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Abstract

In order to mitigate the effects of a changing climate, agriculture requires
more effective evaluation, selection, and production of crop cultivars in order
to accelerate genotype-to-phenotype connections and the selection of benefi-
cial traits. Critically, plant growth and development are highly dependent on
sunlight, with light energy providing plants with the energy required to photo-
synthesize as well as a means to directly intersect with the environment in order
to develop. In plant analyses, machine learning and deep learning techniques
have proved ability to learn plant growth patterns, including detection of dis-
ease, plant stress, and growth using a variety of image data. To date, however,
studies have not assessed machine learning and deep learning algorithms for
their ability to differentiate a large cohort of genotypes grown under several
growth conditions using time-series data automatically acquired across multi-
ple scales (daily and developmentally). Here, we extensively evaluate a wide
range of machine learning and deep learning algorithms for their ability to dif-
ferentiate 17 well-characterized photoreceptor deficient genotypes differing in
their light detection capabilities grown under several different light conditions.
Using algorithm performance measurements of precision, recall, F1-Score, and
accuracy, we find that Suport Vector Machine (SVM) maintains the greatest
classification accuracy, while a combined ConvLSTM2D deep learning model
produces the best genotype classification results across the different growth
conditions. Critically, our successful integration of time-series growth data

across multiple scales, genotypes and growth conditions sets a new founda-
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tional baseline from which more complex plant science traits can be assessed

for genotype-to-phenotype connections.
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Chapter 1

Introduction

Evaluation, selection, and production of cultivars all heavily rely on geno-
type classification [80]. To meet the ever-increasing demands of the increasing
human population, plant productivity must drastically improve by using re-
sources more effectively. However, this depends on a thorough grasp of the
genotype-phenotype link [64]. Effective plant phenotyping is practically im-
portant in a number of ways, including the identification of diseased plants,
classification of different species or cultivars/genotypes and/or measurement
of plant traits resulting from the interaction of a plant’s genotypes with the
environment [77], [38], [85]. Identification of plant genotypes is one of the
necessary steps in plant variety selection and plant stress analysis. Plant
phenotyping was initially carried out manually and hence was more prone
to errors. Therefore, numerous image processing, computer vision, machine
learning (ML), and deep learning (DL) based algorithms are utilised for plant
trait estimation and classification tasks in order to remove human interaction

and to increase overall accuracy [38].

In plant classification studies, time-series data provide important informa-
tion such as seasonal trends, plant productivity over a season, plants’ dynamic
growth based on leaf area, etc [73], [49], [79]. Time-series data represents a
critical data type for resolving trends in biological systems. Correspondingly,
time series classification is crucial for the computer vision and machine learn-

ing communities since time series data are common in a variety of application



domains [5], [82], [52], [57]. From an agricultural perspective, extracting char-
acteristics from time series data is critical in order to obtain relevant informa-
tion on the state of growth and development [82], [52]. Studies demonstrating
the power of computer vision have also looked at plant classification based on
image processing, vesselness measure, images of overlapping leaves, as well as
plant texture features [32], [36]. Further, research applying computer vision
methods have succeeded in identifying plant diseases based on probabilistic
classification of “healthy” vs “sick”, images of diseased areas, signs of envi-
ronmental stress, and identifying changes of electrical signals of plants due to

environmental changes have been performed [71], [2], [84], [11].

In static plant analysis, computer vision and machine learning techniques
have excelled, proving their capacity to learn plant growth patterns [59], [38],
[85]. As plants are not static but constantly growing and developing on a
daily basis, our research aims to construct a model for automatic genotype
classification over a growth time-course using advanced machine learning and
deep learning algorithms. Currently, supervised ML techniques have already
been deployed for analyzing the biological properties of plants. Random Forest
(RF), one of the supervised machine learning algorithms, is a non-parametric
approach that has been applied to disease prediction, protein sequence selec-
tion, and gene selection [59], [18], [58], with plant biomass having also having
been accurately predicted using RF image based data [11]. As well, support
vector machine (SVM) has been applied to stress plant identification, neuro-
image classification, plant image classification, biomass prediction [11], [25],
[12]. Lastly, stacking multiple ML classifiers has demonstrated advantages for
crop categorization estimation when compared to the use of a single classifier,
suggesting that multiple classifiers in combination can lead to more robust

classification outcomes [10] [86].

The plant sciences have also steadily incorporated DL methods, with ex-
perimentation using DL algorithms providing superior performance relative to

conventional ML algorithms in classifying plants and in detecting various plant
2



diseases [16], [44], [4]. Convolutional Neural Networks (CNNs) have success-
fully classified plants [78], [45],[40], [76], [35], [4] and identified diseased plants
[67], [3], [53]. For example, a CNN-based approach DenseNet-77 gave better
accuracy than SVM and K-Nearest Neighbors (KNN) in detecting diseased
plants [3]. CNN techniques have also been proven capable of differentiating
plants according to species [40], [76], [35], [44], [83]. Recurrent Neural Net-
works (RNN) have also been successful in analyzing spatiotemporal data when
paired with CNNs [27],[9], [47]. Long Short-Term Memory (LSTM; an RNN
variation), has also been used for sequential data tasks due to its ability to cap-
ture long time-frame dependencies [31], while LSTM and Bidirectional-LSTM
(the improved architecture of LSTM) approaches have successfully aided in
assessing rice cultivation in southern Brazil [15]. Here, the authors compared
their results with classic MLL methods, including SVM, RF, k-Nearest Neigh-
bors (k-NN), and Normal Bayes (NB). Based on the Densenet201 and bi-
directional LSTM, a Densenet201-BLSTM model was proposed for classifying
various genotypes based on time-series of plant images [80]. In the model plant
Arabidopsis thaliana, a CNN-LSTM method proved most useful in classifying
four accessions (Sf-2, Cvi, Landsberg (Ler-1), and Columbia (Col-0)) for plant
growth differences and to categorize genotypes over plant development using
single images over multiple days [77]. Alternatively, CNN with convolutional-
LSTM (ConvLSTM) layers also demonstrated success when re-analyzing the
same data [38].

