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Abstract: A large class of discrete-time branching particle filters with Bayesian model selection ca-
pabilities and effective resampling is introduced in algorithmic form, shown empirically to outperform
the popular bootstrap algorithm and analyzed mathematically. The particles interact weakly in the
resampling procedure. The weighted particle filter, which has no resampling, and the fully-resampled
branching particle filter are included in the class as extreme points. Each particle filter in the class is
coupled to a McKean-Vlasov particle system, corresponding to a reduced, unimplementable particle
filter, for which Marcinkiewicz strong laws of large numbers (Mllns) and the central limit theorem
(clt) can be written down. Coupling arguments are used to show the reduced system can be used to
predict performance of the particle filter and to transfer the Mllns to the original weakly-interacting
particle filter. This clt is also shown transferable when extra particles are used.

MSC 2010 subject classifications: Primary 60F05, 60G35; secondary 62M20, 60G09, 62E20,
60J80.
Keywords and phrases: Bayesian Model Selection, Branching Process, Central Limit Theorem,
Coupling, Exchangeable Random Variables, McKean-Vlasov, Particle Filter .

1. Introduction

Nonlinear filtering deals with determining the distribution of the current state of a non-observable, random,
dynamic signal X given the history of a distorted, corrupted partial observation process Y living on the
same probability space (Ω,F , P ) as X . Bayesian model selection, sometimes done while filtering, deals with
determining which of a class of signal models {X (i)}i∈I best fits the observed values of Y by pairwise Bayes’
factor comparison. For many practical problems each potential signal is a time-homogeneous discrete-time
Markov process {Xn, n = 0, 1, 2, ...}, living on some complete, separable metric space (E, ρ), with initial
distribution π0 and transition probability kernel K. The observation process takes the form (Y0 = 0 and)
Yn = h (Xn−1) + Vn for n ∈ N, where {Vn}∞n=1 are independent random vectors with common strictly
positive, bounded density g that are independent of X , and the sensor function h is a measurable mapping
from E to R

d. Then, the objective of filtering (with respect to any given signal model X) is to compute
the conditional probabilities πn (A) = P

(
Xn ∈ A

∣∣FY
n

)
, n = 1, 2, ..., for all Borel sets A or, equivalently,

the conditional expectations πn (f) = EP
(
f (Xn)

∣∣FY
n

)
for all bounded, measurable functions f : E → R,

where FY
n $ σ{Yl, l = 1, ..., n} is the information obtained from the back observations. On the other hand,

the objective of Bayes’ factor model selection is to compare the ratio B12
n =

EQ[Ln(Y |X(1))|FY
n ]

EQ[Ln(Y |X(2))|FY
n ]

of marginal

likelihoods between potential signal models X (1) and X(2) with respect to some reference probability
measure Q. (The metric space E, initial distribution π0, transition probability K and sensor function h
can all depend upon the potential sigmal X (i) as long as the observation noise {Vn} is the same.)

Suppose without loss of generality that Ω = (E × Rd)∞ and F = B((E × Rd)∞) until later extended.

Moreover, suppose hereafter F ξ
−1 $ {∅,Ω}, Fξ

n $ σ{ξk
l , k ∈ K, l ≤ n} when n ∈ N0 and Fξ

∞ $ σ{ξk
l , k ∈
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K, l < ∞} for random variables {ξk
n, k ∈ K, n ∈ {0, 1, ...}} on (Ω,F). (This is consistent with FY

n defined
above if K has one element.) Unnormalized filters transfer the information contained in the observations
to a likelihood process by measure change. In this method, a reference probability measure Q is introduced
under which the signal, observation process {(Xn, Yn+1), n = 0, 1, ...} has the same distribution as the
signal, noise process {(Xn, Vn+1), n = 0, 1, ...} does under P . Hence, the observations are i.i.d. random
vectors with strictly positive bounded density g and are independent of X under measure Q. All the
observation information is absorbed into the likelihood process {Ln, n = 1, 2, ...} transforming Q back to
P , which in our case has the form

dP

dQ

∣∣∣
FX

∞
∨FY

n

= Ln =

n∏

j=1

αj(Xj−1), with αj(x) =
g (Yj − h (x))

g (Yj)
, (1.1)

so Ln = αn(Xn−1)Ln−1 and L0 = 1. The following (well-known) discrete Girsanov’s theorem constructs
the real probability P from the fictitious one Q.

Theorem 1.1. Suppose under probability Q that {Xn, n = 0, 1, ...} and {Yn, n = 1, 2, ...} are independent
processes with on (Ω,F), the {Yn} are i.i.d. with strictly-positive, bounded density g on R

d and Vn $

Yn−h(Xn−1) for all n = 1, 2, ... Then, there exists a probability measure P such that (1.1) holds, {Vn, n =
1, 2, ...} are i.i.d. on (Ω,F , P ) with density g and {Xn} is independent of {Vn} with the same law as on
(Ω,F , Q).

Filtering and model selection can be done simultaneously by using the unnormalized filters

σn (f) = EQ
(
Lnf (Xn)

∣∣FY
n

)
(1.2)

so σ0 = π0, as L0 = 1 and FY
0 = {∅,Ω}. Then, πn (f) = σn(f)

σn(1) by Bayes rule and B12
n =

σ(1)
n (1)

σ
(2)
n (1)

, where

σ
(i)
n (f) = EQ

(
L

(i)
n f

(
X

(i)
n

) ∣∣∣∣FY
n

)
with L

(i)
n =

n∏
j=1

αj(X
(i)
j−1) is the unnormalized filter for signal model

X(i). Therefore, we can combine Bayesian model selection and filtering (for each potential signal) by
constructing approximations (denoted SN

n and SN
n below) to the unnormalized filter for each candidate

signal model as done in Kouritzin and Zeng [17],[18] and Kouritzin [15].
Nowadays, particle filters are utilized in a wide variety of applications in as diverse areas as econometrics,

defense and clickstream analysis. The original (resampled) interacting particle filters have been intensely
studied (see e.g. Cappe, Godsill and Moulines [3] for an overview and historical account). However, Del
Moral, Kouritzin and Miclo [7] show that the performance of a particle filter depends heavily upon the
resampling used and little theory is known about optimal resampling. Furthermore, these particle filters
approximate the actual filter πn and hence are not amenable to model selection (without storing prior
filter estimates). On the other hand, the weighted particle filter (largely credited to Handschin [12] as well
as Handschin and Mayne [13] and studied in Kurtz and Xiong [19], [20]) approximates the unnormalized
particle filter σn, is the most basic particle filter with model selection capabilities and is embarassingly
computer parallelizable. More generally, branching particle filters, like those introduced by Crisan and
Lyons [5], can have model selection capabilities, effective resampling and be highly parallelizable. Herein,
we introduce and analyze a class of exchangeable branching particle filters with resampling that avoids the
weighted-particle-filter particle spread problems yet still has model selection capabilities. It includes the
weighted particle filter as the extreme zero-resampling case and a model selection variation of the better
algorithm in Del Moral, Kouritzin and Miclo [7] as the extreme fully-resampled case.
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One might be tempted to think that the asymptotic properties of practical particle filters are already
known. However, this is untrue: Most of the analysis (see e.g. Del Moral and Miclo [8]) has been done on
a somewhat-impractical particle filter that resamples every particle at every observation leading to poor
performance as noted in Del Moral, Kouritzin and Miclo [7]. To combat this over-resampling problem,
many researchers brought in importance sampling and delayed bulk resampling methods (see e.g. Del
Moral, Doucet and Jasra [6]) and studied the resulting algorithms. However, there are fewer studies of the
seemingly-practical partially-resampled algorithms (see e.g. Ballantyne, Chan and Kouritzin [1]), where
decisions are made at a particle-by-particle basis with the aim of only removing the poor particles and
splitting the best particles (in an unbiased manner). These algorithms are apparently difficult to analyse.
However, Del Moral, Kouritzin and Miclo [7] studied such an algorithm and established a historical strong
law of large number and a central limit theorem. Their results show superior performance over prior
algorithms but rely on a strong bounded-and-strictly-positive assumption on a ‘Feynman-Kac’ process
{Un, n ∈ N}, which limits use in non-linear filtering. Separately, Kouritzin and Sun [16] obtain L2-rates of
convergence for a partially-resampled algorithm. However, no other results were attained and their results
are in a specific setting. Our present work sets up a framework for studying resampled branching particle
filters.

Our algorithm is given in the next section and compared with the most famous and popular particle
filter, the bootstrap algorithm. In particular, it is illustrated that our algorithm is faster and more accurate
at tracking than the bootstrap algorithm. This comparison is followed by our mathematical notation in
Section 3. To state our results, we let S

N
n (f) be our branching particle approximation to the unnormalized

filter σn(f). Our main result, Theorem 5.1 in Section 5, states that, for almost all observation paths, SN
n (f)

satisfies the Mllns (with all possible rates) and the normalized difference
√
N(SN

n (f)− σn(f)) satisfies the
clt (with variance characterized by the resampling employed). Taken together these results say the same
polynomial rates of almost-sure convergence in number of particles N hold for our resampled branching
particle filters as for other particle filters (like the weighted) even when no extra particles are used. More-
over, under the extra particle condition N

mN
→ 0, the random weak particle interactions in our algorithm

average out enough to characterize the optimal convergence with a clt. To obtain these results, we cou-
ple our algorithm to a reduced particle system, introduced in Section 4, which is unimplementable but
mathematically simpler. Conceptually, our partially-resampled particle filter is a weakly-interacting parti-
cle system and the reduced system is a more-tractable McKean-Vlasov-type limit (with average weight An

replaced by σn(1)), which can be used to predict performance of the partially-resampled particle filter. We
also introduce tracking systems in Section 6, which run as weighted filters but indicate where the resampled
and reduced filters would resample (at least initially). These tracking systems are introduced for purely
analytical reasons to help us divide the resampled and weighted particle filters into comparable pieces.
They also have to be coupled to the resampled and reduced particle filters. The actual coupling and its
ramifications are contained in Section 7. The first appendix contains the derivation of the clt variance for
the McKean-Vlasov and partially-resampled filter. The second appendix contains a technical total-mass
ergodic theorem for the partially-resampled filter using the coupling.

2. New Algorithm and Numeric Comparison

2.1. Bootstrap Algorithm

The bootstrap particle filter algorithm was introduced in 1993 by Gordon, Salmond and Smith [11]. It is
one of the big breakthroughs in big data sequential estimation and its convergence properties have been
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thoroughly studied in e.g. Del Moral and Miclo [8]. It overcomes the increasing variance weight problem of
the weighted filter pointed out in Doucet, Godsill and Andrieu [10]. However, it has its limitations in terms
of model selection, parallelizability, performance and speed. For clarity, we first summarize the bootstrap
algorithm:

Initialize:
{
Xk

0

}N

k=1
are independent initial particle samples of π0, VN+1 = 1

Repeat: for n = 0, 1, 2, ... do

1. Weight by Observation: L̂
k
n = αn+1

(
X

k
n

)
for k = 1, 2, ..., N

2. Normalize Weight: wk
n+1 =

L̂
k
n

L̂n

for k = 1, 2, ..., N , where L̂n =
N∑

i=1

L̂i
n

3. Evolve Independently:

P Y (X̂k
n+1 ∈ Γk ∀ k|FX

n ) =
N∏

k=1

K(Xk
n,Γk) for all Γk

4. Estimate πn+1 by: P
N
n+1 =

N∑

k=1

wk
n+1δX̂k

n+1

.

5. Resample: pi =
∑i

k=1 w
k
n+1 for i = 1, ..., N , j = N − 1

Repeat: for k = N,N − 1, ..., 2, 1 do

• Draw [0, 1]-uniform Uk and set Vk = U
1
k

k Vk+1

• While Vk ≤ pj set j = j − 1

• Set X
k
n+1 $ X̂

j+1
n+1

Remark 2.1. We extract our estimate before resampling to avoid excess noise. Our actual code represents
our attempt to make the algorithm as efficient as reasonably possible and is available upon request.

This algorithm is O(N) in terms of operations per particle. In particular, we utilized a clever idea credited to
Carpenter, Clifford and Fearnhead [4] to keep the resampling to O(N). (V1, ..., VN ) has the joint distribution
of the order statistics for {Uk}N

k=1.
There are variations to the evolution and resampling steps (see e.g. DelMoral, Kouritzin and Miclo

[7]; Douc, Cappé and Moulines [9]) that can be better in certain instances. But rather than considering
the speed-performance tradeoffs of these variations, we chose to present the standard algorithm in the
best possible light. Doucet, Godsill and Andrieu [10] give another variation that alternates between the
weighted and bootstrap algorithms depending upon how many effective particles there are. This later
variant definitely shows the tradeoff between introducing resampling noise into the system and coping
with continual weight variance increase. However, we argue that it is better for performance to make the
resampling decisions on a particle-by-particle basis. This would also avoid the two separate time problem:
a fast time when there is no resampling and a slow one when there is. Some real-time applications are not
conducive to sudden switches to slow times.
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2.2. New Branching Filter - Implementable Version

We define the following branching Markov process {SN
n , n = 0, 1, ....} approximation to unnormalized filter

{σn, n = 0, 1, ...} in terms of the observations as follows:

Initialize:
{
Xk

0

}N

k=1
are independent samples of π0, N0 = N , Nn = 0 for all n ∈ N and Lk

0 = 1 for
k = 1, ..., N .

Repeat: for n = 0, 1, 2, ... do

1. Weight by Observation: L̂k
n+1 = αn+1

(
Xk

n

)
Lk

n for k = 1, 2, ...,Nn

2. Evolve Independently:

P Y (X̂k
n+1 ∈ Γk ∀ k|FX

n ∨ FU

∞) =

Nn∏

k=1

K(Xk
n,Γk) ∀Γk

3. Estimate σn+1 by: S
N
n+1 =

1

N

Nn∑

k=1

L̂
k
n+1δX̂k

n+1

.

4. Average Weight: An+1 = SN
n+1(1)

Repeat (5-6): for k = 1, 2, ...,Nn do

5. Resampled Case: If L̂k
n+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Number: Nk
n+1 =

⌊
L̂

k
n+1

An+1

⌋
+ ρk

n, with ρk
n a

(
L̂

k
n+1

An+1
−
⌊

L̂
k
n+1

An+1

⌋)
-Bernoulli independent of

everything

(b) Resample: L
Nn+1+j
n+1 = An+1,X

Nn+1+j
n+1 = X̂k

n+1 for j = 1, ...,Nk
n+1

(c) Add Offspring Number: Nn+1 = Nn+1 + Nk
n+1

6. Non-resample Case: If L̂k
n+1 ∈ (anAn+1, bnAn+1) then

Nn+1 = Nn+1 + 1, L
Nn+1

n+1 = L̂k
n+1, X

Nn+1

n+1 = X̂k
n+1

Remark 2.2. We extract our estimate before resampling to avoid excess noise. Our actual code represents
our attempt to make the algorithm as efficient as reasonably possible and is available upon request.

After establishing the appropriate bounds on Nk
n+1 in the sequel, we can easily see that this algorithm is

also O(N). Indeed, a careful comparison of this algorithm to the prior bootstrap one leads us to the believe
that the constant implied in the O(N) notation for the branching algorithm may be smaller than that for
the bootstrap, especially when the Resampled Case does not occur too often. We will establish this fact
experimentally below. Since σn is estimated both model selection and filtering can be done simultaneously.

We are not the first to use branching particle filters for tracking. Indeed, we were inspired by the works
of Crisan and Lyons [5] and Ballantyne, Chan and Kouritzin [1]. However, our algorithm differs from the
ones presented in those papers and our goals are also different.

