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Abstract 

Evaluating several pathological conditions such as low-back pain, scoliosis, herniated discs, and 

postural stability after spinal cord injury or chronic stroke requires a deep understanding of the 

inter-spinal interactions. Assessing the kinetics of the human head-arms-trunk (HAT) could 

provide useful information for clinical assessment during various motor tasks, and for designing 

prevention and rehabilitation strategies. Mathematical techniques such as linked-segment models 

of the HAT along with an inverse dynamics approach can be used to calculate the inter-segmental 

moments. Several studies have investigated the lumbosacral joint moment using a single-segment 

model of the trunk during different movements. However, methods for calculating joint moments 

at different levels of the spinal column have rarely been investigated. This is due to the fact that 

joint moment estimation using an inverse dynamics approach requires accurate estimation of the 

individual-specific body segment parameters (BSPs) (e.g., mass, center of mass, moments of 

inertia, and joint centers of rotation) of each segment, which is technically challenging for the 

multi-segment HAT due to the high inter-participant variability of these parameters for HAT 

segments. Moreover, this approach is prone to experimental errors due to inaccuracies in kinematic 

data induced by soft tissue artifacts and force plate measurement errors (such as center of pressure 

offsets). As a result, a methodology to estimate joint moments at different levels of the spinal 

column after minimizing above-mentioned inaccuracies is of great significance.  

The objective of this thesis was to propose a methodology for accurate assessment of the three-

dimensional (3D) inter-vertebral moments using a multi-segment HAT model via compensating 

errors in motion data (due to soft tissue artifacts), ground interaction force measurements (due to 

center of pressure offsets), and BSPs estimation for the HAT segments. Using the proposed 

methodology, this study also aimed to provide, for the first time, the inter-vertebral moment 

patterns during multi-directional trunk-bending motions using a multi-segment HAT model.  

First, this study presented a nonlinear, multi-step, optimization-based, non-invasive method for 

estimating individual-specific BSPs and center of pressure offsets for calculating joint moments 

in a seven-segment HAT model. The collected motion data of eleven non-disabled individuals 
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participating in a seated trunk-bending experiment in the anterior direction (recorded by motion 

capture cameras and a force plate) were used. Initial estimates of the BSPs were adopted from 

cadaveric data and scaled for each individual. Two inverse dynamics approaches were used. 

Accurate inputs are expected to result in the same values for the net joint moment via both inverse 

dynamics approaches. Since scaling induces inaccuracies in the estimation of the BSPs, the inverse 

dynamics approaches were expected to result in different values for the net joint moments. 

Therefore, a set of BSPs and center of pressure offsets, that minimize the difference between the 

results of the two approaches, are expected to be more accurate compared to those which result in 

significantly larger differences. Our proposed method estimated the individual-specific BSPs and 

the center of pressure offsets that minimized the difference between the net joint moment 

calculated via both inverse dynamics approaches at all inter-segmental levels. The obtained results 

indicated that the proposed method significantly reduced the difference (p < 0.01) in the net joint 

moment estimation by 77.6 % (average among participants). The proposed method enabled more 

accurate estimation of individual-specific BSPs, and consequently more accurate assessment of 

the 3D kinetics of a multi-segment HAT model.  

Second, this study presented a procedure for estimating joint moments at different inter-segmental 

levels during multi-directional trunk-bending motion after compensating two major sources of 

error: inaccuracy of individual-specific BSPs and soft tissue artifacts. The collected motion data 

of eleven non-disabled individuals participating in a seated trunk-bending experiment in five 

different directions and for three different speeds were used. We compensated for the errors in the 

motion data due to soft tissue artifacts based on a previously introduced technique. The effect of 

joint level, trunk-bending direction, and movement speed on the inter-segmental moments were 

investigated. The results showed significant effects (p < 0.01) of joint-level, bending-direction, as 

well as an interaction effect between joint-level and bending-direction. Moreover, we observed 

significant effects of joint-level and trunk-bending direction as well as their interaction effect on 

the net joint moment errors induced due to soft tissue artifacts. The results of this study reflected 

complex, task-specific patterns for the 3D inter-segmental moments at different joint-levels, which 

cannot be studied using single-segment models or without such error compensations.  
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The proposed procedure enables more accurate in vivo estimation of the inter-vertebral moments 

during various functional tasks. Interpretation of inter-vertebral moments can be of great 

importance for clinical evaluations and for developing injury prevention and rehabilitation 

strategies as well as identifying any clinically meaningful joint moment patterns for either non-

disabled or disabled populations. 
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Preface 

This thesis is an original work by Alireza Noamani. The research project, of which this thesis is a 

part, received research ethics approval from the Health Research Ethics Board of the University 
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Chapter 3 of this thesis has been submitted as an original article (research paper) to the Journal of 

Biomechanical Engineering (Transactions of the ASME), titled “Optimal Estimation of 

Anthropometric Parameters for Quantifying Multi-Segment Trunk Kinetics”.  

Chapter 4 of this thesis has been submitted as an original article (full paper) to Gait and Posture, 

titled “Quantification of Multi-Segment Trunk Kinetics during Multi-Directional Trunk 

Bending”.  

Chapters 3 and 4 present a methodology development and data analysis and interpretation applied 

on previously collected data. The collected data were presented in the Journal of 

Electromyography & Kinesiology, vol. 20, no. 5, pp. 823–832, 2010 and the Journal of Applied 

Biomechanics, vol. 26, no. 3, pp. 265–272, 2010 that addressed different research questions.  

Parts of this thesis were presented as a poster at the 17th Annual Alberta Biomedical Engineering 

Conference 2016 (Banff, Canada) and selected for a five-minute presentation competition at the 
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Chapter 1 

1 Introduction 

1.1 Trunk Kinetics and Applications 

Spinal cord and back injuries frequently occur due to various conditions such as occupational, 

athletic, and accidental incidences. Accurate risk assessment, prevention, and treatment evaluation 

for such injuries require assessment of the kinematics and kinetics of the spinal column [1]. Such 

assessments require an accurate and reliable estimation of trunk muscle forces and spinal 

interactions [1]. Intervertebral interactions such as relative movements between vertebrae, and 

spinal loads are of great importance for clinical evaluation of a wide range of pathological 

conditions such as scoliosis [2]–[5], low back pain [6]–[12], spinal cord injury [13]–[16], 

ankylosing spondylitis [17], and herniated disks [18]. Measurement of the inter-spinal interactions 

is also employed for medical decision making and for designing pre- and post-surgical treatments 

[19]. 

Various techniques have been used for accurate measurement of the intervertebral motion such as 

percutaneous skeletal trackers, inserted bone pins [20], [21], and medical imaging [22].  However, 

any technique that involves surgery or inserting pins increases the risk of spinal cord injury or may 

cause infection [19]. Besides, medical imaging techniques are subject to radiation exposure [19]. 

Non-invasive motion tracking systems have been extensively used to capture the motion of 

different body parts during various motor tasks. Motion tracker systems use skin-mounted active 

or passive markers and infrared cameras to record the instantaneous three-dimensional (3D) 

coordinates of the anatomical landmarks. This measurement technique presents no risk and is used 

as a gold-standard reference tool for human movement studies as well as for clinical decision-

making purposes. Mathematical techniques have been introduced and employed along with the 

gold-standard motion capture systems to study biomechanical mechanisms of various motor tasks. 
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Linked-segment models of the human body, as a mathematical technique, have facilitated in vivo 

studying of intervertebral interactions. Biomechanical studies have widely used motion capture 

systems along with linked-segment models to study the spinal kinematics and the spine’s or trunk’s 

stability [23], [24]. Furthermore, clinical studies have employed such biomechanical model 

approaches in investigating pathological conditions such as hemiplegia and Parkinson’s disease 

[25], chronic stroke [26], and multiple sclerosis [27]. 3D kinematics of the upper body have so far 

been studied using single-segment [28] and multi-segment [29] models of the head-arms-trunk 

(HAT). To investigate the effect of movements produced and maintained by neuro-

musculoskeletal systems on postural stability, assessment of the HAT kinetics has also been used 

in biomechanics and rehabilitation research [30]. Moreover, measuring the net joint forces and 

moments is needed for calculating muscle forces, finding best rehabilitation techniques, evaluation 

of disability and impairment, or prostheses design [31]. Hence, assessing the accuracy and 

reliability of the kinetic analysis of the HAT is of great importance for many real-world 

applications as inaccurate measurements may result in wrong medical decisions, morbidity, and 

even permanent health conditions. Direct in vivo measurement of the reaction forces and moments 

at the body joints as generated by muscles requires very small and minimal invasive transducers 

[30] inserted among or around the spine, which is not practical in real-world clinical 

measurements. Therefore, indirect computation of kinetic variables (i.e., intervertebral forces and 

moments) via mathematical techniques such as inverse dynamics along with linked-segment 

models has become the preferred approach.  

Inverse dynamics, as a iterative algorithm, is a computational approach to determine inter-

segmental forces and moments. Using an inverse dynamics formulation, the inter-segmental 

reaction forces and moments can be calculated in a linked-segment model of the HAT based on 

non-invasive motion capture data. For this purpose, measurement of the inter-segmental 

kinematics, accurate estimation of anthropometric parameters, and force interaction between the 

body and the base of support are required. Although inverse dynamics is a commonly-used 

approach for biomechanical studies, it is prone to inaccurate results due to propagation of errors 

in measurement data. Several studies addressed the sources of error in kinetic analyses and 

suggested that inaccuracies in measurement of (a) kinematic parameters [32]–[34], (b) force plate 

data [35], and (c) anthropometric properties of body segments (hereafter referred to as body 
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segment parameters (BSPs)) [36]–[38] make major contributions to uncertainties in net joint 

moment estimations. Some studies investigated the effect of joint center locations, segment 

orientation, external forces and their point of application, linear acceleration, and inertial 

parameters of the segments on the estimated joint moments [39], [40] in the lower limbs and 

suggested that inaccuracies in (a) BSPs and (b) the segments’ motion are the main sources of 

uncertainty [37], [40]. Therefore, accurate results of an inverse dynamics approach require 

compensation of above-mentioned errors. Such compensation techniques are not trivial, and have 

not been developed yet, particularly for assessing the kinetics of multi-segment models of the 

HAT, because of its specific technical challenges [31]. As a result, utilizing such assessment of 

multi-segment HAT kinetics in clinical evaluation is currently not possible and reliable due to the 

induced errors in kinematics data, inaccuracies in estimating individual-specific BSPs, and 

systematic errors in force plate measurements due to calibration with motion capture cameras. 

Therefore, an approach that could minimize the propagation of the above-mentioned experimental 

errors could enable the assessment of HAT kinetics for clinical evaluation of a wide range of 

pathological conditions. 

Kinematic data required as input for the inverse dynamics formulation oftentimes are obtained 

from motion tracking systems which require marker placement on anatomical landmarks for 

capturing the motion of different body segments during a motor task. Therefore, three types of 

error could affect the kinematic measurements: (a) instrumentation inaccuracy (e.g., calibration of 

cameras), (b) marker misplacement on the bony anatomical landmarks, and (c) soft tissue artifacts 

(STA), i.e., the relative movement between skin-mounted markers and underlying bony landmarks 

[41]–[43]. These errors propagate in segment motion and joint angle calculations and could affect 

the computation of the intervertebral forces and moments when using inverse dynamics. Previous 

studies have investigated the effect of kinematic inaccuracies such as soft tissue artifacts on the 

kinematics and kinetics assessment of the lower limbs [44]–[46]. Besides, some studies assessed 

such effects on the kinematics of scapula [47], lumbar spine vertebrae [48], spine curvature [49], 

and the multi-segment HAT [19]. However, to the best of our knowledge, no study investigated 

the effect of soft tissue artifacts on the kinetics of a multi-segment HAT model.  
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The inverse dynamics approach requires accurate estimation of BSPs. Previous studies have 

highlighted the necessity of an individual-specific set of BSPs [38]. Medical imaging techniques 

such as magnetic resonance imaging, gamma-ray scanning, and dual-energy X-ray absorptiometry 

have been used to more accurately measure individual-specific BSPs. Although these methods are 

more accurate, they cannot be used for daily clinical analyses due to the significant cost, 

complexity, and radiation exposure. Regression equations [50] based on medical images of a small 

sample population or based on a limited number of cadavers [51] were also proposed to estimate 

individual-specific BSPs. All these efforts enable scaling approaches to estimate BSPs for different 

individuals based on the body weight and height; however, such methods could result in significant 

errors greater than 40% in joint moment estimation [52]. Optimization approaches have been 

proposed to estimate individual-specific BSPs for the lower limbs. These studies used the 

overdetermined nature of the traditional inverse dynamics formulation to find an optimal set of 

BSPs that minimizes the error in joint moment estimation by minimizing the difference between  

the joint moments calculated via different inverse dynamic approaches [52], [53]. Accurate inputs 

are expected to result in the same values for the net joint moment via different inverse dynamics 

approaches. Therefore, a set of BSPs, that minimizes the difference between the results of the 

approaches, are expected to be more accurate compared to those which result in significantly larger 

differences. However, the proposed methods only targeted the anthropometric data of the lower 

limbs when assuming the HAT as a single rigid body. To the best of our knowledge, there is 

currently no optimization-based study that investigates individual-specific BSPs for the upper 

body. More accurate and reliable estimation of individual-specific BSPs could enable more 

accurate measurement of the intervertebral moments, and consequently the characterization of 

postural balance and of the response of HAT to impact loads, the evaluation of the surgical 

approaches, and the design of neuroprostheses [51]. 

Using single-segment kinematic models, the interaction forces between the body and ground, and 

anthropometric parameters (i.e., BSPs), the intervertebral joint moment at the lumbosacral level 

has been investigated in the past [1], [31], [39], [54], [55]. The key challenge in extending this 

approach to the assessment of HAT kinetics using multi-segment models is the estimation of BSPs 

for several small-scale segments along the vertebral column. Recently, Vette et al. obtained BSPs 

for each vertebra based on high-quality images from a single Caucasian cadaver [56] and used 
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them for estimating cervical and lumbar spine joint moments based on kinematic data collected in 

another in vivo study. However, the BSPs obtained with one participant may not yield accurate 

joint moments based on kinematics data from another participant. In addition, the pattern of the 

joint moments at different levels of the spinal column is yet to be studied for various functional 

tasks.  

To the best of our knowledge, not a single study has reported on quantitative, 3D kinetics of a 

multi-segment HAT model using accurate individual-specific BSPs, whose estimation is 

technically challenging due to the high inter-participant variability of the BSPs. Consequently, a 

new approach to compensate the above-mentioned inaccuracies and address a reliable, quantitative 

approach for more accurate estimation of the intervertebral reaction loads can significantly 

facilitate the assessment of HAT kinetics during movements using multi-segment models, and 

enable objective clinical evaluations and decision-making. 

1.2 Thesis Objectives 

The goal of this study is to provide a more accurate estimation of the 3D intervertebral moments 

at different levels of the spinal column using a multi-segmental HAT model. To address and 

compensate for the major sources of inaccuracies, a comprehensive methodology is proposed to 

compensate errors in: (a) kinematic data due to soft tissue artifacts, (b) interaction force 

measurement (i.e., center of pressure (COP) offsets), and (c) BSPs for several segments along the 

spinal column. This study also aims to apply, for the first time, the proposed methodology to assess 

the joint moment patterns along the spinal column during multi-directional trunk bending, 

facilitating the characterization of the effects of joint level, trunk bending direction, and movement 

speed on the joint moment (Figure 1). 
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Figure 1. Thesis outline and summary of the proposed methodology: Multi-segment trunk 

kinetics have been calculated to investigate the effect of several factors after compensating 

inaccuracies in body segment parameters (BSPs), center of pressure (COP) offsets, and soft tissue 

artifacts (STA). BSPs include the segment’s mass, center of mass (COM), and the joint center of 

rotation (JCR). 
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1.3 Thesis Outline 

Chapter 2 reviews the literature that is relevant to this thesis: a review of human movement 

biomechanics and motion tracking systems; an overview of kinematics and kinetics descriptions 

for biomechanical analysis of human movement; a review of spinal column anatomy, trunk 

kinematic models and kinematic analysis; a review of trunk kinetics and its application in 

biomechanics; and an overview of errors in kinetic analyses of human movement and 

compensation methods. Chapter 3 presents a non-invasive, nonlinear optimization-based method 

to more accurately estimate a set of individual-specific BSPs and COP offsets for quantifying 

multi-segment trunk kinetics that minimizes the error in intervertebral joint moment estimation. 

Chapter 4 presents the effect of soft tissue artifacts on joint moments and provides the pattern of 

3D joint moments at different levels of the spinal column during multi-directional seated trunk 

bending. Chapter 5 summarizes the key findings, provides conclusive remarks on the performed 

work, and describes future perspectives. 
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Chapter 2 

2 Literature Review 

2.1 Human Movement Biomechanics  

The aim of human movement biomechanics is to assess human motion based on descriptive 

quantitative information obtained from raw measurements [57]. The quantitative evaluation of 

human movement requires raw data from capturing 3D coordinates of the body’s anatomical 

landmarks to find the relative motions between body segments [30], [57]–[59]. The anatomical 

landmarks whose motions are tracked could be categorized as (a) the center of gravity of body 

segments, (b) joint centers of rotation, (c) extremes of limb segments, or (d) bony prominences 

[57]. Further processing of the raw measurements is required to calculate kinematic variables of 

the body segments such as linear or angular displacements, velocities, and accelerations. Selection 

of the body segments is based on the task or movement to be studied. Following kinematics 

analysis of the human movement, the data can be used to calculate the forces and moments, which 

causes the observed movement. Kinetics analysis of the human movement provides insight into 

the mechanisms, movement strategies, and contribution of the neural system to movement 

execution [57].  

To track the 3D movements of the body segments, different techniques are used: optoelectronic 

stereophotogrammetry [59], [60], stereoradiography [61], electromagnetic tracking systems [62]–

[64], inertial measurement units (IMUs) [65]–[70], and markerless motion capture systems [71]–

[73]. Among all these types of motion tracking systems, stereophotogrammetric systems are most 

frequently used by researchers.  

2.1.1 Stereophotogrammetric Systems 

Optoelectronic stereophotogrammetric systems are widely used to capture the instantaneous 

position of the anatomical landmarks in a 3D measurement volume during various motor tasks. 
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Reconstruction of the trajectories of the landmarks could be based on photographs [74], 

radiographs [75], or video images [41], [76]. Several advantages of reconstructing the coordinates 

from video images such as lower cost, faster data processing , and less image distortion due to 

processing make the video-based optoelectronic systems the most efficient and common motion-

tracking system for biomechanical studies [41]. Two types of markers are commonly used by 

video-based motion capture systems: retroreflective passive markers, and active markers. Passive 

markers are used along with cameras equipped with light-emitting diode arrays mounted around 

the lens of each camera that illuminate infrared light [41]. Pattern recognition software [77] or 

dedicated hardware circuits [78] are used to recognize the passive markers in the video frames. 

