l*l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

Thequality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possitle.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproductionin full orin part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de Ia
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si l'uriiversité nous atan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme es;

soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canad¥

UNIVERSITY OF ALBERTA

Identification Issues in Long Range Predictive Control
BY

David Stephen Shook

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

Doctor of Philosophy

Department of Chemical Engineering

EDMONTON, ALBERTA
Spring, 1991

(3 |

National Library 8ibliothéque nationale

of Canada du Canada

Canadian Theses Service Service des théses canadiennes
Ottawa, Canada

K1A ON4

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in histher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©0-315-66814-8

Canadi

UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: David Stephen Shook

TITLE OF THESIS: Identification Issues in Long Range Predictive Control
NEGREL: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1991

Permission is hercby granted to UNIVERSITY OF ALBERTA LIBRARY
to reproduce single copies of this thesis and to lend or sell such copies for private,

scholarly or scientific purposes only.
The author reserves other publication rights, and neither the thesis nor cx-

tensive extracts from it may be printed or otherwise reproduced without the author’s

written permission.

........................

306 Albert Ave.
Saskatoon, Sask.

S7N 1G1

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Identification Issues
in Long Range Predictive Control submitted by David Stephen Shook in partial

fulfilment of the degree of Doctor of Philosophy in Chemical Engincering,.

Prof. S. L. Shah (supervisor)

- —

— T . -
S - . .
o (.
[.M./,(./.:EC. ‘e
Prof. R. K. Wood

..........................

Prof. P. J. Gawthrop

This work is dedicated
to the memory of Margaret Dempsey,
to my friends,

and to my new family.

Abstract

The field of adaptive control has been growing and gaining womentum for almost
twenty years. Many sophisticated adaptive control methods exist but the long-term
quality of control always relies on the quality of process identification.

The role of process identification in adaptive implementations of Geueralized
Predictive Control (GPC) was examined in this work. An overall process control
objective — including both process identification and control — was proposed. The
intention was for both identification and control to be parts of an adaptive controller
designed as a complete unit. The identification and contro) parts would then work
toward the same goal of good control. When the overall control objective was cho-
sen such that GPC was a logical control method, the corresponding control-relevant
identification objective was found to be different from the usual least squares objec-
tive.

The control-relevant identification objective makes use of long range predic-
tions. as does GPC. To illustrate this property. the new identification method was
named Long Range Predictive Identification, or LRPI. The exact solution can be
found only using iterative methods (e.g. Newton-Raphson), but an approximate
(asymptotically equal) recursive solution method was found that uses an adaptive
data pre-filter and normal recursive least squares.

The LRPI pre-filter depends on the process and noise models and the GPC
controller tuning. Under the conditions studied, the filter had frequency domain
properties similar to those of ad hoc pre-filters used in conjunction with RLS by other
researchers. Adaptive GPC using LRPI provided control performance at least equal
to that when RLS was used with an ad hoc filter, with the additional advantage that
the LRPI filter is chosen automatically by the identification method, and therefore
need not be specified by the user.

An additional concern arises when an adaptive controller is used for both

feedforward and feedback control. Care must be taken in such cases that the process
identification task does not inappropriately discard information in uninformative
feedforward variables. Non-directional forgetting factors will inadvertently discard
such information under conditions where “directional” forgetting factors will not.

Directional forgetting methods are therefore recommended over exponential methods.

Acknowledgements

This book is the product of many people, even though only one name appears as
the author. Two people in particular made it happen: my wife, Kath, and Coorous
Mohtadi. Kath’s sense of humour and support were invaluable, and Coorous's tech-
nical advice and broad hints showed me the way over and over again. | would also
like to thank Dr. Sirish Shah and my parents for their support (both moral and
financial) and the large number of prods they applied to bring this project to an end.

In addition, the number of friends, both within and beyond the Department
of Chemical Engineering, who contributed to this work is impossible to count. [have
enjoyed my time with all of you. It would be unfair to shine the light on a few: the

absence of a mention would darken by comparison. Thank you all.

Contents

1 Introduction

2 Commercial Adaptive Control Software

4.1 Parameter Estimation Methods

4.2 Overall Control Criterion

2.1 Functional Specifications
2.2 Controller Description
2.2.1 Process Communication
2.2.2 Parameter Estimation
2.2.3 Controller Calculation
2.24 Database Management
23 UserlInterface
2.4 Testing and Verification
3 Experimental Verification and Performance
3.1 Equipment Description
3.2 Experimental Performance of Software
3.2.1 Operation in the Presence of Communication Difficulty
3.2.2 Feedforward Control Performance
3.3 Weaknesses of the Existing Algorithm
4 Identification for Adaptive GPC

.....................

.........................

......................

5 Long Range Predictive Identification

3.1 The LRPI Objective
5.2 Exact Solution of the LRPI Problem _
9.2.1 BatchSolution
5.2.2 RecursiveSolution
5.3 Implementation Through Adaptive Filtering
9.3.1 Frequency Domain Analysis of Cost Function

5.3.2 Spectral Factorization

......................

5.3.3 Properties of the Adaptive Filter
5.3.4 Stochastic Extensions
5.3.5 On-line LRPI Implementation

6 Evaluation of LRPI

6.1 Simulation Examples
6.1.1 OpenLoop
6.1.2 Closed Loop

6.2 Experimental Studies

6.3 Conclusions

7 Nonminimal Predictive Control

7.1 Design Philosophy
7.2 The NPC Predictor
7.3 The NPC Noise Model

7.3.1 Control Calculation . .

7.4 Parameter Estimation for NPC

......................

......................

......................

......................

......................

......................

......................

.....................

84

98
100

103
103
104
105
111
117

7.5 Simulations
76 Conclusions,
8 Forgetting Methods for Adaptive GPC
8.1 Forgetting in Recursive Least Squares
8.2 Parameter Confidence Bounds
8.3 The Effects of Forgetting on Parameter Confidence
8.3.1 Implications to Feedforward Adaptive Control
8.4 Experimental Studies
85 Conclusions L
9 Conclusions and Recommendations
9.1 Conclusions
9.2 Recommendations for Future Work
References
A Lrpiest User’s Guide
Al User’s Overview it
A.l.l Scopeof ThisManual
A.1.2 Algorithms and References
A.l3 Useoftheprogram
A.2 Programmer’s Overview
A.2.1 Common Routines
A.2.2 Forgetting Factor Implementation
A.23 FilteringRoutines.

B MATLAB Files

B.1 Introduction .

...............................

175
175
177

181

187
187
187
188
188
191
192
193
195

B2.1 Batch Caleulation. | |
B.2.2 Recursive Calculations 2
B3 Forgetting MFiles 2

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

5.1
5.2
5.3
5.4

Schematic of the GPC controller architecture.

Model Structure Page..

Schematic Diagram of Experimental Heater System
Experimental Open Loop Response to Control Action Change
Experimental Open Loop Response to Disturbance Change

Closed Loop Performance of Adaptive GPC for Run1.

Closed Loop Performance of Adaptive GPC for Run2.
Controller Transfer Function Parameters for Run2
Closed Loop Performance of Adaptive GPC for Run3.........
Controller Transfer Function Parameters for Run 3
Process Output and Communication Errors
Closed Loop PerformanceforRun4

Prediction Errorsfor Run4

Graphical Interpretation of Predictions in LRPI Cost
Contour Plot of LRPI Cost as a Function of Parameter Estimates .
Contour Plot of LS Cost as a Function of Parameter Estimates

Step Responses of LS and LRPIModels

71
74
76

5.5

5.6
5.7
5.8
5.9

6.1

6.2

6.3
6.4

6.5

6.6

6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14

Variation of the Frequency Response of L with Process Model Pole

Position 94
Variation of the Frequency Response of L with Nyo oo, 96
Comparison of L and ad hoc Filters 97
Variation of the Zero of T,q with Np. | 99
On-Line Implementation of Adaptive GPC with LRPI. 101

Step Response of Rohrs et al. Plant and First Order Models for Sam-
pling Frequencyof 3Hz 104
Step Response of Rohrs et al. Plant and First Order Models for Sam-
pling Frequencyof 20 Hz 106
Closed Loop Poles for GPC and LRPI with Different Values of Ny .. 107
Response of Self-tuning GPC for First Order Model, T = 1 — 0.9¢4"!

and Standard RLS 108
Response of Self-tuning GPC for First Order Model, T = (1-0.8¢71)2

and Standard RLS 109
Response of Self-tuning GPC for Firét Order Model, T' = 1 — 0.8¢"!

and LRPT 110
Experimental Equipment 112
Process Inpat and Output for GPC with LS Estimator. 114

Process Input and Output for GPC with LS Estimator and an ad hoc

Filter. 115
Process Input and Output for GPC and LRPI 116
Parameter Trajectories for GPC with LS Estimator. 118

Parameter Trajectories for GPC with LS Estimator and an ad hoc Filter119
Parameter Trajectories for GPFCand LRPI 120
Evolutionof LRPIFilter 121

7.1
7.2

8.1
8.2
8.3
8.4

8.5

8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

8.15
8.16
8.17

Comparison of GPC and NPC: Noise Free Case 135

Comparison of GPC and NPC: Measurement Noise Present 136
95% Confidence Limits for a Single Parameter Estimate 144
95% Confidence Limits for Two Parameter Estimates 145
Evolution of Parameters and 95% Confidence Region for RLS 147
Evolution of Parameters and 95% Confidence Region for Exponential

Forgetting, 159
Evolution of Parameters and 95% Confidence Region for Directional

Forgetting, a=0.6 154
Evolution of Parameters and 95% Confidence Region for Directional

Forgetting, a=—02 155
Initial Three Dimensional 95% Confidence Region 160
95% Confidence Region for Ydstie’s Forgetting Factor 161
95% Confidence Region for Constant Trace Forgetting Factor 162

95% Confidence Region for Kulhavy’s Directional Forgetting Factor . 163
95% Confidence Region for Higglund’s Directional Forgetting Factor 164
Process Inputs and Outputs for Exponential Forgetting with GPC . . 167
Process Inputs and Outputs for Directional Forgetting with GPC . . 168

Exponential Forgetting Factor Value for Exponential Forgetting with

GPC . . e 169
Forgetting Factor Values for Directional Forgetting with GPC 170
Confidence Bounds for Directional Forgetting and GPC 172

Confidence Bounds for Exponential Forgetting and GPC 173

List of Tables

5.1 Summary of Cost Function Information for Example 5.2 (]
A.l System Data Table Mnemonics Required for Lrpiest 189
A2 Valuesfor EstON 190

Chapter 1

Introduction

The field of self-tuning control has been growing for nearly twenty years. Ever since
the ground-breaking work of Astrém and Wittenmark (1973), many different self-
tuning controllers have been proposed by numerous researchers. This work is con-
cerned with the implementation of a particular self-tuning controller: the generalized
predictive controller, or GPC of Clarke et al.(1987a,b). GPC has been successfully
used in a number of experimental applications, and is distinguished by its ease of con-
figuration and flexibility. The implementation of a self-tuning controller nevertheless
requires the specification of a surprisingly large array of parameters, especially for a
controller as general as GPC. It is one goal of this work to rationalize and simplify
these choices.

A self-tuning controller may be divided conceptually into two parts: a process
identification scheme and a model-dependent controller. It is the role of the process
identification scheme to provide the controller with an up-to-date mathematical de-
scription of the process, and the controller must then produce the appropriate control
action.

The identification scheme identifies the dynamic characteristics of the process
to be controlled, through analysis of process inputs and outputs. It also updates

the description (or model) in the face of changes in the true process. The control

S

action is then chosen to make the model output behave in a user-specified manner.
The interaction between process identification and the controller is fairly involved
and the analysis of adaptive systems is necessarily complex. Nevertheless, the pro-
cess identification scheme is usually the weak link in an adaptive controller. This is
because the controller is typically such that with an accurate or “good” model the
closed loop response will be well-behaved. With a sufficiently inaccurate (or “poor™)
model control performance will be unsatisfactory. The process model is a product of
the identification scheme, and different identification schemes will produce different
models. Furthermore, the identification schemes themselves have tuning parameters
that must be chosen by the user. Moreover, adaptive controllers are typically used
by engineers, who are more at ease with the mathematics used for the control cal-
culations than with the statistics required to understand the subtletjes of process
identification.

The work described in this thesis resulted from a need for more robust, more
easily tuned adaptive control algorithms. Ideally, an adaptive controller should start
up from an initial condition with no knowledge about the process and then operate
safely and in some sense optimally without operator intervention. Failing that, and
more realistically, an adaptive controller would be useful if it could achieve and
maintain high-quality control (after initial operator tuning) in spite of changes in the
process dynamics. In other words, the controller may not be self-commissioning, but
it should be easy to commission and once commissioned it should be self-maintainin g

and not require periodical retuning.

Scope and Objectives

This thesis explores the implementation of a single adaptive controller: the gen-
eralized predictive controller of Clarke et al. (1987a,b), or GPC. GPC calculates
the control action using a process model and is therefore only one half of a usable

adaptive controller. The process identification scheme typically used with GPC and

examined in this work is Recursive Least Squares, or RLS. The objective of this work
is to make adaptive GPC simpler to implement and easier to use.

GPC provides a mechanism for minimizing the predicted control errors over
a finite time horizon in the future. It has been shown to work well in the presence
of measurement noise and model-plant mismatch (McIntosh, 1988), conditions so
common in practice as to be almost universal. The chief advantage of GPC over other
robust self-tuning controllers is its ease of initial configuration. Given an adequate
model, there is a default configuration which typically produces a stable, detuned
closed loop. The user can then “tighten” control incrementally using one or two
controller parameters (see e.g. McIntosh, 1988). For high-speed control (e.g. control
of robot arms, M. Lambert, 1987) where a high-order model is used, configuration is
more complicated than for process control applications but still tractable.

The method of Recursive Least Squares (RLS) is discussed extensively
throughout the self-tuning control literature (e.g. Goodwin and Sin, 1984, Ljung
and Soderstrém, 1983 and Ljung, 1987). RLS is simple to implement and has many
attractive theoretical properties, but the original algorithm has been modified many
times and in many different ways. Most of the modifications have been made in
response to one of two problems: either the Least Squares estimated model does not
provide good control or the estimated model does not track parameter changes. The
first problem has been addressed using data filtering and noise modelling and the
second problem has spawned the whole field of data forgetting.

The filtering applied to the measurements has been shown to have a profound
effect on the identified model. Many of the papers in Shah and Dumont (1990) con-
cur on the fact that filtering is required. There is no unanimity on what filtering is
required, although the consensus is that some form of band-pass filter is usually ap-
propriate. Curiously enough, the filtering required for identification is often different
from the filtering required by the controller. This counterintuitive result has been

discussed by a number of researchers, including McIntosh (1988), Mohtadi (1990),

and Wittenmark (1990) but the explanation has been heuristic and ad hoc.

The major contribution of this work is the presentation of the theoretical
reasons for different data filtering for identification and control. The uze of different
filters is justified by the identification objective: to provide high-quality control. A
new control-relevant identification method is developed that is shown to be very
similar to RLS and is in fact realized by use of an adaptive data pre-filter in cascade
with the RLS estimation scheme.

RLS is derived from a batch procedure designed to find the single “best”
model in the least square sense. Batch least squares has no facility for changing
the model but Recursive Least Squares is often used in conditions where the “best”
model changes over time. Data forgetting was introduced to accommodate such
changes. Forgetting ensures that the estimation scheme gives higher “weighting” to
the most recent data since these data provide the most up to date cause and effect
correlations. The choice of a forgetting method can be complicated and is made
more so when there are several inputs to the process, as when feedforward control is
used with feedback. The issue of “directional” versus “exponential” forgetting was
addressed during this study. Directional forgetting was found to possess qualities
that are necessary when an adaptive controller is used in a combined feedforward and
feedback role. Directional forgetting is particularly important when the estimator
must retain information in the absence of current input excitation in some input
signals.

In brief, the objective of this work is to facilitate the implementation of adap-

tive control, specifically GPC. The contributions of this work are:

1. the implementation of an adaptive controller in an industrial environment,

2. the development of a control-relevant identification method for GPC, suitable

for extension to other model-based predictive controllers,

3. the identification of directional forgetting as the logical choice for adaptive

feedforward and feedback control.

Organization

To evaluate the implementation of adaptive GPC, adaptive controller software was
written and used to control a pilot scale process using standard industrial control
cquipment at the Fort Saskatchewan site of Dow Chemical Canada Inc. A state of
the art adaptive controller, discussed in Chapter 2, was implemented in early 1988.
During tests at the Dow site, some shortcomings of the implementation were noticed
in spite of generally good performance. The program verification and conclusions
drawn from the tests are described in Chapter 3.

Two issues in particular were raised. Specifically, the noise model in GPC
has been used to cover a multitude of sins, and has thus been exceedingly difficult to
choose. In addition, the problem of model updating is complicated when both feed-
forward and feedback signals are used to calculate the control action, as then there
are several inputs to the process which may contain different amounts of information.

The noise model in GPC has heretofore been used to describe the effects of
unmeasured process inputs, measurement noise and unmodelled dynamics. There
has been a certain amount of confusion in the adaptive control literature regarding
whether or not the noise model should include the effects of model-plant mismatch.
This has led to incoherent treatment of the noise model. The concept of an overall
adaptive control objective is used in Chapter 4 to reduce this confusion. Rather
than choosing a process identification scheme independently of the control algorithm,
the overall control objective prescribes the use of a “control-relevant” identification
strategy.

The overall control goal is shown to produce a new process identification
objective that is consistent with the long-range predictive nature of GPC. Rather
than using the standard least squares approach, a long range predictive identifica-

tion method is needed to provide the long range predictions needed by GPC. This

6

method, called LRPI, is discussed in great detail in Chapter 5. Its implementa-
tion, especially in recursive (on-line) applications, is computationally intensive, and
frequency-domain arguments are used to cut the Gordian knot. The final on-line im-
plementation is remarkably simple. Both simulation and experimental studies were
conducted, and results are presented with analysis in Chapter 6.

An alternative approach to the overall adaptive control problem is the Non-
minimal Predictive Controller (NPC) of Lu and Fisher (1990). It is discussed in
Chapter 7. It is an interesting method which uses a different predictor structure to
circumvent the extra filtering required for LRPI. NPC is of considerable theoreti-
cal interest, but there are severe drawbacks to implementation, as is pointed out in
Chapter 7.

Chapter 8 addresses the question of persistent excitation in the multivariable
context of feedback plus feedforward (FB+FF) or multi-input, single output (MISO)
adaptive control. A MISO adaptive controller measures a number of feedforward
variables as well as the process output and attempts to find the statistical relation-
ships among the different process measurements. In adaptive control, data must
be discarded periodically if the controller is to track changes in the process (Ljung
and Soderstrém, 1983). The problem of data forgetting in MISO adaptive control is
discussed, and a directional forgetting approach, such as that of Kulhavy (1987) or
Hagglund (1983) is recommended.

Conclusions and recommendations comprise Chapter 9.

Appendix A contains documentation for the parameter estimation program
used for the experimental studies described in Chapters 6 and 8. The MATLAB script

files used for simulations and analyses are included in Appendix B.

Chapter 2

Commercial Adaptive Control

Software

This chapter describes a software package developed for Dow Chemical Canada Inc.
The software was designed to make adaptive control technology available to Dow per-
sonnel for evaluation at the Fort Saskatchewan, Alberta site using their own control
computers and processes. Initial work started on the project in January 1988, and
the software was essentially complete by the end of October 1988. Experiments were
conducted at Dow during May 1989, during which time some program maintenance
was carried out and the software was demonstrated to Dow personnel at the site as
well as those attending the 1989 Dow Global Advanced Control Meeting.

The software was written in FORTRAN for a VAX/VMS system and consisted
of two main programs. The adaptive controller itself required cver 2000 lines of source
code, and the user interface required roughly 3500 lines of FORTRAN.

Development of the adaptive controller program took roughly three months;
the process communication interface took another three months, and the user inter-
face required another four months. The documentation (Shook and Shah, 1989) was
completed in the following three months, including a number of revisions imposed

by Dow for confidentiality. The manual, The Adaptive GPC User’s Guide, describes

8

not only the installation and use of the program, but also contains an introduction
to adaptive control theory. In this way it permits an engineer without an advanced
control degree to use the software effectively.

The software was used to control a bench-scale process during final testing
and demonstration. Some of the results are shown in Chapter 3.

The organization of this chapter is as follows. The functional specification
of the software is given in Section 2.1. The adaptive controller itself is described
in Section 2.2, and the user interface program is outlined in the following scction,
2.3. A brief description of the testing and software verification procedure is given in

Section 2.4.

2.1 Functional Specifications

The overriding functional requirement for the software was that it provide effective
control in an industrial environment. The adaptive controller algorithm, chosen
following discussion with Dow personnel, was GPC. The identification scheme chosen
was Recursive Least Squares with a variable forgetting factor (Ydstie et al., 1985).

Additionally, there were the following functional requirements:
¢ The controller was to control a single loop.

e Feedforward control was to be used with feedback where appropriate; up to
three feedforward measurements were to be used.
o All algorithms used were to be employed in their fully general form as published.

All model polynomial orders, delays and initial parameter values were to

be chosen by the user.

For GPC all tuning parameters were to be available for the user to change

on-line:

Ny, the initial prediction horizon,

N,, the final prediction horizon,

NU, the control action horizon,

A, the control action weighting,

P(g1), the output shaping transfer function,

Q(g7"), the control action weighting transfer function,
R(q~'), the setpoint response shaping transfer function,
T(q™"), the noise model/disturbance rejection shaping filter.

For RLS, the model delays and orders could not be changed on-line, but

all other user choices were to be available for on-line tuning:
o, the estimated standard deviation of the noise,
No, the “asymptotic memory length” of the forgetting factor algorithm,
€min, the prediction error deadband,
€maz the maximum permissible prediction error.
¢ The main adaptive control program was to produce a controller transfer func-
tion rather than the control action itself. This was to facilitate use of the

program in a supervisory capacity or when the control action was implemented

in a separate computer (as in a distributed control system).

e The main adaptive control program was to run in the background, at a user-
specified sample rate. The control action would be calculated from the resulting

transfer function in real time.

o The user interface was to be user-friendly and screen-oriented and permit real-

time access to tuning parameters, process variables and diagnostic information.

10

The amount of information presented to the user on a given screen was to

be limited to a few logically connected variables with descriptive text.

Motion among the specification screens was to be permitted in sequential
order for initial specification, and in a random order for tuning of an existing

controller.

User input was to be checked so polynomials would fit into the memory
allocated at compile time for the arrays and to ensure a feasible controller was
specified. ANSI FORTRAN has no facility for dynamic memory allocation, so
all arrays had predefined, fixed limits.

On-line help was to be available, detailing the different commands.

o Communication between the user interface and adaptive controller was to be

via a shared database file.

o All calculations were to be in single-precision FORTRAN ,and the actual adap-
tation and controller calculation routines were to be in ANSI FORTRAN 77

for portability to other operating systems.

o All exceptions (run-time errors) were to be trapped and handled in an intelli-

gent way to prevent the controller from terminating during a run.

¢ Comprehensive documentation was to be provided, including an introduction to
adaptive control theory as well as a reference guide to installation and operation

of the software.

2.2 Controller Description

The GPC controller consists of three main programs: the user interface, the real-time
GPC controller design and the program which actually calculates the control action,

The first two run in the host computer (VAX/VMS) and the last program - the

11

actual controller itself - runs in whatever computer is doing DDC ard monitoring
the process in real time, as shown in Figure 2.1. A number of supporting programs
are provided for installation and analysis but strictly speaking they are not part of

the GPC controller.

REQUIRED O BE IN VAX

FILE

l _____________ |
| |
|
| USER DIRECT
! RTGPC =g DIGITAL PROCESS
I INTERFACE l -
| | CONTROL
| I PROGRAM
I |
|
| DATABASE
I |
l |

Figure 2.1: Schematic of the GPC controller architecture

The user interface allows the operator or engineer to monitor the controller
and adjust its performance. It is described fully in Section 2.3. The user inter-
face program, GPC.EXE, communicates with the real-time controller coefficient
calculation program, RTGPC.EXE (also called the real-time executive) through
a shared database file, and RTGPC communicates with the DDC program in an
implementation-specific manner which is Dow Confidential and therefore beyond the
scope of this thesis.

The entire software package may be installed on any VAX computer operating
under VMS version 4.7 or later. A run-time license for FMS (the VMS Forms Man-

agement System) i required for the user interface. The control action calculation is

12

performed in Dow’s proprietary Process Control System (d’PCS). Because of the use
of system-dependent timing and screen manipulation, tl.e host computer must be a
VAX operating under VMS. However, the control action may be calculated in the
VAX (for example when controlling a simulation) or in a d'PCS, or in any other DDC
computer that can be connected to a VAX. The need for a VAX does not restrict the
usefulness of the software, since many industrial process control systems arc directly
connected to VAX supervisory computers. Construction of the interface to the DD(!
system was the responsibility of Dow personnel for reasons of confidentiality.

The real-time controller program, RTGPC, takes the user’s specifications,
and, through observing the process, calculates the GPC controller transfer function
to best control the process. It is composed of four main sections: process commu-
nications, parameter estimation, controller calculation and database management.

Each of these sections will now be discussed in detail.

2.2.1 Process Communication

Whenever a digital computer is used to measure and control a continuous process,
the question of data filtering or smoothing arises. Digital signal processing is quite
advanced, and there are now, for example, standard solutions to the problem of alias-
ing (Stanley et al.,1984). The actual data collection and input filtering (if any) is all
done by hardware and software provided by Dow and ali the details are proprietary.
There is however one detail in the process communication that is not Dow Confi-
dential and yet is worthy of discussion. The problem of imperfect communication or
sensor failure must be addressed by the GPC software.

Because the control action is calculated in a different program, and possibly
a different computer, communication delays and failures are possible. An academic
control package may be permitted to hang or fail if it misses a measurement, but

an industrial control package must continue without interruption. In fact, commu-

13

nication difficulties are most likely when there is an upset in the plant, and reliable
control is most necessary at such times.

Missing data complicate not only control but identification, especially when
the data are filtered, and the problem is most severe when the filter in question is
autoregressive in nature. The filtering used by RTGPC is imposed by GPC and
is autoregressive. A missing measurement theoretically affects the filtered value for
infinite time. In effect, the filtering would have to start again each time a single
measurement is corrupted if no steps are taken to fill the gap. Some method of
filling the gap is required.

When RTGPC receives the process information from the DDC computer, the
validity of ea.h measurement is checked. Typically, the measurements consist of
controlled variable (PV), analog output value (AO), and up to three feedforward
signals (F1, F2, F3). The setpoint is also measured, but a missing setpoint has no
effect. If even one of the other measurements is invalid, then information is missing,
so there is not enough information to update the process model. The identification
and controller updates are abandoned. The control action will therefore be calculated
using the previous process model. The missing or invalid datum is replaced with an
estimate of the missing value, and the estimate is used in the filtering calculations.

For all measurements except the process output (setpoint, feedforward vari-
ables and control action) the replacement used is the previous value. The control
action is not calculated locally, and so is an input to RTGPC. The control action
is replaced with its previous value because there is no way for RTGPC to be sure
that the GPC-specified control action is actuvally implemented. Output limits and
the opportunity for operator intervention (especially during process upsets) dictated
this conservative approach.

The missing process output variable (PV) value is replaced, not with its pre-
vious value, but with the prediction given by the process model. This is the best

prediction available (or else it would not be used for the purposes of control). More-

14

over, the prediction error, were this estimate used to update the model — which it
is not — would be zero.
The use of these procedures resulted in the GPC program performing well even

in the presence of frequent communication upsets, as can be seen in section 3.2.1.

2.2.2 Parameter Estimation

The GPC controller explicitly requires an ARIMAX model (Clarke et al., 1987a,b).
The model used in RTGPC is an extension of the ARIMAX model. Other exogenous

inputs are permitted as feedforward variables:

A(g™)y(t) = B(g™u(t —d — 1) + Dy (g™ vy (t — dy, — 1) + T(q"')% (2.1)

where y(t) is the process output (controlled variable) at time ¢,
u(t) is the process input (manipulated variable) at time ¢,
v1(t)is a measured process disturbance variable at time t,
£ is a random, zero-mean, stationary Gaussian disturbance,
g~! is the backshift operator, ¢~lu(t) = u(t — 1),
A s the differencing operator, 1 — q,
d is the process delay (between control action and output) expressed in samples,
d

v, is the delay of the process with respect to v,.

A(g7"), B(¢™"), D1(g"), and T(g™?) are polynomials in ¢! of arbitrary order.
T(q™!) is a fixed filter which may be considered as describing the character of the
process noise (Clarke and Gawthrop, 1979).

The method of Recursive Least Squares is used to estimate the coefficients
of A(g™"), B(q™!) and up to three D(q~!) polynomials corresponding to three mea-

surable disturbances. Recursive Least Squares has been discussed in great detail

15

elsewhere, e.g. Ljung and Soderstrém (1983), Ljung (1987), Astrom and Witten-
mark (1989), so most of the discussion here will be devoted to the special features
of the algorithm used in RTGPC.

RTGPC limits all the polynomials in equation 2.1 to no more than ten el-
ements each, and the total number of identified parameters cannot exceed twenty.
This is more than sufficient for any likely application, as models of order higher
than 3 are very rare in chemical engineering applications. The high order B and D
polynomials do, however, come in useful when the process has a varying time delay.

Recursive Least Squares (RLS) was chosen as the parameter estimation
method for a number of reasons. First, it has been widely researched and discussed,
and there are many successful applications in the literature. No original theoretical
work was required to produce an active yet stable identification scheme. Secondly,
there are few tuning parameters to be chosen by the user. In addition programming is
straightforward, except for the covariance matrix update, which is available in pseu-
docode form in one of the standard references on the topic (Ljung and Séderstrom,
1983).

RTGPC uses some modifications of the standard RLS method: a variable
forgetting factor (Ydstie et al., 1985), UDU factorization of the covariance matrix
for numerical stability, and a minimum and maximum prediction error deadband
to turn identification on and off. The deadband provides robustness to the param-
eter estimation method during long quiet periods of operation and times of large

disturbances.

Data Forgetting

When the dynamics of the observed plant change over time, then the adaptive con-
troller must change its parameters to keep up with the process. This can only happen

if old data are discarded once they are no longer valid. One common way to discard

16

outdated data is to use a “forgetting factor.” The variable forgetting factor algo-
rithm of Ydstie et al. (1985) is implemented in RTGPC. This particular scheme is
used because it was felt that it provided smoother parameter estimate trajectories
than the alternative methods such as the constant trace approach of Sripada and
Fisher (1987).

