
Modelling the impacts of climate change on blue and green water interchange, 
crop yields, and virtual water trade under drought and post-drought 

conditions in Nelson River Basin 

by 

Pouya Khalili 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

Department of Earth and Atmospheric Sciences 

University of Alberta 

 

 

 

 

© Pouya Khalili, 2023  



ii 

ABSTRACT 

The unfolding climate change crisis poses a growing challenge to water and food security, and 

yet the reliability of the global breadbaskets and their relation with water resources in the future is 

poorly understood. The global breadbaskets are defined as key production regions for food grains 

and recognized for their vital contribution to global food security. In the mid-to-high latitude 

regions, especially in the higher latitudes of the temperate zone, the global breadbaskets are 

projected to receive an overall increased precipitation and improved crop yields under the effects 

of global warming scenarios, which is often perceived as beneficial to crop production and export 

potentials in the future (Myers et al., 2017; IPCC, 2021).  However, the extreme warm-dry events, 

anticipated as a consequence of global warming, can significantly affect the agro-hydrological 

processes, crop yields, and therefore export potential of the crops from these regions. This research 

examines the potential impacts of future droughts and post-droughts on hydrology, crop yields, 

and their linkages through assessing net virtual water export (NVWE), the water embodied in the 

production process of the crops that are exported to international countries. The study takes Nelson 

River Basin (NRB), a large agricultural watershed in western Canada and a global breadbasket 

located in higher latitudes of the temperate zone, as an example and it provides insights for future 

planning and informed decisions for water and food security. 

To understand the hydrological processes affecting crop yield and soil nutrients (i.e., 

nitrogen in this study) and their relation with changes in climate, this study employs a semi-

distributed process-based agro-hydrologic model to an agricultural catchment in the NRB, i.e., Red 

Deer River Basin (RDRB), in the province of Alberta, Canada. Specifically, the research explores 

the effects of climate change and availability of soil water, as well as nitrogen fertilizer application 

scenarios on crop yields. The study examines the impacts on rainfed spring wheat, which is a 



iii 

dominant crop grown in most of NRB and in the RDRB. The results indicate that nitrogen stress 

may dominate other stress factors in producing rainfed wheat yields in the future as compared to 

the historical conditions that water-stress has been a dominant factor in the region. This is likely 

due to the overall increase in the soil moisture in the future that when compounded with a warmer 

temperature, triggers crop growth and potential yields, demanding more nitrogen in the soil. 

However, a regional assessment of the soil water availability, which affects nutrient and water 

uptakes by crops and their evapotranspiration rates (ET, green water), and the effects on 

hydrological water balance under extreme climatic events such as droughts in the future, is 

required.     

In a closed hydrological system, i.e., a watershed, the blue water (BW, or net annual 

freshwater generated in a catchment) and green water (GW, or actual evapotranspiration) are 

interlinked through numerous climate, soil, and plant processes. T

Given that GW 

accounts for over 70% of water consumption in global food production, further research in this 

study scrutinizes the interlinkages between BW and GW and their potential shifts, primarily in 

response to future extreme warm-dry events. The 

Mountainous 

and natural lands exhibit a shift from BW to GW, due to legacy soil moisture from earlier seasons 

and groundwater contributions. Conversely, in crop lands, there is a significant decrease in both 

BW and GW with no notable shift from BW to GW, posing severe threats to local and regional 

food production. 
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Lastly, the research evaluates the effects of drought and subsequent post-drought conditions 

on crop production and its relation to watershed hydrology (i.e., blue water- also defined as water 

yield (WYLD) in this study) through assessment of NVWE. Contrary to prevalent long-term 

average projections of a wetter future for higher latitude regions of the temperate zone, the 

investigation of the longest and the most severe drought (LMD) in this study, indicate a substantial 

reduction in precipitation, Y (rainfed wheat and canola in this study), as well as WYLD in the 

future. The reductions in these agro-hydrological variables are likely to be more severe than 

historical drought conditions under SSP126. The slight improvement under the SSP585 scenario 

due to the CO2 effects on plant photosynthesis processes is not uniform across region and crop 

types. In central areas, which are prominent for crop production, the canola Y demonstrated less 

improvement as compared to the wheat Y, which is also compounded with a greater VWC of 

canola than wheat. The larger VWC of canola suggests larger crop water consumption in 

production of a tonne of crop, resulting in a considerable reduction of WYLD as compared to 

wheat crop and relative to the other regions across NRB. Overall, the regional scale WYLD, Y, 

and VWC show improvement during SSP585 droughts as compared to those of SSP126; however, 

they remain considerably lower than the average historical conditions regardless of crop type and 

the geographic location.   

During post-droughts, the study reveals variable recovery times for WYLD, Y, and NVWE in 

the future, with the WYLD demonstrating the slowest recovery time as compared to Y and NVWE 

during the years after the LMD. Given the projected frequent droughts in the future, the slow 

recovery of the WYLD after droughts can be a limiting factor for sustainable production and export 

potentials as it can deteriorate environment and several economic sectors. Our study lays a strong 

basis for examination of a strategic crop selection and diversification, which can be considered as 
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an adaptation measure for conservation of WYLD for an integrated water and food security in the 

future.  

  



vi 

PREFACE 

This PhD research utilizes the agro-hydrological models of the Red Deer River Basin (RDR) 

and the Nelson River Basin (NRB) created by Pouya Khalili. The dissertation follows a paper-

based structure, with several chapters already published or under review in respected journals. 

Chapter 2, entitled "Non-stationary response of rain-fed spring wheat yield to future climate 

change in northern latitudes," was published in the Science of the Total Environment journal. The 

citation for this work is: Khalili, P., Masud, B., Qian, B., Mezbahuddin, S., Dyck, M. & Faramarzi, 

M. (2021). Science of The Total Environment, 772, p.145474. 

Chapter 3, "Assessment of blue water-green water interchange under extreme warm and dry 

events across different ecohydrological regions of western Canada", is accepted for publication in 

the Journal of Hydrology. The proposed citation is: Khalili, P., Razavi, S., Davies, E.G., Alessi, 

D.S., & Faramarzi, M. (2023). Journal of Hydrology. 

Finally, Chapter 4, Modelling the impacts of future droughts and post-droughts on 

hydrology, crop yields, and their linkages through assessing virtual water trade in agricultural 

watersheds of high latitude regions , has been thoroughly reviewed and revised, and is now ready 

to be submitted to a peer-reviewed journal in hydrology research. 

Pouya Khalili is the primary author of this dissertation and of all three manuscripts, who 

performed all of the analyses, wrote the draft manuscripts, and revised them in later versions; and 

Dr. Monireh Faramarzi is corresponding author who reviewed and provided constructive 

comments and revision of this dissertation and the early drafts of the three manuscripts that form 

the main body of this dissertation. 



vii 

DEDICATION 

I dedicate this dissertation to my beloved family, with special acknowledgement to my 

wife, Paniz. Her unwavering support and love have been indispensable throughout this journey. 

Without her, the completion of this work would not have been possible. 

  



viii 

ACKNOWLEDGEMENTS 

I wish to express my deepest gratitude to my supervisor, Dr. Monireh Faramarzi, whose 

exceptional supervision and dedicated involvement in this project made my participation in this 

program possible. Her consistent support, encouragement, and novel ideas have spurred insightful 

discussions and propelled future water-food research. 

I am equally thankful to my supervisory committee members, Dr. Daniel Alessi and Dr. 

Evan Davies, for their insightful feedback and invaluable suggestions, which significantly 

contributed to the preparation and success of this PhD research. The continuous dedication of Dr. 

Faramarzi, Dr. Alessi, and Dr. Davies, as displayed in supervisory committee meetings, was 

crucial to the success of this program. 

Furthermore, I wish to acknowledge Dr. Paul Myers for graciously accepting to chair my 

PhD thesis defense. I would like to extend my gratitude to my external examiner, Dr. Raghavan 

Srinivasan, and my arm's length examiner, Dr. Wenming (William) Zhang. I appreciate their 

willingness to devote their time and expertise in evaluating my dissertation. 

My heartfelt thanks also go to my colleagues at the Watershed Science and Modelling 

Laboratory, particularly Dr. Badrul Masud and Dr. Quan Cui, for their assistance at various stages 

of this research project. Finally, my appreciation extends to Dr. Majid Iravani, whose moral and 

emotional support has been a beacon throughout my journey. 

  



ix 

TABLE OF CONTENTS 

 
ABSTRACT .................................................................................................................................... ii
PREFACE ...................................................................................................................................... vi
DEDICATION .............................................................................................................................. vii
ACKNOWLEDGEMENTS ......................................................................................................... viii
TABLE OF CONTENTS ............................................................................................................... ix
LIST OF TABLES ........................................................................................................................ xii
LIST OF FIGURES ..................................................................................................................... xiii
LIST OF ACRONYMS ............................................................................................................... xvi
CHAPTER I  INTRODUCTION .................................................................................................. 1

1.1. Overview .......................................................................................................................... 1
1.2. Overarching Goal and the Main Research Objectives ......................................................... 4
1.3. Thesis Structure ................................................................................................................... 7

CHAPTER II  MANUSCRIPT 1 .................................................................................................. 9
Non-stationarity response of rain-fed spring wheat yield to future climate change in northern 
latitudes ........................................................................................................................................... 9

2.1 Abstract ................................................................................................................................. 9
2.2 Introduction ......................................................................................................................... 11
2.3 Methods and data ................................................................................................................ 17

2.3.1 Study area and data collection ..................................................................................... 17
2.3.2 Simulation of climate change impacts ......................................................................... 19
2.3.3 SWAT model setup, calibration, validation, and uncertainty analysis ........................ 19
2.3.4 ANOVA for the decomposition of total yield variances and model scenarios ............ 25

2.4 Results and discussion ........................................................................................................ 28
2.4.1 Model calibration, validation, and uncertainty analysis .............................................. 28
2.4.2 Spatial characteristics of the future climate change, stress factors, and their 
interactions ............................................................................................................................ 30
2.4.3 Temporal characteristics of the future climate change, stress factors, and their 
interactions ............................................................................................................................ 33



x 

2.4.4 Yield response to stress factors and its non-stationary behavior under future climate 
change scenarios ................................................................................................................... 35
2.4.5 ANOVA of the yield response to hydrologic model parameters, GCM, RCP, DS 
scenarios ................................................................................................................................ 40
2.4.6 ANOVA of the future yield response to different nitrogen application scenarios ...... 42

2.5 Comparison of this study with the literature ....................................................................... 46
2.6 Limitation and future directions .......................................................................................... 49
2.7 Conclusions ......................................................................................................................... 50
2.7 Acknowledgment ................................................................................................................ 52

CHAPTER III  MANUSCRIPT 2............................................................................................... 53
Assessment of blue water-green water interchange under extreme warm and dry events across 
different ecohydrological regions of western Canada .................................................................. 53

3.1 Abstract ............................................................................................................................... 53
3.2 Introduction ......................................................................................................................... 54
3.3 Materials and methods ........................................................................................................ 58

3.3.1 Study area..................................................................................................................... 58
3.3.2 Input data ..................................................................................................................... 62
3.3.3 Hydrology and crop model setup, calibration, validation, and uncertainty analysis ... 64
3.3.4 Calculation of extreme warm-dry events and historical averages for the growing 
season .................................................................................................................................... 70
3.3.5 Climate projections from ensemble GCMs.................................................................. 74

3.4 Results and discussion ........................................................................................................ 76
3.4.1 Model calibration, validation, and uncertainty analysis .............................................. 76
3.4.2 Status of growing-season BW and GW under average historical and future periods .. 78
3.4.3 Assessment of extreme warm-dry events for the historical and future periods ........... 80
3.4.4 Altitudinal variation of BW and GW during the growing season ............................... 82
3.4.5 Spatial variation of GW and BW under average historical and during extreme warm-
dry seasons ............................................................................................................................ 86
3.4.6 Streamflow during extreme warm-dry seasons for the historical and future periods .. 94

3.5 Discussion and implications of the BW and GW changes for future water and food security
................................................................................................................................................... 96
3.6 Limitations and future directions ........................................................................................ 99
3.7 Conclusions ....................................................................................................................... 101
3.8 Acknowledgment .............................................................................................................. 103



xi 

CHAPTER IV  MANUSCRIPT 3 ............................................................................................ 104
Modelling the impacts of future droughts and post-droughts on hydrology, crop yields, and their 
linkages through assessing virtual water trade in agricultural watersheds of high latitude regions
..................................................................................................................................................... 104

4.1 Abstract ............................................................................................................................. 104
4.2 Introduction ....................................................................................................................... 106
4.3 Materials and methods ...................................................................................................... 110

4.3.1 Study region and data collection ................................................................................ 110
4.3.2 Model configuration and evaluation metrics ............................................................. 115
4.4.3 Drought severity index calculation ............................................................................ 117
4.3.4 WYLD, Y, and VWT accounting .............................................................................. 119
4.3.5 Drought and post-drought analysis of WYLD, Y, and VWT .................................... 123

4.4 Results and discussion ...................................................................................................... 124
4.4.1 Model configuration and evaluation metrics ............................................................. 124
4.4.2 Historical and future variation of WYLD, Y, and VWT under long-term average 
conditions for growing season ............................................................................................ 126
4.4.3 Impacts of drought and post-drought conditions on WYLD, Y, and VWT .............. 130

4.5 Global and regional implications ...................................................................................... 139
4.6 Conclusions ....................................................................................................................... 142
4.7 Acknowledgment .............................................................................................................. 143
4.8 Credit author statement ..................................................................................................... 144

CHAPTER V  CONCLUSION ................................................................................................. 145
5.1 Research Summary ........................................................................................................... 145
5.2 Study Conclusions and Implications ................................................................................. 147
5.3 Study Limitations and Future Directions .......................................................................... 151

BIBLIOGRAPHY ....................................................................................................................... 154
APPENDICES ............................................................................................................................ 178
 

  



xii 

 

LIST OF TABLES 

Table 2.1. Selected parameters for calibration of crop yields in each CAR, in this study.

Table 2.2. Calibration and validation statistics of rain-fed spring-wheat for the historical period.

Table 3.1. The climate change models information used in this study.

Table 4.1. Minimum, maximum, and average values for p-factor, r-factor, and MSE in the 
calibration and validation periods for spring wheat and canola using the CAR-based approach.

 

  



xiii 

LIST OF FIGURES 

Figure 2.1. Geographic extend of the RDR basin, located in croplands of the Canadian Prairies, 
is one of the main river basins in the province of Alberta (a); topographic domain, main rivers, 
and modeled sub-basins of the study area (b); and spring wheat crop spatial density map and the 
five Census Agricultural Region of the study watershed (c).

Figure 2.2. Development of SWAT model scenarios for decomposition analysis of projected 
crop yield variances. Three N application scenarios were tested for future yield projections 
including baseline N, NS1 and NS2.

Figure 2.3. Comparison of observed (red circles) and simulated (grey bands) rain-fed SWY 
during calibration and validation periods in the five CARs.

Figure 2.4. Comparison of historical and future mean temperature (a), and precipitation (b) 
under RCP2.6 and RCP8.5 scenarios. The maps in the right column, show anomalies from the 
historical values (1983-2007 period), and the future data are based on ensemble mean values 
averaged over 2040-2064 period.

Figure 2.5. Comparison of the average annual number of water stress days (a), temperature 
stress days (b), and nitrogen stress days (c) under RCP2.6 and RCP8.5 scenarios. The maps in 
the right column, show projected changes from the historical values (1983-2007 period) and the 
future data are based on ensemble mean values averaged over 2040-2064 period.

Figure 2.6. Comparison of future (a) annual precipitation (mm) and nitrogen uptake from the 
soil (kg N/ha), and (b) yearly changes in W-N-T stress days under RCP2.6 and RCP8.5 future 
scenarios (2040-2064).

Figure 2.7. Comparison of historical and projected wheat yield under RCP2.6 and RCP8.5 
scenarios. The maps in the right column show projected changes (%) from the historical yields 
(1983-2007 period) and the future data are based on ensemble mean values averaged over 2040-
2064 period.

Figure 2.8. Comparison of historical SWY and projected SWY in high, mid-high, mid-low, and 
-N_stress days. Black, red and blue lines 

illustrate the average of historical and 36 projected SWY scenarios under RCP2.6 and RCP8.5, 
respectively. The number inside each sub-figure shows the average SWY during the respective 
time span. Grey signals in each panel are simulated SWY under the 72 scenarios.

Figure 2.9. Variance decomposition in SWY for future (2040-2064) yield projections under 
different GCMs, RCPs, DSs, and 95PPUs factors. Box boundaries indicate the 25th and 75th 
percentiles; the black line within the box marks the median; whiskers below and above the box 
indicate the 10th and 90th percentiles. The violin plot outlines kernel probability density. 
 



xiv 

Figure 2.10. Share of the variance related to GCMs, RCPs, DSs, and 95PPUs for projected SWY 
changes in the study watershed, under baseline N application scenario, NS1, and NS2.

Figure 2.11. Share of the variance (% ANOVA) related to GCMs, RCPs, DSs, and 95PPUs for 
projected SWY changes in high (H), mid-high (MH), mid-low (ML), and low (L) W and 
N_stress regions under the baseline scenario, NS1, and NS2.

Figure 3.1. (A) Map of the Nelson River Basin including geographic extents, major watersheds, 
rivers, reservoirs, dams, lakes, hydrometric stations, (B) the land use map and land use classes 
considered in the model according to the Government of Canada (2019) classification, and the 
Census Agricultural Region (CAR), for which the agricultural management and crop yield time 
series are available from government of Canada for calibration and validation in this study.

Figure 3.2. A color map demonstrating model performance for the entire calibration and 
validation period for spring wheat yield/SWY (upper row) and streamflow (lower row). The 
color cells (count in the legend) represent the combination of the number of stations (or number 
of CARs) and number of times of occurrence during the study period, while whitespace denotes 
where no data exists.

Figure 3.4. Temporal variation of the compound warm-dry events during the growing season 
(May to September) for the historical (1987-2016) and future (2070-2099) periods. A, B, C, D, 
E, and F represent the results that are derived based on the EC-Earth3, MRI-ESM2.0, BCC-
CSM2-MR, CNRM-CM6-1, EC-Earth3-veg, and CanESM2 models, respectively. Note that 
warm-dry events are calculated for all years of the historical and future periods but for better 
visualization, only a limited number of warm-dry events are shown in the picture.

Figure 3.6. Simulated long-term average hydrologic water balance data during growing season 
(calculated as the  averages over five months during the crop growing season) for historical 
period (left column), and their anomalies from AH under extreme dry-warm years (column 2-4 
from the left). The maps in horizontal rows are: average GW (ET, mm/month), precipitation 
(mm/month), soil water (mm/month), BW (mm/month), water stress (days/month), and 
snowmelt (mm/month) during growing season.

Figure 3.7. Sub-basin scale simulated blue to green water ratio (BW/GW) for the growing 
season. (a) long-term (1987-2016) average historical ratios (AH); (b) Anomalies of historical 
extreme warm-dry years ratios from those of AH; (c) Anomalies of future (2070-2099) extreme 
warm-dry years ratios under SSP126 from those of AH (EF126); (d) Anomalies of future (2070-
2099) extreme warm-dry years ratios under SSP585 from those of AH (EF126) (EF585). The % 
anomalies in b, c, and d were calculated as: [(Extreme Scenario-AH)/AH]×100. Figures c and d 
are based on multi-model ensemble mean values. The circles represent streamflow anomalies in 
150 select outlets (%). 

Figure 3.8. Comparison of simulated hydrologic variables for mountainous lands (a), natural 
lands (b), and crop lands (c) under AH, EH, EF126, and EF585 scenarios. AH is averaged over 



xv 

30 years. EH, EF126 and EF585 are averaged over extreme warm-dry years. All extreme 
scenarios are anomalies from AH, and all future extreme scenarios are based on ensemble means. 
All data are reported for growing season.

Figure 4.1. (A) Map of the NRB including the land use land cover classes considered in the 
model according to the Government of Canada (2019) classification, rivers, reservoirs, lakes, and 
hydrometric stations; (B) geographic extent, and the Census Agricultural Region (CAR), for 
which crop yield time series are available from Government of Canada (2019) for calibration and 
validation in this study; (C) spring wheat and (D) canola crop spatial density maps (%) showing 
the density of cultivated lands in the study area.

Figure 4.2. Simulated long-term average monthly WYLD (mm) and precipitation (mm) during 
the crop growing season (monthly averages during May-Sept): historical (first column), future 
SSP126 scenario (second column), future SSP585 scenario (third column), and the anomalies 
from the historical baseline for both future SSP126 (fourth column) and SSP585 (fifth column) 
scenarios.

Figure 4.3. Simulated long-term average annual (1987-2016) crop yields for spring wheat and 
canola (tonne/ha) during crop growing seasons: historical baseline (first column from left), future 
SSP126 scenario (second column), future SSP585 scenario (third column), and anomalies from 
the historical baseline for both future SSP126 (fourth column) and SSP585 (fifth column) 
scenarios.

Figure 4.4. Long-term average simulated virtual water content (VWC; m³/tonne) and net virtual 
water export (NVWE; m³) for spring wheat and canola under historical and future scenarios 
(SSP126 and SSP585), accompanied by their projected anomalies as compared to the historical 
values (%) (right two columns).

Figure 4.6. Simulated WYLD (left) and Y (right) versus cumulative precipitation in six selected 
CARs across the basin. The data are presented for the five consecutive post-drought years (D 
scenario, red) and the same years assuming no prior drought (ND scenario, blue) under the 
SSP126 future scenario. Only spring wheat Y is presented due to its prevalence in the basin. 
Each dot represents a sub-basin within a CAR.

Figure 4.7. Simulated net virtual water export (NVWE) anomalies between D and ND scenarios 
(i.e., calculated as NVWE (D) - NVWE (ND)) in six selected CARs across the basin. The data 
are presented for five consecutive post-drought years under the SSP126 future scenario. Only 
spring wheat NVWE anomalies (×105 m³) is presented due to its prevalence in the basin. Each 
dot represents a sub-basin within a CAR. 

 

  



xvi 

LIST OF ACRONYMS 

95PPU: 95 percent prediction uncertainty 
AFSC: Alberta Financial Service Cooperation 

ANOVA: Analysis of Variance 

CAR: Census agricultural region 
CMIP6: Coupled Model Intercomparison Project Phase 6 

D scenario: Drought scenario; Considers the actual occurrence of drought in time series data. 
DEM: Digital elevation map 

DS1: Downscaled climate data with further bias correction 
DS2: Downscaled climate data without further bias correction 
L95PPU: The 2.5% level presented a lower band of uncertainty range 

Extreme events under historical period
Extreme events under SSP126
Extreme events under SSP585

GCM: Global climate models 

HRU: Hydrologic response unit 
KGE: Kling-Gupta efficiency 

LMD: longest and most severe droughts 
masl: Meters above sea level 
MSE: Mean square error 
N: Nitrogen 
N_stress: Nitrogen stress 
ND scenario: non-drought scenario; Assumes that the drought years never happened in time series 
data 
NRB: Nelson River basin 

NS1: 20% decreased N fertilizer application rate from the baseline scenario 
NS2: 20% increased N fertilizer application rate from the baseline scenario 
NSE: Nash-Sutcliffe efficiency 
NVWE: Net virtual water export 
NVWT: Net virtual water trade 



xvii 

PBIAS: percent bias 
PCIC: Pacific Climate Impacts Consortium 
PET: Potential evapotranspiration 
R2: Coefficient of determination 
RCP: Representative Concentration Pathway 
RDR: Red Deer River 

RUE: Radiation-use efficiency 
SA: Sensitivity analysis 
SPEI: Standardized Precipitation Evapotranspiration Index 

SSI: The sum of squares of interactions 
SSP: Shared socioeconomic pathway 
SST: Total sum of squares 
SSX: the sum of squares from an individual source X 

SWAT: Soil and Water Assessment Tool 
Spring wheat yield 

T_stress: Temperature stress 
U95PPU: The 97.5% level indicated a higher band of uncertainty range 

VWC: Virtual water content 
VWT: Virtual water trade 
W_stress: Water stress 
WFDEI: WATCH Forcing Data ERA-Interim 
WP: Water productivity 

Y: Crop yield 
  



1 

CHAPTER I  INTRODUCTION 

1.1. Overview 

Climate change, characterized by its escalating severity of extreme weather phenomena such 

as droughts and intensified heat conditions, poses a profound threat to the stability of global 

ecosystems (IPCC, 2021). Such evolving climatic dynamic bears significant implications for 

socioeconomic sectors and ecosystem services (Rosenzweig et al., 2020). Different socioeconomic 

sectors (i.e., agricultural crop production, industries, and municipality) are linked through their 

reliance on two crucial types of water resources including green water (GW) and blue water (BW). 

In a watershed, the GW is defined as the total actual evaporation from soil and open water bodies 

and transpiration by plants. The GW is an in-situ source of water, which is supplied from rainfall 

precipitation, snowmelt infiltration, as well as high groundwater levels. The BW is defined as the 

net freshwater generated in a hydrologic catchment and stored in streams, lakes/reservoirs, and 

aquifers. The BW components that do not account for groundwater storage is also called water 

yield (WYLD).  

Traditional water policies and development plans have often centered around managing BW 

through water transfer projects, storage through construction of dams and distribution through 

channels, or through groundwater pumping; all of which are utilized for various socioeconomic 

sectors (Mekonnen and Hoekstra, 2016). However, GW plays a critical role in global water 

consumption, particularly in the agricultural sector. In fact, 70% of the agricultural sector relies on 

GW resources for its water needs (Jägermeyr et al., 2021). The BW and GW are interconnected 

through numerous biogeochemical and physical processes within a watershed, and their 

availability is limited in time and space (Schyns et al., 2019). As climate change amplifies the 

frequency and severity of droughts (Spinoni et al., 2020), these two distinct, yet interconnected 
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water resource components, become increasingly critical; and maintaining their balance to support 

not only food production, but also other socioeconomic sectors and ecosystem services remains 

imperative. Therefore, it is crucial to develop an interdisciplinary approach for a thorough 

assessment of linkages between blue and green water resources, while also assessing their 

relationship with crop yields and export potentials for global food security. Numerous studies 

assessed water resources under future global warming scenarios without linking them to crop 

production (Arnell and Gosling, 2013; Greve et al., 2014; Schewe et al., 2014). Other studies 

developed a thorough assessment of actual and potential crop yields and management options for 

filling crop yield gaps, but without considering how the crop yield potentials might be affected by 

changes in hydrological processes and the GW-BW variations under future climate change 

scenarios (Burek et al., 2016; Mekonnen and Hoekstra, 2016; Oki and Kanae, 2006). Only limited 

studies suggested a comprehensive assessment of water-food relations and their variation and 

feedback mechanism using multidisciplinary approaches and under extreme climate events in the 

future (Orth and Destouni, 2018; Rockström, 2003).   

The virtual water trade (VWT), i.e., water embedded in the production process of crops that 

are traded between and within nations (Allen, 1996), is a measure, which relates crop yields to 

their BW and GW consumptions in irrigated and rainfed production systems, respectively. Most 

earlier VWT studies, centered around three main subjects including: (1) assessing the feasibility 

of using the concept as a management tool for balancing global water resources through trade of 

water intensive commodities from water abundant to water scarce regions (Allan, 1996, Chapagain 

et al., 2006), (2) investigating water availability of nations and their food import pattern, with an 

ultimate goal to understand if food imports follow water availability restrictions of the nations 

(Mekonnen and Hoekstra, 2020), and (3) socioeconomic drivers of  VWT and the impacts on both 
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importing and exporting nations . However, this study uses VWT as an 

inter-disciplinary approach that connects crop growth, crop yields, and crop export potentials, to 

the GW consumption and their relation to hydrological processes and, therefore, to BW availability 

at a watershed scale.  

Central to this exploration is the Red Deer River Basin (RDR), a pivotal agricultural 

catchment within the large-scale Nelson River Basin (NRB). Here, a process-driven agro-

hydrological model charts the multitude of natural and human-induced factors from increased 

CO2 levels, shifting temperatures, and altered precipitation patterns to varying agricultural 

practices. These elements jointly influence BW and GW resources and the subsequent crop yields, 

emphasizing their interdependence across the catchment. The broader implications of these 

relations, especially under extreme climatic events, become imperative in the larger context of the 

NRB a vast region in western Canada, rich in agriculture and playing a pivotal role in global 

food supplies. With origins in the Rocky Mountains, it spans diverse ecological zones, from vital 

agricultural lands to ecologically rich forests and wetlands, making it a unique study area for this 

study. Given the evolving dynamics of climate change, there is an emphasis on understanding the 

impacts of global warming scenarios, particularly in relation to crop yield, BW, and net virtual 

water export (NVWE) during future warm-dry events and after droughts. Utilizing scenarios like 

SSP126 and SSP585, this research not only endeavors to understand potential shifts in the GW-

BW during these climatic extremities but also aims to explore the interrelations of crop yield, 

NVWE, and BW following the termination of droughts. 

This study facilitates examination of the interactions between agro-hydrological processes 

and their implications for water and food security under future global warming scenarios. The 

insights derived, especially about the interplay of GW-BW, crop yields, and NVWE under 
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changing climatic conditions, are not confined to the NRB; they have a global resonance. The  

variation between VWC of different crops, their association with hydrological metrics, and export 

potential serve as a foundation for potential strategies, including crop diversification, to ensure 

water and food security in the future. This study lays a strong basis for examination of such 

adaptation strategies, for long-term planning and management of water and food resources. 

1.2. Overarching Goal and the Main Research Objectives 

The overarching goal of this research is to study the dynamics of GW-BW balance and their 

relationship with crop yields and NVWE under historical and future conditions. The study aims to 

assess their changes under future extreme climatic events, particularly warm and dry spells, as well 

as their recovery status during post drought conditions. The study involves an explicit assessment 

of the interplay among multiple components, such as soil water content, watershed hydrological 

processes like runoff and infiltration, crop yield response to climatic variables (including 

temperature, precipitation, and CO2 concentrations), and soil nutrients. By diving deep into these 

processes and their interactions and linkages, this research seeks to shed light on the collective 

response of the watershed agro-hydrologic processes, especially in the face of droughts and their 

subsequent repercussions. The study spotlights the NRB, a significant agricultural watershed in 

western Canada and a main breadbasket in mid-to-high latitude region, which supplies food to 

over 170 countries around the globe and is home to ~70 Mha of agricultural lands in Canada. The 

ecohydrological diversity of the basin, with its geographic location situated in the higher latitudes 

of the global temperate zone, and being one of the largest river basins in North America, provides 

strong basis for a comprehensive assessment of BW and GW resources and their linkages under 

various ecohydrological settings. This includes the study of processes involved in the climate-

water-food system, such as increased CO2 concentration, elevated temperature, altered 
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precipitation, crop growth response to elevated atmospheric CO2 and the resulting impacts on 

stomatal closure, nutrient demands, and evapotranspiration (ET) scheme, as well as altered soil 

water dynamics and shifting snowmelt patterns. These factors are integral to understanding the 

dynamics of BW and GW resources, crop yields, and their linkages across regions.  

To achieve the overarching goal of this study, the research is guided by the following main 

objectives, forming the three main chapters of this research (see section 1.3): 

Objective 1: To provide an improved understanding of non-stationary crop yield response to 

climate change-induced agro-hydrological processes and management factors at a regional 

scale. To achieve this main objective the specific objectives are as follow:  

 quantify yield response to variations in climate models, emission scenarios, downscaling 

methods, and agro-hydrologic model parameters,  

 investigate spatiotemporal variability of the projected yield responses to understand 

physical, biochemical, and physiological processes driving crop yield responses in the 

future  

 to draw a conclusion on the non-stationarity in agricultural crop yields under changing 

climate and agronomic management practices  

Objective 2: To characterize changes in GW-BW relationships under future warm-dry events 

across different landscape and ecological settings such as mountainous lands, natural lands, 

and crop lands in large watersheds. To achieve this main objective, the specific objectives 

are to: 

 quantify spatiotemporal variations of BW and GW linkages under different 

ecohydrological settings, including in mountains and foothills (i.e., mountainous lands), 
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agricultural plains (i.e., crop lands), and other natural landscapes such as forests and 

wetlands (i.e., natural lands)  

 discuss the spatiotemporal variations of driving factors and how they  affect changes in 

GW-BW relationships  

 quantify GW-BW anomalies under possible future extreme warm-dry events from their 

historical averages  

Objective 3: To examine the impacts of future droughts and post-droughts on crop yields, crop 

production and export potentials, and their effects and relations to water resources (i.e., 

GW-BW) through analysis of NVWE. To achieve this main objective, the specific 

objectives are to:  

 analyze the past and projected changes in BW (i.e., water yield in this study) under average, 

drought, and post drought conditions  

 assess the past and projected changes in crop yields, under average, drought, and post 

drought conditions  

 evaluate the impacts of drought and post-drought conditions on NVWE and its linkages 

with Y and WYLD under historical and future scenarios in the NRB as one of the important 

breadbaskets of the world which exports agricultural crops to over 170 countries around 

the world  

The research utilizes the Soil and Water Assessment Tool (SWAT) agro-hydrologic model 

for process simulation associated with BW, GW, and Y, and the outputs are further analysed to 

achieve the specific objectives listed above. SWAT is a process-based, semi-distributed agro-

hydrological model that lends itself as a suitable tool to climate change impact assessment in this 

research because:  
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1. It integrates many related physical processes including watershed hydrology, climate, soil 

nutrient cycling, crop and vegetation growth, and agricultural and water management 

practices  

2. It has been successfully applied both worldwide and in Canada 

3. Calibration and uncertainty analysis of the processes have been performed, and the related 

tools have been developed and continuously updated  

1.3. Thesis Structure 

Chapter 2 presents the modelling and the analyses performed to achieve the objective 1 and 

is drafted in the form of a manuscript, which is published in the Science of The Total Environment 

journal. It presents the simulation and analysis of crop yield response to variation in soil water and 

nutrient processes due to changes in climate and management factors under global warming 

scenarios. It also describes the uncertainties inherent in the hydrologic and climate change model 

projections. 

Chapter 3 covers modeling data and analysis performed to achieve objective 2. The findings 

are presented in the form of a manuscript, which is accepted for publication in the Journal of 

Hydrology. This chapter analyzes the linkages between GW and BW across various 

ecohydrological regions in the NRB, exploring the processes and factors influencing their 

spatiotemporal variations and assessing potential deviations from historical averages under future 

extreme warm-dry events. 

Chapter 4 presents results of objective 3, and is presented in the form of a draft manuscript. 

This chapter is currently undergoing the final minor revisions and is ready for submission to a 

peer-reviewed journal. Chapter 4 investigates the effects of extreme drought and post-drought 

conditions on crop yields and crop export potentials under future global warming scenarios. The 
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chapter assesses the linkages on blue water disruptions by analysing NVWE in the NRB. It also 

provides discussion and implications of improved yields and export potentials on watershed 

hydrology and BW availability for other socioeconomic sectors and ecosystem.  

Chapter 5 synthesizes the research findings from previous chapters, providing general 

conclusions concerning water-food relations and the potential changes under future extreme 

droughts and post-drought conditions in the Nelson River Basin, with the possibility to extend to 

other agricultural watersheds of high latitude regions in temperate zone with similar 

ecohydrological conditions.  A number of shortcomings encountered in modeling the water and 

crop production are pointed out. Finally, an outlook is provided pointing out the potential 

applicability of the modeling framework developed in this study to examine various management 

scenarios (e.g., cropping pattern adjustment) to improve water-food security.   
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CHAPTER II  MANUSCRIPT 1 

Non-stationarity response of rain-fed spring wheat yield to future climate 
change in northern latitudes 

Pouya Khalili1, M. Badrul Masud1, Budong Qian2, Symon Mezbahuddin3, 4, Miles Dyck4, 
Monireh Faramarzi1* 
1 Watershed Science and Modeling Laboratory, Department of Earth and Atmospheric Sciences, 

Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada 
2 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON 

K1A 0C6, Canada 
3 Natural Resource Management, Alberta Agriculture and Forestry, Edmonton, AB 
4 Department of Renewable Resources, Faculty of Agricultural Life and Environmental Sciences, 

University of Alberta, Edmonton, AB, Edmonton, AB T6G 2R3 Canada. 
*Corresponding author: faramarz@ualberta.ca  

2.1 Abstract 

The non-stationary response of crop growth to changes in hydro-climatic variables makes 

yield projection uncertain and design and implementation of adaptation strategies debatable. This 

study simulated time-varying behavior of the underlying cause-and-effect mechanisms affecting 

spring wheat yield (SWY) under various climate change and nitrogen (N) application scenarios in 

the Red Deer River basin in agricultural lands of the western Canadian Prairies. A calibrated and 

validated Soil and Water Assessment Tool and Analysis of Variance decomposition methods were 

utilized to assess contribution of crop growth parameters, Global Climate Models, Representative 

Concentration Pathways, and downscaling techniques to the total SWY variance for the 2040-2064 

period. The results showed that the cause-and-effect mechanisms, driving crop yield, shifted from 

creating a water stress (W_stress) historically dominated system (27 days of W_stress days) to 

nitrogen stress (N_stress) dominated status (27 to 35 N_stress days) in the future period. It was 

shown that while higher precipitation, warmer weather, and early snowmelts, along with elevated 
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CO2 may favor SWY in cold regions in the future (up to 50% more yields in some sub-basins), the 

yield potentials may be limited by N_stress (only up to 0.7% yield increase in some sub-basins). 

The N_stress might be partially related to the N deficiency in the soil, which can be compensated 

by N fertilizer application. However, inadequate N uptake due to limited evapotranspiration under 

elevated atmospheric CO2 might pose restrictions to SWY potentials even in the least N deficient 

regions. This study uncovers important information on the understanding of spatiotemporal 

variability of hydrogeochemical processes driving crop yields and the non-stationary response of 

yields to changing climate. The results also underscore spatiotemporal variability of N_stress due 

to N deficiency in the soil or N uptake by crops, both of which may restrain SWY by changes in 

atmospheric CO2 concentrations in the future. 

Keywords: Variance decomposition, water stress, nitrogen stress, temperature stress, hydrologic 

processes 
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2.2 Introduction 

Climate change is expected to increase the frequency of extreme climatic events such as 

droughts (Kang and Sridhar, 2018) and floods (Karamouz et al., 2019) that may significantly 

jeopardize freshwater availability and food production (IPCC, 2014). Agriculture and food 

production can be disrupted due to the direct and indirect effects of climate change. Direct effects 

of changes in climate pattern, such as increased heat stress (Yang et al., 2017), frequent extreme 

temperatures (S. Zhang et al., 2016), intermittent heavy rainfall and waterlogging of soils (Li et 

al., 2019), and changes in atmospheric composition and CO2 fertilization (Swann et al., 2016) can 

alter crop physiology and drastically decrease or in some cases enhance crop yields in the future. 

Indirect effects such as changes in ice and snowmelt dynamics and hydrologic regime (Wang et 

al., 2017), as well as pests and diseases (Jabran et al., 2020), may also impact crop production. 

However, the magnitude and the way crops are impacted by these factors depend not only on 

geographic location, crop type, and stage of the growing season but also on numerous processes 

and factors that collectively affect crop growth and yield and their response to such alterations. To 

design proper adaptation strategies for future food security, understanding key processes and 

stressors affecting crop yields, and assessing the non-stationary response of yields and crop 

developments to changes in climate variables and atmospheric CO2 fertilization across 

spatiotemporal scales is pivotal.  

Various studies showed that climate-driven changes in agro-hydrology and the consequent 

impact on crop yields did not follow a consistent pattern, indicating that their response to climate 

change is not stationary (Fezzi and Bateman, 2015; McCarl et al., 2008; Milly et al., 2008, 2015; 

Montanari and Koutsoyiannis, 2014). The non-stationary approach requires relating the time-

varying behavior of the underlying cause-and-effect mechanisms that influence changes in crop 
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yield (Serinaldi and Kilsby, 2015), which can be very different from their historical compartments. 

Studies have argued that identifying cause-and-effect mechanisms is key to inferring their future 

evolution and making hydrological, agronomic, and ecological predictions beyond their historical 

records (McCarl et al., 2008; Ganguli and Coulibaly, 2017; Hofgaard et al., 2019). In fact changes 

in the mean and variance of a given variable, e.g., crop yield might be driven by different processes 

or similar processes of different magnitude and intensity in the future as compared to their 

historical compartments.  Consequently, it is imperative to study cause-and-effect mechanisms 

associated with agricultural and hydroclimatic evolution, i.e., non-stationarity in yield projections. 

Past studies assumed universal favorable effects of increased atmospheric CO2 concentration on 

biomass and crop yield development (Högy et al., 2009; Jablonski et al., 2002). In theory, 

depending on crop type and their species, increases in atmospheric CO2 concentration, in addition 

to changes in radiative forcing, can affect crop photosynthesis processes and evapotranspiration 

schemes favorably (Swann et al., 2016). Both C4 crops (those that are CO2-saturated in their plant 

cells, such as maize and millet) and C3 crops (those that are CO2-deficit in their plant cells, such 

as wheat) may benefit from CO2 fertilization by either enhancing photosynthesis (more evident in 

C3 crops) (Roudier et al., 2011), or improving water use efficiency (evident on both C3 and C4 

crops) due to reduced evapotranspiration (Kimball, 2016; Nowak et al., 2004). However, crop 

yield advantage due to elevated CO2 concentration may not fully offset the negative impacts of 

other unfavorable climate factors (e.g., water shortage, excessive warming) (Arora et al., 2020). 