2.3. Numeric Comparison

The bootstrap algorithm has two inherent disadvantages over our branching particle filter:
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1. Model selection is not readily available. Since the bootstrap algorithm works with the (normalized)
filter versus the unnormalized filter model selection via filtering is not immediately available. Rather
one must first convert to the unnormalized filters, which requires storing prior filter values as well as
extra computations.

2. Effective parallelization is difficult (see e.g. [21]).

These are reason enough to choose the branching algorithm over the bootstrap. However, we can also
consider both algorithms on a single-processor implementation, purely tracking problem (which is what
the bootstrap was designed for) and focus on two questions:

1. Does our branching filter perform better and require less computation time than the bootstrap
algorithm, even for tracking?

2. Within the branching algorithm, how much resampling should we use? In other words, how should
an and bn be chosen for best performance?

We applied bootstrap algorithm and branching algorithm to the following simple model

Xn = 0.95Xn−1 + 0.3Wn

Yn = Xn−1 + Vn,

where X0, Wn and Vn are independent with standard Cauchy distribution.
For simplicity, we define (an, bn) = (1/r, r), where r ∈ [1,∞], and refer to r as the resampling parameter.
All particles will resample when r = 1, which we call complete resampling. No particle will resample when
r = ∞, which means we have the weighted particle filter.

The results for computation time are showed in Table 1. It shows that branching is significantly faster

Number Particles N 100 400 2000 10000 50000

Bootstrap 0.004 0.017 0.078 0.467 2.513
Branching (r=1) 0.003 0.016 0.066 0.413 1.913
Branching (r=2.25) 0.003 0.015 0.063 0.343 1.612
Weighted 0.001 0.006 0.032 0.231 1.133

Table 1

Execution Time in Seconds

than the bootstrap algorithm. Moreover, the branching algorithm becomes faster as one resamples less i.e. r
increases. It is worth noting that there is no explicit particle control in the branching algorithms. However,
there is a mild implicit control built in. As a consequence, the times and performance are reasonably
consistent from sample path to sample path.

To compare the tracking performance of the branching filter with different r’s and the bootstrap filter,
we define the residual as

residual =

√√√√ 1

n

n∑

k=1

(πN
k (f) − f(Xk))2,

where πN
k (f) is the normalized filter approximation at time instant k and N initial particles, Xk is the real

signal and f is a bounded function defined as

f(x) =





30 : x > 30
x : −30 ≤ x ≤ 30

−30 : x < −30
.
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Fig 1: Average Residual versus Resampling Amount

(For the branching filters, we obtain πN
k (f) by dividing σN

k (f) by σN
k (1).) We let r range from 1 to 10 in

increments of 0.25, use N initial particles and n = 50 time steps. The comparison between the bootstrap
and branching algorithm is presented in Figure 1 for 3000 runs with N = 400 initial particles. It shows
the residual for the bootstrap, which does not depend upon r, and branching particle filter with different
r. From the graph, it is obvious that the residual for bootstrap is far greater than that for branching.
Next, we remove the bootstrap from this figure to determine the best amount of resampling within the
branching algorithm. The best branching particle filter should not only be able to kill the bad particles
but also avoid excess resampling which introduces more noise. The best r for resampling is around 2.25
for this problem with N = 400 as shown in Figure 2. Table 2 summarizes the performance and establishes
that all branching particle filters are basically at the optimal filter by N = 50, 000 particles. However, the
bootstrap is still a way off. In fact, it is quite amazing that the performance of the bootstrap with 10, 000
particles is significantly worse than the branching filters with only 400 initial particles for this problem.

Next, we show how the residual changes versus time on two randomly chosen outcomes. The results
for bootstrap and branching with r = 2.25 are presented in Figures 3 and 4. At the beginning, the two
algorithms produce the same estimate because they have the same initial particles. Clearly, the bootstrap
deviates further and longer from the signal than the branching does. This is probably due to too many
particles resampling to a favorite site that happens (due to randomness) to be quite wrong. The branching
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Fig 2: Average Residual versus Resampling Amount
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Fig 3: Typical Residual versus Time - Outcome 1
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Fig 4: Typical Residual versus Time - Outcome 2
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M. A. Kouritzin/Branching Particle Filters 10

Number Particles N 100 400 2000 10000 50000

Bootstrap 8.53602 7.87591 6.99739 5.32543 4.91826
Branching (r=1) 5.49346 4.96183 4.50097 4.504418 4.49376
Branching (r=2.25) 5.428414 4.91768 4.64787 4.539548 4.4812
Weighted 5.789023 5.13474 4.74356 4.68098 4.52188

Table 2

Average Residual

algorithm is much more cautious, especially for r > 1. The deviations in these figures also help explain
why the overall residual for bootstrap is much greater than branching as shown in Figure 1.

2.4. New Branching Filter - Analyzable Version

To analyze our branching particle filter, we re-introduce it in new notation, using two initial particle types:
N ∈ N filter particles and mN − N ∈ N extra particles. The purpose of the extra particles is to allow
enough asymptotic independence for the central limit theorem (clt) to hold. (They are not necessary for
the Mllns to hold.) We define the following branching Markov process {SN

n , n = 0, 1, ....} approximation to
{σn, n = 0, 1, ...} in terms of the observations as follows:

Initialize:
{

X
k,1
0

}mN

k=1
are independent (initial particle) samples from π0,

{
Vk,i

n

}∞,∞,mN

n,i,k=1
are zero-mean

i.i.d. random variables, and Nk
0 = 1, L

k,1
0 = 1 for k = 1, ...,mN .

To handle possible degeneracy, we also preset Nk,i
n = 0 for all i, k, n ∈ N.

Repeat: for n = 0, 1, 2, ... do

1. Weight by Observation: L̂k,i
n = αn+1

(
Xk,i

n

)
Lk,i

n for i = 1, 2, ...,Nk
n, k = 1, 2, ...,mN

2. Average Weight: An+1 = 1
mN

mN∑
k=1

N
k
n∑

i=1

L̂
k,i
n

Repeat (3-5): for k = 1, 2, ...,mN do

Repeat (3-5): for i = 1, 2, ...,Nk
n do

3. Resampled Case: If L̂k,i
n + V

k,i
n+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Number: N
k,i
n+1 =

⌊
L̂

k,i
n

An+1

⌋
+ ρk,i

n , with ρk,i
n a

(
L̂

k,i
n

An+1
−
⌊

L̂
k,i
n

An+1

⌋)
-Bernoulli independent

of everything

(b) Resampled Weight: L
k,i

n = An+1

4. Non-resample Case: If L̂
k,i
n + V

k,i
n+1 ∈ (anAn+1, bnAn+1) then

L
k,i

n = L̂
k,i
n , N

k,i
n+1 = 1

5. Combine: X̂
k,j
n $ X

k,i
n , L

k,j
n+1 $ L

k,i

n for

j∈
{

N
k,1
n+1 + · · · + N

k,i−1
n+1 + 1, ...,Nk,1

n+1 + · · · + N
k,i
n+1

}
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M. A. Kouritzin/Branching Particle Filters 11

6. Evolve Independently:

P Y (Xk,j
n+1 ∈ Γk,j ∀ k, j|FX

n ∨ FU,V
∞ ) =

mN∏

k=1

N
k
n+1∏

j=1

K(X̂k,j
n ,Γk,j)

for all Γk,j , where Nk
n+1 = N

k,1
n+1 + · · · + N

k,Nk
n

n+1

7. Estimate σn+1 by: S
N
n+1 =

1

N

N∑

k=1

N
k
n+1∑

j=1

L
k,j
n+1δX

k,j

n+1
.

Remark 2.3. (1) weights particles by their odds of producing the last observation. (3-5) resample the
particles without bias, killing unlikely particles and duplicating likely ones while keeping the expected number
of particles and total mass of all the particles constant. Parameter an, bn in (3,4) control the amount of
resampling. an = −∞, bn = ∞ turns off resampling and results in the weighted particle system. an =
bn ensure complete resampling and gives an unnormalized version of the better algorithm in Del Moral,
Kouritzin and Miclo [7].

Remark 2.4. The {Vk,i
n } are required for analytical reasons. They provide enough smoothness that we can

compare this resampled branching particle filter to a reduced McKean-Vlasov particle system. Without these
V’s the resampling events would be abrupt in the weight values.

Remark 2.5. The algorithm can fail. During resampling, there is a possibility of immediately killing all

particles if max
j≤Nk

n−1
,k≤mN

mN L̂k,j
n∑mN

k=1

∑Nk
n

i=1 L̂
k,j
n

< 1. Ironically, this can only happen if there are more particles

than at start. However, it may still be possible to degenerate immediately to one particle when

mN∑

k=1

N
k
n ≤ mN .

Conversely, it is not possible to increase by more than mN − 1 particles in one step. The weight variation
is a big concern: Lk,j

n can become very uneven as mN increases. Some regularity results are required to
ensure that there are enough effective particles and moment bounds to justify the anticipation of the clt as
mN → ∞.

To rationalize the use of mN −N extra particles, we quote the clt (see Weber [22]) for triangular sequences
of exchangeable random variables:

Theorem 2.1. Suppose {XN,j : j = 1, ...,mN} are exchangeable random variables for all N = 2, 3, .... and:

(i) N
mN

→ 0, (ii) NE[X2
N,1] → 1, (iii)

N∑

j=1

X2
N,j →P 1, (iv) N2E[XN,1XN,2] → 0, and (v) maxj≤N |XN,j | →P

0. Then,

N∑

j=1

XN,j
D→N (0, 1).

Notice mN − N extra random variables are required for the desired central limit theorem. Moreover,
when using our resampled branching particle filter in practice, you can take mN to be something like
mN = N(1 + log log logN) (for large enough N) so you may not add many extra particles until N is very
large. Finally, the Mlln rates of convergence hold even for mN = N so the extra particles are really only
for characterizing performance.
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M. A. Kouritzin/Branching Particle Filters 12

3. Notation, Unnormalized Filter, Weighted Approximation

Since Q
(
Xn+1 ∈ A

∣∣FX
n

)
= K (Xn, A), one has EQ

[
f(Xn)

∣∣FX
n−1

]
= EP

[
f(Xn)

∣∣FX
n−1

]
= Kf(Xn−1). For

any finite measure µ and integrable function f , we define

µf =

∫

E

f (x) µ (dx) , Kn(y, dx) =

∫

E

Kn−1(z, dx)K(y, dz)

µKn (dx) =

∫

E

Kn (z, dx)µ (dz) and Knf (x) =

∫

E

f (z)Kn (x, dz)

for all n = 2, 3, ... with K1 = K. Now, recall E is a Polish space and let B(E), B(E)+, C(E)++, C(E)
and C(E)+ be the bounded measurable, non-negative bounded, strictly-positive continuous, continuous
bounded, and non-negative continuous bounded functions respectively and define |f |∞ = supx∈E |f(x)|.
Clearly, Kf ∈ B(E)+ if f ∈ B(E)+. We use the extended Vinogradov symbol (introduced in [14]): Suppose

a(n,m), b(n,m) are expressions depending upon two sets of variables n,m. Then, a(n,m)
n� b(n,m) means

there exists a cm > 0, depending only on m, such that a(n,m) ≤ cmb(n,m) for all n,m.
Lastly, we define the operators An and Ai,n as

Anf (x) =

{
αn(x)Kf (x) , n ∈ N

f(x), n = 0
and (3.1)

Ai,nf (x) =

{
Ai (Ai+1 · · · (Anf)) (x) , i ≤ n
f(x), i = n+ 1

. (3.2)

Then, σ0 = π0 and, using (1.1,1.2), we have the following recursion for σn:

σn (f) = σn−1 (Anf) ∀n = 1, 2, ..., (3.3)

Applying this recursion repeatedly, we have that

σn (f) = π0 (A1,nf) . (3.4)

Bayes’ rule implies that πn(f) = σn−1(Anf)
σn−1(An1) =

π0(A1,nf)
π0(A1,n1) .

Weighted particle filters approximate the unnormalized filter without resampling. The conditional expec-
tation σn(f) = EQ[Lnf(Xn)

∣∣FY
n ] with respect to reference probability Q is replaced with an independent

sample average to obtain

σN
n (f) =

1

N

N∑

k=1

Lk
nf
(
X

k
n

)
, (3.5)

our weighted-particle estimator of σn (f), where the particles
{
X

k
}∞

k=1
are independent (π0,K)-Markov

processes that are independent of Y and the weights satisfy Lk
n =

n∏
j=1

αj(X
k
j−1).

In the sequel, we will fix an observation path, set QY (·) = Q(·|FY
∞) and let EY [Z] denote expectation

with respect to QY .
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M. A. Kouritzin/Branching Particle Filters 13

4. Reduced McKean-Vlasov Particle System

The problem with the weighted particle system is, due to randomness, most particles do not behave
like the signal so their weights become small compared to the weights of very few good particles. This
results in a particle filter that effectively consists of an average over only a very small portion of the
particles. This problem manifests itself theoretically in the large expected variance of the central limit
theorem and practically in the need to use a huge number of particles in most applications. Indeed, the
weighted particle filter might not work regardless of the number of particles. To combate these problems,
one introduces resampling. Initially, we pretend herein that we have access to the actual unnormalized filter
total mass {σn(1), n = 0, 1, 2, ...} and consider an unimplementable reduced system of McKean-Vlasov
type. In particular, we use the algorithm given in Section 2 with An replaced with σn(1). To facilitate
analysis, we make explicit reference to the random variables that drive the particle system. Suppose we
have enlarged (Ω,F , Q) to support the following random variables:

1.
{
χk
}∞

k=1
are independent samples from π0,

2. {Zk,i,x
n : n, k, i ∈ N, x ∈ E} are independent with Zk,i,x

n having distribution K (x, ·),
3. {Uk,i

n : n, k, i ∈ N} are independent and Uniform[0, 1],

4. {Vk,i
n : n, k, i ∈ N} are zero mean, i.i.d. with common pdf fV ,

which are mutually independent and independent of X,Y . The actual pdf fV does not matter for this
section but has to be bounded in the next section. k is used to denote the first ancestor of each particle.
Then, our reduced particle filter will be the average of N i.i.d. weighted branching Markov processes
{Bk

n, n = 0, 1, ...} each starting from an independent sample δχk . All particles evolve independently of each
other only interacting with {σn(1)}, which is deterministic with respect to QY . At any time, many of the
Bk may have died out while others have branched into multiple particles. For clarity, the particles at time

n (if any) that are offspring of the initial particle χk will be denoted {X k,i
n }N

k
n

i=1 and the weight of such a
particle after resampling will be denoted Lk,i

n . Then, the branching Markov process corresponding to the
kth original particle and the complete filter estimate will be

Bk
n =

Nk
n∑

i=1

Lk,i
n δXk,i

n
and SN

n =
1

N

N∑

k=1

Bk
n (4.1)

respectively. We define the branching Markov processes {Bk} as follows:

Initialize: X k,1
0 = χk, N k

0 Lk,1
0 = 1 ∀k = 1, ...,mN ; N k,i

n = 0 ∀i, k, n ∈ N.

