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f( problern in descrlblng 1mpact 1omzatlon 1s properly accountmg for the -

behav1or of the electromc contmuurn, the Jomzed,electrons must be allowed to lemv

,r
the mteractlon reglon Usmg the adxabatu: basxs &set of coupled 1ntegra1 CQuatlons

/-, .- LT

‘ v
“relevant for slbw atormc cdihsaons ;n one-e}ectron-two-nucleus syst‘ms 15 demc(l

_.more forma.lly than their prevmus derwﬁtaon, usmg different assumptions. These

i

equatlons allow the ionized probab:hty a.mphtude to escape from the interaction

region where it is represented bjr a set of loqahzed wave packets -

. ~

¢

N

: Addltxonal comphcatxons of the theory. arlse from the smguldr belmvmr

- of the ﬁonadlabatlc couphngs betWeen two contmuum states However, these are
. ¥ .

well behaved w1th1n the packet basxs provxded the couphng matrix elcménts have a

‘certain structure We derive this structure based upon a rxgorous extension of t}n-
v ,

g
Hellmann-Feynr_nan theorem to two adlabatlc contmuum states and use the theo-
' rem to'cornpute relevant couplgg mm%y element propertles and test assumptions
made in the derivation of eﬁ'ectwe packet state couphngs These effcctxve cou-

phngs can be used with the known bound bound and bound continuum couplings

to solve the close-coupled 1ntegral equatlons
o We construct exactAcontmuum states using the quantal moentu me-
b/) SN

thod, specifying radlal wave functlons in: terms of smooth slowly varying ampli-

tude and phase functxons 'Ifhese can be computed rapidly and stored extremely

-

eﬁicxentlyewhxch perrmts much rnpre rapxd and accurate regeneration of wave func-

tions for further calculatxons ThlS representatxon also offers important conceptual
. .' - D ’ | R b
advantages S ‘_f,; ;‘:.f '

A" >, : ',,‘ »

S
© We construct the wave packets by superpqsmg continuum states with

[
\t\ e

uniform amplitudes over packet' deths We show that packet states are localized

P ,' e T )




oot
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in 5 manner controlled by the'packet widths; and propose a scheqfxe to select them
such that the resulting backets’ are localized wifhin a’speéiﬁed interaction region.
~ The packets (and thP true contmuum states) are centred at the centre of chargev
~ of the nuclei, a point not prevmusl\ noted in the 11teran1.re i

Although the numencal work presented in this thesis is done on the

specific system g, the conceptual. and the analytmal work 1s generally valid for

any one-electron-two-nucleus collision system at low energies. -

) o
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b ' 1. INTRODUCTION

1.1 An overview
- Many f;\ndquental atomic collision phenomena a;: illustrated l;}' pro-
_cesses occurdﬁg iI';. one- and two-electro'n.systems:
(a) Elastic Scattering. ,
H* + H(1s) — H* + H(ls)
;‘ (b) Resonant charge transfer. e
HY + H(ls) — H(ls) + HY
{c) Direct or Exchange excitation.
H* + H(ls) — H* + H(2p)  (direct)] -
H* + H(1s) — H(2p) + H* (exchan%c)

1

Ht +H™ — H(n’i’) + H(nl) (neutralization)
(d) Ionization and Detachment.
| Ht + H(1ls) — HY* + H* + ¢ (i;)niz.atid-ll)
H* + H- — H™ + H(nl) + ¢ (detachment)
The work repo;ted in this thesis forms my contribution to & continu-
ing theorletical study of such prototype processes by Professor W.R.Thorson and
coworkers at'the University of Albé_rta. This thesis is concerned specifically with
- problems bearing on .the description of fionization; similar considerations apply
to detachrient. Although cc;mputations have been carried out here (;nly for the
proton-hydrogen atom system, the results obtained are generally applicable to any
one-electron-two-nucleus cbllisior; system.
| In the past two decades substantial progress has been made, both exper-
imentally and theoretically, in pnderstandingvthe'siﬁlpler processes listed above.

Most theoretical work has focussed on one-electron prototype systems because

0



both atomic and molecular electroqic basidstates can be computed accuratély.»
While ‘experim‘enta.l work on these systems s much more difficult than for sys- .
téms with nonreactive or inert 4toms, enough experimental informﬁtion has been
' ol;tajned to provide some crit'ical tests of developing th%oriz. Elz;s't'ic scatter-
ing processes were the earliest to be studied and today thesé ﬁe generally well
understood!. More recen.tly (since about 1977) cohside;able advance has also been
made in the study of bound-state inelastic processes, alth—o-ugh it is clear that re-
-liable‘ calculation of individual state excitation cross sections remains a difficult
p'roblem. -
At the present time interéét is turning to the study of ionization and.
detachment processes in which an unbound"electrqn is produced by the collision.
-Theoretical‘ descrii)tibnn of these processes is fundamentally more difficult than
for bound state excitations in which the excited electron remains localized in the
neighbourhood of one or both of the original(%bllisign partners. Up to the préseunt :
time, atomic éollision pro« esses have mos;ly been studied uéing the coupled stdées_
-method, which describes the behavior of the electron system by expansion in a
suitable finite set of “ L2 -type” (square-integrable) basis,‘ statcs.fHez;vy parﬁiqle
motéon may be. dfscribed quantum mechanically if necessary, but it is norm'ally .
adequate [2,3'] to use the classical frajectory method in‘which the nuclei move on
a preset collislion trajectory and the resulting time-dependent Schrodinger equa-
tion is to be solved for the electron system. Use gf a coupled-states expansion then
leads to a system of coupled first-order, differential equations for the probability
amplitudes associated with the basis states. Such equations necessarily conserve
probability' of finding the clcctron- within the subspace .spann;d by the basis set.
rd T

Basis states in coupled-state expansions are usually chosen to corfespond to spe-

cific states of the system at the beginning/end of collision (“channel stat"cs”),_._.

4
>
=
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although sometlmes additional basis states called pse&ﬁ)stat;a are mduded to

£,
rep,resul the behavior not well descrxbed by channel states ane. Tlus general
\

~ &

scheme is adequate for describing many bound-state excitation processcs but there

)"

are fundamental conce(tual problems for 1ts extension to processes such as loniza-

tior or detachment in which, the electronic continuum pl'ns a'major part. Elec-

.

tronic continuum states are not of L®-type, are.not localized spatially and form

.

a non-denumerably infinite set; an electron ejected to the continuum eventually
propagates away from the localized region of 'conﬁgurattion space (“tateraction re-
gion”) where initia] excitation from a bound state occurs. While it 1s possible to

3

“represent” electronic continuum states within & loc..ized region by expansion in

a suitably constructed set of L?*-type pseudostates, the subsequent escape of the.

unbound electron from this region cannot be fully described. In particular the
probability-consefving differential equations of conventional coupled states theory
are in error since they fail to take such escape intQ &ccount. This point wes cinpha:
sized by Reéding and Ford [4] in connection with the use of pseudostat. locally
representing the continuum in atomic states basis expansions for high energy col-

lisions; they replaced the conventional differential equations of the coupled states

method by a system of coupled integral equations in which effects of escape from

a continuum pseudostates basis are represented by decaying amplitudes and the

resulting formalism does not ~onserve probability within the close-coupled sub-

space. So far however most attempts to describe ionization using coupled states

methods have used pseudostates to “represent” the continuum in the conventional -

f.rmulation and do not take. escape effects into account {5-9). In some studies

".0.71] the continuum is formally “fully included”, and the mtegrations over con-

tithum energy which result are performed by numerical quadrature. However,

these approaches fail to appreciate that any quadrature involves sampling at a
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finite nurnbenr of points, equivalent to a truncation of the continut.n;) to a localized
regﬁion, and is therefore also in error by ignoring escape effects.

Further developments h the theory of cqllisional i;)nization or‘ detach-
ment must consider the problem posed by escape of unbound electrons from the

region spanned by a finite basis and the problem of continuum evolution outside

that region. The work presented in this thesis has a bearing on these issues.

1.2 Objectives of this work

Following an approach like that of Beﬁding and Ford [4], Professor Thor-
éon has developed a coupled states formulation for low to intermediate energy
collisions, based on an éxpansion in molecular (adiabatic) states [12]. Transitions
arise f‘rom “n.onadiabatic\ couplings”, 1.e. from distortion of the adiabatic states as
t.hey follow the moving nuclei. The continuurn‘ is “represénted” by a finite set of
packet states (of L2 -type) which span it locally, thhm a specified “interaction
rcglon and are constructed exphmtly from the exact adiabatic contxm\mm >ta€es
Integral equatio;ls similar to those of Reading and Ford were derived, in which
escape effects appear explicitiy and probability is not conserved. A,dditiénal com-
plications in the theory arisé %rom the singulanties in the nonadiabat‘:ic couplings
of .ﬁd’xabatic continuum states. - ~ s

An impoftant part of this research was a careful study of these integral
equations and their derivation as well as the background of exact continuum state
properties and relétions on which they are based. During this study it was real-

ized that several versions of the integral equations result from the assumptions or

approximations made ir. « = derivation. ¢

~

R N

In Chapter 2 the formally most Satisfactory version is derived. The

rest of the thesis is concerned with proofs required as the background to the
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new formulation and the computatidns involyed in its applicati~n to the proton-

..

hydrogen atom prototype system. 3
/ In Chapter 3 we construct a global “phase-amplitude™ representation of

exact adiabatic continuum states for HY. This form is conceptually and compu-
SERE. . . °
: tationally efficient in constructing packet states.

In Chapter 4 we construct packet states; examine their physical proper-
ties, and show how packet widths and energies may be determined from assump-
“>vtions about the size of the localized region within which the continuum is to be

\ ' ’
“represented”. A significant ‘property of the molecular continuum packet states

which has not been appreciated previously is their stronglocalizatjon at the centre

of charge (rather than on the nuclei). a ¢

-

(s}

In Chapter 5 we derive the formal properties of nonadiabatic coupling’

. among adiabatic continuﬁm states, with particular attention to the structure of
the singularities in these couplings when the coupled states are degenerate. The
“derivation is based on a rigorous extension of the Hellmann«Feynrriun theorem to
adiabatic ccmtinuﬁ;n states. The results provide a scheme for efficient computation

of these couplings.

In Chapter 6 we odtline computations of nonadiabitic coupling matrix

. e

elements and present representative results.

Appendices to the thesis contain auxiliary proofs or details of'comput:}-
tional methods. |
)

o The remainder of this introductory chapter presents a summary of basic
€ ¢

background theory of atomic collisions and leads up to the problems posed by
inclusion of the continuum. The discussion focusses mainly on low to intermediate

energies and problems limited to the one-electron prototype systems.



11% Basic Theoretical Background
3

1.3.1 Context of this work

This work is concerned with collisional jonization or detachment in bi-

~ nary ion/atom collisioné at low to intermediate energies, i.e.. for collisional en-
ergies in the centre-bf—magé (c.m.) system between 0.05 — 9.0 keV/amu. The
. classical trajectory method is used: the nuclei are assuméd to move along a pre-
determined classical trajéctofy R(t) for giQen c.m. collision energy E and impa‘ct
parameter b (see Fig. 1 - 1), and the evolution of the electronic system is deter-
mined by the resulting time—dependént Schrédinger equ: “ion. The elegtroﬁic wave
function is described by z:kcoupledls,tate expansion in suitably defined m)dlecular
(adiabatic) basis functions. Particular attention is focussed on problems posed by
the inclusion of electronic contiﬁuum states in such a formulation. This section

gives a brief discussion of background assumptions and their context of validity in
A :

atomic collision theory. . ¢

¢

-

1.3.2 Classical"l‘rajectory Formulation
A binary atomic collision involves two nucler A, B and one or more
electrons, all initially bound to A and/or B; the prototypes treated explicitly in this
thesis areao;le-elec.tron systems. Since the centre of mass motion can be factored
out, description of a collision 1s concerned only with relative motioﬁ. Many choices
" may be made for the relative coordinates [13]; for our purposes the most convenient
1s the moleculdr coordinates (ﬁ, '), where R is the position vector of B relative to
A and 7' is the electron coordinate vector in a space fixed reference frame centred
at the centre of mass of the nuclei. The essential problem in atomic collision/”

processes of all types is the transfer of energy, momentum etc. between the heavy

particle motion (here associated with 1-%) and the electronic degrees of freedom,
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- 7', In principle, a complete accotint of this dynamical interaction requires a fully
.* quantum mechanical treatmeﬂ.;\cﬁthe system: one must solve the time independent
. (} . .

’ )}Schrédinger equation

| H(7';R) ¥(7',R) = E¥(7', R) (1-1)

with the usual boundary conditions oF an incident plane wave for the initial state

plus outgoing scattered waves for final states. In molecular coordinates the total

Hamiltonian (for a one-électron-two-nucleus system) is

- ) - '
' SR s, ZaZpet i, =
—] —_— 2 “ALZD - _,[‘ _
HG\R) = -5 (93),, + 25+l ) (1-2)
—_
where
p=MaMp/(Ma+Mp) , Y
h, is the electronic HarniltoniAén, o \\\ ' )
w ) 2
3 ‘ N . - hz - -
=1, e . ’_:’ =1, o N
(7', B) = 5 (V&) ,+ VSR (1-3)

with molecular electronic.reduced mass m, given by

me =mo(Ma + Mp /(mo +Ma+ Mpg) ! A

and V(7' R) is the molecular electronic potential,

v By = -ZAs _Ze (1-4)
. : TA TB L

It is well understood today [2,3,13] that a fully quantum mechanifal .

efligion processes of thie types which concern us here is un-
i

necessary. The primary goal of the theory is the computation of probabilities/cross
~ ~ . . ~ ~

5 treatment of atomic ¢




: \
sections r elec “sgxc excitation, lonization, and the reaction of the heavy-particle

&

system to these actions is of relatively little interest. Furthermore, excitation of
. ) . .

the electron system by the heavy particles is an inefficient process at very low
4

energies. This feature of atomic collision theory is in shz\[xc:ntmst with the

' . . .o : N\ A
more complex d)gkdmxca.l problems involved in translation-rotatign or translation-

8

vibration energy transfer processes in molecular collisions; it arises from the great

. ¥ : v . :
.disparity in nuclear and electronic masses. The general consequence 1s that while

the electronic system must be treated quantum mechanically, the heavy particles

[ 30

often behave “classically”.

In the much simpler and physically appealing €#ssical trajectory for”

~ -,

mulation of atomic collision theory, the heavy particles are assumed to move o

some classical ‘tjrajectory I_%(t), with well-defined position and momentum at each
instant. Within this classical picture, the molecular electronic potential becomes
time-dependent; the electronic wave function T(7’,t) for the system must then

*

satisfy the time-dependent electronic Schrodinger equatior

—

b

=h(TRONTED - (1)

Excitation probabilities per collision of given impact parameter are integrated over
impact parameters to yield electronic excitation cross sections.
The utility and accuracy of the classical trajectory method was demon-

strated in ernpir.ical practice and by computational comparison with quantal cal-

 culations well before clear theoretical justification -was provided for its use It

is clear that one necessary criterion for the applicability of this description to an
inelastic collision is that it be applicable for corresponding elastic scattering behav-

ior. This is generally true if k> 1.0au. and 9> 1/kro (shadow scattering),

o

where k is the wave number fb*ldtive nuclear motion with energy E, 9 is the
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- angle of scattering of the nucle, and ro their distance of closest approach. For the

o

A Y

proton hydrogen atom system k>1.0au. if E>15x107% au. ‘k(: O.4eV) :

Depending on the process this means the classrcal trajectory method might be

' appllcable for all ertergies above thérmal energles in this systern this is the case

for elastlc scattering and resonant charge transfer processes at these low energies
in HY. ‘
More rigorous justification of the classical trajectory formulation must

rest upon its derivation from the fully quantum mechanlcal formulatlon of the

- problem Within the general coupled states scheme, thxs is done by expandmg

the total wave function ¥ in eq (1 - 1) in an appropriate set of electronic basis
states, {162)}5 and 31mphfy1ng the resultlng set of coupled second order dlfferentxal

equations for the heavy particle, wave functions {xn(R)}. The obJectwe of such

" simplification i§ reduction to the set of coupled fvirvst —order differential equations

which are obtained when the solution Y(7',t) to the time-dependent electronic
: ] I

Schrodinger equation (1 - 5) is expanded in the same set of basis states,

~

T(F’,w=‘;an(t)*exp(——;l?/dt'é,»(t">> B

"

The essent1al poxnt 1s that the “time” ¢ which appears in the classmal tra;ector:;} |

equations .is mfrelv a parametmc varlable connected in some average way to t
dynamical variable R of the quantum ‘rhechanical theory. Several wuthors have
used the eikonal approximation for this reduction (14]. Some other derlvatlons

[15,16,17] are based on semiclassical ‘approximations to the heavy particle wave
_ ) .

°fun'ctions {xa(R)}. Suchderivations gi.ve more s'peciﬁc conditions for the validity

.of the class1cal tra_]ectory formulatlon Though these depend on the particular
\.\ \

= approx;matrons. used n reductlon in'all cases th followmg general conchtlons

. L
)

must be met:.



e . o /

(a) JWKB condition for the nuclear motion: the d Broglie length

A = h/\/2u(E — e;,(R))| must be small compared to the distance

over which the elastic sc:-tering potentials e,(R) associated with the
' ’ \

electronic states \q}n(F',é)) change appreciably.

(b) The electronic mromentum -and ené sfer involved in excitations

must be small compared tcethe total\_ momentum and energy of the col-
lision. |
An important result which follows frem the semiclassical derivations, s
that the classical t‘ravjec:tlory equations- are valid rﬁore generally than the literal
classical picture which gives them intutive physical meaning [17]-. Although these
_equations appear to describe the time dependence of probabiiity amplitudes for
the electronic basis states in the cqupled states expansion (1 - 6) throughout the
- duration of a classical collision, they are in reality only a device for computing tlu.:
ﬁnel excitation probabilities; and the;vé.lues of these ‘a\mplitudes at intermediate
- “times” are not to be associated with actual fnez'lsﬁrables
: In order to solve the classical trajestory(equatlons one must define the
trajectory (t) which provides the parametnc connection hetween nuclear pogsi-
tior. ariable and the “time” t. "Since electronic transitions are probabilistic in
nature this can be done in at most an average sense. Early discussiong of the
classical trajectory method were very concerned with the problem of defining thi;
“trajectory” in an optimal waj;' [18,19]. However derivations [17] both show that
any reasonable averzige trajectory is adequate if the method is valid and that when
the results from different tr:xjectory choices vary widely the method as a whole
is also hkely to be inaccurate. The low energy limit cited above for the theoreti-

cal formulatlons we discuss here is that for which the classical trajectory method

becomes seriously in error for electronic excitations in proton-H-atom collisions.

11



In many ca{%\s, for collision energies E > 0.5..— 1.0 keV/amu , even
simpler 4ag)proximati(")ns may be used for the classical trajectoyry B(t). In the
impact parameter."%eth‘od, a straight line, constant velocity trajectory is used:
Kimura and Thor§})n (20] for example have shown that for collision energies in

the laboratory frame greater than 1.0 keV/amu the impact parameter method is

accurate. Sorge exceptions may occur in cases where collisions at very small impact

. parameters have a dominant eff~ct on the process of iﬁterest or when ZAZB is large
[2]; under these circuinstances it may be necessary to use Cc ulomb trajectories 18]
taking i.nto account the'deflection of the nuclei.

In general, for energies above about 0.05 — 0.1 keV'/amu one may safely

assume the validity of the classical trajectory method, and for somewhat higher

energies the trajectory may be simply defined.

1:3.3 “Slow” and “Fast” Collisions and Basis Sta‘cs -
In principle, the time-dependent Schrodinger equation (1 - 5) can be
solved by a coupled state expansion (1 - 6) in a complete set of electronic basis

“states {|@a(7"; R))} . Some limiting possibilities are the total sets of atomic elec-

tronic states of A or of B, or the set of molecular states of AB system. In practice

severely truncated basis sets are used, which are certainly far from complete and*

may in some cases even be partially redundant (as for example if atomic states
on both A and B are included in the basis). The use of physical insight in the
selection of basis states is therefore important. ’

With this in view a broad division of atomic collision processes may be
made according to the collision energy E. A collisian may be said to be fast if the
relative heavy particle velocity v is much greater than the Bohr orbit velocity v,

for a relevant electronic level, and slow if it is much less: In the one-electron case

ve = Z-/n au. where n is the principal quantum number and Z4 the nuclear



13
v

charge for the initial electronic state. The boundary between “slow” and “fast”

&

regimes (“intermeiliate energy”) occurs for E = QSJ\IZ.E'!/N-") keV | where M 1s
the nuclear reduced mass in amu. For H* + H(1s) collisions this is 12.5 kel

For fast collisions v > v, , since the collision time is much less than
"';"ihe orbital period for the electronic states of interest, it 1s logical to think Qf the

electron as being in an atomic_staté aséééiéted with o’né of the nuclel A, B, and to
. ‘regard the éime-depéndent interaction potential arising from the presence of the
‘. oth‘er collision partner as fhe source of excitations. This may be called the atomuc
state picture.of a collision; a truncated set of atomic orbitals centred on A and/or
B then forms an appropriate basis for a.coupled states expansion.

When on the other hand the collision speed is much lower than the
electrofi speedé which concern us we méy expect the electrons to adjust smoothly
to the time-varying potential V(?'; I_%(t)) . This idea is the basis of the Born-
Oppenheimer z;pproximation used in the theory of molecular bound states. In a
collision one can imagine the formation of a “quasimolecule” and the transitions to
be taking plaee among m'olecular electronic states. A set of molecular basis states
is then an appropriate basis set to use in a slow collision 3. These are the adiabatic
eigenfuncti(.)ns'of the electron’  Hamiltonian h, at each nuclear configuration, /\Kf

, 3 : )

=4

he(7'; B) |$a(7" R)) = en(R) |0a(7' R)) (1-17)

The eigenfunctions ¢, and their eigenvalues €,(R) depend parametrically on the
nuclear coordinate R.

The adi atic approximation forms the rationale for the use of molec-
-ular state expansions in slow atomic collisions. It can be shown rigorously {23]
that in a (hypothetical) infinitely slow collision.; v — 0, no transitionsfumoug

non-degenerate molecular states-could take place, and at the end of a collision the .
. 3



.system would remain in its initial molecular electronic states, withonly elastic
scattering (and possibly resonant charge exchange) occurning. At n;);i-zero" veloc-
ities, transit;ohs can occur among the adiabatic molecular states. due to. the fact

. that these undergo deformation ata finite rate. The couplings in this case are
called nonadiabatic couplings; they are proportional to the nuclear ve 4city, and
have a more significant effect as the states coupled becc. ie more 'pé/;r;y degen-
erate.” In a molecular system, the variation of the electronic energy eigenvalues
(potential curves) e,(R) with internuclear distance may be considerable and there
are specific regions where two or more states are degenerate or nearly degenerate;
under these circumstances there may be strong coupling of such states due to the
local breakdown of adiaba;ic behavior, even though the adiabatic approximation
is;enerally valid. This point is expresseg more precisely and practically in the

Madssey adiabatic criterion [24], which states that transitions are “improbable”

unless
Aedy
hv

<1

where Ae¢ is a (local) spacing of adiabatic e‘nefgy levels and dy an estirﬁaté of the
range over which such sbacing is m.ainfained (often taken to be 1 a.u.). Thisis just
arestatement of the uncertainty princi‘fﬂ;‘, since dg/v is just the time over‘ which the
two levels are vseparated by energy gap Ae; the probability of transitions between
adiabatic levels with this separation is small 'if the time period over which they
iuteract 1s much longer than h/Ae. The Massey criterion gives a more det;"xiled
appreciation of the nature of slow atomic. collision processes. Even when most
of the molecular states are well separated in energy ;md therefore behave adia-
batically for the‘rnost part, highly specific interactions among them.may lead

to substantial transition probabllltles for partlcular excitation processes, while

other events remain essentially improbable. For 1nstance the cross section for

<

14
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exciting the-2p atomic level in H* + H(1s) collisions at energies below about

5 keV is orders of magnitude larger than the correspondingASp cross section.
One may speak of such specific transitions as mediated by the local degeneracies
among the relevant electronic potential curves, and these .may be grouped in three
categories: (a) those mediated by deéeneracy in the united atom limit, R — 0; (b)
those mediatéd by asymptotic degeneracy, R — o0o; (c) those m@liated by “curve
crossings” at finite R-values. Many simple early treatments [25] of atomic collision
processes, especially for collision energies at 1 keV/amu or less, involve modelling
these localized degeneracies and their effects within-a basis spanned by a very
‘ew molecular states. It was recognized fairly early that the key to understanding
electronic excitations in the low energy regime lies in the adiabatjc potential curves

and the identification of the crucial mediating degeneracies among them. Thus the

"dominant 2p excitation process in Ht +H(1s) collisions at low energies is mediated

by the united atom degeneracy of the@pm, molecular state (which dissociates to
the 2p level of atomic hydrogen) with the 2pa, molecular state which cogresponds
asymptotically to the initial state level H(1s). One ma‘yi-therefore use the energy
correlation diagram (which gives the curves en(R) as functiv« of internuclear
distance R) to select dommant events in a slow collision.- As the collision energy.
mc;‘eases more and more states part1c1pate in significant nonadmbdtxc coupling”,
,unml in the intermediate energy regime the processes which play a significant role
overall are less specific, and the justification for a molecular state expansion 1s less
evident. We note howéver that the domain of “slow” collision theory still govers
most of the energy range of interest for a‘fgreat deal of practical atomic physics

-

and essentlally all of chemistry above thermal energies. We have taken the value
had /..

.6 — 9 keV/amu as the upper limit for gractlcal/utxhty of the molecular state

L4

expansion approach, based on the value 12 5 keV from the HY system cited

above 1.



Impact ionization (in the-one-electron s;}'stefns) is a non-specific pro-
cess and presen£ evidence [20,26] suggests a “Jadder climbing” meéﬁanism, Le.
excitations from low lying bound states to higher bound states and then to the
coﬁtinuum. Continuum states as well as highlying Rydberg states are very closely

spaced in energy; hence they‘ cannot behave nearly adiabatically. A moment’s

thought reveals the physical reason for the inadequacy of an adiabatic description

~

of these states. Y
An ionized eiectron is in an aperiodic orbit and eventually goes to “infin-
ity”. On the one hand it is not clear whether a Bora-Oppent.eimer type argﬁment
is applicable to such an aperiodic continuum efect%:_':n ('.1 the other hand elec-
tromagnetic disturbances take a finite time to travellfrom one poiﬁt to another;
thce a distant electron cannot know the nuclear pc;sitiox; instantaneouslj} ;to ad-
just smoothly to its variations. T‘hough bound, an electron in éhighlying‘ Rydberg
state can also move out to véry largé distances. Also, because of the long_CcJ)ulomb
tail of the potentié.f, such an electron is slow (v, ~ 0) in most ofA its allowed‘region
in physical s}a’a_ce; hence it too cannot behave adiabatically. ‘ ‘
_This physical analysis suggests that a near adiabgitic description over all
physical space is inappropriate for continuum and highlying Rydberg electrotis.

However in the interaction region, where their velocities are high, they may behave

“adiabatically”.

4
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. 4 Molecular States expansions and their Characteristics

1.4.1 Synopsi¢
A rnolecula.r state expansion was first proposed and developed by Mott
and Massey [27] to descrlbe charge transfer and excitation in slow atomic collmonb

In-this section we describe and criticize thexr formulation, usually known as the

-

perturbed stationary states (PSS) method; a classical trajectory description 1s

used.
(o]

1.4.92 The PSS formulation

S

We expand T(7',t) in a basis set of bound molecular orbitals.

n

T(r t)zZan(b t)ezp(—g/ dt’ e{R(t )) \(bnv" ]—é) | (1-3)

where b is the impact parameter.

ot

Substituting equation (1 - 8) in equation (1 - 5) and multiplying on the

. left by (¢;| one obtains coupled equations for the probability amplitudes {a,(t]}.

. Oaj(b;t L= = | [ ! ! !
- zh-a%‘——k;“v-Pm(R(t»an(b;t)exp<-%/ dt (exmtn—fvw(t?)))
5 -9

where v = dR( )/dt and

—

Bin(R(1)) = (8,(F's R()] = ith (VR)s|6n(F"s R(2)) (1 - 10)
)

) The initial condition on equation (1 - 9)is a,(b;t — —00) =47 where
|#:) is the initial molecular states of the system.
% There is a one-to-one correspondencé”between bound molecular states

and the bound atomic states of A and B ° [28]; as R — oo molecular states

become atomiic states. Therefore a;(b;t — +00) is interpreted as a charge transfer

‘\
a4,

Y}



or excitation probability amplitude depending on whether the electron has changed
' ¢

the nucleus to which it was bound, or not.

The transitions among molecular states are caused by the nonadiabatic

couplings 13]n . In general’

-~

§-Bjn = vfPR 407 P) 409 P? (1 %)

where (R,J,p) are spherical poiar. coordinates of R (with respect to space

ﬁxéd axc‘s)' and ' - u' A 7
v E
= (¢;1 — ik (8/0R)z: [on) (1-12q)
9 i " : ’ N O
Pl = = (8,1 = ih(0/00); 6a) (1~12), 43
o 1 B N £
P! = Y (0] —ih (0] 0¢)z/ |¢>n) s (1= 1._c) o
R sin R '.4!'
The nuclei move classically in a plane taken to be the zz plane hepce o *g“
v? =0 and P‘-” does not coneern us. B . Lo '“'. - RSt
Molecular basis functions are “locked ir” to the mterQuclcar axis WmCh . .
rotates as the collision progresses. This rotation of the molecular Ofbltalo leadb to gt
R LI
6 po : : R
the angular coupling,® P . - : e
Radial coupling, PJ[,{, , represents transitior:s due ' “deformation”. of
the molecular orbitals associated with the changes in R 7. . AT
1.4.3 Defects of PSS theory and ETF corrections ) ”Q a '
& 2"
An electron 1 o a bound atomic state moves thh the nucleus; hence theﬁ “%?V;..
AN ST

initial and final conditions of (1 - 9) must be expressed in terms of moving atomic

orbitals. Molecular basis functions do not contain any information abdut the

' 1’
° ay, 0t

nuclear motion and become static (with respect to the molecular reference orxgm)
atomic orbitals at ¢t — oo ; the interpretation of a,(b;t — +00) as the

probability amplitude of a particular channel state breaks down.
. LS
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Formally this is not a problem if one uses the total adiabatic set (in-

cluding the continuum) and takes the projection onto moving atomic states at ¥

t — zoc. In practice we always truncate the basis and would like to retain the

one-to-one correspondence.

