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Abstract 

The warm vaporized solvent injection process has been proposed as a more 

environmentally friendly alternative to steam-based technologies for bitumen recovery. 

The process typically involves injecting heated solvent vapor into a horizontal injector; the 

solvent condenses and dissolves into bitumen, while the diluted oleic phase would flow 

towards a horizontal producer. An optimization process is important because of its potential 

reduction of solvent loss to the reservoir and energy requirements while maximizing 

bitumen recovery. Hence, this research proposes a workflow for optimizing the multiple 

conflicting performance objectives associated with the warm vaporized solvent injection 

process. Specific considerations phase behavior constraints, multiple realizations of 

reservoir heterogeneity, and computational efficiency are considered. It is expected that 

this workflow can be readily integrated into the design and decision-making processes in 

reservoir management, especially where multiple geostatistical realizations are involved. 

Apart from performing automated optimization and quantification of geological 

uncertainties and requiring lower computational effort compared to reservoir simulation, 

data-driven models offer better accuracy than semi-analytical or proxy models based on 

Butler’s equation. Hence, this thesis also presents another workflow for real-time 

forecasting, uncertainty assessment of SAGD profiles, and optimization of steam allocation 

using a real SAGD dataset which includes operational data, geological, and well design 

parameters. The workflow includes the development of a predictive model using the 

random forest algorithm, and clustering, Bayesian updating, Monte Carlo sampling, and 
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genetic algorithm for the real-time prediction of SAGD injection and production data. This 

workflow can update predictions in real-time, perform uncertainty quantification of the 

forecasts, and optimize steam allocation, making it a practical tool for development 

planning and field-wide optimization. 
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Introduction 

Most of Canada’s oil sands are located in Western Canada, notably in the provinces of Alberta and 

Saskatchewan, and the heavy oil/bitumen resources can be produced through in-situ thermal and/or 

solvent-based methods. Due to the high viscosity of bitumen, thermal and solvent based methods 

are implemented to lighten bitumen viscosity through heat transfer (in the form of steam or hot 

water injection) and/or mass transfer (injection of light hydrocarbon solvents or carbon-dioxide). 

The most common thermal extraction technique is steam-assisted gravity drainage (SAGD) 

method, which involves the injection of high-quality steam into the reservoir to thermally mobilize 

viscous heavy oil or bitumen. The recent challenges that are associated with SAGD include high 

operating costs, technical constraints, water consumption, and greenhouse gas (GHG) emissions, 

hence non-thermal methods (e.g., solvent-aided recovery processes) have been proposed as 

promising alternatives. 

Solvent-based and steam-solvent hybrid methods often utilize a similar well-pair configuration as 

the SAGD process. For example, the warm Vapor Extraction (VAPEX) process, which involves 

the injection of vaporized solvent between the dew point to superheated conditions in-situ, such 

that it can dissolve into the bitumen. Compared to the SAGD, solvent-based techniques usually 

cost more to operate, hence the need for optimization of the pertinent operational constraints using 

techniques such as the genetic algorithm (GA)., however, one of its limitations is slow computation 

time. 

This research focuses on three major workflows which consists of: (1) multi-objective 

optimization of the warm VAPEX process assuming homogeneous reservoir while considering 
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phase behavior constraints; (2) is an expansion of (1) to consider a heterogenous reservoir; (3) 

real-time forecasting and optimization of real-world SAGD injection and production data. (1) and 

(2) are performed using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) proposed by 

Deb et al. (2000). Chapter 3 elaborates the problem statement and objectives of this research. 

A practical workflow for optimizing various design variables associated with solvent-based 

bitumen recovery processes is important. Therefore, a workflow, which optimizes multiple 

conflicting objective functions for the warm VAPEX process assuming homogeneous reservoir, is 

proposed in Chapter 4. The addition of non-condensable gas (methane) into the solvent (propane) 

is examined. The design variables are propane mole fraction, injection pressure and temperature, 

and the objective functions (i.e., oil recovery factor, solvent retained-to-oil ratio, and energy 

consumption), are defined. The workflow combines experimental design, proxy modeling through 

the artificial neural network (ANN), and NSGA-II to estimate the optimal decision variables. The 

ANN technique is incorporated to reduce the computational costs associated with reservoir 

simulations. Specific considerations including phase behavior constraints and computational 

efficiency are examined and incorporated. It is anticipated that this workflow can be readily 

integrated into the design and decision-making processes in reservoir management. 

Chapter 5 elaborates on a robust multi-objective optimization workflow, similar to the one in 

Chapter 4, but for a more practical scenario of the warm VAPEX process involving geostatistical 

realizations of reservoir heterogeneities. To account for geologic uncertainty, a separate proxy 

model is constructed for each realization, and for each objective function, the minimum, the 

weighted mean, and the maximum over these realizations are considered. The developed approach 

can identify a set of optimal design variables in a computationally efficient manner. The presence 
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of shale baffles or barriers can affect the performance of the warm vaporized solvent injection 

process. 

In Chapter 6, a novel algorithm for real-time forecasting and optimization (based on the Net 

Present Value (NPV)) of SAGD process is proposed. This machine learning framework can update 

predictions in real-time, be applied for the quantification of the uncertainties associated with the 

forecasts, and optimize steam allocation, making it a practical tool for development planning and 

field-wide optimization. 

Since this is a paper-based thesis, Chapters 4, 5, and 6 consist of literature review and summary. 

Chapter 7 highlights the general conclusions and recommendations from this work. 
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Chapter 2 Problem Statement and Research Objectives 

For solvent-based bitumen extraction processes, trade-offs exist between its performance 

objectives such (e.g., solvent loss, recovery factor, energy requirement), therefore requiring the 

multi-objective optimization (MOO) framework. Also, it is imperative to incorporate the phase 

behavior/thermodynamic properties of non-condensable gases in a MOO problem since these 

gases are usually present in solvents. Usually, since it is impossible to determine the actual 

distribution of reservoir heterogeneities, reservoir models are represented with multiple 

realizations of properties (e.g., low-case, mid-case, and high-case) using stochastic methods. The 

uncertain distribution of the reservoir properties can make optimization to be challenging, 

therefore the optimal solutions may be identified by considering a worst-case scenario, best case 

scenario or simply by finding the average of a performance objective over the realizations. 

However, the process of determining the optimal decision variables using reservoir modeling and 

sensitivity analysis is computationally inefficient and less effective, hence the need for the 

integration of data-driven or machine learning (ML) technique. 

Also, a ML-based approach for real-time forecasting, uncertainty quantification and optimization 

of the SAGD method, while considering operational and reservoir uncertainty is uncommon, and 

the use of real field data for this data-driven approach is not in public domain. Although, semi-

analytical models (Dehdari and Dong, 2017) have been proposed for SAGD production 

forecasting, they have not been widely adopted because of the difficulty in integrating operational 

data into the models. 
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Therefore, the objective of this research is to create a ML-based workflow that includes numerical 

reservoir modeling, proxy modeling and a Pareto-based MOO algorithm for the optimization of a 

solvent-based process. Another data-driven workflow which uses actual field dataset for dynamic 

forecasting, uncertainty quantification, and optimization of steam allocation during SAGD 

operation is also proposed. 
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Chapter 3 Methodology 

Several techniques exist in searching for the optimal decision variable for a constrained 

optimization problem, which may be expresed in terms of minimizing or maximizing an objective 

function f(x) of decision vector x = (𝑥1, 𝑥2, ….., 𝑥𝑁) whose values limited to the bounds 𝑥 𝑖
𝑙𝑜𝑤𝑒𝑟 ≤

 𝑥𝑖 ≤  𝑥 𝑖
𝑢𝑝𝑝𝑒𝑟

, and are constrained to meet a set of constraints including equality ℎ𝑘(𝑥) = 0 and 

inequality constraints 𝑔𝑗(𝑥) ≥ 0. However, an optimization problem may be expressed such that 

there are no constraints and no bounds for x, and this is referred to an unconstrained optimization 

problem. 

Optimization problems can also be categorized based on x,  f(x), ℎ𝑘(𝑥) and 𝑔𝑗(𝑥). For example, 

single-variable and multi-variable problems are unconstrained problems with one-dimensional x 

and multi-dimensional x respectively. An optimization problem comprising of a linear ℎ𝑘(𝑥) and 

𝑔𝑗(𝑥), and non-linear ℎ𝑘(𝑥) and 𝑔𝑗(𝑥) are linearly constrained and non-linearly constrained 

optimization problems respectively. For the linearly constrained problems, if f(x) are linear and x 

are continous variables, such problems are called linear programs. A non-linearly constrained 

optimization problem with a non-linear objective function may be referred to as a non-linearly 

constrained non-linear program. The proposed workflows in Chapters 4 and 5 consist of a multi-

variable, multi-objective, non-linearly constrained non-linear program.  

To find the solutions for an optimization problem, several algorithms exist. These algorithms or 

heuristics can be gradient-based (e.g. gradient descent, stochastic gradient descent), Hessian-based 

(e.g. Newton’s method, Quasi-Newton’s method) Marquardt’s method etc.), or algorithms with 

non-differentiable objective functions (e.g. simulated annealing, particle swarm optimization, 
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differential evolution, genetic algorithm, etc.). The genetic algorithm is implemented in this 

research due to its advantages such as; ability to do a global search, resistance to being trapped in 

local optima (Sivanandam and Deepa, 2008), capacity to handle noisy objective functions, use of 

function evaluations instead of derivatives (Bittencourt and Horne, 1997), etc. The algorithm is 

explained below. 

 

3.1. Genetic Algorithm 

The genetic algorithm (GA) is an optimization technique inspired by natural evolution, which 

operates based on a populution of artificial chromosomes or solutions, where each chromosome 

has a fitness value or objection function, which is a measure of the quality of the solutions to an 

optimization problem. The GA begins by randomly creating a population, then the process of 

selection which is based on the fitness function, and recombination is performed to produce a new 

generation of population. Usually selection is done with replacement with highty fit chromosomes 

having the possibility of being selected more than once. Examples of selection methods include 

Roulette Wheel, tournament, random stochastic and truncation selection.  

Recombination consists of two probabilistic genetic operators which are crossover and mutation. 

The crossover operation involves the genetic mixing of two parent chromosomes selected to 

produce offspring chromosomes. The execution of the crossover operator is dependent on a 

random number between 0 and 1, which is generated based on a uniform probability distribution. 

This number is compared to a pre-determined crossover rate, and if this is greater, no crossover 

occurs. A crossover operator is applied when the  random number is less than or equal to the 
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crossover rate. One-point, multi-point and uniform crossover are common crossover operations. 

The mutation is performed after crossover and this operation is applied to one parent chromosome 

by flipping one or more allele (the value occuring at a position in a chromosome). The decision on 

whether to perform mutation is similar to crossover (i.e. based on a comparision between a pre-

determined rate to a random number). Since mutation rates are usually small, it is less likely for it 

to occur. 

The process of selection and recombination is performed iteratively and a sequence of successor 

generations of a population are created with a decrease or increase in the fitness values of the 

chromosomes, depending on whether the optimization is a minimization ot maximization problem, 

until a stopping criterion is met.  

For multi-objective optimization problems, variant of the GA, such as the Non-Dominated Sorting 

Genetic Algorithm (NSGA) can be used. 

 

3.2. Data-Driven Modeling Concepts 

As previously discussed, the determination of optimal decision variables using GA is based on the 

minimization or maximization of a fitness or objective function. For petroleum engineering 

problems, objective functions can be reservoir models, however, since these functions are 

evaluated for each chromosome in a population, and reservoir simulations may take several hours 

or days to complete, the solution of such problems may require huge computional footprint and lot 
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of time. Hence, making data-driven or machine learning (ML) techniques to be effective. The ML-

based objective functions are usually referred to as proxy models. 

Machine learning is the use of statistical, mathematical tools or heuristics, coupled with domain 

knowledge to model a physical system of interest. ML algorithms are categorized as supervised 

(e.g., linear regression, random forest algorithm, artificial neural network (ANN), support vector 

machines, etc.), unsupervised (K-means, hierarchical clustering, principal component analysis 

(PCA), etc.) and reinforcement learning. To develop a data-driven model, three sets of data are 

required, which are: training set, test set and validation set. The training set is employed for model 

training, and the validation set provides an unbiased assessment of the model performance during 

training, which sometimes triggers the termination of the training process. The test set is required 

to perform an unbiased evaluation of the model at the end of the training process. Usually, the 

training set take a larger proportion of the entire dataset or observations compared to the test and 

validation set. A subset of a particular observation fed into the model is referred to as input 

variables or predictors, while the expected output (in the case of supervised learning) is called a 

target variable. Therefore, in supervised learning, there is a functional mapping from the predictors 

to the target variables. Unsupervised learning algorithms do not require target variables. In 
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reinforcement learning, an agent learns from interaction with its environment through different 

trial and error techniques in order to maximize a reward function. 

The data-driven methods that are employed in this research include ANN, random forest algorithm, 

PCA and K-means clustering. 

 

3.2.1. Artificial Neural Network 

The artificial neural network (ANN) is created to mimic a biological neuron by accepting signals 

(inputs) from neighbouring neurons and processing them. Based on the results of the processing, 

a neuron can decide whether to fire an output signal or not. If the output signal is triggered, it may 

either be 0 or 1, or real value between 0 and 1. An ANN architecture typically consists of an input 

vector/layer, one or more hidden layers, and an output layer. The processing process is 

implemented by feeding an input vector X into each neuron, and the output is calculated based on 

the function g(f(x)). f(x) is a linear combination of the elements in X (i.e.  𝑥𝑖; i = 1, 2…., m) with 

the weights 𝑤𝑗,𝑖 and/or bias b, and g is a non-linear transfer function for f(x) to the output value a 

in the hidden layer. To calculate the output for a successor hidden layer, a is fed and g(f(a)) is 

implemented until the final output value y (i.e., the output from the output layer) is obtained. 
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Figure 3-1: ANN Architecture 

The weights are updated through a backpropagation algorithm which includes an optimization 

framework where the error between the actual target values and model predictions (e.g., the Mean 

Squared error, MSE) is minimized after several batches of training. 

 

3.2.2. Random Forest Algorithm 

The random forest algorithm is an ensemble learning method which combines predictions from 

decision trees for better predictive accuracy. The algorithm uses bootstrap aggregation or bagging, 

which is a random sampling with replacement that reduce the variance of decision trees. The 

bootstrapped dataset is the same size as the original dataset, and depending on the number of 

decision trees, multiple trees are trained, and the average of outputs from the trees is the predicted 

output. Compared to ANN, the random modeling technique has less computational footprint, with 

fewer tuning parameters (Muhammad et. al., 2017). 
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3.2.3. Principal Component Analysis 

Principal component analysis (PCA) performs dimensionality reduction for a dataset by projecting 

it to a lower dimension space. For the input data X of dimension m×n (n = number of variables; m 

= number of samples), a mean-adjusted data Z (of dimension m×n) is calculated by subtracting the 

mean of variable 𝑋𝑗 (j = 1, 2…, n) from each of its data point 𝑋𝑖
𝑗
 (i = 1, 2…, m) to eliminate bias. 

Next, using a singular value decomposition (SVD) technique, the eigenvectors (or principal 

components) of a n×n covariance matrix of Z. The covariance matrix 𝜎𝑍 is computed thus: 

𝜎𝑍 =
1

𝑚
∑ 𝑍 × 𝑍𝑇

𝑚

𝑖=1

, (1) 

 

3.2.4. K-means Clustering 

K-means is a common cluster analysis method for recommender systems, anomaly detection, 

reservoir characterization, etc. Other clustering algorithms include density-based scan and 

hierarchical clustering. K-means identifies internal groupings within data by grouping 

observations or samples into k-clusters based on similarities in data, and a measure of this 

similarity is the squared Euclidean distance. Cluster assignment of the observations is performed 

by minimizing the mean squared Euclidean distance, J from each observation to its nearest cluster 

centroid. 

𝐽 =
1

𝑚
[∑ ∑ 𝑤(𝑖,𝑗) ‖𝑥(𝑖) − 𝜇(𝑗)‖

2

2
 

𝑘

𝑗=1

𝑚

𝑖=1

], 

(2) 
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Where 𝜇(𝑗) is the j-th cluster centroid, 𝑤(𝑖,𝑗) is 1 if the observation 𝑥(𝑖) is assigned to cluster 𝑗, 

otherwise, 𝑤(𝑖,𝑗) is 0. 

A limitation of K-means is its sensitivity to the initialization of the cluster centroids, hence, a 

common practice is to repeat random initialization of centroids and clustering until optimal 

grouping is obtained. To measure the performance of a clustering process, the silhouette value, 

which measures the similarity between an observation and its cluster compared to other clusters, 

is used. The silhouette value has an interval of [-1, 1]; a value close to -1 means that an observation 

is misclassified while a value close to 1 means that an observation is closer to other observations 

within its cluster compared to the remaining samples in the dataset. A value of 0 suggests that a 

sample can belong to more than cluster. 

 

3.3. Uncertainty Quantification 

In the absence of real-world data, uncertainty assessment is critical to the analysis, prediction, and 

optimization of physical systems, and a common source of this uncertainty is data uncertainty. 