Repeat: for n = 0, 1, 2, ... do

Repeat (1-6): for k = 1, 2, ...,mN do

Repeat (1-5): for i = 1, 2, ...,N k
n do

1. Weight:

L̂k,i
n = αn+1(X k,i

n )Lk,i
n (4.2)
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M. A. Kouritzin/Branching Particle Filters 14

2. Resample Case: If L̂k,i
n + Vk,i

n+1 /∈ (anσn+1(1), bnσn+1(1)) then

N k,i
n+1 =

⌊
L̂k,i

n

σn+1(1)

⌋
+ 1

Uk,i

n+1
+

⌊
L̂

k,i
n

σn+1(1)

⌋
≤ L̂

k,i
n

σn+1(1)

,Lk,i

n = σn+1(1) (4.3)

3. Non-resample Case: If L̂k,i
n + Vk,i

n+1 ∈ (anσn+1(1), bnσn+1(1)) then

Lk,i

n = L̂k,i
n , N k,i

n+1 = 1

4. Combine: X̂ k,j
n $ X k,i

n , Lk,j
n+1 $ Lk,i

n for j∈
{
N k,i−1

n+1 + 1, ...,N k,i

n+1

}
, where

N k,i−1

n+1 =

i−1∑

j=1

N k,j
n+1 (4.4)

5. Evolve Independently: X k,j
n+1 = Zk,j,X̂k,j

n

n+1 for j∈
{
N k,i−1

n+1 + 1, ...,N k,i

n+1

}

6. Estimate: Bk
n+1 =

Nk
n+1∑

j=1

Lk,j
n+1δXk,j

n+1
, where N k

n+1 = N k,1
n+1 + · · · + N k,Nk

n

n+1 .

Remark 4.1. This reduced filter can plunge into a zero particle trap if max
j≤Nk

n−1
,k≤mN

L̂k,j
n

σn+1(1)
< 1. The

weights can also become very uneven. We defined an extra mN −N particles that were independent of the
other particles and not used in the estimate. This was entirely for comparison with the resampled system
(given in the introduction), where the extra particles are required to establish the central limit theorem.

Remark 4.2. To handle the index change in Step 5, we use the parent operators

pn+1(j) = i such that j ∈ {N k,i−1

n+1 + 1, ...,N k,i

n+1}. (4.5)

This i is unique. pn+1 is defined explicitly in a slightly different context in (7.45) to follow.

After Step (4), we have N k,i
n+1 particles at location X k,i

n each with weight Lk,i

n . Hence, the expected weight
at location X k,i

n after possible resampling satisfies:

EY
[
Lk,i

n N k,i
n+1

∣∣FUX
n ∨ FV

n+1

]
= L̂k,i

n ∀i = 1, 2, ...,N k
n , (4.6)

which is the weight in (1) prior to resampling, so the system is unbiased. However, we need to go further
and establish a martingale property. First, averaging over the Uk,i

n , one has

EY




Nk,i

n∑

j=N k,i−1

n +1

f(X k,j
n )

∣∣∣FUk,i

n−1 ∨ FVX
n


 (4.7)

= EY




N̂k,i
n∑

j=N k,i−1

n +1

f(X k,j
n ) +

∣∣∣∣∣
L̂k,i

n−1

Lk,i

n−1

−
⌊
L̂k,i

n−1

Lk,i

n−1

⌋∣∣∣∣∣f(X k,N̂k,i
n +1

n )
∣∣∣FUk,i

n−1 ∨ FVX
n


,
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M. A. Kouritzin/Branching Particle Filters 15

where N̂ k,i
n = N k,i−1

n +

⌊
L̂k,i

n−1

Lk,i

n−1

⌋
and FUk,i

n−1 = σ{U l,j
m : m ≤ n, (l, j,m) 6= (k, i, n)}. (Notice (4.7) holds

whether we resample or not.) Using (4.7) plus the facts N k
n−1 ∈ FUVX

n−1 and (Lk,j
n , EY [f(X k,j

n )|FX
n−1 ∨

FUV
n ∨]) = (Lk,i

n−1,Kf(X k,i
n−1)) for j∈

{
N k,i−1

n + 1, ...,N k,i

n

}
, one finds by (4.1,4.4,3.1) that

EY [Bk
n(f)

∣∣FUVX
n−1 ] = EY




Nk
n∑

j=1

Lk,j
n f(X k,j

n )
∣∣∣FUVX

n−1


 (4.8)

=

Nk
n−1∑

i=1

EY




Nk,i

n∑

j=N k,i−1

n +1

Lk,j
n f(X k,j

n )
∣∣∣FUVX

n−1




=

Nk
n−1∑

i=1

EY

[
L̂k,i

n−1

Lk,i

n−1

Lk,i

n−1Kf(X k,i
n−1)

∣∣∣FUVX
n−1

]

=

Nk
n−1∑

i=1

αn(X k,i
n−1)Lk,i

n−1Kf(X k,i
n−1)

= Bk
n−1(Anf) subject to Bk

0 (f) = f(χk).

(One can check this equation in the two cases: N k
n−1 = 0 and N k

n−1 6= 0.) Using (4.8) recursively, one finds
by (3.2,3.4) that

EY [Bk
n(f)] = EY

[
A1,nf(χk)

]
= σn(f) (4.9)

so by (4.8,4.9)

Bk
n (f) −σn(f) = MBk

n (f), where (4.10)

MBk

n (f) =

n∑

l=0

[
Bk

l (Al+1,nf) −EY
[
Bk

l (Al+1,nf)
∣∣FUVX

l−1

]]
. (4.11)

{MBk

n (f) , n = 0, 1, ...} is a zero-mean {FUVX
n }∞n=0-martingale with respect to QY . Averaging over the

initial ancestrial branches k, one finds by (4.1,4.8,4.9,4.10,4.11) that

EY [SN
n (f)

∣∣FUVX
n−1 ] = SN

n−1(Anf) subject to SN
0 (f) =

1

N

N∑

k=1

f(χk) (4.12)

EY [SN
n (f)] = σn(f) (4.13)

SN
n (f) = σn (f) + MN

n (f) (4.14)

with

MN
n (f) =

1

N

N∑

k=1

MBk

n (f) (4.15)

=

n∑

l=0

[
SN

l (Al+1,nf) −EY
[
SN

l (Al+1,nf)
∣∣FUVX

l−1

]]
.
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M. A. Kouritzin/Branching Particle Filters 16

Now, we define the FY
∞-measurable random variance

γP
n (f) = EY [|MB1

n (f)|2]. (4.16)

Recall σn(f), αn from (1.2),(1.1) respectively. To find an expression for the variance γP
n (f) of this reduced

system and the resampled system to follow, we define the resampling function:

r(x) = x− bxc − (x− bxc)2, (4.17)

which is an artifact of resampling and is clearly bounded by 1
4 . Now, let

νn(l) =

∫
1(an−1σn(1),bn−1σn(1))(s)fV (l − s)ds, νn(l) = 1 − νn(l). (4.18)

For notational simplicity, we recall σ0(1) = π0(1) = 1 and define

αi,m(xi, ..., xm−1) = αm(xm−1) · · ·αi+2(xi+1)αi+1(xi)σi(1) (4.19)

νi,m(xi, ..., xm−1) = νm(αi,m(xi, ..., xm−1)) · · · νi+1(αi,i+1(xi)) (4.20)

νi,m(xi, ..., xm−1) = νm(αi,m(xi, ..., xm−1)) (4.21)

so αi,i(x) = σi(1) and νi,i(x) = 1. The following proposition gives the clt variance for both the reduced
McKean-Vlasov particle system and, as will be shown later, the partially-resampled particle filter in terms
of the resampling used. The proof is necessarily technical, and hence delayed until Appendix 1.

Proposition 4.1. Let h be bounded and
∑

i1<···<ij

j<l

denote the sum over 1 ≤ i1 < · · · < ij < l and 0 ≤ j <

l ≤ n. Then,

γP
n (f) = π0((A1,nf)2) − (π0(A1,nf))2 (4.22)

+
∑

i1<···<ij

j<l

σl(1)π0[A1,l−1

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νij ,lνij ,l−1νi1,i2,...,ij

]

+
∑

i1<···<ij

j<l

π0[A1,l−1αij ,l

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νij ,lνi1,i2,...,ij

]

+
∑

i1<···<ij

j<l

σ2
l (1)π0[A1,l−1

νij ,l

αij ,l−1
r

(
αij ,l

σl(1)

)
(KAl+1,nf)2νij ,l−1νi1,i2,...,ij

]

for all f ∈ B(E)+, where

νi1,i2,...,ij
$ νij−1,ij

· · · νi1,i2−1ν0,i1ν0,i1−1 (4.23)

A1,m is defined in (3.2) and operator Ai applies to the last argument of Ai+1,mφm(x0, x1, ..., xi−1, xi).

Remark 4.3. The first term on the right of (4.22) represents the error variance of introducing an inde-
pendent particle system. The remaining terms incorporate the resampling scheme used. To understand this
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M. A. Kouritzin/Branching Particle Filters 17

formula, we can think of j ∈ {0, 1, ..., l− 1} as a number of resampling events up to l − 1 and i1, i2, ..., ij
as possible resample times up to l − 1 so the system would run without resampling between these times.
νij ,l−1νij−1,ij

· · · νi1,i2−1ν0,i1ν0,i1−1 is then the joint probability that these are the resample times. In par-
ticular, ν0,i1−1 is the probability of not resampling before i1 and ν0,i1 is the conditional probability of

resampling at i1 given no prior resampling. Under our conditions, each σl is a finite measure and
νij ,l

αij ,l−1
,

αl, Al,nf are bounded for each fixed Y1, ..., Yn, f ∈ B(E)+ so γP
n (f) is an R-valued random variable.

To facilitate the discussion to follow, we break the final two terms of (4.22) into the cases of resampling
at time l − 1 and not, which yields:

γP
n (f) = π0((A1,nf)2) − (π0(A1,nf))2 (4.24)

+
n∑

l=1

σl(1)
l−1∑

j=0

∑

1≤i1<···<ij<l

π0[A1,l−1{fl,n}νij ,lνij ,l−1νi1,i2,...,ij
]

+

n∑

l=2

l−2∑

j=0

∑

1≤i1<···<ij<l−1

π0[A1,l−1αij ,l{fl,n}νij ,lνi1,i2,...,ij
]

+

n∑

l=1

σl−1(1)

l−1∑

j=1

∑

1≤i1<···<ij=l−1

π0[A1,l−1αl{fl,n}νij ,lνi1,i2,...,ij
]

+

n∑

l=2

σ2
l (1)

l−2∑

j=0

∑

1≤i1<···<ij<l−1

π0[A1,l−1

νij ,l

αij ,l−1
r

(
αij ,l

σl(1)

)
f l,nνij ,l−1νi1,i2,...,ij

]

+

n∑

l=1

σ2
l (1)

l−1∑

j=1

∑

1≤i1<···<ij=l−1

π0[A1,l−1

νij ,l

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
f l,nνi1,i2,...,ij

]

for all f ∈ B(E)+, where fl,n = Al(Al+1,nf)2− αl(KAl+1,nf)2 and f l,n = (KAl+1,nf)2.

Remark 4.4. Notice, there are no j = 0 cases in the fourth and sixth terms of (4.24). For the second,
third and fifth terms, the multiple sum over the i’s degenerates to just one item,

σl(1)π0[A1,l−1

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
ν0,lν0,l−1], (4.25)

π0[A1,l−1α0,l

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
ν0,l] and (4.26)

σ2
l (1)π0[A1,l−1

1

α0,l−1
r

(
α0,l

σl(1)

)
(KAl+1,nf)2ν0,lν0,l−1] (4.27)

respectively, when j = 0. Furthermore, in the non-resampled case where ai = −∞ and bi = ∞ so νi = 1,
we have this j = 0 case only but also we do not resample at time l either so terms (4.25) and (4.27) also
disappear. Then, we can incorporate the αj into the operators by letting

A
(2)
j f(x) =

{
α2

j (x)Kf(x) j = 1, 2, ...
f(x) j = 0

and (4.28)

A
(2)
i,nf =

{
A

(2)
i

(
A

(2)
i+1 · · ·

(
A

(2)
n f

))
∀i ≤ n

f i = n+ 1
, (4.29)
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M. A. Kouritzin/Branching Particle Filters 18

and note that ν0,l = 1 in this non-resampled case. Hence, the non-resampled case variance is

γW
n (f) = π0((A1,nf)2) − (π0(A1,nf))2 (4.30)

+
n∑

l=1

π0A
(2)
1,l−1

[
A

(2)
l (Al+1,nf)2 − (Al,nf)2

]
∀f ∈ B(E)+,

which is the variance for the weighted particle filter.

Remark 4.5. Full resampling occurs if all ai = bi so νi = 1 so only the j = l − 1 terms remain. The
multiple sums over the i’s in the second, fourth and sixth terms of (4.24) reduce to

σl(1)π0[A1,l−1

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νl−1,l], (4.31)

σl−1(1)π0[A1,l−1αl

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νl−1,l], (4.32)

σ2
l (1)π0

[ A1,l−1

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
(KAl+1,nf)2νl−1,l] (4.33)

respectively since νl−2,l−1 · · · ν0,1 = 1 in this case. However, (4.32) also vanishes since νl−1,l = 0. Therefore,
the variance of the fully-resampled McKean-Vlasov system is by (1.1), (1.2) and (3.4)

γR
n (f) = π0((A1,nf)2) − (π0(A1,nf))2 (4.34)

+

n∑

l=1

σl−1(αl)σl−1

(
Al(Al+1,nf)2 − αl(KAl+1,nf)2

)

+

n∑

l=1

σl−1(αl)σl−1

(
σl(1)

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
(KAl+1,nf)2

)

for all f ∈ B(E)+. Comparing γW and the non-remainder part of γR (i.e. ignoring the last term of γR),
we see that the main difference is that the former uses A(2) while the later uses A, so the function αl is
not squared in γR. Roughly speaking, this means that the errors are not compounded to the same degrees.

Remark 4.6. By the above expressions and the proof (in the first appendix), we see that there is no need
for h to be bounded in either the non-resampled (i.e. weighted) or fully-resampled case.

This leads us to our main results of this section, which are laws of large numbers, rates of Lp-convergence
and a quenched central limit theorem.

Theorem 4.1. Let h be bounded and g be positive and continuous. Then, for Q-a.a. Y , the reduced particle
system satisfies:

slln: SN
n ⇒ σn (i.e. weak convergence) a.s. [QY ];

Mlln:
∣∣SN

n (f) − σn (f)
∣∣ N� N−β a.s. [QY ] for all f ∈ C(E)+, 0 ≤ β < 1

2 ;

L2-rates: EY
∣∣SN

n (f) − σn (f)
∣∣2 =

γP
n (f)
N

for all f ∈ C(E)+;

Lp-rates: EY
∣∣SN

n (f) − σn (f)
∣∣p N� N−p

2 for all f ∈ C(E)+, p ≥ 1;

clt:
√
N
(
SN

n (f) − σn (f)
)
⇒ N

(
0,
√
γP

n (f)
)

for all f ∈ C(E)+.
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M. A. Kouritzin/Branching Particle Filters 19

Proof. SN
n (f)−σn (f) = 1

N

N∑
k=1

MBk

n (f) is an average of i.i.d. random variables (see (4.15)) so the theorem

follows by (4.22), the classical laws of large numbers, Lp bounds and central limit theorem. Note: 1)

MBk

n (f) is bounded for fixed Y1, ..., Yn by the following Lemma. 2) SN
n (fi) → σn (fi) a.s. [QY ] for all i

implies SN
n ⇒ σn a.s. [QY ], where

{fi}∞i=1 =





l∏

j=1

(1 − ρ(·, xj)) ∨ 0 : l ∈ {0, 1, 2, ...}, xj ∈ {yk}∞k=1



 , (4.35)

for some dense collection {yk} ⊂ E. (See Blount and Kouritzin [2] and note the product over zero functions
is taken to be the constant function 1.) �

The boundedness of MBk

n (f), required above follows from (4.11,4.8,4.1) and the following lemma.

