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Abstract

In this work, the CF00N polysomnograph data of 75 patients, with ranging sev-

ereties of Obstructive Sleep Apnea (OSA), is presented and analyzed in terms of

sleep state classification. The pre-processing and cleaning of each polysomnograph

recording were performed in R (R Core Team, 2019) using independent compo-

nent analysis. Then three sets (Renyi Entropy, Moments of Discrete Wavelet co-

efficient (DWC), Moments of Non-EEG signals) of statistical features, 40 in total,

were extracted from the time, frequency, and time-frequency domain of every 30

second epoch using the C4M1 and non-EEG channels. A random forest feature

selection was then performed selecting nine multivariate normal features to be used

for comparison of classification performance against all three feature sets. Clas-

sification performance of sleep states for each patient’s epochs was analyzed first

using random forests with a 10-fold cross validation and then a leave-one-patient-

out-cross-validation (LOPOCV). In the 10-fold cross validation, the mean (standard

deviation) accuracy of the four feature sets was found to be 73.34%(0.07), for Renyi

features, 75.26%(0.07), for DWC features, 60.64%(0.1), for non-EEG features, and

76.85%(0.06) for the final features. In the LOPOCV, the mean performance mea-

sures of the random forest was found to decrease and the variance increase each

feature set when the testing and training data did not share epochs from the same

patient. The mean accuracy results for the LOPOCV were 67.1%(7), for Renyi fea-

tures, 74.5%(5.3), for DWC, 33.6%(6.3), for non-EEG features, and 72.2%(6.4) for

the final features. The classification performance in the LOPOCV was further ana-

lyzed using a 2-way MANOVA, which found no significant difference between the
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means of classification performance measures for the patient age and OSA group

combinations.

Then, using the Renyi entropy and final features of each patient’s epochs, hidden

Markov models (HMMs) and non-homogeneous hidden Markov models (NHMMs)

were fitted using 500 random starting points. The HMMs and NHMMs were fitted

via the R library depmixs4 (Visser & Speekenbrink, 2010). The mean classifica-

tion accuracy using the Renyi features was 67.1%(7.9) for HMM and 68.9%(7.8)

for the NHMM and, using the final features, 65.3%(8.7) for HMM and 67.6%(9.1)

for NHMM. Again, 2-way MANOVA was employed, with the only significant dif-

ference found between the mean performance measures of the age and OSA groups

for the NHMM that used the final features. Furthermore, the comparison between

HMMs and NHMMs that used the Renyi features found that on average the NHMM

accuracy was between 0.5% and 3.1% higher than HMM. When the HMMs and

NHMMs used the final features, the NHMM accuracy was on average between

0.4% and 4.2% higher than HMM.

A comparison of classification accuracy for the random forest LOPOCV versus

the HMM and NHMM found that, when using the Renyi features, the HMM and

NHMM typically performed better than the random forest and, when using the final

features the random forest performed better than the HMM and NHMM. The anal-

ysis of this thesis demonstrates that although the random forest, HMM and NHMM

can be successful at classifying sleep states, the HMM and NHMM are superior,

since the random forest lacks a model for the dependence structure between sleep

states. The modelling of sleep state transitions captured by the HMM and NHMM

can provide sleep experts with further insight to the underlying dynamics of sleep.
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Chapter 1

Sleep and Polysomnography

1.1 Introduction to Sleep

Long before the scientific study of sleep, there has always been a curiosity about

the nature and functional purpose of sleep. According to Chokroverty (2017), peo-

ple have always understood sleep is an essential part of life in the same way as

death. Only beginning in the twentieth century have researchers begun to quench

this curiosity with scientific evidence. This evidence has allowed researchers to

define characteristics of healthy sleep and sleep related diseases. Evidence found

by examining how changes in the physiological processes of sleep affect a patient’s

physical and mental health led researchers to find answers to the important question

of what characterizes healthy sleep. Understanding the process of healthy sleep al-

lows experts to identify irregularities in patient sleep architecture, diagnose sleep

related disorders, and determine a course for treatment. Sleep architecture is defined

in terms of two main components: the macro and the micro-structures. The macro-

structures govern and define the main components of sleep. The micro-structures

are events within certain sleep macro-structures.
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1.2 Sleep macro-structures

There are six main sleep macro-structures: circadian rhythm, sleep type or state,

sleep cycles, sleep latency, sleep efficiency, and wake after sleep onset. Circadian

rhythm is the periodic cycle of sleep and wake periods throughout the day, com-

monly known as the body clock. Typically, sleep is done at night in response to

external stimuli that help to develop the circadian rhythm as a person ages, like the

sun going down. Table 1.1 shows the duration of sleep as a person ages, which

decreases from birth to adolescence.

There are three main types of sleep: wakefulness, rapid eye-movement (REM),

and non rapid eye-movement (NREM). NREM sleep accounts for about 75-85%

of total sleep and REM the other 15-25%. However, Figure 1.A shows how the

proportions of NREM and REM change as a person ages. By the age 12-13 years a

person’s REM and NREM sleep patterns have almost fully matured and the propor-

tions of REM and NREM stay fairly consistent for the rest of the lifespan. Accord-

ing to American Academy of Sleep Medicine (AASM) standards (Iber et al., 2007),

the NREM sleep is comprised of 3 distinct states: NREM 1 and NREM 2 are con-

sidered very light sleep and are thought of as transitioning states from wakefulness

to the deep sleep, NREM 3. Wake and REM sleep are considered their own states,

with REM being considered the active sleep state. The AASM standards (Iber et

al., 2007) for scoring sleep states have been used in this research. To summarize,

there are five distinct sleep states used for this research: wake, NREM 1, NREM

2, NREM 3 and REM. Prior to 2007, manual scoring of sleep states was done in

accordance with the (Rechtschaffen & Kales, 1968) (R&K) guidelines, which splits

the NREM 3 state into NREM 3 and NREM 4.

Sleep cycles are the cyclical pattern of the wakefulness, NREM, and REM sleep

through out the night. Cycle duration increases as a person ages, starting around

45-60 minutes for infants and toddlers, then gradually increasing to 60-80 minutes

for children. Sleep cycle duration, seen in Table 1.1, begins to reach its maximum

of 90-120 minutes around thirteen years of age. The graphical representation of
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Age Sleep Number Sleep Cycle Number
Duration Daily Naps Duration of Sleep Cycles

Newborn 16-18 Hrs 4-6 45-50 mins 20-24
6 months 14.2 Hrs 3-5 45-50 mins 19

1 Yrs 13.9 Hrs 3-4 45-50 mins 19
2 Yrs 13.2 Hrs 1-2 50-60 mins 13-16
4 Yrs 11.8 Hrs 0 50-60 mins 12-14
5 Yrs 11.4 0 60-70 mins 10-11
12 Yrs 9.3 0 80-100 mins 6-7

13-50 Yrs 8 Hrs 0 90-120 mins 4-5
50+ Yrs 7.5 Hrs 1-2(60+ Yrs) 90-120 mins 4-5

Table 1.1: Changes to human sleep cycle over lifespan

sleep state progression, Figure 1.B, is called a hypnogram, which is an important

tool used by sleep experts for examining irregularities in sleep cycles. Sleep latency

is the amount of time needed to fall asleep. Sleep efficiency is the percent of time

spent sleeping in relation the total amount of time spent in bed. Lastly, wake after

sleep onset is the amount of time spent in the wake sleep state after falling asleep

for the night.

Figure 1.A: Proportions of REM vs NREM sleep across human lifespan. Image taken from Chokroverty (2017)

3



Figure 1.B: Hypnogram of normal sleep cycle for adults. Cycle duration approximately 120 minutes.

1.2.1 Sleep micro-structures

There are four primary sleep micro-structures: cyclical alternating pattern (CAP),

arousals, sleep spindles, and K-complexes. The CAP is an electroencephalogram

(brainwave) pattern that repeats in a cyclical manner, seen in Figure 1.C, typically

during NREM sleep. Presence of a CAP is indicative of sleep instability. The pat-

Figure 1.C: Example of polysomnograph data with presence of cyclic alternating . CAP sequence indicated by dotted line.
Image taken from Terzano et al. (2001)

tern consists of a stable A phase, consisting of regular undisturbed sleep, and an

unstable B phase. The B phase is typically accompanied with heart rate, blood
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pressure, muscle tension, and respiratory activity all increased. An arousal "is

an abrupt shift in [brain wave] frequency lasting from 3 seconds to 14 seconds"

(Chokroverty, 2017, p. 10) without becoming fully awake. Patients must also be

sleeping for at least 10 seconds prior to arousal. Sleep spindles and K-complexes

are micro-structures specific to NREM 2 sleep. Sleep spindles "represent periods

of time where the brain inhibits mental processing in order to keep the person in a

tranquil state. By keeping the person in a tranquil state, the sleep cycle can con-

tinue and the person can transition to the next stage of deep sleep" (Cushner, Fish,

& Wilson, 2019). K-complexes are produced in response to external stimuli while

a person sleeps that work to suppress external stimuli to keep a person sleeping.

1.3 Sleep Polysomnography

Examining the physiological processes that comprise sleep macro-structures is done

using sleep polysomnography (PSG). Chokroverty (2017, p. 6) describes in brief

detail the development of PSG in sleep research and how it captured the interests

of the scientific community. PSG was first used in 1875 by Richard Caton, an En-

glish physician who discovered Electroencephalogram (EEG) waves in dogs. Over

five decades later, in 1929, Hans Berger, a German physician, discovered the alpha

frequency band of EEG waves in humans. In 1937, American physiologists Alfred

Lee Loomis, Edmund Newton Harvey, and Garret Hobart discovered there are dif-

ferent sleep states by examining the changes in EEG wave frequencies during sleep.

Then, in 1953 at the University of Chicago, Eugene Aserinsky and Nathaniel Kleit-

man discovered Rapid Eye-Movement (REM) sleep. This discovery "electrified the

scientific community and propelled sleep research to the forefront" (Chokroverty,

2017, p. 6).

Technological improvements of the last few decades have drastically improved

sleep PSG, as it no longer only measures EEG wave forms. The main electro-

physiological measurements taken during sleep PSG are the electrooculography

(EOG), electromyography (EMG), and electrocardiography (ECG), which mea-
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sures eye-movement, skeletal muscle tension, and heart activity, respectively. How-

ever, patients recommended for sleep PSG due to a sleep related breathing disorder

will have additional measurements for respiratory activity and blood-oxygen sat-

uration. The importance of sleep PSG in medicine cannot be overstated, as it is

considered the gold standard for diagnosing sleep related breathing disorders. PSG

is typically performed overnight in a laboratory setting with electrodes attached on

the surface of the patient’s skin prior to bedtime. The electrodes measure electrical

impulses using a site electrode and a reference electrode, specifically the difference

in electrical potential (µV ) between the site and reference electrodes. EEG elec-

trodes are placed on the scalp according to the International 10-20 system, seen in

Figure 1.D, which is used to measure electrical activity of neurons in the brain. The

reference electrodes are labelled A1 and A2, but are interchangeably referred to as

M1 and M2, since they are placed on the mastoid. PSG channels are named using

the site and reference electrodes, C4M1 refers to the PSG channel that measures the

difference in electrical potential between electrodes C4 and M1 (A1 in Figure 1.D).

Figure 1.D: International 10-20 EEG electrode placements. Image taken from AASM manual (Iber et al., 2007)

EOG site electrodes are placed on the peripheral sides of the eyes and use the

same reference electrodes as EEG. The EMG site electrodes are placed on the left
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and right side just underneath the chin with the reference placed slightly above the

chin. Figure 1.E shows the placement of EOG and EMG electrodes. Additional

EMG electrodes can also be placed on the abdomen and legs in order to measure

skeletal muscle activity tension in the lower half of the body. The ECG electrodes

are attached to the patient abdomen in the chest area.

Figure 1.E: EMG and EOG electrode placement. Image from (Rechtschaffen & Kales, 1968)

Once complete, the PSG recording is then segmented into 30 second epochs

and each epoch manually scored by the expert into one of the discrete sleep states,

in accordance with AASM scoring criteria. Scoring of the epoch into one of the

distinct sleep states is primarily done by identifying the dominant EEG wave fre-

quency. Experts also use EMG, ECG, and EOG activity present to score the epoch.

For example, in a REM state where it is believed the majority of active dreaming

occurs, the EOG can detect the rapid movement of the eyes. During REM sleep the

body enters a temporary paralysis to keep the dreamer from physically acting out.

Furthermore, this paralysis is reflected in the EMG, as the skeletal muscle tension

is drastically reduced. The author refers the interested reader to the AASM man-

ual (Iber et al., 2007) for an in-depth explanation of the current medical sleep state

scoring standards.

7



1.3.1 Goal and Overview of this Thesis

The goal of this thesis is to propose an automated solution for scoring the sleep

states of individual patients. There are several approaches or classifiers proposed.

1. Random Forest classifier is trained using all but one patient data and then

classifies the sleep states of the remaining patient.

2. Hidden Markov Models (HMMs) and Non-homogeneous Hidden Markov

Models (NHMMs). Cluster and then classify sleep states of individual pa-

tients using only data from that individual.

The rest of this thesis is organized as follows. Chapter 2 reviews previous stud-

ies that propose an automated solution for sleep state classification. Chapter 3 be-

gins with a brief introduction to the random forest methodology used in the litera-

ture discussed in Chapter 2. Then an introduction to HMMs and their mathemati-

cal framework. Along with estimation of model parameters with the Expectation-

Maximization variant specific to HMMs and the decoding of the sleep states for

individual patients using the Viterbi algorithm (Viterbi, 1967; Forney, 1973). The

same is then done for the NHMM along with discussing the methodology used in

the depmixS4 (Visser & Speekenbrink, 2010) to estimate model parameters and

the decoding of sleep states. Chapter 4 discusses the PSG data that was collected

at the University of Alberta sleep laboratory and used for the research presented in

this thesis. Then moves into the pre-processing, cleaning, artifact removal strate-

gies, and the extraction of statistical features from the epochs of each individual

patient’s PSG. Chapter 5 is the feature selection process carried out using the Ran-

dom Forest methodology, specifically using the randomForest (Liaw & Wiener,

2002) library in R. Chapter 6 provides the classification analysis of the random for-

est approach used in this thesis and compares classification performance with the

respective literary sources. The analysis goes slightly deeper than what was done

in the literature as the number of trees used in increased significantly and the cross-

validation setup is further extended to model the classification of sleep states for

individual patients. Chapter 7 is the HMM and NHMM classification analysis.
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This is done for both models separately and then a comparison between them is

conducted. The last part of the chapter explores the sleep dynamics between sleep

states of individual patients by examining the transition probability matrix. Chapter

8 is the final chapter of this thesis, it provides the conclusion and a brief compari-

son of classification performance between HMM and NHMM versus random forest.

Lastly, a discussion of possible improvements and future work
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Chapter 2

Literature Review of Sleep State

Classification

2.1 Sleep State Classification

2.1.1 Automated Sleep State Classification

Sleep state scoring is done effectively by the experts, yet it can also be a long

and tedious process that’s subject to human error. This leaves room for automated

improvements to reduce scoring time and eliminate scorer subjectivity such as ac-

curate automated sleep state classification algorithms. However, automated sleep

state classification is not as simple as feeding the raw PSG signal to a machine to

classify sleep states of the epochs, not yet anyway.

When dealing with any data, the first step is to clean and organize it for pro-

cessing. The PSG data is cleaned via a digital filter, along with removal of inter-

ference artifacts that may also contaminate the PSG signals, both of which will be

discussed in detail in chapter 4, then segmentation of the clean PSG data into 30

second epochs is performed. For the next step, there are two main approaches. The

first being extraction of statistical features from each epoch of PSG data. This in-

10



cludes time domain features, such as statistical moments of the raw signals. There

are also frequency domain features, such as spectral analysis to find parameters that

characterize what frequencies dominate the epoch. Extraction of statistical features

from the epochs is a very natural starting point, as sleep scoring done by experts

uses the dominant wave frequency and micro-structure events present in EEG and

other PSG signals.

The second and more modern approach is to transform or decompose the PSG

data into the time-frequency domain and then extract statistical features. Time-

frequency domain features are of significant interest, as they open the doors for

researchers to consider many other feature types. The continuous wavelet transfor-

mation and entropy measures are very popular choices (Fraiwan et al., 2010, 2012;

Boostani et al., 2017) and will also be discussed in chapter 4. Once a set of statisti-

cal features have been extracted from each epoch, the next major step is to choose

an automated statistical classification algorithm.

2.1.2 Importance of Accurate and Reliable Results

The importance of accuracy for an automated sleep scoring algorithm cannot be

overstated, especially for patients, since patients who are expected to have abnor-

mal sleeping patterns and architecture may not be properly diagnosed and treated.

Comparison of sleep state classification performance in the literature will be done

using the overall classification accuracy and Cohen’s kappa, κ statistic (Cohen,

1960), as both are commonly utilized. The classification accuracy will be mea-

sured with respect to the 5-state AASM or 6-state R&K scoring system used by

the sleep experts to classify the epochs. κ is considered a more robust measure of

rater agreement for nominal variables that corrects for pairwise agreements happen-

ing by random chance. This statistic is commonly preferred over the accuracy for

evaluation of agreement between the classification of two or more field experts and

for the evaluation of classification algorithm performance. Landis and Koch (1977)

provide the first interpretations of the κ statistic, Table 2.1, found in the literature.
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κ Statistic Strength of Agreement
< 0 Poor

0 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.8 Substantial

0.81 - 1.00 Almost Perfect
Table 2.1: Table of Cohen’s κ interpretation taken from (Landis & Koch, 1977).

However, Landis and Koch (1977, p. 165) also state that "[although] these divi-

sions are clearly arbitrary, they do provide useful ‘benchmarks’ for the discussion"

of their specific example of comparing patient diagnosis of multiple sclerosis by

two Neurologists. These benchmarks have been accepted and used in many fields

to measure classification performance and agreement evaluation. A more modern

measure of classification performance produced from a clustering algorithms is the

adjusted Rand index (ARI) of Steinley (2004a). This measure will be used to assess

the classification performance of the HMM and NHMM presented in this thesis.

To the knowledge of the author, the ARI has not been found in any sleep state

classification literature thus far, so for that reason a brief description of the ARI is

presented in Chapter 7. For a detailed explanation the author refers the interested

reader to Steinley (2004a) and McNicholas (2017).

Danker-Hopfe et al. (2008) examine the inter-rater reliability(IRR) using R&K

and AASM guidelines using seven scorers from sleep labs in Austria and Germany,

each with long standing credibility in sleep science. The scorers analyzed 72 PSG

recordings from 56 healthy subjects and 16 patients with varying sleep disorders.

Danker-Hopfe et al. (2008) reported that the IRR agreement using AASM sleep

state scoring is 82.0%, which is slightly higher than the 80.6% for the R&K scoring

system. "The κ statistics, κ = 0.76 for AASM and κ = 0.68 for R&K, show an

increase in agreement between raters from R&K to AASM standards" (Danker-

Hopfe et al., 2008, Abstract).

Stepnowsky et al. (2013) had three experts analyze and score the sleep states

of 44 (adults, 22-69 years) PSG recordings. The first group of twenty-one PSG
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recording were scored using R&K criteria. This group contained 6 control subjects

and 15 patients with varying severity of obstructive sleep apnea (OSA). The second

group contained PSG recordings of twenty-three patients with mild to severe OSA.

The PSGs in the second group were scored using AASM criteria. Stepnowsky et

al. (2013, p. 3) found that in the first group 99.9% of epochs scored had at least

two experts agree on the sleep state classification. In the second group 97.1%, and

98.4% overall. However, the percentage of epochs where all three sleep experts

agreed was lower in both groups, as seen in Figure 2.A. The first group had just

over 80% and the second group under 60%. The disagreement between experts,

seen in Table 2.2, is also reflected in the κ statistics. All three raters agree quite

strongly for the first data set, but the κ statistics between rater 3 and the other two

raters drop significantly for the second patient data set.

Figure 2.A: Inter-rater agreement from Stepnowsky et al. (2013). "Percentage of epochs with no agreement, majority agree-
ment (two agree), and consensus agreement (all three agree)" (Stepnowsky et al., 2013)

Raters 1 vs 2 Raters 1 vs 3 Raters 2 vs 3
Group 1 0.85 0.89 0.77
Group 2 0.80 0.46 0.49
Overall 0.83 0.68 0.64

Table 2.2: κ agreement between experts. Table taken from Stepnowsky et al. (2013).
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The overall agreement across all subjects was only 72.6%, κ = 0.72 and the

"[differences] in agreement were observed based on raters, obstructive sleep apnea

(OSA) severity, medications, and signal quality" (Stepnowsky et al., 2013, Ab-

stract). This indicates that sleep related disorders, specifically OSA, can negatively

impact the scoring of sleep states from one expert to the next. The study by Boostani

et al. (2017) also emphasizes the importance of the sleep state classification perfor-

mance of patients versus healthy subjects. Their analysis compares the performance

of five different statistical feature extraction methods from Acharya, Chua, Chua,

Min, and Tamura (2010); Fraiwan et al. (2010, 2012); Güneş, Polat, and Şebnem

Yosunkaya (2010); Weiss, Clemens, Bódizs, Vágó, and Halász (2009) across four

different classification algorithms: random forest, Gaussian mixture models, K-

nearest neighbours, and linear discriminant analysis. Each sleep state classification

method in the analysis is performed on a healthy subject data set and a patient data

set using a leave-one-patient-out-cross-validation (LOPOCV). They used the pub-

licly available Sleep-EDF 2002 and CAP (Cyclical Alternating Pattern) data from

PhysioNet (Goldberger et al., 2000). The Sleep-EDF 2002 data set consists of 20

healthy adults subjects (25-34 years) who did not require medication to sleep. The

CAP data set contains PSG recordings for 20 patients with REM behaviour disorder.

Boostani et al. (2017) concluded that the overall sleep state classification accuracy

for each method is lower for the patient group across all feature extraction and clas-

sifier combinations. The best classification performance used the statistical features

of Fraiwan et al. (2012) with the random forest classifier, which provided a mean

accuracy of 87.06% for healthy subjects and only 69.05% accuracy for patients.

2.2 Automated Classification Methods

2.2.1 Multivariate Classification Methods

The typical starting point for sleep state classification begins with an applied mul-

tivariate analysis. The goal is to extract useful statistical features from each 30
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second epoch of a PSG recording using the first or second approach described in

Section 2.1.1, then combine all epochs into a single data set where the 30 second

epochs are treated as independent observations and the extracted features are treated

as the covariates. A multivariate classification algorithm is then implemented using

the expert’s sleep state scores as the true labels. Šušmáková and Krakovská (2008)

examined the classification accuracy of 73 different statistical features extracted

from EEG, EOG, EMG, and ECG channels, for 20 healthy subjects. Fisher dis-

criminant analysis was used to select the best individual features for classification

of epochs into the five distinct states. Šušmáková and Krakovská (2008) reported

the best single-discrimination feature obtained 57.4% accuracy across all AASM

sleep states. The mean classification accuracy of all features was 53.28% across all

AASM sleep states, which suggests that in order to successfully classify sleep state

within a reasonable amount of error, more than one feature must be used.