Yang et al. (2017) predicted maize yield reduction under future climate despite an elevated CO2 

concentration, which indicated dependence of yield increments on factors other than changes in 

atmospheric CO2 concentrations. Crop yields are thus expected to present regionally variable non-

linear responses to the compound effects of changes in climatic variables (i.e., precipitation and 
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temperature), atmospheric CO2 concentration, and soil environment under future climates 

(Broberg et al., 2019; Li et al., 2020; Porter and Semenov, 2005). Yields of crops such as wheat 

and soybean may increase due to longer growing seasons and larger accumulation of crop heat 

units under future climates, especially in higher latitudes, until the crop growth and yield become 

limited by plant nutrient availability (He et al., 2018). While earlier studies elaborated on the 

beneficial effects of elevated CO2 on crop growth and crop water-use efficiency (Deryng et al., 

2016; Long et al., 2004; Tubiello et al., 2007), recent empirical studies indicated that under low N 

application, the favorable effects of elevated CO2 on crop yields and their productivity would be 

constrained (Manderscheid et al., 2018). Moreover, the water and nutrient storage capacity of soils 

affect crop growth sustainability during periods of adverse conditions, and they either buffer or 

reinforce the impacts of climate variability (Folberth et al., 2016; Wang et al., 2009). Therefore, it 

is crucial to study the non-stationary response of crop yields to climate change with a thorough 

assessment of their response to atmospheric CO2 and its warming effects when compounded with 

other hydrological, crop phenological, and agronomic management factors in the future. Rigorous 

conceptualization of the way plants may respond to the changes in CO2, and their adaptability to 

the new and altered conditions are imperative to understanding the full impacts that various 

interconnected global change factors may have on plant growth in future projections (Geng et al., 

2019; Leakey et al., 2009). Soil physical and biogeochemical processes, eco-physiology, and 

agronomic management practices are among the most critical factors driving biomass development 

and crop yield response to climate change. Examining the extent to which each of these processes 

and factors or groups of processes may affect crop growth across spatiotemporal scales will help 

better understand and improve predictive capacity on the non-linear response of crop yields and 
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their non-stationary pattern in the future. This will enhance confidence in yield predictions for 

adaptive management of water and food challenges in the future. 

Process-based agro-hydrological, climate, and crop growth models are among the best 

available means for regional assessment of the response of crop yields to changes in climate and 

water resources (Angulo et al., 2013; Challinor et al., 2010; Tao et al., 2009). These models 

simulate dynamic interactions of the processes involved in the soil-plant-atmosphere continuum 

in response to changes in atmospheric, hydrologic, and management conditions. Therefore, they 

facilitate assessing crop response to changes in plant water and nutrients availability, agronomic 

management, and climate, which affect plant physiological processes and their phenological 

properties (Frieler et al., 2017). However, these models are subject to uncertainty due to the 

differences in mechanistic approaches used to simulate feedbacks among physical and biochemical 

processes in agro-ecosystems. Overall, crop growth simulation models can be categorized into 

three major groups: (i) carbon-driven models (Bouman et al., 1996; Ceglar et al., 2019; Van 

Ittersum et al., 2003), (ii) radiation-driven models (Jin et al., 2016; Monteith and Moss, 1977), and 

(iii) water-driven models (Abedinpour et al., 2012; Garcia-Vila et al., 2019; Starr et al., 2020). 

Carbon-driven models, such as WOFOST (Diepen et al., 1989) and SWAP (Van Dam et al., 1979), 

have a hierarchical structure in which the higher-level responses, such as leaf and canopy CO2 

assimilation and dark respiration, result from the combination of very detailed underlying 

parameters such as the effects of leaf angles, location latitudes, and crop row orientation. Most of 

these models are highly complex and require a wide range of measured data at the plant level, such 

as plant phenological parameters along with detailed site-specific climate data and soil properties 

among others (Kanda et al., 2018). Although recent computational advancements have made agro-

hydrological simulations of large regions attainable, the application of these models is still mostly 
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limited to plot- and field-scale studies, predominantly due to the limited availability of detailed 

plant physiological measurements to drive the model simulation at larger spatial scales. In 

radiation-driven models, such as SWAT-EPIC (Williams et al., 1989) and STICS (Brisson et al., 

1998), plant- and canopy-level detailed physiological processes are presented with a more 

simplified approach (Steduto, 2003). For instance, net plant CO2 assimilation is simplistically 

incorporated into a coefficient called radiation-use efficiency (RUE) (Kukal and Irmak, 2020). In 

these models, plant growth is determined from leaf area development, light interception, and 

conversion of intercepted light into chemical energy and hence plant biomass, assuming a species-

specific radiation use efficiency. These crop growth simulators have their advantages in fewer data 

requirements at the plant level while efficiently simulating and scaling up key eco-physiological 

responses to large regional scales. Besides these models also simulate key processes driving soil-

plant-atmosphere water and nutrient cycles adequately in simpler algorithms. On the other hand, 

in water-driven models, such as AquaCrop (Steduto et al., 2009), and CropSyst model (Stöckle et 

al., 2003), some of the key physiological processes such as root water uptake and crop water use 

through transpiration are only represented by a water productivity (WP) parameter (Steduto, 2003). 

These models assume that the spatiotemporal variability of above-ground and below-ground 

biomass production due to the changes in soil water balance is proportional to the single WP 

parameter. Moreover, these models do not simulate how changes in key climatic variables such as 

radiation and atmospheric CO2 concentration affects crop growth and yield (Raes et al., 2018). 

Hence the application of these models is restricted by the oversimplification of key physical and 

biogeochemical processes, which may underestimate the response of crop yield to changes in 

future climate. 
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In this study, we aimed to revisit plant-water-soil-atmosphere relation and study non-

stationary behavior of the crop growth by providing a comprehensive assessment of SWY response 

to complex and interactive feedback between water, nitrogen, temperature, and atmospheric CO2 

concentration under future climate change and agronomic management scenarios. The overarching 

goal of this study is to provide an improved understanding of non-stationary crop yield response 

to climate change-induced agro-hydrological processes and management factors at a regional 

scale. We implemented the Soil and Water Assessment Tool (SWAT), a radiation driven model, 

and utilized an Analysis of Variance (ANOVA) decomposition approach (see section 2.3.4) to 

apportion total variance in crop yield projections into its various sources and to understand yield 

response to its driving forces. To achieve this goal our specific objectives are to (1) setup, calibrate, 

and validate a process-based SWAT agro-hydrologic model for rain-fed wheat yield simulation at 

a watershed scale, (2) quantify yield response to variations in climate models, emission scenarios, 

downscaling methods, and agro-hydrologic model parameters, (3) investigate spatiotemporal 

variability of the projected yield responses to understand physical, biochemical, and physiological 

processes driving crop yield responses in the future, and (4) to draw a conclusion on the non-

stationarity in agricultural crop yields under changing climate and agronomic management 

practices.  

To accomplish our objectives, we focused our modeling efforts on the Red Deer River (RDR) 

basin in Alberta, a western province of Canada. The RDR basin is representative of agricultural 

lands in the Prairies of Canada, which is considered as a main breadbasket of the world, and is 

characterized by heterogeneous soil, climate, and geospatial conditions, as well as cold region 

hydrology (e.g., Pomeroy et al., 2007) and intermittent droughts. Moreover, it is one of the most 

productive regions in western Canada in terms of SWY, with its croplands benefited from both 
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rainfall and snowmelt that are projected to alter under changing climate, hence, making this basin 

a suitable study area to address our research objectives. 

2.3 Methods and data 

2.3.1 Study area and data collection 

The Canadian prairies are central to global grain production and a major breadbasket of the 

world. The region exports crop and agricultural commodities to over 170 countries around the 

world on an annual basis (Masud et al., 2019). Our research is carried out in the RDR basin with 

an area of 47,000 km2, located in the croplands of Canadian prairies in the southern part of the 

province of Alberta between 50-53 oN and 110-115 oW (Figure 2.1). The elevation ranges from 

574 meters above sea level (masl) to 1700 masl in the crop production areas and it reaches 3280 

masl at the highest altitudes in the western parts of the RDR basin. The agricultural lands in the 

RDR basin are the dominant land use-land cover type covering the majority of the basin except for 

higher altitudes in the west. Spring-wheat, as the main crop in Canada, is predominantly produced 

in Canadian prairies and in the RDR basin, which is highly dependent on hydroclimate variables 

and phenological parameters (Masud et al., 2018). The long-term average daily 

temperature has a minimum of -25  and a maximum of 35  with an average annual precipitation 

of 400 mm. During the growing season, the precipitation is roughly 250 mm, and the average daily 

temperature ranges from 2  at its lowest in the western parts (nearest to the Rocky Mountains) 

to 34  at its highest in the middle of the watershed. Snowmelt plays a vital role in supplying water 

needs early in the growing season in RDR (Masud et al., 2018). Moreover, black soils are mostly 

dominating the croplands of the RDR basin (Alberta Agricultural and Rural Development, 2004). 

These soil types are specified among the most productive soils worldwide and are considered the 

reason for agricultural suitability in the RDR basin (Bentley et al., 1971).  
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In this study, the historical climate data, including daily precipitation, temperature, solar radiation, 

humidity, and wind speed were taken from Faramarzi et al. (2015). They used a suite of four 

climate time series from local meteorological, gridded products, and satellite data covering the 

province to reproduce historical streamflow records by implementing a calibrated SWAT 

hydrologic model. Other data, including a topographic map, vegetation cover, and soil 

characteristics, were obtained from Faramarzi et al. (2017) (See Table A.1). The potential heat 

units, fertilizer application rate, and maximum amount of annual fertilizer application were 

adapted from Masud et al. (2019) and the Government of Alberta (Alberta Agricultural and Rural 

Development, 2004). In addition, yearly crop yields (ton/ha), used to calibrate and validate the 

simulated rain-fed spring-wheat, were obtained from Alberta Agriculture and Rural Development 

(AARD) at the level of Census Agricultural Region (CAR) for the 1983-2007 period (Figure 2.1c). 

 
 

Figure 2.1. Geographic extend of the RDR basin, located in croplands of the Canadian Prairies, 
is one of the main river basins in the province of Alberta (a); topographic domain, main rivers, 
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and modeled sub-basins of the study area (b); and spring wheat crop spatial density map and the 
five Census Agricultural Region of the study watershed (c). 

2.3.2 Simulation of climate change impacts 

 For future projections of wheat yields, the climate data were incorporated from an ensemble 

of nine Global Climate Models (GCMs) of the Fifth Assessment Report (Stocker et al., 2013), 

under two Representative Concentration Pathways including of RCP2.6 and RCP8.5, for the 2040-

2064 period (see Table A.2). In this study, we set the concentration of CO2 to 350, 450, and 750 

ppm for the historical, future RCP2.6, and future RCP8.5 periods in simulations based on the 

possible range provided by IPCC (2014), respectively. Climate data were statistically downscaled 

based on historical daily gridded climate data for Canada, and they are available through Pacific 

Climate Impacts Consortium (PCIC) at roughly 10 km resolution (Hopkinson et al., 2011; 

McKenney et al., 2011). To test the effect of the downscaling procedure on crop yield simulation 

and its response to the aforementioned factors, the PCIC data were further downscaled to Alberta 

conditions based on daily historical climate data from earlier studies by Ammar et al. (2020) and 

Masud et al. (2018). In their study, the delta method (Quilbé et al., 2008; Chen et al., 2011a) was 

used for bias correction of the projected climate time series. It is noteworthy that the RCP2.6 and 

RCP8.5 were selected in our study to represent the largest plausible range for greenhouse gas 

emissions. The former describes a best-case scenario with a rising radiative forcing pathway of 2.6 

W/m2 in 2100, and the latter defines a worst-case scenario in which greenhouse gas emissions 

continue to increase rapidly with a radiative forcing reaching 8.5 W/m2 in 2100 (IPCC, 2014).  

2.3.3 SWAT model setup, calibration, validation, and uncertainty analysis 

The ArcSWAT 2012 (Rev. 664) was implemented to simulate hydrological processes and 

crop yield for both historical (1983-2007) and future (2040-2064) periods. SWAT is a physically-

based, continuous-time, semi-distributed model (Arnold et al., 1998), which is widely applied for 



20 

analyses of the impacts of climate change, water management, and agricultural management on 

hydrological (Aryal et al., 2019; Fang et al., 2018; Faramarzi et al., 2017) and crop growth (Masud 

et al., 2018 & 2019; Chen et al., 2019; Shahvari et al., 2019) processes. The crop growth simulation 

algorithms in SWAT are adapted from the EPIC crop growth model (Williams et al., 1984). SWAT 

uses a crop-specific base temperature to calculate the number of accumulated heat units (Monteith 

and Moss, 1977). Plant growth is estimated using leaf area development, light interception, and 

conversion of intercepted light into biomass assuming a plant species-specific radiation use 

efficiency (Neitsch et al., 2011a). Optimal biomass and potential yields are simulated under ideal 

growing conditions consisting of adequate water and nutrient supply, and a favorable climate, i.e., 

optimum temperature (Neitsch et al., 2011a). Water stress, temperature stress, and nutrient stress 

factors are then simulated to model actual development of above ground and below ground 

biomass, and crop yields on a daily basis. Biomass development commences once the temperature 

exceeds the plant specific base temperature from planting to harvest date (growing season), or until 

the time it reaches the crop-specific, maximum heat units. Actual water uptake by the crop is 

simulated based on potential evapotranspiration, biomass-dependent water requirement, and water 

availability in the soil layers on daily basis. The potential evapotranspiration is simulated using 

the Penman-Monteith method (Beven, 1979).  

Using a topographic map and the threshold drainage area of 200 km2, the watershed was 

delineated into 142 sub-basins that were later characterized using soil, vegetation, slope properties, 

as well as climate parameters. Crop yield simulations were then enabled in each sub-basin by 

assigning crop-specific phenological and agricultural management data such as planting and 

harvesting dates, fertilizer and pesticide application, irrigation, tillage, and harvest and kill 

operations. In SWAT, potential crop yield is usually not achieved because of constraints induced 
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by water, nutrients, and temperature stresses. W_stress can be related to water deficiency or water 

surplus. The water deficiency stress is simulated based on comparing actual and potential plant 

transpiration for each day (Eq. 2.1): 

 (2.1) 

Where, W_stress is the water stress for a given day, Ep is the maximum plant transpiration 

on a given day (mm), and Eact is the actual amount of transpiration on a given day (mm). The Eact 

is simulated based on soil physical properties, soil water availability, plant biomass development, 

and climate factors. The soil water availability is based on soil hydrologic water balance, which is 

calculated based on surface runoff, snowmelt, infiltration to the soil, lateral flow, groundwater 

recharge, evaporation from the soil, transpiration from plants, and capillary recharge from 

groundwater due to capillary effects (see Neitsch et al., 2011). Water surplus stress is simulated as 

the function of saturation over field capacity in the soil profile. Similarly, N_stress is calculated 

based on comparing the actual mass of nitrogen stored in plant material and the optimal mass of 

nitrogen stored in the plant for a given day (Eq. 2.2,2.3):   

 (2.2) 

) (2.3) 

Where, S is a scaling factor for N_stress on a given day, bioN,opt is the optimum mass of 

nitrogen stored in plant material for the current growth stage (kg N/ha), bioN is the actual mass of 

nitrogen stored in plant material for the current growth stage (kg N/ha). The bioN  is calculated 

based on the amount of N uptake from the soil which is simulated based on the transpiration and 

the amount of nitrate in the soil. The nitrate content of the soil is computed as a product of N 
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fertilizer application and the nitrogen transformation processes in the soil i.e., nitrification, 

atmospheric deposition, immobilization, and mineralization on daily basis. Therefore, the 

simulated N_stress in the model is either related to inadequate availability of the N in the soil or 

limited N uptake due to changes in plant phenological features (e.g., stomatal conductance) or 

hydroclimate factors (e.g., inadequate soil moisture or reduced transpiration (Neitsch et al., 2011). 

The temperature stress (T_stress) is a function of the daily average air temperature and the optimal 

temperature for plant growth (Eq. 2.4-2.6).  

        (2.4) 

        (2.5) 

        (2.6) 

Where  is the mean air temperature for day (oC), Tbase 

for growth (oC), and Topt optimal temperature for growth (oC).  

In the model, the N fertilizer application in each sub-basin was enabled by specifying an 

N_stress threshold (Auto_NSTRS parameter) factor which is as a fraction of potential plant 

growth. When actual plant growth fell below this threshold level because of N_stress in a sub-

basin, N fertilizer was applied until the cumulative volume of N application reached an allowable 

N defined in one year based on measured data. For the simulation of historical crop yields (i.e., 

baseline scenario), we set the maximum allowable N application based on an earlier study by 

Masud et al. (2019), where a realistic volume of N fertilizer application was adapted based on 

literature review and personal communication with regional farmers. Therefore, we assume that 



23 

setting the N fertilizer application in the model based on the actual yearly N volumes, limits the N 

application rates and it simulates a realistic rate of application in the real world.   

Table 2.1. Selected parameters for calibration of crop yields in each CAR, in this study. 

No. Parameter Underlying SWAT parameter 
1 v__DAY{[],1}.mgt Plant growing season date 
2 v__DAY{[],5}.mgt Day harvest takes place 
3 v__HEAT_UNITS{[],1}.mgt Total heat units for plant to reach maturity 
4 v__HI_TARG{[],1}.mgt Harvest index target ((kg/ha)/(kg/ha)) 
5 v__AUTO_NSTRS{[],11}.mgt N_stress factor of plant that triggers fertilization 

6 v__AUTO_NAPP{[],11}.mgt 
Maximum amount of mineral N allowed in any one application (kg 
N/ha) 

7 v__AUTO_NYR{[],11}.mgt Maximum amount of mineral N allowed to be applied in any one year 
(kg N/ha) 

8 v__AUTO_EFF{[],11}.mgt Application efficiency 
9 v__AFRT_SURFACE{[],11}.mgt Fraction of fertilizer applied to top 10 mm of soil 
10 r__CN2.mgt SCS runoff curve number for moisture condition II 
11 v__ESCO.hru Soil evaporation factor 
12 v__EPCO.hru Plant uptake compensation factor 
13 v__OV_N.hru Manning's n value for overland flow 
14 v__LAT_TTIME.hru Lateralflow travel time (days) 
15 v__LAT_SED.hru Sediment concentration in lateral and groundwaterflow (mg/L) 
16 r__CANMX.hru Maximum canopy storage (mm H2O) 
17 r__HRU_SLP.hru Average slope steepness (m/m) 
18 r__SOL_BD(1).sol Soil bulk density in layer 1 of soil profile (g/cm3) 
19 r__SOL_CBN(1).sol Organic carbon content in layer 1 of soil profile (% soil weight) 
20 r__SOL_ALB(1).sol Moist soil albedo in layer 1 of soil profile 
21 r__ANION_EXCL.sol Fraction of porosity from which anions are excluded 
22 r__SOL_K(1).sol Saturated hydraulic conductivity in layer 1 of soil profile (mm/h) 
23 r__SOL_CRK.sol Potential or maximum crack volume of the soil profile 
24 r__USLE_K(1).sol USLE equation soil erodibility (K) factor in layer 1 of soil profile 
25 r__SOL_AWC().sol Available water capacity of the soil layer (mm H2O/mm soil) 
26 v__SHALLST.gw Initial depth of water in the shallow aquifer (mm H2O) 
27 v__ALPHA_BF.gw Baseflow alpha factor (1/days) 
28 v__SHALLST_N.gw Initial concentration of nitrate in shallow aquifer (mg N/L or ppm) 
29 v__GW_SPYLD.gw Specific yield of the shallow aquifer (m3/m3) 
30 v__GWSOLP.gw Concentration of soluble phosphorus in groundwater (mg N/L or ppm) 
31 v__HLIFE_NGW.gw Half-life of nitrate in the shallow aquifer (days) 

 

For calibration, validation, and uncertainty analysis, Sequential Uncertainty Fitting (SUFI-

2) in combination with a parallel processing scheme was used (see Du et al., 2020). A set of 31 

sensitive hydrological and crop parameters were initially selected based on a literature review for 
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rain-fed spring-wheat growth simulation in each CAR (see Table 2.1). The Latin Hypercube 

Sampling (LHS) method was implemented to generate 1000 parameter sets from an initially 

meaningful range assigned to each parameter based on a literature review (Alberta Agricultural 

and Rural Development 2004; Masud et al., 2018). Sampled parameters were used to force the 

model and 1000 simulations were performed in each calibration iteration. The model performance 

of each simulation was evaluated using p-factor and r-factor. The p-factor is the percentage of 

observed data bracketed within the simulated range of output variables due to the use of 1000 

parameter sets (i.e., observed versus simulated streamflow and crop yields). It varies from 0 to 1 

and ideally the p-factor of 1 is targeted through the calibration process. The r-factor is another 

statistic that is calculated based on the average width of output uncertainty divided by the standard 

deviation of the corresponding measured data. The output uncertainty is calculated as 95 percent 

of the cumulative distribution of the simulated streamflow and yields from the 1000 model runs, 

and is called parameter prediction uncertainty (95PPU hereafter). The r-factor maps all sources of 

model uncertainty resulting from parameter inputs, model structure, and observed data to the 

output uncertainty. The r-factor varies within the interval -factor indicates 

more uncertainty in the model prediction. Therefore, a value of 0 is expected in an ideal model 

with perfect performance. Unlike streamflow simulation, the standard deviation of crop yields is 

relatively small and it can arbitrarily increase the r-factor as compared to streamflow studies. 

Therefore, any r-factor values within the range of 1-3 is desirable for crop yield simulations 

(Faramarzi et al., 2010). To calibrate the model, the simulated streamflow and crop yields were 

compared with their observed time series. The Nash-Sutcliffe Efficiency (NSE) and bR2 

(Faramarzi et al., 2015 and 2017) were used as objective functions for calibration of streamflow 
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at 13 hydrometric stations, and the mean square error (MSE) was used as the objective function 

(Eq. 2.7):  

 
                                (2.7) 

Where n is the number of observed crop yields in each CAR, O is the observed crop yield, 

and S is the simulated crop yield. For comparison purposes, crop yield simulations at the sub-basin 

scale were aggregated to the CAR scale. We performed three iterations for model calibration and 

uncertainty assessment. The optimum MSE in the first calibration iteration was used to decide 

about further calibration-uncertainty iterations on how to narrow the uncertainty while optimizing 

performance statistics (i.e., p-factor and r-factor). The model was calibrated from 1995 to 2007, 

and the optimized parameter ranges resulted from the last iteration were used for model validation 

from 1983 to 1994. A warm-up period of three years (1983-1985) was considered to lower the 

influence of initial state variables. The calibration of streamflow using NSE and bR2 is extensively 

discussed in Faramarzi et al. (2015) and Faramarzi et al. (2017). This paper focuses on presenting 

the results of SWY calibrations. 

2.3.4 ANOVA for the decomposition of total yield variances and model scenarios 

Statistical analyses such as the ANOVA decomposition method is commonly used to analyze 

the proportion of yield response to the effects of individual and multiple factors after they are 

simulated under various scenarios. The ANOVA decomposition approach is useful for studying 

how and to what extent crop yields respond to various factors such as climate projections of Global 

Climate Models (GCMs), alternative Representative Concentration Pathways (RCPs), various 

downscaling techniques, hydrological and crop growth model parameters, as well as input data, 

and their structure (Vetter et al., 2017; Corbeels et al., 2018; Tao et al., 2018). It can also analyze 
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the sensitivity of yields to various agricultural adaptation options and agronomic management 

practices (i.e., cropping calendar, fertilizer application, other management practices). The 

ANOVA method has a lower number of assumptions comparing to other similar approaches (i.e., 

classical Bayesian approach) for decomposition analysis and is a relatively new method with a 

growing interest in utilizing this approach for such decomposition analyses (Aryal et al., 2019; 

Ashraf Vaghefi et al., 2019; Wang et al., 2018). 

The ANOVA method was used to assess how wheat yield corresponds to various 

hydrological and crop-related processes and factors under changing climate and CO2 

concentrations. This method apportioned the total variances of projected yield into its originating 

sources resulting from nine GCMs, two RCPs (Table A.2), two bias correction methods (DSs) 

including of with (DS1) and without (DS2) further bias correction, and two 95PPUs. The two 

95PPUs are calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 

variable resulted from 1000 parameters of the model (95PPU). The 2.5% level presented a lower 

band of uncertainty range (L95PPU) and the 97.5% level indicated a higher band of uncertainty 

range (U95PPU). These two levels of 95PPU were used for analyses of variance in the ANOVA 

as follow: 

 (2.8) 

In ANOVA, the total sum of squares (SST) and the sum of squares from individual sources, 

including crop model parameters (SS95PPU), GCMs (SSGCM), RCPs (SSRCP), and DSs methods 

(SSDS) are quantified alongside the effect of their interactions (SSI) in Eq. 2.8 (Aryal et al., 2019; 

Ashraf Vaghefi et al., 2019; Wang et al., 2018). Then, the share of variance from each source is 

calculated as 100×(SSi/SSTi), where I is the individual source of variance.  
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The sum of squares of interactions (SSI) is a combination of two, three, four, and five 

combinations (Eq. 2.9), making 2n-n-1 combinations in total (n is the number of individual 

variance sources). 

To evaluate the potential impacts of the soil nutrient variations on crop yield when it is 

compounded with elevated CO2, changes in precipitation and temperature pattern due to climate 

change, and resulting changes in soil hydrological water balance, we developed two N application 

model scenarios, in addition to the GCMs, RCPs, DSs, and 95PPUs scenarios. Two N application 

scenarios included a 20% decreased and 20% increased N fertilizer application rate from the 

baseline (historical) scenario in the model, referred to NS1 and NS2 hereafter, respectively. We 

quantified crop yield changes using the ANOVA approach by developing 72 model scenarios as 

presented in Figure 2.2. Overall, simulated results of 72 SWAT models (9 GCM×2 RCP×2 DS×2 

95PPU) under three scenarios including baseline (historical) N application, NS1, and NS2, were 

analyzed to apportion variances at different spatial (e.g., sub-basin and watershed) and temporal 

(e.g., yearly) scales.  

 
(2.9) 
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Figure 2.2. Development of SWAT model scenarios for decomposition analysis of projected crop 
yield variances. Three N application scenarios were tested for future yield projections including 
baseline N, NS1 and NS2. 

2.4 Results and discussion 

2.4.1 Model calibration, validation, and uncertainty analysis 

The SWY calibration results showed an average p-factor of 100% and an average r-actor of 2.15 

in all CARs, which indicates satisfactory model performance (Table 2.2). With a large p-factor for 

both calibration (0.98) and validation (0.87) periods, the r-factor was greater for validation (3.38) 

than the calibration (2.15) period indicating better performance in the calibration than the 

validation period. The larger uncertainty in the validation period is mainly due to the yield statistics 

that may not be well-reported, changes in management practices that were potentially different in 

the validation period than the calibration, and crop varieties that may have been different in 

validation than calibration period (Masud et al., 2018). This also caused a slightly larger MSE in 

the validation period as compared to calibration results. Overall, the results for both calibration 

and validation were satisfactory as the model was able to reproduce most of the observed data 

within predicted uncertainty and represented their inter-annual variations in different CARs 

(Figure 2.3). 
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Table 2.2. Calibration and validation statistics of rain-fed spring-wheat for the historical period. 

Calibration   Validation 
County p-factor r-factor MSE  p-factor r-factor MSE 
CAR1 1.00 1.58 0.02  0.89 1.01 0.07 
CAR2 1.00 2.33 0.03  0.89 4.91 0.06 
CAR3 1.00 2.98 0.08  0.56 3.75 0.29 
CAR4 1.00 1.91 0.04  1.00 3.26 0.09 
CAR5 0.92 1.97 0.19  1.00 3.98 0.07 
Average 0.98 2.15 0.07  0.87 3.38 0.22 

 

Overall, the hydrological model performance was desirable for streamflow simulation during 

the calibration and validation periods from 1983 to 2007. The NSE values ranged from 0.02 to 

0.64 and bR2 values varied from 0.01 to 0.64 across hydrometric stations. The p-factor and r-factor 

values ranged from 0.22 to 0.94, and 0.51 to 3.74, respectively (see Table A.3). All calibration 

results indicated an acceptable model performance at the study basin. More details regarding the 

calibration and validation of the hydrologic model can be found in an earlier study by Faramarzi 

et al. (2015, 2017). 
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Figure 2.3. Comparison of observed (red circles) and simulated (grey bands) rain-fed SWY 
during calibration and validation periods in the five CARs. 

2.4.2 Spatial characteristics of the future climate change, stress factors, and their 
interactions 

Mean annual temperature and precipitation during the growing season ranged from 7oC to 21  

and 180 mm to 400 mm, respectively for the historical period (Figure 2.4). The ensemble mean 

temperature from 9 GCMs showed a mean increase in all of the sub-basins under RCP8.5 ranging 

from 0.4  to 3.2  for the future period (Figure 2.4a). However, the RCP2.6 indicates a smaller 

increase in temperature comparing to RCP8.5, ranging from -1  in the center of the basin to 1.8 , 

in upstream and downstream of the watershed (Figure 2.4a). Growing season precipitation 

increased in the entire watershed under RCP2.6 (except the mountainous regions). Under RCP8.5, 

the magnitude of precipitation decreased in north-western sub-basins in the upstream where the 

total historical precipitation is high and increased in the downstream sub-basins where the 

magnitude of total historical precipitation is low (Figure 2.4b). The projected ensemble mean data 
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revealed higher temperatures for most of the sub-basins, which are potentially beneficial to crop 

development, especially in a cold region as it can escalate the accumulation of growing degree-

days and heat units (He et al., 2018). However, soil water availability is key to the extent of yield 

increments resultant from temperature gain in the future. 

 

Figure 2.4. Comparison of historical and future mean temperature (a), and precipitation (b) 
under RCP2.6 and RCP8.5 scenarios. The maps in the right column, show anomalies from the 
historical values (1983-2007 period), and the future data are based on ensemble mean values 
averaged over 2040-2064 period. 
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Figure 2.5. Comparison of the average annual number of water stress days (a), temperature 
stress days (b), and nitrogen stress days (c) under RCP2.6 and RCP8.5 scenarios. The maps in 
the right column, show projected changes from the historical values (1983-2007 period) and the 
future data are based on ensemble mean values averaged over 2040-2064 period. 

The simulated W_stress days, which is also considered as one of the major yield-limiting 

factors among other stress factors (e.g., T_stress and N_stress), was 27 W_stress days for the 

historical period (Figure 2.5a) in the study watershed. This extensive water stress, however, is less 

apparent under future scenarios with the watershed average annual of 24, and 16 W_stress days 

under RCP2.6, and RCP8.5, respectively (Figure 2.5a). The model results showed earlier 

snowmelts and infiltration under future scenarios increased soil water availability resulted in the 

reduction of W_stress days in some sub-basins. In other sub-basins, the reduced W_stress days 

were due to the reduction in crop evapotranspiration rates (see discussions in the following 
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sections). With the watershed average annual of less than 4 T_stress days (Figure 2.5b), the 

T_stress remained moderate across watershed for both historical and future periods, except in 

mountainous areas where the temperature was colder (Figure 2.4a) in the historical period and they 

became warmer under future scenarios. In addition, N_stress days, which is considered as another 

primary yield-limiting factor, were amplified under both RCP scenarios in the future period. As 

seen in Figure 2.5c, the watershed annual average of 19 N_stress days during the historical period 

was increased to 27 days and 35 days under RCP2.6 and RCP8.5 scenarios, respectively. This 

increase in N_stress can be partially attributed to the potential enhancement of biomass caused by 

atmospheric CO2 fertilization (Roudier et al., 2011), which required more nitrogen uptake from the 

soil and or related to the decline in soil moisture and evapotranspiration rates that are discussed in 

the following sections. 

2.4.3 Temporal characteristics of the future climate change, stress factors, and their 
interactions 

The temporal analysis of precipitation, N uptake, and W/N/T_stress variability in growing season 

over historical and future periods can provide insights about the underlying relationship between 

these variables and ultimately, the evolution of the crop yield and its response to its driving 

processes. The W_stress days were the highest from 2040 to 2042 and 2057 to 2059 due to the 

reduced precipitation (Figure 2.6) with reduced precipitation. N_stress days were the highest 

during low N uptake years (i.e., 2047 to 2056), and the lowest during high N uptake years (i.e., 

2040 to 2042) (Figure 2.6). The RCP2.6 scenario demonstrates that the average precipitation and 

N uptake is 261 mm/year and 90.8 kg N/ha, respectively, which is well within the ranges of spring 

wheat N uptake in western Canada (Canadian Fertilizer Institute, 1998; Government of Alberta, 

2020). The RCP8.5 scenario, on the other hand, demonstrates a slight decrease in both precipitation 
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and N uptake compared to RCP2.6 with the average of 255 mm/year and 88 kg N/ha, respectively. 

The lower N uptake under RCP8.5 as compared to RCP2.6 is in contrast with the fact that crops 

demand more nutrients from the soil to produce greater biomass which is usually expected under 

a higher atmospheric CO2 scenario (RCP8.5) (Neitsch et al., 2011a; Ngosong et al., 2019). Our 

contrasting result is likely due to the lower transpiration under RCP8.5, in response to less stomatal 

conductance, which has reduced N uptake because of its direct relationship with the transpiration 

(Bower, 2008; Houshmandfar et al., 2018). Therefore, the potential N demand under RCP8.5 is 

not met due to a reduced N uptake rate because of the decreased transpiration, which results in 

more N_stress days under RCP8.5 compared to RCP2.6. On the contrary, RCP8.5 shows 

substantially fewer W_stress days than RCP2.6. This is due to the reduction in stomatal 

conductance stemming from higher CO2 emission under RCP8.5 (Uddin et al., 2018), which results 

in an enhanced water use efficiency (Deryng et al., 2016) and less W_stress while experiencing 

lower average precipitation under RCP8.5 as compared to RCP2.6 (see Figure 2.6). 
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Figure 2.6. Comparison of future (a) annual precipitation (mm) and nitrogen uptake from the 
soil (kg N/ha), and (b) yearly changes in W-N-T stress days under RCP2.6 and RCP8.5 future 
scenarios (2040-2064). 

2.4.4 Yield response to stress factors and its non-stationary behavior under future 
climate change scenarios 

The simulated mean historical SWY indicated that maximum yields occurred upstream of 

the watershed, whereas the southern part of the watershed presented the minimum yields (Figure 

2.7). Further, the mean ensemble model results, stemming from the nine GCMs simulations using 

the best parameter set of the agro-hydrologic model and averaged over two DSs, projected an 

increase of SWY in almost all of the sub-basins under both RCP scenarios (Figure 2.7). This 

upsurge in SWY is more pronounced in RCP8.5 (27% more yield at the watershed level) than 

RCP2.6 (11% more yield at the watershed level) scenarios. Potentially, the main reason is higher 

atmospheric CO2 under RCP8.5 scenario than RCP2.6 compounded with less evapotranspiration 

under high CO2 concentration due to stomatal closure, as well as a larger availability of soil 

moisture (Figure 2.5a) (Lambers et al., 2008). Comparison of W_stress, T_stress, and N_stress 

projections (Figure 2.5) with the crop yield (Figure 2.7) indicates that the increase of crop yield (0 

to 50%) in most of the sub-basins under both RCP scenarios can partially be explained by CO2 

fertilization and both temperature and precipitation gains. However, in the upstream sub-basins, 

the high yield gain under RCP8.5 is likely due to the effects of CO2 compounded with lower 

W_stress (Figure 2.5a), due to the higher annual mean precipitation (Figure 2.4b), as well as lower 

N_stress days in these specific sub-basins (Figure 2.5c). Nevertheless, the potential yield increase 

in these sub-basins may have been partially limited as the larger atmospheric CO2 may restrict 

yield potentials by lowering N uptake due to a decline in crop evapotranspiration (Uddin et al., 

2018) (Figure 2.5c). 
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Figure 2.7. Comparison of historical and projected wheat yield under RCP2.6 and RCP8.5 
scenarios. The maps in the right column show projected changes (%) from the historical yields 
(1983-2007 period) and the future data are based on ensemble mean values averaged over 2040-
2064 period. 

To further study the response of SWY to spatiotemporal dynamics of W-N stress factors, we 

analyzed our simulated results in four quarters including high (H), mid-high (MH), mid-low (ML), 

and low (L) water and nitrogen stress sub-basins (Figure 2.8). Due to the very different geospatial 

and hydrological characteristics of each region, the simulated historical SWY showed varying 

results in each region (Figure 2.8a-h) for the historical period. The high W_stress regions (Figure 

2.8a) showed the lowest average of historical SWY (1.7 ton/ha) and the low W_stress regions 

(Figure 2.8d) demonstrated the highest average historical SWY (3.2 ton/ha) during 1986-2007 

period. However, the average historical SWY in high N_stress regions (Figure 2.8e) was 2.6 ton/ha 

which declined to 2.1 ton/ha in low N_stress regions (Figure 2.8h). This indicates an inverse 

relation between W_stress days and SWY, which is not the case for N_stress days. As also 

discussed by Faramarzi et al. (2010), this is partly because simulated yields are quantified as a 

product of aboveground biomass and harvest index (Neitsch et al., 2011a), both of which are a 

function of W_stress. However, other stress factors such as N_stress and T_stress (Neitsch et al., 

2011a) are only taken in the biomass calculation into account. Therefore, the modeled SWY is 

numerically more affected by W_stress variations than N_stress changes. In addition, the 

suppression of yield in high N_stress sub-basins can be partially attributed to the N deficiency in 
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the soil that hinders the beneficial effects of a larger soil water availability for yield gain. 

Therefore, it can be concluded that yield gain is not only stimulated by soil moisture but also 

nitrogen availability in the soil. The 72 projected SWY scenarios (grey lines in Figure 2.8i-x) also 

imply varying results in terms of the magnitude and temporal variations across regions (Figure 

2.8i-x). The high W_stress regions (Figure 2.8i and Figure 2.8q) showed the lowest ensemble 

average SWY of 2.1 ton/ha under RCP2.6 and 2.4 ton/ha under RCP8.5, and the low W_stress 

regions (Figure 2.8l and Figure 2.8t) demonstrated the highest ensemble average SWY of 3.2 

ton/ha under RCP2.6 and 3.4 ton/ha under RCP8.5 during 2040-2064 period. However, the 

ensemble average SWY in high N_stress regions (Figure 2.8m and Figure 2.8u) was 2.6 ton/ha 

and 2.7 ton/ha under RCP2.6, and RCP8.5, respectively, which slightly declined or remained 

almost the same in the low N_stress region (Figure 2.8p and Figure 2.8x) with average SWY of 

2.5 ton/ha, and 2.8 ton/ha. In addition, the high N_stress regions showed a smaller range of SWY 

variation in each year resulting from 72 simulated scenarios (grey lines in Figure 2.8m and Figure 

2.8u). In other words, the range of SWY projections, resulting from 72 model scenarios, was 

smaller in the high N_stress regions as compared to other regions. The small range indicates only 

a slight difference between GCMs, RCPs, DSs, and 95PPUs projections. This is most likely due 

to the high N deficiency in the soil or low N uptake by crops, both of which restrain the beneficial 

effects of soil water availability on SWY varied among nine GCMs, two RCPs, two DSs, and 

95PPUs in the model. It is noteworthy that the majority of the selected 72 scenarios are only 

presenting the effects of climate change and they are more influential on soil water alterations 

(W_stress) than soil nutrients (N_stress). Likewise, a lower variation between model scenarios is 

observed under RCP8.5 as compared to the RCP2.6 scenario in the high N_stress regions (see 

Figure A.1). 
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Figure 2.8. Comparison of historical SWY and projected SWY in high, mid-high, mid-low, and 
low W/N_stress -N_stress days. Black, red and blue lines 
illustrate the average of historical and 36 projected SWY scenarios under RCP2.6 and RCP8.5, 
respectively. The number inside each sub-figure shows the average SWY during the respective 
time span. Grey signals in each panel are simulated SWY under the 72 scenarios. 
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It appears that the effect of elevated CO2 is not uniform across regions. As also discussed by 

McCarl et al. (2008), a shift in the average and variability of SWY distribution has developed from 

the historical period to the future, indicating a non-stationary trend of crop yields in our study 

region. In addition, the results indicated that the cause-and-effect mechanism, driving crop growth 

and yield development, has changed in the future period from their historical compartments. It is 

shown that the system behavior has shifted from being historically a W_stress dominated setting 

(wider blue in Figure 2.8a-h) to a N_stress dominated status (wider orange in Figure 2.8q-x) in the 

future. Low W_stress regions were found to be the least affected regions from the changing climate 

(Figure 2.8d,l,t), as the average projected SWY has almost had no increase from the historical 

period (3.2 ton/ha), under RCP2.6 (3.2 ton/ha) and very limited increase under RCP8.5 (3.4 

ton/ha). Note that while there is a substantial reduction in projected snowmelt from the historical 

time (Faramarzi et al., 2017; Zaremehrjardy et al., 2020), the soil water availability in these sub-

basins has increased under future scenarios mainly due to earlier snowmelts and infiltration that 

increases soil water availability for the growing season. However, the anomalies in SWY was 

maximum in high W_stress regions with historical SWY of 1.7 ton/ha (Figure 2.8a) that increased 

to 2.1 ton/ha, and 2.4 ton/ha under RCP2.6, and RCP8.5, respectively (Figure 2.8i,q). This 

indicates that historically low W_stress regions may not benefit as much as high W_stress regions 

from earlier snowmelts and higher water-use efficiency under future scenarios (Uddin et al., 2018). 

In addition, the watershed may be partly detrimental to lower N uptake due to low water uptake 

stemming from stomatal closure under elevated CO2 concentration (Bower, 2008; Houshmandfar 

et al., 2018) as discussed in section 2.4.3. Moreover, potential enhancement of biomass, which is 

expected under an enhanced atmospheric CO2 fertilization (Roudier et al., 2011) and increased 

temperature in cold environments, may demand more N nutrient, which suggests that crop N 
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deficiency (N_stress) may become the primary limiting factor in the region. These alterations in 

physical and biogeochemical processes, as well as phenological characteristics and physiological 

processes of the crop, suggest time-varying yield behavior to the underlying cause-and-effect 

processes that generate it. It also implies that the same or different levels of crop yield may be 

attained under very different agro-hydrologic settings in the future as compared to the historical 

period. Therefore, adaptation measures based on inference from historical experience and data 

may be doubtful (Milly et al., 2008, 2015), as the results showed a non-stationary behavior of 

SWY.  

