therefore f
is not in J.

2-23 REMARKS. In Theorem 9 of [21], D.E. Sanderson shows
that if Y is semi-locally connected, then a function f1X —Y
is continuous if and only if f is in . « Recall that a space

is semi-locally connected at y if and only if y has a basis
of neighborhoods whose complements have finitely many
components. If the space is semi-locally connected at each
of its points, it is called gemi-locally connected.

Class 3 is a subclass of X and Example 1-20 shows that
Theorem 20 cannot be extended to class K . In [21], Theorenm
8, it is shown that a function in class C'“(\ X is in class
3 « Thus the following is true.

2-24 COROLLARY. If Y is locally connected, regular and

f1X — Y is in C'lh 5 » then the graph of f is closed in
X X Y.
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2-25 COROLLARY. Let Y be locally connected, regular and let

f1X—> Y be a function in K which is either

(i) connected,

(ii) peripherally continuous, or

(i1i) a connectivity function.

Then the graph of f is closed.

Proofs Each of these classes of functions belongs to the

class C'u. See Remarks 1-9(e) for the case of peripherally

continuous functions.

2.26 DEPINITION. A topological space is called rim-compact

if it is 'r2 and has a base for the open sets each member of
which has a compact boundary. It is known that a rim-

compact space is regular [4].

1t is well known that if Y is compact and f1X — Y is a
function with a closed graph, then f is continuous. The
following theorem shows that the restriction on Y may be
reduced somewhat if f is in addition weakly connected and X

is locally connected.

2-27 THEOREM. Let X be a locally connected space and Y a

rim-compact space. If fi1X — Y is a weakly connected func-

tion whose graph is closed, then f is continuous.

Proof: By Remarks 1-27, it is sufficient to show that
r'l(bdry 0) is closed for every open set O in Y whose bound-
ary is compact. If x is in f‘l(bdry 0)\\_f'1(b¢py 0), there
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exists a net (x,) in £~1(vdry 0) converging to x. The net
(f(xd)) is in bdry O which is compact and so there exists a
subnet (x,) of (xd) such that (f(x,)) converges to some
point y in the boundary of O. Since the graph of f is
closed, y = f(x), or x is in f'l(y) which is a subset of
f-l(bdry 0). Therefore, £~l(bdry 0) is closed. If
f-l(bdry 0) is void, a proof similar to that of Theorem 1-26

suffices.

2-28 EXAMPLE. 1f the condition that f is weakly connected

is omitted from the above theorem, then the remaining con-

ditions are not sufficient to assure continuity. Por

example, the function fiR — R defined by f(x) = 1/x, for
x %0 and f (0) = 0 has a closed graph, but is not weakly

connected. The range space is rim-compact.

2-29 COROLLARY. Let X and Y be locally connected, rim-

compact spaces. If f1X — Y is a one-to-one, onto function

such that both f and f'l are weakly connected and for con-

nected, open sets O in Y, r71@) > r~1(0), (or £(0) D £(0),

for any connected, open set O in X), then f is a homeomor-

phism.

Proofs By Theorem 20 and Remark 21 the graph of f, and con-
sequently of £-1 (the graph of -1, and consequently of f)

is closed. By Theorem 27 both f and r-1 are continuous.

The following theorem generalizes Theorem 3.8 of "19].
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The proof is analogous to that given in [19] ,» but is pre-

sented here for completeness.

2-30 THEOREM. If X is locally connected and Y is a compact,

T,-space, then a weakly connected function fiX —Y is con-

tinuous at x in X if and only if C(f3x) is either finite or

denumerable for each x in X.

Proofs By Corollary 17, C(fix) is connected and since it is
also closed it is a compact subset of Y. In G.T. Whyburn
[26]. p.16 it is shown that a compact, connected set is
never the union of a countable number (greater than 1) of
dis joint closed sets. Thus C(f3x) cannot be the union of a
countable number of points unless C(fi3x) = f(x). So for
each x in X, C(f3x) = f(x) and by Theorem 9 the graph of f is
closed. Since the range space is compact, f is continuous.
Conversely, if f is continuous, C(f3x) = f(x) for each

x and the condition is satisfied.

The following results give some conditions which ensure
that a function is connected. These theorems resulted from
an attempt to give some characterization to connected func-

tions for certain topological spaces.

2-31 THEOREM. Suppose that a function f1X — Y satisfies

the properties

(i) £ is subcontinuous,

(11) C(f3x) is connected for each x in X, and
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(iii) for each non-degenerate, connected subset C of X

and for each x in C, C(f3x) € £(C). Then f is a connected
function.