Active markers tracking is performed by sequential pulse timing of the markers themselves 

detected by the system [41]. This implies that the active marker systems are more accurate and 

with higher sampling frequencies compared to the passive marker systems; however, the presence 

of wires, batteries, and pulsing circuitry are the main disadvantages of these systems [41], [79].  

For tracking the movement of a body part of interest, the instantaneous positions of a minimum of 

three non-aligned markers placed superficially on that segment are required [59]. To reconstruct 

3D coordinates of a marker and prevent marker obscurity, simultaneous visibility by at least two 

cameras is needed [41]. Therefore, to minimize the possibility of missing a marker and to increase 

the robustness of data acquisition, some studies suggest using at least four markers per segment. 

This enables the reconstruction of the segment in case one of the markers becomes obstructed.  

2.1.2 Limitations of Stereophotogrammetric Systems 

Stereophotogrammetric systems are subject to several sources of errors that could affect the 

measured marker coordinates, including instrumental errors [41], soft tissue artifacts [19], [43], 

and anatomical landmark misplacement [42], [80]. Instrumental errors could be propagated either 

systematically, due to inaccuracies in system calibration or nonlinearities, or randomly because of 

marker flickering, or electronic noise [41]. Soft tissue artifacts (STA) are defined as the relative 

movement of a skin-mounted marker with respect to underlying bone due to skin deformation 

and/or muscle contraction [19], [43]. The error induced by STA is shown to be task-specific, and 

not consistent among individuals [43]. The STA effect on the kinematics of the human movements 

is typically larger than the instrumental errors caused by the stereophotogrammetric system and, 
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hence, is a major source of inaccuracies [43]. Identification of the anatomical landmarks is a key 

requirement in human movement analysis using video-based stereophotogrammetric systems. 

Anatomical landmark determination could highly affect the joint kinematics in terms of reliability 

and interpretability [42]. The shape of the anatomical landmark, soft tissue thickness over the bony 

prominences, palpation procedure, and finally the researcher expertise can contribute to an 

accurate identification of an anatomical landmark [42].  

Using stereophotogrammetric systems for movement analysis requires a great amount of time for 

participant preparation and attachment of markers and fixtures [73]. Moreover, it needs a trained 

operator to accurately find the anatomical landmarks for placing the skin-mounted markers. 

Markerless motion capture systems are a new technology that may enhance the study of movement 

biomechanics by eliminating the inter-operator variability and the experimental artifacts (e.g., STA 

and marker misplacement) [73], [81]. However, this method has longer processing times [73] and 

its accuracy is dependent on choosing the proper technical equipment and algorithms [81]. Hence, 

its validity and reproducibility must be assessed for clinical applications [82]. 

In addition, stereophotogrammetric systems require a dedicated laboratory volume for 

biomechanical analysis of conventionally designed observation-based tests. Hence, such systems 

are costly and can only be utilized to capture and analyze a brief series of tasks in a constrained 

environment. New emerging light-weight IMU-based technologies have been recently used for 

ambulatory assessment of human locomotion. Such wearable systems enable long-term continuous 

monitoring during natural, real-life activities [83], [84] and increase the feasibility of in-home 

monitoring for older adults and individuals with chronic conditions [85]. Wearable health 

monitoring systems could facilitate early diagnosis and better treatment of medical conditions [86]. 

However, further biomechanical and clinical research is required to overcome challenges and 

issues associated with wearable systems for becoming a reliable technology and being accepted 

by clinicians and patients as an enhanced healthcare system [83]–[87] compared to gold-standard 

motion capture systems. 
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2.2 Kinematics and Kinetics Descriptions 

2.2.1 Kinematic Data Acquisition and Processing 

Capturing the trajectory of the skin-mounted markers using a motion capture system allows 

reconstructing the body segments of interest during the execution of a motor task [59]. The 3D 

rotation and translation of each rigid body segment are determined by at least three non-collinear 

markers or a cluster of markers attached superficially to the segment. The location of the markers 

is determined based on the experimental task and anatomical landmarks of the segment. This 

approach enables the measurement of kinematic variables that describe the body segment’s motion 

as non-deformable rigid bodies. The kinematic variables are determined either by measurement or 

estimation using mathematical models of the musculoskeletal system [59]. A multi-body 

kinematics model can describe the kinematics of body segments represented as a chain of links 

(rigid body segments) connected to each other via joints. The number of the segments, the number 

of degrees of freedom in the model, and constraints imposed by the joints are dependent on the 

goal of the study to achieve an accurate estimation of the human movement that could mimic the 

function of the musculoskeletal system [30], [59]. As such, the kinematic variables of the body 

segments in the linked-segment model can be obtained based on the measurements of the motion 

tracking system. For this purpose, frames of reference should be first introduced. 

2.2.2 Global and Local Frames 

In a laboratory equipped with a stereophotogrammetric system for human movement analysis, a 

global reference frame is arbitrarily defined through a calibration procedure. The global frame 

(lab-fixed frame) is a set of orthogonal axes (�⃗�𝑔, �⃗⃗�𝑔, 𝑍𝑔) in which the instantaneous coordinates of 

the markers are provided by the motion capture system [59], [88]. A local frame (body-fixed 

frame) (Figure 2) is a segment-specific frame fixed to the rigid segment and is defined based on 

the instantaneous positions of the markers placed on that segment [57], [59], [88].  When the 

markers defining a local frame are superficially placed with respect to the underlying anatomical 

landmark, the local frames are also called bone-embedded anatomical frames [30]. Using this 

standard approach, the associated segment local frame is repeatedly identifiable, which is required 
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for achieving high intra- and inter-participant repeatability [59].  Nonetheless, a point of interest 

can be expressed with respect to either a local or global frame (Figure 2) [57].   

 

Figure 2. The position of a point of interest expressed in a global frame (�⃗�𝑔 , �⃗⃗�𝑔 , �⃗�𝑔) or a local frame 

(�⃗�𝑙 , �⃗⃗�𝑙 , �⃗�𝑙) as �⃗⃗�𝑔 and �⃗⃗�𝑙, respectively. �⃗⃗�𝑙 is a vector that shows the origin of the local frame in the global 

frame. 

2.2.3 Coordinate Transformation 

To define the local frame (coordinate system) of a segment, the instantaneous coordinates of three 

markers placed on that segment with respect to the global frame are required. �⃗�1, �⃗�2, and �⃗�3 are 

the position vectors of the segment’s markers in the global reference frame (Figure 3). The local 

frame can be defined as a set of three orthogonal unit vectors expressed in the global frame as 

follows: 

�⃗�𝑙 =  
�⃗⃗⃗�2−�⃗⃗⃗�1

|�⃗⃗⃗�2−�⃗⃗⃗�1|
, �⃗⃗�𝑎𝑢𝑥 =  

�⃗⃗⃗�1−�⃗⃗�3

|�⃗⃗⃗�1−�⃗⃗�3|
, �⃗�𝑙 =

�⃗⃗�𝑙×�⃗⃗�𝑎𝑢𝑥

|�⃗⃗�𝑙×�⃗⃗�𝑎𝑢𝑥|
, �⃗⃗�𝑙 =

�⃗�𝑙×�⃗⃗�𝑙

|�⃗�𝑙×�⃗⃗�𝑙|
      (Eq. 2.1)  

where �⃗�𝑙, �⃗⃗�𝑙, and 𝑍𝑙 are the unit vectors constituting the local frame of a segment, expressed in the 

global frame. The orientation of a rigid body in space with respect to the global frame is defined 

using an instantaneous rotation matrix denoted as follows: 

𝑋𝑔  

𝑌𝑔  

𝑍𝑔  

𝑋𝑙  

𝑌𝑙  

𝑍𝑙  

𝑂𝑙
⃗⃗ ⃗⃗  

𝑃𝑔 ⃗⃗ ⃗⃗ ⃗ 

𝑃𝑙 ⃗⃗⃗⃗⃗ 
𝑃 
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𝑅 = [�⃗�𝑙 , �⃗⃗�𝑙 , �⃗�𝑙] = [

�⃗�𝑔 . �⃗�𝑙 �⃗�𝑔 . �⃗⃗�𝑙 �⃗�𝑔 . �⃗�𝑙

�⃗⃗�𝑔 . �⃗�𝑙 �⃗⃗�𝑔 . �⃗⃗�𝑙 �⃗⃗�𝑔 . �⃗�𝑙

�⃗�𝑔 . �⃗�𝑙 �⃗�𝑔 . �⃗⃗�𝑙 �⃗�𝑔 . �⃗�𝑙

 ] = [

cos 𝜃�⃗⃗�𝑔�⃗⃗�𝑙
cos 𝜃�⃗⃗�𝑔�⃗⃗�𝑙

cos 𝜃�⃗⃗�𝑔�⃗�𝑙

cos 𝜃�⃗⃗�𝑔 �⃗⃗�𝑙
cos 𝜃�⃗⃗�𝑔�⃗⃗�𝑙

cos 𝜃�⃗⃗�𝑔�⃗�𝑙

cos 𝜃�⃗�𝑔�⃗⃗�𝑙
cos 𝜃�⃗�𝑔 �⃗⃗�𝑙

cos 𝜃�⃗�𝑔�⃗�𝑙

 ] 𝑙𝑜𝑐𝑎𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

        (Eq. 2.2) 

 

Figure 3. Coordinate transformation from a local frame to the global frame. The orientation of a 

segment of interest can be defined by a time-varying rotation matrix consisting of three columns 

of unit vectors and constructed using the instantaneous positions of at least three markers placed 

on the segment. 

where the components of each column of this matrix are the projection of each axis of the local 

frame onto the unit directions of the global frame. The dot product of two unit vectors gives the 

cosine of the angle between them. To obtain the position vector of an arbitrary point on a segment 

during movement in the global reference frame, a transformation between two coordinate systems 

is required as denoted in (Eq. 2.3): 

�⃗⃗�𝑔 = 𝑅𝑙𝑜𝑐𝑎𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

. �⃗⃗�𝑙 + �⃗⃗�𝑙                  (Eq. 2.3) 

where �⃗⃗�𝑙 and �⃗⃗�𝑔 are the position vectors in the local and global frames, respectively, �⃗⃗�𝑙 the position 

vector of the local frame origin expressed in the global frame, and 𝑅𝑙𝑜𝑐𝑎𝑙
𝑔𝑙𝑜𝑏𝑎𝑙

 is the instantaneous 

rotation matrix that describes the segment orientation with respect to the global frame [89]. 

𝑋𝑔  

𝑌𝑔  

𝑍𝑔  

𝑋𝑙  

𝑌𝑙  

𝑍𝑙  

�⃗�2 

�⃗�3 

�⃗�1  



 

14 

 

2.2.4 Inverse Dynamics  

By knowing the location of each segment’s center of mass (COM) and its inertia tensor, the effect 

of the mass distribution of the link (segment) is determined [89]. The motion resulted from a set 

of forces and initial conditions can be computed via forward-dynamics [90]. However, in 

biomechanics, we oftentimes calculate the forces and moments that cause a particular movement 

using a motion capture system and anthropometric (inertial and geometric) parameters. This 

process is called inverse dynamics [90]. The forces and moments can be internal and external: 

internal forces are imposed by contraction of muscles, ligaments, or the friction in the muscles and 

joints [57]; external forces are applied by the ground or external loads [57]. Methods, such as 

iterative Newton-Euler dynamics algorithm, can be used to compute the forces and moments that 

correspond to a given body segment’s motion. The algorithm is composed of outward and inward 

iterations [89]. For a given 𝑛-link model, the outward iterations compute the linear and rotational 

velocity and the linear and rotational acceleration of the COM of each link starting from link one 

and moving consecutively to link 𝑛. Subsequently, the inertial force and moment acting at the 

COM of each link are calculated. Having the load at the link’s COM, the inward iteration computes 

the interaction joint forces and moments based on the force and moment balance equations for 

each link recursively from link 𝑛 back to link one. The iterative formulation of Newton-Euler 

equations, adopted from [89], is summarized as follows: 

Outward iterations:          (Eq. 2.4) 

�̇�𝑖+1
𝑖+1 =  𝑅𝑖

𝑖+1 ( �̇�𝑖
𝑖 × 𝑃𝑖+1

𝑖 +  𝜔𝑖
𝑖 × ( 𝜔𝑖

𝑖  ×  𝑃𝑖+1
𝑖 )  +  �̇�𝑖

𝑖 ) ,  

�̇�𝐶𝑂𝑀𝑖+1

𝑖+1 = �̇�𝑖+1
𝑖+1 × 𝑃𝐶𝑂𝑀𝑖+1

𝑖+1  +  𝜔𝑖+1
𝑖+1  × ( 𝜔𝑖+1

𝑖+1  ×  𝑃𝐶𝑂𝑀𝑖+1

𝑖+1 ) +  �̇�𝑖+1
𝑖+1  , 

𝐹𝑖+1
𝑖+1 = 𝑚𝑖+1 �̇�𝐶𝑂𝑀𝑖+1

𝑖+1 , 

𝑁𝑖+1
𝑖+1 = 𝐼𝑖+1

𝐶𝑂𝑀𝑖+1 �̇�𝑖+1
𝑖+1  +  𝜔𝑖+1

𝑖+1  ×  𝐼𝑖+1
𝐶𝑂𝑀𝑖+1 𝜔𝑖+1

𝑖+1  . 

Inward iterations:          (Eq. 2.5) 

𝑓𝑖
𝑖 = 𝑅𝑖+1

𝑖 𝑓𝑖+1
𝑖+1  +  𝐹𝑖

𝑖  , 
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𝑛𝑖
𝑖 = 𝑁𝑖

𝑖 +  𝑅𝑖+1
𝑖 𝑛𝑖+1

𝑖+1 + 𝑃𝐶𝑂𝑀𝑖

𝑖  ×  𝐹𝑖
𝑖 + 𝑃𝑖+1

𝑖  ×  𝑅𝑖+1
𝑖 𝑓𝑖+1

𝑖+1  . 

Where 𝑖 is the index of the link that connects the distal and proximal joints 𝑖 and 𝑖 + 1, 𝜔 is the 

angular velocity, 𝑣 is the joint linear velocity, �̇� is the joint linear acceleration,  𝑃 is the joint 

position, 𝑃𝐶𝑂𝑀  is the segment COM position, 𝑣𝐶𝑂𝑀  is the segment COM linear velocity, �̇�𝐶𝑂𝑀  is 

the segment COM linear acceleration, 𝑅 is the rotation matrix, 𝐼𝐶𝑂𝑀  is the moment of inertia tensor, 

𝑚 is the mass of the segment, 𝐹 and 𝑁 are the inertial forces and moments acting on the segment 

COM, and 𝑓 and 𝑛 are the forces and moments at the joints.  

For an arbitrary segment 𝑖 with the distal joint 𝑖 and proximal joint 𝑖 + 1, 𝐼𝑖
𝐶𝑂𝑀𝑖  is expressed in 

the segment-fixed frame with the origin at the segment’s COM, 𝑃𝐶𝑂𝑀𝑖

𝑖   is the position of the 

segment’s COM expressed in the segment-fixed frame with the origin at joint 𝑖. Moreover, the 

angular velocity and acceleration of the segment ( 𝜔𝑖
𝑖  and �̇�𝑖

𝑖 ), linear acceleration of the joint 

( �̇�𝑖
𝑖 ),  and the segment’s COM linear acceleration ( �̇�𝐶𝑂𝑀𝑖

𝑖 ) are also expressed in the segment-

fixed frame with the origin at joint 𝑖. 𝑅𝑖+1
𝑖  is a rotation matrix from the segment-fixed frame at 

joint 𝑖 + 1 to joint 𝑖. Using this notation, the force and moment at joint 𝑖 are calculated via (Eq. 

2.5) at the segment-fixed frame with the origin at joint 𝑖.  

The instantaneous angular velocity of each segment at time 𝑡 is calculated based on the rotation 

matrices at time 𝑡 and (𝑡 − 1) as follows: 

𝑅𝐿
𝐺 (𝑡) = 𝑅𝐿

𝐺 (𝑡 − 1) .  (
1

𝑓𝑠
𝑆(�⃗⃗⃗�))       (Eq. 2.6) 

𝑆(�⃗⃗⃗�) =  𝑓𝑠  .  𝑅𝐿
𝐺 (𝑡 − 1)−1 .  𝑅𝐿

𝐺 (𝑡)        (Eq. 2.7) 

𝑆(�⃗⃗⃗�) =  [

0 −𝜔𝑧(𝑡 − 1) 𝜔𝑦(𝑡 − 1)

𝜔𝑧(𝑡 − 1) 0 −𝜔𝑥(𝑡 − 1)
−𝜔𝑦(𝑡 − 1) 𝜔𝑥(𝑡 − 1) 0

]    (Eq. 2.8) 
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where  𝑓𝑠  is the sampling frequency of the system, 𝑆(𝜔) is the skew-symmetric matrix applied on 

vector of angular velocity �⃗⃗⃗�.  

Note that the position vectors and angular and linear velocities are calculated from the kinematics 

of the body segments recorded by the motion tracking system (e.g., optoelectronic, IMU-based, 

etc.). The instantaneous rotation matrices are calculated based on the concepts introduced in 

section 2.2.3 from the instantaneous position of the skin-mounted markers, which are used to 

transfer all joint forces and moments to the global frame. 

2.3 Trunk Kinematics 

Trunk kinematics have been extensively studied using various linked-segment models based on 

the region of interest and the accuracy needed to capture the relative motion between different 

levels of the spinal column.  

2.3.1 Anatomy of the Human Trunk 

The trunk of the human body refers to all body segments between the base of the neck and the hip; 

however, it does not include the arms [60]. The spinal column consists of the vertebral column, 

sacral bones, and coccyx. The vertebral column consists of twenty-four vertebrae including seven 

vertebrae of the cervical spine (𝐶1 𝑡𝑜 𝐶7), twelve of the thoracic spine (𝑇1 𝑡𝑜 𝑇12), and five of 

the lumbar spine (𝐿1 𝑡𝑜 𝐿5) (Figure 4). The adjacent vertebrae are attached to each other by 

intervertebral discs composed of the fibrocartilaginous joint, which ties the vertebrae together 

while providing slight relative movements. Due to the elastic connection and the muscles extended 

along the spinal column, the spine is flexible for bending toward different directions, but relatively  

stiff against vertical loading [30]. The sacral region located inferior of the lumbar spine, and the 

coccyx located inferior of the sacral region, are two rigid bony segments (sacrum (𝑆1 𝑡𝑜 𝑆5) and 

coccyx (Co1 to Co4)) that are attached to the spinal column. 
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Figure 4. Anatomy of the spinal column. It consists of seven cervical, twelve thoracic, and five lumbar 

vertebrae. Sacrum and coccyx are two rigid bones attached inferior of the lumbar spine (adopted from: 

https://upload.wikimedia.org/wikipedia/commons/8/82/715_Vertebral_Column.jpg , access date: October 

15, 2017). 