Arabidopsis thaliana is a model plant species with extensive, well-characterized
genetic resources for use in training ML and DL models [77], [38]. Critically,
plant growth and development are highly dependent on sunlight, rendering our
ability to detect genotype-to-phenotype differences fundamentally connected
to light detection and core to agricultural applications. Light energy provides
plants with a means to photosynthesize for growth [19] and a means to de-
tect the environment for development [22]. Plants detect light signals, such as
changes in light amplitude, color, spectra, and photoperiod, using a class of

proteins called photoreceptors [24]. This enables plants to respond to changes
3



in their environment, such as seasonal transitions, day-night cycles [14], or
shade from other plants [81]. There are four families of photoreceptors: Phy-
tochromes (PHYA-PHYE), Cryptochromes (CRY1, CRY2, and CRY3), Pho-
totropins (PHOT1 and PHOT2), the ZTL/FKF1/LKP2 group proteins, and
lastly the UV-B resistance 8 (UVRS) family proteins [24], [46], [42]. Phy-
tochromes absorb light in the red and far-red regions of the visible spectrum
[54], [65] and regulate key developmental events such as seed germination, tim-
ing of flowering, size and shapes of plants and leaf movement [33], [75], [21],
[74], [51], [66], [23], [39]. Cryptochromes detect blue and UV-A light [69]. They
function during de-etiolation (the transition to the greening stage after plant
germination; CRY1), in the photoperiodic control of flowering (CRY?2), in the
inhibition of the hypocotyl growth and in shade avoidance mechanism (CRY1
and CRY2) [28], [17], [1], [50]. Phototropins and ZTL/FKF1/LKP2 group
proteins are sensitive to blue light. Phototropins control phototropism, light-
induced stomatal opening, and chloroplast movement in response to changes in
light intensity and direction [37]. Lastly, the ZTL/FKF1/LKP2 group proteins
promote degradation or maintenance of circadian transcription factors, induce
transitions in the day-to-dark transition [43], and are also involved in flower-
ing, while the UVRS family proteins absorb UV-B to signal harmful ultraviolet
radiation [60]. While much has been resolved about how light activates plant
photoreceptors, there are still gaps in our understanding of how these photore-
ceptors are connected to different elements of diel plant cell processes to affect
phenotypic changes [70].

As plants are not static, but constantly growing and developing on a daily
basis, our study aims to make genotype-to-phenotype connections using time-
series growth data across multiple scales (intra- and inter-day data), geno-
types, and growth conditions. To do this, we grew 17 different photorecep-
tor mutants under different light conditions to define the effects of twilight
on a well-characterized population of photoreceptor deficient plants. To cat-
egorize these 17 genotypes based on their phenotypic responses under these
different twilight conditions, we extensively tested a number of ML models, in-

cluding: Support Vector Machine (SVM), Logistic Regression (LR), ensemble
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stacking techniques (Random Forest (RF) and Boosting), alongside multiple
DL techniques such as Fully Convolutional Network (FCN), Resnet, Encoder,
Bi-LSTM, Conv2D, and ConvLSTM2D. We find that although conventional
ML models were successful in categorizing genotypes under different twilight
lengths, DL techniques perform much better, which we attribute to their ability
to utilize multiple types of time-series data. In particular, our results demon-
strate that while SVM maintains greater accuracy in classification tasks, the
combined ConvLSTM2D model produced the best classification results for the
various genotype classes of Arabidopsis thaliana across the different twilight

conditions.

1.1 Thesis Contribution

The contribution of this study is as follows:

1. One of the major contribution of this study is to create the dataset
in lab by using Raspberry Pi, and cameras to take picture for every 5
minuts of 14 days and to extract plant area measurement under different
light conditions using PlantCV. The dataset contained numerous flaws,
including missing values, outliers, and consistency issues. However, with
patience and thorough careful measurements multiple times, we were
able to reduce the likelihood of errors in our dataset. We also did some

data manipulation, data preprocessing before using them for analyses.

2. We applied our machine learning classifiers by taking into consideration
time-series growth data across multiple scales (intra- and inter-day data),
genotypes, and growth conditions. Here, in case of multiple scales, we
considered high frequency fluctuations like plant growth data per day as

well as longer term trends or patterns like plant’s growth over 14 days.

3. We proposed both traditional and deep learning models to evaluate their
ability to differentiate 17 well-characterized photoreceptor deficient geno-
types differing in their light detection capabilities grown under several

different light conditions. We employed 0-min, 30-min, and 90-min light
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conditions for plants growth and evaluate the models’ performance by

their ability to differentiate plants grown under various light conditions.

4. The optimal parameter settings for each of the conventional and deep
learning models we provided for classifying plants were identified. To
make the results easier to grasp, we cross-validated the results and dis-

played them in boxplots.

5. We demonstrated the performance of each models on time-series plant
dataset and discussed the factors contributed to it. Finally, we suggested
that the ConvLSTM2D model and SVM had the greatest performance
for classifying plant genotypes.

6. We experimented and figured out which photoreceptor mutants of Ara-
bidopsis Thaliana plants have more likely growing patterns and condi-
tions like wild type plants so that it can help to identify which genes are
responsible for the plant’s growth and development independent of light

conditions.

1.2 Thesis Outline

The rest of the thesis is organized as follows:

1. Chapter 2 provides detailed explanation of Material and Methods we
used. Section 2.1.1 explains the used plant materials and the growth
condition of the plants in lab. Section 2.1.2 explains the phenomic mea-
surements containing the computers, cameras and other technological
devices used to extract plant data. Section 2.1.3 explains dataset con-

struction and section 2.1.3 explains the input data structure.

2. Section 2.2 provides detailed explanation of all the traditional and deep
learning models we used for our experiment with model architecture,

hyperparameter optimization, cross-validation, and model evaluation.

3. Chapter 3 provides detailed performance analysis of the models and dis-

cussion of the results.



4. Chapter 4 concludes this thesis with the summary of the proposed meth-
ods and results. This section also includes the future prospect of the

thesis experiments.



Chapter 2

Literature Review

Across the plant sciences, computer vision and machine learning algorithms
have demonstrated their ability to understand plant growth patterns. With
the steady adoption of DL techniques, experiments have demonstrated that DL
algorithms often perform better than traditional ML algorithms at classifying
plants and identifying different plant traits. In this chapter, I discuss research
relating to deployment of both the conventional machine learning models and
deep learning models in the plant sciences.

The authors [63] proposed a statistical framework for the analysis of phe-
nomics data by integrating DM and ML techniques. The most popular super-
vised machine learning methods are utilized to classify and predict plant health
(stress/non-stress), including Linear Discriminant Analysis (LDA), Random
Forest (RF), Support Vector Machine with linear (SVM-1), and radial ba-
sis (SVM-r) kernels. They looked at several datasets that represented real
and simulated plant phenotypes. They studied the performance of each ML
method (classifiers) and investigated how performance varied with the chosen
number of attributes. The classification accuracy for 20%, 30%, 40%, and 50%
rank features was calculated for simulated data. All offered about the same
level of classification accuracy as non-rank all features. Here, rank features
have been lowered by up to 50% and produced excellent results (98%). On
the other hand, for real data, the SVM model’s prediction accuracy averages
around 97%. According to the study, when the features were chosen using the

suggested methods, there was no appreciable difference in classification accu-



racy among the investigated ML approaches, except for Random Forest (RF).
This study demonstrated that issues with using ML methodologies to analyze
phenotype data might be resolved by combining the DM and ML methods for

trait identification and classification, respectively.