Data uncertainty may occur in form of a random variable in which the accuracy of a distribution 

is dependent on the amount of available data, or from measurement error, or when data exists as a 

range of values (Mahadevan and Sarkar, 2009). Uncertainty in data can also come from subjective 

interpretation of geologic properties. Bootstrapping and the Monte Carlo method are some of the 

widely adopted techniques for uncertainty analysis. For this research, the Monte Carlo sampling 

method is employed as it is used to predict the possible outcomes of an uncertain event through 

the random sampling of a finite number of realizations, which is based on a probability distribution. 
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The application of the Monte Carlo sampling can be found in literatures such as Bieker et. al., 

(2006), Al-Mudhafar and Rao (2016) and Mehana et al. (2019). In this work, the probability 

distribution for sampling is determined using the Bayesian approach (Russell and Norvig, 2016). 

The Bayesian theorem is a posterior probability estimation method for estimating the likelihood 

of an event based on apriori data.  Given events A and B, the Bayesian theorem can be expressed 

as: 

𝑃(𝐵|𝐴) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
, 

(3) 

where P(A|B) is the conditional of A given the occurrence of B, P(A) and P(B) are the probabilities 

of A and B respectively irrespective of any other event, and P(B|A) is the conditional of B given 

the occurrence of A. P(A|B) is posterior probability and P(A) is prior probability. 
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Chapter 4 Incorporating Phase Behavior Constraints in 

Multi-Objective Optimization of Warm Vaporized 

Solvent Injection Process  

Abstract 

The warm vaporized solvent injection process has been proposed as a more environmentally 

friendly alternative to steam-based technologies for bitumen recovery. The process typically 

involves injecting heated solvent vapor into a horizontal injector; the solvent condenses and 

dissolves into bitumen, while the diluted oleic phase would flow towards a horizontal producer. 

Despite the promising results reported from several pilot projects near Fort McKay, Alberta, 

successful commercial-scale extraction is costly and would require a detailed optimization of the 

pertinent design variables. The main challenge is that this is a multi-objective optimization (MOO) 

problem, which aims to balance the trade-offs between conflicting performance objectives while 

honoring the various operational constraints. In this study, a systematic workflow is formulated to 

optimize these multiple conflicting performance objectives considering phase behavior 

constraints. 

A 2D synthetic model based on typical Athabasca oil sands properties is constructed to simulate 

the warm vaporized solvent process. The addition of non-condensable gas (methane) into the 

solvent (propane) is examined. The resultant changes in thermodynamic properties and 

equilibrium phase behavior are considered in determining the practical limits of the decision 

variables (e.g., bottom-hole injection pressure and temperature). The objective functions, 
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including oil recovery factor, solvent retained-to-oil ratio, and energy consumption, are defined, 

and a factorial experimental design is employed to identify a subset of decision variables that 

exhibit minimal redundancy internally and create the dataset for proxy model development. To 

reduce the computational costs associated with reservoir simulations, proxy models, e.g., the 

artificial neural network (ANN), is developed and applied. Finally, a Pareto-based MOO scheme 

is implemented to estimate the optimal decision variables.  

Despite the higher front-end loading requirement of the ANN proxy modeling, the MOO with 

proxy modeling still requires significantly less execution/running time as compared to a MOO 

with traditional flow simulation (e. g., a 97% reduction in CPU time). This reduced running time 

is important for alleviating the computational load when evaluating the objective functions during 

the optimization process. More importantly, this optimization scheme is capable of identifying a 

set of optimal decision variables. 

This work presents a practical workflow for optimizing various design variables associated with 

many solvent-based bitumen recovery processes. Specific considerations including the practical 

limits for operating constraints and computational efficiency are examined and incorporated. It is 

anticipated that this workflow can be readily integrated into the design and decision-making 

processes in reservoir management. 
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4.1. Introduction 

A vast majority of Canada’s oil sands are located in Western Canada, notably in the provinces of 

Alberta and Saskatchewan. According to the Alberta Energy Regulator (2019), close to 80% of 

Alberta’s heavy oil reserves can be produced through in-situ thermal and/or solvent-based 

methods. Due to their high viscosity and specific gravity, heavy oil and bitumen enhanced oil 

recovery schemes are employed to reduce the oil viscosity through heat (in the form of steam or 

hot water injection) and/or mass transfer (injection of light hydrocarbon solvents). 

Popular thermal extraction techniques are steam-assisted gravity drainage (SAGD) and cyclic 

steam stimulation (CSS). Current challenges associated with these techniques include high 

operating costs, technical constraints, operational safety concerns, water consumption, and 

greenhouse gas (GHG) emissions. Non-thermal methods (e.g., solvent-based processes) have been 

proposed as promising alternatives. These solvent-based (with or without steam) techniques can 

potentially offer the following benefits (Zhang et al., 2019a): 

• Injecting pure solvent is suitable for thin reservoirs where heat loss from steam is 

substantial. 

• Water treatment cost is lower for solvent-based methods (less or no steam is needed). 

• Limited solvent solubility in water renders these solvent-based processes to be more 

effective in reservoirs underlain by a bottom water zone. 
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• Heat requirement is lower in the pure solvent injection method in contrast to the steam-

based method since for most light hydrocarbon solvents, the dew point temperature at 

reservoir pressure is usually much lower than the steam temperature. 

Therefore, many simulations, laboratory, and field studies involving the solvent-based and steam-

solvent hybrid methods have been presented. Butler and Mokrys (1991) proposed the vapor 

extraction (VAPEX) method, which utilizes a similar well configuration as in SAGD. This process 

involves the injection of a pure vaporized solvent to reduce the bitumen viscosity. Many previous 

simulation studies have concluded that the production rate from VAPEX is usually too low because 

the solvent diffusion rate is too low (Shi and Leung, 2014a, b). A modification of VAPEX is the 

warm vaporized solvent (warm VAPEX) method. Warm VAPEX or the patented N-Solv® 

technique (Nenniger and Nenniger, 2001) involves the injection of a heated solvent vapor close to 

dew point conditions, allowing the solvent to condense and dissolve once in contact with the in-

situ cold bitumen. The solvent is produced with the bitumen, then separated, and re-injected into 

the reservoir. The mechanisms for viscosity reduction in warm VAPEX are solvent diffusion, 

solvent dispersion, and heat transfer. Additional heat transfer to the bitumen is achieved through 

the release of latent heat after condensation (Nenniger and Dunn, 2008). The N-Solv® process, 

which is a variant of the warm VAPEX method, involves the injection of a pure heated vaporized 

solvent, such as propane (C3), and pilot test results conducted near Fort McKay, Alberta, have 

proven the effectiveness of this technique for commercial-scale bitumen extraction (Nenniger and 

Dunn, 2008). Other simulation studies, such as the high-temperature multicomponent solvent 

vapor extraction (HTMS-VAPEX) and Azeotropic HTMS-VAPEX (AHTMS-VAPEX) processes 
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developed by Khaledi et al. (2018), also demonstrated that it is possible to leverage the benefits of 

solvent dilution with effective heat transfer for achieving optimal recovery.  

Despite the successful implementation of N-Solv® at the pilot scale and, to some extent, the field 

scale (Emissions Reduction Alberta, 2016), commercial-scale extraction still requires detailed 

optimization of the pertinent decision variables. The first challenge is that this is a multi-objective 

optimization (MOO) problem, which aims to balance the trade-offs between multiple conflicting 

performance objectives while considering operational constraints. Secondly, the commercial 

supply of light hydrocarbon solvents usually has about 5–10% hydrocarbon impurities and non-

condensable gases, such as methane (C1); non-condensable gases may also be added to the solvent 

mixture to delay liquid condensation in the solvent chamber (Das, 2008). However, solvent 

mixtures usually partition into separate phases (oleic and vapor) inside the solvent chamber due to 

variation in solubility for different components (Das, 2008; Zhang et al., 2019a). Lighter 

components (e.g. C1) may accumulate near the top of the reservoir, providing a thermal barrier to 

the overburden heat loss, but it may also be inhibiting the chamber from propagating vertically 

(Das, 2008; Ma and Leung (2020a); heavier components (e.g. C3) tend to stay in the oleic phase 

in the extracted chamber. Apart from reducing the gravity drainage potential (due to density 

differences between the vapor and liquid phases) for the mobilization of bitumen (Das, 2008), the 

accumulation of liquid C3 also leads to solvent retention in the reservoir. Hence, the performance 

of the warm VAPEX process is contingent on the amount of non-condensable gas. Thirdly, for a 

given solvent concentration and pressure, solvent solubility reduces with increasing temperature; 

injection at superheated conditions may hinder liquid condensation at the solvent-bitumen 

interface, with a negative impact on solvent diffusion and viscosity reduction. However, 
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superheated solvents also provide more thermal energy for viscosity reduction. The net effect of 

solvent composition and injection conditions on bitumen recovery and solvent retention is a 

complex function of the dominant rate-controlling step (diffusion or heat transfer) and the extent 

of solvent partitioning (condensation) inside the vapor chamber behind the chamber interface. In 

the end, conducting a simple sensitivity analysis, where one or two variables are varied at a time, 

to identify the optimal solvent concentration, bottom-hole injection temperature, and pressure is 

not feasible. A MOO strategy, which involves all possible combinations of the decision 

parameters, is necessary to assess the trade-offs between multiple conflicting objectives and the 

complex interplay between these decision parameters. 

Three distinct objective functions, including oil recovery, solvent loss, and energy requirement, 

are considered in this study. Solvent type, solvent concentration, bottom-hole injection 

temperature, bottom-hole injection pressure, reservoir heterogeneity, well configuration, and pre-

heating period are factors that can influence the performance of the process. In most optimization 

studies, a single objective function is defined; for example, Al-Gosayir et al. (2013) applied a 

hybrid genetic algorithm technique in the optimization of the steam-over-solvent injection process 

in fractured reservoirs (SOS-FR), where the Money Recovery Factor (MRF) combining the 

cumulative steam/solvent injection and production and oil production, was defined. In other cases, 

a MOO problem can be formulated as a single objective optimization (SOO) problem by 

aggregating all the objectives into one weighted objective function or by changing all but one of 

the objectives into constraints. The limitation, however, is that the trade-offs between objectives 

cannot be easily evaluated when aggregated functions are used. Also, it may be impossible to find 

an optimal solution if the search space is non-convex (Ngatchou et al., 2005). For instances in 
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which there are more than three objective functions, several objective functions can be grouped 

considering the trade-offs among them, reducing the total objective function count (Hutahaean et 

al., 2017). 

Solving a MOO problem entails searching for an optimal set of solutions along the Pareto-optimal 

front. Common MOO techniques include Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 

1985), Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994), Reference Vector 

Evolutionary Algorithm (RVEA) (Cheng et al., 2016), and Multi-Objective Genetic Algorithm 

(MOGA) (Fonseca and Fleming, 2011). Other widely adopted MOOs are elitist Multi-Objective 

Evolutionary Algorithms (MOEAs) such as Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) (Deb et al., 2000), Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 

1998), and the Pareto-Archived Evolution Strategy (PAES) (Knowles and Corne, 1999). Many 

studies have utilized MOO workflows in various enhanced oil recovery (EOR), reservoir 

modeling, and well placement applications. For example, Hamdi et al. (2018) proposed a MOO 

approach which is based on the sequential Gaussian process to history match pressure, gas, oil, 

and water production rates from a tight reservoir, while RVEA was implemented to history match 

the production data for a real-field reservoir model considering more than three objective functions 

in Hutahaean et al. (2016). Also, an ensemble-based MOO was applied to the optimization of long- 

and short-term water flooding in Fonseca et al. (2014), and Min et al. (2014) compared a number 

of MOO algorithms for production history matching. Proposed by Deb et al. (2000), the NSGA-

II, which is a variant of the genetic algorithm (GA), finds a diverse set of optimal solutions along 

a Pareto front by using a non-dominated sorting approach and an elitist-based technique. In 

contrast to PAES and SPEA, the NSGA-II is more efficient with a computational complexity of O 
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(MN2), where N is the population size and M is the number of objectives (Deb et al., 2000). Zhang 

et al. (2019b) developed a hybrid NSGA-II workflow to history match and optimize an alkaline-

surfactant-polymer (ASP) flooding process, where two objectives, including oil recovery and 

chemical usage, were considered. The NSGA-II with a similarity-based selection method was used 

to optimize the placement of a non-vertical well (Rostamian et al., 2019), where the net present 

value (NPV) and oil recovery factor are incorporated as the objective functions. (Ma and Leung 

(2020a) applied a Pareto-based multi-objective optimization (i.e., NSGA-II) for the design of a 

warm solvent injection process. In that work, only pure C3 was injected, and the co-injection with 

other non-condensable gases was not explored. 

The objectives of this study include the following: (1) developing a base simulation model to 

examine the influence of C1 co-injection with C3, bottom-hole injection pressure, and temperature 

on the performance of the warm VAPEX process; (2) performing an experimental design to 

identify relevant decision variables and sampling a set of training/ testing data that can be used for 

constructing various proxy models of the objective functions; (3) integrate an artificial neural 

network (ANN) proxy modeling technique with MOO (NSGA-II) to reduce the computational 

costs of physics-based (simulation) models when the evaluating objective function values; (4) 

identifying a set of Pareto-optimal decision variables for a MOO problem including C3 loss, oil 

recovery factor, and injected enthalpy. Although incorporating an economic objective function 

(e.g., Net Present Value, NPV), into the optimization framework could be useful; however, due to 

the uncertainties in the NPV calculations (market conditions and company policies), a single 

aggregated economic function is not considered here. Besides, the three individual objective 

functions are the key economic drivers for most solvent projects. The MOO framework would 
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facilitate the examination of the trade-offs that may exist among these objectives. However, the 

inclusion of an economic objective function may be considered in future work. GHG emissions 

are often quantified by measuring the amount of GHGs produced at the surface: e.g., combustion 

of fuel gas to generate steam, thermal energy and power consumption, or while flaring gas. 

However, one of the limitations of this study is that those surface facilities are not incorporated in 

workflow, and only subsurface conditions and recovery performance are captured. Therefore, 

explicit quantification of GHG emission in the MOO workflow is not considered. Although there 

are some potential sources of GHG emissions for solvent-based technologies, including flaring of 

solution gas and solvent, and consumption of fuel gas for solvent heating, it is widely expected 

that the GHG emissions associated with solvent-based techniques would be lower than those from 

traditional steam-based methods, and that is due to the overall lower operating temperatures 

(usually between 7 and 90 oC), in comparison to typical steam injection at approximately 230 oC 

(Emissions Reduction Alberta, 2016). 

The NSGA-II MOO algorithm is employed not only because of its common applicability but for 

its computational efficiency and elitist approach for selecting the optimal solutions. There are three 

particular contributions from this work. First, a novel parameterization scheme is devised to 

represent the interdependency among the three decision variables, ensuring that the injection 

conditions are either at the dew point or within a particular window of superheating. This scheme 

facilitates crucial phase behavior constraints to be directly incorporated into the MOO framework, 

which is a particularly significant consideration in most EOR applications. Secondly, the results 

offer important insights about the optimal operating strategies for the warm vaporized solvent 

injection process, where complex physical mechanisms including mass and heat transfer are 
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involved. The MOO workflow can reveal subtle patterns in the decision variables that are not 

necessarily detectable based on traditional analyses. Thirdly, although some commercial 

simulation packages have a built-in optimization module that can perform a variety of sensitivity 

analysis, proxy modeling, and multi-objective function optimization, usually, a user is offered 

limited flexibility in terms of the problem formulation; for example, only Particle Swarm 

Optimization (PSO) algorithm can be used, and the number of objective functions may be limited. 

Besides, the interdependency of the three decision variables cannot be explicitly incorporated. 

Therefore, there is a need to formulate a more flexible framework using other widely adopted and 

robust MOO algorithms, such as NSGA-II. 

 

4.2. Methodology 

4.2.1. Reservoir Model Description 

A synthetic 2D, IK Cartesian, single porosity-permeability homogenous reservoir model, with 

reservoir dimensions of 35 × 20 × 32 m is built using a fully implicit thermal-compositional 

reservoir simulator, STARS™ (CMG, 2019b). Reservoir model properties representative of the 

Athabasca oil sands are assigned (Ma and Leung (2020a, b, c). The simulation is run for 15 years 

(5448 days) and a 4-month preheating period is imposed. A summary of the model inputs is shown 

in Table 4-1. 

Table 4-1: Base model properties for warm VAPEX process 

Description Parameters Input 

Grid properties Dimension of reservoir (m) 35 x 20 x 32 
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Permeability for the I direction 

(mD) 
2500 

Permeability for the J direction 

(mD) 
2500 

Permeability for the K direction 

(mD) 
1500 

Porosity (%) 32 

Initial conditions 

Reference depth (m) 200 

Reservoir pressure (kPa) 500 

Reservoir temperature (oC) 10 

Average initial water saturation 

(%) 
13 

Molar concentration of 

dissolved C1 (mole %) 
5 

Components Names 
Bitumen, Propane (C3H8), 

Methane (CH4), Water (H2O) 

Rock/Fluid properties 

Bitumen viscosity at 15oC and 

101.325 kPa (cP) 
562204 

Rock wettability 
Water wet (capillary pressure 

ignored) 

Model for evaluating 3-phase 

kro 
Stone’s second model 

Relative permeability end 

points 

krw = 0.79, krow = 0.95, krg = 

0.50, krw = 0.95 

Well-pair constraints 
Injector bottom-hole pressure 

(kPa) 
1719 
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Producer bottom-hole 

pressure (kPa) 
1519 

Injection temperature (oC) 50 

 

Fig. 4-1 shows the model configuration. Only one-half of the reservoir domain is constructed, 

assuming symmetric propagation of the solvent chamber. Moreover, a simple model is created to 

improve simulation speed so that multiple case scenarios can be developed efficiently for 

sensitivity studies and proxy modeling. 

