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Abstract

In order to mitigate the effects of a changing climate, agriculture requires

more effective evaluation, selection, and production of crop cultivars in order

to accelerate genotype-to-phenotype connections and the selection of benefi-

cial traits. Critically, plant growth and development are highly dependent on

sunlight, with light energy providing plants with the energy required to photo-

synthesize as well as a means to directly intersect with the environment in order

to develop. In plant analyses, machine learning and deep learning techniques

have proved ability to learn plant growth patterns, including detection of dis-

ease, plant stress, and growth using a variety of image data. To date, however,

studies have not assessed machine learning and deep learning algorithms for

their ability to differentiate a large cohort of genotypes grown under several

growth conditions using time-series data automatically acquired across multi-

ple scales (daily and developmentally). Here, we extensively evaluate a wide

range of machine learning and deep learning algorithms for their ability to dif-

ferentiate 17 well-characterized photoreceptor deficient genotypes differing in

their light detection capabilities grown under several different light conditions.

Using algorithm performance measurements of precision, recall, F1-Score, and

accuracy, we find that Suport Vector Machine (SVM) maintains the greatest

classification accuracy, while a combined ConvLSTM2D deep learning model

produces the best genotype classification results across the different growth

conditions. Critically, our successful integration of time-series growth data

across multiple scales, genotypes and growth conditions sets a new founda-

ii



tional baseline from which more complex plant science traits can be assessed

for genotype-to-phenotype connections.
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Chapter 1

Introduction

Evaluation, selection, and production of cultivars all heavily rely on geno-

type classification [80]. To meet the ever-increasing demands of the increasing

human population, plant productivity must drastically improve by using re-

sources more effectively. However, this depends on a thorough grasp of the

genotype-phenotype link [64]. Effective plant phenotyping is practically im-

portant in a number of ways, including the identification of diseased plants,

classification of different species or cultivars/genotypes and/or measurement

of plant traits resulting from the interaction of a plant’s genotypes with the

environment [77], [38], [85]. Identification of plant genotypes is one of the

necessary steps in plant variety selection and plant stress analysis. Plant

phenotyping was initially carried out manually and hence was more prone

to errors. Therefore, numerous image processing, computer vision, machine

learning (ML), and deep learning (DL) based algorithms are utilised for plant

trait estimation and classification tasks in order to remove human interaction

and to increase overall accuracy [38].

In plant classification studies, time-series data provide important informa-

tion such as seasonal trends, plant productivity over a season, plants’ dynamic

growth based on leaf area, etc [73], [49], [79]. Time-series data represents a

critical data type for resolving trends in biological systems. Correspondingly,

time series classification is crucial for the computer vision and machine learn-

ing communities since time series data are common in a variety of application
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domains [5], [82], [52], [57]. From an agricultural perspective, extracting char-

acteristics from time series data is critical in order to obtain relevant informa-

tion on the state of growth and development [82], [52]. Studies demonstrating

the power of computer vision have also looked at plant classification based on

image processing, vesselness measure, images of overlapping leaves, as well as

plant texture features [32], [36]. Further, research applying computer vision

methods have succeeded in identifying plant diseases based on probabilistic

classification of “healthy” vs “sick”, images of diseased areas, signs of envi-

ronmental stress, and identifying changes of electrical signals of plants due to

environmental changes have been performed [71], [2], [84], [11].

In static plant analysis, computer vision and machine learning techniques

have excelled, proving their capacity to learn plant growth patterns [59], [38],

[85]. As plants are not static but constantly growing and developing on a

daily basis, our research aims to construct a model for automatic genotype

classification over a growth time-course using advanced machine learning and

deep learning algorithms. Currently, supervised ML techniques have already

been deployed for analyzing the biological properties of plants. Random Forest

(RF), one of the supervised machine learning algorithms, is a non-parametric

approach that has been applied to disease prediction, protein sequence selec-

tion, and gene selection [59], [18], [58], with plant biomass having also having

been accurately predicted using RF image based data [11]. As well, support

vector machine (SVM) has been applied to stress plant identification, neuro-

image classification, plant image classification, biomass prediction [11], [25],

[12]. Lastly, stacking multiple ML classifiers has demonstrated advantages for

crop categorization estimation when compared to the use of a single classifier,

suggesting that multiple classifiers in combination can lead to more robust

classification outcomes [10] [86].

The plant sciences have also steadily incorporated DL methods, with ex-

perimentation using DL algorithms providing superior performance relative to

conventional ML algorithms in classifying plants and in detecting various plant
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diseases [16], [44], [4]. Convolutional Neural Networks (CNNs) have success-

fully classified plants [78], [45],[40], [76], [35], [4] and identified diseased plants

[67], [3], [53]. For example, a CNN-based approach DenseNet-77 gave better

accuracy than SVM and K-Nearest Neighbors (KNN) in detecting diseased

plants [3]. CNN techniques have also been proven capable of differentiating

plants according to species [40], [76], [35], [44], [83]. Recurrent Neural Net-

works (RNN) have also been successful in analyzing spatiotemporal data when

paired with CNNs [27],[9], [47]. Long Short-Term Memory (LSTM; an RNN

variation), has also been used for sequential data tasks due to its ability to cap-

ture long time-frame dependencies [31], while LSTM and Bidirectional-LSTM

(the improved architecture of LSTM) approaches have successfully aided in

assessing rice cultivation in southern Brazil [15]. Here, the authors compared

their results with classic ML methods, including SVM, RF, k-Nearest Neigh-

bors (k-NN), and Normal Bayes (NB). Based on the Densenet201 and bi-

directional LSTM, a Densenet201-BLSTM model was proposed for classifying

various genotypes based on time-series of plant images [80]. In the model plant

Arabidopsis thaliana, a CNN-LSTM method proved most useful in classifying

four accessions (Sf-2, Cvi, Landsberg (Ler-1), and Columbia (Col-0)) for plant

growth differences and to categorize genotypes over plant development using

single images over multiple days [77]. Alternatively, CNN with convolutional-

LSTM (ConvLSTM) layers also demonstrated success when re-analyzing the

same data [38].

Arabidopsis thaliana is a model plant species with extensive, well-characterized

genetic resources for use in training ML and DL models [77], [38]. Critically,

plant growth and development are highly dependent on sunlight, rendering our

ability to detect genotype-to-phenotype differences fundamentally connected

to light detection and core to agricultural applications. Light energy provides

plants with a means to photosynthesize for growth [19] and a means to de-

tect the environment for development [22]. Plants detect light signals, such as

changes in light amplitude, color, spectra, and photoperiod, using a class of

proteins called photoreceptors [24]. This enables plants to respond to changes
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in their environment, such as seasonal transitions, day-night cycles [14], or

shade from other plants [81]. There are four families of photoreceptors: Phy-

tochromes (PHYA-PHYE), Cryptochromes (CRY1, CRY2, and CRY3), Pho-

totropins (PHOT1 and PHOT2), the ZTL/FKF1/LKP2 group proteins, and

lastly the UV-B resistance 8 (UVR8) family proteins [24], [46], [42]. Phy-

tochromes absorb light in the red and far-red regions of the visible spectrum

[54], [65] and regulate key developmental events such as seed germination, tim-

ing of flowering, size and shapes of plants and leaf movement [33], [75], [21],

[74], [51], [66], [23], [39]. Cryptochromes detect blue and UV-A light [69]. They

function during de-etiolation (the transition to the greening stage after plant

germination; CRY1), in the photoperiodic control of flowering (CRY2), in the

inhibition of the hypocotyl growth and in shade avoidance mechanism (CRY1

and CRY2) [28], [17], [1], [50]. Phototropins and ZTL/FKF1/LKP2 group

proteins are sensitive to blue light. Phototropins control phototropism, light-

induced stomatal opening, and chloroplast movement in response to changes in

light intensity and direction [37]. Lastly, the ZTL/FKF1/LKP2 group proteins

promote degradation or maintenance of circadian transcription factors, induce

transitions in the day-to-dark transition [43], and are also involved in flower-

ing, while the UVR8 family proteins absorb UV-B to signal harmful ultraviolet

radiation [60]. While much has been resolved about how light activates plant

photoreceptors, there are still gaps in our understanding of how these photore-

ceptors are connected to different elements of diel plant cell processes to affect

phenotypic changes [70].

As plants are not static, but constantly growing and developing on a daily

basis, our study aims to make genotype-to-phenotype connections using time-

series growth data across multiple scales (intra- and inter-day data), geno-

types, and growth conditions. To do this, we grew 17 different photorecep-

tor mutants under different light conditions to define the effects of twilight

on a well-characterized population of photoreceptor deficient plants. To cat-

egorize these 17 genotypes based on their phenotypic responses under these

different twilight conditions, we extensively tested a number of ML models, in-

cluding: Support Vector Machine (SVM), Logistic Regression (LR), ensemble
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stacking techniques (Random Forest (RF) and Boosting), alongside multiple

DL techniques such as Fully Convolutional Network (FCN), Resnet, Encoder,

Bi-LSTM, Conv2D, and ConvLSTM2D. We find that although conventional

ML models were successful in categorizing genotypes under different twilight

lengths, DL techniques perform much better, which we attribute to their ability

to utilize multiple types of time-series data. In particular, our results demon-

strate that while SVM maintains greater accuracy in classification tasks, the

combined ConvLSTM2D model produced the best classification results for the

various genotype classes of Arabidopsis thaliana across the different twilight

conditions.

1.1 Thesis Contribution

The contribution of this study is as follows:

1. One of the major contribution of this study is to create the dataset

in lab by using Raspberry Pi, and cameras to take picture for every 5

minuts of 14 days and to extract plant area measurement under different

light conditions using PlantCV. The dataset contained numerous flaws,

including missing values, outliers, and consistency issues. However, with

patience and thorough careful measurements multiple times, we were

able to reduce the likelihood of errors in our dataset. We also did some

data manipulation, data preprocessing before using them for analyses.

2. We applied our machine learning classifiers by taking into consideration

time-series growth data across multiple scales (intra- and inter-day data),

genotypes, and growth conditions. Here, in case of multiple scales, we

considered high frequency fluctuations like plant growth data per day as

well as longer term trends or patterns like plant’s growth over 14 days.

3. We proposed both traditional and deep learning models to evaluate their

ability to differentiate 17 well-characterized photoreceptor deficient geno-

types differing in their light detection capabilities grown under several

different light conditions. We employed 0-min, 30-min, and 90-min light
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conditions for plants growth and evaluate the models’ performance by

their ability to differentiate plants grown under various light conditions.

4. The optimal parameter settings for each of the conventional and deep

learning models we provided for classifying plants were identified. To

make the results easier to grasp, we cross-validated the results and dis-

played them in boxplots.

5. We demonstrated the performance of each models on time-series plant

dataset and discussed the factors contributed to it. Finally, we suggested

that the ConvLSTM2D model and SVM had the greatest performance

for classifying plant genotypes.

6. We experimented and figured out which photoreceptor mutants of Ara-

bidopsis Thaliana plants have more likely growing patterns and condi-

tions like wild type plants so that it can help to identify which genes are

responsible for the plant’s growth and development independent of light

conditions.