Acharya et al. (2010) considered two cohort data sets in their research. The first

was a group of 25 adults with mild to severe OSA and the second was 14 healthy

subjects. According to Acharya et al. (2010), they extracted higher order spectra

features from bi-spectrum and bi-coherence plots for the various sleep stages from

all epochs. Analysis of variance (ANOVA) was used to select optimal features for

use in a Gaussian mixture model. Overall, Acharya et al. (2010) achieved 88.7% ac-

curacy for the six-state R&K classification. Güneş et al. (2010, p. 7923) introduced

a "data pre-processing technique, [a] K-Means clustering based feature weighting to

increase the classification ability of sleep stages using [K-Nearest Neighbours] clas-

sifier and decision tree classifier" on 5 adult male patients, which obtained 82.5%

classification accuracy.

Fraiwan et al. (2010) used the continuous wavelet transformation of a single

EEG signal and compares three different mother wavelets: Daubechies order 20,

reverse bio-orthogonal, and Gaussian of order 1. Entropy of the wavelet coefficients

in seven frequency sub-bands was used as statistical features. In total, 21 features

were calculated for each epoch. There were 32 subjects in the study for a total

of 41,778 epochs. Linear discriminant analysis was the chosen classifier reaching
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a mean classification accuracy of 84% and κ = 0.78 using 10-fold cross valida-

tion. The successive study by Fraiwan et al. (2012) compared three different time-

frequency methods for EEG signal analysis: continuous wavelet transformation,

Hilbert-Huang Transformation, and Choi-Williams distribution. Renyi entropy of

the same sub-bands as those in Fraiwan et al. (2010) were then calculated as the sta-

tistical features. The data consists of 20,269 epochs from 16 PSG recordings from

the Sleep-EDF 2002 data set. A random forest, or rather a bootstrap aggregation

of 10 decision trees, with each tree over fit on a bootstrap sample of training data,

was implemented with classification accuracy of 83% and κ = 0.76 for the continu-

ous wavelet transformation features. This methodology will be discussed further in

chapter 3.

The study by da Silveira et al. (2017) used an approach adapted from Fraiwan

et al. (2012). They decomposed the EEG signal into 6 frequency bands using the

discrete wavelet transform with a Daubechies wavelet of order 2. The variance,

skewness, and kurtosis of the wavelet coefficients in each frequency band were

extracted as features. The study used the Sleep-EDF Expanded data set, which

contains PSG recordings of 20 healthy adults (10 male, 10 female) for a two night

sleep study with a total of 106,376 epochs scored with R&K standards. "Two PSGs

of about 20 hours each were recorded during two subsequent day-night periods at

the subjects homes" (Goldberger et al., 2000). da Silveira et al. (2017) employed the

same setup for random forest as Fraiwan et al. (2012), but increase the number of

trees from 10 to 64. A 10-fold cross validation over 100 trials was performed, which

achieved a mean accuracy of 90.5% and κ=0.8 agreement with R&K standards. da

Silveira et al. (2017) also analyzed the data using a (1/3) testing, (2/3) training split

of the data for comparison with Fraiwan et al. (2012) and reported 90.2% accuracy

for R&K classification.

The study by Koley and Dey (2012) examined PSG recordings for patients that

had current medical conditions, such as high blood pressure and diabetes. Out of

28 patients, 13 had a confirmed diagnosis of OSA while the remaining 15 did not.

The data was then randomly split into testing (12 subjects: 5 OSA, 7 No OSA)
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and training (16 subjects: 8 OSA, 8 No OSA) sets. They creatively used a support

vector machine (SVM) recursively for selecting a subset of optimal features from

a total 39 calculated. The classification scheme they employed used five parallel

binary SVM (one SVM for each state). A one state against all other states strategy

was used in each SVM to determine the class label for each epoch. A cross valida-

tion of the training data was performed to train model parameters. Model validation

was performed using the test data, which obtained an accuracy of 89.91% and κ =

0.868 for non-OSA subjects and 88.86% accuracy and κ = 0.846 for OSA sub-

jects. This analysis provides evidence that classification performance is not always

significantly lower for epochs of patients with a sleep related breathing disorder,

especially when the patient epochs are compared to healthy subject epochs in the

same sleep study, which means all PSG recordings are done using the same equip-

ment settings and have the same rater scoring the epochs.

Hassan and Subasi (2017) decompose 8 healthy adult EEG recordings from

the Sleep-EDF 2002. They also used 20 (16 female, 4 male) healthy adult EEG

recordings from the DREAMS (2016) data set. The recordings were segmented

into epochs, which are then decomposed into distinct sub-bands using the tune able

Q-wavelet transform. The first four statistical moments in each sub-band were ex-

tracted as features. They used a Kruskal-Wallis one-way analysis of variance to

determine which individual features were useful for discriminating between sleep

states. Each data set was then split evenly into mutually exclusive testing and train-

ing sets. Classification was performed using bootstrap aggregating of decision trees,

like that of Fraiwan et al. (2012). Results for the Sleep-EDF 2002 reached 93.69%

accuracy and κ=0.8543 for AASM classification. The results for the DREAMS

(2016) data was found to be 78.5% accuracy and κ = 0.82 for AASM classification.

Another study by Seifpour, Niknazar, Mikaeili, and Nasrabadi (2018) decom-

posed a single EEG channel from the same data as Hassan and Subasi (2017) into

six sub-bands using a band-pass filter. The statistical behaviour of the local extrema

in each epoch was extracted and used as the statistical features. A multi-class SVM

was the chosen classifier, which achieved 91.8% accuracy and κ = 0.87 agreement
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with AASM state classification of the Sleep-EDF 2002 recordings. Seifpour et al.

(2018) found the classification performance on the DREAMS (2016) data set was

83.3% and κ= 0.77 for AASM state classification.

2.2.2 Neural Network Methods

There are many different variations of neural networks that have been successfully

applied to sleep state classification. The study by Özşen (2012) examined PSG

recordings of 5 healthy subjects using five artificial neural networks (ANN), one

for each sleep state, to classify the epochs. A validation data set was created using

untouched epochs from 3 of the 5 subjects and reported 90.93% accuracy for AASM

state classification. A recurrent neural network (RNN) approach was explored by

Hsu, Yang, Wang, and Hsu (2013) using 8 PSG recordings from the Sleep-EDF

2002 data. Performance of their proposed method was compared to a feed-forward

neural network (FNN) and a probabilistic neural network (PNN). The RNN outper-

formed both of its competitors. The RNN achieved 87.2% accuracy compared to

81.1% for FNN and 81.8% for PNN.

Complex-valued neural networks (CVANN) have been successfully implemented

by Peker (2016a, 2016b). Peker (2016a) examined 8 PSG recordings from the

Sleep-EDF 2002 data set. Using the raw EEG signal, nine non-linear features were

extracted and then "converted into a complex-valued number using a phase encod-

ing method" (Peker, 2016a, Abstract). A LOPOCV was used to evaluate classifica-

tion performance. Peker (2016a) obtained 93.84% accuracy and κ = 0.919 agree-

ment with AASM standards and 91.57% accuracy and κ = 0.892 agreement with

R&K standards. Peker (2016b) used a dual-tree complex wavelet decomposition on

the EEG signals of 25 adults with mild to severe sleep apnea. Five basic statistical

measures were extracted from the wavelet coefficients in each epoch (min, max,

mean, standard deviation, median) and used as statistical features in the CVANN

classifier. A 10-fold cross validation was employed and Peker (2016b) reported a

mean classification accuracy of 95.42% for AASM standards and 93.84% for R&K
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standards.

More recently, Supratak, Dong, Wu, and Guo (2017, Abstract) presented a

model that used a combination of "convolutional neural network (CNN) to extract

time invariant features and bidirectional-long Short-term memory to learn transition

rules" from the raw EEG data. The study examined 20 recordings of the Sleep-EDF

2013 data set with a 20-fold cross validation. Supratak et al. (2017) reported a mean

accuracy of 82% and κ = 0.76 for AASM state classification.

The study by Mousavi, Afghah, and Acharya (2019, Abstract) used "deep CNNs

to extract time-invariant features, frequency information, and a sequence to se-

quence model to capture the complex and long short-term context dependencies

between sleep epochs and scores". This study used two single EEG signals (Fpz-Cz

and PzOz) from the Sleep-EDF 2013 and Sleep-EDF 2018 data sets. The analysis

employed a 20-fold cross validation for the Sleep-EDF 2013 and 10-fold cross val-

idation for the Sleep-EDF 2018 data set. For the Sleep-EDF 2013 data, Mousavi

et al. (2019) reported 84.26% accuracy and κ = 0.79 for the Fpz-Cz channel and

82.83% accuracy and κ = 0.77 for the Pz-Oz channel. For classification perfor-

mance on Sleep-EDF 2018 data Mousavi et al. (2019) reported 80.03% accuracy

and κ = 0.73 for the Fpz-Cz channel and 77.56% accuracy and κ = 0.69 for the

Pz-Oz channel.

2.3 Hidden Markov Models

2.3.1 A Brief History

The hidden Markov model (HMM) was first developed during the years 1966-1969

by Leonard Baum and his colleague, Ted Petrie, at the Institute for Defense Anal-

ysis. At the end of the 1960s, Baum and his colleague, Lloyd Welch, developed

the Baum-Welch algorithm (Baum, Petrie, Soules, & Weiss, 1970) for estimating

the unknown parameters of HMM. "A computationally efficient iterative procedure

for maximum likelihood estimation of parameters for a HMM using the forward-
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backward algorithm recursions within the Expectation-Maximization algorithm"

(Ephraim & Merhave, 2002, pp. 1519-1520). Specifically, the Baum-Welch al-

gorithm is the variation of the Expectation-Maximization algorithm specific to the

HMM. However, it is worth noting that the work by Baum et al. (1970) was an

important precursor to the work by Dempster, Laird, and Rubin (1977), who were

the first to fully define the Expectation-Maximization algorithm in a general setting

and provide proofs for its properties.

In the early 1980s, "HMMs were used for automatic speech recognition in stud-

ies conducted at the Institute for Defense Analysis and by another group at AT&T

Bell Laboratories" (Ephraim & Merhave, 2002, p. 1520). Rabiner (1989) provided

a wonderful tutorial of HMMs and their application to speech recognition, which

provided a solid foundation for the automatic continuous speech recognition seen

today. Once the studies that used HMMs for automatic speech recognition were

published in academic journals read by engineers, not just pure mathematicians,

researchers from many disciplines started to use HMMs to model real world phe-

nomena. Since the 1990s, HMMs were further developed and today HMMs are

employed in many applications that include, but are not limited to, computational

finance, cryptanalysis, EEG analysis, speech synthesis, gene prediction, time series

analysis, transportation forecasting, and ecological survival.

2.3.2 Hidden Markov Models and Sleep

The earliest work using HMM in sleep state classification and understanding of

human sleep was done by Zung, Naylor, Gianturco, and Wilson (1966). The use of

HMMs describing human sleep was further explored by Yang and Hursch (1973)

and again by Kemp and A. C. Kamphuisen (1986). Around a decade later, Penny

and Roberts (1999) developed the framework of Gaussian observation HMM for

EEG analysis. They used synthetic EEG data to show "HMMs can detect changes

in [Direct Current] levels, correlation, frequency and coherence that are typical of

the non-stationarities in an EEG signal" (Penny & Roberts, 1999, Abstract).
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Flexer, Dorffner, Sykacekand, and Rezek (2002) further investigated the Gaus-

sian observation HMM in the sleep state classification setting. This was done using

a single EEG channel in 9 adult PSG recordings from five different European sleep

laboratories, "[the goal was] not to replicate R&K scoring but to find a new de-

scription of human sleep which is based on the comparably unambiguous ‘extreme’

cornerstones of traditional sleep staging. Since R&K sleep staging is based on a

predefined set of rules which leave much room for subjective interpretation there

can be considerable disagreement between human scorers analyzing the same sleep

recording" (Flexer et al., 2002, pp. 3-4). Flexer, Gruber, and Dorffner (2005) con-

sidered the same Gaussian observation HMM as Flexer et al. (2002), but used data

sets from two different sleep laboratories. The first data set consisted of 40 healthy

adult PSG recordings and the second consisted of 28 healthy adult PSG recordings.

The data sets were both split evenly into testing and training data sets, as well as

being balanced for age and gender. The overall classification accuracy with respect

to R&K sleep scores was 54% for the first data set and 42.33% for the second data

set. The most recent study found that uses the GOHMM, was Längkvist, Karlsson,

and Loutfi (2012). This study examines the same Physionet data set as (Acharya

et al., 2010). "Subjects were randomly selected over a 6-month period (Septem-

ber 02 to February 03) from patients referred to the Sleep Disorders Clinic at St

Vincent’s University Hospital, Dublin, for possible diagnosis of obstructive sleep

apnea, central sleep apnea or primary snoring. Subjects had to be above 18 years of

age, with no known cardiac disease, autonomic dysfunction, and not on medication

known to interfere with heart rate. Twenty-five subjects (21M, 4F) were selected

(age: 50± 10 years, range 28− 68 years; BMI: 31.6± 4.0 kg
m2 , range 25.1− 42.5

kg
m2 ; AHI: 24.1± 20.3, range 1.7− 90.9)" (Goldberger et al., 2000). Längkvist et

al. (2012, p. 4) considered epochs of 1s instead of 30s and "[each] epoch before

and after a sleep stage switch is removed from the training set to avoid possible

subsections of mislabeled data within one epoch. This resulted in 20.7% of total

training samples to be removed". 28 hand crafted features were extracted from

the epochs, and used in three models. This first model (feat-GOHMM)performs
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a feature selection, then transforms the data with a principal component analysis,

followed by a GMM and lastly a HMM for classification of sleep states. The sec-

ond (feat-DBN) and third (raw-DBN) models use Deep Belief Networks trained

using all features for the second model and the raw data for the third model. They

performed a LOPOCV approach for each of the three models where approximately

250,000 epochs were chosen randomly from 24 patients PSGs to train the models,

then 50,000 epochs from the last patient were used as the testing data. Längkvist

et al. (2012) report accuracies of 63.9%±10.8, 72.2%±9.7, and 67.4%±12.9 for

their models.

The discretization of observations methods for HMM have been implemented

by G Doroshenkov, Konyshev, and Selishchev (2007, p. 27), who used a clustering

algorithm to "isolate a group of uniform elements equal to the number of states.

The centers of the clusters are used as observation centers". The performance of the

HMM had a mean state accuracy of 61.08% with respect to R&K standards. Pan,

Kuo, Zeng, and Liang (2012) used a discrete-HMM and enforced certain constraints

on the transition probabilities from one sleep state to another. Pan et al. (2012) used

PSG recordings from 20 healthy adults scored with AASM standards. Subjects

were evenly sorted into testing and training data sets. The enforced constraints re-

duced the number of estimated model parameters and performed relatively well.

They reported subject-wise accuracies between 77.09% and 92.62% and κ values

between 0.64 and 0.78. Another discretization of observations approach was ex-

plored by Chen, Zhu, and Chen (2015) that used vector quantization to discretize

all numerical features, thus partitioning the original feature space into discrete code-

words. Chen et al. (2015) considered various sizes of libraries, of codewords for

the analysis with their HMM. Classification was done in a LOPOCV setting with

respect to four states: wake, deep sleep, light sleep and REM. The study by Chen et

al. (2015) used the ECG recordings of 15 healthy adults subjects (7 male, 8 female)

from the CAP data set (Goldberger et al., 2000) and reported a mean classification

accuracy of 79.85%±6.31.

Yaghouby, Modur, and Sunderam (2014) explored the comparison of the HMM,
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with the Gaussian mixture model, the K-means classifier, and linkage trees for sleep

state classification and used the same 15 ECG recordings from the CAP data set as

Chen et al. (2015). κ statistics were used to compare the classifier performances.

Yaghouby et al. (2014) reported K-means, linkage trees, and Gaussian mixture

model all had median patient κ’s between 0.5 and 0.6 agreement with AASM stan-

dards. The HMM outperformed the other three classifiers with a median κ = 0.70.

The studies by Yaghouby et al. (2014) and Chen et al. (2015) provide evidence for

accurate sleep state classification without the use of EEG features.

2.4 Non-Homogeneous Hidden Markov Models

2.4.1 A Brief History of Applications

One of the first natural extensions of HMM is allowing the transition probabilities

to vary with time or be dependent on extraneous covariates. In this setting, the tran-

sition probabilities are non-homogeneous. See chapter 10 of Zucchini, MacDonald,

and Langrock (2016), for information about the incorporation of time varying and

extraneous covariates into an HMM.

The Non-Homogeneous Hidden Markov Model (NHMM) was first explored by

Hughes, Guttorp, and Charles (1999) to study hydrology. Hughes et al. (1999, p. 17)

"[modelled] a 15-year record (1978-1992) of daily winter rainfall occurrences (2760

days, total) at 30 stations in south-western Australia". The model was able to accu-

rately reproduce the last five years of statistical rainfall information with little bias.

Ocañ-Riola (2005) used a NHMM to model breast cancer data of 24 women. A

three state model was proposed: symptoms, no symptoms, and death (an absorbing

state). The primary focus of the research was estimation of state transition prob-

abilities. They found that "the probability that a patient who was with symptoms

[half way through treatment] shall be without symptoms one year later is 0.80. Only

10% of women who are without symptoms one year after the diagnosis will be dead

five years later" (Ocañ-Riola, 2005, p. 373). Lagona, Maruotti, and Picone (2011)
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examined multi-pollutant exceedance, a multivariate time series measuring hourly

levels of air pollutants at six weather stations in Rome, Italy, in 2009. The study

estimated NHMMs with varying number of states. The estimated 3-state NHMM

was the best at clustering days "according to their maximum posterior probabilities

of class membership" (Lagona et al., 2011, p. 215). Another environmental study

using NHMMs, by Ailliot, Bessac, Monbet, and Pène (2015), examined a bi-variate

wind time series for the month of January off the French Atlantic coast from 1958

to 2001. Ailliot et al. (2015, Abstract) found that their proposed NHMM could

"reproduce complex features of wind time series such as non-linear dynamics and

multimodal marginal distributions". These studies provide evidence that NHMMs

have success modelling real world phenomena in different research areas, opening

the door for their use in modelling sleep data.

2.4.2 Non-Homogeneous Hidden Markov Models and Sleep

A closer examination of Figure 1.B shows an important, yet subtle characteristic of

sleep. As a person’s sleep progresses, the proportions of NREM and REM in each

sleep cycle change. In the beginning of the night NREM sleep dominates the sleep

cycle, but as sleep progresses, the proportion of NREM decreases in favor of more

REM sleep towards the end of the night. This change in the proportions REM and

NREM sleep states might affect the sleep state transition probabilities as the night

progresses. A person is less likely to transition to a NREM state at the end of the

night as compared to the beginning. Thus, the sleep state transition probabilities

may be non-homogeneous with respect to time.

According to AASM standards for scoring NREM 2, experts are recommended

to "continue to score epochs with low-amplitude, mixed-frequency EEG activity

without K complexes or sleep spindles as stage [NREM 2] if they are preceded by

epochs containing [either] of the following: [1]. K complexes unassociated with

arousals, [2]. Sleep spindles" (Iber et al., 2007, p. 23). Sleep experts are trained

to use information from the previous epoch to score the current one. Therefore, it
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makes sense to incorporate statistical information from a previous epoch or epochs

to model the time-varying sleep state transition probabilities.

A NHMM that used statistical information from the previous epoch has been

applied in a previous sleep EEG study of five Zebra finch birds by Xu (2005). The

model assumed multivariate Gaussian distributions for the state dependent distribu-

tions. The transition probabilities were modelled with a multinomial logistic link

function that used the current observation to model the next state transition. Four

frequency domain features were extracted from each epoch and used as observa-

tions. Xu (2005) used 1200 consecutive epochs from the fourth bird as training data

and 1000 consecutive epochs from the fifth bird as test data. All epochs in these

data sets were scored as REM or NREM by a sleep expert. Using classification ac-

curacy of the test data, Xu (2005) compared the performance of a Gaussian mixture

model, HMM, and NHMM. Xu (2005) found the HMM achieved the highest accu-

racy of 81.0%, the Gaussian mixture the lowest at 73.7%, and the NHMM achieved

78.60% accuracy, which suggests that classifiers that model a dependence structure

for the sleep states may also perform better for human sleep state classification.

The study by Trevenen, Turlach, Eastwood, Straker, and Murray (2019) used

first and second order Gaussian observation HMM and NHMM on raw accelerom-

eter data to classify sleep states for 242 healthy adult subjects. Epochs were scored

into sleep states by an expert using separate PSG information for classification pur-

poses. The raw 3-dimension accelerometer data for each subject was segmented

into epochs. A total of nine measures were collected from each accelerometer

epoch as features. A baseline comparison of continuous Gaussian observation

HMM and NHMM was done against the generalized linear mixed model, which,

unlike the Gaussian mixture, can model a dependence structure between observa-

tions by adding random effects. However, the generalized linear mixed model does

not model the dependence structure between the sleep states.

The NHMMs of Trevenen et al. (2019) were much simpler than that of Xu

(2005). The collection of epochs for each patient were divided into two and three

segments with each segment pertaining to one section of the night. A HMM (of or-
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der 2) is estimated separately for each segment of the night. In this setting, transition

probabilities were not modelled using previous observations via a link function.

A 10-fold (subject wise) cross validation was used to evaluate the classifica-

tion performance. In the 5-state classification Trevenen et al. (2019) reported the

second order NHMM performed the best overall. The median accuracy (Inter-

Quartile Range) of each state for the second order NHMM was reported: Wake

0.61(0.281), NREM 1 0.100(0.087), NREM 2 0.522(.460), NREM 3 0.638(.658)

and REM 0.064(0.367) Trevenen et al. (2019).
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Chapter 3

Methodology

3.1 Random Forest

The random forests methodology of Ho (1995, 1998) is a popular ensemble learn-

ing method for classification and regression. A multitude of decision trees is con-

structed during training and the output is the class label that is the mode, or the

lowest mean square error in regression. Decision trees are constructed using a ran-

dom number of features or covariates and bootstrap samples of the training data.

The randomness of features selected helps to ensure the collection of trees con-

structed does not overfit the training data, even if individual trees have the habit of

doing so. The bootstrap aggregation (bagging) method was introduced by Breiman

(2001), where the remaining training data not selected to construct each tree is

called the out-of-bag portion. The classification error of the out-of-bag portion, or

mean square error for regression, is used to validate the performance of the con-

structed tree. Using random bootstrap samples to construct each tree means that

even if a single tree overfits the sample, the collection of trees will not overfit the

entire training data.

Random forest methodology was used in this work for two purposes: to com-

pare the classification classification performance with the literature Fraiwan et al.

27



(2012), Boostani et al. (2017), and da Silveira et al. (2017). As well as for selecting

the features to create a final data set to be used in the HMM and NHMM analysis.

3.1.1 Comparison with Literature

The random forests implemented in Fraiwan et al. (2012) and da Silveira et al.

