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Abstract

The hormone Insulin-like peptide 3 (INSL3) is a major secretory product of the Leydig cells from both fetal and adult testes.
Consequently, it is a major gender-specific circulating hormone in the male fetus, where it is responsible for the first phase
of testicular descent, and in the adult male. In most female mammals, circulating levels are very low, corresponding to only
a small production of INSL3 by the mature ovaries. Female ruminants are exceptional in exhibiting high INSL3 gene
expression by the thecal cells of antral follicles and by the corpora lutea. We have developed a specific and sensitive
immunoassay to measure ruminant INSL3 and show that, corresponding to the high ovarian gene expression, non-pregnant
adult female sheep and cows have up to four times the levels observed in other female mammals. Significantly, this level
declines during mid-pregnancy in cows carrying a female fetus, in which INSL3 is undetectable. However, in cows carrying a
male fetus, circulating maternal INSL3 becomes elevated further, presumably due to the transplacental transfer of fetal
INSL3 into the maternal circulation. Within male fetal blood, INSL3 is high in mid-pregnancy (day 153) corresponding to the
first transabdominal phase of testicular descent, and shows a marked dependence on paternal genetics, with pure bred or
hybrid male fetuses of Bos taurus (Angus) paternal genome having 30% higher INSL3 levels than those of Bos indicus
(Brahman) paternity. Thus INSL3 provides the first example of a gender-specific fetal hormone with the potential to
influence both placental and maternal physiology.
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Introduction

The peptide hormone Insulin-Like Peptide 3 (INSL3; formerly

relaxin-like factor, RLF) belongs to the relaxin-insulin family of

peptide hormones [1,2]. It evolved as a paralogue of relaxin

accompanying mammalian emergence [3], and like relaxin

appears to subserve ‘‘neohormone’’ functions [4], the most

important of which is to regulate the first transabdominal phase

of testicular descent in the embryo during mid-gestation [2]. It is

produced in large quantities by the Leydig cells of both the fetal

and adult testes, and gives rise to substantial circulating INSL3

concentrations in the blood of adult male mammals (rat, 5 ng/ml

[5]; mouse, 2 ng/ml [5]; human, 0.8–2.5 ng/ml [6–8]; rhesus

monkey, 1.5 ng/ml (unpublished)). To date there is very little

information about INSL3 peptide levels within the fetus. We have

shown in human pregnancies that amniotic fluid contains

substantial amounts of INSL3 of fetal origin, which can only be

detected in male fetuses and has its maximum at weeks 12–16 of

gestation at the time of the transabdominal phase of testicular

descent [9]. In preliminary studies in rats, we have also shown that

male fetuses in the second half of gestation have similar amniotic

INSL3 concentrations to those measured in human amniotic fluid,

and that blood from such male fetuses contained INSL3

concentrations comparable to adult males (Ivell, Anand-Ivell &

Barthol, unpublished). In all cases INSL3 was below the level of

detection in fluids from female fetuses.

In the adult female mammal circulating INSL3 concentrations

are much lower than in the male (rat, 0.08 ng/ml [5], mouse,

0.05 ng/ml [5]; human, 0.05–0.10 ng/ml [6,7,10]), and presum-

ably reflect local production of INSL3 within the ovary [2]. Here

immunohistochemical and mRNA evidence supports a production

by the theca layer of smaller antral follicles, as well as by corpora
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lutea [11–14]. In fact, women with polycystic ovarian syndrome

are found to have almost double the normal circulating levels of

INSL3 [10,15], which appears to be associated with the number of

cystic follicles [15].

Within this context ruminants appear to be special, with the

ovaries expressing very high levels of INSL3 mRNA both in antral

follicles and in the corpus luteum [11,16]. It has been speculated

that in some way the high INSL3 expression might be

compensating for the fact that in ruminant evolution the closely

related gene for relaxin has been lost [11], though there is as yet no

functional evidence to support this idea. As in other species,

INSL3 mRNA is expressed by the theca interna cells of antral

follicles and appears to be negatively regulated by high LH [16],

although it is also expressed after luteinisation within the corpus

luteum. Across the estrous cycle, luteal INSL3 mRNA levels rise

from early to mid cycle and then decline again at luteolysis unless

pregnancy occurs, when INSL3 mRNA continues to rise until mid

gestation and remains elevated until shortly before birth [16].