1.2 Thesis Outline

The rest of the thesis is organized as follows:

1. Chapter 2 provides detailed explanation of Material and Methods we

used. Section 2.1.1 explains the used plant materials and the growth

condition of the plants in lab. Section 2.1.2 explains the phenomic mea-

surements containing the computers, cameras and other technological

devices used to extract plant data. Section 2.1.3 explains dataset con-

struction and section 2.1.3 explains the input data structure.

2. Section 2.2 provides detailed explanation of all the traditional and deep

learning models we used for our experiment with model architecture,

hyperparameter optimization, cross-validation, and model evaluation.

3. Chapter 3 provides detailed performance analysis of the models and dis-

cussion of the results.
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4. Chapter 4 concludes this thesis with the summary of the proposed meth-

ods and results. This section also includes the future prospect of the

thesis experiments.
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Chapter 2

Literature Review

Across the plant sciences, computer vision and machine learning algorithms

have demonstrated their ability to understand plant growth patterns. With

the steady adoption of DL techniques, experiments have demonstrated that DL

algorithms often perform better than traditional ML algorithms at classifying

plants and identifying different plant traits. In this chapter, I discuss research

relating to deployment of both the conventional machine learning models and

deep learning models in the plant sciences.

The authors [63] proposed a statistical framework for the analysis of phe-

nomics data by integrating DM and ML techniques. The most popular super-

vised machine learning methods are utilized to classify and predict plant health

(stress/non-stress), including Linear Discriminant Analysis (LDA), Random

Forest (RF), Support Vector Machine with linear (SVM-l), and radial ba-

sis (SVM-r) kernels. They looked at several datasets that represented real

and simulated plant phenotypes. They studied the performance of each ML

method (classifiers) and investigated how performance varied with the chosen

number of attributes. The classification accuracy for 20%, 30%, 40%, and 50%

rank features was calculated for simulated data. All offered about the same

level of classification accuracy as non-rank all features. Here, rank features

have been lowered by up to 50% and produced excellent results (98%). On

the other hand, for real data, the SVM model’s prediction accuracy averages

around 97%. According to the study, when the features were chosen using the

suggested methods, there was no appreciable difference in classification accu-

8



racy among the investigated ML approaches, except for Random Forest (RF).

This study demonstrated that issues with using ML methodologies to analyze

phenotype data might be resolved by combining the DM and ML methods for

trait identification and classification, respectively.

The paper [4] presents a comparative study of traditional image processing

and deep learning techniques for plant recognition. In this study, two meth-

ods - the conventional method and the deep learning approach are used to

identify plant species. Hu moments (shape features), Haralick texture, local

binary pattern (LBP) (texture features), and color channel statistics are used

in the classic method to extract features (color features). Several classifiers

(linear discriminant analysis, logistic regression, classification and regression

tree, naive Bayes, k-nearest neighbor, random forest, and bagging classifier)

are used to categorize the retrieved features. Also, various deep learning archi-

tectures are evaluated in the context of identifying plant species. One real-time

dataset (Leaf12) and three standard datasets (Folio, Swedish leaf, and Flavia)

are used. With the Leaf12 dataset, it was found that using the conventional

method, the feature vector produced by combining color channel statistics,

LBP, Hu, and Haralick with the Random Forest classifier produced a plant

recognition accuracy (rank-1) of 82.38%. For the Leaf12 dataset, the accuracy

of the VGG 16 (CNN architecture) with logistic regression was 97.14%. For

the Folio, Flavia, and Swedish leaf datasets, accuracy of 96.53%, 96.25%, and

99.41% were achieved utilizing the VGG 19 CNN architecture and logistic re-

gression as the classifier. VGG (Very Large Convolutional Neural Network)

CNN models were found to have a greater accuracy rate than conventional

techniques.

The paper [3] presents a new approach to detecting and classifying plant

diseases using deep learning techniques. The authors proposed a DenseNet-

77-based CenterNet model. The proposed method involves the use of a con-

volutional neural network (CNN) model that takes images of plant leaves as

input and outputs a probability distribution over different disease categories.
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The authors evaluated their approach on the PlantVillage dataset containing

54,306 images of plant leaves, with 12 healthy and 26 diseased plant classes

of 14 species of plants. The samples for all 14 species of the crop including

Tomato, Potato, Apple, Grape, etc., are downloaded from the Plantvillage

dataset. The samples in the Plantvillage database are varied in the aspect of

changes in angle, size, color, light, and the presence of blurring, noise, etc.,

which makes it a diverse database for plant disease recognition. They also

compared their method with several existing approaches Inception-v4, VGG-

16, and ResNet-50. The results demonstrated its superior performance in

terms of accuracy, precision, and recall. They also compared their approach

with conventional ML models like SVM and KNN and outperformed them in

evaluation metrics. The performance showed the dominance of deep learning

models over conventional ML models.

This study [17] suggests AyurLeaf, a Convolutional Neural Network (CNN)

model based on Deep Learning, to categorize medicinal plants using leaf at-

tributes including shape, size, color, and texture. The authors developed a

dataset consisting of 2400 images of medicinal plant leaves of more than 30

leaves from 40 different plant species commonly used in Ayurveda, a traditional

system of medicine in India, and used it to train a Convolutional Neural Net-

work (CNN) model for plant classification. To efficiently extract features from

the dataset, a deep neural network modeled after Alexnet is used. Ultimately,

Softmax and SVM classifiers are used to perform the classification. For the

AyurLeaf dataset, the proposed model, after five cross-validations, had a clas-

sification accuracy of 96.76%. The paper presents a promising approach for

plant classification using deep learning techniques and demonstrates its poten-

tial for practical applications in the field of medicine.

The paper [36] presents a comprehensive review of the use of Convolutional

Neural Networks (CNNs) for image-based high-throughput plant phenotyping.

Plant phenotyping refers to the measurement of plant traits such as growth

rate, leaf shape, and disease resistance, among others, in a high-throughput
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manner using imaging techniques. The authors first provide an overview of the

challenges associated with traditional plant phenotyping methods and the po-

tential advantages of image-based high-throughput phenotyping using CNNs.

They then describe the different CNN architectures used for plant phenotyp-

ing, including classic architectures such as AlexNet and VGG, and more recent

ones such as ResNet and DenseNet. They also discuss the potential challenges

and future directions for the use of CNNs in plant phenotyping. Overall, the

paper highlights the potential of these techniques for advancing the field of

plant biology and agriculture.

The paper [81] ”Leaf segmentation and classification with a complicated

background using deep learning” by Yang et al. presents a deep learning

approach to segment and classify plant leaves in images with complex back-

grounds. Images of leaves with many targets and a complex background are

segmented and classified using the Mask R-CNN model and the VGG16 model.

For training and testing the model, more than 4,000 images were employed. It

is advised to conduct additional research using other deep learning algorithms

and more data, as this could produce superior results. Together with algo-

rithm improvement, improving image quality with better hardware can also

result in improved performance. The proposed approach achieved an aver-

age segmentation accuracy of 96.4% and an average classification accuracy of

91.3% on the test set, outperforming other state-of-the-art approaches. The

authors also conducted experiments to evaluate the impact of the number of

training images and the complexity of the background on the performance of

the proposed method and found that the proposed approach is robust to vari-

ations in these factors. Overall, the study demonstrates the potential of deep

learning methods for accurate and efficient segmentation and classification of

plant leaves in complex images, which could benefit various applications in

plant phenotyping and agriculture.

The paper [41] proposes a deep learning approach to classify crop types us-

ing both spatial and temporal features extracted from multi-temporal remote
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sensing images. The authors used the Multi-Source Land Imaging Time Series

(MuSLIT) dataset, which includes multi-temporal images of six crop types in

four regions of China. The proposed approach involves a two-stage process. In

the first stage, a 2D Convolutional Neural Network (CNN) is used to extract

spatial features from each image. In the second stage, a Bidirectional Long

Short-Term Memory (BiLSTM) network is used to learn the temporal depen-

dencies between the extracted features from different time steps. The output

of the BiLSTM is then fed into a fully connected layer for crop type classifica-

tion. The authors compared their approach with other deep learning methods

and traditional machine learning classifiers. Their proposed approach achieved

the highest accuracy in crop classification, outperforming other deep learning

methods and traditional machine learning classifiers. The results demonstrate

that the proposed approach effectively captures spatiotemporal features in

crop classification and has the potential to be applied in precision agriculture

and crop management.

In this study [48], a brand-new dataset called Urban Planter for classifying

plant species was introduced. It has 1500 photos divided into 15 categories.

The research team took extra care to compile and annotate the dataset. Deep

neural network techniques such as VGGNet (VGG16, VGG19), DenseNet,

MobileNet, Inception-v3, and Inception-ResNet-v2 were investigated by the

authors (fine-tuned and updated). The outcomes demonstrated that DNN

models perform remarkably well for genotype classification of plants.

The paper [83] presents a deep learning-based approach for the automatic

anatomization of plant roots using a combination of Convolutional Neural

Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The au-

thors aimed to develop a system that can accurately segment and analyze

root images, which is an important step toward understanding the genetic and

environmental factors that affect root growth and development. The dataset

contains 4000 images of plates with each plate having five plants of Arabidop-

sis Thaliana, a widely used model plant species in biological research, to train
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and evaluate their model. They divided the dataset into training, validation,

and test sets and used data augmentation techniques to increase the size and

diversity of the training data. The authors developed a CNN-LSTM model

that consists of two parts: a CNN that processes the root images to gener-

ate a feature map, and an LSTM that analyzes the temporal dependencies

between adjacent frames in a sequence of images to improve the accuracy of

root segmentation. The authors used a combination of binary cross-entropy

loss and intersection-over-union loss as the objective function for training the

model. The authors evaluated the performance of their approach using sev-

eral metrics, including pixel accuracy, intersection-over-union score, and root

length measurement error. They compared their approach with several existing

methods like VGG, FCN, ResNet, UNet, and FastFCN for root anatomization

and demonstrated that their approach achieved superior performance on all

metrics.

The paper [75] presents a deep learning-based approach for the classifica-

tion of plant phenotypes and genotypes using temporal data. The authors

aimed to develop a system that can accurately predict the phenotype and

genotype of a plant based on its temporal development, which is important for

understanding the genetic and environmental factors that affect plant growth

and development. In this research, the authors suggested a CNN-LSTM frame-

work for classifying different genotypes of plants. Instead of creating features

by hand, they used deep CNNs to automatically develop joint features and

classifiers. The authors discussed the issue of handcrafted features and used

deep learning to solve it (CNN). In addition, the growth of the plants and

their dynamic behaviors are studied as significant discriminative characteris-

tics for accession categorization using the potential of LSTMs. They created

the dataset by gathering a collection of time-series image sequences of four

different Arabidopsis accessions (Sf-2, Cvi, Landsberg (Ler-1), and Columbia

(Col-0)) top-view images that were taken under comparable imaging settings

and may be utilized as a standard reference point by specialists in the field.