2.4.5 ANOVA of the yield response to hydrologic model parameters, GCM, RCP, DS 
scenarios 

The median of the ANOVA values showed that emission scenarios (RCP2.6 and RCP8.5) 

followed by global climate models (GCMs) created the largest variations in SWY projections. This 

is because the higher atmospheric CO2 under RCP8.5 substantially intensifies future biomass 

development and crop yields as compared to RCP2.6 (see section 2.4.4), which results in a large 

difference between RCP2.6 and RCP8.5 projections. This results in a large range of SWY 

projections under RCP scenarios as compared to other driving forces such as GCMs, DSs, and 

95PPUs (Figure 2.9). The large share of the SWY variance due to DSs implies considerable 

temporal variations of SWY under DS1 and DS2 (see Figure A.2) but the overall variance indicated 

by median value remains minimum as compared to the other drivers (Figure 2.9). The spatial 

distribution of DSs contribution to the total variance in Figure A.3 also indicates higher 

discrepancies between simulated SWY under DS1 and DS2 mostly in the northern RDR basin. 

This is rather evident in the regions where there are higher W_stress (Figure 2.5a), and less 

impediment from N deficiency (Figure 2.5c; also see Figure A.4). However, the relation between 
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W_stress, N_stress with the DSs contribution to the total variance is not as clear as their relations 

with GCMs, and RCPs share of the variance (see Figure A.4). This is probably due to the poor 

DS2 climate dataset (as they have not downscaled to local climate conditions) that inconsistently 

differs from DS1 in different years (see Figure A.2) and different locations (Figure A.3).  

 

Figure 2.9. Variance decomposition in SWY for future (2040-2064) yield projections under 
different GCMs, RCPs, DSs, and 95PPUs factors. Box boundaries indicate the 25th and 75th 
percentiles; the black line within the box marks the median; whiskers below and above the box 
indicate the 10th and 90th percentiles. The violin plot outlines kernel probability density. 

As shown in Figure 2.9, the GCM is the second largest reason for SWY variations. However, 

as also discussed in section 2.4.4 (Figure 2.8), with increasing N_stress, the variations of the SWY 

due to alteration in climate projection factors (e.g., GCMs) are limited in all regions because 

inadequate N restrain optimal growth and development of crops (Wang et al., 2009). Therefore, in 

sub-basins that are suffering from high W_stress in the historical period (mostly located in the 

southwestern part of the RDR basin, see Figure 2.5a), a higher contribution of GCMs and RCPs to 

the total SWY variance is observed only when their N_stress is relatively low (see Figure A.3 and 

Figure A.4). This is likely because when N is not a limiting factor, depending on the GCM types, 

crops can either grow towards their potential under favorable soil water and climate condition in 

the future or their yields are inhibited by high temperature and low precipitation, resulting in a 
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large range of variations from GCMs. The 95PPUs, as another source of variance, showed lower 

variance contribution as compared to GCMs, RCP, and DSs (Figure 2.9). While 95PPUs reflect 

cumulative effects of several parameters related to both N and W in the SWAT agro-hydrologic 

model of the basin (see Table 2.1), one can hypothesize that contribution of 95PPUs to the total 

SWY variance in both high N_stress and high W_stress should be relatively high. However, as 

also discussed in section 2.4.4, with increasing N_stress, the changes in water-related parameters 

are less influential on the SWY variation due to the nutrient deficiency, and vice versa. Thus, 

depending on the level of water and nutrient availability in the soil, the N related parameters and 

W related parameters may offset the effects of one another on SWY variation, resulting in a limited 

contribution of 95PPUs to the total variance in almost all the sub-basins (Figure 2.9 and Figure 

A.3).  

2.4.6 ANOVA of the future yield response to different nitrogen application scenarios  

N is a major nutrient that limits crop yield in western Canada. Most field crops in western 

Canada are sensitive to N deficiency in the soil and N deficient crops are highly responsive to N 

fertilizer (Nowak et al., 2004; Deryng et al., 2016; Reich et al., 2014). Hence, it is expected that 

future yields are affected by application rates of supplemental nutrients, especially N. Therefore, 

we hypothesized that CO2 fertilization effects weaken when plant growth is restricted by N 

deficiency and this may cause a relatively similar SWY under both RCP2.6 and RCP8.5 scenarios 

(Figures 2.8m and 2.8u). To test this hypothesis, we studied the effects of two opposing N 

application rates on future SWY projections with 20% less N fertilizer application than baseline 

(NS1) and 20% more N fertilizer application (NS2) during the growing season. Note that the 

baseline scenario assumes historical N application rates and volumes for future yield projections.  
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Our results showed that under NS1, the contribution of 95PPUs in the overall SWY variances 

increases while it decreases or remains unchanged for GCMs, RCP, and DSs (Figure 2.10). The 

reasons for such increases in 95PPUs contribution is related to the availability of N in the soil and 

model parameters. As discussed in earlier sections (see section 2.4.4), crop response to climate 

factors and CO2 changes depends on nutrient availability in the soil. The more N deficiency in the 

soil under NS1, creates more sensitivity of yield to small changes in N availability due to 

perturbing N related parameters in the model. Note that the 95PPUs are the only factors that reflect 

the effect of changes in N through its N-related parameters in the model, such as AUTO_NSTRS, 

AUTO_NAPP, and AUTO_NYR (see Table 2.1), as compared to GCMs, RCP, and DSs. 

Therefore, any further decline in N under NS1, increases the share of 95PPUs in variance as 

compared to GCMs, RCPs, and DSs.  

 

Figure 2.10. Share of the variance related to GCMs, RCPs, DSs, and 95PPUs for projected SWY 
changes in the study watershed, under baseline N application scenario, NS1, and NS2. 

A larger share of variance from RCPs as compared to GCMs and DSs in NS1 is also due to 

the higher sensitivity of the yield to CO2 emission scenarios than climate model projections and 

the downscaling techniques, even when the agronomic management factors such as N fertilizer 

application is restricted under NS1. The smaller share of RCPs in NS1 as compared to the baseline 
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scenario is due to a decrease in yield projection under NS1 due to N deficiency. This yield decline 

is more evident under RCP8.5, where more potential exists for yield to boost under elevated CO2 

availability, but N deficiency limits crop from reaching its potential as also shown in a study in 

agricultural lands in Australia by Wang et al. (2018).  

The NS2 demonstrates the smallest share of physical parameters related to the processes in 

the agro-hydrologic model (95PPUs), while emission scenarios (RCPs) contribute the largest share 

to the overall cascade of SWY variances (Figure 2.10). A comparison of the results also indicates 

that the share of variance due to RCPs highly increased in the NS2 as compared to the baseline. 

The main reason is that under NS2, the additional N in the soil escalates biomass production and 

yield under RCP8.5, when elevated CO2 force yield increases in the future (Ngosong et al., 2019). 

However, the increased N under this scenario does not considerably influence yields under RCP2.6 

where atmospheric CO2 is not a significant driving force for crops to grow to their potentials. This 

results in a large range of variation in SWY projections under RCP2.6 and RCP8.5, which results 

in a substantial increase in RCPs share of variance under NS2 as compared to baseline (Figure 

2.10). Hence, it can be hypothesized that N_stress could be a dominant limiting factor in future 

scenarios (see Figure 2.5a, and 2.5c) due to lower W_stress and higher N demand under CO2 

fertilization. This has been also emphasized in studies by Kant et al. (2012) and Uddin et al. (2018). 

To test this hypothesis in more detail, we further investigated our results at the four L, ML, MH, 

and H sub-regions in our study area (Figure 2.11). The results showed that the share of SWY 

variance from different sources depends on not only climatic and management conditions, but also 

geographical locations and land, soil, and hydrologic specifications. The results showed that under 

NS2 the changes in the median share of the variance of the yields from their baseline compartments 

are larger under GCMs (Figure 2.11a) as compared to DSs (Figure 2.11c) and 95PPUs (Figure 
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2.11d), especially in high W_stress sub-basins. This higher share of the variance under GCMs is 

due to a large divergence in the projected temperature and precipitation among different GCMs 

than DSs and 95PPUs. Further, the ANOVA results of GCMs (Figure 2.11e) showed a limited 

discrepancy in the share of variance between the baseline scenario, NS1, and NS2 in high N_stress 

regions as compared to low N_stress regions. This suggests a significant impact of N deficiency 

on limiting yield variation under different precipitation and temperature scenarios forced by GCMs 

(see Figure 2.11e). This is evident even when water availability is not a limiting factor in regions 

with low W_stress and high N_stress regions (see Figure 2.8m and Figure 2.8u) (Sharma and Bali, 

2017; Smith et al., 2019).  

 

Figure 2.11. Share of the variance (% ANOVA) related to GCMs, RCPs, DSs, and 95PPUs for 
projected SWY changes in high (H), mid-high (MH), mid-low (ML), and low (L) W and N_stress 
regions under the baseline scenario, NS1, and NS2. 

Comparison of ANOVA results for RCPs (Figure 2.11b) showed that under NS2 the increase 

of SWY variances was considerably higher in high W_stress regions as compared to low W_stress 

sub-basins (Figure 2.11b). This is due to the CO2 fertilization effect of RCP8.5 on crop water-use 

efficiency (Uddin et al., 2018) that promotes SWY, especially in W_stress regions, as it can reduce 
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crop water consumption. This coincides with earlier studies that revealed higher atmospheric CO2 

concentration (i.e. RCP8.5) can reduce crop water loss per unit of carbon gain, especially in 

W_stress regions, which results in a higher sensitivity of SWY to W_stress variations (Swann et 

al., 2016; Ahmed et al., 2019; Reich et al., 2014; Urban et al., 2017). The share of RCP to yield 

variations in W_stress regions can further increase when there is sufficient N in the soil and it is 

not a limiting factor, e.g., in low N_stress regions (see Figure 2.8i and Figure 2.8q). Therefore, 

increasing the N application rate can be considered as a potential adaptation measure to confront 

climate change especially in W_stress regions (Guan et al., 2017).  

2.5 Comparison of this study with the literature   

Warmer and drier climate can cause higher potential evapotranspiration under low soil water 

availability that can produce crop water stress, which can be crucial during 

development (Chou et al., 2013; Pongrácz et al., 2014; Anjum et al., 2017). Our results indicate 

increasing SWY even in regions experiencing slightly reduced precipitation in future scenarios 

(Figure 2.4-2.7). This suggests the important role of multiple players on crop yields and its non-

stationary behavior under changing climate. For instance, the sub-basins that historically suffered 

from high W_stress could show yield increases due to an improved water-use efficiency because 

of the effects of elevated CO2 concentration on plant CO2 assimilation (see Figure 2.4-2.7). In 

addition to CO2 fertilization effects, changes in timing and type of precipitation and the timing and 

rate of snowmelt (Fang et al., 2019; Qin et al., 2020) altered spatiotemporal changes in soil water 

availability. The profound effects of earlier snowmelts on SWY, especially in snow-dominated 

agricultural regions, have also been argued by Biemans et al. (2019). This indicates the significant 

role of hydrological processes in estimating soil water availability and therefore crop yield, 

especially in Canadian Prairies characterized by cold hydrology. Our hydrology model of the RDR 
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basin in Prairie Canada showed that while there is a substantial reduction in projected snowmelt 

from the historical time (Faramarzi et al., 2017; Zaremehrjardy et al., 2020), soil water availability 

has increased under future scenarios mainly due to earlier snowmelts and infiltration that increased 

soil water availability for the growing season.  

We showed while increasing precipitation and early snowmelts, elevated CO2 and warming 

may favor SWY in many ways, the yield potentials maybe limited due to the nitrogen deficiencies 

in the soil. Our results indicated considerable yield gains under RCP8.5 facilitated by increased N 

fertilizer application in some sub-basins. This aligns with the discussion by Kant et al. (2012), 

Schierhorn et al. (2015), Uddin et al. (2018), and Ngosong et al. (2019) that emphasized how 

additional N in the soil can escalate biomass production and close yield gaps, especially when 

elevated CO2 force yield increases in the future. However, our results indicated that low 

transpiration and stomatal closure (i.e., RCP8.5) might limit N uptake by crops and trigger 

N_stress, making it a dominant SWY limiting factor especially under high CO2 concentration in 

the future. Moreover, increased nitrogen application under RCP2.6 did not considerably influence 

yields, as atmospheric CO2 which is a building block of the biomass assimilation and major driving 

force for crops did not considerably increase as compared to RCP2.8. This suggests, larger yield 

gains in the future, especially under larger elevated CO2, may require substantial increases in N 

fertilizer applications only in some areas (see, for example, Figure 2.11f), which may also arise 

environmental concerns (Yu et al., 2019), but in other areas may not affect yields due to reduced 

N uptake. 

Statistical analyses of the crop yield in global studies reveal important information on the 

warming effects and relationship between weather parameters and yields (Lesk et al., 2016; Lobell 

and Burke, 2010; Zhao et al., 2019). However, these studies lack dynamic feedback and non-
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stationary behavior of cause-and-effect mechanisms under a wide range of hydro-climate and 

geophysical settings that affect crop yields and their response to future changes in temperature, 

atmospheric CO2 concentration, water, and nutrient availability. Recent studies elaborated on the 

non-stationary behavior of feedbacks among climate, hydrology, and vegetation and their feedback 

(Milly et al., 2008). This implies that inference from historical observations and their trends alone 

cannot be implemented for future agricultural adaptation and management solutions (Ciscar et al., 

2018). The majority of studies that utilized statistical analyses or used data-driven approaches for 

crop yield estimations only developed linear or nonlinear regression relationships between climate 

and observed crop data (Lesk et al., 2016; Lobell and Burke, 2010; Moore et al., 2017; Rayid et 

al., 2019; Zhao et al., 2019). Inference from these statistical models for future adaptations can be 

subjective. In such studies, the effects of CO2 fertilization are typically neglected and they lack 

important process representations and non-stationary interactions between physical and 

biochemical processes related to crop growth, soil water hydrology, climate change, and 

management factors. Our study demonstrated crop yield variation is not a result of the changes in 

a single or a limited number of variables (e.g., temperature or precipitation). Different climatic and 

non-climatic variables related to the soil-plant-atmosphere system interact dynamically over time 

and space resulting in a heterogeneous response of SWY to future climate change in time and 

space (Lugoi et al., 2019). These effects bring the notion that analyses of crop response simulated 

by process-based crop models including hydrological, crop growth, and atmospheric processes 

may outperform statistical trend analyses, where the evolution of crop responses to interactive 

climate and non-climate changes are not quantified (Lobell and Asseng, 2017; Moore et al., 2017; 

Shi et al., 2013).  
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2.6 Limitation and future directions 

The projected changes in the hydroclimatic and crop growth conditions derived from the 

agro-hydrological model in this study have some limitations. The model assumed the type of 

cultivars, crop varieties, and sowing dates under future scenarios to be the same as the historical 

period. Addressing these factors using socio-agro-hydrological modeling in future studies would 

be worthwhile. These approaches can examine tradeoffs and response of agricultural, hydrological, 

and socioeconomic factors to reflect a more accurate response of yields to management and human 

decisions.  

Instrumental data (i.e., measured time series) for crop and hydrological modeling are not 

often available for long periods of time, which makes model verification and prediction of the state 

variables available only for a short period of time (e.g., 25 years historical period in our study). 

Prediction within a short period can increase the variance of the study variable (e.g., SWY), which 

requires additional investigation in future studies. However, for understanding the evolutions of 

agro-hydroclimatic conditions, non-overlapping periods (i.e., historical and future) can be 

simulated with the assumption of local stationarity within each period (Kavvas et al., 2017; Trinh 

et al., 2016).  

Our model results showed negligible aeration stress in both historical and future scenarios. 

In other words, our simulated W_stress days were mainly due to water deficiency in the soil. Since 

the simulation of aeration stress is based on soil properties, the resolution and accuracy of soil data 

are crucial. Our soil data are supplied from available regional soil maps with rather a coarse 

resolution, which may have increased the uncertainty of the study results. It is suggested that more 

high-resolution soil data are used for W_stress and SWY simulations in the future. We highlight 

the necessity for environmental monitoring in various watersheds to establish baseline conditions. 
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This could include the collection of soil samples, which provide valuable data for identifying key 

physical and chemical properties and their changes that result from human activity, climate change, 

or any combination thereof. 

 The effect of the prevalence of pests, diseases, and weeds that are more probable in warmer 

and wetter conditions are of great importance to the projection of actual SWY (Oerke, 2006). As 

such, further studies are required to consider the effects of biotic stressors in future SWY in 

addition to the hydro-climate and crop phonological processes. Moreover, genetic improvement 

of crop varieties is another important component to be considered in future work, which can 

overshadow the adverse effects of abiotic stressors (i.e., drought) on SWY in the future. 

2.7 Conclusions 

Non-stationary response of the hydrological regime and crop yield to changes in climate 

variables and elevated CO2 is one of the most trending topics in impact assessment studies. While 

earlier studies focused on the sole effects of elevated CO2 compounded with higher annual mean 

temperature, and crop water productivity on crop yields, this paper showed that the magnitude of 

SWY variations differs depending on climate, location, management practices, soil types, and 

hydrologic regimes. We showed the time-varying behavior of SWY to the underlying cause-and-

effect processes, which is very different in the future than historically. Our results revealed a 

similar or higher level of SWY under different agro-hydrological settings (e.g., N_stress 

dominated status) in the future than its historical conditions (e.g., W_stress dominated setting). 

This implies that cause-and-effect mechanisms, driving crop growth and yield development, may 

change over time, resulting in the non-stationary behavior of SWY.  

Although it is widely discussed that elevated atmospheric CO2 in the future may boost crop 

yields and therefore water productivity, our results showed that the response of crops to 
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atmospheric CO2 is conditional and it depends not only on the aforementioned factors but also their 

non-linear interactions with other key parameters. In this study, the SWAT model along with 

ANOVA decomposition method was used for studying how and to what extent crop yields respond 

to GCMs, RCPs, DSs, 95PPUs, and N fertilizer application scenarios under different climatic 

conditions and agronomic management practices. Accordingly, the major conclusions of this study 

are as follows: 

1- The largest share of variance in SWY results from RCPs followed by GCMs, DSs, and 

95PPUs, respectively. This indicates the sensitivity of SWY to atmospheric CO2 concentration 

followed by changes in precipitation and temperature projections and crop-hydrologic 

variables. 

2- GCMs have a large contribution to the total share of SWY variance, especially in high W_stress 

regions, mainly because soil water stress is historically a main limiting factor to SWY. 

Alterations in soil moisture, which is stimulated by the agro-hydrologic model under various 

GCM- projections, stimulated SWYs, and their variations as compared to historical conditions.   

3- The positive effects of atmospheric CO2 fertilization on SWY are more evident in regions 

where there is less barrier from N deficiency (i.e., NS2). This implies increased N application 

may increase N uptake and benefit yield gains in some areas. On the other hand, the low 

transpiration due to the higher rates of stomatal closure under high atmospheric CO2 

concentration (RCP8.5) and inadequate water availability in the soil may reduce N uptake. The 

N uptake reduction may trigger N_stress and makes it a dominant SWY restraining factor in 

the future. Therefore, in some regions, N deficiency can highly limit the effects of soil water 

variation on SWY even under favorable climate. This denotes that increasing N fertilizer might 

be a potentially effective adaptation measure to cope with climate change especially under high 
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atmospheric CO2 concentration. However, the impacts of N application on environmental land 

and water quality requires more studies. 

4- The effects of elevated atmospheric CO2 is not uniform across regions. In addition, a shift in 

the average and variability of SWY distribution was observed from the historical period to the 

future. This indicates that the experience and data may lack representation of the future as the 

spatial and temporal response of SWY to its cause-and-effect mechanisms is not stationary and 

is changing over time.  

It is worth mentioning that the results have significant implications to water-food-climate change 

studies and global food security, as the study area is among key SWY producing areas in the 

Canadian Prairies, which is one of the most important bread baskets of the world. Therefore, our 

study provides valuable information to facilitate more informed adaptation measures for regional 

planning and policies of future agricultural production. 
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3.1 Abstract  
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3.2 Introduction 

Green water (evapotranspiration, GW) and blue water (water yields, BW) are crucial for 

terrestrial ecosystems (Zang and Mao, 2019) and food production (Falkenmark and Rockström, 

2006), especially in arid and semi-arid regions. Although most traditional water policy and 

development plans have focused on managing BW and its allocation to various economic sectors, 

GW forms the basis of most of  the water consumption globally, with 70% of the agriculture sector 

relying on GW resources (Ringersma et al., 2003). Both GW and BW are limited in time and space 

in many regions (Schyns et al., 2019), and are interlinked through numerous biogeochemical and 

physical processes within the soil-plant-water-atmosphere system (Maxwell, 2020). Natural 

terrestrial processes and human activities can alter the availability and interlinkages of GW and 

BW resources. In addition, climate change and projected extreme climatic events are reported to 
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negatively impact the availability and distribution of GW and BW resources (Maxwell, 2020; 

Stenke, 2020). While most studies have focused on the assessment of the hydrological cycle or 

specific processes driving the water budget at a catchment to large watershed scale, a detailed 

assessment of GW and BW relationships across different ecological settings (i.e., mountainous 

lands, crop lands, and other natural lands) and their interlinkages under extreme climatic events 

(i.e., extreme warm-dry events) are limited at a regional scale. 

The availability and variability of GW and BW are related to numerous factors such as 

precipitation, vegetation type, soil type and water infiltration (Destouni and Verrot, 2014), air and 

soil temperatures (Orth and Destouni, 2018), soil nutrients (Wang et al., 2018), and atmospheric 

CO2 concentration (Ngosong et al., 2019). GW supply is the amount of soil moisture available for 

sustaining plant growth. Vegetation types and their growth conditions can significantly influence 

soil moisture and GW-BW relations due to root development and water uptake during the growing 

season. Vegetation can also affect surface water runoff through interception as canopy storage, a 

storage that can change over time with plant growth (Deb et al., 2019; Vicente-Serrano et al., 2021; 

Wasaya et al., 2018).  

Some studies have focused on agricultural crop and water management and highlighted the role 

of soil nutrients and soil temperature in regulating soil water balance (Adimassu et al., 2017; Gao 

et al., 2018), which can impact the relationship between GW and BW. A reliable supply of soil 

nutrients can invigorate biomass development and plant growth, enhancing vegetation demand for 

soil moisture (Wang et al., 2019). As a result, more water can be used by plants, which can reduce 

the surface runoff over the long run, all of which can result in considerable change in the GW-BW 

relationship and its spatiotemporal variation. Further, vegetation growth is regulated by soil 

temperature, especially in mid-to-high latitude crop lands, where soil is frozen for several months 
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during cold season (Onwuka et al., 2016). In theory, warm soil induces plant growth processes 

such as water and nutrient uptake (Anderson and Markham, 2021), while lower soil temperatures 

inhibit water uptake due to lower water viscosity, thereby slowing photosynthesis and 

evapotranspiration (Zhang et al., 2020). In other words, low soil temperature can reduce nutrient 

and water uptake by plant roots, decreasing GW consumption rates and consequently altering GW-

BW interlinkages. 

Climate factors such as air temperature, relative humidity, wind speed, and atmospheric CO2 

also affect the GW-BW relationships by altering the potential and actual evapotranspiration (ET). 

Hereafter, the ET refers to transpiration by plants as well as evaporation from the soil. Generally, 

an increase in air temperature enhances the moisture holding capacity of the atmosphere and thus, 

intensifies the evaporative demand and accelerates the hydrological cycle (Massmann et al., 2019). 

Conversely, a higher relative humidity of the air can reduce ET rates, while a higher wind speed 

can trigger greater plant transpiration rates (Ackley, 2012). Plus, the alteration in the level of 

atmospheric CO2 not only affects the climate change-induced water cycle but also affects plants' 

stomatal openings, thus altering their photosynthetic and transpirative rates (Manderscheid et al., 

2018). Therefore, numerous terrestrial and atmospheric processes interplay to form a diverse range 

of GW-BW relations across regions and times. 

 Coinciding with the natural processes, the role of anthropogenic activities such as the 

construction of dams (Hogeboom et al., 2018), irrigation schemes (Nouri et al., 2020), and water 

transfer projects on changes in the BW regime are unavoidable. Disrupting soil structure through 

management practices such as agricultural tillage operations and early planting dates for improved 

crop yields have produced changes in surface runoff (i.e., BW) (da Luz et al., 2022) and ET rates 

(i.e., GW), possibly shifting GW-BW relationships ( Masud et al., 2018).  
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While natural and anthropogenic processes directly affect GW-BW relationships, extreme 

climatic conditions, such as warm-dry events, are projected to significantly change the underlying 

processes that determine GW-BW relationships (Saft et al., 2015). The frequency and severity of 

warm-dry extremes will increase under global warming scenarios in the future (Gamelin et al., 

2022). Recent studies have indicated a clear shift in recent decades from BW to GW within the 

hydrosphere-biosphere system in Alpine regions under warm and dry conditions (Orth & Destouni, 

2018; Mastrotheodoros et al., 2020). They have also highlighted the continual and even potential 

intensification of that shift from BW to GW under future climate change scenarios 

(Mastrotheodoros et al., 2020). However, upscaling GW-BW relationships from a limited number 

of catchments to regional landscapes with heterogeneous ecological and climatological settings is 

challenging. The BW-to-GW shift depends on the cumulative effects of numerous ecohydrological 

processes that can spatially and temporally change under extreme climatic events (e.g., warm-dry 

events). Pre-drought aridity (Saft et al., 2016), characterized by reduced soil water infiltration, and 

the soil moisture carried from previous years (Klos et al., 2018; Rungee et al., 2019) can affect the 

amount of stored water available for plants during the dry season and thus GW-BW interlinkages. 

During the initial stages of a warm-dry event, multi-year legacy soil moisture from previous wet 

periods can partially compensate for missing precipitation input. This mechanism can offset ET 

deficit and support vegetation growth during warm-dry years (Massari et al., 2022). However, 

during a prolonged warm-dry event, a long-term precipitation deficit can ultimately cause 

vegetation mortality (Bales et al., 2018). Therefore, extreme changes in climate conditions, such 

as warm-dry events, can result in entirely dissimilar GW-BW relationships compared to average 

years. 
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The overarching goal of this study is to characterize changes in GW-BW relationships under 

future warm-dry events across different landscape and ecological settings such as mountainous 

lands, natural lands, and crop lands in large watersheds. To achieve this goal, our specific 

objectives are to (i) set up, calibrate, and validate a process-based agro-hydrological model at a 

watershed scale with heterogeneous ecohydrological conditions, using the best available input 

data; (ii) quantify spatiotemporal variations in the relationships between BW and GW under 

different ecological settings, including in mountains and foothills (i.e., mountainous lands), 

agricultural plains (i.e., crop lands), and other natural landscapes such as boreal forests and 

wetlands (i.e., natural lands); (iii) discuss the spatiotemporal variations of driving factors and how 

they  affect changes in GW-BW relationships; and (iv) quantify GW-BW anomalies under possible 

future extreme warm-dry events from their historical averages. The insights gained through this 

study are relevant to other large river basins in mid-to-high latitude regions, which are typically 

centers for socioeconomic development and food production. 

3.3 Materials and methods 

3.3.1 Study area  

The Nelson River Basin (NRB) covers a vast drainage area of approximately 1.2 million square 

kilometers, making it one of the largest watersheds in North America (Figure 3.1). With elevation 

of 3227 m, the NRB begins in the Rocky Mountains in the west and ends by discharging to Hudson 

Bay, which is (Joly, 2021) at sea level elevation (Figure 

3.1A). The river basin extends as far south as South Dakota, United States to the middle of 

Saskatchewan and northern borders of Manitoba, Canada, and to near the Lake Superior in the east 

of the region. The entire NRB is delineated into six major river basins: Assiniboine River Basin 

(ARB), Red River Basin (RRB), Winnipeg River Basin (WRB), Lake Winnipeg Basin (LWB), 
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Saskatchewan River Basin (SRB), and Nelson River Local Basin (NRLB) (Keum et al., 2019) 

(Figure 3.1A). The RRB, ARB, WRB and SRB flow into the LWB, which drains into the NRLB.  

With average annual precipitation levels of more than 800 mm, the western and eastern regions 

of the NRB are its wettest areas. In contrast, the central prairie region is dry, with an average 

annual precipitation of less than 400 mm. Annual average temperatures vary from -5 C in the 

northern regions to 7 C in the south. During winter, precipitation is generally in the form of 

snowfall. Based on Manitoba Hydro (2015) data for 1981-2010, the ARB has the smallest 

contribution to the NRB water supply, with annual average streamflow of about 45 m3/s. NRLB 

carries the largest cumulative volume of water from the upstream basins, with an annual average 

streamflow of ~3200 m3/s, which it discharges into Hudson Bay. The SRB, the largest river basin 

within NRB, and the WRB, which drains into Lake Winnipeg, have annual average streamflows 

of ~550 m3/s and ~950 m3/s at their outlets, respectively. LWB delivers annual average streamflow 

of ~2180 m3/s at its outlet into the NRLB, which includes internal water yields and streamflow 

from upstream basins (Figure 3.1A). The RRB, which originates from the northern tributaries of 

the United States, discharges into Lake Winnipeg with average annual streamflow of ~250 m3/s. 
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Figure 3.1. (A) Map of the Nelson River Basin including geographic extents, major watersheds, 
rivers, reservoirs, dams, lakes, hydrometric stations, (B) the land use map and land use classes 
considered in the model according to the Government of Canada (2019) classification, and the 
Census Agricultural Region (CAR), for which the agricultural management and crop yield time 
series are available from government of Canada for calibration and validation in this study.12 

The land cover types in the NRB range from high mountains and mountain glaciers in the 

west to agricultural areas and pasture lands in the center to evergreen forests and wetlands in the 
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east and north (Figure 3.1B). The variation in topography, presence of glaciers and mountains, and 

heterogenous land covers such as forests, wetlands, and agricultural lands, have resulted in a wide 

range of ecohydrological processes governing GW-BW relationships in the region. Moreover, the 

central and southern regions of the NRB, which are also characterized as the Canadian Prairies 

(Figure 3.1B), are central to global grain production and a major breadbasket of the world (Khalili 

et al., 2021b). The Canadia

food security, with food exports to over 170 countries (Statistics Canada, 2021).  

The soils in the crop lands of the NRB are key to the production of spring wheat (Figure 

3.1C), which is a widely grown staple crop in the region (Statistics Canada, 2021). These soils are 

characterized as brown (Aridic Borolls), dark brown (Typic Borolls), black (Udic Borolls), and 

gray soils (Boralfs and Mollic Cryoboralfs) (Fuller, 2010). These are among the most fertile soils 

in the world and, together with management practices such as irrigation, fertilizer, and manure 

application, create a favourable land setting for crop production.  

SRB supplies GW and BW for most of the crops in the prairies. Over 90% of water in SRB 

originates from the Rocky Mountains, which collectively make up only 12% of the area of the 

SRB, and where warming is a significant threat to freshwater resources (Halofsky et al., 2018).  

More than 70% of the natural lands in the eastern and north-eastern NRB are covered by forest 

and wetlands (Zubrycki et al., 2016). In these natural lands, seasonal temperature averages range 

from ~16 °C in July, August, and September to ~-12 °C in January, February, and March, and the 

annual mean temperature is 2.3 °C. Most precipitation in the natural lands occurs during the 

summer, and winters are dry and cold. 
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Historically, most areas of Canada have experienced periodic warm and dry events with 

different levels of severity, duration, and spatial extent (Bonsal et al., 2020). Particularly, the 

agricultural belt of the Canadian Prairies is highly susceptible to extreme warm and dry events in 

part because of its location in the lee of the Rocky Mountains and strong dependence on variable 

and unreliable rainfall (Khalili et al., 2021a; Masud et al., 2020, 2019). Canada has warmed at 

more than twice the rate of global warming (Bush and Lemmen, 2019), and this trend is projected 

to continue. Further, as the second largest country in the world and with diverse geospatial 

conditions (Bailey et al., 1997), significant changes in many other hydroclimatic processes in 

different parts of the country have accompanied this rapid warming, such as increases in 

precipitation (Ashraf Vaghefi et al., 2019; Vincent et al., 2018), decreases in the duration of snow 

cover (Vincent et al., 2018), and decreases in annual streamflow (Fang and W. Pomeroy, 2020). 

Climate projections also indicate that many regions of Canada are likely to experience increases 

in extreme warm and dry events by the end of the 21st century (Masud et al., 2017; Bonsal et al., 

2013; Dibike et al., 2017).   

3.3.2 Input data 

To develop an agro-hydrological model of the NRB for simulation of streamflow and crop 

yields in the basin, the best available geospatial maps and times series were used (Table A.4). 

Digital Elevation Models (DEM) at 10m ×10m (AltaLIS, http://www.altalis.com) and 90m × 90m 

resolutions (SRTM, Jarvis et al., 2008) were used to delineate the NRB into 1988 sub-basins. The 

sub-basins were further characterized using a detailed land use-land cover (LULC) map and a 

processed soil map of the region. The LULC, obtained from the Government of Canada (2019), 

was available at 30m × 30m resolution and classified a total of 19 LULC classes for the NRB. The 

geospatial and physical parameters related to LULC and soil maps were obtained from the 
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Government of Canada (2019), FAO (1995), and Cordeiro et al. (2018). The soil map specified 

various soil classes for up to 10 soil layers for the root zone across the region (see Table A.4 for 

more details).  

The WATCH Forcing Data ERA-Interim (WFDEI) historical climate dataset was used to 

force the hydrological model to obtain historical streamflow for the 1982-2016 period (Weedon et 

al., 2014a). This climate data product has produced superior results for Canadian studies (Wong 

et al., 2017) and successfully reproduces the historical trends and fluctuations of streamflow and 

crop yields in our model. The measured streamflow data at 86 hydrometric stations were obtained 

from the Water Survey Canada (WSC) and the National Water Information System (NWIS) 

database of the United States Geological Survey (USGS) to assess model performance for the 

1982-2016 period. Daily operation data of 44 large reservoirs/dams across the basin were obtained 

and Protected Areas (AEPA, formerly Alberta Environment and Parks), and the HydroLAKES 

database. The daily operation of these reservoirs/dams were aggregated to monthly and included 

in the model. This required assigning the geographic location of each reservoir/dam in its relevant 

sub-basin in the model and inputting its monthly operation for the study period. More details about 

model setup for dam outflow simulation is provided in Neitsch et al. (2011).     

For calibration and validation of the simulated spring wheat yield (SWY), the crop yield 

time series (metric ton/ha) was obtained from Statistics Canada (2021) and the Alberta Financial 

Service Cooperation (AFSC) at the spatial resolution of Census Agricultural Regions (CAR), and 

from the 2021 Agricultural Census of the United States Department of Agriculture (USDA) at the 

county level, for the 1982-2016 period. For the simulation of SWY, the potential heat units, 

fertilizer application rates, and maximum amount of annual fertilizer application across 47 
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agricultural regions and four irrigated counties (Figure 3.1C) were adapted from Masud et al. 

(2019), the Government of Alberta (Alberta Fertilizer Guide, 2004), the Government of Manitoba 

(Heard, 2020), and the Government of Saskatchewan (2020).  

3.3.3 Hydrology and crop model setup, calibration, validation, and uncertainty 
analysis 

The Soil and Water Assessment Tool (SWAT) is a continuous-time, semi-distributed and 

process-based model, which simulates both landscape and instream processes related to hydrology, 

plant growth, sediment and nutrient loads and transport at a catchment scale on a daily time step 

(Arnold et al., 1998).  

In this study, the SWAT model was calibrated and validated using monthly streamflow and 

annual crop yield data. The calibration and validation periods for the streamflow simulation was 

1982-2006 and 2007-2016, respectively. For simulation of crop yield, the calibration and 

validation periods were 1992-2016 and 1982-1991, respectively. We considered 3 years as model 

warm-up years for all calibration and validation periods. Using the SWAT model, a basin is 

divided into several sub-basins based on topography, which are further subdivided into 

Hydrological Response Units (HRUs) based on soil, land use-land cover, and slope parameters. 

Hydrological processes are simulated at the HRU scale and then aggregated to sub-basin and basin 

levels. The hydrological, crop growth, and biogeochemical processes in each HRU are simulated 

in different soil layers at the root zone (1-2 m top soil layers) based on the soil map and soil data 

provided by the user.  

The simulated processes in SWAT include but are not limited to actual and potential ET 

(Abiodun et al., 2018), runoff (Faramarzi et al., 2017, 2015), groundwater recharge (Chunn et al., 

2019; Karamouz et al., 2021a), subsurface flows (lateral flow), return flow to streams based on 
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groundwater contribution (base flow), water balance of standing waterbodies (e.g., potholes and 

reservoirs) (Muhammad et al., 2018), crop growth and crop water consumption (Khalili et al., 

2021; Masud et al., 2018), soil temperature (Qi et al., 2016), terrestrial and in-stream nutrient loads 

and transport, and erosion and sediment loads and transport (Dakhlalla and Parajuli, 2019). 

Furthermore, the snowfall and accumulation in SWAT are based on daily temperature and 

precipitation data. If the daily temperature falls below a specific threshold, precipitation is 

accounted as snow, which accumulates in the snowpack. The model further calculates the water 

equivalent of the snowpack. The snow cover module in the model allows non-uniform areal 

coverage of snow due to shading, drifting, topography, and land cover. Snowmelt is simulated 

based on snow temperature, melting factor, as well as areal coverage of snow, which is then further 

controlled by the atmospheric temperature and a snow temperature lag factor that represents the 

degree to which mean air temperature influences snowpack temperature. The melt factor allows 

simulation of alteration in melt rate due to compression of snow pack across regions as well as its 

seasonal variation throughout the year (Neitsch et al., 2011b). The meltwater from snow can 

infiltrate the soil if it is not frozen, or contribute to surface runoff if the soil is saturated or frozen. 

More details are provided in Neitsch et al. (2011). The term "return flow" or "base flow" refers to 

the volume of streamflow originating from groundwater. Specifically, in the SWAT model, the 

water percolating past the bottom of the root zone is partitioned into two fractions to feed two 

aquifer systems: a shallow unconfined aquifer which contributes return flow to streams delineated 

in each sub-basin, and a deep confined aquifer which can contribute return flow to streams outside 

the watershed (Arnold et al., 1993). In addition to return flow which occurs within the streams, 

water stored in the shallow aquifer can also supply moisture in the soil profile under dry conditions 

when evaporative demand is high. 
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The crop growth simulation in SWAT was initially adapted from the EPIC crop growth 

model (Williams et al., 1984) and further improved over the years (Neitsch et al., 2011). Plant 

growth is simulated using leaf area development, light interception, and conversion of intercepted 

light into biomass, assuming a plant species-specific radiation use efficiency at daily time step 

(Neitsch et al., 2011c). Above-ground and below-ground crop growth is simulated using crop-

specific phenological and agricultural management data such as planting and harvesting dates, 

fertilizer and pesticide application, irrigation, tillage, and harvest and kill operations. Optimal 

biomass and potential yields are first simulated under ideal growing conditions consisting of 

adequate water and nutrient supply, and optimum temperature (Faramarzi et al., 2010). Actual 

yields are then simulated based on constraints induced by soil water deficiency (Uniyal and 

Dietrich, 2019), soil water surplus (Wang et al., 2016), soil nutrient availability (Haney et al., 

2018b), and temperature stresses (Rai et al., 2021).  

For simulation of GW, the modeled plant growth can facilitate simulation of ET. The ET is 

calculated based on potential evapotranspiration (PET), which is computed using Penman-

Monteith method (Monteith, 1965), as well as the soil water balance, and plant growth. The SWAT 

model first allows the evaporation of any rainfall intercepted by the canopy. Then, the maximum 

amount of plant transpiration and sublimation/soil evaporation is calculated (Ritchie, 1972). The 

actual amount of sublimation, when snow is present, evaporation from the soil, and transpiration 

by plants are then calculated. Finally, for simulation of BW, the water yield (WYLD) is calculated 

as the sum of surface runoff, subsurface lateral flow, and groundwater (return flow) generated in 

each HRU, leaving the HRU, and entering the main channel in each sub-basin. 

In our study, the simulated soil water is considered as the available water supply for 

consumptive water use of plants (Winchell et al., 2013; Veettil and Mishra, 2016; Rodrigues et al., 
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2014). The consumptive water use by plants (ET) is considered as GW in our study, hereafter. The 

soil water is calculated based on the difference between the soil moisture within the root zone and 

the plants' wilting points, where the wilting point is defined as the minimum soil moisture 

accessible to plants below which the plants are permanently damaged or die (DeLiberty and 

Legates, 2003; Rodrigues et al., 2014). The green water flux (i.e., GW) is calculated as the 

summation of actual evaporation from the soil and transpiration by plants (Falkenmark and 

Rockström, 2006).  

In order to validate the ET simulation, field-based measurements of the ET are required. 

However, these measurements are costly and the number of individual ET observations for model 

calibration is generally limited, making regional studies challenging. Moreover, the ET 

observations only represent local hydrological and crop growth processes at the data collection 

point and may not represent ET of their adjacent catchments. Given the limitations of measured 

ET data, calibration and validation against crop yields, in addition to the streamflow or other 

hydrological processes, are considered an effective means for verifying ET simulations (Faramarzi 

et al., 2009; Bennett and Harms, 2017). Earlier studies indicated a close relationship between crop 

yields and ET (Cordeiro et al., 2016; Masud et al., 2018). Therefore, the calibration of models 

against crop yields, in addition to the streamflow, increases model confidence for the simulation 

of ET (i.e., GW)  (Faramarzi et al., 2009; Khalili et al., 2021; Masud et al., 2018). 