The paper [4] presents a comparative study of traditional image processing
and deep learning techniques for plant recognition. In this study, two meth-
ods - the conventional method and the deep learning approach are used to
identify plant species. Hu moments (shape features), Haralick texture, local
binary pattern (LBP) (texture features), and color channel statistics are used
in the classic method to extract features (color features). Several classifiers
(linear discriminant analysis, logistic regression, classification and regression
tree, naive Bayes, k-nearest neighbor, random forest, and bagging classifier)
are used to categorize the retrieved features. Also, various deep learning archi-
tectures are evaluated in the context of identifying plant species. One real-time
dataset (Leafl2) and three standard datasets (Folio, Swedish leaf, and Flavia)
are used. With the Leafl2 dataset, it was found that using the conventional
method, the feature vector produced by combining color channel statistics,
LBP, Hu, and Haralick with the Random Forest classifier produced a plant
recognition accuracy (rank-1) of 82.38%. For the Leafl2 dataset, the accuracy
of the VGG 16 (CNN architecture) with logistic regression was 97.14%. For
the Folio, Flavia, and Swedish leaf datasets, accuracy of 96.53%, 96.25%, and
99.41% were achieved utilizing the VGG 19 CNN architecture and logistic re-
gression as the classifier. VGG (Very Large Convolutional Neural Network)
CNN models were found to have a greater accuracy rate than conventional

techniques.

The paper [3] presents a new approach to detecting and classifying plant
diseases using deep learning techniques. The authors proposed a DenseNet-
77-based CenterNet model. The proposed method involves the use of a con-
volutional neural network (CNN) model that takes images of plant leaves as

input and outputs a probability distribution over different disease categories.
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The authors evaluated their approach on the PlantVillage dataset containing
54,306 images of plant leaves, with 12 healthy and 26 diseased plant classes
of 14 species of plants. The samples for all 14 species of the crop including
Tomato, Potato, Apple, Grape, etc., are downloaded from the Plantvillage
dataset. The samples in the Plantvillage database are varied in the aspect of
changes in angle, size, color, light, and the presence of blurring, noise, etc.,
which makes it a diverse database for plant disease recognition. They also
compared their method with several existing approaches Inception-v4, VGG-
16, and ResNet-50. The results demonstrated its superior performance in
terms of accuracy, precision, and recall. They also compared their approach
with conventional ML models like SVM and KNN and outperformed them in
evaluation metrics. The performance showed the dominance of deep learning

models over conventional ML models.

This study [17] suggests AyurLeaf, a Convolutional Neural Network (CNN)
model based on Deep Learning, to categorize medicinal plants using leaf at-
tributes including shape, size, color, and texture. The authors developed a
dataset consisting of 2400 images of medicinal plant leaves of more than 30
leaves from 40 different plant species commonly used in Ayurveda, a traditional
system of medicine in India, and used it to train a Convolutional Neural Net-
work (CNN) model for plant classification. To efficiently extract features from
the dataset, a deep neural network modeled after Alexnet is used. Ultimately,
Softmax and SVM classifiers are used to perform the classification. For the
AyurLeaf dataset, the proposed model, after five cross-validations, had a clas-
sification accuracy of 96.76%. The paper presents a promising approach for
plant classification using deep learning techniques and demonstrates its poten-

tial for practical applications in the field of medicine.

The paper [36] presents a comprehensive review of the use of Convolutional
Neural Networks (CNNs) for image-based high-throughput plant phenotyping.
Plant phenotyping refers to the measurement of plant traits such as growth

rate, leaf shape, and disease resistance, among others, in a high-throughput
10



manner using imaging techniques. The authors first provide an overview of the
challenges associated with traditional plant phenotyping methods and the po-
tential advantages of image-based high-throughput phenotyping using CNNs.
They then describe the different CNN architectures used for plant phenotyp-
ing, including classic architectures such as AlexNet and VGG, and more recent
ones such as ResNet and DenseNet. They also discuss the potential challenges
and future directions for the use of CNNs in plant phenotyping. Overall, the
paper highlights the potential of these techniques for advancing the field of

plant biology and agriculture.

The paper [81] ”Leaf segmentation and classification with a complicated
background using deep learning” by Yang et al. presents a deep learning
approach to segment and classify plant leaves in images with complex back-
grounds. Images of leaves with many targets and a complex background are
segmented and classified using the Mask R-CNN model and the VGG16 model.
For training and testing the model, more than 4,000 images were employed. It
is advised to conduct additional research using other deep learning algorithms
and more data, as this could produce superior results. Together with algo-
rithm improvement, improving image quality with better hardware can also
result in improved performance. The proposed approach achieved an aver-
age segmentation accuracy of 96.4% and an average classification accuracy of
91.3% on the test set, outperforming other state-of-the-art approaches. The
authors also conducted experiments to evaluate the impact of the number of
training images and the complexity of the background on the performance of
the proposed method and found that the proposed approach is robust to vari-
ations in these factors. Overall, the study demonstrates the potential of deep
learning methods for accurate and efficient segmentation and classification of
plant leaves in complex images, which could benefit various applications in

plant phenotyping and agriculture.

The paper [41] proposes a deep learning approach to classify crop types us-

ing both spatial and temporal features extracted from multi-temporal remote
11



sensing images. The authors used the Multi-Source Land Imaging Time Series
(MuSLIT) dataset, which includes multi-temporal images of six crop types in
four regions of China. The proposed approach involves a two-stage process. In
the first stage, a 2D Convolutional Neural Network (CNN) is used to extract
spatial features from each image. In the second stage, a Bidirectional Long
Short-Term Memory (BiLSTM) network is used to learn the temporal depen-
dencies between the extracted features from different time steps. The output
of the BiLSTM is then fed into a fully connected layer for crop type classifica-
tion. The authors compared their approach with other deep learning methods
and traditional machine learning classifiers. Their proposed approach achieved
the highest accuracy in crop classification, outperforming other deep learning
methods and traditional machine learning classifiers. The results demonstrate
that the proposed approach effectively captures spatiotemporal features in
crop classification and has the potential to be applied in precision agriculture

and crop management.