The forgetting factor, A, is calculated each time step. It is calculated to retain
a constant amount of information regarding the process. The amount of information
retained at any time is measured by the “nominal memory length,” N,, which is
defined by Ydstie et al. (1985) as a weighted sum of squares of a posteriori errors

4
Ne=) " oupe 17 (y — Gi)? (2.2)
k=1

where oy, = 1

Orft =)\cak/t—l

r; is the variance of the measurement noise at time 3

Yk is the a posteriori prediction of yj

The value of A, is chosen to maintain N, constant and equal to the initial value
given by the user, Ny. All the user need specify are the desired memory length, Ny,
and the noise variance (in RTGPC, the standard deviation). The memory length can
be interpreted as the number of observations which would contain the same amount,
of information as is retained in the covariance matrix. A long memory improves the
certainty in the parameters, but adaptation is limited in speed. A short memory
allows the parameters to change more quickly, but at the cost of some extraneous
fluctuations due to noise. Fortunately the choice is not critical, and really just the

order of magnitude of N, is important.

17

Prediction Error Deadband

When the prediction error is very small, as may be the case during long periods
of quiet operation, the covariance matrix tends to grow slowly, since information is
forgotten (albeit slowly) and little or no meaningful information is added. Under
these conditions, it is possible for the covariance matrix to grow without bound.
The rate of adaptation is tied to the magnitudes of the elements of the covariance
matrix. If the elements are large, it is possible for adaptation to occur inappropriately
whenever there is even a small upset. The solution is to disable estimation whenever
the prediction is within a user-épeciﬁed threshold of the measured value. Such a
prediction error deadband greatly improves the robustness of the adaptation, but its
choice can be tricky, and it has been shown to result in biased parameters. In practice
the deadband is typically set to between one-half and one standard deviation of the

observed noise. This way updates will take place only when there is a significant

error.

Numerical Considerations

The numerical stability of the adaptation mechanism provoked a considerable amount
of work. RLS is numerically sensitive to roundoff error, especially when single preci-
sion arithmetic is being used. Single precision provides 74 significant figures, which
seems sufficient, but can cause problems when data is gathered over a very long
time. Roundoff errors accumulate in the covariance matrix and parameter estimates.
Bierman (1977) discusses the numerical properties of the covariance matrix update
in great detail. For “small” identification problems (low order models, finite exper-
iment), RLS often works correctly, but in the application under discussion, the use
of single-precision arithmetic and the requirement for long-term stability called for

a better algorithm.

I8

The UDU factorization technique of Bierman is therefore used. The covari-
ance matrix is stored and updated in a factored form. Since it is symmetric and
positive-definite, the covariance matrix can be factored as P(t) = U(t)D()UT(¢),
where P(t) is the covariance matrix at time ¢, D(t) is a diagonal matrix of pesitive
numbers, and U(t) is an upper-triangular square matrix with all entries on the main
diagonal occupied by 1.

The covariance update program is taken from Ljung and Soderstrom (1983),
and then modified slightly to permit the use of scaling. The scaling method of Sripada
and Fisher (1987) is included in an attempt to improve the conditioning of the
covariance matrix update, but after considerable discussion it was only implemented

as an option. Its use is not recommended.

Noise Effects

The form of the predictive model used by a controller has profound effects on the
controller’s disturbance rejection properties. The noise model represents an internal
model of the process disturbances (Francis and Wonham, 1976). If the internal
model is incorrect, then the controller may not be able to completely remove the
effects of disturbances. For example, the original self-tuning controller of Astrém and
Wittenmark (1973) could not completely remove the effects of step-type disturbances.

The noise model of the CARIMA structure (equation 2.1)
t
Ala™)y(@) = Bla™pult = d= 1) + Du(q (e — doy — 1) + () E

contains integrated noise. The signal ¢ is defined as zero mean and stationary,
but the integrated signal £/A is non-stationary. This form of model results in a
controller that can annihilate the effects of nonstationary inputs as long as the inputs
are well-described as integrated stationary processes (step-type or Brownian motion

disturbances).

19

The effect of the noise model on implementation is that the process measure-
ments (inputs and outputs) must be filtered by the reciprocal of the noise model
before being used to identify the other parameters of the model. GPC assumes that
the noise model is fixed, but it could be made time-varying through the use of Ex-
tended Least Squares (ELS) (Panuska, 1968). The disadvantage of ELS is that the
noise input can only be approximated and is replaced with a proxy. The noise-model
therefore converges extremely slowly if at all.

The noise model only allows for the effects of some disturbances. Large de-
terministic disturbances or sensor failures (discrete events) cannot be handled by the
CARIMA model if ¢ is a white noise process. RTGPC accommodates these by using
a maximum prediction error. If the prediction error exceeds the maximum, then it
is assumed to be at least partly caused by a large deterministic disturbance, and the
data are not used for identification, although they are for filtering. The data are

treated as invalid in the same sense as in section 2.2.1.

2.2.3 Controller Calculation

The GPC control law implemented in RTGPC consists of the full algorithm described
in the original papers (Clarke et al., 1987a,b). The GPC cost function is shown below.

N; NU
Jare = 3 (R wl® = Pla™3+3 1)1+ 13 (@) Au(t + 7 — 1))

=N =1
(2.3)
where
M is the initial prediction horizon,
N, is the final prediction horizon,
NU is the control action horizon,
A is the control action weighting,

P(g~') is the plant output weighting transfer function,

20

Q(qg™1) is the plant input weighting transfer function,
R(q™1) is the setpoint weighting transfer function,
Ysp(t) is the setpoint at time ¢,

§(t +j | t) is the prediction, at time ¢, of y(t + j),

u(t) is the control action input to the process at time ¢.

The prediction horizons N; and N; are limited to 20, and N; must be at
least as great as Ny + NU ~ 1. NU is limited to less than 10. The numerators and
denominators of the three transfer functions, P(¢7'), Q(¢™!) and R(q™!) are limited
to fourth order. These limits are all well beyond any values a user is likely to choose.
P, @ and R in particular are rarely used. There is enough flexibility in Ny, N,, NU
and A to achieve a good quality of control without their use. They are, however,
useful in some research applications, where GPC is configured as a different form of
adaptive controller (e.g. the Self-Tuning Controller of Clarke and Gawthrop, 1979
uses the P filter, My = N, = d, NU = 1).

The role of RTGPC is just to provide the controller transfer function, not
to calculate the control action. For a given model and set of tuning parameters,
GPC reduces to a transfer function. McIntosh et al. (1990), for example, have shown
how it is calculated. In adaptive implementations this form has both drawbacks and
benefits. The amount of programming effort required is significantly increased, and
more calculations are required to form the transfer function than would be normally
required to calculate the control action directly. Moreover, any time any part of the
model or controller configuration is changed, almost the entire calculation needs to
be re-done. If the model is not changed, then the number of calculations required
is trivial, so for a slowly-changing process the use of a transfer function form may
actually reduce the computational load.

As for the identification, the question of numerical robustness was raised for

21

the control action calculation. In the GPC calculation a NU x NU matrix must be
inverted. Mohtadi (1986) discusses a number of issues pertaining to the inversion.
If the process model is sufficiently ill-conditioned, there may be a serious loss of
precision. For the case when NU = 1, the matrix is a scalar (in fact a sum of
strictly positive values), so the calculation is trivial and the problem does not exist.
For larger values of NU or for MIMO GPC the numerical stability of the matrix
inversion method used can affect the control action.

In accordance with the recommendations in Mohtadi (1986) the direct UDU
factorization method is implemented to perform the matrix inversion. It provides
a reasonably robust answer with a minimum of extra programming. Since NU is
cxpected to be 1 in almost all cases, with only occasional use of higher values, it
is not considered necessary to resort to singular value decomposition or any of the
other more difficult algorithms.

The direct UDU factorization approach takes into account the structure of
the matrix to be inverted. Specifically, it is of the form GTG + AQu where G is a

matrix of step response coefficients, g;, arranged (Clarke et al., 1987a) as:

9o 0 0o ... 0
a1 4o 0 e 0
G=|g9 @ g .. 0 (2.4)
[IN2 GN;-1 GNp-2 -+ GN;-NU41 |

and Qp is another matrix, which depends on NU and the @(g™!) weighting transfer
function. For the vast majority of cases, Q(q7!) is equal to 1, and Qy is equal to I,
the identity matrix. (In the case that N, is greater than 1, the first Ny — 1 rows of

G are removed.)

If the it row of G is called ri, then G and G7 may be written as:

[- ro
r
—_— T _ T T T T
G— r2 and G -_— [ro l'l r2 o er—l]
[TN2-1 |

and therefore

G'G = [r{ro +rirm+... 4 l’ﬁ,_erg-l]

—
o
ot

~—

T

Each term rr; is a full matrix of rank one.

By comparison, the covariance matrix update for RLS is defined as:
P7l(t) =P 't — 1) + ¢(t)7(2)

The calculation of (GTG + /\Qn)—l can then be performed as (N, — N, + 1)
updates to a matrix, initially equal to (AQn)~!. If the matrix is stored in a UDU
factored form, then the same subroutine may be used for both this and the covariance
matrix update, thus minimizing the programming required. Of course, (AQy)~! must
be available at the start of each time step, but it may be calculated ahead of time
and changed only when the control weights are altered. In the actual implementation
in RTGPC, the diagonal factor of Qu~! is divided by A each time step, since) is

expected to be a primary tuning parameter, and may therefore change often.

Feedforward Control

Provision for feedforward control is made in RTGPC through the inclusion of auxil-
iary model inputs. Whether these feedforward variables are process inputs or outputs
is irrelevant; if there is any correlation between them and the controlled process out-
put it is identified by the process estimation system and then used automatically in
the GPC prediction. Only in a few special circumstances does GPC perform com-

plete dynamic feedforward disturbance rejection. Normally, such aggressive control

23

is either numerically unsound or impossible. There has been research into the sepa-
ration of feedforward and feedback in the cost function (e.g. Tuffs, 1985, Mohtadi,
1986, M’'Saad et al., 1987) but they result in another controller tuning parameter
which must be chosen by the user. Feedforward and feedback are left together in
RTGPC and the controller is given the authority to make its own decisions regarding

the feedforward control action.

2.2.4 Database Management

The on-line GPC program and the user interface communicate via a shared database
file. The database file contains a maximum of 15 records, each approximately 13400
bytes long, indexed by the tagname. Each time step RTGPC reads and writes the
record associated with the tag of the loop being controlled. (At present, RTGPC can
only control one loop per image, but this limitation is just from the absence of multi-
loop timing logic.) To optimize the speed of execution of RTGPQC, it is necessary to
minimize both I/O and the size of the executable image. Only one read and one write
operatiou are permitted to the database file per time step, and so all the information
associated with a controlled loop is contained in a single record. There is another
database file, which contains the names of various tags and variables. It is accessed
only by the user interface, GPC.EXE. The second file is necessary because VMS
limits the size of a single record to 4095 longwords, or 16380 bytes, which imposed
limits on the amount of information to be stored in the original database file.

The default VMS disk buffer is the same size as the record, and the same buffer
is used for reads and writes, so in normal operation RTGPC need never wait for disk
access, as the record will be already in the buffer. This of course is an additional
advantage of reading and writing just one record, as multiple records could not all
fit in the buffer.

The T filter is an infinite impulse response (IIR) filter. As such, the filter

24

output depends on all previous inputs. If only the old unfiltered variables (inputs)
are to be used to calculate the new filtered value, then an infinite number of old
measurements must be retained. Instead, old filtered values are used, thus reducing
the amount of stored past data to finite, manageable quantities.

The data (both filtered and unfiltered) are stored in a fixed-length ring buffer.
Each time step the oldest existing measurement is overwritten with the newest. The
position of the newest measurement therefore advances one element in the array each
time step, until it reaches the end of the array, whence it jumps to the first clement.
Keeping track of the positions of the newest, second newest, third newest, etc. mea-
surements is an important task, maintained by a one dimensional array, the index.
Index(1) is a pointer to the newest element in the array, index(2) points to the second
newest, and so on. This form of indirect addressing permits the filtering routine to

be ignorant of the state of the ring buffer and thus tidies up the calculations.

2.3 User Interface

The user interface is a standalone program which presents to the user a number of
screens, each of which is used for a different purpose. For instance, some of the screens
are used to specify the process model or controller configuration, while others are
available for on-line diagnostics or overviews of a number of operating loops. Roughly
speaking, the program can be divided into two parts, the specification (or input) and
the diagnostic (or output) sections. The specification part of the program consists
of a number of screens arranged in logical order, and some input is required of the
user in many. The user may proceed from page to page in the prearranged order
to enter the information for a new loop, or may move directly to the appropriate
page when tuning an operating controller. The diagnostic section is not sequential
because of the nature of diagnostics: the user may not be concerned at all about

some parts of the operation and usually wants to examine only one particular aspect

25

of the operation.

Program design was complicated by the requirement for all the parameters
of the adaptive controller to be accessible for change by the user. In the end, the
difficulty of safely changing the model order on-line imposed the restriction that the
model order and dead time must stay the same for a given run. The user may change
the values of all other parameters and tuning constants while the adaptive controller
is operating.

It is quite easy to move from one section of the program to the other, and
although some of the commands differ between the two sections it is difficult to
become confused because there are so few commands or opportunities for user input
in the diagnostic section. For example, there is no way for the operator to alter any of
the controller settings within the diagnostic side; the operator must first move back
to the input section. This may seem inconvenient, but it is achieved with only a few
keystrokes and facilitates a logical division of the program into two semi-independent
halves which can be learned separately. There are two screens which are exceptions
to this division: the title page (or main menu) and the header. The title page serves
as a gateway between the sides and the header identifies the control loop in question
regardless of the operator’s position in the program.

A full description of the user interface is given in Chapter 3 of The Adaptive
GPC User’s Guide. The model structure screen is shown as an example in Figure 2.2.
The text reminds the user of the meanings of the different variables to be specified.
The default values are shown, corresponding to a first order model with a zero, and
a first order T filter. A zero is used because of the likelihood of a fractional dead
time: if the actual process dead time is not an integer multiple of the sample time,
then the process has a fractional dead time which must be represented using a zero
(using modified z-transforms). The delay to be entered by the user is the physical
or continuous-time delay, exclusive of the unit delay arising from use of a zero order

hold element. The section on this screen in the user’s guide reads in part:

This is the first form after the header. It is reached by the Forward
(Gold F) or Specify Model (Gold M) command. It is used to specify the
structure of the process model used by the GPC controller. Only the
sizes of the different polynomials are chosen using this screen, not the
actual values of the coefficients. Note that there are six polynomials and
only four of them can have delays. These four correspond to the four
possible model inputs: the centrol action and up to three feedforward
(measured disturbance) variables. The other two polynomials are the
transfer function denominator, which cannot have a delay, and the T
filter, which is used to filter the process inputs and outputs, and so cannot
have a delay either. In this form [screen], the user chooses the orders of
the six model polynomials. The order is defined as the highest power of

z~! present in the polynomial.

PLANT AND DISTURBANCE MODEL STRUCTURE

20

Plant output Plant input Disturbances Unmeasured Dist.
and Noise
A(z)*y(t) = B(z)*u(t-d) + Di(z)*vi(t-vdl) + T(z)*??
+ D2(z)*v2(t-vd2)
+ D3(z)*v3(t-vd3)

POLYNOMIAL ORDER DELAY

A(z)
B(z)
Di(z)
D2(z)
D3(z)
T(z)

= OO0OO0ON M
(ol eNoNe

Figure 2.2: Model Structure Page

27

Once the user has entered all the desired values and requested to move to
another page, the program checks that all values are positive, within the permitted
maximum values, and that the orders of A, B, and T are all nonzero. Only then are
the checked data added to the database record for further use. If there is something
wrong with one of the values then the user is informed and returned to the screen.

There are another eight specification screens:

the P(¢~'), @(¢™') and R(q~!) weighting polynomials,

Ny, N3, NU and),

e identification tuning parameters: standard deviation of the noise, memory
length, deadbands (minimum and maximum) and initial covariance matrix,

e four screens for specifying tagnames for variables,

e and the initial model parameter value specification.

All of the screens check that the user has specified a controller that may
work (e.g. N; must be at least as big as N;), but because the implementation is for
research purposes there are few other restrictions.

The diagnostic side of the program is composed of six screens: two overviews
and four showing specific details. The two overviews are the listing of the entire
database showing the status of all existing loops and the main diagnostic screen

which shows some details of a single operating loop. The four detail screens are:

e the controller performance display, which shows the recent control history:

setpoint, controlled and manipulated variables, for the last 15 control intervals.

o the controller transfer function display, showing the actual coefficients of the
controller polynomials. The feedforward polynomials are not shown due to a

lack of space, but they are available from a printout of the database.

28
o the model coefficients display, with the present values of the model parameters.

o the prediction page. On this page are displayed the predicted plant outputs

and control actions for the next few control intervals,

Any of the diagnostic pages may be reached from any other, and as well as
returning to the overview to inspect other loops it is possible to move directly to the
controller tuning page of the specification section, in order to retune the controller

if necessary.

2.4 Testing and Verification

The adaptation and GPC calculation routines were tested at the University of Al-
berta before being exported to the Fort Saskatchewan site. The user interface was
written at Dow, using Dow equipment, and so was debugged and checked there.

The answers from the adaptation and GPC calculations were compared to
the answers given by previously debugged MATLAB code. MATLAB is a program-
ming language of such power that the RLS calculations take fewer than ten lines.
All matrix bounds are checked automatically, and the numerical robustness of the
algorithms used (e.g. for matrix inversion) is excellent. For example, the numerical
robustness of MATLAB makes UDU factorization of the covariance matrix super-
fluous for small matrices and finite runs. MATLAB was originally written by Cleve
Moler, who also was involved in the LINPACK project — a set of very robust, compu-
tationally efficient FORTRAN programs for solution of systems of linear equations.
Moreover, MATLAB programs sufficiently resemble equations as they are written in
books for debugging often to be just a matter of checking equations.

Each time a subroutine was written, it was tested, first in isolation and then
in conjunction with the rest of the program. Its answers were compared to those

given by MATLAB, and the FORTRAN program was examined until the answers

29

always agreed. Occasional hand calculations were performed to check the MATLAB
code. CodeView, the MicroSoft source level debugger, was used to examine the
FORTRAN program during execution and confirm the proper filling of matrices,
evolution of variables, and so on.

The user interface developed at the Fort Saskatchewan site contains few calcu-
lations but is much more involved in terms of control flow. Debugging was performed
by examining the actions of each routine as it was added to the program. Testing
of subroutines in isolation was difficult, because virtually all subroutines affect the
database and need access to the file. All file access is provided through a single sub-
routine, so the minimum configuration that could be tested is about four routines.
In addition, most of the trouble was over control flow, often caused by interactions
among different routines and different flags.

The VAX/VMS full-screen debugger was used to examine the operating pro-
gram, and in particular control flow and the database data structure. Because of the
size of the program, and the use of a single “INCLUDE? file to specify the database
structure, it was necessary to take extreme care over changes to the database. Sev-
eral errors occurred from “old,” apparently debugged subroutines using outdated
database definitions.

In addition, the user interface was used for over fifty different experimental
runs, some of which are reported in the following chapter. By the end of the experi-

mental evaluation of the software the user interface had functioned flawlessly for two

weeks of continuous use.

Chapter 3

Experimental Verification and

Performance

The software described in the previous chapter was tested at the Fort Saskatchewan,
Alberta site of Dow Chemical Canada Inc. The purpose of the testing was to ensure
that the adaptive GPC program gave the correct controller parameters for a given
set of input data. It was also necessary to ensure that the software would work in the
presence of problems encountered in the real world, such as missing or faulty mea-
surements, or floating point calculation errors. The user interface was also evaluated
for ease of use and to ensure that user specifications were correctly acted upon.

The software was verified on a pilot-scale process, but nevertheless under con-
ditions similar to normal industrial conditions. The process itself was a bench-scale
heater, but all data acquisition equipment and computer hardware were identical to
standard industrial process control equipment. As such, the hardware configuration
was ideal for evaluating implementation issues. The environment exactly mirrored a
real plant, but more difficult control configurations could be examined than would
be permitted on an actual production unit.

Despite the fact that the main purpose of the testing was to evaluate the

software rather than GPC as a control algorithm, some conclusions were drawn from

30

31

the experiments regarding appropriate choices of tuning parameters for estimation
and control. Unfortunately, some of the issues raised during the experiments were
site-specific and as such Dow Confidential. Those issues are discussed in the Dow
Confidential supplement to Shook and Shah (1989), but cannot be addressed here.
Other issues more generic to the implementation of adaptive controllers were raised,

and are discussed throughout this thesis.

3.1 Equipment Description

A schematic diagram of the experimental equipment is shown in Figure 3.1. The
heater is constructed of 0.0016 metre (1/16 inch) thick carbon steel, and is 0.76
metre high, 0.76 metre wide and 0.22 metre from front to back. The back panel is
steel and the front panel is 0.0064 metre (1/4 inch) plexiglas. Two thermocouples
measure the air temperature immediately after the two heating elements and another
five are placed at intervals along the air flow. All seven thermocouples are mounted
on probes and extend well into the air flow. The heaters and fans are all rated at
600 Watts.

The serpentine path of the air through the heater is caused by a set of four
horizontal baffles in addition to the vertical divider separating the two blower/heater
elements. It is the interaction of the air with the back panel and these baffles that
gives the heater its long dominant time constant. The air flow rate is fixed at
approximately 0.0033 cubic metres per second so that the transit time from the
heater elements to thermocouple 6 is approximately 30 seconds. At these conditions
the Reynolds number is approximately 1300 so flow is still laminar, or would be
were the channel long enough for the flow to develop fully. The flow regime has a
significant effect on the process dynamics, as will be seen later.

The temperatures at thermocouples 3 and 6 were used as controlled variables.

Thermocouple 6 provided a more challenging control problem, but thermocouple 3

- - - -

7 6
5
4
3
7
l- ------------- ::f | ’/’
TP
— |;
N
1

Thermocouples indicated by numbers 1-7.

Figure 3.1: Schematic Diagram of Experimental Heater System

33

was more convenient for debugging purposes. The process dynamics between the
heater elements and thermocouple 3 are much faster than for thermocouple 6, and
process changes could therefore be made more frequently when thermocouple 3 was
used.

The manipulated variable for all experiments was the power output from the
rear heater. The front heater power output was the main measurable disturbance.
The duty cycle was used to change the power output of both heaters. This way
the control action effect on the plant (average power input) varied linearly with the
controller manipulated variable-(duty cycle) and the disturbance. If current had
been used as the manipulated variable, then the control action effect would have
varied with the square of the manipulated variable and the process gain would have
varied enormously from 0 to 100% control action. The control configuration was
designed and implemented by Dow personnel and is a good example of how to make

the correct choice of manipulated variable.

Open Loop Behaviour

Typical open loop responses to control action and disturbance are shown in Fig-
ures 3.2 and 3.3. The sample time was 6 seconds, and the temperature was mea-
sured at thermocouple 3. Two things are immediately obvious: the low process gain
and the high noise level. A 10% change in control action results in a steady state
change in temperature of less than 2° C. The noise level meanwhile is at least 1 /4° C.
The magnitude of the noise was a consequence of using a long period duty cycle on
the heaters in conjunction with a low air flow rate. The low Reynolds number flow
restricts the amount of radial mixing. Under these conditions of high measurement
noise a measurement filter is of prime importance to reduce the high frequency sen-
sitivity of the controller.

Although the control and disturbance heater elements are exactly the same,

they have significantly different effects on the process. This is because of the low

34

40 : : : . : ; . ; ;
38
36}]
34 i
32f]
30

i
1

Output

0 00 200 300 400 500 600 700 860 960 1000

100 y r T T ' y '

80

Control Action

60 4
| _

40

0 100 200 300 400 500 600 700 860 960 1000
Time (samples)

Figure 3.2: Experimental Open Loop Response to Control Action Change

flow rate: the air flow is not perfectly mixed. The air from the rear heater element
(the final control element) heats the back panel directly while the front heater (the
disturbance) heats the air on the front side. The front of the heater is covered with
plexiglas, which is thicker and has a lower thermal conductivity than the sheet steel
on the back. The extremely long response time for the disturbance step is a result

of the asymmetric construction of the heater.

3.2 Experimental Performance of Software

The software was evaluated in an experimental environment to verify it under condi-
tions matching actual industrial conditions as closely as possible. The software was

intended to be capable of controlling, unsupervised, an operating production facility,

Output

Disturbance

35

300 160 260 360 460 5(:)0 660 760 800

60 T T r r ' . T

40 -

201 -
00 160 260 360 460 560 660 760 800

Time (samples)

Figure 3.3: Experimental Open Loop Response to Disturbance Change

36

so experimental verification was a necessity. The three components of the control
system: the user interface, the real-time executive and the DDC control program,
were observed to evaluate their performance. The user interface was evaluated for its
suitability for continuous on-line monitoring of the controller and the operating loop.
The real-time executive was watched to ensure that the controller transfer function
coefficient values were correct for the GPC and RLS tuning parameter choices, and
the entire control computer system was checked to ensure that the final control action
as implemented was correct for the parameter estimates and tuning.

Most of the tests consisted of comparing the results from the program with
hand calculations. The values were printed out by the user interface, and were
checked using the VMS on-line debugger. By the time the program was run on
the experimental equipment, the portion of the program responsible for the actual
adaptive GPC calculations had been tested in both simulation and experimental
conditions at the University of Alberta and in simulation at Dow’s Fort Saskatchewan
site. The user and process interfaces were the parts of the software that were really
being scrutinized for Dow Chemical Canada.

Some of the data from the experimental evaluation are reproduced in this
chapter to illustrate some of the features of this particular adaptive implementation
of GPC.

Consider the closed loop run shown in F igure 3.4. For this run the disturbance
heater was off, thermocouple 3 was used as the measured variable and the sample time
was 6 seconds. The “default” GPC tuning parameters were used for this run (see,
e.g. McIntosh, 1988 and Shook and Shah, 1989). The run consisted of a pretuning
period with the GPC controller in manual followed by transfer to automatic mode.
During the large step change in setpoint the control action saturated for quite a long
time, with no sign of reset windup. The step down was prompt and well-behaved.
The high noise level could have been reduced somewhat through increasing A, the

control action weighting in the GPC cost function, but this was not done for this

37

run.
E .
[o]
i=3
T} -
n
= -
=2
p=
o -4
28 I I - -t 1 1
0 200 400 600 800 1000 1200 1400
150 T T T T T T
S
% 100} -
<
3
€ so— UL -
(&)
o I 1 L I 1. 1
0 200 400 600 800 1000 1200 1400

Time (samples)

Figure 3.4: Closed Loop Performance of Adaptive GPC for Run 1

The door to the laboratory was opened after about 820 samples, and the sur-
rounding air temperature rose by approximately 3° C. The effect of this disturbance
is negligible in the temperature plot, but it may be seen clearly in the change in
control action. When the door was closed and the air conditioning turned back on
after 1020 samples, the controller responded well again.

Although the controller functioned well throughout the experiment, the same
could not be said of the identification. The (filtered) prediction error is shown in
Figure 3.5. The outliers at 859 and 860 samples are the result of a measurement
error. The first outlier was caught by the prediction error maximum of 1.0 and so

the model update was abandoned for that sample. The prediction error for the next

38

sample was slightly less than 1.0, so the second outlier was actually used for the
model update. This is unfortunate, since it was 5 standard deviations away from
zero and was therefore an outlier by any standard. The prediction error maximuni

should have been set to 0.5 instead of 1.0.

Prediction Error

0 200 400 600 800 1000 1200 1400
Time (samples)

Figure 3.5: Prediction Errors for Run 1

The prediction error deadband for the run was 0.2°C. The standard deviation
of the prediction errors was 0.18. Consequently, the prediction error deadband was
used 998 times out of 1311 samples in the run, so only 313 data points were used to
calculate the model parameters. Obviously a smaller deadband would have permitted
the use of more measurements and given greater precision in the predictions. The
minimum value of the forgetting factor was 0.993, which corresponds to a memory
length of 140 measurements. The average memory length was considerably longer.
The logical consequence of a long memory length is a slow rate of change of the
parameters. Since the minimum memory length was 140 and only 313 measurements
were used to calculate the model, it is not surprising that the controller performed
unsatisfactorily. The large oscillations in control action and temperature between
1060 and 1160 samples are the result of poor parameters. Only after excitation
was introduced during the final step change did the parameters reach more sensible

values.

39

The controller transfer function parameters are shown in Figure 3.6. The sud-
den jump from zero is an artifact of the recording process: the controller polynomials
simply do not exist until the controller is switched into automatic mode. They can
be scen to change slowly over time and spend long periods of time without changing
at all. The rate of change is limited by the high forgetting factor. Lower forgetting
factor values would permit faster parameter changes, because the adaptive gain (the
covariance matrix) would be allowed to grow much more quickly during times of poor
prediction. The high forgetting factors are of course caused by poor tuning of the
forgetting factor algorithm.

In contrast, the response shown in Figure 3.7 is not as noisy because of better
adaptation. The GPC controller has the same default tuning, but the adaptation
is much faster. The forgetting factor was typically lower for this run, resulting in a
shorter memory length and faster adaptation. There is of course a greater risk of
covariance blowup, but still not much, since a prediction error deadband is in use.
The control signal is noisier over the last 70 or so samples because of the unmeasured
disturbance: thv air conditioning cui in again.

The controller parameters for Run 2 reflect the more rapid adaptation, as can
be seen in Figure 3.8. The parameters adjust to reflect changes in the process. As for
Run 1, only a first order process model was used. The difference in the adaptation
between Runs 1 and 2 was a relatively simple change: the “asymptotic memory
length,” the primary tuning parameter for the identification, was 1000 for Run 1 and
200 for Run 2. The asymptotic memory length may be thought of as the number of
measurements retained in the covariance matrix once the identification is at steady
state. Obviously a high value will give slow adaptation but too low a value will result
in parameters that change too quickly.

The controller transfer function depends on the process model and the con-
troller tuning parameters. With this equipment, changes in ambient temperature and

external heat transfer coefficient can cause the process model parameters to change

Setpoint Term

Plant Output Term

Control Action Term

40

15

10 i

5F 4

o ! L 1 1 i I

0 200 400 600 800 1000 1200 1400
40 L] ?: Ll T L] L] L)
20} e .