Prior to calibration, we performed a sensitivity analysis (SA) using an approach similar to 

that of Faramarzi et al. (2017). SA in general has evolved into the hermeneutics of mathematical 

modelling (Saltelli et al,, 2021), which here help us to identify the key parameters related to 

hydrology and crop growth across different regions (see Table A.5, and Table A.6). These 

parameters are further regionalized to account for variat -
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climatic, and ecological conditions. This resulted in a total of 26 and 27 scaled parameters for each 

hydrological and agricultural region.  

For model evaluation, we calibrated, validated, and performed uncertainty assessment of 

streamflow first (Table A.5) followed by crop yields (Table A.6) to ensure proper apportioning of 

soil water into the surface runoff, ET, and groundwater recharge. The calibration and uncertainty 

analyses were performed in an iterative procedure using: (1) the Latin Hypercube Sampling (LHS) 

of the input parameters (Ficklin et al., 2013), (2) SWAT model parameter updates, and model 

output comparison and uncertainty assessment using publicly available Sequential Uncertainty 

Fitting program (SUFI-2) (Abbaspour et al., 2007), and (3) parallel processing of the simulations 

in each calibration iteration (see Figure A.5). In the SUFI-2 algorithm, all uncertainties (parameter, 

conceptual model, input, and measured) are mapped onto the parameter ranges, which are 

calibrated to bracket most of the observed data within a 95 percent prediction uncertainty (95PPU) 

range of an output variable (e.g., streamflow and crop yield). The 95PPU has been calculated at 

the 2.5% and 97.5% levels of the cumulative distribution of output variables obtained through LHS 

of the input parameters (Abbaspour, 2015; Faramarzi et al., 2017; Ficklin et al., 2013).  

For a cost-effective calibration, we used a similar approach to Gorgan et al. (2012) and 

developed a parallel processing program (PP-program) to calibrate, validate, and perform 

uncertainty assessment of our multi-variable SWAT model using a 200-core windows-based 

supercomputer. Based on a maximum physically meaningful range of each parameter, 1000 

samples of parameter sets were created using LHS. Then each parameter set was fed into the 

SWAT model and the model was run in parallel using 200 cores to generate output variables (i.e., 

streamflow and crop yields) for comparison with measured data. If the comparison results were 
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unsuccessful, a new iteration was performed, and the procedure continued until satisfactory results 

were reached or no further improvements were obtained (see Figure A.5). 

To compare the measured and simulated monthly streamflow during the calibration process, 

we employed bR2 efficiency criterion introduced by Krause et al. (2005), with (Eq. 3.1) as the 

main objective function:  

where R2 is the coefficient of determination between the measured and simulated signals and b is 

the slope of the regression line. For multiple discharge stations, the objective function is an average 

of  for all stations within a region of interest (Eq. 3.2): 

where n is the number of stations. The function  varies between 0 and 1. While bR2 was 

considered as the primary objective function to direct our calibration iterations, several other 

objective functions were also used during this iterative procedure, including Nash-Sutcliffe (NS) 

efficiency (Nash and Sutcliffe, 1970), Coefficient of Determination (R2), Percent Bias (PBIAS) 

(Gupta et al., 1999), and Kling-Gupta Efficiency (KGE) (Gupta et al., 2009). 

To compare simulated crop yields with observed data, we used the Root Mean Squared Error 

(RMSE) for each of the regions where yield measurements were available as follows: 
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where n is the number of observed yields in each region, O is the observed yield, and S is the 

simulated yield for each measurement region. The crop yield was simulated at the sub-basin level, 

and further aggregated to the CAR scale to compare with the measurements that are available at a 

CAR level. 

The objective functions (Eq. 3.1-3.3) in each iteration were used to provide direction to set 

the calibration and uncertainty analysis for the next iteration. Therefore, we revised the parameter 

ranges in each iteration to set a new parameter range for a new calibration-uncertainty iteration if 

the calibration and uncertainty performances of the current iteration were unacceptable.  Overall, 

for calibration and uncertainty assessment of a given iteration, after objective functions were 

calculated two important indices were used to quantify the goodness of calibration-uncertainty 

performance, including the p-factor, which is the percentage of data bracketed by the 95PPU band 

(maximum value 100%), and the r-factor, which is the average width of the band divided by the 

standard deviation of the corresponding measured variable. In an ideal situation, most of the 

measured data (plus their uncertainties) are expected to be bracketed within the 95PPU band (p-

factor  1) with the narrowest band (r-factor  0). In real-world regional studies, a p-factor of ~ 

0.6 for streamflow and crop yield simulations and an r-factor of 1-2 and 3-5 for streamflow and 

crop yield simulations, respectively, are considered satisfactory (Faramarzi et al., 2010, 2015, 

2017).  

3.3.4 Calculation of extreme warm-dry events and historical averages for the growing 
season 

Given the adverse effects of compound warm and dry events on agricultural production 

(Feng et al., 2019), we used monthly precipitation and temperature data during the growing season 

(i.e., May to September) for both historical and future periods. Although the calibration and 
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validation period spans from 1982 to 2016, we specifically selected 1987-2016, a 30-year period 

from model outputs, to compare with the future period (2070- 2099). We quantified the compound 

warm-dry years to study BW and GW variations and their relationships under extreme warm and 

dry conditions during the growing season. The compound warm-dry condition, defined as the 

simultaneous occurrence of extreme high temperature and low precipitation, is assessed using a 

Dry-Hot Magnitude Index (DHMI) developed by Wu et al. (2019). The DHMI requires two 

normalized indices to represent extreme warm and extreme dry conditions based on temperature 

and precipitation records. In the following, we explain the two normalized indices we developed 

to compute DHMI in our study region. 

In the DHMI approach, the magnitude of an extreme warm is characterized by the 

temperature above a specific threshold (hereafter, denoted as ). The threshold temperature is 

calculated based on the 90th percentile of daily temperature time series (see Alexander et al 2006, 

Perkins and Alexander 2013, Zampieri et al 2018). Later the  time series are normalized by 

fitting to a cumulative density function to obtain its non-exceedance probability , which falls 

within [0, 1] (Russo et al., 2014). Through this procedure, the larger  values correspond to higher 

non-exceedance probability values and vice versa.  

The magnitude of an extreme dry event is defined based on the difference between an 

extreme dry index and a threshold index (denoted as ), with a large departure from the 

threshold indicating a high magnitude of the extreme dry event. The extreme dry index in our study 

was calculated based on the commonly used Standardized Precipitation Index (SPI) (Naresh 

Kumar et al., 2009; Hayes et al., 2011). The SPI is calculated based on long-term daily 

precipitation records for a given geographic region for the desired period. This long-term record 

is fitted by a theoretical probability distribution (i.e., gamma distribution in this study), which is 
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then transformed by normalizing it so that the mean SPI equals zero and standard deviation equals 

one. McKee et al. (1993) and Edwards and McKee (1997) provide further details. It is worth noting 

that, due to the spatial variation of precipitation and hydrologic parameters and their skewness, we 

fitted independent gamma distributions (Martinez-Villalobos and Neelin, 2017) for each sub-basin 

to calculate spatially explicit SPI drought index. It is important to note that the appropriateness of 

the gamma distribution was tested using standard goodness-of-fit measures before the SPI 

computation. As such, two widely-used Kolmogorov-Smirnov (KS) and the Anderson-Darling 

(AD) tests (Ye et al., 2018; Jeong et al., 2014; Shin et al., 2012) were implemented and the 

appropriateness were evaluated based on their estimated p-values. Any p-values greater than 0.05 

is typically interpreted as evidence that the data fit well with the assumed gamma distribution. For 

future projections, we used historical (1987-2016) simulation of each GCM as the reference period 

to fit the gamma distribution. This approach ensures that the SPI calculation is consistent and 

comparable between the historical and future periods, taking into account the sample size and 

distribution parameters. Our method is consistent with similar studies, such as Chen et al., (2022). 

Next, we arranged the data based on their probability of accumulation (CDF), with values ranging 

from 0 to 1. The CDF value of 1 indicates a very high SPI and a CDF value close to 0 indicates a 

very low SPI. Our study considered the normalized SPI value of -0.5 as the threshold index. This 

threshold was used in other similar studies to obtain a relatively large number of records of  

used for the computation of compound warm-dry events (see Wu et al., 2019; Svoboda et al., 

2002). With the threshold SPI of -0.5, the extreme dry events corresponded to SPI < -0.5 and were 

used to calculate .  
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The , , and the DHMI were computed using sub-basin-based area-weighted average 

precipitation and temperature time series for the entire NRB for the historical (1987-2016) and 

future (2070-2099) periods. The DHMI was calculated using Eq. 3.4 as follows: 

   (3.4) 

where M is the timescale to investigate the persistence of extreme warm-dry conditions leading up 

to the month of interest. For example, the temporal evolution of an index for July at a 3-month 

timescale reflects the progress of warm-dry conditions over May, June, and July, and it provides a 

seasonal estimate of the warm-dry conditions  is the number of days for the timescale m with 

the daily temperature higher than the threshold;  is the difference between daily temperature 

and the threshold temperature for the day  (during which temperature is higher than the 

threshold).  is the distribution function of  for each timescale m, and the  is the 

difference between normalized SPI and the corresponding threshold (SPI=-0.5) for the timescale 

m.  was computed as: 

      (3.5) 

Overall, the DHMI index can be computed for different timescales (e.g., 1-month, 2-month, 

.. 12-month), and it ranges from 0 to the maximum value of  (i.e., 0-1 range in our study) with 

the larger values indicating the greater level of extreme dry-warm conditions. The regional DHMI 

in our study was computed based on a 9-month timescale window (January to September), which 

was selected based on some recent studies conducted in other regions with similar climatic and 

agro-hydrological conditions as NRB (Gurrapu et al., 2014; Kim et al., 2017). The 9-month 

timescale reflected the effects of the moisture condition for the crop growing season (i.e., May to 
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September) and the potential moisture carried over from earlier months. Based on the regional 

DHMI time series, we further performed sub-basin-based analyses to assess GW and BW 

relationships during the most extreme warm-dry years for both historical and future periods.  

3.3.5 Climate projections from ensemble GCMs 

For future projections of the hydrological cycle and crop growth, the climate data were 

incorporated from an ensemble of six Global Climate Models (GCMs) of the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016a). Most CMIP6 projected records 

indicate more critical global warming effects near the end of the 21st century, albeit subject to a 

greater spread of prediction uncertainty (Table 3.1) . Therefore, we performed 

our analyses for the 2070 to 2099 period.  

We used the GCMs  simulated data based on two contrasting Shared Socio-economic 

Pathways, SSP126 and SSP585 (Table 3.1). The two selected SSPs represent the lowest (i.e., 

SSP126) and the highest (i.e., SSP585) radiative forcing levels projected for the year 2100 based 

on IPCC Assessment Report 6 scenarios . The former describes a world of 

sustainability-focused growth and equality (SSP-1) with a rising radiative forcing pathway of 2.6 

W/m2 in 2100, and the latter defines a world of rapid and unconstrained growth in economic output 

and energy use (SSP-5) with radiative forcing reaching 8.5 W/m2 in 2100 (Mishra et al., 2020). 

For future hydrology and crop simulations in our study, we set the concentration of CO2 to 350, 

450, and 850 ppm for the historical, SSP126 future, and SSP585 future periods, respectively, based 

on IPCC data (Eyring et al., 2016a).  

Based on an earlier study by Masud et al. (2021), the future climate data were statistically 

downscaled based on historical daily gridded climate data from WFDEI [GPCC] (Weedon et al., 
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2014a) at roughly 0.5o grid resolution, resulting in 574 grids in the NRB. To ensure consistency 

with the WFDEI observation dataset and account for the varying grid projections of the CMIP6 

GCMs (Table 3.1), we employed a reference grid with a horizontal resolution of approximately 6 

km, following the methodology of Werner & Cannon (2016). To facilitate analysis, all model-

simulated data were interpolated to this grid using the thin-plate spline interpolation algorithm 

(Masud et al., 2021). In the study by Masud et al., (2021) (Hiebert et 

al., 2018) was used to downscale the GCM outputs to the specified spatial resolution. The package 

used multiple techniques, including Climate Imprint (CI) (Ahmed et al., 2013; Hunter and 

Meentemeyer, 2005), Quantile Delta Mapping (QDM) (Cannon et al., 2015), Constructed 

Analogues (CA) (Maurer et al., 2010), and Bias Correction/Constructed Analogues with Quantile 

mapping reordering (BCCAQ) (Werner and Cannon, 2016) to downscale the projected climate 

time series. For hydrological projections, the closest grid point of the downscaled data were 

assigned to the centroid of each sub-basin in the SWAT model.  

Table 3.1. The climate change models information used in this study. 

 GCM Institution 
A EC-Earth3 27 research institutes from 10 European countries 
B MRI-ESM2.0 Meteorological Research Institute (MRI), Japan 
C BCC-CSM2-MR Beijing Climate Center, China 

Meteorological Administration, China 
D CNRM-CM6-1 Center National de Recherches Météorologiques (CNRM), France 

European Earth System Model 
E EC-Earth3-veg European Earth System Model by 27 research institutes from 10 

European countries (with an additional vegetation component 
compared to EC-Earth3) 

F CanESM2 Canadian Centre for Climate Modeling and Analysis 
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3.4 Results and discussion 

3.4.1 Model calibration, validation, and uncertainty analysis 

Our sensitivity analysis indicated that streamflow was typically the most sensitive to snow 

parameters in high elevation regions and the Rocky Mountains, and to SCS runoff curve number 

, crop lands, and natural 

lands) (See Table A.5 and A.6 for list of parameters and their descriptions). The hydrological 

model performance for streamflow simulation during the calibration (1982-2006) and validation 

(2007-2016) periods was robust, as evidenced by the bR2 values ranging from 0.15 to 0.96 across 

hydrometric stations in small river tributaries (with NSE values ranging from 0.01 to 0.96), and 

from 0.5 to 0.95 in the main streams (with the NSE values ranging from 0.35 to 0.85) across the 

NRB (Tables A.7). Overall, for the entire calibration and validation period (1982-2016), 65% of 

the observed streamflow data were captured by the simulated 95PPU and the average r-factor was 

about 0.80 at the NRB scale. The average bR2 of the 86 stations was 0.70, and it varied from 0.2 

to 0.95 for individual stations (Table A.7).  

A total of 27 crop growth parameters were initially selected for each agricultural region 

based on the literature review and the authors  judgment (Table A.6). Sensitivity results of rainfed 

and irrigated SWY in 47 agricultural regions and four irrigated counties showed that SWY was 

sensitive to (1) crop and management-related parameters such as DAY, HEAT_UNITS, 

AUTO_NSTRS, AUTO_NYR, AUTO_EFF, and AUTO_WSTRS; (2) soil-related parameters 

such as SOL_CBN, SOL_K and SOL_AWC; and (3) hydrological parameters related to surface 

and sub-surface flows such as CN2, EPCO, and ESCO. The definition of the parameters is 

available in Table A.5.  



77 

Figure 3.2 shows SWY values for 47 agricultural regions (upper panels) and streamflow 

simulation values for 86 hydrometric stations (lower panels) for the entire calibration and 

validation period (1982-2016). The color in the heatmap counts the number of data points in the 

agricultural regions (upper panel) and hydrometric stations (lower panel) with their performance 

statistics (i.e., MSE, bR2, p-factor, r-factor presented on the y-axis). Recall that ideally a greater 

p-factor, smaller r-factor, larger bR2 and smaller MSE for a larger number of stations and 

agricultural regions are expected for satisfactory results. As shown in Figure 3.2, lighter colors 

indicate a greater number of data points associated with agricultural regions (or hydrometric 

stations). Lighter colors under lower values of MSE and r-factor, and higher values of bR2 and p-

factor, represents higher model performance. Overall, the NRB average p-factor was 0.89 and 

0.79, with the r-factor of 2.09 and 2.22 for calibration and validation periods, respectively. Table 

A.8 gives detailed statistics of calibration, validation, and uncertainty analysis data for rainfed and 

irrigated spring wheat.  

 

Figure 3.2. A color map demonstrating model performance for the entire calibration and validation 
period for spring wheat yield/SWY (upper row) and streamflow (lower row). The color cells (count 
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in the legend) represent the combination of the number of stations (or number of CARs) and 
number of times of occurrence during the study period, while whitespace denotes where no data 
exists.13 

3.4.2 Status of growing-season BW and GW under average historical and future 
periods 

In this section we report the variation and status of GW and BW under average historical 

and future conditions. Simulation results for growing season (May to September) during the 

historical period, including both warm-dry and normal years, indicated a slightly increasing trend 

for precipitation across all ecoregions (crop lands, mountainous lands, and natural lands), while 

temperature seems to have remained unchanged (Figure 3.3, Figure A.6, Figure A.7). The 

growing-season BW and GW for the same period followed a similar pattern as precipitation, with 

both indicating a slight increase over the historical period. The long-term average BW and GW 

during the growing season for the 1987-2016 period across the NRB were 15.9 mm/month and 

67.5 mm/month, respectively (Figure 3.3). Based on linear trend lines fitted to precipitation and 

simulated BW and GW time series, we observed an increase of 0.20 mm per year in precipitation 

during the 1987-2016 period, which resulted in an increase of 0.11 mm per year BW and only a 

0.06 mm per year increase in GW. With a coefficient of variation (CV) of 22%, the growing-

season BW demonstrated a similar inter-annual variation to GW with a CV of 6% for the NRB. 

This is due to the larger mean GW, as compared to mean BW in the region (Figure 3.3).  
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Figure 3.3. Historical (left panel) and multi-model ensemble mean (middle and right panels) 
annual precipitation, temperature, BW, and GW for NRB. The data are illustrated for the growing 
season (May-Sep). The BW and GW are shown with blue and green shades, which are overlaid 
along y axis. The blue and red lines illustrate the historical and multi-model ensemble mean annual 
precipitation and temperature with their long-term average values shown next to the lines.  

Multi-model ensemble mean precipitation and temperature for the growing season in the 

future period were larger under SSP126 (i.e., 80.0 mm/month, and 16.7 oC) and SSP585 (i.e., 82.5 

mm/month, and 20.6 oC) as compared to the historical period (i.e., 75.5 mm/month, and 14.7 oC) 

(Figure 3.3). The projected results showed that annual average BW and GW for the growing season 

across the NRB were 16.5 mm/month and 69.5 mm/month for SSP126, and 23.1 mm/month and 

67.5 mm/month for SSP585, respectively (Figure 3.3). The model ensemble mean CV values for 

BW and GW were 39.2% and 13% under SSP126, and 27.8% and 12.9% under SSP585, 

respectively. Overall, the average annual precipitation and temperature increased by 6.0% and 2.0 

oC under SSP126 and 9.4% and 5.9 oC under SSP585 scenarios (Figure 3.3). This change in 

precipitation and temperature resulted in an increase of 3.3% in BW and an increase of 2.9% in 

GW under SSP126. For the SSP585, a significant increase of about 44.5% in BW and a slight 

decrease of about 0.1% in GW were observed. These contrasting values for projected BW and GW 

changes under SSP126 and SSP585 resulted from different underlying processes. The increase in 
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GW under SSP126 is linked to the projected warming, increased evaporation and vegetation water 

demand, and the increased soil moisture. Under this scenario the increase of BW results primarily 

from the increased volume of precipitation and surface runoff as compared to the historical period. 

In contrast, higher precipitation and more frequent wet years resulted in greater soil moisture 

storage under SSP585 than SSP126, and did not considerably increase GW as opposed to BW. 

Causes included increased plant water use efficiency as a result of greater atmospheric CO2, which 

lead to reduced ET, and therefore, less GW under SSP585 than SSP126 (also reported by Fowler 

et al., 2019). Khalili et al., (2021), Masud et al., (2018), and Jasechko, (2018) also report on an 

improvement in plant water use efficiency due to the closure of plant stomata under higher levels 

of atmospheric CO2 concentration under SSP 585 (i.e., 850 ppm) as compared with the historical 

period (i.e., 350 ppm). The reduced GW consumption leaves more water storage in the soil, 

triggering the larger runoff, groundwater recharge, and WYLD, all of which ultimately make 

substantial increase in BW (see also Lian et al. (2018)).  

3.4.3 Assessment of extreme warm-dry events for the historical and future periods  

The processing of precipitation data and the suitability test of the gamma distribution using 

KS and AD methods indicated that in 87% and 86% of the sub-basins, the p-values are greater 

than 0.1 in KS and AD approaches, respectively (Table A.9). In both methods, the p-

0.05 in 100% of the sub-basins. This is further shown in Figure A.8, where more detailed 

assessment of the suitability of gamma distribution is performed, and empirical precipitation time 

series against the theoretical gamma distribution are plotted for some selected sub-basins. The 

selection of sub-basins are based on their annual precipitation to represent a broad spectrum of 

precipitation values across the study watershed.  
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Figure 3.4 shows the results of  (i.e., using the SPI at a 9-month timescale),  and 

the DHMI obtained for the yearly growing seasons (i.e., May to September) during the selected 

historical period and future scenarios (i.e., SSP126, and SSP585). Overall, the DHMI was greater 

when both  and  were large. As shown in Figure 3.4, the value of DHMI was the largest 

under SSP126, followed by SSP585, and it was the smallest for the historic period. Out of six 

GCMs used in this study, the CNRM-CM6-1 climate model demonstrated the largest DHMI due 

to the largest dryness ( ) that was projected under SSP126 (Figure 3.4). However, multi-model 

ensemble projections based on the six GCMs indicated that the DHMI ranged from 0 to 0.6 with 

the lowest values under the MRI-ESM2.0 GCM model, followed by EC-Earth3, BCC-CSM2-MR, 

EC-Earth3-veg, and CanESM2 GCM models, respectively.  

For assessment of the GW-BW relationships under extreme warm-dry events, we chose the 

top 20% of simulated years with the highest DHMIs within each scenario, as the extreme warm-

dry events for further analysis (Figure 3.4). The selected warm-dry years are demonstrated by red 

border lines in Figure 3.4. The simulated GW and BW data were selected and analyzed for 

historical (1987-2016) and future (2070-2099) periods under both SSP126 and SSP585 scenarios 

using climate data of all six GCMs.  
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Figure 3.4. Temporal variation of the compound warm-dry events during the growing season (May 
to September) for the historical (1987-2016) and future (2070-2099) periods. A, B, C, D, E, and F 
represent the results that are derived based on the EC-Earth3, MRI-ESM2.0, BCC-CSM2-MR, 
CNRM-CM6-1, EC-Earth3-veg, and CanESM2 models, respectively. Note that warm-dry events 
are calculated for all years of the historical and future periods but for better visualization, only a 
limited number of warm-dry events are shown in the picture.14 

3.4.4 Altitudinal variation of BW and GW during the growing season 

Given the large variation in elevation in our study area, we opted to investigate how changes 

in GW and BW are affected by elevation. Therefore, we performed an elevation-based analyses to 

characterize GW and BW changes as a function of elevation. As previously mentioned in the 

watershed description, the mountains in the NRB have relatively high precipitation levels. Our 

analyses of the long-term Average Historical (AH) data across different elevation classes in the 

NRB (Figure 3.5a) support this trend, showing that the highest rates of BW and precipitation are 
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found at high altitudes, which make up only a small fraction (i.e., ~10%) of the NRB area. On the 

other hand, the lowest rates of precipitation and BW were observed in the elevation range of 

between 600 and 700 m above sea level (m.a.s.l), which make up 14% of the NRB area. 

The analysis of extreme warm-dry years data in high altitude regions for historical period 

(EH, Extreme Historical) and their anomalies from the AH (Figure 3.5b) showed that precipitation 

was significantly less than that of average historical period and it could decline by up to 22.0% as 

compared to AH (Table 3.2). This 22.0% reduction in precipitation in high elevation regions 

resulted in a considerable reduction in BW availability (i.e., 42.0%), and decrease of GW by up to 

12.2% under EH as compared to AH (Figure 3.5b, Table 3.2). Despite the decrease in GW, the 

high rate of GW consumption by plants due to the higher rates of evaporative demand under EH 

exacerbates the BW deficit in the hydrological cycle. This is demonstrated by the high rates of ET 

in Figure 3.6a. In lower elevation regions, the GW decreased by 15.4% in warm-dry years and, in 

combination with a 16.3% reduction in precipitation, it caused a reduction of 17.7% in BW. The 

reduction of GW in these low elevation regions is due to the low soil moisture availability resulting 

in water stress and reduced crop transpiration (Figure 3.6e).  

We further assessed the effects of the projected extreme warm-dry events on BW and GW 

under SSP126 (i.e., EF126, Figure 3.5c) and SSP585 (i.e., EF585, Figure 3.5d) scenarios across 

different elevation zones. Similar to EH, under the EF126 and EF585 we calculated anomalies 

based on future and historical AH results. In other words, all extreme scenarios (i.e., EH, EF126, 

and EF585) present anomalies in the extreme warm-dry years from the average historical 

conditions (i.e., AH). Under EF126 and EF585, the BW and GW anomalies have shown 

contrasting results to the historical EH. Under EF126, which had the higher overall precipitation 

reduction as compared to AH (i.e., 38.0%, 50.2% reduction in high and low elevation areas), we 
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projected the largest BW reduction (i.e., 66.0%, 33.9% reduction in high and low elevation areas) 

and greatest GW decline (i.e., 26.2%, 39.6% in high and low elevation areas) among all extreme 

warm-dry scenarios (Table 3.2). With the higher rates of precipitation decline under EF585 

compared to EH (i.e., 22.5%, 25.8% reduction in high and low elevation areas compared to EH), 

the BW decreased at a much lower pace in EF585 than EH (i.e., 25.3%, 6.8% reduction in high 

and low elevation areas compared to EH). The processes driving these contradictory results are 

described in section 3.5. 

Table 3.2. Simulated climate and hydrologic variables for mountainous lands, natural lands, and 
crop lands under AH, EH, EF126, and EF585 scenarios. AH: average historical, EH: historical 
extreme warm-dry years, EF126: extreme warm-dry years under future SSP126, EF585: 
extreme warm-dry years under future SSP585. All extreme scenarios are anomalies from AH, 
and all future extreme scenarios are based on ensemble means. All data are monthly averages 
reported for the growing season. 

Region Scenario Precipitation 
(mm) 

Soil 
water 
(mm) 

Runoff 
(mm) 

Return 
flow 
(mm) 

ET 
(mm) 

Temperature 
(oC) 

Mountainous 
lands (high 
elevation) 

AH 75.2 69.6 19.7 4.4 58.1 12.2 
EH 59.0 55.9 14.2 2.8 51.0 12.8 
EF126 46.3 46.3 7.4 0.8 42.9 15.6 
EF585 45.7 60.1 10.0 2.7 43.4 20.4 

Natural lands 

AH 81.1 85.4 3.0 14.7 78.8 15.6 
EH 73.6 78.9 3.8 12.4 65.0 16.6 
EF126 44.5 68.6 2.0 10.1 49.1 18.8 
EF585 56.2 80.1 4.0 14.2 50.1 23.3 

Crop lands (low 
elevation) 

AH 70.1 41.2 2.7 2.3 65.8 16.2 
EH 53.0 37.6 2.5 3.2 57.1 17.4 
EF126 30.8 27.0 1.2 1.7 38.3 20.1 
EF585 37.7 44.9 1.6 3.7 42.8 24.6 

 

Next, we assessed the growing-season data for AH, EH, EF126 and EF585 years across 

different elevation classes. The results showed that the areas falling within 1700 m.a.s.l and 1800 

m.a.s.l range contributed proportionally the largest share of BW with a rate of 50 mm/month in 
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NRB under AH (Figure 3.5a). In addition, more than 35% of the BW under AH was found to be 

from the areas between 900 m.a.s.l and 2300 m.a.s.l, which corresponds to only 10% of the entire 

NRB area (Figure 3.5a). However, BW was substantially decreased in high elevation zones under 

extreme warm-dry events (i.e., EH, EF126, and EF585) (Figure 3.5b, 3.5c, and 3.5d). Despite the 

decrease, the maximum BW was still observed in elevations of 1400 m.a.s.l to 1500 m.a.s.l. The 

BW reduction in high elevation areas in EF126 (Figure 3.5c) and EF585 (Figure 3.5d) can be 

explained by a significant reduction in precipitation while retaining a similar level of GW 

consumption, which results in a severe BW deficit in these high altitude zones as compared to 

lower altitude areas.  

 

Figure 3.5. Fractional area of different elevation classes in simulated study area, and their percent 
contribution to GW, BW, and precipitation during the crop growing season (monthly averages 
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over the crop growing season). (a) average historical period (1987-2016), (b) historical warm-dry 
years, and future (2070-2099) warm-dry years under (c) SSP126 and (d) SSP585 scenarios. 

3.4.5 Spatial variation of GW and BW under average historical and during extreme 
warm-dry seasons 

3.4.5.1 GW and BW distribution across different ecohydrological regions 

As previously shown in our analysis of long-term average historical data, crop lands in the 

NRB have the lowest rates of annual average precipitation and the highest average annual 

temperature (Figure A.6). These conditions, combined with high evaporative demand, result in 

high GW values and limited availability of BW (Figure 3.6d). Despite the highest precipitation 

CV (i.e., 37.2%) in crop lands, the highest rate of BW variation was observed in mountainous 

lands (i.e., CV of about 42.0%). The crop lands showed the highest variations of GW as compared 

to other regions in NRB (i.e., CV of about 20.9%). The larger GW variations in these lands are not 

only due to the high precipitation variations but the lower volume of precipitation and lower overall 

soil moisture in these regions, which can increase water stress and therefore crop sensitivity to 

small changes in precipitation and soil moisture conditions (Figure 3.6c). Other studies have also 

reported agricultural crops as among the most sensitive water users to even small changes in 

climate variables (Sadras et al., 2020; Jägermeyr et al., 2021).  

The high rates of precipitation and snowmelt in mountainous lands contribute to relatively 

large volumes of soil water mainly in river valleys and lower altitude hill slopes (Figure 3.5, Figure 

3.6c,f). Along with the low permeability of higher altitude soils, this results in higher rates of 

surface runoff generated in mountainous areas than other regions (Preston et al., 2014). As a 

consequence, the BW volumes are larger in these high-altitude regions than in other areas in NRB 

(Figure 3.6d). In contrast, natural lands present the highest soil water content among all of the 

regions (Figure 3.6c, Table 3.2), which is directly related to the large amount of precipitation and 
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greater rates of infiltration due to their permeable soils (Table 3.2), and therefore higher levels of 

return flow. During snowmelt and storm seasons, the near-saturated soils in these regions can 

increase return flow (base flow) and subsurface flow (lateral flow) to the streams. It can also lower 

infiltration rates, supporting runoff generation and forming a large volume of BW availability 

(Figure 3.6d).  
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Figure 3.6. Simulated long-term average hydrologic water balance data during growing season 
(calculated as the  averages over five months during the crop growing season) for historical period 
(left column), and their anomalies from AH under extreme dry-warm years (column 2-4 from the 
left). The maps in horizontal rows are: average GW (ET, mm/month), precipitation (mm/month), 
soil water (mm/month), BW (mm/month), water stress (days/month), and snowmelt (mm/month) 
during growing season.15 

3.4.5.2 GW-BW relationships under historical and future extreme warm-dry years  

To assess the GW and BW relationship during the growing season and under extreme warm-

dry events across NRB, we calculated the sub-basin-based BW to GW ratio (BW/GW) for EH, 

EF126, and EF585 scenarios, as well as their anomalies from the AH scenario (Figure 3.7). Based 

on the underlying physical processes as explained in the following, the lower anomaly (warm 

colors in the figure) indicates a shift from BW to GW and the greater anomaly (cold colors in the 

figure) indicates no shift. As stated in Table 3.2, mountainous lands demonstrated relatively rich 

soil water (close to saturation) preventing further infiltration to the soil under AH (Figure 3.7a, 

Figure 3.8), which derived high volume of BW generation during flood seasons and therefore a 

large BW/GW ratio. However, less BW was predicted under extreme warm-dry years (EH) as 

compared to GW, which resulted in a decreasing BW/GW ratio as compared to AH scenario in 

these regions (Figure 3.7b). Three main physical processes were responsible for lower rates of 

BW/GW ratios during EH in these regions, which include: (1) low rates of precipitation reducing 

surface runoff and consequently the BW (Figure 3.6); (2) decreasing precipitation causing 

decreased soil water content and increasing soil dryness, which increased infiltration rates of 

precipitation and snowmelt in the following seasons and years. This ultimately reduced the fraction 

of the precipitation that flowed overland (i.e., surface runoff) (Figure 3.6, Figure 3.8); (3) greater 

soil water content (even under EH), which was carried over from earlier seasons and years, 

maintained ET (GW) which affected BW volume by reducing lateral and return flows (Figure 3.6, 

Figure 3.8).  
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In natural lands, despite a relatively small increase of annual average precipitation under EH 

as compared to AH, a higher evaporative demand under EH increased GW, causing lower soil 

moisture storage. Therefore, similar to mountainous lands, this resulted in an increase in 

infiltration rates of precipitation and snowmelt, which eventually reduced the proportion of the 

precipitation that could otherwise contribute to surface runoff and return flow (Figure 3.6, Figure 

3.8). Consequently, a decreasing rate in the growing season BW/GW ratio is observed in this 

ecoregion under EH. 

 

Figure 3.7. Sub-basin scale simulated blue to green water ratio (BW/GW) for the growing season. 
(a) long-term (1987-2016) average historical ratios (AH); (b) Anomalies of historical extreme 
warm-dry years ratios from those of AH; (c) Anomalies of future (2070-2099) extreme warm-dry 
years ratios under SSP126 from those of AH (EF126); (d) Anomalies of future (2070-2099) 
extreme warm-dry years ratios under SSP585 from those of AH (EF126) (EF585). The % 
anomalies in b, c, and d were calculated as: [(Extreme Scenario-AH)/AH]×100. Figures c and d 
are based on multi-model ensemble mean values. The circles represent streamflow anomalies in 
150 select outlets (%). 16 
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Based on the anomaly map (% deviation from AH), a large BW/GW ratio was predicted for 

crop lands under EH (Figure 3.7b). This contrasts with the BW/GW ratio anomalies observed in 

mountainous lands and natural lands because of different underlying mechanisms. The simulated 

average historical GW rates in crop lands (Figure 3.7a) were greater than those of other regions 

under AH (i.e., 65.8 mm/month during the growing season, Figure 3.6a, Figure 3.8). The large 

historical GW rates in these areas were accompanied by the lowest rates of precipitation (i.e., 70.1 

mm/month during the growing season) and the lowest soil water content (41.2 mm/month) as 

compared to the other regions (Figure 3.6b, c. Figure 3.8). The simulated extreme warm-dry years 

of the historical period (i.e., EH) had a ~8.8% reduction in soil water as compared with average 

conditions, creating a high water stress condition (Figure 3.6e, Figure 3.8c) for crops which 

lowered the GW by ~14% (Figure 3.7b, Figure 3.8c). Unlike the GW, the share of average 

historical BW in crop lands was small as compared to other ecoregions under AH: specifically, 

63.8% and 55% less BW as compared to the mountainous lands and natural lands, respectively. 

This limited BW under AH showed a relatively small reduction under EH. In contrast, the 

insufficient soil water content under EH and a large number of water stress days (Figure 3.6e) 

ultimately resulted in a proportionally larger decline of GW than the corresponding decline in 

limited BW. Therefore, a larger BW/GW ratio was predicted under EH for the crop lands as 

compared to other ecoregions, mainly due to the larger decrease in GW (denominator) than BW 

(numerator) (Figure 3.7b). 

The multi-model ensemble mean results for EF126 anomalies showed a decreasing BW/GW 

ratio for most of the NRB (Figure 3.7c). The regionally averaged growing-season precipitation for 

the future period (2070-2099) in EF126 scenario decreased by about 46.3% as compared to that of 

the historical period (1987-2016), which is the highest rate of decline among all scenarios (i.e., 
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38.3% and 18.0% reduction under EF585 and EH, respectively). This decline in precipitation 

reduced BW by 50.4% and GW by 35.7% during the growing season at a regional scale. While 

both BW and GW decreased under EF126, the significant decline of the BW/GW ratio was because 

of a greater depletion of BW (in the numerator) than GW (in the denominator) at the regional scale.  

 

Figure 3.8. Comparison of simulated hydrologic variables for mountainous lands (a), natural 
lands (b), and crop lands (c) under AH, EH, EF126, and EF585 scenarios. AH is averaged over 
30 years. EH, EF126 and EF585 are averaged over extreme warm-dry years. All extreme 
scenarios are anomalies from AH, and all future extreme scenarios are based on ensemble means. 
All data are reported for growing season.17 
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The declining trend in the BW/GW ratio was more pronounced in mountainous lands than 

natural lands in all scenarios (Figure 3.7b-d). Overall, In mountainous lands during extreme warm-

dry years, the reduced precipitation compounded with higher atmospheric evaporative demand, as 

observed in Figure 3.8, resulted in reduced surface runoff more than soil water. Together, they 

resulted in low BW availability but a relatively high GW, because the carry over moisture from 

the non-growing season and cooler and wetter periods such as snowmelt infiltration in the soil can 

sustain soil water storage, which can support plant water demands during warm-dry years. This 

ability to sustain soil water storage can offset the negative impacts of limited precipitation during 

deficit periods for plant growth but at the expense of reduced BW (Bales et al., 2018), since a 

relatively larger share of precipitation increased GW levels through infiltration into drier soils. 

GW flow through soil moisture is a slower mechanism than surface runoff generation and it can 

be further exacerbated by increasing temperatures (Avanzi et al., 2019).  

In most sub-basins of the natural lands, the average historical BW/GW rates were greater 

than those of other ecoregions (Figure 3.7a). However, this ratio decreased considerably in extreme 

warm-dry years under historical EF (Figure 3.7b) and under the future EF126 scenario (Figure 

3.7c), where very low precipitation rates (see Figure 3.6b, Figure 3.8b) substantially lowered the 

surface runoff and the groundwater contribution to the streamflow via return flows, and therefore 

reduced the rates of BW (Figure 3.6d, Figure 3.8b). In contrast, the ensemble mean results 

indicated that unlike the limited BW rates under EF126, the projected GW remained high (Figure 

3.8b) since sufficient soil water content was carried over from the normal years or previous wet 

seasons. Therefore, with the smaller BW and larger GW projections, the BW/GW ratio was 

considerably smaller than AH in these regions (Figure 3.7c). 
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Under EF126 a considerable decline of precipitation in the crop lands followed by large 

reduction of soil moisture (~28% reduction of soil moisture compared to AH, Figure 3.8c), resulted 

in the infiltration of a large share of the limited precipitation to the soil due to the lack of antecedent 

soil moisture and soil overall dry condition. The high rates of water entering to the soil, resulted 

in a considerable reduction of surface runoff and therefore a decline of ~ 51% in BW under EF126 

(Figure 3.8c). This is much greater decrease than observed in the EH scenario, which showed only 

16%, and 14.5% reduction in BW, and GW, respectively (Table 3.2, Figure 3.8). Further, it 

contrasts with conclusions from earlier studies, which generally related the increase of evaporation 

rates in warm-dry years to reduced streamflow, i.e., shift of BW to GW, without projections for 

future climate change scenarios (e.g., see Massari et al., (2022)). The very low soil moisture in 

crop lands resulted in increased water stress days during the crop growth season under EF126, 

which reduced GW consumption associated with plant growth in crop lands. Therefore, a 

substantial reduction of BW under EF126 (which was responsible for the BW/GW reduction), and 

the scarcity of soil moisture (which limited crop growth and GW), prevented the shift of BW to 

GW under EF126 conditions in crop lands. This was in contrast to the mountainous lands and 

natural lands, where deviation of BW from AH and its shift to GW was observed, albeit through 

the carry over moisture in the soil that resulted from infiltration of the BW generated in antecedent 

wet seasons and wet years.   

The multi-model ensemble mean results for EF585 anomalies (Figure 3.7d) showed a similar 

spatial pattern of BW/GW alterations to EH and EF126, but resulted from a different set of 

underlying mechanisms. Although the surface runoff significantly decreased as compared to the 

AH (i.e., 40% reduction in runoff under EF585, Figure 3.8) with a relatively substantial decline of 

precipitation in EF585 (Figure 3.6b), the return flow increased by 3.6% (Table 3.2, Figure 3.8) 
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because of the reduction in stomatal conductance stemming from higher CO2 emission under 

SSP585 (850 ppm) as compared to AH (350 ppm), EH (350 ppm), and EF126 (450 ppm). The 

higher atmospheric CO2 concentration enhances plant water use efficiency and reduces 

transpiration (Masud et al., 2019), resulting in lower water consumption by plants. This allows 

more water to stored in the soil to further enter the groundwater and to support return flow, leading 

to an increase BW. However, these beneficial effects of atmospheric CO2 concentration and water 

use efficiency could not counteract the significant runoff reduction compared to the AH and the 

extreme temperature rise in mountainous lands (Figure 3.7c, Figure 3.8a). 

3.4.6 Streamflow during extreme warm-dry seasons for the historical and future 
periods  

To understand the watershed response to the cumulative effects of changes in BW and GW, 

we further analyzed streamflow changes under EH, EF126, and EF585. Results for 150 selected 

sub-basin outlets (circles in Figure 3.7b-d) reveal declining growing-season streamflow under EH 

and EF126: 25% and 37% lower than the long-term historical mean streamflow (i.e., AH), 

respectively. These declining rates of streamflow were a maximum (37% and 49%) at the most 

downstream outlet of the NRB. Such reductions in the streamflow under EH and EF126 represent 

the amplified effect of low precipitation on BW during the warm-dry events as compared to 

average conditions under the historical period. In contrast, the growing-season streamflow under 

EF585 was, on average, 10% greater than the long-term historical mean. The higher level of 

atmospheric CO2 concentration under EF585 and the resulting reduction of evapotranspiration are 

responsible for this increased streamflow, and outweigh the adverse effects of precipitation 

reduction on streamflow. Note that these are regionally averaged values and that the impacts of 

atmospheric CO2 increases are spatially different across the region. Similar to GW and BW, the 



95 

compensation effects of increased atmospheric CO2 were minimum on streamflow in upstream 

tributaries of mountainous lands under EF585. Together, the regional cumulative streamflow 

showed an increase of more than 30% at the most downstream outlet of the watershed as compared 

to AH (Figure 3.7d).  