Proof: Suppose that for some non-degenerate, connected sub-
set C of X, £(C) is not connected but is the union of two
non-empty sets A and B such that ANB =g = ANB. If A =
r-1(A) N C and B; = £~1(B) N C, then C = AU By, A\ B) =4
and Al and B1 are non-empty sets. Since C is connected we
may, without loss of generality, pick a point x in-zlf\Bl.
Then f£(x) is in B and there is a net (xd) in A, which con-
verges to x. The net (f(x,)) is in A and by (1) there is a
subnet (f(xb)) of (f(x,)) which converges to some point y in
Y; in fact y is in A. Also, y is in C(fix) since (xb) con-
verges to x and (f(xb)) converges to y. By (iii) y is in
£(C) = AU B, and in particular, y is in A since A N\B = §.
In summary we have C(fi1x) C AU B, C(f1x)N A # ¢ and C(fix)
NB ¢# g. But, since A and B are separated, this contradicts
hypothesis (ii) and thus f(C) is connected.

2-32 COROLLARY. Let Y be a compact space and f1X — Y a

function such that C(f3x) is connected for each x in X and

C(f3x) C £(C) for each non-degenerate, connected subset C of

X and for each x in C. Then f is a connected function.

Proof:s Since Y is compact, (i) of the theorem is also
satisfied.

2-33 COROLLARY. Let Y be a compact, T,-space and X a locally
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connected space. If f1X — Y is a weakly connected function

(or in class c~3) and is such that c(f£3x) € £(C) for each

non-degenerate, connected subseti C of X and each x in C,

then £ is connected.

Proofs By Corollary 17, c(f3;x) is connected for each X in X.

2-34 COROLLARY. Let X be locally connected, locally compact

(first countable), and let Y be a T, (respectively, normal,

first countable, TZ) space. If f1X— Y is a weakly con-

nected function which takes compact sets to compact sets and

c(f£3x) € £(C) for each non-degenerate, connected subset C of

X and for each x in C, then f is a connected function.

Proofs By Theorem 18 (respectively, Theorem 19), c(fsx) is
connected for each x in X. Since f takes compact gsets to
compact sets (respectively, since a convergent sequence with
its 1imit point is a compact set), the first condition of the

theorem is satisfied.

2-35 REMARKS. (a) The conditions in Theorem 31 do not imply

that £ is a continuous function or even that £ is a connect-

ivity function. To show this, a modification of Example 1-16

suffices. Define a function g1l — I, (I = {x in R
0¢<x<¢1l) by g(x) =0, if x = w(x) and g(x) = w(x), other-
wise. The function g still takes on each value in I on each
interval, but the graph of g does not meet the diagonal y = X
and thus is not connected. However, Z(gix) = 1 = g(C) for

each interval C in I. Note also that the graph of g is not
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closed since it is dense in I X I.

(v) If the condition (iii), that c(gsx) € £(C) is

dropped, then the remaining conditions are not adequate to

assure that f is connected. Consider the function of

Example 1-15. The range of f is compact; thus (i) is sat-
isfied. Por each x ¥ 0, C(f3x) = f£(x) and C(£3;0) = [rl.i]l
thus (ii) is satisfied. However, let C be the interval
[-1, 6] . Since £(c) = {0, 1}, clearly, C(f30) ¢ £(C).

(c) 1f£ the second condition that C(f;x) be connected

for each x in X is dropped, then the remain;ggzconditions

may not be adequate for f to be connected. Consider the

function of Example 1-19. For each x in X, C(f3x) = {b. l}
and for each interval C in X, f(C) = {b. i}. Thus (iii) is
satisfied, but (ii) is not. It is clear that (i) is satis-
fied. Also, f is not a connected function.

(d) without (i), the remaining conditions are not

adequate to assure that f is connected. Consider the func-

tion £1R — R defined by f(x) = 1/x, if x #» 0 and £(0) = 0.
Since the graph of f is closed, for each x in X, C(fix) =
f(x) and conditions (ii) and (iii) are satisfied. 1If x, =
1/n (n =1, 2, 3, **°), then (xn) converges to zero, but
f(x,) = n for each n and no subsequence of (f(xn)) converges.
Thus (i) is not satisfied and it is clear that f is not a
connected function.

(e) The following result is proved in R.V. Fuller (6].
wLet f1X — Y be a function. A sufficient condition that b4

be continuous is that f have a closed graph and that f be
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subcontinuous. If Y is Hausdorff, the condition is also
necessary."”

If the graph of a function is closed, then the condi-
tions (ii) and (iii) of Theorem 31 are satisfied since for
each x,C(fix) = £(x). In 35(a), it is seen that the con-
verse is not true. We see then that weakening the condition
that £ have a closed graph, in Fuller's result, to the con-
ditions (ii) and (iii) does not give continuity but does

ensure connectedness of f.

QUESTION. Is there some sort of converse to Theorem 31?7 1f
f is connected, what two conditions from (i), (11) or (iii)
imply the third? Theorem 16 may be a result in that direc-

tion.