 

Figure 4-1: Illustration of the simulation domain. 

 

4.2.2. Grid Size, Molecular Diffusion, and Mechanical Dispersivity Sensitivity 

To investigate the impact of numerical dispersion only (without molecular diffusion and 

mechanical dispersivity) on model performance, three grid sizes were examined. For the 1 m × 20 

m × 1 m (base case), 0.667 m × 20 m × 0.667 m, and 0.5 m × 20 m × 0.5 m, the total computing 
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time are approximately 5 minutes, 20 minutes, and 30 minutes, respectively using a personal 

computer with 16.0 GB installed RAM and Intel(R) Core i7 processor. 

Figs. 4-2 to 4-4 show that model response is sensitive to grid size. In Fig. 4-2, the solvent 

saturation, oil saturation, gaseous phase C1 mole fraction, and gas saturation for each grid size are 

presented. Solvent saturation is given as: 

Solvent saturation = 𝑆𝑜 × �̅�𝑠𝑜𝑙, (1) 

where 𝑆𝑜 is oil saturation. �̅�𝑠𝑜𝑙 is the solvent volume fraction (assuming additivity), which is 

expressed as: 

�̅�𝑠𝑜𝑙 =  

(1 − 𝑥𝑜𝑖𝑙)  × 𝑀𝑠𝑜𝑙

𝜌𝑠𝑜𝑙

𝑥𝑜𝑖𝑙  ×  𝑀𝑜𝑖𝑙

𝜌𝑜𝑖𝑙
 +

(1 − 𝑥𝑜𝑖𝑙)  ×  𝑀𝑠𝑜𝑙

𝜌𝑠𝑜𝑙
 
.                   (2) 

𝑀𝑜𝑖𝑙 is the molecular weight of oil, 𝑀𝑠𝑜𝑙 is the molecular weight of solvent, 𝜌𝑜𝑖𝑙 and 𝜌𝑠𝑜𝑙 are the 

oil and solvent densities, respectively, and 𝑥𝑜𝑖𝑙 is the oil mole fraction. 

From Figs. 4-3 and 4-4, it is noted that as the grid size is reduced beyond 0.667 m, any changes in 

oil recovery factor, enthalpy, cumulative C3 injected, and cumulative C3 produced are not overly 

significant. The grid size of 0.5 m × 20 m × 0.5 m could not be reduced any further due to wellbore 

instability error (wellbore diameter is comparable to the grid size). 

To assess the influence of grid sizes, molecular diffusion, and mechanical dispersivity on 

numerical and physical dispersion, a sensitivity analysis is performed, and the results are 

summarized in Table 4-2. Three different grid sizes, as well as various combinations of molecular 
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diffusion and mechanical dispersivity, are tested. All the values tested are within the ranges that 

were reported in Das and Butler (1996) and Perkins and Johnston (1963). The results in Table 4-2 

also indicate that oil recovery may vary by 15% for the ranges of molecular diffusion and 

mechanical dispersivity tested. Therefore, in the end, values of 2.00 × 10-5 m2/day and 4.32 × 10-5 

m are assigned for diffusion coefficient and dispersion, respectively; this choice is consistent with 

other values reported in the literature (Ji, 2014). As for the grid size, in order to minimize numerical 

dispersion, the finest mesh (0.5 m × 20 m × 0.5 m) is selected. 
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Figure 4-2: Grid size sensitivity. 
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             (a)        (b)                                                               (c) 

Figure 4-3: Grid size sensitivity. (a) – Oil recovery factor; (b) – Oil rate; (c) – Enthalpy Injected. 

 

(a)         (b) 

Figure 4-4: Grid size sensitivity. (a) – Cumulative solvent injected; (b) – Cumulative solvent produced. 
 

Table 4-2: Grid size, molecular diffusion, and mechanical dispersivity sensitivity results 

Case 
Grid Size 

(m) 

Molecular Diffusion 

(m2/day) 

Mechanical 

Dispersivity (m) 

Oil Recovery 

Factor (%) 

1 0.5 4.32 × 10-7 2.00 × 10-4 32 

2 0.5 4.32 × 10-6 2.00 × 10-4 32 

3 0.5 4.32 × 10-5 2.00 × 10-6 46 
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4 0.5 4.32 × 10-5 2.00 × 10-5 47 

5 0.67 4.32 × 10-7 2.00 × 10-4 30 

6 0.67 4.32 × 10-6 2.00 × 10-4 34 

7 0.67 4.32 × 10-5 2.00 × 10-6 47 

8 0.67 4.32 × 10-5 2.00 × 10-5 47 

9 1 4.32 × 10-7 2.00 × 10-4 32 

10 1 4.32 × 10-6 2.00 × 10-4 33 

11 1 4.32 × 10-5 2.00 × 10-6 47 

12 1 4.32 × 10-5 2.00 × 10-5 47 

 

4.2.3. Solvent Phase Behaviour and Fluid Model 

Understanding the phase behavior of solvent mixtures is critical to optimizing the warm VAPEX 

process. Methane, a carrier gas responsible for solvent propagation towards the chamber-bitumen 

interface, may impede overburden heat loss and help to increase the dew point pressure of the C1-

C3 mixture at a particular temperature. However, it also acts as an insulative layer, reducing the 

transfer of thermal energy between the solvent chamber and bitumen, which is detrimental to 

bitumen recovery.  It is desirable to inject at a condition close to the dew point to maximize mutual 

diffusivity between the bulk bitumen and condensed solvent, as well as the transfer of latent heat 

of vaporization to the colder bitumen (Nenninger and Dunn, 2008). On the other hand, injecting at 

superheated conditions may be beneficial in terms of providing additional thermal energy to 

mobilize the bitumen. To illustrate the impacts of bottom-hole injection temperature and pressure, 

the P-T relationship is examined for several C1 mole fractions using WINPROPTM (CMG, 2019a).  
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Fig. 4-5 shows the P-T relationship for a C1- C3 binary mixture. K-values for the reservoir fluids 

are shown in Table 4-3. From Fig. 4-5, it is evident that an increase in C1 mole fraction leads to an 

increase in dew point pressure at a particular temperature. Bitumen viscosity plot is shown in Fig. 

4-6. 

 

Figure 4-5: P-T Diagram of a methane-propane binary mixture. 

 

Table 4-3: Fluid model 

 Propane (C3H8) Methane (CH4) Water (H2O) 

KV1 (kPa) 9.0085 × 105 5.45475 × 105 1.1860 × 107 

KV4 (oC) -1872.46 -879.84 -3816.44 

KV5 (oC) -247.99 -265.99 -227.02 

 

Physically, transport across the gaseous (vaporized solvent) phase and oleic (bitumen) phases is 

due to rapid kinetic processes (condensation and evaporation), while transport within each phase 

is due to convection and diffusion. The bitumen phase close to the interface becomes mobilized 
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where the C3 concentration has increased sufficiently. Convection (mainly driven by gravity) 

would subsequently remove the mobilized bitumen. A boundary layer is formed, where the 

bitumen is mobilized due to solvent diffusion, and the mobilized bitumen is removed, controlling 

the equilibration process. In particular, the rates at which these two mechanisms are occurring 

(diffusion and convection) would depend on the boundary layer thickness. In the numerical 

simulation, both these mechanisms are modeled under the following assumptions: (1) equilibrium 

is attained at each grid block; (2) the smallest resolution is that of a grid block (i.e., it is not possible 

to model a boundary layer thickness less than the grid block size); (3) total dispersion is the 

combination of molecular diffusion, mechanical dispersion, and numerical dispersion. 

 

Figure 4-6: Bitumen viscosity model 

 

It should be emphasized that various assumptions have been made (sections 4.2.1 - 4.2.3), and the 

primary ones are summarized here: (1) 3D effects are not incorporated; the models used here are 

2D along the x-z plane. (2) Blowdown physics are not considered; it is assumed that any solvent 

lost in the reservoir is retained and not recoverable. (3) The temperature dependency of relative 
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permeability functions is neglected. (4) Reservoir heterogeneity is not examined. It is expected 

that reservoir heterogeneity would introduce additional mixing, and the diffusion and dispersion 

represented here in the homogeneous model are less than what would have been observed in a 

heterogeneous reservoir. However, despite the simplifications, the simulation model does capture 

many of the key physical mechanisms relevant to the heat and mass transfer processes. The model 

is also able to provide both qualitative and quantitative information about the effect of C1 co-

injection with C3 on bitumen recovery factor and solvent retention in the reservoir. Most 

importantly, the focus of this work is to illustrate how a MOO workflow can take into account the 

phase envelope constraint and be used to gain insights about optimal ranges for several key 

operational parameters. 

 

4.2.4. Selection of Design Variables and Objective Functions 

The identification of the design variables that strongly influence the warm VAPEX process is 

crucial to any MOO scheme; hence a 2-level full factorial experimental design is employed to 

assess qualitatively the influence of various design variables on the objective functions, examine 

any correlation among them, and eliminating potential redundant variables. The two objective 

functions are solvent retained-oil ratio (SolOR) and recovery factor (RF): 

𝑆𝑜𝑙𝑂𝑅 =
𝑉 𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑖𝑛𝑗
− 𝑉 𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑝𝑟𝑜𝑑

𝑉 𝑜𝑖𝑙
𝑝𝑟𝑜𝑑

, (3) 

where 𝑉 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝑖𝑛𝑗

 is the total volume of gaseous C3 is injected (in m3), 𝑉 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝑝𝑟𝑜𝑑

 is the total volume 

of C3 recovered at the surface (in m3) and 𝑉 𝑜𝑖𝑙
𝑝𝑟𝑜𝑑

 is the total volume of bitumen extracted (in m3). 
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All the parameters are at surface conditions. Tables 4-4 and 4-5 present the experimental design 

set-up and the results. Table 4-4 is sorted in order of decreasing RF. 

Table 4-4: Design input 

Design variables Low (-1) High (+1) 

C3 mole fraction (fraction) A 0.5 0.9 

Bottom-hole injection Pressure (kPa) B 1078 1976 

Bottom-hole injection Temperature (oC) C 25 50 

Preheating period (months) D 4 12 

 

Table 4-5: Standard order table 

# A B C D SOR (m3/m3) RF (%) 

8 1 1 1 -1 80.322 42.532 

16 1 1 1 1 80.456 42.056 

4 1 1 -1 -1 83.582 41.690 

12 1 1 -1 1 83.959 40.611 

11 -1 1 -1 1 108.706 9.383 

10 1 -1 -1 1 97.159 8.707 

15 -1 1 1 1 66.544 8.458 

3 -1 1 -1 -1 110.986 8.340 

2 1 -1 -1 -1 98.266 7.483 

14 1 -1 1 1 60.775 7.388 

7 -1 1 1 -1 66.781 7.259 

6 1 -1 1 -1 59.299 6.063 
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13 -1 -1 1 1 34.511 3.017 

9 -1 -1 -1 1 68.306 2.929 

5 -1 -1 1 -1 30.532 2.185 

1 -1 -1 -1 -1 65.450 1.988 

 

The regression model for a 2-level factorial experiment with four factors may be expressed as. 

𝑌 = 𝛽 + 𝛽𝐴. 𝑥𝐴 + 𝛽𝐵. 𝑥𝐵 + 𝛽𝐶 . 𝑥𝐶 +  𝛽𝐷 . 𝑥𝐷 + 𝛽𝐴𝐵. 𝑥𝐴𝑥𝐵

+ 𝛽𝐴𝐶 . 𝑥𝐴𝑥𝐶 + 𝛽𝐵𝐶 . 𝑥𝐵𝑥𝐶 + 𝛽𝐵𝐷 . 𝑥𝐵𝑥𝐷 + 𝛽𝐶𝐷. 𝑥𝐶𝑥𝐷

+ 𝛽𝐴𝐷 . 𝑥𝐴𝑥𝐷 + 𝛽𝐴𝐵𝐶 . 𝑥𝐴𝑥𝐵𝑥𝐶 + 𝛽𝐴𝐵𝐷 . 𝑥𝐴𝑥𝐵𝑥𝐷

+ 𝛽𝐵𝐶𝐷. 𝑥𝐵𝑥𝐶𝑥𝐷 + 𝛽𝐴𝐶𝐷. 𝑥𝐴𝑥𝐶𝑥𝐷

+ 𝛽𝐴𝐵𝐶𝐷 . 𝑥𝐴𝑥𝐵𝑥𝐶𝑥𝐷 + 𝜀 

 .                                     (4) 

𝛽 is the intercept, βA, βB, βC, and βD represent the effects of Factors, A, B, C, and D respectively, 

βAB denotes the effect due to the interaction between Factors A and B, while βAC denotes the effect 

due to the interaction between Factors A and C, and so on. ε is the random error term. 

Fig. 4-7 is a Pareto plot showing the absolute values of all model coefficients in decreasing order 

as horizontal bars. The sign of each coefficient is denoted by the bar colors; black for positive 

coefficients (or effects) and grey for negative coefficients (or effects). The Pareto plot is created 

using the PID package (Dunn, 2021) in R software. Similar Pareto plots can be found in several 

references (Okafor, 2020; Jiju, 2014; Anirban, et. al., 2016). Among the four design variables, the 

preheating period (Factor D) exhibited significant redundancy internally– effects of Factor D, or 

combinations of D and other factors, are minimal in comparison to Factors A (C3 mole fraction), 

B (bottom-hole injection pressure), and C (bottom-hole injection temperature). This led to the 
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choice of C3 mole fraction, bottom-hole injection pressure, and temperature as the primary design 

variables for this study. It should be mentioned that the maximum operating pressure (MOP) for 

all cases is around 5000 kPa, and the maximum threshold is not exceeded. 

Fig. 4-7 also show that complex interactions between Factors A, B, and C may have an impact on 

the two objective functions: for instance, Factors A and B exhibit a positive effect on SolOR and 

RF, while the combined interaction between several factors (e.g., Factors A and B) has a negative 

and positive effect on both SolOR and RF, respectively. Besides, the magnitude of influence on 

each objective function varies for different combinations of factors. Although these relationships 

cannot be exhaustively studied using a 2-level factorial design, which neglects interactions at the 

intermediate levels, the results offer a preliminary assessment of the complicated trade-offs that 

may exist between these objectives. 

 

(a)     (b) 

Figure 4-7: 2-level factorial experimental design results. (a) - effect on SolOR; (b) - effect on RF. 
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4.2.5. Sensitivity Analysis 

In this section, different injection conditions and C1 co-injection concentrations are tested. First, 

for a given C1 mole fraction, the mixture is injected at different dew point pressure and temperature 

for C1 co-injection ranging from 0% to 50%. Next, the solvent is injected at different superheated 

conditions by varying the temperature at a given pressure. 

 

4.2.5.1. Injection at Dew Point Conditions 

Fig. 4-8 compares the oil viscosity for different C1 concentrations.  As expected, RF is proportional 

to the solvent chamber size. It may also be anticipated that RF would decrease with an increase in 

C1 co-injection (or decrease in C3 concentration); this is true except when C1 mole fraction exceeds 

20%. One of the plausible explanations for this trend reversal is that the dew point pressure of the 

C1-C3 mixture, at a fixed temperature, increases with C1 concentration; therefore, an increase in 

bottom-hole injection pressure is required at higher C1 concentration, and that increase in injection 

pressure leads to a higher RF. The thermal insulation effect of C1 is observed in Fig. 4-9, where C1 

accumulates at the top of the reservoir and acts as a barrier to overburden heat loss. 
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Figure 4-8: Effect of co-injecting C1 on oil viscosity. Bottom-hole injection pressure is the dew point 
pressure at 50oC. 
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Figure 4-9:  Effect of C1 co-injection on gas-phase C1 mole fraction. Bottom-hole injection pressure is the 
dew point pressure at 50oC. 

 

The effect of C1 co-injection on C3 concentration in the oleic phase is also examined in Fig. 4-10. 

In addition to its impact on bottom-hole injection pressure and RF, there is a potential trade-off in 

the retention of C3 in the oleic phase. C1 is needed to keep the solvent in the gaseous phase; 

reducing C1 concentration may cause more liquid C3 to accumulate in the near-wellbore region 

and be retained. As shown in Fig. 4-10, more C3 is accumulated in the oleic phase at the base of 

the reservoir because of gravity segregation. According to Fig. 4-11, for low dew point 

temperatures (< 35oC), the temperature is inversely related to SolOR, and the opposite trend is 

observed for high dew point temperatures (> 40oC). This may be due to increased oil production 
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as a result of the increase in injection (dew point) temperature. The results presented in Figs. 4-8 

to 4-11 serve to illustrate the trade-offs among different objective functions of a given decision 

variable. 

 

Figure 4-10: Effect of C1 co-injection on C3 concentration in the oleic phase. Bottom-hole injection 
pressure is the dew point pressure at 50oC. 
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(a)                                                                               (b) 

Figure 4-11: Effect of C1 co-injection at different dew point conditions. (a) – SolOR; (b) – Oil Recovery 
Factor. 