Lemma 4.1. Suppose h is bounded while g is positive and continuous. Then, there is a function Cn :
Rdn → (0,∞) such that the reduced system particle numbers and weights satisfy:

N k
l , max

i∈{1,...,Nk
l
}
Lk,i

l ≤ Cn(Y1, ..., Yn) ∀k ∈ {1, ...,mN}, l ∈ {0, ..., n} on Ω.

Proof. Let Wk,i
l = αl(X k,i

l−1) with αl defined in (1.1). Since

0 < inf
x∈E

g(Yl − h(x))

g(Yl)
< sup

x∈E

g(Yl − h(x))

g(Yl)
<∞

and σl is a positive finite measure for each l ∈ N, there is a C = C(Y1, ..., Yn) > 1 such that

1

C
≤ σl(1),Wk,i

l ≤ C (4.36)

∀i = 1, ...,N k
l−1; l = 1, ..., n; k = 1, ...,mN ;N = 1, 2, ....

Now, recall from the reduced system algorithm (given above) that

Lk,j
l+1 ≤ σl+1(1) ∨Wk,pl+1(j)

l+1 Lk,pl+1(j)
l (4.37)

N k
l+1 =

Nk
l∑

il=1

N k,il

l+1 ≤
Nk

1∑

i1=1

Nk,i1
2∑

i2=N k,i1−1

2 +1

· · ·
N k,il−1

l∑

il=Nk,il−1−1

l
+1

[
Lk,il

l Wk,il

l+1

σl+1(1)
+ 1

]
(4.38)

for j = 1, ..., Nk
l+1; k = 1, 2, ...,mN , where the parent operator p is defined in (4.5). Now, the stated bounds

follow from (4.36,4.37,4.38), the fact N k
0 = Lk,1

0 = 1 and induction. �

γP
n (f) is γW

n (f) or γR
n (f) when there is no resampling or full resampling respectively, where γW

n (f),
γR

n (f) are defined in Remarks 4.4, 4.5. h need not be bounded in these two cases.
Bounded regularity for the resampled system will not be so easy to come by but is handled in the next

section.
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M. A. Kouritzin/Branching Particle Filters 20

5. Resampled Particle System

The reduced system uses σn(1), which is usually unrepresentable on a finite computer, so we use the particle
filter algorithm in the introduction, expressed now in terms of random variables {χk}, {U

k,i
n }, {V

k,i
n } and

{Zk,i,x
n } analogous to those of the previous section. Particles can now interact weakly through an average

weight process {AmN
n , n = 0, 1, ...}. However, we still break up the system by the first ancestor of each

particle so our resampled particle filter will be the average of N exchangeable branching Markov processes
{Bk

n, n = 0, 1, ...}, each starting from an independent sample δχk . For clarity, the particles at time n that

are offspring from the original particle χk will be denoted {X
k,i
n }N

k
n

i=1 and the weight of such a particle after
resampling will be denoted Lk,i

n . Then, the branching Markov process corresponding to this original particle
and the complete (partially) resampled particle filter are:

B
k
n =

N
k
n∑

i=1

L
k,i
n δ

X
k,i
n

and S
N
n =

1

N

N∑

k=1

B
k
n. (5.1)

The branching Markov processes {Bk
n} are defined by:

Initialize: X
k,1
0 = χk, Nk

0 = 1 = L
k,1
0 ∀k = 1, 2, ...,mN . Nk,i

n = 0∀i, k, n ∈ N.
Repeat: for n = 0, 1, 2, ... do

1. Weight: L̂k,i
n = αn+1

(
Xk,i

n

)
Lk,i

n for i = 1, 2, ...,Nk
n, k = 1, 2, ...,mN

2. Average Weight:

An+1 =
1

mN

mN∑

k=1

N
k
n∑

i=1

L̂
k,i
n (5.2)

Repeat (3-7): for k = 1, 2, ...,mN do

Repeat (3-6): for i = 1, 2, ...,Nk
n do

3. Resampled Case: If L̂k,i
n + V

k,i
n+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Numbers: N
k,i
n+1 =

⌊
L̂

k,i
n

An+1

⌋
+ 1

U
k,i

n+1
+

⌊
L̂

k,i
n

An+1

⌋
≤ L̂

k,i
n

An+1

,

(b) Resampled Weight: L
k,i

n = An+1

4. Non-resample Case: If L̂k,i
n + V

k,i
n+1 ∈ (anAn+1, bnAn+1) then

L
k,i

n = L̂k,i
n , N

k,i
n+1 = 1

5. Combine: X̂k,j
n $ Xk,i

n , L
k,j
n+1 $ L

k,i

n for j ∈
{

N
k,i−1

n+1 + 1, ...,N
k,i

n+1

}
, where

N
k,i

n+1 =

i∑

m=1

N
k,m
n+1. (5.3)

6. Evolve Independently: X
k,j
n+1 = Z

k,j,X̂k,j
n

n+1 for all j ∈
{

N
k,i−1

n+1 + 1, ...,N
k,i

n+1

}
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M. A. Kouritzin/Branching Particle Filters 21

7. Estimate: Bk
n+1 =

N
k
n+1∑

j=1

L
k,j
n+1δX

k,j

n+1
, where Nk

n+1 = N
k,1
n+1 + · · · + N

k,Nk
n

n+1 .

Remark 5.1. For the index change in Step 5, we re-use the parent operator

pn+1(j) = i such that j ∈ {N
k,i−1

n+1 + 1, ...,N
k,i

n+1}, (5.4)

defined now in terms of N
k,i

n+1 instead of N k,i

n+1. The context will make it clear for which system pn is
operating on.

Remark 5.2. The distinguishing feature between the resampled and reduced particle filters is the resampling
events. The resample sets for these systems are respectively

H
k,i
m =

{
L̂

k,i
m−1+Vk,i

m

A
mN
m

/∈ (am−1, bm−1)

}
, (5.5)

Hk,i
m =

{
L̂k,i

m−1+Vk,i
m

σm(1)
/∈ (am−1, bm−1)

}
. (5.6)

The expected effective weight of resampled filter particle Xi
n after resampling is:

EY
[
L

k,i

n N
k,i
n+1

∣∣∣FUX

n ∨ FV

n+1

]
= L̂

k,i
n ,

which is the weight before resampling so the system is unbiased. Moreover, noting L̂
k,i
n ∈ FUVX

n−1 , one finds
as in (4.7-4.8) that

EY [Bk
n(f)

∣∣FUVX

n−1 ] = B
k
n−1(Anf) subject to B

k
0(f) = f(χk). (5.7)

Using (5.7) recursively with (3.2) and (3.4), one finds that

EY [Bk
n(f)] = σn(f) and B

k
n (f) − σn (f) = MB

k

n (f) , (5.8)

with

MB
k

n (f) =

n∑

l=0

[
B

k
l (Al+1,nf) −EY

[
B

k
l (Al+1,nf)

∣∣FUVX

l−1

]]
(5.9)

=

n∑

l=0

[
B

k
l (Al+1,nf) − B

k
l−1 (Al,nf)

]
if B

k
−1 = π0.

Hence, EY [MB
k

n (f)] = 0 by (5.9). Moreover, {MB
k

n (f) , n = 0, 1, ...} is a {FUVX
n }-martingale with respect

to QY . Averaging over the first N ancestrial branches, one finds that

EY [SN
n (f)

∣∣FUVX

n−1 ] = S
N
n−1(Anf) subject to S

N
0 (f) =

1

N

N∑

k=1

f(χk) (5.10)

EY [SN
n (f)] = σn(f) (5.11)

S
N
n (f) = σn (f) + M

N
n (f) (5.12)

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
09

72
   

  E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
0/

04
/2

01
5



M. A. Kouritzin/Branching Particle Filters 22

with

M
N
n (f) =

1

N

N∑

k=1

MB
k

n (5.13)

=
n∑

l=0

[
S

N
l (Al+1,nf) −EY

[
S

N
l (Al+1,nf)

∣∣FUVX

l−1

]]
.

This leads to our main result, laws of large numbers and a quenched clt for our resampled particle filter.

Theorem 5.1. Suppose mN ≥ N ; h and fV are bounded; and g is strictly positive and continuous. Then,
for any n ∈ N and Q-almost all Y , the resampled particle filter satisfies:

slln: SN
n ⇒ σn (i.e. weak convergence) a.s. [QY ];

Mlln:
∣∣SN

n (f) − σn (f)
∣∣ N� N−β a.s. [QY ] ∀f ∈ C(E)+, 0 ≤ β < 1

2 ;

clt:
√
N
(
SN

n (f) − σn (f)
)
⇒ N

(
0,
√
γP

n (f)
)
∀f ∈ C(E)+ if N

mN
→ 0.

Remark 5.3. 1) This clt requires exactly the same “extra particle” condition N
mN

→ 0 as the clt for

exchangeable random variables in Theorem 2.1. 2) γP
n (f) = γW

n (f), given in (4.30), when there is no
resampling and γP

n (f) = γR
n (f), given in (4.34), when there is full resampling.

We use the following theorem to prove Theorem 5.1.

Theorem 5.2. Suppose ρ ∈ [0, 1], N0 ∈ N, mN ≥ N + Nρ − 1 for all N ≥ N0 and {ψN,k}mN

k=1 are
exchangeable random variables such that: i) N 1−ρE

[
ψ2

N,1

]
→ 0, and ii) NE [ψN,1ψN,2] → 0. Then,

1√
N

N∑
k=1

ψN,k →P 0.

Proof. Define FN,i = σ

{
ψN,1, ..., ψN,i,

mN∑
j=i+1

ψN,j

}
and let ΘN,i = ψN,i −E

[
ψN,mN

∣∣FN,i−1

]
. Then, using

the exchangeability, one has that

lim
N→∞

E

∣∣∣∣∣
1√
N

N∑

i=1

ΘN,i

∣∣∣∣∣

2

= lim
N→∞

1

N

N∑

i=1

E
[
Θ2

N,i

]
(5.14)

= lim
N→∞

1

N

N∑

i=1

E
[
ψ2

N,i

]

− lim
N→∞

1

N

N∑

i=1

E
[
E2
[
ψN,i

∣∣FN,i−1

]]

≤ lim
N→∞

E
[
ψ2

N,1

]
= 0 by i).
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M. A. Kouritzin/Branching Particle Filters 23

By exhangeability, linearity and the definition of FN,i, we find that

E
[
ψN,mN

∣∣FN,i−1

]
=

1

mN − i+ 1

mN∑

j=i

E
[
ψN,j

∣∣FN,i−1

]
(5.15)

= (mN − i+ 1)−1
mN∑

j=i

ψN,j .

Therefore, it follows by Jensen’s inequality that

lim
N→∞

E

∣∣∣∣∣
1√
N

N∑

i=1

E
[
ψN,mN

∣∣FN,i−1

]
∣∣∣∣∣ (5.16)

≤ lim
N→∞

N∑

i=1

√√√√√
mN∑
j=i

E
[
ψ2

N,j

]
+

mN∑
j 6=k=i

E [ψN,jψN,k]

N (mN − i+ 1)
2

≤ lim
N→∞

√
N

mN −N + 1
E
[
ψ2

N,1

]
+NE [ψN,1ψN,2] = 0

by i) and ii). �

As noted in Remark 2.5, our resampled filter can degenerate to few particles or grossly uneven weights.
The following one step bounds, used to prove Theorem 5.1, ensure the risk of such system irregularity
decreases exponentially in the initial number of particles.

Theorem 5.3. Suppose n ∈ N; {mN}∞N=1 satisfies m1 ≥ 2, mN ↗ ∞; h ∈ B(Rd); fV ∈ B(R); and

g ∈ C++(Rd). Then, there are εn > 0, Cn > 1 and DN
n ∈ σ

{
mN∑

k=1

N
k
l , l ≤ n

}
such that DN

n+1 ⊂ DN
n for all

n = 0, 1, 2...; QY
(
DN

n

)
≥ 1 − 2ne−εnmN for N ≥ 1; and

N
k
l , max

i∈{1,...,Nk
l
}
L

k,i
l ,AmN

l ≤ Cn ∀k ∈ {1, ...,mN}, l ∈ {0, ..., n} on D
N
n−1.

Remark 5.4. This result says that the algorithms are well behaved for at least one step on DN
n , which

allows comparsion of the resampled and reduced filters on DN
n .

Proof. Initial Setup: Let W
k,i
l = αl(X

k,i
l−1). Since

0 < inf
x∈E

g(Yl − h(x))

g(Yl)
, sup

x∈E

g(Yl − h(x))

g(Yl)
<∞

there is a C = C(Y1, ..., Yn) > 1 such that

1

C
≤ W

k,i
l ≤ C ∀1 ≤ i ≤ Nk

l−1; 1 ≤ l ≤ n; 1 ≤ k ≤ mN ;N ≥ 1. (5.17)
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M. A. Kouritzin/Branching Particle Filters 24

For l ≥ 1, we define υC(l), τC(l),DN
l recursively by

υC(l) = CυC(l − 1)τC(l − 1), subject to υC(0) = 1, (5.18)

τC(l) = 2τC(l − 1)(CυC(l)υC(l − 1) + 1) subject to τC(0) = 1, (5.19)

D
N
l =

{
1

τC(l)
≤ 1

mN

mN∑

k=1

N
k
l ≤ τC(l)

}
∩ D

N
l−1 subject to D

N
0 = Ω. (5.20)

Clearly, DN
l ∈ FXUV

l . Now, recall from (5.2) and the resampled algorithm that

A
mN

l+1 =
1

mN

mN∑

k=1

N
k
l∑

i=1

W
k,i
l+1L

k,i
l (5.21)

A
mN

l+1 ∧ W
k,pl+1(j)
l+1 L

k,pl+1(j)
l ≤ L

k,j
l+1 ≤ A

mN

l+1 ∨ W
k,pl+1(j)
l+1 L

k,pl+1(j)
l (5.22)

N
k
l+1 =

N
k
l∑

il=1

N
k,il

l+1 ≤
N

k
1∑

i1=1

N
k,i1
2∑

i2=N
k,i1−1

2 +1

· · ·
N

k,il−1
l∑

il=N
k,il−1−1

l
+1

[
L

k,il

l W
k,il

l+1

A
mN

l+1

+ 1

]
(5.23)

for j = 1, ..., Nk
l+1; k = 1, 2, ...,mN . These imply that

1

υC(l + 1)
≤ A

mN

l+1 ≤ υC(l + 1) (5.24)

1

υC(l + 1)
≤ L

k,i
l+1 ≤ υC(l + 1) ∀k ∈ {1, 2, ...,mN}, i ∈ {1, ...,Nk

l+1} (5.25)

1

CυC(l)
≤ W

k,i
l+1L

k,i
l ≤ CυC(l) ∀k ∈ {1, 2, ...,mN}, i ∈ {1, ...,Nk

l+1} (5.26)

N
k
l+1 ≤

l∏

i=0

(υC(i+ 1)υC(i)C + 1) $ MC(l + 1) ∀k ∈ {1, 2, ...,mN} (5.27)

on DN
l for all l = 0, 1, 2..., n by induction and (5.17).