The lack of translational information in the molecular basis manifests

itself in the PSS theory by giving rise to a number of physically unacceptable
properties of P(R(t)) . .

(a) On physical grounds, there cannot be any electronic transitions when

the atoms are far apart; we expect P tovanishas R— oo . On the

~ - contrary, the radial coupiings between some states (eg. lso, — 2s0, in
Hi) tend to ﬁon—vanishing constants {29].

(b) Ionization from a low-lying bound state involves a large momenturﬁ and
energy transfer, and one expects such transitions to occur when the two
nuclei are close to each other. It has been observed [30] that the bound-
continuum couplings exteﬁd to unrealistically large R (R ~ 50 @.u..).

(¢) In (1 - 10) one must perform the operation Vi keeping 7' fixed (in a
( space fixed reference frame). The result of an operation depends on
the molecular reference origin. This makes the calculated cross sections
origin-dependent {13,31]. The results of a correctiﬁ;eory must be invari-
ant to a Galilean transformation of refererice frame. In our work we use

the Geometric Centre (GC) as the conventional reference origin.

°t

.~ Bates and McCarroll [32] were the first to propose the use of travelling

" . molecular st s to overcome the difficulties in PSS theory. They were constructed

by muI.tiply‘ing ¢ f‘;,ﬁ) by a plane wave factor Fin(7'; R) which represefited the

-{ e

5 7 K
movgment of the el f?pon with the nucleus . Conventionally F, is called the

‘Q-,,ele;c;);tron translational factor (%TF) or momentum transfer factor.

1




Later Schneiderman and Russek [33], and Thorson and coworkers (19,34]
refined these 1deas and in 1978 Thorson and Delos [31] reformulated the PSS theory
including ETF’s. What is important for thxs thesis work is the major result of
Thorson and Delos: “ The corrected PSS theory can be obtained by replacing P~
in PSS theory by P+A where A i is a correction rnatrlx depending en the ETF”.

At each R the adiabatic basxs undergoes disgartion and rotation which
causes electronic transitions. At the same time they ungdergo a certain “simple
displacement” which cannot cause transitions. The role of A is to identify the
effects of this translation in P and to subtract it, leaving the “deformation” effects.

(A more complete technical discussion of Ais given in Chapter 5)

]

1.5 Problem of Including Electronic Continuum

1.5.1 Synopsis \ ) ' -

" The electronic continuum must | - included in a theory of ionization and
detachment. Mor?over the continuum can play an important role even when such
channels are unimportant. For example Gallaher and Wilets [35] and Cheshire
et al. [36] noted the importance of the hydrogenic continuum in c?arge transfer
in H* + H(ls) collisions. The important point is that a small set of atomic
bound states (centrea on target and projectile) is not flexible enough to represent
the dynamical changes i© the wave function when the nuclei are close to each
other. dne may categorize such effects of the continuum as virtual (or invdirect)
in contrast to the direct effects such as ionization and detachment. The virtual
effects of the atomic continuum become increasingly important with decreasing -
impact parameter and relative nuclear velocity because of the increasing molecular
umfe of the collision [37].

Direct inclusion of the continuum in the coupled states expansion leaas &

to a number of difficulties.
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(a) In thel. case of atomic expansions, continua of A and B, together with the
bound states, form an overcomplete basis.
(b) The resulting coupled states equations are nondepumerably infinite.
a (c) In contrast to couplir}gs of bound ‘states, coupling between continuum
> statescan! ingular.

Therefore one has to resort to spvecial techniques in hﬂlldhl‘lg the l?ﬁi‘(‘.tb‘
of the continuﬁrn in an atomic collision. It is convenient to group these techmques,
within the classical trajectory formulation, under three headings.

(1) Space-Time discretizat{on‘{ech’niques'.
(2) Explici} techniques.
(3) LZ-discretization techniques.

‘ \
. . . i) . . .
This thesis research involves an L~ -discretization of the molecular con-

uum. A very brief survey of the first and second type techniques are given for
. @ '

¢
";‘ﬁ:

</

the reader to appreciate some of the diffEeylties in handling the continuum. The

~..emphasis will be on one-electron systems, in particular H* + H(1s) . =~
r ,'}\,

1.5.2 Spaée-time discretization techniques

These are techniques where the time vdependeng Schrodinger equation 1s
m?erically i'ntegra'ted on a finite space-time grid; they can be viewed as alter-
‘.natives to coupled states techniques. Such a method was originally proposed by
Weiner and coworkers '[38]. There are very few publiéhe‘d application to atomic
collisions, some of which are listed in reference 39. The basic philosophy of the
method can be understood by following the calculation of Griin et al. (39a] on the

H* + H(1s) system.

The wave function is expanded in a truncated set of magnetic substates,

4
-~

T(75t)= Y fmlpr2, ) ezp(imé)

m=0

A4

~



where (p,z,t) are the cyluldnca.l polar coordmates of ¥ thh z along the inter-
nuclear axis (m a molecular ﬁxé“i reference fra.rne) Substitution in (1 --3) leads to
a finite set of coupled purttal Jﬂsrentzfl’equatzons for fm which are numerlcally
integrated on a space- tlme‘“gx;:;i u'é’hg a finite difference technique. Approprlate
boundary cond‘mons on fm are unp_osed at the surface of the space grid. The
resulting wave function can 'the.n’ be projected on to the final scattering states.’

‘Space-time discretizati(;n techniques caxl account for the virtdqa.’"ffects of
the continuum. However a serious difﬁculty arises in tlua choice of prope l)uu:Hary
conditions for fn; Grin et al.- have imposed fm=0. Thi.s prevents truly
.unized. electrons from escaping the‘region of space spanned by the grid~~"They
have suggestedbusing a complex potential to make the boundary trakeparent to
the ionized electron.

v

To overcome the same problem in solving a 1-dimensional Schrédinger
equation Horbatsch [40] has used t'lle coordinate transformation r = tanf so
that the infinite coordinate r is mapped onto a finite variable # This enables the
discretization of the gptal physical space. Application— of -hig ide~ to a realistic
atomic collision is y’ef to be seen. |

| Disregarding the above problem of fluz trapping, (and using a different

method than prcljectihg on to the final scattering states) Terlecki et al. {39b] have

calculated the total ionization cross section in HY + H(ls) . At present one

'cannot%calculate differential ionization cross sections.
'Qs}( o

»

L\ <, Though not very a.Kppea.lmg physically, these techmques are very general

and are/ applxcable to both fast and slow collisions. An advantage over basis set
¥ . ’ )
expansion methods is that there is no problem of selecting an optimal asis an-

appr({dbriate ETFs. The price one pays for this advantage is the enormous

s . .
of computer time required.

Q
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1.5.3 Explicit techniques . |

| Here the ful; continuum is expliéitly inéluded in the expansion basis but
with some drastic assun'xp’fions on the Qatu;e of the coupling_ matrix elements and /
or expansion cogfﬁciehts to avoid the difﬁcultie; {b) and (c) 'me‘ntioned in section
(1-5-1). Examples of such techniques are the First Born dpproximation (1},
Thorson and Levy’s theory ;of impact” ionization [41] and th;z d;vnamical complex
potential method of Delos and coworkers [42]. The physical assumptioﬁs and the
techﬁolpgy are very different from one theory to another. A common feature of all
these techﬁ.iques is the ncgle;t of coupling among continuumr states, so that these

are not really closé-coupling methods. "

3

Because of the explicit inclusion of the true continuum these techniques
are capable of ac.counting for the dir>ect.effects of the éontimium: in particular
they can, in principle, give differential iér;ization (detéclunenf)“cr()ss sections ar»lvd
the c-luéstion of ﬂu>; trapping is absent. However the nature of the assumptions
seriously limits their ‘applﬁicability to very specific systems.

1.54 L -discretiiatidn technidu.es

One may be tempted to avoid the “problémjcausing” contirmur.n by re-

placing the atomic or ~g.lolecular’bas‘is by an entirely discrete, Lz\lty'pe basis.

Galaher and Wilets [35] used a truncated set of Sturmian functions '°,

¥

{Sni(€;1) Yim(8,4)} , centred on each nucleus; to describe low to medium energy

! 3

H* + H(1s) collisions.
A serious problem with such a non-physical basis is that the expansion

coefficients do not approach definite limits as t — oo, but oscillate. Asymptotié
)

channel states cannot be reconstructed from a finite set of Sturmians; hence the

Nyl

9
resulting transition arr%)litudes also oscillate indefinitely '},

A



Cheshire et al. [36]‘ took the point of .tr(ie\w that it is more important to
represent the physical wave function as closely as possible than to satisfy the formal
completeness ‘of the non — truncated basis. To avoid poor asymptotic ‘behavio‘r
they included some gnmodiﬁed h&drogeni_csbound states for whichA they wished
to calculate cross sections. To this set they'added some additional functions,

orthogonal to those already present, chosen to overlap well with the lower bound

states of He™ (umted atom) These addltlonal states were assumed to repfresent

the ihydrogemc contlnuu'm (and account for the virtual effects) sigee it was known

that He states have a 'laﬁ‘ge overlap w1th }t ' L. ' |
Shakeshaft [5 43] further developed the Sturrman functlon method and

calculated the total lonlzatxon cross section (8] in HT + H(1s) collisions. The

truncated (Sturmxan) basis was chosen .. such a way that when the atomic Hamil-
tonian is diagonnalizec'l, thelresulting egenvalues (almost) coincide with the most
important bound states and overlap the low enezgy part of the atomic continuum.
The positive energy states, called pseudostalcs, were assumed:to “represent” the
(lower energy part of the) continuum in a “discretized” mapner which is the basis

(8]

of all tradltlonal pseudostates methods The probablhty that the electron is found

H

in pseudostates at t'o +00 was 1nterpreted as 1omzat1on probability !*
| Instead of Sturmian functlons one can use any rea.sonable H11bert basis,

e.g. Slater- type functions [9], or harmonic oscxllator functions [44], to construct
pseudostates The key requirement is that they have hlgh den51ty in the physzcally
zmportant region.

Several attempts have been made to use the untted atom bound states
z;s pseudostates. Fritsch and Lin [45) placed them on atomie nuclei. Anderson
et al. [46] have suggested i%acing them on the centre of charge. Coupled states
‘ c‘a.lcuvl'a'tions with such “triple centre” hases“ have been performed for H* +H(1s)

collisions by Lin etal. [47). o . \



. So far we have discussed the discretization of the atomic conti'nuum.
Very little work has been done on the discretizqtion of the molecular continuum
~in collisions. In their work on Penning ionization [10} and‘impa.(.:t‘ ionization [11]
Micha and coworkers have used molecular wa\'re packets as pscudostates. They are
obtained by integrating the true molecular continuum states, with a weight fune-
_tion, over energy. The wave packets are of 'L?-type and (autoinz‘ltically) orthog-
onal to all the 1. nlecular bound states. In this thesis work we use such adiabatic
' packet states and show (Chapter"’4) that they have high density in the physically
imﬁqrtant region (around. the centre of charge of the nucllei) for’ion'ization in slow
collisions,
Liidde and Dreizler [48] have re;placed the total molcm.xlzu' basis set by
a non-physi*é%;l “molecular” Basis; the wave function in H* + H(1s) céllisious
is expanded in a Hylléraas type basis 13 (they have calculated only bound-bound

transition cross sections).

[}
[S1]

. . . {
At present there appear to be no strict guidelin-s to choose an 1dequate

&

set of pseudostates. Atomic pseudostates are chosen on the general criterion that
‘they should have high density in an “interaction region” (which is not defined)
and low electronic energies. In the case of wave packets Micha et al. {11} have

suggested chahging the weight function until convergence#of the cross sections) is

established, but such’a procedure is not physically very illuminating.

A conventional coupled states calculation, with pseudostates represent- .

ing the continuum, always gives the ionization probability as a discrete function
in ejected electron energy. However one may use various projection techniques (9]
to deduce the differential cross section. ‘

By definition an L -function cannot satisfy the usual scattering bound-

ary condition; hence even with a complete L2 -basis' one may not be able to



represent the continuum fully. This formal deficiency leads to a physically unac-
ceptable featur- of the conventional coupled states calculations; ionized electrons
are trapped within the region of space where thie pseudostates ‘are “concentrated”.
Such calculations {with few pseudostates) are bound to fail when ionization is a
significant open channel.

Thoug}; the physical meaning of a positive energy L°-eigenstate of a
Hamiltonian is somewhat unclear it is kr;owfl that good pseudostates closely re-

‘semble the continuum states in a limited region of physical space [49,50];

16;(F") = wj [ég (7)) for small ||

where |¢;) and |&>(j) are the pseudostate ami the continuum state of ' e same en-
ergy respectively. On physical grounds, the electronic transitions must take place
within*the interaction regipn. Hence one can certainly represent ‘he continuum
locally, in an atomic colli'sion, with L2 -pseudostates.

A formal analysis o1 coupled states expansion meEhods, as was done by
Readinvg and>Ford (4], reveals a way out of the dilemma of the L>-representation
of the continuum. |

Consider a fast atomic coliision where the charge. exc‘hange is negligible.
The electronic transitions, including ionization, take place in the physical space

immediately surrounding the target (&) and a target centred basis (including pseu-

dostates) is sufficient to “describe” the collisic... Denote the projection operator

onto this finite Hilbert basis, {:Z),,Im(f"/"}, by P. Then we have
] r =/ pt - -/

TP(TAat) = PI(TAvt) = Z Cnlm(t) ¢n1m(rA) (1- 13)
™ ﬂlm '

-3
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e ‘ \
Note that we have not expanded thie true wave function T in the lixnite"dd_'rbﬁsw and
T p describes it only within the interaction region. T satisfids °’
L OY(FLLt .
ih 'a—t(—A—) = [Ha+V(FLO]TELD © 0 (1-14)
d
with
R = Zar
v Hy=_-—v2 24
) 2my A 4
.' " " & \:";; ‘

N S .

Then the correct equatlon for the xoupled states expansion, Tp 18 s ob-

1

tained by prOJectmg (1 - 14) onto the partxcular b3515 35--:
o e o ]
| 1hat'P =PH,+V|T @

3

i

Note that the Hamiltonian (and V) operates on the total wave fuuctmn and not

.

on Tp In a conventlona.l coupled states calculatlon H1 and v are r(‘pld( ed by
7 . °

their representatwes in the hm,xted basis.

"'T: .»-_ . /
o { -
He— PHLP . 0 (1-15a)
I © L Vo PVP . © (1-15b)
tooBtain . ’ _
’ n 9L _p PH,P+PVP|Tp (1 - 16)

h ot

(In dériving (1-16) we have used the idempotency of P) _

It 1s reasonable to assume that the electronic tra.nsmons take place whcn

nucleus B is close to A; hence the perturbmg potemlal V(rA, ) may be assumed

B



~to be “localized” within the interaction region. Since this region is adequately
described by {'éﬁnlm}, (1- 15b)’is reasonable. |
On the other hand H4 includes the electronic kinetic energy operatc:
which is non - local and capnot be fully represented with our ba#is. Hence (1 - 15a)
is not valid and leads to non-physical flux trapping which concerns us here.
Reading and Ford avoided (1 - 15a) and derived coupled equations for

Caim(t) using the equation

JdTp
ot

s ih :P[HA+PV'P]T . -1

Here we only quote their results.

.o~ tejt ~
Crirm(t) = CIP<— ;1 > Surtrm, 3im

t : o
i f 1. ’ sin (A"lp(tl — t)/?,h)
'EZ/‘” {eIP<EE"I"(t*'t)> (Do (t = t)/21) (1-18)

nim

-

o GurnlV 7 lbuim) o)
Here Ay 1s zérd if by is a bound state and a positive constant if it is a
pseudostate and &jlm represents the initial atomic state.

Equation (1 - 18)._diff(?{r_s from the conventional coupled states equations
by the factor szn(x)/x whxch?saot equal to unity for pseudosvt‘qtﬁeszv_ it- rapidly
decays as t' —t — co. Also (&n/;:m/|V(FA,t')|<}"1m) vanishes as t;;-»oo keeping

A e
~t' —t finite. Hence for pseudostates IC,,/pm//(t A-roo)] =0 the jproB;bﬁit.y has
escaped at the end of collision. | : 7
Such a theory is not probability-consefving and does' not describe the

propagation of the electron outside the interaction region; hence it cannot give

differential cjoss sections. However the total ionization probability is given by



1- Z [Crim(t — 00)12 . y

nim

In-Chapter 2 we derive similar coupled equations, appropriate for slow

atomic collisions, by projecting the full\Schr'ofd-in‘s;er equation on a molecular basis.
, i .
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2. THEORY

2.1 Introduction

Using the adigba.tic basis, with wéve packets representing the continuum,
Professor Thorson [12]~has derived\\two different sets of integral equations wh?ch
we call the connected and £he disconnected forms. I this chapter we derive
the connected frm in a more formal manner; the fullk \Schrédinger equation is
projected on to the L2 -basis using different physical assumptions. Closed form
expressions are also derived for the decay factorspappearing in the prépagator.

In the classical trajectory formulation we have to solve the time depen-

dent Schrodinger equation ..
i (5 )1 = he(Reo) e 2-1)
\ Ot . '

with some initial condition |T(t0‘)). - The operator h, is the molecular electronic
Hamiltonian given by equation (1 - 3). One can construct a formal.solution to
Equation (2'- 1) using a cor4nplelte basis se;t. |
The following facts can be deduced from the general formalism'of quan-
-tum 1:1echanics.
(1) Adiabatic basis set.
At each inte;nuclear separation the infinite set of solutions,
{|k; R(t)) }, (including the continuum) of the time'inaependent Schrodinger equa-
tion /

he(ROE)IK; R(E) = eu(R)IK; B(D) (2-2)

- forms a complete set. For bound states there is a one-to-one mapping [28];

|k, é(t)) — Ik;é(t')) as t—t and we can take k = (nlm) where (nlm) are
-

30"
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the united atom quantum numbers. For continuum states we take k= (elm) and
- the mappiﬁg is defined to be |elm; }-é(t)) — |elm; R(t")); the continuum cnergy,
;k = ¢, is kept constant as R cha'nées. Adiabatic states have the following orthog-
onlity properties. .
(s B(B)lmb; R(1)) = Got16mt
(e’l’m';I-%.(t)|nlm,;'é(_t)) =.O'
’ (e’l'm';ﬁ(t)lelm;ﬁ(t)) = 5(¢ - 5)51:15m/m

(See Appendix E for a proof of the last relation)

(2) Thq\pfopagator, Ult:to), of the system is defined to have the following

«.:

propérties (23] |
(a) 1Y() = U(t:t0) Y (to))
(b) 1h(8/0t)U(¢;t0) = he( Rt)U(E; to)

(c) U(to;to) =1

U(t;to) takes the wave function from time o (initial condition) to any
’
time ¢ (the general solution).

Using these facts one can rigorously derive the following equation [12]

t

0(t;t0) = it to) — 1 / dt' Gt )0t ) (2-3)
to
where w
® - Y
Wtto)y= > |k R(v)) erp<-%/dt ex(R ))) (k; R(ty)| (2-4)
k i ~
&@f):gganuq (2 -5)
K(t') =) |F;R()) Kie(t') (ks R(t)] (2~ 6)
k' k



-

|

Here Y implies summation over all discrete quantum numbers and integration
k ' :
over continuum energy.
%(t;t") is called the adiabatic propagator. To see the meaning of this

term, expé.nd any wave function, at time t', in ter?rr of the adiabatic set and
. . \' '

propagate under Y(t;t'). We then have

with : 5

B

Since ) Rft)) is real we have |b(t)! = |ax(t')| . Hence Lt propagates wave
functions adiabétically. ’

f\"(t) is the non — adiabatic co&pling operator at.time t, which causes
transitions among adiabatic components propagating under 7 (t,1)

Non-adiabatic éoupling matrix elements have the following form (Chap-

ter 5); when at least one of the states is discrete

R k';ﬁt Nlk: R(¢
Kou(t) = RO R0
€ — €/

when both states are unbouhd

(K'; R()|N|k; R(t))

e—¢

°

Ku(t) =P + 8( — e)(K'; R(t)| M |k; R(t))

Operators N and M include both radial ‘and angular couplings and P means that
one must take the Cauchy principal part when integrating over € or €.
! /

1



G(t;_t') may be ®lled the non — adiabatic propagator in thi - thec |

Equation (2 - 3) represents a denumerably infinite set of coupled integral

equations. For a practical calculation one mtist discretize this set, whien is achieved
- ‘ . .

) the connected (or the disconnected) form of the equation. It enables one to
c

alculhte. the excitation, charge transfer and total ionization probabilities.

2.2 Physical Assumptions
1 ) Imtla.lly the electron is in a bound state of nucleus A. Transitions

'take place only when Bis wzthm C'D (Sée Fig. 2 - 1)of the classical trajectory. Of
g
course, to calculate the Cross sectlons of tranSItlons to each state in an asymptoti-
T |
cally degenerate atomic manjfold one has to cvonsxder 1o pofh

e

: ”k}l

couplings.which extend up to R — oo. We propese -to h( adl e
., -3 (

3’]:

o lision l%'\ngc' :

33

alytical models (20, il] As far as the present- theory is concerned ‘we !xssﬁn,u Mu .

collision to be “over” when R > R. Ry (point where the collision bch;ls) and
Ry are parameters of the theory which must be found computarion-lly. |

(2) Define a sufficiently large sph‘erical region in physical space, centred
at the centre of charge of the nuclei, as the interaction region. We designate the
space inside the sphere as P'-space,.ana outside Q'-space. P'-space must include
all the important bound molecular staltes’ throughout th.e collision. We assume

fhat once an ionized electron gets out of the sphere it will never be recaptured.

Implicit in this assumption is the fact that we neglect the contribution coming .

from @Q'-space to the non-adiabatic couplings between continuum .and highlying

Rydberg states. bLower angular momentum molecular states die down (Figures

3 ~ 15 — 20) as the distance from the centre of charge increases. Hence, keeping

P'-space large enough, in princziple we can make the above mentioned couplings

negligibly‘ small for important continuum states. The radius of the sphere is a
4 .

parameter of this theory (see Chapter 3).



| Figure 2- 1:

A binary collision

\
. D
Classical trajectory of
B relative to A
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2.3 Basis Set Assumption °©

S

To evaluate the charge transfer and e:rcitation cross sections it is suffi-
cient to know the wave function within P'-space. The'total set of adiabatic bound
states can form a part of a basis describing the '-space.

To describe the continuum we use a set of packet states defined by

<

i
€34

. /\/ de |elm; R(t)) (2~ 8)

|é%jlm; R(t))) =
6= 14,

where ;

.,%“5& 5131 ; €+1 — € = §(AJ+1 +4,) for ;21
One can choose A so that the packets are fairly well localized in P'-space (see

Chapter 4). They have the following properties.

<&(];11m')1§(t))](}5(]lm, R(t)) = 61115111(5"‘/", (2 — 9(1)
(6(j'#in'; R(t))Inlr. RR(t)) =0 C (2 = 9b)

L4

We assume the total set of adiabatic bound states and the packet states

is complete to describe the electronic wave function within the P'-space.
: I

o2 .4 Derivation ~

We call the portion of the Hilbert space spzfrlmed By the above described
) ' o -~
basis, the P-space and the remajnder, the Q-space. The Q-space corresponds to

an ionized electron in physical @'-space.

At any instant of time the projection operator for P-space is given by
o v : K

P(t) = Pp(t) + Pc(t) | "
= 37 tntms Rt (nbm R0} + 3 805t Ry etims R 7
‘alm ‘;, .  im * _,
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At the beginning&(ﬁhe collision the electgbn is in a bound state ; hence

(o)) = [Th(te)) = Plto)|T(to) M-

Multiplication of equation (2 - 3) on the left by P(t) and on the right by [T(tg))

and, using equ%téo\g (2 - 11)leads to the P-space projection of the wave function. &
" ? . X
[Tp(t)) = Upp(t;to)|T(to))

t

= el T() — 5 [&f (POGEIE 0)P(0)) 1TC0)

= to
“" (2 -12)

»

whcrq)the P-space projections of the operators are defined by

Upp(t;t') = P(1)T(1;¢)P(t)

. O gltt) = PR P
The first term in equation (2 - 12) takes into account the zero ordet
adiabatic propagation of the’wave function within P-spacé. The integrand of the
second term can be interpreted as follows. It takes in the P-space portion of the
wave function at time tg (which is equivalent to |T(tg)) itself) and propagates
under U to get the ezact wave function at time ¢ This 1s then “subjecged”
to nonadiabatic transitions and the resultant is then propagatéd from _t’ —
adiabatically. Then at time t the P-space projection is taken.u Agcdrding to the
second physical assu%pti@n, the portion of the wave function :in the Q-space at
any time, t' cannot give rise ‘to a contribution to the wave function in P-space at a”

later time t. Hence one can insert P(t') in between A'(t') and U(t';ty) in equation

(2 - 12). Using the idempotency of the projection operators, we then obtain the

\
A



ﬁ‘\}

connected form of the coupled equations.
e t N
Upp(tito) = %pp(tito) = -;;/dt’ Gpp(t,t)Upp(t';ty) (2 -13)
to “
where ‘ ~ ‘ “

£

In equation (2 - 13) we have achieved the discretization of the adiabatic

: : o ’ | S :
continuum allowing the 1onized electrons to move out to “infinity”. The truncation
of the basis needs a second set of aésumptions based mainly on computational

o

experience.

(a) The lowest few bound adiabatic states are sufficient to describe The

bound manifold.
(b) Only low “angular momentum” continuum states are important.
(¢) Only the low energy ionized electrons are important; hence a few packet
. $

states above the lonization threshold are sufficient 230 span the continuum

manifold. '

Y.

)
With a basis set truncation ene must take into account the cffects of

electron translational factors which can be done by modifying the nonadiabatic

coupling matrix elements {31]. (see also Chapter 5)

2. 5 The Disconnect’e{d Form | /

Professor Thorson has further simplified [G]pp using different assumps

tions in place of what is described in-sections (2'- 2) and (2 - 3) and disconnecting |

% and K. The disconnected form is gi;/en'by [12] ,

P

ko) - l N P R
Upp(tite) = %pp(tito) = 5 [ d Rpp(tit” " pp(t)Upp(t't0)



where
. Kpp(t) = P(t)h(t) (t)

Note tlle.t the‘ propegation is done solely by: Xpp(t;t') ; hence the decay factor 1s
of the form gzn )/z (see below). A consequence of the assumptions is that there
are no packet—-»sam(‘ packet couplings; they just strengthen the near neighbour
couplings. Q '

2.6 The Decay in the Connected form

It cdn be shown that

.

‘)Z'Pp(t;t')z Z|nlm;é(t)) erp —%/dt entm( R(1)) (nlm,é(t')| . |

nlm t

+ 3 It o) S S cap( ey 1) B R )

Jim .
(2 — 14)
with 7 =t-1t". |
0

As T increases the sin(z )/a: factor decays rapldly whlé:h 1mphes the prob-
ability escape from the packets dunng the adlabatlc propagation; 1r& zero order -
i pp -allows the ionized ele_ctrpns to move out of the P -space. As expected a
probability escape is not seen iﬁ bdund stefe propagation.

Since fhe electron is in a bound state initially, whet is more important |
is the probability loss durmg the non- adlabatlc propagation. In deriving-the.ex:
prebsmns for these decay factors we useﬁthe following auxﬂlary assumptlons\\ '

(a) € and A, are mdependent of (I,m) (Chapter 4). = |
. (b) The matrix elements of N and M ;are slowly varying functions of con-
tinuum ene'rgy' SO that over packet width Aj, vthey' can be approxima‘ped

*by their values at € = ¢; (Chapter 6). |



._ipate that there is no probability loss from. [GDD(t,t')} op and }GDC(t,’ t')]

It is convenient to decompose G(t;#') into four components depending

on the states they connect.
Gt =Gpp(t,t) + Gpe(t,t') + Gop(t,t') + Geelt, t') (2 -15)

For example Gpp(t,t') propagates discrete states at time t' to discrete states at

time ¢. Since the actual propagation in §(¢;t') is done by %(¢;t') one should antic-

PP
One can easily show that

-~

[Gon(t.)] = Po()Gitst)Po(t) = Gpo(t,¢)

<

t

[QDD f t ] Z Z{|7’l I'm R Cltp —%/(_' 1.,:/1/,,l/(R(t))

n’'l'm’ nlm e

y (n l’m;R( )|N|nlm R( )) (nlm R( )|}

(2 -16)

€nlm — €n'l'm/’

-t

[Goett, )], = Po®)dtest)Pet)

It is 'stréightforward to.obthin

[QDC (t t)] Z Z{[n l'm R(t ))ezp ——-/dte N :( ( ))

n'l'm’ jlm .
1 - o
. X ——(n'l'm';R t’)lN[elm; R(t'))g(n I'm/ ;])(d)(]lm R(t ))I}
VB, ( ! - |

(2-17)

|



where ‘ o v

dz

€ — €nirm! T T
-14; (2 —18)

S U el V1 34,
=g _ — LA
GJ Gﬂlllml . 30

. B
\\Note that we have used the auxiliary assumption (b) in taking the nonadiabatic

‘ | coupling matrix elgment out Qf the integrél. The t dependence of these prop-
agatdrs are in the exponeﬁtial factor; hence the probability is'unaltered during
_ propagation. ‘ -
: I‘o see phystcally how the proba’bility is lost let ys examine the CD part
X ) . .