(2017) were recreated in this work using the R library randomForest (Liaw &

Wiener, 2002) and then used to compare classification performance of the CF00N

data with the respective literature. This random forest design took different boot-

strap samples of the training data to construct each single decision tree. The process

was repeated, constructing forests of 10, 64, and 128 trees. The graphical structure

for the construction used is seen in Figure 3.A.

Figure 3.A: Random forest structure of Fraiwan et al. (2012). da Silveira et al. (2017) uses the same structure, but increases
the tree number from 10 to 64. Image taken from Fraiwan et al. (2012)

Fraiwan et al. (2012) examined a single EEG channel of 16 PSG recordings

from the Sleep EDF 2002 data set and then extracted the Renyi entropy of contin-

uous wavelet coefficients in seven sequential frequency bands. They constructed

a random forest of 10 trees using (2/3) training and (1/3) testing split on the data.

da Silveira et al. (2017) examined a single EEG channel from the Sleep EDF Ex-

panded data set and extracted statistical moments (variance, skewness, kurtosis)

of the discrete wavelet coefficients in six sequential frequency bands. They con-

structed a forest with 64 trees and used 10-fold cross validation to examine classifi-

cation performance. Furthermore, they also used the same training and testing split
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as Fraiwan et al. (2012) for comparative purposes. See Chapter 4 for further details

on these feature sets.

This thesis extended the cross validation of the random forest analysis one step

further by examining a classification performance using a LOPOCV approach. This

was done to ensure the testing and training data did not contain epochs from the

same patients, as this can inflate the classification accuracy. The purpose of this ex-

tension was to examine the performance of random forest sleep state classification

in a clinical setting.

3.1.2 Feature Selection Tool

The randomForest (Liaw & Wiener, 2002) library allows for nested calcula-

tions of cross validation error across the number of randomly selected variables

used to build trees, which essentially allows researchers to find the optimal number

of random features, r, used to construct a random forest that produces the smallest

classification error. Then, using this r, another random forest of the data was con-

structed to extract the importance measures of each variable in order to find which

features are to be selected. Since the classification performance will be extended

to a LOPOCV, the feature selection strategy stated above was used on a combined

version of each patient’s epoch features to ensure that the variables selected were

appropriate for classifying the epochs of individual patients.

Statistical features from all feature sets were combined into a single data frame

for each patient. A 10-fold cross validation scheme was employed to analyze the

number of ideal features needed for the individual patients. Random forests of

10,000 trees were grown for every possible value of r and the cross validation error

of each forest calculated. This process was repeated for every patient to assess the

cross validation error across all values of r for all patients. The main criteria for

determining r was the minimum cross validation error for all patients. Once r was

found, a single forest of 10,000 trees was grown for each patient’s data that used r

randomly selected variables to build each tree. The variable importance measures
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from each patient’s random forest were extracted and then used to find at least r

features which best discriminated between the sleep states for all patients.

3.2 Hidden Markov Model

The HMM structure, notation, and properties used for the analysis are closely

adopted from Zucchini et al. (2016). The proofs of theorems and properties pre-

sented can be found in Zucchini et al. (2016) with the heavier details included in

Appendix B. As well, Sucar (2015) and the tutorial by Rabiner (1989) are recom-

mended for supplementary source material. The programming of the HMM algo-

rithms for evaluation, decoding, and parameter estimation are implemented in the

R library depmixS4 (Visser & Speekenbrink, 2010). This library is well equipped

to evaluate, decode, and estimate HMM parameters, while simultaneously allowing

for extensions to the basic HMM that are applied in this work. However, the meth-

ods described here-in will be those of Zucchini et al. (2016) in order to build a solid

foundation of HMM notation and concepts. The parameter estimation employed in

depmixS4 will be described in the NHMM section of this chapter.

3.2.1 HMM Model, Parameters and Properties

C1 C2 · · · Ct · · · CT

x1 x2 · · · xt · · · xT

Γ Γ Γ Γ Γ

P P P P

Figure 3.B: The directed graph of the hidden Markov model. At each time t the chain emits an observation xt from the current
unobserved state Ct . This forms two time series C(T ) and x(T ) whose relationship is governed through Γ and P. A Markov
chain is used to model Γ and Gaussian probability density functions to model P.
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The Gaussian Observation HMM Sleep Model

Let T = the number of observations and the state space S={Wake, NREM 1, NREM

2, NREM 3, REM}. For the purpose of summation notation and without loss of

generality, the number of states in S is defined as m. The hidden sleep state sequence

of the epochs is denoted C(T ) = C1, . . . ,CT ∈ S. The extracted statistical features of

each epoch are the emitted observations x(T ) = (x1, . . . ,xT ), where xt is the tth

observation. The multivariate domain of the emitted observations is Rd , where d is

the number of features for each epoch.

Parameters

γi j = Pr(Ct+1 = j|Ct = i) is the probability of the system (patient) transitioning from

state i at time t to state j at time t +1, for all i, j ∈ S. The m×m transition matrix Γ

= [γi j] is the collection of all possible combinations of i, j transitions.

pt j = Pr(Xt = xt |Ct = j), t ∈ {1, ...,T}, j ∈ S are defined as the emission prob-

abilities. The probability of observing xt at time t when Ct = j. The multivariate

Gaussian distribution was used to model the observations emitted from the sleep

states. The observations emitted from state j are dependent on the state parameters

(µ j, Σ j), and Pr(Xt = xt |Ct = j) = φ(xt |µ j,Σ j), where

φ(xt |µ j,Σ j) = ((2π)d|Σ j|)−
1
2 exp{−1

2
(xt−µ j)

′
Σ
−1
j (xt−µ j)}

P = [pt j] is defined as the T ×m matrix of emmission probablities. The initial

distribution u(1) = [Pr(C1 = 1),Pr(C1 = 2), . . . ,Pr(C1 = m)] is the row vector of

unconditional probabilities for the chain starting in each state. In a compact form

the HMM is represented as H=(u(1), Γ, P).
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Properties

Markov Property: The transition to the next sleep state in the sequence is dependent

only on the current sleep state.

Pr(Ct = j|Ct−1 = i,Ct−2 = k...) = Pr(Ct = j|Ct−1 = i) for i, j, k ∈ S

In general, HMMs have three additional properties that can be relaxed or modi-

fied to create variations of HMMs that model complex phenomena. Zucchini et al.

(2016) (Chapter 10) give a nice catalogue of the basic extensions, along with other

variations used for real world applications.

Time-homogeneous:

Pr(Ct = j|Ct−1 = i) = Pr(Ct+l = j|Ct+l−1 = i)

Stationarity: For a HMM to be considered stationary, the unconditional probabili-

ties are the same for ∀ t, u(1) = . . . =u(t) = . . . u(T ) = δ , which means the probability

of being in any state is the same for all t. This property is not assumed for sleep

states, due to changing proportions of REM and NREM in different sleep cycles.

Independence of the observations:

Pr(Xt = xt |Ct = j,C(t−1) = c(t−1),X(T−1) = x(t−1)) = Pr(Xt = xt |Ct = j)

The observations only depend on the current state, not the previous states or obser-

vations.

3.2.2 Joint Probability of States and Observations

The joint probability of states and observations of the graphical model for the HMM

is found by using the chain rule for Bayesian networks. The joint distribution of

a set of random variables X1, . . . ,XN represented in a Bayesian network graph is
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Pr(X1, . . . ,XN) = ∏
N
i=1 Pr(Xi|pa(Xi)) where pa(Xi) is the set of all parents of Xi.

In the HMM directed graphical model, Figure 3.B, C1 has no parent, Ct has

parent Ct−1 for t = 2,..., T , and Xt has parent Ct . Hence, the joint probability for the

HMM is given by

Pr(C(T ),X(T )) = Pr(C1)Pr(X1|Pa(X1))...Pr(CT |Pa(Ct))Pr(XT |Pa(XT ))

= Pr(C1)Pr(X1|C1)...Pr(CT |CT−1)Pr(XT |CT )

= Pr(C1)Pr(X1|C1)
T

∏
t=2

Pr(Ct |Ct−1)Pr(Xt |Ct)

The form of the individual distributions of u(1), Γ, and P are not as important

as the fact that the joint probability factors in a way that is represented by Figure

3.B. Marginalizing the joint probability of states and observations is done to find

the joint probability of the observations. This factorization of the joint probability

function is what makes HMMs a natural fit for modelling sequences of sleep states.

3.2.3 HMM Likelihood

Given a sequence of observations x(T ) emitted from H=(u(1), Γ, P), estimating

the probability of observing the sequence, LT = Pr(X(T ) = x(T )), is done by cal-

culating the value of the likelihood. To calculate LT one needs to marginalize

Pr(C(T ) = c(T ),X(T ) = x(T )) by summing over all possible state sequences. Repre-

sentation of this calculation by Zucchini et al. (2016) requires LT to be a product of

matrices. First, define P(xt) as the diagonal matrix whose entries are the tth row of

P, evaluated for xt .

P(xt) =


Pr(Xt = xt |Ct = 1) 0

Pr(Xt = xt |Ct = 2)

. . .

0 Pr(Xt = xt |Ct = m)


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Then,

LT = Pr(X(T ) = x(T )) = u(1)P(x1)ΓP(x2)ΓP(x3) · · ·ΓP(xT )1′

The brute force calculation of LT across all possible state sequence combina-

tions is of the order mT , which, even with a computer, is not feasible for large values

of T . The Forward algorithm or what is sometimes called the Forward-Backward

algorithm, is the recursive solution used to calculate the likelihood.

3.2.4 Forward and Backward Probabilities

Forward Probabilities

To understand how the Forward algorithm works, one must first define the 1×m

row vectors of forward probabilities and the m× 1 column vectors of backward

probabilities. Zucchini et al. (2016) define the row vectors αt , t = 1, . . . ,T , where

αt( j) = Pr(X(t) = x(t),Ct = j) is the joint probability of a partial sequence of ob-

servations X(t) = x(t) being in state j at time t.

Begin with

αt = u(1)P(x1)ΓP(x2)ΓP(x3) · · ·ΓP(xt)

= u(1)P(x1)
t

∏
k=2

ΓP(xk), where

α1 = u(1)P(x1) with αt = αt−1ΓP(xt), for t = 2, . . . ,T

This results in the row vector

αt = Pr(X(t) = x(t),Ct), and αt( j) = Pr(X(t) = x(t),Ct = j)

Backward Probabilities

In an analogous way that defined the forward probabilities, Zucchini et al. (2016)

define the m× 1 column vectors of backward probabilities. As the name implies,
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calculating these probabilities starts at t = T and works backwards to t = 1.

Formally,

β
′
t = ΓP(xt+1)ΓP(xt+2) · · ·ΓP(xT )1′

=

(
T

∏
k=t+1

ΓP(xk)

)
1′ = ΓP(xt+1)β

′
t+1 for t = 1, . . . ,T −1

This results in the row vector

β
′
t = Pr(XT

t+1 = xT
t+1|Ct) and β

′
t ( j) = Pr(XT

t+1 = xT
t+1|Ct = j)

where xT
t+1 = (xt+1,xt+2, . . . ,xT ).

The Forward algorithm inductively uses the αt’s moving forward from t = 1

to t = T to recursively calculate the likelihood. The Forward algorithm by Sucar

(2015) using this dynamic is given on the following page. This recursion reduces

the order of calculations from mT to T m2. The backward probabilities can be used

in a similar fashion to calculate the likelihood of observations in a single backward

pass through the data. However, there are actually T paths that can be used to

make this calculation, which is achieved by using the Property 1 of the forward

and backward probabilities, given in the next section.
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The Forward Algorithm of Sucar (2015, p. 71)

Given a HMM, H = (u(1),Γ,P), and X(T ) = x(T )

Initialization, for j = 1 to m compute

α1( j) = Pr(X1 = x1,C1 = j) = u j(1)p1 j

for t = 2 to T

for j = 1 to m compute

αt( j) =

[
m

∑
i=1

αt−1(i)γi j

]
pt j

compute LT = ∑
m
j=1 αT ( j)

return(LT )

3.2.5 Properties of Forward and Backward Probabilities

Property 1: Proposition 4 of Zucchini et al. (2016) For t = 1, . . . ,T and i =

1, . . . ,m

αt(i)βt(i) = Pr(X(T ) = x(T ),Ct = i)

and αtβ
′
t = Pr(X(T ) = x(T )) = LT

Recall that αt is 1×m and βt is m× 1, which means that their dot product Lt is

1×1

Property 2: Part 1 of Proposition 5 of Zucchini et al. (2016) For t = 1, . . . ,T

αt( j)βt( j)
LT

= Pr(Ct = j|X(T ) = x(T ))
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Property 3: Part 2 of Proposition 5 of Zucchini et al. (2016) For t = 2, . . . ,T

αt−1(i)γi j pt jβt( j)
LT

= Pr(Ct−1 = i,Ct = j|X(T ) = x(T ))

The last two properties allow for calculation of the marginal and joint conditional

probabilities of sleep states, given the observations. These probabilities are then

used for decoding the most probable sequence of sleep states. Put more formally,

a clustering each of the patient’s epochs into distinct states that maximizes the log-

likelihood of observations.

3.2.6 Decoding the Hidden States

In local decoding, the goal is to find the most probable sleep state at time t, given

the observations. This is done using Property 2 by calculating the conditional

probabilities of each Ct , given the observations. Ct is then assigned to the sleep

state with the largest probability.

ct = argmax
j∈S

Pr(Ct = j|X(T ) = x(T ))

This can be done for all Ct individually and the solutions, c1, . . . ,cT , combined into

a sequence of sleep states. However, this solution does not account for transition

probabilities between sleep states, as the maximum probability is considered for

each t independently.

Global decoding, on the other hand, does account for the transition probabilities.

The goal is to find the maximum a-posteriori (MAP) of all states, in order to obtain

the most probable sequence of sleep states, given the observations. Zucchini et al.

(2016) defined c∗(T ) to accomplish this task, where

c∗(T ) = argmax
c(T )

Pr(C(T ) = c(T )|X(T ) = x(T ))
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Instead of maximizing the conditional probability of sleep states given observations,

Pr(C(T ) = c(T )|X(T ) = x(T )), the joint probability, Pr(C(T ) = c(T ),X(T ) = x(T )), is

maximized. Maximization of the joint probability yields the solution c∗(T ), which

also maximizes the conditional probability. However, "maximizing [the joint prob-

ability] over all possible state sequences c1,c2, . . . ,ct by brute force requires the

evaluation mT probabilities" (Zucchini et al., 2016, p. 89). The Viterbi algorithm

(Viterbi, 1967; Forney, 1973) is used to reduce the computational order.

The Viterbi Algorithm

To begin, Zucchini et al. (2016) define for t = 1

ξ1 j = Pr(C1 = j,X1 = x1) = u j(1)p1 j

and, for t = 2,3, . . . ,T ,

ξt j = max
c1,...,ct−1

Pr(C(t−1) = c(t−1),Ct = j,X(t) = x(t))

Where ξt is the 1×m vector of maximum probabilities for a sub-sequence of sleep

states and observations, up to time t. Fortunately, like the forward and backward

probabilities, the ξt j has a recursive solution. For t = 2,3, . . . ,T and j = 1, . . . ,m∈ S

ξt j =

(
max

i
(ξt−1,i · γi j)

)
pt j

Decoding the global solution involves inductively working backwards and starts

with c∗T , the state which maximizes

Pr(C(T−1) = c(T−1),CT = c∗T ,X
(T ) = x(T ))

Using c∗T , to find the state c∗T−1 that maximizes the joint probability of the most

probable sequence of states and observations up to time T −1, while accounting for

38



the transition to state c∗T from state c∗T−1 at time T , is found via the recursion.

Pr(C(T−2) = c(T−2),CT−1 = c∗T−1,X
(T−1) = x(T−1))×Pr(CT = c∗T |CT−1 = c∗T−1)

Continue in this backwards fashion for t = T − 2, . . . ,1 and the end result is the

most probable sequence of sleep states c∗(T ). When executing this procedure in a

programming language, (Sucar, 2015, p. 73) recommends "[introducing] an addi-

tional variable [ψt, j], that stores for each state j at each time step t the previous state

that gave the maximum probability ξt j." The Viterbi algorithm of Sucar (2015) is

given below.

The Viterbi Algorithm: Algorithm 5.2, (Sucar, 2015, p. 71)

MAP(Maximum a-posteriori) = empty vector of length T

Initialization, for i = 1 to m

compute ξ1i = ui(1) · p1i and set ψ1i = 0

for t = 2 to T for j = 1 to m

ξt j =

(
max

i
(ξt−1,i · γi j)

)
pt j and ψt j = argmax

i
(ξt−1,i · γi j)

MAP[T ] = argmax
i

(ξT−1,i · γi j)

for t = T to 2

c∗t−1 = MAP[t−1] = ψtc∗t

return(MAP), where MAP =[c∗1,c
∗
2, . . . ,c

∗
T] =c∗(T )
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3.2.7 Estimation of HMM Parameters

The most common approach to parameter estimation for HMMs is the Expectation-

Maximization (EM) algorithm. The Baum-Welch algorithm (Baum et al., 1970) is

the EM algorithm for HMMs, and the Baum-Welch algorithm described in this work

is that of Zucchini et al. (2016). The name "Expectation-Maximization" comes

from the fact that every iteration in the algorithm has an expectation step (E-step)

followed by a maximization step (M-step). The algorithm begins with an initial

estimate of the model parameters for the complete data (observations and missing

data) log-likelihood function. Then it computes the (E-step) conditional expecta-

tion of the log-likelihood, given the observations, and then maximizes (M-step) the

conditional log-likelihood with respect to model parameters. The parameter val-

ues obtained are used as the estimates in the next iteration, which are updated until

some convergence criteria is met or the number of iterations is exhausted. The

maximum number of iterations to fit a HMM used in this work was 500 and the

convergence criteria for the EM algorithm was the "relative" log-likelihood defined

by Visser and Speekenbrink (2010). The log-likelihood at iteration i is log(LTi) and

the convergence criteria is ε . The EM algorithm stops when

log(LTi)− log(LTi−1)

log(LTi−1)
< ε

For a given HMM, θ = {u(1),Γ,µ,Σ} is the set of model parameters to be esti-

mated. u(1) and Γ are the 1×m and m×m initial state and transition probabilities.

The multivariate Gaussian parameters of the states are µ the array of d× 1 mean

vectors and Σ the collection of d× d covariance matrices. Specifically, for each

j = 1, . . . ,m the parameters (µ j, Σ j) of the multivariate Gaussian density need to be

estimated, since

pt j = Pr(Xt = xt |Ct = j) = φ(xt |µ j,Σ j)∼ Nd(µ j,Σ j)

In total, there are m + m2 +md + md(d+1)
2 parameters to estimate for the HMM
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with m states and d-dimensional Gaussian state dependent distributions. A draw

back of the EM algorithm is if the likelihood function has more than one local

maximum, then the EM algorithm may not find the globally maximum solution for

the estimated parameters and, consequently, the MAP sequence of sleep states. "In

practice, it is common to start EM from multiple random initial guesses, and choose

the one with the largest likelihood as the final guess for model parameters" (Gupta

& Chen, 2011, p. 228). This approach was used to find the best global decoding of

each patient’s sleep states.

Baum-Welch Algorithm of Zucchini et al. (2016)

To begin the parameter estimation, Zucchini et al. (2016) define the complete data

log-likelihood by representing the sequence of states, c(T ), followed by the Markov

chain using indicator variables at each time step.

δ j(t) = 1 if and only if ct = j for t = 1,2, . . . ,T

ω jk(t) = 1 if and only if ct−1 = j and ct = k for t = 2,3, . . . ,T

making the complete data log-likelihood

m

∑
j=1

δ j(1)log(u j(1))+
T

∑
t=2

m

∑
j=1

m

∑
k=1

ω jk(t)log(γ jk)+
m

∑
j=1

T

∑
t=1

δ j(t)log(pt j)

The conditional expectation of this expression, given the observations and current

parameter estimates, is commonly known as the Q-function, Q(θ |θ̂), where θ̂ is

the current parameter estimates. Thus, Q(θ |θ̂) =

EC(T )|x(T ),θ̂

[
m

∑
j=1

δ j(1)log(u j(1))+
T

∑
t=2

m

∑
j=1

m

∑
k=1

ω jk(t)log(γ jk)+
m

∑
j=1

T

∑
t=1

δ j(t)log(pt j)

]

The linearity of the expectation operator and the complete data log-likelihood sim-

plifies the computation of Q(θ |θ̂) by calculating the conditional expectation of each
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term individually. The first term corresponds only with the initial distribution, the

second with the transition probabilities, and the third with the parameters of the

multivariate Gaussian state distributions. A closed form expression for the expecta-

tion of each term is found using properties of the forward and backward probabili-

ties.

EC(T )|x(T ),θ̂ [δ j(t)] = Pr(Ct = j|x(T )) = αt( j)βt( j)
LT

EC(T )|x(T ),θ̂ [ω jk(t)] = Pr(Ct−1 = j,Ct = k|x(T )) =
αt−1( j)γ jk ptkβt(k)

LT

Now replace δ j(t) and ω jk(t) in Q(θ , θ̂) with the conditional expectations, denoted

δ̂ j(t) and ω̂ jk(t). This becomes

Q(θ |θ̂) =
m

∑
j=1

δ̂ j(1)log(u j(1))+
T

∑
t=2

m

∑
j=1

m

∑
k=1

ω̂ jk(t)log(γ jk)+
m

∑
j=1

T

∑
t=1

δ̂ j(t)log(pt j)

Again, the form of the complete log-likelihood allows for maximization of the terms

separately with respect to their model parameters of interest. Maximization of the

first two terms can be done using Lagrange multipliers. For the first term maximize

m

∑
j=1

δ̂ j(1)log(u j(1)) with respect to u(1), subject to the constraint
m

∑
j=1

u j(1) = 1

For the second term maximize

T

∑
t=2

m

∑
j=1

m

∑
k=1

ω̂ jk(t)log(γ jk) with respect to Γ, subject to the constraint
m

∑
k=1

γ jk = 1

yielding the solutions

u j(1) = δ̂ j(1) =
α1( j)β1( j)

LT
and γ̂ jk =

∑
T
t=2 ω̂ jk(t)

∑
m
k=1 ∑

T
t=2 ω̂ jk(t)
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Maximization of the third term is essentially finding the maximum likelihood esti-

mates of the multivariate Gaussian distributions. Maximize

m

∑
j=1

T

∑
t=1

δ̂ j(t)log(pt j) with respect to Σ j and µ j for j = 1, . . . ,m

Fortunately, there is a closed form solution in this setting, yielding the Maximum

likelihood estimates based on state membership.

Σ̂ j =
∑

T
t=1 δ̂ j(t)(xt− µ̂ j)(xt− µ̂ j)

′

∑
T
t=1 δ̂ j(t)

µ̂ j =
∑

T
t=1 δ̂ j(t)xt

∑
T
t=1 δ̂ j(t)

3.2.8 Model Selection

Each patient’s epochs were modelled with an HMM using 500 random starting

points for the parameter estimation and the model with the largest log-likelihood

was chosen. Typically, Akaike information criterion (AIC) or Bayesian information

criterion (BIC) would have been used. However, for each individual patient the

number of parameters and epochs does not change, meaning the model selection

for each patient using AIC or BIC is equivalent to selecting the model with the

largest log-likelihood.