Base Case: {Nk
1} are bounded by MC(1) (since DN

0 = Ω) and conditionally independent so Hoeffding’s
inequality applies to find

QY

(∣∣∣∣∣
1

mN

mN∑

k=1

[
N

k
1 −

[
W

k,1
1

A
mN

1

1
H

k,1
1

+ 1(Hk,1
1 )C

]]∣∣∣∣∣ > t

∣∣∣∣FX
0 ∨ FV

1

)
(5.28)

≤ 2 exp

(
−2mN t

2

M2
C(1)

)
a.s.,

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
09

72
   

  E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
0/

04
/2

01
5



M. A. Kouritzin/Branching Particle Filters 25

where resample set H
k,i
1 is defined in (5.5). Next, by (5.17), (5.24), (5.18), (5.19) and (5.28)

QY

({
1

τC(1)
≤ 1

mN

mN∑

k=1

N
k
1 ≤ τC(1)

})
(5.29)

≥ QY

({
2

τC(1)
≤ 1

mN

mN∑

k=1

[
W

k,1
1

A
mN

1

1
H

k,1
1

+ 1(Hk,1
1 )C

]
≤ τC(1)

2

})

− EY

[
QY

(∣∣∣∣∣

mN∑

k=1

[
N

k
1 −

[
W

k,1
1

A
mN

1

1
H

k,1
1

+ 1(Hk,1
1 )C

]]∣∣∣∣∣ >
mN

τC(1)

∣∣∣∣FX

0 ∨ FV

1

)]

≥ 1 − 2 exp

(
− 2mN

M2
C(1)τ2

C(1)

)
.

Inductive Step: Suppose that

QY (DN
l ) ≥ 1 − 2l exp

(
− 2mN

M2
C(l)τ2

C(l)

)
, (5.30)

which is true when l = 1, and let

ρk,i
l =

W
k,i
l+1L

k,i
l

A
mN

l+1

1
H

k,i

l+1
+ 1(Hk,i

l+1
)C . (5.31)

Then, it follows by (5.26), (5.24) (5.19) and (5.18) that

QY

({
1

τC(l + 1)
≤ 1

mN

mN∑

k=1

N
k
l+1 ≤ τC(l + 1)

}
∩ D

N
l

)
(5.32)

≥ QY







2

τC(l + 1)
≤ 1

mN

mN∑

k=1

N
k
l∑

i=1

ρk,i
l ≤ τC(l + 1)

2



 ∩ D

N
l




− QY







∣∣∣∣∣∣
1

mN

mN∑

k=1


N

k
l+1 −

N
k
l∑

i=1

ρk,i
l



∣∣∣∣∣∣
>

1

τC(l + 1)



 ∩ D

N
l




≥ QY
(
D

N
l

)
−QY







∣∣∣∣∣∣
1

mN

mN∑

k=1


N

k
l+1 −

N
k
l∑

i=1

ρk,i
l



∣∣∣∣∣∣
>

1

τC(l + 1)



 ∩ D

N
l


 .

However, we have by the independence of the U ’s, (5.27) and Hoeffding’s inequality that

QY



∣∣∣∣∣∣

1

mN

mN∑

k=1


N

k
l+1 −

N
k
l∑

i=1

ρk,i
l



∣∣∣∣∣∣
> t

∣∣∣∣FX,V
∞ ∨ FU

l


 (5.33)

≤ 2 exp

(
− 2mN t

2

M2
C(l + 1)

)
on D

N
l ,
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M. A. Kouritzin/Branching Particle Filters 26

where resample set H
k,i
l is defined in (5.5), so by (5.32), (5.30) and (5.33) with t = 1

τC(l+1)

QY

({
τC(l + 1) ≤ 1

mN

mN∑

k=1

N
k
l+1 ≤ τC(l + 1)

}
∩ D

N
l

)
(5.34)

≥ 1 − 2(l + 1) exp

(
− 2mN

M2
C(l + 1)τ2

C(l + 1)

)
.

Conclusion: The result follows by induction, (5.20), (5.24) and (5.25). �

The proof of Theorem 5.1 also relies on a coupling of our systems as well as tracking systems that run
as weighted particle filters but signal the resampling events for the resampled and reduced particle filters.

6. Tracking Systems

For analytical reasons, we define tracking systems corresponding to the resampled and reduced systems.
These systems do not resample but do track where resampling would occur (at least initially). They are
used in Appendix 2 to establish the “closeness” of the resampled and weighted filter total masses. However,
they are introduced now in order that we can couple these tracking systems with the resampled and reduced
systems on the same probability space.

The reduced tracking system is defined as follows:

Initialize: X k
0 = χk and Lk

0 = 1 for k = 1, 2, ...,mN ;

Repeat: for n = 0, 1, 2, ... do

For k = 1, 2, ...,mN do:

L̂k

n = αn+1(X k
n)Lk

n (6.1)

Lk
n+1 =

{
σn+1(1), L̂k

n + Vk,1
n+1 /∈ (anσn+1(1), bnσn+1(1))

L̂k

n, L̂k

n + Vk,1
n+1 ∈ (anσn+1(1), bnσn+1(1))

(6.2)

X k
n+1 = Zk,1,Xk

n

n+1 (6.3)

while the reduced tracking system is:

Initialize: X
k
0 = χk and L

k
0 = 1 for k = 1, 2, ...,mN ;

Repeat: for n = 0, 1, 2, ... do

For k = 1, 2, ...,mN do:

L̂
k

n = αn+1(X
k
n)Lk

n (6.4)

L
k
n+1 =

{
An+1, L̂

k

n + V
k,1
n+1 /∈ (anAn+1, bnAn+1)

L̂
k

n, L̂
k

n + V
k,1
n+1 ∈ (anAn+1, bnAn+1)

(6.5)

X
k
n+1 = Z

k,1,Xk
n

n+1 . (6.6)

In the above algorithms, {Vk,1
n ;n, k = 1, 2, ...} and {Zk,1,x

n ;n, k = 1, 2, ..., x ∈ E} are the random variables
used in the resampled system while {Vk,1

n ;n, k = 1, 2, ...} and {Zk,1,x
n ;n, k = 1, 2, ..., x ∈ E} are the random
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M. A. Kouritzin/Branching Particle Filters 27

variables used in the reduced system. {An, n = 0, 1, 2, ...} is also from the resampled system. Hence, the
resampled and reduced tracking systems have been defined on the same probability space as the resampled
and reduced particle filters respectively.

One would never implement these tracking systems. Roughly speaking, they run as weighted filters
but indicate (at least initially) where resampling for the reduced and resampled particle filter would have
taken place. Their importance is solely to ease the analysis by facilitating a break up of the weighted and
resampled particle filters over certain resampling events. In particular, the resample sets of the tracking
systems:

H
k
m =





L̂
k

m−1+Vk,1
m

A
mN
m

/∈ (am−1, bm−1)



 , (6.7)

Hk
m =





L̂k

m−1+Vk,1
m

σm(1)
/∈ (am−1, bm−1)



 (6.8)

are important to break up the weighted and reduced particle systems into comparable pieces once we have
coupled all systems together on the same probability space.

7. Coupling

To obtain “nearness” estimates between the resampled, tracking and reduced filters, we couple them through

an infinite particle system. Suppose N0 = {∅}, M =
∞∪

n=0
Nn, |κ| = n if multi-index κ ∈ Nn and we enlarge

(Ω,F , Q) to support the following random variables:

1.
{
χk
}∞

k=1
are independent samples from π0,

2.
{
Zk;x

κ : κ ∈ ∞∪
n=1

N
n, k ∈ N;x ∈ E

}
are independent, distribution K(x, ·),

3. {Uk
κ : κ ∈ ∞∪

n=1
Nn, k ∈ N} are independent and Uniform[0, 1],

4. {V k
κ : κ ∈ ∞∪

n=1
Nn, k ∈ N} are independent and zero mean with common pdf fV ,

which are mutually independent and independent of X , Y . Then, at time n, there is a particle Xk
κ corre-

sponding to each initial particle k and multi-index κ with |κ| = n that satisfies:

Xk
∅ = χk, Xk

(κ,i) = Z
k;Xk

κ

(κ,i) ∀κ ∈ M; k, i ∈ N. (7.1)
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M. A. Kouritzin/Branching Particle Filters 28

(Nk
κ,L

k
κ)κ∈M,k∈N, (N k

κ ,Lk
κ)κ∈M,k∈N, (Lk

κ)κ∈M,k∈N and (Lk
κ)κ∈M,k∈N then extend the notion of offspring num-

bers and likelihood for the finite systems to the infinite system, where

(Nk
∅ ,L

k
∅) = (N k

∅ ,Lk
∅) = (1, 1), L

k
∅ = Lk

∅ = 1 (7.2)

(Nk
(κ,i),L

k
(κ,i)) =





(
LUk

(κ,i),An+1

)
,

L̂
k
κ+V k

(κ,i)

An+1
/∈ (an, bn) , i ≤ Nk

κ

(1, L̂k
κ),

L̂
k
κ+V k

(κ,i)

An+1
∈ (an, bn) , i ≤ Nk

κ

(0, 0), i > Nk
κ

(7.3)

(N k
(κ,i),Lk

(κ,i)) =





(
LUk

(κ,i), σn+1(1)
)
,

L̂k
κ+V k

(κ,i)

σn+1(1)
/∈ (an, bn) , i ≤ N k

κ

(1, L̂k
κ),

L̂k
κ+V k

(κ,i)

σn+1(1)
∈ (an, bn) , i ≤ N k

κ

(0, 0), i > N k
κ

(7.4)

L
k
(κ,i) =





An+1,
L̂

k

κ
+V k

(κ,i)

An+1
/∈ (an, bn) , i = 1

L̂
k

κ,
L̂

k

κ
+V k

(κ,i)

An+1
∈ (an, bn) , i = 1

0, i > 1

(7.5)

Lk
(κ,i) =





σn+1(1),
L̂k

κ
+V k

(κ,i)

σn+1(1)
/∈ (an, bn) , i = 1

L̂k

κ,
L̂k

κ
+V k

(κ,i)

σn+1(1)
∈ (an, bn) , i = 1

0, i > 1

(7.6)

for all k, i ∈ N, |κ| = n, n = 0, 1, 2, .... Here,

LUk
(κ,i) =

⌊
L̂k

κ

An+1

⌋
+1

Uk
(κ,i)

+

⌊
L̂k

κ
An+1

⌋
≤ L̂k

κ
An+1

(7.7)

LUk
(κ,i) =

⌊
L̂k

κ

σn+1(1)

⌋
+1

Uk
(κ,i)

+

⌊
L̂k

κ
σn+1(1)

⌋
≤ L̂k

κ
σn+1(1)

(7.8)

An+1 =
1

mN

mN∑

k=1

∑

κ:|κ|=n

L̂
k
κ for n = 0, 1, ...; A0 = 1; (7.9)

L̂
k
κ = α|κ|+1(X

k
κ)Lk

κ, L̂k
κ = α|κ|+1(X

k
κ)Lk

κ, (7.10)

L̂
k

κ = α|κ|+1(X
k
κ)Lk

κ and L̂k

κ = α|κ|+1(X
k
κ)Lk

κ for κ ∈ M, k ∈ N. (7.11)

Next, we introduce a partial order on M: κ ≺ κ̂ if |κ| = |κ̂| and min{i : κi < κ̂i} < min{i : κ̂i < κi}. To
make room for live particles from all finite systems, we let

Nk
κ = N

k
κ ∨ N k

κ ∨ 1 ∀k ∈ N, κ ∈ M (7.12)

and define the subset of alive multi-indices M
A by κ ∈ M

A if κ ∈ M and either

κ = ∅ or κ = (κ1, ..., κn) with κl ∈ {1, ..., Nk
(κ1,...,κl−1)

} ∀l = 1, ..., n, (7.13)
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M. A. Kouritzin/Branching Particle Filters 29

so particles Xk
(κ1,...,κn) with (n ≥ 1 and) some κl > Nk

(κ1,...,κl−1)
are not in any finite system. To recover

the finite systems, we drop explicit reference to the ancesteral chain and set:

Xk,j
n = Xk

κ , U
k,j
n = Uk

κ , V
k,j
n = V k

κ , Z
k,j,x
n = Zk;x

κ , (7.14)

Kk,j
n = Lk

κ, K
k,j
n = L

k
κ, K̂k,j

n = L̂k
κ, K̂

k,j
n = L̂

k
κ, (7.15)

Nk,j
n = Nk

κ , N
k,i

l =

i∑

m=1

Nk,m
l and Nk

l =

Nk
l−1∑

m=1

Nk,m
l with Nk

0 = 1, (7.16)

where κ is the unique alive multi-index such that |κ| = n and

j = η(κ) $ #{κ̂ ∈ M
A : κ̂ ≺ κ}+ 1. (7.17)

(Many K, K could be zero.) For the tracking systems, we define

Kk
n = Lk

κ, K
k
n = L

k
κ, K̂

k

n = L̂k

κ, K̂
k

n = L̂
k

κ, (7.18)

for κ = (1, 1, ..., 1) with |κ| = n. Now, it follows by (7.9), (7.3), (7.12), (7.10), (7.1) and (7.14-7.16) that

An+1 =
1

mN

mN∑

k=1

∑

κ:|κ|=n

L̂
k
κ =

1

mN

mN∑

k=1

Nk
n∑

j=1

K̂
k,j
n and (7.19)

Xk,j
n = Z

k,j,X
k,i

n−1
n for j ∈ {Nk,i−1

n + 1, ..., N
k,i

n }. (7.20)

For convenience, let Ik
n = {i : Kk,i

n 6= 0} and Ik
n = {i : Kk,i

n 6= 0} be the resampled and reduced particles at
time n that started from the kth inital particle and |Ik

n| denote the cardinality of Ik
n. Redefine the resample

and non-resample sets (previously defined in (5.5,5.6,6.7, 6.8))

R
k,i
m =

{
K̂

k,i
m−1+V k,i

m

A
mN
m

/∈ (am−1, bm−1) , i ∈ I
k
m−1

}
, (7.21)

S
k,i
m = {i ∈ I

k
m−1} \ R

k,i
m , (7.22)

Rk,i
m =

{
K̂k,i

m−1+V k,i
m

σm(1)
/∈ (am−1, bm−1) , i ∈ Ik

m−1

}
, (7.23)

Sk,i
m = {i ∈ Ik

m−1} \ Rk,i
m , (7.24)

R
k
m =





K̂
k

m−1+V k,1
m

A
mN
m

/∈ (am−1, bm−1)



 , (7.25)

Rk
m =




K̂k

m−1+V k,1
m

σm(1)
/∈ (am−1, bm−1)



 . (7.26)

The following combinations of resample and non-resample events will be useful in comparing our resampled
particle filter total mass to the weighted total mass in Appendix 2:

RSI
k,il−1 ,il,...,in

l,n = R
k,il−1

l ∩ S
k,il

l+1 ∩· · · ∩ S
k,in−1
n ∩ {in ∈ I

k
n}, (7.27)

RSIk,il−1 ,il,...,in

l,n = Rk,il−1

l ∩ Sk,il

l+1 ∩· · · ∩ Sk,in−1
n ∩ {in ∈ Ik

n}. (7.28)
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Our coupling of the finite systems on common probability space (Ω,F , QY ) is complete. We use this
coupling to transfer the bounds of Theorem 5.3 to the infinite particle system, to prove Theorem 5.1 and
to ease notation about (9.14) of Appendix 2. For these uses, we need the following result.