To better demonstrate the severity of streamflow changes for the EH, EF126, and EF585, we 

analyzed the simulated data for all 1988 sub-basins across the NRB. The results showed a reduction 

of 0-50% in growing-season streamflow in 65% of the outlets under EH (Figure 3.9a), with a 

slightly higher than average streamflow at some outlets in the crop land region (see Figure 3.7b). 

The decline in streamflow was intensified under EF126 where 75% of the outlets experienced a 

reduction of 0-50% in streamflow during the growing season (Figure 3.9b). In contrast, under 

EF585, only 40% of the outlets experienced reduced streamflow, while 60% of the outlets 

demonstrated an increase of 0-75% in their growing-season streamflow (Figure 3.9c). This 

increase was not identical across different ecoregions and demonstrated almost no increase in 

mountainous lands (Figure 3.6d). As seen in Figure 3.7c, only very small number of outlets 

demonstrated increase of 25%-75% in their streamflow under EF585. The primary underlying 

process is the larger soil moisture availability under EF585 because of low transpiration rates and 

earlier stomatal closure, as also reported by Jasechko (2018) and Fowler et al. (2019).  
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Figure 3.9. Histograms of streamflow anomalies during extreme warm-dry years in the historical 
period (EH) (a), SSP126 scenario (EF126) (b), and SSP585 scenario (EF585) (c), as compared to 
the historical average (AH) for 1988 modelled sub-basin outlets (m3/s).  

3.5 Discussion and implications of the BW and GW changes for future 
water and food security 

Our results provide valuable information on BW and GW relationships and their changes 

during concurrent warm and dry extremes under historical and future climate change scenarios. 

Numerous global climate change studies projected an overall increase in mean precipitation and 

wet conditions in mid-to-high latitude regions under future global warming scenarios  

al., 2016; Valentin et al., 2018). While increasing precipitation and warming temperatures can 

benefit crop production in agricultural watersheds of these cold regions (He et al., 2018; M. B. 

Masud et al., 2018), our study suggests a decreasing trend of precipitation, resulting in unfavorable 

hydrologic conditions during the growing season in the future extreme warm-dry years of mid-to-

high latitude watersheds. In mountainous and natural lands, on the other hand, our results revealed 

a decrease in surface runoff and infiltration, but an increase in evapotranspiration due to the legacy 

soil moisture from earlier years and non-growing seasons. Given that the frequency, duration, and 

intensity of extreme warm-dry events are projected to increase under future global warming 

scenarios in western Canada (Tam et al., 2019; Yang et al., 2020), the availability of legacy soil 

moisture in dry years might severely decrease, triggering long-term soil water stress with severe 

effects for natural vegetation and ecosystems.  

More recent studies suggested a shift of blue water to green water resources under historical 

warm and dry events (Mastrotheodoros et al., 2020; Orth and Destouni, 2018). These studies also 

suggested the likely amplification of the blue-to-green water shift under future global warming 

scenarios. Our study revealed a different pattern of BW and GW changes across different 
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ecohydrological regions. In mountainous and natural lands, a decrease in BW and an increase in 

GW were found. However, the cause was indirect, with overall increases in GW tied to the 

availability of legacy soil moisture from earlier seasons and/or earlier wet years, from snowmelt, 

groundwater contribution, and soil moisture stored. With the projected increase of more prolonged 

droughts in the future, the legacy soil moisture in these regions may not suffice to meet vegetation 

water needs. Further, wetlands are important natural features in western Canada, which play key 

role in regulating nutrients and their export to receiving water bodies (Colares et al., 2020; 

Greenwood and Eimers, 2022), maintaining biodiversity (Arya, 2021), and sequestering carbon 

(Moomaw et al., 2018) among others. Therefore, the availability of BW is key for their 

sustainability and healthy functioning (Cui et al., 2021), which can be affected by the decline of 

BW and spike of GW, as projected in our study. 

The suggested shift of BW to GW in earlier studies (Mastrotheodoros et al., 2020; Orth and 

Destouni, 2018) did not match our results in the vast crop lands of Canadian Prairies. In crop lands, 

our results showed either no direct or an indirect shift of BW to GW. This is primarily due to the 

distinct ecohydrological and climatic conditions of our study area, which is often water-stressed 

and has limited soil water legacy (i.e., from earlier seasons or groundwater contribution) during 

droughts. Consequently, our results suggested a considerable reduction in both BW and GW in 

crop lands, which can seriously affect crop yields under warm-dry events in the future, with 

implications for their export to over 100 countries (Statistics Canada, 2022). Numerous studies 

have addressed the importance of irrigation as water supply for global crop production under the 

warming effects of future climate change in semi-arid regions (Ghoreishi et al., 2021; Wu et al., 

2021) and the potential of water storage as an adaptation measure during drought spells (Avanzi 

et al., 2020). In most agricultural watersheds of mid-to-high latitude regions, snow precipitation 
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and snowmelt in upstream highland areas are key sources of freshwater for downstream irrigation 

purposes (Hrach, 2020). Our results suggested a significant reduction of BW during extreme 

warm-dry years in mountainous high-elevation areas, which can result in a severe water shortage 

for downstream irrigation during prolonged droughts. This underscores the importance of 

developing adaptation measures such as storage capacity for freshwater during the likely wet 

extremes in these regions, although environmental impacts of such strategies must be considered 

(Máté et al., 2020).  

Natural lands provide numerous ecosystem services such as water resources for 

hydroelectricity (Hoffman, 2017) and forests for timber production, which can be heavily impacted 

by alteration of the hydrologic regime. For example, more than 98% of electricity generated in 

Manitoba is based on runoff from natural lands (Government of Manitoba, 2022).  Electricity is 

an important economic resource for the province, which exports about half of its electricity 

(Government of Manitoba, 2022). More frequent and prolonged warm-dry events and exacerbated 

BW reduction, as shown in this study, may pose risks to energy production. Further, the forest 

industry is also one of the largest manufacturing sectors in NRB. Forest products are exported 

across provincial and international borders with an annual GDP contribution of about $900 million 

(Zubrycki et al., 2016). Depending on the SSP scenarios, our results suggest that limited BW from 

natural lands under future extreme warm-dry events during the growing season can impact forest 

growth and regeneration. Potential water shortages can also increase forest stress and thus effects 

of insects and diseases (Choat et al., 2018). Finally, stressed forests, and dry bush and trees face a 

higher risk of future wildfires (Halofsky et al., 2020).  

Projected reductions in regional BW, particularly for long lasting and frequent events, can 

also alter the streamflow regime, changing perennial streams to intermittent ones (Fovet et al., 
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2021), with significant implications for water quality (Addy et al., 2019), river ecosystems and 

fish survival (Lennox et al., 2019), and freshwater biodiversity (Datry et al., 2016) among other 

effects. 

In glaciated basins, rising temperatures accelerate glacier melting. Recent studies have 

projected significant and rapid retreat of mountain glaciers all the way to complete loss (Clarke et 

al. 2015; Kotila et al., 2022). Our results predicted a significant decrease of BW and relatively 

high levels of GW across ecoregions under future extreme warm-dry years. Yet, our simulated 

results did not consider the effects of glacial melt and retreat in mountainous lands. More severe 

water shortage may occur under extreme-warm dry events in mountainous lands in the absence of 

glaciers, which can affect ecosystem services in upstream catchments and irrigation water storage 

for downstream users during potential prolonged drought years. 

Therefore, a thorough understanding of GW-BW relations, particularly their shifts and 

alterations under extreme warm-dry events in different ecoregions, is essential for future planning 

and management. As a step towards such a comprehensive assessment, this study shows how 

warm-dry events, CO2 enhancement, ecohydrological settings, and climate change can affect GW-

BW relations and their changes under extreme events such as warm and dry years. 

3.6 Limitations and future directions 

The modelling framework in this study assumed the type and rate of fertilizer applications, 

crop varieties, sowing and harvesting dates under future scenarios to be the same as the historical 

period. In addition, the operation of 44 relatively large dams included in the historical simulation 

of the agro-hydrologic processes was assumed to be unchanged for future projections and under 

global warming scenarios. Addressing these factors using socio-agro-hydrological modelling and 
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examining the tradeoffs and response of agricultural, hydrological, and socioeconomic factors to 

changes in BW and GW fluxes and to management and human decisions would be beneficial for 

developing alternative adaptation measures. 

Mountain glaciers are important freshwater resources and major climate change sentinels. 

Mountain glaciers have undergone significant changes in the last century, including relentless area 

and volume loss and increased contribution to streamflow in their downstream catchments (Kotila 

et al., 2022; Liu et al., 2022). Continued changes in their melt, mass balance, and evolution could 

result in their complete loss by the end of the century (Naz et al., 2014; Clarke et al. 2015). For the 

future projections in upstream mountainous lands, our model assumed similar glacial melt rates 

and runoff contributions to those of the historic period. In watersheds of the mid-to-high latitude 

regions, which rely on glacier melt runoff in their upstream catchments, simulation of the glacial 

runoff based on changes in their melt, mass balance, and evolution; and coupling with hydrological 

models can improve BW and GW projection results for future scenarios.  

Large-scale disturbances (i.e., forest mortality), species changes and plant acclimation, 

which are not considered here, may partially offset the ET feedback during warmer years in the 

long term. Furthermore, in some areas of the NRB, vegetation management and past disturbances 

such as wildfires or forest logging may have influenced vegetation composition and function in 

ways that are not included in the model initialization. 

Finally, our results might be affected by uncertainty stemming from different sources such 

as input data used for modelling (e.g., historical and future climate data, soil properties, agricultural 

land management data), model structure (e.g., hydrologic connectivity and explicit simulation of 

potholes and wetlands), and model parameters, as well as GCM model spread and downscaling 

approaches. An uncertainty prediction while incorporating more GCM projections can provide 
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important information on model confidence and projected results. Moreover, our drought 

assessment in this study is based on fitting a gamma distribution, which was verified using two 

widely used goodness-of-fit approaches. A more detailed analysis and comparison of other 

goodness-of-fit approaches, as well as comparison with other distribution models would reduce 

uncertainty inherent in the selection of a distribution model, thereby reducing uncertainty for the 

analysis of drought assessment. 

3.7 Conclusions 

In conclusion, this study explored the interlinkages between BW and GW and the potential 

shift of BW to GW under extreme warm-dry years of global warming scenarios in the future, by 

taking Nelson River Basin to represent agro-hydrological regions of mid-to-high latitude areas in 

arid and semi-arid regions. Using a process-based agro-hydrologic model, the study showed that 

the GW-BW relationship follows dissimilar patterns across different ecohydrological regions and 

under different global warming scenarios, which suggests different implications for various 

ecosystem services. The main conclusions of this study are that, 

 The multi-model ensemble mean projections for the entire basin indicated greater 

precipitation, BW, and GW during future growing seasons as compared to the historical 

period. However, the warmer scenario (SSP585) projected greater BW and less GW as 

compared to SSP126 scenario. These contrasting results were due to different behaviours 

of the underlying processes, which were also different across different ecohydrological 

regions and across different elevation ranges. 

 While multi-model ensemble mean data showed increasing precipitation, BW, and GW in 

the future, the averaged data for extreme warm-dry years indicated decreasing BW and 

GW rates for most of the region. The reduction of growing-season BW and GW during 
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extreme warm-dry periods under SSP126 was due to a significant decrease of precipitation. 

On the other hand, the magnitude of BW and GW under SSP585 was mainly influenced 

by the enhanced plant water use efficiency, which resulted from the reduction in stomatal 

conductance. 

 While the greatest historical average BW in growing season was observed in high altitude 

areas, which accounted for only 10% of the area, the future projected results indicated a 

greater reduction of precipitation, BW, and GW under future extreme warm-dry years in 

these regions. However the rates of BW and GW reductions were different across SSP 

scenarios. 
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Overall, the three ecohydrological regions of this study provide various ecologic and 

economic services. Therefore, understanding GW-BW relationships, their potential shifts under 

global warming scenarios, and the processes driving them are important for future planning and 

management of the watersheds. Our results have significant implications for water-food-climate 

change studies and global food security, as the study area is among the key crop producing areas 

and is among the major breadbaskets of the world. Therefore, the findings of this study provide 

valuable information to facilitate more informed adaptation measures for regional planning and 

policies for future water resources management. 
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4.1 Abstract 

The unfolding climate change crisis poses a growing challenge to water and food security, 

and yet the reliability of the global breadbaskets and their relationship with water resources in the 

future are poorly understood. In the higher latitudes of the temperate zone, the global breadbaskets 

are projected to receive an overall increased precipitation and improved crop yields under the 

effects of global warming scenarios, which is often perceived as beneficial to crop production and 

export potentials in the future. However, the future projected extreme warm-dry events, can 

significantly affect the agro-hydrological processes, crop yields, and therefore export potential of 

the crops from these regions. Using a process-based agro-hydrologic model, this research 

examines the potential impacts of future droughts and post-droughts on water yield (WYLD), crop 

yield (Y), and their linkages through assessing the net virtual water export (NVWE), the water 

embodied in the production process of the crops that are exported to international countries. The 

study takes Nelson River Basin (NRB), a large agricultural watershed in western Canada that 

exports food to over 170 countries and plays part in global food security. The agro-hydrologic 
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model is forced using projected climate data and atmospheric CO2 levels from an ensemble of six 

Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 

for the 2070-2099 period, based on two contrasting Shared Socio-economic Pathways (SSP126 

and SSP585).  

Contrary to prevalent long-term average projections of a wetter future for the higher latitudes 

of the temperate zone, our study results of the longest and the most severe drought (LMD), indicate 

a substantial reduction in precipitation, Y (rainfed wheat and canola in this study), as well as 

WYLD in the future. The reductions in these agro-hydrological variables are likely to be more 

severe under historical drought conditions and SSP126 than SSP585. The slight improvement 

under the SSP585 scenario due to the CO2 effects on plant photosynthesis processes is not uniform 

across region and crop types. 

Analysis of data for post-drought period, reveals variable recovery times for WYLD, Y, and 

NVWE in the future, with the WYLD demonstrating slower recovery time as compared to Y during 

the years after the longest and the most severe drought (LMD). Given the projected frequent 

droughts in the future, the slow recovery of the WYLD after droughts can be a limiting factor for 

sustainable production and export potentials as it can deteriorate environment and several 

economic sectors. Our study lays a strong basis for examination of a strategic crop selection and 

diversification, which can be considered as an adaptation measure for conservation of WYLD for 

an integrated water and food security in the future.  

Keywords: Agro-hydrologic modelling, climate change projections, global climate models, water-

food security, CMIP6, sustainable production 

  



106 

4.2 Introduction 

Droughts are a common and recurring phenomenon with significant impacts on hydrology 

(Hasan et al., 2019) and crop production (Kuwayama et al., 2019), therefore, altering virtual water 

trade (VWT). The VWT is the flow of water embodied in the production process of food and other 

commodities which are traded between and within countries (Allan, 1998). Despite the well-

documented negative effects of droughts on water resources and crop production, studies have less 

concentrated on the impacts of droughts on VWT. Moreover, most studies largely focused on the 

immediate impacts of droughts (Li et al., 2019; Zhao et al., 2020; Khalili et al., 2023) and have 

paid little attention to the long-term effects, such as post-drought impacts. For example, the post-

drought precipitation may not contribute to runoff with a similar pattern as pre-drought condition, 

and instead the evapotranspiration (ET; also known as green water flow) rates can increase under 

post-drought condition (Deb et al., 2019; Saft et al., 2015). Such changes in the hydrological 

processes can cause hydrological or agricultural droughts to persist for a longer period after the 

occurrence of the initial droughts.  

Sustained droughts can lead to significant and prolonged reductions in water yield (WYLD- 

net volume of freshwater, including surface runoff, lateral flow, and groundwater generated in a 

watershed), despite their termination (Y. Yang et al., 2017). The persistent reduction in WYLD 

following droughts is often attributed to factors such as increase in ET and shift in the annual 

rainfall-runoff relationship (Saft et al., 2016). It can also be related to changes in the seasonality 

of rainfall (Pepler et al., 2021), reductions in pre-drought precipitation (Wasko et al., 2020), 

increased soil moisture depletion , and reductions in heavy rainfall 

frequency (Elliott et al., 2015). Furthermore, changes in soil physical properties (e.g., soil 

hydraulic conductivity, bulk density, available water capacity) due to drought (Van Loon and Van 
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Lanen, 2013), and soil conservation techniques, during and after drought can also contribute to 

reduced WYLD, which can exacerbate the adverse effects of post-droughts on hydrology (Cornish 

et al., 2020). In addition, plain areas with low slope and small topographic relief can generate less 

runoff as compared to highlands (Khalili et al., 2023), due to greater rates of infiltration and ET 

that may exacerbate the adverse effects of droughts on runoff generation after their termination. 

Increases in atmospheric evaporative demand, following a drought, and changes in vegetation 

growth pattern, and water use can also impact runoff generation and therefore streamflow 

(Mastrotheodoros et al., 2020). Moreover, reduced recharge to groundwater during the drought 

can also contribute to the decline in groundwater levels and further exacerbating the streamflow 

reduction after the drought termination (Khalili et al., 2023; Fowler et al., 2020). Therefore, the 

post-drought persistence of WYLD decline and streamflow reduction are complex processes, 

influenced by a wide range of factors. After a drought event, the altered terrestrial and atmospheric 

processes create a diverse range of variations in hydrological water components and environmental 

conditions. However, most studies have focused on short-term direct impact of droughts (Li et al., 

2019; Zhao et al., 2020; Khalili et al., 2023), and the examination of long-term (multi-year) 

changes in hydrological processes in a post-drought period are limited. 

The changes in hydrological processes following a drought event can impact crop yield (Y) 

and the time that takes for crops to recover from a given drought (Iqbal et al., 2020; Lesk et al., 

2016). Understanding the effects of post-drought conditions on Y and its linkages with water (e.g, 

GW and WYLD) can inform sustainable water and food management strategies (Hamal et al., 

2020; Krishnamurthy R et al., 2022; Srivastav et al., 2021). However, there is currently a limited 

understanding of the post-drought effects on Y due to the complexity of post-drought processes, 

lack of long-term data on spatiotemporal variability in recovery of hydrological regime and Y after 
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a drought event, and difficulty in controlling for other factors such as changes in land use, 

management practices. Studies have demonstrated that the recovery of Y from drought can be 

quicker than that of the watershed hydrology, leading to further stress on the hydrological balance 

(Orth and Destouni, 2018). This is attributed to the increased rate of infiltration after a drought, 

when the soil is dry, demanding a greater proportion of precipitation to infiltrate to the soil instead 

of contributing to surface runoff (Qiu et al., 2023). However, the infiltrated water can primarily 

replenish the topsoil moisture for crop use, leaving a limited soil water for groundwater recharge, 

which can result in a reduced groundwater levels (Khalili et al., 2023). The reduced groundwater 

level can ultimately lead to a reduced soil moisture for crop ET, which can be otherwise available 

from a high groundwater table through capillary fringe for root water uptake (Karamouz et al., 

2011). The reduced groundwater levels can also decrease subsurface water contribution to 

streamflow, decreasing the return flow or base flow to the streams (Wossenyeleh et al., 2020) with 

potential impacts on irrigated Y (OECD, 2016). As a result, the recovery of Y under post-drought 

condition is highly related to the hydrological processes driving soil water and the feedback 

between crop growth and soil moisture availability. 

The VWT (m3/tonne) associated with the trade of crops is quantified based on the ratio of 

crop ET (m3) to Y (tonne/ha) (Hoekstra, 2003), which can be variable depending on the geospatial, 

hydrological, climatological, and agricultural management practices where crops are produced. 

The VWT can also be dependent on the source of water used in the production process of the crops, 

including blue (i.e., WYLD in this study) and green (i.e., actual evapotranspiration) water 

resources. Given that all these factors can be considerably impacted by droughts, the VWT and 

the pattern of water transfer through the trade of crop products can also be affected by droughts. 

Despite the wide range of studies on VWT, a comprehensive assessment of the impacts of droughts 
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and post-drought condition on VWT is absent. Previous research on VWT has primarily 

concentrated on the role of VWT on water resource management, water savings, and socio-

economic drivers of VWT and the VWT networks (Chapagain et al., 2006; Mekonnen and 

Hoekstra, 2020; Oki et al., 2017; Qu et al., 2018; Faramarzi et al., 2010; Zhang et al., 2016; Zhuo 

et al., 2016; Konar et al., 2011). However, these studies have largely overlooked the role of natural 

factors such as droughts and post-drought conditions in local hydrological processes driving VWT. 

Additionally, these studies have primarily focused on historical observations (Hoekstra and 

Mekonnen, 2016; Mekonnen and Hoekstra, 2020) and have not adequately addressed the changes 

under future extreme event conditions such as droughts and post-drought periods. The recent 

limited studies that addressed the impacts of climate change on VWT (Graham et al., 2020), 

elaborated on the food production and trade potentials under averaged future climate conditions. 

Overall, the ensemble mean model projections show a promising future with increases in 

precipitation, heat units, and Y for mid-to-high latitude regions (He et al., 2018; Khalili et al., 

2021; IPCC, 2021; Masud et al., 2019). However, these assumptions lack assessment of the 

impacts under extreme dry events such as droughts and post-drought conditions on hydrological 

processes and blue-green water interchange that are key drivers of crop growth and VWT (Khalili 

et al., 2023; Marston and Konar, 2017). Therefore, to fully understand the combined and long-

lasting impacts of droughts on hydrology, Y, and VWT, it is imperative to conduct a 

comprehensive analysis that considers the complex interactions and relationships among these 

factors. Such a study can help, inform, and guide sustainable water management and food 

production strategies in the face of global warming scenarios. More specifically, the agricultural 

watersheds of mid-to-high latitude regions, such as Canadian Prairies, are prone to frequent 

droughts, while they are also important breadbaskets of the world (Khalili et al., 2021b; Rubin and 
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Hurst, 2017). Given the potential adverse effects of post-droughts on water availability and crop 

production, it is crucial to assess the effects of droughts and post-droughts on VWT in crop 

producing watersheds of the mid-to-high latitude regions where droughts are frequent and their 

impact on hydrology, Y, and VWT can be substantial.  

The primary goal of this study is to examine the impacts of droughts and post-droughts on 

hydrological processes, Y, and their linkages through assessment of VWT under global warming 

scenarios. To achieve this goal, the objectives of this study are to: (1) analyze the past and projected 

changes in WYLD under average, drought, and post drought conditions using Nelson River Basin 

(NRB) as a study region, which is the largest agricultural watershed (1.1 million km2) in Canadian 

Prairies, covering various ecohydrological conditions; (2) assess the past and projected changes in 

Y, under average, drought, and post drought conditions in NRB; (3) evaluate the impacts of 

drought and post-drought conditions on VWT under historical and future scenarios in the NRB 

which is one of the important breadbaskets of the world and exports agricultural crops to over 170 

countries around the world. The findings of this study are applicable to other large river basins in 

mid-to-high latitude regions, which often play a crucial role in socioeconomic development, food 

export, and global food security. 

4.3 Materials and methods 

4.3.1 Study region and data collection 

4.3.1.1 Study region 

The Nelson River Basin (NRB) is the largest agricultural watershed in western Canada NRB 

that supplies wheat crop and other agricultural commodities to over 170 countries around the world 

(Statistics Canada, 2021). While located in Canada and a small part of the northern US, known as 
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one of the most water-abundant regions in the world (World Bank, 2021), but crop production in 

NRB is highly reliant on variable hydrological processes (M. B. Masud et al., 2018) (Figure 4.1). 

Commencing in the Rocky Mountains at an altitude of 3,227 meters, the basin extends from South 

Dakota, USA, to the middle of Alberta, and the northern borders of Manitoba, Canada, to near 

Lake Superior in the eastern region. Covering an area of approximately 1.1 million square 

kilometers, the basin discharges about 2370 m3/s into Hudson Bay, which is the most extensive 

inland sea globally (Figure 4.1A, 4.1B). 

With over 40% agricultural lands, the NRB is recognized for its fertile soils and ideal for 

crop production. Wheat is one of the most extensively grown crops, with the prairie provinces of 

Alberta, Saskatchewan, and Manitoba producing about 25 million tonnes per year and contributing 

to over 85% of Canada's total wheat production (Figure 4.1C) (Statistics Canada, 2021). Although 

irrigation is practiced in certain areas of the Prairies to supplement precipitation and sustain crop 

growth, particularly in regions with scarce water resources, such as southern Alberta and 

Saskatchewan, the rainfed crop production is the primary approach in most of the region 

(Government of Canada, 2021). In addition to wheat, the region is also a major producer of canola 

(Figure 4.1D), with over 19 million tonnes of canola production per year, accounting for over 90% 

of the country's canola production (Statistics Canada, 2021). The NRB exports an average of 17 

million tonnes of wheat and 10 million tonnes of canola to various countries worldwide, which 

counts for over 60%  and canola exports, respectively (Statistics 

Canada, 2021). This level of export scores the NRB at the 3rd rank after European Union and 

Russia, being the top most exporters of the wheat, globally; and making NRB as the leading region 

with 70% contribution to the global canola production and export (International Grains Council, 

2021; Canola Council of Canada, 2021; Statistics Canada, 2021). 
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The mean temperature range for the growing season (i.e., May to September) across 

croplands of NRB is between 15°C and 25°C, with some areas experiencing higher temperatures. 

The average annual precipitation for the growing season in the agricultural region of NRB ranges 

from 200 mm to 500 mm, with some areas experiencing higher amounts of rainfall (Khalili et al., 

2023). It is important to note that the prairies in the southern regions of the basin, such as southern 

Alberta and Saskatchewan, tend to be hotter and drier than the northern and eastern regions of the 

basin, such as northern Manitoba. This can affect crop production and the need for irrigation in 

these areas. Additionally, the prairies in the eastern region of the basin, near Lake Superior, tend 

to have greater precipitation amount than the western regions.  

 

Figure 4.1. (A) Map of the NRB including the land use land cover classes considered in the model 
according to the Government of Canada (2019) classification, rivers, reservoirs, lakes, and 
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hydrometric stations; (B) geographic extent, and the Census Agricultural Region (CAR), for which 
crop yield time series are available from Government of Canada (2019) for calibration and 
validation in this study; (C) spring wheat and (D) canola crop spatial density maps (%) showing 
the density of cultivated lands in the study area.18 

4.3.1.2 Data collection 

 The agro-hydrological model of NRB was developed utilizing a diverse range of geospatial 

maps and time series data, including Digital Elevation Models (DEM) (Jarvis et al., 2008), a 

detailed land use-land cover map (Government of Canada, 2019), and a processed soil map 

(Cordeiro et al., 2018; FAO, 1995). For model setup and calibration, the WATCH Forcing Data 

ERA-Interim (WFDEI) historical climate dataset (Weedon et al., 2014b), measured streamflow 

data from hydrometric stations, and daily operation data of 44 large reservoirs/dams were 

incorporated (Khalili et al., 2023). The simulation period (including calibration and validation) for 

this study was from 1987 to 2016. Additional information regarding the model's development can 

be found in Khalili et al. (2023). In order to develop rainfed crop models, an extensive amount of 

agricultural management data was collected, including planting and harvesting dates, volume and 

rate of fertilizer application, irrigation application, and crop-specific information such as plant 

growth parameters, phenological development stages, and potential heat units for spring wheat and 

canola (see Table A.10. Crop-specific fertilizer application rates (represented as N:P:K ratios), 

maximum annual fertilizer application (measured in kg/ha per year), and the potential heat units 

required for crops (degree days) were obtained from various sources such as Statistics Canada 

(2021) and the United States Department of Agriculture (2021) and earlier studies (Faramarzi et 

al., 2017; M. B. Masud et al., 2018; Masud et al., 2019). For the calibration purposes, the yearly 

time series of Y for rainfed spring wheat and canola were acquired at the CAR level from Statistics 

Canada (2021), Alberta Financial Service Cooperation (AFSC), as presented in Figure 4.1. The 

entire agricultural lands in the NRB encompass 37 Canadian census agricultural regions (CARs), 
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and 7 agricultural regions in the United States (collectively referred to as CARs, hereafter) (Figure 

4.1B). Planting and harvesting dates were obtained from literature (Faramarzi et al., 2017; 

Mezbahuddin et al., 2020), and other available sources (see Alberta Agricultural and Rural 

Development, 2004; Government of Saskatchewan, 2020; Government of Manitoba, 2020), and 

they were further modified through calibration process. 

The future climate data were incorporated from an ensemble of six Global Climate Models 

(GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) for future projections of 

the hydrological processes and crop growth (see Table A.11). The future climate data are based on 

two contrasting Shared Socio-economic Pathways (SSP126 and SSP585) representing the lowest 

and highest radiative forcing levels projected for the year 2100. For future hydrology and crop 

simulations in the study, the concentration of CO2 was set to 350, 450, and 850 ppm for the 

historical, SSP126, and SSP585 future periods, respectively (Eyring et al., 2016b). Most CMIP6 

projected climate records indicate more critical global warming effects near the end of the 21st 

century, albeit subject to a greater spread of prediction uncertainty. Therefore, the analyses were 

performed for the 2070 to 2099 period using the two most extreme SSP scenarios. In an earlier 

study (Masud et al., 2021), the future climate data were statistically downscaled based on historical 

daily gridded climate data using multiple techniques, including Climate Imprint, Quantile Delta 

Mapping, Constructed Analogues, and Bias Correction/Constructed Analogues with Quantile 

mapping reordering. The downscaled climate data for future period were used to force agro-

hydrologic model in this study. More detailed information can be found in Khalili et al., (2023) 

and Masud et al., (2021). 
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4.3.2 Model configuration and evaluation metrics 

The Soil and Water Assessment Tool (SWAT) is a process-based semi distributed model 

that simulates various hydrological, plant growth, sediment, and nutrient cycling related processes 

(Neitsch et al., 2011b). The model has been used to simulate the impacts of climate change and 

management operations on hydrology, crop growth, sediment and nutrient transport and fate from 

catchment to large watersheds, and continental scales (Haney et al., 2018a; Karamouz et al., 2021b; 

Loiselle et al., 2020). It partitions a basin into sub-basins and Hydrological Response Units (HRUs) 

based on soil, land use-land cover, and slope parameters. Within each HRU, processes are 

simulated based on soil, vegetation, climate, and management data provided by the user, and then 

aggregated to sub-basin and basin levels. The model is capable of simulating a wide range of 

processes, including ET, surface runoff, snow accumulation and melt, groundwater recharge, 

subsurface flows, crop growth and crop water consumption, soil temperature, soil nutrient cycling, 

nutrient loads and transport, and erosion and sediment loads and transport among others (Neitsch 

et al., 2011b).  

In this study, we utilized a calibrated hydrological model of the NRB (Khalili et al., 2023) 

to develop a crop growth model using the ArcSWAT 2012. The calibrated hydrological model of 

the NRB delineated the region into a total of 1988 sub-basins based on the DEM map (Khalili et 

al., 2023). Using the hydrologically calibrated model, the crop model in this study was developed 

and calibrated based on rainfed spring wheat and rainfed canola yields for the 1987-2016 period. 

The calibrated model was then used to project hydrology and Y for the 2070-2099 period. Heat 

unit requirements were optimized in the model through calibration procedure to represent different 

varieties of crops planted across the watershed, differing in their growing degree-days. The total 

fertilizer application per year in different sub-basins, and the rate of application were defined from 
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the available data, but fertilizer application frequency and timing was set to auto fertilizer option 

of the SWAT model, which was controlled by nutrient stress factor and plant-water-stress 

threshold simulated in the model.  

Prior to conducting the calibration process, we performed a sensitivity analysis (SA) for 

model parameter selection using a methodology similar to Faramarzi et al. (2017). The SA can 

determine critical parameters that affect hydrology and crop growth in various regions. The 

selected parameters were scaled to simulate regional variations in geospatial, hydro-climatic, and 

ecological conditions (Faramarzi et al., 2017). We identified 26 and 27 scaled parameters for six 

major hydrological watersheds (Figure 4.1A) and 44 CARs (Figure 4.1B), respectively (Khalili et 

al., 2023). 

To calibrate and evaluate the efficacy of our model, we followed an iterative procedure that 

involved the publicly available Sequential Uncertainty Fitting program (SUFI-2) (Abbaspour et 

al., 2015) and a parallel processing program scheme to utilize a 200-core advanced computer for 

parallel processing of the simulations (Khalili et al., 2023). The first iteration starts with assigning 

the largest physically meaningful range for each sensitive parameter and they are sampled using 

Latin Hypercube Sampling to create 1000 samples of parameter sets. Then, parameters are updated 

and model is forced based on each of the 1000 sample sets, for which 1000 sets of output variables, 

i.e., streamflow and Y, are generated and compared to the measured data. If the comparison results 

were unsuccessful, a new iteration is performed by revising the initial  parameter ranges until 

satisfactory results are obtained. In this study, we used several objective functions to assess model 

performance for each of the 1000 times streamflow simulations. These objective functions include 

the coefficient of determination (R²), the Nash-Sutcliffe efficiency (NSE), the percent bias 

(PBIAS), and the Kling-Gupta efficiency (KGE). To evaluate the agreement between the simulated 
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and observed Y, we used the mean square error (MSE). The simulated data at the sub-basin level 

were aggregated to the CAR level to maintain a consistent spatial resolution with the observed 

yield data. Given the large spatial extent of the study region, and various sources of uncertainty in 

the modeling (Khalili et al., 2021b), two significant measures were employed to evaluate the model 

calibration and uncertainty performance of a given iteration. The p-factor, which represents the 

percentage of data bracketed within the 95% prediction uncertainty (95PPU) band, and the r-

factor, which measures the average width of the band relative to the standard deviation of the 

corresponding measured variable. At the scale of this study, the model is forced to capture the 

majority of the measured data within the simulated 95PPU band, indicating a high level of model 

accuracy (i.e., p-factor close to 1), and to result in a narrow uncertainty band (i.e., r-factor of 3-5 

is an acceptable range for Y simulations). Additional information regarding the model calibration, 

validation, and uncertainty analysis can be found in Khalili et al. (2023). 

 4.4.3 Drought severity index calculation 

To predict drought conditions, we used the widely-used Standardized Precipitation-

Evapotranspiration Index (SPEI) approach (Vicente-Serrano et al., 2010). The SPEI is a multi-

scalar drought index that considers both precipitation and potential evapotranspiration (PET) to 

evaluate the onset, duration, and severity of drought conditions. The calculation of the SPEI 

involves the analysis of precipitation (P) and PET times series data for a given time period 

(Vicente-Serrano et al., 2010). For instance, using a monthly time series, first a climatic water 

balance (WB) is calculated as the difference between P and PET for each month. To indicate 

whether for a certain period of time, the amount of WB is in deficit or surplus, the monthly WB 

data are then accumulated 

data). For example, to construct a 9-month times series data of WB, the first 9 months of data are 
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accumulated, then a times series of 9-month cumulative data are constructed by using a rolling-

and-moving window of one month until time series data are constructed for the total number of 

years of study period. The accumulation period is any period of interest that quantifies the 

standardized surplus or deficit of WB (Vicente-Serrano et al., 2010). In this study, we opted to 

construct 9-month SPEI indices, to consider the legacy soil moisture from previous months that 

could potentially affect water availability for crop production during growing season in our study 

region. The selection of 9-month SPEI was verified by performing a correlation analysis between 

SPEI of different accumulation time (ranging from 1 to 12 months) and observed Y data for the 

1987 to 2016 period. The highest correlation with Y was related to the 9-month time series (Figure 

A.9).  

Overall, the SPEI approach quantifies WB as standardized departure from a selected 

probability distribution function that models the raw data (i.e., 9-month WB data in this study). 

The raw data are typically fitted to a best performing probability function distribution, and then 

transformed to a normal distribution to generate the SPEI indices. The constructed indices can be 

then interpreted as the number of standard deviations by which the observed anomaly deviates 

from the long-term mean (Vicente-Serrano et al., 2014). In this approach, negative index values 

indicate drought events and positive values indicate wet events.  

The resulting SPEI indices are then employed to quantify drought severity, using a drought 

classification system, such as the one detailed by Svoboda et al., (2004) and employed by the U.S. 

Drought Monitor (USDM) (Svoboda et al., 2002). This classification approach interprets SPEI 

values to their corresponding degree of varying drought and wetness conditions and lists them 

from D0 (abnormal) to D4 (exceptional) droughts and from new normal to extreme wet conditions. 
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Table A.12 summarizes each drought and wet events with their corresponding SPEI values and 

their ecological implications (Svoboda et al., 2004). 

Considering that precipitation and potential evapotranspiration (P and PET) data typically 

exhibit right-skewness due to the nature of rainfall patterns, a gamma distribution has been 

recommended as the most suitable fit (H. Wang et al., 2019). As such, in our study we fitted a 

gamma distribution to the constructed 9-month WB times series for each sub-basin. Using the 

gamma distribution, we further calculated the cumulative probability function (F(x)) for each WB 

value (x). Next, we constructed the standardized indices (SPEI) using the inverse of the standard 

normal distribution function -1) as follows: 

-1(F(x))         (4.1)  

Finally, we aggregated the sub-basin level SPEI time series to the NRB level to analyze the 

effects of regional droughts on Y, water yields, and virtual water trade, which are explained in the 

following sections. Next, using the regional SPEI times series, we calculated the regional drought 

duration for the NRB, based on the successive number of months experiencing a drought intensity 

of less than -0.5. This threshold delineates D0 or worse drought events, according to the U.S. 

Drought Monitor categories (see Table A.12). It is noteworthy that the use of regional SPEI times 

series for regional drought assessment, may result in non-drought condition for some sub-basins 

in the region.  

 4.3.4 WYLD, Y, and VWT accounting 

4.3.4.1 WYLD and Y calculation 

In SWAT model, the WYLD in each day and for a given sub-basin is calculated as follows: 
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      (4.2) 

Where  is WYLD (mm),  is surface runoff (mm),  is lateral flow, which is 

the volume of water that moves laterally within the soil profile and enters the main channel in each 

sub-basin (mm),  is the water from the shallow aquifer that enters the main channel when the 

groundwater level is high (mm),  is water loss due to transmission through the streambed 

(mm).  

Y is also determined by various factors, such as leaf area development, light interception, 

and conversion of intercepted light into biomass, using a plant species-specific radiation use 

efficiency at a daily time step. The model simulates above ground and below ground biomass using 

40 crop-specific phonological parameters (such as, potential heat units, base temperature, optimum 

temperature, maximum leaf area index, radiation use efficiency, etc.), and agricultural 

management data (such as, crop planting areas, planting and harvesting dates, fertilizer and 

pesticide application, irrigation, tillage, and harvest and kill operations). First, optimal biomass 

and potential yields are simulated under ideal growing conditions, which include adequate water 

and nutrient supply and a favorable climate, such as optimum temperature. Then, actual yields are 

simulated based on constraints induced by deficiency or surpluses in soil water availability, soil 

nutrient availability, and temperature stresses, which are simulated on daily time step across 

different soil layers introduced by the modeler in each sub-basin. Biomass development begins 

when the temperature exceeds the plant-specific base temperature from planting to harvest date, 

or until it reaches the crop-specific maximum heat units. Actual water uptake by the crop is 

simulated based on potential ET, biomass development (above ground and below ground), and 

water availability in the soil layers on a daily basis (Neitsch et al., 2011b).  
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4.3.4.2 Virtual water content (VWC) and VWT accounting 

The virtual water content (VWC) is a measure of the amount of water required for crop 

production, expressed as volume of water per unit of mass produced (Hoekstra, 2003). The VWC 

(m3/tonne) in our study was calculated as follows: 

         (4.3) 

Where, ET is the simulated crop water consumption (mm) during the crop growing period, 

Y is the simulated Y (tonne/ha). To convert the simulated ET (mm) into m3/ha, a factor of 10 is 

used in the calculation. A higher VWC indicates a greater amount of water used per tonne of crop 

production, resulting in a lower water use efficiency. The VWC of wheat and canola was calculated 

for historical (1987-2016) and future (2070-2099) periods for each sub-basin using simulated Y 

and ET data. We further calculated the net virtual water trade (NVWT, m3) from the NRB to assess 

the effects of drought and post-drought on regional water resources in relation to crop productions 

and their potential exports. The NVWT is the volume of water that is associated with the export 

of crops (Hoekstra and Chapagain, 2007; Mekonnen and Hoekstra, 2011). As the total volume of 

crop exports are not known for the future scenarios, we assumed the crop surplus that is not 

consumed domestically, would be available for export. As such, we excluded the water embedded 

in the production of crops that are consumed domestically in the NRB. Therefore, we estimated 

both the domestic crop requirement ( , tonne) and the total crop production ( , tonne) in the 

NRB. We calculated domestic crop consumption using the approach proposed by Ercin and 

Hoekstra, (2014) as follows: 

   (4.4) 
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For the purpose of this study, the per capita consumption rates of wheat and canola were 

obtained from the FAOSTAT Commodity Balance Sheets (FAOSTAT, 2021). The per capita crop 

consumption was assumed to be constant for both past and future scenarios. This assumption was 

based on the relatively stable trends observed in crop consumption patterns in the historical data. 