0 4
-20f N -
-40 i W |
_60 1 L L 1 1 A

200 400 600 800 1000 1200 1400
0-3 ¥ 1) ¥ L) T T
M\ .
0.2} 4
0.1f -
o L 1 N 1 1 L I
0 200 400 600 800 1000 1200 1400

Time (samples)

Figure 3.6: Controller Transfer Function Parameters for Run 1

Output, Setpoint

Control Action

30

100

41

0 100 200 300 400 = 500 600

700

0 1 . 1 L I I
0 100 200 300 400 500 600

Time (samples)

Figure 3.7: Closed Loop Performance of Adaptive GPC for Run 2

Setpoint Term

Plant Output Term

Control Action Term

40

20

0.5

Time (samples)

Figure 3.8: Controller Transfer Function Parameters for Run 2

0 100 200 300 400 500 600 700
B . - :.'"'l- i h
5‘\-_,-" omm= ": " Nemmmay .’:,‘\' _____ -..-. —ame "," "“,.,"-,_ﬁ___gl"'--' \’(,ﬂ
e
0 100 200 300 400 500 600 700
0 100 200 300 400 500 600 700

43

even when the temperature is constant, as can be seen in the results of Run 3. The
process inputs and outputs are shown in Figure 3.9 and the controller parameters
are displayed in Figure 3.10. Even though the nominal process condition — the
controlled variable — was well-controlled at one value, the control action required

to maintain the temperature changed throughout the run.

32 T L) T L) T ¥ L L] L)
£
8 315} -
()]
n
3 W 44 (i . : .
@] I
30.5 1 1 L I 1 L i 1 1 -
0 50 100 150 200 250 300 350 400 450 500
60 Y T T T T T T T T

so-M)

Control Action
W S
o o
_———
1

50 100 150 200 250 300 350 400 450 500
Time (samples)

Figure 3.9: Closed Loop Performance of Adaptive GPC for Run 3

3.2.1 Operation in the Presence of Communication Diffi-
culty

The software was required to work in the presence of operational difficulties, both
sensor and communication failures. This requirement is the main difference between

this implementation and the majority of pilot-scale adaptive control applications. It

Setpoint Term

Plant Output Term

Control Action Term

Time (samples)

Figure 3.10: Controller Transfer Function Parameters for Run 3

0 50 100 150 200 250 300 350 400 450 500
:-J-' --------------------- A= _ ., P e ———— -1

50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

45

is a reasonable requirement for any control system, and doubly so for an adaptive
controller since bad measurements affect more than just the immediate control action:
the process model may be corrupted.

The separation of the adaptive control effort into two computers was described
in Chapter 2. The separation was done to ensure that the control action would be
implemented regardless of the state of communication between the different compo-
nents in the distributed control system. Thus control would be maint: ined in the
event of a communication failure of any length. In practice communication problems
were relatively common and the capacity of the program was tested sufficiently.

The steps taken to make the controller robust (to communication problems)
were outlined in Chapter 2. If any single value was missing, it was replaced (for
the purposes of filtering) by a substitute and the parameter update was abandoned.
The substitute was usually the previous value of the missing variable, but for the
process output the predicted value was used because it is the most accurate valye
available. For some early experiments, such as Run 1, even the process output was
replaced with its previous value, since the parameter estimation system had yet to
demonstrate itself as accurate in an on-line mode. The value was of course only used
for filtering.

The communication problems experienced during Run 1 are shown with the
process output in Figure 3.11. Each dot above the process output identifies a time
step at which the temperature was missing. Altogether there were 38 missing mea-
surements during 1300 samples, and all occurrences of missing data were handled
well. The one serious measurement error (as opposed to communication error) oc-
curred at the 859 sample, immediately after a communication error at the 858th
sample. The response of the process to the measurement error was described above.

In short, the software performed adequately in the presence of real-time com.-
munication difficulties, although the prediction error maximum must be chosen care-

fully as too large a value will cause the behaviour seen in Run 1.

Process Output

38

29

46

Dots Represent Communication Errors

e

28
0

200 400 600 800 1000

Time (samples)

Figure 3.11: Process Output and Communication Errors

1200

1400

47

3.2.2 Feedforward Control Performance

One more requirement for the adaptive controller software was that it contain provi-
sion for feedback control in conjunction with feedforward (FB+FF), an example of
Multi-Input, Single Output (MISO) control. In adaptive control implementations,
feedforward control has two advantages. Firstly, it helps the controller catch distur-
bances before they can affect the process. This is an effect common to adaptive and
fixed controllers. For adaptive controllers, however, there is an extra benefit: use of
another measurement improves output prediction and reduces by one the sources of
prediction error. Since the measurements used for feedforward control are usually
the ones most responsible for process upsets, their consideration in the model can
improve prediction immensely.

The process inputs and outputs for one FB+FF control run are shown in
Figure 3.12. There were four changes in the disturbance during the run and the
controller was able to compensate for the last two. This is not very clear from the
process inputs and outputs because of the high noise level, but it is obvious from a
plot of the prediction errors (Figure 3.13) that the model did not initially take the
disturbance into account. The large prediction error at the 247th sample is a result
of the change in the disturbance two samples previously. Subsequent disturbances
did not cause large prediction errors, despite the fact that they were the same size

or larger than the one that caused the large prediction error.

3.3 Weaknesses of the Existing Algorithm

The adaptive control software demonstrated that it is capable of controlling a physi-
cal process under real operating conditions. It is a working implementation of a 1988
state of the art adaptive controller. Two concerns were raised during the experimen-
tal trials that could not be addressed within the time frame of the project. They

were instead left until after the successful implementation because of their intricate

Output, Setpoint

Control Action

Disturbance

4R

30

150

100 200 300 400 500 600

700

100

50

100 200 300 400 500 600
Time (samples)

700

800

40

30

20

10

100 200 300 400 500 600

Figure 3.12: Closed Loop Performance for Run 4

700

800

48

Prediction Error

400 500 600 700 800
Time (samples)

Figure 3.13: Prediction Errors for Run 4

nature.

Firstly, the controller uses a single T filter for both estimation and control.
While this was the configuration originally supported by theory (Clarke et al., 1987b),
asingle T filter is difficult to tune. There may be no single T’ which provides both suf-
ficient robustness against model-plant mismatch and sufficiently active disturbance
rejection. Instead, a number of researchers (e.g. E. Lambert, 1987, McIntosh et al.,
1990, Mohtadi, 1990, Wittenmark, 1990) found that two different T filters should
be used: one for identification and a different one for control. The arguments were
mainly heuristic but the experimental results were incontrovertible.

The use of a single T filter, while not crippling, does limit the performance
that can be achieved by this adaptive control software. The whole topic of process
identification for adaptive GPC was investigated to find the most relevant identifi-
cation method. The investigation and results are discussed in Chapters 4, 5 and 6 of
tlis thesis and selections have been published elsewhere (Shook et al., 1989, 1990).

One other limitation to the adaptive control package is the use of an exponen-
tial forgetting factor, specifically the method of Y'dstie ei al. (1985). In conjunction
with a prediction error deadband it has demonstrated good robustress properties,

but careful tuning is sometimes necessary and in a FB+FF control context there is

potential for serious problems.

A prediction error deadband is necessary when Ydstie's forgetting factor is
used. It must be chosen carefully; neither too small (or it will no* work and there
will be covariance blowup) nor too large (adaptation will be too slow). A way to
calculate the noise variance on-line would be most useful for setting the adaptation
rate appropriately.

Adaptive feedforward control is only useful if there is enough information in
the measured disturbance for its effect to be identified. If, as was the case for these
experiments, the disturbance occurs only rarely, it is possible for the effects of one
disturbance to be “forgotten” before the next time. A directional forgetting factor
would remove the possibility of such an event. The topic of data forgetting in the

FB+FF control environment is discussed in Chapter 8.

Chapter 4

Identification for Adaptive GPC

The description of the adaptive GPC implementation in Chapter 3 emphasized the
performance of the identification routine. The controller functioned well, except
when the identification method failed to produce an acceptable model. The iden-
tification task performed poorly often enough to illustrate a well-recognized fact:
the identification of the model is the weak link in adaptive GPC implementations
(Mohtadi, 1990). The GPC control algorithm is less sensitive to model-plant mis-
match than previous self-tuning controllers, but an accurate model is still needed
for high-performance control (McIntosh, 1988). Two major concerns were raised
in Chapter 3 regarding identification ior adaptive GPC: (1) the model parameters
must be updated appropriately, often a more complicated task in the MISO control
case, and (2) the identified model is judged on the resulting control quality, so the
identification task should be designed with this in mind.

This chapter provides an iniroduction to process identification methods for
adaptive control. Although the method of recursive least squares is the most popular
identification method used with GPC, this is largely because of historical precedent:
RLS was used in the original GPC papers (Clarke et al., 1987a,b), and in other,
earlier self-tuning controllers (e.g. the Self Tuning Regulator. oz STR, of Astrém

and Wittenmark, 1973). There are many methods to calculate the “best” model,

51

52

and in fact there are many ways to specify the “best” model. It will be shown later
in this chapter that RLS is not the most appropriate identification method for GPC.

Three major parameter estimation methods are discussed in Section 4.1. All
three methods provide solutions to the identification of time-varying processes. The
intention is not to provide a rigorous theoretical analysis, but to describe the qual-
itative differences among the different approaches. Rigorous analyses have been
performed by many others, e.g. Ljung and Séderstrdm (1983) and Goodwin and Sin
(1984) and the discussion here borrows a great deal from their work. The methods
discussed are the Kalman filter, LS and the method of Least Mean Squares (LMS)
of Widrow and Stearns (1985).

While they have very different properties, all three methods represent per-
fectly valid approaches to the parameter estimation problem. The Kalman filter
(Kalman, 1960) is the optimal solution to the parameter estimation problem under
a certain fixed set of assumptions regarding the process and the measurement noise.
RLS is not optimal, but is more flexible and can be modified in a large number of
ways to fit different assumptions regarding the system. The third method, LMS, is
computationally very simple and has some very attractive robustness properties.

More basic to the field of adaptive control is the question of identification
objectives: how is the best process model defined? Before any meaningful comparisun
can be drawn among different methods, the goal of identification must be defined
explicitly. For an adaptive controller, the “best” model is that which provides the
best actual control quality. The original STR of Astrém arnd Wittenmark (1973)
was derived using an overall control objective. The method of least squares was
chosen as the parameter estimation method because it was a practical solution ‘o
the resulting control-relevant identification problem. The use of an overall cout: >
criterion is revived in this chapter and applied to the Long Range Predictive Contr-!
(LRPC) problem. The “optimal” or control-relevant identification goal for GPC is

derived. A resulting control-relevant identification method for adaptive GPC, Long

53

Range Predictive Identification (LRPI), will then be developed in Chapter 5.

4.1 Parameter Estimation Methods

The parameter estimation problem may be stated as follows:

Given a process, a set of measurements and a model structure, determine

the set of parameters such that the model best describes the behaviour

of the process.

As was mentioned in Chapter 2, an ARIMAX (AutoRegressive Integrated
Moving Average with eXogenous input) model is used for GPC. For the purposes of
this discussion a simpler ARX (AutoRegressive with eXogenous input) model will
be used:

A(q™y(t) = B(q™")u(t — 1 - d) + £(2) (4.1)

The equation can be rewritten in one-step ahead predictor form:

y(t) = [1—=A(g™")lg'y(t 1)+ Blg™V)u(t — 1 — d) + £(t) (4.2)
or
y(t) = ¢T4 (4.3)

where the parameter estimate vector § and observation (or regressor) vectors are:

O = [a1,-.)8narbry..., b7 (4.4)

éi) = [—y(t——l),...,—y(t—na),u(t—d—1),...,u(t—d-nb)]T (4.5)

and d is the process deiay.

'The “best,” or “limiting” parameter vectoris that which actually does provide
the best match between the predicted and actual process output. It is designated
8°. The plant itself may be linear or nonlinear, but it is not assumed that 6° can

completely describe the process. In other words, #° is not necessarily equal to the

true parameter vector 8* of a linear finite-dimensional plant. Instead, 6° is the set of
parameters which come closest to describing the process behaviour. The parameter
identitication problem is thus one of finding 6°,

The acknowledgement that ° cannot completely describe the process mean.
that there will always be some part of the process output that cannot be predicted
bv e model. This residual prediction error is caused by measurement noise, distur-
bance effects, or the fact that the mod.1 structure may be too simple for the process
(underparameterization).

Since 6° is the "best fit" set of parameters, it is necessary to define the “best
fit.” The vast rzajority of identification methods — but by no means all — minimize
the square of the one sten ahead prediction error. In other words, the “best” process
description is that which gives the minimum variance cne step ahead prediction error:
E((y(t+1) = g(t + 1]t))?).

This objective is chosen for two reasons: (1) the minimization is relatively
simple for this kind of objective function, and (2) it is easy to analyze the resulting
model and prediction quality. The one step ahead prediction error is linear in the
model parameters, so the minimization is just a linear regression. Since a squared
cost functional is used, there is a closed form solution to the linear regression for
any given model order and set of data. In addition, it is simple to find the variances
of the model parameters and the prediction error. There are identification methods
which use other criteria, such as least absolute value of the prediction error, but they
are more complicated and can be shown to be less relevant for GPC. The use of
longer-range prediction errors will be a.'dressed in Section 4.2.

The relationship between the process output and ihe limiting model can be

defined by the following relation:

y(t) = o(t - 1)T6%(t) + e(2) (4.6)

()]
O

where ¢(t) is the residual error: that part of the process response that cannot be
predicted by the model. In contrast, the difference between the actual process output

and that predicted by the current model (the estimate of 69, designated §) is:
y(t) =gt -)Th(t~ -, ¢ () (47)

where ¢(t) is the prediction error.
Since adaptive control is being used, the process is assumed to change over

time. 6° will therefore change with time:
0°(t) = 6°(t — 1) + w(t) (4.8)

The value of w(t) (a vector) represents the change in the parameter vector between
samples. If the form of w(t) is known, then the optimal identification scheme can be
defined. To take the trivial case, it w(t) = 0 for all ¢, then the best parameters do
not change (°(t) = 6°(0)). The best least squares method would therefore have no
forgetting (other than to remove the effects of initial conditions).

More often, the ideal model parameters are considered to change in some
raanner. Typically w(t) is considered to be a vector of uncorrelated random variables.
The parameters will then vary in a random walk or Brownian motion. If w(t) is
Gaussian and the covariance is known, then enough is known about the process to
make a Kalman filter the best identification method (Kalman, 1960).

In chemical engineering applications, the process is often nonlinear or of very
high order. In such cases even though the process remains the same, the best fit
low-order linear model may change in different ways. If the form of w(t) is known,
then it is often possible to design an “optimal” identification method. More often,
however, the form is unknown, so optimality is difficult to achieve. For example,
there may be a slow drift of parameters as equipment ages. The model may have
to change abruptly to meet a new operating condition following a setpoint or dis-
turbance change. Variations in excitation may result in variations in the model

parameters for undermodelled systems.

Ht

Often a change in setpoint is enough to force a change in the process model
parameters. If this is the only way the parameters change then w(t) will take the

following form:

0 with probability 1 — 42
‘lD(t) = y Y (1())
v with probability 42

where v is a random variable with some (unknown) distribution. If enough is known
about the process, then the magnitude of v may be inferred from the amount of
change in setpoint.

Detecting the times of transitior. (times when w(t) is nonzero) is difficult in
the general case, but in process control applications it is often possible to tell when a
disturbance has entered the system or at the very least when a setpoint change has
been made. A parameter estimation method has been derived for this kind of model
change, but it does not seem to have been embraced by the process control field.
Andersson (1985) formulated a scheme called AFMM (adaptive forgetting through
multiple models). It is a highly complex method where several models are present.,
The most likely model is used, and the least likely one is discarded and the most
likely model gives birth to a new one. It was not investigated thoroughly for this
work but it is a promising approach.

Although there is a need for identification schemes that can cope with such
parameter changes, there are relatively few schemes that have been formulated to
handle such cases. Instead, most work has focussed on the simpler random walk
case.

If the parameter variation is a random walk as described previously, and if
the noise {e(t)} is white Gaussian with variance Ry(t), then it has becn shown (e.g.
by Ljung and Séderstrom, 1983) that the optimal estimate 6(t) (which minimizes

the least squares prediction error criterion) is given by the Kalman filter:
6(t) = 6(t-1)+ L(t)e(2) (4.10)
e(t) = y(t)—¢(t)Th(t - 1) (4.11)

57

where the gain vector L(t) is given by

L(t) = P(t — 1)é(t) (4.12)
Ra(t) + ¢()TP(t — 1)(t)

and the matrix P(t) is updated according to

_P(t-1)¢(t)(t)TP(t — 1)
Ra(t) + $(1)TP(t — 1)é(t)

when the estimated variances R, (t) and R,(t) are equal o the actual variances R, (1)

P(t) =P(t—1) +Ry(2) (4.13)

and Ry(t).
RLS with an exponential forgetting factor uses the same parameter update
as the Kalman filter (equation 4.10) but the vector gain L(¢) and the matrix P are

calculated differently:

P(t —1)4(t)
MO = ST e - Do (4.14)

A(t) + ¢()TP(t ~ 1)4(t)
This can be construed to be a special case of the Kalman filter, with R (t)
and R,(t) chosen as follows:

Ri(1) = (‘—;(’t‘—)‘f—’) P(1)

(1= [w, 1 P(t= DRt 1)
= (X2))[P (t=1) A<t>+¢(t)TP(t—1>¢<t)] (4.16)

Ri(t; = A3 (4.17)

Variable forgetting factor methods (in particular the method of Ydstie et al.
(1985)) therefore ad,ust the magnitude of Ry(t) in an attempt to match R,(¢) in
magnitude, without accounting for direction.

The LMS method of Widrow and Stearns (1985) is similar to RLS, but is
much simpler. The gain vector L(t) is merely s #(t). The normalized variant is only

slightly mare complicated:

_ ___ hd(t)
O = Tt (4.18)

BN

This once again corresponds to a special case of equations 4.12 and 4.13 with

3 o o 2 B()e(t)T .
Bl = e (19

R, = 1 (4.20)
P(0) = uI (4.21)

i is a constant and is the only user-specified parameter. It is typically on the
order of 10-3.

The initial condition for P in LMS is significant because given the standar:l
update of equation 4.13, it can be seen that P does not evolve at all. The reduction
in P from the update (the second term in equation 4.13) is exactly offset by addition
of R;. This algorithm therefore avoids both covariance windup and turnoff. LMS is
however typically much slower in responding to an abrupt change in the true system
because of the fixed, low adaptive gain. RLS in contrast can adapt much more
quickly through forgetting. Forgetting allows the covariance .7 atrix P to grow and
thus increase the gain and therefore the rate of update of the parameters.

The RLS method has been used for process identification for GPC because
it is easier to implement than the Kalman filter and yet more flexible than LMS.
In addition, to implement a Kalman filter, values are needed for R, and Ry Itis
not always possible to find the right values, and using the wrong values destroys
the optimal qualities of the method. The choice of parameter estimation method
is still a difficult task for the designer. It is necessary to balance performance with
computational requirements and speed of convergence with robustness. The use of
prior knowledge of the process is also important for selecting the parameter variation
model. As ever, an inappropriate choice wil} result in poor control.

All three of these methods have one thiig in common: their objective. They
are simply three different attempts to solve the same problem: getting good one-step
ahead predictions. In cases where there is enough statistical information an optimal

method similar to the Kalman filter should be used, in other cases RLS is more

39

appropriate and in still other cases LMS may be the best method. Nevertheless, all
three methods are nothing more than variations on a theme. Whether or not the

theme is appropriate for adaptive GPC is another question altogether.

4.2 Overall Control Criterion

The objectives of process control are regulation and setpoint tracking. Some quan-
titative measure of control quality is needed for any mathematical treatment. Many
controllers m. usure the quality of control in terms of the variance of the control error,
(ysp — y(t)). This provides a reasonable performance function which peualizes large
excursions from the setpoint and is easy to analyze.

The original STR of Astrdm and Wittenmark (1973) was an early attempt at
minimum variance control. The objective of the STR was to minimize the variance

of the actual control error:

2

o2 =E(e?) = E ((ysp(t + 1) — y(t + 1))?)

The STR was not particularly successful because it could not withstand significant
amounts of measurement noise or model-plant mismatch. This drawback was caused
by the simplistic design of the STR, not the overall objective. Specifically, only the
one-step-ahead error was considered. This yielded a completely specified problem
(finding one control action to force one output to the setpoint). Unfortunately pro-
cesses exhibiting inverse reseponse could not be controlled at all by the STR. High
frequency disturbances also tended to be amplified. More “cautious” or “robust”
versions of the STR were developed, for example the GMV controller of Clarke and
Gawthrop (1979) which used a variable control action weighting parameter to detune
the control action and stabilize the closed loop.

GPC is more successful than the STR or GMV controllers because GPC con-

siders many predictions in the near future, an approach that falls under the generic

60

class of Long Range Predictive Control (LRPC) algorithms. The high frequency
sensitivity is reduced because the control action calculation is overspecified. There
are more predicted outputs to be controlled (equations to be solved) than there are
permitted control actions (degrees of freedom). The controller therefore must deal
with the predicted control errors in an averaging or least-squares way and cannot
react too violently to short-term predicted control errors. A thorough overview of
the properties of GPC is given in Clarke and Mohtadi (1989).

The GPC cost function at time ¢, equation 2.3, in its simplest form, is given
by:

N2
Jopc = Y (yap — §(t + j]1))? (4.22)

i=N

where §(t+j]t) is the prediction, or estimate, of y(t+7) based on information available
at time ¢. The prediction, §(t + j|t), is therefore the best guess the controller has
of the future value of the controlled variable. Ny and N, are called the prediction
horizons, since the controller does not look beyond N; steps into the future and look:
no closer than N, steps. The cost function is the mathematical expression of the
following statement: The GPC control action at time t is calculated to minimize the
second moment of the predicted control error {the sum of squares) over the inlerval
t+ Ny tot+ N,.

The GPC control action calculation is of course only one part of an adaptive
controller. The prediction used by GPC must come from a model, in turn provided by
a process identification scheme. Typically some variant of the popular RLS algorithm
is used. In the particular case of GPC, process identification was originally added as
an afterthought without considering tile relevance of RLS to GPC (Mohtadi, 1989).
RLS was used almost by default. It is the major point of this work that there exists
a more appropriate identification method for adaptive GPC than RLS.

If standard RLS is used with GPC then a number of ad hoc modifications

must be made to RLS for robust adaptation and control because of the inevitable

61

structural model-plant mismatch. In other words, because the model cannot describe
the process completely, RLS must be modified bcfore it can be used safely. One
common ad hoc fix is the use of a low-pass data pre-filter in process identification
in addition to the filtering resulting from the noise model (for example, Mclntosh,
1988, Mohtadi, 1990 and E. Lambert, 1987).

Use of such a filter is tantamount to an admission that the noise model is
incorrect for the identification even if it is correct for the controller. This is absurd.
The identification and control apply to the same process, so the same noise model
should be correct for both parts of the adaptive controller.

A new identification method is needed that is based on the same assumptions
as the controller. In order to maintain a consistent framework for adaptive controller
design, it is best to consider the problem as a whole. An overall adaptive control
objective is formed and then the identification and control objectives are specified as
subproblems. The identification and control then will work hand-in-hand towards a
common goal. In this work, the following overall adaptive control objective is used:

At time ¢, the overall control objective is given by:
A

Jac =Y (wp—y(t+) (4.23)
j=N

Obviously y(t + 7) is unknown at time ¢. Nevertheless, this is the goal of the
adaptive controller. The adaptive controller must therefore contain the process iden-
tification and prediction as part of itself, rather than having them added on in an ad
hoc way. If the whole cost function is minimized with respect to the model param-

cter estimates and the control action, then we have a finite horizon dual controller

(Feldbaum, 1965).

4.2.1 Dual Control

Feldbaum (1965) describes an adaptive controller structure called dual control. Dual

control is the optimal solution to the stochastic control problem when the process

62

information is incomplete. The dual controller is highly nonlinear, and is infeasible
to implement, but it defines the best possible adaptive control and hints for a de-
sign methodology for more realistic adaptive controllers. A complete discussion of
stochastic control theory is beyond the scope of this work; rather the intention is to
illustrate some of the consequences of considering an overall control ob jective.

A dual adaptive controller has to minimize a criterion where the control input,
u, has a dual role: to probe or excite the process for estimation and yet at the same
time exercise caution in control due to parameter uncertainty.

The objective of dual control is to minimize the cost function in equation 4.23
subject to a very important assumption: the process parameters are themselves ran-
dom variables. As with self-tuning controllers, the control problem is divided into
estimation and control, but the estimation problem includes finding the conditional
probability distribution function of the states and parameters given the process mea-
surements. A Kalman filter can be used for this part of the adaptive controller. In
addition, the control action is a nonlinear function of the probability density function
— the control action depends on the uncertainties in parameters and states as well
as the actual values. A dual controller therefore takes into account parameter un-
certainty (cautious control) and measurement uncertainty (stochastic control). The
control action eventually applied may also act to reduce parameter uncertainty in or-
der to aid future control calculations (i.e. introduce probing signals). The controller
thus exercises both caution and probing.

Dual control is infeasible except in simple examples because of the nonlinear
dependence of the control action on the parameters, states and uncertainties (the
hyperstate). There are often multiple local minima in the cost function, and the
actual global minimum may b. 4 Beult to find (Astrom and Wittenmark, 1989).

The most interesting property of dual control is its ability tc automatically
add probing action when the parameters are very uncertain. This is one ¢{ the ben-

efits of a long-range control objective: short term losses in control quality (from the

63

probing action) can be permitted if the control quality in the long run is improved
sufficiently. A proper dual controller with a LRPC type objective is mathematically
intractable: complex, time-consuming optimization procedures would be necessary
to find the optimal control action. Therefore a certainty equivalent GPC controller
is considered here. A certainty equivalent controller is one where the controller is
designed assuming that the process measurements and model parameters are exactly
correct. The need for probing action arises because the parameters are not exactly
known, and so probing is contrary to the assumptions underlying certainty equiva-
lence. It is sometimes necessary for the user of GPC to add excitation (through the
setpoint or control action and often prior to actual control) but the controller itself
cannot do so.! The reward of separating the adaptive controller into two parts is
that the problem is made tractable.

Adaptive controllers derived from one-step ahead objective functions cannot
probe, since the results of the probing would be available too late to affect the one-
step ahead control error. Nevertheless, probing has been added to one step ahead
adaptive controllers, often in an ad hoc way through the addition of a PRBS to the
control signal (e.g. Wieslander and Wittenmark, 1971). Many parctical schemes
suggest a priori probing and estimation hefore the control loop is closed. There have
also been attempts to reduce the ad hoc nature of such implementations, through
including the covariance matrix in the one step ahead cost function (as discussed in
Wittenmark, 1975). In such a method the control action is calculated numerically
because there is no closed form solution to the minimization problem. The resulting
control calculations are intermediate in complexity between dual control and one-step
ahead certainty equivalent control.

Another striking feature of dual control is the objective of the process estima-

tion. The role of the estimation is explicitly to provide thc best model for control.

Such user-added excitation may be seen in the experimental data in Chapter 6.

64

The model quality is judged not on its ability to predict, but on the actual con-
trol quality. This is a consequence of the use of an overall control objective. None
of the other methods described above (STR, GMV, GPC) considers this. They are
straightforward attempts to match the observed process behaviour through matching
one-step-ahead predictions. The question of whether or not this is the most relevant

objective has been ignored.

4.2.2 Certainty Equivalent Formulation

A certainty equivalent adaptive controller can be formulated using an overall control
criterion, equation 4.23. The resulting adaptive controller will be optimal only if
the optimal adaptive control problem is certainty equivalent (Patckell and Jacobs,
1971). This seems to be a circular definition, but the term “certainty equivalence”
was originally used to describe a class of control problems, not a class of controllers. A
certainty equivalent control problem is one where (a) the optimal adaptive controller
treats the stochastic control problem as a deterministic control problem, i.e. all
random variables (both model parameters and signals) may be assumed to be at
their mean values during the horizon of interest without loss of optimality, and (b)
the control problem is neutral, i.e. no amount of probing will reduce the model
uncertainty. Thus both caution and probing are absent from a certainty equivalent
controller (Jacobs and Patchell, 1972). It should be pointed out that most process
control problems are not certainty equivalent, so any certainty equivalent controller
will be suboptimal, and therefore adaptive GPC will be a suboptimal controller.
Fortunately the goal of this work is not optimal control, but an improvement in
process identification for adaptive GPC implementations. Adaptive optimal control
is discussed in Bitmead et al. (1990).

To introduce some structure to the controller, we recall the definition of

j(t + jit), the prediction of y(t+j), given information available at time t, and specify

our controller to be long range predictive in nature.
The error in the prediction, €;(t), is then defined as the difference between the
actual and predicted values. Although €;(¢) is not known at time ¢, the definition will

permit the division of the adaptive controller into identification and control tasks.
€i(t) = y(t +7) — §(t + jlt) (4.24)
The overall control criterion becomes:
N,
Jac =) (yep — §(t +jlt) — €(2))? (4.25)
=N
T. - .an be rearranged to give the following three terms:

N,
Jac =) (-Gt +51))°
j=N

N;
+ D (1)

j=N

N,
=2) (e = 9t + 71))(e5(0)) (4.26)

i=N;
Certainty Equivalent Controller

The first term on the right hand side of equation 4.26 corresponds exactly to the GPC
cost function at time ¢, as in equation 4.22. GPC is one controller that minimizes
the value of this term for a given model, and is one certainty-equivalent control
algorithm for the specified adaptive control objective, equation 4.23. The receding
horizon -formulation for GPC belongs to the class of open loop feedback optimal
control methods (see, e.g. Tse and At.hans, 1972). A different controller, formulated
using closed loop feedback optimal control (dual control) arguments could be used
instead, but development of such a controller is beyond the scope of the present
work. The reader is directed to Bitmead et al. (1990) for a more thorough discu:zion

of adaptive optimal control. Other certainty equivalent receding horizon controllers

66

exist that minimize this cost function. The differences among such methods are
usually results of the process and noise model structure, not design philosophy.

A receding horizon approach permits the use of NU < N; and improves the
~ontroller robustness to severe model-plant mismatch although it does sacrifice closed
loop optimality (Clarke et al., 1987a, Ortega and Yang, 1989). The combination
of a receding horizon with certainty equivalence produces a controller that from a
practitioner’s viewpoint is straightforward to implement and yet robust to model-

plant mismatch,.

A Control-Relevant Identification Strategy

The second term in equation 4.26 is the identification objective. Expanded, it is

given by the following expression.