Theorem 7.1. Suppose Bk
n, Bk

n are the resampled, reduced Markov branching processes defined in (5.1),
(4.1) and Nk

n, N k
n are the corresponding particle numbers. Then,

{
N

k
n,B

k
n

}
1≤k≤mN ,n∈N0,N∈N

D
=



|Ik

n|,
Nk

n∑

i=1

K
k,i
n δ

X
k,i
n





1≤k≤mN ,n∈N0,N∈N

(7.29)

{
N k

n ,Bk
n

}
1≤k≤mN ,n∈N0,N∈N

D
=



|Ik

n |,
Nk

n∑

i=1

Kk,i
n δ

X
k,i
n





1≤k≤mN ,n∈N0,N∈N

(7.30)

and




Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,il,...,in

l+1,n+1 σl(1)1RSIk,il−1,il,...,in

l,n





l,k,n,N

(7.31)

D
=





Nk
l−1∑

il−1=1

Nk,il−1
l∑

il=Nk,il−1−1

l
+1

Wk,il,...,in

l+1,n+1 σl(1)1
Hk,il−1

l

(
Hk,il

l+1

)C···
(
Hk,in−1

n

)C





l,k,n,N

where

W k,il,...,in

l+1,n+1 = W k,in

n+1 · · ·W
k,il+1

l+2 W k,il

l+1 (7.32)

Wk,il,...,in

l+1,n+1 = Wk,in

n+1 · · ·W
k,il+1

l+2 Wk,il

l+1 (7.33)

W k,i
l = αl(X

k,i
l−1) and Wk,i

l = αl(X k,i
l−1). (7.34)

Moreover, there are εn, Cn > 0 and D
N
n ∈ σ

{
mN∑

k=1

|Ik
l |, l ≤ n

}
, such that DN

n+1 ⊂ DN
n ,

QY (DN
n ) ≥ 1 − 2ne−εnmN (7.35)

max
i∈{1,...,Nk

l
}
K

k,i
l ∨ |Ik

l | ∨ Al ≤ Cn ∀1 ≤ k ≤ mN ; 0 ≤ l ≤ n on D
N
n−1, (7.36)

max
i∈{1,...,Nk

l
}
Kk,i

l ∨ |Ik
l | ≤ Cn ∀1 ≤ k ≤ mN ; 0 ≤ l ≤ n on Ω (7.37)

for all n = 0, 1, 2...

Note: For notational simplicity, we take DN
−1 = Ω in the sequel.

Proof. Suppose (temporarily) the alive multi-indices MA were κ ∈ MA if κ ∈ M and either

κ = ∅ or κ = (κ1, ..., κn) with κl ∈ {1, ...,Nk
(κ1,...,κl−1)

} ∀l = 1, ..., n, (7.38)
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M. A. Kouritzin/Branching Particle Filters 31

replacing Nk
(κ1,...,κl−1)

with Nk
(κ1,...,κl−1)

, and we defined

X
k,j
n = Xk

κ , U
k,j
n = Uk

κ , V
k,j
n = V k

κ , (7.39)

Z
k,j,x
n = Zk;x

κ , L
k,j
n = L

k
κ, L̂

k,j
n = L̂

k
κ, (7.40)

N
k,j
n = N

k
κ, N

k,i

l =

i∑

m=1

N
k,m
l and N

k
l =

Nk
l−1∑

m=1

N
k,m
l with N

k
0 = 1, (7.41)

where κ is the unique alive multi-index such that |κ| = n and

j = η(κ) $ #{κ̂ ∈ M
A : κ̂ ≺ κ}+ 1. (7.42)

Then, the resampled particle system algorithm is recovered by (7.1-7.3), (7.9), (7.10) with these definitions.
Moreover, the process distribution of the resampled estimates Bk

n and particle numbers Nk
n do not change

if we select from the (independent)
{
Zk;x

κ

}
, {Uk

κ} and {V k
κ } differently nor if we add in zero weights and

zero offspring numbers. Therefore, examining the equations (7.1-7.42) and concentrating on this resampled
particle algorithm, we find

{
N

k
n,B

k
n

}
k,n,N

D
=



|Ik

n|,
Nk

n∑

i=1

K
k,i
n δ

X
k,i
n





k,n,N

. (7.43)

(7.30,7.31) are handled similarly. (7.35-7.37) now follow from Lemma 4.1, Theorem 5.3 and (7.29,7.30). �

For notational convenience, we define the (exchangeable random) signed measures {BN,k
n }mN

k=1 and the
parent operators (with respect to κ and η defined in (7.42)) by:

BN,k
n = 1DN

n−1

Nk
n∑

i=1

Kk,i
n δ

X
k,i
n

with Kk,i
n = K

k,i
n −Kk,i

n (7.44)

pl(i) = η(κ1, ..., κl−1) when i = η(κ1, ..., κl) (7.45)

pl,m(i) =

{
pl(· · · pm−1(pm(i))) for l ≤ m
i for l > m

(7.46)

(so i ∈ {Nk,pl(i)−1

l + 1, ..., N
k,pl(i)

l }). Finally, by the argument in (5.17) there is a c > 1 so that

W k,i
l ≤ c ∀i, k, l ∈ N. (7.47)

Now that we have redefined the algorithms on the same (infinite particle system and) probability space
(Ω,F , QY ) (for each fixed Y ), we can compare their particle systems.

Theorem 7.2. Suppose p ∈ N as well as the conditions and setting of Theorem 7.1 with all algorithms
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M. A. Kouritzin/Branching Particle Filters 32

defined on (Ω,F , QY ). Then, there are Cn = Cp,Y
n > 0 such that

EY
[
|AmN

n − σn(1)|p1DN
n−1

]
≤ Cnm

−p

2

N , (7.48)

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
n∪Ik

n

|Kk,i
n −Kk,i

n |

∣∣∣∣∣∣

p

1DN
n−1


 ≤ Cnm

−p

2

N (7.49)

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
n∪Ik

n

|K̂k,i
n − K̂k,i

n |

∣∣∣∣∣∣

p

1DN
n−1


 ≤ Cnm

−p
2

N and (7.50)

EY

[∣∣∣∣∣
1

mN

mN∑

k=1

|K̂k

n− K̂k

n|
∣∣∣∣∣

p

1DN
n−1

]
≤ Cnm

− p
2

N (7.51)

for all mN = p+ 1, p+ 2, ... and n = 1, 2..., where DN
n−1 is as in Theorem 7.1.

As these are bounds in N , we highlighted the previously-suppressed N -dependence in AmN
n .

The following lemma is used (with induction) to prove (7.50) implies (7.48) in Theorem 7.2.

Lemma 7.1. Suppose n ∈ N0 and EY
[
|AmN

l − σl(1)|p1DN
l−1

]
N� m

− p

2

N for all l ≤ n. Then,

EY
[
|AmN

n+1 − σn+1(1)|p1DN
n

] N�
n−1∑

j=1

EY

[∣∣∣∣∣
1

mN

mN∑

k=1

|K̂k

j − K̂
k

j |
∣∣∣∣∣

p

1DN
j−1

]

+ m
−p

2

N +

n−1∑

j=1

EY




∣∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
j
∪Ik

j

|K̂k,i
j − K̂k,i

j |

∣∣∣∣∣∣∣

p

1DN
j−1


 .

The proof of this lemma is involved and hence delayed to Appendix 2.
Proof of Theorem 7.2. Set Up: Using the independence of the V ’s, letting

Gl
k = σ{V j,i

m : i, j ∈ N,m 6= l} ∨ σ{V j,i
l : j ≤ k, i ∈ N} ∨ FUZ

∞ , (7.52)
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M. A. Kouritzin/Branching Particle Filters 33

noting the boundedness of fV and considering −∞ ≤ al ≤ bl ≤ ∞, one has by (7.21,7.23,7.25) that

EY




∑

i∈Ik
l−1

∪Ik
l−1

1
R

k,i

l
4Rk,i

l

∣∣Gl
k−1


 (7.53)

≤
∑

i∈Ik
l−1

∪Ik
l−1

[∣∣∣∣∣

∫ al−1σl(1)−K̂k,i

l−1

al−1A
mN
l

−K̂
k,i

l−1

fV (v)dv

∣∣∣∣∣+
∣∣∣∣∣

∫ bl−1σl(1)−K̂k,i

l−1

bl−1A
mN
l

−K̂
k,i

l−1

fV (v)dv

∣∣∣∣∣

]

N� 1(DN
l−1

)C + |AmN

l − σl(1)|1DN
l−1

+
∑

i∈Ik
l−1

∪Ik
l−1

|K̂k,i
l−1 − K̂

k,i
l−1|1DN

l−1

EY




∑

i∈Ik
l−1

∪Ik
l−1

1
S

k,i

l
4Sk,i

l

∣∣Gl
k−1


 (7.54)

N� 1(DN
l−1

)C + |AmN

l − σl(1)|1DN
l−1

+
∑

i∈Ik
l−1

∪Ik
l−1

|K̂k,i
l−1 − K̂

k,i
l−1|1DN

l−1

EY
[
1Rk

l
4Rk

l

∣∣Gl
0

]
(7.55)

N� 1(DN
l−1

)C + |AmN

l − σl(1)|1DN
l−1

+ |K̂k

l−1 − K̂
k

l−1|1DN
l−1

EY
[
1Sk

l
4Sk

l

∣∣Gl
0

]
(7.56)

N� 1(DN
l−1

)C + |AmN

l − σl(1)|1DN
l−1

+ |K̂k

l−1 − K̂
k

l−1|1DN
l−1

almost surely for all l = 1, 2, ... Now, set Sk,j
l = S

k,j
l ∩ Sk,j

l , with S
k,j
l , Sk,j

l defined in (7.22,7.24). If
i ∈ Ik

n∪Ik
n, then either i ∈ Ik

n4Ik
n so there is a time l ≥ 1 when only one algorithm ancestor was resampled

or i ∈ Ik
nIk

n so the resampled and reduced particles have the same ancestorial chains. Hence, by (7.45,7.46)

|Kk,i
n −Kk,i

n | ≤
n∑

l=1

∣∣∣∣
{
|Kk,i

n | + |Kk,i
n |
}

1
R

k,pl,n(i)

l
4Rk,pl,n(i)

l

+ (7.57)

1
S

k,pn,n(i)
n S

k,pn−1,n(i)

n−1
···Sk,pl+1,n(i)

l+1

∣∣∣∣∣∣

n∏

j=l+1

W
k,pj,n(i)
j [AmN

l − σl(1)]

∣∣∣∣∣∣
1

R
k,pl,n(i)

l
Rk,pl,n(i)

l

∣∣∣∣∣∣
,

|K̂k,i
n − K̂k,i

n | ≤
n∑

l=1

∣∣∣∣
{
|K̂k,i

n | + |K̂k,i
n |
}

1
R

k,pl,n(i)

l
4Rk,pl,n(i)

l

+ (7.58)

1
S

k,pn,n(i)
n S

k,pn−1,n(i)

n−1 ···Sk,pl+1,n(i)

l+1

∣∣∣∣∣∣

n+1∏

j=l+1

W
k,pj,n(i)
j [AmN

l − σl(1)]

∣∣∣∣∣∣
1

R
k,pl,n(i)

l
Rk,pl,n(i)

l

∣∣∣∣∣∣
.
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M. A. Kouritzin/Branching Particle Filters 34

For the tracking systems, we let Sk
l = (Rk

l )C ∩ (Rk
l )C and find by (7.5,7.6,7.11,7.18) that

|K̂k

n − K̂k

n| ≤
n∑

l=1

{
|K̂k

n| + |K̂k

n|
}

1Rk
l
4Rk

l
(7.59)

+
n∑

l=1

1Sk
n

Sk
n−1

···Sk
l+1

∣∣∣∣∣∣

n+1∏

j=l+1

W k,1
j [AmN

l − σl(1)]

∣∣∣∣∣∣
1Rk

l
Rk

l
.

Base Case: Clearly, (7.48-7.51) hold with n = 0 and C0 = 0, even though this trivial case is not claimed
in the theorem statement.
Inductive Step: Suppose

EY
[
|AmN

l − σl(1)|p1DN
l−1

]
N� m

− p
2

N (7.60)

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
l
∪Ik

l

|Kk,i
l −Kk,i

l |

∣∣∣∣∣∣

p

1DN
l−1


 N� m

− p
2

N (7.61)

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
l
∪Ik

l

|K̂k,i
l − K̂k,i

l |

∣∣∣∣∣∣

p

1DN
l−1


 N� m

− p

2

N (7.62)

and

EY

[∣∣∣∣∣
1

mN

mN∑

k=1

|K̂k

l − K̂k

l |
∣∣∣∣∣

p

1DN
l−1

]
N� m

− p

2

N (7.63)

hold for all l ≤ n, which are true when n = 0. Then, it follows by Lemma 7.1 that

EY
[
|AmN

l − σl(1)|p1DN
l−1

]
N� m

− p

2

N ∀ l ≤ n+ 1. (7.64)
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Recalling (7.58), noting (7.36), (7.37), (7.47), (7.64) and using exchangeability, one finds that

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
n+1

∪Ik
n+1

|K̂k,i
n+1− K̂k,i

n+1|

∣∣∣∣∣∣

p

1DN
n


 (7.65)

N� EY



∣∣∣∣∣∣

n+1∑

j=1



|Aj − σj(1)| + 1

mN

mN∑

k=1

∑

i∈IIk
n+1

1
R

k,pj,n+1(i)

j
4Rk,pj,n+1(i)

j





∣∣∣∣∣∣

p

1DN
n




N�
n+1∑

j=1




EY
[
|Aj − σj(1)|p1DN

j−1

]
+EY




∣∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈IIk
j−1

1
R

k,i

j
4Rk,i

j

∣∣∣∣∣∣∣

p

1DN
j−1








N� m
−p

2

N +
∑

k1 6=k2 6=···6=kq

q≤p

n+1∑

j=1

EY



∑

i1

1
RRk1,i1

j

∑

i2

1
RRk2,i2

j

· · ·
∑

iq

1
RRkq,iq

j

1DN
j−1




mp
N

N� m
−p

2

N +

p∑

q=1

n+1∑

j=1

EY


 ∑

i1∈II1
j−1

1
RR1,i1

j

∑

i2∈II2
j−1

1
RR2,i2

j

· · ·
∑

iq∈IIq

j−1

1
RRq,iq

j

1DN
j−1




mp−q
N

,

where

IIq
j−1 = I

q
j−1 ∪ Iq

j−1 and RRk,i
j = R

k,i
j 4Rk,i

j . (7.66)

In exactly the same way, we also get from (7.57), (7.36,7.37), (7.47) and (7.64)

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
n+1

∪Ik
n+1

|Kk,i
n+1−Kk,i

n+1|

∣∣∣∣∣∣

p

1DN
n


 (7.67)

N� m
− p

2

N +

p∑

q=1

n+1∑

j=1

EY



∑

i1∈II1
j−1

1
RR1,i1

j

∑

i2∈II2
j−1

1
RR2,i2

j

· · ·
∑

iq∈IIq

j−1

1
RRq,iq

j

1DN
j−1




mp−q
N

and from (7.59,7.47) and (7.64)

EY

[∣∣∣∣∣
1

mN

mN∑

k=1

|K̂k

n+1 − K̂k

n+1|
∣∣∣∣∣

p

1DN
n

]
(7.68)

N� m
− p

2

N +

p∑

q=1

n+1∑

j=1

EY
[
1RR1

j
1RR2

j
· · · 1RRq

j
1DN

j−1

]

mp−q
N
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where

RRk
j = R

k
j 4Rk

j . (7.69)

However, letting K̂K̂k,i
j = |K̂k,i

j − K̂k,i
j |, we find by (7.53,7.36,7.37), exchangeability and (7.64) that

EY




∑

i1∈I1
j−1

∪I1
j−1

1
RR1,i1

j

∑

i2∈I2
j−1

∪I2
j−1

1
RR2,i2

j

· · ·
∑

iq∈I
q

j−1∪Iq

j−1

1
RRq,iq

j

1DN
j−1


 (7.70)

N� EY



(
|Aj − σj(1)| +

∑

i1

K̂K̂1,i1
j−1

)
· · ·


|Aj − σj(1)| +

∑

iq

K̂K̂q,iq

j−1


1DN

j−1




N�
q∑

r=0

EY

[
|Aj − σj(1)|q−r

∑

i1

K̂K̂1,i1
j−1

∑

i2

K̂K̂2,i2
j−1 · · ·

∑

ir

K̂K̂r,ir

j−1 1DN
j−1

]

N�
q∑

r=0

EY


|Aj − σj(1)|q−r

∣∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
j−1

∪Ik
j−1

K̂K̂k,i
j−1

∣∣∣∣∣∣∣

r

1DN
j−1




N� m
− q

2

N +EY




∣∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
j−1

∪Ik
j−1

|K̂k,i
j−1 − K̂k,i

j−1|

∣∣∣∣∣∣∣

q

1DN
j−1


 .