 

4.2.5.2. Injection at Superheated Conditions. 

Generally speaking, more heat is added when injecting at superheated conditions for a given 

pressure, so a higher RF is expected. The results in Fig. 4-12 show that more C3 remains in the 

extracted chamber at 30oC (i.e., more C3 stays in the oleic phase and more likely to be trapped) 

than at 45oC, suggesting a decrease in solvent retention with increasing temperature. There is a 

reduction in solvent solubility at temperatures much higher than the dew point conditions of the 

C1-C3 mixture. The drawback of reduced solvent solubility may negate any positive impact of 

enhanced heat transfer at high temperatures. The trade-off between adding more heat and 

decreasing solvent solubility at higher injection temperatures may also lead to a reduction in RF 

(Fig. 4-13). However, this trend is also dependent on the injection (dew) pressure, as shown in Fig. 

4-14. 
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Figure 4-12: Effect of injecting at superheated conditions - BHPinj = 1240 kPa. 

 

    

Figure 4-13: Injecting at superheated conditions - 20% methane, BHPinj = 1240 kPa. 
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Figure 4-14: Injecting at superheated conditions - 20% methane, BHPinj = 1414 kPa. 

 

In the end, the sensitivity analysis reveals that there are no simple (e.g., monotonic) relationships 

between the design variables and objective functions. A MOO analysis framework (e.g., multi-

objective evolutionary algorithm or MOEA) is needed to infer a set of optimal operating 

parameters for the warm VAPEX process. 

 

4.2.6. Pareto-Based Multi-Objective Optimization 

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is employed to search for a set of 

Pareto-optimal solutions that are uniformly spaced along the Pareto-optimal front (Deb et al., 

2002). Pareto dominance and Pareto optimality are commonly used concepts in MOO problems. 

Consider a MOO problem with three decision variables, a decision vector 𝑢 =  (𝑢1, 𝑢2, 𝑢3) is said 

to dominate (denoted by ≺) another vector 𝑣 =  (𝑣1, 𝑣2, 𝑣3), if and only if 
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∀𝑖 ∈  {1, 2, . . 𝑚}, 𝑓𝑖  (𝑢) ≤  𝑓𝑖  (𝑣) 

(5) 

and   𝑗 ∈  {1, 2, . . 𝑚}:      𝑓𝑗  (𝑢) <  𝑓𝑗  (𝑣), 

where m is the total number of objectives, 𝑓𝑖  (𝑢) or 𝑓𝑗  (𝑢)  and 𝑓𝑖  (𝑣) or 𝑓𝑗  (𝑣) are the objective 

functions for vectors 𝑢 and 𝑣, respectively. It is implied that 𝑓(𝑢) is better than 𝑓(𝑣) for all 

objectives and there is at least one objective function (j) for which 𝑓𝑗(𝑢) is strictly better than 𝑓𝑗(𝑣) 

(Ngatchou et al. 2005). 

 

4.2.6.1. NSGA-II 

An initial parent population 𝑃𝑡 is created randomly and sorted into sets of non-dominated solutions 

(fronts): best solutions with rank = 1; second-best solutions with rank = 2, etc. The offspring 

population 𝑄𝑡 with size N is generated from 𝑃𝑡 through the operations of tournament selection, 

crossover, and mutation. Elitism is ensured by combining the parent population 𝑃𝑡 of size N and 

the offspring population 𝑄𝑡 to form a combined population 𝑅𝑡 of size 2N. Non-dominated sorting 

is also applied to the group 𝑅𝑡, and the new parent population 𝑃𝑡+1 is filled with solutions from 

fronts with decreasing rank until a total size of N is reached.  It is likely that when the last allowable 

front is considered, there are more solutions in that front than the remaining slots within 𝑃𝑡+1; in 

such instances, solutions in the least crowded region are selected to fill the slots. All remaining 

individuals in the combined population are discarded. 

The new population 𝑃𝑡+1 of size N is then used for subjected to another round of selection, 

recombination, and mutation to create a new offspring population 𝑄𝑡+1 , also of size N. The 
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selection of parents among Pt and Pt+1 is based on the crowded comparison procedure, which is 

also used in the tournament selection step for selecting individuals from the last allowable front, 

as mentioned earlier. The crowded comparison operator, ≺𝑐 is defined as follows: 

𝑖 ≺𝑐  𝑗   if  𝑖𝑟𝑎𝑛𝑘  <  𝑗𝑟𝑎𝑛𝑘 

                                      (6) 

or if  (𝑖𝑟𝑎𝑛𝑘 =  𝑗𝑟𝑎𝑛𝑘) and (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >  𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

where 𝑖𝑟𝑎𝑛𝑘 and 𝑗𝑟𝑎𝑛𝑘 are the ranks of individuals 𝑖 and 𝑗, respectively, within the population;  

𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are their crowding distances. The crowding distance, 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, of an 

individual 𝑖 is the total side length of the cuboid formed by the neighboring solutions to the left 

and right of 𝑖. A 2D example (with 2 objectives) is illustrated in Fig. 4-15. 

 

Figure 4-15: Schematic of crowding distance calculation. 
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Mathematically, for m objectives, 

𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑓1

𝑖+1 − 𝑓1
𝑖−1|

𝑓1
𝑚𝑎𝑥 − 𝑓1

𝑚𝑖𝑛
+

|𝑓2
𝑖+1 − 𝑓2

𝑖−1|

𝑓2
𝑚𝑎𝑥 − 𝑓2

𝑚𝑖𝑛
+ ⋯ 

|𝑓𝑚
𝑖+1 − 𝑓𝑚

𝑖−1|

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛
,             (7) 

where 𝑓𝑚
𝑖−1 and 𝑓𝑚

𝑖+1 are the mth objective function of the neighboring individuals 𝑖 − 1 and 𝑖 + 1, 

respectively, 𝑓𝑚
𝑚𝑖𝑛 and 𝑓𝑚

𝑚𝑎𝑥 are the population minimum and maximum values of the mth 

objective function. Every individual within the population is composed of three decision variables, 

which are C3 mole fraction, bottom-hole injection temperature, and bottom-hole injection pressure. 

In this study, the population size and the number of iterations are set to 200 and 50, respectively. 

It should be noted that the NSGA-II optimization is repeated several times with different initial 

guesses to ensure that a global minimum is reached. 

 

4.2.6.2. Parameterization Scheme for MOO Implementation 

There is an interdependency among the decision variables for this study (i.e., C3 mole fraction, 

bottom-hole injection temperature, and bottom-hole injection pressure) since the solvent mixtures 

are to be injected at either the dew point or superheated conditions. This criterion implies that for 

a certain C3 mole fraction, there is a particular “feasibility window” in the P-T diagram for the 

corresponding bottom-hole injection pressure and temperature. This constraint renders the MOO 

problem to be rather peculiar. Hence, a search space is identified, specified by the shaded portion 

in Fig. 4-16, to represent this feasibility window for a specific C3 mole fraction. A novel 

parameterization scheme is formulated to represent any combinations of pressure and temperature 

within the search space for a particular C3 mole fraction. 
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The temperature and pressure values are represented with two separate indicators (T and P), with 

values ranging between 1 and 10; the values are then mapped back to the search space to obtain 

the actual temperature and pressure for a certain C3 mole fraction. Here are the steps: 

1. Formulate each decision variable vector as C3 mole fraction (xC3), T, and P. 

2. For the value of xC3, determine 𝑃𝑚𝑎𝑥 = upper limit of pressure along the dew point curve 

and 𝑃𝑚𝑖𝑛 = dew point pressure at 30oC (the minimum injection temperature for the MOO). 

The mapped pressure 𝑃𝑣𝑎𝑙 corresponding to indicator P is: 

𝑃𝑣𝑎𝑙 = 𝑃𝑚𝑖𝑛 + (
𝑃 − 1

10 − 1
) × (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) (8) 

3. The mapped temperature value 𝑇𝑣𝑎𝑙 corresponding to indicator T is: 

𝑇𝑣𝑎𝑙 = 𝑇𝑠𝑎𝑡 + (
𝑇 − 1

10 − 1
) × Δ𝑇 (9) 

𝑇𝑠𝑎𝑡 = saturation temperature at 𝑃𝑣𝑎𝑙. Δ𝑇 represents the temperature range of superheated 

conditions and is set to 20oC. 
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Figure 4-16: Search space for the implementation of NSGA-II (C3 mole fraction = 0.9). Lower dew point 
line in red. 

 

4.2.7. Proxy Modeling for Objective Function Evaluation 

Evaluating the objective functions using the numerical simulation can be computationally 

expensive and inefficient; the total CPU run time for a single simulation execution could range 

from a few minutes to several days, depending on the model size and process complexity. Hence, 

a proxy model, which is calibrated using a limited number of simulation runs, can be used to 

compute the objective functions directly. In this study, the artificial neural network (ANN) 

technique is employed due to its ability to analyze complex relational behaviors between a set of 

input variables (e.g. the thermodynamic properties of solvent mixtures) and their outputs (e.g., 

objective functions). ANN has been applied to a wide variety of reservoir engineering problems 

such as production forecast (Kubota and Reinert, 2019; Cao et al., 2016), optimization of warm 

Search space 

𝑃𝑚𝑎𝑥 

𝑃𝑚𝑖𝑛 

𝑃𝑣𝑎𝑙, 𝑇𝑠𝑎𝑡 𝑇𝑣𝑎𝑙 

∆𝑇 
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solvent injection processes (Ma and Leung, 2020a), investigation of reservoir heterogeneities in 

SAGD (Wang et al., 2018; Zheng et al., 2018a; Wang and Leung, 2015), and the analysis of SAGD 

production performance (Ma et al., 2015, Ma et al., 2017). Zheng et al. (2018a, b) developed an 

ANN-based proxy model to predict both oil production rate and steam-oil-ratio for heterogeneous 

reservoirs with different shale barrier configurations, and the same proxy was later combined with 

a genetic algorithm-based optimization scheme for inferring the unknown shale barrier 

configurations from the time-series production data. 

An ANN architecture is usually composed of an input layer, one or more hidden layers, and an 

output layer. Each layer usually consists of a certain number of neurons or nodes and a bias unit. 

For the input layer, the neurons consist of the input parameters or features (i.e., decision variables 

in this study), while the output neurons include the target variables (i.e., the objective functions in 

this study). The output of node 𝑗 in layer 𝑘 + 1 is given by 𝑎𝑗
𝑘+1: 

 𝑧𝑗
𝑘+1 = 𝑏 +  ∑ 𝑤𝑗,𝑖

𝑘

𝑛

𝑖=1

. 𝑥𝑖
𝑘 , 

(10) 

𝑎𝑗
𝑘+1 = 𝑔(𝑧𝑗

𝑘+1) 
(11) 

where 𝑏 is the bias; 𝑤𝑗,𝑖
𝑘  is the weight of node 𝑖 in layer 𝑘 ; 𝑥𝑖

𝑘 refers to the input value of node 𝑖 in 

layer 𝑘;  𝑧𝑗
𝑘+1 is the weighted sum of the input values for node 𝑗 in layer 𝑘 + 1, 𝑔 is the activation 

function. The weights can be estimated through a backpropagation update algorithm based on a 

variety of techniques such as gradient descent, Adaptive Moment Estimation (Adam), and 

Levenberg-Marquardt, where the mismatch in model predictions (e.g., the mean square error, 

MSE, or other cost functions) is minimized after several batches of training. In this study, the 
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ANN-based proxy model is constructed using the Neural Network Toolbox in MatlabTM (Beale, et 

al., 2018), and the network properties are shown in Table 4-6. To generate a set of flow simulation 

cases for training the proxy model, the following factorial experimental design is performed: there 

are 9 equally-spaced levels for C3 mole fraction, and for each level, 6 and 5 equally-spaced levels 

of bottom-hole injection temperature and bottom hole injection pressure are used, respectively. 

Therefore, a total of 270 cases are used for training and testing. 

Table 4-6: Network properties 

Property  

Activation function (hidden layer) Tan-Sigmoid 

Activation function (target) Linear 

Training function Levenberg-Marquardt 

Performance function Mean Square Error 

Maximum epochs 1000 

 

Three objective functions are defined: SolOR, 1/RF, and normalized enthalpy injected 

(representing the total energy requirement). A separate ANN model is constructed for each 

objective function. For the objective function of 1/RF, the network structure has 2 hidden layers 

with 6 nodes; for the objective function of SolOR, the network consists of 2 hidden layers (each 

with 4 nodes); finally, the network for normalized enthalpy has 2 hidden layers (each with 6 nodes). 

The ANN architecture is obtained after a 10-fold cross-validation process, and the network 

structure with the lowest normalized mean squared error (NMSE) is selected. The results of the 

cross-validation process are shown in Table 4-7 and Fig. 4-17. 
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Table 4-7: 10-fold cross validation 

Number of nodes 

per hidden layer (s) 
4 5 6 7 3-3 4-4 5-5 6-6 7-7 

NMSE (SolOR) 1.99 × 10-3 1.97 × 10-3 1.81 × 10-3 6.36 × 10-4 1.23 × 10-3 4.27 × 10-4 4.30 × 10-4 4.31 × 10-4 4.31 × 10-4 

NMSE (1/RF) 3.55 × 10-5 4.51 × 10-5 3.55 × 10-5 3.21 × 10-5 3.96 × 10-5 4.14 × 10-5 3.47 × 10-5 2.03 × 10-5 6.41 × 10-5 

NMSE (Normalized 

Enthalpy Injected) 
1.20 × 10-4 4.27 × 10-5 3.32 × 10-5 3.68 × 10-5 4.35 × 10-5 3.20 × 10-5 3.15 × 10-5 2.89 × 10-5 3.23 × 10-5 

 

 

(a)                                                               (b)                                                                        (c) 

Figure 4-17: Cross validation results. (a) – SolOR; (b) – 1/RF; (c) – Normalized Enthalpy Injected. 

 

Typically, the test split ratio for machine learning algorithms ranges between 10 – 50 % (Afendras 

and Markatou, 2019; Racz, Bajusz and Heberger, 2021; Ma and Leung, 2020a). To determine the 

optimal train-test split, 3 different ratios (85/15%, 75/25%, and 70/30%) are examined, and for all 

the ratios, the ANN model predictions of the objective functions are highly consistent with those 

generated using reservoir simulation – no significant change in the coefficient of determination 

(R2) is observed (i.e., R2 = 0.989, 0.993, and 0.992 respectively). Therefore, it is concluded that 
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any of the tested train-test split ratios could be used. Out of the 270 cases, 203 cases (75%) are 

used for training and validation, and 67 cases (25%) are employed for testing purposes. 

4.3. Results and Discussion 

4.3.1. Proxy Modeling and MOO Results – 2 Objective Functions 

The performance of the proxy models is assessed by comparing the objective function values 

computed from reservoir simulation with the proxy’s predicted values for the 67 test cases, as 

shown in Fig. 4-18. For both the SolOR and 1/RF prediction, the normalized mean squared error 

is low (i.e. approximately 0.384 and 0.011, respectively), while their coefficients of determination 

(R2) are close to 1, indicating that the network predictions closely match the target values from 

flow simulation. 

 

Figure 4-18: Comparison of proxy model predicted values and flow simulation output. (a) – SolOR; (b) – 
1/RF. 
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The results of the 2-objective MOO approach are shown in Figs. 4-19 to 4-21. N is 200 and a front 

that represents the trade-off between solvent retained-oil ratio and oil recovery is obtained after 

the maximum number of iterations (i.e., 50 iterations) is reached, the total computing time is 

approximately 7 minutes. The initial population has yielded extremely high values for at least one 

of the objectives (1/RF), and as the number of iterations increases, a set of Pareto-optimal solutions 

emerge (Fig. 4-19). Fig. 4-20 compares the distributions of decision parameters for the initial 

population with those corresponding to the most optimal solutions (inside the red circle in Fig. 4-

19 – SolOR: 70.4 to 79.1 and 1/𝑅𝐹: 1.68 to 2.28). All solutions along the front are deemed to be 

Pareto optimum. Among the solutions, it is possible to select a subset (highlighted by a red circle 

in Fig. 4-19) for which 1/RF and SolOR are the lowest. A couple of remarks should be noted: (1) 

The selection of this optimal subset of solution can be subjective. (2) Such a selection is more 

obvious if the Pareto front resembles an “L-shaped” function. For the initial population, the 

decision variables are spanning over wide ranges, while the optimal design entails injecting solvent 

mixtures with high C3 mole fraction (~0.9) at relatively lower pressures and high temperatures. To 

check the accuracy of the proxy model, three optimal solutions (i.e. [(xC3), T, and P] = [0.85, 2203 

kPa, 71oC], [0.87, 2366 kPa, 76oC] and [0.9, 2671 kPa, 83oC]), with corresponding objective 

functions ([1/RF, SolOR]) [2.25, 70.93], [2.04, 73.11], and [1.75, 77.35], respectively, are 

randomly selected. The objective function calculations are then repeated using the more accurate 

flow simulation, and the corresponding values are [2.35, 71.13], [2.01, 73.09], and [1.71, 78.34], 

reflecting errors of 4%, 1.5%, and 2% respectively for 1/RF and 0.3%, 0.03% and 1.3% for SolOR. 

This check shows that the proxy model can closely reproduce the flow simulation predictions, 

confirming that it can be used to replace the more expensive flow simulation calculations for 

evaluating the objective functions. 
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Figure 4-19: Movement of the Pareto front. Optimal trade-off solutions are enclosed by the red circle. 
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Figure 4-20: Distribution of decision variables. 