Although peptide INSL3 has been successfully extracted from

bovine testis [17], to date there is no information about INSL3

levels in the circulation of any ruminant, especially within females,

which might offer clues to the high level of expression in the

ovaries of sheep and cows. We have successfully developed a new

time-resolved fluorescence immunoassay (TRFIA) to directly

detect INSL3 in the blood and body fluids of ruminants. We

have used this new assay to measure circulating INSL3 firstly

across the estrous cycle in synchronized gravid and non-gravid

sheep, and secondly in both maternal and fetal bloods through

gestation from a controlled experiment with Bos taurus and B.indicus

cows. Not only are female circulating INSL3 concentrations

significantly higher than in other non-ruminant species, but during

gestation we see for the first time for any species and hormonal

factor, clear evidence of a fetal gender-specific elevation in

maternal serum INSL3, most likely derived by placental transfer of

INSL3 from the male fetus to the mother. In addition, our bovine

model with purebred and reciprocal hybrid fetuses shows a highly

significant effect of fetal genetics on fetal INSL3 production, which

is not simply reflecting the known influences of heterosis on fetal

growth.

Results

INSL3 concentration during the estrous cycle and early
pregnancy in ewes

Blood samples were systematically collected at three time points

(days 5, 12, and 17) from the 17-day cycle of 6 gravid and 4 non-

gravid synchronized ewes. No significant differences in circulating

INSL3 concentration were observed for any day between gravid

and non-gravid sheep (Fig.1A), although in the pregnant ewes the

increase in INSL3 concentrations on day 12 compared to day 5

approached significance (P = 0.06), and values were close to being

significantly different between gravid and non-gravid animals

(P = 0.07) on day 17. Peptide levels appear to reflect what is known

of the luteal INSL3 mRNA expression with levels generally elevated

from day 5 through to day 17, especially in the gravid cycles. The

comparable circulating progesterone concentrations are indicated

in Fig.1B, where the expected significant difference at luteolysis can

be observed between gravid and non-gravid ewes. A comparison of

all INSL3 values from days 5 and 12 (thus excluding those

undergoing luteolysis or not at day 17) against the corresponding

levels of circulating progesterone (Fig.1C) showed a significantly

positive relationship (P,0.01) reinforcing the luteal origin of the

circulating INSL3. It is to be noted that whereas all INSL3 values

from gravid animals showed a consistent 15 to 223% increase

between days 5 and 12, corresponding values from the 4 non-gravid

animals were more variable, ranging from 253% to +73%.

Circulating INSL3 concentrations during pregnancy in
cows

Blood samples were collected from heifers of the Angus (B.taurus)

and Brahman (B.indicus) breeds at the time of synchronized

insemination (day 0) and were considered representative of the

non-gravid cow. There was no significant difference in peripheral

INSL3 concentration (mean 6 SEM) between the two breeds

(Angus: 0.17 6 0.02 ng/ml, n = 10; Brahman: 0.1860.01 ng/ml,

n = 10), with values very similar to those observed in sheep

(Fig.1A). This lack of maternal breed difference did not change

throughout gestation, and thus in subsequent analyses maternal

genotype is combined (Fig.2). Plotting maternal INSL3 concen-

trations across gestation showed little variation, unless fetal gender

is taken into account (Fig.2). Following an initial small decline in

circulating maternal INSL3 (p,0.05 for animals carrying a male

fetus), levels remained around the day 0 values until the end of the

first trimester (day 99). At mid-gestation (day 153), cows carrying a

male fetus showed significantly (p,0.001) higher maternal INSL3

as compared with cows carrying a female fetus, where maternal

INSL3 concentrations declined to levels significantly below day 0

values (p,0.01). Consequently, at day 153, maternal INSL3

concentration clearly distinguishes the gender of the fetus

(p,0.001). This gender-specific effect on maternal INSL3 levels

appears to be maintained until term (day 277). Because of the

relatively high variance in maternal INSL3 concentration, we were

unable to detect any effect of fetal genetics in those cows carrying

male fetuses (not shown).