For future scenarios, total population was estimated based on the historical growth rate observed 

over the last 30 years, data sourced from the U.S. Census Bureau and Statistics Canada. This 

projection assumes that the historical growth rate will remain consistent over the years. However, 

given potential future changes in fertility, mortality, and migration trends, this carries inherent 

uncertainty. Then, total crop production in the region was calculated as follows: 

          (4.5) 

Where, Y is simulated Y (tonne/ha), A is the area under cultivation (ha) for each crop type, derived 

from crop inventory maps (Government of Canada, 2021). The crop inventory maps, have a grid 

resolution of 30 m × 30 m, and provide annual area under cultivation for various crops. It is 

important to note that not all grid cells have a 100% cultivated area for a given crop. In our 

analyses, we considered any grid cells with the cultivated area  10%. Finally, we summed the 

product of  for all crop types (rainfed spring wheat and canola in this study) to obtain the total 

crop production in the NRB. 

The NVWT (m3) for the future period was calculated as follows:  

       (4.6) 

 is the surplus of a given crop that is not consumed domestically and potentially 

available for export (tonne), (VWC)c is the virtual water content of a given crop (m3/tonne). 

Overall, the positive NVWT in Eq. 4.6 indicates a net virtual water that flows outside of the region 
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(NVWE) and the negative values indicate, otherwise. It is worth noting that, in the current state of 

affairs, a substantial portion of crop surplus in the NRB is indirectly exported through the 

production and export of meat, live animals, dairy products, and beverages (AAFC, 2021). 

However, in this study, we did not explicitly determine the VWC and VWT associated with these 

commodities. Instead, we assumed that all crop surplus could be directly exported as grain without 

any further processing.  

 4.3.5 Drought and post-drought analysis of WYLD, Y, and VWT 

To address the prolonged effects of droughts on Y, WYL, and VWC after a given drought 

event terminates, it is crucial to establish a clear definition of the end of a given drought. The 

definition of the end of a drought can vary depending on the drought index employed and the 

research objectives. In this study, we defined the end of a drought as the time when the SPEI value 

is greater than -0.5, based on USDA drought classification approach. Theoretically, an SPEI value 

greater than -0.5 indicates a reduced deficit between precipitation and PET, which implies the 

agro-hydrological conditions improvement to a state of relative normalcy (Nam et al., 2015).  

To assess the response of Y, WYLD, and VWT to post-drought condition, we analyzed the 

data for the five years following the cessation of the longest and most severe droughts (LMD) at a 

regional scale, as predicted by each of the six GCMs. We selected a five-year post-drought period 

based on our observation that the impacts of the drought were undetectable beyond this period in 

all the regions in this study. Our results are reported as the ensemble mean values for the five-year 

post-drought periods. The most severe drought for each GCM and for each SSP scenario was 

calculated based on the lowest SPEI values from the regional averaged time series (see section 

4.4.3), as a lower value indicates greater severity. The longest drought was determined by the 
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highest count of consecutive months where the regional SPEI value was less than -0.5, indicating 

sustained periods of at least D0 event or worse. 

For the years after the selected extreme droughts, we simulated Y, WYLD, and VWT using 

our calibrated model (D Scenario

we assumed there was no extreme drought events in our model (ND scenario). To simulate ND 

scenario, the model input climate data (e.g., daily precipitation, maximum and minimum 

temperature, solar radiation, wind speed, and relative humidity of the air) were modified. 

Specifically, we replaced climate data from the years identified as non-drought years. With this 

approach, we ensured the sequence of years in the ND scenario reflected a continuous, 

uninterrupted series of non-drought conditions.  

Since the Y model was calibrated based on CAR-based observed yield data, our simulated 

results were aggregated from sub-basin to CAR and presented at CAR spatial resolution. Next, we 

evaluated the  differences between the D and ND scenarios to explore the post-drought recovery 

of the Y, WYLD, and VWT in different ecohydrological regions and under different SSP scenarios 

in the future. 

4.4 Results and discussion 

4.4.1 Model configuration and evaluation metrics 

The calibration and validation processes were conducted across 44 CARs, encompassing 

both canola and spring wheat crops. For the sake of conciseness, we present the results of our 

analysis at the average watershed level for both crops in Table 4.1. A detailed information on the 

crop model calibration and validation results can be found in Tables A.13 and A.14. Overall, the 

two Y models for simulation of rainfed wheat and canola growth were built upon a hydrology 
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model developed and calibrated in an earlier study by Khalili et al. (2023), which provided the 

foundation for the crop growth simulation. The hydrology model and the calibration and validation 

of the spring wheat crop are discussed in greater details in Khalili et al. (2023). In the present 

study, we constructed a canola yield simulation model. The model successfully reproduced 

observed annual rainfed canola yields for calibration period (1992-2016). The average p-factor for 

the calibration period consistently exceeded 87%, indicating that the observed yield data was 

adequately captured within the simulated 95PPU. The average r-factor values were 2.05 and 2.41 

for wheat (Khalili et al., 2023) and canola, respectively (Table 4.1). The average mean squared 

error (MSE) values across the study region for wheat and canola yields were 0.16 and 0.10, 

respectively. A similar performance was observed during the validation period (Table 4.1). The 

minimum and maximum statistics for all CARs demonstrated overall satisfactory performance for 

both rainfed crops for the calibration and validation periods. It should be noted that improvements 

in p-factor were occasionally achieved at the cost of increased r-factor and higher MSE values in 

certain regions. Consequently, a judicious balance between the p-factor and r-factor must be 

established throughout the calibration process. Inherent uncertainties are present in large-scale 

models due to errors in input data, process simplification, and variations in historical management 

practices. Nevertheless, the model performance was deemed satisfactory for the majority of 

regions and time periods within the study area. 
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Table 4.1. Minimum, maximum, and average values for p-factor, r-factor, and MSE in the 
calibration and validation periods for spring wheat and canola using the CAR-based approach. 

Spring wheat 
 Calibration  Validation 
 p-factor r-factor MSE  p-factor r-factor MSE 

Minimum 0.50 1.15 0.01  0.26 0.93 0.02 
Maximum 1.00 4.57 0.48  1.00 6.33 0.54 
Average 0.89 2.05 0.16  0.78 2.20 0.18 

Canola 
 Calibration  Validation 
 p-factor r-factor MSE  p-factor r-factor MSE 

Minimum 0.60 1.55 0.05  0.65 1.11 0.07 
Maximum 1.00 3.61 0.22  1.00 3.44 0.19 
Average 0.87 2.41 0.10  0.83 2.28 0.11 

 

 4.4.2 Historical and future variation of WYLD, Y, and VWT under long-term 
average conditions for growing season 

4.4.2.1 Precipitation patterns and WYLD 

The analysis of historical data and projections for the growing season (May-September) 

under the SSP126 and SSP585 scenarios revealed noteworthy changes in precipitation (Figure 

4.2a). Across the study area, monthly precipitation during the growing season varies considerably, 

ranging from 45 mm/month in the agricultural watersheds of southern Alberta and Saskatchewan 

to 100 mm/month in the southeastern region of our study area, which covers parts of both the 

Canadian and U.S. agricultural lands. The ensemble mean precipitation data from the six 

downscaled future climate data for the 2070-2099 period indicated that the majority of the study 

area will likely experience a precipitation increase of 6% and 10% per month for the growing 

season under SSP126 and SSP585 scenarios, respectively. Furthermore, the projected future 

scenarios demonstrated an increase in WYLD compared to the historical period. In particular, the 

monthly WYLD projections during the growing season showed an increase of 30% (i.e., 1.5 mm) 
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under SSP126 and more than 200% (i.e., 10 mm) under SSP585 relative to the historical period 

(Figure 4.2b).  

 
Figure 4.2. Simulated long-term average monthly WYLD (mm) and precipitation (mm) during 
the crop growing season (monthly averages during May-Sept): historical (first column), future 
SSP126 scenario (second column), future SSP585 scenario (third column), and the anomalies from 
the historical baseline for both future SSP126 (fourth column) and SSP585 (fifth column) 
scenarios.19 

4.4.2.2 Rainfed wheat and canola yields 

 The simulated results for historical period indicated that the average spring wheat yields 

(2.3 tonne/ha) was higher than that of canola (1.4 tonne/ha) (Figure 4.3). For the historical period, 

simulated Y for both crops were higher in the eastern and western sub-basins of the study area, 

ranging between 2-5 tonne/ha for spring wheat and 1-3 tonne/ha for canola. Lower yields were 

observed in the central regions with approximately 0.5-3 tonne/ha for spring wheat and 0-2 

tonne/ha for canola. The long-term average projected data showed that Y will likely increase under 

both SSP scenarios (SSP126 and SSP585). On average, the ensemble mean projected data showed 

that wheat and canola yields are likely to increase by 9% (2.3-2.6 tonne/ha) and 8% (1.3-1.5 

tonne/ha) under SSP126, and by 26% (up to 2.9 tonne/ha) and 29% (up to 1.7 tonne/ha) under 

SSP585, respectively.  
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Figure 4.3. Simulated long-term average annual (1987-2016) crop yields for spring wheat and 
canola (tonne/ha) during crop growing seasons: historical baseline (first column from left), future 
SSP126 scenario (second column), future SSP585 scenario (third column), and anomalies from 
the historical baseline for both future SSP126 (fourth column) and SSP585 (fifth column) 
scenarios.20 

4.4.2.3 VWC and VWT 

Our simulated VWC for the rainfed wheat and canola crops during the historical period 

indicated that canola exhibits higher VWC (1000-2000 m3/tonne) than spring wheat (700-1700 

m3/tonne), suggesting a greater water requirement for producing a tonne of canola compared to 

spring wheat (Figure 4.3a and 4.3c). VWC analysis of the western and eastern regions revealed 

that these regions are characterized by higher precipitation, greater ET, and lower VWC as 

compared to the central regions of the study area. Future VWC projections displayed a reduction 

from the SSP126 to SSP585 scenarios. The reduced VWC is attributed to the lower projected ET 

under the SSP585 scenario, where elevated CO2 concentrations result in reduced stomatal closure 

in crops, decreasing plant transpiration (Deryng et al., 2016; Masud et al., 2019). 

The analysis of modeled data indicated that, of the total net NVWE resulting from both 

spring wheat and canola, spring wheat accounts for an average of 66%, while canola constitutes 

the remaining 33%. This means that the spring wheat contributes two-thirds of the total NVWE, 
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with canola contributing one-third. The average annual NVWE were 41.4 billion m³ and 20.9 

billion m³ for spring wheat and canola, respectively, totaling 62.3 billion m³ per year for historical 

period. This was associated with the potential export of surplus crop grains that are not consumed, 

domestically. However, a considerable share of surplus crops is consumed in food industry and 

indirectly exported from the NRB. Some examples are the export of meat (e.g., beef), live animals 

(e.g., cattle, calves), dairy products, and beverages (StatCan, 2021). While this study did not 

explicitly calculate the VWC and VWT of these commodities, we assumed that all crop surplus 

could be directly exported in the form of grain.  

 Future export potential of wheat and canola crops under SSP126 scenario indicated likely 

export of 41.1 billion m³ and 20.1 billion m³ per year of virtual water, respectively, representing a 

relatively similar volume of NVWE to their historical volumes. This amount decreased to 38.5 

billion m³ and 19.5 billion m³ under SSP585 scenario. It is important to note that we assumed 

future cropping areas remain the same as historical coverage. Overall, using the simulated Y for 

the future period, and based on historical crop area inventory maps, the projected annual export 

potential for wheat and canola are likely to increase from 35.1 and 12.6 million tonnes during 

historical period to 37.9 and 13.2 million tonnes under SSP126, respectively, with further increases 

up to 42.1 and 13.7 million tonnes under SSP585. Again, it should be emphasized that the projected 

increases in crop production and potential exports are based on the assumption that all of the 

projected crops are exported in the form of grain and they are not consumed by livestock and in 

meat production, which are normally exported from the region. However, the volume of crop 

production and export potentials and their associated NVWE can be different under drought and 

post-drought events, which are discussed in the following sections.  
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Figure 4.4. Long-term average simulated virtual water content (VWC; m³/tonne) and net virtual 
water export (NVWE; m³) for spring wheat and canola under historical and future scenarios 
(SSP126 and SSP585), accompanied by their projected anomalies as compared to the historical 
values (%) (right two columns).21 

 4.4.3 Impacts of drought and post-drought conditions on WYLD, Y, and VWT 

4.4.3.1 WYLD, Y, and VWC response to droughts 

The ensemble mean simulated duration of the LMDs for the historical period was 11 months, 

while it was 18.5 months for the SSP126 scenario, and 16.8 months for the SSP585 scenario. The 

average SPEI, representing different drought severities, followed a similar trend, being 1.1 
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(representing D1 drought) for the historical period, 1.7 (representing D3 drought) for the SSP126 

scenario, and 1.5 (representing D2 drought) for the SSP585 scenario.  

Under LMD events, the ensemble mean precipitation decreased in all scenarios (historical 

and future) for most of the NRB (Figure 4.5a). During historical period, the LMD events resulted 

in precipitation reduction of up to 17% as compared to historical average condition (Figure 4.5a). 

The projected precipitation during future LMDs indicated a reduction of up to 27% under the 

SSP126, and as high as 35% under the SSP585 as compared to the historical average condition 

(Figure 4.5a). This suggests a likely drier LMDs for the region in the future as compared to 

historical period. Unlike the long-term average projections which indicate a wetter overall future 

(Bush and Lemmen, 2019), with the SSP585 as the wettest scenario (Figure 4.2a), the projections 

under LMD indicates a drier conditions in the future as compared to average historical conditions. 

The LMD results also demonstrated a drier SSP585 than SSP126 as shown by reduced 

precipitating during the LMD years.  

Despite the less magnitude of precipitation occurring under the LMD events of SSP585 

scenario as compared to SSP126 and historical period, the WYLD increased by up to 80% in some 

areas under the projected LMD events of the SSP585 compared to the average historical period 

(Figure 4.5b). However, the 80% anomaly is particularly evident in the areas where WYLD is not 

substantial (e.g, of 0-5 mm) under historical average conditions (Figure 4.5b), resulting in a meager 

amount of water yields generated under the SSP585 scenario in the future. The 80% increase under 

the SSP585 scenario is also related to the elevated atmospheric CO2 concentration, which leads to 

reduced crop water use, resulting in a greater proportion of precipitation contributing to water 

yield. In contrast, under LMD conditions of the SSP126 and historical years, we observed up to 

55% and 50% reductions in water yield compared to the average historical period. This also 
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highlights the complex interplay between precipitation, CO2 concentration, and water yield under 

various climate change scenarios (Khalili et al., 2021).The analysis of the spring wheat yields 

indicated a 32% reduction during historical LMD years as compared to the historical average 

condition (Figure 4.5c). However, under the SSP126 scenario, there was a 10% improvement with 

only a 22% reduction during LMD years, and almost no change during LMD years of the SSP585 

scenario as compared to the historical average condition (Figure 4.5c). In contrast, canola yield 

showed only a 9% reduction during historical LMD years (Figure 4.5d), while SSP126 and SSP585 

scenarios displayed up to a 29% and 6% decline, respectively, as compared to historical average 

condition (Figure 4.5d). The difference in percentage reductions between spring wheat and canola 

during historical droughts can be attributed to the fact that most precipitation decline occurs in the 

southeastern regions (Figure 4.5a), where canola is not extensively cultivated (Figure 4.1). The 

analysis of VWC, indicated increase of 0-50% across the NRB under the SSP126 and historical 

LMD years as compared to the historical average condition (Figure 4.5g, and 4.5h). This suggests 

a likely decrease of water use efficiency by crops (or increase of VWC), indicating a greater 

consumption of water to produce a tonne of wheat or canola during LMD events under both 

historical and SSP126 scenarios as compared to average conditions. The increase of VWC is 

attributed to either reduced Y (Figure 4.5c, and 4.5d), necessitating more water to produce a tonne 

of crop; or droughts are often accompanied by high temperatures and low humidity, both of which 

can increase soil water evaporation and ET (Trenberth et al., 2013; see Eq. 4.3). The SSP585 

scenario showed an improvement of up to 30% in VWC under future LMDs (i.e., reduction in 

VWC) as compared to historical conditions (Figure 4.5g and Figure 4.5h), but yet in most areas 

where historical VWC was relatively low.   
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Figure 4.5. Simulated long-term average precipitation, WYLD, spring wheat yield, canola yield, 
NVWE, and VWC for historical (1987-2016) period (column 1, left), and their projected anomalies 
(% change) under extreme drought conditions (column 2 to 4, left). The anomalies are calculated 
based on ensemble mean simulated data under extreme droughts of historical, SSP126, and 
SSP585 scenarios from the average historical conditions, respectively.  
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4.4.3.2 Post-drought recovery of WYLD and Y and variations among regions 

Analysis of data for post-drought period (D and ND scenarios, see Section 4.3.5), revealed 

variable recovery times for WYLD, Y, and VWT across different agricultural and ecohydrological 

regions as compared to non-drought conditions (Figure 4.6 and Figure 4.7). Under SSP 126, in 

some CARs (e.g., MA1, Figure 4.6d), it appears that even after five years following the drought; 

the WYLD does not fully recover. This is evident as the red line (representing the D scenario) 

consistently remains in a far proximity to the blue line (representing the ND scenario). Conversely, 

some other CARs, such as AB10 (Figure 4.6a), exhibit a rapid recovery, approximately after a year 

in the post-drought condition. This is attributed to the topographical characteristics, specifically, 

the steeper land gradients found in this region, as compared to other regions; lead to reduced 

infiltration of water. Instead, a larger proportion of precipitation contributes to surface runoff, 

leading to a faster recovery of WYLD after LMD events. As shown in Figure 4.6, in most of the 

CARs, the WYLD is not recovered immediately or after a few years from the termination of the 

LMD events (i.e., shown by red and blue lines remaining in distant proximity over the first few 

years). In most of the CARs, the two lines ultimately overlap after the first few years elapse, 

indicating that it takes approximately 3-5 years for the WYLD to recover from the LMD. 

In contrast to WYLD results, no significant differences were found for Y under D and ND 

scenarios, especially for spring wheat (Figure 4.7, A.10, and A.12). This resilience of Y, despite 

the elapsed LMD, can be attributed to several factors. Primarily, the sustained Y during post-

drought periods is related to the availability of soil moisture. After a drought event, the soil 

moisture is replenished by post-drought precipitation, making the soil water available for crop use 

and evapotranspiration (ET) rather than generating excess saturation for surface runoff and 

WYLD. 
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Figure 4.6. Simulated WYLD (left) and Y (right) versus cumulative precipitation in six selected 
CARs across the basin. The data are presented for the five consecutive post-drought years (D 
scenario, red) and the same years assuming no prior drought (ND scenario, blue) under the SSP126 
future scenario. Only spring wheat Y is presented due to its prevalence in the basin. Each dot 
represents a sub-basin within a CAR.22 

This is reflected in the WYLD results during post-drought periods, where recovery is not 

achieved shortly after the drought events (Figure 4.6). This suggests a greater or sustained wheat 

yields following the droughts are likely to occur in the future but at the expense of reduced WYLD 

in these regions. While several studies project promising Y for mid-to-high latitude areas in the 

future and following drought events (Challinor et al., 2014; He et al., 2018; M. B. Masud et al., 

2018), these projections should be treated with caution. Our results illustrate that hydrological and 

water balance processes are closely connected with vegetation growth and crop types, emphasizing 
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the need for a multi-disciplinary approach for management of agricultural cropping patterns, land 

use changes, and watershed hydrology.    

Another reason for Y resilience during a post-drought period is attributed to the potential 

accumulation of soil nutrients during drought years. During a LMD event, under rainfed condition, 

Y declines (Figure 4.5c, and 4.5d), implying that less nutrients are extracted from the soil 

(Rattalino Edreira et al., 2018). This can result in soil nutrient accumulation, which can be carried 

over to post-drought years creating a short- legacy  effect for crops, resulting in an 

increase in their yields (Siebert et al., 2019; Bista et al., 2018). This process is more pronounced 

under future scenarios (i.e., SSP126 and SSP585), because with increasing atmospheric CO2 

concentrations, the water use efficiency and VWC can improve (Figure 4.4a, and 4.4c), resulting 

in improvement of Y under a reduced soil water conditions (Deryng et al., 2016; Khalili et al., 

2021b; Masud et al., 2019). However, the availability and deficiency of nutrients in the soil can be 

a controlling factor, because elevated CO2 concentrations can enhance potential crop growth, 

thereby increasing the nutrient demand from the soil as discussed by Khalili et al., (2021b).  

It is noteworthy that similar to SSP126, wheat Y showed speedy recovery after the LMD 

events under the SSP585 and historical periods (Figure A.10, A.11). Overall, the regional average 

decrease of wheat Y immediately after the LMD (year 1) was only 0.9 tonne/ha for the historical 

period (Figure A.10), which was relatively similar for the SSP126 (i.e., 0.9 tonne/ha, Figure 4.7) 

and SSP585 (i.e., 1.2 tonne/ha, Figure A.11). The reduced Y was rapidly recovered in the following 

years until no difference was observed between the D and ND scenarios (i.e., Figure A.10j). 

4.4.3.3 VWT recovery and differences under future scenarios 

The analysis of our modeled data under SSP126 scenario indicated that the NVWE 

associated with the potential export of surplus wheat (presented as an example dominant crop) will 
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likely decrease by up to 4.7% (corresponding to 12.8 km³) under the D as compared to the ND 

scenario in the first year after the LMD termination (Figure 4.7, Year 1). The reduction in NVWE 

in the first year after LMD was 2.4% (corresponding to 5.4 km³) and 3.4% (corresponding to 8.5 

km³) under the historical (Figure A.12) and SSP585 (Figure A.13) scenarios, respectively. As 

shown in the figures, the reduction of NVWE in all scenarios is greater immediately after the LMD 

termination (i.e., positive anomalies in y-axis) and it diminishes by time reaching to near zero 

decline (i.e., a full recovery from drought, illustrated with zero anomalies in y-axis) during the 

later years (e.g., year 5). The SSP585 demonstrates the fastest recovery (Figure A.13), followed 

by SSP126 (Figure 4.7), and then the historical scenario (Figure A.12). As shown in Figure A.13, 

two years after the drought (i.e., in year 2) in SSP585 scenario, the NVWE under the D scenario 

exceeds that of the ND scenario, which is a different trend as compared to historical and SSP126 

scenarios. This is because during post-drought period, soil water is replenished more rapidly under 

SSP585 than under other scenarios (Figure 4.2b, and 4.5b), which can aid dissolution of remaining 

soil nutrients from drought years (Bista et al., 2018), making them readily available for plant use. 

The availability of water and nutrients in the soil under D scenario drives plant growth and 

increases total volume of plant transpiration and ET (Liu et al. 2017). The increased volume of ET 

results in a greater NVWE under the D scenario compared to the ND scenario. 
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Figure 4.7. Simulated net virtual water export (NVWE) anomalies between D and ND scenarios 
(i.e., calculated as NVWE (D) - NVWE (ND)) in six selected CARs across the basin. The data are 
presented for five consecutive post-drought years under the SSP126 future scenario. Only spring 
wheat NVWE anomalies (×105 m³) is presented due to its prevalence in the basin. Each dot 
represents a sub-basin within a CAR.23 
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4.5 Global and regional implications 

The results of this study have compelling implications for the agricultural watersheds of mid-

to-high latitude regions, particularly concerning VWT for post-drought periods. As one of the 

major global agricultural exporters in the mid-to-high latitude regions, the Nelson River Basin 

covering most of Canadian Prairies, plays a crucial role in global food security (Bajracharya et al., 

2020). Unlike the long-term average projections from the global studies, which often suggest a 

wetter overall future (Bush and Lemmen, 2019; Collins et al., 2013; IPCC, 2021) in the mid-to-

high latitude regions, our study projections under extreme drought events indicate a reduced 

precipitation and drier condition in the future as compared to the past.  

While agricultural watersheds of the mid-to-high latitude areas, especially the Canadian 

Parries, are susceptible to extreme drought conditions, often resulting in a significant yield loss 

(Lesk et al., 2016), the results of this and other studies demonstrated that the Y will likely improve 

in the future depending on the global warming scenarios (Rosenzweig et al., 2014). However, our 

results revealed that the improvement of Y under extreme droughts will likely be compounded by 

increases in their VWC, meaning that more water will be consumptively used by crops to produce 

a tonne of the same crop as compared to the historical conditions. This will likely cost a substantial 

depletion of the net annual freshwater generated in hydrologic catchments and, therefore, reduction 

in water yields as shown in this research. The reduced water yield may have serious implications 

for economic sectors and ecosystem (Vörösmarty et al., 2010), including also the irrigated crop 

production and export potentials during extreme drought conditions in these regions (Deryng et 

al., 2014).    

During post-droughts, our results indicated a decrease in NVWE, with a stable rainfed Y 

following drought events in the future. However, the reduced NVWE and sustained yields 
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following drought events in the future are associated with a substantial decline in water yield in 

both historical and future scenarios. The continued decline of water yield during and after droughts 

as shown in this study can exacerbate the impacts of droughts on various economic sectors (Rosa 

et al., 2020) and the environment (Gleeson et al., 2020). The aquatic environment, for instance, is 

highly sensitive to the concentration of nutrients and organic material (Moe et al., 2016). The 

decline of water yield during and after severe droughts as shown in this study can reduce 

streamflow, especially in upstream tributaries and in low flow seasons, which can then increase 

concentration of chemicals and nutrients, triggering aquatic health. Therefore, an integrated 

assessment and management of agricultural Y, virtual water export associated with potential export 

of crops, and the linkages with hydrological water balance (e.g., WYLD) is crucial for sustainable 

management of water and food and for adaptation to climate change extremes.   

 Our study showed considerable differences in Y, VWC, and WYLD between wheat and 

canola crops during drought periods. For instance, wheat crop exhibited lower VWC during 

drought events compared to the canola crop. Therefore, changes in cropping pattern, e.g., selection 

of optimum crop types during and after extreme droughts, can be a promising strategy for improved 

WYLD and integrated management of water and food under extreme climate conditions in the 

agricultural watersheds of mid-to-high latitude regions. However, more crops (e.g., drought-

tolerant crop varieties) should be examined using the approach and the framework we have 

developed in this study.  

Another approach to conserve WYLD while maintaining Y during and after droughts, could 

be implementing soil conservation practices and enhancing water retention capacity, such as 

conservation tillage, cover cropping, and mulching (Powlson et al., 2011). These practices help 

maintain adequate soil moisture for rainfed crops during and after droughts, which can help 



141 

conserving WYLD and hydrologic water balance (Zhang et al., 2020). However, the tradeoffs and 

the effects of such practices should be systematically examined in a modelling framework similar 

to this study.  

 Our study indicated that NVWE of wheat is different from that of canola under extreme 

drought conditions. Given that  the VWC of the corps vary spatiotemporally and among crops, too,  

diversification in NVWE could be another strategy to improve soil water and, therefore, WYLD 

under extreme droughts in the future. Optimizing crop structure pattern corresponding to virtual 

water trade strategy has been suggested in a limited number of studies (Antonelli and Sartori, 2015; 

Faramarzi et al., 2010; Huang et al., 2023) and more in the context of water scarce countries. 

However, a modelling framework similar to this study provides the basis for examining how the 

optimum cropping pattern strategy and NVWE can conserve WYLD under the future extreme 

droughts and how it helps a sustainable agricultural production and global food supply in crop 

exporting watersheds of mid-to-high latitude regions.   

Overall, this study underscores the importance of addressing global and regional 

implications of drought and post-drought periods in crop exporting regions, such as in Canadian 

Prairies. The projected reduced NVWE, stable rainfed Y, and reduced water yield observed in our 

study present both challenges and opportunities for the region. By adopting strategies that optimize 

Y while also conserving water yield and minimizing net virtual water export, can foster a more 

sustainable and resilient economy, environment, and agricultural system. Development of 

interdisciplinary research studies are key for examining and incorporating these factors into 

regional and global agricultural policies and water management strategies for adaptation to global 

food crisis, especially under extreme climate events. 
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4.6 Conclusions 

This research provides insights into the linkages between WYLD and crop Y, and it projects 

NVWE as a measure to investigate the production and export potentials of an agricultural 

watershed in high latitude temperate zone under future global warming scenarios. The study 

illuminates the often-counterintuitive impacts of future drought and post-drought conditions on 

reliability of global breadbaskets, by modelling WYLD, Y, and NVWE in NRB, a large 

agricultural watershed in western Canada that supplies food to over 170 countries globally. 

The study results reveals a wetter overall future with larger precipitation, greater WYLD, 

and improved Y under SSP126 and SSP585 scenarios as compared to the historical period, only 

when the modelled data are averaged over the study period (35 years in this study). Under both 

SSP scenarios, the long-term average data shows a reduction of NVWE associated with the export 

of greater volume of rainfed wheat and canola from the NRB as compared to the average historical 

period. However, the inter-related response of agro-hydrological variables (i.e., crop Y, WYLD, 

VWC, NVWE) to future droughts and post-droughts, are considerably different from those of 

average historical conditions.   

Contrary to the long-term average projected results, suggesting an improved future for Y, 

WYLD, and NVWE, the results of regional LMD drought indicate a substantial reduction in 

precipitation, Y (rainfed wheat and canola in this study), as well as WYLD in the future. Under 

SSP126, the reduction of precipitation, WYLD, Y, and NVWE during future droughts remain the 

same or become more severe than historical droughts, specifically in the central regions, which are 

prominent for grain production in the NRB.  

A deeper investigation of the modelled data, under future LMD conditions, reveals that agro-

hydrological variables slightly improve under the SSP585 scenario due to the CO2 effects on plant 
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photosynthesis processes. However, the improvement of Y is not uniform across the region and 

crop types, with canola Y demonstrating less improvement as compared to the wheat Y, which is 

compounded with a greater VWC of canola than wheat. The larger VWC of canola in central areas, 

suggests larger crop water consumption in production of a tonne of crop, resulting in a considerable 

reduction of WYLD as compared to wheat crop and relative to the other regions across NRB.  

Overall, the regional scale WYLD, Y, and VWC show improvement during SSP585 droughts as 

compared to those of SSP126; however, they remain considerably lower than the average historical 

conditions regardless of crop type and the geographic location.   

Analysis of data for post-drought period, reveals variable recovery times for WYLD, Y, and 

NVWE in the future, with the WYLD demonstrating slower recovery time as compared to Y during 

the years after an LMD. The study results show a decrease in NVWE during post-drought years, 

with a stable rainfed Y following the years after the drought termination in the future. However, 

the reduced NVWE with sustained Y following the drought events in the future are associated with 

a substantial decline in WYLD. The continued reduction in WYLD during the years following 

droughts can significantly affect not only environment ecosystem and several economic sectors, 

but also consequently crop production and export potential from these regions. Given the 

differences in VWC of crops, such as rainfed wheat and canola in this study, a strategic crop 

selection and diversification can be considered as an adaptation measure for conservation of 

WYLD for an integrated water and food security. 

4.7 Acknowledgment 

Funding for this study is primarily provided by the Natural Sciences and Engineering 

Research Council of Canada (Grant #RES0043463) and Campus Alberta Innovation Program 

Chair (Grant #RES0034497). 



144 

4.8 Credit author statement 

Pouya Khalili: Data curation, Formal analysis, Methodology, Software, Validation, 
Visualization, Writing - original draft, Writing - review & editing. Monireh Faramarzi: 
Supervision, Conceptualization, Writing - review & editing, Project administration, Funding 
acquisition.  
  



145 

CHAPTER V  CONCLUSION 

5.1 Research Summary 

 The unfolding climate change crisis poses a growing challenge to water and food security, 

and yet the reliability of the global breadbaskets and their relation with water resources in the 

future is poorly understood. The global breadbaskets are defined as key production regions for 

food grains and recognized for their vital contribution to global food security. In the high latitude 

watersheds of the temperate zone, the global breadbaskets are projected to receive an overall 

increased precipitation and improved crop yields under the effects of global warming scenarios, 

which is often perceived as beneficial to crop production and export potentials in the future (Myers 

et al., 2017; IPCC, 2021). However, the extreme warm-dry events, anticipated as a consequence 

of global warming, can significantly affect the agro-hydrological processes, crop yields, and 

therefore export potential of the crops from these regions. This research examines the potential 

impacts of future droughts and post-droughts on hydrology, crop yields, and their linkages through 

assessing NVWE, the water embodied in the production process of the crops that are exported to 

international countries. The study examines NRB a large agricultural watershed in western 

Canada, which is one of the high latitude breadbaskets of the temperate zone, and provides insights 

for future planning and informed decisions for water and food security. 

To understand the hydrological processes affecting crop yield and soil nutrients (i.e., 

nitrogen in this study) and their relation with changes in climate, this study employs a semi-

distributed process-based agro-hydrologic model to an agricultural catchment in the NRB, i.e., 

RDRB, in the province of Alberta, Canada. Specifically, the research explores the effects of 

climate change and availability of soil water, as well as nitrogen fertilizer application scenarios on 
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crop yields. The study examines the impacts on rainfed spring wheat, which is a dominant crop 

grown in most of NRB and in the RDRB. The results indicate that nitrogen stress may dominate 

other stress factors in producing rainfed wheat yields in the future as compared to the historical 

conditions that water-stress has been a dominant factor in the region. This is likely due to the 

overall increase in soil moisture expected in the future that when compounded with a warmer 

temperature, triggers crop growth and potential yields, demanding more nitrogen in the soil. 

However, a regional assessment of the soil water availability, which affects nutrient and water 

uptakes by crops and their evapotranspiration rates (ET, green water), and the effects on 

hydrological water balance under extreme climatic events such as droughts in the future, is 

required.     

In a closed hydrological system, i.e., a watershed, the blue water (BW, or net annual 

freshwater generated in a catchment) and green water (GW, or actual evapotranspiration) are 

interlinked through numerous climate, soil, and plant processes. T

e. Importantly, GW 

represents a significant portion of water consumption in global food production, with agricultural 

water withdrawals accounting for 70% globally. Further research in this study scrutinizes the 

interlinkages between BW and GW and their potential shifts, primarily in response to future 

extreme warm-dry events. The 

Mountainous and natural lands exhibit a shift from BW to GW, due to legacy soil 

moisture from earlier seasons and groundwater contributions. Conversely, in crop lands, there is a 

significant decrease in both BW and GW with no notable shift from BW to GW, posing severe 

threats to local and regional food production. 
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Lastly, the research evaluates the effects of drought and subsequent post-drought conditions 

on crop production and its relation to watershed hydrology (i.e., water yield in this study) through 

assessment of NVWE. Contrary to prevalent long-term average projections of a wetter future for 

high latitude regions of temperate zone, this research suggests a potentially drier future due to 

reduced precipitation and water yield under extreme drought scenarios in the future. The study 

suggests improvement of crop yields under future droughts of SSP585 scenario as compared to 

historical drought conditions, yet lower than historical average yields. The crop yield improvement 

is compounded by an increase in VWC, suggesting likely increase in crop water consumption in 

production of a tonne of crop, resulting in a considerable reduction of water yield as compared to 

historical conditions.  

During post-drought conditions, the study results indicate a decrease in NVWE, along with a 

stable yield of rainfed crops in the future. However, the reduced NVWE and sustained yields 

following drought events in the future are associated with a substantial decline in water yield in 

both historical and future scenarios. The continued reduction in water yields during the years 

following droughts can significantly impact not only environment and several economic sectors 

but consequently crop production and export potential from these regions. 

5.2 Study Conclusions and Implications 

With the overarching goal of understanding the GW-BW linkages and their relation to crop 

yields and NVWE under average historical and future conditions, and their anomalies under future 

extreme climatic events especially warm and dry spells and their post-drought recovery, each 

chapter has made specific conclusions that contribute to this grand understanding: 
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Objective 1 (chapter 2): Provide an improved understanding of non-stationary crop yield 

response to climate change-induced agro-hydrological processes and management factors at a 

regional scale. 

In chapter 2, the primary conclusion drawn revolves around the non-stationary response of 

spring wheat yield (SWY) to climatic changes and elevated CO2 levels. This response is complex, 

influenced by a variety of factors such as soil type, hydrological regime, location, and management 

practices. The study explores that nitrogen (N) stress may dominate other stress factors in 

producing rainfed wheat yields in the future as compared to the current conditions that water-stress 

is a dominant factor. It argues that the future N stress might be due to (1) reduced 

evapotranspiration and earlier stomatal closure in response to saturated atmospheric CO2, (2) 

insufficient N availability in the soil, and (3) insufficient moisture in the soil to produce soluble N 

for plants to uptake. The study concludes that a higher N application with supplement irrigation 

might be a potential measure to enhance yields under a changing climate. However, water 

availability for irrigation (i.e. BW), its connection with changes in GW, as well as land and water 

quality concerns due to a higher rate of fertilizer application can raise environmental issues and 

limit the sustainability goals of agricultural practices in the region. These results bear important 

implications for water-food-climate change studies and global food security, which guides the 

current research study to the following objective-chapter for examination of GW-BW interchange 

at the large NRB scale, which is a critical SWY producing area and a global breadbasket in the 

northern latitudes of the global temperate zone. 

Objective 2 (chapter 3): Characterize changes in GW-BW relationships under future warm-

dry events across different landscape and ecohydrological settings. 
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In chapter 3, the study delves into the interlinkages between BW and GW and potential shifts 

from BW to GW under extreme warm-dry years of global warming scenarios. The research 

demonstrates that the GW-BW relationship varies across different ecohydrological regions and 

under different global warming scenarios, with implications for various ecosystem services. Under 

future extreme warm-dry events, the study suggests 

Mountainous and natural lands exhibit 

a shift from BW to GW, due to legacy soil moisture from earlier seasons and groundwater 

contributions. Conversely, in crop lands, there is a significant decrease in both BW and GW with 

no notable shift from BW to GW. 

 

Objective 3 (chapter 4): Examine the impacts of future droughts and post-droughts on crop 

yields, crop production and NVWE, and their effects and relations to water resources. 

In chapter 4, the research further investigates the interplay between climate extremes, 

particularly drought and post-drought conditions, and the hydrological and agricultural processes 

in the NRB, one of the breadbaskets located at the high latitudes of temperate zone. The research 

provides insights into the linkages between WYLD and crop Y, through assessment of NVWE. 

The study results reveals a wetter overall future with larger precipitation, greater WYLD, and 

improved Y under SSP126 and SSP585 scenarios as compared to the historical period, only when 

the modelled data are averaged over the study period (35 years in this study). Under both SSP 
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scenarios, the long-term average data shows a reduction of NVWE associated with the export of 

greater volume of rainfed wheat and canola from the NRB as compared to the average historical 

period. However, the inter-related response of agro-hydrological variables (i.e., crop Y, WYLD, 

VWC, NVWE) to future droughts and post-droughts, are considerably different from those of 

average historical conditions. 

Contrary to the long-term average projected results, suggesting an improved future for Y, 

WYLD, and NVWE, the results of regional LMD drought indicate a substantial reduction in 

precipitation, Y (rainfed wheat and canola in this study), as well as WYLD in the future. Under 

SSP126, the reduction of precipitation, WYLD, Y, and NVWE during future droughts remain the 

same or become more severe than historical droughts, specifically in the central regions, which are 

prominent for grain production in the NRB.  

A detailed investigation of the modelled data, under future LMD conditions, reveals that 

agro-hydrological variables slightly improve under the SSP585 scenario due to the CO2 effects on 

plant photosynthesis processes. However, the improvement of Y is not uniform across the region 

and crop types, with canola Y demonstrating less improvement as compared to the wheat Y, which 

is compounded with a greater VWC of canola than wheat. The larger VWC of canola in central 

areas, suggests larger crop water consumption in production of a tonne of crop, resulting in a 

considerable reduction of WYLD as compared to wheat crop and relative to the other regions 

across NRB.  Overall, the regional scale WYLD, Y, and VWC show improvement during SSP585 

droughts as compared to those of SSP126; however, they remain considerably lower than the 

average historical conditions regardless of crop type and the geographic location.   

Analysis of data for post-drought period, reveals variable recovery times for WYLD, Y, and 

NVWE in the future, with the WYLD demonstrating slower recovery time as compared to crop 
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yields during the years after an LMD. The study results show a decrease in NVWE during post-

drought years, with a stable rainfed Y following the years after the drought termination in the 

future. However, the reduced NVWE with sustained Y following the drought events in the future 

are associated with a substantial decline in WYLD. The continued reduction in WYLD during the 

years following droughts can significantly affect not only environment ecosystem and several 

economic sectors, but also consequently crop production and export potential from these regions. 

Given the differences in VWC of crops, such as VWC of rainfed wheat and canola in this study, a 

strategic crop selection and diversification can be considered as an adaptation measure for 

conservation of WYLD for an integrated water and food security. 

5.3 Study Limitations and Future Directions 

While this research provides a thorough examination of the impacts of climate change on 

agricultural productivity and water resources, it acknowledges several limitations, reflecting the 

inherent uncertainty that is common in regional modeling efforts. It should be noted that large-

scale models suffer from various sources of uncertainty including input data, model 

conceptualization, observed data used for calibration, and model parameters (Abbaspour et al., 

2015). 

One of the assumptions made in this study was related to the use of cultivars, crop varieties, 

and sowing dates under future scenarios, which remained the same as historical period. Similarly, 

the operation of large dams included in the historical simulation remained unchanged for future 

projections. However, given that the focus of this research was on assessment of water yield (the 

amount of fresh water generated in each sub-basin) rather than prediction of of future stream flows 

for water allocation and managements, flood projections, or similar studies, the conclusions of this 

study remain reliable.  
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Other assumptions in the current research extend to large-scale disturbances such as forest 

mortality, species changes, and plant acclimation. These factors may influence the GW-BW 

accounting in natural lands or foothills, where natural disturbances such as wildfires or 

anthropogenic factors such as forest logging, have potentially influenced vegetation composition 

and hydrologic water balance. However, given that the focus of this research was on regional scale 

water-food relationship and mainly agricultural production and NVWE, the conclusions still 

remain valid. A further analysis of the effects of such land disturbances, using socio-hydrological 

modelling, can improve reliability in the future studies.  

Assumptions made about mountainous regions, specifically the contribution of glacial melt 

runoff to upstream tributaries. The current research used modelled glacier data from an earlier 

study for the historical period, and assumed they remain similar in the future. However, changes 

in glacier melt and their evolution could alter streamflow, especially in headwater catchments, 

warranting closer attention in future studies. 