2.3.2 Single-Segment Trunk Models 

The kinematics of the human trunk have been studied using a one-segment model. Previous studies 

have considered the trunk as a single rigid body and calculated its angle with respect to the pelvis 

acting as an inverted pendulum. Some studies used single-segment trunk models to investigate the 

motion of the lumbar [28], [91] and thoracic spine [92]. Troke et al. [93] generated a 

comprehensive, gender-specific normative database of the lumbar spine’s ranges of motion based 

on data from 405 non-disabled individuals. Static and dynamic balance has been investigated using 

a single-segment of the trunk as an inverted pendulum to predict the region of stability [94], [95] 

and loss of balance, as well as for fall assessment [96]–[100]. Other studies have explored human 

postural control using a single-segment of the trunk [101]–[119]. Goodworth and Peterka [120] 
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characterized the control of the upper body orientation with respect to the pelvis in response to 

external perturbations consisting of both pelvis and visual surround tilts. They also used a feedback 

model for investigating the contribution of the sensorimotor modalities such as the vestibular, 

visual, and proprioceptive systems to spinal stabilization [120], [121]. Some studies investigated 

intrinsic trunk stability [122]–[125]. Granata and Marras [122] proposed an EMG 

(electromyography)-based model of the lumbar spine and predicted the trunk extension moment 

generated by muscles forces as a function of trunk flexion angle for each individual. They also 

showed that spinal compressive and shear loading increased with trunk asymmetry during free 

dynamic lifting [123]. Granata and Wilson [124] investigated the effect of trunk posture on spinal 

stability. They showed that spinal stability was affected by trunk posture and that asymmetrical 

posture due to low back pain decreased the control of spinal stability. Panjabi et al. [126] evaluated 

the risk of injury during whiplash and its effect on cervical spine curvature. This approach has 

been extensively used to study the orientation of the trunk during walking [27], [127]–[129]. 

Mazza et al. [130] used an IMU attached to the lower trunk and tuned a Kalman filter to estimate 

the orientation of the trunk during treadmill walking. They validated their results by a 

stereophotogrammetric system. Grimpampi et al. [25] obtained the lower trunk angle with a single 

IMU during level walking for a group of patients with hemiplegia and Parkinson’s disease. They 

stated that trunk angle assessment during abnormal gait could provide insight into motor control 

impairment and help decision-making in rehabilitation strategies [25]. Huntley et al. [26] evaluated 

the utility and robustness of three models (13-segment whole body, head-trunk-pelvis, and one-

segment pelvis models) for clinical gait assessment among stroke survivors.  

Although the use of a single-segment model facilitates capturing the trunk kinematics by using 

only three or four markers, it ignores the relative motion among different levels of the spinal 

column during a motor task. Hence, multi-segment trunk models can shed light on our 

understanding of how relative movements between adjacent vertebral segments could affect 

execution of motor functions.   

2.3.3 Multi-segment Trunk Models 

The number of studies that modeled the human trunk as multiple segments is still limited. An ideal 

multi-segment trunk model would allow tracking the motion of each spinal unit consisting of an 
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intervertebral disc and the adjacent vertebrae [131]. However, non-invasive measurement of the 

motion of each unit is not feasible by using current motion capture technology. This is due to the 

fact that palpable bony surfaces around each spinal unit are too small and, thus, the  ability to place 

a required number of skin-mounted markers on each spinal unit is limited [131]. As a result, 

previous studies suggest to consider two or more vertebrae as a single rigid body and define them 

as a single trunk segment by proper marker configuration whose motion could be captured by the 

motion capture system [30], [131].  

Syczewska et al. [132] used a seven-segment model of the spine between 𝐶7 and 𝑆2. They 

investigated the inter-segmental movement patterns during treadmill walking with normal pace 

and showed a significant effect of such movements in the reduction of energy consumption during 

gait. Gatton and Pearcy [133] studied the effect of inter-vertebral joint motions during lumbar 

flexion tasks by placing five position sensors over the lumbar vertebrae. They identified no unique 

sequence among their participants [133]. Al-Eisa et al. [134] examined the relationship between 

pelvic asymmetry and trunk motion patterns in non-disabled individuals and those with low back 

pain. They used a three-segment model of the trunk and suggested that functional impairment in 

those with low back pain could be better identified by asymmetrical movement of the lumbar spine 

rather than absolute range of motion [134]. A three-segment kinematic model was used by Konz 

et al. [131] to assess the spinal motion during walking. They concluded that the relationship 

between the lower limb motion and spinal motion during walking could be useful for preoperative 

decision-making to recover normal alignment and balance with least impact on gait. Preuss and 

Fung [135] used a four-segment biomechanical model of the trunk while EMG electrodes were 

bilaterally attached to seven trunk muscles. They used a horizontal support surface translation test 

using a perturbation platform moving in eight different directions for both standing and sitting 

postures. They observed relative movements between the segments in both test postures. 

Moreover, for both biomechanical and neuromuscular aspects of the trunk response, significant 

effects of the perturbation direction and posture (sitting or standing) as well as interaction effects 

between these factors were observed. Preuss and Popovic [136] proposed a seven-segment model 

of the trunk and pelvis as the next step. Using a multi-directional trunk bending experiment, they 

reported significantly different patterns of inter-segmental motions among participants at different 

levels of the spinal column. They also concluded that the inter-segmental spine motion was task-
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specific, complex with inconsistent distribution among the joint levels. Leardini et al. [60] 

compared eight previously-proposed biomechanical models which were different in terms of 

marker-set, anatomical frame definition, and joint convention. They reported that the patterns and 

ranges of motion obtained by these models were significantly different. Hence, marker-set and 

frame definition must be carefully reviewed prior to any clinical decision-making [60]. Moreover, 

they proposed a five-segment model of the trunk for different routine daily activities [29]. They 

found high intra-participant repeatability; however, significant participant-specific motion was 

detected at each inter-segmental level in three anatomical planes. A more recent study investigated 

spinal motion during staircase walking outside a lab volume by using inertial and magnetic sensors 

placed on the pelvis, lumbar spine, and thoracic spine [69]. Their results showed significant 

differences in motion pattern and range of motion of the spine between staircase and level walking 

[69]. Kinematic and kinetic stability indices were introduced and evaluated using a multi-segment 

trunk model and a force plate, respectively. The motion of different spinal regions including 

lumbar spine, lower and upper thorax were recorded during non-dominant single leg standing for 

control and recurrent low back pain individuals [137]. Participants with recurrent low back pain 

showed higher lumbar stability compared to the other spinal regions in the eyes-open condition 

because of a proposed pain prevention strategy. In contrast, the stability decreased  in  eyes-closed 

condition, implying they were more reliant on visual information from the surrounding compared 

to proprioceptive information. A recent study investigated the spinal kinematics during gait across 

different age groups [138]. This study showed age-dependent kinematics of the spine and showed 

that lumbar lordosis (exaggerated lumbar spine curve) and thoracic kyphosis (exaggerated thoracic 

spine curve) increase throughout adolescence. Moreover, they showed a higher range of motion of 

the lumbar spine for adults compared to adolescents.  

All above-mentioned studies have used multi-segment trunk models and investigated differences 

between the spinal motions at different levels. These studies showed that the spinal motion is task-

dependent and complex along the spinal column at different inter-vertebral joints, which cannot 

be observed using a single-segment model of the trunk. This implies that the quantification of 

kinematics using multi-segmental trunk models plays a significant role in the biomechanical 

analysis of human movements, and that accurate assessment of the relative motion between the 

spinal segments is needed.  
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2.4 Trunk Kinetics  

Kinetics assessment based on a linked-segment model requires measurements of the inter-

segmental motions, accurate estimation of the BSPs (anthropometric data), and ground reaction 

forces (GRFs) as the inputs of an inverse dynamics approach. Several studies employed linked-

segment models of the human body along with BSPs to estimate forces and moments at various 

body joints during different motor tasks. Trunk kinetics using a single-segment model have been 

studied to calculate 3D lumbo-sacral (𝐿5/𝑆1) joint forces and moments. Kingma et al. [55] 

developed a 3D linked-segment model of the body with a single trunk segment and calculated the 

lumbo-sacral joint moment. They derived BSPs from regression equations and proved the validity 

of the model by comparing the lumbo-sacral joint moment obtained via both bottom-up and top-

down inverse dynamics approaches. The bottom-up inverse dynamics approach uses kinematics 

data and BSPs of the body segments measurd by a motion capture system as well as kinetics (GRFs 

and COP) measured by a force plate, along with a linked-segment model. It starts with computation 

of the joint forces and moments from the inferior most segment and proceeds successively upward 

with assuming the force plate data as the boundary condition for the bottom-most segment. The 

top-down inverse dynamics approach uses only the kinematics data and BSPs of the body segments 

in a linked-segment model. It considers an unloaded condition (or a known load as the boundary 

condition) for the top most segment and starts calculation from the superior-most segment and 

proceeds downward consecutively. Plamondon et al. [54] and Desjardins et al. [39] used lower 

body and upper body kinematic models  for estimating the lumbo-sacral joint moment. The lower 

body kinematic model included the feet, shanks, thighs, and pelvis, whereas the upper body model 

included the hands, forearms, upper arms, head, and trunk. They used the data provided by Winter 

[57] and regression equations to estimate the mass, COM, and moments of inertia of the trunk 

segment. Plamondon et al. [54] examined the validity of the bottom-up and top-down inverse 

dynamics approaches to estimate the net moment at the lumbo-sacral (𝐿5/𝑆1) joint during lifting 

tasks for lower body and upper body kinematic models, respectively. They showed 95% 

correlation between the results obtained by both bottom-up and top-down approaches [54]. 

Desjardins et al. [39] quantified the sensitivity of the bottom-up and top-down inverse dynamics 

approaches to experimental errors [39]. Their results suggested that the external forces (bottom-

up approach) and mass of the segments (top-down approach) are the major contributors to the 
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differences in the sensitivity of the lumbo-sacral joint moment about the transverse axis [39]. 

Larivière and Gagnon [139] compared both bottom-up and top-down approaches based on two 

biomechanical models for estimating the 3D lumbo-sacral joint moment. The lower and upper 

body biomechanical models were the same as in a previous study [39]. Their results demonstrated 

good agreement between the two approaches for static tasks, but disparity for dynamic tasks. They 

also investigated the sensitivity of the lumbo-sacral joint moment to measurement errors when 

both bottom-up and top-down approaches were used for motion analysis during lifting tasks [40]. 

Their results revealed that the main source of variability for both models was the orientation of the 

anatomical frames and joint centers of rotation (JCR). Moreover, they suggested that the bottom-

up approach requires precise measurement of the COP and the top-down approach needs accurate 

estimation of BSPs and the upper body segment accelerations [40]. Consequently, they concluded 

that error minimization in kinetics assessment of the spinal column is of great importance. In a 

different application, Callaghan et al. [140] explored the effects of walking speed and arm swing 

on loads, motion, and muscle activation at the lumbar spine. They used a linked-segment kinematic 

model, regression equations for BSPs estimation, and a bottom-up approach to obtain the 

𝐿4/𝐿5 forces and moments. Subsequently, they partitioned these moments amongst the muscles 

based on the EMG signals by using an EMG-driven model [140]. Some studies benefited from the 

quantification of kinetics using linked-segment spine models in investigating chronic low back 

pain [141] and balance recovery [31]. Arjmand et al. [1] utilized both bottom-up and top-down 

approaches to estimate the net moment at the 𝐿5/𝑆1 intervertebral disc. Recent studies 

investigated the effect of unilateral lower limb amputation on the kinetics of the low back at the 

lumbo-sacral level during walking [142], sitting and standing [143]. They showed that altered 

trunk motion and lumbo-sacral kinetics may play a significant biomechanical role in start and/or 

recurrence of low-back pain [143] and may contribute to risk of low-back injury in individuals 

with lower limb amputation [142]. In a recent study, Faber et al. [144] used a full-body ambulatory 

inertial motion capture system to estimate lumbo-sacral joint moments and GRFs via the top-down 

approach. They validated their results via the bottom-up approach using measurements from a 

force plate and motion capture cameras [144]. 

All above-mentioned studies have investigated the moments and forces at the lumbo-sacral joint 

using a one-segment HAT model. Multi-segment HAT models have been rarely used to study 
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inter-spinal joint kinetics. Just recently, Seay et al. [145] proposed an inverse dynamics approach 

along with a two-segment HAT model (thoracic and lumbar segments) to estimate joint moments 

and forces acting on the lumbo-sacral (𝐿5/𝑆1) and thoraco-lumbar (𝑇12/𝐿1) joints during running 

at different stride lengths. They considered the thorax segment a cylinder and computed the lumbar 

segment’s anthropometric parameters (BSPs) according to Pearsall et al.  [146]. Vette et al. [56] 

incorporated the BSPs from a single cadaver into an inverse dynamics approach for calculating the 

joint moments at the cervical and lumbar spinal joints for another male individual during perturbed 

sitting.  

The majority of the above-mentioned studies investigated the lumbo-sacral joint moment using a 

single-segment trunk model. Few studies were found that investigated the kinetics of the spinal 

column using multi-segment kinematic models. Previous studies showed that assessing the kinetics 

of single-segment trunk models is error-prone, and reported the sources of inaccuracies in the trunk 

kinetics; however, to the best of our knowledge, not a single study has proposed a multi-segment 

assessment of human trunk kinetics along with compensation for experimental errors. The major 

sources of error are due to inaccuracies in (a) kinematics data, (b) BSPs, and (c) force plate data. 

Errors in kinematics were introduced in section 2.1.2. In the following section, errors in BSPs and 

force plate data are introduced. 

2.5 Errors in Human Movement Kinetics Analysis 

Generally, kinetics analysis of human movement using a linked-segment model and an inverse 

dynamics approach requires kinematic variables of the rigid segments, accurate estimation of the 

BSPs, and force plate measurements (GRFs and position of the COP). Although inverse dynamics 

approaches have been extensively used to calculate the forces and moments at various body joints, 

previous studies suggested that these approaches are prone to errors caused by inaccuracy in (a) 

segment motion (rotation and translation) measurements, (b) BSPs estimation, (c) force plate 

measurements, and (d) location of JCRs [34]. Riemer et al. [37] showed that the above-mentioned 

inaccuracies could lead to substantial uncertainties in joint moment estimation varying from 6% 

to 232% of the moment magnitude for the lower limb joints. They also suggested that inaccuracies 

in segment orientation and BSPs are the major sources of these uncertainties [37].  
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2.5.1 BSPs Errors 

Many studies have investigated the effect of inaccuracy in BSPs estimation on the calculated joint 

moments during human movement. Lenzi et al. [147] determined the influence of inaccuracies in 

BSPs estimation and modeling assumptions on the instantaneous position of COM by simulating 

the BSPs error as ±10% variation in the parameters. They assumed the anatomical structure of the 

whole body as a set of four rigid segments with a single trunk segment and assigned the BSPs by 

using scaling equations provided by Winter [57] based on body weight and height [147]. They 

showed that, although some BSPs are more critical for different COM trajectory estimation 

methods, sensitivity and error propagation are task-specific [147]. Rao et al. [36] investigated the 

influence of different models for estimating BSPs on the calculated joint moments via inverse 

dynamics during gait in a three-segment lower limb model (foot, shank, and thigh). Six often-used 

estimation models (one geometric model, two cadaveric models, and three in vivo mass-scanning 

models) were used along with a bottom-up inverse dynamic approach. Their results indicated that 

estimated BSPs were highly dependent on the model used for estimating BSPs and deviated from 

9.73% to 60% of the mean value estimated by the six models across different segments. They 

reported that the peak value of the flexion/extension moment at the hip joint varied up to 20.11% 

within the models when using different models for estimating BSPs, which implies that the effect 

of BSPs on the joint moment estimation cannot be neglected [36]. A Monte Carlo simulation was 

used by Nguyen and Reynolds [148] to simulate the effect of variability and uncertainty in BSPs 

on joint moments and suggested little effect of BSPs estimation on joint moments for slow and 

repeatable movement such as gait except for the swing phase. Some researchers studied the effect 

of BSPs estimation on kinetics assessment of gait [149], [150], quiet standing, squatting, and level 

walking [151]. Ganley and Powers [149]and Kay Lee et al. [150] investigated the effect of BSPs 

variations on joint moment calculation at the lower limbs (foot, shank, thigh) during gait and 

concluded that motor tasks with high acceleration could be more affected by inaccuracy of BSPs. 

Chen et al. [151] used a sixteen-segment model of the body (head, neck, upper arms, forearms, 

thighs, shanks, trunk, pelvis, hands, and feets) during quiet standing, squatting, and gait using 

BSPs from four estimation methods. They assessed the difference between the calculated and 

measured GRFs and COP as error. They reported significant differences between the error induced 

by the BSPs estimation methods. Hence, individual-specific BSPs are essential for evaluation of 
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several motor tasks. At the same time, accurate estimation of BSPs can only be achieved by 

imaging techniques which are not always practical for clinical assessments. Although different 

sets of BSPs [57], [152], [153] are routinely used for estimating inertial parameters in gait 

laboratories, many studies extensively discussed various concerns regarding the use of previously-

published datasets for BSPs, particularly when the individual falls outside the originally studied 

population for which the BSPs were estimated [36], [38], [55], [154], [155]. This is even more 

critical for pathological groups with limb asymmetry, since applying existing BSPs datasets could 

result in substantially different joint forces and moments during gait [38].  