 

With 2 objective functions and 3 design variables, a multi-dimensional space is needed to represent 

the interactions among all the objectives and variables. Fig. 4-21 shows the projection of that space 

along the temperature and pressure axes. Both oil recovery and SolOR increase with bottom-hole 

injection pressure and temperature. For the optimum C3 mole fraction, any improvement in oil 

recovery due to an increase in temperature and pressure also leads to increased C3 retention. 

Therefore, to achieve a balance between these two objectives, the optimal solutions depict a 

combination of low to medium bottom-hole injection pressure and high bottom-hole injection 
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temperature. A summary of the Pareto-optimal solutions for the 2-objective MOO is shown in 

Table 4-8. 

 

(a)                                                                          (b) 

Figure 4-21: Optimal decision variables and their corresponding objective functions. (a) -
Temperature; (b) – Pressure. 

 

 

Table 4-8: Optimal trade-off solutions 

𝑺𝒐𝒍𝑶𝑹 (𝒎𝟑

𝒎𝟑⁄ ) 𝟏/𝑹𝑭 𝑹𝑭 (%) C3 mole fraction Pressure (kPa) Temperature (oC) 

[70.4 79.1] [1.68 2.28] [43.8 59.4] [~0.90] [2204 2827] [69.9 85.6] 

 

One of the drawbacks of this 2-objective MOO analysis is the omission of energy requirement as 

an objective: high bottom-hole injection temperature and pressure implies an undesirable increase 

in energy consumption; hence another MOO is performed considering an additional objective 

function of energy requirement, which can be minimized along with SolOR and 1/RF. 
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4.3.2. Proxy Modeling and MOO Results – 3 Objective Functions (Considering Energy 

Requirement) 

The third objective, called Normalized Enthalpy is defined as: 

𝐻𝑖𝑛𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝐻𝑖𝑛𝑗

𝐻𝑖𝑛𝑗
𝑚𝑎𝑥                                           (12) 

where 𝐻𝑖𝑛𝑗 is the cumulative enthalpy of the injected solvent (in Joules), as shown in the following 

equations; 𝐻𝑖𝑛𝑗
𝑚𝑎𝑥 is the maximum 𝐻𝑖𝑛𝑗 among the 270 cases used for proxy modeling. 

𝐻𝑖𝑛𝑗 = 𝑈𝑖𝑛𝑗 + P𝑖𝑛𝑗V𝑖𝑛𝑗 , 

                                                      

(13) 

where 𝑈𝑖𝑛𝑗 denotes the internal energy of injected fluid, P𝑖𝑛𝑗 is the injection pressure, and V𝑖𝑛𝑗 

refers to the volume of fluid injected. 𝑈𝑖𝑛𝑗 for a C1-C3 binary mixture is expressed as follows: 

𝑈𝑖𝑛𝑗 = 𝑇𝑖𝑛𝑗𝑆 − P𝑖𝑛𝑗V𝑖𝑛𝑗 + 𝜇𝑐1𝑛𝑐1 + 𝜇𝑐3𝑛𝑐3, (14) 

where 𝑇𝑖𝑛𝑗 refers to injection temperature, S denotes entropy, 𝜇𝑐1  and 𝜇𝑐3 are the chemical 

potentials for C1 and C3, respectively, and 𝑛𝑐1  and 𝑛𝑐3 are the number of moles for C1 and C3 

respectively. Therefore, 

𝐻𝑖𝑛𝑗 = 𝑇𝑖𝑛𝑗𝑆 − P𝑖𝑛𝑗V𝑖𝑛𝑗 + P𝑖𝑛𝑗V𝑖𝑛𝑗 + (𝑛𝑐1 + 𝑛𝑐3) [𝜇𝑐1
𝑛𝑐1

𝑛𝑐1+𝑛𝑐3
+ 𝜇𝑐3

𝑛𝑐3

𝑛𝑐1+𝑛𝑐3
], (15) 

where 
𝑛𝑐1

𝑛𝑐1+𝑛𝑐3
 and 

𝑛𝑐3

𝑛𝑐1+𝑛𝑐3
 are the mole fractions of C1 and C3 respectively. Therefore, there is a 

direct relationship between enthalpy and the three decision variables (i.e.., C3 mole fraction, 
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bottom-hole injection temperature, and bottom-hole injection pressure), which are illustrated in 

Fig. 4-22. 

 

               (a)                                                                                             (b) 

Figure 4-22: Enthalpy as a function of temperature and pressure. (a) – Temperature; (b) - Pressure. 

 

For the 67 test cases, a comparison of the proxy model predictions of 𝐻𝑖𝑛𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 values with 

reservoir simulation values is presented in Fig. 4-23. Compared to reservoir simulation, the mean 

squared error is 1.61 × 10-4, while R2 is approximately equal to 1. The final Pareto-optimal 

solutions after 50 iterations are shown in Figs. 4-24 to 4-25. The entire Pareto-optimal set can be 

divided into three distinct groups. For the entire solution set, the optimal C3 mole fraction is about 

0.9. 
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Figure 4-23: Comparison of proxy model predicted values and flow simulation output. 

 

 

Figure 4-24: Pareto front for the 3-objective MOO. 
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Figure 4-25: Distribution of optimal decision variables for all 3 clusters. 

 

Individuals in solution set 1 exhibit low enthalpy due to low bottom-hole injection temperature 

and pressure. A positive correlation exists between 1/RF and SolOR; an increase in bottom-hole 

injection pressure and temperature would result in higher RF and less SolOR (although more C3 

stays in the liquid phase inside the chamber, as shown in Fig. 4-26). It is also plotted in Fig. 4-27, 

the dew point pressures corresponding to all the optimal temperatures when C3 mole fraction = 

90%. The conclusion is that these solutions correspond to scenarios where the solvent is injected 

near its dew point conditions at low temperatures and low pressures; the enthalpy requirement is 

low, and RF may not be high. There is significant solvent retention in the reservoir as liquid 

condensation occurs quickly in the extracted chamber before much C3 can propagate towards the 

solvent-bitumen interface (Fig. 4-26). 
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Figure 4-26: The impact of optimal decision variables for the solution set 1 on propane loss. 
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(a)                                                                                    (b) 

Figure 4-27: Solution set 1. (a) – optimal bottom-hole injection temperature and pressure and their 
corresponding objectives; (b) - distributions of optimal decision variables. 

 

In contrast to solution set 1, solution set 2 exhibits a tradeoff between SolOR and the 1/RF, as well 

as a direct relationship between SolOR and enthalpy. An increase in bottom-hole injection 

temperature and pressure would result in higher RF but more SolOR (i.e. more C3 loss as 

demonstrated in Fig. 4-28. The conclusion is that these solutions correspond to scenarios where 
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the solvent is injected at superheated conditions and high pressures; RF is high, while solvent 

retention and enthalpy requirement may also be high (see Fig. 4-29). 

 

 

Figure 4-28: The impact of optimal decision variables for the solution set 2 on propane loss. 
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(a)                                                                              (b) 

Figure 4-29: Solution set 2: (a) – optimal bottom-hole injection temperature and pressure and their 
corresponding objectives; (b) - distributions of optimal decision variables. 

 

Individuals in solution set 3 comprise cases with lower bottom-hole injection pressures and 

temperatures compared to set 2. The trends among different objectives are similar to those of 

solution set 1, except that the values for SolOR are lower; however, this reduction in SolOR is 
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accompanied by an increase in enthalpy requirement and a reduction in 1/RF (see Figs. 4-30 to 4-

32). 

 

Figure 4-30: Solution set 3. 

 

 

Figure 4-31: The impact of optimal decision variables for the solution set 3 on propane loss. 
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(a)                                                                              (b) 

Figure 4-32: Solution set 3. (a) – optimal bottom-hole injection temperature and pressure and their 
corresponding objectives; (b) - distributions of optimal decision variables. 

 

The computational requirements for the MOO workflow with proxy modeling and without proxy 

modeling (i.e., running flow simulation for every objective function evaluation) are compared in 

Table 4-9. There is substantial front-end loading for the proxy modeling (> 8,000 minutes); 

however, this training needs to be performed only once. The subsequent NGSA-II calculation takes 

only 20 minutes for a run with 2 objective functions or 30 minutes for a run with 3 objective 
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functions, while if the flow simulation is used to evaluate each objective function, 300,005 minutes 

are needed for each NGSA-II run. As mentioned in section 4.2.6.1, the entire NGSA-II step should 

be repeated multiple times with different initial guesses when searching for the global minimum. 

It is clear that when multiple NGSA-II runs are required, the extra costs associated with the proxy 

modeling can be further justified. 

Table 4-9: Computational requirement comparison 

Steps MOO with Proxy Model 
MOO with Flow Simulation (no Proxy 

Model) 

Proxy 

Modeling 

Constructing Training and Testing 

Dataset: 

270 flow simulation cases × 30 min/case 

= 8,100 minutes 

Training of Proxy (ANN) Model = 1.5 

minutes 

0 (N/A) 

NGSA-II (2-

objective 

functions) 

0.001 min per objective function 

evaluation × 2 objective functions × 200 

individuals in a population × 50 iterations 

= 20 minutes 

30 min per simulation run (objective function 

evaluations) × 200 individuals × 50 iterations 

= 300,000 minutes 

Rest of NGSA-II code = 5 minutes Rest of NGSA-II code = 5 minutes 

NGSA-II (3-

objective 

functions) 

0.001 min per objective function 

evaluation × 3 objective functions × 200 

individuals in a population × 50 iterations 

= 30 minutes 

30 min per simulation run (objective function 

evaluations) × 200 individuals × 50 iterations 

= 300,000 minutes 

Rest of NGSA-II code = 5 minutes Rest of NGSA-II code = 5 minutes 
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Total Time 

~8,125 minutes (for MOO with 2 

objective functions) or ~8,135 minutes 

(for MOO with 3 objective functions) 

~300,005 minutes (for MOO with either 2 or 

3 objective functions) 

 

The optimal operating parameters would be sensitive to reservoir heterogeneities; in other words, 

the final Pareto-optimal solutions may differ if geologic heterogeneities are considered. The 

presence of shale baffles and barriers may impede solvent chamber propagation and/or lead to the 

accumulation of liquid solvent in the reservoir, thereby causing a reduction in bitumen recovery 

and an increase in the amount of trapped solvent in the reservoir. Future work will extend the 

current workflow to include multiple realizations or models of heterogeneous reservoir properties; 

the goal is to identify a set of decision variables that are most robust/optimal against all 

realizations. Compared to a previous study where only pure C3 was injected (Ma and Leung, 

2020a), the optimal bottom-hole injection pressure here exhibits more variability, ranging between 

2204 – 2827 kPa for the case with two objective functions, while a slightly lower pressure of 2000 

– 2500 kPa was reported by Ma and Leung (2020a). This is because co-injecting C1 has increased 

the overall dew point pressure of the C1-C3 solvent mixture. The optimal injection pressure is 

higher when a non-condensable gas (e.g. C1) is co-injected with the solvent (e.g. C3). Also, it is 

reported that the N-Solv® pilot involves injecting highly purified butane (C4) at low pressures and 

near-saturated conditions (i.e. 40 – 60OC) to achieve maximum energy efficiency (Emissions 

Reduction Alberta, 2016). These trends resemble those of solution sets 1 and 3 for the case with 

three objective functions. There are some differences in the absolute values for several reasons: 

(1) The models presented in this study are based on a 2D homogeneous reservoir; (2) The optimal 

injection pressure in this study is higher since a C1-C3 mixture with higher dew point pressure, 
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instead of C4, is injected. It is reasonable to conclude that the proposed MOO workflow is useful 

for identifying different combinations of optimal operational parameters in a relatively fast and 

computationally efficient manner. 

 

4.4. Summary 

• A homogenous reservoir model for the warm VAPEX technique is constructed, and a 

sensitivity analysis is performed to examine the influences of various design variables on oil 

recovery and C3 retention. The results demonstrate that C1 provides a thermal barrier for 

overburden heat loss and hinders the accumulation of a C3-concentrated liquid phase in the 

vapor chamber that leads to an ineffective propagation of the solvent towards the chamber 

edge. Also, injecting near the dew point conditions can improve oil recovery, but it also causes 

an increase in C3 retention in the reservoir. Among the factors considered, a 2-level factorial 

experimental design is employed  to identify decision variables that are most relevant to the 

process. 

• A MOO workflow, which includes an ANN proxy model for objective function evaluation, 

and the NSGA-II MOO algorithm for determining a set of Pareto-optimal solutions is 

employed. The decision variables are C3 mole fraction, bottom-hole injection temperature, 

and bottom-hole injection pressure. A novel parameterization scheme is proposed to 

incorporate the phase behavior constraints. 

• For the 2-objective MOO problem, the optimal solutions are those that correspond to high C3 

fraction (~0.9), along with high bottom-hole injection temperatures and low pressures. For the 
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3-objective MOO which also considers the minimization of injected enthalpy, three sets of 

Pareto-optimal solutions corresponding to low, high, and low to medium bottom-hole 

injection temperature and pressure conditions are identified, while the optimal C3 mole 

fraction remains as 0.9. Also, the solution sets illustrate the different trade-offs that may exist 

between the objective functions for those varying operating scenarios. 

• This study demonstrates the ability of a MOO workflow to identify combinations of optimal 

design parameters for a solvent-based bitumen recovery process. Specific considerations 

regarding the solvent phase behavior, computational cost, and multiple conflicting objectives 

have been incorporated. It is anticipated that this workflow can be readily integrated into the 

decision-making processes in heavy oil reservoir management. Future work will modify the 

developed workflow to account for multiple geostatistical realizations of uncertain 

heterogeneous reservoir properties. The coupling of the simulation model with a surface 

network (i.e., wells and production facilities) should be explored. 
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Chapter 5 Determination of the Optimal Operational 

Parameters for a Warm Vaporized Solvent Injection 

Process, Using an Efficient Multi-Objective 

Optimization Workflow that Considers Reservoir 

Heterogeneity Uncertainty 

Abstract 

The warm vaporized solvent injection process is a bitumen recovery technique that involves the 

injection of heated solvent vapor (through a horizontal injector) into the reservoir. As the solvent 

contacts the colder bitumen, it condenses and dissolves into the bitumen, while the diluted oleic 

phase would flow towards the horizontal producer. Despite the promising results reported from 

reservoir simulations, laboratory experiments and pilot studies, commercial-scale extraction has 

not been reported. Since solvent-based technologies may be more expensive to operate, in 

comparison to existing steam-based processes, a robust optimization of the pertinent design 

variables is needed. The trade-offs between multiple conflicting performance objectives must be 

balanced, while honoring operational constraints and effectively incorporating reservoir 

heterogeneity uncertainties into the optimization process. This study presents a new multi-

objective optimization (MOO) workflow that incorporates the uncertainty introduced by multiple 

realizations of reservoir properties in the identification of optimal operational parameters (or 

design variables). 
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Geostatistical realizations of reservoir heterogeneities are constructed by superimposing 

stochastically distributed shale barriers into a 2D base (homogeneous) Athabasca oil sands model. 

To achieve more optimal mixing and mass transfer, an innovative scheme is implemented to 

incorporate the thermodynamic behavior due to the addition of non-condensable gas (methane) 

into the solvent (propane) as constraints. Several design variables (i.e., injection compositions, 

temperature, and pressure) are optimized. Also, a proxy model (developed using the artificial 

neural network method) is used to determine the correlation between these design variables and 

two objective functions: oil recovery factor and propane loss. To account for geologic uncertainty, 

a separate proxy model is constructed for each realization, and for each objective function, the 

minimum, the weighted mean, and the maximum over these realizations are considered. Finally, a 

Pareto-based MOO algorithm, which is based on the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II), is implemented. 

The developed approach can identify a set of optimal design variables in a computationally 

efficient manner. The results are analyzed to formulate different options of optimal design 

parameters. The trade-offs between these different options are examined and quantified. Also, the 

presence of shale baffles or barriers can affect the performance of the warm vaporized solvent 

injection process. 

Since reservoir models are usually presented with multiple realizations and due to the presence of 

non-condensable gases in many solvent-assisted methods, this workflow is robust and has the 

potential to be applied to several solvent-based bitumen recovery processes. Real field data can 

also be used to train the models, such that the workflow can be extended to model pilot and real-

field operations. 
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5.1. Introduction 

Due to the high viscosity of bitumen, thermal and solvent-based methods are implemented to 

lighten bitumen viscosity through heat transfer (in the form of steam or hot water injection) and/or 

mass transfer (injection of light hydrocarbon solvents or CO2). The recent challenges that are 

associated with many thermal extraction techniques include technical constraints, operational 

safety concerns, water consumption, and greenhouse gas (GHG) emissions, hence non-thermal 

methods (e.g., solvent-aided recovery processes) have been proposed as promising alternatives. 

Studies concerning solvent-based and steam-solvent hybrid methods were discussed in the 

literature, and they often utilize a similar well configuration as the widely adopted steam assisted 

gravity drainage (SAGD) process. For example, Butler and Mokrys (1991) proposed the vapor 

extraction (VAPEX) method which involves the injection of a solvent vapour at dew point 

conditions for the reduction of bitumen viscosity through mass transfer. However, according to 

Shi and Leung (2014a, b), the production rate from VAPEX is usually low, which may be due to 

the slow nature of mass transfer. Therefore, the warm VAPEX process, which leverages both heat 

and mass transfer, was introduced. This technique involves the injection of vaporized solvent 

between the dew point to superheated conditions in-situ, such that it can dissolve into the bitumen. 