The proposed framework for genotype classification consists of a deep CNN
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visual descriptor (using a CNN) and feature extractor with an LSTM model

that can recognize and synthesize temporal dynamics in an image sequence as

well as texture changes. The performance of their proposed deep phenotyping

system (CNN + LSTM) was compared to other baseline methods like using

handcrafted features and SVM as a classifier, adding the LSTM to consider

temporal information, CNN without temporal information, and using CRF

instead of LSTM to compare their performance. CNN+LSTM outperformed

all other methods and proved the potential in predicting the crop yield of the

plants as well as their health in the future.

The paper [39] proposes a spatiotemporal deep neural network approach for

the classification of Arabidopsis plant accessions using image sequences. The

authors aimed to develop a system that can accurately predict the accession

of a plant based on its spatiotemporal features, which can provide valuable in-

sights into the genetic and environmental factors that influence plant growth

and development. Using a temporal series of RGB images, the authors fo-

cused on the accession classification of four different accessions of Arabidopsis

plants: Columbia (Col- 0), Cape Verde Islands (Cvi), Landsberg (Ler-1), and

San Feliu (Sf-2). The overwhelming resemblance in appearance across the

four accessions of the Arabidopsis plant pictures is a significant challenge in

this undertaking. They introduced three deep neural network architectures,

including the 3-dimensional (3-D) CNN, CNN with convolutional LSTM (Con-

vLSTM) layers, and vision transformer, which classify plant accessions using

both temporal and spatial features. A 3-D CNN model, which considers the

input image sequence as a 3-D cube, makes up the first network. The number

of images in the sequence is handled as the depth parameter in addition to the

height and width of individual image. CNN and RNN make up the second net-

work. To determine spatiotemporal characteristics, they replaced the LSTM

layer in the network with a ConvLSTM layer. The first two approaches rely on

convolutions, but the third method—vision transformer—uses a self-attention

mechanism and is not dependent on convolutions. The simultaneous input of

image patches into the vision transformer network speeds up model training.
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The authors evaluated the performance of their approach using several met-

rics, including accuracy and F1 score. They compared their approach with the

existing method [75] for plant accession classification and demonstrated that

their approach achieved superior performance on all metrics. The authors also

analyzed the spatiotemporal features learned by their model and showed that

it was able to capture the important characteristics of the Arabidopsis plant

accessions, such as leaf shape and size.

The paper [78] proposes a high-accuracy genotype classification approach

using time series imagery for crop plants. The authors aimed to develop a sys-

tem that can accurately predict the genotype of a crop plant based on time se-

ries imagery, which can provide valuable insights into the genetic and environ-

mental factors that influence plant growth and development. A Densenet201-

BLSTM model is proposed for classifying various genotypes based on time

series of plant images. Densenet201 model is based on the Densenet201 and

bi-directional Long Short-Term Memory model (bi-directional LSTM). This

study offered an integrated dataset containing segmented plant images of

growth and development that included 4 genotypes of Arabidopsis thaliana

and 39 genotypes of panicoid grain crops, including maize, sorghum, and mil-

let. The authors developed a high-accuracy genotype classification approach

using a combination of a deep convolutional neural network (CNN) and a

long short-term memory (LSTM) network. CNN was used to extract fea-

tures from each image in the time series, and the bi-LSTM was used to model

the temporal dependencies between the images. By bi-directionally capturing

the dynamic behaviors of plant growth and development as well as impor-

tant phenotypes, the proposed Densenet201-BLSTM represents the complex

relationship between phenotypes and genotypes. The authors evaluated the

performance of their approach using several metrics, including accuracy and

F1 score. They compared their approach with several existing methods like

Alexnet-LSTM, VGG16-LSTM, etc., for genotype classification and demon-

strated that their approach achieved superior performance on all metrics. The

proposed DenseNet201-BLSTM model obtains a genotype classification ac-
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curacy of 98.31% on the test dataset. The proposed research was the first

attempt undertaken to classify the genotypes of panicoid grain crops.

Overall, the contribution of machine learning and deep learning-based ap-

proaches in classification of plant genotypes is significant as it provides accu-

rate and efficient methods for plant classification. These approaches can help

in identifying the genetic traits responsible for plant growth and yield, which

can aid in the development of new plant varieties with improved yield and

disease resistance. Furthermore, these methods can be used to identify plant

phenotypes that are tolerant to environmental stresses, such as drought and

high temperatures, which could benefit various applications in plant pheno-

typing and agriculture.
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Chapter 3

Materials and Methods

3.1 Materials and Methods

3.1.1 Plant Material and Growth Conditions

Experiments were performed using Arabidopsis thaliana plants, ecotypes Columbia

(Col-0) and Nossen (No-0). Photoreceptor mutants (phy A, phy B, phy C, phy

D, phy E, phot 1, phot 2, phot1 phot2, cry1, cry2, cry1 cry2, cry3, ds-16, fkf1,

lkp2, and ztl) (Figure 3.1) were obtained from Dr. Enrico Scarpella (University

of Alberta, Edmonton, Alberta). Seeds were sterilized in an air-tight container

filled with chlorine gas for 24 hours. Chlorine gas was made by adding 3 mL

of hydrochloric acid to 75 mL of bleach. The seeds were then placed on a ½

Murashige and Skoog media containing 7 g/L of agar and 1% sucrose at pH

5.8 (KOH). After 3 days of stratification at 4◦C in the dark, the seeds were

exposed to light treatment for a week before being transferred to soil (Sungro,

Sunshine Mix® 1). Growth chambers were equipped with a programmable

Perihelion LED fixture (G2V Optics Inc.) and lined with Reflectix® to en-

sure a good light diffusion. Plants were grown under a 12h light and 12h dark

photoperiod with a temperature of 21◦C during the day and 19◦C at night.

Light treatments consist of different dawn and dusk ramp conditions for a

given spectrum (Figure 3.1). Six LED types (Cree LED XPE, XPE2 XPG

families) were used in the fixtures, with characteristic wavelengths of 444 nm,

630 nm, 663 nm, 737 nm, 3000 K white, and 6500 K white.
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3.1.2 Phenomics measurements

Each chamber was equipped with two Raspberry Pi 3 B+ and an ArduCam

Noir Camera (OV5647 1080p) with a motorized IR-CUT filter and two in-

frared LEDs. Pictures were taken every 5 min over 14 days and were used

to extract plant area and perimeter measurement using PlantCV, an open-

source Python package with computer vision tools for plant phenotyping as

previously described [26].

3.1.3 Dataset Construction

To create our dataset, images were processed using PlantCV [26]. The work-

flow consists of three core steps. First, image preprocessing was required to

undistort the fisheye effect of the ArduCam Noir Camera. Images also re-

ceive exposure correction using a defined white spot region of interest. The

second core step was image segmentation, in which pixels are classified into

‘plant’ and ‘background’ using an HSV color threshold. Segmented images

were then filtered to remove small noises. The final core component of our

PlantCV workflow was image analysis. Using the segmented images, measure-

ments were taken of the plant dimensions and stored in the output file. The

measurement of a size marker was also taken, which served as a constant. This

allowed us to normalize the data across different cameras and account for slight

variations in the distance between the plants and the camera. Additionally, as

the size marker has a known size, it allows the measurements to be converted

from pixels to SI (International System of Units) units.

3.1.4 Input Data Structure

Our dataset has 501 plants in total of 17 different genotypes of 14 days. In-

stead of feeding the entire 14 days of data at once, we divided each plant into

different days, creating a dataset of 7014 plants of a single day. It helped to

better understand the growth for each plant per day analysis as well as the

increase in the total number of samples for training and testing the models.

In a DL time-series classification model, input data arrays from the input
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Figure 3.1: Light treatments and plant phenotype.
(A)Twilight ramps employed in the study. For the 0-minute square bracket
ramp, lights turned on to full Photosynthetic Photon Flux Density (PPFD) or
light intensity, while under the 30-minute and 90-minute conditions, the light
intensity progressively increased to reach its maximum in 30-minute and 90-
minute respectively. For all conditions, the plants received the exact amount
of light of 4.32 DLI (mol/m2/d).
(B) Spectral composition of the light for all treatments. (C) Plant list and
associated genotypes. (D) Pictures of representative photoreceptor-deficient
plants grown under different twilight lengths. Plant position: 1 = WT, 2 =
phyA, 3 = phyB, 4 = phyC, 5 = phyD, 6 = phyE, 7 = phot 1, 8 = phot 2, 9
= phot1/2, 10 = WT, 11 = cry1, 12 = cry2, 13 = cry1/2, 14 = cry3, 15 =
ds-16, 16 = fkf1, 17 = lkp2, and 18 = ztl.
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nodes are transmitted to the hidden layer of the network model, where the

network model processes and learns the historical pattern before producing

any prediction. The time-series of each chosen station variable was normal-

ized to a similar range of values to guarantee that the proposed sequential

neural model trains well and converges quickly. Additionally, the input data

arrays at various sample rates produced adverse effects on the models’ train-

ing and validation performances since the collected time-series observations

were noisy and stochastic in nature. In our plant dataset, we found inherent

biological variance in plant sizes with respect to area, even in plants of the

same genotype. To increase the model’s capacity for generalization, we used

data normalization technique [56]. Here, we used the min-max normalization

technique [13], where the initial data was transformed linearly using min-max

normalization, also known as feature scaling. Using this method, we obtained

all data scaled within the range (0, 1). That is, every feature’s minimum and

maximum values were each converted to a 0 and a 1, respectively, while all

other values were converted to a decimal between 0 and 1, using the formula:

The formula: X = (Xi−Xmin)
(Xmax−Xmin)

Where, where Xi, is the area value (> 0) at a given time for a particular

plant i; Xmin and Xmax are the minimum and maximum area values per plant

respectively; X is the normalized value for plant i at the given time.

3.2 Proposed Methods

We proposed various machine learning models for our research. We separated

them into conventional machine learning models and deep learning models to

classify different genotypes of A. thaliana, and we tested their performance

throughout different dawn and dusk periods of the plants (Figure 3.2). We

used hyperparameter tuning to find out the optimal settings of each models

to generate the best classification accuracy. Moreover, we cross-validated all

the results using 10-fold cross validation techniques. Finally, we evaluated our
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Figure 3.2: Proposed methodology for classification of plant genotypes.

models using precision, recall, f1-score, and accuracy metrics.

Support Vector Machine (SVM)

SVM is effective in time series because it can resolve issues with nonlinear

regression estimation. Due to its successful use in classification and regression

problems, it has been a popular subject of intense study. In order to make

the input vectors linearly separable, the input vectors are mapped into a high-
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dimensional feature space using SVMs. The kernel functions k(x, y) make it

easy and efficient to do the non-linear mapping from the input vector space to

the feature space (i.e., the so-called kernel trick). We do not need to take into

account all the points but taking only a subset of points becomes beneficial as

the SVM classifier is dependent ideally only on a subset of points while opti-

mizing the distance between the nearest points of two classes (Margin). SVM

accepts as input a set of data points in a vector space. In our case, a data point

represents the plant area at a particular time point, and each dimension rep-

resents the total growth feature of the plant.SVM models work by finding the

best separating (maximal margin) hyperplanes between the classes of training

samples in the feature space. The margin is the separation between the nearest

data points and a separating hyperplane. The hyperplane that provides the

maximal possible margin is known as an optimal separating hyperplane, and

these closest data points are known as support vectors. Finding a hyperplane

can help with accurate data classification into different groups.