Several techniques have been used to accurately estimate individual-specific BSPs. Medical 

imaging techniques such as magnetic resonance imaging [156]–[159], gamma-ray scanning [160], 

dual-energy X-ray absorptiometry [149], [150], [152], [161]–[163], and computed tomography 

[146] have been used to estimate individual-specific sets of BSPs. Although these methods have 

high accuracy and errors of 5% or less [52], they require medical imaging equipment which is too 

expensive and involves radiation exposure. Consequently, they are not an adequate approach for 

routine clinical evaluation of human movement [163]. Therefore, other researchers employed  

previously collected data from medical images and provided regression equations to estimate BSPs 

[160]. Hinrichs [50] developed a set of regression equations to estimate moments of inertia for 

body segments. However, the equations were based on a very small sample population, which 

implies that using them could result in large errors, especially for individuals who fall outside the 

population in terms of body weight and height. Durkin and Dowling [163] used BSPs obtained 

from dual-energy X-ray absorptiometry of four human populations and developed linear regression 

equations for estimating BSPs of five body segments in the frontal plane. They reported significant 

differences among the populations for all segments and BSPs. Nevertheless, they claimed that their 

proposed regression equations were generally best when compared to other sources. Yet, there is 

currently no single data set for all BSPs, populations, and body segments with globally high 

accuracy. Simple geometric models such as elliptical zones with known densities [164] and 

circular cylinders based on the segment length and circumference [163] were used with constant 

density to estimate BSPs. However, more complex geometric models which consider density 

changes and mass distribution characteristics of the segment are needed to enhance the accuracy 

of such methods [163]. Most of previously introduced predictive equations are not able to obtain 
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BSPs for 3D kinetics assessment. Moreover, they frequently assumed that the COM and the 

endpoints of the segment are aligned and the moments of inertia tensor is principal with respect to 

the anatomical axes of the segments [165]. Dumas et al. [165] adjusted the equations provided by 

previous studies and provided adjusted scaling equations that could be directly used for 3D kinetics 

assessments. Another study obtained the BSPs from a limited number of cadavers which allows 

individual-specific scaling based on the body weight and height [151]. Recently, Vette et al. [51] 

provided a comprehensive set of BSPs for the human trunk, with segments associated with every 

single vertebra, head, and upper limbs segments. Based on high-resolution images of the Male 

Visible Human, they digitally reconstructed the anatomical structures of a single cadaver and 

identified the 3D COM coordinates, mass, and moments of inertia for all vertebral trunk segments 

and four upper limbs (two per arm) as well as the 3D JCRs for spinal intervertebral discs [51]. All 

above-mentioned studies employed mathematical techniques along with medical images of either 

small populations or a limited number of cadavers to estimate individual-specific BSPs. However, 

an accurate method for estimating individual-specific BSPs during in vivo experiments using non-

invasive radiation-free methods is still required. 

Some studies employed force plate data to estimate individual-specific BSPs. These studies 

calculated the mass and COM position of a segment based on the changes in the mean body COP 

and force plate data in two different postures (e.g., standing and lying) when the segment is 

displaced [155]. Pataky et al. [166] proposed an in vivo method to determine body segment masses 

by using a force plate. They asked participants to lay on a board placed on a force plate and perform 

different specific postures. The mass of their limbs was subsequently estimated by using the COP 

positions from the force plate [166]. Their method can provide a quick approach to obtain 

individual-specific mass information which could be used to avoid erroneous biomechanical 

analyses for clinical assessments. Damavandi et al. [155] presented a method for estimating mass 

and COM location of the body segments from COP positions. Their method was sensitive in 

detecting the difference between individuals of different morphology and their results were within 

the range of previously-proposed methods. Hansen et al. [167] proposed a method for estimating 

BSPs in a fifteen-rigid-link model of the whole body. They identified the BSPs and recalculated 

the GRFs via an inverse dynamics approach and validated the calculated values against those 

obtained by the force plate. They also compared their results with the method proposed by Dumas 
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et al. [165]. As a different approach, some studies employed optimization techniques to estimate 

BSPs. Riemer et al. [52] used a two-step optimization approach to estimate BSPs. A four-segment 

model of the body with a single trunk segment was used and, by considering BSPs as optimization 

variables, their objective function minimized the least square difference between calculated GRFs 

via a top-down approach and known GRFs from a force plate. Chen et al. [151] proposed an 

optimization-based, non-invasive method for estimating individual-specific BSPs by using a 

motion capture system and two force plates. They used a sixteen-rigid-link model of the whole 

body with the trunk modeled as a single ellipsoidal segment during quiet standing and an 

optimization procedure. Using the BSPs as variables, their cost function minimized the sum of 

squared distances between the calculated and measured COP in stationary postures. Using 

common standard motion laboratory set-up, non-invasive optimization methods can be used for 

estimating BSPs for routine clinical evaluations especially for patients whose anthropometric data 

fall outside reported BSPs. Although some studies employed optimization techniques to estimate 

optimized individual-specific BSPs, they targeted only the lower limbs and/or considered the HAT 

as a single rigid segment. Due to high inter-participant variability of the shape and size of HAT 

segments, there is currently no comprehensive database for estimating individual-specific BSPs 

for the multi-segment HAT. Therefore, a non-invasive, radiation-free optimization-based 

algorithm that could provide individual-specific BSPs for the HAT segments is still needed. 

2.5.2 Force Plate Measurements Errors 

The influence of errors in COP and GRFs measured by a force plate on joint moments have been 

studied. McCaw and DeVita [35] quantified the effect of errors in alignment of foot coordinates, 

measured by motion capture cameras, and COP, measured by a force plate, on ankle, knee, and 

hip joint moments during the stance phase of gait. They considered ±0.5 and ±1.0 cm shifts in the 

anterior-posterior location of the COP and investigated its effect on the estimation of the joint 

moments using inverse dynamics. They showed that shifting COP caused 7% to 14% change in 

the maximum estimated joint moment [35]. Heiss and Pagnacco [168] suggested that the 

relationship between COP and COM trajectories captures aspects of the standing balance control 

strategy employed by the central nervous system and, therefore, minimizing their measurement 

error is of great importance in our ability to use them for comprehending balance control strategies 

[168]. They proposed an optimization method to find the location of the trunk COM and/or COP 
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that minimized the difference between the whole-body COM and COP positions in the horizontal 

plane during quiet standing. They assumed that the projection of the body COM position on the 

horizontal plane coincides with the COP during quiet standing. They showed that optimizing the 

COP and compensating its systematic error could significantly improve the optimization results in 

minimizing the difference between COM and COP positions in the horizontal plane. Karlsson and 

Frykberg [169] compared various force plate measures for evaluation of postural stability. They 

recorded force plate data from stroke survivors and compared the force plate measures and clinical 

balance test outcomes (Berg balance test) for each individual. They concluded that the force plate 

measures could quantify a different aspect of human balance during standing. Their results also 

indicated that the vertical force and the Berg balance test show the same aspects of postural 

stability. COP excursion has been widely used as an indicator of postural stability in standing. 

Ruhe et al. [170] explored the reliability of the COP measures for postural balance assessment by 

reviewing previously-published studies. They concluded that bipedal static COP measures could 

be reliable for postural stability evaluation and provided recommendations for increasing the 

reliability of using COP measures by applying specific conditions [170].  Thus, error compensation 

strategies that suppress systematic errors in force plate measurements (GRFs and COP position) 

are essential for characterizing postural stability and would lead to more accurate and reliable 

clinical evaluations. Some studies investigated the effect of erroneous force plate measures on the 

uncertainty of parameters calculated via inverse dynamics during gait [37], [171]. Riemer et al. 

[37] showed that, during the stance phase of the gait cycle, inaccuracies in the shank and thigh 

segment angles and the distance between the COP and ankle JCR were the major sources of 

uncertainties in the hip joint moment estimation. Pàmies-Vilà et al. [171] analyzed uncertainties 

in BSPs, kinematics, and force plate measurements on the kinetics of human gait obtained via 

inverse dynamics. They added a proportional error with respect to the full-scale output of the force 

plate and showed that inaccurate force plate readings could affect the joint moment estimation 

even more than inaccuracy of BSPs. Schmiedmayer and Kastner [172] explored the parameters 

that affect the accuracy of the COP, measured by piezoelectric force plates and derived an 

algorithm which describes the COP error. They also showed that the accuracy enhancement in 

COP position depends on the load distribution on the force plate. They concluded that accurate 

error compensation for COP position with correction formula can only be obtained for forces with 

a small area of distribution [173]. Therefore, the COP measured by the force plate during several 
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functional tasks and postures, particularly sitting that involve a distributed load on the surface of 

the force plate (compared to walking or standing) may result in erroneous readings. This could 

affect the kinetics assessment of various body segments during static/dynamic sitting and, thus, an 

error compensation method is required to obtain more accurate joint moments. 

In this chapter, a review of the literature that is relevant to this thesis was presented. This review 

revealed that the quantification of multi-segment HAT kinetics has rarely been studied. The major 

technical challenge in this assessment has been uncertainty in the calculated inter-vertebral 

moments due to inaccuracy of kinematic data of the segments (due to soft tissue artifacts), high 

inter-participant variability of BSPs, and systematic error in the force plate measurement. Based 

on this review, no study has investigated the effect of soft tissue artifacts on the kinetics assessment 

of a multi-segment model of a HAT. Moreover, There is currently no reliable, non-invasive, 

radiation-free method for accurate estimation of individual-specific BSPs for HAT segments. 

Therefore, estimation of inter-vertebral moments is still technically challenging, and a new reliable 

approach that compensates for above-mentioned inaccuracies can significantly facilitate kinetics 

assessment of the HAT movements using multi-segment models, and enable objective clinical 

evaluations and decision-making. 
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Chapter 3 

3 Optimized Body Segment Parameters Estimation 

The material presented in this chapter has been submitted as a research paper to the Journal of 

Biomechanical Engineering. The majority of content of this chapter is identical to the material 

presented in the publication except for the text formatting which was done according to University 

of Alberta requirements. 

A. Noamani, A. H. Vette, R. Preuss, M. R. Popovic, H. Rouhani, “Optimal Estimation of 

Anthropometric Parameters for Quantifying Multi-Segment Trunk Kinetics”, submitted to Journal 

of Biomechanical Engineering (Transactions of the ASME). 

3.1 Abstract 

Kinetics assessment of the human head-arms-trunk (HAT) complex using a multi-segment model 

is required for clinical evaluation of several pathological conditions. Inaccuracies in body segment 

parameters (BSPs) is a major source of uncertainty in the estimation of the joint moments 

associated with the multi-segment HAT. Given the large inter-subject variability, there is currently 

no comprehensive database for the estimation of BSPs for the HAT. We propose a nonlinear, 

multi-step, optimization-based, non-invasive method for estimating individual-specific BSPs and 

calculating joint moments in a multi-segment HAT model. Eleven non-disabled individuals 

participated in a trunk-bending experiment, and their body motion was recorded using cameras 

and a force plate. A seven-segment model of the HAT was reconstructed for each participant. An 

initial guess of the BSPs was obtained by individual-specific scaling of the BSPs calculated from 

the Male Visible Human images. The inter-segmental moments were calculated using both bottom-

up and top-down inverse dynamics approaches. Accurate kinematic parameters, BSPs, and force 

plate measurement  are expected to result in the same values for the net joint moment via both 

inverse dynamics approaches. Since scaling induces inaccuracies in the estimation of the BSPs, 
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the inverse dynamics approaches were expected to result in different values for the net joint 

moments. Therefore, a set of BSPs and center of pressure offsets, that minimize the difference 

between the results of the two approaches, are expected to be more accurate compared to those 

which result in significantly larger differences. Our proposed method adjusted the scaled BSPs 

and center of pressure offsets to estimate optimal individual-specific BSPs that minimize the 

difference between the moments obtained by top-down and bottom-up inverse dynamics 

approaches. Our results indicate that the proposed method reduced the error (the difference 

between the net joint moment calculated via bottom-up and top-down approaches) in the net joint 

moment estimation by 77.59% (average among participants). Our proposed method enables more 

accurate estimation of individual-specific BSPs and, consequently, more accurate assessment of 

the three-dimensional kinetics of a multi-segment HAT model. 

Keywords: Inverse dynamics; Joint moments; Multi-segment model; Optimization; Trunk 

kinetics. 

3.2 Introduction 

Evaluation of several conditions such as lower back pain [7], scoliosis [4], and spinal cord injury 

[15] requires kinematics and kinetics assessment of the spinal column. Since in vivo measurement 

of inter-spinal interaction (i.e., relative motion and load) is challenging, linked-segment models 

have been suggested as mathematical means to estimate the inter-segmental motions and moments 

during trunk motion. This approach has been extensively used to study the spine kinematics [29], 

[131], [138], vertebral trunk kinetics [56], and trunk stability [174]. Clinical studies have also 

evaluated the inter-segmental motions and moments of the trunk  by using segmental models to 

investigate low back pain [7] and spinal cord injury [15]. Trunk kinematics have been investigated 

using one-segment and multi-segment models of the head-arms-trunk (HAT) complex [136]. 

Trunk kinetics have been studied using a one-segment [139] or multi-segment [56] HAT models 

based on kinematics measurement using a one-segment HAT model and estimation of the inter-

segmental motions. To the best of our knowledge, no study has provided an individual specific, 

quantitative, three-dimensional (3D) kinetics assessment of the HAT based on independent motion 

measurement of several HAT segments. This particularly requires an individual-specific 
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estimation of body segment parameters (BSP) for each HAT segment in an inverse dynamics 

formulation, that is technically challenging and error-prone [52], especially for the multi-segment 

HAT because of the significant inter-subject variability of the BSPs. 

In general, body kinetics assessment using linked-segment models and an inverse dynamics 

approach requires: (a) the capture of inter-segmental kinematics; and (b) accurate measurement of 

mass-inertia parameters and ground reaction forces (only for bottom-up inverse dynamics 

approach) [56]. Inverse dynamics is a computational approach that uses anthropometric, 

kinematic, and kinetic data as the input to calculate the forces and moments at various body joints 

[52]. Although the inverse dynamics approach is commonly used for biomechanical analysis of 

human movement, this procedure is error-prone. Riemer et. al [37] showed that the uncertainties 

in the estimated net joint moments derived from inverse dynamics could be significant, varying 

from 6% to 232% of the estimated moment magnitude. They also suggested that inaccuracies in 

BSPs and estimated segment angles are the major sources of these uncertainties [37]. As such, 

obtaining an accurate estimation of the BSPs including the 3D coordinates of the joint’s center of 

rotation (JCR), 3D center of mass (COM) coordinates, mass, and moments of inertia for each 

segment, is a key requirement for kinetics assessment of the multi-segment body. Medical imaging 

techniques have been used to obtain individual-specific anthropometric data such as magnetic 

resonance imaging [158], gamma-ray scanning [160], and dual-energy X-ray absorptiometry 

[163]. Despite their high accuracy, such methods are usually expensive, too complex for routine 

clinical motion analysis, and subject to radiation [163]. Other studies used data obtained by 

medical imaging and suggested predictive equations to obtain BSPs [50], [160], [163]. Some 

studies obtained the anthropometric data from a limited number of cadavers and normalized them, 

which allowed for an individual-specific estimation of BSPs based on the participant’s body 

weight and segment length [151]. However, such methods are prone to error when the data are 

applied to individuals with a different range of age, body type, sex and ethnicity [50], [166]. In 

fact, the estimation of BSPs based on cadaveric data may have error larger than 40% [52], implying 

that there is currently no method to accurately obtain BSPs for the multi-segment HAT. 

In the past, concurrent derivation of top-down and bottom-up inverse dynamics formulation has 

been used to minimize errors mentioned above in joint moment calculation for lower limbs [175]–
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[177]. In the top-down formulation, the dynamic equilibrium equations are solved starting from 

the most superior segment, proceeds downward for each consecutive segment, and requires only 

BSPs and kinematic data as the input. In the bottom-up formulation, these equations are solved 

from the most inferior segment, proceeds upward, and uses the force plate data in addition to the 

BSPs kinematic data. Therefore, the system is over-determined since the boundary conditions are 

known for the most inferior segment. Because of BSPs and kinematic data inaccuracies, the net 

joint moments obtained by both top-down and bottom-up formulations differ. Hence, a more 

accurate estimation of anthropometric and kinematic data results in smaller differences between 

net joint moments obtained by both formulations. 

For the lower limb joints, optimization methods have been employed to minimize the effects of 

the BSPs’ inaccuracy. Vaughan et. al [53] utilized a gradient projection algorithm for estimating 

BSPs. They considered the BSPs as the optimization variables and the difference between the 

measured and calculated ground reaction forces (GRF) under the feet as the cost function. Their 

approach required an initial estimate of the BSPs and did not target the minimization of the joint 

moment errors directly. Kuo [32] proposed a least-squares estimation approach for inverse 

dynamics computations to reduce the errors in joint moments by around 30% and eliminated 

constant biases in data. Cahouet et al. [33] addressed uncertainties in the acceleration data and 

their effect on the estimated joint moments using a weighted least-squares optimization approach. 

Cappozzo [178] and Mazza and Cappozzo [179] proposed an optimization algorithm for joint 

kinematics based on the GRF data; however, they did not consider errors in BSPs. Riemer et. al 

[34] presented a constrained nonlinear optimization to improve the accuracy of joint moments 

estimation by optimizing the angular position data. Their cost function minimized the difference 

between the measured and computed GRFs. They also proposed a two-step optimization method 

for improving the accuracy of the calculated joint moments [52]. All studies mentioned above 

provide an optimization-based method for calculating net joint moments at different lower limb 

joints in the sagittal plane during running, long jumping, kicking, gait, squatting and standing.  

To the best of our knowledge, no study has proposed a comprehensive multi-segment model of the 

HAT for 3D joint moment estimation based on individual-specific BSPs. Therefore, the present 
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study proposes a nonlinear optimization-based, non-invasive method for estimating individual-

specific BSPs in 3D kinetics assessment of the HAT using a multi-segment model. 

3.3 Method 

The experimental protocol and data collection were described in detail in a previous study  [136] 

and, thus, are only briefly described here. 

3.3.1 Experiment protocol 

Eleven non-disabled individuals (4 females; age: 28.5±3.3 years; trunk height: 0.75±0.04 m) with 

no history of persistent back pain, spine-related musculoskeletal impairments, or any neurological, 

vestibular, or other balance-related disorders participated in the data collection. All individuals 

provided written consent prior to performing the experiment. Research Ethics Board approval was 

received from the local ethics committee. 

Participants sat naturally on a rigid elevated surface, and the lower legs freely hung with no further 

constraints or support to restrict their movement. Each participant was instructed to lean forward 

and then return to the initial upright sitting position, three times in self-selected comfortable pace. 

Each participant performed an angular trunk motion of 45° to reach a physical target located in 

front of him/her by the head (Figure 5). The arms were crossed motionless over the chest 

throughout each trunk-bending trial. To avoid a counterweight effect of the lower legs during trunk 

movement, participants were asked to keep their lower legs vertically downwards throughout the 

experiment.  



 

35 

 

 

Figure 5. Targets for the trunk-bending task were placed at participant-specific distances and heights 

representing an angular motion of 45° of the trunk. 

3.3.2 Data acquisition 

Twenty-two reflective markers (10 mm diameter) were placed over and around the participant’s 

spine, representing a seven-segment model of the trunk (Figure 6). Six motion capture cameras 

(Vicon, Oxford, UK) recorded the trajectory of the markers at a sampling rate of 120 Hz. The 

obtained time series were subsequently low-pass filtered by employing a dual-pass 8th-order 

Butterworth filter at a cut-off frequency of 2 Hz. A force plate (AMTI, Watertown, MA, USA) 

was used to record the GRF and the position of the center of pressure (COP) at a sampling 

frequency of 1,000 Hz.   
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Figure 6. Markers were placed over the participant’s spinal column to form a seven-segment trunk model: 

Head and neck (HD), upper thoracic (UT), mid-upper thoracic (MUT), mid-lower thoracic (MLT), lower 

thoracic (LT), upper lumbar (UL), lower lumbar (LL) and sacral (SC) segments In addition, the local 

frame of all HAT segments is depicted. 