In this study [48], a brand-new dataset called Urban Planter for classifying
plant species was introduced. It has 1500 photos divided into 15 categories.
The research team took extra care to compile and annotate the dataset. Deep
neural network techniques such as VGGNet (VGG16, VGG19), DenseNet,
MobileNet, Inception-v3, and Inception-ResNet-v2 were investigated by the
authors (fine-tuned and updated). The outcomes demonstrated that DNN

models perform remarkably well for genotype classification of plants.

The paper [83] presents a deep learning-based approach for the automatic
anatomization of plant roots using a combination of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The au-
thors aimed to develop a system that can accurately segment and analyze
root images, which is an important step toward understanding the genetic and
environmental factors that affect root growth and development. The dataset
contains 4000 images of plates with each plate having five plants of Arabidop-

sis Thaliana, a widely used model plant species in biological research, to train
12



and evaluate their model. They divided the dataset into training, validation,
and test sets and used data augmentation techniques to increase the size and
diversity of the training data. The authors developed a CNN-LSTM model
that consists of two parts: a CNN that processes the root images to gener-
ate a feature map, and an LSTM that analyzes the temporal dependencies
between adjacent frames in a sequence of images to improve the accuracy of
root segmentation. The authors used a combination of binary cross-entropy
loss and intersection-over-union loss as the objective function for training the
model. The authors evaluated the performance of their approach using sev-
eral metrics, including pixel accuracy, intersection-over-union score, and root
length measurement error. They compared their approach with several existing
methods like VGG, FCN, ResNet, UNet, and FastFCN for root anatomization
and demonstrated that their approach achieved superior performance on all

metrics.

The paper [75] presents a deep learning-based approach for the classifica-
tion of plant phenotypes and genotypes using temporal data. The authors
aimed to develop a system that can accurately predict the phenotype and
genotype of a plant based on its temporal development, which is important for
understanding the genetic and environmental factors that affect plant growth
and development. In this research, the authors suggested a CNN-LSTM frame-
work for classifying different genotypes of plants. Instead of creating features
by hand, they used deep CNNs to automatically develop joint features and
classifiers. The authors discussed the issue of handcrafted features and used
deep learning to solve it (CNN). In addition, the growth of the plants and
their dynamic behaviors are studied as significant discriminative characteris-
tics for accession categorization using the potential of LSTMs. They created
the dataset by gathering a collection of time-series image sequences of four
different Arabidopsis accessions (Sf-2, Cvi, Landsberg (Ler-1), and Columbia
(Col-0)) top-view images that were taken under comparable imaging settings
and may be utilized as a standard reference point by specialists in the field.

The proposed framework for genotype classification consists of a deep CNN
13



visual descriptor (using a CNN) and feature extractor with an LSTM model
that can recognize and synthesize temporal dynamics in an image sequence as
well as texture changes. The performance of their proposed deep phenotyping
system (CNN + LSTM) was compared to other baseline methods like using
handcrafted features and SVM as a classifier, adding the LSTM to consider
temporal information, CNN without temporal information, and using CRF
instead of LSTM to compare their performance. CNN+LSTM outperformed
all other methods and proved the potential in predicting the crop yield of the

plants as well as their health in the future.

The paper [39] proposes a spatiotemporal deep neural network approach for
the classification of Arabidopsis plant accessions using image sequences. The
authors aimed to develop a system that can accurately predict the accession
of a plant based on its spatiotemporal features, which can provide valuable in-
sights into the genetic and environmental factors that influence plant growth
and development. Using a temporal series of RGB images, the authors fo-
cused on the accession classification of four different accessions of Arabidopsis
plants: Columbia (Col- 0), Cape Verde Islands (Cvi), Landsberg (Ler-1), and
San Feliu (Sf-2). The overwhelming resemblance in appearance across the
four accessions of the Arabidopsis plant pictures is a significant challenge in
this undertaking. They introduced three deep neural network architectures,
including the 3-dimensional (3-D) CNN, CNN with convolutional LSTM (Con-
vLSTM) layers, and vision transformer, which classify plant accessions using
both temporal and spatial features. A 3-D CNN model, which considers the
input image sequence as a 3-D cube, makes up the first network. The number
of images in the sequence is handled as the depth parameter in addition to the
height and width of individual image. CNN and RNN make up the second net-
work. To determine spatiotemporal characteristics, they replaced the LSTM
layer in the network with a ConvLSTM layer. The first two approaches rely on
convolutions, but the third method—vision transformer—uses a self-attention
mechanism and is not dependent on convolutions. The simultaneous input of

image patches into the vision transformer network speeds up model training.
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The authors evaluated the performance of their approach using several met-
rics, including accuracy and F'1 score. They compared their approach with the
existing method [75] for plant accession classification and demonstrated that
their approach achieved superior performance on all metrics. The authors also
analyzed the spatiotemporal features learned by their model and showed that
it was able to capture the important characteristics of the Arabidopsis plant

accessions, such as leaf shape and size.

The paper [78] proposes a high-accuracy genotype classification approach
using time series imagery for crop plants. The authors aimed to develop a sys-
tem that can accurately predict the genotype of a crop plant based on time se-
ries imagery, which can provide valuable insights into the genetic and environ-
mental factors that influence plant growth and development. A Densenet201-
BLSTM model is proposed for classifying various genotypes based on time
series of plant images. Densenet201 model is based on the Densenet201 and
bi-directional Long Short-Term Memory model (bi-directional LSTM). This
study offered an integrated dataset containing segmented plant images of
growth and development that included 4 genotypes of Arabidopsis thaliana
and 39 genotypes of panicoid grain crops, including maize, sorghum, and mil-
let. The authors developed a high-accuracy genotype classification approach
using a combination of a deep convolutional neural network (CNN) and a
long short-term memory (LSTM) network. CNN was used to extract fea-
tures from each image in the time series, and the bi-LSTM was used to model
the temporal dependencies between the images. By bi-directionally capturing
the dynamic behaviors of plant growth and development as well as impor-
tant phenotypes, the proposed Densenet201-BLSTM represents the complex
relationship between phenotypes and genotypes. The authors evaluated the
performance of their approach using several metrics, including accuracy and
F1 score. They compared their approach with several existing methods like
Alexnet-LSTM, VGG16-LSTM, etc., for genotype classification and demon-
strated that their approach achieved superior performance on all metrics. The

proposed DenseNet201-BLSTM model obtains a genotype classification ac-
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curacy of 98.31% on the test dataset. The proposed research was the first

attempt undertaken to classify the genotypes of panicoid grain crops.