Ny Ny
Jip=) &t =Y [y(t+7) - gt + j1t) (4.27)
i=N =M

In other words, the most relevant identification method for the overall control
objective (equation 4.23) will provide the model that predicts best, not just one step
ahead, but also two steps ahead, three, and so on up to N, steps ahead.

This makes sense heuristically, because GPC uses these long range predictions
to calculate the control action. The commonly-used Least Squares (LS) method is
only concerned with one step ahead predictions and in the presence of structural
model plant mismatch, the one-step ahead least squares model will not give the
best long range predictions. The use of LS for parameter estimation has limited
the effectiveness of adaptive GPC because the models found using LS are not the
most appropriate for long range predictive control. Better control could be arrived
at through the use of an identification method derived to satisfy the objective in
equation 4.27 above.

The implementation and performance of one such method, known as Long

67

Range Predictive Identification, or LRPI?, will be discussed in Chapters 5 and 6.
An alternative approach to the overall minimization of equation 4.23 will also be
discussed in Chapter 7. As for the controller, other parameter estimation methods
could be used to minimize the cost in equation 4.27. LRPI is based on LS, but
another long range predictive identification method could be formulated using LMS
or possibly even a Kalman filter. In addition, the use of multiple models for lite
range predictive control has been suggested hv Mosca and Zappa (1986), but for the
present work only GPC, using a single moaci for all predictions, is considered.

The third term on the right hand side of equation 4.26 is a cross term com-
bining the effects of the identification and control. It is ignored in all certainty
cquivalent control. The expected value of this term is zero, if the prediction errors
for all j are zero mean and uncorrelated with the predited contro! errors. Beranse o’
ncise or model-plant mismatch, the prediction errors are normally highly corrslated
with the actual control errors. They are relatively uncorrelated with the rredicied
control errcrs, as long as the mcdel is reasonably accurate. Lu and Fisher (1990)
have stated that this term may be considered to be zero on average subject to weak
conditions if the model is identified using a regress.o: method, since the prediciion

errors are orthogonal to the predictions.

4.2.3 An Alternative Formulaticn

Lu and Fisher (1990) propose an alternative controller structure that also minimizes
the overall control objective of equation 4.23. The controller objective is the same
as for GPC, but a different predictor is used. A nonminimal predictor is used that
provides greater long range predictive accuracy at the expense of more calculation.

The great benefit of the nonminimal predictor structure is that the 1c.odel

that gives the best iong range prediction is also the best one step ahead least squares

*the name was chosen to emphasize the objective of the identification and illuminate the duality

with long range predictive control

N

model. RLS can therefore be used with no modification to identify the best model for
the purposes of control. In effect, the burde:: of good long range prediction has been
passed from the identification to the nodel. This is certainly an elegant approach.
Unfortunately, the number of P i -. s that must be identified is large, and can
be enormous. Nowminimal Predicuive Jontrol (NPC), as this approach is called, is

disznssed at greater length ir Chapter 7.

Chapter 5

Long Range Predictive

Identification

The case for a control-relevant identification strategy was argued in the last chapter.
The focus of the present chapter is to describe the implementation of a feasible
GPC-relevant identification scheme. The desirable properties of the identification
scheme were that the implementation should be simple, preferably similar to least
squares, and that the computational load should not be . .~ sive. In particular, the
requirement of {urther use:-specified parameters was to be wvoided. Convergence
properties are exa:nined tiivugh simulation and experimental examples, because of

the difficulty of analysis.

5.1 The LRPI Objective

A control-relevant identification approach was introduced in Chapter 4. For GPC

the relevant identification objective was shown to be (equation 4.27):

N2
Jip =) ((v(t+37) - §(t +jlt))

=M

69

70

The model which minimizes the normal one step ahead least squares cost function
(the LS model) will minimize this long range cost only if th- precess fits within the
model structure. If the p:ucess is too complex to be represer:t -2 exactly by the model
(i.e. if the model is too <imple) then the LS maodel (which gives the best one step
ahead predictions) will not give the best long range predictions. The LS model will
therefore not minimize the long range cost. Long Range Predictive Identification
(LRPI) is therefore proposed.

The LRPI solution is achieved through a regression approach chosen to be
similar to LS. A scalar cost function, JLRP1, is chosen which will in the mean minimize

the vzlue of J;p:

1 & & .
—_— - DY — ki 3Ly r
Jurpr = 7— A ; , ,-; ((y(k+J) gk + jlk)) J (5.1)

Vv wo iVp is the number of predictions considered, i.e. Np=Ny—Ny+landt - N,
previous time steps are considered /since k + 7 must be less than or equal to ¢). This
cost corresponds tc the observed mean squared J-step-ahead prediction error. The
predictions considered are exactly those which are required by the GF'<C controller, as
was pointed out in Chapter 4. A graphical interpretation of the predictions involved

in evuation 5.1 is shown in Figure 5.1.
This cost function is attractive because it is a logical extension to long range
prediction of the standard least squares regression objective, normally written thus:

1 ¢ A e 2
Jos =2 Y Ik +1) = g(k+1]k)] (5.2)
k=1

Although equation 5.1 is conceptually simple, it is computationally difficult
to solve for the parameters. The j-step-ahead predictions are nonlinear in the pa-
rameters for j > 1, so the usual least squares closed fuim zolution is not available.

The difficulty is illustrated in the following example.

Example 5.1

Output and Prediction

Control Action

71

0

~ Plant Qutput
N * * Prziction of Ovtput
= . Forward from Time k
— et e
i
ﬂ'l | —LI_| 1 [
llTrlllrllIlllllilllfllll[llllllflllll]

N
k k+N_l k+ L t

Time (samples)

Figure 5.1: Grapticai Interpretation of Predictions in LRPI Cost

-1
1§~

Assume a deterministic first order process model:
y(O) = auy(t = 1)+ huft — 1)
The one step ahead prediction is given by:
Gt +1) = ary(t) + byu(t)
and the two step ahead prediction is given by:

Gt +20t) = ayg(t + 1t) + byu(t +)

§(t+21t) = afy(t) + arbyu(t) + byu(t + 1)

By extension, the j step ahead pre-i-tion is
g+ 71t) = ajy(t) + &~ byu(t) + 41 “byu(t+) + ... + byu(t 4 j — 1)

So all predictious are linear in ?)1, but for all j > I the predictions are

nonlinear in &,.

If the process model is of higher order then the long range predictions

are nonlinear in all parameters including ;.

A

The method of ieast squares finds the parameters a1, b, that, for a given sct,

of data, minimize the LS cost function.

If the following definitions are used:

] [e we)]
- u . a]
v — y@)’¢= y(1) (1) = fJ’
. . . :
v | [un-1) w1y

73
then LS finds the solution § to the approximation
Y = &4 (5.3)
The solution for the batch least squares estimation of 4 is:
6=[¢70] " &TY (5.4)

This solution can only be used if y(t) is linear in the parameters. Otherwise, the
problem cannot be written as ¥ = ®@ and this convenient closed form solution

cannot be used.

er of methods are available to minimize the LRPI cost. For batch
da.. ton-Raphson or (GGauss-Newton method may be used. Gauss-Newton
is mote robust, but Newton-Raphson converges faster in the neighborhood of the
optimum parameter estimates. ¥or on-liie applications, a recursive Gauss-Newton
prediction-error method (see e.g. Ljung, 1987) has been used, and has shown rea-
sonable convergence in simulation examples. Although these methods are useful
only for batch data, it is instructive to compare the qualities of LRPI and LS mod-
cls. The cost functions of LS and LRPI also hint at some of the properties of the

Newton-Raphson approach.

Example 5.2

The following second order discrete process was simulated.
y(8) = —14y(t — 1) + 0.5y(t — 2) + 0.1u(t ~ 1) + 0.05u(t — 2)
The process input, u, was white noise. A first order model structure
y(t) = ay(t = 1) + byu(t — 1)

was chosen. Because of the high degree of excitation and the structural

misratch between the process (second order) and the model (first order),

b1 parameter

there is no set of model parameters that will provide perfect prediction,
even though the process is deterministic.

The LRPI cost for Ny = 1, N; = 10 was calculated for different pa-
rameter choices over the range 4; € [-2,+1),b, € [~1,+1]. Figure 5.2
shows how the value of JLrp1 changes as a function of the model param-
cters. The contours are logarithmically spaced because of the extremely

high cost in the area 4, < —1.

1

0.8}

0.6

0.4

T

0.2

~

~_

-0.5 0 0.5
a1l parameter

Figure 5.2: Contour Plot of LRPI Cost as a Function of Parameter Estimates

The cost is unimodal, and is quite a smooth function of the parameter
estimates within the region —1.0 < &, < 0.9, which corresponds to a sta-
ble process. For values of @, less than —1, the model is unstable and the
cost increases dramatically because of the poor long range predictions.

This signifies a large implicit penalty in LRPI for a; < —1. A similar

effect could also be obtained in LS by imposing an external constraint on
the optimization, using, for example, Lagrange multipliers. The optimum
would then remain at the LS optimum unless it violaced the constraint.
The LS and LRPI optima are at different locations. as can be seen in
Table 5.1, so a hard constraint would only serve to prevent totally unrea-
sonable parameters. When b, becomes negative (negative process gain),
the cost also increases quickly, although not as dramatically as for an un-
stable model. The long range predictions depend more on the quality of
the autoregressive parameter estimate than on th. quality of the estimate
of the gain.

Ry contrast, the shape of the loss function for a least squares (one
step akead prediction) model is a simple paraboloid. The cost does not
increase as quickly as for LRPI in the regions corresponding to negative
gain or unstable models, as can be seen in Figure 5.3. Once again the
contours are logarithmically spaced, but the entire range of cost is much
stnaller for LS than for LRPI, as can be seen in Table 5.1. The three
contours closest to the optimum in Figure 5.2 cover the entire range of

values in Figure 5.3.

Table 5.1: Summary of Cost Function Information for Example 5.2

! Method LS LRPi
minimum cost 0.0115 0.0339
maximum cost ! 1.9522 7.4 x 104
optimum &, ' -0.9475 -0.8815
optimum b, 0.1001 0.2021
cost at LS optimum 0.0115 0.0714
cost at LRPI optimum 0.0217 0.0335

The LS cost is smaller than the LRPI cost at the LRP] optimum (in

b1 parameter

76

-2 -1.5 -1 -0.5 0 0.5

al parameter

Figure 5.3: Contour Plot of 1.S Co:i s a Fun-tion of Parameter Estimates

iodel Output

Table 5.1) because LS is only concerned with matching one prediction
while LRPI must approximately match several. The mean squared one
step ahcad prediction error at the LRPI optimum (0.0217) is less than the
mean square of the 1,2,3,...,10 step ahead prediction errors (0.0339).
The step responses of the LS and LRPI optimum models are shown
in Figure 5.4. It is clear that the LRPI model provides a better match to
the step response over the first 10 steps than the LS model. In particu-
lar, the LS model fits the first point well, but later ones poorly. The step
responses are shown for two reasons: first, they are simple, easily urder-
stood examples of long range prediction, and secondly, the step resp nae

parameters are themselves important to GPC.

1.6 T k] T il L4 T T L v

1.4

1.2} . ' °

0.8} . c
° Exact: x

LS: o
° LRPI: *

0.6

T
[~}

T

0.4

0.2'- M o

i L 4

0 1 A I 1 X i
0 2 4 6 8 10 12 14 16 18

Time (samples)

Figure 5.4: Step Responses of LS and LRPI Models

When the GPC control action is calculated, a vector of future errors

-1

is multiplied by the pseudoinverse of a matrix of step response coefficients
from N, to N,. If these values are badly underestimated (as for the LS
model), the resulting controller will have too high a gain, giving oscilla-
tions and instability. The more accurate estimates from the LRPI model

will result in better control, for this example.
A

The exact solution of equation 5.1 in the batch and recursive cases is described
in section 5.2. The frequency domain implications of LRPI and the resulting recursive

implementation are discussed in section 5.3.

5.2 Exact Solution of the LRPI Problem

As was stated above, there is no closed form solution to the minimization of the
LRPI cost function, and therefore an iterative technique must be used. To find the
parameter values which minimize the cost function, equation 5.1, the j-step-ahcad
predictions must first be defined in terms of the process model parameters.

The GPC predictor is:
gt +jlt) = Fi(q7")y(t) + E;(¢™")B(g™)Au(t + j — 1) (5.5)

where Fj(¢™') and E;(q™?) are given by the Diophantine equation:

T(q7") = Ej(q7")A(g™")A + ¢~ Fy(q™") (5.6)

(The denominator of the noise incdel, A, a specific case and describes the nonsta-
tionarity of the disturbances. More generally, A can be replaced by a polynom:al
D(¢™') which may contain A as a factor. For example, D(q™') may be equal to A?

in some robotic applications. See section 5.3.4)

We rewrite equation 5.1 as a minimization problem:

t—-Nz
0 = arg min ;—- > [: Eﬂ‘ (Wk+3) =gtk +50)2| (5.7

where 0 is the vector of parameter estimat: :

0=[ar,...,én01y. .., by,)T (5.8)

5.2.1 Baich Solution

Newton-Raphson

One simple way to - .ve this minimization is to use Newton-Raphson to find the
location (parameter vector) where all first derivatives of JLrpr with respect to the
parameters are zero. (All su-i points are either minima, maxima or saddle points.
The problem of avoiding maxima and saddle points will be ignored because the min-
imization is well-behaved in the neighbourhood of the optimum.) The minimization

*hus changed to a multivariate root-finding problem. Newton-Raphson
' st appealing because of its relatively simple formulation and excellent
convergence properties.

The derivative vector is given by

t-N;
e }j[5 (wtk+) - ith+ in FELIB] (5
k=1 " P j=N,

and the Hessian (the matrix of second derivatives) is:

H=2 (3"LRP’)T=
a6\ &6
1 t—-N; 1 Ny) azg(k-f-]lk)
- k+7) -4k + 5]k)———F-2-1
W L 2 [tk)itk) T

(Y)

The standard Newton update is used.

6=06—(H)! (ﬂ;—gﬂ) (5.11)

The actual difficulty is twofold. First, the number of derivatives to be cal-
culated is enormous: N, x (¢t — N;) x (na + nb) first and second derivatives are re-
quired. Secondly, it is not easy to fis.:/ « -eneral form for calculation of the derivatives.
LS is much simpler: all first derivativc. .re simply measurements (and therefore need

no calculation) and all second derivstives are zero.

Example 5.3
As an illustration, consider the j-step ahead predictor of Example 5.1.

The j step ahead predicior is
gt + 1) = &jy(t) + &] " byu(t) + & bu(t + 1) ... +bu(t 45 - 1)

The first derivatives are:

ay(t + 7t i . ai—2%

QAT jaityy 4 (G = Dat2huge)

aal

+(= 2)&bu(t + 1) +... + 18%,u(t 4+ 5 — 2)

aj(t +jlt)
b,

and the second derivatives are:

*y(t + 5)t)
0a?

&7 () + & Pt + 1)+ u(t g - 1)

= (G =D& y() + (G — DG - 2)id~byu(t) + ...

+H(2)(1)&byu(t + j - 3)
a%§(t +4lt)

= =0
ob?

25 ; : i

TIELID o ra) + - e a4 1) 4.
1V

+u(t+j —2)

r

Note that this is the simplest form of long range prediction: there is

no noise model or filtering to complicate the issue.

Derivatives of higher order models are much more complicated. For
second order models there are four first order derivatives and sixteen (ten
unique) second derivatives. The derivatives must be worked out for cvery

model structure individually; there is no useful general form.
A

The shape of the cost function surface affects the convergence properties of
any method used to find the optimal parameters. In particular Newton-Raphson
converges in one iteration when the cost function is a paraboloid, but it takes signif-
icantly longer when the shape is as in Figure 5.2. Typically for small N, (less than
10) fewer than N; iterations are required. In most cases, speed of convergence could
be improved through the use of a modified Newton scheme, such as the well-known
Marquardt-Levenberg method.

Convergence can be a problem with noisy data or when there is significant
structural model-plant mismatch. In such cases, the least squares parameters may
“wander” — the noise, input sequence and high frequency dynamics may cause
changes in the position of the minimum. It is often possible for the optimal LS
a; parameter to have a value very close to -1.0 for a first order model. It may
then wander temporarily beyond that value, i.e. into the unstable region. The
resulting model usually results in poor or unstable control, in part because the model
is unstable, and also because the steady state gain has the wrong sign. (The model
steady state gain is given by the ratio %—3, and if @, is less than -1 for a first order
model, then A(1) < 0.) The optimal LRPI model parameters do not wander as far
as the LS parameters because of the drastic increase in the cost beyond @, = —1.

The quality of long range predictions is profoundly affected by a,. The ac-
curacy of the autoregressive part of the model is tried when long-range forecasting
is required. LRPI therefore reduces the likelihood of accidentally identifying an un-

stable model when the process is stable. Least squares cannot take into account the

82
need for good long range predicitons.

(Gauss-Newton

The robustness of LRPI may be improved and its complexity reduced at the expense
of speed of convergence by using a Gauss-Newton algorithm rather than a Newton-
Raphson. Gauss-Newton is similar, but the second derivative term is removed from

the Hessian. The Hessian, H is then approximated as:

o1 & & ek +ik)\T [89k + k)
H"t—NzZ[FZ< 96) (96) 512

k=1 p =N,

Use of Gauss-Newton reduces the number of calculations required per iteration
as well as simplifying the formulation: no second derivatives need to be calculated.
One additional advantage of Gauss-Newton is that the Hessian is almost guaranteed
to be positive definite for all parameter values. As long as the number of observations
is greater than Np, and the data are persistently exciting, then the Hessian will be
positive definite.

Convergence is slower than for Newton-Raphson, being between linear and
quadratic, while Newton-Raphson typically shows quadratic convergence. For batch
calculations this is not much of an issue: the increase in the number of iterations is
offset by the reduction in the number of calculations per iteration, and convergence
tends to speed up near the optimum as the neglected terms in the Hessian diminish.

Gauss-Newton is also far more useful in recursive implementations than

Newton-Raphson, since it can be quite easily formulated in a prediction error form.

5.2.2 Recursive Solution

For on-line applications, a recursive Gauss-Newton prediction error method may be
used (Ljung and Soderstrom, 1983). It is similar to the standard RLS method, but

the approximated Hessian replaces the covariance matrix. The standard RLS update

for one time step is given by the following:

o P(t= a0 (OP(- 1)
Pl = PU=1) == PG - e
e(t) = y(t)-§(t) (5.14)

" a

(t) = 0(t - 1)+ P(t)g(t)e(?) (5.15)

il

where P(t) is the covariance matrix, defined as:
t
P7i(t) =) 4(k)¢" (k) (5.16)
k=0

and ¢(t) is the regressor or data vector, which in example 5.2 is:

—y(t—1)
$(t) = (5.17)
u(t —1)
For recursive Gauss-Newton, the covariance matrix is replaced by the inverse
of the Hessian, and ¢, the regressor vector, is replaced with the vector of first deriva-

tives of § with respect to §. The Hessian update at time ¢ is given by the following

relation:

N, N , T N .
1 ay(t - N. t— N 0y(t — Ny + |t — N.
H(t)=H(t—1)+—z < 9(24:]| 2)) (i 2 AJI 2))
NP j=N 60 60
(5.18)

Updating the inverse of the Hessian for each time step calls for the equivalent
of N, = (N, — N, + 1) different covariance matrix updates. Moreover, there are N,
different prediction errors and different derivative vectors. Recursive Gauss-Newton
therefore calls for at least /N, times as many calculations as RLS. It is possible to
reduce the number of calculations required somewhat through approximations or a
single higher-rank matrix update but the computational load remains heavy.

On-line convergence is slowed also because the approximation of the Hessian

is even coarser than before. Since the derivatives are functions of §, H should change

if the parameter estimates change, even if no new measurements are taken. The

84

computational load for doing so would be equal to that for performing a complete
batch Gauss-Newton calculation each time step, which is infeasible. The Hessian
update only takes the present parameter values into account for the new data: the
existing Hessian is not corrected first. Consequently convergence is slowed (although

a forgetting factor may help matters by discarding old, outdated values).

5.3 Implementation Through Adaptive Filtering

The recursive form of LRPI has prima facie a very poor case. It is computationally
demanding and has no known useful convergence properties, even in the ideal noise
free environment. The goal of control-relevant identification however is sufficiently
strong to point us to an alternative analysis.

Wahlberg and Ljung (1986) and Ljung (1987) analyze the asymptotic proper-
ties of the least squares estimate in the frequency domain. Their methods of analysis
involve the re-casting of the identification objective from the time domain to the fre-
quency domain. The characteristics of signals and processes may then be examined
in the frequency domain, rather than in the time or z domain.

The topic of frequency analysis is not new to control, nor indeed to engineer-
ing mathematics in general. Fourier series are often used in the solution of differential
equations, and both continuous and discrete transfer functions are commonly repre-
sented by Bode or Nyquist diagrams. The topic of spectral analysis of signals is rarely
encountered in chemical engineering, and yet spectral analysis can yield surprising

results, as will be seen later in this section.

5.3.1 Frequency Domain Analysis of Cost Function

To simplify the discussion, analysis here will be limited to the deterministic case with
structural model-plant mismatch usually caused by underestimating the order of the

process transfer function. Extensions to the stochastic environment are discussed in

Section 5.3.4. The process is assumed to be of the form

y(t) = Aog —l)(1) (5.19)

where A%g~?) and B%(¢~') are polynomials in the backshift operator, q='. The

process model is given by Clarke et al. (1987b) as

T(q“)

A(g™y(t) = B(g™")u(t — 1) + —5—¢£(t)

where A and B are in this case lower order polynomials than A% and BP respectively.
The noise model (T'(¢~')/A)é(t) is imposed by GPC.
The j-step-ahead GPC predictor is (equation 5.5):

N o E;B

The LRPI cost function, Jrpr, may be rewritten in terms of the GPC pre-

dictor:

t-N; k 2
JLrpr = N2 Z Z [(k+3) - (Eul) T Au(k+j—l))J

k=1 " P =N
(5.20)
The j step ahead prediction error at time k (using filtered data) is contained within
the large square brackets. To analyze the dependence of the model {A, B} on the
design variables, it is first desirable to remove the process output, y, from equa-
tion 5.20.
The Diophantine equation (5.6) may be rearranged thus:

|-~ Ble) _ Bilg)A@@A

T(¢') ~ T(g™)
and this may be applied to y(k + j) in the cost function to give:
t—Np 2
1 E; AA E; B
JLrpr = Z Z (5.21)
k=1 Ny i=Ny

86

The true process description, equation 5.19, may now be used to express

y(k+j)in terms of u(k+j —1):

2
(k+j— 1)]
(5.22)

;B
T

t-N;
R % LV

i=N

This can finally be rearranged to give the following equation.

t-N; 2 2
Jines = N2 Z Z [(E AA) (ﬁo g) u(k+j—-l)] (5.23)

k=1]—'Nl

The contents of the large square brackets are still the j step ahead filtered
prediction error at time k, as in equation 5.20.

We now have an expression that gives the mean square prediction error as
an explicit function of the design variables N; and N,, the noise model T'(¢™1), the
actual process, the process model and the input sequence. The LS cost is the same,
but with &V, and N, both equal to 1:

. 2
AA B° B
Jis = -— k-1 5.24
(@) EA)] e

The noise model is present in both of these expressions as the A/T term. If,
in addition to the noise model, a filter, L(¢~!), were used for identification only, then
the LS cost function would change to the following:

. 2
LAA B* B
Jis = k-1 2
B[G e

To compare equations 5.23 and 5.25 in a meaningful way, it is useful to exam-
ine the frequency domain properties of the different models. The frequency domain
provides a useful framework for analyzing different processes and models regardless
of their orders. It is difficult to compare, for instance, a second order process and a
first order model through examining the parameters themselves. Typically step or

impulse responses are used for comparison. They are however incomplete. A step

-
2
-1

response contains relatively little information about the response at high frequencies,
and an impulse response does not show the steady state gain well. A single Bode
plot completely describes any transfer function.

The discussion so far has focussed on prediction errors. The models are formed
by minimizing certain functions of prediction errors. In particular, squared prediction
errors. If the one step ahead prediction error, €,(t) is thought of as a signal or time
series, then the LS cost function, equation 5.2 is just the mean square value of this
signal, or the mean power in the signal. The power or energy in a signal can be

measured directly:

P(e) = %Zc(k)z

k=1
or it can be measured from the power spectrum:

L[
P(e) = % -, b, (w)dw

where h is the sample time and ®.(w) is the power spectrum of €. The value of ®,
at a given frequency wy represents the power of the signal at that frequency. If the
signal e were filtered perfectly with an ideal band-pass filter passing through only
at frequency wp, then the power in the filtered signal would be equal to ®,(wg). It
is more convenient to use the power spectrum here than the more straightforward
Fourier transform because these cost functions are written in terms of squated errors.

A full introduction to Fourier transforms and power spectra can be found in
any signal processing or spectral analysis textbook, e.g. Priestley (1981). The only

important lemma required for discussion here is the following, stated here without

proof.

Lemma 1 Given a (quasistationary) signal e(t) with power spectrum ®.(w), a stable

transfer function G(q7!), and y(t) defined as follows:

y(t) = G(q7")e(t)

88

then ¢, (w) is given by:
$,(w) = IG(eiw)lz(pc(w)

The expression |G(e)| is just the amplitude ratio (also called magnitude) of

Glq™').

The proof for this can be found in Appendix 2A of Ljung (1987). It permits us
to examine the frequency domain transformations of equations 5.23 and 5.25. Making
use of this, it can fairly easily be shown that the LS cost function, equation 5.23,

inay be written as follows:

. |2
B B

A0 4

b | s inl?
Jis = h £;—A ¢, (w)dw (5.26)

27 —n/h
where ®,(w) is the power spectrum of the input, u(t).
The LRPI cost function may in turn be written as the sum of V, different j

step ahead cost functions:

1 Y[h o gaall B B
JLrp1 = E,;l 7 /_ﬂ/h T G ®y(w)dw (5.27)

The summation may be moved within the integral:

1|’/h l N2
JLrpr = / N
ﬂ/h J—Nl

.12
B _B

A° 4

- 2
E;AA

What is interesting about this equation is that the only term that explicitly
depends on the prediction horizons (must be within the summation) is the magnitude

of E;. To make this clear, equation 5.28 may be rewritten as:

AV INGY: -1 p
Jirpr = 5 /_ AT Ou(w)ﬁ;;%wjl dw (5.29)

The only difference between the LS and LRPI costs is the L filter in the LS

equation and the summation of E; in the LRPI cost. If all other parts of the cost

3

functions are the same (same input, same model, same actual process) then the LS
cost is equal to the LRPI cost if the following condition holds:
ILw))? = — Z |E;j(w))? (5.30)
J=N|
for all w.

Conversely, if the LS method is implemented with an L(q™") filter that meets
this requirement, then the resulting model will be the same as the LRPI model.

So, LRPI may be iinplemented using a form of LS, but with an additional
filter, L(q~!), the form of which is determined by N;, N, and E;. E; in turn is given
by the Diophantine equation (5.6), and depends on the process and noise model.
The problem now is to find the L filter.

Fortunately, there is a unique L(g™!) of order N, which satisfies the criterion
(5.30). The way to find it is by the method of spectral factorization, for instance the
technique of Bohm et al. (1984). For on-line applications, only one iteration of the
method is carried out each time step, as convergence is quite rapid. The actual use
of spectral factorization for LRPI is described in Section 5.3.2. The properties of the

L(q™") filter are then discussed in Section 5.3.3.

5.3.2 Spectral Factorization

The LRPI filter, L(¢™!), is defined in the frequency domain by equation 5.30:

LW = = Z |E(w)l?
J-Nx
for all w.

The transformation of any polynomial in ¢ or ¢~! into the frequency domain

is achieved through the use of the following identity:
g=¢e"

so L(w) is more correctly written as L(e™¥).

90

The characteristics of L(e~/*) as a function of w are given below:

|L(e5)| = \/Re(L(e-#))* + Im (L(e-#))’

1 Im(L(e7))
Re (L(e-iv))

In other words, the magnitude of L(e~’*) at a given frequency wp is the

é(L(e™*)) = tan

absolute value of L(e=’*¢) and the phase angle of L is the inverse tangent of the
imaginary part divided by the real part.

The square of the magnitude can be calculated by multiplying L(e=7“) by its
complex conjugate: L(e*’*). In the polynomial domain L(et) is L(q*?).

So, equation 5.30 becomes:

L(e) L(e?) = E E;(e™*)E;j(e*) (5.31)
J—Nx

L(g™')L(g*") = Z Ei(¢7")E;(g%") (5.32)
J“'Nx

To find L(g~!) the right hand side of equation 5.32 is calculated. The result
is called the spectrum. The spectrum must then be factored to find the stable root,

L(gq™!). The method used for LRPI is the simple method of Bohm et al. (1984). It

works as follows.

Given a spectrum S(q) (in this case equal to L(q)L(¢™!)) and an
approximate (stable) factor F,(q), perform the polynomial division (de-

convolution):
Sle) _ R(Q")
Fa(9) Fag)

Fa41(g71) is the new approximate factor and R(q) is the remainder. The

w7 + ==

notation here is important. F(q) and F(¢~!) are not the same polynomial.
One is written in ascending powers of ¢ and the other is in ascending

powers of ¢~!. For example, if

Fn(q_l) =1+ fnlq_l + fn2q_2

91

then
Fn(q) = 1 + fnl¢1+l + fn2q+2

which is something altogether different.
To perform another iteration it is necessary to form Frt1(q) from
Fat1(¢7"). As many iterations are carried out as wished; the magnitude

of R(q) may be used as a convergence criterion.
A

For the first step, S(q) is just the spectrum, the right hand side of equa-
tion 5.32, and Fo(q) may be chosen to be 1.0 or any other stable polynomial. Con-
vergence in practice is rapid and the method is robust. There are other spectral
factorization methods, but any improvement in performance was not felt to be worth
the extra programming effort.

In experimental practice, only one iteration is performed each time step. S(q)
is calculated anew from the updated parameters and the old L filter is used as
Fa(g~'). There has been no trouble with convergence of the L filter using this

method.

5.3.3 Properties of the Adaptive Filter
The following properties of the LRPI L filter have been observed.
Observation 1 : L(q™!) is a function of the controller tuning and the process model.

From the definition of L(¢™!), equation 5.32:
1 &
Lig™)Lg*) = = D_ Eila™)Es(¢*)
P =N
it is clear that L depends on the controller prediction horizons N; and N,. And,
E;(q™!) is a function of both the process model and the noise model, so it follows

that L(g™!) is too.