3.3.3 Multi-segment modeling of the head-arms-trunk (HAT) complex 

According to Figure 6, the multi-segment model of the HAT consisted of seven rigid bodies representing 

the head and neck segment (HD), four thoracic segments (UT, MUT, MLT, and LT) and two lumbar 

segments (UL and LL). Each segment was defined by a marker placed centrally on the spinous process of 

the caudal vertebra and two markers placed at 5 cm lateral of the spinous process of the rostral vertebra. 

The LL trunk segment was located above the pelvis segment (SC), which was used to define the inertial 

reference frame of the body. These segments were assumed rigid and connected to each other by 3D 

revolute joints located at the center of respective inter-vertebral discs. Since the arms were assumed rigidly 

connected to the UT segment in the trunk-bending trials, their inertial properties were incorporated into the 

UT segment. For each trunk segment, a segment-fixed frame was defined according to Table 1a, and 

obtained based on the trajectory of markers placed on it. The X-, Y-, and Z-axes of each segment-fixed 

frame represented flexion/extension, lateral bending, and axial rotation, respectively. A segment-fixed 

frame was defined for the arm segments according to Table 1b, and was used to incorporate the 

anthropometric data of the arm segments into the UT segment (see Section 3.3.4). 
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3.3.4 Anthropometric data 

The initial estimates of the mass, COM, and moments of inertia of the HAT segments were 

obtained from digital reconstructions of anatomical structures via high-resolution images of the 

Male Visible Human (MVH) from the body of a 38-year-old white male (height: 1.80 m and 

weight: 90 kg). Vette et al. have already calculated the 3D coordinates of the COM and JCR, mass 

and moment of inertia tensor for each of the 24 vertebral trunk segments and four arm segments  

[51]. We used these data to obtain the BSPs for our proposed seven-segment model of the trunk. 

First, the 3D coordinates of the inter-vertebral joints were identified using the MVH images and 

used as the JCRs in the proposed multi-segment model. Second, the coordinates associated with 

the anatomical landmarks of the pelvis including the left and right anterior superior iliac spine 

(ASIS) and the left and right posterior superior iliac spine (PSIS) were identified. Third, the mass, 

COM, and the moment of inertia tensor of each individual segment in the proposed model were 

calculated based on the parameters obtained in [51] as follows: 

𝑀𝑎𝑠𝑠𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = ∑ 𝑚𝑎𝑠𝑠𝑘
𝑟𝑜𝑠𝑡𝑟𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑛
𝑘=𝑐𝑎𝑢𝑑𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1         (Eq. 3.1) 

𝐶𝑂𝑀𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
∑ 𝑚𝑎𝑠𝑠𝑘𝐶𝑂𝑀𝑘

𝑟𝑜𝑠𝑡𝑟𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑛
𝑘=𝑐𝑎𝑢𝑑𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1

𝑀𝑎𝑠𝑠𝑠𝑒𝑔𝑚𝑒𝑛𝑡
                (Eq. 3.2) 

𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = ∑ 𝐽𝑘𝑟𝑜𝑠𝑡𝑟𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑛
𝑘=𝑐𝑎𝑢𝑑𝑎𝑙 𝑠𝑢𝑏𝑠𝑒𝑔𝑚𝑒𝑛𝑡,1 ,   𝐽𝑘 =  [

𝐽11
𝑘 𝐽12

𝑘 𝐽13
𝑘

𝐽21
𝑘 𝐽22

𝑘 𝐽23
𝑘

𝐽31
𝑘 𝐽32

𝑘 𝐽33
𝑘

]   (Eq. 3.3a) 

where 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡  is the moment of inertia tensor of the segment composed of subsegments 𝑘 = 1: 𝑛 with the 

moment of inertia tensor of 𝐽𝑘 about the segment’s COM expressed in the reference frame fixed to the 

pelvis of the cadaver Table 1c.  

The components of 𝐽𝑘 of subsegment 𝑘 were calculated based on parallel axis theorem as follows: 

𝐽𝑖𝑗
𝑘 =   𝐼𝑖𝑗

𝑘 + 𝑚𝑎𝑠𝑠𝑘(|𝑅|2𝛿𝑖𝑗 − 𝑅𝑖𝑅𝑗)     𝑖, 𝑗 = 1,2,3     (Eq. 3.3b) 
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�⃗⃗� = 𝑅1�̂� + 𝑅2�̂� + 𝑅3�̂�           

𝛿𝑖𝑗 =  {
1    𝑖 = 𝑗
0    𝑖 ≠ 𝑗

          

where 𝐼𝑖𝑗
𝑘  denotes the components of inertia tensor of subsegment 𝑘 about the subsegment’s COM, 

�⃗⃗� is the displacement vector from the subsegment’s COM to segment’s COM, and 𝛿𝑖𝑗is the 

Kronecker delta function. 

Application of inverse dynamics formulation requires obtaining the COM and JCR trajectories as 

well as the moments of inertia tensor of each segment throughout each trunk-bending trial with 

respect to a reference frame. However, all above-mentioned calculated parameters were expressed 

in a reference frame fixed to the pelvis defined by anatomical landmarks on the MVH images 

according to [51](Table 1c). It was needed to transform the anthropometric parameters to a lab-

fixed frame during each trunk-bending trial. To this end, we used the reflective markers placed 

over the spinous processes to capture the motion of COM and JCR for each vertebral segment as 

a function of time. Image processing techniques were applied to the MVH images to obtain a set 

of vectors from the spinous processes to respective inter-vertebral spinal discs below the segment 

representing the JCR and from the spinous processes to the segment’s COM. These vectors and 

the moment of inertia tensors were expressed in the segment-fixed frame and normalized to the 

MVH cadaver’s body weight and trunk height. The vectors were then re-scaled by the participant’s 

trunk height for the data collected in Section 2.3. The scaled moments of inertia tensors were also 

obtained based on the trunk height and the body weight of each individual. The trunk height was 

measured as the distance from the support surface to the base of the participant’s occiput in an 

upright sitting posture. Then, we applied the instantaneous rotation matrix between the segment-

fixed frame and the lab-fixed frame to obtain the two above-mentioned vectors expressed in the 

lab-fixed frame and subsequently the trajectory of each segment’s COM and JCR in the lab-fixed 

frame. For each participant, we defined the lab-fixed frame based on anatomical landmarks of the 

pelvis during the motionless time interval at the beginning of each trial (Table 1d). The COM, 

JCR, moments of inertia tensor, GRF, COP, and angular kinematics were obtained for each 

segment with respect to this lab-fixed reference frame during each trunk-bending trial. 
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Table 1. Definition of implemented anatomical frames based on anatomical landmarks. 

a) Segment-fixed frame for each spinal segment for trunk kinematics assessment 

X-axis Pointed from left to right, parallel to the two rostral markers 

Z-axis Pointed superiorly, parallel to the line between the caudal marker and the mid-point of two 

rostral markers 

Y-axis The cross-product of the Z and X axes, pointing anteriorly 

 
b) Segment-fixed frame for arm segments 

X-axis for each lower 

arm 

Pointed distally from the elbow marker to the marker placed on the wrist 

(ulnar styloid process). 

Z-axis for both upper 

and lower arms 

Cross product of the X-axis of the lower and upper arm segments at each side 

of the body 

Y-axis for each upper 

or lower arms 

The cross-product of the Z and X axes, pointing anteriorly 

X-axis for each upper 

arm 

Pointed proximally from the elbow marker to the marker placed on the 

shoulder (acromion). 

 
c) Pelvis-fixed frame for expression of anthropometric data in the MVH images [51] 

Origin Right ASIS 

Y-axis  Pointing medially from the right ASIS to the left ASIS 

X-axis  Pointing anteriorly perpendicular to the plane defined by two ASIS’s and the midpoint of 

pubic tubercles 

Z-axis Pointing superiorly to form an orthogonal right-handed coordinate system  

 
d) Lab-fixed frame defined based on pelvic landmarks during upright sitting 

Origin Midpoint of the two PSIS 

X-axis  Pointing medially from the right PSIS to the left PSIS 

Y-axis  Pointing anteriorly perpendicular to the plane defined by the X-axis and an auxiliary vector 

from mid-PSIS to L3 spinous process 

Z-axis Pointing superiorly to form an orthogonal right-handed coordinate system  
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3.3.5 Inverse dynamics 

A custom-made algorithm for Newton-Euler recursive equations was employed as the inverse 

dynamics approach to calculate the net joint moments and forces at the inter-segmental levels in a 

multi-segment model of the HAT. Two inverse dynamics approaches were used: (1) bottom-up 

approach; and (2) top-down approach. The former approach used the force plate measurements, 

including GRF and COP position as the boundary condition of the dynamic chain in Newton-Euler 

recursive equations. The computation started from the most inferior segment and then proceeds 

upward. The latter approach only requires kinematic and BSPs data. In this approach, the inverse 

dynamics calculation started from the top-most segment and assumed the cross-sectional forces 

and moments to be zero at the top-most JCR as the boundary condition and proceeds downwards 

to the consecutive inferior segments. 

3.3.6 Sensitivity to inertial terms 

The Newton-Euler equations contain inertial terms such as the segments’ angular and linear 

accelerations, obtained by the second time-derivative of the angular and linear positions, 

respectively. Due to the inherent noise of the motion capture system, differentiation leads to 

cumulative errors in the inverse dynamics computations. To investigate the effect of the inertial 

terms on the calculated net joint moments and forces, we assessed the sensitivity of the calculations 

to: (1) the linear accelerations, (2) the angular accelerations, and (3) both linear and angular 

accelerations. The error was defined as the difference between the net joint moment calculated 

with and without inertial terms via either the bottom-up or top-down approach. This error was 

calculated as the root mean square (RMS) error induced in the net moment calculation during each 

trial, relative to the net moment range calculated considering the inertial terms. 

3.3.7  Optimization 

 The results computed by the two inverse dynamics approaches are commonly affected by errors. 

The major sources of error are: (1) the location of the JCR; (2) force plate measurement errors; (3) 

body segment parameters (BSPs) used for inverse dynamics computations; and (4) motion capture 

system noise and skin movement artifacts in kinematic data [34]. The top-down approach tends to 

be more sensitive to the inaccuracies from linear and angular acceleration data, compared to the 
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bottom-up approach that employs force plate measurements. Hence, the bottom-up approach leads 

to a more accurate estimation of joint moments and forces for the lower segments. Accordingly, 

the net joint moment obtained with these two approaches can differ. In this light, we developed a 

constrained nonlinear optimization algorithm to find an optimal (ideally error-free) set of measured 

parameters that minimizes the difference between the joint moments at all inter-segmental levels 

calculated by the bottom-up and top-down approaches. The cost function of this optimization, 

𝜑(𝑣), was defined as the least square of the difference between the norm of the 3D moment vector 

calculated from the top-down and the bottom-up approaches: 

𝐸𝑖,𝑗 =  𝑁𝑜𝑟𝑚(𝑀𝑖,𝑗
𝑡𝑑(𝑣) − 𝑀𝑖,𝑗

𝑏𝑢(𝑣))                                             (Eq. 3.4)  

𝜑(𝑣) = ∑ [
1

√𝑁
(∑ 𝐸𝑖,𝑗

2)𝑁
𝑖=1

0.5
]7

𝑗=1                                  (Eq. 3.5)  

where 𝑣 is the vector of optimization variables, 𝑖 the time index, 𝑗 the joint index, 𝑁 the number 

of samples, 𝑀𝑡𝑑  and 𝑀𝑏𝑢 are the 3D moment vectors obtained from the top-down and bottom-up 

approaches, respectively. We formulated a two-step optimization algorithm to find suboptimal 

solutions for fast convergence. In the first step, the offset error of the COP location measured by 

the force plate was minimized. The optimization variable was defined as a vector composed of two 

components of the offset error:  

𝑥𝐶𝑂𝑃 =  �̅�𝐶𝑂𝑃 + 휀𝑥                                                     (Eq. 3.6) 

𝑦𝐶𝑂𝑃 =  �̅�𝐶𝑂𝑃 + 휀𝑦                                                   (Eq. 3.7) 

where (휀𝑥  , 휀𝑦) is the bias, (𝑥𝐶𝑂𝑃 , 𝑦𝐶𝑂𝑃) the optimized COP location and (�̅�𝐶𝑂𝑃 , �̅�𝐶𝑂𝑃) the initial 

COP location measured by the force plate. 

In the second step, the errors due to scaled anthropometric data were aimed to be minimized. The 

position vectors of JCR and COM with respect to the spinal processes and mass of each segment 

were optimized for all segments to find the (ideally) error-free values. The optimization variables 
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were defined as these position vectors (assumed to be in the sagittal plane) and the segments’ mass. 

Inequality constraints were applied as follows for obtaining anatomically sensible position vectors:  

|𝑃𝑜𝑠𝐽𝐶𝑅𝑖
− 𝑃𝑜𝑠𝐽𝐶𝑅 𝑖

| < 휀𝑎                                     (Eq. 3.8) 

|𝑃𝑜𝑠𝐶𝑂𝑀𝑗
− 𝑃𝑜𝑠𝐶𝑂𝑀𝑗

| < 휀𝑏                                 (Eq. 3.9) 

where 𝑖 is the joint index, 𝑗 is the segment index, 𝑃𝑜𝑠𝐽𝐶𝑅 and 𝑃𝑜𝑠𝐶𝑂𝑀  are vectors from the reflective 

marker on the spinous process to the corresponding JCR and COM, respectively. 𝑃𝑜𝑠𝐽𝐶𝑅 and 

𝑃𝑜𝑠𝐶𝑂𝑀  are the initial values obtained using the MVH data. A genetic algorithm (MATLAB, 

MathWorks, Natick, MA, USA) was employed for the optimization (Figure 7). The RMS 

difference between the net joint moment time series obtained with top-down and the bottom-up 

approaches were calculated, both before and after optimization, and was used to evaluate the 

efficiency of our proposed method for minimizing the errors. Statistical analyses were performed 

to compare the following data (obtained among all participants): 

(a) Sensitivity of the moments at each joint calculated via bottom-up compared to those 

calculated via top-down approaches, to inertial terms,  

(b) Overall RMSE improvement achieved in step one compared to that achieved in step two 

of the optimization, 

(c) Improvement of the moment estimations at each joint because of the optimization in the 

bottom-up approach compared to that in the top-down approach,  

(d) RMS difference between the moment calculated via the bottom-up approach and that 

calculated via the top-down approach before optimization compared to this RMS difference 

after optimization (at each joint), and  

(e) Comparison of RMS differences stated in (d) among all joints. 

The Kolmogorov-Smirnov test rejected the null hypothesis that the data came from a normal 

distribution. Consequently, we used the non-parametric Wilcoxon Signed Rank test and Friedman 

test with significance level set at 0.05 for (a-d) and (e), respectively.  
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3.4 Results 

The sensitivity of the bottom-up and the top-down approaches to inertial terms was investigated 

and presented in Table 2. According to Table 2, the median RMSE in the net joint moment relative 

 

Figure 7. The two-step optimization algorithm to minimize the error between two traditional inverse 

dynamics approaches. The first step optimizes the offset error of the COP measured by the force plate. 

The second step uses the scaled anthropometric data from MVH and corrected COP from the previous 

step to find optimal individual-specific COM, JCR, and mass of each segment. At each step, optimization 

constraints were used as the criterion. 
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to its range varied from 0.58% to 4.76% and from 2.87% to 4.16% among all participants for 

bottom-up and top-down approaches, respectively. Table 2 also indicates that the top-down 

approach is significantly more sensitive to inertial terms compared to the bottom-up approach for 

joints SC-LL to MLT-MUT (p-value ≤ 0.005).  

 

Table 2. Sensitivity of the inter-segmental joint moment to ignoring inertial terms in Newton-Euler equation 

(linear and angular acceleration terms set to zero). The induced errors are presented as normalized RMSE 

(in percentage), relative to the range of the net moment. The results are presented for both bottom-up and 

the top-down inverse dynamics approaches and for the seven intersegmental joints, as shown in Figure 6. 

The results are presented as percentile [25%, 50%, 75%] among all participants. 

Joint  Bottom-Up Top-Down P-Value 

SC~LL [0.48, 0.58, 0.93] [2.73, 2.99, 3.77] 0.001 

LL~UL [0.46, 0.63, 0.75] [2.73, 2.88, 3.67] 0.001 

UL~LT [0.86, 0.98, 1.43] [2.69, 2.87, 3.72] 0.001 

LT~MLT [1.33, 1.53, 2.22] [2.85, 3.01, 3.91] 0.001 

MLT~MUT [1.87, 3.01, 4.20] [3.18, 3.81, 5.04] 0.005 

MUT~UT [2.02, 3.33, 5.24] [3.61, 4.16, 6.73] 0.083 

UT~HD [2.63, 4.76, 7.50] [3.35, 4.12, 4.79] 0.413 

 

The optimization algorithm converged for all participants and always reduced the cost function, 

with the RMS difference improving by 77.59% (on average, varying from 51.55% to 88.92% 

among all participants). This RMS difference at each step of the optimization reduced by 27.96% 

and 68.93% (average among participants) after the first and second steps, respectively (Table 3). 

Optimizing the COP (step one) has a smaller effect compared to the optimization of the BSPs 

(steps two) on reducing the RMS differences between results calculated via the two approaches 

(p-value < 0.001).  

 



 

45 

 

Table 3. Cumulative RMSE improvement (in percentage) after step 1 and step 2 of the optimization. The 

error was defined as the difference between the joint moments calculated by bottom-up and top-down 

approaches at each joint in the proposed multi-segment model of the HAT. The summation of RMSE at all 

joints was considered as the cumulative RMSE. The result is presented for all participants. 

Participants Step 1 Step 2 Total 

1 23.00 69.36 76.41 

2 13.54 43.97 51.55 

3 13.90 50.03 56.98 

4 48.23 58.76 78.65 

5 24.90 85.01 88.74 

6 36.56 73.65 83.28 

7 26.35 84.96 88.92 

8 22.34 73.28 79.25 

9 45.72 54.11 75.09 

10 31.96 80.12 86.47 

11 21.07 84.98 88.14 

Average 27.96 68.93 77.59 

Standard deviation 11.56 14.98 12.61 

Maximum 48.23 85.01 88.92 

Minimum 13.54 43.97 51.55 

The RMS differences between the net joint moment computed via bottom-up and top-down 

approaches were significantly smaller after optimization compared to those before optimization 

(p-value < 0.001 at each joint), and improved from 60.23% to 7.29% (79.25%) median among all 

participants (Table 4a). Among different joints, the improvement of the RMS differences varied 

from 75.59% to 82.27% (median among participants). Similarly, the RMS differences between the 

joint moments in the sagittal plane were reduced after optimization. This improvement had a 

median of 87.75% among all participants (Table 4b) and varied from 82.33% to 90.94% (p-value 

< 0.001 at each joint).   
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Table 4. The errors induced in the (a) net joint moment and (b) sagittal moment at each joint of the HAT 

multi-segment model. The errors are presented as RMS difference between the calculated moment via 

bottom-up and top-down inverse dynamics approaches, as percentile [25%, 50%, 75%] among all 

participants. The RMS differences are presented for both before and after optimization and for the seven 

intersegmental joints, as shown in Figure 6. The summation of RMS differences at all joints are presented 

as the cumulative RMSE. 