2-36 THEOREM. Let f£1X — Y be a function such that

(1) £ is subcontinuous, and

(11) Sy (f1x) is connected for each connected set K,

and for each x in K.

Then £ is in class C'3; i.e., £(K) is connected for each con-

nected subset K of X.

Proofs Let K be a connected subset of X and suppose that
T(K) = A UB, where A and B are not empty and ANB =g =
ANTB. Since this is a separation, there exist two open
sets OA and 0B containing A and B, respectively, such that
) N OAf\ Op = #. Now, 0, and O, must each intersect £(K)
also, since £(K)N O, = ¢ implies £(K) N0, = # and this is
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a contradiction. Similarly, f£(X)N Op ¥ g. Consequently, A
and B must each have a non-empty intersection with f(K), for
if £(K) N A =g, then £(K) N 0, = g. Similarly, f(K)N B #
g. Let Ay = KN £1(A) and B, = KN £71(B). Then K =

AILJ B, and LA B, = g. But K is connected so we may, with-
out loss of generality pick an x in A} N B). There is a

net (xd) in A, which converges to x and by (i) some subnet
(f(xb)) of (f(xd)) converges to some point y. Since f(xb)

is in A for each b, y i8 in A and since (xb) converges to Xx,
y is in Cy(f3x). Pinally, since CK(flx)f\ Apkg#

CK(f;x)/\ B and, by Theorem 8, CK(fIX)(: AUB = £(K), it
follows that A and B separate CK(fsx). This contradicts (ii)

and we conclude that f(X) is connected.

2-37 COROLLARY. Let Y be a compact space. If fi1X —Y is

" a function such that CK(fsx) is connected for each connected

set K and for each x in K, then f is in c-3.

2-38 REMARKS. In Bruckner, Ceder and Weiss [3], for an
extended, real valued function f on R, C*(f3x) is defined to
be the set of all extended reals y for which there exists a
sequence (xn) converging to x from the right such that
(r(xn)) converges to y. C-(f3x) is similarly defined. In
Theorem 31 of [3] it is shown that f is in c=3 if and only if
c*(f3x) and C™(fsx) are closed, connected sets for ecach x in
X.

Note that in our notation we may write CY(f;x, =
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: - = i
c[?'ap)(f;x) and C™(f1x) C(-ao, xj(f;:t). where f is defined
on the reals to the compact, Hausdorff space of extend-

ed reals. Thus f is in C~J if and only if CA(fux) is con-
nected for every interval A which contains x as an end point.
If the range space were not compact, this result would not
e true. Por example, the function fiR — R (non-extended
reals) defined by f(x) = 1/x, for x # 0 and f(x) = 0, for

x = 0 is not in class C~J but CA(f:x) = f(x) for each non-
degenerate interval which contains x as an end point.

It can be shown that CEx (f3x) and C

f
, ) (-, x]( 1x)
are connected for every x in X if and only if CA(f;x) is
connected for every connected subset A of R and for every x
in A. (See Theorem 14.) Theorem 36 is thus an extension of

part of Theorem 3.1 in [3].

The conditions of Theorem 36 do not imply that f is
connected. This is evident from the characterization of C'3

given in (3]. 1In the following it is shown that hypothesis

(i) is not essential for the conclusion of Theorem 3§.

2-39 EXAMPLE. Consider the function fiR — R as defined in
Example 1-18, which was shown to be in c=3. The range space
is not compact. Since the image of any bounded, non-
degenerate interval I is dense in R it is possible to choose
a sequence (xn) in 1 which converges to some point x in I
such that no subsequence of (f(xn)) converges. Thus [ is

not subcontinuous. To see that condition (ii) is satisfied
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consider C, (f3x), where K is a connected set and x is in K.
By Theorem & Cx(f;x) =N {r—(r-{_ﬁ_l(_)n N is in 72}. where 71 is
a system of neighborhoods of Xx. 1f each N is an open inter-
val, then each NN K is an interval and (NN K) = R since
the image of NN K is dense in R. Thus, the required part-

ial cluster sets are connected.

QUESTION. In Theorem 36, is there a weaker condition than
(1) which will suffice?
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CHAPTER THREE
SOME APPLICATIONS TO TOPOLOGICAL VECTOR SPACES

All topological vector spaces considered here, denoted
by E or P, will be Hausdorff (separated) and "topological
vector space” will be abbreviated to "t.v.s.”. Each t.v.s.
E will have as its scalar field either the reals or the com-
plex numbers with the usual topologies and if the scalar
field is not specified, then either field applies. A linear
operator on E to its scalar field is called a linear
functional.