Data used in our research, such as soil properties, climate data, and land management data, 

were derived from various sources, each carrying specific resolution and accuracy. Some of our 

soil data came from regional soil maps with coarse resolution, which could possibly contribute to 

uncertainty. A limitation associated with data collection was the unavailability of instrumental data 

for extended periods, resulting in a short prediction period. This increases the variance of study 

variables, requiring further investigation in future studies. To address these limitations, availability 

of higher-resolution datasets is fundamental, which encourages a more extensive environmental 

monitoring. 

This research did not explicitly examine the effect of biotic stressors, including pests, 

diseases, and weeds. In light of their probable increase under warmer and wetter conditions, future 
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studies should consider their impacts on crop yield projections. Additionally, the genetic 

improvement of crops, an important aspect not considered, could counteract adverse effects of 

abiotic stressors like drought, on future crop yields. 

This study also did not account for the influence of economic activities on water use. A 

substantial portion of crop surplus in the NRB is indirectly exported through meat, live animals, 

dairy products, and beverages. However, the study did not explicitly calculate the VWC and 

NVWE associated with these commodities, but assumed all crop surplus is directly exported in the 

form of grain. Future research could reduce uncertainty by including the commodity-specific 

export of virtual water from the region. Moreover, consideration of socio-economic factors 

influencing spatiotemporal volume of trade of commodities, e.g., food prices, land availability, 

labor cost, subsidies, taxes, domestic and international markets, and transportation can reduce 

uncertainty in projection of future NVWE from the region. 

In summary, improved monitoring and measurement of important data, as explored and 

explained in this study, can provide opportunities for a more comprehensive assessment of water-

food relationships and it provides a robust basis for adaptation to future extreme events such as 

those studied in this research. 
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APPENDICES 

Table A.1. Data sources used in this study (Adapted from Faramarzi et al., (2015)).

Input variable 
type 

dataset Resolution Reference 

Climate data Meteorological stations - Government of Canada; 
http://climate.weather.gc.ca/ 

 CFSR 0.3o grid http://globalweather.tamu.edu/ 

 CRU 0.5o grid Harris et al., (2014) 

 NRCAN 10 km × 10 
km 

McKenney et al., (2011) 

Land use map USGS Landuse/land cover 
map 

1 km × 1 km USGS Global Land Use Land 
Cover Characterization 
(GLCC) database; 
https://www.usgs.gov/ 

Soil map Soil Landscapes of 
Canada 

250 meter Cordeiro et al., (2018) 

DEM map Shuttle Radar Topography 
Mission 

90 meter http://srtm.csi.cgiar.org 

Table A.2. The climate change models information used in this study. 

GCM Modeling center Institution Scenario 

CanESM2 CCCma Canadian Centre for Climate Modeling and 
Analysis 

RCP 2.6, 
8.5 

CCSM4 NCAR National Center for Atmospheric Research RCP 2.6, 
8.5 

CNRM-CM5 CNRM-
CERFACS 

Centre National de Recherches 
Meteorologiques/Centre Europeen de Recherche et 
Formation Avancees en Calcul Scientifique 

RCP 2.6, 
8.5 

CSIRO-
MK3.6.0 CSIRO-QCCCE 

Commonwealth Scientific and Industrial Research 
Organization in collaboration with the Queensland 
Climate Change Centre of Excellence 

RCP 2.6, 
8.5 

GFDL-
ESM2G NOAA GFDL Geophysical Fluid Dynamics Laboratory RCP 2.6, 

8.5 

HadGEM2 MOHC 
Met Office Hadley Centre (additional HadGEM2-
ES runs by Instituto Nacional de Pesquisas 
Espaciais) 

RCP 2.6, 
8.5 

MIROC5 MIROC Meteorological Research Institute RCP 2.6, 
8.5 

MPI-ESM-
LR MPI-M Max Planck Institute for Meteorology RCP 2.6, 

8.5 

MRI-CGCM3 MRI Meteorological Research Institute RCP 2.6, 
8.5 



179 

Table A.3. Model performance statistics for streamflow simulation during the entire calibration 
and validation period for individual hydrometric stations (1986-2007). 

Station Number p-factor r-factor bR2 NSE 
1 0.76 1.51 0.19 0.38 
2 0.94 1.85 0.43 0.08 
3 0.89 1.93 0.35 0.18 
4 0.56 1.65 0.36 0.14 
5 0.58 0.63 0.47 0.57 
6 0.59 0.77 0.43 0.59 
7 0.27 1.20 0.01 0.02 
8 0.74 0.92 0.56 0.46 
9 0.22 0.51 0.06 0.19 
10 0.62 0.78 0.44 0.61 
11 0.66 0.75 0.55 0.47 
12 0.73 3.74 0.01 0.18 
13 0.80 1.37 0.64 0.64 
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Table A.4. List of available data and their specifications. 

Input data Time Span Resolution Time 
step Region 

Nr. Of 
stations/grids in 
study area 

References 

DEM 2008 
10 m × 10 m 
and 90 m × 90 
m 

- Global 100% coverage AltaLIS, http://www.altalis.com; SRTM, 
Jarvis et al., (2008) 

Land use/Land cover 2015 30 m × 30 m - Regional/Canadian 100% coverage Government of Canada (2019) 

Soil map 

FAO 2005 10 km × 10 
km - Global 100% coverage FAO, (1995) 

SLC V3.2 2018 1 km × 1 km - Regional/Canadian 
Covers the 
agricultural 
lands in Canada 

Cordeiro et al., (2018) 

Climate WFDEI 1979-2016 0.5o grid 3 hr Global 574 Weedon et al., (2014) 

Potholes 
Delineated 
for each sub-
basin 

100% 
coverage - Regional/Canadian 100% coverage Messager et al., (2016) 

Reservoir 1982-2016 100% 
coverage monthly Local 44 main 

reservoirs-lakes 

Alberta Environment and Parks; Water 
Security Agency (WSA) in 
Saskatchewan; Manitoba Hydro; and 
HydroLAKES database 

Date of planting and 
harvesting, volume and rate 
of fertilizer and irrigation 
application 

1982-2016 100% 
coverage - Local 

Covers the 
agricultural 
lands in Canada 

Government of Alberta (Alberta 
Fertilizer Guide, 2004); Government of 
Manitoba (Heard, 2020); and 
Government of Saskatchewan, (2020) 

Crop yield 1982-2016 
Census 
Agricultural 
Region level 

yearly Local 
Covers the 
agricultural 
lands in Canada 

Alberta Financial Service Cooperation 
(AFSC); Statistics Canada (2021); 
Manitoba Agricultural Services 
Corporation; Government of 
Saskatchewan 



Table A.5. Selected parameters for sensitivity analysis and calibration of crop yields. 

No. Parameter Underlying SWAT parameter 
1 v__DAY{[],1}.mgt Plant growing season date 
2 v__DAY{[],5}.mgt Day harvest takes place 
3 v__HEAT_UNITS{[],1}.mgt Total heat units for plant to reach maturity 
4 v__HI_TARG{[],1}.mgt Harvest index target ((kg/ha)/(kg/ha)) 
5 v__AUTO_NSTRS{[],11}.mgt N-stress factor of plant that triggers fertilization 

6 v__AUTO_NAPP{[],11}.mgt Maximum amount of mineral N allowed in any one 
application (kg N/ha) 

7 v__AUTO_NYR{[],11}.mgt Maximum amount of mineral N allowed to be 
applied in any one year (kg N/ha) 

8 v__AUTO_EFF{[],11}.mgt Application efficiency 
9 v__AUTO_WSTRS{[],10}.mgt Water stress threshold that triggers irrigation 
10 v__AFRT_SURFACE{[],11}.mgt Fraction of fertilizer applied to top 10 mm of soil 
11 r__CN2.mgt SCS runoff curve number for moisture condition II 
12 v__ESCO.hru Soil evaporation factor 
13 v__EPCO.hru Plant uptake compensation factor 
14 v__OV_N.hru Manning's n value for overland flow 
15 v__LAT_TTIME.hru Lateral flow travel time (days) 
16 r__CANMX.hru Maximum canopy storage (mm H2O) 
17 r__HRU_SLP.hru Average slope steepness (m/m) 
18 r__SOL_BD(1).sol Soil bulk density in layer 1 of soil profile (g/cm3) 
19 r__SOL_ALB(1).sol Moist soil albedo in layer 1 of soil profile 

20 r__SOL_K(1).sol Saturated hydraulic conductivity in layer 1 of soil 
profile (mm/h) 

21 r__SOL_CRK.sol Potential or maximum crack volume of the soil 
profile 

22 r__SOL_AWC().sol Available water capacity of the soil layer (mm 
H2O/mm soil) 

23 v__SHALLST.gw Initial depth of water in the shallow aquifer (mm 
H2O) 

24 v__ALPHA_BF.gw Baseflow alpha factor (1/days) 

25 v__SHALLST_N.gw Initial concentration of nitrate in shallow aquifer 
(mg N/L or ppm) 

26 v__GW_SPYLD.gw Specific yield of the shallow aquifer (m3/m3) 
27 v__HLIFE_NGW.gw Half-life of nitrate in the shallow aquifer (days) 

 

  



Table A.6. Selected parameters for sensitivity analysis and calibration of streamflow. 

No. Parameter Underlying SWAT parameter 
1 v__TLAPS.sub Temperature lapse rate (oC/km) 
2 v__PLAPS.sub Precipitation lapse rate (mm H2O/km) 
3 v__SUB_SFTMP().sno Snowfall temperature (oC) 
4 v__SUB_SMTMP().sno Snowmelt base temperature (oC) 
5 v__SUB_SMFMX().sno Melt factor for snow on June 21 (mm H2O/oC-day) 
6 v__SUB_SMFMN().sno Melt factor for snow on Dec. 21 (mmH2O/oC-day) 
7 v__SUB_TIMP().sno Snow pack temperature lag factor 
8 r__HRU_SLP.hru Average slope steepness (m/m) 
9 r__SLSUBBSN.hru Average slope length (m) 
10 r__CN2.mgt SCS runoff curve number for moisture condition II 
11 v__ESCO.hru Soil evaporation factor 
12 v__EPCO.hru Plant uptake compensation factor 
13 v__OV_N.hru Manning's n value for overland flow 
14 r__ALPHA_BF.gw Baseflow alpha factor (1/days) 
15 r__SOL_ALB().sol Soil albedo 
16 r__SOL_AWC().sol Available water capacity of the soil layer (mm H2O/mm 

soil) 
17 r__SOL_K().sol Saturated hydraulic conductivity (mm/h) 
18 r__SOL_BD().sol Soil bulk density (g/cm3) 
19 v__GW_DELAY.gw Groundwater delay time (days) 
20 v__GW_REVAP.gw  
21 v__GWQMN.gw Threshold depth of water in the shallow aquifer required 

for return flow to occur 
22 r__RCHRG_DP.gw Deep aquifer percolation factor 
23 r__REVAPMN.gw Threshold depth of water in the shallow aquifer for 

 
24 v__SURLAG.hru Surface runoff lag coefficient 
25 r__POT_FR.hru Fraction of HRU area that drains into pothole 
26 r__POT_VOLX.hru Maximum volume of water stored in the pothole over the 

entire HRU 
 



Table A.7. Summary statistics during calibration and validation of discharge. 

Basin 

bR2 
Average of small tributaries Basin outlet 

Nr. of 
calibrated 
stations 

Calibration 
(1982-2006) 

Validation (2007-
2016) 

Outlet 
Gauge ID 

Calibration 
(1982-2006) 

Validation (2007-
2016) 

p-
factor 

r-
facto

r 
SRB 43 0.61 0.57 05KJ001 0.60 0.53 0.8 0.85 
ARB 9 0.35 0.42 05NG001 0.60 0.70 0.55 0.7 
RRB 12 0.55 0.45 05OC012 0.51 0.40 0.67 0.82 
WRB 8 0.55 0.5 05PF069 0.61 0.56 0.64 0.65 
LWB 7 0.45 0.35 05UB009 0.95 0.96 1 0.01 
NRL
B 7 0.6 0.6 05UF007 0.82 0.74 0.89 0.4 

Basin 

NSE 
Average of small tributaries Basin outlet 

Nr. Of 
calibrated 
stations 

Calibration 
(1982-2006) Validation Outlet 

Gauge ID 
Calibration 
(1982-2006) 

Validation (2007-
2016) 

p-
factor 

r-
facto

r 
SRB 43 0.4 0.35 05KJ001 0.75 0.67 0.8 0.85 
ARB 9 0.3 0.2 05NG001 0.70 0.80 0.55 0.7 
RRB 12 0.3 0.3 05OC012 0.65 0.56 0.67 0.82 
WRB 8 0.45 0.37 05PF069 0.72 0.65 0.64 0.65 
LWB 7 0.3 0.22 05UB009 0.99 0.97 1 0.01 
NRL
B 7 0.5 0.6 05UF007 0.90 0.88 0.89 0.4 



Table A.8. Model performance statistics in each agricultural region during calibration and 
validation for rainfed and irrigated spring wheat. 

   Calibration (1992-2016) Validation (1982-1991) 
 Province/State Agricultural region # p-factor r-factor MSE p-factor r-factor MSE 

1 

Alberta 

AB_1 0.95 1.60 0.05 0.80 1.31 0.20 
2 AB_1 (irrigated) 0.85 1.80 0.08 0.70 0.93 0.41 
3 AB_2 1.00 2.67 0.08 0.90 3.43 0.19 
4 AB_2 (irrigated) 0.90 1.84 0.03 0.70 1.55 0.20 
5 AB_3 1.00 2.61 0.16 0.70 3.94 0.39 
6 AB_3 (irrigated) 1.00 3.70 0.04 0.60 1.55 0.20 
7 AB_4A 0.90 1.15 0.10 0.75 2.12 0.16 
8 AB_4B 1.00 1.25 0.10 0.76 2.46 0.08 
9 AB_5 1.00 2.39 0.11 0.92 3.28 0.14 
10 AB_6 0.95 1.57 0.10 0.60 3.13 0.54 
11 

Manitoba 

MA_1 0.95 2.14 0.19 0.60 2.82 0.11 
12 MA_2 0.95 1.78 0.14 0.75 1.55 0.13 
13 MA-3 0.95 1.88 0.13 0.75 1.96 0.10 
14 MA_4 1.00 2.23 0.01 0.94 1.69 0.07 
15 MA_5 1.00 2.02 0.05 0.81 1.49 0.15 
16 MA_6 0.82 1.54 0.09 0.78 1.51 0.14 
17 MA_7 0.89 2.73 0.26 0.84 1.39 0.25 
18 MA_8 1.00 2.25 0.23 0.85 2.19 0.15 
19 MA_9 0.90 2.34 0.46 0.85 3.43 0.12 
20 MA_11 0.80 1.69 0.31 0.82 1.25 0.33 
21  MA_12 0.71 1.34 0.20 0.70 1.24 0.23 
22 

Saskatchewan 

SK_1A 0.90 3.41 0.17 1.00 3.40 0.09 
23 SK_1B 0.95 1.46 0.10 0.60 1.72 0.16 
24 SK_2A 0.90 3.35 0.18 1.00 3.32 0.06 
25 SK_2B 0.50 1.51 0.33 0.80 1.77 0.11 
26 SK_3AN 0.95 1.99 0.08 0.90 1.28 0.08 
27 SK_3BN 1.00 4.57 0.03 0.90 3.69 0.11 
28 SK_3BS 1.00 1.67 0.03 0.85 1.20 0.17 
29 SK_4A 0.94 2.63 0.07 1.00 2.78 0.06 
30 SK_4B 0.82 1.56 0.12 0.70 0.95 0.20 
31 SK_5A 1.00 2.43 0.08 0.75 3.74 0.09 
32 SK_5B 1.00 4.51 0.09 1.00 6.33 0.13 
33 SK_6A 0.90 2.76 0.22 1.00 2.97 0.02 
34 SK_6B 0.90 1.43 0.09 0.90 1.47 0.04 
35 SK_7A 0.78 1.57 0.17 0.80 1.34 0.07 
36 SK_7B 0.80 1.72 0.18 0.80 2.30 0.05 
37 SK_8A 0.94 1.24 0.08 0.60 1.31 0.25 
38 SK_8B 0.85 1.73 0.10 0.95 1.94 0.12 
39 SK_9A 0.84 1.18 0.12 0.95 1.76 0.10 
40 SK_9B 0.89 1.62 0.15 0.75 3.34 0.07 
41 Minnesota MN_10 0.90 1.85 0.34 0.70 1.32 0.53 
42 MN_40 0.95 1.60 0.18 0.77 1.51 0.36 
43 

North Dakota 

ND_10 0.90 2.77 0.20 1.00 2.45 0.12 
44 ND_20 0.75 1.14 0.23 0.26 3.58 0.40 
45 ND_30 0.65 3.25 0.38 0.85 1.36 0.30 
46 ND_60 0.75 1.67 0.48 0.43 1.20 0.50 
47 ND_90 0.60 1.29 0.33 0.87 1.89 0.36 

 



Table A.9. Goodness-of-fit test results of gamma distribution used for all sub-basins. The table presents p-values from KS and AD tests, 
supporting the gamma distribution model's suitability across all sub-basins. Note that all data are sorted based on SK method. 
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1 0.996 0.978 1816 0.82 0.936 291 0.623 0.59 1209 0.473 0.365 1968 0.358 0.466 562 0.267 0.159 872 0.192 0.478 945 0.14 0.215 607 0.091 0.074 

1807 0.996 0.959 807 0.82 0.711 1934 0.623 0.517 1243 0.472 0.731 1729 0.358 0.298 63 0.267 0.061 1486 0.192 0.468 261 0.14 0.125 1410 0.091 0.055 

579 0.995 0.991 1457 0.82 0.701 1004 0.623 0.416 1160 0.472 0.56 783 0.358 0.094 796 0.266 0.215 536 0.192 0.198 1910 0.139 0.292 1321 0.09 0.469 

1824 0.995 0.959 1675 0.817 0.806 24 0.623 0.4 1670 0.472 0.392 1174 0.357 0.558 949 0.266 0.172 1030 0.192 0.177 1909 0.139 0.224 1325 0.09 0.469 

195 0.995 0.955 30 0.817 0.4 3 0.622 0.965 1435 0.471 0.61 1386 0.357 0.463 1626 0.266 0.141 340 0.192 0.078 994 0.139 0.22 1797 0.09 0.254 

1778 0.991 0.959 1874 0.816 0.936 1579 0.622 0.957 1901 0.471 0.072 424 0.356 0.433 1592 0.265 0.46 958 0.191 0.35 343 0.139 0.158 660 0.09 0.102 

1945 0.991 0.957 883 0.816 0.711 1086 0.622 0.717 1207 0.47 0.56 1175 0.356 0.265 531 0.265 0.375 1043 0.191 0.21 350 0.139 0.081 1164 0.09 0.09 

187 0.99 0.975 388 0.814 0.81 977 0.622 0.365 959 0.47 0.558 1359 0.356 0.22 1741 0.265 0.354 1707 0.191 0.208 1530 0.138 0.468 671 0.09 0.053 

1447 0.989 0.946 1883 0.813 0.919 1827 0.621 0.901 459 0.468 0.913 182 0.355 0.259 922 0.265 0.325 612 0.191 0.155 1776 0.138 0.243 1328 0.089 0.206 

1932 0.988 0.994 1908 0.813 0.818 1088 0.621 0.823 1363 0.468 0.094 644 0.355 0.15 92 0.265 0.272 1521 0.191 0.123 138 0.138 0.121 613 0.089 0.196 

1809 0.988 0.959 552 0.813 0.604 371 0.619 0.676 716 0.467 0.853 516 0.355 0.116 861 0.264 0.426 54 0.191 0.052 1182 0.138 0.104 1696 0.089 0.093 

201 0.988 0.929 1582 0.812 0.957 1480 0.618 0.47 1607 0.467 0.505 45 0.354 0.052 1158 0.264 0.252 176 0.19 0.308 85 0.138 0.066 1324 0.088 0.469 

208 0.987 0.964 771 0.812 0.358 1058 0.617 0.97 1806 0.467 0.272 1898 0.352 0.756 405 0.264 0.198 1343 0.189 0.469 1889 0.138 0.063 1737 0.088 0.17 

489 0.984 0.998 1145 0.811 0.735 1922 0.614 0.774 951 0.467 0.099 1692 0.352 0.066 692 0.264 0.198 1775 0.189 0.243 841 0.137 0.491 1083 0.088 0.124 

540 0.983 0.998 1099 0.809 0.735 250 0.614 0.75 1320 0.463 0.823 998 0.352 0.053 966 0.264 0.052 358 0.189 0.209 1727 0.137 0.208 460 0.088 0.114 

941 0.982 0.934 1346 0.807 0.895 1531 0.613 0.501 1823 0.463 0.461 747 0.351 0.454 284 0.263 0.545 767 0.189 0.168 1370 0.137 0.166 1159 0.088 0.094 

404 0.98 0.99 1766 0.806 0.945 227 0.611 0.53 526 0.463 0.215 97 0.351 0.334 186 0.263 0.259 1255 0.189 0.131 1505 0.137 0.123 435 0.087 0.4 

324 0.98 0.975 170 0.805 0.562 1195 0.611 0.394 211 0.463 0.056 200 0.351 0.259 1685 0.263 0.138 276 0.188 0.365 1774 0.137 0.053 1525 0.087 0.384 

1344 0.979 0.656 1185 0.804 0.859 505 0.61 0.782 1716 0.462 0.649 225 0.35 0.53 1552 0.263 0.123 1573 0.188 0.238 86 0.137 0.052 384 0.087 0.372 

10 0.977 0.815 229 0.804 0.726 1598 0.609 0.614 277 0.461 0.682 1469 0.35 0.47 1588 0.263 0.123 920 0.188 0.215 1925 0.136 0.678 283 0.087 0.285 

591 0.976 0.982 1921 0.801 0.916 541 0.609 0.464 4 0.46 0.81 192 0.35 0.452 880 0.262 0.295 364 0.188 0.209 563 0.136 0.397 179 0.087 0.283 

194 0.976 0.955 1402 0.801 0.815 1790 0.609 0.33 214 0.46 0.259 96 0.35 0.443 1193 0.262 0.252 1109 0.188 0.186 1033 0.136 0.21 70 0.087 0.066 

1655 0.976 0.868 1856 0.801 0.803 281 0.608 0.556 1449 0.459 0.459 1882 0.35 0.433 64 0.262 0.186 503 0.188 0.159 689 0.136 0.168 1892 0.087 0.063 

1076 0.975 0.934 1558 0.801 0.501 1453 0.608 0.497 1699 0.459 0.383 1698 0.35 0.178 657 0.261 0.259 1024 0.188 0.107 1326 0.136 0.156 765 0.086 0.293 

1280 0.975 0.886 496 0.8 0.929 240 0.607 0.8 866 0.457 0.636 1197 0.35 0.166 761 0.261 0.2 707 0.187 0.198 377 0.136 0.114 642 0.086 0.275 



13 0.974 0.963 1171 0.8 0.735 409 0.606 0.829 53 0.457 0.11 640 0.35 0.102 90 0.26 0.447 1702 0.187 0.17 805 0.136 0.069 237 0.086 0.272 

1976 0.973 0.912 835 0.8 0.685 1580 0.604 0.85 1888 0.457 0.056 763 0.349 0.2 792 0.26 0.215 148 0.186 0.308 777 0.136 0.053 634 0.086 0.251 

592 0.972 0.982 842 0.798 0.711 1466 0.604 0.61 206 0.456 0.232 35 0.349 0.115 1307 0.259 0.339 608 0.186 0.15 1756 0.135 0.384 1002 0.086 0.143 

518 0.971 0.976 1972 0.797 0.726 1498 0.604 0.472 122 0.455 0.35 1023 0.348 0.138 584 0.259 0.224 755 0.186 0.126 1738 0.135 0.243 651 0.086 0.137 

1954 0.971 0.957 1885 0.793 0.857 1459 0.604 0.468 714 0.453 0.155 641 0.347 0.106 1748 0.259 0.178 398 0.186 0.095 1834 0.135 0.072 205 0.085 0.313 

1571 0.971 0.896 1731 0.793 0.73 947 0.603 0.711 1688 0.453 0.056 558 0.347 0.065 40 0.259 0.103 935 0.186 0.079 1759 0.135 0.056 1074 0.085 0.147 

1373 0.97 0.905 1616 0.792 0.896 1331 0.603 0.546 1191 0.452 0.339 81 0.346 0.443 860 0.258 0.426 69 0.186 0.052 397 0.134 0.078 382 0.085 0.095 

1425 0.97 0.895 1411 0.79 0.815 1563 0.602 0.957 539 0.451 0.782 27 0.346 0.4 1474 0.257 0.468 1912 0.185 0.577 1677 0.133 0.425 770 0.085 0.095 

735 0.968 0.839 1820 0.789 0.901 544 0.602 0.68 731 0.451 0.685 448 0.346 0.255 666 0.257 0.428 1497 0.185 0.472 37 0.133 0.103 1112 0.085 0.086 

1526 0.968 0.546 1583 0.789 0.656 1858 0.601 0.901 997 0.451 0.08 1965 0.346 0.241 1138 0.257 0.124 565 0.185 0.176 44 0.132 0.195 1819 0.085 0.075 

9 0.967 0.815 1595 0.787 0.879 1785 0.601 0.429 1859 0.45 0.343 1206 0.346 0.174 506 0.256 0.281 1010 0.185 0.128 1399 0.132 0.165 167 0.084 0.232 

582 0.965 0.967 1577 0.785 0.701 1564 0.598 0.573 190 0.45 0.304 77 0.344 0.286 1090 0.256 0.271 480 0.185 0.095 1478 0.132 0.123 1334 0.083 0.37 

1815 0.965 0.959 1313 0.784 0.815 481 0.597 0.676 1152 0.446 0.339 1637 0.343 0.531 923 0.256 0.199 775 0.185 0.094 1042 0.132 0.085 226 0.083 0.232 

1635 0.965 0.946 230 0.782 0.674 1668 0.595 0.392 635 0.446 0.281 1747 0.343 0.461 1267 0.256 0.186 1919 0.185 0.063 1105 0.131 0.286 42 0.083 0.195 

181 0.964 0.9 1843 0.781 0.833 1309 0.594 0.269 525 0.445 0.433 51 0.343 0.072 1566 0.256 0.138 1352 0.184 0.469 1094 0.131 0.22 1798 0.083 0.17 

1360 0.964 0.895 1215 0.78 0.735 256 0.591 0.685 1273 0.443 0.56 1705 0.343 0.053 845 0.256 0.072 956 0.184 0.293 1950 0.131 0.188 1262 0.083 0.156 

1463 0.963 0.895 1368 0.779 0.724 218 0.591 0.53 918 0.443 0.474 113 0.34 0.066 610 0.255 0.106 1708 0.184 0.243 1832 0.131 0.179 383 0.083 0.116 

1008 0.962 0.95 228 0.778 0.644 1051 0.591 0.365 198 0.443 0.271 1757 0.339 0.649 1914 0.254 0.188 1316 0.183 0.469 1391 0.13 0.339 630 0.083 0.095 

639 0.96 0.854 1581 0.777 0.85 680 0.59 0.772 1854 0.443 0.21 1603 0.339 0.46 375 0.253 0.48 1294 0.183 0.265 828 0.13 0.215 794 0.082 0.293 

928 0.958 0.732 1584 0.777 0.656 234 0.589 0.674 932 0.442 0.325 1381 0.339 0.449 1541 0.253 0.322 1609 0.183 0.238 158 0.13 0.121 436 0.082 0.166 

488 0.956 0.998 1948 0.777 0.517 819 0.588 0.636 899 0.441 0.069 111 0.338 0.446 1390 0.252 0.061 1355 0.183 0.166 1725 0.13 0.093 209 0.082 0.154 

734 0.956 0.854 751 0.777 0.485 1274 0.587 0.823 826 0.44 0.319 1128 0.338 0.339 1133 0.251 0.359 1300 0.182 0.469 1585 0.129 0.305 1284 0.082 0.098 

537 0.955 0.977 1554 0.775 0.879 1726 0.587 0.774 670 0.44 0.224 292 0.338 0.16 978 0.251 0.325 1261 0.182 0.271 1935 0.129 0.251 1127 0.082 0.086 

1864 0.954 0.936 1569 0.774 0.701 426 0.586 0.79 726 0.439 0.421 1365 0.337 0.468 795 0.251 0.293 1791 0.182 0.17 1821 0.129 0.054 370 0.082 0.053 

221 0.954 0.934 337 0.773 0.947 1067 0.584 0.745 609 0.439 0.126 1489 0.337 0.33 887 0.251 0.081 838 0.182 0.143 511 0.128 0.4 837 0.081 0.094 

1440 0.953 0.895 1873 0.77 0.818 1364 0.584 0.589 522 0.438 0.308 1287 0.337 0.272 831 0.251 0.071 1593 0.182 0.111 499 0.128 0.397 1170 0.081 0.086 

363 0.952 0.931 1904 0.77 0.818 1289 0.584 0.459 57 0.437 0.11 1226 0.337 0.269 169 0.25 0.344 1125 0.182 0.086 1475 0.128 0.222 1642 0.081 0.075 

133 0.952 0.884 235 0.77 0.581 255 0.583 0.75 891 0.436 0.636 1258 0.337 0.269 241 0.25 0.272 898 0.181 0.285 270 0.128 0.168 1204 0.081 0.061 

191 0.951 0.929 1970 0.768 0.669 550 0.583 0.28 678 0.436 0.478 1869 0.336 0.461 1266 0.25 0.098 67 0.181 0.052 1048 0.128 0.085 1542 0.08 0.174 

262 0.951 0.685 16 0.767 0.846 249 0.581 0.726 1115 0.435 0.147 1487 0.336 0.46 600 0.249 0.106 762 0.18 0.224 471 0.128 0.065 858 0.08 0.164 

1814 0.95 0.959 1984 0.765 0.912 335 0.58 0.676 896 0.435 0.069 1032 0.336 0.416 1509 0.248 0.37 1423 0.18 0.222 1718 0.127 0.354 1643 0.08 0.075 



1926 0.949 0.97 1649 0.765 0.392 32 0.58 0.3 571 0.434 0.224 1518 0.335 0.322 934 0.248 0.168 1427 0.18 0.203 781 0.127 0.215 1664 0.08 0.075 

874 0.949 0.941 434 0.764 0.811 39 0.58 0.3 1650 0.433 0.392 1442 0.335 0.298 178 0.247 0.283 139 0.18 0.145 41 0.127 0.195 71 0.08 0.052 

1398 0.949 0.546 1143 0.764 0.735 266 0.579 0.59 1056 0.433 0.359 1706 0.335 0.056 1744 0.247 0.178 875 0.179 0.293 1101 0.126 0.398 780 0.079 0.473 

673 0.948 0.854 1022 0.763 0.732 1479 0.579 0.589 1139 0.433 0.094 1596 0.334 0.46 821 0.247 0.133 1872 0.179 0.292 513 0.126 0.275 1940 0.079 0.177 

739 0.947 0.967 1292 0.763 0.731 1855 0.579 0.33 625 0.432 0.198 1470 0.334 0.33 1617 0.246 0.472 1944 0.179 0.188 1927 0.126 0.177 1559 0.079 0.164 

581 0.946 0.967 365 0.763 0.676 948 0.578 0.717 1746 0.431 0.21 713 0.334 0.2 857 0.246 0.072 1228 0.179 0.146 147 0.126 0.145 1049 0.079 0.085 

1608 0.944 0.879 667 0.762 0.454 1597 0.577 0.85 766 0.431 0.168 285 0.334 0.073 359 0.245 0.48 1758 0.179 0.056 394 0.126 0.074 1663 0.079 0.075 

1063 0.942 0.973 449 0.761 0.929 34 0.577 0.3 960 0.431 0.059 1574 0.333 0.472 710 0.245 0.251 862 0.178 0.491 878 0.125 0.176 1594 0.078 0.279 

1742 0.942 0.959 1224 0.761 0.735 5 0.576 0.965 921 0.43 0.474 1244 0.333 0.375 1495 0.244 0.472 1538 0.178 0.123 1107 0.125 0.131 907 0.078 0.215 

1890 0.942 0.919 1960 0.761 0.517 912 0.576 0.711 1374 0.429 0.449 1717 0.333 0.354 813 0.244 0.211 1568 0.178 0.123 207 0.125 0.056 128 0.078 0.159 

1860 0.941 0.803 273 0.76 0.752 1270 0.576 0.459 439 0.428 0.54 1045 0.333 0.199 1893 0.244 0.063 876 0.178 0.099 711 0.124 0.478 254 0.078 0.088 

224 0.939 0.975 856 0.758 0.867 1847 0.572 0.857 1939 0.428 0.503 1069 0.333 0.172 797 0.243 0.454 605 0.177 0.375 677 0.124 0.259 995 0.078 0.08 

1239 0.939 0.735 1561 0.758 0.573 29 0.57 0.4 510 0.428 0.464 303 0.332 0.545 332 0.243 0.088 1786 0.177 0.243 1633 0.124 0.238 477 0.077 0.4 

1524 0.938 0.946 1496 0.758 0.546 232 0.569 0.675 1241 0.428 0.375 94 0.331 0.334 1451 0.242 0.449 931 0.177 0.137 1529 0.124 0.123 140 0.077 0.261 

143 0.938 0.821 1007 0.757 0.859 7 0.568 0.81 1975 0.427 0.466 964 0.331 0.22 325 0.242 0.392 768 0.177 0.133 633 0.123 0.463 1630 0.077 0.123 

599 0.937 0.977 738 0.757 0.839 494 0.566 0.464 490 0.427 0.267 576 0.331 0.081 1915 0.242 0.188 1291 0.176 0.265 1404 0.123 0.16 1126 0.077 0.086 

231 0.937 0.675 1800 0.757 0.773 1896 0.565 0.711 1930 0.427 0.177 457 0.331 0.078 693 0.242 0.15 1721 0.176 0.093 1179 0.123 0.154 663 0.076 0.259 

1611 0.936 0.946 1177 0.754 0.905 1208 0.565 0.56 1659 0.427 0.075 62 0.331 0.061 704 0.242 0.127 1701 0.175 0.351 430 0.123 0.055 1714 0.076 0.243 

1416 0.936 0.868 362 0.754 0.847 177 0.564 0.289 36 0.426 0.137 1669 0.33 0.573 1517 0.241 0.165 849 0.175 0.231 1053 0.122 0.379 1947 0.076 0.177 

1122 0.935 0.964 474 0.751 0.782 1793 0.563 0.21 529 0.426 0.082 1222 0.329 0.724 1342 0.241 0.12 703 0.175 0.198 1268 0.122 0.186 215 0.076 0.167 

1064 0.935 0.735 132 0.751 0.69 244 0.562 0.726 385 0.426 0.053 1540 0.329 0.463 52 0.241 0.11 443 0.175 0.196 265 0.121 0.404 352 0.076 0.16 

597 0.934 0.998 1253 0.751 0.676 524 0.561 0.487 219 0.424 0.48 107 0.329 0.272 561 0.24 0.28 299 0.175 0.168 543 0.121 0.397 986 0.076 0.136 

1276 0.934 0.734 236 0.75 0.726 1618 0.561 0.392 1624 0.423 0.46 1773 0.328 0.461 653 0.24 0.259 79 0.175 0.108 453 0.121 0.196 719 0.076 0.089 

1089 0.933 0.735 418 0.75 0.684 1534 0.56 0.449 1200 0.423 0.174 685 0.328 0.112 1353 0.24 0.166 700 0.174 0.168 1187 0.121 0.185 1322 0.075 0.469 

1091 0.933 0.735 171 0.747 0.741 1548 0.56 0.449 745 0.422 0.485 1653 0.327 0.384 56 0.239 0.055 360 0.174 0.158 423 0.121 0.174 1681 0.075 0.22 

403 0.931 0.99 1301 0.747 0.731 372 0.559 0.682 553 0.422 0.28 1232 0.326 0.51 1782 0.239 0.053 1504 0.174 0.123 1314 0.121 0.111 1641 0.075 0.187 

1788 0.931 0.959 1471 0.747 0.589 1290 0.559 0.59 1740 0.422 0.145 546 0.326 0.463 1507 0.238 0.328 790 0.174 0.094 645 0.121 0.102 1111 0.075 0.124 

624 0.929 0.998 1464 0.745 0.815 1438 0.559 0.47 1850 0.421 0.56 88 0.326 0.443 1553 0.238 0.061 116 0.174 0.077 1779 0.121 0.093 428 0.075 0.116 

331 0.929 0.931 1848 0.745 0.622 203 0.556 0.751 746 0.421 0.487 1613 0.325 0.298 1421 0.237 0.322 1192 0.173 0.252 1176 0.121 0.086 643 0.075 0.095 

1327 0.929 0.905 2 0.744 0.978 551 0.556 0.423 1974 0.421 0.466 939 0.325 0.215 199 0.235 0.452 1172 0.173 0.216 1679 0.121 0.066 924 0.075 0.071 

1092 0.928 0.95 1006 0.744 0.867 652 0.555 0.485 1003 0.42 0.339 743 0.324 0.079 1623 0.234 0.46 1140 0.173 0.203 279 0.12 0.226 395 0.075 0.062 



1132 0.928 0.95 1503 0.743 0.505 1431 0.553 0.449 1458 0.42 0.33 675 0.323 0.102 1895 0.234 0.251 1958 0.173 0.184 1676 0.12 0.164 1394 0.075 0.061 

1329 0.927 0.546 1155 0.742 0.745 622 0.553 0.358 1293 0.42 0.265 1988 0.322 0.191 594 0.233 0.602 817 0.173 0.133 391 0.12 0.053 162 0.075 0.056 

1000 0.926 0.941 1647 0.741 0.911 1863 0.552 0.787 919 0.42 0.261 348 0.322 0.167 338 0.233 0.16 574 0.173 0.106 903 0.119 0.131 507 0.074 0.308 

1813 0.925 0.959 748 0.741 0.727 1205 0.552 0.56 1350 0.42 0.252 1450 0.32 0.288 135 0.233 0.143 387 0.172 0.48 1903 0.119 0.063 1697 0.074 0.208 

890 0.925 0.772 1870 0.74 0.806 1877 0.552 0.374 1441 0.42 0.16 1913 0.319 0.601 288 0.233 0.125 1229 0.172 0.275 953 0.119 0.057 1361 0.074 0.185 

1615 0.924 0.957 1180 0.739 0.745 165 0.552 0.318 787 0.419 0.727 466 0.319 0.4 46 0.233 0.052 1021 0.172 0.232 239 0.118 0.282 760 0.074 0.164 

1781 0.924 0.429 389 0.738 0.626 815 0.55 0.543 784 0.419 0.485 1118 0.319 0.339 476 0.232 0.375 1345 0.172 0.187 251 0.118 0.209 105 0.074 0.077 

589 0.923 0.977 425 0.737 0.676 975 0.549 0.365 1539 0.419 0.384 1011 0.319 0.128 1719 0.232 0.243 1444 0.172 0.16 1648 0.118 0.187 741 0.074 0.077 

15 0.923 0.963 1771 0.737 0.602 1371 0.548 0.589 112 0.417 0.771 60 0.319 0.061 996 0.232 0.22 1156 0.172 0.156 1311 0.118 0.166 732 0.074 0.061 

1936 0.923 0.852 1784 0.737 0.602 260 0.548 0.51 1084 0.417 0.339 1437 0.318 0.16 750 0.231 0.478 649 0.172 0.089 316 0.117 0.365 259 0.074 0.059 

694 0.922 0.967 1512 0.737 0.472 1656 0.548 0.392 1764 0.416 0.461 882 0.318 0.069 1383 0.231 0.298 141 0.171 0.116 1136 0.117 0.286 172 0.073 0.283 

1157 0.921 0.905 14 0.736 0.963 1544 0.548 0.322 1183 0.415 0.272 1037 0.316 0.136 791 0.231 0.285 1046 0.171 0.069 1792 0.117 0.17 623 0.073 0.255 

1018 0.92 0.973 1920 0.735 0.787 1052 0.547 0.97 980 0.415 0.084 144 0.315 0.159 196 0.231 0.154 1602 0.17 0.279 1599 0.117 0.123 802 0.073 0.081 

1085 0.92 0.95 1254 0.735 0.269 1260 0.547 0.56 101 0.415 0.066 1384 0.314 0.326 547 0.231 0.106 1967 0.17 0.208 1338 0.117 0.109 1906 0.073 0.072 

972 0.92 0.854 1306 0.732 0.886 1124 0.546 0.653 1644 0.414 0.46 1586 0.314 0.305 1041 0.23 0.181 1780 0.17 0.179 785 0.117 0.069 782 0.073 0.068 

145 0.92 0.562 1805 0.732 0.857 946 0.546 0.319 1098 0.414 0.269 136 0.314 0.148 1078 0.23 0.124 528 0.169 0.421 1587 0.116 0.164 758 0.072 0.473 

193 0.919 0.929 538 0.732 0.782 560 0.546 0.28 406 0.414 0.062 1900 0.314 0.072 168 0.229 0.48 829 0.169 0.215 267 0.116 0.106 329 0.072 0.392 

1802 0.919 0.429 1979 0.73 0.912 1842 0.545 0.833 468 0.414 0.062 1297 0.313 0.272 242 0.229 0.272 864 0.169 0.112 973 0.116 0.085 1886 0.072 0.224 

304 0.917 0.931 1712 0.729 0.957 1418 0.545 0.59 1514 0.413 0.322 1059 0.313 0.147 123 0.229 0.14 309 0.169 0.106 1050 0.116 0.085 354 0.072 0.205 

1372 0.917 0.905 43 0.729 0.225 149 0.545 0.562 479 0.413 0.142 1236 0.313 0.107 905 0.229 0.079 690 0.168 0.491 1040 0.116 0.084 127 0.072 0.135 