3.3 Non-homogeneous Hidden Markov Model

The graphical representation of the NHMM model initially planned this thesis is

seen in Figure 3.C. This NHMM is similar to the NHMM used by Xu (2005) for

modelling REM and NREM sleep in zebra finches. Multivariate Gaussian distribu-

tions are used for the state dependent distributions and the transition probabilities

are modelled with a multinomial logistic link function. In order to correctly model

Figure 3.C there needs to be Pr(Yt = yt |Xt = xt) incorporated into the joint proba-
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bility of states and observations. The R library depmixS4 (Visser & Speekenbrink,

2010) allows for the inclusion of covariates on the transition probabilities, however,

in the work presented here the covariates were used direct inputs for the state tran-

sitions. The graphical model fitted in this thesis using depmixS4 is Figure 3.D.

That is, the covariates were not modelled as the result of the observations. Fur-

thermore, a transition covariate is required for each state in the sequence. Thus, a

covariate, y0, must be supplied for C1 and there are two choices: y0 = 0, or some

estimation of y0. In this work, y0 = y1 because at the beginning of the PSG record-

ing the patient was in the wake state and the state before C0 was also likely the wake

state, which made setting y0 = y1 the most sensible solution. The observation data

was first scaled to variance 1 and then transformed (or rotated orthogonally) using

principle component analysis (PCA). The current values of the first k components,

which capture 95% or more of the total variation, were used as covariates in the

multinomial logistic regression model (MLR) of each state, not the previous obser-

vation. Note: the observation data is only scaled to variance 1 for the purpose of

performing the PCA. The observations used in the model are the original statistical

features extracted from the epochs.

x(T ) PCA−→ y(T )

The PCA ensured that the components used in the MLR model had low collinearity;

a key assumption of the MLR model. The NHMM model in Figure 3.D differs

from what what was done by Xu (2005), not just in the covariates used to model

transition probabilities, but the work of this thesis used five sleep states instead of

two and models human sleep.
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C1 C2 · · · Ct Ct+1 · · · CT

x1 x2 · · · xt xt+1
· · · xT

y1 y2 yt−1 yt yt+1 yT−1 yT

Λ Λ Λ Λ Λ Λ

µΣ µΣ µΣ µΣ
µΣ

PC
A

PC
A

PC
A

PC
A

PC
A

PC
A

PC
AΛ Λ Λ Λ Λ Λ

Figure 3.C: The directed graphical model of the NHMM, where transitions at time, t, depends on the current state and
principle component vector yt , via, MLR coefficients Λ.

C1 C2 · · · Ct Ct+1 · · · CT

x1 x2 · · · xt xt+1
· · · xT

y1 yt−1y0
yt yT−1

Λ Λ Λ Λ Λ Λ

µΣ µΣ µΣ µΣ
µΣ

Λ Λ Λ
Λ Λ

Figure 3.D: The directed graphical model of the NHMM, where the transition at time, t, depends on the current state and
covariate vector yt , via, MLR coefficients Λ.

3.3.1 Definition of Model Parameters

In a compact form the NHMM is NH =(u(y0), Γ = [1Γ,2Γ, . . . , t−1Γ], P). Where

P is still the T ×m emission matrix defined in the HMM section of this chapter.

Pr(C1|y0) = u(1) is the row vector of initial state probabilities and tΓ is the transi-

tion matrix at time t. Again, the multivariate Gaussian distribution is used to model

the observations in each state, which means Pr(Xt = xt |Ct = j) = φ(xt |µ j,Σ j) with
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µ = (µ1, . . . ,µm) and Σ = (Σ1, . . . ,Σm) being the collections of 1×d mean vectors

and the d×d covariance matrices.

To model the transitions from one sleep state to the others an MLR is fitted for

each state. The collections of MLR coefficients are denoted Λ = [Λ1,Λ2, . . . ,Λm],

where

Λi =


λi01 λi02 · · · λi0m

λi11 λi21 · · · λim1
...

...
...

...

λi1k λi2k · · · λimk


is the matrix of coefficients for transitioning from state i to any state. Where λi0 j

is the intercept of the MLR pertaining to state i transitioning to state j. λi j is the

k× 1 column vector, [λi j1 , . . . ,λi jk ]
′, of coefficients of the MLR for transitioning

from state i to state j. For a given NHMM, θ = {u(y0),Λ = [Λ1,Λ2, . . . ,Λm],µ,Σ}
is the set of parameters. The graphical representation of the transition from state i

that depends on the MLR coefficients of state i is seen in Figure 3.E. The transition

probability from state i to state j, evaluated for yt , is denoted

tγi j = Pr(Ct+1 = j|Ct = i,yt) =
eλi0 j+λ

′
i jyt

∑
m
s=1 eλi0s+λ

′
isyt

Si

S3S2S1 · · · Sm

Λi Λi Λi Λi Λi

Figure 3.E: Graphical model showing the transition from state i to any state depends on the MLR coefficients for state i.

Statistically speaking, the MLR for each state is identifiable if different values

of parameters generate different probability distributions of the observations. In or-
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der to ensure identifiability of the transition probability parameters a base category

must be chosen for the MLR of each state to ensure that the parameters learned for

transitions are distinct. Setting λi01 and λi1 for i ∈ S, equal to zero, makes state 1

the base category in each MLR model.

Λi =


0 λi02 · · · λi0m

0 λi21 · · · λim1
...

...
...

...

0 λi2k · · · λimk


Evaluation of Λi using yt gives the ith row of the transition matrix, at time t.

tΓi =

[
1

∑
m
s=1 eλi0s+λ

′
isyt

, e
λi02

+λ
′
i2yt

∑
m
s=1 eλi0s+λ

′
isyt

, · · · , eλi0m+λ
′
imyt

∑
m
s=1 eλi0s+λ

′
isyt

]

with

tΓ =


tΓ1

tΓ2
...

tΓm

=


tγ11 tγ12 · · · tγ1m

tγ21 tγ22 · · · tγ2m
...

...
...

...

tγm1 tγm2 · · · tγmm


Furthermore, when λi, j = 0, ∀i, j ∈ S, the transition probabilities become

tγi j =
eλi0 j+0yt

∑
m
s=1 eλi0s+0yt

Hence, the multinomial regression no longer depends on yt , meaning the transition

to the next state is no longer dependent on yt and the NHMM is reduced to the

homogeneous model.

tγi j = Pr(Ct+1 = j|Ct = i,yt) = Pr(Ct+1 = j|Ct = i) = γi j
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3.3.2 The Likelihood

The likelihood function for the NHMM is very similar to the basic HMM, but now

the time dependence structure of the transition probabilities must be incorporated

into the joint distribution of hidden states and observations. That is, yT−1
0 must be

accounted for in the the transition probabilities. The covariates are incorporated into

the notation with y(T−1) = yT−1
0 . In the basic HMM setting, the joint distribution

of states and observations is

Pr(C(T ),X(T )) = Pr(C1)Pr(X1|C1)
T

∏
t=2

Pr(Ct |Ct−1)Pr(Xt |Ct)

and the likelihood is

LT = u(1)P(x1)ΓP(x2)ΓP(x3) · · ·ΓP(xT )1′

In the NHMM setting these become

Pr(C(T ),X(T )|y(T−1)) =

Pr(C1|y0)Pr(X1|C1)
T

∏
t=2

Pr(Ct |Ct−1,yt−1)Pr(Xt |Ct)

and the likelihood becomes

LT = Pr(X(T ) = x(T )|y(T−1)) = u(y0)P(x1)1ΓP(x2)2ΓP(x3) · · ·T−1ΓP(xT )1′

3.3.3 NHMM Forward and Backward Probabilities

Analogous to the homogeneous case, the definitions of the forward and backward

probabilities and their recursions are essentially the same for NHMM. However, the

covariates, y(T−1), must be accounted for in the the forward and backward probabil-

ities. The 1×m row vectors of forward probabilities, at time t, denoted αt . Define
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for each t = 1, . . . ,T ,

αt = u(y0)P(x1)1ΓP(x2)2ΓP(x3) · · · t−1ΓP(xt)

= u(y0)P(x1)
t

∏
r=2

r−1ΓP(xr), where

α1 = u(y0)P(x1) with αt = αt−1× t−1ΓP(xt), for t = 2, . . . ,T

This results in

αt = Pr(X(t) = x(t),Ct |y(t−1)), and αt( j) = Pr(X(t) = x(t),Ct = j|y(t−1))

Now, define the m×1 column vectors of backward probabilities for the NHMM

as

β
′
t = tΓP(xt+1)t+1ΓP(xt+2) · · ·T−1ΓP(xT )1′

=

(
T

∏
k=t+1

k−1ΓP(xk)

)
1′ = tΓP(xt+1)β

′
t+1 for t = 1, . . . ,T −1

This results in

β
′
t = Pr(XT

t+1 = xT
t+1|Ct ,yT−1

t ) and β
′
t (i) = Pr(XT

t+1 = xT
t+1|Ct = j,yT−1

t )

3.3.4 Properties of Forward and Backward probabilities

Property 1 For t = 1, . . . ,T and i = 1, . . . ,m

αt(i)βt(i) = Pr(X(T ) = x(T ),Ct = i|y(T−1))

and αtβ
′
t = Pr(X(T ) = x(T )|y(T−1)) = LT
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Property 2 For t = 1, . . . ,T

αt( j)βt( j)
LT

= Pr(Ct = j|X(T ) = x(T ),y(T−1))

Property 3 For t = 2, . . . ,T

αt−1(i)t−1γi jφ(Xt = xt |µ j,Σ j)βt( j)
LT

= Pr(Ct−1 = i,Ct = j|X(T ) = x(T ),y(T−1))

3.3.5 Estimation of NHMM Parameters

The estimation of parameters for an HMM in depmixS4 is typically done "us-

ing the expectation-maximization (EM) algorithm or through the use of a general

Newton-Raphson optimizer" (Visser & Speekenbrink, 2010, p. 4), with the Newton-

Rhapson optimizer being used when there are linear constraints on the model pa-

rameters. This work does not enforce any constraints on parameters. The dynamic

programming of the Forward algorithm and the Viterbi algorithm does not change

from the homogeneous case, as the forward and backward probabilities and their

properties are used in the same way.

Let θ = {u(y0),Λ = [Λ1,Λ2, . . . ,Λm],µ,Σ} denote the set of model parameters

to be estimated, and Q(θ |θ̂) =

EC(T )|x(T ),y(T ),θ̂

[
m

∑
j=1

1δ jlog(u j(y0))+
T

∑
t=2

m

∑
j=1

m

∑
k=1

tω jklog(γ jk)+
m

∑
j=1

T

∑
t=1

tδ jlog(pt j)

]

The estimates for tδ j and tω jk are found in the same way as the homogeneous case,

but now incorporate the transition covariates.

t δ̂ j = EC(T )|x(T ),y(T−1),θ̂ [tδ j] = Pr(Ct = j|X(T ) = x(T ),y(T−1)) =
αt( j)βt( j)

LT

tω̂ jk = EC(T )|x(T )y(T−1),θ̂ [tω jk] = Pr(Ct−1 = j,Ct = k|X(T ) = x(T ),y(T−1))
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=
αt−1( j)tγ jk ptkβt(k)

LT

The maximization of the first two terms of Q(θ |θ̂), however, is performed using a

neural network approach in depmixS4. A neural network approach with m states

in the input and output layers and no hidden layer, as seen in Figure 3.F, is used

to calculate the parameters for u(y0),Λ = [Λ1,Λ2, . . . ,Λm]. This is done using the

R library nnet (Venables & Ripley, 2002). Conveniently, the softmax function

(the MLR) is the transfer function between the input and output layers that cal-

culates the transition probabilities. Thus, when the neural network estimates the

parameters of the softmax transfer function for each node, it is estimating the MLR

coefficients, Λ = [Λ1,Λ2, . . . ,Λm], for modelling the transition probabilities. Fur-

thermore, a neural network approach that employs the softmax function allows for

estimation of "the probability distribution over class labels conditioned on the in-

put" (Bridle, 1990, p. 229). Simply, it can estimate the posterior state probabilities

given the covariates. Specifically, using the MLR in the output layer allows the

neural network to estimate Pr(C1|y0) = u(y0).

S3

S3S2S1 · · · Sm

S2S1 · · · Sm

Figure 3.F: Neural network used to estimate MLR paramters. Only an Input (Top) layer and output layer (Bottom) are used,
no hidden layer

The maximization of the third term of Q(θ |θ̂) finds the maximum likelihood

estimates of the state dependent parameters µ,Σ. This is done by the iteratively

reweighted least squares algorithm, via the glm function. Visser and Speekenbrink
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(2010, p. 5) state that "the expected values [tδ j] are used as prior weights of the

observations". When the covariates are only used to model that transition proba-

bilities, the estimates for µ and Σ are the same as the MLEs for the homogeneous

HMM, since the emitted observation only depends on the current state. In total,

there are m + m(m− 1)(k + 1) + md + m(d2+3d
2 ) parameters to be estimated for

each NHMM. The model selection performed for the HMM was repeated for the

NHMM using 500 random starting points and selecting the model with the largest

log-likelihood.
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Chapter 4

The Data

4.1 The Data

The CF00N data presented in this work comes from a sleep study performed at the

University of Alberta hospital from July 2015 to October 2017. The clinical study

was approved by the Health Research Ethics Board of the University of Alberta

(Pro0057638). There are 75 patient (58 male and 17 female) all night sleep-PSG

recordings with a sampling rate of 512 Hz, along with a corresponding clinician

event file that contains detailed apnea-hypopnea, arousals, and the sleep state labels

of each epoch. Patients underwent an in laboratory PSG sleep study for diagnosis

of obstructive sleep apnea (OSA) severity and treatment. All PSG recording were

scored by the same sleep expert. Patient ages ranged from 2-18 years (41 patients

< 13 years, 34 patients ≥ 13 years) with a mean of 8.81±(4.52) years. For the

purposes of pre-processing and cleaning the data 8 EEG electrodes (2 Frontal, 2

Central, 2 Occipital, 2 Temporal) , 2 EOG (Left, Right), 5 EMG (2 Chin, 2 Legs, 1

Abdomen), and 1 ECG channel were selected from each recording file. Tables 4.1

and 4.2 give the PSG channels information. The mean duration (standard deviation)

of the PSG recordings is 9.02±(0.79) hours, which is approximately 1076 epochs

for each patient, totalling 80,763 epochs for all patients. The proportions of sleep
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states present in the CF00N data can be found in Table 4.3.

Name Placement
F4M1/F3M2 Right/Left Frontal
C4M1/C3M2 Right/Left Central
T6M1/T5M2 Right/Left Temporal
O2M1/O1M2 Right/Left Occipital
Table 4.1: EEG electrodes selected from each patient.

Type Name Placement
EMG EMG21/EMG31 Right/Left Chin
EMG RLEG/LLEG Right/Left Leg
EMG ABD EMG Abdomen
EOG REOG/LEOG Right/Left Eye
ECG ECG Abdomen

Table 4.2: EOG, EMG, and ECG electrodes selected from each patient.

States Wake NREM 1 NREM 2 NREM 3 REM
# Epochs 13,955 2,539 29,049 21,554 13,660
% Epochs 17.3 3.1 36 26.7 16.9

Table 4.3: Proportions of sleep states in the data for all 75 patients.

4.2 Pre-Processing the Data

Each PSG recording file contained the entire recording from when the equipment

was turned on and calibrated until the end of the night when the equipment was

turned off. Preparation of the data for pre-processing began with consulting the

event files. The event files contained the start time for each recorded 30 second

epoch, which allowed for extraction of the start and end times of the sleep state

scored epochs. Epochs that contained bad electrode information from severe power

line interference, bad electrode connection, or power outages were removed. Af-

terwards, a subset of each event file was made that selected only epochs with the

expert scored sleep state. There was one patient CF069 that only had four dis-

tinct sleep states, presented in Table 4.4. After careful consideration, patient CF069
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was included in this study on the basis that the information contained in their PSG

recording was too valuable to not include the patient’s epochs.

States Wake NREM 1 NREM 2 NREM 3 REM
# Epochs 639 35 119 261 0

Table 4.4: The distribution of epochs across sleep state for CF069.

The pre-processing stage began with a forward-backward filtering of the PSG

signals through a digital Butterworth band-pass filter of order 3 in accordance with

the AASM (Iber et al., 2007) electrode band-pass filtering frequencies: EEG (0.3

- 35 Hz), EOG (0.3 - 35 Hz), EMG(10 - 100 Hz), and ECG(0.3 - 70 Hz). The

forward-backward filtering approach was used instead of just the forward approach

to avoid a phase shift in the filtered signal. The filtered PSG data was then seg-

mented into matrices of 30 second epochs. The sampling rate of 512 Hz meant the

there were 15,360 observations recorded for each PSG channel in each epoch. The

first eight columns of each epoch’s PSG data was the four right EEG electrodes

followed by the left four EEG electrodes. The last eight columns were the two

EOG, five EMG, and one ECG electrodes. Once the filtering and segmentation was

completed, the data was ready to be cleaned.

4.3 Cleaning of the Data

The PSG electrodes measure electrical activity of the brain from the surface of the

skin, however, they can also measure electrical activity from other sources. When

this happens the non-neural activity present in the EEG signal is called an artifact.

Artifacts are split into two main types: physiologic and extra-physiologic. Physio-

logical artifacts are caused by other systems in the subject’s body that contaminate

the EEG, such as ECG activity, eye blinks or movement, EMG interference caused

by changing sleeping position, swallowing/clearing of throat, and sweat on surface

of the skin at electrode site, to name a few. The extra-physiologic are caused by

external sources, from the equipment or the environment, such as power line inter-
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ference, bad electrode attachment, external stimuli that causes arousal, or medical

equipment.

4.3.1 Independent Component Analysis for Artifact Removal

EEG Artifact removal itself is an area of active research in computing and diag-

nostic systems. There are many blind source separation approaches for separating

neural activity and non-neural activity present in EEG signals. The simplest, most

common, and highly effective one is the Independent Component Analysis (ICA).

There are several variations of ICA (fastICA, InfoMax, and JADE) that have been

implemented for artifact removal in the eeglab (Delorme & Makeig, 2004) Mat-

Lab plugin and R library ica (Helwig, 2018). The fastICA algorithm of Hyvarinen

(1999); Hyvärinen and Oja (2000) was chosen for artifact removal for its simplic-

ity and computational speed. Implementation of the fastICA algorithm in R was

performed on each filtered epoch, X, instead of the entire PSG recording, in order

to reduce the computation time. Essentially, "[the] fastICA algorithm finds the or-

thogonal rotation matrix R that (approximately) maximizes the negentropy of the

estimated source signals" (Helwig, 2018, p. 5). Where the source signals, s1, . . . ,sC,

are the columns of the source matrix S and S = R′X, with rank(S)≤ rank(X).

4.3.2 Source Signal Selection and Rejection

Despite fastICA’s computational efficiency, one limitation of it is that the number

of source signals is less than or equal to the number of observed signals. Thus, to

maximize separation of neural and non-neural activity in the epochs of the CF00N

data, all 16 selected PSG channels were included in order to maximize the number

of source signals. Incorporating all 8 EEG electrodes helped to isolate the true neu-

ral activity present in all EEG electrodes into a few source signals while removing

noise in others. Furthermore, the non-EEG channels that were already uncorre-

lated with the EEG were separated with ease and most of the variation in the EEG
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caused by the non-EEG artifacts was captured by the source components pertain-

ing to the non-EEG electrodes. The next step was to select source components

that pertained to non-neaural activity and remove them. Automation of this source

signal rejection process has been implemented previously in eeglab (Delorme

& Makeig, 2004) Matlab software plug-ins, FASTER, Fully Automated Statistical

Thresholding for EEG Artifact Rejection (Nolan, Whelan, & Reilly, 2010), AD-

JUST, Automatic EEG Artifact Detection based on the Joint Use of Spatial tempo-

ral Features (Mognon, Jovicich, Bruzzone, & Buiatti, 2010), and SASICA, Semi-

Automatic Selection of Independent Components for Artifact correction in EEG

(Chaumon, Bishop, & Busch, 2015). These algorithms use a wide variety of statis-

tical features from the time, frequency, and time-frequency domains to select source

components from the ICA decomposition as non-neural activity. In this work, all 16

source components were subjected to three rejection criteria. Once a source com-

ponent, si, was selected as non-neural activity, it was removed by replacing the ith

column of S with 0, a column of 0s. Of the total 80,763 epochs, only 2 epochs had

all source signals selected for rejection. Hence, these epochs were rejected and not

included in the analysis.

Criteria 1: Hurst Exponent

The Hurst exponent, named after Harold Edwin Hurst, who developed the method

while studying hydrology of reservoirs (Hurst, 1951; Hurst, Black, & Simaika,

1965), is a measure related to the auto correlation function of a time series. It

measures the long term dependency of a time series by examining the tendency of

the times series to regress to the mean or trend in an extreme direction. According

to Gneiting and Schlather (2004), the Hurst exponent takes values in the range 0 to

1 with values 0-0.5 indicating the time series behaves in a fashion that consecutive

pairs alternate between high and low values (regress to the mean). A Hurst exponent

of 0.5 - 1 indicates that consecutive pairs of observations are succeeded by values

that are increasing in magnitude. Vorobyov and Cichocki (2002, p. 296) reported

57



"the Hurst exponent takes values between 0.70-0.76 for most human phenomena".

Bian, Wang, Cao, and Zhang (2006) used a range of 0.7 - 0.9 to select source signals

that represented neural information. The FASTER and SASICA algorithms employ

the Hurst exponent for detection of source components containing artifacts. In this

work, 10,654 epochs from 10 randomly selected patients of the CF00N data were

analyzed to find appropriate Hurst exponent values for EEG and non-EEG activity.

These ranges of Hurst exponent values were used to select source components that

pertained to neural or non-neural activity. Figure 4.A and Table 4.5 present these

findings.

Figure 4.A: Hurst Exponents for Epochs of 10 patients across PSG channels. A total of 10,654 epochs used to asses Hurst
exponent values for PSG signals.

In terms of selecting source components as neural activity, the range of the box

plots of Hurst exponent values for the EEG electrodes were used, as this range cap-

tures the majority of epochs in the sample. The range was meant to be flexible and

conservative, since a narrower range might remove too many source components
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detected as non-neural activity, which can result in losing substantial amounts of

neural information. On the other hand, too wide of a range will capture more non-

EEG activity, which results in retaining more source components that contain arti-

facts. Specifically, for the CF00N data, source components with a Hurst exponent

less than 0.6 or greater than 0.8 were selected as non-neural activity and removed,

source components with a Hurst exponent below 0.6 were considered indicative of

spontaneous non-neural activity or artifacts originating from the ECG, facial and leg

EMGs, or spontaneous environmental activity during sleep, and source components

with a Hurst exponent greater than 0.80 were considered persistent non-EEG activ-

ity coming from the abdominal EMG, that was caused by shifting in body position

during sleep. However, source components that pertained to EOG or abdominal

EMG activity that had a Hurst exponent in the acceptable range were not removed.