- carefully.

A

fenttt)],, = {zgum A
. jlm ,
: \_/ (B R >>|.x<t;tj>11’(t">@nlm;R(t'»}<nlm;é(t'>l
L L | (2 -19)

The interpretziti&{ of. the-'opé‘x.’/ation wi-t’hiln.the curly brackets is as follows: K(t)
R \3 RS

_mixes Inlm R(t') ~ with pther states’ af t' and the resultant is propagated adia-

batically. Then at time t the prOJectlon is taken onto the packet states Note that

the propagatlon of the continuum states is done using the true continuum states

40

Hence, on physical grounds, we expect a probablht‘y_'lo’s,s';. SJm;La'r; considerations __

“apply for | [Gcg(g, t )] pp

One can show that



\ Y
[Qcp(t t ] Z Z{[d) 7''m; R(t)))ez:p(—zejlr/fz ’
FHm! nlm
x{\/_ {e A'm'; R |N|nlm R(t ))g(] nlm; r)(nlm R(t)|}
' ‘ - (2-20) '
I- %AJI " : N ) .
o3t mims ) = — / s [cos(Tz/h) — 13m(r;r/,fz.)] (o 21‘) “e

€50 — €nim +

“In deriving equation (2 - 20) we have - 2d the auxiliar;.' ussumption (b)-and tlfc
fact that the contmuum state eperg: 5 are mdependent of R

I

Using the formulae given Hu ,age 187 of Ref. 52, one can evalu*mto the

integrals in equation (2 - 21) to obta... ~he following expression fqr the decay factor.

.

e.\_"

9(j';nlm; 1) = exp(i(ej - Enlm)T/h) {Cl (( i fnlm - ‘1) T/h>

,—Cz'<( — entra + = A r/h) [ ( fnlm—%A,,)Tl/;l)
;52'(( - nim ¥ 5 A T/rz)H o

. T (299
Matscmatical properties of Si(z) and Ci(x) are 'listéd in Chap't(?‘r 5 of Ref. 53.
Using 3
: : T, ..
lim Si(z) = =7 lim Ci(z) =10 K d
| xeoo 2 I—00 Sy ‘.
: . ' S @* , -
we obtain : S S

I

v :.: -

lim g(j';ﬁlim;‘r) =0
For finite 7 we have displayed g(;; nim; T) for a number of Entm (= 1/ 1/8 1/18

and (¢;7, A (taken from table 4 - 4) in Fxgures 2 - 24. Though thc 1magmary j
parts increase in magmtude initially, they are small compared to tho ;eal parts

and the overall effect is a general decay. - ce ; o e | o
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Projection of the CC part can be done as follows.

pp = DB P

(Gce(t,t)]
Using the .éuxiliary assumptions (a) and (b) we then hav

[gc;tt ] ZZZ{Iml’m R( )))611)(*1'!61" T/h)

an! Im J]

J J '

+ 80 (ep I'm!s R(E)| M ejims R(¢))g° (5 T)} (6(jIm; z“z(t'm}
' (2 —23)
It is straight forward to perform the integration over 5(¢' — €) to obtain
30, . s :
diny= [ dyesn(=igrn) [ deoiz-y)
-34; -38, : (2-24)
. A [sin(AT/2R)
T2\ (4;7/2R) -
We havje .
18y N @
Poor, -\ : ) IR ikl 9 — 95
R B I sl INNCRE
~4ay -ia, '

One gan show that if g =a+if for (¢j - €;) > 0, where a dnd f3

are real, then ¢f = —a+1f for €; —€; < 0. Hence we work out the expressions
. *

only for the former and j = j' cases. *

»
Case-1: j>j+1 |
o Here (¢; —‘ejf — y 4 ) is never zero a£1d equation (2 - 25) becomes an
ordinary double integral. Performing the integral over z we obtain
¥

—_
[g)
|
o

(=]
~—

g (i) = Xe - X

b

2
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d
. ba /
T Xi = / dy exp(—ity/h)Injas — y| (2-27)
—%A]l . )
v oar =€ —€ ko A,- (2 —28)
R - L)
Integration By parts gives
. i
g "
h . . %AJ'/ ) %Aj’ . : /fl) .
X =L lezp(—iry/h)In|ag — y| + gz EREITVRI L o o)
. T —%A]‘I 4 : a4 — Y .
The remaining integral in equation (2 - 29) similar, to the one in equation ( - 21).

'In addition using Ci(—z) = Ci(i) +7/2 and Si(-z) = Si{z) we obtaip \\

8+ — 30y
15,

1
a4+ -Z_AJ"
a_ + %A]‘/

— exp(tA;T/2Rh) In

gF (3" gT) =\l${erp(im;"’/‘2h)lh

+ exp(~iayr/h) [Cz ((a+_+%A n) Cz(

a_-_

i, -egjp(-ia_r/h) [Ci <(a°_.+%A T/h)

le- -
S tiezp(—iaypr/h)|S [ <(a+ 38y T/h) —%2 (
(-

;i‘ea:p(—-ia_r/ff).[Si ((a_+-2-A r/a> Si

Case-2: . j=j5'+1

t

Here we have €5 — €1 — %(Aj +Aj)) = 0. By taking this limit in (2 - 30)

1 + b



we obtain ¢

g . _ih 1
gt 55T =—T'{8$P( 1857 [2h)In {(ay — 5Ay)
. ay + :!;A/ \"'-,‘__
- exr ZA IT ()ﬁ —'-_.J_ s
p(id,7/2R) In ot i, \
W 2971 .
. : 1 : -1 ;
-~ “ + ezp(—tayT/h) [Qz <(a+ + 3A]v)r/h> - Cu <(a+ - SAJ,)r/h>] _

- enio T [ci (@_ N EA].,)T/h) —y- znlr/hq, |
| ?L mp(_ ,a;r/h) [ ((a+ s, .) /h> < (a4 ~ —Aﬁ r/h)}

—rezp(= i T/h)[ <(a +1A )T/hﬂ}
(2 -8

In deriving equation (2 - 31) we have used the relation

Ci(z)'— v+ In(z) + Hz®)  as r—0 \

where v = 0.577215.... = Euler's Constant -,

ﬁ‘f‘this case €; — € =0 and we have

% o : ba;~8 I V.V
. ) : dl‘ >

» g "t] 5i7) = dy erp(—lyT/h) Pl 5 Ty

%A,+6 ] ~%4;
30,6 o
: ' | 1 h
. ;Agl_if(r,i / dy exp(—1yt/h) .I@ EAJ' - y‘ —In EﬁAl +‘yH
—-%A,’+5
" . | o (2-32)

o

It is clear that ¢©(j;7;7) can be obtained from equation (2 - 30) by substituting

L : . :§7
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\ o
e, — € =0 and» %AJ- = %A,‘ — 6 and, taking §he limit 6 - 0t. \
. s
A -
Pliir) =2 {cos(A 7/2R) [Ci(A, r/n — In(&,7/H)] )
s | -\ (2 - 33)
+3in(AjT/2h)Si(AjT/h)} v

- In all cases one can show that

iY

#lim ¢°(j';7;7) =0
T—00

—

We have disblayed gP(5';j;7) for j' # j in Figures 2-5—7. Overall decay isvl
‘ap.parent.' o g}

The function ¢”(j; 7;7), which is shown in Figure 2-8 is purely imaginary.
It irg:crea.ses at the beginning. For near-neighbour packetsgit is reasonable to assume
that the matrix elements ,Qf N are approximately equal. The decay is apparent
x‘vhen’ ép(j;j;r) and  ¢P(j;7 £1;7) are taken together.

¢

Probability escape in ¢° is shown in Figure 2-9, _

Upp computed from equations (2 - 13) generates a P-subspace state

2.7 Discussion

vector, | T p(t)), from a P-subspace state vector at time tg. Since the P'-spuce is

lf%calized such an operz[xtor cannot describe a system with an initial state having
éi?unbound electron. " g a

Because of the probability escape, Upp is non-unitary; probability am-
plitude for a given basis state at tié‘e t depend, in principle, on the amplitudes
on all basis states at all previous ;zrhﬁs t'. Hence the integral equatxon for Upp
cannot-be converted into an eqmva.lent’ differential equatlon

Upp allows one to calculate the total probability of finding thd electron ;

¥
in a bound state at ¢ime t. The discrepancy between this number and unity
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' / H ' .
at the ‘end™ of the colhslon ie. when R= Roo, can be 1nter'preted as the total

ionization probablllty Note that this i is not equal to the fotaaﬂ grobabﬂlty of ﬁndlng

I
? .

.
A“‘.

the electron in packet state% at that tlmq

At R Roo, there w1ll be some non — zeré) amphtudes in pacl\et states.

&
'Ji

-9

We assume that there are no ngmﬁcant packet——»bound state tran51t10ns in spite
. Q d
v of tlae fmt tfmt there may be packet——»packet state transitions. Using the spatlal

[

dmtr;blltlonyof packet states we will show n (,hapter 4 that thls assumption 1s

BEEE sjglf nonsxstent w1th the use of packet states 10 span the continuum.

s

S

e
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3. ONE - ELECTRON - TWO - CENTRE C_ONTINUUM STATES

3.1 Introduction .
, : . .
Born — Oppenheimer or adiabatic states, 1(7), for a given internuclear
separation, are obtained by solving the time independent Schrédinger equation in

a molecule fixed reference frame (see Figure 3-1). In-atomic units-we have -
. r

SsVE- Ao ZBly@R =) L, 3=

. For efficient_evaluation of nonadiabatic coupling matrix eleinents and

for the study of the spal;iai distributions of the functions themselveé'.(m.' wave
packets) i't is desirable to generate 1{7) in a global representation. In ‘thi;t clmpffer
we develop such a representation fc;r continuum states. |

| It is well known [55] that equation (3 - 1) is separable in prolatespheroidal . -
co%rdinz\ttes (see Figure‘3-fli)i\ | | |

+ < ’ .t
e [
§ . . / . E

¢ b =xosmZEZY ey
it ¥ ‘ ) 2 y ‘ 2 s ;}
(—1—6[(1—0)%]-%[1)17 - +A_1-n2]520 (3-3)
4 (52—1)@] + {q:ﬁ%&ﬂ " ]x=0 (3-4)
Z | Ve TEa
p=R(Zs-Zp) q=RZp+Zy) =5 (-9

Equations (3 - 3) and (3 - 4) are known as the angular and radial
eﬁuatioﬁs. A and c? are sepa.;jéitibn constants; c? is negative for bound states and

positive for continuum states.

95
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' .Figure 3-1: Prolate Spheroidal Coordinates

-

i

£ = (r;q +‘ré)/R

n= (ra- rp)/R

$ = azimuthal angle

56



(4]

In the united atom limit each 1(7) becomes an atomi¢ state with good
‘angular momentum quantum numbers (I,m) [28]. Based on this correlation the

indices (I, m) may be used also as part of the molecular state label.

[

3.1 .\ 1 Bound States

Both ¢? and A are unl\nowns one has to solve equations (3 3) and

(3 - 4) as-coupled equatlons to evaluate them Usmg the method of Bates and
. A%

Carson [56], Rankin [30b] has developed a computer code to generate bound state

adiabatic states. The angul'a.r‘wéve function is génerated in two representations.

Stmy= Y «;PM(n) | -0
=M ' A
c o Sm=a T (3-7

where M ="|m| and PJM are Associated Legendre Polynomials . The radial

wave function is generated in the form
_ S W

.
N WY

M x© | J :
x(€) = exp(—|c[t) (¢* -1T£+1"27,<£—+—> (3-8)

where o = q/(2|c|) - |
" Equations (3-6) or"(3 - 7). plus equation (3 - 8) gives a global represen-

tation of a bound state. (Referenée 57 gives some othef formal representations)

3.1.2 Continuum States

2 is not ‘an unknown; we speci_fy it by fixing the energy.

In this case ¢
Solving the eigenvé.l}le problem for equation (3 - 3), one then determines A and
.'S(n;—j (58]. S(n) can be generated in either of the forms (‘3'_ 6) or (3 - 7); we cal-
culated it“in the latter form using Ef,ag}gin’s programs [30b]. The form in equation

(3 - 8) is not useful for x(§).



-/

Bates et al. [59], Ponomarev and Somov [58] and Rankin and Thorson
.[60] have generated. x(£)- by numerxca.lly integrating a second order dlﬁ'erentlal

equzrtion related to equation (3 -.4). Cayford et al: [61] have mtegrated equation

(3 - 4) using ar'ﬁnite difference technique. All these methods yield x(¢) in a pornt

wise representation. Greenland and Greiner [62], have .have constructed x(¢) as

4

an expansmn In. Assoc.lated Legendre functions of the first kind. Though a global

representation, it is not very useful for a practlca.l calculation.

3 1. 3 Phase-Amplltude Form
Milne [63] has ishown that bound state solutions to a one-dimensional

Schrodinger equation can be represented in the phase - qmplztude form

m) = aw(z) sin(/z <w§i($x)_> + b> | (3-9)

o

where a and b are constants,
Milne's Function w(z) is a solution of the second order differential
equation (3 - 23), called Milne's equation. It is known '[64,65] that one can

obtain a slowly varying function w(z) by, choosing proper boundary conditions

for equation (3 - 23). This slowly varying character of ‘w(a:)e greatly' enhances

the speed of numerical computation of ¥(z) in comparison to direct numerical

integration of the radial Schrodiniger equation: This representation was used for l

continuum states by Wheeler [66] for the determination of s%zrt'tering'phase shifts.

We have opted to calculate the radial part of the wave function in the

~ phase amplitude form for the following reasons:

(1) computatronal efficiency.
] ‘ .
(2) the method proposed to choose the packet widths (see Chapter 4) is
based on the form given in equation (3 - 9) for _adiaboric continuum

" radial wave. functions.




(3) we may obtain an accurate and practical global represenltation for \(€)

y fitting the slowly varying w=2(¢) with a’simple algebraic function.

antinuum radial wave functions in Phase-Amplitude form
3.2.1 The General Solution of equation (3 - 4)

Define the function f(£) by

1

‘x(‘é)‘= ==/ o B
Then f(€) satisfies” | ,
. Heveer=o SEGESH

where
() = 62{—1 [0262+qE—A+ 1{;_"112} o (3-12)

k? is real since the separation constant A is real [58].

o~ We seek solutions of equation (3 - 11) in the form

' E " ‘
(&) = wp(i’i/ d§ P:t(f)) . (3-13)

The quantal momentum, Py, will in general be complex. Substitution in equation

(3 - 11) gives .
' dPy

P_f_—zf(—ig——kz (3 - 14)
P3+i%=kf | o (3-13)

" . Since k? is real P, and P_ can have the relation
A ‘ .' .'

P.=P, (3 —16)



-
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.
where P} is the complex conjugate of P,. Since any pair of linearly independent

. »
solutions, { Py, P_}, gives two linearly independent solutions of equation (3 - 11),

| - . i ,.
without loss of generality we can impose the condition in equation (3 - 16).

- Define the real functions Pg(¢) and Pr(§) by

Py(§) = Pr(£) £1P1(£) - (3-17)

- Substitution in équation (3 - 14) gives.

S (d_P_R> - | (3%18)

< T 2Py

"3
Then it follows that o

. ean(i [0 de Pr(o))
O= 755

Two real linearly independent solﬁtions of equation (3 - 4) can now be written as

(3 —19)

a sin(8(¢))

- 3 — 20a
x(£) & =D Pald) | ( )
, E' oy acos(@(f)) B : 3 _301’ |
| - X8 JE-ThH (3 - 200)
. 0@ [ene+s NGRS
« 1

where a and b are real constants.

Note that since we assume Pp to Be'integrable in the démﬁin 1< E < 00
-without loss of generality we can introduce a lower limit to the integral,

Using the equations (3 - 14), (3 -17) and (3 -.18) it can easily be verified

‘ that

0= T e



satisfies Milne's equation

G EOL0 - (3-23)

'3.2°2 A General Solution to Milne's equation

A general solution to the equation (3 - 23) which is useful in determining

» the be'havvior of Pp (and Py) near the origin can be derived as follows.
Denote the two real '1inear1y"‘independent solutions of equation (3~ 11)

by ¥1(€) and 2(€). Then using equafions (3 - 20) we have

sin © N
ad)l = \/F;{_ (3 — 24(1)
@ (Bb1 +702) = 52 (3 - 24h)

V/Pp

where a, § and 7y are constants. Note that Because of the linear independence of

the functions appearing on the right hand side: of Q&i@atxons - 24) v # 0. The

Wronskian of the equatlons (3 24) gives - b :j-“~.

alyp =1 | (3 — 25a)

| o= b djﬁ (9 =250

Then it follows from equations (3 - 24) that )
Ty (ﬁ1§17+ Yo )? ‘ (3 ~20)

O(¢) = tan™! [W%} ‘ | RN

Equation (3 - 26 ?Ves a general solution !* to Milne's equatxon via equatlon

(3 - 22). Using equations (3 - 18) and (3 - 26) one can deduce an expression for
Py in terms of ¥y, Y2, dy1/d€é and diyp;/dE.

061



3.2 4 Behavior of Pp, P; and © near (=1

Near £ =1, e ¢in present ¥ and - in power series [68].

Vo) =E -1y a6 -1 (3~28)
7=0
vy %)= D(€) In(€ ~ 1) —D"‘Zb o (3-m)
‘ 1w ”
"EERE

The recursion relations for the coefficients are as follows.
a;j=0 for ;<0 ag #0

ay = '{[(°J+M—1)(°J+M 3)+ 2 +q - 4)] ajm)

1
- +{4(_]+M 3)(‘>]+M 5) + 5¢* +3q—A a2

+(4c + q)a;— 3+ c? aj— 4}/4]]+M) ) for 721
(3 —30)

bj=0 for j<0 000 for M#0 by =0 for M#0

)
b, = —{ [(25 = M = 1)(2] Y 3) +2(c? + ¢ — 4)] bj—1
+ [%(2]’ - M-3)2 - M ~5)+ 5c2 4 3¢ — A] bia
+ [4¢® + ¢] b3 + Czbj.—'x + D[(g - M —4)aj_2-m (3-31)
+4(2) — M = 2)ajo1-m +4(2 - Maiu] } /456G - M)

for >0 and j#M

s

s
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D # 0, but is otherwxse :ﬂ.rbltrary for M =0. For @;31 othu \"tlues of M,

3

D 1s g1ven by ’ i:; C ’

D= —{ [(M = 1M = 3) +2(% + g = 4)] bar_,

,,&ﬁT M = 3)(M - 5) + 5¢? +3q-4.]bM . 3-3

gi + [4c® + q] bag— 34‘CbM 4}/4A1m)

&%

The Wronskian of ¢; and - is given by-
0 = Magby - Da05MO (3 =33)

Formally, the power series converg'é in the domain 1 < ¢ 47 3. Using them we can

deduce the behgyior'of Pp and Py near £ = 1.
@

L
M=
0 1
P 2 - 3 - 34
it (7D2a5>(5—1>ln2(5—1> -; S
1 1
P, —» —- (3 — 34b)
e T2e-1
0 1
O — = b - , 3 - 34c
: £—1 (7D2ag> In(§ - 1) o ( )
i
;lr:&,\',
\
OS]
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.t‘ " - ’J
T SR
e—1  YbFi42Dyaphy(€ — 1) In(€ - 1) '
'f p t. / . .'gf:"".-"l.
P 23D ey o (8 35h)
e T T R
' 0 . S , .
O — — b oo b 3 —35¢).~
€1 "(71’6)6,-*— ST (, ’ C)H
M>1:"
- 0 M1 o i
P — - 1) . 3—36
e S <7b5> -1 T (‘ o)
e M-1\ 1 S
o P — . . (3-136b)
S ]fﬂ~< 2 )@-n (3
N o\ (£-1)¥
| - 4y - 3-36
© 1 (76?,) 7 (8- %69)

‘When. M =0, Pg has a singularity at £ = 1 which is lesslstrong than (€ = 1)1

r

)

3. 'l2 4 The‘ Physical S;)lution ‘
: We use the form given in‘equation (3 20a) to r,giepresent';. the physical
solution x(¢), which must be bounde'd at £ = 1. S_incf: Pg is less singular than"
(E=1)"taté=1we miust have sih(é({ =.1)) =0. Henceb=nm, n=0, 1, 2,....
We define |

b=0

in equations (3 - 21), (3 - 34c), (3 - 35c) and (3 - 36¢). To generate Pp we use
the first order differential equation (3 - 14) instead of the second order Milne’s
equation. The theory does not dictate the boundary cOnditions for Pp and Py.

We impose the semiclassical boupdary conditions,

— —

R 2

§—0 E—o0

- " limPp=lmk=c < (3-37a)



. .1 (dk - -
fll.n;o P = 61_151;0-2-]; <§> =0 - (3 —3‘1b)

The constant a can be deduced from the normalization (see Appendix E).

R 2

‘I
3
2

(3 ~ 38b)

(3 — 38¢)

(3 ~ 38d)

v

3.2.6 The Phase Shift

The physical solution has the following asymptotic form [30b,58]

«

£—00

where A is the phase shift. Define the quantity A by
A=A-(g/2)in(c) (3 - 40)
which has the following limiting vajues [30b,69)
] I ¢ : ’
: lun/\:a,—3+—ln2 (3 —4la)

R—0 2¢c

K = Arg[T(1 +1-1i(q/2c))] = \

(3 - 38a)

x(§) — E%SinFC-f+('Q/Q.C)IﬁE+A] . | (3_30)‘ ,
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. K lﬂ' .
SN _ = -1 — 42
L e AL CORE RO (3-42)

’ 'L‘Her-,,ex‘r','is thé*@oulomb pha.se shift. Now define a function G(¢) such that

a

G(&) = 01) ~ e ~ (a/20)n(6) =  (3-43)

Then from equation (3 - 39) we have

§—00

lim G(£)=0. | 3 (3 — 43b)

Ope can evaluate A by evaluating G(E) and ©. ,
" ¢
When ¢ # 0, one can represent (the “physmal ) Py by an asymptotic

- series, for qufﬁaently arge§

‘ ‘ ) - 3 4 .00 C : :' ) : :
' P& =3y - L (3-44)
s 7=0 b B
where
Co=c k C,=q/2 . (3-45a) |
For j _>_ 3 and odd
C; :z—‘o-[qﬂ(! ~1)C;j- I—Z CiCi- } - (3—-45b)
N 1 . nj-l . .
For j > 4 and even
i I | =1 - :
Asympt.otically Pr is given by\. = | B | g '; ;
: . ‘ - N ". ‘ ‘_m . |
b g\ 1 < Re(Cy) : \
| PR(&) =c~+ (5‘9 Z+Z e : ., (3 —46)
N » :
afy
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o 4

3 o | |
/ de Pa(¢) = ct + (%) o)+ )3 ﬁ—‘f’j—)) -5,1_1 (3-47)

when the asymptotic series is sufficiently accurate.

3.2.7 Numerical M;athod | , *
Numerical work was done for the prototype system Hi for which p = 0.
In this_case,>the angular separation constant A for a state with a given (I, m),
is a functjon only of 2. The ge_nerat;d A-values may be ecasily ﬁtted, to a high
“accuracy (absoluteverror of about 10 x 1077) with a rational polynomial in ¢*.
These fits \w./ere then used for radial and angular wave function calculations.
| ' _Follovs;'ing 1S aﬁ outlihe c;f the steps we pérformed to.geﬁerﬂte a'poiint;wise |
representation of x{(¢) (in fact of Pg and ©) and to évaluate A
| (1) Generate P4(¢) and G(f) at £ = {x using thé asymptotic series. - ¢
(2) Integrate the‘eguation (3 - 14) towards § = 1. Simultane(l)usly integrate
Py(£) toobtain a function Or(£) with O7(£w) = 0.
(3) At £ = £y .smoothly ’connect Pp to.the‘form given in equation (3 - 26)
| to evaluate 8 and 7.
. SRR (R0 1N o

Pp? 3 — 49
ol Pr + Pr i (; )



‘ ‘f - . <

| . : | - 3
H;ere " implies diﬁ'érentiation with respe}ct to €. Use fhe power series to.
evaluate i and 1/)’ |

(4) Resume step (2) and continue up to €00 where go is within the first node

‘_ of the wave function x(¢). Generate ©(£go) using equation (3 - 27)..

(5) AdJust?"@ﬁié) to obtain 0(¢)
(6) Evaluate A using equation (3 - 43) at £ = {.

3.2.8 Numerical Details

(a) We have set . /,
Qp = 1 . .
{1 , ifM=0
M EM#o0
‘ D=-1 when M=0 .
This choice makes p = 1. o /

{b) o was also evaluated at each point where ¥; and dm were evaluated, as *
f.heck on the accuracy of the functlon calculatlons

(c) We have set oo = 1. 001 and £ = 1.5. |

(d) When §e was greater than (80/R), instead of equation (3 - 1‘4)

3

. mtegrated the differential equation for the function g(€ djfed by

S P+€)<%C£ ( )

1
,g‘ i 6

upto (80/R). S‘i“rnultaneoii“'él’}; we in{egf'ated Re(g(€)) with the initial
congiition Re(g(ﬁo;,)). To increase the efficiency we used the integgation
variable u = 1/¢ in this part of the calculiation. |

(e) We fixed the number of asymptotic series coefficients at 20. Then 6;-0 18
determined by the required accuracy of P;. As expeéltec‘l, {c increases

with decreasing 2.



o ¥ #-09

_ =3 |

(f) All the numerical integrations were performed by the efficient algorithm -

i e 4 g ) '

of Bulirsch and Stoer [’86].
f

The followmg checks were done to assess the accuracy/ precmon of the results.
(1) Stability of the results was checl\ed agamst changos m 600‘ £0 and €.

(ii), The phase shifts were compared with those reported in r(‘fcroncc 71,

3.2.9 Global Representation of x(¢)

x(&) can be evaluatéd by calculating -PR(E) and O(f)}
8 It can easily be showﬁ that i, (togethex with a state dependent”

~

normahzatxon constant) can be used to represem the pllysual solution
. .
x(€)- o A
0 (2) b0 <€ <o . | .

P

Divide ‘this interval into a number of subintervals. In ecach
- ,subipterval least squares fit Pp to the algebraic fo)rm given in equation’
(3 - 46). Intégration of this ﬁt dete-rmines O(€) up to a Constnnt which
cari be determmed using any ca,lculated value of O(§).
) bm<i<oo: -
PR can be evaluated usinvg equation (3 - 46). ©(£) can ble ‘
v.represe'nted using equation (3 - 43a) with G({) givcn by the equation
(3 - 48). b o | o
3.3 Resulis

Y

- Representative examples of Pp and © are displayed in Figures 3—2 — 7.
There we have used the notation Pp(elm; R;¢) and O(elm; R;€) which explicitly

shows the state identification quantum numbers and the internuclear separation.

A
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Béyond about £ ~ 2 the qualitative behavior of Pg and © is practically
inaependent of ¢,1, m ana R; they ére monotonic smooth functions of £. As sug-
gested by thé equations (3 — 34) — (3 — 36), their behavior near the origin is
stréngly' m-dependent. Except wt!iﬁhin this region, Pp is a slowly varying function
of £ as well as ¢; this is a property we are gé)ing to use in deriving an approximate
aualytical form for pécket states in Chapter 4.

In Figures 3-8 and 3—9 we have displayed the phase shift, A, (equation

. (3 - 40)) for states with [ < 4 at two different continuum energies.

We have shown a sa.mble of the angular wave function S(elm; R;7) in

Figures 3—10 — 15. The number of nodes within —1 < 7 < 41 is equal to (I -m).
)-ﬂThes; functions are not very sensitiye tq//éhanges in €.

Figures 3 — 16 — 21 are reli;f plots of total continuum ‘wave functions

in the zz — plane on an 80 x 80 a.u. grid. Continuum energy and the iﬁternucle'ar

separation for each state is indicated (in a.u.) on each plot. It can be seén that

they are centred at the centre of charge of the nuclei, a property which has #ot

been appreciated in the past. This effect is more pronounced at higher energies.

-

3.4 Discussion

Mainly, our studyl was on the states | = 0, 1, 2 with all possible m. ¢?
was limited to 0.005 a.u. < c? < 200.0 a...

We have used the semiclassical boundary conditiogs for Pg. Thisleads to
a smooth function for Pg (and P;). Also we can represent Pr with the asymptotic
ser‘ies given in equation (3 - 16} which is of great computational utility. The
asymptotié series is not valid when ¢ = 0. This is not .a major problem; to
evaluate the pr'opagator we only have to calculate the continuum states at the

average packet energies €; which are non-zero.-
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: * Wheén ¢ = 0, one can generate 2. initial value for P, using the Newmadn-

Thorson a.lgorxthm [64]. Then following the steps ( )=(5) of section 3.2.7 a point-

wise representation for x(£) can be generated. In this way we have nufnerxcall\

-

v

demonsbrated the existénce'of a slowly varying PR even when c=0. S,

“We have fitted P up to a maximum absolnte error of 1.0 x 1077. The

-

number of fitting subintervals ra.nged from 2 — 10 increasing ‘with dtﬁcreasmg :

5 — 14. On average we can globally represent a total contmuum wave fuyction,

. The number of parameters réquired to fit PR in each subinterval rang§d fro"n

mcludmg the a.ngular part in the fOrm _given in equatlog (3 - 7), with about 90

_parameters.. Tlns is -t 1v1al achievement 'when the raplﬁy oscxllatory nature \‘
, Y |

of the continuum states is con51dered. N /\ :
: Due to the growing potential barrier between the two nuclei, the melec-,

ular bound states becomd atomic states as R — do. Such a barrier is nonexistent
. ’ ‘
for continium states and apparently they élo not go to simple hnear combinations :

of atomic states with increasing R they}emam centred at the centre of charge

of the .nuclei which sz the location of the saddle point of the molccular electronic

potential. Some gmplitude enhm@&nent is-also seen along the line of ‘equiforce”.