Observation 2 : For all open loop stablc process models i.e.
Alg™) #0, Vgl 21

and N = 1, L = 1 we have an equation error least squares method. When the dis-
turbance model denominator D(q~") is stable, or for positional identification (where
D(q=') = 1), then as N; tends to infinity the estimator tends from an equation error

scheme toward an output error one.

The first part of this is clear: when N; = 1 LRPI reduces to LS, as has been
pointed out above. However, the implications of the second part are somewhat more

complicated.

Recalling the Diophantine equation defining E;(g™!),
T(¢7") = Ej(¢7")A(q™")D(¢™") + ¢~ Fi(¢™")

Solving for E;:

T F,
E. = — g7 2L
i=7p "Y' D

As N, tends to infinity, En,(¢~!) becomes infinite in length and becomes a closer and
closer approximation to T/AD. In the limit, L(q™!) also becomes equal to T/AD.
This is because L is a sort of average of all E; and in the limit there is an infinite
number of E; polynomials equal to T/AD.

The measurements are filtered by LD/T (as ever) and so the net effect of the

combined filtering is

Lp . _(T/ADD = 1

This is the filtering used in identifying output error models, so in the limit as N,
tends to infinity the identification scheme tends to output error form, even though
the predictive model is an equation error model.

Kwok (1990) observed that when D(q~!) contains A as a factor (as in most

process control applications), then the E; polynomials do not converge. In such

93

cases the identification method does not become output error LS as ¥, tends to
infinity. Further details of the behaviour of L as N; becomes large may be found in

Kwok (1991).

Observation 3 : LRPI and LS are equivalent when identifying pulse response type

models.

Puise response type models, such as the step response mode! used for DMC (Dynamic
Matrix Control):
y(t) =) gilu(t — i) + e(t)

=1

contain purely numerator terms. There is no denominator in the process model and
no E;(¢~') polynomial. L will therefore be equal to 1.0 when LRPI is used to identify

this kind of model.

Observation 4 : L(g™!) is a weak function of the estimated A(q~") and a strong

function of N,, the prediction horizon.

Figure 5.5 shows the variations of the frequency response of L(g~') and 1/A (a first
order polynomial) as the pole of the process model transfer function (the zero of A)
varies from 0.8 to 1.0. The normalized cut-off frequency of the filter varies from 0.25
radians to 0.32 radians. The range of A polynomials shown in Figure 5.5 corresponds
to process time constants between 4.48 samples and infinity. Obviously, the L filter is
a weak function of the process time constant. The normalized cut-off frequencies of
the corresponding 1/A cover a relatively much broader range of 0.03 to 0.15 radians.

Fig.5.6 shows the variation of the frequency response of L(¢~!) with N, as it
varies from 2 to 50. The normalized cut-off frequency varies from 2 radians to 0.15
and the maximum attenuation goes from 0.5 to 0.08. Clearly the prediction horizon

N; plays a much stronger role in the nature of L than the pole of the model does.

94

100 T ¥ rrrrry T Y T LI S SR S0 20 20 B § T T T 1T 7t °T1¢

Amplitude Ratio

10-1 1 1 Lol L LA 1 A P T T I N S | I A | Il b b A 2 1 A2

103 10-2 101 100 101

Normalized Frequency, radians

Figure 5.5: Variation of the Frequency Response of L with Process Model Pole

Position

95

Observation 5 : L is typically low-pass but under certain conditions it may become
band-pass or even high pass. These conditions are rarely, if ever, encountered in

chemical processes.

If A (at least second order) is sufficiently lightly damped then L will show a resonant
peak. At very slow sample rates the resonant peak will approach or even pass the
Nyquist frequency, and then L will become a high-pass filter. In chemical engineering
processes, the dominant time constant is usually many times larger than the control
interval, so a high-pass form of L is unlikely. In mechanical systems, such as robots,
very fast, very oscillatory responses are quite common.

The implementation of LRPI as LS with an additional time-varying (model-
and tuning-dependent) prefilter provides insight into what has been happening in
adaptive control research to date. Many researchers have recommended use of band-
pass filters in identification. The justification has been that the model must fit the
process best in the region within the passband. While this is true, use of this ad
hoc filtering is an admission that the model cannot fully describe the plant. The
result has been that the parameter estimator is identifying a model different from
that which is being controlled, an apparent inconsistency. Although LRPI cannot
completely remove the need for an ad hoc noise model, it does reduce the number of
design choices required of the user.

Much of the discussion about ad hoc filtering has centered about matching
the process “near” the crossover frequency (the frequency where the phase lag is
equal to —180°. This of course means that the process crossover frequency must be
known, at least within bounds. LRPI does not suffer from this requirement, as the
L filter is a function of the process model: as the process model changes, so does
the L filter. McIntosh et al. (1990) in particular recommend the use of an additional
degree of filtering in the identification, but with weak justification. Their ad hoc

filter was 1/(1 —0.8¢™1). It is shown in Figure 5.7 compared to the LRPI L filter for

Amplitude Ratio

96

100 T T r LANLEN SR I8 & §

10'1:

10-2 L et 4 422 [l Al L1ty i I IS EEE L Lt Ly
10-3 10-2 10-1 100 101

Normalized Frequency, radians

Figure 5.6: Variation of the Frequency Response of L with N,.

a7

100 T ¥) LB A v L ey X2
2 L filter: —_
?6 -
a
8 1/T filter: ---
2 b
._3.
E
<
10-1 L it 1 111212 i N R N NN A T I W W : U S S W
10-3 10-2 101 100 10!

Normalized Frequency, radians

Figure 5.7: Comparison of L and ad hoc Filters

the “default” GPC tuning (N, =1, N, =10, NU=1, A=0, T =1-0.8¢7") and
a process model with A =1 —0.9¢"".

Traditionally, ad hoc prefiltering is performed using an infinite pulse response
(autoregressive) filter. It would be instructive to examine the characteristics of ap-
proximating L(gq~!) with 1/T(g~!) with a view to assessing the prefilters typically
chosen by the practitioners in the field. This can be easily done via a simple least

squares solution to the equation:
L(q—l)ch(q_l) ~1

Fig.5.8 shows the variation of the zero of a first order T, (the pole of the filter 1/7.,;)
with N,. Ais fixed at 1—0.9¢~!. Note that the typical value of ., = 1 —-0.8¢~" used
by E. Lambert (1987) and McIntosh et al. (1990) is very close to the zero position

98

obtained here (i.e. 0.77 for N; = 10). This formalizes the choice of the estimator

prefilters which were found more on a trial and error basis previously.

Note that the prefilter L(¢~*) is used only for the identification scheme to
be able to mimic the effect of the longer range predictions with a single prediction

estimator; it is not used as the noise model in the controller.

5.3.4 Stochastic Extensions

All of the discussion to date has been centred on the deterministic case. When there is
actual noise (measurement noise or disturbances) the mathematics become somewhat
more complicated, but the overall conclusions are the same. As pointed out earlier,
it is common to model disturbances as filtered white noise. In our example, this
implies that:

Al™we) = Blau(e - 1) + T

In most applications D = 1 — ¢~!. In cases where there are cyclic disturbances (e.g.
eccentricity control in rolling sheet metal) D(¢~!) = 1 — 2coswohg™! + ¢~% where
wp is known a priori. It is sometimes possible to estimate this internal model of the
disturbance on line (Ishitobi et al., 1989). Estimation of T'(¢™!) on line is generally
not too successful. Here we assume that the transfer function T/ D is known exactly.
This admittedly unrealistic assumption is required to perform the following analysis.

Consider the system and model as above:

A (t) = B ult—1)+ L9 D)

D(g)"
AW = Blaue -1+ 5
Recall that:
gt +jlt) = E"BD"(H"T_IHM(” (5.33)

T = E;AD+q7’F; (5.34)

Zero position of first order Teq

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

99

Final Costing Horizon N2

Figure 5.8: Variation of the Zero of T, with N,.

100

Combining above relationships gives:

. B P : 0
g0 -y +) = BERATZVREVO (Byes oyt Do)
E;jBDu(t+j - 1) + Fy(Gru(t = 1) + 7p4())
- T
0
- (Bute+ -+ g5+)

A s 0
- B2[(§- %) wersmn-sigrens

For open loop estimation u(t) is uncorrelated with £(t). It is then straight forward

to see that the cost minimized by LRPI, i.e.

Na
Jirpr =€ { DG+ Ity - y(t +j))2}

=M
where £ is the expectation operator, can be rewritten as:

h r/h N2 2

E;AD
JurPr = 5~ —

T

—r/h j=n,

Note that the above expression is only valid for open loop estimation where
u(t) and £(t) are uncorrelated. The assumption regarding the exact knowledge of
T/ D ensures convergence of the parameters to their exact values in the case of correct

parameterization and sufficient excitation in the input for open-loop estimation.

5.3.5 On-line LRPI Implementation

On-line implementation of adaptive GPC using LRPI is shown diagrammatically in
Figure 5.9. Each time new measurements are received, they are filtered using the
previously calculated L filter, along with the usual A/T(g~!). The filtered measure-
ments are then used to update the process model which is then used both for control
purposes and to update the L filter.

There are two slight variations in application, depending on whether the iden-

tification and control tasks share information or are implemented separately. The

101

* disturbances

setpoint
— Control Process
+ Law | |
AT AT
_____ LRPI
T T T
Model

Predictive
| - Model - |

Figure 5.9: On-Line Implementation of Adaptive GPC with LRPI

102

only difference is the calculation of the E;(¢~!) polynomials for LRPI. If the two
routines share enough information, the E; polynomials from the controller may be
passed to the estimation and used for the next filter calculation, otherwise LRPI will

have to repeat the Diophantine equation calculations.

Chapter 6

Evaluation of LRPI

In this chapter LRPI is evaluated through simulation and experimental studies. It
will be compared to LS with and without the ad hoc prefilter. The best test of the
newly proposed algorithm is through simulation and experimental evaluation. This is
the main objective in the present chapter. While only application-specific conclusions
can be drawn, the evaluation nevertheless serves to illustrate the practicality of the

newly proposed algorithm.

6.1 Simulation Examples

LRPI was examined using a standard benchmark simulation: the plant of Rohrs et
al. (1984). This plant has been used in a number of studies to illustrate the stability
problems in adaptive closed loop systems in the presence of model-plant mismatch.
This simulated plant is a third order process with a dominant first order response and
high frequency underdamped second order dynamics. For the purposes of this work,
the third order plant was modelled as first order, thus requiring some treatment or

compensation for unmodelled dynamics. The actual plant is given by:

2 229

= (6.1)
s+ 1s2+30s+ 229

G(s)

and time is in seconds.

103

104

25 - ' : . -
. -
. 5 b
2t ; v & 8
S o]
&8 i °
3 (o]
O 15+ 5 1
T’ =]
3 o,
= Least Squares o
'g -]
= 1F Newton-Raphson +]
< o
a Recursive Gauss-Newton X
Q
X LRPI, using L Filter . 4
0.5+ ,
0 L y S ol L 1
1 2 3 4 5 6

Time (seconds)

Figure 6.1: Step Response of Rohrs et al. Plant and First Order Models for Sampling

Frequency of 3 Hz

6.1.1 Open Loop

The process was simulated for open-loop identification initially with a sample fre-
quency of 3 Hz. The input sequence was N(0, 1) for 1000 samples. The process step
response is shown by the solid line in Figure 6.1. Note the slightly sigmoidal shape:
the slope is initially zero and increases for the first fraction of a second. For slow
sampling (3 Hz) it is possible for a first order least squares model to describe the
process reasonably, as can be seen from the circles in the same figure.

Three different methods were used to calculate the LRPI model for 3 Hz
sampling: Newton-Raphson (batch analysis), recirsive Gauss-Newton and the L
filter with RLS. The step responses of resulting models are shown by the other sets

of symbols in Figure 6.1. While there are differences among the three models, they

105

are minor. The differences are caused by the approximations inherent in the recursive
methods, but there is no significant effect on the model.

For faster sampling the quality of the LS model declines. For a sample rate of
20 Hz, the LS model sacrifices all low-frequency accuracy for matching the one-step-
ahead prediction. This is shown by the circles in Figure 6.2. Not surprisingly, the
GPC controller calculated using this model is closed loop unstable. LRPI was used
to find process models for Ny = 1 and N, = 2,5,10. Their step responses are also
shown in Figure 6.2. Although no first order model can exactly match the process at
this high frequency, the LRPI model for N, = 10 obviously provides a better match
over the range from 1 to 10 steps than the LS model does. The closed loop poles for
the process controlled by GPC using the different models are shown in Figure 6.3.
It should be clear from Figure 6.3 that the better models give better closed loop

control.

6.1.2 Closed Loop

Adaptive control of the third order simulation of Rohrs’ plant was carried out to

examine the effect of LRPI in closed loop. Four different runs were performed:
1. Full order GPC with standard RLS,

2. GPC with first order model, noise model (data pre-filter) T = 1 — 0.9¢"}, and
standard RLS,

3. GPC with first order model, noise model T = (1 —0.8¢~")?, and standard RLS,
4. GPC with first order model, noise model T = 1 — 0.8¢~!, and LRPI.

For all simulations the sample rate was 20 Hz. The setpoint was a square wave
between 0 and 1 with a 5 second period. The initial covariance matrix was 101 and
by was initialized to 1 with all other parameters set to 0. The GPC tuning parameters

were: Ny =1, N, =20, NU=1,)=0.

106

1.2
1+
2 o8}
oo |
o
o
Q
£ o6}
©
c
(]
8 04}
a
0.2
* 7 x
0 9 o ? L A 2 i 1 1 A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)

Figure 6.2: Step Response of Rohrs et al. Plant and First Order Models for Sampling

Frequency of 20 Hz

107

Imaginary Part

Real Part

Figure 6.3: Closed Loop Poles for GPC and LRPI with Different Values of N,

108

...

Output, Setpoint

Control Action

8 10 12 14 16 18 20
Time in seconds

Figure 6.4: Response of Self-tuning GPC for First Order Model, T' =1 —0.9¢~! and
Standard RLS

Since the best possible control is achieved using the full order model, all
other runs are compared to run #1. The dashed line in Figures 6.4, 6.5 and 6.6 is
the full order model case, i.e. there is no structural model-plant mismatch and the
parameters quickly converge to the correct values.

Figure 6.4 shows the response whes GPC is used in conjunction with RLS with
a first order T filter and no additional filtering for identification. Note the highly
oscillatory response. Moreover, the oscillations are becoming worse. Oscillatory
response is fairly common for control with reduced order models. The oscillations
can be reduced by increasing the filtering, as seen in Figure 6.5. The oscillations have

been damped and control is now stable, but the response is quite detuned. The price

109

!
- sl - -
R TR PP T PPN | R ST -
o
o eeecos Joveseenonoanions [ETTTVRITRPRPT | Sevens -
Lod
T
LT STTPISITISTROIN ... S, -
h
.................................... L R
==
ST

iodiag ‘iIndinp

20

18

16

14

12

10

uoloY |04U0H

Time in seconds

Figure 6.5: Response of Self-tuning GPC for First Order Model, T = (1 — 0.8¢')?

and Standard RLS

110
e

e
b

I — nv I
........... T--Hn.w
(aV} - o
wiodjag Indinp

20

18

16

14

12

10

20

Time in seconds

uolOY jouU0D

Figure 6.6: Response of Self-tuning GPC for First Order Model, T = 1 ~0.8¢™! and

LRPI

11

for better modelling is a detuned controller. In contrast, the use of LRPI improves
the modelling but without slowing the controller unacceptably (Figure 6.6). LRPI

therefore shows some promise for experimental application.

6.2 Experimental Studies

Experimental studies were carried out on a pilot-scale stirred tank heater in the
Chemical-Mineral Engineering Building at the University of Alberta. The equipment
is illustrated in Figure 6.7. It consists of a double-walled glass tank 50 cm high with
an inside diameter of 14.5 cm. Cold water enters the tank and is heated by a steam
coil. The water leaving the tank passes through a long 1 inch copper pipe with four
thermocouples placed along its length. The different thermocouples provide a choice
of transport delays. For this evaluation a dead-time dominated system was chosen,
with dead-time approximately equal to one time constant. The water temperature
was controlled using the steam valve position, and the disturbance was the inlet water
flowrate. An IBM PS/2 Model 70 computer operating under the QNX operating
system performed the control calculations, using an Opto-22 Multiplexer for A/D
and D/A conversions. The QNX operating system provides a real-time, multitasking
environment suitable for evaluating control strategies. The controller ran within
Multicon, a software package developed at the University of Alberta for testing and
evaluating different identification and control programs. Multicon provides on-line
access to controller tuning parameters as well as a facility for producing trend plots
of selected variables.

The inlet water flow rate was set at the start of each experiment to 36 cm?/s.
The temperature was measured a significant distance downstream from the tank,
and the resulting dead time was 36 seconds. Since the sample time was 8 seconds
and the assumed dead time was five samples (plus zero-order hold), a reasonable

degree of structural model-plant mismatch was guaranteed.

cold waterin ﬁ\ E I i
v X/

Q. VW
steam
condensate
! |
2T
| 3

“ L -

Thermocouple locations marked with numbers

RS-232¢ Opto-22 -l
Serial comm. line Mutiplexer
Model 70 Lines to T/C 1-4,

flowmeter,
and I/P converters

for control valves

Figure 6.7: Experimental Equipment

113

The GPC (and LRPI) prediction horizons N; and N, were set to constant
values of 6 and 15, respectively. All experiments were carried out with the same
pattern of disturbance and setpoint changes. In all cases the GPC controller was
switched into automatic mode after an initial tuning period of 25 samples. During
the tuning period the steam valve (the final control element) was moved in a doublet
5% either side of the initial position of 30% open. The temperature setpoint was
raised 5°C after 50 samples and then returned to its initial value following another 50
samples. Later in the experiment, at 400 samples, the setpoint was raised 5°C again
for another 300 samples. The inlet water flow rate was increased to 45 cm3/s after
200 samples and then returned to 36 cm3/s 100 samples later. The disturbance was
repeated from 500 to 600 samples. These flow changes acted both as disturbances
and changes in process (in terms of time constant and time-delay changes), thus
presenting the controller with a significant challenge. The controller was forced not
only to cope with the disturbance, but also to deal with the fact that its model
parameters were out of date.

A least squares estimator with a variable forgetting factor was used for im-
plementing LRPI. The directional forgetting factor of Kulhavy (1987) was used to
discount old data, since it was known that the best plant model would change during
the experiment, and the main purpose of the directional forgetting factor is to deal
with randomly varying process parameters

Four adaptive control configurations were chosen. For three of them a first
order process model was used. The GPC controller T filter was fixed to 1 — 0.8¢~!
and three different identification filtering options were evaluated: RLS with a first
order T filter matching that of the controller, RLS with a second order T filter of
5(1 — 0.8¢1)? (the factor of 5 was used to keep the steady state gain of the second
filter equal to unity) and LRPI. The fourth controller used LRPI and a second order
process model with five numerator parameters. Naturally, the data filtering for LRPI

included the effects of the A and T filter of the controller disturbance model.

114

50
F
5 45f
o
= wl T
o] - H 3
§ ol
b7 ‘ i
35- L i A ' 'l A L
0 100 200 300 400 500 600 700 800
100 T u T T T T T T
- 8o} -
8
S 60 .
Is)
£ 40f .
Q
S ol W
o l 1 A L 1 1 1
0 100 200 300 400 500 600 700 800

time (samples)

Figure 6.8: Process Input and Qutput for GPC with LS Estimator.

The results of the experimental trials are shown in Figures 6.8, 6.9 and 6.10.
Control with a first order T filter applied to the estimation is obviously unacceptable.
Use of a second order T filter results in significantly better control, very similar to
the LRPI results. There are large excursions when the disturbance enters the process
because of the long dead time and relatively detuned controller.

The large fluctuations in the control signal and parameter estimates in the first
case, shown in Figure 6.11, are caused by the emphasis placed on the high frequency
part of the prediction error due to insufficiert signal filtering for identification. The
use of a variable forgetting factor results in large parameter fluctuations, but is
required if the “true” parameters are known to vary (Kulhavy and Karny, 1984).

The model parameters for GPC control with the ad hoc filter and the LRPI

11h

50 v L)] 1 L L] T

3
S 45t :
(=}
= ;
g_ 40 ;
) :
(73]
35 A L 1 1 i e 1]
0 100 200 300 400 500 600 700 800
60 LJ L) T T L] L v
c
K=
3
g
c
Q
[&]
10 A i i A L 1 A
0 100 200 300 400 500 600 700 800

time (samples)

Figure 6.9: Process Input and Output for GPC with LS Estimator and an ad hoc

Filter

setpoint, output

control action

50

10

116

100 200 300 400 500 600 700 800

0

100 200 300 400 500 600 700 800
time (samples)

Figure 6.10: Process Input and Output for GPC and LRPI

L

filter are shown in Figures 6.12 and 6.13 and show no such behaviour. It is remark-
able how similar the process temperature and parameter trajectories are for these
two cases. The only apparent difference is jn the convergence rate: the LRPI pa-
rameters change more slowly than the LS parameters during the changes in process.
The difference is caused by the difference between the [and T filters and is likely
insignificant, since the closed loop control performance is almost identical.

Figure 6.14 shows the evolution of the LRPI filter during the run. The initial
vlaue of L was a FIR approximation of 1/(1 — 0.8¢7"). After eight samples the
filter had essentially converged. Subsequent changes were in response to changes in
process model parameters throughout the run. The ad hoc T filter is also shown in
Figure 6.14, and it can be seen that the ad hoc filtering is very similar to the actual
“optimal” L filter, for this particular model.

A fourth experiment was performed, using a second order model with an over-
parameterized numerator to accommodate the varying dead time. LRPI was used
as the identifcation method. The control performance was better than that achieved
using a first order model, as can be seen in Figure 6.15, where the results are com-
pared to the performance of GPC using the first order model and LRPL. Use of the
high order model improves control notably during setpoint changes; however the dis-
turbance rejection is improved less dramatically. This is because of the long process
dead time: feedforward control is needed for any substantial improvement in distur-
bance rejection. The experiment using the high order model shows the improvement
in control concomitant with a more sophisticated model: the improvement in control

here does not seem to justify the extra calculations required.

6.3 Conclusions

In the presence of structural model-plant mismatch, LRPI permits the identifica-

tion of models that are more useful for the purposes of GPC than those identified

ai

b1

-0.9

-0.95

-1.05

-1.1

0.06

0.04

0.02

T

118

W

100 200 300 400 560 600 700 800

0

100 200 300 400 500 600 700 800
time (samples)

Figure 6.11: Parameter Trajectories for GPC with LS Estimator.

1Y

100 200 300 400 500 600 700 800

0 .06 b T T T T
0.04
o)
0.02
0 1 4 i 1 I I -
0 100 200 300 400 500 600 700 800

time (samples)

Figure 6.12: Parameter Trajectories for GPC with LS Estimator and an ad hoc Filter

120

"0 100

200

300

400

500

600

700

800

0.06 r

0.04+

b1

0.02

0 100

Figure 6.13: Parameter Trajectories for GPC and LRPI

200

300

400
time (samples)

500

600

700

800

Amplitude Ratio

100 RGP PYGRCE0EEGEE0aRNAN

121

T ¥ LN 2R B

L filter: solid)
f0- ad hoc filter: o q%q,,,
10.2 I At 2 b Lt 4 T N RS} — A A L 2 gL i N S NN |
10-3 10-2 10-1 100 101

Normalized frequency, radians

Figure 6.14: Evolution of LRPI Filter

Temperature

44 LA A T LS LJ T L

34

0 100 200 300 400 500 600 700

Time (samples)

Figure 6.15: Comparison of GPC Using Low and High Order Models

123

using RLS. Adaptive GPC implementations using LRPI as the parameter estima-
tion method provided better quality control than those using standard RLS when
model-plant mismatch was present (Figures 6.8 and 6.10).

The performance of adaptive GPC with LRPI was very similar to the per-
formance when RLS was used with an additional ad hoc data pre-filter (Figures 6.9
and 6.10). The ad hoc pre-filter was seen to have frequency-domain characteristics
very similar to the LRPI L filter. The advantage of LRPI is that the pre-filter
need not be chosen a priori by the user: the adaptation method finds the optimal
pre-filter automatically. This is of limited utility for low-order models and fixed
controller tuning, but in cases where Ny or N; may be changed more frequently, or
when a higher order A(g~!) polynomial is used, it is extremely useful. In cases where
on-line calculation of the L pre-filter is impossible, the user can design a pre-filter
using a “nominal” model and controller tuning and compare it to the “optimal” L
filter.

In conclusion, LRPI is a practical, useful, identification method for adaptive
GPC implementations, providing high-quality control while reducing the amount of

work required of the user: the ad hoc data pre-filter is removed.

Chapter 7

Nonminimal Predictive Control

An alternative approach to the overall control objective of Chapter 4 was formulated
by Lu and Fisher (1990a,b). The Nonminimal Predictive Controller (NPC) uses a
more sophisticated predictor structure to simplify the control-relevant identification
problem. Rather than reworking the identification, the entire adaptive controller is
redesigned to minimize the overall cost. As such it is a more elegant solution to
the complete adaptive control problem. NPC is described in this chapter and a few

simulations are carried out to compare its capabilities to GPC with LRPI.

7.1 Design Philosophy

NPC is a different controller than GPC (and is therefore beyond the original scope
of this work) but it is so similar in design philosophy and implementation that it is
discussed here in some detail.

As with GPC, the control objective is to minimize the sum of squares of future

control errors over a finite-time horizon:

N

Jac = E ((yap — y(t + 7))

=N

using NU control actions. Distinct from GPC is the way NPC forms the predictions.

124

125

The GPC predictions are formed through recursive solution of the Diophantine equa-

tion (equation 5.6):
T(¢7") = Ei(¢7VA(g™)A + ¢ Fy(q™")

It has been shown (e.g. Mohtadi, 1986) that the GPC predictor is equivalent to
calculating §(t + 1|t) and then using that value to find g(t + 2|t) and so on. This
is the optimal minimal predictor, but in the presence of noise the prediction errors
grow quickly as the prediction distance increases.

A different prediction structure is used in NPC. The philosophy of NP(! is
that all predictions of future plant outputs should be equally accurate. This laudable

goal is called the equal-variance principle, stated here without proof.

Theorem 1 Let j(t + j|t), j = 1,2,...,N, be the predicted values of y(t +),
J = 1,2,...,N; produced at time instant t by a multistep prediction model given

a model parameter vector 0. If the multistep prediction model structure satisfies
gt +5lt) =gt +jlt +i—1)

forj=1,2,...,N;,i=2,...,5 and t > 0 then, subject to the boundedness assump-

tion of prediction errors, the time averages of the N, prediction error squares are the

same, 1i.e.
1 N-1 1 N, 1 N-1
. il -t s . 2 = kI 2t o 2
A 2, 24 9) =3+ S0P = fim 5 3 la(e 1) = e+ 1)

So NPC uses a predictive model that provides long range predictions that are
every bit as good as the one step ahead predictions.

There are other controllers whose predictive models fit the equal-variance
principle, notably DMC. The use of a step-response model in DMC removes the
need for intermediate predictions and so provides a prediction equally good for all

ranges. This is of course for the deterministic case. In the presence of noise, the

126

noise model is of paramount importance in providing good long range predictions,
regardless of the prediction structure. It will be shown later that the NPC noise
model is similar to that of GPC.

As an example, consider the GPC predictor, discussed at length in Chapters 4

and 5. The process model is ARIMAX in structure:

T(g™)
A)

Alg™)y(t) = B(g N u(t - 1) +
and the j-step ahead prediction is calculated using the Diophantine equation:
T(q™") = E;(¢7)A(g™)A + ¢~ Fi(g™")
If the model is correct, then y(t + j) may be written as follows:

g+) = 20 4 BBLUUATZ 1)y prga) (r.)

The prediction, y(t¢ + j|t), is given by

. . Fy(t) E;BAu(t+j -1
e+l = 208 | BiBCulAs — D (7.2

so the j-step ahead prediction error is the last term in equation 7.1. The term is
ignored in the prediction because its expected value is zero. Its variance, however, is

given by the following formula:

Jj=1

o =a(y(t+j) - it +jlit) =Y elo? (7.3)

1=0
It can be seen that the prediction error variance increases with prediction range for
GPC.
For DMC, however, a truncated infinite step response model is used:
o0
y(t) =) gidu(t —i) +£(t) (74)

=0

The j-step ahead prediction is therefore

gt +jlt) = gdu(t+j ~ i) (7.5)

=0

and the prediction error is simply £(t + j). Since ¢ is assumed to be zero-mean
and stationary, the prediction error variance is o}, regardless of prediction distance.
DMC meets the equal variance principle, and GPC does not.

The DMC and GPC model structures are not completely equivalent. They
do, however, possess one important quality. Both structures allow the controller
to provide offset-free control in the presence of step-type disturbances. A complete
discussion of noise models is beyond the scope of this discussion, and the reader is
directed to McIntosh (1988), which discusses the difference between the two model

structures in some detail.

7.2 The NPC Predictor

The NPC predictor is an interesting result. It is in appearance similar to the DMC
predictor, but the philosophy is more akin to GPC. It is based on the multi-rate
predictor of Lu et al. (1990) and the multi-rate inferential controller of Lu (1989).
Lu (1989) showed that for any process model, A(q~'), B(q~"), (of order na
and nb respectively) there exists a polynomial Py,(q~") of degree (N, — 1) x na such

that
Prny(g7)A(4™Y) = Any(97™) = 14 anpig™ + anpeq ™ + ...+ apynag™™™ (7.6)

and

Pr(¢7")B(¢7") = B, (q7") (7.7)

where Ay, (¢~™) is a polynomial in ¢~ and Bn,(g7!) is of degree nbb = nb+ N, x
(na —1). Pp, is not necessarily easy to find; it is a function of the roots of /i(q“),
but it does exist and can be found.
The predictor makes use of this as follows. The DARMA (Deterministic
ARMA) equation:
Ay(t) = Bu(t - 1)

128

is multiplied through by Px,(¢7!) and ¢*" and becomes

An(q7M)y(t + N2) = Bw, (g7)u(t + N — 1) (7.8)

y(t+ Na) + amay(t) + angey(t — N2) + ... + @ngnay(t — (na — 1)V2)

= byyu(t + No— 1) + ... + byynssu(t + Ny — nbb) (7.9)

Since AN, is a function of ¢~, the only values of y needed are: y(t), y(t — Nz),
y(t — 2N,) and so on. No future values of the plant output are required, even
implicitly, for long range prediction. Many control action values are used, both
future and past but they are either known or to be solved for, and therefore present
no problem. For prediction N;—1 steps ahead, the predictor is rewritten for ¢+ N;—1,
so y(t — 1) and y(t — N, — 1) are used. The prediction error variance is the same for
N, steps ahead or 1 step ahead using this predictor.