Thus, the above facts leave a need for a second selection criteria to identify the

source components that pertained to EOG and abdominal EMG activity.

Electrode Type Range
EEG 0.6-0.80
ECG 0.35 - 0.65
EOG 0.60-0.85

Face EMG 0.1 - 0.45
Leg EMG 0.25 -0.35

Abdomen EMG 0.75-0.95
Table 4.5: Box plot range of Hurst exponent values of PSG channels.

Criteria 2: Correlation with Non-EEG signals

The second criteria was the source component’s correlation, ρ , with all non-EEG

channels. Correlation with EOG electrodes is used in ADJUST to identify compo-

nents that contain ocular artifacts, which was extended to all non-EEG electrodes

for the CF00N data. Source components that had a |ρ| ≥ 0.6 with non-EEG elec-

trodes were selected for rejection. This simple yet effective criteria helped identify

source components with a Hurst exponent in the range 0.6 - 0.8 that pertained to

non-neural activity from the EOG or abdominal EMG electrodes.
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Criteria 3: Temporal Kurtosis

Lastly, the kurtosis of every component was calculated using

Kurt(X) =
1
N

∑
N
i=1(Xi− X̄)4

(∑N
i=1(Xi− X̄)2)2

−3

where N is size of source component, X, and X̄ is the mean of X. Statistically speak-

ing, this kurtosis is used to measure the tailedness of a probability distribution. The

larger the kurtosis, the slower the exponential decay of the tails, which means that

the distribution is more likely to produce outliers or extreme values. Therefore,

source components that had a relatively larger kurtosis were more likely to have

extreme values that pertained to non-neural activity containing artifacts. Bian et al.

(2006, p. 722) used a "rejection threshold [for kurtosis] in terms of the number of

standard deviation from the mean, e.g. 20%." The kurtosis criteria in this research

used a much stricter rejection threshold to enforce a more conservative selection

process. A source component with a kurtosis value greater than 3 standard devia-

tions (< 2%) from the mean kurtosis value of all source components was selected

for rejection.

4.3.3 Reconstructing the Cleaned EEG Data

Once source components were selected for rejection, the columns of S that per-

tained to those source components were replaced with columns of zeros to form

the new source signal matrix S̃. Recall that the fastICA algorithm finds the ma-

trix of source signals S and the rotation matrix R such that the independence be-

tween source signals is maximized and S = R′X. In order to reconstruct the clean

PSG signals, denoted X̃, replace S by S̃ and multiple on the left side by R−1 to

get X̃ = R−1S̃. The non-EEG channels are reconstructed, but are essentially non-

existent (a flat line, y=0), as these source components were replaced by a column

of 0s. The first 8 columns of X̃ are the artifact free EEG signals and the last 8 being

the non-existent EOG, EMG, and ECG signals. These non-existent signals were
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simply removed and replaced with the original filtered non-EEG signals. See Fig-

ure 4.B for an example of the C4M1 EEG electrode before and after ICA cleaning

presented in this work. Notice the reduction in amplitude of the artifact in the green

boxes and the reduction of noise over the entire epoch.

Figure 4.B: Comparison of C4M1 electrode before and after ICA cleaning.

4.4 Feature Extraction

In this work three sets of PSG features were calculated. The first two sets of EEG

features were that of Fraiwan et al. (2012) and da Silveira et al. (2017), as these fea-

ture sets were found to be quite successful for classification of sleep states. These

two methods decomposed a single EEG channel via wavelet transformations into

the time-frequency domain and extracted statistical measures from the EEG fre-

quency bands listed in Table 4.6. The third feature set was calculated using the

non-EEG channels, as non-EEG information is used by sleep experts to score sleep

states. In total, 40 statistical features were extracted from every epoch.
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4.4.1 The Wavelet Transformation

EEG is considered a non-stationary process, as its statistical moments tend to change

as the patient progresses through sleep cycles, so the time and frequency domain

statistics retrieved can be somewhat limited, but still useful in conjunction with

time-frequency domain statistics. A popular method of time-frequency analysis

used for extraction of statistical information in EEG signals is the wavelet transfor-

mation. There are two main types: continuous (CWT) and discrete (DWT).

The CWT

The CWT is a mathematical tool that provides a complete representation of the time

series x(t) in the time-frequency domain. This is done by convolution of x(t) with

a mother wavelet Ψ(t) to produce W , the matrix of wavelet coefficients. The Ψ(t)

has a scale parameter, a (a 6= 0), that dilates or compresses Ψ(t) to find frequency

domain information of x(t). The scaling parameters were chosen to cover the entire

EEG frequency range of 0.3 - 35Hz. The a value pertains to a specific EEG fre-

quency, f , found using the formula a = fc fs
f . Where fc is the center frequency of

Ψ(t) and fs ( fs = 512Hz for CF00N data) is the sampling frequency of x(t). The

translation parameter, b, is used to shift Ψ(t) across the time domain. Thus, when

a and b vary on R+, the result is the complete representation of x(t) in the time-

frequency domain. For all pairs of a and b, the result of the convolution is a matrix

of wavelet coefficients, denoted Wa,b. The wavelet coefficients are essentially the

amplitude of the convolution and interpreted as how similar the EEG signal is with

the wavelet for specified values of a and b.

Wa,b =
∫

x(t)Ψa,b(t)dt with

Ψa,b =
1√
|a|

Ψ

(
t−b

a

)
is the dilated and shifted wavelet.
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The DWT

The DWT consists of repeatedly passing the signal x(t) through a series low-pass,

g(t), and high-pass, h(t), filters, which can be seen in Figure 4.C.

x(t)

h1(t) Level 1 Coefficients

g1(t)

h2(t) Level 2 Coefficients

g2(t)

h3(t) Level 3 Coefficients

· · ·
gk(t)

hk(t) Level K Coefficients
Figure 4.C: DWT decomposition diagram. At the it h level of the decomposition, the approximation coefficients of gi−1(t)
are down sampled by a factor of 2.

The convolution of x(t) with g(t) filters out frequencies higher than what is

specified by g(t). The result gives the approximation coefficients that are the lower

frequency representation of x(t). The convolution with h(t) gives the detail, or the

wavelet coefficients. This process removes the upper half of the frequency range

for x(t) at each level of decomposition in accordance with the Nyquist-Shannon

(Shannon, 1948) Sampling Theorem. That is, for a signal x(t) with a largest fre-

quency, fs, the sampling rate of x(t) must be at least 2 fs, which means that, at the

first level of decomposition for the EEG signals, in the CF00N data, the largest

observable frequency is 256Hz, since the sampling rate is 512Hz. Furthermore, at

each level of decomposition half of the approximation coefficients can be discarded

before passing them through the next set of filters. For a signal x(t) of length L

where L = P2k (k, P ∈ N), and a sampling frequency fs, it is possible to calculate

at most k levels of wavelet coefficients. Analogous to the CWT, the jth level detail

coefficients pertaining to the frequency range fs/2 j to fs/2 j−1 are the result of the

convolution of x(t) with Ψa j,b, where a1 = fs/2, a2 = fs/4, . . . , a j = fs/2 j and

Ψa j,b =
1√
2 j

Ψ

(
t−b2 j

2 j

)
with j = 1 . . . ,k
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4.4.2 Feature Set 1

The first feature set calculated was that of Fraiwan et al. (2012). The EEG signal,

C4M1, was decomposed into seven frequency bands, as seen in Table 4.6, via the

CWT using the Daubechies wavelet of order 20 as the Ψ(t). There are seven EEG

frequency bands used by Fraiwan et al. (2012) to cover the range of 0.3Hz to 35Hz.

Waveform Frequency Range (Hz) Sleep State
δ Delta 0.5-4 NREM 3
θ Theta 4-8 NREM 1, REM
α Alpha 8-13 Wake, REM
β1 Beta 1 13-22 Wake, REM
β2 Beta 2 22-35 Wake, REM

Sleep Spindles 12-14 NREM 2
K-Complexes 0.5-1.5 NREM 2

Table 4.6: Fraiwan et al. (2012) uses these seven primary EEG frequency bands and sleep state(s) where each characteristic
waveform is dominant

Once the CWT of an epoch was performed, the rows of the Wa,b pertaining to

the seven specified frequency bands are used to calculate the Renyi entropy of the

wavelet coefficients. This results in 7 statistical features for each epoch.

Renyi Entropy

In information theory, the measure of entropy is the expected rate at which infor-

mation is emitted by a stochastic process. The information associated with each

event that occurs can be viewed as a random variable and the information entropy,

or Shannon entropy, as the expected value. Mathematically, entropy is defined as

En =−
n

∑
k=1

pilog2(pi)

"where pi is the histogram distribution of the time-frequency coefficients with n

bins" (Fraiwan et al., 2012, p. 13). The entropy is used to measure the randomness

of the wavelet coefficients in a specified frequency range. The Renyi entropy is
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defined as

R Ent =
1

1−α
log2

(
n

∑
i=1

pα
i

)
where pi and n are the same as before, but now α is called the order of Renyi

entropy. In this work and in the study by Fraiwan et al. (2012) α = 2.

For each epoch in the CF00N data, a histogram with n=5000 bins was used to

estimate the probability density of the wavelet coefficients in each frequency band.

This was done by first calculating Wa,b of all epochs for each patient. Then for each

patient, the maximum and minimum wavelet coefficient values of all epochs are

collected in each of the seven frequency bands listed in Table 4.6. This was done

to find the lower and upper boundaries of each frequency band, for each patients

epochs, so that the Renyi entropy of each epoch was calculated using histograms

with the same boundaries. For each patient the lower boundaries in each frequency

band were set to the 0.025 quantile of all the minimum values for that frequency

band. Similarly for the upper boundaries, the .975 quantiles of all the maximum val-

ues in each frequency band were used. This ensured the histogram distribution for

every epoch in each frequency band had large (and small) enough boundaries, but

was censored to outlier coefficient values, and the Renyi entropy values calculated

for all epochs were done on the same domain for that patient.

4.4.3 Feature set 2

The features from da Silveira et al. (2017) used the DWT with a Daubechies mother

wavelet of order 2 on a single EEG channel and these same features were calculated

in this work using the C4M1 EEG channel. The sampling rate of the CF00N data

is 512 Hz with 15,360 = 210× 15 observations in each 30s epoch, which meant

that the C4M1 signal could be decomposed, using the DWT, into at most 10 levels.

However, only 8 levels were required to cover the desired EEG frequency range for

sleep state classification. Table 4.7 provides the range of frequencies covered by

each level of the DWT in this work.
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Level Range in Hz Number of coefficients
D1 128-256 7,680
D2 64-128 3,640
D3 32-64 1,820
D4 16-32 910
D5 8-16 455
D6 4-8 228
D7 2-4 114
D8 1-2 57
C8 0-1 29

Table 4.7: Frequency ranges and number of observations for the DWT, by levels.

The first two levels of coefficients are ignored, as the pre-processing of the data

filtered out frequencies above 35 Hz. Then, for the remaining levels, D3, . . . ,D8 , and C8,

the 2nd, 3rd, and 4th statistical moments of the coefficients were calculated. C8 is

the approximation, or the scale coefficients from the 8th level of DWT decomposi-

tion, the representation of the D7 coefficients in the 0-1Hz frequency range. Thus,

21 statistical features were extracted from every epoch. The statistical moments

were calculated using the following:

Var(X) =
1
N

N

∑
i=1

(Xi− X̄)2 Skew(X) =
1
N ∑

N
i=1(Xi− X̄)3

Var(X)3/2

Kurt(X) =
1
N

∑
N
i=1(Xi− X̄)4

Var(X)2 −3

4.4.4 Feature set 3

The original filtered non-EEG signals were used to construct the last set of fea-

tures. The presence of EOG or EMG information helps sleep experts discriminate

between states of active sleep (REM), non-active sleep (NREM 3), and wake states.

To incorporate non-EEG information, the 2nd, 3rd, and 4th statistical moments of

LEOG, REOG, EMG21, and ECG PSG channels were calculated. The moments

were calculated using the same equations for the second set of features, resulting in

12 statistical features for each epoch.
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Chapter 5

Random Forest Feature Selection

5.1 Random Forest for Feature Selection

5.1.1 Assessing Multivariate Normality of Features

To begin the feature selection, the statistical features extracted from all epochs

were combined into a larger data set and then each individual statistical feature

was assessed for univariate normality within each sleep state. Several features were

extremely right skewed and first required a transformation via the natural loga-

rithm to approximate univariate normality within sleep states. Features that were

still extremely skewed, or presented excessive multimodality within sleep states,

were not included in the feature selection. Density and Quantile-Quantile (QQ)

plots for the individual statistical features are in the Appendix. For ease of refer-

ence, the Appendix A.1 is for the Renyi entropy features, A.2 is for the discrete

wavelet coefficient (DWC) features, and A.3 is for the non-EEG features. The next

part of the feature selection was to examine the cross validation error of each pa-

tient’s epochs using the different number of randomly selected features to build the

trees in each random forest, which determined the minimum number of features

required to achieve minimal cross validation error for all patients. The third part

was determining which features produced the lowest cross validation error for all
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patients. Finally, the selected features were then examined for multivariate nor-

mality within sleep states using Chi-square QQ plots of the Mahalanobis distance

between epochs. The goal of the feature selection was to find a set of features, for

all patients, which are then used in the HMM and NHMM analysis.

5.2 Univariate Normality Within Sleep States

5.2.1 Renyi Entropy Features

The Renyi entropy features were the most promising. Although, some of the uni-

variate distributions within specific sleep states appeared to have slightly heavy

tails, which indicates that there may be outliers present, but examination of the QQ

plots showed that the majority of data quantiles matched those of a univariate nor-

mal distribution. The density and QQ plots of the k-complex feature are presented

in Figures 5.A and 5.B, while the plots for the remaining Renyi entropy features

can be found in A.1. The possible outliers could be from a single patient as a re-

sult of a poor recording, or possibly many patients caused by missed artifacts in

the cleaning process. Despite the slightly heavier tails and potential outliers, the

data did not provide strong evidence against the assumption of the Renyi entropy

features coming from Gaussian distributions, within each sleep state. Therefore all

the Renyi entropy features were included in the feature selection.
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Figure 5.A: Density plots for Renyi entropy in the K complex band, overall and within sleep states. In each sleep state there
appear to be influential values making the left tails heavier.

Figure 5.B: Quantile-Quantile plots of Renyi Entropy in the K complex frequency band. In all plots the lower quantiles
deviate below the theoretical quantiles of the univariate Gaussian, indicating a heavier left tail. Overall, the majority of actual
quantiles does agree with the theoretical quantiles.
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5.2.2 The Discrete Wavelet Coefficient Features

The variance and kurtosis features all required a transformation with the natural

logarithm, however, the kurtosis features remained extremely skewed and were not

included in the feature selection. On the other hand, all of the variance features

appeared symmetric and their QQ plots showed that within each sleep state the ma-

jority of data quantiles matched the theoretical quantiles of a Gaussian distribution.

However, in the wake state, the variance features had a slightly heavier right tail,

but not heavy enough for the variance features to be excluded from the feature se-

lection. The skewness features did not require the logarithm transformation and

had QQ plots that showed that within each sleep state the majority of data quantiles

matched the theoretical quantiles of a Gaussian distribution. Therefore, the data did

not provide strong evidence against these features coming from a Gaussian distribu-

tion. However, a closer inspection of the skewness features QQ plots showed these

features had very small variance, since the line of agreement between quantiles was

almost horizontal. These variables were included, but with such small variances the

author of this thesis had reservations about their ability to discriminate effectively

between sleep states.

5.2.3 The Non-EEG Features

As in the DWC features, the variance and kurtosis features of the non-EEG data

required the logarithm transformation. There were seven non-EEG features that

made it into the feature selection: variance of EMG, variance of REOG, variance of

LEOG, skewness of REOG, skewness of LEOG, Kurtosis of REOG, and Kurtosis of

LEOG. The variances of EMG, REOG, and LEOG had slightly heavier right tails,

but were considered overall suitable. The skewness of REOG and LEOG showed

the same properties as the skewness features of the DWC. The Kurtosis of REOG

and LEOG are not quite symmetric but in each sleep state the data quantiles closely

matched those of a univariate Gaussian distribution. Again, the lack of symmetry

suggested there may be possible outliers that would affect state dependent parame-
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ters in the HMM and NHMM.

Overall, 28 (7 Renyi, 14 DWC, 7 NonEEG) of the original 40 features were used

in the random forest feature selection process. Although the presence of outliers

and heavier tails for most of the features was a bit concerning, as in each sleep state

the mean and covariances would be affected, and consequently the classification

performance for the HMMs and NHMMs. For each patient these 28 features were

collected into a separate data set for that patient, which were then used to find the

optimum number of features for all patients.

5.2.4 Finding the Optimal Number of Features

The R library randomForest (Liaw & Wiener, 2002) allowed for calculation

of k-fold cross validation prediction error, for each patient, for each number of

randomly selected input features used to grow trees in the random forest. In this

work, a 10-fold cross validation of each patient’s 28 included features data was used

to calculate the mean cross validation error of the 10 folds across each possible

number of random selected features for that particular patient. For each fold, a

random forest was of 10,000 trees was constructed, using the predetermined number

of randomly selected features to build each tree. That is, each feature had equal

probability of being used to construct each tree. This allowed the author of this

thesis to find the minimum number of features, r, such that cross validation error

was minimal for all patients. The box plots of the cross validation errors for all

patients across each possible r is presented in Figure 5.C. The first r value that

captures the mean cross validation error for all patients within the range of the box

plot is r = 9. Furthermore, when r = 9 it ensures at least 50% of patients had at

most a 20% mean cross validation error. This is also true for r = 6,7,8, but there

were patients with higher mean cross validation errors outside the range of the box

plot for those r values, which indicates a less consistent classification performance

for all patients. The significance of performing the above analysis was that in order

to find which features should be selected, the author of this work forced the random
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forest algorithm in the next part to use r = 9 randomly selected features to build the

trees, since by default the algorithm will choose r = 5 = b
√

28c.

Figure 5.C: Box plots of patient cross validation prediction error VS the number of features used to build each tree in the
random forest.

5.2.5 Finding the Optimal Features

Fortunately, the randomForest (Liaw & Wiener, 2002) library also supports

measuring of variable importance when constructing a random forest for each pa-

tient’s 28 included features data. The variable importance calculated "is the increase

in percent of times a case is [Out-of-bag] and misclassified when the variable is

permuted" (Liaw & Wiener, 2002, p. 20). Specifically, for each variable there is a

variable importance measure for each class (sleep state), where for each feature the

"class-specific measures [are] computed as mean decrease in accuracy" (Liaw &

Wiener, 2002, p. 19). Extraction of variable importance measures for each patient

in each sleep state was done by constructing a large random forest of 10,000 trees

with r = 9 randomly selected Gaussian features to build each tree. Each feature

had equal probability of being chosen for construction of a single tree so that each
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feature would be used in tree construction equally often. Even though there are on

average 1076 epochs for each patient, the number of trees was chosen to be 10,000

to ensure that each epoch was predicted at least a few times, since the proportions

of sleep states were drastically imbalanced.

Once the variable importance measures for each patient were collected, an anal-

ysis of variable importance in each state was performed. This was done by record-

ing the 14 most important features of for sleep state for each patient. Then in each

sleep state a tally of the top 14 features for all patients was recorded. Essentially,

this tally counted the number of patients a feature was in the top 14 features of each

sleep state. This was done to determine the top 14 features in each state that was

found important to at least 50% of patients. For example in the NREM 3 state, it

can be seen in Figure 5.D that 13 features were found to be important to at least

50% of patients. The top important features for the NREM 3 state were all of the

Renyi entropy features, and the variances of DWCs in levels 3 to 7. The importance

plots for the other sleep states can be found in A.4.

The features that were important to at least 50% of patients in each state were

then further tallied to determine the number of states where each variable was found

to be important. This tally can be seen in Figure 5.E. The final selected features

were the ones that were found to be important to 50% or more patients in every

sleep state. In total there are nine final selected features the Renyi entropy features:

K-complex, Delta, Theta, Alpha, and Sleep spindle frequency bands. The last four

features selected were the variances of the DWCs in: Level 4, Level 7, Level 8, and

Scale Coefficient frequency bands. On a side note, none of the skewness features

of the DWC and Non-EEG made it into the final features, as was expected.
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Figure 5.D: The percentage of patients where each feature was found to be in the top 14 features for NREM 3.

Figure 5.E: Number of states in which the feature was found to be in the top 14 for majority of patients. There are 9 of 17
potential final features that are important in all sleep states.

5.2.6 Data for HMM and NHMM

The data did not provide strong evidence that the marginal distributions of the Renyi

entropy features and final selected features were not from univariate normal distri-

butions within the sleep states, however, the combined feature sets needed to be
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assessed for multivariate normality. This was based on the Mahalanobis distance

between observations, since "[when] the parent population is multivariate normal

and both n and n− p are greater than 25 or 30, each of the square differences

d2
(1),d

2
(2), . . . ,d

2
(n) should behave like a chi-square random variable [with p degrees

of freedom]" (Johnson & Wichern, 2007, p. 184). Graphing the ordered distances

with the ordered theoretical quantiles of the chi-square distribution forms the Chi-

square QQ plot and if the data points should form a straight line through the origin

with a slope of 1, then the data is multivariate normal.

Mahalanobis Distance for the ith epoch, di = (xi− x̄)′S−1(xi− x̄)

An assessment of each patient’s data sets individually, across states, would require

far too many plots to be included, even in an appendix. Therefore, the Renyi entropy

and final features data sets from all patients are combined into their respective larger

data sets, however, calculating distances of 80,763 epochs is simple enough, but

plotting them is not feasible. In this work, 10,000 epochs were randomly selected

with the distances calculated and then plotted in Figures 5.F and 5.G. Note that

the same random 10,000 epochs used to assess the Renyi entropy data were also

used for the final features data. For both data sets, the distances and quantiles in

the NREM 1 state line up slightly underneath the line of slope 1, but do not form

any strongly deviating non linear pattern. The distances and quantiles in the REM

state line up well on the line with slope 1, but there appears to be small amount

of evidence of a nonlinear pattern, which could mean that the features in the REM

state are slightly skewed. On the other hand, for all other states the distances and

quantiles match nicely with the exception of a few possible outliers. Overall, the

data does not provide strong evidence that the renyi and final selected features do

not come from a multivariate normal distribution.
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Figure 5.F: Chi-square Quantile-Quantile plots to assess multivariate normality of Renyi entropy features.