Fetal INSL3 concentrations, gender and genetics
In addition to maternal bloods, we also analysed fetal blood

from day 153 pregnancies for INSL3 concentration. Without

exception, all female fetuses had undetectable (,0.02 ng/ml)

levels of INSL3 (data not shown). This was also true for the small

number of female fetuses analysed at term (day 277). In contrast all

male fetuses indicated substantial circulating concentrations of

INSL3 (range 1–5 ng/ml). There was a pronounced effect of fetal

genetics on the circulating concentration of INSL3 within these

male fetuses (Fig.3). Purebred Angus fetuses as well as the

Brahmanmaternal x Anguspaternal hybrids had significantly higher

serum INSL3 concentrations compared to either purebred

Brahman or Angusmaternal x Brahmanpaternal hybrids (Fig.3). The

30 percent increase in the INSL3 plasma concentration of fetuses

sired by Angus bulls indicates a strong paternal genetic effect on

INSL3 in the fetus. It should be noted that we found no significant

correlation between fetal INSL3 and maternal INSL3 concentra-

tions in cows carrying a male fetus (data not shown).

Heterosis or hybrid vigour is a well established biological

phenomenon where the phenotype of F1 hybrids is superior to the

parental phenotype. In the present study, there was no obvious

heterosis effect in terms of fetal weight at day 153 (Fig.3), with

purebred Angus and Angusmaternal x Brahmanpaternal fetuses being

significantly heavier than the Brahmanmaternal x Anguspaternal and

purebred Brahman fetuses. In fact, the Brahmanmaternal x

Anguspaternal hybrid was intermediate in weight between the two

purebred parental breeds. Since INSL3 appears to be uniquely a

product of the fetal testis, we investigated if the genetic effects on

fetal INSL3 concentration could be due to altered growth and

development of the fetal testes. However, examination of fetal

testis weights showed the opposite trend, with fetuses of purebred

genetics having similar testis weights, and the reciprocal hybrids

having heavier (Angusmaternal x Brahmanpaternal) or lighter

Ruminant INSL3
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(Brahmanmaternal x Anguspaternal) testes than both purebreds,

although only the differences between hybrids were statistically

significant (Fig.3). Thus neither fetal weight nor testis weight can

account for the marked differences in INSL3 concentrations of

fetuses with different genetics. A further factor that might

contribute to the differences in fetal INSL3 concentration is the

amniotic fluid volume. We have previously shown that early

second trimester human amniotic fluid contains substantial

concentrations of INSL3 [9] presumably derived from the fetal

circulation at a time when fetal vasculature and tissues are still

relatively permeable. Fetal INSL3 concentration might then reflect

a dilution effect caused by a genetics-dependent difference in

amniotic fluid volumes and/or fetal weight. However, the actual

data again show that this is not the case (Fig.3). There is no clear

inverse relationship of gestational volume with fetal INSL3

concentration, and even though there is an apparent inverse

relationship between INSL3 levels and total amount of fetal fluid

volume, the genotype-dependent differences in the latter are too

small to account for the large changes in fetal serum INSL3

concentration.

Figure 2. Circulating maternal concentrations of INSL3 in pregnant Brahman and Angus cows (combined since no significant
difference between breeds at any time-point). Filled bars represent cows carrying a male fetus, open bars those carrying a female fetus. The
cross-hatched bar (left) represents cows at the time-point of insemination. N values are indicated in parentheses below the bars. Statistical
significance using both t test and Neumann-Keuls post hoc test are as indicated (ns, not significant).
doi:10.1371/journal.pone.0019821.g002

Figure 1. Circulating INSL3 (A) and progesterone (B) concentrations in gravid (filled bars; N = 6) and non-gravid (open bars; N = 4)
sheep (means ± SD). Statistical significance is shown only where P,0.05. (C) Correlation (r = 0.4; P,0.05) of INSL3 and progesterone values for
samples collected on days 5 and 12 only, excluding day 17 (luteolysis).
doi:10.1371/journal.pone.0019821.g001
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Discussion