This is fine as far as it goes, but there is an obvious objection: y(t) is not used
for the shorter distance predictions. For predicting y(t + 1), for instance, the most
recent value of y used in the predictor (equation 7.8) is y(t +1 — N;), not y(t) itself.
Thus the predictor does not use the most recent process information. In addition,
the question of how the nonminimal predictor deals with noise seems to be open.

The two objections are in fact one. The presence of y(t) is not needed in the
predictor in the deterministic case: it is only used when there is a noise model. If
there is no noise then the prediction can be excellent without using any measured
outputs. “Noise” is used here in its broadest sense, including model-plant mismatch
as well as disturbances. By comparison the deterministic DMC predictor makes no
use of y at all; it is only included as'part of the noise model. The noise model is
discussed in the next section.

In practice /iN, and éN, are identified directly rather than calculating them
from A and B. This is because of the difficulty of calculating Px,(¢™?) on line. The
fundamental drawback to NPC is a result of this: many parameters must be identi-

fied: (nax N;)+nb. If N2 = 10 and the process has complex dynamics, it is possible

124

for there to be 40 or so By, parameters. In addition, there is no guarantee that the
identified parameters at any given time actually satisfy conditions 7.6 and 7.7. If the
conditions are not satisfied, that is, there is no common factor between A N, and BN,.
then it cannot be guaranteed that the predictor is in fact equal variance. So, not
only can there be a considerable numerical penalty, but the theoretical optimality is
at risk. There are ad hoc methods to reduce the number of parameters required, but
they lose all theoretical optimality: the equal-variance condition is not guaranteed.
The major advantage of the NPC predictor is the fact that the identifica-
tion scheme to give the best long range prediction also happens to be the best one
step ahead identification scheme: least squares. No adaptive filtering is needed; no
alternative forms need be investigated; all that is required is simple least squares.
One implementation drawback of NPC is that the maximum value of N; to be
used must be decided while commissioning the controller. The direct identification of
the predictor, rather than the model, means that the maximum prediction distance
is fixed. Since this is a direct method, the parameters identified are not useful for any
other predictor. Once identification has started, N, cannot be increased, although it

may be reduced. This is unfortunate, because N, is a primary tuning parameter.

7.3 The NPC Noise Model

The disturbance rejection properties of any controller are dependent on the noise
model. In the case of NPC, it is assumed that the process may be described by a

model of the following type:

A0 = Bt - 1) + S g (1.10)

where C(g7') is of order nc and Ay, =1—¢~™. If N; = 1, then Ay, = A and
this is no more than the standard ARIMAX model. For NPC however, N; is chosen

by the user and is typically closer to 10 than 1. C(¢~!) is chosen in much the same

130

way as for GPC: it is a stable polynomial that gives a good compromise between

robustness and disturbance rejection.

Given such a process, a nonminimal model can be derived in a way similar to

the deterministic case:

Any(a7™)An,y(t) = B(g7")Au(t — 1) + C(g7")E(2) (7.11)
where
B(¢)A = BnAn, (7.12)
B(¢7") = Bm(¢71)@m(¢7Y) (7.13)
Cle™') = Clg™")Pm(a™") (7.14)
Qn,(g7") = 1+q7 4. g NH (7.15)

The orders of B and C are nb + (N; — 1)(na + 1) — 1 and nc + na(N; — 1)
respectively.

The multistep predictor for a given prediction range j is
Mt +5lt) = [1- An(e™)Amy(t+7) + BlgT)Au(t +5 - 1)
+y(t+j — N2) + Ci(g7")(w(t) - §(tlt — 1)) (7.16)

for all j between 1 and Nj;.
C;i(q!) consists of C(¢!) from &; to the end:

Cilg™) =& +Cjg™ + ...+ Cneg ™™ (1.17)

Note that the new NPC predictor is not equal variance. The predictions for
different ranges are no longer the same. Even if the model is correct, the j-step

ahead prediction error is given by
€i(t) = Ci(g™E(t +3) (7.18)
where C;(¢~!) contains all the neglected terms of C(g~1):

Cilg) =G +ag ™ +... + G (7.19)

131

The prediction error variance is therefore given by the following expression, similar

to equation 7.3.
a’f} = Zé? (7.20)
Obviously the prediction error variance is a function of prediction range once

again, and so the predictor cannot be equal-varaince.

7.3.1 Control Calculation

The right hand side of equation 7.16 contains only past and present values of the
plant output. This is because the first term in 1 — Ay, is —an,19~M2. Since N; > j,
the latest value of y that will appear is y(¢). The same is obviously not. true of u, so
the u terms in equation 7.16 must be separated into past and future.

The first j-1 terms of B in equation 7.16 correspond exactly to the G,(¢™!)
polynomial in the GPC control action calculation. The rest of the right hand side
of equation 7.16 is analogous to the f vector in GPC. This is made more obvious if

equation 7.16 is rearranged thus:

gVt +7lt) = Gilg™)Au(t+j—1)+ G (¢)Au(t - 1)
+y(t+7 — M) +[1 — Ay (a7™)]Any(t +)
+Ci(q7 ") ((t) - §(2]t — 1)) (1.21)
gV (t+jlt) = Gi(q™) Au(t + 5 ~ 1) + f(t + j) (7.22)

where G;(¢™!) and f are defined as for GPC.
The control action calculation from this point on is exactly the same as for

GPC.

132

7.4 Parameter Estimation for NPC

The really clever part of the NPC predictor only comes to light when process identi-
fication is examined. NPC comes from the overall control criterion in Chapter 4, so
the identification objective must be the same as for LRPI:
Nz
Jip =Y (y(t+j) - §(t+jlt))?
=N
If the one- and two-step ahead predictions are formed from equation 7.16 and
compared, then an interesting fact comes to light. For the purposes of this discussion,
we will set ¢ to one, and assume that all previous process measurements have been

taken. The one step ahead prediction is:

g (21) = [1 - An(q7™)]ANny(2) + B(g7)Au(1) + y(2 - Na)
+Ci(g7")(y(1) - 5(1]0)) (7.23)

and the two-step ahead prediction is given by

§MEI) = [1- Am(a™™)]ANny(3) + B(g™)Au(2) +y(3 -)

+Ca(g7M)(¥(1) - §(110)) (7.24)
The one step ahead prediction from 2 to 3 is given by the following:

i (312) = [1 - Am(a~™))ANny(3) + B(g7")Au(2) + y(3 — N2)

+Ci(g™)(¥(1) - §(2I1)) (7.25)

From the form of these expressions it is clear that the deterministic part of the
prediction — the first line of each equation — depends only on whether 3(2) or
7(3) is being predicted, and not at all on whether the prediction is from time 1 or
2. In general, the first line of each equation depends only on the absolute time for
the prediction. This is in common with the DMC predictor discussed above, and

distinct from GPC. It is the major feature of NPC: the best long range predictions

133

are formed using the same model as the best one-step-ahead predictions. Because
the same predictor is used for all prediction distances, the best predictor for one
prediction distance is the same as the best for any other prediction distance. This
is the most important corollary of using the equal-variance principle: not only are
all predictions the same, but they can be found using nice, simple least squares.
The adaptive filter of LRPI is superfluous, and because of the structure of the NPC
predictor, the L filter would be equal to 1.

The remainder of the prediction is the prediction of future effects of past
disturbances. It is a function of the prediction distance, as mentioned above. In
practice C(g~") will most likely be specified off-line in a way similar to the way the
T(q~") filter is chosen in GPC applications. Unfortunately, the optimal ¢ depends
on Py, and therefore on A(g~1) (equation 7.14). Specifying it off-line will therefore
take some care.

The catch when using NPC is that an enormous number of parameters need
be identified. For a first order process model and N, = 10, then B(q~!) has 19
elements (nb+ (N2 — 1)(na + 1)) and Ay, has one, making a total of 20 parameters
to be identified. ‘If the model were second order, then an additional 10 parameters
would need to be identified. If the process had complex dynamics then the number
of parameters could easily exceed 40.

Two different methods have been developed to reduce the number of parame-
ters to be identified. They both share a common failing: no reduced order predictor
will be a true equal-variance predictor. Of course, as ever, theoretical optimality is
one thing and practical considerations are quite another. One method is a straight-
forward ad hoc reduction in the number of B parameters in the model. Instead of
identifying and using 50 b parameters, for example, only the first N, parameters are
identified. The remaining parameters are assumed to be zero.

An alternative method is to reduce the number of parameters to be identified

through a semi-adaptive approach. The b parameters are first identified off-line, and

134

then only AN, and By are estimated on-line, where b is a factor by which all the

fixed b parameters are multiplied: a gain.

7.5 Simulations

Lu and Fisher (1990b) describe simulations carried out to evaluate the properties
of NPC in comparison to GPC. Rohrs’ third order plant (Rohrs et al., 1984) was
used and the sample time was 0.1 seconds. For all simulations a first order model
was identified, and the controller tuning parameters were set to Ny = 1, N, = 10,
NU =1and A =0.

Lu and Fisher state that the adaptive GPC controller was unable to provide
stable control with the reduced order model. The GPC controller used had no T
filter. It is well known that GPC cannot operate under conditions of severe model-
plant mismatch without a T filter. NPC can, but NPC uses a different noise model
structure than GPC and, as ever, controller performance is a function of the noise
model (the denominator of the noise term is Ay, for NPC and A for GPC). If the
default T filter is chosen for GPC, T(¢™!) =1 —0.8¢~!, and LRPI is used as the
process identification method, then the comparison is much fairer.

The closed loop performance of adaptive GPC (and LRPI) is shown compared
to adaptive NPC in Figures 7.1 and 7.2. In the first figure there is no noise, but
in Figure 7.2 there is a measurement noise (standard deviation = 0.1) added to the
plant output. The values shown are the noise-free plant output. GPC cannot control
as well as NPC, but control is still stable. Obviously the overparameterization of
NPC permits better prediction in the face of model-plant mismatch, but similar
control quality can be obtained using a similarly overparameterized adaptive GPC,
even without a T filter.

In general, the overparameterization of the model used in NPC provides good

long range prediction in the presence of significant model-plant mismatch and mea-

Setpoint -—-

NPC
GPC

Ll

“‘\

Seo
lllll

luodiag ‘indinQ

16

14

-
[

i L J
- 0 o un
S <

UoNoY |ORU0Y

v
[}

12 14 16 18 20

10
Time (seconds)

Figure 7.1: Comparison of GPC and NPC: Noise Free Case

136

Setpoint

GPC

NPC

14

iodiag Inding

18 20

16

uoNoY 10U0D

Time (seconds)

Figure 7.2: Comparison of GPC and NPC: Measurement Noise Present

137

surement noise. Good prediction in this case gives good control. The major stum-
bling block in the implementation of NPC is the computational load resulting from
the large number of parameters to be identified. While NPC did perform better
than GPC with a first order model, there was little difference between NPC and

GPC when GPC used a similarly overparameterized model.

7.6 Conclusions

The equal-variance principle is an interesting theoretical tool for design and evalu-
ation of predictors. Unfortunately, equal-variance is virtually impossible to obtain
when a C polynomial is used.

NPC is similar to an implicit version of GPC. Its advantages and disadvan-
tages are on the whole similar to those of implicit schemes. NPC is capable of
prediction (and control) even better than GPC with LRPI, but at the expense of
a greater computational load. It represents another valid approach to the prob-
lem of identification for long range prediction in adaptive control. Unfortunately,
the implementation of NPC is complicated and the numerical complexity is great.
The reduced-order and semi-adaptive formulations show promise, but are suboptimal
and can still be computationally intensive. Pending detailed analysis NPC cannot

be recommended for industrial applications.

Chapter 8

Forgetting Methods for Adaptive
GPC

The question of data forgetting in adaptive control was raised during the experiments
described in Chapter 3. Specifically, the concern was the effect on identification when
both feedforward and feedback control were used (FF+FB or MISO control). The
role of data forgetting in adaptive control was introduced in Chapter 4 and has been
discussed widely in the literature (see Ljung and Gunnarsson, 1990 for a survey).
When several signals are used in the model, such as for a multivariable controller,
data forgetting must be examined very carefully. Whatever forgetting method is
chosen, it will have to be able to cope with the fact that different parameters will vary
at different rates, and different signals will contain different amounts of information.

With a MISO control configuration the controller has ro influence over the
feedforward variable by definition. If the feedforward variable is quiet for long periods
of time, there is no way the controller can add excitation. The covariance matrix
update (see Chaoter 4) will have to be chosen carefully. Otherwise, the adaptation
mechanism will lose confidence in the disturbance model parameters, evcn though
there may be no good reason to do so.

In this chapter, a number of covariance matrix updating methods are exam-

138

139

ined within the framework of MISO adaptive control. Exponential forgetting meth-
ods will be shown to be less appropriate than directional forgetting methods. The
discussion is restricted to RLS, although the analysis and many of the conclusions

could be applied to other similar parameter estimation methc .s (e.g. LRPI).

8.1 Forgetting in Recursive Least Squares

The RLS algorithm makes use of the covariance matrix to store previously gathered
information about the process. In fact P is defined as the information matrix. Data
forgetting is accomplished through modifying the elements of the covariance matrix
appropriately. A large value in the covariance matrix implies a large parameter
variance, or a low confidence in the corresponding parameter estimate. All methods
used to discard old data increase the magnitude of certain elements in the covariance
matrix. Two common ways of doing so are covariance resetting and the use of
forgetting factors.

Covariance resetting is performed when the present parameters are known
to form an incorrect description of the process dynamics. The covariance matrix
is reset to some initial condition, usually some constant multiplied by the identity
matrix. In effect, the parameter estimation is re-started, albeit with a new initial
guess — the existing model parameters. All information regarding the statistical
interdependencies of the model parameters is discarded. There are less brutal forms
of resetting, known as covariance modification, where al (a << 1) is added to the
covariance matrix, thus modifying statistical information rather than destroying t.
Resetting may be appropriate if the model is badly in error, but it is usually a case
of throwing the baby out with the bath water: just because the model is incorrect, it
does not necessarily follow that all of the information previously gathered is useless.

Covariance resetting has been used successfully, and is worthwhile especially

when the plant changes in a discrete manner: parameters suddenly jump from one

140

value to another after being constant for a long time. If the parameters change more
or less continually, resetting the covariance matrix is a rather drastic act. Since
statistical information is thrown away, the parameter estimation scheme may have
to redo a great deal of work for a small benefit: the true parameters may have drifted
only slightly from the old values.

An alternative to covariance resetting is the use of a forgetting factor. The
major assumption in adaptive control is that the process changes with time. This
being the case, it is obvious that the most recent data describe the new process,
but older data may describe an older condition. Older data are therefore not as
relevant as newer data. A way to utilize this knowledge is to perform the parameter
estimation with more accent on the more recent data. This is accomplished through
the use of “forgetting factors” which determine the rate at which old data are to be
discarded.

There is still some open discussion regarding the most appropriate forgetting
technique for any given implementation. The contribution of this chapter is to discuss
the effects of different forgetting schemes relevant for adaptive MISO GPC. Different
forgetting schemes will be analyzed from a graphical framework used by Kulhavy
(1987) and Rogers (1989).

The fundamental problem of forgetting is this: data must be discarded fast
enough for the model to track the process, but not too fast. If forgetting is too slow,
then the adaptive controller cannot track changes in the process. If too fast, then
the parameters change too quickly, in response to noise rather than actual physical
changes in the process. In the noise-free case, it is possible for the covariance matrix
to grow without bound. This phenomenon, known as covariance blowup, is extremely
dangerous and well-described in the literature (Wittenmark and Astrom, 1984). It
causes “bursting,” a situation where there is a sudden “burst” of control activity
brought on by a combination of large covariance matrix and a prediction error (often

very small). Needless to say, discarding data too quickly is the more dangerous case.

141

Most of the forgetting methods are formulated to prevent unbounded growth of the
covariance matrix.

There is a subgroup of forgetting algorithms which aims to keep some measure
of the covariance matrix coustant, such as the constant trace algorithm of Sripada and
Fisher {1987). LMS may be interpreted as falling into this group, since it maintains
the entire covariance matrix constant, as was pointed out in Chapter 4. These
approaches aim to keep the covariance matrix bounded and thus keep the adaptive
gain finite. They do so, but since the trace of the covariance matrix is fixed (the entire
matrix in LMS), identification cannot accelerate when necessary. These methods are
therefore very conservative solutions to the forgetting problem. They cannot increase
the adaptive gain at all, although they completely avoid the problem of covariance
blowup.

There are two main implementation-specific questions that must be answered
by the user before using any forgetting scheme. They are: (1) how noisy are the
measurements, and (2) in what manner can the process be expected to change? The
noise level determines the best achievable prediction quality, and the estimator must
have an estimate of the noise level to tell good predictions from bad. Otherwise,
it is impossible to discern “reasonable” prediction (where prediction error is caused
mostly by noise) from “poor” prediction (where prediction error is caused by an inac-
curate model). Virtually all forgetting factor algorithms also contain a user-specified
parameter which defines the amount of information retained in the covariance ma-
trix. Often it is a direct measure of the covariance matrix, such as the trace, or the
maximum permissible eigenvalue, and sometimes it is a measure of the rate at which
information is to be discarded. Either way, the user specifies the maximum rate at
which the process model will be permitted to change.

In the multivariable environment the problem is further complicated by the
presence of different signals which may contain different amounts of information, and

the associated parameters may change at different rates. As an example, consider a

142

stirred tank heater: although the process time constant may change every time the
feed flow rate changes, the process gain may not. Problems of measurement and pa-
rameter scaling may defeat a constant trace algorithm: the B and D parameters have
units (often different) that depend on the particular application. If the parameter
variances are of very different :nagnitudes, then constant trace methods (including
LMS) may cause problems.

As was mentioned in Chapter 3, it is quite possible for a measured disturbance
to remain approximately constant for a long time. During the long quiet period there
will be no meaningful information on the effect of the disturbance, so it is important
to retain all of the information collected during periods when the disturbance is
active. A directional forgetting factor, such as that of Kulhavy (1987) or Hagglund
(1983) will retain the information and maintain confidence, while an exponential
forgetting factor will discard information and lose confidence, as will be seen in
Sections 8.3 and 8.4.

Before different forgetting methods can be compared in any meaningful way,

their effects must be quantified, through the use of parameter confidence bounds.

8.2 Parameter Confidence Bounds

The matrix P describes the covariances of the parameter estimates at a given instant.
As such, it provides information regarding not only the parameter variances, but the
correlation among the parameters. More precisely, the covariance matrix describes
the x? distribution of the parameters in parameter space. (For a given covariance
matrix and set of parameters, if the nutﬁber of samples used so far is known, then a
table of x? values may be used to establish confidence limits on the parameters.) A
number of researchers, including Kulhavy and Karny (1984) and Rogers (1989) have
used this interpretation to examine different forgetting schemes.

A given diagonal element of the covariance matrix, p;;, is the variance of

143

the single parameter estimate §;. Each off-diagonal element p;; is the covariance
between the two parameter estimates 6; and éj. Its sign and magnitude describe the
interrelationship between the two parameters. The three elements piis pj; and p;;
may be used to find the degree of correlation between §; and 4. If pij is equal to
zero, then the two parameter estimates are statistically uncorrelated, and a change
in one does not imply any kind of change in the other. If, however, p}; is equal to
the product of p;; and p;; then the two parameter estimates are perfectly correlated.
Perfect correlation means that a change in one parameter is always matched by a
corresponding change in the other.

A high degree of correlation between two parameter estimates can be seen
relatively easily by looking at the covariance matrix itself, but a more complete
picture can be seen if a graphical method is used. The covariance matrix by definition
describes the x? distribution of the parameter estimates. Another way of stating this
is that the covariance matrix may be used with a table of x? values to show the 95%
confidence limits on the parameter estimates. For a single parameter estimate the
confidence limits may be shown as ticks on a line, as can be seen in Figuie 8.1 for
a parameter a; of value —0.8 and variance of 0.025 after 1000 samples. The 95%
confidence limits are at 1.96 standard deviations from the expected value because the
x? distribution approaches the normal distribution as the number of measurements
tends to infinity.

If there is another parameter, say b, the confidence limits for it may be
plotted perpendicularly to those for the first, yielding Figure 8.2 if b, = 0.2 and
o} =0.01.

The parameters may fall anywhere within the rectangular region unless the
covariance between the two parameters is specified. Without any knowledge of the
independence or dependence of the two parameter estimates, no conclusions can be
drawn regarding their joint distibution. If the covariance, o2 , , is known to be zero,

then the joint 95% confidence region is the solid ellipse in Figure 8.2. If, however,

144

Estimate: x
95% Confidence Limits: |

Figure 8.1: 95% Confidence Limits for a Single Parameter Estimate

o2 5, = 0.0125, then the joint 95% confidence region is the dashed ellipse.

These ellipses serve two purposes: they define the confidence region and they
also show the gain of the parameter estimation scheme by making visible the eigen-
values and eigenvectors of the covariance matrix. Briefly, the principal axes of the
ellipses are in the directions of the eigenvectors of P and the lengths of the principal
axes are proportional to the square roots of the eigenvalues of P. In the general
case, P may be represented by an n-dimensional hyperellipse, the principal axes of
which are in the directions of the eigenvectors of P, as before. The lengths of the
principal axes of the hyperellipse are also given by the square roots of the eigenval-
ues. Two-dimensional projections may be used to build up an overall picture of the
hyperellipse, and will be introduced in Section 8.3.1.

Each time one iteration of RLS is carried out, the parameter confidence limits
change. The centre of the ellipse moves to the coordinates of the new parameter

estimates and the size and shape change to reflect the updated covariance matrix.

Consider the following example.

Example 8.1

b1 parameter

145

0.4

0.35

0.3

0.25

0.2

0.1

0.05f

Current
e X

’ Estimate

0
-1.2

08

a1l parameter

Figure 8.2: 95% Confidence Limits for Two Parameter Estimates

146

At time k — 1 the model parameters and covariance matrix are:

R i 0.250 0.0125
6(k—-1; ;i Pk=1)=
1 0.0125 0.100
The solid e''.; .¢ =~ . ::uber “1” in Figure 8.3 show these initial condi-

tions. The ellipse is shown for the 55% confidence region.

At time k the data vector aad prediction are

¢(k) = [’ J i §(kle—1)=-3.20
4

If the actual plant output is —2.20, then the a priori prediction error is
1.00. If RLS is used with no forgetting, then the new parameter vector
and covariance matrix are:
i) [~0.661 } . [0.0693 —0.0518 J
0.250 ~0.0518 0.0771

The parameters and 95% confidence region are shown by the number “2”
and the dashed ellipse in Figure 8.3. The motion of the parameters has
been in the direction P(k)¢(k), shown by the solid line. The covariance

matrix has contracted in the direction of P(k)¢(k) and has not changed

at all in the perpendicular direction.

A

Rogers (1989) discusses the effects of several different forgetting methods on
the confidence bounds. Some of the methods discussed by Rogers were constant expo-
nential forgetting, the constant inforszation exponential forgetting method of Ydstie
et al. (1985), constant trace forgetting (Sripada and Fisher, 1987) and Kulhavy’s
(1987) directional forgetting method. Because of the work of Rogers, directional
forgetting was suggested in Chapter 3 as a possible solution for the problem of direc-
tional blowup. Different forgetting techniques all affect the final covariance matrix

in different ways, as will be illustrated in the next section.

b1 parameter

147

18 -16 -14 -1.2 -1 -08 06 -04 -0.2 0

al parameter

Figure 8.3: Evolution of Parameters and 95% Confidence Region for RLS

148

8.3 The Effects of Forgetting on Parameter Con-

fidence

For a given plant with sampled-data inputs u(k) and v(k) and output y(k), and an
autoregressive process model with two exogenous inputs (ARXX or ARX?), with

white noise é(k), the process model may be written as:
A(g™")y(k) = B(g™")u(k) + D(g™")v(k) + &(F) (8.1)

where A(g~'), B(¢~!) and D(q™!) are polynomials in the backshift operator, ¢!, of
degree na, nb and nd respectively. A(¢~!) is monic and B(¢~!) and D(q~') have at

least one leading zero element (e.g. by, do = 0) from a zero order hold and/or dead

time.
The standard RLS equations without forgetting are then:
I(k) = 6(k—1)-P(k)p(k)e(k) (8.2)
P(H)™ = P(k-1)""+¢(k)o(k)T (83)
e(k) = y(k) - (k)To(k - 1) (8.4)

#(k) = [~y(k—=1),...,-y(k - na),u(k —1),...,u(k — nb),v(k - 1),...,v(k — nd)}T
(8.5)

6k - 1) [a1(k = 1),. .. 8na(k = 1),b1,. .., bup,d1y e v ey dng]T (8.6)

The update of the covariance matrix, P, is accomplished through the use
of the matrix inversion lemma which obviates the need to invert the entire matrix
and improves both numerical robustness and efficiency. Without forgetting, the

covariance update is given by the following expression (from Chapter 4):

_ Pk —1)4(k)¢"(K)P(k — 1)

TT #7(K)P(E ~ D)o(F) (8.7

P(k) = P(k - 1)

1Y
Exponential Forgetting

Forgetting methods affect the update of the covariance matrix, equations 3.3 and 8.7.
The more common forgetting approach, exponential forgetting, modifies equation 8.3

to give the following relation:
P(k)™' = Ak)P(k = 1) + @(k)p(k)T (8.8)

where 0 < A(k) < 1. A(k) is the forgetting factor at time k. The actual update

calculation for P(k) becomes:

P(k — 1)g(k)¢7(k)P(k - 1)) I (8.9)

P = (P01 - S et e) T8
The exponential forgetting methods of, for example Ydstie et al. (1985) and Sripada
and Fisher (1987) use this update. The methods differ in the calculation of A(k):
Ydstie’s method attempts to keep constant the amount of information in the covari-

ance matrix (the “asymptotic memory length”), while the ILS method of Sripada

and Fisher keeps the trace of the covariance matrix constant.

Example 8.2

If an exponential forgetting factor, A = 0.8, is used for the one step
of Example 8.1, then the updated parameters and covariance matrix be-
come:

) ~0.658 0.0816 —0.0665]
b(k) = . P(k)=
0.251 ~0.0665 0.00958 |

The effect of exponential forgetting on the 95% confidence limts can be
seen in Figure 8.4. The confidence region is larger than for ILS with
no forgetting, in all directions. The larger confidence region is a direct
result of forgetting, and the fact that the increase is proportional in all

directions is a result of nondirectional exponential forgetting.

150

b1 parameter

0.2

T

_0.6 1 1 1 n I L
-8 -16 -14 -12 -1 -08 -06 -04 -02

al parameter

Figure 8.4: Evolution of Parameters and 95% Confidence Region for Exponential

Forgetiing

151

There are many different ways to choose the exponential forgetting factor.
The method of Ydstie ¢2 al. (1985) attempts to keep coi..tant the amount of infor-
mation retrined in the covariance matrix, as measured by the memory length. The

forgetting factur, A(L), is calculated using the following formula:

n(k) + /n2(k) + dw(k)

A(k) = 5 (8.10)
where
¢T(k)P(k — 1)6(k)
w(k) 5 (8.11)
N - (k) ,
n(k) = 1 —-wk)- F(F) o (8.12)
and

r(k) is the estimated standard deviation of the measurement noise,
e(k) is the prediction error, defined above,

No is the nominal memory length of the algorithm.

There is no explicit upper bound on the cnvariance matrix.

One method which does impose an upper bound is the constant trace algo-
rithm of Sripada and Fisher (1987). It is not subject to blowup, but it requires added
logic to increase the gain of the estimation when the “true” »r “best” parameters

change.

Directional Forgetting: Kulhavy’s Method

The directional forgetting :nethods of Kulhavy and Karny (1984) and Kulhavy (1987)

use a different covariance matrix update:
P(k)™ = P(k = 1)™" + a(k)é(k)é(k)" (8.13)

a is the directional forgetting factor, and may take values less than or egual to 1.

Zero or negative values are also permitted.

The directional forgetting factor is calculated to provide exponential forget-
ting in a single direction only. It is calculated from an exponential forgetting factor,

A(k), using the following formula.

a(k) = A(k) - (l—g’(—/)c%@ (8.14)

and G(k) is just ¢(k)P(k — 1)d(k).
There are many different ways to choose A(k), including the method of Ydstie
et al. above. Kulhavy ai;1 Karny (1984) leave the choice of forgetting factor to the
user, but Kulhavy (1987) recommends the use of the following formula, following

a Bayesian-based theoretical analysis founded on the assumption that the “true”

parameters change with time.

k
=104 [lna + G + oG G- (615)

where €% is the normalized square of the prediction error:
& (k) = ——)____ (8.16)

and o? is the estimated noise variance.

One interesting property of this covariance update is that P only grows when
a(k) is negative, regardless of the value of A(k). In other words, low though the
exponential forgetting factor is, as long as a(k) is positive the covariance matrix
still contracts. This behaviour is a consequence of the form of directional forgetting:
the weighting given to the new data is adjusted. The old covariance matrix is not
automatically inflatec as for exponential forgetting. The covariance matrix update
(equation R.13) consists of adding a positive semidefinite rank one matrix to P~!(k—
1) whenever a > 9. This operation increases the trace of P~!. The trace of a matrix
is also the sum of its eigenvalues, so the eigenvalues of P~! are increased. The
ecigenvalues of P will therefore decrease as long as a is positive. Whenever a is

negative, the matrix added to P~!(k — 1) is negative semidefinite, so P will grow.

153

It is simple to add an ad hoc upper bound to the covariance matrix. If the
covariance matrix trace exceeds some fixed limit, then the minimum permissible
value of a can be set to zero and no additional growth will take place.

The covariance update for Kulhavy’s forgetting method is:

P(k — 1)g(k)¢T(K)P(k - 1)

P(k) =Pk = 1) = 17 0 F TPk = Do (h)

S 7)

Example 8.3
If a directional forgetting factor, @ = 0.6, is used for the one step
of Example 8.1, then the updated parameters and covariance matrix be-

come:

) —0.584 0.0813 —0.0475 |
(k) = ; P(k)=

0.277 ~0.0475 0.0786 |

The effect of directional forgetting on the 95% confidence limits can be
seen in Figure 8.5. Once asain the original values are shown by the solid

“1.”

ellipse and the number The confidence limits from RLS with no
forgetting are shown by the dotted ellipse and the corresponding param-
eters are at the “2.” The confidence limits for directional forgetting are
shown by the dashed ellipse. The new parameters from the directional
forgetting update are the same as for no forgetting. The use of 'irecticnal
forgetting enlarges the confidence region in che direction of P(k)@(k). It
does not change the size of the ellipse in ihe perpendicular direction.
This becomes even more obvious if a negative value of a is used. The
ellipse will grow to a size even larger than the initial size, but only in the
direction of P(k)é(k), as can be seen in Figure 8.6.