Figure 5.G: Chi-square Quantile-Quantile plots to assess multivariate normality of selected final features.
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Chapter 6

Random Forest Analysis

6.1 Analysis & Comparison

Analysis was performed using the random forests of Fraiwan et al. (2012) and da

Silveira et al. (2017) with 64-trees and an extension to 128-trees across all four fea-

ture sets. For comparison with the literature, the 10-tree random forest of Fraiwan

et al. (2012) on the Renyi entropy features was also explored. There will be 3 set-

tings for comparison: a random split of (1/3) testing and (2/3) training, 10-fold

cross validation, and leave-one-patient-out-cross-validation (LOPOCV). The first

two settings are for comparison with the respective literature, Fraiwan et al. (2012),

and da Silveira et al. (2017). The importance of the LOPOCV analysis is that for

an algorithm to be successful in clinical practice it must only use information from

previous patients to predict the sleep states of a new patient. The algorithm cannot

use information from the new patient in the model learning process. A compari-

son with Boostani et al. (2017) who used a LOPOCV in their study, but only used

10 tree random forests, is discussed at the end of the chapter. In each setting, the

random forests with 64 and 128 trees were grown multiple times using the training

data and then predicted the test data. Due to computational time restrictions, clas-

sification of sleep states in each setting was repeated for 100 trials, though the ideal
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number of trials would have been at least 1000. Classification performance of the

random forests presented here is assessed using classification accuracy and Cohen’s

κ (Cohen, 1960).

6.1.1 Setting 1: Random (1/3) Testing (2/3) Training

For each of the four feature sets analyzed the epochs from all patients are com-

bined into a complete feature set. Then, a random 1/3 of the data is selected for

testing purposes. In each trial, the random split uses the same epochs in the test-

ing and training sets for each feature set analyzed. This was done to ensure a fair

comparison across feature sets in each trial.

Study Data Set Feature Set Accuracy (%) κ

Fraiwan et al. (2012) Sleep-EDF 2002 Renyi 82.57 0.76
This Work CF00N Renyi 70.93 (.3) 0.60(0.003)

Table 6.1: Classification performance comparison of 10-tree random forest using Renyi entropy of CWT coefficients features.

Table 6.1 shows a comparison of classification performance between the 10-tree

random forests constructed using Renyi Entropy of CWT coefficients as features.

The random forest performance on the CFOON data performs markedly lower in

mean classification accuracy, ≈ 12%, and κ values, 0.16, than in Fraiwan et al.

(2012). Overall, the performance of the 10-tree random forest for CF00N provides

a great baseline to build from as more than 70% of epochs in the testing data are

classified correctly. Figures 6.A and 6.B show that the mean classification accuracy

using the Renyi Entropy features improved by ≈ 2%, when the number of trees in

the random forest increased from 10 to 64.

Data Set Features # features Accuracy (%) κ

Sleep EDF Expanded DWC Moments 18 90.8 -
CF00N Renyi 7 73.32(0.2) 0.63(0.003)
CF00N DWC Moments 21 75.02(0.2) 0.66(0.003)
CF00N Non EGG 12 58.41(0.3) 0.41(0.004)
CF00N Final 9 76.49(0.2) 0.68(0.003)

Table 6.2: 64 tree random forest performance using random (1/3) testing (2/3) training data. Values reported are the mean
accuracy of the 100 trials with standard deviation in brackets. DWC: Discrete Wavelet Coefficients.
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Data Set Features Accuracy (%) κ

CF00N Renyi Entropy 73.57(0.2) 0.64(0.003)
CF00N DWC Moments 75.33(0.2) 0.66(0.003)
CF00N Non EGG Moments 59.26(0.3) 0.42(0.005)
CF00N Final Selected 76.68(0.2) 0.68(0.003)

Table 6.3: 128 tree random forest performance using random (1/3) testing (2/3) training data. Values reported are the mean
accuracy of the 100 trials with standard deviation in brackets. DWC: Discrete Wavelet Coefficients.

Figure 6.A: Box plots of 10- and 64- tree random forest classification accuracy and Cohen’s κ for 100 trials, using random
(1/3) testing, (2/3) training. R Ent is Feature Set 1, DWC M is Feature Set 2, NonEEG is Feature Set 3, Final F is Final
Selected Features Set

In Table 6.2, classification performance with da Silveira et al. (2017) on the

Sleep EDF Expanded data shows the 64-tree random forest constructed for the

CF00N data in this study also underperformed. The same can be seen in Table

6.3 for the 128-tree random forests. However, in both the 64 and 128-tree random

forests that used moments of the discrete wavelet coefficients (DWC) features per-

formed better than ones that used the Renyi entropy features. The random forests

that used the non-EGG features performed the worst. The accuracy of these random

forests decreased between 14 - 17% and κ decreased by at least 0.22.

The performance results on the CF00N data are lower than those reported by

Fraiwan et al. (2012) and da Silveira et al. (2017) for the Sleep EDF 2002 and Sleep
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Figure 6.B: Boxplots for Figure 6.A with Non EEG feature set performance removed. To provide a closer look at the
competitive feature sets.

EDF Expanded data sets. A closer inspection of the box plots from Figure 6.A

shows that when the non-EEG performance was removed, Figure 6.B, the random

forest constructed with the final features yielded the best classification results for

CF00N, which indicates the feature selection process was successful. Figure 6.C

shows the same trend across feature sets for the 128-tree random forests and in Table

6.2 the performance values compared to the values in Table 6.3 indicate the increase

from 64 trees to 128 trees had almost no improvement. Hence, the performance

measures of Setting 1 converged for the CF00N data using the 64-tree random

forests.

6.1.2 Setting 2: 10-Fold Cross Validation

Once again, for each feature set the epochs from all patients were combined into a

complete data set in order to be analyzed across 100 trials. In each trial, ten equal

sized random folds of the 80,763 epochs were created. Nine of the ten folds were

used to build the random forest and the last fold was used as the testing data. This

process was repeated until all ten individual folds had been used as the testing data.
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Figure 6.C: boxplots for 128-tree random forest classification accuracy and Cohen’s κ for 100 trials, using random (1/3)
testing, (2/3) training.

Then for each feature set the mean classification accuracy and κ of the ten folds

were recorded in each trial. As in Setting 1, in each trial the epochs in each of the

ten folds are the same across feature sets, which ensures a fair comparison across

feature sets.

Data Set Features Accuracy (%) κ

Sleep EDF Expanded DWC M 91.5 0.83
CF00N Renyi Entropy 73.74(0.07) 0.64(0.0007)
CF00N DWC M 75.26(0.07) 0.66(0.0007)
CF00N Non EEG 60.64(0.1) 0.44(0.0011)
CF00N Final Selected 76.85(0.06) 0.68(0.0006)

Table 6.4: 64-tree random forest performance using 10-fold cross validation. Values reported are the mean accuracy of the
100 trials, of 10-fold cross validation.

The reported accuracy and κ value by da Silveira et al. (2017) that used 64-tree

random forests is much higher for the Sleep EDF Expanded data set when com-

pared to CF00N, across all feature sets for both 64 and 128- tree random forests,

as seen in Tables 6.4 and 6.5. The discrete wavelet coefficient (DWC) features of

da Silveira et al. (2017) again performed better than those of Fraiwan et al. (2012),
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Figure 6.D: 64 tree random forest classification performance in the 10-fold cross validation setting.

Figure 6.E: 64-tree random forest classification performance in the 10-fold cross validation setting. Non EEG performance
removed.
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Data Set Features Accuracy (%) κ

CF00N Renyi Entropy 73.96(0.05) 0.64(0.0007)
CF00N Moments of DWC 75.5(0.05) 0.66(0.0006)
CF00N Non EEG Moments 61.46(0.07) 0.45(.0011)
CF00N Final Selected 77.04(0.05) 0.68(0.0007)

Table 6.5: 128-tree random forest performance using 10-fold cross validation. Values reported are the mean accuracy of the
100 trials, of 10-fold cross validation.

Figure 6.F: 128-tree random forest classification performance in the 10-fold cross validation setting. Non EEG performance
removed.

but, overall, the random forests in Setting 2 barely perform better than those of Set-

ting 1. However, the standard deviations of the performance measures decreased,

meaning the classification measures are more consistent in Setting 2. This is likely

due to the increased size of the training data used to build each tree in the random

forests. Again, the increase from 64 to 128 trees yielded little improvement in Set-

ting 2, but once more the final selected features had the best performance measures

for the CF00N data.

6.1.3 Setting 3: LOPOCV

In the LOPOCV, each patient’s epochs are considered the testing data for 100 trials.

In each of the 100 trials, a random forest is constructed using epochs from all other
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patients as the training data and the sleep states of the testing data predicted. The

mean classification accuracy and κ of the 100 trials is recorded for each patient.

The mean accuracy and κ values of performance for all patients across feature sets

are in Table 6.6.

Features
64 Trees 128 Trees

Accuracy (%) κ Accuracy (%) κ

Renyi Entropy 64.8(11.7) 0.51(0.149) 65(11.1) 0.51(0.15)
DWC M 73.79(6.3) 0.63(0.085) 74(6.3) 0.63(0.09)
Non EEG 33.21(6.3) 0.02(0.047) 33.7(6.7) 0.02(0.05)

Final Features 70.83(8) 0.58(0.114) 67.1(12.1) 0.54(0.13)
Table 6.6: 64and 128-tree random forest performance on CF00N data. Reported are the mean classification measures with
standard deviation in brackets.

Figure 6.G: Boxplot of 64-tree random forest mean performance measures for all patients across Renyi Entropy, Discrete
Wavelet Coefficient Moments and Final Features, in LOPOCV.

Features
64 Trees 128 Trees

Accuracy (%) κ Accuracy (%) κ

Renyi Entropy 67.1 (7) 0.53(0.11) 67.0(7.5) 0.53(0.11)
DWC M 74.5 (5.3) 0.63(0.07) 74.4(5.9) 0.63(0.08)
Non EEG 33.6(6.3) 0.02(0.05) 34.0(6.7) 0.02(0.05)

Final Selected 72.2(6.4) 0.60 (0.1) 69.1(8.3) 0.56(0.11)
Table 6.7: Mean classification performance measures with patients CF021, CF025, CF037, CF042, CF068, and CF070
removed.
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Figure 6.H: Boxplot of 128-tree random forest mean performance measures for all patients across Renyi Entropy, Discrete
Wavelet Coefficient Moments and Final Features, in LOPOCV.

The classification performance for LOPOCV shows that in a clinical setting

the mean performance measures have decreased despite increasing the size of the

training data. The decrease in performance measures for Setting 3 is likely due to

the testing and training not sharing epochs from the same patient. The performance

of random forests that used the final and DWC moments features only decreased

slightly from Setting 1 and Setting 2, but classification accuracy of the random

forest that used Renyi entropy features has decreased by roughly 10%. As seen

in Figures 6.G and 6.H, the classification performance for the epochs of patients

CF021, CF025, CF037, CF042, CF068, and CF070 is quite poor, which means that

there might be limitations to the random forest approach for sleep state classification

in a clinical setting. Table 6.7 reports the mean accuracy of all patients with these

six aforementioned patients removed. On the one hand, the mean performance

values do improve, but they still remain lower than Setting 1 and Setting 2. On the

other hand, the mean accuracy for all patients is only slightly lower, ≈ 2%, than for

the CAP data set used by Boostani et al. (2017).

Since the random forest analysis was performed for each patient’s epochs, which

used each feature set independently, an ANOVA with a block design was modelled,
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with CF021, CF025, CF037, CF042, CF068, and CF070 removed, on each perfor-

mance measure to determine which one was the best feature set for the LOPOCV

classification. The individual patients were the blocks in the ANOVA in order to

remove the variation of the performance measures between the individual patients

from the total variation of all measurements. The performance measures for the

non-EEG features are substantially lower than the other data sets. For this reason,

the analysis was carried out using performance measures of the other three feature

sets.

6.1.4 ANOVA with Patient Blocks

A MANOVA was considered for the purpose of determining the best feature set

for random forest classification, but when using accuracy and κ as the multivariate

response there is the problem of very strong multicollinearity (ρ > 0.9). Moreover,

an initial investigation found the homoscedasticity assumption of the feature set

groups was strongly violated. This was performed using Box’s M-test (Box, 1949),

finding a p-value of 0.001. Hence, the proposed ANOVA was performed for both

accuracy and κ separately. Verification of the ANOVA assumptions must first be

done before proceeding with results. This is presented simultaneously for accuracy

and κ measures. The independence of observations is intact, as the performance

measures of each patient in each feature set did not affect performance measures

of another patient or in another feature set for the same patient. Thus, the obser-

vations were considered independent between patients and across feature sets. The

homoscedasticity of the feature groups was assessed using Levene’s-test (Levene,

1960) and the results are shown in Table 6.8. The p-value for accuracy in Table

6.8 is a bit concerning because, at a significance level of 5%, it just barely rejected

the null hypothesis that covariances of feature groups were equal. However, the

standard rule of thumb for assessment of equal variances considers the magnitude

of largest variance to the smallest. If the largest variance divided by the smallest

variance is less than 2,
(

σmax
σmin

< 2
)

, then the assumption is considered to be met,

86



Figure 6.I: Residuals vs Fitted Values plot, and QQ plots of residuals for assessment of ANOVA assumptions.

which was satisfied for both performance measures. The normality assumption for

the residuals was assessed using the QQ plots in Figure 6.I. The residuals for both

accuracy and κ ANOVA models indicated the residuals were normally distributed.

Furthermore, the residual vs fitted value plots in Figure 6.I indicated that there was

no non-linear trend, which meant the linear ANOVA model was appropriate for

both performance measures.

Performance Measure F-statistic p-value σmax
σmin

Accuracy 3.179 0.044 1.779
κ 2.497 0.085 1.768

Table 6.8: Table of output for Levene’s test of homogeneity of variances for feature groups and ratio of the largest variance
to smallest.

The ANOVA tables for performance measures are Tables 6.9 and 6.10. At a 5%

significance level, the data provides strong evidence that a significant difference in

the mean of accuracies between feature sets exists, which is similarly seen for the

mean κ measures. The significant difference found between feature sets was fol-
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lowed by a Tukey’s Honestly Symmetric Differences (HSD) test (Tukey, 1949) for

both performance measures using an overall 5% significance level. The resulting

confidence intervals and p-values of the mean differences between groups is pre-

sented in Table 6.11. With 95% confidence, the accuracy for random forests that

used the DWC features was on average between 5.74% and 9.09% higher than the

random forests that used the Renyi entropy features. Similarly, the accuracy was on

average between 0.65% and 3.99% higher when compared to random forests that

used the final selected features. Overall, the mean classification accuracy was the

highest when using the DWC moments features. The same can be concluded for the

κ measures in Table 6.11. The next step was to investigate the performance mea-

sures of random forest for these three feature sets across the various demographic

groups: age, gender, and OSA status. This was done by incorporating the demo-

graphic information into a MANOVA model that used the performance measures

of each feature set as the multivariate responses, (n = 69, p = 3). This was done

separately for both the classification accuracy and the κ measures.

Treatment Df Mean SS F-statistic p-value
Features 2 992.5 57.761 < 2×10−16

Patients 68 84.3 4.906 1.72×10−15

Residuals 136 17.2 - -
Table 6.9: ANOVA table for accuracy measures across feature sets.

Treatment Df Mean SS F-statistic p-value
Features 2 0.18412 59.441 < 2×10−16

Patients 68 0.02033 6.564 < 2×10−15

Residuals 136 0.00310 - -
Table 6.10: ANOVA table for κ measures across feature sets.
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Measure Features Lower Bound Upper Bound p-value

Accuracy (%)
DWC M - R Ent 5.74 9.09 < 2×10−16

DWC M - Final F 0.65 3.99 0.003
Final F - R Ent 3.42 6.77 < 2×10−10

κ

DWC M - R Ent 0.079 0.124 < 2×10−6

DWC M - Final F 0.057 0.123 0.001
Final F - R Ent 0.044 0.089 < 2×10−16

Table 6.11: Results of Tukey’s HSD test, for multiple comparison following the ANOVA. Reported are the lower and upper
bounds for the mean difference between feature sets.

6.1.5 MANOVA

In an ideal MANOVA setup, the demographic groups would have balanced numbers

of subjects in each group combination. Table 6.12 show the number of patients in

the OSA groups. As the OSA groups are very unbalanced, they were re-coded into

a binary variable. No OSA and Mild was recoded to Low OSA and Moderate and

Severe OSA re-coded into High OSA. Table 6.13 provides the number of patients

in the re-coded OSA groups across all gender and age combinations. The number

of males to females is very disproportionate and the relatively small numbers of

females in each OSA age combination is problematic for MANOVA, especially for

cells with less than 3 patients as there are three responses for each performance

measure. Furthermore, there is only a single female under 13 years of age in the

low OSA group, which meant the estimated covariance of this group was exactly

0, and the homoscedasticty for a 3-way MANOVA with interaction could not be

assumed. Therefore, the gender factor was not included in the MANOVA models,

leaving only the age and re-coded OSA factors to construct a 2-way MANOVA with

interaction. All of the age OSA groups had more than 5 observations, but were still

slightly imbalanced. The ideal MANOVA setup would be balanced with at least 20

patients in each cell.

As stated in the ANOVA analysis, before proceeding with the results, verifi-

cation of the MANOVA assumptions comes first. The assumption that patients

in the age and OSA group combinations were independent was clearly met. The
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No OSA Mild Moderate Severe
4 37 16 12

Low OSA High OSA
41 28

Table 6.12: Number of patients in each OSA group

Gender
Low OSA High OSA

Totals
Under 13 Over 13 Under 13 Over 13

Male 18 13 14 8 53
Female 1 9 4 2 16
Totals 19 22 18 10 69

Table 6.13: Number of Patients in all demographic group combinations, with CF021, CF025, CF037, CF042, CF068, and
CF070 removed

homoscedasticity assumption of equal covariance for all age OSA group combina-

tions was again verified using the Box M-test (Box, 1949). The results presented

in Table 6.14 indicated that the homoscedasticity assumption was intact for both

performance measures. The marginal and multivariate normality of residuals was

assessed using the QQ plots in Figures 6.J and 6.K. The marginal normality of the

residuals assumption appeared to be met for both classification accuracies and the κ

measures. The Chi-square QQ plots in these figures indicated that the multivariate

normality of the residuals was also present. Figure 6.L contains the residuals ver-

sus fitted values plots for each response variable. All demographic groups showed a

similar spread around the line (y=0), however, there may be more potential outliers

in accuracy (CF027) and κ measures (CF069), but the homoscedasticity assump-

tion was not violated, so these patients were kept in the analysis. All assumptions

of the 2-way MANOVAs with interaction were considered met and the linear model

was considered appropriate.

Measure Df χ2 statistic p-value
Accuracy (%) 18 6.59 0.993

κ 18 11.43 0.875
Table 6.14: Results of Box’s M-test (Box, 1949) for testing equal covariance of OSA and age group combinations in the
MANOVA.
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Figure 6.J: Residual QQ plots for Accuracy performance

Figure 6.K: Residual QQ plots for κ measures
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Figure 6.L: Residual versus fitted values plots. Group colors: Green (Under 13:Low OSA), Black (Under 13:High OSA),
Blue (Over 13:Low OSA) , Red (Over 13:High OSA)

Factor ≈ F-statistic Dfn Dfd p-value
Age 0.268 3 63 0.8482
OSA 1.03 3 63 0.3853

Age:OSA 0.626 3 63 0.6007
Table 6.15: 2-way MANOVA table for classification accuracy.

Factor ≈ F-statistic Dfn Dfd p-value
Age 0.21 3 63 0.889
OSA 1.11 3 63 0.3516

Age:OSA 1.06 3 63 0.369
Table 6.16: 2-way MANOVA table for κ measures.

The results of the 2-way MANOVA are presented in Tables 6.15 and 6.16. The

first hypothesis tested in each of the 2-way MANOVAs was for the interaction effect

and with p-values of 0.6007 and 0.369 compared to a significance level of 5%, the

data did not provide sufficient evidence of an interaction effect between age and

OSA status in either MANOVA. Next, was the hypothesis test for the main effects

of age and OSA, which, at a 5% significance level, the data did not provide sufficient
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evidence that patient age or OSA status had an effect on the mean accuracy or the

mean κ measures across feature sets.

Study Data Features Accuracy (%) # of Trees
Boostani et al. (2017) Sleep-EDF 2002 Renyi 87.06 10
Boostani et al. (2017) CAP Renyi 69.05 10

Table 6.17: Classification performance of 10 -tree random forest using LOPOCV of Boostani et al. (2017).

The findings of the MANOVA presented in this work are contradictory to what

was found by Boostani et al. (2017) presented in Table 6.17. However, there is a

major difference between what was done here and by Boostani et al. (2017). The

difference being that Boostani et al. (2017) analyzed PSG recordings from two dif-

ferent data sets, Sleep EDF 2002 and CAP. Moreover, the CAP data base from

Physionet (Goldberger et al., 2000) also contains PSG recordings for 16 healthy

subjects that were not included in the study by Boostani et al. (2017). Including

these recordings in the analysis by Boostani et al. (2017) might have been a better

approach, as the PSGs of healthy subjects and patients were recorded and scored

by the same sleep laboratory. This means that the difference in classification ac-

curacy between patients and healthy subjects found in Boostani et al. (2017) could

be a result of the PSG recordings being from different sleep studies. The PSG

recordings of the CF00N data presented in this work are from the same sleep study

performed at the University of Alberta Hospital. Lastly, Boostani et al. (2017) used

the LOPOCV approach on the Sleep EDF 2002 data and saw an increase in classi-

fication performance from Fraiwan et al. (2012), who used the approach in Setting

1, which was quite surprising, but Boostani et al. (2017) used all 20 PSG recordings

versus Fraiwan et al. (2012) who used 16 PSG recordings.

The study by Koley and Dey (2012) used a support vector machine (SVM) to

classify sleep epochs from 28 adults with suspected OSA (AHI > 5 considered

positive for OSA). 16 subjects (8 OSA, 8 No OSA) composed the training data and

12 subjects (5 OSa, 7 No OSA) for the testing. The epochs of all patients were

combined in the testing and training data sets, which is to say that subjects were not

considered individually. Koley and Dey (2012) reported a classification accuracy
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of 89.91% and κ= 0.868 for the epochs of the No OSA subjects in the testing data.

For the epochs of the OSA subjects in the testing data a classification accuracy

of 88.86% and κ = 0.846 was reported. These findings suggest that when PSG

recordings from the same sleep study are analyzed there may not be a difference

in classification performance between patient status groups, especially in regard

to OSA status. However, the LOPOCV should be adopted in order to statistically

confirm that a difference exists between the means of performance measures for the

patient groups.

94



Chapter 7

HMM and NHMM Analysis

7.1 HMM and NHMM Data

The patient data sets used in the analysis of HMMs and NHMMs are the Renyi

entropy features and the final features. The final feature set consists of the 9 selected

features from chapter 5. The first 5 features are the Renyi entropy of the wavelet

coefficients in the following sub-bands: K-complex, delta, theta, alpha, and sleep

spindle. The variances of the discrete wavelet coefficients in level 4, level 7, level

8, and scale coefficient frequency bands transformed to normality via the natural

logarithm are the other 4 features. For each patient’s data sets, 500 HMMs and

500 NHMMs with different random initialization parameters were fitted and the

models the largest log-likelihood were chosen as the final HMMs and NHMMs for

that patient. The classification performance measures were calculated after the final

models for each patient were chosen.