SVM models are created to predict or classify input data that belongs to

two separate classes. However, SVMs can be utilized as multiclass classifiers

by treating a K-class classification problem as K two-class problems. This cat-

egorization is referred to as one-vs-rest or one-vs all. The multi-class dataset

is divided into various binary classification issues. Each binary classification

problem is then fed into a binary classifier, and the best accurate model is used

to make predictions. For multi-classification, SVM finds multiple hyperplanes

that collectively best separate the data points into the designated number of

classes (Figure 3.3). The strategy for handling multi-class classification can be

set via the “multi class” argument and can be set to “ovr” for the one-vs-rest

strategy. In addition, SVM model requires 4 parameters (degree, C, ϵ, and

γ) to be determined to provide accurate class predictions. C is the penalty

parameter of the error term, ϵ defines a margin of tolerance where no penalty

is given to errors, γ gives the curvature weight of the decision boundary, and

degree parameter determines the degree of the polynomial used to find the

hyperplane to split the data. Here, we used grid search method to find the op-
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timal parameter setting of SVM for achieving the maximum accuracy with the

minimum error. Ranges were set to [1, 10] at increment of 1.0 for C and [0.01,

0.001, 0.0001, 0.1 - 0.5] for ϵ with γ being fixed to be 0.5. The optimal values

of C, ϵ, and γ are selected using 10-fold cross-validation repeated ten times

to increase the reliability of the results. We tried SVM with several kernel

types for our research and found that polynomial kernels with degree 4, C=1,

ϵ = 0.1, and γ = 0.5 delivered the best precision, recall, accuracy, and f1-score

values. Propsoed SVM model works by mapping the time-series plant area

data to a higher-dimensional feature space using a polynomial kernel function.

Polynomial kernel function allows the model to capture non-linear relation-

ships between the time-series plant area data and the genotype labels.Given a

dataset, P = {(X1, Y1), ..., (Xv, Yv)}, where Xu ∈ X and Yu ∈ Y , SVM try to

solve the following equation:

min
G,b

1

2
||G||2 (3.1)

subject to yu(G
t.xu + b) ≥ 1, u = 1, 2, ..., v

The weight vector G and the bias term b are learned during the training

of the SVM model. The goal of training is to find the values of G and b that

minimize the classification error on the training data while maximizing the

margin between the decision boundary and the training data points.

Kernel function is used for this particular problem which can’t be solved

using linear hyperplane. For degree-d polynomials, the polynomial kernel is

defined as:

K(x, y) = (xTy + c)d

where c ≥ 0 is a free parameter that trades off the influence of higher-order

vs lower-order parts in the polynomial, and x and y are vectors in the input

space, that is, vectors of features derived from training or test samples. The

kernel is said to as homogenous when c = 0.

SVM model employed the normalized area values of plants for training and

testing as described above.
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Figure 3.3: SVM multiclass classification with kernel function

Logistic Regression (LR)

LR works by estimating the probabilities of events, including determining a

relationship between features and the probabilities of outcomes. Here, we used

multinomial logistic regression to accommodate multi-class genotype classifi-

cation problems. Here, for our study, the input to the LR is a total plant as

independent variable and the dependent variable is the 17 genotype classes.

The input plant area values with randomly initialized weight values added

with bias term is passed to sigmoid function and mapped to a probability

in a range between 0 to 1. Multinomial logistic regression alters the logistic

regression model to directly support the prediction of multiple class labels.

To more specifically forecast the likelihood that a given input example (i.e.,

a particular plant) falls under each accepted class label (wt, phyA, phyB, and

so on) and the class label with highest likelihood value is selected. Here, for

our study, both the training and testing phases of the logistic regression (LR)

model employed the normalized area values of plants for training and testing as

described above. We split the dataset into 10-fold for training and validating

the model’s performance and finally, we reported the maximum accuracy with

the minimum cross-validation error. Performance of LR model greatly depends

on hyper-parameter C, maximum number of iterations, penalty, and solver. C

is the regularization parameter in the logistic regression model. It controls the

trade-off between achieving a low training error and a low complexity model.
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Another parameter max iteration is the maximum number of iterations for

the solver to converge. The solver iteratively refines the weights and bias of

the model to minimize the loss function. Here, we used grid search method

to find the optimal parameter setting of LR for achieving the maximum ac-

curacy with the minimum error. Ranges were set to [0, 4] at increment of 0.2

for C and [’l1’, ’l2’ ] for the regularization parameter, [’newton-cg’,’lbfgs’ ] as

classifier solver. By grid search, we found the best parameter setting for lo-

gistic regression of C=0.62, max iteration = 200, and solver = “lbfgs” with l2

regularizer. As this is a multiclass problem, we set the parameter “multi class

= multinomial”, solver (“lbfgs”) handled multinomial loss, and 200 iterations

were taken for solver for fast convergence of LR model.

Multinomial LR is based on Linear Regression, with the formula:

Figure 3.4: Logistic Regression (LR) model for time-series genotype classifica-
tion of plants.

y = mx+ b

Where y is our outcome variable that denotes the probability of a particular

plant in a particular genotype, m is the curve slop that is the randomly ini-

tialized weight value, The maximum likelihood estimation(MLE) can be used

to estimate the logistic function’s parameter m. In MLE, the parameters that

best match the joint probability of the independent variables x are sought after

where x is the input features of plants, in our case, the area values of a plant.

Here, b is the interception with the y-axis as a bias. As we have more than
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one predictive variable our formula for classification tasks will look like this:

f(x) = m1x1 +m2x2 +m3x3 + ....+mnxn + b

where, n = total number of input features, x1...n are the input features

(plant area values at particular time point), and m1...n are the weight variables

assigned to the plant area values. Each input feature is multiplied by a weight,

and the resulting products are summed together with the bias term to produce

a score for each possible output class (Figure 3.4). The weights are learned

during training of the model. The probability equations with multinomial

logistic regression for a 17 category classification task would look like: Pr(y =

17) = 1

ze
f(x)

where z is the sum of the ef(x) for all classes in the model. Pr is the probability

of a particular plant belong to a certain class.

Random Forest (RF)

Random Forest (RF) is an ensemble classification algorithm, consists of a group

of tree-based classifiers h(x, (θ)k, where, (k = 1,2,..,), x is the input vector and

(θ)k are independent and identically distributed random vectors [7]. Every

tree in the forest gives a unit vote, designating the most likely class label for

each input (Figure 3.4). The algorithm achieves higher performance on high-

dimensional data by doing an implicit feature selection using a small collection

of “strong variables”. For proposed RF model, split criterion - Gini index,

which denotes importance or feature relevance, is used to depict the results

of feature selection. The impurity of an attribute in relation to each class is

measured by the Gini index. Gini impurity reveals how frequently a particular

feature is chosen for a split and the magnitude of its total discriminative score

for the particular classification problem.

Performance of RF highly depends on “max features”, “n estimators”,

“min sample leaf”, and “oob score” parameters to provide accurate classifi-

cation performance [61]. Here, “n estimators” denotes the number of trees

the algorithm builds before averaging the predictions, “max features” denotes
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Figure 3.5: Random Forest (RF) model for time-series genotype classification
of plants.

the maximum number of features random forest considers splitting a node,

min sample leaf determines the minimum number of leaves required to split

an internal node, and “oob score” is a random forest cross-validation method.

Here, we adjusted these parameters to run the RF model for our analyses,

optimized by grid search parameter tuning. The primary parameters are the
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number of predictors at each decision tree node split and the number of de-

cision trees to run. For grid search, paramter ranges were set to [10, 2000]

with an increment of 10 for “n estimator”, [‘auto’, ‘sqrt’ ] for “max features”,

[1, 30] with an increment of 2 for “max depth”. Finally, we used “max feature

= Auto” to consider all the data points in an individual run, “n estimators

= 200” for better classification performance as well as faster running time,

and “oob score = TRUE” to use the RF self cross-validation method and can

provide an estimate of the model performance without the need for a separate

validation set. After trying multiple leaf sizes, we chose “min sample leaf =

20” to achieve the maximum accuracy with minimum error for validation data

for RF model. RF model employed the normalized area values of plants for

training and testing.

Boosting Ensemble

Machine learning models can be used individually or as part of an ensemble to

fit data. A new model with greater effectiveness is created by the ensemble of

simple individual models. Machine learning boosting can create an ensemble

[88]. Boosting gives a prediction model in the form of weak prediction models,

which are typically decision trees (DT). By learning straightforward decision

rules derived from previous data, decision tree builds training model that may

be used to predict the class or value of the target variable (training data). To

predict a class label, decision trees begin at the tree’s root and compare the

root attribute’s values with that of the attribute on the record. Then it follows

the branch that corresponds to that value and goes on to the next node based

on the comparison. Boosting creates an ensemble model by gradually integrat-

ing a number of weak decision trees. It gives each tree’s output a weighted

rating. Then, it increases the weight and input for inaccurate classifications

from the initial decision tree. The boosting technique combines these several

weak prediction rules into a single strong prediction rule after many cycles

(Figure 3.6). While a strong classifier is arbitrarily well-correlated with the

true classification, a weak classifier only modestly predicts the true classifi-
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cation. Resampling data sets are also used in boosting to create classifiers,

which are subsequently integrated by majority vote. For our study, we used

GradientBoosting (GB) technique. By creating base learners (decision trees)

consecutively, GB improves the loss function so that each base learner is al-

ways more effective than the preceding one. GB method produces accurate

results at the beginning rather than fixing mistakes as they occur. Because of

this, GB results in more precise results.

Figure 3.6: Gradient Boosting model for time-series genotype classification of
plants.

For grid search, ranges were set to [10, 500] with an increment of 10 for

“n estimators”, [0.0001, 0.001, 0.01, 0.1, 1.0] for “learning rate”, [0.5, 0.7, 1.0]

for “subsample”, and [3, 7, 9] for “max depth” parameter. Finally, We used

“n estimator = 200” denotes the number of decision trees that are added to

the model sequentially in an effort to correct and improve upon the predic-

tions made by prior trees, “max feature = Auto” determines the maximum

number of features decision trees considers splitting a node, for our case, we

are considering all the features in a single run. We set “learning rate=0.01”

to update model weight and biases for convergence, “loss=log loss” for better

classification performance, “max depth = 7” denoting max number of levels in

each decision tree, and “subsample = 0.5”. We cross-validated the dataset 10

times as training and validation set and did this boosting process repeatedly

10 times.
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Stacking

In stacking, predictions from various machine learning models are combined

on the same dataset. The architecture of a stacking model consists of two or

more base models [62], frequently referred to as level-0 models (in our study,

RF, LR, and Boosting), and a meta-model, commonly known as level-1 model

(i.e., SVC (kernel = “poly” for the study), that combines the predictions of the

base models. The outputs from the base models that are utilized as input to

the meta-model are probabilistic values or, in the case of classification, class

labels (genotypes). The meta-model takes these input features and makes

the final prediction for the plant genotype. We prepared the training dataset

for the meta-model via k-fold cross-validation of the base models, where the

out-of-fold predictions are used as the basis for the training dataset for the

meta-model.