Substituting (7.70,7.62) into (7.65) and using Hölder’s inequality, we find

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
n+1

∪Ik
n+1

|K̂k,i
n+1− K̂k,i

n+1|

∣∣∣∣∣∣

p

1DN
n


 (7.71)

N� m
−p

2

N +

p∑

q=1

n+1∑

j=1

m
− q

2

N +

(
EY

[∣∣∣∣∣
1

mN

mN∑

k=1

∑

i

|K̂k,i
j−1 − K̂k,i

j−1|
∣∣∣∣∣

p

1DN
j−2

]) q

p

mp−q
N

N� m
−p

2

N

so

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
l
∪Ik

l

|K̂k,i
l − K̂k,i

l |

∣∣∣∣∣∣

p

1DN
l−1


 N� m

− p
2

N ∀l ≤ n+ 1. (7.72)

Similarly, replacing (7.65) with (7.67), we have

EY



∣∣∣∣∣∣

1

mN

mN∑

k=1

∑

i∈Ik
l
∪Ik

l

|Kk,i
l −Kk,i

l |

∣∣∣∣∣∣

p

1DN
l−1


 N� m

− p

2

N ∀l ≤ n+ 1. (7.73)
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Turning to the tracking system and following (7.70), we find by (7.55,7.64) and exchangeability that

EY
[
1RR1

j
1RR2

j
· · · 1RRq

j
1DN

j−1

]
(7.74)

N� m
− q

2

N +EY

[∣∣∣∣∣
1

mN

mN∑

k=1

∑

i

|K̂k

j−1 − K̂k

j−1|
∣∣∣∣∣

q

1DN
j−1

]

so by (7.68) and the method of (7.71-7.72) one has that

EY

[∣∣∣∣∣
1

mN

mN∑

k=1

|K̂k

l − K̂k

l |
∣∣∣∣∣

p

1DN
l−1

]
N� m

− p
2

N ∀l ≤ n+ 1. (7.75)

�

With this coupling and prior preliminary results, we can establish our main result.
Proof of Theorem 5.1.
We can work directly on the coupled algorithms by (7.29,7.30).
Mllns: Taking p > 2

1−2β
, we then find by (7.44), Theorem 7.2 and Fubini’s theorem that

EY

[ ∞∑

N=1

∣∣∣∣∣
Nβ

mN

mN∑

k=1

BN,k
n (f)

∣∣∣∣∣

p]
(7.76)

�
∞∑

N=1

EY

[∣∣∣∣∣
Nβ

mN

mN∑

k=1

∑

i

|Kk,i
n −Kk,i

n |
∣∣∣∣∣

p

1DN
n−1

]

�
∞∑

N=1

Npβ m
− p

2

N �
∞∑

N=1

N (β− 1
2 )p <∞

and it follows by N th-term divergence that

∞∑

N=1

∣∣∣∣∣
Nβ

mN

mN∑

k=1

BN,k
n (f)

∣∣∣∣∣

p

<∞ ⇒ Nβ

mN

mN∑

k=1

BN,k
n (f) → 0 a.s. [QY ]. (7.77)

Moreover, by Borel-Cantelli and (7.35)

∞∑

N=1

Q((DN
n−1)

C) ≤
∞∑

N=1

2(n− 1)e−εn−1mN <∞ (7.78)

⇒ Q((DN
n−1)

C i.o.) = 0.

Finally, we know

1

mN

mN∑

k=1

Kk,i
n f(X k,i

n )
N� N−β a.s. [QY ]. (7.79)

by (4.1) as well as Theorems 4.1 and 7.1 so this part follows by (7.44).
slln: This part follows from the Mllns, using the same {fi} ⊂ C(E) as in the proof of Theorem 4.1.
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Establish i),ii) of Theorem 5.2: It follows by (7.44) and (7.36,7.37) that

EY|BN,1
n (f)|2 N� EY


 ∑

i∈I1n∪I1
n

|K1,i
n −K1,i

n |21DN
n−1


 (7.80)

N� EY


 ∑

i∈I1n∪I1
n

|K1,i
n −K1,i

n |1DN
n−1




for f ∈ C(E)+. Hence, by (7.80), exchangeability and (7.49) with p = 1

N
1
2EY |BN,1

n (f)|2 N�
(
N

mN

) 1
2

→ 0. (7.81)

and Theorem 5.2 i) is true with ρ = 1
2 and ψN,k = BN,k

n (f).
It follows by (7.44) and (7.49) with p = 2 that

NEY |BN,1
n (f)BN,2

n (f)| (7.82)

≤ N |f |2∞EY

∣∣∣∣∣∣

∑

i∈I1n∪I1
n

∑

j∈I2n∪I2
n

|K1,i
n −K1,i

n ||K2,j
n −K2,j

n |1DN
n−1

∣∣∣∣∣∣

≤ N

mN (mN − 1)
|f |2∞EY




∣∣∣∣∣∣

mN∑

k=1

∑

i∈Ik
n∪Ik

n

|Kk,i
n −Kk,i

n |

∣∣∣∣∣∣

2

1DN
n−1




N� N

mN

→ 0.

Apply Exchangeability Result, Reduced System clt:

1

N
1
2

N∑

k=1

BN,k
n (f) →P 0 by (7.82), (7.81) and Theorem 5.2 with ρ = 1

2 , with E = EY and ψN,k = BN,k
n (f).

Therefore, it follows by (7.44), (7.35) that for any ε > 0

QY(N− 1
2

N∑

k=1

∑

i

(Kk,i
n f(Xk,i

n ) −Kk,i
n f(Xk,i

n )) > ε) (7.83)

≤ QY(N− 1
2

N∑

k=1

BN,k
n (f) > ε) +QY((DN

n−1)
C) → 0.

The clt in Theorem 5.1 now follows from the clt in Theorem 4.1 and Theorem 7.1. �

8. Appendix I: Proof of Proposition 4.1, variance calculation

Abbreviating Mk
n = MBk

n (f), one notes from (4.11) and (4.8) that

Mk
n =

n∑

l=0

[
Bk

l (Al+1,nf) − Bk
l−1 (Al,nf)

]
, (8.1)
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M. A. Kouritzin/Branching Particle Filters 39

where Bk
−1 = π0. The variance of the ‘l = 0’ term is

EY
∣∣Bk

0 (A1,nf) − Bk
−1(A0,nf)

∣∣2 = EY
∣∣(A1,nf(χk)) − π0(A1,nf)

∣∣2 (8.2)

= π0

(
(A1,nf)2

)
− (π0(A1,nf))

2
.

The martingale differences for l ≥ 1 are by (4.1), (4.4), (4.2), (3.2), Step 4 of the algorithm and (4.7)

Bk
l (Al+1,nf) − Bk

l−1(Al,nf) (8.3)

=

Nk
l−1∑

i=1





N k,i

l∑

j=N k,i−1

l +1

Lk,j
l Al+1,nf(X k,j

l ) − L̂k,i
l−1KAl+1,nf(X k,i

l−1)





=

Nk
l−1∑

i=1

Lk,i

l−1





Nk,i

l∑

j=N k,i−1

l +1

Al+1,nf(X k,j
l )

−EY




Nk,i

l∑

j=N k,i−1

l +1

Al+1,nf(X k,j
l )

∣∣FUX
l−1 ∨ FV

l







.

Therefore, by the independence of the {U ,V ,Z}

EY
[
(Bk

l (Al+1,nf) − Bk
l−1(Al,nf))2

∣∣FUX
l−1 ∨ FV

l

]
(8.4)

=

Nk
l−1∑

i1,i2=1

Lk,i1
l−1L

k,i2
l−1




EY




Nk,i1
l∑

j1=Nk,i1−1

l
+1

Al+1,nf(X k,j1
l )

Nk,i2
l∑

j2=Nk,i2−1

l
+1

Al+1,nf(X k,j2
l )

∣∣∣∣FUX
l−1 ∨ FV

l




− EY




Nk,i1
l∑

j1=Nk,i1−1

l
+1

Al+1,nf(X k,j1
l )

∣∣∣∣FUX
l−1 ∨ FV

l




× EY




Nk,i2
l∑

j2=Nk,i2−1

l
+1

Al+1,nf(X k,j2
l )

∣∣∣∣FUX
l−1 ∨ FV

l








=

Nk
l−1∑

i=1

∣∣∣Lk,i

l−1

∣∣∣
2




EY




∣∣∣∣∣∣∣

Nk,i

l∑

j=Nk,i−1

l +1

Al+1,nf(X k,j
l )

∣∣∣∣∣∣∣

2 ∣∣∣∣FUX
l−1 ∨ FV

l




−

∣∣∣∣∣∣∣
EY




Nk,i

l∑

j=N k,i−1

l +1

Al+1,nf(X k,j
l )

∣∣∣∣FUX
l−1 ∨ FV

l




∣∣∣∣∣∣∣

2

.
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However, by the independence of the {U ,V ,Z} again as well as (4.6)

EY







Nk,i

l∑

j=N k,i−1

l +1

Al+1,nf(X k,j
l )




2

∣∣FUX
l−1 ∨ FV

l


 (8.5)

= EY
[
N k,i

l

{
K(Al+1,nf)2(X k,i

l−1) − (KAl+1,nf)2(X k,i
l−1)

}

+
(
N k,i

l KAl+1,nf
)2

(X k,i
l−1)

∣∣FUX
l−1 ∨ FV

l

]

=
L̂k,i

l−1

Lk,i

l−1

{
K(Al+1,nf)2(X k,i

l−1) − (KAl+1,nf)2(X k,i
l−1)

}

+





∣∣∣∣∣
L̂k,i

l−1

Lk,i

l−1

∣∣∣∣∣

2

+
L̂k,i

l−1

Lk,i

l−1

−
⌊
L̂k,i

l−1

Lk,i

l−1

⌋
−
∣∣∣∣∣
L̂k,i

l−1

Lk,i

l−1

−
⌊
L̂k,i

l−1

Lk,i

l−1

⌋∣∣∣∣∣

2


 (KAl+1,nf)2(X k,i

l−1),

since

EY
[
|N k,i

l |2
∣∣FUX

l−1 ∨ FV
l

]
=

⌊
L̂k,i

l−1

Lk,i

l−1

⌋2

+

∣∣∣∣∣2
⌊
L̂k,i

l−1

Lk,i

l−1

⌋
+ 1

∣∣∣∣∣Q
Y

(
Uk,i

l ≤ L̂k,i
l−1

Lk,i

l−1

−
⌊
L̂k,i

l−1

Lk,i

l−1

⌋)
,

and

∣∣∣∣∣∣∣
EY




Nk,i

l∑

j=N k,i−1

l +1

Al+1,nf(X k,j
l )

∣∣FUX
l−1 ∨ FV

l




∣∣∣∣∣∣∣

2

(8.6)

=
∣∣∣EY

[
N k,i

l KAl+1,nf(X k,i
l−1)

∣∣FUX
l−1 ∨ FV

l

]∣∣∣
2

=

∣∣∣∣∣
L̂k,i

l−1

Lk,i

l−1

∣∣∣∣∣

2

(KAl+1,nf)2(X k,i
l−1).
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Combining the last three equations, letting fl,n = Al(Al+1,nf)2−αl(KAl+1,nf)2, breaking over the resample

and non-resample cases, and averaging over the Vk,i
l , one finds by (4.17,4.18,4.2,4.3) that

EY
[
(Bk

l (Al+1,nf) − Bk
l−1(Al,nf))2

∣∣FUVX
l−1

]
(8.7)

= EY

[Nk
l−1∑

i=1

Lk,i

l−1L̂k,i
l−1

{
K(Al+1,nf)2(X k,i

l−1) − (KAl+1,nf)2(X k,i
l−1)

}

+

Nk
l−1∑

i=1

(
Lk,i

l−1

)2

r

(
L̂k,i

l−1

Lk,i

l−1

)
(KAl+1,nf)2(X k,i

l−1)
∣∣FUVX

l−1

]

= σl(1)

Nk
l−1∑

i=1

Lk,i
l−1νl(αl(X k,i

l−1)L
k,i
l−1)

{
fl,n(X k,i

l−1)
}

+ σ2
l (1)

Nk
l−1∑

i=1

νl(αl(X k,i
l−1)L

k,i
l−1)r

(
L̂k,i

l−1

σl(1)

)
(KAl+1,nf)2(X k,i

l−1)

+

Nk
l−1∑

i=1

(
Lk,i

l−1

)2

αl(X k,i
l−1)νl(αl(X k,i

l−1)L
k,i
l−1)

{
fl,n(X k,i

l−1)
}

since r

(
L̂k,i

l−1

L̂k,i

l−1

)
= 0. Now, in the case ‘l = 1’ we have Lk,i

l−1 = 1 = N k
l−1 and

EY
[
(Bk

1 (A2,nf) − Bk
0(Al,nf))2

]
(8.8)

= σ1(1)EY [ν1(α1(χ
k))
{
A1(A2,nf)2(χk) − α1(χ

k)(KA2,nf)2(χk)
}
]

+ σ2
1(1)EY [ν1(α1(χ

k))r

(
α1(χ

k)

σ1(1)

)
(KA2,nf)2(χk)]

+ EY [α1(χ
k)ν1(α1(χ

k))
{
A1(A2,nf)2(χk) − α1(χ

k)(KA2,nf)2(χk)
}
].
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Moreover, for any l ≥ 2, m ∈ {1, 2, ..., l − 1} and bounded function φm, we have by (4.4), (4.6), (3.1),
independence and division over resampled and non-resampled cases that

EY




Nk
m∑

i=1

Lk,i
m φm(X k,i

m ,Lk,i
m )

∣∣∣∣FUVX
m−1


 (8.9)

=

Nk
m−1∑

j=1

EY




Nk,j

m∑

i=N k,j−1

m +1

Lk,j

m−1φm(X k,i
m ,Lk,j

m−1)

∣∣∣∣FUVX
m−1




=

Nk
m−1∑

j=1

EY




Nk,j

m∑

i=N k,j−1

m +1

Lk,j

m−1Kφm(X k,j
m−1,L

k,j

m−1)

∣∣∣∣FUVX
m−1




=

Nk
m−1∑

j=1

EY

[
L̂k,j

m−1Kφm(X k,j
m−1,L

k,j

m−1)

∣∣∣∣FUVX
m−1

]

=

Nk
m−1∑

j=1

Lk,j
m−1E

Y

[
Amφm(X k,j

m−1,L
k,j

m−1)

∣∣∣∣FUVX
m−1

]

=

Nk
m−1∑

j=1

Lk,j
m−1φm−1(X k,j

m−1,Lk,j
m−1),

where

φm−1(X ,L) (8.10)

= Amφm(X , σm(1)) νm(αm(X )L) +Amφm(X , L)

∣∣∣∣
L=αm(X )L

νm(αm(X )L).