A subset A of E is called balanced if tA c A for all
scalars t such that |t]| < 1. A subset A of E is called
absorbing if for each vector x in E there exists an €>0

such that tx is in A whenever t is a scalar such that |t|<E€.

The line segment Jjoining x and y is the set {tx + (1-t)y:
0 ¢t ¢ 1} and is denoted by [x, y]. A set is convex if and
only if it contains the line segment joining any two of its
points.

If A is a balanced set, then it contains the zero
element "0" and for any x in A the segment [0, x| =
{txu 0 $t¢ 1} is in A. Thus A = U{[o. x]s x is in A}.
Each segment [0. x] is arcwise connected, thus connected
and since 0 is in{0, x] for each x we conclude that A is a
connected subset of E. The closure of a balanced set is
balanced and if T«E — P is a linear operator, then both T
and T-1 take balanced sets to balanced sets.
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In a t.v.s. E there exists a system N ot neighborhoods
of 0 such that

(1) every V in 9N is absorbing,
(i1) every V in 72 is balanced, and
(i1i) for every V in N there exists a U in N such
that U + UC V.

In the sequel, any neighborhood system ‘72 of 0 will be
understood to have the above three properties. Now, for any
x in E the sets of the form V + x as V runs through ‘72 form
a system 72): of neighborhoods for the point x. Since the
operation of translation is a homeomorphism each V + x is

also connected. Thus any t.v.s. E is a locally connected
topological space.

3-1 THEOREM. Any linear operator T4E — P is a weakly

connected function.

Proofs Let 97 denote the neighborhood system of O. For
each V in 71 and each x in E, T(V) + T(x) = T(V + x) and is
connected. Since all sets of the form V + x for V in ‘TZ
form a local base at x for each x, it follows that T is a
locally connected function. By Theorem 1-10(b), T is a
weakly connected function.

3-2 THEOREM. A linear operator T4E — P 18 a conmctod(g)
function, where B = [V + xs V is in 7'2 » X is in g
Proofs Por each V in 72, V is balanced, and thus T(V) is

valanced and connected. Then T(V + x) = T(V + x) = T(V) + T(x)
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which is connected since the translation of a connected set

is connected.

3-3 THEOREM. A linear operator TsE —F is continuous if

and only if T’l(bdry U) is closed in E for each U of some

neighborhood system 772 of 0 in P.

Proofs If T is continuous, the result is immediate. To
prove the converse note that by Remarks 1-27 T is continuous

at 0 in E. Prom this, continuity of T on all of E follows.

3-4 REMARKS. The following is a comparison of the above
result with another continuity theorem for linear operators.
A subset A of a t.v.s. is called bounded if and only if
for each neighborhood U of O there is a real number t ) 0
such that A C tU. The following statement may be found in
Kelley and Namioka, (12), P. 45. ~A sufficient condition
that a linear function be continuous is that the image of
some neighborhood of 0 be bounded. This condition is also
necessary if the range space is pseudo-normable.” It
follows immediately from this that if T+E — P is a linear
operator and if the image of some neighborhood of 0 in E is
bounded, then T~l(bdry U) is closed in E for each U in M ot
some oylto-'7” of neighborhoods of 0 in P. The converse is
not true since there exist t.v.s.'s E which have no bounded
neighborhoods of 03 see (12], P. 55, Problem M. 1In such a
case the identity function i1E — E is continuous and linear

but no neighborhood of O has a dbounded image. In summary,
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Theorem 3 gives a necessary and gufficient condition for

continuity while the above stated condition is only suf-
ficient in general.

3-5 COROLLARY. A linear functional f on E is continuous if

and only if (Ref)~1(0) is closed in E, where 0 is the zero

of the reals and Ref denotes the real part of f.

Proof: Pirst note that (Ref)-1(0) is closed in E if and
only if (Ref)-1(t) is closed for each real t. If the scalar
field is the reals, then the result follows immediately
from Theorem 3. If the scalar field is the complex numbers,
then it is known that f is continuous if and only if its real
part, Re(f), is continuous. The imaginary part of f, Im(f),
can be expressed in terms of the real part by Im(f)(x) =
-Re(f(ix))s see A. Wilansky, [27), p. 42.

I1f ¢ is continuous, it is immediate that (Ref)'I(O) is

closed.

3-6 REMARKS. The above corollary, which is well known, is
a special case of Theorem 26 in "hapter 1 and depends on
the fact that linear operators are weakly connected func-
tions. It is not a consequence of the existing continuity
theorems in the literature for connected functions or their

existing generalizations.
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3-7 EXAMPLE. Let [ denote the set of all real sequences a =
(a,) such that 3 |a | < 0 and define a norm on £ by lajl =

sup |a_|. If f(a) = Ta , then £ is a linear, discontinuous,

real valued function on £. It is discontinuous since given

any positive integer n, let a = (ai). where a; =1 for ién

and a; = 0 for i » n. Then |jaj| = 1, f(a) = n and consequent-

ly £ is unbounded.