Convolutional Neural Network (CNN)

Our proposed CNN achitecture includes convolutional layers, max-pooling lay-

ers, and fully connected layers. Max-pooling layers are intended for feature

selection, whereas convolution layers are intended for automatic feature de-

tection. A convolution is applying and sliding a filter over the time series.

For time series, the filters exhibit only one dimension (time) and seen as a

generic non-linear transformation of a time series. This way, the kernel moves

in one direction from the beginning of a time series towards its end, performing

convolution. The elements of the kernel get multiplied by the corresponding

elements of the time series that they cover at a given point. Then the results

of the multiplication are added together and a nonlinear activation function

is applied to the value. In our study, we have plant area values at each time

point as input to the convolutinal layer. We have used only two convolutional

layers where the first convolution has 128 filters with filter lengths of 7 and the

second convolution has 256 filters with filter lengths of 5, respectively (Fig-

ure 3.7). These two convolutions are then input to pooling AveragePooling1D

layer of pool size = 3 to reduce the dimnetionality. The output of pooling
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Figure 3.7: Convolutional Neural Network (CNN) model for time-series geno-
type classification of plants.

layer is fed to flatten layer to transforms multidimensional output and make it

linear to pass it onto a dense layer. Finally, the ouput of flatten layer is fed to

the output layer. The input, hidden, and dense layers used the relu activation

function, but the model output dense layer used the softmax function having

the exact number of neurons as genotype classes in the dataset.

Fully Convolutional Network (FCN)

We employed the architecture suggested by Wang et al. [82], which is made up

of three convolutional blocks, each of which has three operations (a convolu-

tion, a batch normalization, and then a ReLU activation function [20]). Over

Figure 3.8: Fully Convolutional Network (FCN) model for time-series genotype
classification of plants.

the complete time-series, which corresponds to the Global Average Pooling

(GAP) layer, the third convolutional block’s output is averaged. The output

of the GAP layer is then fully coupled to a conventional softmax classifier with

the same number of neurons as classes in the dataset [55]. The exact length

of the time-series after the convolution is preserved by all convolutions having
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a stride of 1 and zero padding. The first convolution has 128 filters with filter

lengths of 7 and the second convolution layer has 256 filters with filter lengths

of 5, respectively. These two convolutions are then input to the third and final

convolutional layer, which has 128 filters with filter lengths of 3 (Figure 3.8).

Residual Networks (ResNet)

The deepest architecture for time-series classification is ResNet [82], which has

11 layers, the first 9 of which are convolutional layers and are followed by a

Global Average Pooling (GAP) layer that averages the time-series over the

time axis, minimizing the influence of vanishing gradients [29]. Our ResNet

architecture consisted of three residual blocks, a GAP layer, and a softmax

classifier with the same number of neurons as the number of genotype classes

in the dataset as its final component. Each residual block is made up of

three convolutions, the output of which is added to the input of the residual

block and fed to the following layer. With the ReLU activation function being

preceded by a batch normalization procedure, the total number of filters for

all convolutions is fixed at 64. The length of the filter in each residual block

is set to 8, 5, and 3 for the first, second, and third convolutions, respectively.

Figure 3.9 represents the ResNet architecture that we used in our study of

genotype classification.

Figure 3.9: The Residual Network’s architecture for time-series genotype clas-
sification of plants.
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Long Short-Term Memory (LSTM)

LSTM architecture provides outcomes for sequential data workloads due to its

capacity to capture long-time dependencies [31], [15]. LSTM architecture has

a memory cell that maintains a current state over various sequential instances

and non-linear dependencies that regulate information entering and exiting the

cell. Bi-LSTM (an enhanced architecture of LSTM) models are typically more

effective when managing contextual information since their output at a given

time depends on both the prior and subsequent segments. To comprehend

past and future information, the Bi-LSTM architecture contains two layers:

forward and backward directions. Every series of events submitted to an LSTM

is processed one time step at a time. A vector holding data about the current

and prior time steps is passed from one time step to the next until it reaches

the last one. However, the informational content of the vector will eventually

be constrained by its fixed size. The information from the previous inputs

runs the danger of being lost or diluted, especially for longer sequences. Here,

we used the LSTM and Bi-LSTM (improved architecture of LSTM) with two

hidden layers (256 LSTM units) and relu activation function for input and

dense layers. For the output layer, we used softmax activation function having

the same number of neurons as the number of genotype classes in the dataset.

We trained the models with the following hyperparameters: (a) 250 epochs

(after that no changes in validation loss and validation accuracy); (b) dropout

rate of 0.3; (c) Adam optimizer [87] with a starting learning rate of 0.01; and

(d) mini-batch size of 32. Additionally, categorical cross-entropy loss function

was applied to monitor the validation loss.

Encoder

Our proposed encoder model is a standard convolutional network, with a con-

volution attention mechanism to summarize the time axis. We employed an

encoder model with the following architecture (Figure 3.11). Our model has 3

convolution layers. The first convolution is made up of 128 filters with a length

of 5, the second one is made up of 256 filters with a length of 11, and the third
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one is made up of 512 filters with a length of 21. We used the Parametric

Rectified Linear Unit (PReLU) activation function [30] that fed the output

of each convolution’s instance normalization operation. A dropout operation

(with a rate of 0.2) and a final MaxPooling of length 2 are performed after

PReLU’s output. An attention mechanism that allows the network to learn

which time-series (in the time domain) are essential for a specific classification

was fed the third convolutional layer (Figure 3.10). Half of the 512 filters of last

convolutional layer are input to the timewise softmax activation, which acts

as an attention mechanism for the other half of the filters. Encoder represents

a hybrid deep CNN [72], which is distinguished from FCN by replacing the

GAP layer with an attention layer, minor modifications in convolutional layers,

the PReLU activation function, the dropout regularization method, and the

max pooling procedure. We applied 10-fold cross-validation on the datasets

and validated the performance of encoder model by monitoring categorical

cross-entropy loss of the validation set.

Figure 3.10: Encoder architecture for time-series genotype classification of
plants.

Conv2D

For long-term non-linear input sequences, Conv2D model performs well. The

2-D MaxPooling layer and 2-D kernel size are features of the Conv2D model

[56]. The Conv2D input shape for the input-layer was obtained using an

input shape argument [56] below: –

Input Shape Conv2D = (batch, timesteps, features) (3.2)
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We constructed the 7-layer Conv2D model to consist of an input layer,

two 2-D MaxPooling layers, one convolutional hidden layer, one flatten layer,

one dense layer, and finally output layer (2nd connected dense layer) respec-

tively. The MaxPooling layer reduced the spatial dimensionality of the input

sequence volume through downsampling approach. The flatten layer used the

processed input sequence from the previous layer to narrow the featured se-

quence by wrapping it as a 1-D vector. Our Conv2D model had 128, 64, and

72 convolutional filters (layer neurons) for the input, hidden, and dense layers

respectively, using a dropout of 0.3. The input, hidden, and dense layers were

activated using the relu function, whereas the output layer was activated using

the softmax function having the number of neurons as genotype classes in the

dataset.

ConvLSTM2D

For the ConvLSTM2D model, the input data should maintain the following

shape:

Input Data ConvLSTM2D=X.reshape(samples, Input Shape ConvLSTM2D)

= X.reshape(samples, batch, timesteps, features, channels) (3.3)

For ConvLSTM2D, we created the 5-D ConvLSTM2D input arrays by using

3.3. The ConvLSTM2D model’s system architecture (Figure 3.11) was then

used to construct a seven-layer network, which consisted of the following lay-

ers: one input layer with the first batch normalization layer (instead of the first

2-D MaxPooling layer and dropout), one convolutional hidden layer with the

second batch normalization layer (instead of the second 2-D MaxPooling layer

and dropout rate), one flatten, one dense, and one output layer. The batch

normalization layer shortened the learning time for the model and stabilized

(regularized) the layer input arrays for a faster deep learning process [56]. The

batch normalization layer was taken into consideration, which normalized an

output data sequence from a prior connected layer (input or concealed layer).

The flatten layer accepted the second batch normalization layer’s processed
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input sequence and wrapped it into a single 1-D vector (converting the input

sequence from 5-D to 2-D output shape). The bundled input sequence was

extracted and interpreted by the dense layer that was directly connected to

the model flatten layer before being sent on to an output layer. The argument

“return sequences” was used. If “return sequences” is true then ConvLSTM

layer returns a sequence as a tensor comprising of sequence, filters, rows, and

columns. The ConvLSTM layer delivers only the most recent output with

filters, rows, and columns if the input “return sequences” is false. Finally,

the classification with the highest score was chosen using the output layer

with the softmax activation function. The best potential combination was

selected based on network performance after experimenting with various Con-

vLSTM layers and filter counts. After considering multiple hyperparameter

settings, the following model hyperparameters were considered for best accu-

racy: padding was set to “Same” and the input, hidden, and dense layers all

used the relu activation function, but the model output layer used the soft-

max function having the exact number of neurons as genotype classes in the

dataset. We used the filter sizes for the input, hidden, and dense layers are

128, 256, and 1024 respectively. Our approach was to first pass each indi-

vidual plant growth values with respect to area through the feature extractor

(CNN) to produce a fixed-length vector representation. This fixed-length vec-

tor embodies the features of each individual plant. The outputs of CNN for

the sequence of plant area values were then passed onto a sequence learning

module (LSTM). At this stage, the LSTM attempted to classify the plants via

analyzing the sequences of the features that were extracted from time-series

area growth of plants and by considering their temporal variations.

3.2.1 k-fold cross-validation

To analyze all of the traditional machine learning and deep learning mod-

els, we used k(10) fold cross validation approaches rather than the standard

train-test split. After completing cross-validation and averaging all the folds,

we presented the results in terms of precision, recall, accuracy, and f1-score.

Although we also tried 5-fold validation, 10 fold validation produced more
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Figure 3.11: ConvLSTM2D architecture for time-series genotype classification
of plants.

trustworthy and accurate results. We used k-fold (k = 10 in our analysis)

cross-validation predictions as projected values for the training data. Here, we

divided the training data d into k folds or groups. We started off with using

k-1 fold as the test dataset and the remaining folds as the training dataset. We
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trained the model on the training dataset and validated it on the test dataset

and saved the validation score. These process repeat, but changing the value

of k test dataset. Therefore, we selected k-1 as our test dataset for the initial

round before moving on to k-2 for the subsequent round. By the time it was

done, every fold in the model would have been validated, and the results would

have been averaged to show how well the model worked. The predicted value

that each plant in the training data acquired was the prediction while that

plant was in the validation fold. To employ cross-validation procedures for

the cross-validated prediction, all plants must be assigned to a validation fold

exactly once.

After performing k-fold cross-validation, we do not need any additional

statistical tests to determine which model is better than which model because

k-fold cross-validation is itself a statistical technique that provides a reliable

estimate of the model’s performance. By repeating the training and testing

process k times with different subsets of the data, we can obtain an estimate

of the model’s generalization performance that is less affected by the noise in

the dataset than a single train-test split. Moreover, by computing the mean

and standard deviation of the performance metric across the k folds, we can

gain insights into the variability of the model’s performance.