Overall, the contribution of machine learning and deep learning-based ap-
proaches in classification of plant genotypes is significant as it provides accu-
rate and efficient methods for plant classification. These approaches can help
in identifying the genetic traits responsible for plant growth and yield, which
can aid in the development of new plant varieties with improved yield and
disease resistance. Furthermore, these methods can be used to identify plant
phenotypes that are tolerant to environmental stresses, such as drought and
high temperatures, which could benefit various applications in plant pheno-

typing and agriculture.
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Chapter 3

Materials and Methods

3.1 Materials and Methods

3.1.1 Plant Material and Growth Conditions

Experiments were performed using Arabidopsis thaliana plants, ecotypes Columbia
(Col-0) and Nossen (No-0). Photoreceptor mutants (phy A, phy B, phy C, phy
D, phy E, phot 1, phot 2, photl phot2, cryl, cry2, cryl cry2, cry3, ds-16, fkfl,
lkp2, and ztl) (Figure 3.1) were obtained from Dr. Enrico Scarpella (University
of Alberta, Edmonton, Alberta). Seeds were sterilized in an air-tight container
filled with chlorine gas for 24 hours. Chlorine gas was made by adding 3 mL
of hydrochloric acid to 75 mL of bleach. The seeds were then placed on a 3
Murashige and Skoog media containing 7 g/L of agar and 1% sucrose at pH
5.8 (KOH). After 3 days of stratification at 4°C' in the dark, the seeds were
exposed to light treatment for a week before being transferred to soil (Sungro,
Sunshine Mix®) 1). Growth chambers were equipped with a programmable
Perihelion LED fixture (G2V Optics Inc.) and lined with Reflectix@®) to en-
sure a good light diffusion. Plants were grown under a 12h light and 12h dark
photoperiod with a temperature of 21°C' during the day and 19°C' at night.
Light treatments consist of different dawn and dusk ramp conditions for a
given spectrum (Figure 3.1). Six LED types (Cree LED XPE, XPE2 XPG
families) were used in the fixtures, with characteristic wavelengths of 444 nm,

630 nm, 663 nm, 737 nm, 3000 K white, and 6500 K white.
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3.1.2 Phenomics measurements

Each chamber was equipped with two Raspberry Pi 3 B+ and an ArduCam
Noir Camera (OV5647 1080p) with a motorized IR-CUT filter and two in-
frared LEDs. Pictures were taken every 5 min over 14 days and were used
to extract plant area and perimeter measurement using PlantCV, an open-
source Python package with computer vision tools for plant phenotyping as

previously described [26].

3.1.3 Dataset Construction

To create our dataset, images were processed using PlantCV [26]. The work-
flow consists of three core steps. First, image preprocessing was required to
undistort the fisheye effect of the ArduCam Noir Camera. Images also re-
ceive exposure correction using a defined white spot region of interest. The
second core step was image segmentation, in which pixels are classified into
‘plant’ and ‘background’ using an HSV color threshold. Segmented images
were then filtered to remove small noises. The final core component of our
PlantCV workflow was image analysis. Using the segmented images, measure-
ments were taken of the plant dimensions and stored in the output file. The
measurement of a size marker was also taken, which served as a constant. This
allowed us to normalize the data across different cameras and account for slight
variations in the distance between the plants and the camera. Additionally, as
the size marker has a known size, it allows the measurements to be converted

from pixels to SI (International System of Units) units.

3.1.4 Input Data Structure

Our dataset has 501 plants in total of 17 different genotypes of 14 days. In-
stead of feeding the entire 14 days of data at once, we divided each plant into
different days, creating a dataset of 7014 plants of a single day. It helped to
better understand the growth for each plant per day analysis as well as the
increase in the total number of samples for training and testing the models.

In a DL time-series classification model, input data arrays from the input
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Figure 3.1: Light treatments and plant phenotype.

(A)Twilight ramps employed in the study. For the O-minute square bracket
ramp, lights turned on to full Photosynthetic Photon Flux Density (PPFD) or
light intensity, while under the 30-minute and 90-minute conditions, the light
intensity progressively increased to reach its maximum in 30-minute and 90-
minute respectively. For all conditions, the plants received the exact amount
of light of 4.32 DLI (mol/m2/d).

(B) Spectral composition of the light for all treatments. (C) Plant list and
associated genotypes. (D) Pictures of representative photoreceptor-deficient
plants grown under different twilight lengths. Plant position: 1 = WT, 2 =
phyA, 3 = phyB, 4 = phyC, 5 = phyD, 6 = phyE, 7 = phot 1, 8 = phot 2, 9
= phot1/2, 10 = WT, 11 = cryl, 12 = cry2, 13 = cryl/2, 14 = cry3, 15 =
ds-16, 16 = fkf1, 17 = lkp2, and 18 = ztl.
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nodes are transmitted to the hidden layer of the network model, where the
network model processes and learns the historical pattern before producing
any prediction. The time-series of each chosen station variable was normal-
ized to a similar range of values to guarantee that the proposed sequential
neural model trains well and converges quickly. Additionally, the input data
arrays at various sample rates produced adverse effects on the models’ train-
ing and validation performances since the collected time-series observations
were noisy and stochastic in nature. In our plant dataset, we found inherent
biological variance in plant sizes with respect to area, even in plants of the
same genotype. To increase the model’s capacity for generalization, we used
data normalization technique [56]. Here, we used the min-max normalization
technique [13], where the initial data was transformed linearly using min-max
normalization, also known as feature scaling. Using this method, we obtained
all data scaled within the range (0, 1). That is, every feature’s minimum and
maximum values were each converted to a 0 and a 1, respectively, while all

other values were converted to a decimal between 0 and 1, using the formula:

The formula: X = %
Where, where X;, is the area value (> 0) at a given time for a particular
plant i; X,,;, and X,,,, are the minimum and maximum area values per plant

respectively; X is the normalized value for plant ¢ at the given time.

3.2 Proposed Methods

We proposed various machine learning models for our research. We separated
them into conventional machine learning models and deep learning models to
classify different genotypes of A. thaliana, and we tested their performance
throughout different dawn and dusk periods of the plants (Figure 3.2). We
used hyperparameter tuning to find out the optimal settings of each models
to generate the best classification accuracy. Moreover, we cross-validated all

the results using 10-fold cross validation techniques. Finally, we evaluated our
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Figure 3.2: Proposed methodology for classification of plant genotypes.

models using precision, recall, fl-score, and accuracy metrics.