Previous studies at the mRNA level have indicated that within the

female ruminant the ovary represents by far the major source of

INSL3 [11,16]. Northern blot analysis indicates very strong signals

in the corpus luteum of the cycle and pregnancy, with similar strong

signals also deriving from primary preparations of follicular theca

cells. By weight, the corpora lutea are likely to be the major ovarian

source of INSL3 peptide, rather than the theca interna, although to

date this has not yet been analysed directly. All other tissues

examined, including oviduct, endometrium and myometrium from

the cycle and pregnancy, caruncles, cotyledons, amnion and

chorion, all from term pregnancies, thyroid gland, hypothalamus,

heart, lung, cerebellum, cerebral cortex, pituitary and pineal glands,

spleen, liver and adrenal gland were all negative for INSL3 mRNA

by northern analysis, with only very weak signals appearing

sporadically from some tissues following the use of RT-PCR and

product visualization by radioactive hybridization, which is a highly

sensitive detection technique [16]. Reflecting this expression

pattern, we see high levels of circulating INSL3 (ca. 0.1 to

0.2 ng/ml) throughout the estrous cycle in both sheep and cows.

This is approximately twice to four times the circulating levels seen

in healthy women [10,15]. Interestingly, if the INSL3 concentra-

tions from days 12 and 17 are combined, then these do show a

significant difference (P,0.05) between gravid and non-gravid

ewes. Combining INSL3 and progesterone values for individual

ewes on day 17 provided a pregnancy index with 100% positive and

100% negative predictive value. This now needs to be validated for

a larger sample size.

In cows, non-pregnant circulating INSL3 concentrations appear

to be maintained during the first trimester of pregnancy, with

possibly a small decline at day 48. In dams carrying female fetuses,

which do not themselves express INSL3, the circulating maternal

INSL3 concentration then declines to low values (ca. 0.1 ng/ml)

by mid-gestation, which appear to be maintained until term. This

is of interest since our earlier studies had shown that luteal levels of

mRNA are maximal at this time [16]. This would suggest that

other post-transcriptional mechanisms such as peptide production,

secretion rates, serum half-life or luteal blood flow are regulating

the peripheral INSL3 concentration. It is well established that, in

terms of oxytocin and progesterone production, the bovine corpus

luteum has markedly reduced influence in the latter half of

gestation (except possibly at term), when these functions are largely

taken over by the pituitary and placenta, respectively [18].

This situation is quite different for dams carrying a male fetus.

For the first time for any truly fetal hormone (excluding

trophoblast-derived hCG or interferon-tau), we can detect

significantly increased levels of INSL3 in maternal serum at

mid-pregnancy (day 153), which must be derived uniquely from

the male fetus. From the results on female fetal blood, as well as

earlier results on human amniotic fluid [9], we know that there is

no detectable contribution of INSL3 to maternal serum from the

female fetus, nor from the placenta. The results presented here

suggest that the male fetus is contributing ca. 0.2 ng/ml INSL3 to

the maternal circulation, and hence also to all maternal organs

including the Placenta materna. This fetal signal appears to be

maintained throughout the latter half of gestation. Whilst there is

always the possibility that this gender-specific rise in maternal

INSL3 could be caused by an indirect fetal effect on the ovary, this

appears highly unlikely in view of the obvious lack of any other

gender-specific fetal factor which might stimulate this effect, and

the much more obvious cause of a trans-placental transfer of

INSL3 directly from the male fetus.

Direct measurement of INSL3 in mid-term fetal blood indicates

that the male fetus is producing large amounts (range 1–5 ng/ml)

of the gonadal peptide into the fetal circulation at this time,

concomitant with its role to stimulate gubernacular development

and the first transabdominal phase of testicular descent [19].

Surprisingly, there is a marked effect of fetal genetics on fetal

INSL3 production, with the paternal genetics determining INSL3

levels. Fetuses with Bos taurus (Angus) paternal genetics show

approximately 30% higher INSL3 levels than fetuses with B.

indicus (Brahman) paternal genetics. We have previously noted

marked genetic effects on adult INSL3 concentrations amongst

Figure 3. INSL3 concentration in fetal venous blood, fetal weight, fetal testis weight, and calculated total fetal fluids on day 153 of
pregnancy, and sorted by fetal genetics, as indicated. Amaternal indicates an Angus (B. taurus) dam, Bpaternal a Brahman (B. indicus) sire, etc.
doi:10.1371/journal.pone.0019821.g003
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different laboratory rat strains [5]. The effect of paternal genetics

on bovine fetal INSL3 production is independent of testis size, as

well as of fetal size and the amount of fetal fluid, and thus does not

appear to be an aspect of any heterosis effects in this experiment.