A variant of warm VAPEX is the NSolv® process (Nenniger and Nenniger, 2001) which involved 

the injection of pure warm vaporized solvent close to dew point conditions. Additional heat is 

transferred to the bitumen from the release of latent heat after condensation (Nenniger and Dunn, 

2008). The solvent is produced with the bitumen, then separated, and re-injected into the reservoir. 

Other solvent assisted methods, which include the co-injection of steam and solvent at low 

concentrations are the solvent aided process (SAP) (Gupta and Gittins, 2005), expanding solvent 
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SAGD (ES-SAGD) (Nasr et al., 2002) and solvent assisted SAGD (SA-SAGD) (Dickson et al., 

2013). 

Although, some of these solvent-based methods have been piloted, commercial-scale extraction 

may pose certain challenges. Compared to the SAGD, solvent-assisted techniques usually cost 

more to operate, hence the need for optimization of the pertinent operational constraints (design 

variables) that control the process. Also, the uncertain distribution of reservoir heterogeneity 

renders the decision-making process to be more challenging. Therefore, the trade-offs that exist 

between multiple conflicting performance objectives must be balanced while considering 

operational constraints and incorporating the uncertainty introduced by multiple realizations of 

reservoir heterogeneity into the optimization process.  

To integrate the uncertainty associated with multiple realizations (e.g., low-case, mid-case, and 

high-case) of reservoir heterogeneity within an optimization workflow, one approach may be to 

give the highest weight to the realization with the most likely chance of occurrence (mid-case), 

and the weighted average of the objective function using the low-case, mid-case, and high-case 

realization is defined for the optimization task. For equiprobable realizations, the average of the 

objective functions over all realizations can be used (van Essen et al., 2009). Also, in Kathrada 

and Azri (2019), the optimization of well controls is performed across multiple realizations of 

geologic uncertainties, in which the Swanson's rule was employed to create a pseudo-objective 

function. According to Hurst et al. (2000), the Swanson’s 30-40-30 rule is a good representation 

of the average values (e.g., in reserve estimation) for most distributions apart from the highly 

skewed distributions. 
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Conducting a simple analysis where one or two variables are varied at a time, to identify the 

optimal parameters is not feasible. Hence, an optimization framework, which considers all the 

possible combinations of the decision variables, is necessary. In some optimization problems, a 

single objective function is defined. For example, in Al-Gosayir et al. (2013), where a hybrid 

genetic algorithm (GA) technique is implemented to optimize a steam-over-solvent injection 

process in fractured reservoirs, an economic objective function, which is the Money Recovery 

Factor (MRF) is defined. The MRF combines cumulative steam/solvent injection and recovery, as 

well as oil production. However, the limitation of a single objective function is that the trade-offs 

between objective functions cannot be easily evaluated (Ngatchou et al., 2005). Therefore, in this 

study, a multi-objective optimization (MOO) approach is employed, in which two objective 

functions (i.e., cumulative solvent lost-to-oil ratio (cSolOR) and oil/bitumen recovery factor (RF) 

are defined. 

MOO involves the identification of an optimal set of decision variables along the Pareto-optimal 

front. Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985), Niched Pareto Genetic 

Algorithm (NPGA) (Horn et al., 1994), and Multi-Objective Genetic Algorithm (MOGA) 

(Fonseca and Fleming, 2011) are popular MOO techniques. Other widely adopted MOO 

algorithms are the elitist multi-objective evolutionary algorithms (MOEA) such as the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), Strength Pareto 

Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1998), and the Pareto-Archived Evolution 

Strategy (PAES) (Knowles and Corne, 1999). Recent studies have applied some of these MOEA 

in enhanced oil recovery (EOR) and well placement. For example, Zhang et al. (2019b) proposed 

a hybrid NSGA-II workflow to history match and optimize an alkaline-surfactant-polymer (ASP) 
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flooding process, where two objectives, including oil recovery and chemical usage, are considered. 

Other applications of the NSGA-II in petroleum engineering include the optimization of ES-

SAGD, where the decision variables are the solvent mole fraction, injector bottom-hole pressure 

and temperature (Min et al., 2017), identification of the optimal operational parameters (i.e. solvent 

mole fraction and duration of solvent injection in a cycle) for the Steam Alternating Solvent (SAS) 

process (Coimbra et al., 2019), and the optimization of the warm VAPEX process for 

heterogeneous reservoirs (Ma and Leung, 2020a). According to Ma and Leung (2020a), the 

NSGA-II was adopted to determine the optimal injector and producer bottom-hole pressures of 

this process. In their work, which did not examine the co-injection of methane or incorporate phase 

behaviour constraints, they considered only 2 heterogeneous cases, and developed proxy models 

each case using a response surface methodology (RSM) and artificial neural network (ANN), then 

incorporated these proxy models into an NSGA-II MOO workflow. The optimal solutions for the 

heterogeneous cases were compared to a homogenous case and they concluded that shale barriers 

can have a negative effect on the warm VAPEX process.  

For this study, a NSGA-II MOO workflow that incorporates the uncertainty introduced by multiple 

realizations of a heterogeneous reservoir is proposed to identify the optimal operational constraints 

of the warm VAPEX process, involving the co-injection of propane (C3) and methane (C1). In 

order to achieve these objectives, the following are performed in this paper: (1) develop three 

separate realizations (low-case, mid-case and high-case) of a heterogeneous reservoir model; (2) 

For each realization, create separate ANN-based proxy models to correlate the decision variables 

to each of the objective functions; (3) Find the Pareto-optimal decision variables for the MOO 

problem while considering the minimum, weighted average or Swanson’s mean, and maximum 
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values of each objective function, among all the realizations. Since multiple realizations of 

heterogeneous properties and the presence of a non-condensable gas (i.e., C1) are incorporated, 

this workflow is robust and can easily be applied to several solvent-based bitumen recovery 

processes. The workflow can also be extended to identify optimal operating strategies in pilot and 

real-field operations by using field data to train the proxy models. 

 

5.2. Methodology 

5.2.1. Reservoir Modeling 

A base homogenous two-dimensional single porosity-permeability reservoir model, with a 

dimension of 35 m × 20 m × 32 m and a cell size of 0.5 m × 20 m × 0.5 m in the x, y and z 

directions respectively, is constructed using a fully implicit thermal-compositional reservoir 

simulator, STARSTM (CMG, 2019b). The reservoir model is populated with reservoir properties 

that are representative of the Athabasca oil sands (Ma and Leung, 2019a, b, c) as shown in Table 

5-1. The symmetric propagation of the solvent chamber in the reservoir is assumed, hence one-

half of the reservoir is modeled. The horizontal well trajectory is parallel to the y-axis. 
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Figure 5-1: Reservoir model description. 

 

Each model incorporates a different realization of the shale barrier distribution. As applied in the 

geostatistical software library (GSLIB), the sequential indicator simulation (SISIM) is 

implemented to create these realizations (Deutsch and Journel, 1998). The realizations have a 10% 

shale volume and are constructed with a spherical variogram model. The major and minor 

directions of continuity both have a range of 10 meters, while a 1 meter range is imposed in the 

vertical direction.  

 

Table 5-1: Reservoir model properties 

Description Parameters Value 

Reservoir properties 

Dimension of reservoir (ijk) 35m x 20m x 32m 

Number of grid blocks (ijk) 70 x 1 x 64 

Grid block size (ijk) 0.5m x 20m x 0.5m 

Sand permeability in the I direction 

(mD) 
2500 
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Sand permeability in the J direction 

(mD) 
2500 

Sand permeability in the K direction 

(mD) 
1500 

Shale permeability in the I direction 

(mD) 
0.001 

Shale permeability in the J direction 

(mD) 
0.001 

Shale permeability in the K direction 

(mD) 
0.001 

Sand porosity (%) 32 

Shale porosity (%) 3 

Initial conditions 

Reference depth (m) 200 

Reservoir pressure (kPa) 1100 

Reservoir temperature (oC) 10 

Sand initial water saturation (%) 13 

Shale initial water saturation (%) 25 

Molar concentration of dissolved C1 

(mole %) 
5 

Solvent type Names 
Propane (C3) – Methane (C1) 

mixture 

Reservoir fluids Names 
Bitumen, Methane (C1), Water 

(H2O) 

Rock/Fluid properties 

Rock compressibility (kPa-1) 2.0 x 10-6 

Rock heat capacity (J/m3.oC) 2.35 x 106 

Rock thermal conductivity (J/m.oC) 1.468 x 105 
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Water thermal conductivity (J/m.oC) 5.35 x 104 

Oil thermal conductivity (J/m.oC) 1.15 x 104 

Gas thermal conductivity (J/m.oC) 1.39 x 102 

Bitumen viscosity at 15oC and 

101.325 kPa (cP) 
562204 

Propane effective molecular diffusion 

coefficients for the I,J,K directions 

(m2/day) 

4.32 x 10-5 

Mechanical (convective) dispersivity 

of oil and phases for the I,J,K 

directions (m) 

2.00 x 10-5 

Rock wettability 
Water wet (capillary pressure 

ignored) 

Model for evaluating 3-phase kro Stone’s second model 

Relative permeability endpoints 
krw = 0.79, krow = 0.95, krg = 0.50, 

krw = 0.95 

Well constraints 
Pressure differential between injector 

and producer (kPa) 
200 

 

To represent multiple geological realizations of a heterogeneous reservoir model, three separate 

realizations are constructed by superimposing stochastically, distributed shale barriers into the 

base model. In creating these realizations, the sequential indicator simulation (SISIM), which is 

based on the geostatistical software library (GSLIB) (Deutsch and Journel, 1998), is implemented. 

For each of the realizations, the facies are sand and shale, and it is assumed that the well-pair is 

completed in clean sand. Also, the realizations have a 10% shale volume, and are constructed using 
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a spherical variogram model. Both the major and minor directions of continuity have a range of 

10 meters, while a 1-meter range is imposed in the vertical direction. As shown in Fig. 5-2, the 

shale barriers or baffles are denoted with a blue color, while the sand distribution is represented in 

yellow. The simulation is run for approximately 15 years, starting with a 4-month preheating 

period. 

Fig. 5-3 shows the propagation of the solvent chamber at different snapshots of time (year 1, year 

4, year 9, and year 15), in which the solvent front bypasses the lowly- permeable shale baffles, 

while the shale barriers impede solvent propagation in the vertical direction. 

(a)                                           (b)                                                  (c) 

Figure 5-2: The shale and sand distribution:  a – Realization 1 (low-case); b – Realization 2 (mid-case); c 
– Realization 3 (high-case). 
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(a)                                                            (b)                                                              (c) 

Figure 5-3: Oil saturations: a – Realization 1 (low-case); b – Realization 2 (mid-case); c – Realization 3 
(high-case). 
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The construction of the geologic realizations is such that the sand units in Realization 1 (low-case) 

is poorly distributed when compared to Realization 2 (mid-case), while the sand distribution in 

Realization 3 (high-case) is better than Realization 2, hence as shown in Fig. 5-4, the RF for 

Realization 3 is greater than for Realization 2, while the RF for Realization 2 is greater than the 

RF for Realization 1. 

 

Figure 5-4: Oil recovery factor and production profiles: a – Realization 1 (low-case); b – Realization 2 
(mid-case); c – Realization 3 (high-case). 

 

5.2.2. Decision Variables and Objective Functions 

The identification of the decision variables that would affect the objective functions and their trade-

offs is crucial to any MOO. Similar to previous studies described earlier, the decision variables for 

our work include propane mole fraction in the injected solvent, injection temperature, and injection 

bottom-hole pressure. Since the MOO is a minimization problem, and because it is desirable to 
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minimize cSolOR and maximize RF, the objective functions are cSolOR and the inverse of RF 

(1/RF), which are defined as follows: 

𝑐𝑆𝑜𝑙𝑂𝑅 =
𝑉 𝐶3

𝑖𝑛𝑗
 − 𝑉 𝐶3

𝑝𝑟𝑜𝑑

𝑉 
𝑜𝑖𝑙
𝑝𝑟𝑜𝑑 ;                                     (1) 

1/𝑅𝐹 =
𝑂𝑂𝐼𝑃

𝑉 
𝑜𝑖𝑙
𝑝𝑟𝑜𝑑,                                     (2) 

Where 𝑉 𝐶3

𝑖𝑛𝑗
 is the total volume of gaseous propane injected (in m3),  𝑉 𝐶3

𝑝𝑟𝑜𝑑
 is the total volume of 

propane recovered at the surface (in m3), 𝑉 𝑜𝑖𝑙
𝑝𝑟𝑜𝑑

 is the total volume of bitumen extracted (in m3), 

and OOIP denotes the original oil in place (in m3). All the parameters are specified at surface 

conditions. 

For the MOO task, in order to capture the variety exhibited by the different realizations, three 

approaches are considered: using either the minimum, weighted average, or maximum values of 

each objective function over the realizations. The weighted average values are obtained by 

computing a Swanson’s mean as shown below. 

𝐸{𝑓(𝑥)} = 0.3 𝑓(𝑥, 𝑃𝑙𝑜𝑤−𝑐𝑎𝑠𝑒) + 0.4 𝑓(𝑥, 𝑃𝑚𝑖𝑑−𝑐𝑎𝑠𝑒) + 0.3 𝑓(𝑥, 𝑃ℎ𝑖𝑔ℎ−𝑐𝑎𝑠𝑒), (3) 

Where 𝐸{𝑓(𝑥} is the weighted average value of the objective function over the 3 realizations (i.e. 

low-case, mid-case, and high-case) being considered, 𝑥 is the decision vector and 𝑓(𝑥, 𝑃𝑙𝑜𝑤−𝑐𝑎𝑠𝑒), 

𝑓(𝑥, 𝑃𝑚𝑖𝑑−𝑐𝑎𝑠𝑒), and 𝑓(𝑥, 𝑃ℎ𝑖𝑔ℎ−𝑐𝑎𝑠𝑒) are the objective functions using the low-case, mid-case, 

and high-case realizations respectively. 
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5.2.3. Multi-Objective Optimization Problem 

For a MOO minimization problem with three decision variables (or vector), a decision vector, 𝑢 =

 (𝑢1, 𝑢2, 𝑢3) will dominate (denoted by ≺) another decision vector 𝑣 =  (𝑣1, 𝑣2, 𝑣3), if and only if 

 𝑓𝑖  (𝑢) ≤  𝑓𝑖 (𝑣), ∀𝑖 ∈  {1, 2, . . 𝑚}; 

(4) 

and  𝑓𝑗  (𝑢) <  𝑓𝑗  (𝑣),         ∀𝑗 ∈  {1, 2, . . 𝑚}, 

Where m denotes the total number of objectives, 𝑓(𝑢)′𝑠 are the objective functions for vector 𝑢, 

and 𝑓(𝑣)′𝑠 are the objective functions for vector 𝑣. The idea is that 𝑓(𝑢) is lower than or as best 

as 𝑓(𝑣) for all objectives and there is at least one objective function for which 𝑓𝑗(𝑢) is strictly less 

than 𝑓𝑗(𝑣). 

Since the MOO problem for this study is formulated with three decision variable and two objective 

functions, the decision vector 𝑢 (or 𝑣) is given by: 

𝑢 =  [𝑢1 𝑢2 𝑢3 ] = [𝑥𝑐3
 𝑇𝑖𝑛𝑗 𝑃𝑖𝑛𝑗  ], (5) 

Where 𝑥𝑐3
, 𝑇𝑖𝑛𝑗, and 𝑃𝑖𝑛𝑗 are the decision variables, which are propane mole fraction in the injected 

solvent, injection temperature, and injection pressure respectively. The objective functions vector 

is shown in Eqn. 6. 

[𝑓1(𝑢, ), 𝑓2(𝑢) ] = [𝑐𝑆𝑜𝑙𝑂𝑅, 1/𝑅𝐹],   (6) 

The aim of this study is to identify the optimal sets of 𝑥𝑐3
, 𝑇𝑖𝑛𝑗, and 𝑃𝑖𝑛𝑗 vectors that would 

minimize 𝑐𝑆𝑜𝑙𝑂𝑅 and 1/𝑅𝐹. Typically, algorithms that perform a non-dominated sorting of the 
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solution space are used to search for a set of optimal solutions that are uniformly spaced along a 

Pareto-optimal front; for this work, a widely-adopted technique called NSGA-II (Deb et al., 2002) 

is applied. 

  

5.2.3.1. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

The procedure for an iteration of non-dominated sorting using the NSGA-II is described below: 

1. An initial parent population 𝑃𝑡 of size N is created randomly and sorted into sets of non-

dominated solutions: the best solutions are assigned a rank of 1; the second-best 

solutions are assigned a rank of 2, and so on.  

2. The offspring population 𝑄𝑡 of size N is created from 𝑃𝑡 through the selection, 

crossover, and mutation operations.  

3. Elitism is ensured by combining 𝑃𝑡 and 𝑄𝑡 to form a combined population 𝑅𝑡 of size 

2N.  

4. Non-dominated sorting is applied to Rt, and the new parent population 𝑃𝑡+1 is filled with 

solutions from fronts of Rt with decreasing rank until the total size of N is reached. 