Support Vector Machine (SVM)

SVM is effective in time series because it can resolve issues with nonlinear
regression estimation. Due to its successful use in classification and regression
problems, it has been a popular subject of intense study. In order to make
the input vectors linearly separable, the input vectors are mapped into a high-
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dimensional feature space using SVMs. The kernel functions k(x, y) make it
easy and efficient to do the non-linear mapping from the input vector space to
the feature space (i.e., the so-called kernel trick). We do not need to take into
account all the points but taking only a subset of points becomes beneficial as
the SVM classifier is dependent ideally only on a subset of points while opti-
mizing the distance between the nearest points of two classes (Margin). SVM
accepts as input a set of data points in a vector space. In our case, a data point
represents the plant area at a particular time point, and each dimension rep-
resents the total growth feature of the plant.SVM models work by finding the
best separating (maximal margin) hyperplanes between the classes of training
samples in the feature space. The margin is the separation between the nearest
data points and a separating hyperplane. The hyperplane that provides the
maximal possible margin is known as an optimal separating hyperplane, and
these closest data points are known as support vectors. Finding a hyperplane

can help with accurate data classification into different groups.

SVM models are created to predict or classify input data that belongs to
two separate classes. However, SVMs can be utilized as multiclass classifiers
by treating a K-class classification problem as K two-class problems. This cat-
egorization is referred to as one-vs-rest or one-vs all. The multi-class dataset
is divided into various binary classification issues. Each binary classification
problem is then fed into a binary classifier, and the best accurate model is used
to make predictions. For multi-classification, SVM finds multiple hyperplanes
that collectively best separate the data points into the designated number of
classes (Figure 3.3). The strategy for handling multi-class classification can be
set via the “multi_class” argument and can be set to “ovr” for the one-vs-rest
strategy. In addition, SVM model requires 4 parameters (degree, C, €, and
7v) to be determined to provide accurate class predictions. C is the penalty
parameter of the error term, € defines a margin of tolerance where no penalty
is given to errors, 7y gives the curvature weight of the decision boundary, and
degree parameter determines the degree of the polynomial used to find the

hyperplane to split the data. Here, we used grid search method to find the op-
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timal parameter setting of SVM for achieving the maximum accuracy with the
minimum error. Ranges were set to [1, 10] at increment of 1.0 for C and [0.01,
0.001, 0.0001, 0.1 - 0.5] for € with v being fixed to be 0.5. The optimal values
of C, €, and ~ are selected using 10-fold cross-validation repeated ten times
to increase the reliability of the results. We tried SVM with several kernel
types for our research and found that polynomial kernels with degree 4, C=1,
e = 0.1, and v = 0.5 delivered the best precision, recall, accuracy, and fl-score
values. Propsoed SVM model works by mapping the time-series plant area
data to a higher-dimensional feature space using a polynomial kernel function.
Polynomial kernel function allows the model to capture non-linear relation-
ships between the time-series plant area data and the genotype labels.Given a
dataset, P = {(X1,Y1), ..., (X,,Y,)}, where X,, € X and Y,, € Y, SVM try to

solve the following equation:

L
min o ||| (3.1)

subject to v, (G'.xy +b) > 1,u=1,2,...,v

The weight vector G and the bias term b are learned during the training
of the SVM model. The goal of training is to find the values of G' and b that
minimize the classification error on the training data while maximizing the
margin between the decision boundary and the training data points.

Kernel function is used for this particular problem which can’t be solved
using linear hyperplane. For degree-d polynomials, the polynomial kernel is
defined as:

K(z,y) = (aTy + )
where ¢ > 0 is a free parameter that trades off the influence of higher-order
vs lower-order parts in the polynomial, and x and y are vectors in the input
space, that is, vectors of features derived from training or test samples. The
kernel is said to as homogenous when ¢ = 0. .

SVM model employed the normalized area values of plants for training and

testing as described above.
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Figure 3.3: SVM multiclass classification with kernel function

Logistic Regression (LR)

LR works by estimating the probabilities of events, including determining a
relationship between features and the probabilities of outcomes. Here, we used
multinomial logistic regression to accommodate multi-class genotype classifi-
cation problems. Here, for our study, the input to the LR is a total plant as
independent variable and the dependent variable is the 17 genotype classes.
The input plant area values with randomly initialized weight values added
with bias term is passed to sigmoid function and mapped to a probability
in a range between 0 to 1. Multinomial logistic regression alters the logistic
regression model to directly support the prediction of multiple class labels.
To more specifically forecast the likelihood that a given input example (i.e.,
a particular plant) falls under each accepted class label (wt, phyA, phyB, and
so on) and the class label with highest likelihood value is selected. Here, for
our study, both the training and testing phases of the logistic regression (LR)
model employed the normalized area values of plants for training and testing as
described above. We split the dataset into 10-fold for training and validating
the model’s performance and finally, we reported the maximum accuracy with
the minimum cross-validation error. Performance of LR model greatly depends
on hyper-parameter C, maximum number of iterations, penalty, and solver. C'
is the regularization parameter in the logistic regression model. It controls the

trade-off between achieving a low training error and a low complexity model.
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Another parameter maz_iteration is the maximum number of iterations for
the solver to converge. The solver iteratively refines the weights and bias of
the model to minimize the loss function. Here, we used grid search method
to find the optimal parameter setting of LR for achieving the maximum ac-
curacy with the minimum error. Ranges were set to [0, 4] at increment of 0.2
for C and [’11°, I12’] for the regularization parameter, [ newton-cg’,’lbfgs’] as
classifier solver. By grid search, we found the best parameter setting for lo-
gistic regression of C=0.62, max_iteration = 200, and solver = “lbfgs” with (2
regularizer. As this is a multiclass problem, we set the parameter “multi_class
= multinomial”, solver (“Ibfgs”) handled multinomial loss, and 200 iterations
were taken for solver for fast convergence of LR model.

Multinomial LR is based on Linear Regression, with the formula:
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Figure 3.4: Logistic Regression (LR) model for time-series genotype classifica-
tion of plants.

y=mz+b

Where y is our outcome variable that denotes the probability of a particular
plant in a particular genotype, m is the curve slop that is the randomly ini-
tialized weight value, The maximum likelihood estimation(MLE) can be used
to estimate the logistic function’s parameter m. In MLE, the parameters that
best match the joint probability of the independent variables x are sought after
where x is the input features of plants, in our case, the area values of a plant.

Here, b is the interception with the y-axis as a bias. As we have more than
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one predictive variable our formula for classification tasks will look like this:

f(x‘) = M1 + Mmoo + msxs + .... + MpTy + b

where, n = total number of input features, x; _, are the input features
(plant area values at particular time point), and m;_,, are the weight variables
assigned to the plant area values. Each input feature is multiplied by a weight,
and the resulting products are summed together with the bias term to produce
a score for each possible output class (Figure 3.4). The weights are learned
during training of the model. The probability equations with multinomial
logistic regression for a 17 category classification task would look like: P,(y =
17) = %
where 2 is the sum of the e/(® for all classes in the model. P, is the probability

of a particular plant belong to a certain class.