The following theorem shows that discontinuous linear

functionals are not even in class C'“.

3-8 THEOREM. A linear functional f on E is continuous if

and only if it belongs to class c‘“.

Proofs If f is continuous then f is connected and thus
belongs to class c-%. If £ is not continuous, then it is
known that f'l(o) is a aense, linear subspace of E and
because of linearity is a connected subset. If C = f'l(o).
we see that f(3)¢ £(C), since f # 0, and thus f is not

in C'“.

3-9 REMARK. By Theorem 1 of D.E. Sanderson(21] ; namely that
£ is in C-% if and only if components of f'l(M) are closed
if M is closed, we have the following extension of Theorem

3.1 of Pervin and Levine[19]. If £1X —»Y is a monotone

-

(pp}g}rinvortos are connected) function in class ”'u, then

point inverses are closed. This is not true in general for
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weakly connected or for connected(ig) functions as is seen
by the example of a non-continuous linear functional. Such
a function is weakly connected and connected(ia) for some B8

and point inverses are connected but not closed.

3-10 THEOREM. Let TiE — F be a linear operator. If either

(1) T is onto and in class C'u. or

(11) T is in 3,

then the graph of T is closed.

Proofs (i) Since T is in c¢-% the inverse image of a closed
set has closed components and, in particular, if the inverse
image of a closed set is connected, it is also closed. Let

72 ve a system of closed, balanced neighborhoods of 0 in

P = T(E). Por each M in M, t~1(M) is connected and closed

so NT"1(M) = Nrlm = 1( N\ M) = 771(0). Por any y in

P, ™l(M+y) = r=1(mM) + T'l(y) and is the inverse image of
a closed set. Since ™1l(M) + r1l(y) is the sum of two con-
nected sets and thus is itself connected it is also closed.
tus N TIm+y) = Nrlmey) =11 N M+ y)) =
T'l(y). The intersections were taken over all M in n. By
Theorem 2-10 the graph of T is closed in E X P.

(ii) Since P is a locally connectsd, regular space,
by Theorem 2-20, if T is in class A!. the graph of T is

closed.

3-11 THEOREM. A nearly continuous (see page viii)

linear operator in class c‘“ is continuous.
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Proofs Let TiE —) P be the linear operator and let TN ve a

neighborhood system of 0 in P consisting of closed, balanced

sets. Since T is nearly continuous, r=1(M) is a neighbor-
hood of 0 in E and equals 1 (m) by the same argument as in
part (i) of the above theorem. Therefore T is continuous

at 0 and thus continuous.

3-12 COROLLARY. Let E be a second category t.v.s. A linear

operator T+E —» P which belongs to class c-% is continuous.

Proofs Prom Kelley and Nanloka.[}i]. P. 97, T is nearly

continuous.

QUESTION. Is a connected linear operator continuous in

general?

3-13 REMARKS. If ME — P is a linear operator, then C(T;x)
= T(x) + C(T30) and C(Tstx) = tC(Tsx) for each x and for
each scalar t. The proofs are straightforward and depend
on continuity of vector addition and scalar multiplication.
Since c(T;0) = N {T(N) + N i in 7?} , where 7) is the
system of balanced neighborhoods of 0 in E, it follows that

this set is balanced and hence connected.

In the following, a continuity theorem is given for

seminorms.

j-14 DEFINITION. A finite, real valued function P on a t.v.s.
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E is called a seminorm if for all x and y in E and every
scalar ¢t,

(1) P(tx) = |t|P(x) and

(11) P(x + y) < P(x) + P(y).

Prom this it follows that P(0) = 0, P(x) 2 0 and
| P(x) - P(y)| ¢ P(x - y). This last inequality implies that
P is continuous if and only if P is continuous at 0 in E.
Denote {t in Rit 2 0} by R*.

Wwith every seminorm P on E there is associated a semi-
norm topology on E with respect to which the seminorm is
continuous and with respect to which E is a t.v.s. (not

necessarily Hausdorff).

3-15 THEOREM. Any seminorm PiE — R* is a weakly connected

function.

Proof: Let J1 denote the neighborhood system of 0 in E
consisting of balanced neighborhoods. Each U in N is also
valanced in the topology J of the seminorm P on E and thus
each U is J-connected. Since Pi1E —s R* is continuous with
respect to J, P(U) is connected in R*. Similarly, P(x + U)
is a connected set in R* for each x in E and U in ‘71. Thus
P is a locally connected function and by Theorem 1-10(b), P

is weakly connected.