Forz < Rf his is a ridge of the potential.

[t is worth notmg that one can generate the irregular solution, y(?) of

equation (3 - 4) usmg the same PR(f) and @(5) (

J - ‘s
,

N



4. ADIABATIC WAVE PACKETS T

4.1 Introductlon SN -
| . >
In thls chapter we W111 study the progertles of the adiabatic wave pacl\ots

anct‘g?ropose a systematic way of choosing the packet widths, {AJ}, based on a
* specification of the size of an “interaction‘region”.

v
. . ) : // (4 . ' 4 b/
4.2 Definition of Packets ‘\}:‘\\ . '
'Adiabatic wave packe't [ 6, are defined by ) '
- . \ - ’
" Fej+30; , -
. - é(ilm; /_°de eelm: R;F) -1
. be;". 'y
with v
1 1 i
&= ;4 5B —4,) g21 (4-2)
The ¢ are the adiabatic ¢
2 sin O(elm; R; ) | - expfime)
(elm; R;7 S elm ‘Rin) ——— (4-3
U ) = = e e S R )
and Pg, S and © are as defined in Chapter 3( ‘
These wave packets are orthonormal; equation (2 - 9).
' = \/A

? : e

4 3 An’ Approxxmate Analytical Form |
, ® .

Ppg is a slowly varying functlon of energy (see Chapter 3) ‘hence over a

h

packet width we can approximate A P _ J s

! 1
\/PRiezm R 611)7‘L>R 3

(+—4)

‘92” .



It is reasonable (see Figure 4 — 1) to approximate © by

w

O(elm; Ri€) ~ (eJlm R £)+@ (Im; R; €) (e — €j) (4 -3)
- -where
00 (elm; R; €)
O;(Im; R;¢) = {ae ————A LEJ (4-06)

_ The number of nodes of S(elm;R;n) in the range -1 < 1 < +11s
independent‘{'of e. Hence we can safely assume that S(elm; R;n)isa slowlvadrying

function of € (see the plots in Chapter 3) and we write
S(elm; Ryn) =~ S(ejlm; Rym) | (4-T7)

Now, equations (4 - 1), (4 - 3), (4-4), (4-5) and (4 - 7) give

o]

sin(%AJ‘G}(lm; R; f))

: P(ejlm; Ry ) (4 - Sj
(%Aj@}(lm; R; f))

$(Gim; Ry 7) = /B,

&
i

93

The packet state is approximately equal to the adiabatic continuum state -

. at the energy mid-point multiplied by an envelope factor, sin(z)/z, and a constant.

sin? (z)/z* is 2 rapldly decaymg function with 90.3% of the area (for

)

‘z>0 w1thm/0<:c<7r

3@(617(1; R; £)/0¢ is a monotonically increasing function of € with

/ ' : @(elm; Ré{=1) - 0

(see ﬁgure 4-1).

| sphermd”d reglon 1< f < €p with Em satxsfymg

\_*/

[N

Oe - _ <)_‘ (4-9)

Hence most of, the probabzlzty in a packet state is contained in the prolate o

A,:@;(zm-;’R;"g,-R)zﬁ e (4—10) v



v

36(e,0,0;R;¢)/0e (a.u.)
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N & '».
Note that the region of lo- .ization ¢. the packet is governed by @} as well as 4;. .

4. 4 A Umque Chonce of Packet Wldths
- Definea prolate spheroidal interaction reglon w1th a minor radius a; and

3 cons:tqnt major radius bp. Thea
»

J' : =581 . (4-11b)
* ’ ) v
We require A; satisfy the equation (4 - 10) in addition to equation (4 - 2). This
uniquely defines a set of packet packet widths, {A;} which guaran£ees that the
packé.ts are well localized witl;in the interacticn region.
- Several questions must be answered before we accept this “recipe”.
(a) In the theory we assume A; to bé independent of R (see Chapter 2). Is
-this condition satisfied ? } '
(b) Are A;'s independent o and m ?

"To answer these questions »nd to calculate 4; we numerically study the packet

width }unction, A, deﬁ&eu Iy
o2

A(Im, R; bb; 6) = a@(elm, R, E]R)/ae

i

4.5 Calculation of A(fm;R;by;e)

4.5.1 The’ory'

At a general ¢, by definition :

El £ ’
% olemi Ri6) = / dsap" (e = [aaue) -1

i)
€ ) é?

“



¢

The differential equation for Qg can be obtained by differentiating equation (3 -

14) with respect to €.

Q1 Py e = W(E (4= 14)
{
where ' .
] oP | -
o  Qe=r=eetiQr (4~ 18)
: € r ‘
- 1 [R%* @4 : .
. W) = — 4 L 4 -1
| o=@l %] i
It can bé shown (see Appéndix A) that v
y 2. p+l
o4 _R dn 17° S*(elm; Ry ) , (4 -17)

af 2 -1

Boundary conditions on Q4 are obtained from equation (3 - 37).

. . . R
£11.I20QRV— N (4 —18a)
. Jim Qi =0 (4 —18b)

Integration of equation (4 - 14) cannot be continued up to £ = 1.'LHenc<:,
near £ = 1 it is appropriate to use the following forms (deduced from equation

(3 - 26) and (3 - 27)).

' PR 11 '
Qr = 7—1; [v'0 — 2Pg (1901 + (Br + v¥2)(B 1 + By + v 2 + vp2))] (4 -19)

99 _o1- [B'%1 + Ber +7'¥2 + 2] tan©
e (Bh1 + 1i2) sec?@

(4 - 20)

where ¢; = (9¢;/0¢) ;7 =12, B' = (0B/0¢) and «' = (J7/0¢) . In deriving +

equations (4 - 19) and (4 - 20) we have used the fact

do dy dpy diby dypy C o
=1 o =S Y —= = 4 —-21
5 = 1 T + 1 d ¥ T 1 T 0 ‘( )

96
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.

In this domain ¢; can be represented by power series which can be obtained by .
" differentiating equations (3 - 28) and (3 - 29) with respect ‘to energy.
¢

Two different iferative schemes can be used to generate.P+ and Q4+ at

[ ©
[¢]

lafge ¢. Define the function A4(£) by

, P(€) = k() + ha(€) - (4= 22)

with k2(€) given by equatiovn (3 -'12). Substitution in equation (3 - 14) gives

hi(£) = 7 12 dh4(€) °
(€)= aol€) + Ao(EMEE) + 1) (4-23)
| ) Wherc\’ tﬂ__ N
i [dk 1 l
| “":5%(?5) ="k TR (424
A general solution to equation (4 - 23) [64] is given by (the asymptotic series)
he() = ) ;) S (4-29)
' 1=0 .

with an error of the order of |an41| where

Bio? + v;(da;/d€)
1- QCIJ‘ﬂ]' ' ‘ .

Bi
1 - 20,5
)
1 —20a;f8;

Bi =

Yi+1 =

It can be shown that
YD

lim aj=0 for ;>
? - §—o0 :

Hence, P, generated using the series (4 - 25) satisfies the appropriate boundary

conditions (equations (3 - 37)).



‘To obtain an asymptdtic series for (4, define xo by

i

Q+(€) = ro(€) + Mol€)

where

For j >0 define
with

Then «j(€) ;> 1 satigfies an eqi;ation to (4 - 28).

Equations (4 - 26) and (4 - 29) give

1=0
It ‘can be shown that
| : R
Iim A =
£Ln°10 0(6) 2\/2—6
lim A;(§) =0 721

{—o0

Then the boundary conditions on Q. require that

Iim k,(€) =0 :
§—o0 6.

(4 - 26)
(3 -=27)
(4 —28)
(4 - 29)
(4 — 30)
(4 - 31)
>
(4 = 32a)
(4 - 32b)
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‘Hence equation (4 - 31) gives an asympfotic series and we can approximate
Q+(6) =Y M6 (4-33)
c9=0 : r

with an error &:}he order |Aq41]. L o

N

4.5.2 Numerical.Method .

The_method is similar tb that dessgibed in section 3 . 2. 7. The differ-

ences are as follows..
(1) AaA/ae was evaluated using equation (4 - 174,

.(2) Initial values for P, and Q. were fenerated at a large enough £(=&m)

-~

d (4 - 33).

usiné equat-ions’(éi_“- 22), (4 . 25)

(3) Equations (3'- 14) and (4 ; ‘14 wele integrated towards £ = 1 as coupled
equat}ons. PR and Q) p wer .

P
(4)\ét £ = & Qp was sr%g‘othly connected to the form given iﬁ equation
(4 - 19) to evaluate ' and 7. |

g BB Ba(dBa/d€)
_ fBZ(dBl/df')"'Bl(dBﬁ/dé)

@ o F

Y = B1Bs — By(dB,/df)
Pi(dBy/dE) - By(dB,/d¢)

where ' o

By = (81 + 1)

-

By = a( By + 19) — 2—}’5 .

By = (1 + B(BY1 + v¥2)) 1 + ’7(5#’1 + v )2

QR _
2P

- By= B;
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* Se fo
o ' . BS = oY <P]QR - 91.) _ d_jﬂ_icb
P _ \ P} ’PR 3

" (5) At £ = £go in addition to O, o! wa._s\ evalnated using equat}:‘%{} (4 - 20).

(6) lG'T and’G)lT was adjusted to obtain @(f), and ©'(€).

4.5.3 g\lu'meric‘al Details -

Where applicable, the numerical details are similar to those described in

-

section 3 . 2 . 8. In addition one must note the following.

(a) ‘I.:’+ and Q4 were evaluated \(absolute error 1.0 1077) at

- (€, if € <0.2;
. sm:{

¢ +15/c, ife>02.

A

where :

10.0/,/C + 5.0, S il
¢ = |
10.0/\/c + 5.0 + 3(1 - 1)/V2¢R, if1>2.

Here ¢, c and R are in atomic units.

(b) Accuracy of ¢y and ¢, were monitored by checking the validity"or aa-
. . v

tion (4 - 21)..

(¢) The study was mainly on states with | = 0,1,2 with all’ possible 1,

0.0001 < ¢* < 200.0 a.u. and R < 20.0a.u..

The following checks were done to assess the ac;u‘racy/precision of the results.
| (1) Pg and © were compared with th;)se calculated by the method described
in Chapter 3. , | ' S
(ii) At a number of points (R, §), O! was compared with ar; estimate obtained

by fitting © with a quadratic polynomial in ¢ and differentiating it.

(ii1) Stability of the results was checked agéinst changes in &, §u and €po.



B 5 4 - Results

13

A sample of ©! is d15played in Flgure 4~ 1. It is a monotonically

increasing function which is quite msensxtwe to (I, m).

A representative sample of the results for A are in Tables 4-1, 4-2 and 4-

101

3. For a given [ value, the dependence of A on R becomes stronger with increasing

(I — m) and decreasing € and b;. With increasing by, A becomes less sensitive to
changes in (I,m).. -

In bmticular for by > 40,0 a.uv. € > 0.05 au. and R < ‘20.6 a.u. tile
maximum deviation of A ?om the average is less than 0.01 a.u. (< 10%); hence
to a good approximation one can consider A to be independent of R and (I, n).

- “Variation of A with € and by are shown 1n Figures 4 —2 and 4 — 3. They

were calculated using the particular state [ =0, m =0and R=12.0a.u..

"4 . 6 » Calculation of ¢; and A,

€ isa solution. of the equation

N

¢
-t
2(e—(1-§;.,) ) Ag| =A(miRibye) (4-34)

g=1 _ 2
¥
This can be solved (for a given by) using the gray;hs in figures 4-2 and the equation
(4 - 2). Table 4-4 is a listing of solutions for [ = 0 m = 0 R=120 a.u. for a

number of %b values. .

4.7 Choice of by and the Energy Samplin\g

The “interaction region” should be large enough to cohtain all the bound
states included in the calcui. :ion. A rule of thumb is to use the Bohr radius of the
hydrogenic state of the lﬁrgest pringipal qumt&%n number of the bound states. For

example, if we include all the bound molecular states n < 6, then b, must be at
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Table 4 —1: A(im; R;by;€) at by = 20.0.

(All the quantities are in atomi¢ units)

€ J 1,/m) (0,0) (1,0) (1,1) (2,0) (2,1) (2,2)- :
A | .
005 | 05 | 02300 02313 02313 02190 02190 0.2191
005 | 1.0 | 0.2300 02319 02314 02189 02191  0.2192
005 -| 30 | 0.2305 02376  0.2313  0.2193 02211  0.2197
005 | 50 | 0.2402 0.2436 02311 0.2276 0.2254  0.2202
‘0.05 | 8.0 | 02413 0.2536 0.2312 ~ 0.2405 0.2326  0.2210
005 | 120 | 02422 02680 . 0.2324 02613 02430 0.2234
1°0.05 | 16.0 | 0.2436 0.2821. 0.2357 0.2‘885 ‘0.2‘546 d.zzél
'0.05 | 20.0 | 02457 02956 02424 0.3218 02687 0.2365
100 | 05 | 05142 05049 05052  0.4969.  0.4970 © 0.4971
100 | ‘1.0 | 05142 05064  0.5056 04963 0.4971  0.4775
100 | 30 | 05121 05177 05058 05028 05022  0.4993
100 | 50 | 05077 05197  0.5048 05228 0.5078  0.5006
1.00 | 8.0 0‘505'; 0.5144 05046 05280 05108  0.5029
'1.00 | 12.0 05111 0.516§' 05110 05119 05162  0.5107
1.00 | 160 | 0.5261  0.5304 ‘05262 05355  0.5304 0.5266
100 L7200 | 0.5520 05556 0.5523  0.5595  0.5568 0.5531
250 | 05 | 07557 0.7469  0.7474  0.7410 - 0.7412 10.7415
250 | 1.0 | 0.7556 0.7494 0.7479  0.7401  0.7416. 0.7421
250 | 30 | 07506 07592 0.7477 07563  0.7482  0.744l
050 | 50 | 0.7476 0.7541 0.7469  0.7640  0.7508 0.7454
2.50 | 8.0 | 0.7507 0.7542 0.7506 07589  0.7538  0.7504
250 | 12,0 | 0.7655  0.7677 0.7703 0.7678  0.7659 |

' 0.7656

y o
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Table 4 -3 : A(lm; R;by;€) at by = 40.0.

l ”{‘%" (All the quantities are in atomic uhits]
e [Nim) (00 1o @y 20 @y (2
o )

005 | 0.5 | 00931 00017 00017 00891 0.0891  0.0891
005 | 1.0 | 00931 00917 00017 00891- 00891  0.0891
005 | 30 | 00932 00926 00016 00892 00894 0.0892
005 | 50 | 00032 00935 00915 00905 00901 00802
00s | 80 | 00032 00049 00912 00924 00911  0.0890
005 | 12.0 | 0.0928 '0.0067 00909 00953 0.0923. 0.0888
005 | 160 | 00921 00081 00905 0.0986  0.0935  0.0887
005 | 200 | 0.0014 o0.5089! . 0.0904 .0.1021- 0.0939 0.0887
100 | 05 | 0.2426 0.2405 ° b.2465 0.2385 ,- 0.2385  0.2385
100 V1.0 | 0.2426 02408 07506 02384 0.2385  0.2386
Yoo | 30 | 0.2420 02432 02405 T0.2398 0.2396  0.2389
100 | 50 | 02407 02434 02400 02441 ¢0.2406  0.2389
100 | 80 | 0.2304 02415 02392 02446 0.2406  0.2387
100 | 120 | 02301 0.2404  0.2390 02422 02402  0.2388
100 | 160 | 0.23908 02408 02398 02420 0.2407  0.2397
100 | 200 | 02407 02416 02415 02426 02423 0.2415
250 | 05 | 0.3666 0.3645 ~0.3646 0.3630 0.3631  0.3631
250 | 10 | 03660 - 0.3651 03647 03628 03631 [.3632
250 | 30 | 0.3660 03672 0.3645 03665  0.3646 r0.3635
950" | 5.0 | 0.3640 03656 03638 0.3680 0.3647  0.3634
250 | 80 | 03636 03644 0.3635 0.3656 0.3643  0.3634
250 | 120 | 0.3645 0.3651 03645 03657 03651  0.3645
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Table 4 — 3: A(im;R;b;¢) at by = 60.0.

(All the quantities, are in atomic units)

e NGoleo) @0 @) (20 @) (22
rR\] -
005 | 0.5 | 0.0549 00543 00543 00533 00533  0.0533
005 | 1.0 | 0.0549 ._.005@5*’;&:‘2543 00533 00533  0.0533
005 | 30 | 00549 0. oséﬁf 960543 00533 00534 00533
005 | 50 |0.0540 00549 00542 00538 00536  Q.0533
005 | 80 |0.0548 0.0554 00541 0.0544 - 00540 &0532
005 | 12.0 | 0.0546 00560 00539 00554 00544  0.0531
005 | 160 | 00543 00564 00537 00565  0.0547 0.0529.
005 | 200 | 00539 ° 0.0565., 00534  0.0576 0.0548 Q0528
100 | 0.5 |0.580 0157} 01571 0.1562 01562 0.3562
100 | 10 | p1580 01572 01571 01562  0.1562 0.1563
100 | 30 | 01577 01583 01571 01568 0.1567  0.1564
100 | 50 | 01576 01583 01568 0.1586 0.157L  0.1563
100 | 80 | 01565 01574 01564 01587 01570  0.1561
100 | 120 |0.1561 01567 01561 01575  0.1566 0.1560
100 | 160 | 0.1561 0.1565 0.1561  0.1571 0.1565  0.1560
160 | 200 | 01562 01566 01562 01572 01567  0.1564
250 | 05 | 02416 02406 02407 0.2400 _0.2400 %0.2400
250 | 1.0 | 02415 02409 02407 02399 0.2400 0.2401
2 | 30 | 02409 02418 02406 02415 02406 0.2402,
250 | 50 | 02403 024fp 02402 02421 0.2406  0.2400
250 | 80 | 02400 02403 02399 02409 02403 02399
250 | 120 | 02400 02403 02400 02406 0.2403  0.2400
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A ‘Table 4 ~ 4 : Energy Sampli

rd

. (Maximur error'in ¢ is +0.0025)

ng. (All dua.xitities arein a.u.)

by =400 by =600 b, =800
P o eV
1 .| 00450 ° 10.0900 | 0.0250 ©0.0500 0.0150 ~ 0.030
"2 | 0.1500° o'.1on 0.0800 0.0600 | 00500  0.040
3 '0.28i:5 ‘01450 | 01450  ©.0700 00925 0045
4 | 04400 - 01700 09200 00800 | .0.1400 0050
s | 06200 - 01900 | 03075  0.0950 | 0.1950 0,060
6 | 08250 * 0.2200 "I~ 04075 0.1080 | 02875 0065
7 | 10600  0.2500 | os175 . 01150 | 0.3250 0.070
e | 13225 02750 | 06400 01300 | 03975 0.075
o | 16100 03090 | 0.T750 01400 | 04175 0.085
10 | 19225  0.3250 09200 ' 01500 | 05650 0090
1 | 22600 03500 | 10750 01600 | 0.65‘75 o 0.095
12 12400 01700 | 07550 0.100
13 14175 01850 | 08600 0110
14 " 16075 01950 | 09725 - 0.115
15 b ‘ 1.,8(‘)'75.” 0.2050 1.0900 0120,
6 | . 20175 02150 °| 12125 . 0.125,
17 2.2375 02250 | 13425 0135
18, | | 14800  0.140
1 19 ’ (16225  0.145
'29\\ : _ pTT00 0150
'21 . i " A\Zgzso K 6.160
22 2.0875 - 0.165
23 | 22550  0.170
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least 36.0 a.u.. For further calculations in this hesis we have taken by = 40.0 a.u;

the concluswns are generally apphcable for by, > 40.0 a.w.

‘At by = 40.0 a.u. we observe that the averages alue oA for cach € does

not deviate much (< 1%) from that at [=0m =0R =12, . Hence we take
_ the energy sampling and {A;}, independent of R and (I, m) to be that given in
Table 4-4.

In Figure 4 — 4 we have displayed the variation of the first packet energy

108

with the (major) radius of the interaction region. This curve can be fitted accu- .

rately (error < 4% for 30.0 < by <100.0a.u.; < 0.5% for 100:0 < by < 300.0 a.u.)

to the form
) & = (ezp(—w(by)’)

with ¢ =3.5916 x 10" @ =93.2410 ‘and p = 0.015625.

4.8 Explicit Construction of Wave Packets
| \
packets were constructed exphc1tly using equation ( 4 %) a(the wave functmm
caleulated in Chapter 3. Energy integratipns were done usmgermpson s rule, 7
energy points per packets kept the absolute error b;ow 1.0 x 107° within the
1nteract10n reglon B-,ehef plots of the wave packets on an 80 x 80 a.u. grid in the
zz — plane are dlsplayed in Figures 4 — 5 — 10. Averagn packet energies and the
internuclear separations are indicated (in a.u.) on each plot.

- Comparisori of these plots with those of the exact continuum states in

‘Chapter 3 clearly reveals the presence of the damping factor in the packets as

suggestedby the equation (4 - 8).
4.9 Discussion
" In generating initial values for P, and Q4 we used the asymptotic series

given in equations (4.- 25) and (4 - 33) rather than the ones given in equation

To venfy the propertles deduced approximately in section 4 . 3, wave,



First Packet Energy vs. b,

Figure 4 - 4 :
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(3 - 44) and the one for @+ that can be deduced from it, because for small ¢ the

\

latter ones converge at very large {m.

Past calculations {19,20] suggest that Rp, Reo < 20.0 a.u.. .Hence we

limited our study to the domain 0‘ <RK 200 a.u..
" Instead of a spherical region we have chosen an ellipsoidal interaction
region. In addition the volume changes with R. However for sufficiently large b,
the ellipsoid is almost a sphere. In the cese of by = 40.0 a.u., we have 538.7 Sap <
40.0a.u. and the change'in volume is small (~ 6%)s Hence we can assume that the

packet states are good to describe the ionized electrons within a sphére of radius

~ of about by.

A

3 . , ¥JQ “:1‘,

Here we have proposed to choose the wave packets in such a way that it

. covers a certain region of physical space. A consequence of this choice is that only

the Iow energy packets (whose packet widths are sma.ll) approximately diagonal-
1ze the Hamiltonian. Th1s is in contrast with more traditional ways of Lhoosm;,

pseudoétates.

116

. L2
The one-electron-two-centre problem possesses a dynamical symmetry

[72] reflected by the fact that the true adiabatic states are eigenfunctions of 4

‘v‘&ith tfie eigenvalue A. In standard notation

- 4*/) R2 - 9 Z -2z 4
A= '~"—(p§vtp;,)*-3<—4——8> ‘
TA B

Since A is a slowly varying function of € [30b], packet states at low energy are

‘-approxzmate ezgenfunctzons “of A: hence they do not completely destroy the

dynamlca.l symir «'.ry. The counterpart of Ain the atomic case is L*, where the

pseudostates are chosen to be exact L2-e1genfunct10ns

Wave pac centred at the centre of charge of the nuclei (CCV)

U.A..rr

o

As'R increases they do not dec@npose into atomlc packet states. - [pstead they
an ¢
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become rel‘;.'tively more \peake‘d at the CCN and along the line of “equiforce”. I‘Jow
lying mélecular bound states go to linear combinations of atomic states. This
behavior reduces the overlap between packet and bound states with increasing R.
Hence the assumption (Chapter 2) that there are no significant bound—packet or
packet—’bbund transitions for R > R is self-consistent-with the use of packet
states. ‘ ‘

Wannier [73] proposed that the double ionizatioj@laﬂ atom near thresh-
old takes place in such a way that asymptotically the escapir{g electrons move in
»pposite directions keeping the remaining ionic core midway between the elec-
“trons. Klar [74] has generalized this idea to any break L;p of 3-Coulomb particles.
He found that this “mechanism” is valid not only at the threshold but also up
to a few eV above threshold. Winter and Lin [7) have proposed to extend this
energy range up to about 25 keV for proton hydrogen atom collisions. L‘&ccordmg
to this “mechanism” ionization in H + H should take place in such a way that\/
the ionized electron has a higher probability to be found near CCN. The triple
centre calculations of Winter and Linj?] and the classical trajectory Montecarlo
calculations of Olson (75] provide évidence in favour of this. Since the adiabatic

wave packets have high density about CCN they are appropriate states to de{ribe

« N

the ionized electrons.

A consequence of equation (4 - 10) is that if the frue continuum state
at € = ¢ — %AJ has n nodes within the interaction region, then the statg at
€e=¢ + %Aj‘has n+2 npdes.“ The state at € = ¢; has n 41 nodes.- B;cause of
equation (4 - 8), the j** packet has approximately n+1 nodes which is the average
number of nodes of the adiabatic continuum replaced by it. This is a useful feature,
especially at higher energies, since it is known {9,76] that the pseudostates obtained
using a small number of L?-functions (eg. Slater type functions) cannot mimic

the highly oscillatory behavior of these continuum states.
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5. FORMAL PROPERTIES OF CONTINUUM

. '~ NONADIABATIC COUPLINGS

5.1 Introduction
If the heavy particle motion in an ion-atom collision is described bV; a
classmal traJectory R@t) (for given c.m. energy E and 1mpact pafameter b), the

electronic system evolves according to the time-dependent Schrédinger equation

%

PALGLINEY - NI (5-1)
ot
P ere the electronic Hamiltonian A, depends on time only throggh its parametrw
1‘-?’-1 on R. f TY(F,t) is expanded in the set of adxabatlc elgenstates
. e :
he(7; R(t)) |K; ﬁ(t)f{zmlk; R(t)) (5-2)

o

then the transitions can arise only from nonadiabatic couplings

-

15 whose mafrix

elements are given by
'?_m (' B(0)|(8/0t)k; i) = —ik5 - (K B(e)|F ik Rt) (5-3)

where v = (dé/dt) . (Here k = (nlm) for bound states and k = (elm) with
¢, = ¢ for continuum states) The physical meaning is that transitions r;zsult from
the finite rates of de formation of the adiabatic basis states as the nuclei move on
f?( t); couplmg strength is dlrectly proportlonal to the velocxty v. i

HOWever a rigorously correct definition of the nona.djabatlc couplmg

-

operator and its matrix elements requires careful consideration of several pomt.s.

118
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(a) ’\Ionadxabatxc couplings must be gauge — invariant, i.e. their matrix
. .
elements cannot depend on the inertial reference frame used for electron

coordmates and they must a.lso be defined consmtemh with correct
asy mptotxc bounénr)h condltrigns for the molecular state channels These

, requxrements result m”%iec?;a@ tramrlatzon factor” (ETF) corrections
to the nonfldiabatic coup{ng rfﬁti‘xx elements ETF corrections do not
directly concern us in this work, so the dlSCLlSSlOI'l given in Section 5 . 3

" is a brief survey.

" (b) The nonadiabatic coupling operator is not like an ordinary finite- ;fmgxe\

poteniia.l coupling, V(t). Its matrix elements betvzreen adiabatic c
uum states exhibit singularities, which reflect fundaMsntal }imitation
of an adiabatic description of the coptinuum. The formal structu
and properties of these.singul\arities are the main’ concerp of this chap-
ter. They aré derived in detail, using an ;clppropriz.\xte generalization of the
Hellmann-Feynman relations. ‘Careful attention to this singular struc-
ture is needed to form a correc£ representation of nonadiabatic couplings
within the subspace spanned by the adiabatic contmuuv 1 paczet states.

-

Most previous work on nonadlabatlc coupling matrix elements is conc. rned only

]

with bound-bound or bound-continuum couplings. A representative sample of
such work for one'—elgctron-two-nucleus usystems can be found in References 30b,

41b, 77 and 78. Since no quasi-bound levels are embedded in the continuum

for these systems, all such couplings are non-singular, thox?gh individual bound

>

state co gs can exhibit pronounced redonant maxima associated with avoided

crossings ai?é other near- degener?cxés Almost no studies of contmunm continuum
couplmgs haVe been reported (ekcept for a paper by Ponomarev et al. [79] whose

B}

results we d,xsagree with - ¢f. Section 5. 9 below), and in particular little atte

has beenﬁgjlvgn to the structure of the singularities in these couwmgs.

0-4
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5.2 Rad1a1 and Ang&dar Couplmgs '

Cy

The gradient VR which appears in equatlon (5 - 3) fbr the nonadnﬁatxc
couplings 1s understood to be taken holding electron coordmates 7! fixed in_a
non-rotating (space ﬁxed) teference frame (SFRF) On the other ‘hand the adia-
batic eigenfunctions |k; R( }) are normally described in electron coordmates 7of a

~ molecule-fixed reference frame which rotates with the molécular axis R(t). Figure
5—1 depicts the frame rotation c;)nnecting these axis systems. THé tfansfgrnlat_i()xl

linking 7 (z,y.z) to 7' (2',y',2') is just

2]

£\  [cost cosp tcosd sing —sind !