For this case a = —0.05. The new parameters are at the “2” and
the dotted =iipse shows the new confidence region. Obviously more 1n-

formation has been forgotten than was added, because the confidence

region is larger. The information was forgotten only in the direction of

b1 parameter

_O'G i A N 1 L
-16 14 -12 -1 -08 -06 -04 -02 0 0.2

at parameter

Figure 8.5: Evolution of Parameters and 95% Confidence Region for Directional

Forgetting, a = 0.6

0.8

0.6}

0.4

0.2}

b1 parameter

o
H

-2 -1.5 -1 -0.5 0 0.5 1

al parameter

Figure 8.6: Evolution of Parameters and 95% Confidence Region for Directional

Forgetting, o = —0.2

156

P(k)¢(k). The confidence (and therefore the adaptive gain) is the same
in the direction perpendicular to P(k)¢(k) as it was before the covari-
ance update. This is the main strength of directional forgetting: if there

is no information in a given direction, nothing will be forgotten in that

direction.

Directional Forgetting: Hagglund’s Method

The directional forgetting method of Hagglund(1983) uses yet another covariance

matrix update:

P(k — 1)¢(k)¢7 (k)P (k — 1)

T 1/(1/v = a(k)) + #T(E)P(k — 1)(k) (8.18)

P(k) = P(k - 1)

where a(k) is again the directional forgetting factor. v is a user-specified
parameter, hopefully close to o2, the prediction error variance.
a(k) is chosen using the following algorithm:

r0 a; <0

aq 0 < ag < 1/G(k)
1/G(k) 1/G(k) < g < (1/v +1/G(k))
0 ag > (1/v + 1/G(k))

(8.19)

\
where G(k) is, as before, equal to ¢(k)P(k — 1)¢(k). a4 is calculated using the

following pair of equations:

et — ¢
5 = R - De®) (5:20)
_ 1 8a(k)
aulk) = L+ ey (8.21)

If the data are persistently exciting, then the cov»-iance ma‘rix will converge

to al.

157

The objective of this forgetting method is to have the parameters converge
quickly from poor initial parameters, using a large covariance matrix. As the param-
eters converge, the covariance matrix converges to al, so the identification method
collapses to LMS. LMS is perfectly adequate when the parameters only drift slowly,
and is easier to analyze than RLS. The disadvantage of this method is the numerical
complexity of the calculation of aq.

Like the method of Salgado et al.(1988) discussed next, this method was
motivated by the need for better identification methods that could be theoretically
analyzed. It is a heuristic method with attractive properties, rather than a method
based on expected properties of the parameters. As such it is less elegant than the
method of Kulhavy, but more predictable. P is not strictly forbidden from increasing,
but it is bounded, and the bound can be calculated. Kulhavy’s forgetting f.ctor does
not place an explicit bound on the magnitude of the covariance matrix, and so can

theoretically lead to blowup.

Directional Forgetting: Salgado, Goodwin and Middleton

Salgado et al. (1988) specify the parameter and covariance updates for yet another
identification approach they call the Exponential Forgetting and Resctting Algorithm
(EFRA):
aP(k — 1)¢(k)
L+ ¢T(k)P(k — 1)(k)
aP(k — 1)¢(k)¢7 (k)P(k - 1)
14+ T(k)P(k — 1)¢(k)

where a, 3, A and §é are user-specified constants and « is the step size or gain of the

O(k) =6(k-1)+ e(k) (8.22)

+B8I-6P*k—-1) (8.23)

P(k) = %P(k 1) -

least squares algorithm. The minimum possible eigenvalue of P is directly related to
B and the maximum possible eigenvalue is inversely related to §.) is a user-chosen,
constant exponential forgetting factor.

As long as the eigenvalues of the covariance matrix are not at their maximum

values, exponential forgetting is carried out. In addition, partial resetting takes place:

158

in the directions perpendicular to P¢. In the absence of any information, P resets

to 7I where U is approximately given by the following expression.

1-2A BA
oA 1-2A

The covariance matrix is also bounded from below. In the event that there is a great

deal of persistently exciting information, the eigenvalues of P will never be less than

7, given by:
g __L
14+ Ma-1)

This is an interesting method, which guarantees that the covariance matrix
will remain bounded, and therefore will prevent blowup. It is not however simple
to apply, for two reasons. First of all, four parameters must be chosen by the user.
Secondly, the covariance matrix update is no longer a rank 1 update. S1—6P?(k—1)

must be calculated on line and then factored into UDU form before being added to

P.

8.3.1 Implications to Feedforward Adaptive Control

The preceding section has shown the effects of two different forgetting approaches
on parameter confidence. The effect of increasing the size of the parameter confi-
dence region is to increase the rate at which adaptation will take place. Exponential
forgetting schemes lose confidence equally quickly in all directions, but directional
schemes retain confidence in the unezcited direction. In this section the analysis
of forgetting methods will be extended to the multivariable case, and the effects of
different techniques will be demonstrated.

The dimension of the covariance matrix is n x n, where n is the total number
of parameters to be identified. The confidence region therefore is an ellipsoid in n-
space, centred at the point §. Two-dimensional projections will be used to show the

shape of an n-dimensional ellipsoid. Consider the following example:

Example 8.4
Three parameters were to be identified, a,, b; and d,, from the process

model:
Alg™My(t) = B(g™u(t — 1) + D(g™")v(t — 1) + £(¢)

where A, B, and D are all first order, so the equation can be rewritten

thus: -
y(t—1)
y(t) = [arhd)] | u(t—1) | +€(t)
v(t—-l)J

The initial parameter estimates were set to the correct values:

~0.8
°=6400)=| 02 |;

0.1

The initial covariance matrix was set to I. The initial 95% confidence
region is a three-dimensional ellipsoid. It can be illustrated by displaying
three two-dimensional projections, as in Figure 8.7.

The noise, £(t), was Gaussian, zero mean and white with standard
deviation of 0.1. The manipulated input, u, was a PRBS of length 1000
and the disturbance v was zero for all times so there was a great deal
of information in the directions corresponding to the input and output,
but none in t"» Jisturbance direction. Four different forgetting methods
were examined: the exponential forgetting factors «f Ydstie et al. and
Sripada and Fisher, and the directional forgetting factors of Kulhavy
and Hagglund.

When an exponential forgetting factor was used, confidence was lost in
the d, parameter during the experiment, regardless of the method used to

choose the exponential forgetting factor. When the constant information

159

b1

b1

3 . . 3 : —

2} - ol A

1+ - 1t §

oF - 5 ol i

s - K18 4

RTI— 0 2 2 2
al

3—— :

2t 1

1k i

0 i

1t 4

-2 1

di

Figure 8.7: Initial Three Dimensional 95% Confidence Region

160

method of Ydstie et al. (1985) was used, the confidence region for the
disturbance parameter grew without bound, as can be seen by the final

confidence region, shown in Figure 8.8.

0.4 : : 1 X10° :
0.3f - 0.5+ -
5 0.2f - 5 O -
0.1} - 05}]
95 1 05 0 A5 o5 o
al al
0.4 :
0.3} 4
5 0.2} .
0.1} -
o

Figure 8.8: 95% Confidence Region for Ydstie's Forgetting Factor

When the constant trace method was used, then the size of the con-
fidence region was bounded by the trace: the 95% confidence limits can
never be more than 1.96 x /tr(P) away from the current estimate, where
. % is the trace of the covariance matrix. The adaptive gain in the d;
direction therefore remained finite. It did, however, gro»* beyond the ini-
tial value, thus “blowing up,” as can be seen in Fi 9. Moreover,

the forgetting in the disturbance direction restricte . e of adapta-

161

tion for the other parameters in another simulation (not shown here for

reasons of brevity).

0.24 4

0.22

T

1

N
I

0.2} | -

-

Q
0.18
0.16
0.14 1 -4

-1 -0.8 -0.6 -1
ai

di
=)

T
1

-0.6

0.24

L
L

0.22

0.2

o
0.18
0.16

0.14 L
-5

d1

Figure 8.9: 95% Confidence Region for Constant Trace Forgetting Factor

When a directional forgetting method was used, there was no forget-
ting in the feedforward direction, since there was no information in that
direction. Forgetting in the d; direction is independent of the other direc-
tions. The evolution of the confidence limits in the a; and b; directions
was a function of the directional forgetting method used, bist the effect on
the disturbance parameter was the same: nothing can happen until there
is information in that direction. This can be seen in both Figures 8.10

and 8.11.

163

0.4 T 3 T ™

0.3} - -
5 0.2} - 5]
0.1} -
15 4 05 0 0
al
_'5 .

Figure 8.10: 95% Confidence Region for Kulhavy’s Directional Forgetting Factor

8.4 Experimental Studies

Experimental studies were carried out on the stirred tank heater system described
in Chapter 6. The main purpose of the experimental study was to determine if the
use of an exponential forgetting factor could lead to directional blowup of the covari-
ance matrix under reasonable experimental conditions and if so, whether directional

forgetting would prevent directional blowup while maintaining adaptability.

0.3

025}

b1
o
o

0.15}

0.1
-0.9

0.3—

0.25¢+

0.2

b1

0.15

0.1
-2

d1

164

-C.

g
(™)

-0.75

Figure 8.11: 95% Confidence Region for Hagglund’s Directional Forgetting Factcr

IR

The two forg-ting factors used were the constant information exponential
forgetting factor of Ydstie et al. (1985) and the similar directional forgetting factor
of Kulhavy (. 37). Both are well-suited to experimental conditions. in spite of the
fact that neither can guarantee that the covariance matrix will remain bounsled.
Both methods are casy to implement and use: the amount of programming etfort
required is sma’l, and there are few user-specified paranaters They are also similar
in derivation and objective (Kulhavy, 1987) aud so bear comparizon. Other methods
were not examined experimentally because the objective of the experimental trial was
to highlight the difference between exponential and directional forgetting approaches,
not to provide an exhaustive examination of all forgetting methods.

The parameter £y was set to 1.0 for Ydstie's forgetting factor. Since the
standard deviation of the noise was estinated to L2 between 0.02 and 0.05° €., this
corresponds to an asymptotic memory length of from 20 to 50 samples. A prediction
--ror deadband was also used. For all samples where the prediciion error was less
than 0.001° C. no update was performed. Although this scems like a preposterously
small value for a prediction error deadband, it came into effect over 150 times out of
the 1250 samples of the run.

Kulhavy’s forgetting factor does not have an explicit prediction error dead-
band, but it does make use of a minimum information content deadband for numerical
robustness. The information content is meisured by ¢TP¢. Whenever this dimen-
sionless scalar was less than 10~4, neither the covariance matrix nor the parameter
estimate vector was updated. Moreover, whenever the directional forgetting factor,
@, was less than 10~3 the covariance matrix update was considered to be pointless

and was cancelled. This makes sense if cquaticr 5.13 is examined:
P(k)™ =Pk~ 1)7" + a(k)s(k)g(k)T

If the absolute value of a is small enoveb, then i barely changes. The increase

in precision from using the update is outweighed by the accumulation of round-off

error.,

In addition to the deadban.'s, p was set to the default value of 0.2. In simula-
tions the estimator performance has been relatively insensitive to the value of p. The
standard deviation of the noise, o, also necied to be suecified. For the experiments
described here, o was set to 0.05° C. T'.,. v~ = averestimate, and was purposely
conservative. o is the primary tunirg parameter o1 Kulhavy's forgettir : method-
prediction e1:crs much larger than o can cause extremely rapid forgetting. Of course
the forgetting is always confined ‘o a rank one subspace, vather than the entire co-
variance matrix, but underestimating the noise causes rapid forgetting in all excited
directions.

Process inputs and outputs for the two runs are shown in Figures 8.1
and 8.13. The most obvious difference between the two runs is that the controller
using directional forgetting yielded better sc - . response than the other configura-
tion. Thisis * cause of the tuning of the two forgetting methods, and is really not
germane to the discussion.

The setpoint and disturbance sequences were chosen to increase the likelihood
of directional blowup. Following the initial tuning period the disturbance ente:ed
the process and was removed after another 50 samples. A series of setpoint changes
ensured significant amounts of process excitation but no disturbance excitation for
a relatively long period. The disturbance was applied again after a quiet period.
Figure 8.14 shows the value of the exponential forgetting factor during the experi-
meni. It was always quite high, and never less than 0.985, which corresponds to a
memory length of over 66 samples. Comparison with Figure 8.12 shows that the low
forgetting factor values coincided with the periods of great excitation, as would be
expected with this forgetting method.

The directional forgetting factor behaved rather differently. The overall pat-
tern was the same, but the details were somewhat different, as can be seen in Fig-

ure 8.15. The values of the exponential forgetting factor (which is applied in only one

167

80¢C 1000

600

200

1400

1200

400

(0) ‘dway

er

1000

1400

1200

400 600 800

200

60

1 1 .
o o Q (=] o
wn <

~) N

uadQ 9% anfep wealg

-~

o

1 1

(=] wn (= wn o
wn < <t (5] ™

S/|W ‘SeY MO|4 JaJEM

400 600 800 1000 1200 1400

200

Time (samples)

Figure 8.12: Process Inputs and Outputs for Exponential Forgetiing with GPC

168

200

(D "bop) ‘dwa

600 800 1000 1200 1400

400

60

uadQ % sAeA weslg

1 L
Q o o o o
n < [sp] N

400 600 800 1000 1200 1400

200

| ;

I

i
1

wn

<

1 M
o wn
< ™

50

aleY MO|4 Jalem

(=]
™

400 600 800 1000 1200 1400

200

Time (samples)

Figure 8.13: Process Inputs and Outputs for Directional Forgetting with GPC

Yt

S
[&)
£0.995} -
()]
E
8
9 099 = h
(o]
L
0.985 ‘ : : ' ' .
0 200 400 600 800 1000 1200 1400

Figure 8.14: Exponentiai Foigetting Factor Value for Exponential Forgetting with

GPC

direction) are in many cases much lower than for the first run. In particular, during
the first disturbance, the forgetting factor is very lcw: below 0.5, corresponding to
a memory length of less than two. The directional forgetting factor, a, can be seen
to take on values as low as —3. It is only during the excursions uf a below zero that
there is actual growth in the covariance matrix, as discussed above.

Interesting though the comparison of the two forgetting approaches is, the
uestion still remains: does the use of an exponential forgetting factor cause direc-
tional blowup? The answer is found using the confidence bounds introduced above.
Figures 8.16 and 8.17 show the confidence bounds (at the 66% level, or 1.00 stan-
dard deviation) on the parameter estimatss ac every 50" sample from 350 to 1000
samples. During this period there was little or no disturbance information, as can
be seen from Figures 8.13 and 8.12.

The ellipses in the top left subplot of each figure consistently shrink with
time, showing how the variances of the &, and b, parameters get smaller as more
information is gathered over time. Both identification methods become more and
more confident in these parameter estimates. In the direction of the disturbance

parameters, however, the two methods differ. The directional forgetting method

lamt.

alpha

170

0.8

1§ ((wr——w[m[.Tr.

0.6F

0.2 I 'l 3 1 A A
0 200 400 600 800 1000 1200

1400

; o

0 200 400 600 800 1000 1200
Time (samples)

Figure 8.15: Forgetting Factor Values for Directional Forgetting with GPC

1400

171

maintains confidence in the parameters while the exponential forgetting results in a
slow loss of confidence.

Exponential forgetting tiercfore results in loss of confidence in the parame-
ters in the absence of new aisturbance information. A constant trace formulation
would mitigate the loss of confidence, but would result in a loss of adaptivity in the
complementary directions. Directional forgetting should therefore be used whenever
there is a strong likelihood of directionally deficient information.

Another fact that ‘s »..de obvious by the ellipses is tlie correlation hetween
the two disturbance parani:c:. The nature of the correlation indicates that one of
the two parameters is superfluous. The elongated shape of the d; — d, ellipse in both
Figures 8.16 and 8.17 shows that the estimation is quite certain that the parameters
lie near the line d; + d; = —0.04. It s however extremely uncertain where on the
line the parameters lie. Because the estimation cannot discriminate betweem the
two parameters, either of the d parameters could be discarded without affecting the
prediction quality. A lower-order model would have provided equally good prediction

and control.

8.5 Conclusions

The choice of forgetting methods for adaptive GPC iniplementations was examined
in this chapter. There are many different forgetting methods, only a few of which
were discussed here. The treatmeuti was not intended to be exhaustive, but was in-
tended to illustrate the advantage of directional forgetting methods over exponential
methods in MISO control applications. Directional forgetting methods are preferable
because of their ability to maintain parameter confidence during long periods of no
disturbance acitvity.

Of the exponential forgetting methods, those that maintain constant some

measure of the covariance matrix prevent unbounded directional blowup, but there

Figure 8.16: Confidence Bounds for Directional Forgetting and GPC

0.5

[

-—
L0

0.08

0.06

0.04

0.02¢

o
N
T

]

pry
Q
pery

Figure 8.17: Confidence Bourds for Exponential Forgetting and GPC

174

is a reduction in the rate of adaptation of the other parameters. Thus the constant
trace method of Sripada and Fisher is safer than the constant information method
of Ydstie et al., even when a prediction error deadband is used.

Héagglunds directional forgetting method is safer, but Kulhavy’s method can
provide faster adaptation. Hagglund’s directional forgetting factor strictly constrains
the value of the covariance matrix, and may be inapprop.iaie for poorly scaled sys-
tems. There is room for personal choice between different directional forgetting
m-thods, as well as the perennial quest on of performance veisus safety. The niethod
of Salgado et al. is a good compromise, and has in fact bee:. wsea in inc.strial ap-
plication (Allison et al., 1990).

In practice within the Department of Chemical Engineering, and for research
work on other facets of the adaptive controller (where forgetting ‘» ::quired but
not the topic of the research), the directional forgetting factor of Kulhavy is rec-
ommended. Even though it does not provide an explicit bound on the adaptive
gain, it provides fast adaptation, smooth parameter trajectories, and is robust in
the presence of poor excitation. The only caveal for its use is that if the standard
deviation of the noise is underestimated, the covariance matrix will grow too large,

in an attempt to reduce the magnitudes of the prediction errors.

Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

This thesis has addressed a number of issues in the identification of process models
for adaptive long range predictive control. The motivation for addressing process
identification was that the quality of any GPC implementation is affected profoundly
by the process model. Without a good process model, there cannot be good control.

The issues addressed specifically in this work were:

1. The process model identified using Least Squares, which was in theory the op-
timal method, could produce poor control performance. Consequently other
researchers recommended the use of an additional ad hoc filter for the identifi-

cation in spite of the lack of any theoretical support.

2. Alternative process identification methods do exist, and some may he more

relevant to long range predictive control than RLS is.

3. When several signals are used in the process model, such as for MISO control,

it is possible for one or more of the signals to remain quiet for an extended

175

176

period of time while others are active. In such cases, it is possible for the
identification scheme to discard data too quickly in the directions of the quiet
measurements. The forgetting scheme must be chosen to take this possibility
into account. Of course it must aiso retain information in the absence of any

excitation.

The contributions of the work described in this thesis are outlined below.

. Adaptive GPC was implemented on industrial process control equipment. The

i+ jormance was evaluated and it was ascertained that the controller was much

. .sier to tune than the identification system.

An overail long range predictive adaptive control objective was introduced. It
was used to justify the use of GPC in conjunction with an identification method

(distinct from RLS) designed to minimize a control-relevant identification ob-

jective.

A control-relevant identification method was developed. For batch implementa-

tion, Newton-Raphson and Gauss-Newton were used to minimize the objective

function.

Through the use of frequency-domain arguments, a feasible on-line identifica-
tion method was found. The method, LRPI, uses an adaptive filter in conjunc-
tion with normal RLS. The filter depends on both the controller tuning and
the model. The direct dependence of the filtering on controller tvaing is result

of the control-relevant identification goal.

The ad hoc data pre-filtering performed by other researchers can be explained
as a suboptimal approximation to LPRI. The ad hoc filter often has frequency

domain characteristics similar to those of the optimal LRPI adaptive filter.

The performance of LRPI in identifying models for adaptive GPC was con-

firmed through simulation studies using a standard benchmark simulation

(Rohrs’ third order plant) as well as experimental studies on a pilot-scale pro-

Cess.

7. The Nonminimal Predictive Controller (NPC) of Lu and Fisher (1990) was
compared to GPC - . LRPL. NPC represents another approach to the problem

of control-relev 1.t *ientification for long range predictive control.

8. In adaptive feedback control, it is often possible to add excitation to improve
the quality of the process model. It is impossible to add excitation in the feed-
forward channels, so any data forgetting method used in feedforward control is

required to be more cautious than in feedback adaptive control.

9. Finally, differ<1t forgetting schemes were discussed from the point of view of
combined feedforward and feedback adaptive control. Their effects on rol;ust-
ness in adaptive MISO control were examined and it was shown that directional
forgetting schemes retain information in directions of weak or nc cxritation bet-

ter than do exponential forgetting methods.

9.2 Recommendations for Future Work

1. As a result of the analyses carried out in piavieus chapters, the use of LRPI
is recominended for all adaptive GPC implementations where the sample time
is long enough to permit its use. In cases wk.-e high speed is crucial, RLS
may be used in conjunction with a fixed data pre-filter designed using the
LRPI approach and an off-line estimate of the likely process model A(q~!)
polynomial and controller tuning. In addition, the directional forgetting factor
of Kulhavy (1987) is recommended for all non-critical implementations. With
the addition of an explicit limit on the covariance matrix and some means
of estimating the noise level on-line, it may be used with confidence in any

adaptive implementation.

178

2. Analysis of the LRPI filter for other model structures, especially highly oscilla-
tory mechanical systems, is required. For this work the focus was on first order
process models. First order mndels are completely inadequate for robot con-
trol, as the physical systems are usually only lightly damped. The LRPI filter
can be band-pass or even high-pass for some underdamped process models and
the effect of such filtering on the models and control must be examined more

closely.

3. A more thorough comparison of GPC+LRPI with NPC is nceded. In par-
ticular, the disturbance rejection properties of reduced-order NPC must be
examined. The full-order version of NPC may be too numerically demanding

for on-line implementation.

The NPC noise model is significantly different from the usual Brownian motion
model. The structure of the noise model will affect the disturbance rejection
qualities of the controller. The actual effect of the noise model in practice
should be evaluated: the different noise model may have a seriously positive or

negative effect on the controller performance.

Experimental implementation of NPC, both full-order and reduced, and com-
parison with GPC+LRPI, should be performed. Experimental evaluation is
recommended because of the crucial role of the noise model: one primary dif-
ference in theory between GPC and NPC is the noise model, and the NPC
noise model is sufficiently different from the usual ARIMAX structure to make

fair simulation difficult.

4. The overall control criterion should be applied to other predictive controller
methods (e.g. GPC with terminal condition weighting) to find the appropriate

control-relevant identification objectives.

The implementation of LRPI in conjunction with terminal condition weighting

179

presents an interesting problem: since L is theoretically infinite for steady-state
prediction, it may be replaced by a denominator-type filter similar in structure
to the more traditional 1/T(gq!). In such a case the filter for short range
prediction would be completely different from that for steady state prediction

and a multiple model approach may be more logical.

5 The effects of LRPI on the robustness of GPC to structural model-plant mis-

match have not been analyzed from a robust control theory point of view.
Although such analysis is most likely intractable, an approximate analysis may
be possible because of the dual structure of the adaptive controller. A rigor-
ous description of the benefits of using LRPI will also point the way to other,

better, identification methods.

. GPC may be forumlated in an implicit form, with F;(¢7!) and G;(g™") identi-
fied directly. This has not been discussed in the literature because of the vast
number of parameters that would have to be identified. There is, bowever, a

possible application of such an implicit formulation: multiple-model GPC.

If the polynomials for each prediction distance j come from a different model
(one model for each value of j), then N, different model updates are required.
Prediction (and hopefully control) would be better than when a single model
is used. Of course N, different identification problems would still have to be
solved, but the problem may be tractable for the following reason. The shorter
range predictions use different parameters than the long range predictions, but
they use a subset of the signals used for the long range predictions. In other
words, the information matrix (®7®) for each short range prediction model is

a submatrix of the information matrix for the longest range prediction model.

The covariance matrix is the inverse of the information matrix, and the sub-
matrix structure is not preserved in the inversion. The structure is preserved,

however, if the matrix is stored in Cholesky factored form. Thus, although N,

180

different parameter vectors must be updated, only one covariance matrix need

be updated.

This implicit, multiple model formulation would have the advantage of im-
proved prediction (and hopefully control), at the cost of some increase in nu-
merical complexity. At worst, it would provide a benchmark against which to
compare single-model GPC, and at best it could provide much better control

with relatively low order models.

181

References

Allison, B. J., G. A. Dumont, L. H. Novak, and W. J. Cheetham (1990).
Adaptive-predictive control of Kamyr digester chip level. AICRE Journal,
36(7), 1075-1086.

Andersson, P. (1985). Adaptive forgetting in recursive identification through

multiple models. Int. J. Control, 42(5), 1175-1193.

Astrom, K. J. and B. Wittenmark (1973). On self tuning regulators. Automat-

ica, 9, 185-199.

Astrom, K. J. and B. Wittenmark (1989). Adaptive Control. Addison-Wesley,

Reading, Mass.

Bierman, G. J. (1977). Factorization Methods for Discrete-time Identification.

Academic Press, New York.

Bitmead, R. R., M. R. Gevers and V. Wertz (1990). Adaptive Optimal Control:
the thinking Man’s GPC. Snodfart Press.

Bohm, J., A. Halouskova, M. Karny, and V. Peterka (1984). Simple LQ self-
tuning regulators. Proc. 9th IFAC World Congress, 171-176, Budapest.

Clarke, D. W. and P. J. Gawthrop (1979). Self-tuning control. IEE Proc. D,
126(6), 633-640.

Clarke, D. W. and C. Mohtadi (1989). Properties of Generalized Predictive
Control. Automatica, 25(6), 859-875.

Clarke, D. W., C. Mohtadi, and P. S. Tuffs (1987a). Generalized predictive
control — part i. the basic algorithm. Automatica, 23(2), 137-148.

182

Clarke, D. W., C. Mohtadi, and P. S. Tuffs (1987b). Generalized predictive

control — part ii. extensions and interpretations. Automatica, 23(2), 149-160.
Feldbaum, A. A. (1965). Optimal Control Theory. Academic Press, New York.

Francis, B. A. and W. M. Wonham (1976). The internal model principle of
control theory. Automatica, 12(5), 457-467.

Goodwin, G. C. and K. S. Sin (1984). Adaptive Filtering, Prediction and
Control. Prentice-Hall, Englewood Cliffs, N.J.

Hagglund, T. (1983). The problem of forgetting old data in recursive identi-
fication. Proceedings of IFAC Workshop on Adaptive Systems in Control and

Signal Processing, 213-214, San Francisco.

Ishitobi, M., S. L. Shah and D. G. Fisher (1989). Exponentially stable model
reference adaptive controller with deterministic disturbances. Proceedings of

the American Control Conference, 1852-1856, Pittsburgh.

Jacobs, O. L. R. and J. W. Patchell (1972). Caution and probing in stochastic
control. International J. Control, 16(1), 189-199.

Kalman, R. E. (1960). On the general theory of control systems. Proc. First
IFAC Congress, Moscow, 481-492, London, Butterworths.

Kulhavy, R. (1987). Restricted exponential forgetting in real-time identifica-
tion. Automatica, 23(5), 589-600.

Kulbavy, R. and M. Kérny (1984). Tracking of slowly varying parameters by
directional forgetting. Proc. 9th IFAC World Congress, 687-692, Budapest.

Kwok, K. (1990). Personal communication.

Lambert, E. P. (1987) Process Control Applications of Long Range Prediction.
D.Phil. thesis, University of Oxford.

183

Lambert, M. (1987) Adaptive control of flezible systems. D.Phil. thesis, Uni-

versity of Oxford.

Lau, E. K. C. (1990). Predictive control of processes with time delay. M.Sc.

thesis, University of Alberta.

Ljung, L. (1987). System Identification: Theory for the User. Prentice-Hall,
Englewood Cliffs, N.J.

Ljung, L. and S. Gunnarsson (1990). Adaptation and Tracking in System

Identification — A Survey. Automatica, 26,(1), 7-21.

Ljung, L. and T. Séderstrom (1983). Theory and Practice of Recursive Identi-
fication. MIT Press, Cambridge, Mass.

Lu, W. (1989). Parameter Estimation and Multirate Adaptive Control. Ph.D.

thesis, University of Alberta.

Lu, W. and D. G. Fisher (1990a). Nonminimal model based long range predic-

tive control. Proceedings of the American Control Conference, 1607-1613, San

Diego, CA.
Lu, W. and D. G. Fisher (1990b). Nonminimal predictive control. submitted

to Chem. Eng. Sci.

Lu, W., D. G. Fisher, S. L. Shah and C. Mohtadi (1990). Nonminimal model
based output predictors. Proceedings of the American Control Conference,

pages 998-1003, San Diego, CA.

Mclntosh, A. R. (1988). Performance and tuning of adaptive generalized pre-

dictive control. M.Sc. thesis, University of Alberta.

Mclntosh, A. R., S. L. Shah, and D. G. Fisher (1990) Experimental evaluation

of adaptive control in the presence of disturbances and model-plant mismatch.

184

S. L. Shah and G. Dumont, editors, Adaptive Control Strategies for Industrial
Use, volume 137 of Springer-Verlag Lecture Notes in Control and Information

Sciences, 145-174. Springer-Verlag, New York.

Mohtadi, C. (1986). Advanced Self-Tuning Algorithms. D.Phil thesis, Univer-
sity of Oxford.

Mohtadi, C. (1989). Personal communication.

Mohtadi, C. (1990) On the role of prefiltering in parameter estimation and
control. S. L. Shah and G. Dumont, editors, Adaptive Control Strategies for
Industrial Use, volume 137 of Springer-Verlag Lecture Notes in Control and

Information Sciences, 121-144. Springer-Verlag, New York.

Mosca, E. and G. Zappa (1986). Convergence of multipredictor STR under
mismatching conditions. Proceedings of 25th IEEE Conference on Decision

and Control, 1542-1545, Athens.