3-16 THEOREM. A seminorm PI1E —»R* is continuous if and only

{f there exists a t > O such that P-1(t) does not contain

the zero of E.
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Proofs If P is continuous, then p-1(t) is closed for each t
in R* and if t > 0, then 0 is not in P~1(t).

To prove the converse, it is known that P is continuous
if and only if it is bounded on some open subset of E.
Under the conditions of the theorem, for some t >0 in rY
there exists a balanced neighborhood U of 0 in E such that
U M p-l(t) = g. sSince P(U) is connected, does not contain
t and does contain 0 it must be that P(U) is bounded above

by t. Thus P is a continuous function.

QUESTION. Does a connected seminorm have a closed graph?

3-17 EXAMPLE. A seminorm need not be a connected function.

Por any linear functional f on E the function P defined by
P(x) = |f(x)| for x in E is a seminorm. If f is not contin-
uous, then P is not connected, as the following argument
shows. Let C = P~1(0) = £-1(0). Then C is a non-closed,
connected, dense set in E and P(C) ¢ P_(E). Thus P is not in

C'“ and hence is not connected.

3-18 THEOREM. A seminorm P in class C'“. which is nearly

continuous at 0 in E, is continuous.

Proofs 1t is sufficient to show continuity of P at 0 in E.
For any neighborhood [0, t) of 0 in R* consider the neighbor-
hood [0, 1/2t). By near continuity P-}[0, 1/2t)) 18 a neigh-
borhood of O and is furthermore connected since p-1(0, 1/2t)
is convex. Since P is in C'“. P(P'l(rp. 1/2¢))C PP']-([O. 1/2t))
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c [0, 1/2¢) € [0, t). Thus P is continuous at 0 in E.

3-19 REMARKS. In M.R. Mehdi [17), it is shown that if E is
a second category t.v.s. and PsE — R* is a seminorm such
that {xiP(x) < 1} is a Baire set (S is a Baire set if S =
(G \\P) YV R, where G is open and both P and R are first
category sets), then P is continuous. Prom this it follows

that a seminorm in class C'u on a second category t.v.s. is

continuous. This is so since {qu(x) < 1} = P'l([p. 1]) is
a convex, and thus connected, inverse image of a closed set,

4

and by the property of class c™7, is closed. A closed set

is a Baire set and thus, P is continuous.

By the same arguments as above it is seen that a con-

nected seminorm is lower semi-continuous; i.e., p-}(t, o)) is

open for each t in R*. This is so since pP-1(t,00)) =
g - p~1(0, t)) and P-}{[0, t]) is closed.

Prom the known result that P is continuous if and only
‘if it is bounded on some open set, it is possible to
describe the cluster set of P at a point. If P is not con-
tinuous, then for any balanced neighborhood N of 0 in E,
P(N) is unbounded, connected and contains 0. Thus, P(N) = rR*
for each N in 77 and C(P;0) = R*. Similarly, C(Psx) contains
(P(x),) for each x in E.

3-20 DEPINITION. A real valued function f on a t.v.s. E is

called convex if
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f(x_a_y) < f(x) + f(z).

for every x and y in E.

3-21 THEOREM. 1f f is convex and U is a balanced neighbor-

hood of 0, then f(U) is connected.

Proofs We make use of the result of Theorem 4.5 of [3],
that a convex function defined on the real line is in ¢3
and thus in c-%. Pirst note that the restriction of f to
any line L = {tx + (1 - t)ys t is in R} is a convex function.
Now, U = U{[O. x]s x is in U} and f(U) = £( VU[o, x]) O

Uf([0, x]), where the unions are over all x in U. By the

result of [3] each m is connected and since each
such set also contains f(0), the union U{Mo x is in
U} is connected in R. Now if t is in V{f([0, x] )s x is in
IIT}.. then t is a limit point of U{t([o. x])s x is in U}
and thus a limit point of Um)a x is in U} which is
an interval. Thus t is in U{fml x is in U} and

consequently U{f( (0, x])s x is in U} = U{f( [0.-;]—5" x .ia'
in U}. This means that f(U) is connected.

3-22 REMARKS. (a) By methods similar to those above it can
be shown that £(U + x) is connected for each x in E and each
U in .

(b) Every seminorm as well as every additive furictional
( f(x + y) = £(x) + f(y) ) is a convex function. In M.R.
Mehdi [18), it is shown that a convex function which is
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bounded above on a non-empty open subset is continuous. The

following theorem results from this.

3-23 THEOREM. A convex function fiE — R is continuous if

and only if there is an interval I with f(0) { inf {tn t is
in I} and 0 is not in £71(I).