Ty | o] —sing cos@ -0 Ny

|
<
———
ov
!
i

]
z sind cosp sind sing > cosV !

e

3

frornv which it is easily shown that 7 , ‘
o\ [0\ i
—th (0R> = —ih (b??); (J—Sa)
79 : o\. . | /
—th| — - - 5b
(%), (&), e

Q
5,

where L;, Ly, L, are the operators for the (molecule-fixed) (omponente of

electromc orblta.l angular momentum
In a clasgxca.l trajecto'ray description, the heavy pgrticle motion ﬁ(t)'is
confined to a plane, which we take t‘o'be the zz —plane. Hence ¢ = cor;stant =0,
f{(t) 18 speciﬁed By R, U alone, and .,th'e instantaneous radial and tangential i
> components of the velocify 7 are vB E\(dR/dt ) and v’ = dzé/dt) = —=by/R ,

~where vy /2 =+E. Since the a(hab/t/c basis states lk R(t )) depend only upon R

X

O
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Molecule and ‘Spa‘ce—Fixed reference frames
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Figure 5 - 1:
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_ : |
SFRF OJ:' ' ’ MPFRF = Ozyz

"We obtain MFRF as follows. Rotate a reference fra,me comcxdent with SF RF

counter clockwise (CCW) by ¢ about Z. Then fotate it CCW by ¢ about 1ts

y-axis. We choose (¥, ) so that R D on the z-axis.
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in MFRF, the nonadiabatic couplings formally given by equation (5 3) may now -

be writtén as . . .
~ Kyrlt) = —itd - (K'; ROV gl Ri0)

. (5-16)
= vR P+ 0" Py |
where ' )
. PR, = —ih(k'; R|(8/3R)s|k; R) o (5-Ta)
and
9 1 ! T ; ’ e~

These are c‘alled, .respectively, radial and angular nonadiabatic coupliﬁg x‘natrix-»
elements. They.:,.;'g‘lre functions of the internuclear separation R. |

P,f,% and Pi_’; , can be calculated entirely within the molecule ﬁxed refer-
en%? frame where th; adiabatic states are functions only of scalar I.

Since the adiabatic eigenstates |k; R) are also eigenfunictions of the figure

axis component of angular momentum L.,

L.|k;R) = mh|k; R). (5-8)
) . (,_.,”-/1\
selection rules hold for the radial and angular coupling matrix elements:
For radial couplings, m' = m; 3 =
For angular couplings, m'=m+1." |
Since we can write
- 1 /- N
by=s (L= I-)
v\ y

where L. are the ladder operators raising and lowering m, it 1§ most convenient
to compute coupling matrix elements for Ly , rather than for Iiy , with the.

specific selection rules m' =m+1 for Ly and m'=m -1 for i
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5.3 Tra ‘slational Invariancé and Translation Factor Corrections
’Pi?e physical desc‘riptién of-a collision offered by the equation (5 - 1) can-
~ not ciepend on the reference origin chosén for electron coordinates. It follows that
the coupling matri'x elements defined form?lly in equation (5 - 3) and elaborated
in equations (5 - 6)’;;1:1 (5 - 7) must also be invariant to that choice. However, 1t
is easy to sho‘yv that computed matrix elements P,f,tk and P]f, ; given by equationé
(5 - 7) do not have the required invariance. In this work we find it most conve-
nient to choose the geometric centre (GC& as the (conventional') reference origin

* for electron coordinates . Suppose however that 7 are electron coordinates from

a new refer,e'hceuorigin, displaced along R from GC:
Fo=rF-cR; (c = constant)
Then it is easy to show that
—ih (K'; RI(0/OR)z, ki R) = —ih (K'; R(0/OR):k; R) + ¢ (K'; R[p:|k; R) (5 =9a)
and -

1 - 1 - ‘
~ 5 (K RIL§ K R) = ~ 5 (K5 RILGE ks B) + ¢ (K Ripe ks ) (5 — 9b)

4

where p;, p, are the electronic momeritum operators conjugate to z, 2 and ﬂ;,
igip are _the angular momentum componegys. i« ferred to the new origin and to
GC, respectively. , . ‘ / -

The inconsisteney is resolved by observing that the new origin is trans-
lating rela£ivé to GC, due to the nuclear motion, and that transformation theory
requires that wave functions « ~scribed in the new frame differ from:those in the

GC frame'in a maniner representing such relative translation. When the electronic
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V.

Hamiltonian k. acts on the transformed wave functlom in ihe hew fr'une of ref-
erence, additional coupling terms are generated which exactly compensatc for the

new terms in equations (5 - 9) and/ preserve translational invariance of the effective

nonadiabatic couplings.

Furthermore “the couplinge computed usine 3C as the reference origin

must be defined correctly, le. In'a ma.nner consiszer.{ with a correct descnptlon 0
i & - .
of'lhe asymptotxc channel’wave functxons descrlblng the basxs states. This:.cannot

. 5 . "
"'!t

be achreued by ué}w,g unmodz%zed adzabatrc molecular ezgenstatea of he. Con-

'51der an electron bound to elther nucleus {A or B) as R — co. Seen from tho |
v B ¥
conventlonal reference origin GC 1t 1s transla’i“i%,z thh thc nucleus o wlnch it

N

is bound: that i is, the * correct inertial reference origin’ " for-an’ electron bouiid to

' nucleus Azxs at nuclem A, not GC; ‘and that for an electron beund to nucleus B

b

1s B not GC It s zmposszble to choose any untque “inertial referencb}frame
for the electron which resolves this problem sirice the nuclei A, B dre_mov-

ing relsitwe to ‘pne another with instantaneous velocity @ v, the proper znsymptotxc

o :

1nertbaT reference frames for elect)fons bound to each are dlﬁ"erent and thxq dlffer 9

ence must e accounted for in the definition of the scattermg basis f\l[l(‘t]()I)S even

within the classical traJectory descrxptlon (31,80]. Smce the adxabatlc H(umltoman

l"" 4

h. contains. ho information about the motion of nuclei, deqrrlptxon of such rela-
tive tr'n.nslatron cannot appear in the elgenstates | k; ;2) themselveq but must be .
includ)ed ‘as a modifying “electron translation factor” (ETF) in a correct descn;ly
tion of the rasymptotic channel states. The asymptotzc definition of these factors
is read}ly found from transformation theory; but the problem is how to modxfy |
molecular state basis functions (and the couplings a.mong them) in a global way

which .

(1) gives the correct asymptotic behavior for wave functions and couplings,
5% RS ) ‘ ) .



(2) maintains translational invariance of the resulting nonadiabatic cou-
plings, and
(3) forms an effective hasis set for convergent close-coupling calculations.
Several solutions for this problem have been proposed. Here we use the formalism
of Thorson and Delos [13,31,80]; which is baséd on the use of molecular state

switching functions. Several close-coupling calculations using this formulation

or closely related scheme have been carried out [19 20,34,81], though none so.

far have included close-coupling tc the continuum. Delos and Thorson show that
the most 1mportant result of translation factor effects in the description of an
.ion/atom collision using molecular states is to correct the nonadiabatic couplipg
matsix elements 16 If GC be chosen (arbitrarily) as the reference brigin, then the
" radial and angular couplings which appear forrﬁ;xlly in eqﬁations (5-6)and (5-7)

| are ezpl‘if’.éjitly defined by
& ik (K R|(8/OR)|k; R)” = PEy + AR (5~ 10a)

1 -
R (K's R|Ly|k; RY” = Ply + Al . (5-10b)

s
{

- where Pk}'{k and P,:’,kkaie given by equations (5 - 7) with GC as reference origin,
and the ETF correction matric¢3f~.AR, A are defined by [31]

AR .
D S : L
" [ e
. Lo

ih R
afi= Gl - )R AFERIER) - (57 1)
and h |
v N |
AR, = S(ew — @)(¥; Rlz fulF R)IK; R) ©(5-11b)

where fi(7; R) is the switching function for the adiabatic eigenstate |k R) 17

. Effectivély, the switching function fi(7; R) shifts the electronic reference -

origin from GC to ope which is locally more appropriate. For bound states, the



asymptotically appropriate local origins are the-atomic nuclet (A or B) to which

" the electron is asymptotically bound, and with which it translates uniformly (with
respect to GC) as R — oo0; thus fi(7;R) must satisfy the general asymptotic

boundary conditions [31,80]

I's

Jim fi(7 R) = +1 if |Fl is fimite (5 - 12a)
Jim fi(FR)=-1 i f |F,,|. is fipite (5 — 12b)

However, the form of fx(7; R) for finite R- va.lues is not fully determined. The efhi-
c1ency and convergence of close-coupling ca.lculdtlons employing the resulting basis
set 1s a relevant criterion of choice. There is some dxspute about whﬂ.ber switch-
ing 1 functlons need to be state- specxﬁc (ie. dlfferenf fi's for dlffcrer:t( lk R) s) or
a common switchingsfunction can be used for all the _adxabatxc stzgtes. The latter
choice is much simpler formally (see refereﬁres 31 80) :'md arguments favouring a
“universal” choice have been given by Vaaben and Taulbjerg [82]; however, cal-
"culatlons using such a universal choice deal on}y with total charge transfer cross
" sections using limited ba515 sets .and contmuum- couphngic;r transitions are not
- considered. More detailed studres show that etatge spec;ﬁc switching functions
NG R) for\e@ch adlabatzusxate may be derlved from several independent consid-
erations [30a, 80 83] and the calculations preqented in references 20 and 81a show
that individual state exc1tatloﬁ eross sect:or; are qulte sensttie to the detailed
choice of sw1tchmg functions even for fairly large ‘basis sets. From the viewpoint
of this study, a key consxderatlon is the dramatxc effect of state-spec ific switching
functions on the number and size of couplings to contmuum states [3021] m View

of the effect of the fact that the same smtchmg functlons mav be deduced from

. analytical propertles of the adlabatlc elgenstates themselves [83] 1t would appear

126
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«
that close ‘coupil‘ing calculations which include continuum states should employ dif-

<

ferent f;;(r"'; R) for different |k; R) in spite of some additional formal complications
18,19. ‘
This researcﬁ is not directly concerned with the study of ETF corrections
to nonadiabatic couplings, but in ;onclusidn we should make two points which do
bear on our ;)bjectives: ‘ s |
(1) We show in this work that the adiabaﬁc continuum packet states which
are used to répresent the.continuum locally are centre/d on GC (more
generally, the centre of positive charge) a’nd not on the atomic centres.
((The implication 1s that for these states the GC is the “appropriate ref-
erence origin”, i.e. there should probably be no ETF corrections for
tontinuum-continuum couplings. | A.

(.2) In any case it may be shown that the ETF correction matirix elements are
at most finite and cannot therefore affect the structure of singularities in

nonadiabatic couplings. These arise entitely from the coupling matrices

pR ‘P‘g, and we restrict our attention to them in the remainder of this

Ehapter.

5.4 Hél'lmann-Feynman Theorem

If Alk;‘R) are adiabatic eigenfunctions of the Hamiltonian he(T; R) and ¢

-

is any parametric variable on which both h. and the eigenfunctions |k; R) depend,

then the Hellma.nn—Fey(hman theorem [84] o
1.1 I - 9 I !
(s RIOh/0C) Ik B) = FE (K RIE R) + (e = )5 RIO/OOIK B) - (5-13)

'

> .
i

!

‘vholds, provided at least one of the eigen functions |k'; R), |k; R) ts of L? —type.

This condition is sufficient to ensure the Hermitian property of h. with respect to

-1
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on

(K'; R| and (8/8C)|k; R).

(K; Rike(8/00) 1k R) = (he(K'vR}) (3/0)Ik; R)

K]

as shown in Appendix D; the derivation of equation (5 - 13) then follows immedi-
ately by differentiation of equation (5 - 2). We cag apply equatfon (5 - 14) directly

to the computation of radial nonadiabatic couplings Pk},{k,

: . (k' R|(Oh./OR)z|k; R)
PR = Ll Sl 5—14
¥ [ex(R) — ex (R) (o
and indirectly to the angular couplings P,f,k:
o _ —ih (K R(0)|(Ohe [39)e1k; R(2)
TR [a(B) - e(R) ) (5 15)

1 (K;R|[Ly, he]lki R)
R’ [ex(R) — ex(R)}

«

as mentioned above it is more convenient to consider the matrix elements of the

ladder operators L, for which the corresponding Hellmann-Feynman relation is

(K, RI[Lx, helk; BY
[ex(R) — ex (R)]

(K'; R|L+|k; R) = (5 - 16)

Equations (5 - 14) and (5 - 15) provide efficient means for computin;% r:uiial and’
angular adiabatic couglihgs Pkl,{k', Pf,k betwée'n two b%und states and also between
bound and continuum states. ' - ' ,

3 | . Eq‘uations (5 - 14) and (5 - 15) imply that nonadiabatic couplings may
becéme very large if the states coupled are degenerate. For the one-electron sys-
tems we consider, the bound state spectrum lies below the continﬁunwm

is not directly pertinent to discrete-continuurm couplings. For couplings amerg two

bound states, two cases occur:



N\

(a) AL;oided Crossings. 3

Two adiabatic states may hayé an avoided crossing rear some inter-
nuclear separation R;; the adiabatic eigenvalueé.ekl(R), ex( R) obey the
non-crossing ;dle (28] but the difference (e — €4 m;xx\become very small
near R;. In these cases the radial coupling matrix \élexhent Pk}'zk exhibits
a prdnounced maximum near Ry, with a width and peak height con-

trolled primarily by the energy denominator in equation (5 - 14). Such

coupling are resonant but not singular.

i\«b) Real Crossings

pJ

Adiabatic eigenstates with different eigenvalues m', m of the figure axis
angular momentum component L,, and, under certain circumstances
(28], with m' = m, may have reél crossings, hat points R; where the
energy dtfference between them passés through zero. However, in these

cases the corresponding nonadiabatic couplings are not singular; the ma-

trix elements in equations (5 - 14) or 45 -,\1:'15) y be shown to be linearly

N e

preportional to the difference [ex(R) — ¢ R)] near R; so that the cor-
responding nonadiabatic couplings are smooth, nonresonant functions of

R through such crossings.

. [y
v

> ) - '
5.5 Extension of the Hellmann-Feynman Theorem to Continuum
States

If matrix elements involving two continuum states are defined appropri-

) ately the Hellmann-Feynman relations may be extended to continuum states. In
particular

(1) For two continuum states with different energies €; # €y, the analogues
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. of equations (5 - 14) and (3 « 15) hold, i.e. \
, ¥ R|(9he/OR):k: *
PE, = —ih (; RI@/0R)Ik; R) = —in (L EI S TR
: ’ 5 =17)
Py, = ;t’ (K R|L+|k; R) = h (K RIlL: B lki R) (5 - 18)
2R (e —¢€)

The commutator métrix elements appearing in equations (5 - 17) and
8) are analytic functions of the energies €, € iﬁcludiﬁg € =€ (see

};elgw). |
(3) When e—¢' =0, the nonadlabatlc coupling matrix elements PE and P,
| are singular.. Wg compute these smgulo.rxhes exphatly and dctermm(

their analytic coefficients.

(4) As implied in equations (5 - 17) and (5 - 18)a col. uéé_
the analytic commutator matrix elements for € = ¢ and tilC ;I;Ei;)/t’&,ﬁocf;
ficients of ti singularities in the corresponding nonadiabatic cou“f)lings,
and we derive these relations. |

Calculations of these effects of nonadiabatic couplings among continuum states
entail integrations over the continuum energies ¢, ¢. The above results may be

summarized by the statement that continuum nonadiabatic couplings have the

forms . 4 ’ . -
N/ :
PR =ME 6 —e)+P |22 (5 — 19a)
L(f“f,)
P 4 o | —Nl?’k
P,k’k = Mk’k 5(e —¢)+ P (é_j)_ (5 — 19b)
L ' ' :

- where 6(z) is the Dirac delta-function; the symbol P implies that the Cauchy
principal value is to be taken in integratiohs over energy including the singular

point (¢ — €) = 0; the analytic coefficients Nﬁk, ngk are gi\;en by

NE = —ih (K'; R|(0h/OR) |k R) " (5-19¢)



/

&

- and the analytlc strengths Mk'kv ]VI"k of the singular terms are also dlrectly

related to these commutator matrix elements for € — € = 0. Such relations may-

&
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Npy = 558 RilLs, Rl B © -1

be called “the extended Hellmann-Feynman theorem”. In the remainder of this

ch?&er we derive™these relations and the associated coefficients explicitly. .

i 96 Propertles of the Fundamental Integral

Certain 1mproper 1ntegra.ls 1nvolv1ng the continuum states do not con-
verge to specxﬁ;‘ Jimits. To study the nature of the 51ngu1ant1es and to define the,

matrix elements unamblguously we 1ntroduce a convergence factor g( a, r) and

. interpret the matrix element\ of an operator O 3 Loy

¢

(k’RlOlkR lim /drgar (KR F)(Oz,b(kRF)) | (5-20)

.///

,//

where

e, 7) 4=A exp(—ée | QJ

Note that the hmlt a — 0+ is taken after the spatial integration has been per-

formed - N .

L

functions which is being taken to “infinity” at the end of integration. Then the

potentially s‘ingul_a.,r part of a matrix element comes from integrals of the ferm

- /déffp—(én“—ﬁ) cos(04(6) - n>=0 (5 - 21a)
1 : :
ahd/er
- /df “p( 29 sm(@i(f)) n z,(; : (5 — 21b)

g(a,7) can be imagined“tg provide a confining envelope for the wave



‘Where
) ol
01(§) =Cx €+ 6:In(§) + Ax (5 —22a)
Ci=c4c bp=+qCs/(2c) Ar=A%A  (5-22h)

Here the parameters ¢, ¢ and A are as defined in Chapter 3.

In the theory we do not have to consider zero energy states; hence Cy >

0 for all cases. *

The integrals (5 - 2¥) are the real and imaginary parts of the fundamental *

integral ’ 3 |

RS
e ] |

9@( @) = caplie) [ 4 eap(—(a—iCa)) | (5-23)

A

1

F. can be expressec in terms of Kummer's U —function whose properties are listed

in Chapter 13 of reference 53.

Fa(Cy,a) = exp(i Ay) ezp(~(a —iC1) ) U(L, 2= n+16x, a —1Cs) (5 -24)

In evaluating F,, at a particular value of Cy « 1o — 0% we adopt the follo\:'ing
convention: First substitute for C4 in equation .(5 - 24) and then take the limit
a — 0F. This order of operations follows from the fact tlat in evaluating matrix
. elements we start with two particular continuum states s0 that Cy is determined

N

at the beginning. _ )
. - ' -
In the rest of this section we shall find the behavior and the strengths

F,(Cz) of any singularities of Fn(Cx,07).
(a) Cy#0andn2>0:

\

lim Fo(Cy,a)

a-0%t

< o0 S (5-25)

S
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- Since F, is non-singular,

. \
- FR(Cy)=0, C:#0 (5 —-25b)
(b) C_=0andn2>2:
X ezxp(iA_) - on
al.lﬁal«r Fal0,0) = =" (5 = 26a)
P A | :
Hence ‘ : X
Fa(0)=0 , n>2 (5 —"76b)

(c) C-=0andn=0:

When C'_ ~ 0 and a ~ 0T we have

Fole—,a) = ezp(i A_)ezp(—(a —iC-)) T(1 +14-) MCH)+K (G- 27)

R e
where ‘
S . MC)=(a—iC)T (5-28)
o(1) c.#0 !
K= : (5 —29)
O(|ln(e—iC-)]) C-=0
Then it follows that
Fo(0, ) — (—1- + const. X In(a)) exp(t A-) (5 - 30)
a—0 a

K has an isolated logarithmic singularity at C_ = 0. The strength

of this singularity is zero since it has zero area (see Appendix C). To study the

3

singularity in- M(C-) multiply the numerator and the denominator by (a+iC_)
L8 .

and separate factors

4

L (a=iC)¥-
a? + Ct Fil- a’+C2

(5 - 31)



In ihe’limit,_C_ = 0 the second term in equation (5 - 31) vanishes. Since

Q - a .

"

Denote |k; R) by |vx) . Then we have,

(gplhe La — Lehelps) = —(guul(LeV)lux) -~ (5-38)
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lim — =76(C_
aiorf)l'*‘ a? + Cli T ( ) ;
we have |
1ir61+ M(C_)=#6(C-)
" Are (5 -32)
5 B ;z:c e —e)
Hence
. 4me . . )
Fy(0) = 3 ezp(1A_) (5—-33)
(d) C_=0andn=1:
rd
We have _J
F1(0, «) — const. x exp(t A_)In(a) (5 —34)
a—0
Then it follows that '
| Fi(0) =0 | (5 —H5)
. 5.6..1 Summary of the Sfrengths of Singularities
: . &
Fu(Cs)=0  for 'n>0 and -Cy#0 (5 — 36a)
0 : n>1 ’
F.(0) = © (5 — 36b)
(47r»c/R2) exp(tA-) n=0
5. 7 Angular Coupling M'éti'ix'Elementsv
" One can easily show that .. -
lhe, La) = - (LeV(7, B)) - (5-37)
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where ¢ 1s the convergence factor which guarantees the Hermicity of he (see Ap-

pendixCD). Hence we h”a!ve

(& g b Ealtn) = —(gbul(EV)le) + YE()

where >
r h? C . 2 ' .
Y¥(a) = —((Vevw) - (Vig)lLate) + 5 (We(VEQ)Lewr) A\
5 , o - (5-40)
3 _

" m, is the molecular electronic reduced mass; equatlon (1-.3). We study Yi(a)
in detall to explam the mathematical technique used to derive the e\pressmns for
angular and radial couphng matrix elements.

In prolzite spheroidal coordinates we have

E‘ &-1 /1— n’- %’0 K
R 62—71286 2377 \/(52—1 )1 - %) 06
D 4 , B0 a0, (E@-w) ]
| V*“R‘Z(f?'—q?)[ Vg “"”an*(52—1>(1—'n’~’>a¢‘2J.‘

e JETIIIT [ e ) 0 (0
zi-—h P(:E d’) (52, 7 [(52—1)(1'f‘7‘72)6¢i< g Eq)}

<t
el

»

. ' ' 3 _
Volume element = dV = %—(g?’ —n?)dednd

6o g0 ezp(img)
;gz 1 kT \/5;

After doing some algebra and integrating over the azimuthal.angle we obtain

bu(F) =

) Co+l 00
V(@) = SRbwmsr [d1 [ 6T Xo 2 Xo'k X, ezpl—a) (541
. -1 1 ' ' ‘



136 .

v?zhere- |
| Xi=— mén Sy Sdiski ' 5 —42a
IV GETErI. & ™ oo

ny/(€-1)( - ) dpp déi
Xy = SpSk ———— (5 —42b
: (68— ) S+ g e (5 — 420

£n 1- . déy - .
X3 = S — 5 — 42¢
mEea e e G
X, = £V(E2-1)1-1n%) g, 3% dék/¢k

kl
(€% —n?) dn  d§ |
When m'- = m + 1, X; are finite for -1 < 7 < +1 and +1 < { < oo. The

(5 — 42d)

singularities at £ = 1 are of the form 1/+/z which is integrable. Hence the possible
.singtﬂarities (in the limit « — 0%) come from the infinite range of integration.

Remembering that:

O = T sin(eE (@2 HO+A)

{—o0 ™
and using the asyrhptotic forms .of X,' we o‘btain

Y:t

X+ b‘ K k) X%(a) F BL(K' k Xﬁ()
N_[ m Bl (K, k) \1’() 1K k) el
£ B (K. k) X3(a (o) £ B(K, ) X2(e)] :
: Whe_re X is a finite quantity and - e
| +1 . .
ﬂj k, k) = /dnn-’ (1-7 %Sk’( )Sk(n), ‘ (5 — 44a)
1 ‘ .
‘q ‘
+1 .
Bk, k) = /dn V-7 Sp(n)— dSk (5 — 44b)

' -1
r e : S o
. X‘f°(a)'= /df ezp(—aé) (c + 5?2) (stn ©_ + sin G*’); . (5—45a)
1 A ) : ‘ ) ‘



£ 2c'

2c§

X$(a) = /d& e:rp({zaf) ( + 2—0’2) (sin O‘._ +sin©y) (5 — 45¢)
1

One can study the integrals X using Fu(Cx,a): then we have

N 0 . fcd #c
Hm aY (a) = :
0t l { (1/7) [m BL (K, k) £ B'(K', k)] sin(A = A) bprmay i =c

XP(a) = / dff_lii‘_@ (c’ .h,_ql_> (c—}— ——> (cos ©_ + cos Oy) (5 — 45b)
1 N
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(5 —46a)

Using the same method we can prove that the singularities in Y5*(a) are at most
1/a. Hence _ v '
. . D

lim o?Yf(a)=0 - ' (._5_“-46b)

a—0F
Now equations (5 - 42b), (5 - 43) and-(5 - 46) give (remember that when ¢ = €,

the quantity. in the left hand side of equation (5 - 42b) vanishes)

. ,
Lr (5‘*5)(1?’1:’![/:&!’/’&\ 5m' ,mzl if ¢ 7 e
(wl (LaV) e = (h frime) e BL (K DEBE.D)
- . : kN 11€.=¢€
S FEEN ’,j" ;sm(A A)(Sm_,m:hl -
; T T (5 - 47)

Note that equation (5 - 43) gives ﬁle'angﬁlar coupling matrix element when € # e.
When the energies of the two staﬁes are the same it gives a (two dimensional)
improper integral in ,terms of simlpler one dimeqsiverji-ei:‘iht’egfele 61_1 Yaed A and
the phase shift difference. B N

To obtain the strength of the matrl;c element when € = ¢ we dxrectly
calculate (g ¥ | L |vk) and take the limit a — 0+ Usmg the same techniques and
equatlons (5 36) we obtam o | |

E

(bl sbbe) = —h (m ALK B) 2 8K, ) cos(A =) B 8¢ =) (5= 49)
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Note that the analytic coefficient of the delta-function part is related to the com-

. mutator matrix element appearing in the principal pﬁrt. o

{ | - : ‘
5.7.1 Summary of Continuum State Angular Couplings
)“\ ' - '

C Bl= o= (W RIS R) - (R R)). -
) (K'; R| (Liv\ LR . T
(K R|Ls|k; R) = P T . S
—h (mBL (KL E £ V(K K)) cos(A = A) St 8(€ —€)
' 65 49}
| 5.8 Radi@l; CoﬁplinWatrix Fl: ments '
One can easily show that ) 3

”; a—. _ . ailc __ QY_)
“\8R/.] ~ \OR ). -\OR/;
“\ L o A
where ‘ ‘ .
N »

L

Using the same mathematical techniques as in section 5 . 7 one can dcrwc the

following formulae. X

. . v h? ! / ‘. Ly
(K RI(0heJOR)s K R) = { | 7 Pal¥) )SU}(A R s

‘" R __q___?A o
K .~ Tam.\2cR_ OR -

SR (5 — 50)

where s ? |

| T 0s) ’
‘ ! Yk e

— 1 ¢
3,060 = [ dn s (G ) (5~ 51)

<61‘/ (aR) R {E(F \1)<65>Rn+n(1 '9<0n }

(¢ —€) (K RIG/ORIkS R bm - Fe

(e



Also we obtz_xin

wsriaroRk ) = 7 | (R e i )]

h?.
4 Ba(K' k) cos(A" — A) b (1 = br1) 6(€ —€) -
: : : (5 - 52)
= ‘ : i
5 9 stcussnon .' . uﬁ”i;
> Some matrix elements of ad1abat1c continuum states which are relevant

in the quantum mecha.mcal treatment of the Coulomb 3-body problem, have been

reported in reference 79. The quantxty\the authors have represented by Q(:,) is

the strength of th‘e radlal couphng matrix element. Though it appears that their

139

result (Q(+)) is general 1t 1s correct only when the two continuum states are the '

‘ eame. They have not rep?rted the' express1ons_for P parts or the angular coupling
gt :

matrix elements

*In the der1vat30ns m reference 79 the authors have negl%cted the In(€)
s
B tﬁ"rﬁ in the: asymptotlc phase of the radial wave function. It is not justified a

W

prlon to dgop this term as it becomes arbltranly large as ¢ — oo. The math-
e .
ematical technlque developed in this chapter is more’ rlgorous as is manifested

in the derivation qf the energy;dlagonal\;part of equatlons (5 - 43) and (5 - 46).

We have numeric¢ally confirmed these relations which confirms the validity of the
mathematical technique. Th'e'y» also provide critical tests on the computer codes

to evajuate (K R|(E2)Ik; R and ('; RI(8V/0R)|k; R)

-

. The equa.lxty of the nght and the left hand sides of equatlons (5 - 45) and

"(5 48) is not in the’ ordmary sense but in the sense of dzstrzbutzons a definite

K

1ntegral of bne sxde is equa.l to the same mtegral of the other side.

As in the case of bound states, Pk'k and Pk' k,for continuum states are '

I ; ’ ‘
- strictly of f-diagonal and Hermitian.



“t

6. EVALUATION OF NONADIABATIG COUPLING MATRIX

-

ELEMENTS BETWEEN CONTINUUM STATES )

6.1 Introduction
In deriving closed form expressions for the nonadiabatic propagator in
Ch:a.;‘)ter 2 we assl1med.t‘)hat the m;rr@rator of the P-part and the analytic coefficient
of the 'delta function pe.rt of the nona;liébatic coupling matrix elements are slduly
varijin'g funcitions of continuum énergy 50 that over a packet width they can be
‘ approxu’nated by their values at avel:age packet energxes In this chapter we develop
techniques to compute these matnx elements and prescnt results for HY to provc'
‘the validity of this assumptlon To our knowledge there are no published values
of these matrix elements.

The behavior of the matrix elements as a function of R is also examined;
this mformatmn is necessary in performing-a close- couplmgl calculation.

One has to calculate the commutator matrix elements (k'; R|(LiV)|k R)
and (k'; RI(@V/ OR)|k; R). Though the flux wlthﬁ contmuum states does not van-
ish at infinity, the quantities (L4+V) and (8V/ aﬁ da:mp -down. Hence these matrix
elements can be evaluated accurately by numerical 1ntegra@n provided any sin-
gularities at the origin are treated properly. | | |

Tﬁ‘e 1ntegrat10n over the ammu,thal angle, ¢, is done by inspection. Us-

b
ing the power series ‘representation for angular wave functions, the integrals over

7 is expressed in terms of Gauss Hypergeometrlc functxons,‘ o Fy, which' can be

generated accurately. The remaining mtegratmn over £ is done numenca.lly The
global representation developed in Chapter 3 is used to generate continuum radial
wave functions. Throughout this chapter we use atomic units.