(a) RMSE before and after optimization for net joint moment 

Joint  Before After Improvement (%) 

SC~LL [4.86, 8.92, 10.80] [0.92, 1.04, 2.64] [75.05, 82.27, 85.33] 

LL~UL [4.86, 9.00, 10.75] [0.91, 1.11, 2.64] [74.44, 81.86, 85.68] 

UL~LT [4.69, 8.78, 10.61] [0.84, 0.94, 2.48] [76.50, 81.57, 88.03] 

LT~MLT [4.52, 8.62, 10.49] [0.80, 0.86, 2.29] [78.05, 81.41, 89.23] 

MLT~MUT [4.34, 8.44, 10.36] [0.79, 0.91, 2.14] [77.04, 80.50, 89.31] 

MUT~UT [4.29, 8.30, 10.26] [0.80, 1.10, 2.21] [71.43, 79.18, 88.56] 

UT~HD [4.35, 8.18, 10.18] [0.93, 1.27, 2.46] [61.12, 75.59, 85.87] 

Cumulative RMSE [31.62, 60.23, 73.46] [6, 7.29, 16.81] [75.42, 79.25, 87.72] 

 

(b) RMSE before and after optimization for sagittal joint moment 

Joint  Before After Improvement (%) 

SC~LL [4.68, 8.84, 10.61] [0.49, 0.77, 2.24] [78.78, 86.41, 89.41] 

LL~UL [4.67, 8.92, 10.54] [0.51, 0.83, 2.24] [78.62, 85.07, 89.65] 

UL~LT [4.47, 8.67, 10.38] [0.43, 0.62, 2.03] [80.27, 89.16, 90.49] 

LT~MLT [4.22, 8.48, 10.25] [0.32, 0.47, 1.76] [82.53, 90.94, 93.19] 

MLT~MUT [4.01, 8.26, 10.14] [0.29, 0.54, 1.58] [83.99, 90.46, 93.22] 

MUT~UT [4.05, 8.08, 10.01] [0.33, 0.72, 1.52] [83.29, 87.19, 92.05] 

UT~HD [4.08, 7.92, 9.90] [0.59, 0.81, 1.64] [70.50, 82.33, 90.18] 

Cumulative RMSE [29.21, 59.15, 71.70] [2.83, 4.94, 12.61] [82.15, 87.75, 89.33] 

The statistical analysis of the net joint moment at each joint also revealed that the top-down 

approach can be significantly less affected by the BSPs’ inaccuracy at the superior joints (joints 

UT-HD and MUT-UT) compared to the bottom-up approach (p-value < 0.001). Although there 

were no significant differences between the two approaches at the inferior joints (joints SC-LL 

and LL-UL), the bottom-up approach tends to be less affected by the BSPs’ inaccuracy.  
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Normalized Joint Moments (Body Weight × Trunk Height %) 

 

Figure 8. Normalized joint moments with respect to the body weight and trunk height (expressed in 

BWxTH%), for one of the participants. Results are presented for moments in sagittal, coronal, and 

transverse planes at all joints defined in Figure 6. The scale of moments in sagittal, coronal, and transverse 

planes are different. The moments calculated via the bottom-up approach are depicted as solid lines and 

those calculated via the top-down approach are depicted as dashed lines. Black lines indicate the moments 

obtained before optimization and the red lines indicates the moments obtained after optimization. As such, 

we expect that the distances between solid and dashed lines decrease after optimization. 
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Finally, Figure 8 represents the computed joint moment in the sagittal, coronal, and transverse 

planes at each joint before and after optimization using bottom-up and top-down inverse dynamics 

approaches for one participant and one trial. This figure demonstrates the extent of the capability 

of our proposed algorithm in reducing the error introduced by erroneous COP measurements and 

BSPs. 

3.5 Discussion 

Optimization-based inverse dynamics approaches have been proposed to compensate for the 

inaccuracy of BSPs in kinetics assessment of lower limbs during running [53], gait [32], squatting 

and standing sway [52]. However, to the best of our knowledge, no study has investigated the 

application of such an optimization-based approach specifically for kinetics assessment of the 

HAT complex when the trunk is modeled as multiple segments. Actually, a non-invasive 

estimation of individual-specific BSPs is a major prerequisite to kinetic assessment of multi-

segment HAT. However, estimation of BSPs for multi-segment HAT based on typical 

anthropometric measurements is very challenging, because of the larger inter-subject variability 

of HAT segments compared to the lower limbs. Therefore, there is no comprehensive database for 

the BSPs of the multi-segment HAT. This study proposed a nonlinear optimization-based method 

for reducing the error in the joint moment calculation for the multi-segment HAT by estimating 

the COP offset and BSPs (i.e., JCR and COM locations and mass of each segment). Then, the 

proposed method was implemented on experimental data from a trunk-bending task to obtain the 

3D joint moments among the HAT segment.  

Both bottom-up and top-down approaches were insensitive to the linear and angular acceleration 

of the segments during the particular motion of trunk-bending (Table 2). As a result, the inertial 

terms were eliminated from the inverse dynamics formulation to reduce the computational cost 

during optimization. In previous studies, the difference between measured and calculated GRF at 

the distal extremity was defined as the cost function while BSPs were the optimization variables. 

In contrast, our proposed method included the difference between the magnitude of all net joint 

moments calculated using the top-down and the bottom-up approaches in the cost function of 



 

49 

 

optimization. As a result, these differences improved for all joint moments in the multi-segment 

HAT (Table 4).  

Our proposed multi-step optimization enabled distinguishing the influence of estimation of BSPs 

from that of COP on the accuracy of the calculated joint moments in a multi-segment HAT model, 

and demonstrated the extent of the influence of inaccuracy of each of them. The optimization of 

BSPs (steps 2) improved the errors in joint moment calculation by 68.93% (average), which was 

larger than the improvement of these errors by optimization of the COP offset in step 1 (average: 

27.96%). One interpretation can be the larger inaccuracy of the BSPs estimation compared to the 

COP offset. Indeed, the initial guess of the BSPs used for optimization was obtained from data of 

only one cadaver and then scaled for each participant with different body weight and height. 

Therefore, this initial guess of BSPs for different body shapes used for optimization might be more 

error-prone than the COP position that was recorded by the same force plate for all participants. 

In summary, adopting the anthropometric BSPs from data of only one cadaver might not be 

representative of all body shapes and populations and was a limitation of this study. A larger 

dataset for an initial guess of the BSPs may improve the accuracy of the estimated BSP’s.  

Alternatively, the joint moment calculation might be inherently more sensitive to BSPs inaccuracy 

than to COP inaccuracy. Notably, measurement errors of the BSPs, COP, GRF, and motion data 

(marker trajectories) may all propagate into the calculated joint moments, and the joint moment 

calculation can have different sensitivity to each parameter’s inaccuracy. Our proposed method 

primarily focused on the improvement of errors due to individual-specific BSPs estimation and 

does not investigate the effect of inaccuracies in motion data (e.g., soft tissue artifact) and GRF 

measurements. Our previous studies demonstrated the effect of inaccuracies in motion data on the 

3D kinematics assessment of the multi-segment HAT [19], [80]. Our future studies will investigate 

the effect of inaccuracies of each parameter (BSP’s, force plate measures, motion data) on kinetics 

assessment of the multi-segment HAT.   

The RMSE of the net joint moment (Table 4a) and its component in the sagittal plane (Table 4b) 

at all joints for all participants reduced after optimization. Actually, the errors of the sagittal 

component have a significant contribution towards the net moment error, because this component 
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is much larger than others when the trunk bends in the anterior direction. Therefore, our proposed 

optimization-based method can also be employed for trunk bending in directions other than the 

anterior direction to investigate the improvement of errors in the frontal and transverse components 

of the net joint moment.  

The results revealed that the moment at inferior (superior) joints tended to be less affected by BSPs 

inaccuracy when calculated via bottom-up (top-down) approach compared to when they are 

calculated via top-down (bottom-up) approach. This could be justified as in each approach; the 

error propagation grows as the calculation proceeds toward joints farther from the segment on 

which the initial conditions are applied (Figure 8). 

The proposed method is subject to other limitations as well. We employed a multi-segment model 

of the HAT with assuming each segment as a rigid body which may not be accurate during all 

body motions, especially high-impact motions. Nevertheless, our rigid body model was suitable 

for the performed exercise that consisted of slow motions without impact. Finally, we assumed 

that the body is symmetric in the frontal plane and, thus, the COMs and JCRs are in the sagittal 

plane. This assumption may not be valid especially in some pathological conditions. 

3.6 Conclusion 

Estimation of individual-specific BSP’s for kinetics assessment of multi-segment HAT models is 

currently challenging. To address this challenge, (1) we assigned scaled BSPs for HAT segments 

obtained from cadaveric data to the body size of individuals who participated in an in-vivo 

experiment and approximated individual-specific BSPs; and (2) we proposed a method for 

minimizing the difference between the net joint moment calculated using top-down and bottom-

up inverse dynamics formulations by estimating the BSPs and offset of COP. Using a multi-step 

nonlinear optimization approach, our method significantly reduced the differences between net 

joint moments calculated through the two inverse dynamics approaches among all HAT segments. 

Our proposed method can be used in the future to assess the sensitivity of the calculated trunk joint 

moments in a variety of daily tasks to a range of experimental errors including motion data, GRF, 

and BSP measurements. In addition, compensating the major source of error enables us to 
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accurately quantify the kinetics of the spinal column and facilitate finding inter-vertebral moment 

pattern at different levels of the spinal column in non-disabled or patient populations. 

 

 

 

 

 



 

52 

 

Chapter 4 

4 Quantification of Multi-Segment Trunk Kinetics 

during Multi-Directional Trunk Bending 

The material presented in this chapter has been submitted as a research paper to Gait & Posture. 

The majority of content of this chapter is identical to the material presented in the publication 

except for the text formatting which was done according to University of Alberta requirements. 

A. Noamani, A. H. Vette, R. Preuss, M. R. Popovic, H. Rouhani, “Quantification of Multi-Segment 

Trunk Kinetics during Multi-Directional Trunk Bending”, submitted to Gait & Posture 

4.1 Abstract 

Motion assessment of the body’s head-arms-trunk (HAT) using linked-segment models along with 

an inverse dynamics approach can enable in vivo estimation of the inter-vertebral moments. 

However, such mathematical approach is prone to experimental errors due to inaccuracies in 

kinematic measurement associated with soft tissue artifacts and estimating individual-specific 

body segment parameters (BSPs). The inaccuracy of the BSPs is particularly challenging for the 

multi-segment HAT due to high inter-participant variability in the HAT’s BSPs, implying that 

currently no study exists that has accurately identified the joint moments along the spinal column. 

This study characterized three-dimensional (3D) inter-segmental moments in a multi-segment 

HAT model during multi-directional trunk-bending, after minimizing the experimental errors. 

Eleven non-disabled individuals participated in a multi-directional trunk-bending experiment at 

five directions with three speeds. A seven-segment HAT model was reconstructed for each 

participant and its motion was recorded. After compensating the soft tissue artifacts induced error 

in kinematic data, and using optimized individual-specific BSPs and center of pressure offsets, the 

inter-segmental moments were calculated via inverse dynamics. Our results show a significant 
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effect of inter-segmental level and trunk-bending directions, and a two-way interaction effect 

between joint-level and bending-direction. Characterization of the net sagittal-coronal moment 

explained these effects. Our results indicate complex, task-specific patterns for the 3D moments 

with high inter-participant variability at different inter-segmental levels, which cannot be studied 

using single-segment models or without error compensation. Interpretation of inter-segmental 

moments after compensation of experimental errors can be of great importance for clinical 

evaluations and developing injury prevention and rehabilitation strategies. 

Keywords:   Inverse dynamics; Joint moments; Multi-segment model; Trunk kinetics. 

4.2 Introduction 

Accurate estimation of the inter-spinal loads is a key requirement for assessing the risk of injury 

during occupational and daily activities, designing prevention and treatment strategies [1], and pre- 

and post-treatment assessment [19]. Linked-segment models of the human body have been 

employed as a mathematical technique to facilitate in vivo studying of inter-vertebral interactions, 

in biomechanical studies to evaluate spine kinematics [136] and stability [24], and in the  clinical 

evaluation of conditions such as low back pain [7], scoliosis [5], and spinal cord injury [15]. Using 

one-segment and multi-segment models of the head-arms-trunk (HAT), the three-dimensional 

(3D) kinematics of the upper body have been widely investigated [138]. Kinetics assessment of 

the HAT based on a linked-segment model using an inverse dynamics approach requires 

measurements of the inter-segmental motions and ground reaction forces (GRF) as well as accurate 

estimation of the body segment parameters (BSPs).  

Although inverse dynamics is a commonly-used approach for kinetics assessment of the human 

body, this procedure is error-prone. Published studies suggest that major contributors to these 

errors are inaccuracy in (a) motion data [34], (b) force plate measurements [35],  and (c) BSPs 

estimation [52]. Riemer et al. [37] showed that the above-mentioned inaccuracies could lead to 

significant errors ranging from 6 to 232% of the estimated peak moment. They also identified 

inaccuracies in estimated segment angles and BSPs as the main sources of these uncertainties.  



 

54 

 

Previous studies [19], [43] suggest that the relative motion between skin-mounted markers and 

bony prominences (anatomical landmarks), i.e., soft tissue artifacts (STA), during dynamic tasks 

causes inaccuracy in obtained joint angles. Hence, the assessment of the inter-vertebral moments 

via an inverse dynamics approach is likely affected by STA. Previous studies have shown the 

considerable impact of STA on the measurement accuracy of lower limb kinematics and kinetics 

[44], [46]. Some studies evaluated the effect of STA on kinematics measurements of the scapula 

[47] and spine [19]; however, to our knowledge, no study has quantified the STA effect on the 

inter-segmental joint moments of a multi-segment HAT model. 

Moreover, kinetics assessment via an inverse dynamics approach requires accurate estimation of 

individual-specific BSPs, including the 3D center of mass (COM) coordinates, 3D coordinates of 

the joint’s center of rotation (JCR) and the mass and moments of inertia for each segment. 

Although medical imaging techniques can be used to obtain highly accurate, individual-specific 

BSPs, they have the potential of radiation exposure [163]. Estimations of individual-specific BSPs 

using predictive equations based on medical imaging [163] and cadaveric data [151] were 

proposed; however, these estimations may induce errors of over 40% [52]. Optimization methods 

have been employed to minimize the effect of the BSPs’ inaccuracy in calculating net joint 

moments at different lower limb joints in the sagittal plane [52]. However, to our knowledge, no 

study has estimated the 3D joint moments of a multi-segment HAT model based on optimized 

individual-specific BSPs.  

Several studies have investigated the 3D reaction forces and moments at the lumbo-sacral (𝐿5/𝑆1) 

joint with a one-segment HAT model during various motor tasks such as walking [140], [142], 

lifting [141], balance recovery [31], and sit-to-stand [143], and for clinical evaluation of low-back 

pain [140], [141] and lower-limb amputation [142]. Regression equations [54], [55], [140], scaling 

equations [31], or geometrical models [1] have been widely used for estimating BSPs of a one-

segment HAT model. Some studies have investigated the validity of using bottom-up and top-

down approaches for calculating the lumbo-sacral joint moment [31], [54], [55], [141], [142]. 

Other studies particularly addressed the sensitivity of the lumbo-sacral joint moment computed to 

errors via bottom-up and top-down approaches [39], especially due to BSPs inaccuracy [31]. 

However, all these studies investigated the forces and moments at 𝐿5/𝑆1 using one-segment HAT 



 

55 

 

model. None of them obtained the 3D inter-vertebral moments using a multi-segment HAT model 

due to technical complexities of estimating individual-specific BSPs for each HAT segment. 

Our team has recently obtained detailed BSPs from a single cadaver to calculate the moments at 

spinal joints using a multi-segment HAT model for a male individual during perturbed sitting [56]. 

However, the obtained kinetic results might be considerably affected by the heterogeneity of BSPs 

among individuals. Later, we presented a novel method to optimize the estimation of individual-

specific BSPs of the HAT segments and proposed it for accurate measurement of the 3D inter-

segmental moments of the spinal column. Building upon these efforts, the purpose of this study is 

to calculate the 3D inter-segmental moments using multi-segment HAT model with (a) optimized 

participant-specific BSPs; and (b) corrected kinematic parameters after compensation the effect of 

STA during multi-directional trunk-bending tasks. By minimizing the influence of STA and 

inaccurate BSPs, we were then able to investigate how these moments vary across the spinal 

column, and among different trunk-bending directions and speeds. 

4.3 Method 

4.3.1 Experiment Procedures 

The experimental procedures were described in detail in our previous study [136] and, thus, are 

only briefly described here. Eleven non-disabled individuals (4 females; age: 28.5±3.3 years; trunk 

height: 0.75±0.04 m) with no history of persistent back pain or spine-related musculoskeletal or 

neuromuscular impairments participated in the experiment. All participants provided written 

consent prior to participating in the study. Research Ethics Board approval was received from the 

local ethics committee. 

Participants were asked to sit naturally on a rigid, elevated force-plate with no constraints or 

support to restrict the participant’s movement, and the lower legs freely hanging. Five targets were 

placed anterior of the participant, with the distances and heights adjusted based on the participant’s 

trunk height to elicit angular trunk motions of 45° (Figure 9). Each participant was instructed to 

lean toward the target, touch the target with his/her head, and then return to the initial upright 
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sitting position. Each participant randomly performed the tasks with three different speeds for each 

target and three times for each speed. The arms were crossed motionless over the chest throughout 

each trunk-bending trial.  

4.3.2 Data acquisition 

The  measurement setup described in Chapter 3 was used.  

 

Figure 9. (A) Subject-specific distance and height representing an angular motion of 45° of the trunk as 

an inverted pendulum. (B) Targets for movement tasks. Targets were placed in the transverse plane at 

45° intervals, anteriorly and laterally of the participant. 

4.3.3 Multi-segment HAT modeling 

4.3.3.1 Multi-segment model of the HAT 

The seven rigid segments and the multi-segment model of the HATdefined in Chapter 3 (Figure 

6) were used in the present study.  

4.3.3.2 Modeling and compensation algorithm for STA induced errors 

STA were modeled to compensate the error induced by relative motion between skin-mounted 

markers and actual bony anatomical landmarks during trunk-bending trials. For this purpose, the 

model suggested in our previous study [19] was used. This model assumed that the relative 

displacement between the actual bony landmark and the skin-mounted marker was proportional to 

the trunk bending angle. It was also assumed that the minimum (zero) and maximum relative 
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displacements occurred at the upright sitting and maximum trunk-bending posture, respectively. 