Proofs If f is continuous, then r~1([g. b)) is closed and

does not contain 0 if £(0) { a. If 0 is not in f'l(I).

there exists a connected neighborhood U of 0 such that

U f\f'l(I) = ¢ and T(U) is connected. Now, "f(0) is in
£(U)", »£(0) ¢ inf {ts t is in I}* and "£(U) N I = ¢g"
together imply that ;?ﬁ) is bounded above by each element of
I. Thus f(U) is bounded above and f is consequently con-

tinuous.

3-24 REMARKS. If a convex function ftE —? R is not contin-
uous at 0 in E, then, for each N in 72, £(N) is not bounded
above. Thus C(f30), which is (\{f?ﬁsl N is in 7?} contains
(f(0), @@ ). Similarly, C(f3x) is unbounded for each x in E.
Prom this it follows that if the graph of f is closed, f
must be continuous. See the Question posed before Example
17.

In P.B. Jones [11 , Theorem 1, it is stated that for the
case when f{ is an additive function on the real line if f is
discontinuous, then the graph of f is dense in the plane.
Theorem S5 of [11] indicates that a connected, convex function

need not be continuous.



55

CHAPTER FOUR
NONCONTINUOUS MULTIFUNCTIONS

Many of the theorems from Chapters one and two can be
extended to multifunctions. The proof of each theorem
stated here for multifunctions is identical to the proof of

the corresponding theorem for functions and hence is not

given.

A multifunction F from a topological space X to a top-
ological space Y is a sel valued relation taking each
element x in X to a nonempty subset F(x) of Y. For any sub-
set A of X, F(A) = \}{F(x)nx is in A} and, for any subset B
of Y, F1(B) = {x in XsF(x) N B # #}. P is upper semi-
continuous (u.s.c.) at x in X if and only if for each open
subset V of Y such that F(x) C V there is a neighborhood N
of x such that F(N\) C V. 1fF is u.s.c. at each x in X,
then P is said to be u.s.c. The graph of a multifunction
FiX — Y is {(x.y) in X X Yiy is in P(x)} and is denoted by
G(P). The mul tifunction Fonx —5 X X Y defined by Fc(x) =

{x] X P(x) is called the graph multifunction of F. A multi-

function P is called Boint connected (compact) if F(x) is

connected (compact) for each point x in X.

Just as for functions a multifunction P is called weakly
connected if P(K) is connected for every connected, open
set K. P is called connected if P(X) is connected for each

connected set K and is called a connectivity multifunction
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ir FG is connected. The class of connectivity multifunctions

is also denoted by C'1 and the class of connected multifunc-
tions by c"2. A multifunction P is said to be in class c-3
if and only if FK-) is connected for every connected set K
and P is in class C™% if and only if F(K) C F(K) for every
connected set K. In the case of functions, for n =1, 2, 3,
4, the inclusions C-{M = 1) € c™M hold and even though the
inclusions do not all hold in general for multifunctions it
is still convenient to use the C~" notation. Under certain
conditions some inclusions do hold for multifunctions. 1In
[R.T. Douglass, Connectivity multifunctions and the pseudo-
quotient topology, University of Kansas, Dissertation, 1967]
it is shown that c-lc c® and if P is a point connected,
point compact multifunction which is u.s.c., then F is in

c"l. The inclusion C'2C. c-3 clearly holds, but the inclu-

sion c~3 C c"“

does not hold as the multifunction Pi1l — I,
defined by P(x) = 0 for 0 ¢ x <1 and P(1) = I, shows.

Let {Sdad is in D] be a net of sets in X, where D is a
directed set. If the directed set is understood, the net
will be denoted by (S,) or (S(d)). Superior and inferior

limits are defined as follows.

mdsd-{x in X: for any open subset G of X about x and for
any d in D there exists a d' > d such that G NSy #

g}

lLude-é in X1 for any open set G about x there exists a ¢
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in D such that GN S,, # ¢ for all 4' > d}°

A net of sets is defined to be frequently (eventually)
in a set S just as a net of points is frequently (eventually)
in a set S.

Property H, as in Definition 1-22, and the notion of
peripheral P-normality are extended verbatim to multifunc-

tions.

The following theorem is an extension of Theorem 1-24
to multifunctions and becomes a generalization of Theorem B
of G.T. Whyburn [25] in the sense that the multifunction F
is weakly connected rather than connected and "Property H"
is more general than "peripheral P-normality".

4.1 THEOREM. If X is locally connected and P1X — Y is a

weakly connected function with Property H, then P is u.s.c.

The extension of Theorem 1-26 to multifunctions is
given below. This theorem generalizes Theorem 1 of R.E.
Smithson [22]. Purthermore, if the range space Y is regular,
and P is point compact, then this theorem becomes a corollary

of the above theorea.