3.2.2 Hyperparameter optimization

The hyperparameter optimization is defined as a tuple of hyperparameters

that produces an optimal algorithm that minimizes the predefined loss func-

tion (i.e., cross-entropy loss function in our study) on a held-out validation set

of the training data. However, in our study, we carried out hyperparameter

optimization by defining the subset of the hyperparameter space of an ML

algorithm, then evaluating it by cross-validation using the training data. An

exhaustive grid search approach was used. For deep learning models, we tested

with different groups of parameters with every dataset and finally reported the

parameters for which we acquired the best validation accuracy with the min-

imum validation loss. We set each deep learning model to 250 epochs. We

employed the “EarlyStopping” approach [8] to stop iteration. Early stopping
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technique prevent overfitting and improve the generalization performance of

the model. It involves monitoring the performance of the model on a val-

idation set during the training process and stopping the training when the

performance on the validation set starts to degrade. We used “patience = 15”.

The “patience” parameter is a user-defined value that specifies the number of

epochs to wait before stopping the training if the performance on the valida-

tion set does not improve. In our case, the patience is set to 15, the training

process will continue for up to 15 epochs after the last time the validation loss

improved. If the validation loss does not improve within the next 15 epochs,

the training will stop.

3.2.3 Evaluation

To verify the effectiveness of the proposed approach for genotype classifica-

tion, the evaluation metrics precision, recall, F1-score, and accuracy were used

to compare the performance of the traditional and deep learning algorithms.

Genotypes of plants were classified to verify the effectiveness of the proposed

approach on each fold validation dataset. We have used the metrics precision,

recall, F1-score, and accuracy to evaluate the performance of our models. Here,

precision is defined as the actual correct prediction divided by total prediction

made by model. For instance, our actual dataset has 130 “wt” plants, the

model predicts 100 plants correcltly into “wt” class and 35 plants of other

genotypes are misclassified as “wt”, then the precision score is .74 or 74%. On

the other hand, recall measures the model’s ability to detect actual samples

and label them positive and is calculated as the ratio between the numbers of

Positive samples correctly classified as Positive to the total number of Positive

samples. So, the recall score is .77 or 77%. A substitute for accuracy metrics,

F1-score is a machine learning model performance metric that equally weights

Precision and Recall when assessing how accurate the model is. Precision,

recall, F1-score, and accuracy are defined as the following:

Recall =
TP

TP + FN
(3.4)

Precision =
TP

TP + FP
(3.5)
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F1− score = 2× Precision×Recall

Precision+Recall
(3.6)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

where TP, FP, and FN are the number of true positives, true negatives, false

positives, and false negatives, respectively. True positives are data points that

have been marked as positive and are in fact positive. For example, model

predicts a plant as “wt”, which truly belongs to “wt”. False positives are data

points with a positive label but a negative one. In our study, if a plant of

other genotype misclassified as WT genotype. True negatives are data points

that are truly negative despite being classified as negative. False negatives are

data items with negative labels but positive values.
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Chapter 4

Result Analysis and Discussion

In our study, we analyzed 17 different photoreceptor deficient plant lines grown

under three different twilight conditions. We first evaluated four traditional

ML algorithms and ensemble stacking, then tested additional six DL models

to evaluate their performance. Here, we found that DL models consistently

outperformed conventional machine learning models in terms of precision (P),

recall (R), F1-Score (F1), and accuracy (Acc) (Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,

and 4.7). As we have a total of 17 genotypes, we created different datasets with

4, 6, 9, and 17 genotypes classes (by merging some closely related genotypes),

respectively, to assess each model’s performance, followed by the assessment

of all algorithms on 3 separate datasets of 0-min, 30-min, and 90-min twilight

growth conditions. We first evaluated traditional ML models for genotype

classification in terms of precision, recall, F1-score, and accuracy (Tables 4.1,

4.2, and 4.3).

Here, we found that for each of the four datasets with 4, 6, 9, and 17

genotype classes, SVM with polynomial kernel outperformed all the other tra-

ditional ML models, achieving the highest precision, recall, F1-Score, and

accuracy in all scenarios. Figure 4.1 and 4.2 represent the precision, recall,

f1-score, and accuracy of the traditional machine learning models we used for

our analyses. .

Under the 0-min twilight condition, SVM achieved an average accuracy

of 73%, 64%, 54%, and 40%, respectively, at the presence of 4, 6, 9, and

17 genotype classes, respectively. The maximum accuracy among all growth
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Figure 4.1: Classification result of ML models on 0-minute light conditions for
a different number of classes (genotypes).

Figure 4.2: Classification result of ML models on 30-minute light conditions
for a different number of classes (genotypes).
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Table 4.1: Classification result of ML models on 0-min twilight for a different
number of classes (genotypes)

No of Class Models P R F1 Acc

4 Class

LR 0.75 0.73 0.73 0.72
RF 0.68 0.67 0.67 0.68
Boosting 0.71 0.68 0.68 0.70
SVC (poly) 0.73 0.73 0.72 0.73
Stacking 0.72 0.72 0.71 0.72

6 Class

LR 0.63 0.62 0.62 0.62
RF 0.61 0.59 0.59 0.60
Boosting 0.60 0.59 0.60 0.60
SVC (poly) 0.65 0.63 0.64 0.64
Stacking 0.63 0.61 0.61 0.61

9 Class

LR 0.49 0.50 0.49 0.50
RF 0.52 0.51 0.51 0.51
Boosting 0.53 0.52 0.52 0.52
SVC (poly) 0.57 0.54 0.54 0.54
Stacking 0.53 0.51 0.52 0.51

17 Class

LR 0.39 0.38 0.38 0.39
RF 0.38 0.37 0.35 0.37
Boosting 0.39 0.39 0.38 0.39
SVC (poly) 0.41 0.39 0.40 0.40
Stacking 0.39 0.39 0.38 0.39

conditions was achieved by SVM for the 30-min twilight condition, where an

average accuracy of 74%, 65%, 55%, and 41%, respectively, was obtained for

4, 6, 9, and 17 genotype classes. Observing that SVM with polynomial ker-

nel performed exceptionally well in classifying time-series area data of plants,

we remark that kernel selection and parameter search played a crucial role

in its performance. It has also been reported that the effectiveness of SVM

generalization (estimation accuracy) required a good setting of the kernel pa-

rameters, hyper-parameters C, and gamma [68]. SVM with polynomial kernel

converged extremely quickly, handled nonlinear problems, affected the com-

plexity of model selection, had fewer numerical challenges, and nonlinearly

mapped samples into a higher dimensional space [6]. We found that the poly-

nomial kernel, utilizing the grid search approach, performed the best across all

kernels (rbf, poly, linear, and sigmoid).To test the effectiveness of SVC with

various kernels, we used 30-minute twilight for nine distinct classes. For all of
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Figure 4.3: SVC performance on 30-min twilight condition for 9 different geno-
type class using different kernels.

the SVM kernels, we utilized 10-fold cross validation, and the average result

was obtained and displayed as a boxplot (Figure 4.3). The boxplot makes it

evident that SVC with a polynomial kernel performs better on average than

all other results. SVM model is more robust to noise and polynomial kernel

mapped out all the noises in higher dimensional feature space which ensure

the results are more reliable.

In our experiment, Logistic Regression (LR) ranked the second-best for dif-

ferent twilight conditions. The parameter setup of LR model also played an

important role in achieving higher prediction. We got the best parameter set-

ting of LR model using grid search method.

Stacking also achieved satisfactory prediction results. Though it is designed

to improve modeling performance, stacking is not always guaranteed for im-

provement in all cases. Given its lower complexity (i.e., it’s easier to define,

train, and maintain), the base model should be used instead of the stacking

ensemble if it performs as well or better [8]. For instance, we experimented
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Table 4.2: Classification result of ML models on 30-min twilight for a different
number of classes (genotypes)

No of Class Models P R F1 Acc

4 Class

LR 0.76 0.74 0.73 0.75
RF 0.68 0.69 0.68 0.69
Boosting 0.71 0.70 0.69 0.71
SVC (poly) 0.75 0.73 0.73 0.74
Stacking 0.73 0.73 0.72 0.73

6 Class

LR 0.64 0.62 0.62 0.62
RF 0.61 0.61 0.60 0.61
Boosting 0.61 0.61 0.61 0.61
SVC (poly) 0.65 0.65 0.64 0.65
Stacking 0.64 0.62 0.62 0.62

9 Class

LR 0.50 0.51 0.50 0.51
RF 0.53 0.51 0.52 0.51
Boosting 0.54 0.53 0.53 0.53
SVC (poly) 0.59 0.55 0.55 0.55
Stacking 0.54 0.52 0.52 0.52

17 Class

LR 0.39 0.40 0.39 0.40
RF 0.39 0.38 0.38 0.38
Boosting 0.40 0.40 0.39 0.40
SVC (poly) 0.41 0.41 0.40 0.41
Stacking 0.40 0.40 0.39 0.40

with LR,RF, SVM, and Boosting as base models (Figure 4.4). However, we

got better performance in SVM base model (0.53) than stacking (0.49). This

suggests that the combination of multiple ML models can be more robust. In

our experiment, Random Forest (RF) performed the average for almost all

analyses. RF models have also been reported to produce strong results for

multi-class classification problems; however, here we find them falling short of

SVM for our multivariate time-series dataset. RF classifier is known for being

more susceptible to noise than the other methods, and it has demonstrated

robust performance with large datasets. RF classifier may not perform well

for non-linear relationship between features or have complex dependencies.

The precision, recall, f1-score, and accuracy of the deep learning models we

utilized for our investigations are shown in Figures 4.5 and 4.6. According to

the figures, ConvLSTM2D model had the highest level of accuracy when pre-

dicting a variety of classes (genotypes) under various dawn and dusk twilight

45



Table 4.3: Classification result of ML models on 90-min twilight for a different
number of classes (genotypes)

No of Class Models P R F1 Acc

4 Class

LR 0.74 0.74 0.74 0.74
RF 0.68 0.68 0.68 0.68
Boosting 0.69 0.68 0.68 0.69
SVC (poly) 0.73 0.73 0.73 0.73
Stacking 0.73 0.72 0.71 0.72

6 Class

LR 0.63 0.62 0.62 0.62
RF 0.61 0.59 0.59 0.60
Boosting 0.60 0.59 0.60 0.60
SVC (poly) 0.65 0.63 0.64 0.64
Stacking 0.63 0.61 0.61 0.61

9 Class

LR 0.49 0.50 0.49 0.50
RF 0.52 0.51 0.51 0.51
Boosting 0.53 0.52 0.52 0.52
SVC (poly) 0.57 0.54 0.54 0.54
Stacking 0.53 0.51 0.52 0.51

17 Class

LR 0.39 0.38 0.38 0.39
RF 0.38 0.37 0.35 0.37
Boosting 0.39 0.39 0.38 0.39
SVC (poly) 0.41 0.39 0.40 0.40
Stacking 0.39 0.39 0.38 0.39

conditions. Encoder model followed ConvLSTM2D with the second highest

accuracy margin. For the DL models, we found that for each of the class

sizes (4, 6, 9, and 17, respectively), ConvLSTM2D outperformed all the other

models (Tables 4.4, 4.5, and 4.6), by achieving the highest precision (P), recall

(R), F1-Score (F1), and accuracy (Acc) in all scenarios. Encoder model per-

formed almost as well as ConvLSTM2D model, while LSTM model performed

comparatively poorer than the other DL models. For all the models, we used

10-fold cross validation, took the accuracy score of each fold, averaged them,

and finally decided based on the average score. In more detail, under the 0-

min twilight light condition, ConvLSTM2D achieved an average accuracy of

79%, 66%, 56%, and 44% accuracy, respectively, for class sizes of 4, 6, 9, and

17. The maximum accuracy was reached by ConvLSTM2D under the 30-min

twilight condition, with an average accuracy of 81%, 69%, 57%, and 45% for

class sizes of 4, 6, 9, and 17, respectively.
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Figure 4.4: Classification result of stacking model on 30-minute light condi-
tions for nine distinct genotype classes.