Random Forest (RF)

Random Forest (RF) is an ensemble classification algorithm, consists of a group
of tree-based classifiers h(x, (), where, (k = 1,2,..,), « is the input vector and
(0)) are independent and identically distributed random vectors [7]. Every
tree in the forest gives a unit vote, designating the most likely class label for
each input (Figure 3.4). The algorithm achieves higher performance on high-
dimensional data by doing an implicit feature selection using a small collection
of “strong variables”. For proposed RF model, split criterion - Gini index,
which denotes importance or feature relevance, is used to depict the results
of feature selection. The impurity of an attribute in relation to each class is
measured by the Gini index. Gini impurity reveals how frequently a particular
feature is chosen for a split and the magnitude of its total discriminative score

for the particular classification problem.

Performance of RF highly depends on “max_features”, “n_estimators”,
“min_sample_leaf”, and “oob_score” parameters to provide accurate classifi-
cation performance [61]. Here, “n_estimators” denotes the number of trees
the algorithm builds before averaging the predictions, “max_features” denotes
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Figure 3.5: Random Forest (RF) model for time-series genotype classification
of plants.

the maximum number of features random forest considers splitting a node,
min_sample_leaf determines the minimum number of leaves required to split
an internal node, and “oob_score” is a random forest cross-validation method.
Here, we adjusted these parameters to run the RF model for our analyses,

optimized by grid search parameter tuning. The primary parameters are the
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number of predictors at each decision tree node split and the number of de-
cision trees to run. For grid search, paramter ranges were set to [10, 2000]
with an increment of 10 for “n_estimator”, [‘auto’, ‘sqrt’] for “maz_features”,
[1, 30] with an increment of 2 for “max_depth”. Finally, we used “maz_feature
= Auto” to consider all the data points in an individual run, “n_estimators
= 2007 for better classification performance as well as faster running time,
and “oob_score = TRUE” to use the RF self cross-validation method and can
provide an estimate of the model performance without the need for a separate
validation set. After trying multiple leaf sizes, we chose “min_sample_leaf =
207 to achieve the maximum accuracy with minimum error for validation data
for RF model. RF model employed the normalized area values of plants for

training and testing.

Boosting Ensemble

Machine learning models can be used individually or as part of an ensemble to
fit data. A new model with greater effectiveness is created by the ensemble of
simple individual models. Machine learning boosting can create an ensemble
[88]. Boosting gives a prediction model in the form of weak prediction models,
which are typically decision trees (DT). By learning straightforward decision
rules derived from previous data, decision tree builds training model that may
be used to predict the class or value of the target variable (training data). To
predict a class label, decision trees begin at the tree’s root and compare the
root attribute’s values with that of the attribute on the record. Then it follows
the branch that corresponds to that value and goes on to the next node based
on the comparison. Boosting creates an ensemble model by gradually integrat-
ing a number of weak decision trees. It gives each tree’s output a weighted
rating. Then, it increases the weight and input for inaccurate classifications
from the initial decision tree. The boosting technique combines these several
weak prediction rules into a single strong prediction rule after many cycles
(Figure 3.6). While a strong classifier is arbitrarily well-correlated with the
true classification, a weak classifier only modestly predicts the true classifi-
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cation. Resampling data sets are also used in boosting to create classifiers,
which are subsequently integrated by majority vote. For our study, we used
GradientBoosting (GB) technique. By creating base learners (decision trees)
consecutively, GB improves the loss function so that each base learner is al-
ways more effective than the preceding one. GB method produces accurate
results at the beginning rather than fixing mistakes as they occur. Because of

this, GB results in more precise results.

Model 1,2,..., N are individual models (e.g. decision tree)

Ensemble(with all its predecessors)

Figure 3.6: Gradient Boosting model for time-series genotype classification of
plants.

For grid search, ranges were set to [10, 500] with an increment of 10 for
“n_estimators”, [0.0001, 0.001, 0.01, 0.1, 1.0] for “learning_rate”, [0.5, 0.7, 1.0]
for “subsample”, and [3, 7, 9] for “max_depth” parameter. Finally, We used
“n_estimator = 2007 denotes the number of decision trees that are added to
the model sequentially in an effort to correct and improve upon the predic-
tions made by prior trees, “max_feature = Auto” determines the maximum
number of features decision trees considers splitting a node, for our case, we
are considering all the features in a single run. We set “learning_rate=0.01"
to update model weight and biases for convergence, “loss=log_loss” for better
classification performance, “max_depth = 7”7 denoting max number of levels in
each decision tree, and “subsample = 0.5”. We cross-validated the dataset 10
times as training and validation set and did this boosting process repeatedly

10 times.
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Stacking

In stacking, predictions from various machine learning models are combined
on the same dataset. The architecture of a stacking model consists of two or
more base models [62], frequently referred to as level-0 models (in our study,
RF, LR, and Boosting), and a meta-model, commonly known as level-1 model
(i.e., SVC (kernel = “poly” for the study), that combines the predictions of the
base models. The outputs from the base models that are utilized as input to
the meta-model are probabilistic values or, in the case of classification, class
labels (genotypes). The meta-model takes these input features and makes
the final prediction for the plant genotype. We prepared the training dataset
for the meta-model via k-fold cross-validation of the base models, where the
out-of-fold predictions are used as the basis for the training dataset for the

meta-model.

Convolutional Neural Network (CNN)

Our proposed CNN achitecture includes convolutional layers, max-pooling lay-
ers, and fully connected layers. Max-pooling layers are intended for feature
selection, whereas convolution layers are intended for automatic feature de-
tection. A convolution is applying and sliding a filter over the time series.
For time series, the filters exhibit only one dimension (time) and seen as a
generic non-linear transformation of a time series. This way, the kernel moves
in one direction from the beginning of a time series towards its end, performing
convolution. The elements of the kernel get multiplied by the corresponding
elements of the time series that they cover at a given point. Then the results
of the multiplication are added together and a nonlinear activation function
is applied to the value. In our study, we have plant area values at each time
point as input to the convolutinal layer. We have used only two convolutional
layers where the first convolution has 128 filters with filter lengths of 7 and the
second convolution has 256 filters with filter lengths of 5, respectively (Fig-
ure 3.7). These two convolutions are then input to pooling AveragePooling1D

layer of pool_size = 3 to reduce the dimnetionality. The output of pooling

30



Flattened
layer

Input Time Oups

Series

Convolution Convolution Average
W 128 256 Pooling
Length 7 Length 5 Size=5

Q- 0P O P

Layer_1 Layer_2 Pooling layer

Figure 3.7: Convolutional Neural Network (CNN) model for time-series geno-
type classification of plants.

layer is fed to flatten layer to transforms multidimensional output and make it
linear to pass it onto a dense layer. Finally, the ouput of flatten layer is fed to
the output layer. The input, hidden, and dense layers used the relu activation
function, but the model output dense layer used the softmaz function having

the exact number of neurons as genotype classes in the dataset.