The instantaneous trunk bending angle (𝜃𝑡) was defined as the angle between the line formed by 

the 𝑆1 and 𝐶7 markers and the upright position. The instantaneous soft tissue artifact of marker 𝑖 

in segment 𝑗 calculated in the segment’s local frame (𝑆𝑇𝐴𝑖
𝑗(𝜃𝑡)) was then obtained by using 

equation (1): 

𝑆𝑇𝐴𝑖
𝑗(𝜃𝑡) = 𝑆𝑇𝐴𝑖

𝑗(𝜃𝑚𝑎𝑥)
𝜃𝑡

𝜃𝑚𝑎𝑥
       (Eq. 4.1) 

where 𝑆𝑇𝐴𝑖
𝑗(𝜃𝑚𝑎𝑥) is the soft tissue artifact at the maximum trunk bending angle (𝜃𝑚𝑎𝑥). We used 

𝑆𝑇𝐴𝑖
𝑗(𝜃𝑚𝑎𝑥) measured by palpating actual bony anatomical landmarks for each marker at 

maximum trunk-bending posture in a previous study [19] and scaled the reported 

𝑆𝑇𝐴𝑖
𝑗(𝜃𝑚𝑎𝑥) values for each individual by participant’s trunk height. Subsequently, the trajectory 

of each marker was calculated by using equation (2):   

𝐶𝑖
𝑗
(𝑡) = 𝑅𝑗(𝑡)𝐿

𝐺 [ 𝑅𝑗
−1(𝑡)𝐿

𝐺 . 𝑃𝑖
𝑗(𝑡) − 𝑆𝑇𝐴𝑖

𝑗(𝜃𝑡)]     (Eq. 4.2) 

where  𝑃𝑖
𝑗
(𝑡) and 𝐶𝑖

𝑗
(𝑡) are the preliminary and corrected trajectory of marker 𝑖 in segment 𝑗 at 

the time index 𝑡, respectively, and  𝑅𝑗(𝑡)𝐿
𝐺  is the instantaneous rotation matrix from the segment-

fixed frame to the lab-fixed frame. The seven-segment model of the HAT was then reconstructed 

using corrected marker trajectories, and 3D inter-segmental angles were calculated based on 

standard joint coordinate system conventions [180]. 

4.3.4 Inverse dynamics 

3D inter-segmental forces and moments were calculated through both bottom-up and top-down 

inverse dynamics approaches similar to Chapter 3.  

4.3.5 Optimized estimation of individual-specific BSPs for inverse dynamics 

3D inter-segmental forces and moments were calculated through both bottom-up and top-down 

inverse dynamics approaches. For this purpose, an initial guess of the BSPs (i.e., mass, COM, JCR, 

and moments of inertia of each HAT segment) was obtained by individual-specific scaling of 
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cadaveric data from the Male Visible Human images reported by Vette et al. [51] using body 

weight and trunk height of each participant. However, such scaling methods are error-prone when 

the data are applied to individuals with a different range of age, body type, sex and ethnicity [50], 

[166]. Since scaling induces inaccuracies in the estimation of the BSPs, the top-down and bottom-

up inverse dynamics approaches were expected to result in different values for the net joint 

moments, mostly due to inaccurate estimation of BSPs for HAT segments. Thus, we adjusted the 

scaled BSPs to estimate an optimal individual-specific set of BSPs as well as compensating 

systematic offset in the force plate center of pressure measurement by employing a nonlinear, 

multi-step, optimization-based, non-invasive method that minimizes the difference between the 

joint moments at all inter-segmental levels obtained by top-down and bottom-up inverse dynamics 

approaches.  

4.3.6 Data Analysis 

The Kolmogorov-Smirnov test was used to determine whether the calculated moments across the 

participants came from a normal distribution. Moreover, the Levene's test was used to assess the 

equality of variance in case of normality. Statistical analysis of the inter-segmental moments in 

the sagittal, coronal, and transverse planes were separately conducted using a three-way analysis 

of variance (ANOVA). The independent variables were joint level (seven joints: SC~LL to 

UT~HD), target direction (five directions), and bending speed (three speeds), with the 3D joint 

moment being the dependent variable. In addition, to investigate the influence of STA on the net 

joint moments, a two-way ANOVA was performed on the root-mean-square (RMS) difference 

between the net joint moment before and after STA error compensation. The independent variables 

were joint level and target direction, with the test being performed for both bottom-up and top-

down inverse dynamic approaches.  

All statistical analyses were performed on the absolute peak values of the 3D joint moments with 

the significance level set at 0.01 when applying Bonferroni correction. A multiple comparison 

post-hoc test was performed to investigate main effects on the joint moments of the multi-segment 

HAT. 
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4.4 Results 

All participants were able to successfully perform the bending tasks for different directions except 

for the targets placed laterally (left and right targets, Figure 9) which no participant could touch 

the target with his/her head. Therefore, these motions were considered as the maximum voluntary 

lateral bending for each individual.  

The effect of the STA error compensation on the inter-segmental joint moment at each joint-level 

and trunk-bending direction was investigated as presented in Table 5 as the RMS difference 

between the net joint moment (resultant of the sagittal, coronal, and transverse moments) 

calculated with and without STA error compensation for both bottom-up and top-down inverse 

dynamics approaches. We observed significant main effects of joint-level (Table 7) and trunk-

bending direction (Table 8) as well as their interaction effect on the RMS difference between the 

inter-segmental net joint moment calculated before and after STA error compensation, and for both 

bottom-up and top-down approaches (Table 5). Results also reflected a significant difference 

between the results obtained via two inverse dynamics approaches. 

Table 6 and Figure 10 to Figure 12 present the peak joint moments in the sagittal, coronal, and 

transverse planes for different joint levels and target directions. According to Table 6, CV%, 

defined as 𝐶𝑉% =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
× 100, of the peak moments among all participants varied 

from 27.3 to 82.1%, 7.5 to 72.2%, and 27.9 to 59.3% (the range of CV% across different joints) 

for the sagittal, coronal, and transverse moments, respectively. 

 A main effect of joint level and trunk-bending direction was observed for moments in the sagittal, 

coronal, and transverse planes (Table 6, Table 9, and Table 10).  

Effect of joint level: The sagittal moments of the lumbar joints (SC~LL, LL~UL, and UL~LT) 

were significantly larger (p<0.01) compared to all other superior (thoracic and cervical) joints 

(Table 6 and Table 9.a). Among the lumbar joints, the sagittal moment at LL~UL tended to be the 

largest among all joints. Similarly, larger coronal moments were observed at inferior joints relative 

to their superior joints, except for the coronal moment at SC~LL, which was larger than that of 
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other joints, but the LL~UL joint. The transverse moment at the two most superior joints 

(MUT~UT and UT~HD) tended to be larger compared to the inferior joints while no significant 

differences were found among the transverse moments at the inferior joints. The transverse 

moment in UT~HD was significantly larger compared to all inferior joints, except MUT~UT. 

Effect of trunk-bending direction: The sagittal moment across different joints decreased in more 

lateral trunk-bending directions compared to more anterior directions, as it was larger (smaller) in 

anterior (lateral: left and right) direction than all other directions (p<0.01). No significant bilateral 

asymmetry was observed in the sagittal moments (p=1.00) (Table 10.a). We observed the opposite 

main effect of trunk-bending direction for the coronal moments: The largest (smallest) coronal 

moments were observed for trunk-bending in the lateral (anterior) direction. Again, no significant 

bilateral asymmetry was observed in the coronal moments (Table 10.b) 

Effect of speed: Results of the ANOVA for the inter-segmental sagittal moment (Figure 10) 

reflected no main effect of speed (p = 0.1499) and no significant two-way interaction effects for 

joint-speed (p = 0.999) and direction-speed (p = 0.3808) on the sagittal moment. Therefore, the 

voluntary speed of trunk-bending does not change the sagittal moment of the trunk joints. We 

observed that the slowest speed of trunk bending led to significantly smaller coronal moments 

compared to the faster speeds. However, no significant difference was seen between speed levels 

2 and 3. We also observed that the transverse moment increased significantly by increasing the 

speed of the bending tasks, implying that the participants tended to have faster axial-rotation of 

the neck while they increased their trunk-bending pace.  
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Table 5. RMS difference between the inter-segmental net joint moment calculated before and after STA 

error compensation at each joint level of the proposed HAT model (Figure 6) for five trunk-bending 

directions (Figure 9 b). Results are expressed as mean ± standard deviation among all participants and 

obtained through both (a) bottom-up and (b) top-down inverse dynamics approaches. The average of the 

three trials and three speeds are presented. Moments (N.m) were normalized by participant’s body weight 

and trunk height. 

(a) Bottom-up approach  

 SC~LT LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

Left 7.4 ±1.4 7.5 ±1.2 6.5 ±0.9 5.5 ±0.7 4.6 ±0.9 3.9 ±1 2.8 ±1 

Anterior-Left 8.2 ±1.3 8.4 ±0.9 7 ±1.1 5.4 ±0.9 3.7 ±0.7 2.7 ±0.8 2 ±1 

Anterior 8.4 ±1.8 8.8 ±1.3 6.8 ±1.4 4.8 ±1 2.8 ±0.8 1.5 ±0.7 1.4 ±0.7 

Anterior-Right 8.2 ±1.5 8.5 ±1.1 7 ±1.1 5.3 ±0.7 3.7 ±0.6 2.8 ±0.7 2.2 ±0.8 

Right 7.4 ±1.1 7.5 ±1 6.6 ±0.7 5.6 ±0.7 4.8 ±1 4.1 ±1.1 2.9 ±1.3 

 

(b) Top-down approach  

(b) Top-down SC~LT LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

Left 5.4 ±2 5.5 ±1.8 4.5 ±1.2 3.5 ±0.9 2.6 ±0.7 1.8 ±0.8 0.6 ±0.4 

Anterior-Left 6.6 ±2.1 6.9 ±1.8 5.5 ±1.6 4 ±1.2 2.4 ±0.7 1.4 ±0.5 0.6 ±0.4 

Anterior 7.5 ±2.5 7.9 ±2.1 6 ±1.8 4.2 ±1.3 2.2 ±0.8 1 ±0.6 0.6 ±0.3 

Anterior-Right 6.8 ±2.5 7.1 ±2.1 5.6 ±1.9 4 ±1.2 2.4 ±0.7 1.4 ±0.5 0.6 ±0.3 

Right 5.4 ±1.7 5.5 ±1.5 4.5 ±1.1 3.5 ±0.8 2.6 ±0.7 1.9 ±0.7 0.6 ±0.3 
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Table 6. Peak joint moments calculated via a bottom-up inverse dynamics approach using optimized 

individual-specific BSPs and STA-induced error compensation. The results are expressed as mean 

(coefficient of variations %) across all participants for inter-segmental joint moments at the sagittal, 

coronal, and transverse plane for five trunk-bending directions (see Figure 6 and Figure 9). The average of 

the three trials were used.  Moments (N.m) were normalized by participant’s body weight and trunk height.  

 SC~LT LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

Left 

Sagittal 6.6 (31.7) 6.6 (33.7) 5.3 (38.0) 4.7 (48.4) 4.8 (47.9) 4.7 (44.3) 3.4 (81.5) 

Coronal 15.2 (10.8) 16.0 (8.9) 14.4 (9.2) 12.2 (9.5) 10.2 (12.0) 8.4 (15.9) 6.3 (30.0) 

Transverse 1.5 (28.6) 1.6 (27.9) 1.5 (30.2) 1.4 (31.3) 1.3 (32.9) 1.3 (33.9) 1.5 (30.9) 

Anterior-Left 

Sagittal 13.4 (40.0) 14.7 (34.4) 12.7 (40.5) 10.0 (39.6) 7.7 (39.5) 6.1 (37.6) 4.7 (60.9) 

Coronal 13.0 (13.3) 14.3 (14.5) 12.3 (16.0) 9.0 (19.5) 6.7 (26.6) 5.1 (33.9) 4.1 (48.7) 

Transverse 1.3 (41.5) 1.3 (42.2) 1.3 (43.4) 1.2 (45.2) 1.2 (46.5) 1.2 (47.8) 1.4 (45.1) 

Anterior 

Sagittal 17.3 (33.3) 18.9 (27.3) 15.3 (34.1) 10.7 (42.8) 7.6 (46.3) 5.9 (47.4) 4.6 (60.4) 

Coronal 1.8 (48.0) 1.8 (61.6) 1.5 (72.2) 1.5 (64.1) 1.4 (53.1) 1.4 (44.1) 1.3 (50.8) 

Transverse 0.9 (58.5) 0.9 (59.3) 0.9 (58.7) 1.0 (58.1) 1.2 (56.7) 1.3 (54.6) 1.5 (52.1) 

Anterior-Right 

Sagittal 13.5 (40.8) 15.0 (35.4) 12.8 (39.8) 9.6 (43.2) 7.2 (49.4) 5.7 (52.1) 4.5 (69.0) 

Coronal 13.5 (10.3) 14.9 (7.6) 12.7 (7.5) 8.8 (11.9) 6.1 (16.5) 4.1 (28.6) 3.1 (49.8) 

Transverse 1.8 (32.2) 1.8 (33.8) 1.9 (34.7) 2.0 (35.4) 2.1 (35.2) 2.3 (34.8) 2.6 (33.4) 

Right 

Sagittal 6.5 (29.7) 6.4 (30.9) 5.5 (44.1) 5.1 (53.9) 4.9 (59.5) 4.8 (57.6) 3.6 (82.1) 

Coronal 15.4 (13.6) 16.2 (13.6) 14.3 (12.1) 11.6 (15.5) 9.2 (20.1) 7.0 (28.5) 4.8 (52.9) 

Transverse 1.7 (35.3) 1.8 (35.4) 1.7 (37.6) 1.7 (38.5) 1.8 (39.5) 1.9 (39.0) 2.1 (34.8) 

 

Table 7. The main effect of joint level on the net joint moment calculated via (a) bottom-up, and (b) top-

down approaches. * indicates significant differences (p < 0.01) in the moments between individual pairs of 

joints. – indicates no significant differences. 

(a) Effect on the net moment calculated via bottom-up approach 

Joints SC~LL LL~UL SC~LL LL~UL MLT~MUT MUT~UT UT~HD 

SC~LL  - * * * * * 

LL~UL -  * * * * * 

UL~LT * *  * * * * 

LT~MLT * * *  * * * 

MLT~MUT * * * *  * * 

MUT~UT * * * * *  - 

UT~HD * * * * * *  
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(b) Effect on the net moment calculated via top-down approach 

Joints SC~LL LL~UL SC~LL LL~UL MLT~MUT MUT~UT UT~HD 

SC~LL  - * * * * * 

LL~UL -  * * * * * 

UL~LT * *  * * * * 

LT~MLT * * *  * * * 

MLT~MUT * * * *  * * 

MUT~UT * * * * *  - 

UT~HD * * * * * *  

 

 

Table 8. The main effect of trunk-bending direction on the net joint moment calculated via (a) bottom-up, 

and (b) top-down approaches. * indicates significant differences (p < 0.01) in the moments between two 

directions. – indicates no significant differences. 

(a) Effect on the net moment calculated via bottom-up approach 

Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  - * - - 

Anterior-Left -  - -  

Anterior * -  - * 

Anterior-Right -  -  - 

Right - - * -  

 

(b) Effect on the net moment calculated via top-down approach 

Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  - * - - 

Anterior-Left -  - - - 

Anterior * -  - * 

Anterior-Right - - -  - 

Right - - * -  
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Table 9. The main effect of joint level on the sagittal moment (a), coronal moment (b), transverse moment 

(c), and net sagittal-coronal moment (d). * indicates significant differences (p < 0.01) in moments between 

individual pairs of joints. – indicates no significant differences. 

(a) Effect on the sagittal moment 

Joints SC~LL LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

SC~LL  - - * * * * 

LL~UL -  * * * * * 

UL~LT - *  * * * * 

LT~MLT * * *  * * * 

MLT~MUT * * * *  - * 

MUT~UT * * * * -  - 

UT~HD * * * * * -  

 

(b) Effect on the coronal moment 

Joints SC~LL LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

SC~LL  * * * * * * 

LL~UL *  * * * * * 

UL~LT * *  * * * * 

LT~MLT * * *  * * * 

MLT~MUT * * * *  * * 

MUT~UT * * * * *  * 

UT~HD * * * * * *  

 

(c) Effect on the transverse moment 

Joints SC~LL LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

SC~LL  - - - - * * 

LL~UL -  - - - * * 

UL~LT - -  - - - * 

LT~MLT - - -  - - * 

MLT~MUT - - - -  - * 

MUT~UT * * - - -  - 

UT~HD * * * * * -  

 

(d) Effect on the net sagittal-coronal moment 

Joints SC~LL LL~UL UL~LT LT~MLT MLT~MUT MUT~UT UT~HD 

SC~LL  * * * * * * 

LL~UL *  * * * * * 

UL~LT * *  * * * * 

LT~MLT * * *  * * * 

MLT~MUT * * * *  * * 

MUT~UT * * * * *  * 

UT~HD * * * * * *  
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Table 10. The main effect of trunk-bending direction on the sagittal moment (a), coronal moment (b), 

transverse moment (c), and net sagittal-coronal moment (d). * indicates significant differences (p < 0.01) 

in moments between two directions. – indicates no significant differences. 