This is consistent with preliminary analysis of pregnancy

parameters [20] which revealed that at mid-gestation (day 153)

hybrids did not show heterosis in fetal size, but were intermediate

to both parental genetics. Taken together, these results imply that

paternal genetics is determining the level of INSL3 independently

of the relative sizes of fetal testis, total fetal weight or amount of

fetal fluid. It is noteworthy in this context that the Y chromosomes

of Bos taurus (e.g. Angus) and Bos indicus (e.g. Brahman) show

considerable structural and size differences [21] and that Y

chromosome substitution in model organisms has revealed effects

on the expression of thousands of genes, presumably mediated by

epigenetic effects of transposons [22]. The current experiments did

not involve embryo transfer, and so we are not able to analyse

what effects might be observed when pure-bred fetuses (e.g.

Brahmanmaternal 6 Brahmanpaternal) develop in the alternative

maternal genotype (e.g. Angusmaternal 6 Anguspaternal), though it

might be difficult here to distinguish effects of maternal genotype

from those consequent upon an IVF protocol [23].

There is some evidence to suggest that there may be a breed

difference in cattle in the incidence of cryptorchidism [24].

Though Brahman cattle were not included in this study, it is

therefore possible that bulls of different breeds may have differing

levels of INSL3 production, as in rats [5]. A study to examine this

aspect of INSL3 physiology is planned.

The results presented here imply that INSL3 from the male fetus

is able to cross the placenta and enter the maternal bloodstream.

Whilst there is limited evidence supporting the possible expression of

INSL3 itself within the cytotrophoblast in women [25], deer [26]

and dogs [27], this is evidently not of sufficient amount to influence

the maternal circulation in ruminant pregnancies carrying a female

fetus. Conversely, it is interesting to note that in cows carrying a

female fetus the maternal INSL3 contribution, presumably of

ovarian origin, significantly (p,0.002) declines between days 99 and

153. This could be interpreted as indicating that the maternal

INSL3 observed in the non-pregnant cow might otherwise also be

able to cross the placenta in the direction of the fetus, where it could

induce some kind of ovarian descent or other malfunction, as has

been demonstrated in female mouse fetuses transgenically expressing

the Insl3 gene [28]. There are still too few data available to know

whether such placental transport would be a general feature in

mammals, or whether it is a special property of the ruminant

placenta.

Since maternal circulating INSL3 remains unchanged in

pregnant women, whether carrying a male or a female fetus

(Anand-Ivell & Ivell, unpublished), it would appear most likely that

any more general mammalian function for fetal INSL3 is likely to

be confined to the feto-placental unit. INSL3 has been shown to be

the unique ligand in the low nanomolar range of the RXFP2

receptor, previously called LGR8 [29,30]. It has also been shown

in vitro to be able to activate the receptor, RXFP3, for the

neuropeptide relaxin-3, but only at very high, micromolar

concentrations [31]. Thus in order to discuss what role a fetal

gender-specific hormone like INSL3 is having during gestation,

beyond its known role in testicular descent [2], we need to

examine where RXFP2 receptors are expressed within the uterus

and placenta. In the human and rat, RXFP2 appears to be

expressed only in the myometrial layers [32,33] but not within any

placental tissue [34]. Within human myometrial cells from the

menstrual cycle, RXFP2 was shown not to respond in a typical Gs-

or Gi-linked fashion [33] suggesting that its role is likely to be more

subtle. However, Vodstrcil and colleagues [32] were able to show

that myometrial RXFP2 receptor mRNA was up-regulated in rat

gestation by an IUGR intervention, supporting a role for this

INSL3-RXFP2 system in the feto-placental dialogue. Further-

more, in women undergoing first trimester amniocentesis and later

diagnosed with preeclampsia [9], INSL3 concentrations in

amniotic fluid were significantly elevated compared to normal

controls at a time when the placenta was evidently not developing

correctly, even though preeclamptic symptoms would first become

evident months later. In pregnant cows at least this gender-specific

elevation of circulating INSL3 is likely to have a positive effect on

bone density, reflecting the recent discovery in humans and mice

that the INSL3-RXFP2 system is significantly involved in bone

metabolism [35].