-

~ 140
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6 »2 Evaluation of (K R|[(L+V)Ik; R) -

6.2.1 Derivation of general expressions
. _ , \

In prolate spheroidal coordinate the molecular electronic potential for

H;’ can be written as

) P
V=-e— 6—-1
R(E-7) o= y
Then one can show that v ¢ £
R S DA -7 (P +3¢
R "0 (S '
| T%én it follows that ,
‘ / - / :‘ ‘2R + l‘, . + . y . '
s (K R|(LtV)|k;R) = e (Ao(lg;%)z+‘3f42(1,09)) bigrirr (6 ;_?)
K ;‘ 5 '~_.::' 'S ? 5 - ‘V\f
”":' 2 a2 o Q&Q .
where e o
R v v *
A¥(a,b) = /dw\/e 1 fE( ( (ks B ) x(k Rf)) n=0,2
s T - (6 —4)
@ and | . - ‘ {\\ .
__ 2 n o oo “35 %
(€)= / iy g S(F; Rin) Sk Rim) , L(625)”

4

Use the power series representation, equation (3 - 7), for the angular. wave func-
tions. | | | |

Stk Rim) = (1= 1) F Z Bl 620)
Then fif , becomes ‘ |
| fal6) = 214‘ :io CrETEE) 6-7)



Where T _ _ |
=" Bk Bi(k) - (6-8a)
: -‘+i,’j=_1 ‘ -
, +1 ' '
) I+3-n(1 "772)N+1 .
A?*(£)=/dn’7 ——57e (6 - 8)
o (1-n%/6)
IN +1=|m|+[m+1] ‘ (6 -8¢)

n = 0,2; hence K}‘i is zero when I is even. To evaluate K;‘iywhcn I 1s odd,

change the variable n? — z. Then

1
K}‘#(Q:/d; LUF2=m2p N et (6-9)
0

which can be expressed in closed form in terms of Gauss Hypergeometric function

[Chapter 15 of reference 53]. Then one obtains

Al

d(2+ N - o
FF(—d)—-(;)—tTV—) 2F1(2,d, d+ 2+ N; 1/€7)y when [ is odd
Kt = TA+2+ ) - (6 - 10)
0 when [ 1s even
1 ) . ‘ :
with  d= 3(1' +4 - n) and n=0,2 B

‘ J
- One can evaluate fi  at any £ using equations (6 - 7) and (6 - 10).

' 6.2.2 Behayior of the integrand in equation (6 - 4) near { =1

The relevant Gauss Hypergeometnc functions have the qualitative forms
shown in Figure 6 —1. fif n( ) can a&most be logarithmjcally singular (In(§ - 1))
at §,= 1. . ' '

x(k; R; £) can be expanded in power series (equation (3 - 28)) near the

origih.
L2 -7 & -
ki R; €) = T(k i 6~ 11
Xk R §) = )rR v ES ;a (6~ 11)
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Figure 86 - 1:  Gauss Hypergeometric Function

A" N K]
| 2Fi(a, B, a+ P+ N; z)
. a . |
1, b
( :
_ |
‘. ‘ \
} g
1} .
|
i

T &
o The singularity in 2 F1 (e, 8, a+B; z) at £ = 1 iggf the form In(1-

equation (6 - 19)). . ~ g ¢ ,

)

LY



where T(k) is a state dep(ende'nt constant. Hence the relevant integrand always
has a factor (€ - 1)N+%, N =0,1,2... which will “neutralize” the _logarithmic
singularity at ¢ = 1. Hence AF(1,b) can be evaluated by direct numerical integra-
tion. | N

N

,‘“.

6.2.3 An upper-l%ﬁnd to |AE (6, 00)]

i

"~ An upper-bound to |AE (€4, 00)] is ‘evaluated here so that one can find -

a cutof f point, £ = £, for the numerical integration such that the result has a

) :
given number of significant digits. : -

;It can be shbyvn that
' .

2FU(2,d, d+2+N; 1/ ~1 for £>10

Then
‘ D,
fial@) = (6 -12)
C & T[T +4-m)/2T[2+ N|
D, =2 C 6-13
; 'TIN¥2+(T+4-n)/2) ( z
For sufficiently large £ we can approximate
y : .
E-1x¢  PrkiR€) ~c
Hence ‘ o |
, 2 sinO(k; R €)
kiR; ) ~ 6— 14
x( 6) TRec =+ € ( )
where ] ' ' ,
" Ok i) = c€ + (g/2c]In(§) + A+ G B - (6-15) -

> :

) . : | ¥
The quantities ¢, ¢ and A and, the function G are as defined in Chapter 3. The
trignometric factor in eqﬁatioh (6 - 4) can now bEe\vexpanded as y
. s 1 - ’ 5 . . ' - \
sinO(k'; R; €) sin®(k; R;€) = =(cos G_ cosO_ + sin G- sinO-
- —c0sG, cosO,4 —sinGy sin0Oy) |
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- N
where G4 = G(k'; R; €) + G(k; R; €) and O4is as'in equation (5 - 22a). fwe that
im G4 =0 , ]
o0 , :

L4

If one chooses 4 sufficiently large so that equations (6 - 12) and (6 - 13) are
1

satisfied and |G4| < 7/2, then ‘ .
4% |Dnl + _ r4 - . -
X X Y Y, 61
|An(500100)|<2\/;‘;(ldn|+| n|+‘ nl+| nD ( ‘)
where
. L :l'oo 1. ’
Xt 4iy? _—_g?df r (cosO4 + i1sinOy4)
‘\ S 7 ’ :
‘ = @5 erp(i(Ag + Ca €oo)) U(L, 165 =347, i C boo)

(6 — 18)

The Kummer's U-function can be generated without much trcable [83)].

{

6.3 Generation of Gauss Hypergeometric Function

Accurate evaluation of »F} is a major task in evalij®ing the matrix
elements. Three n%tgods' ;Lre used depending on t:-hé range of $'= 1/€% f}
(a) zoo<zr<l

A power series representation is used.

i, |
. ]'-1" . G _
WFi(a, Boa+ B+ )= (1-6) D Eji(z -1 ‘\
| & |
A=Y B —tm(1-2) (-2
= C(6-19)
w.hereh
Ajo = (1) + 9 +1) — Ylart ) = (B +7) (6—‘294)

O
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-

I
.

11 1 1
Aji=dji+ -4 — - —— - —
i 1 j+i atjt+i-1 d45+-1

i>1 (6 20b)

-

Th"s‘w —“'function 1s the logarithmic derivative of the I'-function.
. d(inT(z))
w(x) dr

! T(¢+B+))
Bj = :
‘ Na)l(BTG +1)

, (a+j+i-1)B+j+i=1)
By = Bji —— : > -2
o ]""v Ji—1 G+9) R 2_v1>“ (6 —21b)
‘ D(a+ A +)TG) . ‘ [
. Ejp= : < i1 6 — 22
R T (0-224)
o (et -1D(B+5-1) : |
Eji=Ej;i- . - >1, i>1 6 — 22b
S s (I ,‘ (=220

Note ‘t}ia.-tthere. is'_a' ldga.rithmic‘ singulagty in oFj at £ =1 when j = 0.

(b) ‘Fromz =700 'toE =6 &p
A ra‘qiqﬁél.polyﬁomial approximation is used. he relevant subroutine

is given in reference 85.

R o ‘
(0 < She - o
. The ,Causs Hypergeometric series is used. \
| 2Fi(a, B,7i2) =) Git' (6~ 23)
i ‘ . 1=0 '
x..b = e "
where © " T T
EIPRY +B+D) Q.
3 ,G,".=G,‘-(i—4——,-— th Gy=1 6 — 24
T A e Ty B 0-24)
6.4 Evaluati &'; R|(OV/OR)z|k; R)

@ The tect, - os used to evaluate (k'; R|(8V'/OR)7|k; R) are quite similar
to those described in sections 6 . 2 and 6 . 3. except near £ = 1 in thg case
m' = m = 0. This section summarizes the releva.nt'mathematicz%ssions and

outlines their derivation.

L



i1k

Two differer.” icrms for (0V/OR)r are used -

"R lE-n @ @ T E@-np

(?.K) __4_[ ; 63(62—‘1)_026(52—1)+‘27}2£(1—ﬁ2)}of -
OR/; (

(a_v> _'4—{ S 13 it YL ] (6 — 26)
oR); R (- (@-nP @-n o

Define Y(a,b) by

b +1

RS . T8
Y(a,b) = —— df'{ dn (€2 = 7% ——) S(K'; Ryn) S(k; Ry n)
. [ \aR; (6-27)
X x(k';R;E)x(k;R;f)}
Then | -
(K'; RI(OV/OR)z|k; R) = ; (Y(1,60) + ¥ (&0, 0)) (6~28)

Using the form given in cquatioh (6 - 25) near the origin we have

7
Y(1,6) = Yi(6o) - YiV(&) - (&) + 2¥3(6)  (6-29)
where B -
R [& ‘ S0 - _
T )
Yi6o) == |2 Cr C(I,O,M)] /d&fx(k’;R;f)x:(k;R;f) (6 — 30)
: ) I=0 ' ‘ :
1 Q}
with
O +n+ DT+ M) o S
C L uman = | TTFRFD2+T+M] -. (6~ 31)

0 if Iis odd



Here M = |m'| = |ml.

-
o .
tR [ de €10 F(n;€) x(k; R )x (RO M =0
: B 1 )
) =4 (6 —32)
TR o (-1 I, i .
Tlf de 71 €x+ f(n, M; ) x(K R Ox(k R M

Here

A

Fri€) =S CrO(In,0)2F (I +n+1)/2-1,1, (I +n+1)/2+ 1 1/€)
I=0 A '
v . (6 —33a)

fn Mo =Y {C Cln. M)

o I=0

x 2Fy (2, (I+n+1)/ (I+n+1)/‘>+1+M 1/5)]
(6 — 33b)

$o
- .
€o =T/ (2, M +1; ) x K R €) x(k; R; ) (6= 34)
1

Using e'quatmn (6 -19) to represeng 2 By one‘can show that the integrzﬁxds of Yy,
Y;,(n) and Y3 are well behaved at £ =1 when M > 1; hence they can be evaluated
by direct | umerical integration. However, the integrand of Y3 is logarithmjcally_
silngula.r #t the origin when M = 0. We isolate this sirfgularity 'andv perform the
intégr_atio‘n over it a.nalytica.lly.

Consider the.power series representa.tion of x. Except the first term all
the otigr\%gms have the factor (€ = 1) which will” “neutraiize” the logarit;h'mic

singularity in f(2,1;£). One can isolate the “problematic” term as follows.

. 7R T

TR Xk R €)= 2O + 5 (6~ 35)

T =T(K)T(k)ao(K)ao(k) ~~ (6-36) .
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One can isolate fhe logarithmic singularity in f(2,1;€) using the equation (6 - 19)

. F(2.16)= Hi(2,1;6) + Bln(€ — 1) (6-37)
- _ / .
where : . . : 0
T | B=Y CiC(I,21)B ' | (6 — 38a)
v I1=0 - . : .
By =(I+3) [3(1 £3)+1| (6 - 38b)
f(2,1;6) = Z €022, (T +3)/2, (T +3)/2+2 1)

‘ | - (6-38¢)

,+Bﬂdf—n}

Then using equations (6 - 34), {6 - 35) and (6 - 37) and, pefformihg the integration
. o . (138

BY

over the singular term analytically ‘we obtain for M =0

© o
. R . |
Y3(1,4) = /dé [%%h(?, 1;8) x(k's Ry €) x(k; B; €) -*’B;K‘I’(é)ln(é - 1)
1 : _ : o
N ‘ ~ BT Yy(&) | ' o |
- | | S (9-139)
where ‘

o i
% (s Dl =) =1 , €= Vine -1 -1
““'/.6{ e+ 1) }+ B+ -

1 . ’ . u ; L. . ) —
o o ' N 0‘2)

‘The remaining integrals i_"n‘equations (6 - 39) and (6 - 40) are done numericall(’

Note that Yj is state indepen

A3

It is more efficient t e form in equation (8 - 26) to calgulatb\ ,
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Y (&, 00). Then one obtains

o . | | ‘
= 3(62-1) .
Y(fo,foo)‘z T4 6/dé {[f £(0, M; 5) .—(—E-:‘—‘—-—f(.?,]tjgg) - & (4’M;-€)
o ARG £>} | |
ti‘ . ‘ (6 ) 41)

To find £, an upper bound Y (€o0,00)] is estimated using the following ex-

' pression. . C

¥ (€000 < = {1700, 3450) =3 52,0500 (K1 + 17|+ ¥+ 1)

1

RVER
1704, M50) (16 1+ 1651+ 15671+ %7

| : ‘ (6 — 42)

The first and the last termsf‘in the i‘nvtegrand of (6 - 41 nas singul’a‘ritiles

of the fr)rm 1/({ -1) \yhich are.ngnirrfegrable; hence it is not suiteble 1o evaluate

Y(1,6). drr the othgr hand' tlre irltegrands in Yl and Y(O) damp down as 1/£ as
£ — 00 whereas those in equation (6 41) die down faster ( (1/€%)). Hence the |

latter form more suitable than that in equatlon (6 - 30) in evaluatmg Y (fo,foo)
T ; 7
6.5 Numerical Details Co ( . '
(a) A subroutine in quadrrrple precisron was used to genérate 2 By in the do-
ma.in zoo <z <1 bécause of the cancellation_occurring in the “Infinite”
¢ summation in equatlon (6{{{, 20). ,, |
(b) The algorithm of Bulirsch and Stoer [86] wa.s used to perform thc ny-

merical 1ntegrat10ns.,

{c) The parameters were fixed as follows;

| zgo = 0.9 and fo =15



b
, e 'v 5,.,

) Prograr)n‘d'ercides thé'Qalue of £ once the numbex ozﬁ 31gn1ﬁcant dlglts n
: ' A Ca
the result is speaﬁed . ‘ S

(d). The nunjerxca,l mtegrator ‘can run into. dxfﬁcultles 1f two zeros of

R ‘, sari @( R’f) a.nd sin @(k R; E) become too close to each other. Hence.

Uu m the domaxn {0 - {oo ‘the followmg form was used.
v, «" - J . . b

”R (k’ R; g) x(k; R €) —';'3 [cos( (K R;€) — O(k; R 6)
P 'T,—cos( (k’;R;£)+@(k;R;s))]

*
oy 7 KR B I <
: G\_. s e, g ) sl
o - . .

e

%

A - % \: ) .‘ .
X :_%} - -
. 3

5

W

Lo

>/

N a0 L 5 /,V / J,‘a . : : .
R ;'ﬁljé Vi /(62—Dﬁ’x(k';R;f)Pﬁ(k;R;f)

S , %% and each of the ‘cos-term integsis were done separately (but simultane-

~ously).
; . (e) The' E;llowing checks were done to assess the precision/accuracy of the
: rebult; - ‘
( ) Stablhty of the results against changes in zoo, {o-and foo was

. v examined.

o ¥ as(u) It was checked whether the calculated rx.latr.ix elements satisfy

"'0"-‘ A the equations (7) and (5 - 50)- when ¢ = €. Since the com-
the‘ eohdition € =¢ thisisa powerfﬁl check on the ec,curacy
of the results. -

6.6 Analytj Coeﬁic1ents of the é-function parts

6.6.1 Angular Couplmgs

{
Then equatlon (5 49) gives

‘ N ’

Deﬁne the analytxc coefficients of the 6- function part of (L+) by (D?).

(el'm Rw"lezm R) = (mﬂl (K k )+f/3’(k',~'k))f_COS(A'-A)‘,s,,,,,,,hL_1 (6 —43)
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puter codes do not make any important decisions depending on



¢

Expressing the angular wave functions in power series form and performing the:

integrals over n analytically we obtain

N

(el'm R|’D9|elm R) = Z Bi(k') D% B5(K)| cos(A = A) Spimat (6 49)

|] =0
where : - - ' N
0 _ _I‘[(i+j1'-_+-2v)/2+M.+] (2 --(‘fn - 1/2) -] _.(m + 1/2)),(]\/'[+ __ 1) I+ 9(1(1 |
‘17 ’— . . 3 : ) 6: .
0 L : ' . 1t even

v ~
»

with M+ =2+ Iml (—m ~ 1/‘7 =(z) is the unit step function .

_ 1 ifx>0
=(z) =
0 ifr<0

/

t
6.6.2 Raa/ial Coupling
" Using equation (5 - 52) Wf define
(el RIDRIebm; R) = Br(K' ) cos(A = ) (1 = 81) S+ - (6= 46)
= o o e
Using eqation (A — 15) we can relate fp to a simple integfalg%er n, which can
b '"e‘ffbff‘med analytically using the power series representation for angular wave
functions. |

o0
Y Cr C(I,_2M)] cos(A' = A) (1 = 6p1) bm
1=0 . I

(el'm'; R|DRjelm; R) =

(A-4)
(6 — 47)

. ~Calc {ations were limited to continuum states with 0.005 < ¢* < 200.0

caau,1=0,1,2withall poséible m. Most of the matrix elements were evaluated: at

(b1}

[N

[§V]



o

o the average packet energles correspondmg to the energy sampling for an interaction

< region of radlus 40.0 a.u.. Only the matrix elements for L, were calculated which

" are related l‘.o. those of L— by

A (k;lﬂV)Ik';R)=—(k';Rl(ﬁ+V)|k;R> ) i
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*  InFigures 6—2 — 5and Figtres 6—6 — 9 we have displayed the matrix .

elements of (L+V) and (8V/OR) as a function of continuum energy at 4 different’

internuclear sepa.r'ations.' We have used the hotatiqn
(L,v) =P’ (3V/3R) =

Flgure 6 - 10 shows the energy dependence of the a.na.lytlc coefﬁcxents of the 5—
functxon parts. The four curves in each of these graphs belong to the followmg 4

internuclear sepa.ratxonS.

......................... R=10au
------------------ R=30au
————— —t—:—-— R=600au
______.——- ————— — R=100a.u

»
La,

The rest of the figures display the R-dependence of the matrlx elements (and the

ana.lytxc coefficients). In Figures 6 — 11,6 —13, 6 — ,1,-4 a.nd 6 — 16 the curves must -

be 1dent1ﬁed with the followmg four continuum energlesf i 5
{:; . o ‘g , Z\
e(or €) = 0‘045 akl.

e — € (or €) = 0.150 a.u.
_._.f;.——. — E’(or 6)_ =\1.060 d.u.

L s — {(or €) =2.260 a.u. .



Q
>

o
>

K]

—
. -
e
Ny
. -
.
. -
. . g
. E
\ .
. <
.
. RO h
\ . . .
] ~.. -
-
..... g
e, 4

- SESA RS SARE RN I A _ -
3 ool T F sk
S o5 [ 1 & 05
87 ¢ ‘ ﬁ\ i A o4
o i N ] -
- 04 |- // 3.8 s
"o R - ] w 03 |-
p:y [ o / | 1 =
?. 03 :- Lo / —_ 35 0.2 '_—
] L . 1 = .
2 o, 0 / . 1 = o1 |
02 b s /AN 13 :
4 S el
Tl 7 1 I
'w. Tt "/ ’ b ~I -0.1 -

\% ’ 1 ] {7
h Lodd l JE 1 _0.2 n

0.0
-25-2.0

-15 -1.0
€—€' (a.u.)

-05 0.0

e
o

1

W PN I

aaal e lvlll_Ll. IJ_L]I

-05 0.0

o

05 10 15 20
€—€' (a.u.)

o o o o
N w - (¢

~<€',1,1)9° |€=0.15,1,0> (a.u.)
o -

o
@

SRR SRR RAREIARERARE R ™ 'ﬁlﬁ—rﬁj
- ' Al ] 2 s | -
L 7 402 \ :
- SV S 0.4 >
: A B k. 5
o . ’ / ‘ \' ] '3- 03 | '\“.\ I
: - N «© / ! \ : & :02 :" \\ ..... \" ..... ’ -5
1 = - \ . -."_';‘ .................... h

N ] : 01 b
: / \ : E‘ ' : \ \'\ T ?
L ¢ J : 0.0 - - . ]
u / 1 % N T ]
r E \\7 -0.1 - \\/ - ' : —'
M{@J.LLI} AL i -0. Ly Lllll'llll_l_llll_.LJi_‘LL..

- 0.0
-25 -2.0

-15 -10
€—¢' (a:u.)

-05 0.0

[

-05 00

056 10 15 20
e—€' (a.u.)

-

0.35

r

u

X
(&)
[~}

0.25
020
0.15
0.10
0.05

1.06,1,0> (a.

'llllT_'|m

______
-
.

e S
3.

,
o
w

o
s

0.2

0.1

-0.00
-«0 05

AII?‘ le

}'l'llll" |TI‘!Il]ll[ll'l‘{l'l‘lillll

8 |
&
3

T

111141

A

1_Ll L

AN
N
JI'A_Lllnllx

1.06,1,1|%° |,1,0> (a.u.)

I‘I"III‘II|‘\'IV“1II

T

Ivalvlv IVﬁT‘llvT—ﬁV‘r—j

.
-
-
Y

|~
7
N

0.0

<€

aaabeaalais nnl.nxlxnnlnnnlnnlnn‘;ll

-015
-1.5 -1.0

-05 0.0
€—€' (a.u.)’

05 10V

Figure 6 - 3 :

I o

lllllilllLl

]
/

25

5]

LlLl“lllLlL[lll

+ =01

-15 -1.0 -05 00 05

1.0
€—€ (a.u.)

(P?) vs. Continuum energy

154



<€ 2,11 [£=0.045,0,0> (a.u.)

-

<€',2,1| 99 |€=0.15,0,0> (a.u.)

1.06,0,0> (a.u.)

(e‘,2.1|5" le

0.6

0.5

0.4

0.3

0.2

0.1

5

0.0 |

-0.1

. -25 -20.-15

0.5

0.4

0.3

0.2

3

=25 -2.0

0.25

'0.20.

015
0.10
0.05
0.00

-0.05

-0.10

~0.15

-020

L

MALRSE BLSLILSS BRER IR 00 SRALSREN AR

r—lrvvlvvvllvvrvlr L
B

llllllllllllllllllllLAL

-
14

llllllllllllLll__L] Lot

-1.0 -0.5 0.0
€€ (a.u.)

0.5

<€'=0.045,2,1|%° |¢,0,0> (a.u.)

.4
LBl ‘ E LIRS I T T l‘_‘l Tir0 I T T T 1 7T
5 4
o — \ i
[ el / ]
- / ~.~.‘ /\‘ .
- e —
N

L . - . , A
L / : AL 4
- . “ _—
- / . ]

- -
L . A

.
- . 4
- 7’ % 4
—- . / -
o e FS p
o el S T i
Ll A
- 4
5 ]
o 4
I 4
. 4
141 l 11 1 l 11 1 l LAl l AL 1 L1 1
v :

€—€' (a.u.)

-15 -10 -05 00 05

Yﬁ*]lvl‘!r1

Ty Yy rr1 "

o B
[~ -
L p
o N p
.
= ~ -
.
— - -t
— ‘\ -
L _~ ]
- .
- Y -
- N -~
" - s . .
/ \
5 N ]
- ! ~ .
. el N -
- e ‘. .
L T . p
[ \W\ p
N
b . .l. -
L\l teeeeea.- -
L ' / ]
- X r'd / -4
— . -
8 B(—/ p
- ]
L p
- 4 —
N . p
5 R
> - . -
. | l 121 l AL 1 1A l_L‘ 1 l Aoed.

-1.5

-05 00 05 1.0

€—€' (a.u.)

-1.0

K
o -

0.10

0.05

0.00
_9'05,
-0.10
~0.15
=020

-025

-0.5 0.0

0.5
0.4
‘03
0.2
0.1
04

-0.1

<€'=0.15,2,1|° |€,0,0> (a.u.)

-0.2

-0.5 0.0

0.6
0.5

0.4

0.2

1.06.2,1|9° [€,0,0> (a,u.)

L,
|
(=]

.1

<€

-0.2

-l LR 1 T b T ] T 1 T 7 1 ITI T I T l-‘

- 4 7

- L L D AR P SR L RSP LT PO PRPTAs] b
. '/'—’—" ]

F ’ E

- ]

- - . -

-1 AL 11 1 l i1 1 ' L1 l.l 1L l 1l 1.‘

20

o

.05. 10 15
c—€' (a.u.)

]

"'I"'!:"'I"'F"'

0.3

(

+ 4
p— ' —
© o e e eeseisioapgiot b
o Teeee. ....:‘.- w—— h
WA

. - g
— \' — —
L .
Ly v lxl NS W S R

05. 10 15 25

€—€' (a.u.)

20

T

LS ILALEL LR LA

LERELAN ILELARAS B

Ty yr Ty

A
LELNL IS N R R A GLE AN

lIAll

TYT YTy

1Illlllllll

paalaas TS SR TE EETE BT IS

llllALllLJll

"5 -10 -05 00 05 10

15
€—€' (a.u.)

Figure 6-3: (P’ vs. Continuum energy




156

1.0 T '1|]11v|1}1‘|111111

E‘% 08 - . -
! i ]
1 . osf \ .

S AN ;

0.4 |

ceo

5 |
//'.(’
/
/
l:
!

02 J

:" 73 . - \ . ~ ]

l ‘f*[’"{fx_lx o3 PP S I\.Ja/l Loy
-25 -20 -15 -1.0 -05 00 05 -05 00 05 10 .15 20 25
- e—€ (a.u.) L . €—€ (a.u.)

|
<€'=0.0452,15° |€,2,0> (a.u)

<e' 2,1|P* |€=0.045,2,0> (a.u.).

0.0

0'8_1j"|"']j_"]"‘]"' T 1.0 T llv|1vv‘|v%‘rvL]r7'

07— | /7\ — |

0.6 |

08 - - .
os [ I\ SRR
0.4 — \\ _ o —
02 — L T | —

0.0 - T BT L O T PR R T ) \ .............
0.1 -

N ~
A \
v 1 . - sl
L 0o bu “’"/‘T‘ . Y S .1\.\_.1 ST

. -25 -20 -15 -10 (—0.5 00 05 -05 00 05 10 15 20 .25
€e—€' (a.u.) . » - €—€' (8:u.)

05 F. *

N
N
.’./7
12

04 . %

- . /

0.2

satealasals

\
N

<€',2,1|P° |€=0.15,2,0> (a.u.)
1
<€'=0.15,2,1|%? |€,2,0> (a.u:)

LILS LI ELE I
1

0.8_1'([11']!'1 LANLIRLEN ILENLN B AL 0.6 LA SR KR I R TT Y Ty

os B .l = 05 [ oo | ]

" N =
- AN ]

R4

0.4 — . N e ]
0.3'5— \ N
02 [ / A ;
o1 b \ \

F
0.0

-of | \ — ]

-

<€'=1.06,2,1|9° |€,2,0> (a.0)

<€2,1|P* |€=1.06,2,0> (a.u.)

_02 LI‘AII‘IL‘IIIJ TS 111: -0.2 st g o TS I .
-15 -1.0 <05 00 05 10 L5 _ -15 -1.0 -05 00 05 10 15

- €—€ (a.u.) 4 ' €—€' (a.u.)

_Figure 6 - 4 : (P*) vs. Continuum energy

@)



<€ 229 |€=0.15,2,1> (a.u.)

1.06,2,1> (a.u.)

‘229 e

<€' 2,2/ [e=(3.045,2,1> (a.u.)

e © o 9
L & O

o
Y

l'l“ll"'Y},'l‘lllTlY"

o
=

0.0

-25 20 -15 -10 -05 00 O

o o ° .o
[ T X B ]

o
—

0.0

0.35
0.30

- 025
020
0.15
0.10
0.05
0.00
W ~0.05
-0.10

'lll"ll‘Yllll"T"

Y™

.’
-
.

AIIIIIIALIII

1l =

%

<€'=0.045,2,2| 7% |¢,2,1> (a.u.)

llllllll‘jlllll'ljll‘;ll

€—€' (a.u.)

T
(4]

-25 =20 -15 -10
€—€' (a.u.)

~0.8 0.0

0.5

1

VlII‘l!ll'Y'

TT

Illl'tl'llllll!]ll(]lll‘l

l!'llTlel’

-
3

14|'1|111|1

1Al|x_x;1|l1|

[ TS FETY FUTR FUTE PN T S DS FUET

LAt

-15 -1.0 -05 00 05
€—€' (a.u.)

1.0

15

<€'=1.06,22(#° |,2,1> (a.u.)

0-6 8 T l], ‘T_r" ‘7] T 1 1 ] T T 'q
. F r .
05 - ]
04 | J
03 | 3
02 \\ .
o1 F ‘\, e, -
. - ;“‘\\ ‘.‘...:....'.."'..'.'..'ﬁ ]
i ‘ - ]

o'o L \ ﬁ-_--——-_'—:- 4
! - - 4
__0-1 S| J | l 1.1 1 l 11 ) l 1l 1 l lng-

-0.5 0.0

bt
=

05 10 15 20
e—€' (a.u.)

25

ol

LN B BB B LI RLANLAE P LA

.

M Y W N W W

X

=

FETENY I EEVE T SE T IR S AN A N A

n

1

SARIARRACARE RARIUMAS RRRN NN r
g f B ; 05 —
| AT s et
:’ v //R ‘ i 03 [
: [ \ 1 & |
- // 4] %
- S ] 8 orf
. 1T
ST + U T U B -0 [avu

157

0500 05 10 15 20 25

€—€' (a.u.)