M’'Saad, M., M. Duque, and E. Irving (1987). Thermal process robust adap-
tive control: an experimental evaluation. Proc. 10th IFAC World Congress,

Munich.

Ortega, R. and Y. Wang (1989). Robustness of adaptive controllers -— a survey.
Automatica, 25(5), 651-677.

Panuska, V. (1968). A stochastic approximation method for identification of
linear systems using adaptive filtering. Preprints of the JACC, 1014-1021. The

University of Michigan.

Patchell, J. W. and O. L. R. Jacobs (1971). Separability, neutrality and cer-
tainty equivalence. International J. of Control, 13(2), 337-342.

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press,

London.

185

Rogers, M. D. (1988). Models and methods for recursive identification. M.Sc.

thesis, University of Alberta.

Rohrs, C. E., M. Athans, L. Valavani, and G. Stein (1984). Some design

guidelines of discrete-time adaptive controllers. Automatica, 20(5), 653-660.

Salgado, M. E., G. C. Goodwin and R. H. Middleton (1988). Modified least
squares algorithm incorporating exponential resetting and forgetting. Interna-

tional Journal of Control, 47(2), 477-491.

Shah, S. L. and G. Dumont, editors (1990). Adaptive Conirol Strategies for
Industrial Use, volume 137 of Springer-Verlag Lecture Notes in Control and

Information Sciences. Springer-Verlag, New York.

Shook, D. S., C. Mohtadi, and S. L. Shah (1989). Identification for long range

predictive control. I[EE Proc. D. accepted for publication.

Shook, D. S., C. Mohtadi, and S. L. Shah (1990). Adaptive filtering and GPC.
Proceedings of the American Control Conference, pages 556-561, San Diego,
CA.

Shook, D. S. and S. L. Shah (1989). Adaptive GPC user’s guide. Technical
report, Dept. of Chem. Eng., University of Alberta.

Sripada, N. R. and D. G. Fisher (1987). [mproved least squares identification.
Int. J. Control, 46, 1889-1913.

Stanley, W. D., G. R. Dougherty, and R. Dougherty (1984). Digital Signal

Processing. Reston Publishing Co. (Prentice-Hall), Reston, Va., 2 edition.

Tse, E. and M. Athans (1972). Adaptive stochastic control for a class of linear
systems. IEEE Trans. Auto. Cont., AC-17(1), 38-51.

186

Tuffs, P. S. (1985). Self-tuning control: algorithms and applications. D.Phil.

thesis, University of Oxford.

Wahlberg, B. and L. Ljurz (1986). Design variables for bias distribution in
transfer function estimation. IEEE Trans. Auto. Cont, AC-31(2), 134-1-11.

Widrcw, B. and S. Stearns (1985). Adaptive Signal Processing. Prentice-Hall,

Englewood Cliffs, New Jersey.

Wieslander, J. and B. Wittenmark (1971). An approach to adaptive control

using real-time identification. Automatica, 7(2), 211-217.

Wittenmark, B. (1975). Stochastic adaptive control methods: a survey. Inter-
national J. of Control, 21(5), 705-730.

Wittenmark, B. (1990). Adaptive control: Implementation and application
issues. S. L. Shah and G. Dumont, editors, Adaptive Control Strategies for
Industrial Use, volume 137 of Springer-Verlag Lecture Notes in Control and

Information Sciences, 103-120. Springer-Verlag, New York.

Wittenmark, B. and K. J. Astrom(1984). Practical issues in the implementa-

tion of self-tuning control. Automatica, 20, 595-605.

Ydstie, B. E., L. S. Kershenbaum, and R. W. H. Sargent (1985). Theory
and application of an extended horizon self-tuning controller. AIChE Journal,

31(11), 1771-1780.

Appendix A

Lrpiest User’s Guide

A.1 User’s Overview

A.1.1 Scope of This Manual

Lrpiest is a program designed to operate within Multicon, a University of Alberta De-
partment of Chemical Engineering software package designed to facilitate advanced
control design and implementation. Multicon provides process and operator commu-
nications as well as scheduling and watchdog timing. Multicon operates under the
QNX operating system. This decument is not intended to provide an introduction
to either Multicon or QNX; it is assumed that the reader is reasonably familiar with
the operation of both. An introduction to both may be found in Lau (1990).
Lrpiest provides the user with an on-line process identification package partic-
ularly suited to adaptive long range predictive control. In particular, it was written
with adaptive generalized predictive control (GPC) in mind, and so will be easiest to
use with adaptive GPC. The LRPI technique evolved because of a need to provide
better models for GPC, and so it is most obviously associated with GPC. It will still
be useful for other adaptive controllers, but the notation used is consistent with the

GPC literature.

187

188

A.1.2 Algorithms and References

The basic parameter estimation technique in Lrpiest is Recursive Least Squares, or
RLS. The user is directed elsewhere for a description of RLS and its evolution, ¢.g.
Ljung (1987). The particular variant applied is the UDU’ factorization of Bierman
(1977), and the actual covariance and parameter update routine is stolen from Ljung
and Soderstrom(1983). There is the choice of two forgetting factors: the constant
information exponential forgetting factor of Ydstie et al. (1985) or the directional
forgetting factor of Kulhavy (1987). Filtering is provided by an ad hoc filter chosen
by the user (cf. McIntosh, 1988) or by LRPL

A.1.3 Use of the program

In its current form, 48 different mnemonics are required in the system data table for
Lrpiest. The need for many of them can be removed by an experienced programmer,
as discussed in Section A.2. The required mnemonics are shown in Table A.l.

The process model should be self-explanatory, except that c0 to c3 are used
only if an auxiliary variable is being measured for feedforward control, and if feedfor-
ward is not being used, nc and £.D1 should be set to zero. (f-D1 is the feedforward
control flag).

STtc, STsc and STfl correspond to the stirred tank temperature (controlled
variable), steam valve setting (manipulated variable) and inlet water flow {measur-
able disturbance), respectively.

The mnemonics nl and n2 are the GPC prediction horizons N, and N;. They
are only required when LRPI filtering is used. The maximum value of n2 is 20 or
delb + 10 (whichever is smaller). t1 and t2 are the coefficients in the GPC controller
T filter, which is assumed to be monic.

Test controls the selection of initial values. If lest=1, then they are read from

the system data table, otherwise if lest=0 the values are the programmed-in defaults.

189

Mnemonic Use

na, nb, nc process model orders

al - al process model denominator

bl - bl0 process model numerator

c0 -c3 process model feedforward term
delb, delc process model delay

STtc, STsc, STl measurements

nl, n2, tl, t2 controller and LRPI tuning

lest, f_dat, f.brk, f-D1 | flags
EstON algorithm selection

Dinit initial value of covariance matrix

Tn0-Tn2, Td0-Td2 filter constants

Sigma identification tuning
updb, lodb identification tuning
dell, del2, rho identification tuning

Table A.l: System Data Table Mnemonics Required for Lrpiest

190

f_dat controls the recording of data. If f.dat=1 then masses of data are stored to tiles
in the directory [user/dave/data. Setting f-brk to 1 closes the data files and turns
off identification. {_D1 is set to 1 when it is desired to identify the effect of inlet How
rate on temperature.

EstON is chosen by the user, and may take one of five values:

Value | Meaning

0 | Identification off
1 | ad hoc filtering and exponential forgetting
2 | ad hoc filtering and directional forgetting

11 | LRPI and exponential forgetting

12 | LRPI and directional forgetting

Table A.2: Values for EstON

Dinit is the initial value of the covariance matrix, P. P(0) is equal to Dinit
times the identity matrix.

Tn0-Tn2 and Td0-Td2 are the filter constants for any ad hoc filtering done
for the identification. The measurements are filtered by Tn(q~')/Td(q""). No ad-
justments are made for steady state gain, and it is important to keep A as a factor
of Tn if GPC is being used.

Sigma has two uses. If exponential forgetting is used, then Sigma is the
S, parameter of Ydstie et al.(1985). Otherwise it is the standard deviation of the
noise (or the best available guess). If ad hoc filtering is used, Sigma will have to be
multiplied by the steady state gain of Tn(q~)/Td(q™") (or at least divided by the
steady state gain of T'd(¢~?!) if Tn is equal to A).

The mnemonics updb and lodb are the maximum and minimum prediction
error deadbands for the exponential forgetting factor. They are not used when the
directional forgetting factor is chosen. The prediction error deadbands are not par-

ticularly easy to choose, and are best found following some analysis of the prediction

191

errors.

The last three mnemonics, dell, del2 and rho, are the tuning parameters for
the directional forgetting factor. They correspond to Kulhavy’s §;, 6; and p, but
dell and del2 are the logarithm (base 10) of 8, and §; respectively. The best thing
to do is probably to leave them at their current values unless you are investigating
the forgetting method itself.

At present, the executable file exists in the directory /user/dave/run, along
with many Multicon configuration files. To use Irpiest in its present configuration
(along with gpcll and the program “setpoint”) simply start Multicon, set the initial

directory to /user/dave/run and choose the data file lrpi_gpc2.

A.2 Programmer’s Overview

The source code for Lrpiest resides in eleven files: two “header” or .h files ard nine
¢ files. There is a makefile in the directory /user/dave/exp which is used to keep
everything up to date. If you do not already use “make” it is recommended that you
do so.

The files and their purposes are outlined in Table A.3.

Of the source files only calclrpi.c contains more than one function. The func-
tions required by all configurations are described in the next section. They include
Irpiest.c, comp.est.c, form_data.c and update.c. The forgetting factor routines will
then be discussed. Both dff.c and yff.c will be described, and also kg-only.c as it is
only required by the directional forgetting factor. Then the filtering will be described,

including calclrpi.c and pre filter.c.

192

File Purpose

calclrpi.c Calculate LRPI Filter

comp.est.c | Compute estimation error

dff.c Calculate directional forgetting factor
form_data.c | Form data (regressor) vector from measurements
kg-only.c Calculate Kalman gain only for parameter update
Irpiest.c Main routine. Does far too much

prefilter.c | apply ad hoc filter to data

w

update.c update covariance matrix and parameter estimate
yff.c Calculate exponential forgetting factor

par_defs.h | Provides limits for dimensioning of arrays

r-w.h Provides interface to Multicon system

Table A.3: Source Files for Lrpiest
A.2.1 Common Routines

Irpiest.c

This is the main routine. It deals with all communication with Multicon. All data
files are opened and closed by this function. In addition, the filtering and forgetting
functions are called directly. This routine was stole from an old estimation task,
Parest, which provided only exponential forgetting and ad hoc filtering, so the details
of the update were in the main routine. For Lrpiest it was necessary to add user
choices for filtering and forgetting, and rather than write the whole thing from the
beginning, the necessary new logic was just added in the main routine. It is ugly,
but it works. As long as Lrpiest is not added to in an irresponsible manner, it should

continue to work.

193

form_data.c

This forms the data vector phi using the filtered measurements and the model poly-

nomial orders and delays.

comp_est.c

This five-line routine just calculates the prediction error. All input values (new

measurement and regressor) must have been filtered already.

update.c

This file contains the function ud_update. ud-update calculates the new covariance
matrix in UDU’ factored form and the Kalman gain vector. UDU’ form is used to
keep P symmetric positive definite in the presence of roundoff error. If P should lose
its symmetric positive definite quality then the parameter update would be impos-
sible: the update would be a square root of a negative number, which is physically
meaningless. The actual algorithm used here is taken from Ljung and Séderstrom
(1983), p. 334. There are no user-serviceable parts enclosed. Do not modify this

subroutine unless you know exactly what you are doing.

A.2.2 Forgetting Factor Implementation

Lrpiest at present gives the user choice of two forgetting factor algorithms: the con-
stant information exponeutial forgetting factor of Ydstie et al. (1985) and the direc-
tional forgetting factor of Kulhavy (1987). The original program from which Lrpiest
was developed, Parest, only had the exponential forgetting factor. The directional

forgetting option was added to investigate data forgetting in MISO control.

194
Exponential Forgetting Factor

The exponential forgetting factor is only one part of the exponential forgetting al-
gorithm. The prediction error deadbands play an important part in keeping the
identification on track. The limits are implemented in the main routine, as part of
the legacy of Parest. Large prediction errors are treated as outliers: they are caused
by something that the model does not take into account, and are therefore ignored.
Small prediction errors show that the parameters are close to correct. Since the
forgetting factor is never quite 1.0, it is possible for covariance blowup to happen
during long periods when the predictions are good and there is little or no excitation.
Choice of deadband values is a tricky and ad hoc procedure. Good luck.

If the prediction error is within the limits, the forgetting factor is calculated
and applied.

The file yff.c contains the function calc_forget_factor. Before the actual for-
getting factor can be calculated, the value G = #T P¢ must be evaluated. Since P is
stored in UDU’ factored form, this takes a few steps. The forgetting factor itself is
a relatively simple funciton of G and the tuning parameter Sigma.

Once the forgetting factor has been calculated, control is returned to the
main program, which then constrains it to be greater than some minimum value
(tpically between 0.8 and 0.95). This prevents accidental loss of information through
forgetting too quickly, which tends to happen when there is a very large prediction

error. The prediction error maximum helps the situation, but this acts as insurance.

Directional Forgetting Factor

The directional forgetting factor of Kulhavy (1987) is implemented in the file dff.c.
Four parameters must be chosen by the user, but fortunately only one or two actually
require tuning. Specifically, dell, del2, rho and Sigma must be specified. Sigma

in this case is the standard deviation of the noise (measurement and/or process).

195

dell and del2 are the (base 10) logarithms of the tuning parameters 6, and 2. 6,
is a measure of the minimum information content required for the update to be
performed. It functions as a deadband, but on information rather than prediction
error. &, is another deadband. It represents the minimum absolute vaiue of «, the
directional forgetting factor, for which the covariance matrix will be updated. If « is
less than 6,, then the parameters are updated, but the covariance matrix is not. The
assumption is that more information would be lost through roundoff error than would
be added by the covariance update. This is a compromise solution which works well
in practice. Typical values for &, are between 10-2 and 10~5. When the parameters
are to be updated and the covariance matrix is not, the standard update subroutine
cannot be used, so the subroutine kg-only.c is called instead. It just calculates the

Kalman gain, without performing a covariance update.

Future Forgetting Factors

Implementation of any other forgetting factors is the responsibility of the program-
mer. Obviously Lrpiest was written specifically for the two methods described above,
and care must be taken in adding any other forgetting factors. If any are added, it is
recommended that the programmer remove one or both of the two existing methods,

to reduce clutter.

A.2.3 Filtering Routines

At present two data filtering methods are included in Lrpiest. They are referred to
as the ad hoc and LRPI filters. Only one filter may be used for a given run. Choice
of the filtering method is made, as for the forgetting method, through the EstON
parameter. Any value less than 10 for EstON specifies LRPI and a value greater

than or equal to 10 chooses the ad hoc filter.

196

ad hoc filtering

The ad hoc filter is applied in the subroutine pre_filter. The filter applied is of the

form:
Tn0 + Tnlg~! + Tn2q™?
t) =
) = T Taigr+ Tz 'Y

Old values of the filtered signals: y;, us etc. are retained between samples, so the

actual implementation is:

y(t) = (Tr0 + Tnlq™' + Tn2q~2)y(t) — (T'dl + Td2q~")y,(t = 1)
d Td0

For identification of a model suitable for GPC, it is necessary that the Tn terms
contain a differencing factor, 1 — ¢~!. The Td terms are usually low-pass in form,

for example Td0=1, Td1=-1.6, Td2=0.64.

LRPI filtering

The file calclrpi.c contains all of the routines to perform the LRPI filtering. LRPI

requires the data filtering to be of the form:

ys(t) = E;%Z—)A'y(t)

where A and T(g~!) are imposed by the GPC disturbance model and L(q™!) is the
LRPI filter. The controller T filter is accessible through the data table mnemonics

t1 and t2. The filter is applied in much the same way as the ad hoc filter:

ys(t) = (L(g7")Ay(t)) — tlys(t — 1) — t2y,(t — 2)

More specifically, the function apply.LRPLfilter calls the function
calcIrpi_filter, and then applies the resulting L(g™") filter.

Within calc_lrpi_filter, all calculations are performed in double precision. This
was done because the spectral factorization method used makes use of deconvolu-

tion, which can result in a significant loss of precision. All intermediate values are

197

therefore stored as double precision variables. By convention, all calculations in C
are performed in double precision, even if the result is single precision, so the use of
double precision variables does not result in a major increase in the computational
load.

The En,(g~') polynomial is calculated within calc_Irpi-filter, and then the
sum of the E;(g~')E;(¢*!) polynomials is formed for j = M to N;. The L(g7")
polynomial is calculated by the function “factor” which performs the spectral fac-
torization using the method of Bohm et al.. The method used is discussed in con-

siderable detail in Chapter 5, and the reader is directed thereto for a more detailed

description.

Appendix B

MATLAB Files

B.1 Introduction

This chapter contains a listing of many files used to evaluate LRPI and a number of
different forgetting methods. For the sake of brevity, not all of the script files used
are included here. The files that are included are intended for the user to evaluate
the methods for himself.

The script files, or “.m files” as they are colloquially known, may be divided
into two groups: those associated with LRPI and those used for evaluation of the

different forgetting methods.

B.2 LRPI .M Files

B.2.1 Batch Calculation

The following routine will calculate the optimal parameter estimates for a first order
model to match a set of batch data. The parameter “steps” is a vector containing
the predictions to be considered, e.g. steps=1 means just one-step-ahead; steps=|1;2]

means 1 and 2 step ahead predictions, etc. Newton-Raphson is the method used,

198

199

and the plant is Rohrs’ third order plant discussed throughout the thesis. The
function igpc.m called at the end is a .m file written by C. Mohtadi and included in

Mohtadi (1990).
A

% Newton(theta,epsi,n,dt,steps)
é theta - column vector of initial parameter estimates
% epsi - scalar tolerance on theta.
% n - number of time steps in sample run
/ dt - control interval
) steps - row vector containing the future predictions
% of interest (e.g.: 10, or 1 to 10, etc.)
é newnevw .m file to examine effect of using a multistep prediction
% version of LS. The plant is Rohrs’ third order example, the
% model is first order. The attempt is to make the predictioms
% better over ‘‘steps’’ steps ahead
h
& D.Shook, March 28 1989
num=229%2;
den=conv ([1 1],%1 30 2291);
a,b,c,d]=tf2ss

?

num,den); [a,bl=c2d(a,b,dt);
tfnum,tfden]=ss2tf(a,b,c,d,1);
Aold=[i -.8922];Bold={0’.2423
=dlsim(tfnum,tfden,u);
1f inc==1
uusto;diff(uil;
y=[0;diff(y)
else
uu=u;
end;
l1=length(y);
for i=1:max(steps),
uoldE:,igsEzeroséi,lg;uu(l:l-i%];
yold(:,i)=[zeros(i,1);y(1:1-1)};
end;
e=100;
while e > epsi,
asthetaéig;
b=theta(2
num=[0 b];
den={1 aj;

.
]

)
d2ydb2=zer?s(uu);
hat=zeros (length(y),length(steps)) ;dyda=yhat;dydb=yhat;
y gy g P dzgdaQthat;g2ydgb=yhat;

for jj=1:length(steps),
jtsteps(jg);
yhat (:,jj)=(-a)"j*yold(:,j);
if(j>=2),
d2yd§2(:,ji)=d2yda2(:,jj)+j*(j-1)*(-a)‘(j-2)*yold(:,j);
for i=1:j-1,
d2ydab(:,jj)=d2ydab(:,jj)-i*(-a)‘(i-i)*uold(:,i+1);
dd2yda2(:,jj)=d2yda2(:,jj)+b*i*(i-1)*(-a)"(i-2)*uold(:,i+1);
end;

200

end;

for i=0:j-1,
yhat(:,jj)=yhat(:,jj)+(-a) " i*b*uold(:,i+1);
qydb(:,jj)dedb(:,jj)+(-a)‘i*uold(:,i+1);

end,;
dyda(:,jj)=-j*(-a)~(j-1)*yold(:,j);
err(:,jj)= yhat(:,jj)-y;

end;
dyda=dyda+b#*d2ydab;

djda=sum(sum(err.*dyda));
djdb=sum(sum(err.*dydb)) ;
djdt=[djda;djdb];

d2jda2=sum(sum(err.*d2yda2))+sumn(sum(dyda.~2));
d2jdab=sum(sum(err.*d2ydab))+sun(sumn(dyda.*dydb));
d2jdb2=sum(sum(dydb.“2§),

hessian=[d2jda2 d2jdab; d2jdab d2jdb2];
thetanew=theta-hessian\djdt
J=sumésum§err.“2))
e=sum(abs(thetanew-theta))
q theta=thetanew;
en

t=1:20;t=t’;

yi=dstep(tfnum,tfden,20);

y2=dstep([0 theta(2)],[1 theta(1)],20);
plot(t,y1,’-",t,y2,%+°);
‘rold,sold]=igpc(Aold,Bold,n1,10,1,0,1,1);
cpold=conv(rold,tfden)+conv(sold,tfnum);
oldrts=roots(cpold);
[rxct,sxct,cpexct]=igpc(tfden,tfnum,n1,10,1,0,1,1);
exctrts=roots(cpexct);

A=[1 theta(1)];B=[0 theta(2)];
[rnew,snew]=igpc(A,B,n1,10,1,0,1,1);
cpnev=conv(rnew,tfden)+conv(snew,tfnum);
newrts=roots(cpnew);

B.2.2 Recursive Calculations

For the recursive LRPI calculations, there were two main methods used: Recursive
Gauss-Newton (RGN) and LRPI through adaptive fitlering (LRPI).

The following three functions simulate closed-loop LRPI and GPC control of
Rohrs’ plant. The function stoz is another file written by Dr. Mohtadi, and is a

continucus-to-discrete function for transfer functions.

9
é lrpigpc.m closed loop LRPI and GPC.
% Horizons and orders in N

201

%
N=[1 1 1 1 10]; na=N(1); nb=N(2); N1=N(4); N2=N(5);
k=N(3); NU=1; lambda=0; p=1;
theta=[zeros(1,na) zeros(1,nb)l’;
theta(na+1)=1; th=[]; Lr=[];
P=10*eye(na+nb);
T=25+[1 -.8]; nt=length(T);
[1 -.8];
D=[1 -1]; L=1;
y=zeros(50,1); u=zeros(50,1); ly=length(y); lu=length(u);
uf=u;yf=y; beta=l;
as=conv([1 1],[1 30 229]);
ba=458;
h=0.05;
[B,A]=stoz(bs,as,h,0);
nA=length(A); nB=length(B);
lv = length(w);
i=0; yr=[1; ur=[];
clc; clg;
while i < 1w,
home,
i=1+1
ynew = B{2:nB)*u(1:nB-1) - A(2:nA)*y(1:nA-1),
= [ynew; y(1:1y-1)1;

Y
1if nt > 2,
ufnew a(1) - u(2) - T(2:pt)*uf(1:nt-1))/T(1);

uf ufnew; uf(i:lu-1)1;
y(1) = 3(2) - T(2:nt)*yf(1:nt-1))/T(1);

yfnew
[yfnew; yf(1:1y-1)];

yf
else,
ufnev = u(1)-u(2);
[ufnew; uf(1:lu-1)]1;
y(1)-y(2);

[yfnew; yf(1:1y-1)];
end ;

[theta,P] = rlrpi(theta,P,N,L,yf,uf,beta);
theta,
ahat = [1 theta(l:na)’];
bhat = |[zeros(i,k) theta(na+l:na+nb)’];
[r,s]= igpc(ahat,bhat,ﬂl,N2,NU,lambda,T2,p);
nr=length(r); ns=length(s); nt2=length(T2);
if i >= nt2
tw = T2*w(i:-1:i-nt2+1);

else,

q tw = T2(1:i)*w(i:~-1:1);
end;
unevw = (-r(2:nr)*u(i:nr-1) + tw - s*y(1:ns8))/r(1);
if unew > 100, unew = 100; end;
if unev < -100, unew = -100; end;
lu = length(u); u = [unew; u{1:1u-1)];
L = eqivl(ahat, D, T, Ni, N2);
yr(i) = y(1); ur(i) = u(1);
th(:,i) = theta; Lr(i,:)=L;
end

LI B B I M)

-«
h
o]
o
<
NNun

function [theta,Pl=rlpri(theta,P,N,L,y,u,beta)
%
% rlrpi: filter y, u with L and then perform one RLS iteration.

ﬁa-n(1); nb=N{(2); k=N(3); N1=N(4); N2=N(5);

202

nl=length(L);

for i=1:na
phi(ij=-L*y(i+1:i+nl);
end;
for i=1:nb,
phi(i+na) = Lxu(i+k-1:i+k-1+nl-1);

phi(:);

L*y(1:nl) - phi’*theta;

P = P - Pxphisphi’*P/(1+phi’*P*phi); P=P/beta;
theta = theta + P*phixe;

return

end;
phi
e

function [L]=eqivl(a,D,T,N1,N2)

[/
é eqivl: find L for a given model and controller tuning.
[}

E=filter£T,conv(a,D),[1 zeros(1,N2)]);

m=conv(E(1:N1) ,E(N1:-1:1));

for i=N1+1:N2
mi=conv(E(1:1i),E(i:-1:1));
m=[{0mO] + mi;

end;

L=spctr(m) ;

L=L/sum(L);

return

B.3 Forgetting .M Files

Four different forgetting factors were investigated: those of Hagglund (1983), Ydstie
et al. (1985), Kulhavy (1987) and Sripada and Fisher (1987).The following functions

show how the RLS calculation is modified for each forgetting method.

Ydstie’s Forgetting Factor

function [P,thetal=rlsyff(P,theta,phi,y,yhat,signa,NO,emin)
9,

i rlsyff.m recursive least squares (using Ydstie’s
h forgetting factor).

é (P,thetal=rlsyff(P,theta,phi,y,yhat,sigma,N0,emin)
[

é P covariance matrix

% theta parameter estimate vector (vertical)

h phi regressor vector (vertical)

% y nev measurement

h yhat a priori estimate of y

% sigma noise standard deviation

203

% NO asymptotic memory length
% emin prediction error deadband

%
e=y-yhat;
if abs(e) > emin,
G=phi’*P*phi;
lambdasyff (G,e,sigma,N0);
P=(P - P*ghi*phi’*P/(lambda+G))/lambda;
theta=theta+P*phi*e;
end;
end;

function lambdasyff(G,e,sigma,NO)

é yff.m Ydstie’s forgetting factor

é lambda = yff(P,phi,e,sigma,rho)

h

h lambda exponential forgetting factor
% G phi’#P*phi

h e a priori prediction error

% sigma noise standard deviation

h NO asymptotic memory length

%

m=1-G-e~2/ (sigma”2*NO) ;
lagbdat(m*sqrt(m“2+4*G))/2;
en

ILS of Sripada and Fisher
function [P,theta]-rlsils(P,theta,phi,y,yhat,trp,emin)

4

é rlsils.m recursive least squares (using Sripada and
h Fisher’s forgetting factor).

h

¥ [P,theta]Srlsils(P,theta,phi,y,yhat,trp,emin)

/ P covariance matrix

) theta parameter estimate vector (vertical)
% phi regressor vector (vertical)

h y new measurement

% yhat a priori estimate of y

% trp desired trace

% emin prediction error deadband

é=y-yhat;

if abs(e) > emin,
Pphi-P*Bhi;
G= hi’* phi;
r=G+1;
lambda=1- 0.5%(r-sqrt(r~2 - 4+*Pphi’*Pphi/trace(P)));
P=(P - P+phi*phi’#*P/(lambda+G))/lambda;
theta=theta+P*phi*e;

end;

end;

2044

Kulhavy’s Directional Forgetting Factor
?unction [P,thetal=rlsdff(P,theta,phi,y,sigma,rho,delta)

é rlsdff.m recursive least squares (using

% directional forgetting factor of Kulhavy, etc).

g [P,theta)=rlsdff(P,theta,phi,y,sigma,rho,delta)

/ P covariance matrix

/A theta parameter estimate vector (vertical)

% phi regressor vector (vertical)

% y nev measurement

% sigma noise standard deviation

% tho Kulhavy’s ad hoc tuning parameter

% delta vector containing two elements:

% delta(1) minimum value of phi’*P*phi for update
% delta(2) minimum value of alpha for covariance update

e=y-phi’*theta;

=phi’*P*phi;
en2=e"~2/(sigma~2%(1+G));
lambda=1/(1+(1+rho)*(log(1+4G)+G*(en2-1)/(1+4G)));
?lpha=1ambda-(1-1ambda)/G;

%
if G > delta(l),
theta=theta+P*phi*e/(14G);
if abs(alpha) > delta(2),
P=P - P#phi*phi’#*P/(1/alpha+G);
end;
end;

function [alpha,lambda]-dff(G,e,sigma,rho)

% dff.m Directional forgetting factor of Kulhavy, etc.
é [alpha,lambda]=dff(P,phi,e,sigma,rho)

/

h alpha directional forgetting factor

h lambda exponential forgetting factor

h G phi’*P#*phi

h e a priori prediction error

% sigma noise standard deviation

h tho Kulhavy’s ad hoc tuning parameter

en2=e"2/(sigma~2%(1+G));
lambda=1/(1+(1+rho)*(log(14G)+G*(en2-1)/(1+G)));
alpha=lambda-(1-lambda)/G;

Higglund’s Directional Forgetting Factor
function [theta,P]=hag(theta,P,phi,y,a,v)

%
% hag.m Directional forgetting factor of Hagglund, etc.
[/

205

% [theta,P,alpha]=hag(theta,P,phi,y,a,v)

4,

v alpha directional forgetting factor

% theta vertical parameter vector

h P covariance matrix

h phi vertical regressor vector

h y new observation :

h a tuning parameter: eventually P=a*I
% v tuning parameter: desired variance of residual
%

G=phi’*P#*phi;

S=g*phi;

deltad=(S’*P*S/(S’*S)-a)/(S?*S);
alphadsinv(v)+de1tad/(de1tad*G-1);

%

if alphad<=0
alpha=0;

elseif alphad<=inv(G),
alpha=alphad;

elseif alphad<=(inv(v)+inv(G)),
alpha=inv(G);

elseif alphad>(inv(v)+inv(G)),
alpha=0; :

else
disp([’ weird error in hag.m’])
end
h
alpha=alpha;

K=S/(v+G*(1-alpha*v));
theta=theta+K*(y-phi’*theta);
%pdeni=inv(inv(v)-alpha);
Y%pden2=inv(pden1+G) ;
YP=P-S*S’*pden?2;

P=P- S*S’/((inv(inv(v)-alpha))+G);