For humans, there is some evidence for fetal gender-specific

effects on the incidence of preterm labour and preeclampsia (both

more likely for male fetuses; [36,37]), whereas IUGR appears to be

marginally more likely for female fetuses [37]. Such data are,

however, controversial [38]. It is also reported that there is a fetal

gender-specific influence on maternal hCG (increased when

carrying a female fetus) and MSAFP (decreased when carrying a

female fetus) [39]. Such findings would support an influence by a

male- or female- specific fetal factor on placental function. Since

fetal steroids do not vary sufficiently between genders to

satisfactorily account for such changes, INSL3 would present

itself as a likely candidate in the feto-placental dialogue. More

research is now required to explore this possibility.

In conclusion, therefore, we have shown that ruminants express

moderately high levels of circulating INSL3 throughout the estrous

cycle and pregnancy, but that this level increases significantly

during mid-gestation only when the cow is carrying a male fetus.

Materials and Methods

Sheep
We used 10 Merino ewes aged 2.5 years and weighing

52.361.5 kg with a condition score of 2.860.1 (scale from 0:

emaciated to 5: obese [40]) that were selected from a larger study.

All ewes grazed dry summer pasture predominantly comprising

barley grass and capeweed without a supplement. Sponges

containing medroxy-progesterone (CronogestH, Intervet, Australia)

were inserted for 14 days and 200 IU of eCG (FolligonH, Intervet,

Australia) injected at sponge removal, two days before artifical

insemination (AI, Day 0). Ewes were housed in a shed without food

and water for 24 h before AI, performed 49–57 hours after sponge

removal. Semen from Texel rams that had been evaluated (mass

motility .4; density .4) and pooled, was used for AI. The

ejaculates were diluted 1:3 with UHT skim milk and the

insemination volume was adjusted to give a dose of 200 million

sperm per ewe. Blood was sampled after 12 h fasting on Days 5 (day

of embryo arrival in the uterus), 12 (around maternal recognition of

pregnancy) and 17 (follicular phase in non-pregnant ewes) after AI.

Blood plasma was harvested and stored at 220uC until assayed for

progesterone and INSL3. Ovulation rate and pregnancy were

diagnosed by transrectal ultrasonography using a 7.5 MHz linear

array transducer on Days 10 and 30. Only ewes that had a single

ovulation were selected for this study. One ewe had high a

progesterone concentration on day 17, but later gave no positive

signs of pregnancy at ultrasound on day 30, indicating early

pregnancy loss. For this study this animal is included as pregnant.

Experimental procedures were approved by the Animal Ethics

Committee of the University of Western Australia (no. RA/3/100/

534), according to the recommendations of the Australian National

Health & Medical Research Council.

Ruminant INSL3
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Plasma progesterone was measured in duplicate using a standard

kit (Diagnostic Systems Laboratories Inc, Webster, TX) as described

elsewhere [41]. The limit of detection was 0.4 ng/mL. For low

(0.9 ng/mL) and high (10.4 ng/mL) progesterone concentrations,

the intra-assay coefficients of variation were 2.6% and 4.1%, and

inter-assay coefficients of variation 5.7% and 11.1%.