035
0.30"
@
020

T

0.15
0.10
1 0.05

YT Tr 1 T T T [=Tr "

N

N

Trr|rvryprrt

0.00
-0.05

AR BAR I'l"[l[ll']"l-llill1")f‘l

Le s a d a1y s sl b

saslasg ll‘lllllllllllllLlllAljllll

-0.10

-5 -1.0 -05 0.0

05 10
€~€' (a.u.)

.. Figure6-5: (P! vs. Continuﬁm energy

.

1.5



A\

1.06,0,09" [€,0,0> @.u)

o
=3
S

-05

00 05 10 15 20

€—€' (a.u.) ’ .

0.20

020

- 020 TR L{T“r"rr T - LR ELOT RO BRI 00 S e NN DLARLAL AN NS

5 ‘ 1 3 .

oA I i &

A - - A 015 - -

= 0.15 . ] 8 i e -

c I - \ ]

& o0 N\ e g oo N . 1

= LN\ 13 [ I\ .
e I ' (=) ;

‘3: ! \'\ 19 g0s | \ \'

.0.05 Ba < 0. - -

. o \ ) : 1 i 3
= - \_ ) j? [ \ \ ]

\‘7 | 111 N :Lhﬁﬁ*lﬁ'-—x‘li_l A 0.00 PENEEYE ETUTAT W AU 1%‘!)-#! il

-05 0.0

05 10 15
€—€' (a.u.)

20 25

[=]
-
9 ]

<€=0.15.1,01# |€,1,0> (8.u.)

T ;,,.L.l..f.q‘.l“l..‘\.. eS8 e RALYRL A0 SR - - [rrrpr Ty IT'-_'_[_'__‘.II.‘.' T
i _ 3 1 e 4
I S oo T TS -
015 |- 18 N ~ ]
3 - 0.05 - \ ~
R .. & r )
i & 000 [ — ]
0.10 _— -~ = . : : :
- ""_ o J
an -0.05 .
) - /./’ ~. 9 - *
0.05 g \ n Q r ]
[ /\‘ \\ ﬁ -0.10 + .
(%] I ’ \ “w : - )
v [ LT Voo Mé | | ] Loy
0.00 111 P . | l J D . L 1 l | . _0.15 A 11 _L 1.4 1 J D AL )

-0.5° 60 05
€e—€' (@a.u.)

-05 0.0 1.0 15 20 25

€—€' (a.u.)

-1.5 -1.0 05 l.Q

0-15 T T 1 III '7"] T 7 ‘_I’,l..':_-‘--' v 0.15" '{'I‘/,"" ' v v 1 T 1"'17 ] LR V<

: < 12 :
o0 TN 1 8 o0 L ]

R Ny . 1 = OIT 1

TN >~ 18 .
0.05 - * — ': ._:- - ."

i : g 0.05 |- ]

: ~—-_ 1% | .
0.00 1 & i ]

L 1S 000 it )

B w—d - T &
=005+ | T 1 = i P F |

S 1 8 [ ‘ ]
. T 1 ==005F+ i . .
-0.10 - 1 10 | ]

[ ) s . : .

i 1V b e , ]

C il - l LA 1 l i1 IILJ l{ll _0.10 I ) lll LJI LA 1 lJ_All Al l Al

-0.15
-0.5 0.0

»n
o
"=
(3]

-05 00 05
€—€ (a.u.)

05 10 15 1.0

€—€' (a.u.)

20 -15 -10

Figure 6 - 6 :- (PR) vs. Continuum energy



e

<¢e'=

1.06,1,1|PR |e,1,1> (a.u)

0.045,1,1]7 |e,1,1> (8.1

™

LA SRR | "l"l“"—r—r—q
llllLlALA\

o

©

<€'=0.15,2,0|#* |€,2,0> (a.u.)

159

A

lll]lYI1lll‘lll[T'Y

o
—
o

©.08

. e
o
=

e
=]
]

0.c

o
(=]
~
124

0.G<

0.02

Bt
<
SN
I|IV|v'vvwlrv‘l|111I‘ﬁt
’
‘
0
S

~
g
oy i laaad e e s baa et e raly

<€'=0.15,1,1| P* le,1,1> (a.u.)

/
/
T IO BT B

| ~ ]

N S~ ‘\ \'\.;,,“;.a

0.00. ll.‘l“.,ljh"b—.__‘_‘_l"' 0.06 L 141!1..?}@,,_{_‘1’

. —05 00 - 05 -1.0 15 20 25 -05 00 05. 10 '15 . 2‘9 25
. €—€ (a.u.) : €—¢' (8\,]) R

o
—
(3]
.4

lrr]!tyllvﬁltllllvr

1

0.'0 ILARES R ELER N BLARA AELERSE BRERALEE BANRER

bt
-
o

0.08

o
(=
>

0.06

/\.
/

/
\/

<€'=0.045,2,0| %R |€,2,0> (a.u.)
o o
S
|

ll1'lY|I!I‘Y'I1III
llllllllllllll‘l

0.04 7NN\ S e :
- -0.05 - o —

| 4 / \ N 't - :
g NG FT I :
/ - \‘4 ‘ : ’ :

lJ_lllllllLllllll_lJ}l.

000 MO NI IR IfllllllllL. ..0_'5 11
-15 -1.0 -05 00 05 1.0 15 -05 00 05 1.0 -15 20 25

€—€' (a.u.) €—¢' (a.u.)

0-15 ™17 vvvllvv]lﬁ'—'l'vvi;vl 0-12 LERAD BELEL IR BB LA AN SRRLAEL N N R R

0.10 | /\\/\\

' 4 = E ]

! 15 - ;

010 T 18 g N

! /- / ~ ~ 1~ oo08f 3

: ~4 / \ ; /\ g | :

005 - < g s P N 3

L \_{" : i 0.04 ;_ \ o

0.00 | i PR | <]

00 ) & 02 | N
; T 18 : 1.

_0.05 I R A b N 0700 g “ "‘ -

X 1l -k - ‘

. : . : Q _0.02 ; __V . . 3

-O'lo — o4 —‘ Ti' E ----------- 3

: i "w -0.04 - -

- 1y B T 3

-0.15 Y Y P S 12 [ A -0-06 S EWE PR PR I A
-05 00 05 10 15 20 25 R -15 -1.0 =05 00 05 10 15
€—€ (a.u.) ' e—¢ (a.u.)

Figure 6 - 7 : (PR) vs. Continuum energy.

g ’



! L .. e

= ' - . . ’ )(‘”;. - . . ?:3:‘ " -
'/5 0.08 ".'.? U0 BAZLERES SLELERS NANRLARN T T — 0.025 (T TTT T Y | ‘l’:rq, ,"T T
R 33 R
- S ] 8 0020 - ~ P e -
A 094 | RN L I e ]
e . o / \'.-:' ] < - l/" "\' ]
S 002F ", -7 ! 4 o 0015 — % SN o
‘tg v - /< N - b i L 3 S \ :
I o000 F o M— & - -
. - N ; - K : & 0-010 - ' ’ \ —
ﬁ -0.02 . T "' 1 & r N \ : b
W L S’ . p - . N . ]
.= -004 | j’” ““““ ’ 1 % o005 | ! \ ~. 2]
- = 0 - ; ~ A
S 0.08 & AR i 8 - L N IR
S -0.08 [ 1< -k .

N: - PR, 1 ? 0.000 ~

W -008 f g 1T - ]
\va £ 'gf' 4 - e w ]
_0'10 FOFER Sl AN I S W R A \% _0005 1A ko sl r-cl'l’l{A (U BN |

-2

5

20 -15 -10 -05 00

€—€' (a.u.)

bt
o

0.06

Ty

.25 ~20 -15 -10 -05 0.0

_ e—¢' (a.u.)

e
o

-0.05

=05 0.0

05 10 "5
e—<€' (a.u.\)

20 . 25

'0.025

‘l'I_‘l',"VW"Y;f]'lY

—_ N L ‘J"\)‘ T‘{ LB - [ T
5 g ' 1] 2 - AN e 3
< 004 | N 4 & 0.020 / \.\ ]
st AN ] St L ~:
o 7 N ] Sl XD _:
S L« X ] o oowop AW N ]
0 r ™ i R d SN - N ]
= 000 | =1 = 0005 F N T~ S~. 7
ﬁ r . . ! . &_ 0 o: J_, \_ ]
W -0.02 _—'“_\ Pl 1 § 0000 17 p
@ - T 1 R 0005 B ] T E
"8 004 | 1 = b i :
=) g ] © -oowt S =
N _o0s [ 1 4 S ]
w A : SRV E
' llf.‘l".lllilllllllLlll 11 ] _0.020 LJ lulnxnln_LllLlllnL"

-0.5 0.0

05 10 15
€—¢' (a.u.)

20 235

0.08

. — 0!03 L T ] T 17T lT_' T T 1 1 l T 7 I ' LA - .'.-r‘ n 1 T 1 ‘Yj' T 1 1 T 1. 7T ‘ T 17 I RN
5 o JUFCTIS ] z- - . g
002 F < -~ 4 = S -
) Y Sl ] o 0.06 [ \ d

L e, S ] ~ C . ]

A 001 | e - 4 2 . : :
=] o — 1 & 004 \ =
o - \ E o 3 U U -]
> ;9.00 3 - ]
QP .1 M g2 f 3

< S 1 o . C N S—— ]

— -001 [ 1 % F il —— ]
I r ] - N S —— )

W - ] = . 0.00 + = » ]

a "0.02 '_" -_' Q}: - s Pid :

C 1 ¢ -p.02 F . 3

g -003 | 3 & %2 p - :

M - 1.7 . : R

.w _0'04 ,__' A: .l“l) -0-04 :' ]
\Y4 : o \V; 4

Lt ) l J41 1 1 Al ; 1 11 l 11 ll Il 7] -0'08 D | l 111 I AL L 144 I 141 l Jl l‘

D

o~

1.5

e~
(4]

-05 0.0 05
Le—€ (a.u.)

-15 -1.0 -05 00. 05 10O -1.5 -1.0

€—€' (a.u.)

1.0

Figure 6 - 8 :  (PX) vs. Continuum energy

~

4



0.07
0.06
0.05
0.04
0.03
0.02

’
»

2 0.01

5

0.00

w 001

<€=0.0452,1|P" |.2,1> (8.u.)

' T v T LS T ¢ 1
N ! T T _
P s
- ' )
+ N | ]
- :5\\ :
- Nk ‘—
o N , ‘
- ‘
: - - -
i —
: r
b : LT embgeemteccea p
8 1= ;;-';_,-. \ )
— . -v | |
. I INS . 3
o P \ ; 3
: : ~ p
. ~ » N
’ .
r R . ‘
r , ' | ]
& , . | -
i | -
- ‘\\\\~‘ R :
. .
: D
— » B
S ‘
- T E
L ) -
i 14 [ a2 | 4 1'a [ L,

~0.02 L
-05.

00 05 10 L5°

2.0
€—€' (a.u)

25

0.07
0.08
0.05
0.04
0.03
0.02
0.01

'IIVV[V_VV l/Il]Ilil'l'

o
-

0.00
-0.01

TY Ty Yl"'lllll']llll"f!l']’"'l’(

<e=1.062.1|P% |€2.1> (@)

1l

Jllllllll pa el

saalaas ljllA.lAILLllllllllljlljl

1 J A

-0.02
. -15

-10 -05 00 05
e—€' (a.u.)

10

15

o,
(=3
2

—~ [ T 11vI|I.v'|“‘|'],"I"
> - |

3 0.06 / \ ]
é\% 005 [ / ‘\\\ E
_\i 0.04 :'- \ \ “. ‘ _;
A :
'ﬁ 0.03 - . \ S ]
O S A N
- i -
s} - \\ N ~ ]
.:u; oot | N —_

00 AAAl;JLmi'_l 1, ]

o

-0.5

05 10 15 20

€—€' (a.u.)

0.0

*

25

<e'=0.045,2,2| PR |€,2,2> (a.u.)

0.07 -
5 2
é 0.06 :
A L
Q oos |
N [
004 -
a -
o [
© 002 |
- [
W oo [
W |
\Y L

4>\—\\

T

vrv]vrlvi-k—p.‘;)vv]ivr]v
R

e’

nLAl-AAlAAn‘J:AllA:lA.:l

o IR o,:" . £ ]
Ll T | Lol (I e

05. 10 15 20 25
€—€' (a.u) ‘

©
=]
>

o © © ©o
o [=] [=] (=]
[ [¢} - (3.}

o
Q
oy

T T TTYT L] rqﬁ")'J‘l T 11-1"—
- h . o : Vi
S \ . . E s
. Ll
o SN DN
- X . g
o A * i
— N ' cabs '~
- \ N . ' N r?" N
[ \\ . v ]
. . n
| T e R
[ Y N S
- \ N Tl
9 \ e
S \ . .
2 \\ ‘ n
9 L . ¢ o
- . S~ .
d - -~
paad e [ e T ST

o_()o Lt 1

05 00 05 10 15 20 25
o €—€ (a.u.)

vlvvv];vv

lllllll‘j‘lll

rvr]vvvlr‘v‘r]

P

e
//
/ .

TR T RS NTS e 11

ljll-lllll

0.00

-15 -1.0- -05 00 05

1.0

&

€—¢' (a.u.)

?igu"ré 6-9: (PR vs. Continuum energy



<€,2,1|9? [€,0,0> (a.u.)

<€,2,119° |€,2,0> (a.u))

»n o
IY'IIIJ'I’]IIVI
5
\
H v
: v
H P .
: ¢
1]
‘
'
28
.
/
H
:
H
:
:
H
[]
.
.
:
1]
:
:

0.0

i L} 1 Ls ] AJ T 7 1 T 7 ] T T RJ ‘ﬁ' T T
— T T T ] -~
e ] = 205
3 \ ~~~~~~~ R S.'
A 7
\‘ _________ 4 -/-\1 -1.0
- \ - ﬁ-
- ’ N~ 1 X
L N I~ 4
L ~ \\ ] é_ -1.5
- \ — -—
+ N \ ] —T.
:- A = \ _.: \“; -2.0
S ]
1 11 Ll J Ll 1 l¢l l;l_l 1 J_J;-

1.0 15
€ (a.u.)

0.5 2.0

-25

L
o

-1.0

Tﬁlvllﬁ"71|]1l'1’ll

T

T

-

=~

lllllllillLllLll‘lll

-1.2

-1.8
-1.8
20
=22
-2.4

<€,2,2|1 9% |e,2,1> (a.u))

-2.6

il bt e

05, 10 15 20
' € (8.U.)

»
3]

0.0

-14 F

-2.8°

T v r

T rr T

Teel

‘ll"l’"!l‘%"'
: /,
: f
)
/
'

;;:
g
‘.-l;.-lnnnl;..l‘;

R I S R BT

05 1.0. 15 2.0
€ (a.u.)

25

III"TI“VY['!("YV

1"!"1'!
:'/
/
:
:
:
»
:
N P | ST TUYS BETY ST UE B

-~

"'l"rl"']"’t”
'

IIlILlllllllAAlle;“

05 1.0 . 15 20 25
€ (a.u.)

0.0

012 T
~o10 b LT h .
- . ]

v @ - _

=~ 0.08 P i
N : ’.' :

S oo L ¢ ]

o LUo s e
W [ o /’ p
—— [ "' / ]
ﬁé 0.04 — /./—%,_______ _

() L / 4
o 002 L0 ] ’
\uj /. :

Y 000 Fo—s -
-OOé h FUTEE I BT AU U U ' ._4'

0 05

Figure 6 - 10 :

1.0

1.5
€(a.u.)

(D*) and (D®) vs. Continuum energy

20 25

-



<€ 2,1|#? {€=0.045,0,0> fa.u‘.)_‘,”;’-"

5.
s
3

©
N

0.2
0.1

0.0

!
S

'<e',2,1[5°_° l€=1.06,0,0> (a.u))

<€,2,1|19* |=0.15,2,0> (a.u.)

1 ]
=) [ =
- Q
= & =

e
°

0.0

0.8
0.7
0.6
45
0.4
0.3
0.2

0.1

.00

]

1\"-1;"‘ 1 1 ' T 1 T ] T v 1 I T F T
o ’_' \ ) ’
: 1 / \ .-x \ f
r / . . ”," \
F . 4
_— .. ~
L / ’.‘ \'\:
» PN LT YT
LT g
s 1
L I - | l 1.1 1 L i l 1 l L1 1 l 1 ]

4.0 6.0 8.0

2.0
‘ R@u)

,-u

LENC N B AL AL A SRR l Tr v«

- 4
P // ~\\\ ]
L \ J
= B
3
L ) o
- ~ V-
- .
L ) J
o ~
3
L p
— l —
L J
r ’.--\t A‘ 1
i X, <
i <\ i
[ N ]
r hY \\\ -
- Y : .- o]
. :
! . \ Lt
T R PRSIEE——
L1 _1 I i1 JJ N I I Aot L 1L 1 -

20 40 60 80

R (a.u.)

AL N DL AR ML A SO IR 1 77 ™.
. NP

_______

/ \

| - l S I l Al L l L3 W W i l 1
20 "40 60 80
Rauw) =~ .

LA I ALELSY I AL A
~

1.06,2,0> (a.u.)

RS

‘;;,

’

[( i i 1o lasg l; J‘l):‘-

ARSA ARSI REAE IR

Lol

g
o

Figure 6 - 11 :

«

10.0

Ll
[=4
(=4

0.4
0.3
0.2
0.1
00

=0.1

<€',2,1|9¢ |e=0.l,5‘u:,{'),0'> (a.u.)

- =0.2

0.8 |

0.7
0.6
0.5
0.4
0.3
0.2

0.1

o.q

<€'.2,1|9° |€=0.045,2,0> (a.u.)

100 o

0.6
0.5

0.4

<€, 2,119 |e

¥

0.9

(Pff'vs. R g

Ra FLALEREE SRAR

N
SNy

\

LENLIELEN S B B I/rw

/

CARSR I,' TT T T T

./ll..',t/‘

Lot

Ty

PR E DR SN A l‘l Loe s ol 0

<
-
...
LN
ALY
A
-
e

20 40 60 80
R (a.u.)

e

,.
.
Ve
-
I3

& \
/ \
\

lllJl.l[lllIll‘l

RAASLE BLALLE BLIRELE BLELELE SLAMIE ]; LR SLELILE RS

(=4
o

20 40 60 80
R (a.u.)-

[ .- ) :
‘C’{‘[l AIAAC TS PN TSN SU TS SURN B

SLULINC BN SURANE ALENN S RRLUNRLAND LSRN ANN L BN

LALELE SLELILEN AR S SLELELEY BLELARIN SRR

YNSRI RN WS W

Y
S

LR R

. e,
s o e b by gl g™

saglaad

2.0

oy

40 6.0
R (a.u.).

8.0

-

10.0

163



0.5

IIII;IIIVTT]Ilrlllr

‘." o -
S5 .t T ]
2 04 F 4 \ ]
g E ) E
A o3 b f l
A 0.3 S :
S L T
I,D’ 0'2 __ l' ) y_:
<+ F 3
S o1 [ |
T .ok :
i 0.0 :,' :
> L :
& -0 F ]
: - ]
92. —0.2 Lo T B
: : L .
: _ 1

|
o
(X

ll'lllllllllllLIILll

0.0 100 200 30.0 400 500

0.8
0.7
0.6
0.5

0.4

<€',2,1|99 |€=0.045,2,0> (a.u)

R (a.u.)

k4

T T L_b T T 1 ‘ R L] ' T .0 T l ¥ T Ll
- * .Q‘ .
- e .
R [P .
o X .
—~ “ -
- [3 A -
- s -
. ¢ . 4
‘ \ .
S '\ ]
bt e, 4
[ . Yoo i
C N T T h
] « I
M-t
- \ - <
- ¢ . -
‘. .
. ¥ ]
‘ —
-t
.
.t N E
.t -
M -
F o
—» N -
- -
L ! . -4
’ -1
Fo
— —
o N -
—' -
M -
[+ .~
—+ Se
L+ -
i A q
] .
g P
RN BN RGN R | RN Ut

00 10.0, 200 300 400 500

"UR @u)

Figure 6 - 12 :

<€,2,1|P° [€=0.15,0,0> (a.u.)

e
=
a3

-0.30

<e' 21|92 1€=0.15,2,0> (a.u.)

f

!
g
=)
>

|
[=]
—
[}

164

v
\
T T T I Ll T T l L T T T LI L) I T LENR 1
o -
f -
0.00 p—
UY v
L \ -
= v R
. . o
- . B 4
[~ K —
- . p
- . 4
1y
- y R
.
- \ -
I \ 4
L N 4
| . E
r LTSRS TL LS L
- i —
I ¢ 4
3 4
FEEE N SR U B SR ST ST T N U R

00 100

200 30.0 400 500

R (a.u.)

08
0.6 — ) .
0.4 ::—',:' ) B —:
0z | .
0.0
0.2 » ]
o4 b L :

t TN SR B ]

-06 “———
0.0 100

(P vs. R

200 300
R (a.u.)

400 50.0



<'=0.045,0,01P% |€,0,0> (a.u)

|€=0.15,0,0> (a.u.)-

025
0.20
0.15
0.10
0.05

0.00

0.0

0.25

0.20

0.10

0.05

<€'=1.06,0,0| P® |¢,0,0> (a.u.)

0.00

s 00

i
o.
o
it

|

165

T 1\ LI GELANLANLENS S A B B IRLANM - 0:25 [ T T T T T LA B

- 1°3 | i

- . « L 4

= 1 = o020 | -

AN 1 & TAN I

‘%» o 1 S 0.15 | \\k : :
(G ] 0 1 '\\ -1 s

AN R BN ]

\f R ] Sowlf \ T J

. \ “~.....~. ...... ; O_ L \\ .h..""nn,.“_‘ 4

N -] 8 . RN o

- \ AN 4 G 005 : \ N .

.lllLl'l'llllLl\lr"L;*\.‘- 0.60 -A|11111L1|4]11.FL5—4\LFJ'

40 60 B0

R (a.u.)

2.0

80 100

/

|

40 80
R (a.u)

o
o

. 2.0

)0.08

Tlll‘l.l 1:rl I"Ll'l

I']I'||_|1IIIVII|I\I

I‘ll]lll‘llllvllllll

N TP DU R e

<€',2,0|PR |€=0.045,0,0> (a.u.)

\ \ Ay -
\ \ -0.04 :—‘\- / /
\‘ u“>'\ E ’.& I/
" . \au" '\'\ "0.96 ':" 'Y‘ .
S, -0.08 [
d \~% _0.10 111!-14_L|1_1[111‘l11’

0.06 .
0.04 ,
0.02

/// \\'__;_

ar?

RREN SRR RERE RN

0.00 “f—=rb7 i
-0.02 '/

TS T T i/l [1

4.0 6.0 8.0

R (a.u.)

20

100

2.0 80 100

0.0 40 6.0

R @.u.)

T I LA T 1 1 T 7 1 T T

. T T T s

L " 3 r ]
C : p 0.02 p
- 4 3 & 3 ]
o 0.01 ¢ 3
a v oo W a3
-1 L

0.03

HA B4

0.00

-0.01

7Y

<€',2,0|PR [€=1.06,0,0> (a.u.)

40 . 6.0 8.0

R (a.u.) .

0.0 20

Figure 6 -

~q

: E 1

E O\ ] -0.02 [ !

L\ E -

-_\ ]V 3 -0.03 | '

: ’ ] L

- N/ 3 004 [y )

llllllqllllrl"llllA ] l\l/.lllj|u“|,|,lvl.'
10.0 ’

~0.05

=3 U NP N NS FEUS BRUE 5|
=3

40 80 80

R (a.u.)

@

0.0 290

9

18: (PR) vs. R



0.15
0.10
0.05

0.00

<€'=0.045,2,0|7F |€,2,0> (a.u.)

0.0

bt
=

o
o
&

e .
o
S

-0.05

-

-0.10

<€'=l.0612 0| PR |€,2,0> (a.u) ®

=0.15

0.07

0.0

LANLAUL RSN S B AN NN BB f L S S

llllll)lllllll‘IlL
v

r 4
- /\/—- \ o
X ! //' \ .:
= ) Leo" 'i:‘-
] . / ’ b W _.“
3 o '

/V ’r s - .
- . ._-'. \ 1
L . t /. e :

—_—

y ‘
[ [

]
9

.
W\ / ;
-\ '
. ‘\ '
‘ &
- 3 Fi i
K L

— \‘ B ’:‘
L I
.

Y I I W

20 40 60 - 80
_R(a.u.)

1

0.0

Al T l ¥ T T l T ¥ L ‘ T T T I T v T
— ’ e, el —
- /> e, L
r 4 e
b— o VN ey
: ’/” \.

s 3
" [ g
F 1
-"
XY p
$
-\ ¢ .
AN _
«
- 5 7 4
1'1 ST B Looa Ly )

40 80
- R(au)

£ 20 . 8.0

\
1111|Yr'1|']|171,nvv
.y

/ _:";’\l \'\

||||||lllvvl||

I(AAleiljlllnnA

taalisa

A | S Loy

saafass

6.0

8.0

10.0

<€'=0.152,0|P® |€,2,0> (a.u.)

0.045.2,1|PF [€,2,1> (a.u.)

Tee'=

100

<€'=1.06,2,1| PR |€,2,1> (a.n.)

:‘;_.0'.{15
0.10
0.05
0.00

~0.05

-0.10

s
r

—r—Tr ; Ty rI1°

T l T ﬁ*!-l T

L E
- /( =
= ¢ \\\ -+
I \ b
i u-“"“ N
— /
= f
.
r \
- : -
a -
L . E
= ” -
b— ‘ —
l

L 4
- “ | , &
I < y

< ’ .
- < ’ -

K] ’
. 4

- e .
- 4

| I Y |

p 1 Lo

0.0

0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

-0.01

0.02

0.0 -

0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02

20 40 6.0 80 100

R (a.u.)

[ T ‘ “:. 'ﬁ T 1 1 ] Yﬁ‘l T l' T 7T
E ’ e
- - Lew" =
a et T e
3 AN E
r < ':' \ ]
b , O M —
- #f, \\\' -4
" _ \ N
’ .
C / 2 RN ]
L P p
- / S \ \:
E b
L ’ p
b— LR —
- 1 :j B ~ <
. ) p
o I/p,’i T~
3 (2 N -4
o ‘ -
L v // ’ -
% "i. -
A TP -
oo 4
J S - | ) - | l L LAJ 11 l AL, ]

20 4.0 6.0

R (a.u.)

8.0

—
o

B B

T T | T 171 ‘ L B S Tﬁ T 1 l T T
TN
/- ~
\‘u .

NIETUT SUUY

- . N
s N L
r 'S BN 4
L 1, . ,_T.‘ . 1
- ) AN ~
o K NI
+ Y] AR
— [4 "~
: I/I \ 7
g . ~ 4
L 2
- ’ g
- ’ -
o 3
L4 -
'/ p
r ]
5 p
-V 1
[

D



<€'=0.045,0,0|P* |€,0,0> (a.uy)

0-025 [ T 71 I I'J~~I l" T ¥ ‘ |A T f] 1"1"‘1:4 -
0.020 | S e
0005 F s T ]

VR 4

I ]

005 H =
o010 ¢ 3

dE : ]

.101}5 Rl . i -

:‘i . | LJ j 1 l [ . | l j l 1 IJ._-.

<€'=0.0452,0|P® |€,2,0> (a.u.)

= =)
= -
E=) »

o
=)
&

J

LZRLAS S S AN R SIS B SLANLENE LI —_
E -
- =
.
b @
—
=
‘ . A
i {1 .Q©
' =
'
[} # q
\ ___ <
' 1
L s o
.
Y 95
Y g —_—
oY . o
- ra A
L e, 4 Q
e
I . ')
5 . ] .
- o e _ ?
1 . v \H/J
e
e S . i
IS BTSN B R ol 2 2 Y

20.0 300 400 500

10.0
‘ R (a.u.)

200 300 400 500
R@u) -

10.0

0-10 T T T ] A ¥ T Tﬁr T "TI T T ! T T vl(q
005 /o TRl ]
L el L -
0.00 ¢
y ¢ -
(O ,
o
i ]
-0.05 v ¢ -
o) : -
>-'| ] -
L4 ]
-0.10 (i a
X ]
PL'L e Y [‘LllLLI:FJJlL‘L'I ]

-0.15
0

10.0

0 200 30.0. 400

R (a.u.) -

Figure 6 - 15 :  (PR)vs R

v

<€ 2,01P" €=0.15,0,0> (a.u)

<€'=0.0452,1|PF |e,2,1> (a.u1.) -

50.0.

0.25

0.00
ey
0.0

0.020

-0.005

o

e

0.20

0.015
0.010

''0.005

-=0.01

T H ' T T L) ‘ X ! L} I T T 1 T 1
|- 8 ' 4
- -
by .
'y 4
1]
K ) 4
1)
x p
.
L ~
15
) 4
A )
) 4
A )
. 1 ‘\ 1
10+ 5 ]
A}
- LY -1
h)
b s -
L. s -1
05 - - -
k. “ Seeeal, -
| ‘ ALY
ol by e by Ctiydeea

200 300 400 50

"R (a.u)

10.0

167

0

T ™77 T LA L e
i ML RLALER ERRRNANE ]
b . —
- P -4
N
- K N ¢ 4
K p
— .
N -
I :
! E
r a
H )
Foo
- -
Ts -~ .
o
‘e . .~
Fo [ T 4
HN v et meeeall.
oy v -
i fees
T
p
™ e
3
r:e
Te
B § l L.t J_;l J . l J 1) l_Ll

0.0

10.0 200 - 300 40.0

R (a-u.)