We found that LSTM model performed poorer than CNN models. For

LSTM, the informational content of the vector will eventually be constrained

by its fixed size. The information from the previous inputs runs the dan-

ger of being lost or diluted, especially for longer sequences which cause drop

in model’s performance. On the other hand, CNN models such as Conv2D,

can automatically identify patterns and extract features from the input data,

applying a series of convolution layers in successions such as weight-sharing

filters and dimension-reducing pooling layers. These features are then passed

to a series of dense layers for classification (or regression) which finally en-

able CNN model to do classification task more accurately and were able to

outperform LSTM models in the classification of genotypes. Two-dimensional

CNN (Conv2D) are commonly used in computer vision applications to inter-

pret time as a spatial dimension.

For the ConvLSTM2D model, we incorporated the features of both the CNN

and LSTM models together. Here, the most descriptive features in the data
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Figure 4.5: Classification result of DL models on 0-minute light conditions for
a different number of classes (genotypes).

Figure 4.6: Classification result of DL models on 30-minute light conditions
for a different number of classes (genotypes).
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are automatically found and extracted by CNNs, while LSTM manages the dy-

namic behaviors occurring throughout plant growth and development. LSTM

attempts to classify the plants by analyzing the sequence of features that are

extracted from the daily time-series of plant growth and by considering their

temporal variations, which in combination, provide better classification results

than other models. The findings indicate that ConvLSTM2D is ideal for time-

series across multiple scales, genotypes and growth conditions.

Table 4.4: Classification result of Deep learning (DL) models on 0-min twilight
for a different number of classes (genotypes).

No of Class Models P R F1 Acc

4 Class

FCN 0.74 0.74 0.73 0.74
Conv2D 0.77 0.75 0.76 0.76
ConvLSTM2D 0.79 0.80 0.79 0.79
Encoder 0.76 0.74 0.75 0.74
LSTM 0.73 0.73 0.72 0.72
ResNet 0.73 0.74 0.72 0.74

6 Class

FCN 0.68 0.63 0.62 0.63
Conv2D 0.65 0.65 0.64 0.65
ConvLSTM2D 0.66 0.66 0.66 0.66
Encoder 0.63 0.61 0.62 0.63
LSTM 0.63 0.63 0.62 0.63
ResNet 0.64 0.65 0.64 0.65

9 Class

FCN 0.53 0.50 0.51 0.51
Conv2D 0.53 0.50 0.51 0.51
ConvLSTM2D 0.57 0.55 0.56 0.56
Encoder 0.54 0.54 0.53 0.53
LSTM 0.49 0.48 0.48 0.48
ResNet 0.52 0.49 0.50 0.50

17 Class

FCN 0.39 0.38 0.39 0.39
Conv2D 0.43 0.41 0.42 0.42
ConvLSTM2D 0.45 0.44 0.44 0.44
Encoder 0.44 0.43 0.43 0.43
LSTM 0.41 0.40 0.40 0.40
ResNet 0.41 0.41 0.41 0.41

To assess the performance of the models at an intra-group level, we ex-

amined whether or not the ConvLSTM2D model is able to classify different

genotypes of “Phytochromes” group (phyA – phyE ; class size = 5), “Pho-
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Table 4.5: Classification result of Deep Learning (DL) models on 30-min twi-
light for a different number of classes (genotypes).

No of Class Models P R F1 Acc

4 Class

FCN 0.74 0.74 0.74 0.74
Conv2D 0.78 0.78 0.78 0.78
ConvLSTM2D 0.82 0.80 0.80 0.81
Encoder 0.77 0.76 0.77 0.76
LSTM 0.75 0.74 0.74 0.74
ResNet 0.75 0.75 0.74 0.75

6 Class

FCN 0.69 0.64 0.63 0.64
Conv2D 0.66 0.67 0.67 0.67
ConvLSTM2D 0.70 0.68 0.69 0.69
Encoder 0.66 0.66 0.66 0.66
LSTM 0.65 0.65 0.64 0.65
ResNet 0.67 0.66 0.65 0.66

9 Class

FCN 0.55 0.52 0.53 0.53
Conv2D 0.56 0.53 0.54 0.54
ConvLSTM2D 0.59 0.56 0.57 0.57
Encoder 0.56 0.56 0.56 0.56
LSTM 0.51 0.50 0.51 0.51
ResNet 0.54 0.51 0.52 0.52

17 Class

FCN 0.43 0.41 0.42 0.42
Conv2D 0.44 0.42 0.43 0.43
ConvLSTM2D 0.46 0.45 0.45 0.45
Encoder 0.45 0.44 0.44 0.44
LSTM 0.42 0.42 0.42 0.42
ResNet 0.44 0.43 0.44 0.44

totropins” group (phot1, phot2, phot1/2 ; class size = 3) and “Cryptochromes”

group (cry1, cry2 cry1/2 ; class size = 3). We evaluated the performance by

presenting the confusion matrix (Figure 4.7). We selected 3 classes from 3

different light conditions to make a total of nine potential classes for each

group. From this analysis, we extracted precision, recall, F1-score, and accu-

racy of 67%, 66%, 66%, and 66%, respectively for “Phototropin” group, while

achieving precision, recall, F1-score, and accuracy of 57%, 56%, 56%, and

56% respectively for the “Cryptochrome” group (Table 4.7). These suggest

that ConvLSTM2D successfully classified different genotypes under different

twilight conditions using multi-scale time-series data, and based on the confu-

sion matrix, we can readily identify which genotypes are classified/misclassified
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Table 4.6: Classification result of Deep learning (DL) models on 90-min twi-
light for a different number of classes (genotypes).

No of Class Models P R F1 Acc

4 Class

FCN 0.74 0.74 0.73 0.74
Conv2D 0.77 0.76 0.77 0.77
ConvLSTM2D 0.80 0.79 0.80 0.80
Encoder 0.76 0.76 0.75 0.75
LSTM 0.74 0.73 0.74 0.73
ResNet 0.73 0.73 0.72 0.73

6 Class

FCN 0.66 0.64 0.64 0.64
Conv2D 0.65 0.65 0.64 0.65
ConvLSTM2D 0.68 0.67 0.68 0.67
Encoder 0.64 0.63 0.64 0.63
LSTM 0.62 0.61 0.62 0.62
ResNet 0.65 0.64 0.64 0.64

9 Class

FCN 0.53 0.50 0.51 0.50
Conv2D 0.53 0.52 0.52 0.52
ConvLSTM2D 0.57 0.55 0.56 0.56
Encoder 0.54 0.54 0.53 0.53
LSTM 0.49 0.49 0.49 0.49
ResNet 0.52 0.50 0.50 0.51

17 Class

FCN 0.40 0.39 0.40 0.40
Conv2D 0.43 0.41 0.42 0.42
ConvLSTM2D 0.45 0.44 0.44 0.44
Encoder 0.44 0.43 0.43 0.43
LSTM 0.42 0.42 0.41 0.41
ResNet 0.41 0.40 0.41 0.41

to which class. The performance analysis by ConvLSTM2D model for each

group of related photoreceptor deficient plants is shown in Tables 4.4, 4.5, and

4.6 from which we observed several similarities between the genotype classes

inside each group. For instance, we see a more similar intra-/inter-day growth

pattern between plants of genotypes phot2 and phot1/2, relative to phot1 in-

side the “Phototropins” group, with phot2 plants consistently miscategorized

as phot1/2.

Phototropins are particularly interesting as they control leaf movement

and positioning in response to blue light [34]. Compared to wt plants, phot1

and phot2 plants possess phototropic bending towards high and low fluence
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Figure 4.7: Performance of ConvLSTM2D model on different groups of plants
for different twilights (0, 30, and 90-minutes).

blue light, respectively, while phot1/2 plants have no phototropic responses

to either low or high blue light. By collecting time-series data over multi-

ple timescales, our surface area data reveals specific intra-day grow patterns

for each genotype (Figure 4.8). In most genotypes, area data is not linear

over the course of a day, but rather forms a peak at mid-day. This suggests

that changes in surface area may result from leaf movement across the day.

Correspondingly, we hypothesize that this creates a signature feature that the

ConvLSTM2D model can be successfully used to distinguish unique genotypes.

In the case of the phototropins, we can see that phot2 plant area is similar to

that of phot1/2, with both being relatively “flat” across the day in a twilight-

dependent manner. This is especially apparent in the 90min twilight condi-

tion, where phot2 and phot1/2 possess minimal variation, which correlates

with their mis-categorization, suggesting that changes in leaf area, mediated

by leaf movement, create a unique feature over time that DL models can uti-

lize to detect differences in plant genotypes. In particular, the ConvLSTM2D

model using time-series data across multiple scales represents the best model

for differentiating genotypes grown under different light conditions. From the

confusion matrix, we can clearly see that phot2 type of plants are misclassified

into phot1/2 type of plants. For example, phot2 0 min has a misclassifica-

tion of 0.12 into phot1/2 0 min. Here, the model predicted 12% of phot2

plants as phot1/2 plants mistakenly (False Negative). Again, phot2 30 min
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Figure 4.8: Phototropins mutants details. (A) Pictures from the top of pho-
totropins mutants phot1, phot2, and phot1/2 at different light treatment.
(B) Pictures from the side of phot1, phot2 and phot1/2 at different light
treatment.(C) Plant area in pixels of phototropins mutants calculated with
PlantCV.
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plants get misclassified as phot1/2 30 min plants with a misclassification rate

of 0.31. Here again, 31% plant of phot2 plants are getting misclassified into

phot1/2. Again, phot1/2 0 min plants have a false negative rate of 0.24 with

phot2 0 min plants which means 24% of phot1/2 plants are falsely predicted

as phot1/2 plants.

Table 4.7: Performance of ConvLSTM2D model on different groups of plants
for different twilights (0, 30, and 90-minutes).