Cattle and fetuses
We used animals of the Angus and Brahman breeds to study

maternal and fetal INSL3 levels during gestation. The two

breeds represent the genetics of two subspecies with taurine (Bos

primigenius taurus) and zebuine (B. p. indicus) phenotype, respec-

tively, found in domestic cow and commonly referred to as Bos

taurus and Bos indicus [42]. Angus and Brahman females which

had not given birth previously and were approximately 16–

20 months of age received standard commercial estrous cycle

synchronization (e.g. http://www.absglobal.com/aus/resources/

beef-resources/synchronization-programs---cue-mate-1/). We used

Cidirol - Heat Detection & Timed Insemination (HTI) and Cidirol -

Timed Insemination (TI). Briefly this consisted of an initial injection

of 1 ml of 1 mg/ml estradiol benzoate (Cidirol, Genetics Australia

Co-operative Ltd., Bacchus Marsh, Australia) and insertion of a

progesterone-releasing vaginal insert (Eazi-Breed CIDR, DEC

International, Hamilton, New Zealand). The vaginal inserts were

removed after 7–9 days and heifers injected with 2 ml of a

prostaglandin analogue (0.26 mg of cloprostenol sodium/ml (Estru-

mate), Schering-Plough Animal Health, Baulkam Hills, Australia).

Estrus detection devices (Kamar, Agrigene, Wangaratta, Australia)

were placed on all animals. In HTI, animals that showed estrus two

days later were inseminated while animals not in estrus received an

additional 0. ml injection of estradiol benzoate and were inseminated

24 h later. In TI, animals received 0.7 ml estradiol benzoate the day

after removal of vaginal inserts and were inseminated 24 h later.

Synchronization/insemination was repeated in HTI and TI with

estradiol benzoate injection of all animals after removal of vaginal

inserts, followed by a final round of insemination and natural

breeding in HTI animals without further synchronization measures.

We used Angus and Brahman paternal genetics in HTI and TI.

Animals were pregnancy tested by ultrasound scanning.

Blood samples were obtained on Days 0, 48, 99, 153 and 277

of gestation. Day 277 was considered term as gestation length in

the cow ranges from Day 273 to Day 292 [43]. Fetal blood

samples were collected from the umbilical cord (Day 153) after

removal of the fetus from the uterus in an abattoir, or by jugular

vein puncture (Day 277) after delivery of the calf by caesarian

section. Serum was stored frozen at 280uC until INSL3 analysis.

The amount of fetal fluids was estimated by subtracting the

combined fetal, placental, and washed uterine weights from the

weights of the intact gravid uteri prior to dissection. Gender of

Day 48 concepti was determined by SRY typing using PCR with

S4B primers [44], and of Day 99 fetuses by ultrasound scanning.

All procedures involving cattle in this study were approved by

The University of Adelaide Animal Ethics Committee (nos. S-

094-2005 and -2005A).

INSL3 Assay development, validation and characteristics
Bovine INSL3 was generously synthesized and made available

by Dr John Wade of the Florey Institute, University of Melbourne,

according to the sequence A-chain: ATAINPARHCCLSGCTR-

QDLLTLCPH, B-chain: QEAPEKLCGHHFVRALVRLCGGP-

RWSSEEDG, predicted from the cloned cDNA sequence [11].

This is essentially confirmed at the peptide level by Bullesbach &

Schwabe [17] who, however, also identified molecules with a

further extension at the C-terminus of the B-chain. NMR was used

to confirm that the A–B heterodimer was in the correct native

conformation (Dr J.D. Wade, personal communication). Polyclon-

al antibodies were raised in rabbits against this A–B heterodimer

using conventional techniques and used to generate a robust time-

resolved fluorescence immunoassay (TRFIA) exactly as previously

described for the human INSL3 assay [7,8]. As tracer for the

assay, bovine A–B heterodimer was labelled with (Eu3+) chelate

exactly as described previously. Following assay optimization,

assay detection range was from 0.02 to 20.0 ng/ml bovine INSL3.

Within-assay c.o.v. was ,2% across the range and ,0.5% in the

mid-range, between-assay c.o.v. was consistently ,10%. Repeated

freeze-thaw cycles as well as experiments to test the effects of

storage for different periods at room temperature, 4C or 20C,

showed that bovine A–B heterodimeric INSL3 is remarkably

stable with .93% recoveries at all times. This assay is highly

specific for ruminant INSL3, with #0.1% cross-reactivity to

human and rat INSL3, and no detectable cross-reactivity to

porcine relaxin, IGF1 or insulin.

Statistical analysis. All data were analysed employing

GraphPad Prism 5.0 software using 2-way ANOVA with

Neumann-Keuls post hoc test of significance. Some data were

additionally analysed using a standard t test. Differences were

considered significant at P,0.05.
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