60.0

0.07
0.06
0.05
0.04
0.03
0.02

0.01

|ﬁ"|]1—rlT—v T T r—rl;’_fl

0.00

L
F - ]
P
" . N 1
o s ~ g
- [ LSRN b
= [ . M P
— . -
L S p
o 5 0y 3
[l ~
L . 3
- - \ -
Foo. WS e 7
T p
[« o e
. " =
[ N ]
L« . b
M -
EE 1
<
L 4
- . ]
ot N g
— ¢ S -
[ ¢ - p
[« y Seen ]
[« —end
t
L& ]
< 4
Pt 4
e —4
13 . ' . r
iy ]
TS AT B RN S G RN

-0.02
0.

200 300 400

R (a.u.)

0 100



<e,2,1|9° |€,0,0> (a.u.)

0.5

0.0 |

il

T ‘ T T 7 l T 1 Al l L ¥ L] l .l L T

= N ]
: \ .‘___--.:..;.; ................................. :
L \ \ ~~~~~~~~ 4
r N \ _:
- \ B
- ~ \ -
| \ ~.
N ~
- . ~ \ 4
r A

L1 L+ [ L ' a | - .

40 60 BO

R (a.u.)

0.0 2.0

10.0

<e,2,119° |€,2,0> (a.u.)

'l

e
b i
e

4

/£

- ’ ---------------- -
g i P
- ;’ —
,
[ : E
C AT 1
p— .' \¢ ) —
" /"} ~ . \ P
b ‘. -
o - ~N \.—d
- . \ - ~4

40 60
R (a.u.) .

00 20 8.0

0.18
0.4
0.12
0.10
0.08
0.06
0.04

T (lv]!v![t\v]Iv'!|lltrl|1‘1|l

<e,2,0| PR |€,0,0> (a-u.)

0.02

1’['11![["!"17]"7

AAM;nlliAnllnllnlxlllnl

0.00 Kave=

e ‘... B
111[111&1111[:11111

yas kel

-0.02

20

iR .

40
R (a.u)

6.0

) and (DF)

8.0 - 10.0 .

L

v;: R

a

n‘xn[lnin_nnllll[ALJ_.

10.0

168




 '<€.2,1'|$_° |€,0,0> v(a.u.)

‘FT1IIIY‘]YTII‘IIIIVII
b

S

[3,]
'_'1

-

1 Tea
o - - K e A1
1 ] —_ -1.0 | i by
T o i 4t
-t E = ) . 4
L .. . H 4
F 1 8 15 W -
. . . J
- R - ' S
r . 1A : ' ]
- . + g_g 0o/ S n
o - b ¥ LI '5 .-
. . - : 1 m_‘
F ] X LY ]
"t . -25 F * —
of & L . ]
I b ] . N - S .
+ .. = I e ]
[ " . ] : =30 -
L EENCW _ Q)_ , P p
i AP i ¥ - ]
— ¥ . pa - ]
[ ' ™. ] =35 *<
- ] R - B
s . . _ -] ] 1
P B § l 11 1 Ll 1 1 l J | l j N _4 0 11 l‘l 1t 1 l j I Y lJ_l 1 I 1
= : - J

0.0

100 200 300 400 500 0.0 100 200 300

R (a.u.)

&

x

o

Q

N

o

;}; ‘f'-«*
) %\
—

5 0.020 — b_:
g S ]
‘A 0015 Bt .
S i :
S SR )
T 0010 5 L e 1.
a- SESR! ST T 1>
S 0005 B % N
& [ T e 1
W O ]
V0000

-0.005 PRSI | nl A.‘ln pox bega g
0.0 10.0 200 300 400 500

R

R (a.u.)

400 500

169

~



In Figures 6 — 12,6 — 15 and 6 — 17 the curves are as follows..

€ (or e): 0.045 a.u.
: ‘ I‘ (\) ¥
m—m e m e — - ~ €(or €) =0.150 a.u!

.
o
-
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In obtalnmg the. actual angular couplmg matnx elements ond must multiply the

matnx element calculated here by a factor 1/ R* whxch makes the seemingly long _

range of the angular couplmgs shorter. In obtamlng the actual angular coupling

- matrix element one must multiply the matrix element calculated here by a fac—v

tor 1/ R? which ‘mal‘res the apparently long“range of the angular. coupling matrix .

elements shorter.

6.8 Discussion
+As seen in the ﬁgur& the numerators of the prrncxpa.l parts of the nona-

- diabatic coupling matnx elements are smooth analytlc functions of the continuum

. energy In most .cases they are sufﬁcrently slowly varying so that over a. packet

: W1dth they can be approxrmated by their values at the average packet energxes )

Orie can go beyond this “constant approxlmatlon by fitting a linear or quadratic
polynomial in (e’ and €) over packet width and usmg it in the derxvatlon for G. .
As seen m the figures the quahtatxve R- dependence of the matnx el-

ements depends on the symmetry of the two states 1nvolved At large R the

limiting R-behavior is of the form ¢ RP e:z:‘p(—w R)/(In R)" in every case where

this has been atta'rned for an element where ¢, p, @ and ¢ are parameters. The
range'of a matrix element increases with decreasing energy diﬂ'erence.

A relatxve large portxon (say 30-50%) of the computer time spent to
evaluate a matnx element is taken up by the mtegratlon from £ =1 6.

This time can be drastxcally reduced by takxng advantage of the power series

representatlons of x. Then the contnbutlon to the £-integral in the range 1 < <
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a sum of the product of state independent integrals (which have to be done only

once) and power series coefficients.

s




7. SUMMARY . ' y

In the classical trajectory formulation of an atomic collision the nuclei are
assumed to move in a predetermined classical trajectory which makes the molec-
ular electronic potential time dependent. To describe the electronic dyn'axnioS one
solves the time dependent Schfodinger equution. In conventional close-coupling
formulations, expansion of the electronic wave function in a finite set of square-
mtegrable basis functions and substitution in the Schrodinger equation leads to a
set of coupled differential equations for the expansion coefficients (the probability
- amplitudes of the basis states) which must be solved with some initial condition.
Conservation of pfooabiﬁty within the expansion basis is an.importqnt feuture
of such a calculation. From a practical point of view 1t is desirable to keep the
number of basis functions to a minimum. Physical insight is helpful in achieving
this goal. In a slow otomic collision one fnay imagine the collision partners to form

a quasi molecule. Hence the set of molecular states forms an appropriate basis to

describe such a collision.

However, problems arise if a description of th;: electronic contiuuum is
required. Conventionally the continuum is described using a finite set of pseu-
dostates, which can represent it at most loca‘ll}f.' However, an ionized electron
must eveutually move to “infinity”. Hence the conservation of probability wj‘t'hip'
thé finite square-integrable bosis is.p.hysi_cally unzicceptable if lonization 18 an open
channel. In a correct theory-one must allow the probabﬂ{:ty to escape from the
(Well 1oca.hzed) pseudostates. o

Mathematlcally the defect in the coupled states method described above

is the assumptxon that a finite set of square- mtegrable basis states is ‘complete

to describe the electromc wave function over the mﬁnzte electronic coordinate -

/

{ .
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space. This can be avoided by aba.ndomng the solution of the full time dependent

173

Schrodinger equation (over all space) and constructmg the propagator of the sys- |

tem within the chosen basis set. A derlvatlor_l of an equation for such a propagator
for a ope—electron-tevo-nucleus system is presented in Chapter 2. The derivation is
based on the projection of the t&tal propagatoe of the system onto an entirely dis-
«rete molecular basis using a set of physical and mathematical assumptions. The
projected propagator.describes the time evolutfon of the collision system within a
limited region of physical space, viz. the interaction region, and allows the prob-
ability to escape from the pseudostgtes. Transitions among the basis states are
caused by the non-adiabatic couplings.- This: formulation is euitable to describe
slow atomic collisions (centre of mass collision energy < 9 keV/ amu).

o In this treatment the electronic continuum is described by a set of molec-
ular wave packets. They are square-integrable and are linear &uperpesitions of
miolecular continuum states over certain energy intervals which We call the packet
widths. Chapter 4 is a study of these wave packets. We have developed a scheme

to calculate the packet W1dths so that the packets are well 1ocahzed within the -

teraction region. A consequence of this scheme is that the number of wave packets

required to cover a given continuum energy, range increases with the increasing «

" size of the interaction region.

It is shown that‘ the wave packets are centred at the centre of charge of
. the nuclei and remain molecular in character even at large internuclear separations.
Apparently they do not decompose into simple linear cor}lbination of atomie wave
packets ‘(This behavior is seen in molecular continuum states too. See Chapter 3).
This is in sharp contrast to the behavior of molecular bound states which become
atomic bound states (or simple linear combinations of t’hem); Recent‘clas'sical
trajectory Monte Carlo calculations and preliminary results of a large scale close-

coupling calculation on H+‘+ H(1s) collision system at low energies have shown



>

that the ionized electrdn has a high probability around the centre of charge of the
nuclei. Hence the wave bhckets are appropriate to describe the ionizéd electron.

' ‘Chapter 3 is concerned with the efficient generation of molecular con-
tinuum states. The differential equation satisfied by the one-electron-two—nuclehs
molecular states is separable in prolate spheroidal coordinates. The zmgulér wave
furiction can be genefated’and stored efﬁciéntly in a power series form. We have
represented the radial wave function in phase-amplitude form. Generation of the
radial wave function in this fépresenté,tion is hmch more efficient than the (-iiréct
numerical integration of the radlal equatlon because the amplitude (and the phase)
function is a smooth slowly varying functlon of the radial variable while the radlal
wave function itself 1s oscillatory (phase—amplitude representation has ;ome con-
bceptual advantageous which has been utilized in Chapter 4). By fitting a simple

algebraJc function to the amplitude (and phase) we, have developed a global repre-

sentation for, the ol‘ecular continuum states. This enables efficient and accurate

regeneratlo*p‘ oﬁﬂ;ﬂkseiwave functions for non-adiabatic coupling matrix element

ca.lculatlons"

Eﬁ'ect.ive'hon-adiabatic couplings between two wave packets can be de-

> ‘-'ﬁucgd‘vfggm' the non- adlabatlc couphng between two molecular continuum states

W"fm )": :
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provxded the latter has a certam analytical structure This structure ise rxgorously |

established in Chapter 5 by exﬁt_nendlng the Hellmann-Feynman theorem to molecu-
lar continuum states. In Chaptgf 6 we have numerically evaluated these couplings
which can be used with the known bound-bound ahd bound-continuum houplings
to solve the new equation for the projected propagator. | |
The conceptual and the a.na.lyfi&a.l work presented in this thesis are gen-
erally valid for a slow collisipn of any otz’é electron-two-nucleus system. The nu-
merical results reported are for the partlc%.r system H* + H.

s
K



jonization in proton-H-atom collisions, for example, would require as the next step-

s

Further work on applications of the new formulation to the-problem of

the solution of the close-coupled integral equations using the couplings and packet

states considered in this thesis. This next stage lies beyond the scope of this thesis,

but a few comments about it are appropriate.

1) The radius of the “interaction region” (which dictates the selection of
. g

packet widths and the resulting choice of basis set to describe. the con-
tinuum) is not determined and actual calculations to determine stability
of the results for various choices would be.required. A second, related
question is the problem of interpretation associated ‘with the choice of

the parameter Roo at which the collision is hypothetically “over” (in the

sense that transitions to the continuufﬁ_‘}froﬁib'gﬂnd states are no longer |

occurring).

An alternative interpretation of the formalism would be to select packet
widths so small that the mteractmn region spanned is very large and
the assocxated effects of escape are nearly negligible over a rather long
time scale: one could then monitor th'e? the evolution of the continuum
electrons within the spz;ce spanned: and lear\'n something about its ac-
fual behavior by replacing the decay bfactors with unity, whtch leads t_o
the conventional (probability- conservmg) close- coupled formulation. Of
course the difficulty with such a computation is 1ts enormous cost; the
intent of the present formulation is to construct a scheme which can
achxeve the same results more economlca.lly, |

A problem which the close coupling theory: descrlbed here does not ad-

’

dress is the calculation of ionization amplitudes in detail. Solution of

close-coupledjequati'ons including the packet states and with the escape |

[



effects included would describe the wave function within the interaction
region for all times, but give no detailed account of the fate of the escaped
amplitudes. The intent of the theory is that a different schemé‘be used
to study subsequent continuum evolution, but we have not considered

that question in this thesis. /s

»
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1.

S

FOOTNOTES

Vo : &
One uses stzndard potential scattering techniques in treating elastic scattering.

See for example Chapter 8 of reference L. ‘ .
Apparently the classical traJectory method was first guggested by Mott ["m]
in 1931; theoretical Justlﬁcatlons for its use camie after 1961.

In the infermediate eneréy domain ﬁhere is a region where neither atbomic nor
fnolecula.r sttate expansions are cle.arly prefera_ble. Some re'cer_1£ work has at-
tempt'ed to handle such collisions using a combination of ‘atnornic and molecular
states [21] or a combination of atomic and united_eéem s'tatgs [22], to gather
advantages from both types of expansion basis. « | | ‘ | .
We should remind the reader that the condltlon of va’hdlty of tlre classual
trajectory description ﬁoes not necessarily mean that the collision is fast z‘mdv
there is a region where one can use the molecular basié to ex.pzmd T(7, 1).
Molecelar states-are in one-to-one correspondence with gfrade / unger&de com-

binations of atomic states if A = B. "

. Angular coupling is some times called the Coriolis coupling Singe it can be

= .
s i

viewed as the quantum mechanical counterpart of the classical Coriolis inter-

action.”
In equatior;s (1 - 12), adiabatic basis functions are expressed in a space-fixed

' 2. . . i » ™
reference frame. Actual calculations are done in a rotating molecnlar fixed

* reference frame. This point is discusseéd more fully in Chapter 5.

‘For homonuclear systems they used a much more complicated formula to con-

struct travellingumolecular orbitals.

Another problem encountered in these techniques during the integration of the

differential equations is the singularities in the potential at the nuclei. Though .
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10.

11..

12.

14.
15.

“ épace grid so that no-points coincide 'wit_h' the nucler.

. They are L2 -type functions of the form

P

!

Sturmian radial functions are the solutions of the hydrbge_ﬁic radial equation

- ( AP d 04D awle)

omg dr? | 2mor? r

) Sai(&;7) = € S )

r 4

but € is an assigned (arbltrary) parameter and anl(e r) is theeigenvalue. They"

~ are scaled hydrogenic funetions.

Snl(e; T) = .‘V anl(e; T) Rnl(anl(‘e; ,7').7')

—

€ can be selected to give useful scalings. Sturmians form a complete set and -

have most of their density in a more compact region than do hydrogenic states.
Gallahér et ql.. explicitly c:alcul‘ated and subtracted the osciil-atory tef_rns to
obtain acceptable cross sections. B . | ?
Recently such Sturmian expagsions have vbeén used to study the He?* + H and

H* + Hé* collisions [37], and H* + He™ and H* + Li** collisions [8].
' \

(2)' ol 52) € 058 (552 i ot

~where (£,7,¢) are the prolate spheroidal coordinates of 7, (nlm) are three

pseudoquantum numbers, LT are Lgaguerre polynomials and P/" are the asso-
ciated Legendre polynomials.

A similar general solution has been réportéd in references 67. -

If a fully \qua.ntum mechanical description of the collision is used, time does.

not appeai in the formalism, but it can still be shown that transitions arise
from the same forfnal é:oupling matrix elements i/ (k'; RW plk; R) (with ETF

corrections) as appear here. Cf. for example reference 13.

173\

niot formally quite acceptable, at ‘presen\f‘ it is sim.p'ly' avoided by choosing the

/AW“



16.

- reference 80 for an extended discussion) -

COL79 .

There are dther; much smaller effects. If these are cf interest, a fully quentmn .

[

mechanica) formalism, along' the lines suggested in reference 13, and allowing
for diﬁ'erent swithching functions for different adiabatic states, sheuld be used,

since a cla.ssmal trajectory descrxptlon entails. approxnnatxons comparal)le to

the neglect of these effects Within the classical traJec{ory apprommatlon tln .

inclusion of the ETF corrections as s indicated here is the main result. (See

-

like Hf (ZA = ZB)' where GC coincides with the centre of positive charge. It

can be shown 82,83] that m] the united- atom limit R — 0 there should be an,

centre of charge. . -

If dlfferent fk(r R) are used for each (T3 R), the basis states become slightly

nonorthogonal for increasing collisional velocities and the nonadiabatic cou-

. . .
. This simple form is strictly appropriate only for charge symmetric systems .

, addltlonal term which “corrects the hmltm reference origin from GC to the”
g g

plings P, ‘A also exhibit velocity-dep'ende_nce. QS reference 80 for a dis-

cussion of the modified formalism{for bound states) in a ¢lassical trajectory
description. In the calculations of reference 20, it has been shown that ef-

fects of such velocity-dependence become significant only for collision energies

E>7-10 keV/vamu

. Recent preliminary studxes by Dr. M Kimura (prlvate communication), and

work currently contlnumng in thxs laboratory-show that nonadiabatic bound-
\

to-continuum touplings based on the universal switching functions of reference
82 are more numerous, larger and have longer range than those for state-

optimized fi’s, and that continuum-continuum couplings are even more badly

-

¢

behaved (they oscillate vs. R).

e
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- APPENDIX - A ~

1]

We dériv_e the useful equations (A —.9), (A - IOY,(A —14) and (A - 13)
v , ' , S\

involving integrals over adiabati¢ continuum angular wave functions (at the same
l~.

4

internuclear separation). o i S

-~ —

The angular wave function satisfies equation (3 - 3):

L

- d. 5 dS(el'm; R;m)
dn ["(1 o )dn

1 (4-1)
+ [pn—56R2n2+A,/m'(e,R)—1

m?

=1

5| Stetmi Rin) = 0

Here Ay, (€, R) is the same as the separation constant A in Cbapfer 3.
- Since equatior?(A — 1) is a Strum-Liouville equation [70], if ¢, R and m
_are kept constant, then the bound solutions belonging to differet{t Apm(e R) (e

!
" different !) arevorthogonal; they are also normalizable.

Bo(ellm; elm).="6p;- - (4-2)
where /
: T ‘ +1 o . .
o B = [ S R) Sk m) (43
Define < - A
S((elm& ! “ w> (._,'.1 — 4)
¢} w 66 nR .
. . +1 ‘ .
Be(K' k) = /dn.S(k’; Rin) S(k; Rin) (4-3)
-1 '

The differen&'al equation satisfied by S, can be obtained by differentiating equation

‘o 186 \



('A.—?]_) —' ’ 5 i ) ’_ \\ - . N
- - ’ .

4 [ ,.dSd(em;Esm) T\
d [, _2,d5(elm;K;n ﬂ :
LR s ) ey = oM o 1%
. Ff + P’?"z'f n +‘1m(€\);—1_n2 ((677},12,7)) . (‘.— )’

' o - lenz _ 9dm(e R) S(elm; Ryn) =0
: : 2 . e ..

L

The physical angular wave function must be well behaved in ?‘j\)ne?gy; hence’
£

|Se(elm; Rynp = £1)] < oo

O I N

Multipiying equation (A —,1) by S and (A —6) by S and subtracting the former

from the lattef and integrating over n wéobtairie -

o ' ' ;o , L ' |
. (Aim(e, R) — Alrm(e,ﬂé) Be(el'm; elm) -3 ﬂ{fz Elm) .
. -  dAm(eR) ., N
- . ./,., ~ +_————a€ IBO(EI + m) = 0\ - R
> - 14 a < ) .

A
In this case the first term in equation (A — 8) vanishes. Then -using
ey(ation (A — 2) we obtain -

“

OAim(e, R)

! . .
, . :=§ﬁmwmﬂﬁ), . (A-m
Case 2: I #1 A - - . ,
| - Using equations (A4 — 2) and (A — 8) we obtain
( ' ‘
- R? By(el'm; elm)
(el'm; elm) = ’ A-10
Bl elms ) = it B) = Al B)) A4=10
AN .
- To derive the other two,expressiong define \r
N . .
S (elm; R; 1) -
Sp(elm; R.y) = (572—_——_ y “ (A-11)

4

(-1
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o +1 . '
BalKik) = [dnSWiRin) SpikiRim)  + (4= 12
R —1 - ' N " ¢ .
For the physical solution S, Sgp must s.atisfy. ' ' T w
|Sr(elm; Rynp =+1)| < o0 ' 8 L (4A- 13;

-~

Differentiating equation (A - 1) with respect to R and using si‘milari>etho’c}ié' as 5

- described above we can obtain . ' ' . ’) 33
L . . . . l X . .\ . . .
| ggtmﬁ R) _ eRﬂz(elm;.gerl) . %‘gl(ezm; elm) S (4-1)

‘. _ eRﬂz(eI'm;elm) ~ (p/R) Bi(el'm;elm)
Br(el'm; elm) = [ A B = Ar (e )

. (Qrfce the a.nguiar wave fun?tions are calculated in a globa¥representa-

] (1-&) (4-15)

Al

‘tion,}f, can be evaluated readily. ‘Heﬁce one can use equations (A4 — 9}, (A —10),
(A ~14) and (4 - 15) to calculate 94/de, f,, 0A/OR and A -

[ -

-




APPENDIX - B

e

We derive the useful equation {B - 9) an mtegral of the md?wme

functions (at the same 1nternuc1ear _separation).

/
Define the auxiliary rzidiz;l wpve function ¢ .
~ € ¢ N e A i:", .
(Olelm; Ri€) =€ ~ 1x(emiRi€) * o (51
BT o
- ) ’ ‘ . . ’
: o r ! ‘ s
Equatien (3 -\4) gives _ RS o
d*$(el'm; R; €) . ®
d¢? S v .
/ | 1-m?)] -
Hary |6 LA E = el R + (52 j‘l) olelmi RiE) =0

(B -2)

Then we obtain =~

d? (9(€)8(elm; R €)) | o
d¢? v' . . o

1 22 4 - m?)
ey @€ +cl - Afm(vg»ﬁ) t a1 | 9% ¢(€1"2;‘R;€)

| dg(¢) do(elm; ;&) Lg(8) [

=2 - Im; R,
i d& +d£2 ¢(elm; R; §)
) o T - — ' . (B=3)
Here g is the convergence factor e:cp(——d{) uescribed in‘Chapter 3. ‘
M

~ Multiply equation (B — 3) by <p(e I'm; R; €) and B 2) by cb(elm R;:€),
subtract the latter from the former, integrate over E and take the lnmt a — 0%

Then

(2 = (¢ Pyl s lm) = (Aimle, B) = Aun() R)) 70(¢ P elm)
N - v o (B-4)
= M0 + X(0%) | -

189
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where
wKik)= im [dEE o Ox(FROXBRE  (B-5) -
J .
N \
T dp(elm; R
2a /dé C.Tp (6 llm R:s;%(GL—g—)' (B— 6)
1 :
A (a) = a? /df exp(—a ) ¢(e I'm; R; £) ¢(elm; R; €) _ (B-T)
1 '
" One can study Aj(a) using the techniques developed in Chapter 5. Then
. )
i 0 if € #e ‘
A - /\1(0+) = - : R (B "8(1)
: . —aya; Sin(A’ - A) ifeé =€ ’ : .
A(a)=0 (B — 8b)
Here A’ and A are the phaseb' shifts and, @; are the normalization constants (=
 2/Vm R. Hence we have |
‘r 2\ p? | . _ -
(=) Rolelmictm) B
v ] 2 (A[m(é, R) - Al’m(f 7R)) A :
vo(€'l'm; elm) = 4 _ : _ : (B-9)
' ' ) day sin(A' — A) oy . .
: : e ! Ve =€ .
[ i \ “_(Alm(e,, R) - Al’rﬁ(ﬁ R)) : lf :,é l and € 6 ‘ _
: ‘ v

It is worth noting t_hatbng can use the second case of equatioh (B - 9) to evaluate .

L4
-

the improper integral 79 (of an oscillatory integrand) using the relatively easily
e ~ B : N ’

calculable guantities 4 and-A.

~ R . 3 . .
. '
. : . - ! ' E
. ' B . N . e
. - N )
. s . .
v . . B .



::-.5"1 '

]

APPENDIX - C

We prove that the contribution to an 1ntegral commgb from g pozm‘ where

the integrand has a logarlthmxc s1ngu1anty 1s zero, Vviz.

+6

X:'al_i.rgl+ /d:cf(a:)ln(bl’)ZO : | >
. -8 h

with b # 0 and f(z) well behaved at z = 0. It is quite straightforward to sec that

L

X = 0) Jim Y0O) (-1

where .
' +6 i
Y(6) = /d:c In(bz)
25
By deﬁfntlon of improper integralss . . -
Y(6) = hm Y_(5) + lim Y,(6) (C-2)

e_—0~ €+—'0+ .

With
’ +6 -
Yi(6)== /dz In(bz)
€+ -_—
Integration by parts gives-
Yi(8) = £ (46 In(£b6) — ex ln(bei); b+e€y)
We know that
lim a in(a) =0
a—0
sHence “
¢ : o
lim Yi.(é) =6 In[=bb)-6 (C -3)
€+ —0% _

191 :
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Equations (C - 2) and (C - 3) give

L s n(§)—26+6In(—bY)
which gives 3 ‘
lim Y(§)=0 . ° (C —4)
50+ - ‘

Hence X = 0.
This proves that the area.under an isolated logarithmic singularity is A

¢
zero. -
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APPENDIX =D

We prove that the conditions

¢ rllfgo T 11’1(77) =0 (D-1)
- » : ' _
{
,?a.nd ‘
lirgo rT- V P;(F) = ' . (D -2)

. ]
are suf ficient to make the one-electron-two-centre Hamiltonian Hermitian with

'respect to the well behaved functions ¥; and P[)j.

"We have o =
he= 2§24 V(FR) (D -3)
2m,
Define . S -
' 2m, /- L ‘
C X = (hewiy) - (wilhew,)

~ Then 1t follows that

X = /w (1 9s -, V2] (D-4)

. 1Y IS

Now consider a sphere of radius of “infinite” radius, centred at the origin and

transform the volume integral (D —4) to a sur face integral using Gauss’ theorem.
x ' 2r
/d() sin 6 /d¢ hm Wt (r 7 Vi), — (r2;) 7 - €7¢;]}
0 ‘ .

r—00
.0 \ 9

If equations (D — 1) and (D — 2) hold, then

X=0

103



" Hence the result

- with respect to two continua. s

f . : 194

(/33114 Id’])';( wi |izc ¢’j )

Equations (D —~1) and (D —2) are satisﬁed'by bound adiabatic states since they

die as exp(—ar). Thus h. is Hermitian with respect to two bound states or a

-

bound and a continuum state. The Hamiltonian may not in general be Hermitian

L]

PFes



: " APPENDIX - E

Orthdnbrma.lity of continuu.mi\tates (of any Hamiltoni%‘m) is usuzllll_fas- o
-sumed Wwithout proof. Here we rigorously derive the.ort'honormality felixtiQns
of one-electron-two-centre continuum sta?és and calc;llate the normalization con-
stant. ThAe matheréiética.l techniqu-es developed in Chapter 5 are used throughout.
We denote |€'1'm/; R) by ll’k.' and |elm; R) by px and work in atowic units.

Azimuthal angular'wave functions make two continuum states orthogo-

[

. - ~ - ' . .
nal i they have different m quantum numbers. Hence in what follows we consider _

the case m' = m.

Case 1: ¢ # ¢ One can easily show that

- 4 - S R ’ :
hel¥eg) = edug — (Vi) - (Vg) = ¥ (V7yg) (E=1)

-

where g is the convergence factor exp(—af).
Because h, is Hermitian with respect to ¥ and ¥y gA, fnult"xplicétion of
equation (E — 1) on the left by (] gives

- [

(¢ = Vg vmle) ==l (T ) (F9)) = S alin ()~ (E =2

Expressing V and V? in prolate spheroidal coordinates and doing some algebra-
we obtain

(€ —¢) (g lvn) = —%Rﬂo(ell'm; elm) (Ai(a) + A2 (a)) - (E-3)

Bn and A; are as.defined in equations (4 —-3), (B —6) and (B - 7). In Appendix-B -
~ we have proved that A;(0%) = 0 when € # ¢. Hence in the limit a — 0%, equation

(A —3) gives

!

-

(¢k'|¢1f_) =0

195
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-~ - non —_\orth‘ogonal.'_

196

" Hence the ‘contiAhuum states are orthogonal if their energies are different.
) Case 2: € =¢#0) R
Directly integrating g1}, 1 over all space in prolate spheroidal coordi-
. naf_es and taking the limit a — 0% we obtain/A C ¥ ,
. 3 . 1 ‘
(ulvk) = = [Bo(el'm; elm) y2(el'm; elm) — Ba(el'm; elm) yo(el'm; elm)}
| | (E—-4)

Ya is as defined in eéuation (B-5).

" Subcase 2a: ' #1

. ’ N,

o .+ Substitute the values from equations (A — 2) and (B —'10) in equation

(E - 4). .
.ay a sin(A' = A) L -
by } - l N I E -
(i wjk)x (Ar(e B) = A;m(e,R))m(e m;e (E~35)
In general sin(A" — A) and B, are non-zero. Hence the two continudm states are

Subcase 2b: -1 =1 A
-Using/‘the techni~ues described in Chafpter 5 we can easﬂy prove that
Yo 18 fintte and 72 has a 6(¢" — ¢€) type sin . Using equation (5 - 36b) and

remembering that fy = 1 we obtain
e F P | '
. t R Y N
. o Wl = a8 - (E ~6)

Now we can set the normalization constant

- 2 ,/

a=

LS
3
=)
¥

g

so that combining the results of Cases 1, 2a and 2b we obtain h

(elllm’; R|dm, )) = 5(6' -~ 6)51/1 ;Sm'm (E - 8)
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v
.

One mugt be careful in interpreting eqﬁatiorig(_%E '—.S\. The equality

is”in -the sense of distributions;. some of thé information js!

-

ssing at € = e.
1SS

: uas an isolated “non-zero” when €' = ¢, I' # | and m' = niiwhich gives no-
Y[y & \ g

contribution to the distribution of (Yrr|¥r) as a function of € or e. *

~
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