Whenever the last allowable front is considered, there may be are more solutions than 

the remaining slots within 𝑃𝑡+1. In such instances, solutions within the least crowded 

region are selected to fill these slots and the remaining individuals in Rt are discarded. 

5. 𝑃𝑡+1 is subjected to another round of selection, recombination, and mutation to create a 

new offspring population 𝑄𝑡+1 of size N. 
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A previously stated, the selection of individuals from the last allowable front of Rt to fill Pt+1 can 

be based on crowding distance comparison. The crowded comparison operator, ≺𝑐 (Deb et al., 

2002) is defined as follows. 

𝑖 ≺𝑐  𝑗   if  𝑖𝑟𝑎𝑛𝑘  <  𝑗𝑟𝑎𝑛𝑘; 

(7) 

or  𝑖 ≺𝑐  𝑗   if  𝑖𝑟𝑎𝑛𝑘 =  𝑗𝑟𝑎𝑛𝑘 and  𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >  𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 

Where 𝑖𝑟𝑎𝑛𝑘 and 𝑗𝑟𝑎𝑛𝑘 denotes the ranks of individuals 𝑖 and 𝑗, respectively, within Rt, while 

𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are their crowding distances. The crowding distances, 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

are the total side length of the cuboid formed by the neighboring solutions to the left and right of 

𝑖 and 𝑗 respectively. Fig. 5-5 and Eqn. 8 describe the crowding distance for a 2-objective MOO. 

 

Figure 5-5: Schematic for crowding distance calculation. 
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𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑓1

𝑖+1 − 𝑓1
𝑖−1|

𝑓1
𝑚𝑎𝑥 − 𝑓1

𝑚𝑖𝑛
+

|𝑓2
𝑖+1 − 𝑓2

𝑖−1|

𝑓2
𝑚𝑎𝑥 − 𝑓2

𝑚𝑖𝑛
+ ⋯ 

|𝑓𝑚
𝑖+1 − 𝑓𝑚

𝑖−1|

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛
, (8) 

Where 𝑓𝑚
𝑖−1 and 𝑓𝑚

𝑖+1 are the mth objective function of the neighboring individuals 𝑖 − 1 and 𝑖 + 1, 

respectively; 𝑓𝑚
𝑚𝑖𝑛 and 𝑓𝑚

𝑚𝑎𝑥 are the minimum and maximum values of the mth objective function. 

The NSGA-II parameters for this study are: population size = 200, number of iterations = 50; 

mutation and cross-over probability is 0.3. The optimal solutions are obtained once the maximum 

number of iterations is reached. 

 

5.2.3.2. Parameterization Scheme – Incorporating Thermodynamic Constraints  

Since the solvent mixture (e.g., propane-methane mixture) for the warm VAPEX process are 

injected at either the dew point or superheated conditions for optimal solvent-oil interactions, for 

a given propane (C3) mole fraction, a “feasibility window” for injection conditions of the solvent 

mixture is defined within the propane-methane phase diagram. This window renders the MOO 

problem to be rather peculiar. Therefore, a novel parameterization scheme is incorporated within 

the NSGA-II to constrain the pressure and temperature conditions for a given C3 composition 

within the window (or search space). As shown in Fig. 5-6, the search space for the case of the 

injection of a C1-C3 solvent mixture with a 90% C3 mole fraction is specified by a shaded portion. 
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Figure 5-6: Search space for the implementation of NSGA-II (P-T diagram for C1-C3 mixture; C3 mole 
fraction is 0.9). Lower dew point curve shown in red. 

 

Two separate indicators, P and T with values ranging between 1 and 10 are randomly generated 

within the genetic algorithm framework of the NSGA-II to denote pressure and temperature values 

respectively. The indicator values are then mapped back to the search space to obtain the actual 

temperature and pressure values for a particular C3 mole fraction. The parameterization procedure 

is described below: 

1. Randomly create T and P, with values ranging from 1 to 10. 

2. Formulate the decision vector of the population as C3 mole fraction (xC3), P, and T. 

3. For the value of xC3 (lower bound = 0.5; upper bound = 0.9), determine 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛  

from the dew point curve. 𝑃𝑚𝑎𝑥 is the upper pressure limit along the dew point curve and 

𝑃𝑚𝑖𝑛 is the dew point pressure at 30oC (the minimum injection temperature for this study).  
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4. Estimate the mapped pressure and temperature values (𝑃𝑣𝑎𝑙 and 𝑇𝑣𝑎𝑙) corresponding to the 

indicators P and T using Eqns. 9 and 10 respectively. 

𝑃𝑣𝑎𝑙 = 𝑃𝑚𝑖𝑛 + (
𝑃−1

10−1
) × (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛); (9) 

𝑇𝑣𝑎𝑙 = 𝑇𝑠𝑎𝑡 + (
𝑇−1

10−1
) × Δ𝑇, (10) 

Where 𝑇𝑠𝑎𝑡 is the saturation temperature at 𝑃𝑣𝑎𝑙 and Δ𝑇 is the temperature range of superheated 

conditions. For this work, Δ𝑇 is set to 20oC. 

 

5.2.4. Objective Function Evaluation Using Proxy Modeling 

The evaluation of the objective functions with reservoir simulation can be computationally 

inefficient. For example, in this work, the population size is 200 and the number of iterations is 

50, the required number of reservoir simulations will be 10,000 runs per geologic realization, 

which is a huge computational load. This is because the computing time for a single simulation 

run could range from a few minutes to several days, depending on the model size and process 

complexity. Therefore, a proxy model, which is calibrated using a limited number of simulation 

runs, can be employed to evaluate the objective functions. The proxy modeling technique 

employed in this study is the ANN. The ANN modeling approach aims to approximate the complex 

non-linear relationships between a set of input variables and output attributes. It has been applied 

in the optimization of warm solvent injection processes (Ma and Leung, 2020a), investigation of 

reservoir heterogeneities in SAGD (Wang et al., 2018; Zheng et al., 2018a; Wang and Leung, 

2015), and the analysis of SAGD production performance (Ma et al., 2015). Typically, an ANN 
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design consists of an input layer, one or more hidden layers, and an output layer. Each layer usually 

consists of a certain number of nodes and a bias unit, and for the input layer, the nodes are the 

features (i.e., decision variables for this study), while the output nodes are the target variables (i.e., 

the objective functions in this study). The mathematical relationship between the nodes is given 

by Eqn. 11. 

The output of node 𝑗 in layer 𝑘 + 1, 𝑎𝑗
𝑘+1 is given by:  

𝑎𝑗
𝑘+1 = 𝑔(∑ 𝑤𝑗,𝑖

𝑘𝑛
𝑖=1 . 𝑥𝑖

𝑘 +  𝑏), 

(11) 

 

Where 𝑏 denotes the bias, 𝑤𝑗,𝑖
𝑘  is the weight corresponding to the connection between node 𝑖 in 

layer k and node j in layer 𝑘 + 1 , 𝑥𝑖
𝑘 refers to the input value of node 𝑖 in layer 𝑘 and 𝑔 is the 

activation function. The weights are estimated through a backpropagation update algorithm that 

consists of an optimization framework, such as gradient descent, Adaptive Moment Estimation 

(Adam), Levenberg-Marquardt, etc., where the deviation between the actual target values and 

model predictions (which is defined in terms of a cost function, such as mean square error, MSE) 

is minimized after several batches of training. 

In this study, a separate proxy model is created for each of the 3 geologic realizations, and since 

there are 2 objective functions (cSolOR and 1/RF), a total of 6 proxy models are constructed. A 

10-fold cross-validation technique is employed to determine the optimal number of hidden layers 

and nodes per layer, using the normalized mean squared error (NMSE) performance metric as the 

selection criteria. The cross-validation approach is performed for the 6 proxy models and the 
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results are shown in Fig. 5-7. The optimal architecture with a low value of NMSE over the 3 

geologic realizations for both cSolOR and 1/RF consists of 2 hidden layers, with 6 nodes per layer. 

This optimal network configuration is then implemented using the neural network toolbox in 

MatlabTM (Beale et al., 2018). A total of 270 cases are used for training and testing [230 samples 

(85%) for training and 40 samples (15%) for testing]. 

 

 

                                        (a)                                                                                           (b) 

Figure 5-7: Cross validation results: a - cSolOR; b – 1/RF. 
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5.3. Results and Discussion 

5.3.1. Proxy Modeling 

The predictions of the ANN based proxy-models for 40 test cases are validated with the reservoir 

simulations, as shown in Figs. 5-8 and 5-9. For all the results, the coefficient of determination (R2) 

is close to 1, indicating that the predictions from the ANN model match closely to the outputs from 

reservoir simulation. 

 

Figure 5-8: Comparison of proxy model predicted values and flow simulation output of cSolOR. 
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Figure 5-9: Comparison of proxy model predicted values and flow simulation output of 1/RF. 

 

5.3.2. MOO 

The final Pareto-optimal solutions after 50 iterations are shown in Fig. 5-10. Three different Pareto 

fronts corresponding to the minimum, weighted average, and maximum objective function values 

over all the realizations are attained. If the Pareto front is derived from the minimum objective 

function value among all realizations, it is generally expected that the realizations contributing to 

the lowest objective functions are those exhibiting minimal heterogeneity (e.g., very few shale 

barriers). Similarly, if the Pareto front is attained based on the maximum objective function value, 

the realizations contributing to this case would likely be those exhibiting high degree of 

heterogeneity (e.g., many shale barriers in the near-well region). 
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Figure 5-10: Pareto-optimal fronts. 

 

If the minimum values of cSolOR and 1/RF over the realizations (best case scenario) are 

considered, the optimal propane mole fraction, injection pressure, and temperature ranges would 

be 0.52 - 0.90, 1648 - 4489 kPa, and 60 - 70oC, respectively. As shown in Fig. 5-11, out of the 200 

optimal solutions, the most frequent scenario is the injection of solvent with a high propane mole 

fraction (modal propane mole fraction = 0.9) at high temperature and low injection pressure. When 

referring to the phase diagram of the binary methane-propane mixture, this translates to solvent 

injection at superheated conditions to capture the trade-offs between solvent retention and bitumen 

recovery.  

A plausible explanation can be conjectured to understand why injecting at superheated condition 

is preferred for heterogeneous reservoirs. When solvent is injected into a heterogeneous reservoir, 
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there is a risk of early condensation before establishing sufficient contact with the in-situ bitumen. 

The early condensation may be due to velocity variation along the chamber front as it encounters 

shale baffles and preferentially fingers through highly-permeability zones, thereby leading to 

lower temperature and solvent condensation behind the chamber edge. Solvent condensation 

before contact with bitumen can lead to the accumulation of solvent droplets in the chamber which 

may be trapped if its saturation is less than the critical saturation. Therefore, injection at 

superheated conditions lowers the likelihood of early solvent condensation, hence limiting the 

amount of solvent lost in the reservoir while the extra heat from the superheated solvent may be 

transferred to the bitumen for its viscosity reduction. The addition of methane or the increment of 

methane proportion within the methane-propane solvent mix may also delay liquid condensation 

in the solvent chamber (Das, 2008); however,  methane addition may also reduce the recovery 

factor, as it may act as an insulative barrier for the transfer of thermal energy to the bitumen. The 

trade-offs between these different considerations may have led to the identification of a few 

solutions along the Pareto front, which involve the co-injection of higher methane content (i.e., 

moderate propane mole fraction). 
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Figure 5-11: Distribution of decision variables considering the minimum objective function value over all 
realizations. 

 

Considering the weighted average (or Swanson’s mean) of cSolOR and 1/RF over the realizations, 

the optimal propane mole fraction, injection pressure, and temperature ranges would be 0.51 - 

0.90, 1573 - 4680 kPa, and 58 - 70oC, respectively. From Fig. 5-12, conclusions similar to what is 

described earlier can be made. However, since a weighted average value is usually higher than the 

minimum value for a set of data, the position of the Pareto front is shifted towards the right of the 

‘minimum values’ case. 
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Figure 5-12: Distribution of decision variables considering weighted average objective function value over 
all realizations. 

 

Finally, considering the maximum value of cSolOR and 1/RF over the realizations (these are 

deemed worst-case scenarios because they generally consist of many shale barriers in the near-

well region) are considered. The optimal propane mole fraction, injection pressure, and 

temperature ranges between 0.50 - 0.90, 1413 - 4838 kPa, and 55 - 70oC, respectively. Once again, 

the pareto front is shifted to the right of both of the ‘Swanson’s mean’ and ‘minimum values’ cases. 

Similar conclusions can be drawn.  

An interesting conclusion can be drawn after analyzing all three ways of assessing the objective 

functions: there is no significant change in the ranges of optimal solutions of all 3 decision 
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variables. This demonstrates the robustness of this workflow in identifying optimal parameters 

against possible scenarios of geologic heterogeneity and phase behavior constraints. 

 

Figure 5-13: Distribution of decision variables considering maximum objective function value over all 
realizations. 

 

The ranges of the optimal decision parameters and the corresponding objective function for each 

of the scenarios are summarized in Table 5-2. 

Table 5-2: Optimal decision variables and objective functions 

Approach xc3 (fraction) Tinj (oC) Pinj (kPa) cSolOR (m3/m3) 1/RF (1/fraction) 

Minimum [0.52 0.90] [60 70] [1648 4489] [65 85] [1.7 3.1] 

Weighted 
average 

[0.51 0.90] [58 70] [1573 4680] [67 87] [1.8 3.8] 

Maximum [0.50 0.90] [55 70] [1413 4838] [68 89] [1.9 5.5] 
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Although flow simulation of solvent injection processes in heterogeneous reservoirs can be 

computationally intensive; this workflow is able to optimize the warm VAPEX process with 

significant improvement in terms of computational efficiency. For example, if a reservoir 

simulator was used for all the objective function evaluation, it will take 900,000 minutes or 

approximately 625 days (i.e., 50 iterations × 200 simulation runs per iteration × 30 

minutes/simulation run × 3 geologic realizations) without parallel computation. However, using 

a personal computer with 16.0 GB installed RAM and Intel(R) Core i7 processor, the total 

computing time is approximately 30 minutes. 

 

5.4. Summary 

A MOO workflow that considers phase behavior constraints and geologic uncertainties for the 

optimization of the warm VAPEX process is presented. The decision variables are propane mole 

fraction in the injected solvent, injection pressure, and injection temperature, while the objective 

functions are cSolOR and 1/RF. Several steps are implemented in this workflow: First, three 

separate reservoir models, representing a low-case, mid-case, and high-case realization, are 

considered; for each realization, an ANN-based proxy model is constructed to correlate one 

objective function to the three decision variables. Next, three ways of formulating the objective 

function in the MOO framework are examined: minimum, weighted average, and maximum values 

over all the realizations. The NSGA-II, together with the developed proxy models and a novel 
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parameterization scheme which incorporates phase behavior constraints, is employed to search for 

the optimal parameters along a Pareto front. 

This study demonstrates the ability of a MOO workflow to identify optimal decision parameters 

for a solvent-based bitumen recovery process. The optimization results also show that there is no 

significant change in the final optimal solutions, regardless of how the objective functions are 

evaluated. The results suggest that our workflow is robust in identifying optimal parameters 

considering a range of different heterogeneity realizations. It is anticipated that this workflow can 

be readily integrated into the decision-making processes in heavy oil reservoir management. 
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Chapter 6 A Machine Learning Approach to Real-time 

Uncertainty Assessment of SAGD Forecasts and the 

Optimization of Steam Allocation 

Abstract 

Field development planning and economic analysis require reliable forecasting of bitumen 

production. Forecasting at the field level may be done using reservoir simulations, type-curve 

analysis, and other (semi-)analytical techniques. Performing reservoir simulation is usually 

computationally expensive and the non-uniqueness of a history-matched solution leads to 

uncertainty in the model predictions and production forecasts.  Analytical proxies, such as Butler’s 

model and its various improvements, allow for sensitivity studies on input parameters and 

forecasting under multiple operational scenarios and geostatistical realizations to be conducted 

rather quickly, despite being less accurate than reservoir simulation. Similar to their reservoir 

simulation counterparts, proxy models can also be tuned or updated as more data are obtained.  

Type curves also facilitate efficient reservoir performance prediction; however, in practice, the 

performance of many SAGD well-pairs tends to deviate from a set of pre-defined type curves. 

Historical well data is a digital asset that can be utilized to develop machine learning or data-driven 

models for the purpose of production forecasting. These models involve lower computational 

effort compared to numerical simulators and offer better accuracy compared to proxy models based 

on Butler’s equation. Furthermore, these data-driven models can be used for automated 

optimization, quantification of geological uncertainties, and “What If” scenario analysis. 
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This paper presents a novel machine learning workflow that includes a predictive model 

development using the random forest algorithm, clustering, Bayesian updating, Monte Carlo 

sampling, and genetic algorithm for accurate forecasting of real-world SAGD injection and 

production data, and optimization. The training dataset involves field data that is typically 

available for a SAGD well (e.g., operational data, geological, and well design parameters).  Just 

as importantly, this machine learning workflow can update predictions in real-time, be applied for 

the quantification of the uncertainties associated with the forecasts, and optimize steam allocation, 

making it a practical tool for development planning and field-wide optimization. To the best of the 

author’s knowledge, this is the first time that machine learning algorithms have been applied to a 

SAGD data set of this size. 