Fully Convolutional Network (FCN)

We employed the architecture suggested by Wang et al. [82], which is made up
of three convolutional blocks, each of which has three operations (a convolu-

tion, a batch normalization, and then a ReLU activation function [20]). Over
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Figure 3.8: Fully Convolutional Network (FCN) model for time-series genotype
classification of plants.

the complete time-series, which corresponds to the Global Average Pooling
(GAP) layer, the third convolutional block’s output is averaged. The output
of the GAP layer is then fully coupled to a conventional softmax classifier with
the same number of neurons as classes in the dataset [55]. The exact length

of the time-series after the convolution is preserved by all convolutions having
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a stride of 1 and zero padding. The first convolution has 128 filters with filter
lengths of 7 and the second convolution layer has 256 filters with filter lengths
of 5, respectively. These two convolutions are then input to the third and final

convolutional layer, which has 128 filters with filter lengths of 3 (Figure 3.8).

Residual Networks (ResNet)

The deepest architecture for time-series classification is ResNet [82], which has
11 layers, the first 9 of which are convolutional layers and are followed by a
Global Average Pooling (GAP) layer that averages the time-series over the
time axis, minimizing the influence of vanishing gradients [29]. Our ResNet
architecture consisted of three residual blocks, a GAP layer, and a softmax
classifier with the same number of neurons as the number of genotype classes
in the dataset as its final component. Each residual block is made up of
three convolutions, the output of which is added to the input of the residual
block and fed to the following layer. With the ReLLU activation function being
preceded by a batch normalization procedure, the total number of filters for
all convolutions is fixed at 64. The length of the filter in each residual block
is set to 8, 5, and 3 for the first, second, and third convolutions, respectively.
Figure 3.9 represents the ResNet architecture that we used in our study of

genotype classification.
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Figure 3.9: The Residual Network’s architecture for time-series genotype clas-
sification of plants.
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Long Short-Term Memory (LSTM)

LSTM architecture provides outcomes for sequential data workloads due to its
capacity to capture long-time dependencies [31], [15]. LSTM architecture has
a memory cell that maintains a current state over various sequential instances
and non-linear dependencies that regulate information entering and exiting the
cell. Bi-LSTM (an enhanced architecture of LSTM) models are typically more
effective when managing contextual information since their output at a given
time depends on both the prior and subsequent segments. To comprehend
past and future information, the Bi-LSTM architecture contains two layers:
forward and backward directions. Every series of events submitted to an LSTM
is processed one time step at a time. A vector holding data about the current
and prior time steps is passed from one time step to the next until it reaches
the last one. However, the informational content of the vector will eventually
be constrained by its fixed size. The information from the previous inputs
runs the danger of being lost or diluted, especially for longer sequences. Here,
we used the LSTM and Bi-LSTM (improved architecture of LSTM) with two
hidden layers (256 LSTM units) and relu activation function for input and
dense layers. For the output layer, we used softmax activation function having
the same number of neurons as the number of genotype classes in the dataset.
We trained the models with the following hyperparameters: (a) 250 epochs
(after that no changes in validation loss and validation accuracy); (b) dropout
rate of 0.3; (¢) Adam optimizer [87] with a starting learning rate of 0.01; and
(d) mini-batch size of 32. Additionally, categorical cross-entropy loss function

was applied to monitor the validation loss.

Encoder

Our proposed encoder model is a standard convolutional network, with a con-
volution attention mechanism to summarize the time axis. We employed an
encoder model with the following architecture (Figure 3.11). Our model has 3
convolution layers. The first convolution is made up of 128 filters with a length

of 5, the second one is made up of 256 filters with a length of 11, and the third
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one is made up of 512 filters with a length of 21. We used the Parametric
Rectified Linear Unit (PReLU) activation function [30] that fed the output
of each convolution’s instance normalization operation. A dropout operation
(with a rate of 0.2) and a final MaxPooling of length 2 are performed after
PReLU’s output. An attention mechanism that allows the network to learn
which time-series (in the time domain) are essential for a specific classification
was fed the third convolutional layer (Figure 3.10). Half of the 512 filters of last
convolutional layer are input to the timewise softmax activation, which acts
as an attention mechanism for the other half of the filters. Encoder represents
a hybrid deep CNN [72], which is distinguished from FCN by replacing the
GAP layer with an attention layer, minor modifications in convolutional layers,
the PReLU activation function, the dropout regularization method, and the
max pooling procedure. We applied 10-fold cross-validation on the datasets
and validated the performance of encoder model by monitoring categorical

cross-entropy loss of the validation set.
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Figure 3.10: Encoder architecture for time-series genotype classification of
plants.

Conv2D

For long-term non-linear input sequences, Conv2D model performs well. The
2-D MaxPooling layer and 2-D kernel size are features of the Conv2D model
[56]. The Conv2D input shape for the input-layer was obtained using an

input_shape argument [56] below: —

Input_Shape Conv2D = (batch, timesteps, features) (3.2)
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We constructed the 7-layer Conv2D model to consist of an input layer,
two 2-D MaxPooling layers, one convolutional hidden layer, one flatten layer,
one dense layer, and finally output layer (2nd connected dense layer) respec-
tively. The MaxPooling layer reduced the spatial dimensionality of the input
sequence volume through downsampling approach. The flatten layer used the
processed input sequence from the previous layer to narrow the featured se-
quence by wrapping it as a 1-D vector. Our Conv2D model had 128, 64, and
72 convolutional filters (layer neurons) for the input, hidden, and dense layers
respectively, using a dropout of 0.3. The input, hidden, and dense layers were
activated using the relu function, whereas the output layer was activated using
the softmax function having the number of neurons as genotype classes in the

dataset.

ConvLSTM2D

For the ConvLSTM2D model, the input data should maintain the following
shape:

Input_Data_ConvL.STM2D = X.reshape(samples, Input_Shape_ConvL.STM2D)

= X.reshape(samples, batch, timesteps, features, channels) (3.3)

For ConvLLSTM2D, we created the 5-D ConvLSTM2D input arrays by using
3.3. The ConvLSTM2D model’s system architecture (Figure 3.11) was then
used to construct a seven-layer network, which consisted of the following lay-
ers: one input layer with the first batch normalization layer (instead of the first
2-D MaxPooling layer and dropout), one convolutional hidden layer with the
second batch normalization layer (instead of the second 2-D MaxPooling layer
and dr