7.2 Performance Measures

The assessment of classification performance for HMM and NHMM models will be

done using classification accuracy and the adjusted Rand index (ARI) of Steinley
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(2004b). The ARI measures the pair-wise agreement between two partitions and is

the widely preferred metric for validating cluster performance. McNicholas (2017,

p. 7) points out that "Steinley (2004a) gives detailed simulations showing that the

ARI is preferable to the misclassification rate when the number of clusters equals

the number of known classes". In this work, the first partition for each patient was

the expert scored AASM sleep states and the global decoding solution of the HMM

or NHMM was the second. Since the HMM and NHMM in this work are designed

to model a patient’s epochs into 5 clusters, one for each AASM sleep state, the

comparison between these partitions allows the ARI to be used for evaluation of

classification performance.

7.3 Preliminary Analysis

To begin the preliminary analysis, classification performance of the HMM and

NHMM models between the feature sets is analyzed. Box plots of the performance

measures of HMM and NHMM for each patient’s feature sets are presented in Fig-

ure 7.A, where it can be seen that the NHMMs appear to perform slightly better,

but they had larger variance than the HMMs. Although it can be seen in the ARI

box plot that the NHMMs were able to slightly improve the ARI values from the

HMM for some patients that used the same features, the median ARI is below 0.5

for all HMM and NHMM performances, which indicated that the global decoding

of patient sleep states was sub-optimal for at least half of the patients. Moreover,

the accuracy box plot shows that the classification performance of patient CF069 is

quite poor for all models. This is not overly surprising, as patient CF069 only has 4

distinct sleep states in their epochs (missing REM) and the HMM and NHMM clus-

ter the epochs into 5 states. For this reason, the performance measures for CF069

were removed before further analysis. The values in Table 7.1 show the mean ac-

curacy and ARI values (standard deviation) with CF069 removed.

96



Features
HMM NHMM

Accuracy ARI Accuracy ARI
Renyi 67.1 (7.9) 0.46 (0.10) 68.9 (7.8) 0.49 (0.11)
Final 65.3 (8.7) 0.45 (0.10) 67.6 (9.1) 0.48 (0.11)

Table 7.1: Mean of performance measures (standard deviation) for each model with CF069 removed.

Figure 7.A: Box plot of performance measures across model (HMM or NHMM) and patient feature sets (Renyi or Final
Features).

Figure 7.B: Comparison of HMM and NHMM performance across the Renyi entropy and final selected features
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The mean classification performance measures in Table 7.1 indicated the Renyi

features typically performed better on average, but only slightly. However, the scat-

ter plots in Figure 7.B show the comparison of classification performance of HMMs

and NHMMs between feature sets and gives insight on the model performances

for individual patients. The line on the scatter plots indicates where the HMM or

NHMM that used a patient’s Renyi entropy features would be equal to the HMM

or NHMM that used the final selected features of the same patient, ie. the line y=x

on the domain [0,1]. Having performance measures above the line means that the

model that used the final selected features performed better than the one that used

the Renyi entropy features. The ARI plot for the HMMs shows that for patients

with ARI values below 0.5, the HMM that used the final selected features typically

performed better. However, for patients with ARI above 0.5, the HMM that used the

Renyi entropy features performed better. The same trend can be seen in the ARI plot

for NHMM. The plots for HMM and NHMM accuracy between feature sets show

that the feature set used to construct the model can have a significant impact on clas-

sification accuracy for some patients. For example, the HMM accuracy for patient

CF022 was rather poor, 43.3%, when the model used the final selected features but

improved to 77.0% when the HMM used the Renyi features. The same argument

can be made for the classification accuracies of the NHMM with patient CF070.

Conversely, the HMM accuracy of patient CF021 improved when the HMM used

the final features and the NHMM accuracy of patient CF020 also improved when

using the final features. Overall, HMM and NHMM classification performances

were found to be relatively the same between feature sets.

7.4 HMM vs NHMM

Now that the performance between features sets for HMM and NHMM overall have

been considered, a further inspection between the best HMM performance of each

feature set and their corresponding NHMM was considered before the overall com-

parison between HMM and NHMM in each feature set. Presented in Tables 7.2 and
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7.3 are the confusion matrices for the HMM and NHMM that used Renyi entropy

features of patient CF003. Similarly, for the final features data, Tables 7.4 and 7.5

are the confusion matrices for the HMM and NHMM of patient CF057. CF003 and

CF057 were chosen because the ARI value for the HMMs of these patients were the

highest in each feature set. The NHMM did improve the classification performance

for CF003, specifically for the NREM 1, REM, and wake states, and there was also

improvement though slight compared to CF003, for CF057 in the NREM 2, NREM

3, and wake states. In both feature sets the NHMM improved the classification of

the best HMM performance.

CF003 HMM Classification, Accuracy = 77.23%, ARI = 0.658

E
xp

er
tS

co
re

s States NREM 1 NREM 2 NREM 3 REM Wake
NREM 1 4 1 0 13 1
NREM 2 20 354 0 32 0
NREM 3 0 19 201 0 0

REM 8 2 2 113 0
Wake 117 18 1 5 139

Table 7.2: Confusion matrix for HMM performance using Renyi entropy features of patient CF003.

CF003 NHMM Classification, Accuracy = 81.52%, ARI = 0.673

E
xp

er
tS

co
re

s States NREM 1 NREM 2 NREM 3 REM Wake
NREM 1 9 1 0 9 0
NREM 2 26 353 0 27 0
NREM 3 0 20 199 1 0

REM 3 1 2 119 0
Wake 76 17 1 10 176

Table 7.3: Confusion matrix for NHMM performance using Renyi entropy features of patient CF003.

CF057 HMM Classification, Accuracy =82.6% ARI=0.703

E
xp

er
tS

co
re

s States NREM 1 NREM 2 NREM 3 REM Wake
NREM 1 1 0 0 4 12
NREM 2 26 325 4 18 5
NREM 3 2 29 172 0 0

REM 6 0 0 153 1
Wake 57 1 0 0 130

Table 7.4: Confusion matrix for HMM performance using the final selected features of patient CF057.

99



CF057 NHMM Classification, Accuracy =84.03%, ARI = 0.726

E
xp

er
tS

co
re

s States NREM 1 NREM 2 NREM 3 REM Wake
NREM 1 1 1 0 3 12
NREM 2 17 335 6 17 3
NREM 3 2 27 174 0 0

REM 7 0 0 153 0
Wake 52 3 1 0 132

Table 7.5: Confusion matrix for NHMM performance using final selected features of patient CF057.

The scatter plots of accuracy and ARI for HMM versus the NHMM in each

feature set can be seen in Figures 7.C and 7.F. Again, the line on each of the plots

is where the HMM and NHMM performance measures would be equal when they

used the same feature set. Having observations above the line mean the NHMM

improved the classification performance. In Figure 7.C, roughly half of the patients

saw an increase in classification performance when the NHMM was used over the

HMM, but for CF022 there was a significant decrease in accuracy and ARI.

Figure 7.C: Performance of HMM vs NHMM using the Renyi features for patient data, with CF069 removed. Blue line is
where HMM performance = HMM performance, ie. the line y=x on the domain [0,1]

Figures 7.D and 7.E are the hypnograms of CF022 and CF034, the patients who

saw the worst and best improvement from the HMM to NHMM using the Renyi
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entropy features. It can be seen in Figure 7.D that the HMM for CF022 was better

able to detect the transitions to the NREM 2 and NREM 3 states from the active

sleep states. However, the NHMM was better able to discriminate between the

REM and wake states.

Figure 7.D: Hypnograms of patient CF022 comparing the HMM and the NHMM classification using the Renyi entropy
features. Accuracy of each state for HMM: Wake 56%, REM 85.5%, NREM 1 61.11%, NREM 2 91.3%, NREM 3 72.4%.
Accuracy of each state for NHMM: Wake 85.6%, REM 97.8%, NREM 1 9.3%, NREM 2 62.2%, NREM 3 47%

Figure 7.E: Hypnograms of patient CF034 comparing the HMM and the NHMM classification using the Renyi entropy
features. Accuracy of each state for HMM: Wake 50.7%, REM 38.1%, NREM 1 67.7%, NREM 2 80.2%, NREM 3 78.6%.
Accuracy of each state for NHMM: Wake 80.8%, REM 95.2%, NREM 1 13.8%, NREM 2 77.8%, NREM 3 96.6%

The hypnograms of CF034 in Figure 7.E show that the NHMM for CF034 was
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better able to detect the transitions between NREM 2 and NREM 3 and discriminate

between the wake state and NREM 1, which is indicated by the fewer transitions to

NREM 1 in the wake state portions at the beginning and end of the PSG recording.

The increased number of transitions between the wake and NREM 1 states for the

HMM improves the overall classification of the NREM 1 state, but at the cost of

decreasing the accuracy for the wake and REM states. Despite the decrease in

performance for CF022 from HMM to NHMM, the NHMM for both CF022 and

CF034 was better at effectively classifying the active sleep states wake and REM.

Figure 7.F: Performance of HMM vs NHMM using the final selected features for patient data, with CF069 removed. Blue
line is where HMM performance = HMM performance, ie. the line y=x on the domain [0,1]

The overall trend from Figure 7.C can also be seen in Figure 7.F for HMM

vs NHMM with the final features, but with more variation around the line. The

patients CF010, CF020, CF022, and CF032 had a relatively larger increase in ac-

curacy from HMM to NHMM, however, CF021, CF070, CF072, and CF088 had a

significant decrease in accuracy. The hypnograms for patients CF021 and CF020,

who saw the the worst and best improvement from HMM to NHMM using the fi-

nal features, can be seen in Figures 7.G and 7.H. Patient CF021 spent the majority

of the PSG recording in the wake state and had a very small proportion of REM
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sleep, which indicates that the patient did not sleep very well during the laboratory

PSG. The extended periods of being awake drastically hurt the performances of the

HMM and NHMM, but the HMM was better able to classify the wake state, which

increased the overall performance compared to the NHMM. Despite the decrease

in performance measures for CF021 from NHMM to HMM, both the HMM and

NHMM classification performances were sub-optimal for patient CF021.

The hypnograms for CF020 in Figure 7.H tell a different story, which is that

the NHMM was better able to detect the transitions between NREM 2 and NREM

3 from the more active sleep states. Furthermore, the NHMM was better able to

discriminate between the NREM 1 state and the wake and REM states for patient

CF020, which is why there was such a big increase in the ARI from HMM to

NHMM. The inability to effectively discriminate between all the active sleep states,

NREM 1, REM, and wake, is a problem that plagues many sleep state classification

algorithms. However, the hypnograms for CF020 show that the NHMM is able

to accomplish this task for some patients without sacrificing accuracy of the other

states.

Figure 7.G: Hypnograms of patient CF021 comparing the HMM and the NHMM classification using the final features.
Accuracy of each state for HMM: Wake 67.7%, REM 0%, NREM 1 0%, NREM 2 87.2%, NREM 3 98.1%. Accuracy of
each state for NHMM: Wake 44.1%, REM 0%, NREM 1 0%, NREM 2 85.1%, NREM 3 98.7%
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Figure 7.H: Hypnograms of patient CF020 comparing the HMM and the NHMM classification using the final features.
Accuracy of each state for HMM: Wake 54.1%, REM 76.7%, NREM 1 1.2%, NREM 2 47.5%, NREM 3 92.1%. Accuracy
of each state for NHMM: Wake 55.7%, REM 81.9%, NREM 1 58.5%, NREM 2 81.1%, NREM 3 94.5%

It appears overall that within both feature sets the NHMM does improve classifi-

cation performance over the HMM. However, a one-sample t-test on the differences

between NHMM and HHM performance measures was performed to be certain

that the increase in accuracy and ARI is statistically significant. To clarify, in each

feature set the difference between HMM and NHMM accuracy was calculated for

each patient and then the same was done for ARI. Then a one sample t-test of the

differences was performed and the results are presented in Table 7.6. With 95%

confidence, the NHMM accuracy was on average between 0.5% and 3.1% higher

than the HMM accuracy when using the Renyi entropy features. Similarly, when

using the final features data the NHMM accuracy was on average between 0.4% and

4.2% higher than the HMM accuracy. Furthermore, again with 95% confidence, the

ARI values for the NHMM are on average between 0.015 and 0.045 higher than the

HMM ARI values when using the Renyi entropy features. The ARI values for the

NHMM are on average between 0.013 and 0.051 larger than the HMM ARI values

when using the final features. Hence, the NHMM model outperforms the HMM

model in terms of sleep state classification for both feature sets.
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Features
Performance Measure

Accuracy ARI
t , df = 73 p-value 95% CI t , df=73 p-value 95% CI

Renyi 2.75 0.008 (0.5, 3.1) 3.90 0.0002 (0.015, 0.045)
Final 2.47 0.016 (0.4, 4.2) 3.39 0.001 (0.013, 0.051)

Table 7.6: Table of results from the one-sample t-tests for the mean difference between NHMM and HMM performance
metrics. Differences are calculated patient-wise, NHMM measure - HMM measure.

7.5 Performance Across Age and OSA groups

The performance measures of the NHMM models were investigated further across

demographic groups using MANOVA. Table 7.7 gives the number of patients in

each combination of age, OSA, and gender groups (patient CF069 removed) that

were used. The gender groups are still very imbalanced and have quite low cell

counts for the majority of female OSA and age group combinations, which can be

problematic for modelling a 3-way interaction term. Again, as in Chapter 6, the

gender variable will not be included in the MANOVA model, which leaves each

performance measure to be analyzed using a 2-way MANOVA (n = 74, p = 2).

Once again, as in any hypothesis test, verification of the MANOVAs assumptions is

required before proceeding with the results.

Gender
Low OSA High OSA

Totals
Under 13 Over 13 Under 13 Over 13

Male 19 14 15 9 57
Female 2 9 4 2 17
Totals 21 23 19 11 74

Table 7.7: Number of Patients in all demographic group combinations, with CF069 removed.
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The independence of observations within the demographic group combinations

is intact, as patients cannot belong to both OSA groups or both age groups. Ho-

moscedasticity across OSA and age group combinations was tested using Box’s

M-test (Box, 1949) and the results are presented in Table 7.8. The p-values for ac-

curacy and ARI indicated that the equal covariances assumption was valid for both

MANOVA models. The marginal normality of the residuals was verified using QQ

plots in Figure 7.I for each performance measure. In each feature set, the majority

of residuals fell on the line, which indicates that the quantiles of the residuals match

those of a univariate normal distribution. The multivariate normality of residuals is

checked using the Chi-square QQ plots shown in Figure 7.J. The Chi-square plot

for the ARI indicates that the multivariate normality of residuals assumption is met

for that MANOVA, however, the plot for accuracy shows that there could be po-

tential outliers: CF020, CF034, CF054, CF070. The majority of accuracy residual

quantiles matched that of the Chi-square, so the assumption of multivariate normal-

ity for the accuracy residuals was considered valid. Lastly, Figure 7.K shows the

residuals versus fitted values in each performance measure across the two feature

sets. In each plot the residuals are well balanced around the horizontal line y=0,

hence, the linear MANOVAs model were considered appropriate. Thus, all of the

MANOVA assumptions were met for each 2-way MANOVA model with the results

presented in Tables 7.9 and 7.10.

Measure Df χ2 statistic p-value
Accuracy 9 14.79 0.097

ARI 9 8.93 0.443
Table 7.8: Output from Box’s M-test for assessment of homoscedasticity assumption.
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Figure 7.I: QQ plots of the residuals for accuracy and ARI across both feature sets.

Figure 7.J: Chi-square QQ plot to assess multivariate normality of residuals for each performance measure.
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Figure 7.K: Residual vs fitted value plots of each performance measure across each feature set. Group colors: Green (Under
13:Low OSA), Black (Under 13:High OSA), Blue (Over 13:Low OSA) , Red (Over 13:High OSA)

MANOVA Results

Factor ≈ F-statistic Dfn Dfd p-value
Age 0.293 2 69 0.747
OSA 6.49 2 69 0.0026

Age:OSA 1.58 2 69 0.214
Table 7.9: MANOVA table for NHMM accuracy

Factor ≈ F-statistic Dfn Dfd p-value
Age 0.0434 2 69 0.958
OSA 5.84 2 69 0.0045

Age:OSA 1.04 2 69 0.360
Table 7.10: MANOVA table for NHMM ARI.

The first hypothesis tested in each of the 2-way MANOVAs was for the interaction

effect. With p-values of 0.214 and 0.360 and a significance level of 5%, the data did

not provide sufficient evidence of an interaction effect between age and OSA status.
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Next, the hypothesis testing for the main effects of age and OSA was performed.

Again, at a 5% significance level, the data did not provide sufficient evidence of a

difference between the mean accuracies, or the ARI measures, of the age groups.

However, the p-values of 0.0026 and 0.0045 for the main effect of OSA indicate

that the data did provide sufficient evidence of a difference between the mean ac-

curacies, and ARI measures, of the OSA groups. Since OSA status was found to

have a significant effect in both MANOVA models, the analysis was extended to

performing a 2-way ANOVA on each accuracy and ARI measure in each feature

set. In total, four 2-way ANOVAs were performed. Only in the ANOVAs for the

NHMMs that used the final features was the OSA status, or any factor effect, found

to be significant. The results of the 2-way ANOVAs for NHMM accuracy and ARI

using the final features are presented in Tables 7.11 and 7.12.

Factor Df Mean SS F-statistic p-value
Age 1 40.7 0.543 0.464
OSA 1 553.16 7.38 0.0083

Age:OSA 1 200.24 2.67 0.107
Residuals 70 74.92 - -

Table 7.11: ANOVA table for NHMM accuracy using final features.

Factor Df Mean SS F-statistic p-value
Age 1 0.00029 0.026 0.872
OSA 1 0.0547 4.87 0.031

Age:OSA 1 0.0201 1.79 0.185
Residuals 70 0.0112 - -

Table 7.12: ANOVA table for NHMM ARI using final features.

The first hypothesis tested in the ANOVAs was for the interaction effect be-

tween age and OSA. At a 5% significance level, the data did not provide evidence

to suggest an interaction effect between the age and OSA groups on the mean accu-

racies and ARI values. Similarly, for the main effect of age, the data did not provide

sufficient evidence of a difference between the mean accuracies and ARI values of

the age groups. Lastly, the hypothesis test for main effect of OSA found that, at a

5% significance level, the data provided sufficient evidence there was a difference

between the mean accuracies, and the mean ARIs, of patient OSA groups. Since
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OSA was found to be significant in both ANOVAs presented here, a Tukey’s HSD

test (Tukey, 1949) was performed with an overall significance level of 5%.

Measure OSA low - OSA high Lower Bound Upper Bound p-value
Accuracy 5.50 1.41 9.6 0.009

ARI 0.0547 0.0047 0.105 0.033
Table 7.13: Table of results from Tukey’s honest symmetric differences test.

The results of the Tukey’s HSD tests are presented in Table 7.13. The data

showed, with 95% confidence, the mean accuracy of patients with low OSA status

is between 1.41% and 9.6% higher than patients with high OSA status. Further-

more, with 95% confidence, the mean ARI measure for patients with low OSA

status is between 0.0047 and 0.105 higher than patients with high OSA status. This

means that the classification performance of the NHMM using the final features is

sensitive to patient OSA status. Furthermore, the findings indicate that, for meth-

ods clustering the individual patient’s sleep epochs, care should be taken when an-

alyzing classification performance of patients versus healthy subjects, since patient

status is the primary recommendation for a sleep PSG, which means that for a clas-

sification algorithm to be successful in a clinical setting, it must be robust in relation

to patient status.

7.6 Extended HMM Analysis

A key benefit of the HMM and, by extension, NHMM is that not only can they be

effective for sleep state classification, but inspection of their transition matrices can

also provide insight into the dynamics of a patient’s sleep. The HMM transition ma-

trices of CF003 and CF057 from Section 7.4 are presented in Tables 7.14 and 7.15.

For simplicity, the transition matrices of the corresponding NHMM performances

of patients CF003 and CF057 are not presented in this work, as the transition prob-

abilities change with time and would require a transition matrix to be presented for

every t.
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Patient CF003: Renyi Entropy Features
States NREM 1 NREM 2 NREM 3 REM Wake

NREM 1 0 0 0.333 0.333 0.333
NREM 2 0.008 0 0.012 0.098 0.882
NREM 3 0 0.25 0.25 0.25 0.25

REM 0.985 0 0 0 0.015
Wake 0 .333 0.333 0.333 0

Table 7.14: Transition matrix of HMM using Renyi entropy features for CF003. Values are the probabilities for transition to
row state to column state.

The transition probabilities for CF003 of the HMM that used the Renyi entropy

features indicated that when CF003 was in NREM 2 sleep, they had a high prob-

ability of transitioning to the wake state but then would transition back to NREM

2, NREM 3, or REM sleep. Also, patient CF003 had equal probabilities to tran-

sition to any state other than NREM 1 when in NREM 3, but if CF003 was in the

REM state a transition to the NREM 1 state was almost certain. More interesting

is the probabilities in Table 7.14 that are 0, like for the transitions from NREM 1

to NREM 2, as these are thought to be successive sleep states that help a person

transition to deep sleep. Furthermore, the majority of transition probabilities that

pertain to staying in the current state (the diagonal) are 0, except for NREM 3. This

means that when in sleep states other than NREM 3, CF003 was found to certainly

transition to another state.

Patient CF057: Final Features
States NREM 1 NREM 2 NREM 3 REM Wake

NREM 1 0 0.27 0.558 0.11 0.062
NREM 2 0.16 0 0.022 0 0.962
NREM 3 0.967 0 0.027 0 0.006

REM 0 0 0.051 0.910 0.039
Wake 0 0.333 0.333 0.333 0

Table 7.15: Transition matrix of HMM using the final selected features for patient CF057. Values are the probabilities for
transition to row state to column state.

The transition probabilities for patient CF057 of the HMM that used the final

selected features tells a slightly different story. Patient CF057 was found to only

have a high probability of transitioning to the wake state when in NREM 2, but
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had the same equal probabilities of transitioning from the wake state to NREM 2,

NREM 3, and REM states, like patient CF003. The transition probabilities between

states NREM 1 and NREM 2 are larger than for patient CF003. This means that

patient CF057 was found more likely to alternate between NREM 1 and NREM 2

states, but again had 0 probability of staying NREM 1 or NREM 2 for consecutive

epochs. Furthermore, patient CF057 was more likely to transition to lighter sleep

than staying in NREM 3, but when patient CF057 hit the REM state there was a

high probability to stay in the REM state for consecutive epochs.

The transition matrices presented in this work could be further explored and

analyzed with greater scrutiny, especially for a comparative analysis of the sleep

dynamics of between patients with Low OSA status and patients with High OSA

status. Similarly, a comparative analysis between patients 12 years or younger and

those 13 years or older may provide experts with deeper insight as to how transi-

tioning between sleep states changes with age. Moreover, these possible analyses

might provide a starting point for building HMMs and NHMMs that can forecast

the sleep states of new patients.
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Chapter 8

Conclusion

8.1 Results

The first result, although somewhat unexpected, of this work was the range of Hurst

exponent values for EEG and non-EEG PSG channels. As stated in Chapter 4,

Vorobyov and Cichocki (2002, p. 296) reported that "the Hurst exponent takes val-

ues between 0.70-0.76 for most human phenomena" and the study by Bian et al.