(a) Effect on the sagittal moment 
Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  * * * - 

Anterior-Left *  * - * 

Anterior * *  * * 

Anterior-Right * - *  * 

Right - * * *  

 

(b) Effect on the coronal moment 
Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  * * * - 

Anterior-Left *  * - * 

Anterior * *  * * 

Anterior-Right * - *  * 

Right - * * *  

 

(c) Effect on the transverse moment 
Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  - - * * 

Anterior-Left -  - * * 

Anterior - -  * * 

Anterior-Right * * *  * 

Right * * * *  

 

(d) Effect on the net sagittal-coronal moment 
Directions Left Anterior-Left Anterior Anterior-Right Right 

Left  - * - - 

Anterior-Left -  * - - 

Anterior * *  * * 

Anterior-Right - - *  - 

Right - - * -  
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Figure 10. Peak joint moment at sagittal plane calculated via the bottom-up approach using optimized 

individual-specific BSPs and STA error compensation for different joint levels, trunk-bending directions, 

and speed levels.  Results are presented as bar and error bar plots. Bars represent the mean value of the 

peak joint moment among participants, with the error bar depicting the range of plus to minus standard 

error of mean. Moments (N.m) were normalized by participant’s body weight and trunk height. (L: left, 

AL: anterior-left, A: anterior, AR: anterior-right, R: right) 
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Figure 11. Peak joint moment at coronal plane calculated via the bottom-up approach using optimized 

individual-specific BSPs and STA error compensation for different joint levels, trunk-bending directions, 

and speed levels.  Results are presented as bar and error bar plots. Bars represent the mean value of the 

peak joint moment among participants, with the error bar depicting the range of plus to minus standard 

error of mean. Moments (N.m) were normalized by participant’s body weight and trunk height. (L: left, 

AL: anterior-left, A: anterior, AR: anterior-right, R: right) 
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Figure 12. Peak joint moment at transverse plane calculated via the bottom-up approach using optimized 

individual-specific BSPs and STA error compensation for different joint levels, trunk-bending directions, 

and speed levels.  Results are presented as bar and error bar plots. Bars represent the mean value of the 

peak joint moment among participants, with the error bar depicting the range of plus to minus standard 

error of mean. Moments (N.m) were normalized by participant’s body weight and trunk height. (L: left, 

AL: anterior-left, A: anterior, AR: anterior-right, R: right) 

0

5

S
C

~L
L

0

5

0

5

0

5

LL
~

U
L

0

5

0

5

0

5

U
L

~
L

T

0

5

0

5

0

5

L
T

~
M

L
T

0

5

0

5

0

5

M
L

T
~

M
U

T

0

5

0

5

0

5

M
U

T
~

U
T

0

5

0

5

Speed Level 1

0

5

U
T

~
H

D

Speed Level 2

0

5
Speed Level 3

0

5

Normalized Transverse Moment (BW×TH %)

L AL A AR R L AL A AR R L AL A AR R



 

69 

 

 

Figure 13. Peak joint moment at net sagittal-coronal plane (plane of movement) calculated via the 

bottom-up approach using optimized individual-specific BSPs and STA error compensation for different 

joint levels, trunk-bending directions, and speed levels.  Results are presented as bar and error bar plots. 

Bars represent the mean value of the peak joint moment among participants, with the error bar depicting 

the range of plus to minus standard error of mean. Moments (N.m) were normalized by participant’s 

body weight and trunk height. (L: left, AL: anterior-left, A: anterior, AR: anterior-right, R: right) 
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4.5 Discussion 

Inverse dynamics approaches have been extensively used to estimate the lumbo-sacral joint 

moment using a single-segment trunk model along with regressions [39], [54], [55], [140], scaling 

equations [31], or geometrical models [1] for estimating BSPs. The accuracy of 3D joint moments 

obtained via a multi-segment HAT model can be affected by two major sources of error, and 

compensation strategies for minimizing the effect of these inaccuracies have not been addressed 

to date. First, previous studies have shown considerable effects of STA on the lower limb kinetics. 

However, no study has investigated the STA effects on the kinetics of the multi-segment HAT 

model. We have recently developed a methodology to compensate for the STA effects on the 

kinematics of the multi-segment HAT model that can subsequently be used for joint moment 

calculation. Second, previous studies have shown the effects of inaccurate BSPs on lower limb 

kinetics. Accurate estimation of BSPs has been the major challenge in the kinetics assessment of 

the multi-segment HAT model because of their inter-participant heterogeneity and the lack of 

palpable anatomical landmarks for JCR locations. We have recently proposed a non-linear, 

optimization-based method for minimizing the errors in joint moment calculation by estimating 

the individual-specific BSPs of a multi-segment HAT model. These two recent findings enable us 

to perform, for the first time in the present study, an inclusive assessment of a 3D multi-segment 

HAT kinetics during multi-directional trunk-bending. In the present study, we obtained 3D joint 

moments based on optimized individual-specific BSPs along with compensation of STA-induced 

errors, and subsequently investigated the effects of the joint level, bending direction, and bending 

speed on joint moments in the sagittal, coronal, and transverse planes. Notably, the magnitudes of 

the peak moments obtained in this study are in good agreement with previous studies which 

reported the 𝐿5/𝑆1 joint moment during lifting [54] as well as lifting and lowering [141]. 

 

4.5.1 STA effect on inter-segmental net joint moment 

The RMS difference for both the SC~LL and LL~UL joints was significantly larger compared to 

the superior joints. Although no significant differences were found between the SC~LL and 

LL~UL joints, the LL~UL joint tended to have a larger RMS difference. Moreover, the RMS 
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difference significantly decreased from the inferior joints to the superior joints, implying that the 

most superior joints had the smallest RMS difference. This finding suggests that STA correction 

is more essential for kinetics assessment of the inferior joints compared to the superior joints (for 

both bottom-up and top-down inverse dynamics approaches).  

The interaction effect of joint level and trunk-bending direction showed that the RMS difference 

between the lumbar joint (SC~LL, LL~UL) moments calculated before and after STA error 

compensation tended to decrease with more lateral trunk-bending directions. Moreover, this RMS 

difference for mid-upper thoracic levels (MLT~MUT and MUT~UT) tended to be larger for more 

lateral trunk-bending directions. This [19]could be explained as the muscles in the thoracic region 

(such as trapezius muscle) are more involved in lateral movements [19]. This could result in 

increasing the STA induced error in this region. 

In addition, the RMS difference between the joint moments calculated before and after STA error 

compensation was significantly smaller in the top-down approach compared to the bottom-up 

approach, implying that the top-down approach is less sensitive to the STA-induced error for spinal 

joint moment assessment. This is reasonable since, in the top-down approach, the kinematics of 

the inferior segment were calculated with respect to the superior segment. Then, since the motion 

and moments of superior joints were significantly less affected by STA induced errors compared 

to the inferior joints, error propagation was smaller for the top-down approach compared to the 

bottom-up approach. 

4.5.2 3D inter-segmental moments and effect of joint level and trunk-bending 

direction  

The sagittal and coronal moments increased from the superior joints caudally toward LL~UL joint. 

These results were expected since the inferior joints bear more weight during trunk bending. A 

significantly larger coronal moment was generated at LL~UL compared to SC~LL. A similar trend 

was observed for the sagittal moments, but was found to be non-significant. This observation could 

result from the fact that, during trunk bending (especially in the lateral directions), the lumbar 

spine’s curvature is maximum at the LL~UL joint.  
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At the same time, dependency of the sagittal and coronal moments on trunk-bending direction is 

justified by the fact that, during trunk bending in the anterior (lateral) direction, the moment 

component associated with weight bearing is projected into the sagittal (coronal) plane. In this 

light, we observed a two-way interaction effect between joint level and trunk-bending direction on 

both sagittal and coronal moments, indicating that the difference between the sagittal (coronal) 

moments at different joint levels diminished for lateral (anterior) trunk-bending directions.  For 

the left and right directions, no significant difference was found among all joint levels for sagittal 

moments. In contrast, bending towards more anterior directions led to significantly larger sagittal 

moments at the SC~LL, LL~UL, UL~LT, and LT~MLT joints compared to more lateral bending 

directions. In addition, the sagittal moments at more superior joints (MLT~MUT, MUT~UT, 

UT~HD) were not significantly affected by trunk-bending direction. In summary, we found that, 

although for trunk-bending in the anterior (lateral) direction the sagittal (coronal) moments 

increased from the top to the bottom joint, this assumption for sagittal (coronal) moment is of 

limited use for movement toward more laterally-placed targets (anterior target).  

Statistical analyses of the moment magnitudes showed that the sagittal and coronal moments were 

significantly larger than the transverse moment, and the transverse moment generated at each joint 

level was negligible compared to the other components. This likely reflects the nature of the trunk-

bending task in which the participants were asked to maintain the spine’s torsional direction during 

the task to reach that target. The larger transverse moment in UT~HD compared to all other joints 

could have occurred since the participants axially rotated their neck to visually fixate a target while 

moving towards the target, which could require a transverse moment that was not required in other 

joints for the trunk-bending task.  

To investigate whether the sagittal and coronal moment components essentially reflect the upper 

body weight bearing moment projected in the sagittal and coronal plane, we calculated the net 

sagittal-coronal moment (Table 9.d and Table 10.d and Figure 13) during trunk-bending in 

different directions. We observed that the effect of joint level on the net sagittal-coronal moment 

was very similar for the sagittal and coronal moments, and that this net moment significantly 

decreased from LL~UL to UT~HD. The net sagittal-coronal moment at the SC~LL joint was 

significantly larger compared to all superior joints, except for the LL~UL joint. Interestingly, there 
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was no significant difference among the net sagittal-coronal moments across the directions except 

the anterior direction, which tended to be smaller. However, the contribution of the sagittal 

(coronal) moment increased with more anterior (lateral) trunk-bending directions. Interestingly, 

unlike coronal and sagittal moments, no significant interaction effects between joint level and 

trunk-bending direction were found on the net sagittal-coronal moment. These observations 

suggest that the sagittal and coronal moment components are both projections of the same upper 

body weight bearing moment in different trunk-bending directions. Additionally, the net sagittal-

coronal moment at LT~MLT joint reflected a transition between the lumbar and mid-thoracic 

levels: The joints inferior and superior to LT~MLT had significantly larger and smaller moments, 

respectively, than the net sagittal-coronal moment at LT~MLT, whereas no significance was found 

within these groups of joints. These findings imply that the pattern of the net sagittal-coronal 

moments is more likely to change across the spinal joint levels rather than across the directions. 

The results also showed that the slowest speed of trunk bending led to significantly smaller net 

sagittal-coronal moments compared to the faster speeds (p < 0.01). However, no significant 

difference was seen between speed levels 2 and 3. 

4.5.3 Inter-participant variability  

Our results showed that inter-segmental joint moments obtained using a multi-segment model of 

the HAT have complex, task-specific patterns across different joint levels and trunk-bending 

directions. These patterns cannot be observed using a single-segment HAT model. We investigated 

the variability of these moments among the participants to find any potential patterns in individuals 

with no history of spine-related impairment. In spite of the homogeneous population, the peak 

moments showed high inter-participant variability (coefficient of variation) (CV% of up to 82.1%, 

72.2%, and 59.3% for the sagittal, coronal, and transverse moments, respectively). Previous studies 

reported high inter-participant variability for spine motion [140], while the present study reported 

the inter-participant variability of the joint moments in a multi-segment HAT model for the first 

time. Notably, high inter-participant variability of inter-vertebral motion and moment is an 

impediment in finding consistent normal or pathological patterns for clinical evaluations. 

Nevertheless, a higher inter-participant variability is expectable for voluntary tasks (e.g., trunk 

bending) compared to semi-automatic motor tasks (e.g., walking). Nonetheless, the bilaterally 

symmetrical moment patterns found in this study could be useful for clinical evaluations to 
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recognize any asymmetrical patterns at different spinal column levels. Preuss et al. [136] suggested 

that symmetrical movement patterns might be useful in identifying individuals at risk of 

developing low-back pain. Finally, the data used in this study was collected from a mixed-gender, 

relatively small population, which limits any generalization for representing neither healthy male 

nor female populations. A larger population would be needed to identify any clinically meaningful 

patterns for either non-disabled or patient populations. 

4.6 Conclusion 

The kinetics assessment of the spinal column using multi-segment HAT models is currently 

challenging and error-prone.  The present study proposed a procedure for accurate estimation of 

the 3D inter-segmental moments at different levels of the spinal column based on optimized 

estimation of individual-specific BSPs along with compensation of STA-induced errors. This 

study investigated (a) the effect of STA-induced error compensation on the inter-segmental 

moments during trunk-bending towards different directions, and (b) the pattern of the 3D inter-

segmental moments at different joint levels, target directions, and speed levels after compensating 

the errors induced by STA and BSPs inaccuracy. The results of this study revealed complex, task-

dependent patterns for the 3D inter-segmental moments at different levels of the spinal column, 

which could not be studied using single-segment models or without such error compensations. Our 

findings show that multi-segment assessment of the spine kinetics is of great importance and could 

be beneficial for understanding pathological conditions related to the trunk movements.  



 

75 

 

Chapter 5 

5 Conclusions and Future Perspectives 

5.1 General Results and Main Contributions 

The main objective of this thesis project was to develop a methodology for more accurate 

estimation of three-dimensional (3D) intervertebral joint moments in a multi-segment model of 

the head-arms-trunk complex (HAT), via an inverse dynamics approach. To this end, our 

developed methodology minimized the errors due to inaccuracies in (a) kinematic data due to soft 

tissue artifacts (STA), (b) COP offset, in force plate measurements, and (c) body segment 

parameters (BSPs). Our first original contribution was to propose a non-invasive, non-linear, two-

step optimization-based method to estimate individual-specific BSPs and COP offset that 

minimizes the error in HAT joint moment estimation. Our second original contribution was (a) to 

apply the method proposed for optimal estimation of individual-specific BSPs and COP offset and 

another method previously proposed to compensate the error induced by STA to more accurately 

assess the pattern of the joint moments at different levels of the spinal column during multi-

directional seated bending with different speeds, and (b) to enable investigation of the effect of 

factors such as joint level, trunk bending direction, and bending speed, on the intersegmental 

moments of the HAT.  The main results and contributions of this thesis are summarized in the 

following sections. 

5.1.1 Optimization Method for Estimating BSPs and COP Offset 

Many approaches have been proposed in the past for estimating BSPs. Some studies employed 

medical imaging techniques to accurately obtain individual-specific BSPs. Although such methods 

are highly accurate, radiation exposure, cost, and complexity limit the feasibility of their real-world 

application, particularly for clinical evaluations. Some studies provided regression equations, 

scaling equations, or geometrical models based on either medical images or data from a limited 

number of cadavers. However, none of these methods provide high accuracy in estimation of 
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individual-specific BSPs, which could result in errors in estimating joint moments of the HAT, 

because of high inter-participant variability in the shape and composition of the segments in a 

multi-segment HAT model. Optimization methods have been employed as a mathematical 

technique to compensate such inaccuracies; however, their cost function usually minimized the 

difference between measured and calculated GRF and did not contain information on the net joint 

moments at a majority of body joints. Therefore, the error in the net joint moment could not be 

minimized by their proposed optimization cost function. Moreover, the available methods only 

targeted the lower limbs while assuming the upper body as a single segment. They neither modeled 

the spinal column using multiple segments, nor attempted to estimate the BSPs for each of these 

segments. For the first time, the present study addressed inaccuracies in BSPs and COP offset for 

assessing the kinetics of a multi-segment HAT model. First, we assigned BSPs for each segment 

of the HAT, scaled from cadaveric data as approximated individual-specific BSPs. Subsequently, 

we proposed a two-step optimization method to minimize the difference between the joint 

moments calculated via bottom-up and top-down approaches at all inter-segmental levels during 

trunk bending in the anterior direction, as the calibration task. Our optimization method 

significantly reduced the error (defined as the difference between calculated joint moment via 

bottom-up and top-down approaches) in joint moments at all levels of the spinal column, and 

provided more accurate, optimized individual-specific BSPs and COP offset.  

5.1.2 Multi-Directional Kinetics of the Multi-Segment HAT: STA Compensation   

In the past, the kinetics of the human trunk have been widely investigated to calculate the lumbo-

sacral joint moment for various motor tasks using single-segment kinematic models of the trunk. 

These studies used regression equations, scaling equations, or geometrical models to estimate 

BSPs, and no study has employed an accurate estimation of individual-specific BSPs for a multi-

segment HAT. Moreover, many studies investigated the effect of the induced error due to STA on 

the kinematics and kinetics of the lower limbs. A recent study proposed a methodology to model 

and compensate for the effect of STA on the kinematics measurement of the HAT segments; 

however, no study investigated STA effects on the kinetics of the HAT. For the first time, the 

present study proposed to compensate for the effects of STA in kinematics measurements for a 

comprehensive kinetics assessment of the multi-segment HAT during multi-directional seated 

trunk bending using individual-specific BSPs and suppressed COP offset. Consequently, this study 
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enabled, for the first time, estimation of the 3D intervertebral moment patterns at different levels 

of the spinal column, for different trunk bending directions, and for different trunk bending speeds. 

The results revealed complex, task-specific patterns which could not be captured by a single-

segment trunk model, without compensating the effect of STA on kinematic parameters, and 

without estimation of optimized individual-specific BSPs. As such, by compensating the major 

sources of errors, our proposed method facilitates the assessment of multi-segment HAT kinetics 

for clinical evaluations, and for understanding pathological conditions related to the trunk.  

5.2 Future Perspectives 

5.2.1 Postural Balance and Risk of Falling Assessment 

Characterization of postural balance and risk of falling during seated posture (e.g., during wheeling 

in a wheelchair) requires the highest level of accuracy in estimating the kinetics of the multi-

segment HAT, which has been enabled by the present study. In the future, the methodology 

proposed by this study can be applied to investigate dynamic sitting balance using a multi-segment 

HAT model during different daily or work-related conditions (e.g., sitting perturbations and 

reaching tasks). This can provide insight into the mechanisms and strategies employed by the 

central nervous system to maintain sitting balance.  

5.2.2 Ambulatory Assessment of Trunk Kinetics  

This study was based on in-lab measurements using a stationary motion capture system and a force 

plate. However, recent developments in wearable technologies could be used to assess kinematics 

and kinetics of the multi-segment HAT in an unconstraint environment. The outcome of the present 

study can be implemented to improve the accuracy of kinematics and kinetics measurements of 

the multi-segment HAT using wearable technologies. 

5.2.3 Clinical Evaluation of Pathological Conditions 

Evaluation of neuro-musculoskeletal conditions pertaining to the spinal column, and injury 

prevention and treatment strategies require accurate and reliable estimation of the inter-spinal 

interactions. Evaluation of several pathological conditions such as low-back pain, herniated disc, 
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scoliosis, and kyphosis as well as of pre- and post-operational treatment can also benefit from 

assessment of the inter-vertebral interactions. Therefore, the methodology proposed by this study 

can be used for evaluating clinical conditions by providing a more accurate estimation of the inter-

spinal interactions, which can be used for routine clinical evaluations. Moreover, this study 

provides insight into moment patterns along the spinal column (e.g., bilaterally symmetrical 

moment patterns), which could be used in diagnosis of any pathological asymmetrical patterns; for 

example, in individuals who are at risk of developing low-back pain.
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Appendices 

Appendix A: Inter-segmental Moments after Error Compensation 

Figure A. 1 to Figure A. 5 show the inter-segmental moment (Nm) normalized by body weight 

and trunk height of the participants (BW×TH %). Given are the moments at all joint levels for five 

trunk-bending directions after compensating errors due to soft tissue artifacts and using individual-

specific BSPs and COP offset. Results are presented as mean (solid line) and mean ± standard 

deviation (shaded area) for sagittal, coronal, and transverse planes. 
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Figure A. 1 

Normalized Joint Moment (BW×TH %) Bending toward Left Target 
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Figure A. 2 

Normalized Joint Moment (BW×TH %) Bending toward Anterior-Left Target 
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Figure A. 3 

Normalized Joint Moment (BW×TH %) Bending toward Anterior Target 
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Figure A. 4 

Normalized Joint Moment (BW×TH %) Bending toward Anterior-Right Target 
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Figure A. 5 

Normalized Joint Moment (BW×TH %) Bending toward Right Target 

 

 