Group Time P R F1 Accuracy

Phytochrome
0 min 0.61 0.61 0.61 0.61
30 min 0.66 0.66 0.66 0.66
90 min 0.61 0.61 0.61 0.61

Phototropins
0 min 0.72 0.72 0.72 0.72
30 min 0.74 0.73 0.73 0.73
90 min 0.71 0.70 0.71 0.71

ztl/fkf1/lkp2
0 min 0.66 0.66 0.66 0.66
30 min 0.66 0.66 0.66 0.66
90 min 0.64 0.65 0.64 0.65

Cryptochrome
0 min 0.66 0.66 0.66 0.66
30 min 0.67 0.66 0.67 0.67
90 min 0.64 0.64 0.64 0.64
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4.0.1 Statistical Testing

We conducted hypothesis testing using the 5x2 corss-validation procedure

With MLxtend to assess the performance of the models. One approach is

to evaluate each model on the same k-fold cross-validation split of the data

(e.g. using the same random number seed to split the data in each case) and

calculate a score for each split. This would give a sample of 10 scores for

10-fold cross-validation. As a result of each algorithm employing the identical

treatment (rows of data), each score can be compared using a paired statis-

tical hypothesis test. One option is to employ the paired student t-test. The

fact that each evaluation of the model is not independent presents a challenge

when applying the Paired Student’s t-Test in this situation. This is due to

the fact that the same rows of data are used repeatedly to train the data;

in fact, each time, save for the instance where a row of data is utilized in

the hold-out test fold. Because of this lack of impartiality in the judgement,

the Paired Student’s t-Test is biased in favour of optimism. The statistical

test can be modified to account for the lack of independence. Additionally,

the procedure’s folds and repeats can be adjusted to generate a representative

sample of model performance that applies well to a variety of issues and meth-

ods. Specifically, the so-called 5x2-fold cross-validation, which entails two-fold

cross-validation with five repetitions. After applying the procedure between

SVM and LR (Figure 4.9), and SVM and RF (Figure 4.10), we proved that

in all scenarios SVM outperformed all other methods in term of performance

metrics. However, as the data distribution are same, there is no significant

difference among the performance of the models.

Further, we experimented with One-Way ANOVA (also known as “anal-

ysis of variance”) to find out whether there exists a statistically significant

difference between the mean values of the model’s performance.

Hypothesis involved:

H0 (null hypothesis): a1 = a2 = a3 = . . . = ak (It implies that the means

of all the population are equal)
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Figure 4.9: 5 x 2 Cross-validation procedure to prove models’ performance
(LR and SVC) using 30-min twilight dataset.

Figure 4.10: 5 x 2 Cross-validation procedure to prove models’ performance
(SVC and RF) using 30-min twilight dataset.
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H1 (alternative hypothesis): It states that there will be at least one popu-

lation mean that differs from the rest.

As we have more than 2 models for both cases traditional and deep learn-

ing models, we used one-way anova for the analysis. We have our average

precision, recall, f1-score, and accuracy values of all the traditional and deep

learning models after cross-validation. We tried to determine if there exists

a difference in the performance among the models or not. We took into con-

sideration all the models’ average performance (precision, recall, f1-score, and

accuracy) on 30-min twilight for 6 genotype classes. After considering all the

traditional ML and deep learning models in our analyses, we found the p-

values of 5.3179e-06 and 0.0017 respectively. Since the p-value is less than

0.05 for both cases, we would reject the null hypothesis. This suggests that

we have enough evidence to assert that there is a distinction between the av-

erage performance of conventional machine learning models and deep learning

models.

In addition, as we claimed SVM to be the best performer among the tradi-

tional ML models, there should exist significant difference among the the mean

performance of SVM with other models. We then compared SVM with each

model and got the p-values of 0.0001, 0.0005, 0.010 respectively for Boosting,

LR, and RF models. Since the p-values are less than 0.05 in every case, we

can reject the null hypothesis and imply that the performance distribution of

SVM is different than other models and their exist significant differences. So,

we can say that SVM model is better than all other traditional models but

only with p-values 0.05. Again, ConvLSTM2D performed the best among the

deep learning models. We compared the mean performance of ConvLSTM2D

model separately with all the model and got the p-values of 0.03, 0.002, 0.003,

0.0001, 0.003 for FCN, ResNet, Encoder, LSTM, Conv2D models respectively.

Here, p-values are less than 0.05 in every case, we can reject the null hypoth-

esis and imply that the performance distribution of ConvLSTM2D is different

than other models and there exist significant differences. So, we can say that

ConvLSTM2D model is better than all other traditional models but only with
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p-values 0.05.
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4.1 “wt” plants genotype class similarity

We conducted experiments with plants of the “wt” genotype in an effort to

determine the percentage of correctly predicted members of a certain class and

the percentage of incorrectly classified members of other genotype classes. We

conducted two experiments using two deep learning models - ConvLSTM2D

and Encoder.

In the experiment 1 (Figure 4.12), we sampled out a total of 1250 plants in-

cluding all the 17 genotype classes. We tried to find out how many other

genotype plants got incorrectly labeled (False Positive) as “wt” genotype. We

made an effort by using ConvLSTM2D model to determine how many “wt”

plants were incorrectly labeled as other plants. Among 1250 plants, 130 plants

truly belonged to “wt” genotype class. Encoder predicted 121 plants as “wt”

and among them it truly predicted 63 plants as “wt” out of 130 plants and

remaining 58 plants were incorrectly labeled as “wt” genotype. We got a re-

call score of 63/130 = 0.484 or 48.4% and precision score 63/(63+58) = 0.52

or 52%. Here, 67 “wt” plants are misclassified as other genotype. From fur-

ther analysis, we found the highest misclassification rate with 13.5% in “cry2”

type plants. Among the 67 misclasssified plants, Among the misclassification,

16.7% of “cry2” plants are misclassified as “wt” type, which is the highest

misclassification genotype. Plant genotypes “phot2” and “ztl” came in sec-

ond and third, respectively, to “cry2”, predicted falsely as “wt” genotype with

misclassification rates of 11.7% and 10.9%.

In experiment 2 (Figure 4.12), we did the opposite prediction of experi-

ment 1, using Encoder deep learning model. We made an effort to determine

how many “wt” plants were incorrectly labeled as other plants. Among 1250

plants, 130 plants truly belonged to “wt” genotype class. Encoder predicted 63

plants as “wt” genotype class and remaining 67 “wt” plants were incorrectly

labeled as other genotype plants. Again, just like experiment 1, we found the

highest misclassification rate with 13.5% in “cry2” type plants. Among the

67 misclasssified plants, 9 plants of “wt” type were incorrectly predicted as
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Figure 4.11: Other genotypes misclassified as “wt” genotype- experiment by
ConvLSTM2D model.

“cry2” type, 8 “wt” plants were misclassified as “phot2” type, and another 8

“wt” plants were misclassified as “ztl” type with the misclassification rate of

12%.
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Figure 4.12: “wt” genotype misclassified as other genotypes - experiment by
Encoder model
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Chapter 5

Conclusion

In this study, we evaluated multiple traditional ML and most recent DL al-

gorithms for their ability to perform genotype classification and prediction

for Arabidopsis thaliana plants using a combined intra- and inter-day time-

series growth dataset derived from 17 different genotypes subjected to three

different twilight growth conditions. Each of the tested ML and DL algo-

rithms exhibits a capacity for capturing subtle growth features which would

otherwise escape manual inspection. We found that DL algorithms perform

comparatively better, likely owing to their interpretation of time-series data

which is typically mapped into independent dimensions by classical ML algo-

rithms such as SVM. Among the DL algorithms we tested, our results find that

ConvLSTM2D outperformed all the other DL algorithms in all measurements

including precision, recall, F1-score, and accuracy, using the leaf area values

extracted from the plant growth images for genotype classification/prediction.

On the other hand, SVM also performed exceptionally well in handling time

series data. Critically, our findings, which successfully integrated time-series

growth data across scales (intra- and inter-day), genotypes, and growth condi-

tions represent a significant advancement, setting a new foundational baseline

from which more variables can be integrated in order to assess more complex

plant traits. However, there are several areas for future work. First, our study

focused on a specific plant genotype, and it would be valuable to expand our

analysis to include a broader range of plant genotypes. Second, our study uti-

lized only the area data, and we expect that more plant growth characteristics
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such as perimeter, leaf greenness, leaves count will further improve genotype

classification by machine learning models. We aim at developing easy-to-use

computer vision programs for extracting these additional features to improve

genotype-phenotype connections by deep learning algorithms in the plant sci-

ences.

63



References

[1] M. Ahmad, N. Grancher, M. Heil, et al., “Action spectrum for cryptochrome-
dependent hypocotyl growth inhibition in arabidopsis,” Plant Physiol-
ogy, vol. 129, no. 2, pp. 774–785, 2002.

[2] A. Akhtar, A. Khanum, S. A. Khan, and A. Shaukat, “Automated plant
disease analysis (apda): Performance comparison of machine learning
techniques,” in 2013 11th International Conference on Frontiers of In-
formation Technology, IEEE, 2013, pp. 60–65.

[3] W. Albattah, M. Nawaz, A. Javed, M. Masood, and S. Albahli, “A novel
deep learning method for detection and classification of plant diseases,”
Complex & Intelligent Systems, vol. 8, no. 1, pp. 507–524, 2022.

[4] S. Anubha Pearline, V. Sathiesh Kumar, and S. Harini, “A study on
plant recognition using conventional image processing and deep learn-
ing approaches,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 3,
pp. 1997–2004, 2019.

[5] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: A review and experimental evaluation
of recent algorithmic advances,” Data mining and knowledge discovery,
vol. 31, no. 3, pp. 606–660, 2017.

[6] M. H. Bhavsar and A. Ganatra, “Radial basis polynomial kernel (rbpk):
A generalized kernel for support vector machine,” International Journal
of Computer Science and Information Security (IJCSIS), vol. 14, no. 4,
2016.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[8] J. Brownlee, Use early stopping to halt the training of neural networks at
the right time, Aug. 2020. [Online]. Available: https://machinelearningmastery.
com / how - to - stop - training - deep - neural - networks - at - the -

right-time-using-early-stopping/.

[9] M. Campos-Taberner, F. J. Garcıa-Haro, B. Martınez, et al., “Under-
standing deep learning in land use classification based on sentinel-2 time
series,” Scientific reports, vol. 10, no. 1, pp. 1–12, 2020.

64

https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/


[10] J. C.-W. Chan and D. Paelinckx, “Evaluation of random forest and ad-
aboost tree-based ensemble classification and spectral band selection for
ecotope mapping using airborne hyperspectral imagery,” Remote Sens-
ing of Environment, vol. 112, no. 6, pp. 2999–3011, 2008.

[11] D. Chen, K. Neumann, S. Friedel, et al., “Dissecting the phenotypic
components of crop plant growth and drought responses based on high-
throughput image analysis,” The plant cell, vol. 26, no. 12, pp. 4636–
4655, 2014.

[12] H. Choi, D. Yeo, S. Kwon, and Y. Kim, “Gene selection and prediction
for cancer classification using support vector machines with a reject op-
tion,” Computational statistics & data analysis, vol. 55, no. 5, pp. 1897–
1908, 2011.

[13] G. Ciaburro, V. K. Ayyadevara, and A. Perrier, Hands-on machine
learning on google cloud platform. [Online]. Available: https://www.
oreilly.com/library/view/hands-on-machine-learning/9781788393485/

fd5b8a44-e9d3-4c19-bebb-c2fa5a5ebfee.xhtml.

[14] N. Creux and S. Harmer, “Circadian rhythms in plants,” Cold Spring
Harbor Perspectives in Biology, vol. 11, no. 9, a034611, 2019.
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