1436 0.917 0.886 877 0.728 0.772 264 0.543 0.675 521 0.413 0.082 369 0.313 0.053 691 0.228 0.428 1347 0.168 0.288 1905 0.116 0.063 1629 0.072 0.075 

1720 0.916 0.896 1281 0.724 0.886 83 0.543 0.636 472 0.412 0.065 1426 0.312 0.51 290 0.228 0.392 590 0.168 0.198 853 0.115 0.215 238 0.072 0.066 

1269 0.916 0.886 416 0.723 0.829 1079 0.541 0.408 1638 0.41 0.531 1476 0.312 0.268 1951 0.228 0.341 1472 0.168 0.174 1013 0.115 0.199 515 0.072 0.055 

648 0.915 0.772 121 0.722 0.718 115 0.54 0.624 1330 0.41 0.272 1987 0.311 0.44 1349 0.228 0.328 91 0.168 0.152 1277 0.115 0.156 1388 0.071 0.469 

895 0.915 0.732 1982 0.722 0.339 1614 0.539 0.957 1963 0.409 0.341 568 0.311 0.397 495 0.228 0.137 125 0.168 0.145 676 0.114 0.259 74 0.071 0.447 

1378 0.915 0.656 1730 0.721 0.73 1351 0.536 0.895 965 0.409 0.22 257 0.31 0.751 1448 0.227 0.468 462 0.168 0.053 1691 0.114 0.208 487 0.071 0.367 

1985 0.914 0.601 1557 0.72 0.946 1257 0.536 0.731 1891 0.409 0.056 1902 0.31 0.601 1550 0.227 0.468 1104 0.167 0.286 757 0.114 0.198 1969 0.071 0.208 

20 0.913 0.846 17 0.719 0.963 1194 0.536 0.394 983 0.408 0.463 446 0.309 0.509 1876 0.227 0.447 799 0.166 0.463 705 0.114 0.068 298 0.071 0.113 

1028 0.911 0.973 1080 0.719 0.823 1862 0.535 0.916 1783 0.408 0.325 1481 0.309 0.472 1165 0.227 0.272 1646 0.166 0.187 1100 0.114 0.052 938 0.071 0.099 

1884 0.909 0.857 22 0.719 0.549 1163 0.534 0.735 161 0.406 0.082 1223 0.309 0.166 1220 0.227 0.086 1789 0.166 0.17 78 0.112 0.447 969 0.071 0.099 

806 0.909 0.854 1844 0.719 0.429 1446 0.534 0.278 970 0.405 0.474 504 0.309 0.082 1341 0.226 0.326 1818 0.166 0.17 1694 0.112 0.178 1315 0.07 0.37 



1203 0.908 0.734 1560 0.719 0.268 1683 0.532 0.56 1955 0.405 0.341 498 0.309 0.055 598 0.226 0.304 823 0.166 0.127 863 0.112 0.136 461 0.07 0.319 

150 0.907 0.9 1333 0.717 0.589 596 0.532 0.485 50 0.405 0.137 793 0.308 0.455 1029 0.226 0.136 454 0.165 0.4 1543 0.112 0.123 621 0.07 0.251 

1751 0.905 0.429 942 0.716 0.717 1852 0.532 0.21 1308 0.404 0.823 850 0.307 0.231 1238 0.225 0.269 545 0.165 0.254 810 0.112 0.101 632 0.07 0.185 

847 0.903 0.941 595 0.716 0.602 108 0.531 0.272 119 0.404 0.109 1012 0.307 0.22 730 0.224 0.454 1035 0.165 0.22 846 0.112 0.094 727 0.069 0.421 

1841 0.901 0.945 1419 0.716 0.579 1097 0.529 0.265 475 0.403 0.782 1660 0.306 0.33 456 0.224 0.392 1490 0.165 0.123 1938 0.111 0.577 699 0.069 0.416 

1093 0.898 0.95 1851 0.716 0.56 1385 0.528 0.546 940 0.403 0.558 1407 0.305 0.51 1894 0.224 0.224 1142 0.165 0.079 1219 0.111 0.275 967 0.069 0.398 

248 0.898 0.757 1380 0.715 0.815 18 0.527 0.4 1429 0.401 0.305 1519 0.304 0.472 1502 0.224 0.16 183 0.164 0.452 1825 0.111 0.272 575 0.069 0.275 

585 0.898 0.604 361 0.715 0.757 1754 0.527 0.21 688 0.399 0.428 1547 0.304 0.468 614 0.223 0.089 1651 0.164 0.279 698 0.111 0.168 392 0.069 0.205 

1811 0.894 0.936 1493 0.715 0.546 1619 0.526 0.392 353 0.399 0.404 1533 0.304 0.179 1369 0.222 0.468 1937 0.164 0.188 1812 0.11 0.272 1071 0.069 0.147 

1871 0.894 0.922 1510 0.714 0.858 1977 0.526 0.339 1546 0.399 0.174 702 0.303 0.455 1015 0.222 0.325 327 0.164 0.117 1733 0.11 0.141 517 0.069 0.137 

1591 0.893 0.946 1237 0.712 0.886 1395 0.526 0.326 422 0.398 0.48 210 0.303 0.167 586 0.222 0.176 809 0.164 0.071 137 0.11 0.106 412 0.069 0.116 

1610 0.893 0.896 1777 0.712 0.21 289 0.524 0.669 153 0.398 0.318 120 0.302 0.624 725 0.222 0.15 1461 0.163 0.51 620 0.11 0.081 929 0.069 0.068 

1070 0.892 0.973 1565 0.711 0.701 1073 0.524 0.352 606 0.398 0.074 1249 0.302 0.21 89 0.222 0.066 1488 0.163 0.468 1971 0.109 0.258 1826 0.068 0.272 

1186 0.891 0.964 1916 0.709 0.711 1387 0.523 0.328 1787 0.397 0.21 1667 0.301 0.383 1420 0.221 0.449 566 0.163 0.159 1745 0.109 0.243 984 0.068 0.052 

820 0.891 0.636 1482 0.709 0.573 467 0.521 0.684 1639 0.396 0.573 1680 0.301 0.178 103 0.221 0.272 626 0.163 0.095 679 0.109 0.102 1396 0.067 0.339 

1214 0.89 0.735 1072 0.708 0.352 508 0.52 0.464 943 0.396 0.35 909 0.301 0.176 1686 0.221 0.138 788 0.162 0.2 911 0.109 0.079 1695 0.067 0.208 

1060 0.89 0.727 1964 0.707 0.669 557 0.52 0.28 95 0.396 0.061 1147 0.301 0.094 1739 0.22 0.649 1120 0.162 0.124 1150 0.109 0.079 1201 0.067 0.147 

1286 0.889 0.886 889 0.705 0.474 1674 0.517 0.46 1684 0.394 0.305 1443 0.3 0.449 482 0.22 0.281 993 0.162 0.053 438 0.109 0.065 1189 0.067 0.146 

1918 0.888 0.97 295 0.704 0.904 944 0.517 0.35 554 0.394 0.176 478 0.3 0.114 1312 0.22 0.166 1728 0.161 0.208 1654 0.108 0.22 402 0.067 0.142 

1424 0.888 0.573 1704 0.703 0.957 1625 0.516 0.806 1375 0.392 0.449 80 0.299 0.286 1693 0.219 0.472 834 0.161 0.133 1750 0.108 0.179 1167 0.067 0.12 

1736 0.886 0.957 1861 0.703 0.833 825 0.516 0.636 164 0.392 0.318 213 0.299 0.259 1652 0.219 0.279 1432 0.16 0.222 587 0.107 0.198 1923 0.066 0.577 

1600 0.886 0.879 1857 0.702 0.916 1956 0.516 0.517 682 0.392 0.224 1500 0.298 0.472 1225 0.219 0.269 469 0.16 0.164 937 0.107 0.128 302 0.066 0.16 

142 0.885 0.562 1456 0.702 0.701 729 0.516 0.485 904 0.392 0.069 1966 0.298 0.179 59 0.219 0.186 955 0.16 0.099 687 0.107 0.126 601 0.066 0.065 

1961 0.884 0.517 282 0.702 0.661 410 0.515 0.676 82 0.391 0.334 233 0.298 0.166 1516 0.219 0.123 61 0.16 0.072 1657 0.106 0.425 886 0.066 0.059 

580 0.882 0.982 1672 0.702 0.392 1465 0.513 0.573 156 0.391 0.318 1570 0.297 0.383 458 0.219 0.065 55 0.16 0.055 772 0.106 0.293 1887 0.065 0.447 

1302 0.882 0.731 1973 0.701 0.726 754 0.513 0.485 1810 0.391 0.272 1116 0.297 0.099 1804 0.218 0.354 789 0.159 0.2 1943 0.106 0.177 1627 0.065 0.257 

274 0.882 0.661 421 0.7 0.811 308 0.512 0.167 204 0.39 0.341 867 0.296 0.215 855 0.218 0.285 263 0.159 0.158 305 0.106 0.168 1605 0.065 0.141 

709 0.881 0.772 753 0.7 0.485 1899 0.511 0.756 1555 0.39 0.322 1879 0.295 0.461 859 0.218 0.072 1151 0.159 0.086 1227 0.106 0.086 217 0.065 0.106 

1251 0.881 0.676 1799 0.7 0.21 1835 0.51 0.429 1551 0.39 0.066 1413 0.295 0.206 720 0.217 0.168 1141 0.159 0.07 1433 0.105 0.222 979 0.065 0.057 

926 0.88 0.727 1082 0.698 0.352 954 0.508 0.474 1129 0.389 0.352 833 0.295 0.133 801 0.217 0.133 1406 0.158 0.37 1622 0.105 0.164 1767 0.065 0.053 

484 0.879 0.977 314 0.696 0.847 798 0.507 0.485 564 0.389 0.123 1483 0.293 0.472 76 0.217 0.072 701 0.158 0.285 1492 0.105 0.123 1337 0.064 0.206 



189 0.878 0.929 1304 0.696 0.823 6 0.506 0.81 1403 0.387 0.823 413 0.293 0.464 697 0.216 0.229 756 0.158 0.221 124 0.105 0.107 712 0.064 0.174 

1400 0.878 0.656 1066 0.694 0.964 728 0.505 0.543 1305 0.387 0.724 962 0.293 0.2 1468 0.216 0.174 892 0.158 0.137 519 0.105 0.082 300 0.064 0.168 

1867 0.877 0.936 1520 0.694 0.701 1621 0.505 0.438 1687 0.387 0.383 306 0.293 0.158 985 0.216 0.147 1356 0.158 0.109 900 0.105 0.069 1801 0.063 0.254 

1357 0.877 0.815 915 0.693 0.87 1537 0.503 0.305 357 0.387 0.078 803 0.293 0.133 1068 0.215 0.232 1455 0.157 0.51 1711 0.104 0.305 339 0.063 0.168 

884 0.876 0.87 618 0.693 0.786 1259 0.502 0.61 246 0.386 0.751 326 0.293 0.117 602 0.215 0.159 588 0.157 0.275 1452 0.104 0.222 1264 0.063 0.07 

501 0.876 0.782 534 0.692 0.913 1181 0.502 0.416 1840 0.385 0.833 1494 0.292 0.33 1135 0.215 0.126 1027 0.157 0.21 293 0.104 0.106 473 0.063 0.062 

1549 0.876 0.546 1831 0.692 0.901 1303 0.5 0.459 933 0.385 0.325 93 0.292 0.272 1392 0.215 0.098 570 0.157 0.106 1628 0.104 0.066 839 0.062 0.2 

1836 0.875 0.949 1114 0.688 0.735 1102 0.5 0.206 779 0.385 0.293 1666 0.292 0.164 619 0.215 0.089 1017 0.157 0.104 683 0.103 0.304 952 0.062 0.081 

415 0.875 0.829 1640 0.688 0.573 1575 0.498 0.701 419 0.385 0.267 1700 0.292 0.164 197 0.214 0.452 313 0.156 0.404 216 0.103 0.155 1803 0.062 0.053 

1604 0.872 0.946 1233 0.687 0.745 555 0.498 0.397 1942 0.384 0.274 1202 0.292 0.147 616 0.214 0.421 848 0.156 0.176 65 0.103 0.108 989 0.062 0.052 

1134 0.872 0.895 1980 0.687 0.601 902 0.498 0.379 431 0.383 0.684 916 0.292 0.071 437 0.214 0.104 1047 0.155 0.408 252 0.103 0.066 1408 0.061 0.463 

131 0.87 0.69 1515 0.685 0.546 1245 0.498 0.375 1235 0.383 0.51 1445 0.291 0.449 1833 0.213 0.272 1941 0.155 0.292 870 0.102 0.285 1845 0.061 0.158 

420 0.869 0.947 1039 0.684 0.973 1299 0.497 0.468 1031 0.383 0.416 1354 0.291 0.339 345 0.213 0.16 1218 0.155 0.265 1121 0.102 0.177 615 0.061 0.154 

1054 0.869 0.859 1634 0.683 0.93 1678 0.497 0.257 665 0.383 0.055 881 0.29 0.295 654 0.213 0.133 968 0.155 0.128 1166 0.102 0.177 1055 0.061 0.138 

146 0.867 0.884 465 0.682 0.509 1578 0.496 0.701 1196 0.382 0.497 73 0.29 0.072 500 0.213 0.059 184 0.155 0.088 1075 0.102 0.147 366 0.061 0.113 

223 0.867 0.75 1319 0.679 0.546 1952 0.496 0.517 1978 0.382 0.339 1796 0.289 0.622 185 0.212 0.344 1296 0.154 0.469 974 0.102 0.079 1026 0.061 0.081 

390 0.866 0.931 1511 0.679 0.505 1131 0.496 0.259 888 0.382 0.231 1034 0.289 0.194 1632 0.212 0.187 971 0.154 0.185 1703 0.102 0.066 583 0.061 0.078 

1077 0.865 0.732 1749 0.679 0.21 523 0.495 0.423 87 0.381 0.527 721 0.288 0.228 155 0.212 0.1 319 0.154 0.117 659 0.101 0.428 452 0.061 0.055 

1933 0.865 0.711 1817 0.676 0.945 114 0.494 0.718 323 0.381 0.476 1828 0.288 0.158 1484 0.211 0.339 318 0.153 0.545 869 0.101 0.426 681 0.06 0.478 

533 0.864 0.991 491 0.676 0.54 684 0.494 0.174 23 0.381 0.3 104 0.287 0.446 617 0.211 0.065 1661 0.153 0.33 744 0.101 0.164 990 0.06 0.463 

1636 0.864 0.896 1210 0.673 0.269 400 0.493 0.484 628 0.381 0.251 1248 0.287 0.271 737 0.21 0.251 706 0.152 0.198 774 0.101 0.079 749 0.06 0.428 

1119 0.861 0.734 695 0.672 0.786 1231 0.493 0.269 1271 0.381 0.181 655 0.287 0.102 1499 0.209 0.472 342 0.152 0.073 930 0.101 0.068 502 0.059 0.397 

188 0.859 0.929 1173 0.669 0.579 75 0.493 0.108 1506 0.38 0.472 1005 0.286 0.261 527 0.209 0.215 593 0.152 0.065 1061 0.1 0.379 222 0.059 0.304 

629 0.859 0.839 752 0.669 0.358 927 0.492 0.727 118 0.38 0.35 1589 0.286 0.169 1168 0.209 0.194 1199 0.151 0.286 1732 0.1 0.243 662 0.059 0.255 

1907 0.859 0.818 12 0.668 0.815 1658 0.492 0.243 98 0.38 0.334 336 0.286 0.074 1662 0.208 0.179 1606 0.151 0.141 1722 0.1 0.178 1772 0.059 0.053 

1282 0.857 0.886 180 0.666 0.833 8 0.491 0.754 1462 0.378 0.51 1234 0.286 0.055 386 0.207 0.463 297 0.151 0.113 102 0.1 0.152 1822 0.058 0.301 

910 0.856 0.934 19 0.664 0.846 106 0.491 0.446 486 0.378 0.375 49 0.285 0.306 47 0.207 0.055 294 0.151 0.073 159 0.1 0.121 1108 0.058 0.166 

1501 0.856 0.815 368 0.663 0.8 808 0.491 0.293 28 0.378 0.3 1188 0.285 0.252 202 0.206 0.452 1340 0.15 0.22 950 0.1 0.099 569 0.058 0.137 

1853 0.856 0.803 723 0.662 0.485 399 0.491 0.164 1897 0.378 0.224 1735 0.284 0.461 1417 0.206 0.339 1917 0.15 0.188 638 0.1 0.055 393 0.058 0.078 

556 0.855 0.92 21 0.661 0.4 535 0.49 0.913 1473 0.377 0.472 280 0.284 0.16 894 0.206 0.295 220 0.15 0.154 559 0.1 0.053 163 0.057 0.348 

604 0.854 0.839 33 0.661 0.4 110 0.489 0.771 31 0.376 0.3 470 0.284 0.142 1285 0.206 0.098 573 0.15 0.106 1837 0.099 0.272 631 0.057 0.251 



836 0.854 0.543 307 0.66 0.904 287 0.489 0.751 1001 0.376 0.22 1422 0.283 0.322 160 0.206 0.082 1162 0.149 0.261 577 0.099 0.229 1009 0.057 0.2 

311 0.853 0.86 532 0.658 0.945 1339 0.489 0.326 1881 0.375 0.678 450 0.283 0.166 1110 0.205 0.286 1508 0.149 0.222 1428 0.099 0.185 656 0.057 0.15 

724 0.853 0.685 433 0.658 0.509 1567 0.488 0.47 1986 0.375 0.44 100 0.282 0.334 1198 0.205 0.269 275 0.149 0.209 567 0.099 0.15 109 0.057 0.082 

999 0.851 0.727 130 0.651 0.718 1240 0.488 0.375 520 0.374 0.433 1527 0.281 0.288 987 0.205 0.194 427 0.149 0.104 578 0.098 0.275 152 0.057 0.082 

447 0.85 0.684 647 0.649 0.604 1454 0.488 0.326 603 0.373 0.375 1536 0.281 0.169 68 0.205 0.061 286 0.149 0.088 1513 0.098 0.222 1755 0.056 0.301 

1770 0.85 0.614 1838 0.648 0.429 686 0.486 0.68 906 0.373 0.072 1769 0.279 0.145 992 0.204 0.177 1358 0.148 0.469 1389 0.098 0.185 328 0.056 0.205 

1144 0.848 0.735 1576 0.646 0.868 982 0.486 0.352 493 0.371 0.602 374 0.278 0.48 840 0.204 0.071 1590 0.148 0.305 1265 0.098 0.16 669 0.056 0.155 

1562 0.847 0.868 717 0.646 0.853 1278 0.486 0.185 157 0.371 0.318 84 0.278 0.272 497 0.203 0.059 1263 0.148 0.271 1335 0.098 0.12 355 0.056 0.073 

1283 0.846 0.815 1230 0.646 0.56 1620 0.486 0.141 1709 0.371 0.298 1535 0.277 0.328 38 0.203 0.055 812 0.148 0.176 822 0.097 0.231 1405 0.055 0.469 

865 0.846 0.636 278 0.644 0.59 26 0.485 0.4 429 0.371 0.104 868 0.277 0.319 1414 0.202 0.288 1025 0.148 0.138 1153 0.097 0.126 440 0.055 0.397 

800 0.844 0.941 843 0.642 0.87 715 0.485 0.319 1753 0.369 0.145 786 0.277 0.215 1957 0.202 0.184 1184 0.147 0.359 151 0.097 0.1 1362 0.055 0.206 

1036 0.844 0.717 367 0.641 0.757 627 0.485 0.123 1190 0.368 0.359 1409 0.277 0.16 72 0.202 0.079 1715 0.147 0.243 742 0.096 0.428 1682 0.055 0.164 

664 0.844 0.224 1117 0.64 0.717 417 0.485 0.104 893 0.368 0.094 873 0.277 0.055 1830 0.202 0.072 1734 0.147 0.243 1762 0.096 0.22 346 0.055 0.16 

824 0.843 0.636 1415 0.639 0.653 778 0.485 0.061 1376 0.367 0.653 672 0.276 0.428 708 0.202 0.069 1723 0.147 0.075 271 0.096 0.209 1665 0.055 0.123 

776 0.842 0.727 1981 0.638 0.442 1288 0.484 0.272 247 0.367 0.581 1467 0.276 0.33 722 0.201 0.164 166 0.146 0.283 253 0.096 0.154 871 0.055 0.101 

1434 0.842 0.676 1761 0.637 0.392 1323 0.483 0.724 1601 0.367 0.46 1743 0.276 0.21 830 0.201 0.055 1760 0.146 0.22 963 0.096 0.128 1829 0.055 0.072 

1763 0.841 0.93 411 0.636 0.464 315 0.483 0.476 885 0.367 0.319 378 0.276 0.142 1279 0.201 0.052 1430 0.146 0.169 1865 0.096 0.054 740 0.054 0.416 

1310 0.841 0.815 492 0.636 0.464 1808 0.483 0.429 1081 0.367 0.252 1332 0.275 0.469 134 0.2 0.159 483 0.146 0.164 1645 0.095 0.279 1256 0.054 0.37 

1397 0.841 0.815 1868 0.635 0.833 1959 0.481 0.517 380 0.367 0.123 1765 0.275 0.461 129 0.2 0.145 341 0.146 0.078 1252 0.095 0.271 1393 0.054 0.37 

373 0.84 0.847 1924 0.635 0.711 512 0.481 0.4 321 0.366 0.345 1839 0.275 0.461 988 0.2 0.124 572 0.145 0.15 1710 0.095 0.093 514 0.054 0.275 

245 0.84 0.8 58 0.635 0.225 832 0.481 0.215 1016 0.366 0.325 718 0.275 0.319 1250 0.199 0.275 317 0.145 0.117 269 0.094 0.282 1044 0.054 0.086 

611 0.839 0.982 333 0.632 0.51 908 0.48 0.059 981 0.366 0.124 1213 0.275 0.269 1123 0.198 0.359 769 0.145 0.072 901 0.094 0.215 310 0.054 0.081 

432 0.838 0.947 11 0.63 0.832 301 0.479 0.669 1880 0.366 0.056 1178 0.275 0.126 1096 0.198 0.286 854 0.145 0.072 414 0.093 0.281 1673 0.054 0.066 

1439 0.838 0.815 509 0.629 0.464 636 0.478 0.358 548 0.364 0.215 668 0.274 0.224 99 0.198 0.152 407 0.145 0.062 957 0.093 0.224 914 0.054 0.057 

1522 0.837 0.656 1928 0.628 0.994 347 0.478 0.319 1246 0.363 0.468 66 0.273 0.061 451 0.197 0.463 1317 0.144 0.469 851 0.093 0.164 463 0.054 0.055 

1379 0.835 0.656 243 0.628 0.752 816 0.478 0.102 1983 0.363 0.339 1689 0.272 0.178 1929 0.197 0.184 1911 0.144 0.292 117 0.093 0.143 312 0.053 0.404 

1336 0.835 0.546 1953 0.628 0.517 1713 0.477 0.243 1148 0.363 0.126 542 0.272 0.102 917 0.196 0.069 1103 0.144 0.177 1137 0.093 0.086 212 0.053 0.259 

1367 0.834 0.905 658 0.627 0.684 1878 0.477 0.224 1095 0.362 0.97 1217 0.272 0.061 936 0.196 0.069 1295 0.144 0.12 330 0.093 0.081 1412 0.053 0.206 

1212 0.833 0.676 1221 0.627 0.653 1946 0.477 0.177 1485 0.362 0.46 1795 0.271 0.243 764 0.195 0.176 442 0.143 0.196 1690 0.093 0.075 464 0.053 0.142 

441 0.832 0.829 1962 0.627 0.466 379 0.477 0.166 1113 0.362 0.359 1724 0.271 0.208 396 0.195 0.164 1572 0.143 0.169 733 0.093 0.061 1130 0.053 0.136 

736 0.831 0.839 1161 0.627 0.394 1216 0.477 0.07 1318 0.362 0.326 1866 0.271 0.054 1298 0.195 0.098 1491 0.143 0.123 322 0.092 0.484 173 0.052 0.348 



1377 0.831 0.546 1272 0.626 0.653 759 0.476 0.215 1846 0.361 0.433 549 0.27 0.215 1065 0.195 0.084 1523 0.143 0.123 485 0.092 0.397 1528 0.052 0.164 

1949 0.829 0.852 1154 0.626 0.339 1794 0.476 0.21 455 0.361 0.4 1752 0.27 0.178 1477 0.194 0.288 445 0.143 0.065 334 0.092 0.205 1087 0.052 0.147 

1062 0.828 0.973 174 0.626 0.318 991 0.476 0.124 1382 0.361 0.216 811 0.27 0.176 268 0.194 0.209 1348 0.142 0.469 1401 0.092 0.185 1057 0.052 0.138 

925 0.827 0.636 1671 0.625 0.392 1020 0.475 0.126 351 0.361 0.168 401 0.27 0.142 1931 0.194 0.188 344 0.142 0.392 376 0.092 0.095 1038 0.052 0.136 

1612 0.826 0.863 661 0.625 0.358 818 0.474 0.636 827 0.361 0.168 48 0.27 0.11 1275 0.194 0.166 773 0.142 0.068 1169 0.092 0.086 320 0.052 0.117 

1211 0.826 0.676 1849 0.624 0.803 296 0.474 0.545 637 0.36 0.73 381 0.269 0.73 1146 0.194 0.124 272 0.141 0.209 897 0.091 0.426 126 0.052 0.104 

408 0.824 0.929 814 0.624 0.636 650 0.474 0.101 1014 0.36 0.325 1242 0.269 0.054 1247 0.193 0.271 154 0.141 0.159 1545 0.091 0.279 1149 0.052 0.079 

1556 0.824 0.546 25 0.624 0.4 1875 0.473 0.756 879 0.36 0.133 258 0.268 0.389 1019 0.193 0.22 1768 0.141 0.145 696 0.091 0.168 530 0.051 0.304 

674 0.822 0.839 1631 0.623 0.858 913 0.473 0.474 1532 0.358 0.531 976 0.267 0.224 1366 0.193 0.185 961 0.141 0.131 646 0.091 0.102 175 0.051 0.259 

 



Table A.10. Overview and specifications of the data utilized in this study, adapted from Khalili et al., (2023). 

Input data Time Span Resolution Time 
step Region 

Nr. Of 
stations/grids in 
study area 

References 

DEM 2008 
10 m × 10 m 
and 90 m × 90 
m 

- Global 100% coverage AltaLIS, http://www.altalis.com; SRTM, 
Jarvis et al., (2008) 

Land use/Land cover 2015 30 m × 30 m - Regional/Canadian 100% coverage Government of Canada (2019) 

Soil map 

FAO 2005 10 km × 10 
km - Global 100% coverage FAO, (1995) 

SLC V3.2 2018 1 km × 1 km - Regional/Canadian 
Covers the 
agricultural 
lands in Canada 

Cordeiro et al., (2018) 

Climate WFDEI 1979-2016 0.5o grid 3 hr Global 574 Weedon et al., (2014) 

Potholes 
Delineated 
for each sub-
basin 

100% 
coverage - Regional/Canadian 100% coverage Messager et al., (2016) 

Reservoir 1982-2016 100% 
coverage monthly Local 44 main 

reservoirs-lakes 

Alberta Environment and Parks; Water 
Security Agency (WSA) in 
Saskatchewan; Manitoba Hydro; and 
HydroLAKES database 

Date of planting and 
harvesting, volume and rate 
of fertilizer and irrigation 
application 

1982-2016 100% 
coverage - Local 

Covers the 
agricultural 
lands in Canada 

Government of Alberta (Alberta 
Fertilizer Guide, 2004); Government of 
Manitoba (Heard, 2020); and 
Government of Saskatchewan, (2020) 

Crop yield 1982-2016 
Census 
Agricultural 
Region level 

yearly Local 
Covers the 
agricultural 
lands in Canada 

Alberta Financial Service Cooperation 
(AFSC); Statistics Canada (2021); 
Manitoba Agricultural Services 
Corporation; Government of 
Saskatchewan 



Table A.11. Information on the Global Climate Models (GCMs) used in this study to simulate 
future climate scenarios. 

GCM Institution Country Resolution Forcing scenario 
EC-Earth3 27 research institutes from 10 

European countries 
Europe 1.0° x 1.0° SSP126, SSP585 

MRI-ESM2.0 Meteorological Research 
Institute (MRI) 

Japan 1.4° x 1.4° SSP126, SSP585 

BCC-CSM2-MR Beijing Climate Center, China 
Meteorological Administration 

China 1.1° x 1.1° SSP126, SSP585 

CNRM-CM6-1 Center National de Recherches 
Météorologiques (CNRM), 
France European Earth System 
Model 

France 1.3° x 1.3° SSP126, SSP585 

EC-Earth3-veg European Earth System Model 
by 27 research institutes from 
10 European countries 

Europe 1.0° x 1.0° SSP126, SSP585 

CanESM2 Canadian Centre for Climate 
Modeling and Analysis 

Canada 2.8° x 2.8° SSP126, SSP585 

 

 

Table A.12. Classification and Impacts of Drought Severity According to U.S. Drought Monitor 
Categories and Corresponding SPEI Ranges. 

Drought category  SPEI range 
(intensity) 

Impacts 

D0  Abnormally dry -0.5 to -0.8 Potential stress on some sensitive ecosystems; 
heightened fire risk. Short-term water deficits can 
affect planting and growth of crops. Potential for 
lingering water deficits. 

D1  Moderate drought -0.8 to -1.3 Stress on more drought-sensitive species; potential 
for reduced growth rates. Damage to crops and 
pastures; lowered yield. Some water shortages 
occurring; voluntary water-use restrictions may be in 
place. 

D2  Severe drought -1.3 to -1.5 Widespread stress on many species; increased 
susceptibility to disease and pests. Likely crop and 
pasture losses; potential for increased livestock 
mortality. Water shortages common; mandatory 
water-use restrictions may be in place. 



D3  Extreme drought -1.5 to -2.0 Major risk of widespread die-offs and long-term 
ecosystem change; heightened fire risk. Major crop 
and pasture losses; risk of financial ruin for farmers. 
Widespread water shortages; emergency water-use 
measures may be in effect. 

D4  Exceptional drought < -2.0 Potential for large-scale and irreversible changes; 
extreme fire danger. Exceptional and widespread 
crop and pasture losses; livestock culling. Extreme 
water shortages creating water emergencies; 
reservoirs and wells running dry. 

  



Table A.13. Model performance statistics in each agricultural region during calibration and 
validation for rainfed spring wheat. Adapted from Khalili et al., (2023). 

   Calibration (1992-2016) Validation (1982-1991) 
 Province/State Agricultural region # p-factor r-factor MSE p-factor r-factor MSE 

1 

Alberta 

AB_1 0.95 1.60 0.05 0.80 1.31 0.20 
2 AB_2 1.00 2.67 0.08 0.90 3.43 0.19 
3 AB_3 1.00 2.61 0.16 0.70 3.94 0.39 
4 AB_4A 0.90 1.15 0.10 0.75 2.12 0.16 
5 AB_4B 1.00 1.25 0.10 0.76 2.46 0.08 
6 AB_5 1.00 2.39 0.11 0.92 3.28 0.14 
7 AB_6 0.95 1.57 0.10 0.60 3.13 0.54 
8 

Manitoba 

MA_1 0.95 2.14 0.19 0.60 2.82 0.11 
9 MA_2 0.95 1.78 0.14 0.75 1.55 0.13 
10 MA-3 0.95 1.88 0.13 0.75 1.96 0.10 
11 MA_4 1.00 2.23 0.01 0.94 1.69 0.07 
12 MA_5 1.00 2.02 0.05 0.81 1.49 0.15 
13 MA_6 0.82 1.54 0.09 0.78 1.51 0.14 
14 MA_7 0.89 2.73 0.26 0.84 1.39 0.25 
15 MA_8 1.00 2.25 0.23 0.85 2.19 0.15 
16 MA_9 0.90 2.34 0.46 0.85 3.43 0.12 
17 MA_11 0.80 1.69 0.31 0.82 1.25 0.33 
18  MA_12 0.71 1.34 0.20 0.70 1.24 0.23 
19 

Saskatchewan 

SK_1A 0.90 3.41 0.17 1.00 3.40 0.09 
20 SK_1B 0.95 1.46 0.10 0.60 1.72 0.16 
21 SK_2A 0.90 3.35 0.18 1.00 3.32 0.06 
22 SK_2B 0.50 1.51 0.33 0.80 1.77 0.11 
23 SK_3AN 0.95 1.99 0.08 0.90 1.28 0.08 
24 SK_3BN 1.00 4.57 0.03 0.90 3.69 0.11 
25 SK_3BS 1.00 1.67 0.03 0.85 1.20 0.17 
26 SK_4A 0.94 2.63 0.07 1.00 2.78 0.06 
27 SK_4B 0.82 1.56 0.12 0.70 0.95 0.20 
28 SK_5A 1.00 2.43 0.08 0.75 3.74 0.09 
29 SK_5B 1.00 4.51 0.09 1.00 6.33 0.13 
30 SK_6A 0.90 2.76 0.22 1.00 2.97 0.02 
31 SK_6B 0.90 1.43 0.09 0.90 1.47 0.04 
32 SK_7A 0.78 1.57 0.17 0.80 1.34 0.07 
33 SK_7B 0.80 1.72 0.18 0.80 2.30 0.05 
34 SK_8A 0.94 1.24 0.08 0.60 1.31 0.25 
35 SK_8B 0.85 1.73 0.10 0.95 1.94 0.12 
36 SK_9A 0.84 1.18 0.12 0.95 1.76 0.10 
37 SK_9B 0.89 1.62 0.15 0.75 3.34 0.07 
38 Minnesota MN_10 0.90 1.85 0.34 0.70 1.32 0.53 
39 MN_40 0.95 1.60 0.18 0.77 1.51 0.36 
40 

North Dakota 

ND_10 0.90 2.77 0.20 1.00 2.45 0.12 
41 ND_20 0.75 1.14 0.23 0.26 3.58 0.40 
42 ND_30 0.65 3.25 0.38 0.85 1.36 0.30 
43 ND_60 0.75 1.67 0.48 0.43 1.20 0.50 
44 ND_90 0.60 1.29 0.33 0.87 1.89 0.36 

 

  



Table A.14. Model performance statistics in each agricultural region during calibration and 
validation for rainfed canola. 

   Calibration (1992-2016) Validation (1982-1991) 
 Province/State Agricultural region # p-factor r-factor MSE p-factor r-factor MSE 

1 

Alberta 

AB_1 0.90 2.00 0.08 0.85 1.94 0.09 
2 AB_2 0.95 1.55 0.07 0.90 1.64 0.07 
3 AB_3 0.60 2.25 0.08 0.65 2.34 0.10 
4 AB_4A 0.80 1.56 0.08 0.80 1.69 0.07 
5 AB_4B 0.90 2.42 0.07 0.95 2.56 0.08 
6 AB_5 1.00 2.73 0.07 1.00 2.61 0.08 
7 AB_6 1.00 3.37 0.10 1.00 3.10 0.11 
8 

Manitoba 

MA_1 0.70 2.58 0.08 0.75 2.63 0.07 
9 MA_2 0.95 2.57 0.08 0.90 3.11 0.07 
10 MA-3 0.90 2.37 0.10 0.85 2.11 0.12 
11 MA_4 0.85 2.09 0.13 0.85 2.20 0.12 
12 MA_5 0.95 3.09 0.13 0.90 2.95 0.14 
13 MA_6 0.95 2.92 0.09 0.95 3.01 0.09 
14 MA_7 0.80 3.36 0.22 0.70 3.44 0.17 
15 MA_8 0.95 3.61 0.11 0.90 3.37 0.12 
16 MA_9 0.85 2.25 0.19 0.80 2.47 0.18 
17 MA_11 0.80 1.89 0.14 0.80 2.01 0.15 
18  MA_12 0.95 3.06 0.07 0.90 3.12 0.09 
19 

Saskatchewan 

SK_1A 0.90 3.25 0.08 0.95 3.27 0.09 
20 SK_1B 0.85 2.52 0.08 0.85 2.60 0.08 
21 SK_2A 0.80 1.82 0.15 0.70 2.12 0.13 
22 SK_2B 0.80 2.58 0.16 0.70 2.96 0.13 
23 SK_3AN 1.00 2.56 0.08 0.95 2.43 0.09 
24 SK_3BN 0.70 1.84 0.17 0.70 1.11 0.19 
25 SK_3BS 0.85 1.95 0.13 0.80 2.01 0.15 
26 SK_4A 0.84 1.82 0.13 0.79 1.56 0.14 
27 SK_4B 0.79 2.24 0.13 0.74 2.39 0.11 
28 SK_5A 1.00 3.18 0.05 1.00 2.68 0.07 
29 SK_5B 0.95 2.69 0.09 0.85 2.42 0.09 
30 SK_6A 0.95 2.69 0.08 0.80 2.38 0.10 
31 SK_6B 0.85 1.67 0.06 0.70 1.23 0.08 
32 SK_7A 0.85 2.18 0.18 0.75 1.52 0.15 
33 SK_7B 0.75 1.63 0.14 0.65 1.22 0.16 
34 SK_8A 1.00 2.60 0.06 0.95 2.45 0.07 
35 SK_8B 0.90 1.70 0.05 0.80 1.88 0.07 
36 SK_9A 0.85 2.02 0.10 0.80 2.16 0.11 
37 SK_9B 0.95 2.29 0.12 0.90 2.55 0.13 

 

 



Figure A.1. Comparison of historical SWY and projected SWY in high, mid-high, mid-low, and 
low W/N- -N-stress days. Black, red and blue lines 
illustrate average of historical and 36 projected SWY scenarios under RCP2.6 and RCP8.5, 
respectively. The number inside each sub-figure shows the average SWY during the respective 
time span. Grey signals in each panel are simulated SWY under the 36 scenarios. 



 

 

Figure A.2. Comparison of DS1 and DS2 simulated SWY scenarios under RCP2.6, and RCP8.5. 
DS1 and DS2 denotes ensemble mean of simulated SWY under nine GCMs. 

 

 

 

 
 

Figure A.3. Spatial distribution of the share of variance under different GCMs, RCPs, DSs, and 
95PPUs in RDR basin for future (2040-2064) yield projections. 

  



Figure A.4. Share of variance (mean % ANOVA) related to GCM, RCP, DS, and PPU in high 
(H), mid-high (MH), mid-low (ML), and low (L) W/N/T stress regions for future (2040-2064) 
yield projections. 

 
 

Figure A.5. Main steps of the SWAT, SUFI-2, and PP-program parallel processing used in this 
study. 

  



 
Figure A.6. Comparison of historical precipitation and temperature (left column) and their 
projected values (middle and right columns) based on six downscaled GCMs used from CMIP6 
collection. The data are illustrated for Crop Lands, Mountainous Lands, and Natural Lands during 
the growing season (May-
and green shades. The blue and red lines illustrate the historical and multi-model ensemble mean 
annual precipitation and temperature with their long-term average values shown next to the lines. 



 
Figure A.7. Comparison of projected precipitation and temperature under ECEEarth3, MRI, BCC, 
CNRM, ECEarthveg, and CanESM2 GCMs and SSP126, and SSP585 scenarios in crop lands, 

and GW. Thick blue and red lines illustrate yearly average projected precipitation and temperature.  

  



 

Figure A.8. Empirical versus theoretical Gamma Distribution for selected sub-basins. In sub-
figures, a comparison of observed data and gamma distribution model is demonstrated and the p-
values are presented for both KS and AD methods. NOTE: the annual precipitation in the selected 
sub-basins ranges from 391 mm (in sub-basin 762) to 845 mm (in sub-basin 1580), with sub-basins 
1569 and 1747 receiving annual precipitations of 612 mm and 620 mm, respectively. 

  



 

Figure A.9. Pearson correlation coefficient between monthly detrended Standardized Precipitation 
Evapotranspiration Index (SPEI) and spring wheat yield for different CARs. The horizontal axis 
represents the various regions. The vertical axis displays different SPEI time scales ranging from 
1 to 12 months. A gradient color scale is employed to indicate the strength of the correlation, with 
a more intense red color signifying a correlation close to 1 (strong positive correlation) and a more 
prominent blueish color representing weaker correlations.  

 



 
Figure A.10. Comparative analysis of water yield (mm) and crop yield (tonne/ha) for first to fifth 
post-drought years (D scenario) versus corresponding five-year periods assuming no prior drought 
(ND scenario) under historical period. Green dots and lines represent the ND scenario, while red 
dots and lines denote the D scenario across six selected CARs for comprehensive basin coverage. 
Each dot represents a sub-basin within a CAR. 

 



 
Figure A.11. Simulated WYLD (left) and Y (right) versus cumulative precipitation in six selected 
CARs across the basin. The data are presented for the five consecutive post-drought years (D 
scenario, red) and the same years assuming no prior drought (ND scenario, blue) under the SSP585 
future scenario. Only spring wheat Y is presented due to its prevalence in the basin. Each dot 
represents a sub-basin within a CAR. 

 



 
Figure A.12. Simulated net virtual water export (NVWE) anomalies between D and ND scenarios 
(i.e., calculated as NVWE (D) - NVWE (ND)) in six selected CARs across the basin. The data are 
presented for five consecutive post-drought years under the historical scenario. Only spring wheat 
NVWE anomalies (×105 m³) is presented due to its prevalence in the basin. Each dot represents a 
sub-basin within a CAR. 



 
Figure A.13. Simulated net virtual water export (NVWE) anomalies between D and ND 
scenarios (i.e., calculated as NVWE (D) - NVWE (ND)) in six selected CARs across the basin. 
The data are presented for five consecutive post-drought years under the SSP585 scenario. Only 
spring wheat NVWE anomalies (×105 m³) is presented due to its prevalence in the basin. Each 
dot represents a sub-basin within a CAR.