4.2 THEOREM. 1f X is locally connected and FiX —Y is a

weakly connected function, then P is u.s.c. if and only if

F’l(bdry C) is closed for each open subset G of Y.
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Now, if Y, in the above theorem, is a regular space

and P is point compact, then F has the property H. To see
this, let K be a closed set in the complement of some point
image P(x). By regularity, for each pointy in P(x) there
exists a closed neighborhood Ny of y contained in Y - K. By
compactness of F(x) a finite number of such neighborhoods
Nyi. i =1, 2, ***, n cover F(x). If U is the union of this
finite cover, then bdry U separates F(x) and K. Purthermore,
x is not contained in F’l(bdry u).

4-3 REMARKS. The following is also true and the proof is
similar to that of Theorem 2.

If X is locally connected and if PiX — Y is a weakly

connected multifunction such that for each open set G about

P(x), 1 (bdry G) does not contain x, then F is u.8.c. at X.

The extension of Theorem 2-27 to multifunctions is as

follows.

4-4 THEOREM. Let X be locally connected and Y rim-compact.

1f PAaX — Y is a weakly connected multifunction which is

point compact and has a closed graph, then P is u.s.c.

Cluster sets and some of the related theorems in

Chapter 2 are now extended to mul tifunctions.

4-5 DEPINITION. Por any mul tifunction F1X — Y and for any
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x in X let C(Ps;x) be the set of all y in Y for which there

exists a net (xd) converging to x such that y is in

1Imd F(xd). This set is called the cluster set of F at x

and if no confusion arises it is called a cluster set.

If A is any subset of X, let CA(P;x) denote the set of
all y in Y for which there exists a net (xd) in A converging
to x such that y is in lim, F(xd). This set is called the

partial cluster set of F at x with respect to A.

4.6 REMARKS. The following results follow readily from the
definitions.

(a) Let X be a space in which all components are open.

I1f partial cluster sets with respect to connected sets are

connected, then the cluster sets are connected.

e —

(b) Por any subset K of X, C (Fix) is a subset of F(X)

for each x in X.

(¢) By a proof analogous to that of Theorem 2-4 it
follows that CK(Psx) = N{PFINNK) + N is in 72}. for any

gubset K of X and any X in X, where n represents a neighbor-

hood system of X.

4.7 DEPINITION. For any multifunction F1X — Y and for any
y in Y let T(Psy) be the set of all x in X for which there
exists a net (xd) converging to x such that y is in limd F(xd)-
By a proof analogous to the proof of Theorem 2-6 it can
———
be shown that T(Piy) = N{F (M) K is in ?7y}. where %y is

a neighborhood system of y.
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The following are extensions of Theorems 2-9 and 2-10.

4-8 THEOREM. FPor any multifunction F1X — Y, G(F) is closed

if and only if C(P3x) = F(x) for every x in X.

4-9 THEOREM. Por any multifunction Fi1X — Y, G(P) is closed

if and only if T(Fy) = F'l(y) for every y in Y.

4.10 DEPINITION. A multifunction Fi1X —Y is said to be

subcontinuous if whenever a net (xd) converges to some X in

X, then for any net (yd). with y, in F(xd). for each d,there

is a subnet which converges to some y in Y.

The following theorem is an extension to multifunctions
of Theorem 2-16.

4.1l THEOREM. Let X be locally connected and let Y be a

normal space. If Pi1X —Y ig a multifunction such that

(1) P is weakly connected (or in 0'3) and

(11) P is subcontinuous,

then C(Psx) is connected for each x in X.

4.12 COROLLARY. Let X be locally connected and let Y be a

compact, Hausdorff space. 1f P1X — Y is a weakly connected

multifunction (or is in c-3 )» then C(P;x) is connected for

each x in X.
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The extension of Theorem 2-30 to mul tifunctions is as

follows.

4-13 THEOREM. Let X be locally connected and let Y be

compact Hausdorff. A weakly connected, point closed multi-

function P1X — Y is ue.s.c. if and only if C(F3x) is the

union of a countable number of dis joint,closed sets one of

which is P(x).

The following is the extension of Theorem 2-20.

4-14 THEOREM. Let Y be a locally connected, regular space

and let PA/X — Y be a multifunction satisfying the property

that (k) O F~1(K) for every connected subset K of Y.

Then the graph of P is closed in X X Y.

Theorems 2-31 and 2-36 extend to multifunctions in the

following manner.

4.15 THEOREM. Suppose that a point connected mul tifunction

PsX — Y has the following properties.

(1) P is subcontinuous.
(11) C(Ps3x) is connected for each x in X.

(111) Por each nondegenerate, connected subset C of X

and for each x in C, C(Fix) C P(C).

Then P is a connected mul tifunction.
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4.16 THEOREM. Let PsX—)Y be a point connected multi-
function with the following properties.

(1) F is subcontinuous.

(11) C (P3x) is connected for each connected set K.

Then P(K) is connected for each connected set K3 i.e., F is
in c=3.
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