(2006) used a range of 0.7 - 0.9 to identify source signals that pertained to neural

activity. In this work, the Hurst exponent was found to take a different range for

EEG signals, 0.6-0.8, and, for all human phenomena included, the Hurst exponents

of the non-EEG information was typically below 0.6, except for the abdomen EMG

and EOG channels. The difference between the range found by Bian et al. (2006)

and this work could be due to other factors, such as the sampling frequency of the

PSG, the sleep laboratory and equipment used to perform the PSG, and/or possibly

even the demographic groups of the subjects included in the study.

The random forest classification performance for the CF00N data was lower

than what was found by the studies by Fraiwan et al. (2012) and da Silveira et al.

(2017) that used the Sleep EDF 2002 and Sleep EDF Expaned data sets, however,

this work extended the cross validation analysis to a LOPOCV. In the LOPOCV it
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was found that the classification performance measures decreased when the training

data did not contain epochs from the same patients in the testing data. On the

upside, there was no significant difference in the mean classification performance

measures between the age and OSA status groups. The same could not be said

for the NHMMs that used the final selected features, as patients in the High OSA

status group had a lower mean performance measures than patients in the Low OSA

group.

8.2 HMM and NHMM vs Random Forest

The classification results of Chapter 6 found that in the random forest LOPOCV

the mean classification performance of all patients was best when using the DWC

features, while the mean performance when using the final selected features was not

far behind. Besides the non-EEG features, the Renyi entropy features had the worst

mean classification performance in the random forest LOPOCV analysis. In Chap-

ter 7, the NHMM was found, on average, to improve classification performance

over the HMM using either the Renyi entropy or final selected features. Before the

comparison between the classification performances of the random forests with the

HMM and NHMM can be made, it should be noted that even though the goal of

both approaches was to classify the epochs of individual patients, there is a key dif-

ference between the approaches. The random forest is a supervised method where

the algorithm uses observations with known class labels to learn rules for classify-

ing observations with unknown labels. Furthermore, the researcher has complete

control in a cross validation setting over what information is used to train the ran-

dom forest and what information is used to verify it, whereas the HMM and NHMM

in this work are semi-supervised. They are semi-supervised because the HMM and

NHMM were given a specified number of states, 5, to cluster the data.

The scatter plots in Figure 8.A compare the accuracies for individual patients

of the random forest and the HMM or NHMM using the Renyi entropy and final

selected features. The line in the plots is where the accuracies for random forest
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Figure 8.A: Accuracy scatter plots comparing random forest LOPOCV classification to HMM and NHMM

and HMM or NHMM would be equal. The first major difference was the classifica-

tion performance of patient CF069, which stems from the key difference between

the random forest and the HMM and NHMM approaches. When the Renyi entropy

features were used, the random forest accuracies of patients CF021, CF037, CF068

and CF070 were found to be quite poor compared with the other patients, but the

HMM and NHMM were able to classify these patients’ epochs with accuracies

more consistent with all other patients. Moreover, there are more patients below the

lines of the comparative scatter plots for the Renyi entropy features, which indicates

that the HMM and NHMM were more accurate across individual patients for this

feature set. However, in the scatter plots that pertain to the Renyi entropy features

the random forest appeared to have performed better than HMM and NHMM, since

the majority of observations were above the line. Despite this trade off in better clas-

sification performance between random forest and HMM or NHMM across feature

115



sets, the HMM and NHMM provide insight into the dynamics of the sleep state

dependence structure via the transition probabilities, which is something random

forest and many other supervised algorithms cannot do. Understanding the depen-

dence structure between sleep states may have more benefits than just improving

sleep state classification: it may provide sleep experts with new information about

the dependence structure of sleep states for different age, gender, and/or patient

groups.

8.3 Future Work

The CF00N data presented in this work has many possibilities for future studies.

The first place the author would start is right at the beginning: instead of band pass

filtering and then forward-backward filtering with the Butterworth filter, the author

would skip the latter to retain as much information as possible before cleaning the

data with the ICA. To add to the previous statement, the author would consider

performing the artifact removal using Matlab instead of R. The reason for this being

that Matlab has many plug-ins available that are better suited to handle EEG data, so

that, instead of cleaning each epoch individually, the author could clean the entire

recording all at once.

All of the ideas mentioned above would have big implications on the effective-

ness of the statistical features to discriminate against sleep states. The statistical

features calculated in this work have been proven effective for the CF00N data,

but there might be room for improvement. The first one being the statistical fea-

tures of the non-EEG channels. There was relevant information present in those

PSG channels that was not captured by the features calculated in this work. The

wavelet transformations used to calculate the Renyi entropy and DWC moments

features could be used in a similar manner for the non-EEG channels. Furthermore,

the frequency bands used by Fraiwan et al. (2012) could be refined, that is, use

smaller frequency bands and more of them to cover the range 0-35Hz. This refine-

ment could lead to a better distinction between which frequencies are dominating
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the EEG signal in an epoch and help algorithms better discriminate between sleep

states. Along with the refinement, exploration using Daubechies wavelets of vary-

ing order may also find features that are better able to discriminate between sleep

states.

Lastly, further HMM and NHMM analysis using new features that better dis-

criminate between sleep states could be used to construct an HMM or NHMM that

can accurately predict the sleep states of a new patient. Also, instead of using 30s

epochs, use features calculated on smaller epochs, say 1s, and then model the data

with HMM or NHMM to determine when the transitions between sleep states are

happening and how long the patient stays in that sleep state, which would give a

better estimate of the proportion of REM and NREM sleep for humans and non-

humans. This might also provide better estimates for the transition probabilities

and, consequently, a better understanding of the dynamics of sleep cycles in healthy

subjects and patients.
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Güneş, S., Polat, K., & Şebnem Yosunkaya. (2010). Efficient sleep

stage recognition system based on eeg signal using k-means cluster-

ing based feature weighting. Expert Systems with Applications, 37(12),

7922 - 7928. Retrieved from http://www.sciencedirect.com/

science/article/pii/S095741741000343X doi: https://doi.org/

10.1016/j.eswa.2010.04.043

Hassan, A. R., & Subasi, A. (2017). A decision support system for automated iden-

tification of sleep stages from single-channel eeg signals. Knowledge-Based

Systems, 128, 115 - 124. Retrieved from http://www.sciencedirect

.com/science/article/pii/S095070511730206X doi: https://

doi.org/10.1016/j.knosys.2017.05.005

Helwig, N. E. (2018). ica: Independent component analysis [Computer

software manual]. Retrieved from https://CRAN.R-project.org/

package=ica (R package version 1.0-2)

Ho, T. K. (1995). Random decision forests. In Proceedings of the third in-

ternational conference on document analysis and recognition (volume 1)

- volume 1 (pp. 278–). Washington, DC, USA: IEEE Computer Society.

Retrieved from http://dl.acm.org/citation.cfm?id=844379

.844681

Ho, T. K. (1998, August). The random subspace method for constructing deci-

sion forests. IEEE Trans. Pattern Anal. Mach. Intell., 20(8), 832–844. Re-

122

http://dx.doi.org/10.1561/2000000034
http://dx.doi.org/10.1561/2000000034
http://www.sciencedirect.com/science/article/pii/S095741741000343X
http://www.sciencedirect.com/science/article/pii/S095741741000343X
http://www.sciencedirect.com/science/article/pii/S095070511730206X
http://www.sciencedirect.com/science/article/pii/S095070511730206X
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=ica
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681


trieved from https://doi.org/10.1109/34.709601 doi: 10.1109/

34.709601

Hsu, Y.-L., Yang, Y.-T., Wang, J.-S., & Hsu, C.-Y. (2013). Automatic sleep stage

recurrent neural classifier using energy features of eeg signals. Neurocom-

puting, 104, 105 - 114. Retrieved from http://www.sciencedirect

.com/science/article/pii/S0925231212008387 doi: https://

doi.org/10.1016/j.neucom.2012.11.003

Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hid-

den markov model for precipitation occurrence. Journal of the Royal Sta-

tistical Society. Series C (Applied Statistics), 48(1), 15–30. Retrieved from

http://www.jstor.org/stable/2680815

Hurst, H. E. (1951). Long-term storage capacity of reservoirs..

Hurst, H. E., Black, R. P., & Simaika, Y. M. (1965). Long-term storage : an

experimental study / by h.e. hurst, r.p. black, y.m. simaika [Book]. Constable

London.

Hyvarinen, A. (1999, May). Fast and robust fixed-point algorithms for independent

component analysis. IEEE Transactions on Neural Networks, 10(3), 626-634.

doi: 10.1109/72.761722

Hyvärinen, A., & Oja, E. (2000). Independent component analy-

sis: algorithms and applications. Neural Networks, 13(4), 411 -

430. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0893608000000265 doi: https://doi.org/10.1016/

S0893-6080(00)00026-5

Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007, 01). The aasm manual

for the scoring of sleep and associated events: Rules, terminology and tech-

nical specifications. Westchester, IL: American Academy of Sleep Medicine.

Johnson, R., & Wichern, D. (2007). Applied multivariate statistical analysis.

123

https://doi.org/10.1109/34.709601
http://www.sciencedirect.com/science/article/pii/S0925231212008387
http://www.sciencedirect.com/science/article/pii/S0925231212008387
http://www.jstor.org/stable/2680815
http://www.sciencedirect.com/science/article/pii/S0893608000000265
http://www.sciencedirect.com/science/article/pii/S0893608000000265


Pearson Prentice Hall. Retrieved from https://books.google.ca/

books?id=gFWcQgAACAAJ

Kemp, B., & A. C. Kamphuisen, H. (1986, 02). Simulation of human hypnograms

using a markov chain model. Sleep, 9, 405-14. doi: 10.1093/sleep/9.3.405

Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classi-

fication using single channel eeg signal. Computers in Biology and Medicine,

42(12), 1186 - 1195. Retrieved from http://www.sciencedirect

.com/science/article/pii/S0010482512001588 doi: https://

doi.org/10.1016/j.compbiomed.2012.09.012

Lagona, F., Maruotti, A., & Picone, M. (2011). A non-homogeneous hidden markov

model for the analysis of multi-pollutant exceedances data. In P. Dymarski

(Ed.), Hidden markov models (chap. 10). Rijeka: IntechOpen. Retrieved

from https://doi.org/10.5772/14749 doi: 10.5772/14749

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement

for categorical data. Biometrics, 33(1), 159–174. Retrieved from http://

www.jstor.org/stable/2529310

Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.),

Contributions to probability and statistics: Essays in honor of harold

hotelling (p. 278-292). Stanford: Stanford University Press. Retrieved from

https://books.google.ca/books?id=ZUSsAAAAIAAJ

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R

News, 2(3), 18-22. Retrieved from https://CRAN.R-project.org/

doc/Rnews/

Längkvist, M., Karlsson, L., & Loutfi, A. (2012). Sleep stage

classification using unsupervised feature learning. Retrieved

from https://login.ezproxy.library.ualberta.ca/

login?url=https://search.ebscohost.com/login.aspx

124

https://books.google.ca/books?id=gFWcQgAACAAJ
https://books.google.ca/books?id=gFWcQgAACAAJ
http://www.sciencedirect.com/science/article/pii/S0010482512001588
http://www.sciencedirect.com/science/article/pii/S0010482512001588
https://doi.org/10.5772/14749
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://books.google.ca/books?id=ZUSsAAAAIAAJ
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site


?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=

eds-live&scope=site

McNicholas, P. (2017). Mixture model-based classification. New York: Chap-

man and Hall/CRC. Retrieved from https://doi.org/10.1201/

9781315373577

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2010). Ad-

just: An automatic eeg artifact detector based on the joint use of spa-

tial and temporal features. Psychophysiology, 48(2), 229-240. Re-

trieved from https://onlinelibrary.wiley.com/doi/abs/10

.1111/j.1469-8986.2010.01061.x doi: 10.1111/j.1469-8986

.2010.01061.x

Mousavi, S., Afghah, F., & Acharya, U. R. (2019, Jul). Sleepeegnet: Automated

sleep stage scoring with sequence to sequence deep learning approach. Plos

One, 14(5). doi: 10.1371/journal.pone.0216456

Nolan, H., Whelan, R., & Reilly, R. (2010). Faster: Fully automated statisti-

cal thresholding for eeg artifact rejection. Journal of Neuroscience Meth-

ods, 192(1), 152 - 162. Retrieved from http://www.sciencedirect

.com/science/article/pii/S0165027010003894 doi: https://

doi.org/10.1016/j.jneumeth.2010.07.015

Ocañ-Riola, R. (2005). Non-homogeneous markov processes for biomed-

ical data analysis. Biometrical Journal, 47(3), 369-376. Re-

trieved from https://onlinelibrary.wiley.com/doi/abs/10

.1002/bimj.200310114 doi: 10.1002/bimj.200310114

Pan, S.-T., Kuo, C.-E., Zeng, J.-H., & Liang, S.-F. (2012, Aug 21). A transition-

constrained discrete hidden markov model for automatic sleep staging.

BioMedical Engineering OnLine, 11(1), 52. Retrieved from https://doi

.org/10.1186/1475-925X-11-52 doi: 10.1186/1475-925X-11-52

125

https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsoai&AN=edsoai.ocn802847842&site=eds-live&scope=site
https://doi.org/10.1201/9781315373577
https://doi.org/10.1201/9781315373577
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.2010.01061.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.2010.01061.x
http://www.sciencedirect.com/science/article/pii/S0165027010003894
http://www.sciencedirect.com/science/article/pii/S0165027010003894
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.200310114
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.200310114
https://doi.org/10.1186/1475-925X-11-52
https://doi.org/10.1186/1475-925X-11-52


Peker, M. (2016a). An efficient sleep scoring system based on eeg signal using

complex-valued machine learning algorithms. Neurocomputing, 207, 165 -

177. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0925231216303289 doi: https://doi.org/10.1016/

j.neucom.2016.04.049

Peker, M. (2016b). A new approach for automatic sleep scoring: Combin-

ing taguchi based complex-valued neural network and complex wavelet

transform. Computer Methods and Programs in Biomedicine, 129, 203 -

216. Retrieved from http://www.sciencedirect.com/science/

article/pii/S016926071600002X doi: https://doi.org/10.1016/

j.cmpb.2016.01.001

Penny, W., & Roberts, S. (1999, 10). Gaussian observation hidden markov models

for eeg analysis.

R Core Team. (2019). R: A language and environment for statistical computing

[Computer software manual]. Vienna, Austria. Retrieved from https://

www.R-project.org/

Rabiner, L. R. (1989, Feb). A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

doi: 10.1109/5.18626

Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminol-

ogy, techniques and scoring system for sleep stages of human subjects: A.

rechtschaffen and a. kales (editors). (public health service, u.s. government

printing office, washington, d.c.).

Seifpour, S., Niknazar, H., Mikaeili, M., & Nasrabadi, A. M. (2018). A new

automatic sleep staging system based on statistical behavior of local ex-

trema using single channel eeg signal. Expert Systems with Applications,

104, 277 - 293. Retrieved from http://www.sciencedirect.com/

126

http://www.sciencedirect.com/science/article/pii/S0925231216303289
http://www.sciencedirect.com/science/article/pii/S0925231216303289
http://www.sciencedirect.com/science/article/pii/S016926071600002X
http://www.sciencedirect.com/science/article/pii/S016926071600002X
https://www.R-project.org/
https://www.R-project.org/
http://www.sciencedirect.com/science/article/pii/S095741741830160X
http://www.sciencedirect.com/science/article/pii/S095741741830160X
http://www.sciencedirect.com/science/article/pii/S095741741830160X


science/article/pii/S095741741830160X doi: https://doi.org/

10.1016/j.eswa.2018.03.020

Shannon, C. E. (1948, Oct). A mathematical theory of communication. The Bell

System Technical Journal, 27(4), 623-656. doi: 10.1002/j.1538-7305.1948

.tb00917.x

Steinley, D. (2004a, 09). Properties of the hubert-arabie adjusted rand index. Psy-

chological methods, 9, 386-96. doi: 10.1037/1082-989X.9.3.386

Steinley, D. (2004b, 09). Properties of the hubert-arabie adjusted rand index. Psy-

chological methods, 9, 386-96. doi: 10.1037/1082-989X.9.3.386

Stepnowsky, C., Levendowski, D., Popovic, D., Ayappa, I., & Rapoport,

D. M. (2013). Scoring accuracy of automated sleep staging from a

bipolar electroocular recording compared to manual scoring by mul-

tiple raters. Sleep Medicine, 14(11), 1199 - 1207. Retrieved from

http://www.sciencedirect.com/science/article/pii/

S1389945713002347 doi: https://doi.org/10.1016/j.sleep.2013.04.022

Sucar, L. (2015). Probabilistic graphical models: Principles and applications.

Springer London LTD.

Supratak, A., Dong, H., Wu, C., & Guo, Y. (2017, Nov). Deepsleepnet: A model for

automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering, 25(11), 1998-

2008. doi: 10.1109/TNSRE.2017.2721116

Terzano, M. G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guillem-

inault, C., . . . Walters, A. (2001). Atlas, rules, and recording techniques for

the scoring of cyclic alternating pattern (cap) in human sleep. Sleep Medicine,

2(6), 537 - 553. Retrieved from http://www.sciencedirect.com/

science/article/pii/S1389945701001496 doi: https://doi.org/

10.1016/S1389-9457(01)00149-6

127

http://www.sciencedirect.com/science/article/pii/S095741741830160X
http://www.sciencedirect.com/science/article/pii/S095741741830160X
http://www.sciencedirect.com/science/article/pii/S095741741830160X
http://www.sciencedirect.com/science/article/pii/S1389945713002347
http://www.sciencedirect.com/science/article/pii/S1389945713002347
http://www.sciencedirect.com/science/article/pii/S1389945701001496
http://www.sciencedirect.com/science/article/pii/S1389945701001496


DREAMS. (2016). The dreams subjects database. Retrieved from

http://www.tcfs.fpms.ac.be/devuyst/Databases/

DatabaseSubjects/

Trevenen, M. L., Turlach, B. A., Eastwood, P. R., Straker, L. M., & Murray, K.

(2019). Using hidden markov models with raw, triaxial wrist accelerometry

data to determine sleep stages. Australian & New Zealand Journal of Statis-

tics, 0(0). Retrieved from https://onlinelibrary.wiley.com/

doi/abs/10.1111/anzs.12270 doi: 10.1111/anzs.12270

Tukey, J. W. (1949). Comparing individual means in the analysis of variance.

Biometrics, 5(2), 99–114. Retrieved from http://www.jstor.org/

stable/3001913

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth

ed.). New York: Springer. Retrieved from http://www.stats.ox.ac

.uk/pub/MASS4 (ISBN 0-387-95457-0)

Visser, I., & Speekenbrink, M. (2010). depmixS4: An R package for hidden

markov models. Journal of Statistical Software, 36(7), 1–21. Retrieved from

http://www.jstatsoft.org/v36/i07/

Viterbi, A. (1967, April). Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Transactions on Information

Theory, 13(2), 260-269. doi: 10.1109/TIT.1967.1054010

Vorobyov, S., & Cichocki, A. (2002, Apr 01). Blind noise reduction for multi-

sensory signals using ica and subspace filtering, with application to eeg anal-

ysis. Biological Cybernetics, 86(4), 293–303. Retrieved from https://

doi.org/10.1007/s00422-001-0298-6 doi: 10.1007/s00422-001

-0298-6

Weiss, B., Clemens, Z., Bódizs, R., Vágó, Z., & Halász, P. (2009). Spatio-

temporal analysis of monofractal and multifractal properties of the hu-

128

http://www.tcfs.fpms.ac.be/devuyst/Databases/DatabaseSubjects/
http://www.tcfs.fpms.ac.be/devuyst/Databases/DatabaseSubjects/
https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12270
https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12270
http://www.jstor.org/stable/3001913
http://www.jstor.org/stable/3001913
http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
http://www.jstatsoft.org/v36/i07/
https://doi.org/10.1007/s00422-001-0298-6
https://doi.org/10.1007/s00422-001-0298-6


man sleep eeg. Journal of Neuroscience Methods, 185(1), 116 -

124. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0165027009004038 doi: https://doi.org/10.1016/

j.jneumeth.2009.07.027

Xu, H. (2005). Classification of sleep stage based on eeg wave (Unpublished

master’s thesis). The University of Chicago, Chicago, Illinois.

Yaghouby, F., Modur, P., & Sunderam, S. (2014, 11). Naive scoring of human

sleep based on a hidden markov model of the electroencephalogram. 2014

36th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, EMBC 2014, 5028-5031. doi: 10.1109/EMBC.2014

.6944754

Yang, M. C. K., & Hursch, C. J. (1973). The use of a semi-markov model

for describing sleep patterns. Biometrics, 29(4), 667–676. Retrieved from

http://www.jstor.org/stable/2529133

Zucchini, W., MacDonald, I. L., & Langrock, R. (2016). Hidden markov models

for time series: An introduction using r,(2nd edition). Chapman & Hall/CRC,

Boca Raton. Retrieved from https://doi.org/10.1201/b20790

Zung, W. W. K., Naylor, T. H., Gianturco, D. T., & Wilson, W. P. (1966). Com-

puter simulation of sleep eeg patterns with a markov chain model. In J. Wor-

tis (Ed.), Recent advances in biological psychiatry: The proceedings of the

twentieth annual convention and scientific program of the society of biolog-

ical psychiatry, new york city, april 30–may 2,1965 (pp. 335–355). Boston,

MA: Springer US. Retrieved from https://doi.org/10.1007/978

-1-4899-7313-9-36 doi: 10.1007/978-1-4899-7313-9-36

Özşen, S. (2012, 10). Classification of sleep stages using class-dependent sequen-

tial feature selection and artificial neural network. Neural Computing and

Applications, 23. doi: 10.1007/s00521-012-1065-4

129

http://www.sciencedirect.com/science/article/pii/S0165027009004038
http://www.sciencedirect.com/science/article/pii/S0165027009004038
http://www.jstor.org/stable/2529133
https://doi.org/10.1201/b20790
https://doi.org/10.1007/978-1-4899-7313-9-36
https://doi.org/10.1007/978-1-4899-7313-9-36


Šušmáková, K., & Krakovská, A. (2008). Discrimination ability of individual mea-

sures used in sleep stages classification. Artificial Intelligence in Medicine,

44(3), 261 - 277. Retrieved from http://www.sciencedirect.com/

science/article/pii/S0933365708000924 doi: https://doi.org/

10.1016/j.artmed.2008.07.005

130

http://www.sciencedirect.com/science/article/pii/S0933365708000924
http://www.sciencedirect.com/science/article/pii/S0933365708000924


Appendices

131



Appendix A.1

This appendix contains the density and QQ plots of the Renyi Entropy Features.
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Appendix A.2

This appendix contains the density plots of all original DWC features, the QQ plots

of the transformed DWC variance and kurtosis features, and the original skewness

features. Lastly, Density plots of the transformed DWC variance and kurtosis fea-

tures.
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Appendix A.3

This appendix contains the density plots of all original non-EEG features, the QQ

plots of the transformed non-EEG variance and kurtosis features, and the original

skewness features. Lastly, Density plots of the transformed non-EEG variance and

kurtosis features.
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Appendix A.4

Number of Features Important to Majority of Patients in Each State.
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