(8.9) implies that

EY




Nk
1∑

i=1

Lk,i
1 φ1(X k,i

1 ,Lk,i
1 )


 (8.11)

= π0 [A1φ1(·, σ1(1))ν1(α1(·)) +A1φ1(·, α1(·))ν1(α1(·))] .

Now, recall (4.23) and suppose that

EY



Nk

m−1∑

i=1

Lk,i
m−1φm−1(X k,i

m−1,Lk,i
m−1)


 (8.12)

=

m−1∑

j=0

∑

1≤i1<i2<···<ij≤m−1

π0[A1,m−1φm−1(·, αij ,m−1)νij ,m−1νi1,i2,...,ij
]
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M. A. Kouritzin/Branching Particle Filters 43

for some m ∈ {2, ..., l − 1}, which is known when m = 2 by (8.11) and (4.19,4.20,4.21). (For clarity, the
“j = 0” term on the right of (8.12) is simply π0[A1,m−1φm−1(·, α0,m−1)ν0,m−1].) Then, it follows from
(8.9,8.10,8.12) and (4.19,4.20,4.21) by letting r = j + 1 that

EY




Nk
m∑

i=1

Lk,i
m φm(X k,i

m ,Lk,i
m )


 (8.13)

=

m−1∑

j=0

∑

1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, σm(1))νij ,mνij ,m−1νi1,i2,...,ij
]

+
m−1∑

j=0

∑

1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij
]

=

m∑

r=1

∑

1≤i1<i2<···<ir≤m
ir=m

π0[A1,mφm(·, αir ,m)νir ,mνi1,i2,...,ir
]

+

m−1∑

j=0

∑

1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij
]

=
m∑

j=0

∑

1≤i1<i2<···<ij≤m

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij
].

Hence, (8.13) holds for all m = 1, ..., l− 1 by induction and (4.22) follows by (8.1), (8.2), (8.7) and (8.13),
considering the three cases:

φl−1(X ,L) = {fl,n(X )} νl(αl(X )L) (8.14)

φl−1(X ,L) = Lαl(X ) {fl,n(X )} νl(αl(X )L) (8.15)

φl−1(X ,L) =
1

Lνl(αl(X )L)r

(
αl(X )L
σl(1)

)
(KAl+1,nf)2(X ), (8.16)

where fl,n = Al(Al+1,nf)2− αl(KAl+1,nf)2. �

9. Appendix 2: Proof of Lemma 7.1

Essentially, we observe that this result would hold trivially for the weighted particle system and then use
induction and the coupling to show the necessary differences between the resampled and weighted systems
converge appropriately.

Proof. Recall A
mN

0 = 1 so A
mN

0 = σ0(1). It follows from (7.19,7.10,7.14,7.15) that for all n ≥ 0

A
mN

n+1 =
1

mN

mN∑

k=1

∑

i∈Ik
n

αn+1(X
k,i
n )Kk,i

n . (9.1)

ht
tp

://
hd

l.h
an

dl
e.

ne
t/1

04
02

/e
ra

.4
09

72
   

  E
R

A
: E

du
ca

tio
n 

an
d 

R
es

ea
rc

h 
A

rc
hi

ve
, U

ni
ve

rs
ity

 o
f A

lb
er

ta
   

  2
0/

04
/2

01
5
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Base Case: For notational reasons we consider the case n = 0 separately. One then finds by (7.1,7.2) that
(9.1) reduces to

A
mN

1 =
1

mN

mN∑

k=1

α1(χ
k), (9.2)

where {α1(χ
k)}∞k=1 are i.i.d., bounded and mean σ1(1) with respect to QY . Hence, by the Marcinkiewicz-

Zygmund and Jensen inequalities there is a constant Cp > 0 such that

EY |AmN

1 − σ1(1)|p ≤ Cp

mp
N

EY

∣∣∣∣∣

mN∑

k=1

(
α1(χ

k) − σ1(1)
)2
∣∣∣∣∣

p

2

(9.3)

≤ Cp

m
p
2

N

1

mN

mN∑

k=1

EY
∣∣α1(χ

k) − σ1(1)
∣∣p N� m

− p
2

N

for any p ≥ 1.
Case n ≥ 1: It follows from (7.3,7.2,7.15,7.21,7.45) that K

k,1
0 = 1 and

K
k,i
j = A

mN

j 1
R

k,pj(i)

j

+W
k,pj (i)
j K

k,pj (i)
j−1 1

S
k,pj (i)

j

∀i ∈ I
k
j , j ∈ N. (9.4)

Using (9.1,7.34) and (9.4) recursively, one has

A
mN

n+1 (9.5)

=
1

mN

mN∑

k=1

Nk
n−1∑

in−1=1

N
k,in−1
n∑

in=N
k,in−1−1

n +1

W k,in

n+1A
mN
n 1

RSI
k,in−1,in
n,n

+
1

mN

mN∑

k=1

Nk
n−2∑

in−2=1

N
k,in−2
n−1∑

in−1=N
k,in−2−1

n−1
+1

W k,in

n+1W
k,in−1
n A

mN

n−11RSI
k,in−2,in−1,in

n−1,n

+
1

mN

mN∑

k=1

Nk
n−3∑

in−3=1

N
k,in−3
n−2∑

in−2=N
k,in−3−1

n−2
+1

W k,in

n+1W
k,in−1
n W

k,in−2

n−1 A
mN

n−21RSI
k,in−3,...,in

n−2,n

+ · · · +

+
1

mN

mN∑

k=1

Nk
1∑

i1=1

W k,in

n+1W
k,in−1
n · · ·W k,i2

3 W k,i1
2 A

mN

1 1
RSI

k,i0,...,in
1,n

+
1

mN

mN∑

k=1

W k,1
n+1W

k,1
n · · ·W k,1

3 W k,1
2 W k,1

1 1
RSI

k,1,...,1
0,n

,

where the non-summed indices satisfy i0 = 1, il = N
k,il−1−1

l +1 (since no resampling). For clarity, here and

below RSI
k,1,...,1
0,n = S

k,1
1 S

k,1
2 · · ·Sk,1

n {1 ∈ Ik
n}. Noting S

k,1
1 S

k,1
2 · · ·Sk,1

n {1 ∈ Ik
n} = (Rk

1)C(Rk
2)

C · · · (Rk
n)C (by
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(7.21, 7.25, 7.2, 7.3, 7.5, 7.15, 7.18)) and letting

W k,1
1,n+1 $ W k,1

n+1W
k,1
n · · ·W k,1

2 W k,1
1 (9.6)

= W k,1
1,n+11RSI

k,1,...,1
0,n

+W k,1
1,n+11Rk

1
(Rk

2
)C ···(Rk

n−1
)C(Rk

n
)C + · · ·

+ W k,1
1,n+11Rk

n−2
(Rk

n−1
)C(Rk

n
)C +W k,1

1,n+11Rk
n−1

(Rk
n
)C +W k,1

1,n+11Rk
n
,

we have by (9.5-9.6) that

mNA
mN

n+1 − σn+1(1) (9.7)

=

mN∑

k=1

∣∣∣W k,1
1,n+1 − σn+1(1)

∣∣∣

+

mN∑

k=1

∣∣∣∣∣∣∣

Nk
n−1∑

in−1=1

N
k,in−1
n∑

in=N
k,in−1−1

n +1

W k,in

n+1A
mN
n 1

RSI
k,in−1,in
n,n

−W k,1
1,n+11Rk

n

∣∣∣∣∣∣∣

+

mN∑

k=1

∣∣∣∣∣

Nk
n−2∑

in−2=1

N
k,in−2
n−1∑

in−1=N
k,in−2−1

n−1
+1

W k,in

n+1W
k,in−1
n A

mN

n−11RSI
k,in−2,in−1,in

n−1,n

−W k,1
1,n+11Rk

n−1
(Rk

n
)C

∣∣∣∣∣

+

mN∑

k=1

∣∣∣∣∣

Nk
n−3∑

in−3=1

N
k,in−3
n−2∑

in−2=N
k,in−3−1

n−2
+1

W k,in

n+1W
k,in−1
n W

k,in−2

n−1 A
mN

n−21RSI
k,in−3,...,in

n−2,n

−W k,1
1,n+11Rk

n−2
(Rk

n−1
)C(Rk

n
)C

∣∣∣∣∣
+ · · · +

+

mN∑

k=1

∣∣∣∣∣

Nk
1∑

i1=1

W k,in

n+1W
k,in−1
n · · ·W k,i2

3 W k,i1
2 A

mN

1 1
RSI

k,i0,...,in
1,n

−W k,1
1,n+11Rk

1
(Rk

2
)C···(Rk

n
)C

∣∣∣∣∣.

Now, {W k,1
1,n+1 − σn+1(1)}mN

k=1 are i.i.d., zero mean and bounded with respect to QY . Therefore, it follows
as above by the Marcinkiewicz-Zygmund and Jensen inequalities that

EY

∣∣∣∣∣
1

mN

mN∑

k=1

W k,1
1,n+1 − σn+1(1)

∣∣∣∣∣

p
N� m

−p
2

N (9.8)
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for any p ≥ 1. Next, we consider a typical (non-first) term in (9.7) in terms of l ∈ {1, ..., n}

Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,in

n+1 · · ·W
k,il+1

l+2 W k,il

l+1 A
mN

l 1
RSI

k,il−1,...,in

l,n

(9.9)

−W k,1
1,n+11Rk

l
(Rk

l+1
)C···(Rk

n
)C = T

k
1 + T

k
2 + T

k
3 + T

k
4 ,

where

T
k
1 =

Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,in

n+1 · · ·W
k,il+1

l+2 W k,il

l+1 σl(1)1RSIk,il−1,...,in

l,n

(9.10)

−W k,1
1,n+11Rk

l
(Rk

l+1
)C···(Rk

n
)C

T
k
2 = (9.11)

Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,in

n+1 · · ·W k,il+1

l+2 W k,il

l+1 (AmN

l − σl(1)) 1
RSI

k,il−1,...,in

l,n

T
k
3 =

Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,in

n+1 · · ·W
k,il+1

l+2 W k,il

l+1 σl(1) (9.12)

×
(
1

RSI
k,il−1,...,in

l,n

− 1RSIk,il−1,...,in

l,n

)

and

T
k
4 = W k,1

1,n+11Rk
l
(Rk

l+1
)C ···(Rk

n
)C −W k,1

1,n+11Rk
l
(Rk

l+1
)C ···(Rk

n
)C . (9.13)

Bound T1: The sums in T1 only involve the reduced system so by Theorem 7.1 we can just work in the
original (prior to coupling) reduced system setting. Now, recalling νl, αi,m, νi,m from (4.18,4.19,4.21) and

using (7.33), one has by (7.34,5.5), independence, the fact σl(1)1Hk,il−1
l

= Lk,il−1

l−1 1Hk,il−1
l

, (4.6), (4.4) and
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(4.1) that

EY




Nk
l−1∑

il−1=1

Nk,il−1
l∑

il=Nk,il−1−1

l
+1

Wk,il,...,in

l+1,n+1 σl(1)1
Hk,il−1

l

(
Hk,il

l+1

)C···
(
Hk,in−1

n

)C

∣∣∣∣FUVX
l−1


 (9.14)

=

Nk
l−1∑

il−1=1

EY


σl(1)

Nk,il−1
l∑

il=Nk,il−1−1

l
+1

(νn ◦ αl,nKαn+1)(X k,il

l , ...,X k,in−1

n−1 )

× Wk,in−1
n · · ·Wk,il+1

l+2 Wk,il

l+11
Hk,il−1

l

(
Hk,il

l+1

)C ···
(
Hk,in−2

n−1

)C

∣∣∣∣FUVX
l−1

]

=

Nk
l−1∑

il−1=1

EY


σl(1)

Nk,il−1
l∑

il=N k,il−1−1

l
+1

Γk
l,n+1(X k,il

l )1Hk,il−1
l

∣∣∣∣FUVX
l−1




=

Nk
l−1∑

il−1=1

L̂k,il−1

l−1 EY

[
Γk

l,n+1(X k,il

l )1Hk,il−1
l

∣∣∣∣FUVX
l−1

]

=

Nk
l−1∑

il−1=1

Lk,il−1

l−1

(
αlνl ◦ αlKΓk

l,n+1

)
(X k,il−1

l−1 )

= Bk
l−1

(
αlνl ◦ αlKΓk

l,n+1

)

and by (7.34), (7.26, 7.18, 7.11, 7.6), (4.18,4.19,4.21) that

EY

[
W k,1

1,n+11Rk
l (Rk

l+1)
C···(Rk

n)C

∣∣∣∣FUV X
l−1

]
(9.15)

= W k,1
1,l

(
νl ◦ αlKΓk

l,n+1

)
(Xk,1

l−1)

=

l∏

m=1

αm(Xk,1
m−1)

(
νl ◦ αlKΓk

l,n+1

)
(Xk,1

l−1)

for l = 1, ..., n, where

Γk
l,n+1(xl) (9.16)

= (αl+1νl+1 ◦ αl,l+1K (αl+2νl+2 ◦ αl,l+2 · · ·K (αnνn ◦ αl,nKαn+1))) (xl).

Hence, by (7.31), (9.14), (4.1), (4.9), (1.1), (1.2) and (9.15)

EY




Nk
l−1∑

il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l
+1

W k,in

n+1 · · ·W
k,il+1

l+2 W k,il

l+1 σl(1)1RSIk,il−1,...,in

l,n


 (9.17)

= σl−1(αlνl ◦ αlKΓk
l,n+1)

= EY

[
W k,1

1,n+11Rk
l (Rk

l+1)
C ···(Rk

n)C

]
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and {Tk
1}mN

k=1, the first terms of (9.9), are i.i.d., bounded (w.r.t. EY ) and zero mean. Therefore, it follows
as above by the Marcinkiewicz-Zygmund and Jensen inequalities that

EY
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1

mN

mN∑

k=1

T
k
1

∣∣∣∣∣

p
N� m

− p

2

N (9.18)

for any p ≥ 1.
Bound T2: One has by the induction hypothesis, (7.47,7.36,7.37) and Jensen’s inequality that for any
p ≥ 1
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2

N . (9.19)

Bound T3: One finds by (7.47) that
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S 4Sk,ij−1
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k,ij−1

j 4Sk,ij−1

j and R 4Rk,ij−1
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k,ij−1

j 4Rk,ij−1

j . (9.21)

Recalling Gj
k from (7.52), one has that
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(9.22)
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for j = l, ..., n, where

∆k
j = (9.23)
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are bounded {Gj
k}-martingale differences (in k). Therefore, it follows by the Burkholder-Gundy-Davis in-

equality and Jensen’s inequality as well as exchangeability that
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for p ≥ 2. Now, by Hölder’s inequality we can take p to be an integer. Moreover, by (7.36,7.37)
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and one has by (7.54) that
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so by (9.22), (9.24), (9.25), (9.26) and (7.35)
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Similarly to (9.22-9.27), one finds that
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Therefore, one has by (9.20), (9.27), (9.28) and the lemma hypothesis that
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for any p ≥ 1.
Bound T4: We find by (7.47) and analogous to (9.20-9.25) that
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Hence, by (7.56,7.55) and the lemma hypothesis
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for any p ≥ 1. �
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