 

6.1. Introduction 

Steam Assisted Gravity Drainage (SAGD) is a thermal in-situ bitumen recovery technology 

proposed by Butler et al. (1981). Production of bitumen via SAGD from the Western Canada 

sedimentary basin has been prolific, reaching over a million barrels per day by 2017 (Canada 

Energy Regulator, 2020). SAGD involves the injection of high-quality steam into the reservoir to 

thermally mobilize viscous heavy oil or bitumen. The well configuration for this mechanism is 

designed in such a way that bitumen can be effectively drained under gravity. A horizontal 

producer well is located at the base of the reservoir while another horizontal well (steam injector) 

is drilled approximately 5 meters above the producer.  Steam is injected into the injector well and 

condenses. The energy given off by the condensing steam is transferred to the rock, water, and 

hydrocarbon present in situ.  As the hydrocarbons are heated, the oleic phase viscosity is reduced, 
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and it flows to the producer well where it is pumped to the surface along with connate water, gas, 

and the condensed steam. 

The efficacy of the SAGD process is sensitive to operational parameters and reservoir 

heterogeneity.  Typical current practice is to assign engineers to monitor well operation and make 

inferences about subsurface conditions.  These inferences can be used for optimizing well and field 

operations, as well as for long-term development planning.  An automated approach to effective 

real-time field optimization and development planning has not been widely adopted in the industry. 

Semi-analytical or proxy models (Dehdari and Dong, 2017) have been proposed for field-wide 

planning and optimization.  The governing equation in these models is typically based on Butler’s 

model and, hence, they are computationally efficient.  However, such proxy models have not been 

widely adopted for several reasons: firstly, it is difficult to incorporate changes in operational 

constraints into these models; secondly, the model parameters are generally unknown and must be 

estimated and tuned according to field data; it is not uncommon to even modify the form of the 

model to better fit the actual data. As a result, such models are hard to be incorporated for real-

time forecasting and uncertainty assessment when dealing with real-time dynamic data. 

Data-driven modelling is based on the analysis of data characterizing the system of interest and 

often involves the application of machine learning methods to build models that describe the 

behavior of the corresponding physical process. There are three main machine learning 

approaches: supervised, unsupervised, and reinforcement learning. In supervised learning, there is 

a functional mapping from the inputs to a set of target variables (e.g., random forest, artificial 

neural network, etc.). In unsupervised learning, there are no target variables (e.g., K-means 

clustering and principal component analysis (PCA). In reinforcement learning, an agent learns 
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from interaction with its environment through different trial and error techniques in order to 

maximize a reward function. 

Supervised and unsupervised learning methods have been adopted in many petroleum engineering 

applications. For instance, supervised learning was implemented in the optimization of a solvent-

assisted process (Ma and Leung, 2020a), the production forecast for mature fields that are 

simultaneously driven by steam and water flooding (Kubota and Reinert, 2019), investigation of 

SAGD production performance (Ma et al., 2015), production forecasting (Zheng et al., 2018) and 

analysis of reservoir heterogeneities for SAGD (Wang et al., 2018; Zheng et al., 2018; Wang and 

Leung, 2015). The K-means clustering algorithm is a common technique for classifying datasets 

based on similarities among data, and PCA can be used for feature selection and reduce the 

dimension of data. Both methods have been integrated into a couple of reservoir engineering 

applications, which include prediction of the fluid properties of crude oil systems (Almashan et 

al., 2020), analysis of SAGD production data (Ma et al., 2015), and reservoir characterization 

(Gilbert et al., 2004). Ma. et. al. (2015) applied K-means clustering to separate a dataset of 

Canadian SAGD fields (gathered from the public domain) into different groups, and separate ANN 

models were constructed to predict several production indicators (e.g., total oil production) from 

petrophysical data. A similar approach was employed in Amirian et al. (2014) using a synthetic 

dataset from flow simulation results. The major drawbacks of these works are: (1) the datasets 

used have missing and limited information; key operational parameters are generally missing; (2) 

time-series outputs (e.g., oil production or steam injection vs. time profiles) were not considered. 

In this work, instead of ANN, the random forest algorithm, in which input data are fed into multiple 

decision trees that are trained independently and the output is the average of predictions from each 
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tree, is used. This modeling technique is less expensive computationally, with fewer tuning 

parameters compared to ANN (Muhammad et. al., 2017). Therefore, it has often been applied to a 

variety of reservoir-engineering problems, such as history matching sensitivity analysis (Aulia et 

al., 2017) and production forecasting for tight hydrocarbon reservoirs (Liao et. al., 2020). To 

quantify the uncertainty associated with the production forecasts given a set of uncertain geologic 

variables, the Monte Carlo simulation (MCS) is used. The application of MCS can be found in 

Bieker et. al., (2006), Al-Mudhafar and Rao (2016) and Mehana et al. (2019). 

The development of a data-driven model for SAGD forecasting facilitates the optimization of 

pertinent variables (e.g. operational constraints). In this work, the genetic algorithm (GA) is used 

to optimize steam allocation. Compared to other local, gradient-based, optimization algorithms 

(gradient descent, Levenberg–Marquardt algorithm, etc.), GA offers several advantages including 

its ability to perform a global search, the capacity to handle noisy objective functions, and its 

resistance to being trapped in local optima (Sivanandam and Deepa, 2008). A number of recent 

works have applied GA and other elitist multi-objective GA, such as the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) (Deb et al., 2002), to design heavy oil/bitumen recovery 

processes: optimizing solvent-assisted SAGD processes (Al-Gosayir et al., 2011), determining 

optimal conditions for high-temperature solvent injection techniques, in which a money recovery 

factor is defined as the objective function (Leyva-Gomez and Babadagli, 2017), designing steam 

alternating solvent process  (Coimbra et al. 2019), where the objective functions are recovery factor 

and cumulative propane injection. Optimization problems can also be formulated to maximize the 

net present value (NPV) of the SAGD process using a reinforcement learning technique (Guevara 

et al., 2018) and for steam allocation optimization in real-time (Sibaweihi et al., 2020). 
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Although the aforementioned studies have successfully implemented various data-driven 

workflows for SAGD production forecasting and optimizing steam allocation, the impacts of 

geologic and operational uncertainties were not considered. Furthermore, synthetic data sets were 

used to train the data-driven models in these studies, rendering it challenging to extrapolate their 

conclusions to real field dataset. Therefore, a major contribution of this work is the use of a real 

SAGD field dataset for dynamic forecasting, uncertainty quantification, and optimization of steam 

allocation. The proposed workflow is shown to provide reliable prediction update (with its 

associated uncertainty) in real-time and steam allocation optimization solutions that can be used 

for decision-making under real-field conditions. To achieve this goal, the following are performed: 

(1) construct a random forest model to perform real-time multi-year forecasting (2) integrate the 

random forest predictive model and K-means clustering into a real-time uncertainty assessment 

framework that would update the forecast in real-time by incorporating new production data 

dynamically while quantifying both the geologic and operational uncertainties (3) predict the 

optimal steam allocation over a multi-year time horizon considering the uncertainties estimated in 

(2). 

 

6.2. Proposed Approach 

6.2.1. Case Study 1: Real-time Uncertainty Assessment of Forecasts 

To perform real-time uncertainty analysis along with production forecasting, a workflow that 

integrates geologic uncertainty with the variability in operating strategies is proposed. Hence, our 
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workflow (Fig. 6-1) consists of two main parts: predictive modeling and real-time uncertainty 

analysis of model predictions via integration of continuous production data measurements. 

All the models in this work are implemented in Matlab (MathWorks, 2020). The modeling starts 

with selecting the input features. Feature selection involves identifying and formulating attributes 

that are most relevant to the problem. Typically, irrelevant, redundant, and highly correlated 

variables are removed. This exercise can be performed using statistical techniques or domain 

knowledge. The features are then used to create two models:  

1. A random forest model that predicts oil production and steam injection time-series from 

static and dynamic (well operational) variables.  

2. PCA with K-means clustering that classifies all well-pairs based on their static variables 

only.  

The random forest algorithm is an ensemble method which aggregates predictions from multiple 

decision trees to yield a more accurate prediction. Because decision trees are weak learners that 

are prone to overfitting, they are usually not the ideal predictive learning tool. Hence, the random 

forest algorithm combines the simplicity of these weak learners with flexibility, resulting in better 

predictive accuracy (Breiman L, 2001). In this algorithm, a bootstrapped dataset of the same size 

as the original dataset is created through sampling with replacement, and depending on the number 

of decision trees, several bootstrapped samples are used to train the trees. The average of the output 

variables over all trees is the predicted output.  

K-means clustering identifies internal structures within data by dividing a set of items (e.g. well-

pairs) into clusters or sub-categories based on similarities in the data. In this algorithm, 
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observations are grouped into k-clusters based on similarities between them, and a measure of this 

similarity is the squared Euclidean distance (SED).Cluster assignment of the observations is 

performed by minimizing the mean SED from each observation to its nearest cluster centroid . 

Ding and He (2014) established a connection between the K-means clustering algorithm and 

principal component analysis (PCA), and according to them, principal components are continuous 

solutions of cluster membership indicators in K-means clustering, allowing for the determination 

of the optimal number of clusters using PCA. PCA is used for the dimensionality reduction of a 

dataset by projecting it to a lower-dimensional space. Firstly, a mean-adjusted dataset is calculated 

by subtracting the mean of each variable from every data point in a dataset to eliminate bias, then 

the singular value decomposition (SVD) method is used to estimate the principal components of 

the covariance matrix of the data. A detailed explanation of the application of PCA for analyzing 

SAGD data can be found in Ma et. al. (2015). 

The two models created are then integrated into a real-time uncertainty analysis module that 

performs two functions: (1) updates the forecast in real-time by incorporating the new production 

data and (2) incorporates both geologic uncertainty and operational uncertainty (i.e., uncertainty 

in the dynamic variables) into the forecasting. Geologic uncertainty arises due to the incomplete 

ability to adequately sample the subsurface (very few wells are drilled to map an entire field or 

reservoir). Operational uncertainty, on the other hand, arises due to not always operating a well 

optimally (if it can be assumed there is only one optimal way to operate a well). Geologic 

uncertainty can be assessed using multiple realizations of the uncertain reservoir properties. For 

example, three different realizations of the geologic data representing the low-, mid-, and high-

cases can be selected (e.g., P90, P50, and P10, respectively). a given realization of geologic data 
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can be deemed most probable and classified as a P50 realization. Subsequently, other realizations 

can be deemed less probable and classified as either P10 (high case) or P90 (low case). Other 

realizations (e.g. P25) can be obtained but only the P10, P50, and P90 were used for this work. It 

is a trivial matter to see how the algorithm can be extended to handle more realizations.  In the 

context of this paper, a P90 realization of geologic data, for instance, is a set of static variables, 

including porosity, permeability, thickness, saturation, etc., representative of a “low-case”. It is 

defined using a combination of well measurements and domain expertise. In quantifying geologic 

uncertainty, a Monte Carlo sampling technique is used to draw a finite number of samples.  

In this work, production data is used to update the posterior probability distribution of the 

occurrence of a given well type (e.g., P10, P50, P90) in a Bayesian framework. Multiple 

realizations of the static variables are then sampled according to the updated posterior 

distributions. Each realization is then subjected to a cluster assignment (using the K-means 

clustering results in the modeling step). Depending on the assigned cluster label, values of the 

dynamic variables are randomly selected from other well-pairs in that same cluster. The key 

assumption here is that well-pairs that belong to a given geologic group or cluster are expected to 

be operated similarly. Any variance in well operations for a given cluster then informs operational 

uncertainty. The probability of inter-cluster membership is not considered in this study. 
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Figure 6-1: Summary of the entire workflow showing the two main parts:  modeling and forecast 
uncertainty assessment. 

 

6.2.1.1. Feature Selection 

Here, the variable selection process is done using our domain knowledge of SAGD process 

dynamics.  The input parameters, as well as their units and nominal values, are shown in Table 6-

1. The well efficiency proxy, which is one of the input variables, is introduced to capture how the 

age of a well-pair or pad can affect its performance. Although other formulations of this proxy 

variable are possible, for the sake of convenience, it is defined as the production start date 

corresponding to the well-pair being considered. In order to aid the feature selection, parameters 

are further classified as static or dynamic. Static variables are expected to stay constant for a large 

portion (or all) of a well-pair’s operating life (e.g. well and geologic data). Dynamic variables are 
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expected to change during day-to-day operations (e.g. operational data). 19 different parameters 

(4 dynamic and 15 static variables) are available for each well. 

Table 6-1: Input variables 

Variable Units Nominal Value Type 

Elapsed Time day 1000 Dynamic 

Injector Bottomhole Pressure kPa 3000 Dynamic 

ESP Pump Speed Hz 40 Dynamic 

Steam Injection Rate m3/day 350 Dynamic 

Effective Length m 1000 Static 

Well Efficiency Proxy dimensionless 2020 Static 

Spacing m 100 Static 

Rich Pay Thickness m 20 Static 

Non-Rich Pay Thickness m 5 Static 

Bottom Water Thickness m 1 Static 

Stand-Off m 3 Static 

Rich Vertical Permeability Darcy 3.5 Static 

Non-Rich Vertical Permeability milliDarcy 50 Static 

Rich Porosity fraction 0.35 Static 

Non-Rich Porosity fraction 0.30 Static 

Bottom Water Porosity fraction 0.30 Static 

Rich Oil Saturation fraction 0.85 Static 

Non-Rich Oil Saturation fraction 0.75 Static 

Bottom Water Oil Saturation fraction 0.45 Static 

 

It should be noted that the elapsed time is considered as an input attribute, and this variable is 

important since it controls the stages in a well-pair’s lifecycle, with each stage having a distinctive 
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governing process. The addition of the well efficiency proxy variable is based on the idea that as 

time progresses, operational strategies become more efficient; for example, a well that started 

operations in the year 2020 is expected to be more efficient, with everything else being equal, than 

another well that started operations in 2000. Steam injection rate is sensitive to injection pressure. 

An increase in injection pressure increases the steam chamber temperature (since it is required to 

maintain steam at saturated conditions) which reduces bitumen viscosity; since a decrease in 

viscosity drives bitumen drainage, there would be a higher steam injection rate for a given voidage 

replacement. The effect of injection pressure on latent heat and ultimately heat loss to overburden 

and underburden may affect steam efficiency. From a well performance perspective, instantaneous 

changes in pump speed influence oil production rates locally (in time). For the predictive model 

training process, well, geologic, and operational data as considered as input features for the 

prediction of steam injection and oil production rates (output features). For the K-means clustering, 

the inputs are the principal components from PCA on the geologic data only. 

 

6.2.1.2. Predictive Model Training 

Two separate random forest models are trained (steam and oil model) using the selected dynamic 

and static input features. The dataset consists of well (dynamic) data, geologic data, daily steam, 

and oil rates. The training data set consists of data from 152 Christiana Lake and Foster Creek 

well-pairs over a 3-year (or 1000 days) period. The well-pairs in this training dataset represent 

well-pairs that have been operated in the past. Model training is based on 3 years of time-series 

data to avoid ramp down and blowdown physics (which is not implemented or modeled in this 

work). Elapsed time and injection bottom-hole pressure are the dynamic parameters for the steam 
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model, while the dynamic inputs for the oil model are elapsed time, ESP pump speed, and steam 

injection rate. Hence, the steam injection rate is the output from the steam model and input into 

the oil model, considering that the operator is almost always steam constrained. The same static 

parameters are also used as input features in both models. 

Before training these models, all the well-pairs are classified as either a P10, P50, or P90 type well. 

A well is assigned as a certain well type by comparing its rate profiles to each of the P10, P50, or 

P90 well forecast profiles previously calculated using the semi-analytical model. For example, if 

a well’s actual data matches a P10 forecast more closely than a P50 or P90 forecast, it is classified 

as a P10 type well. The classification of well-pairs is based on 3 years of production data. Next, 

for each well type, the geologic and dynamic data of every well corresponding to that well type 

are assembled to develop the random forest models. For example, to construct the P90 models, the 

static data (well design parameters, well efficiency proxy, and P90 geologic data), dynamic data 

(elapsed time and operational data), and time-series steam injection and oil production of every 

P90 well-pair are included to train the steam injection and oil production random forest models. 

Table 6-2: Random forest model properties 

Property Value (Steam Model) Value (Oil Model) 

Ensemble aggregation method Bagging Bagging 

Number of trees 20 20 

Number of predictors 17 18 

Number of predictors to select at random for 

each split 
17 18 

Number of observations 138,096 138,096 

Minimum observations per leaf 5 5 
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Minimum observations per branch node 10 10 

Pruning criterion Mean Squared Error Mean Squared Error 

Split criterion Mean Squared Error Mean Squared Error 

Proportion of well-pairs used for training 90% 90% 

Proportion of well-pairs used for testing 10% 10% 

 

The coefficients of determination (R2) for the steam and oil models are 0.6 and 0.5 respectively, 

and these low R2 values are due to noise which is common in most SAGD field data. Results of 

the feature importance analysis for the two models are shown below. As expected, both models 

are more sensitive to dynamic data inputs because the response variables (steam and oil rates) also 

vary with time. 

 

Figure 6-2: Feature importance for the steam model. 
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Figure 6-3: Feature importance for the oil model. 

 

6.2.1.3. PCA and K-Means Clustering 

Here, principal component analysis (PCA) on static data for dimensionality reduction is 

implemented. The 15 static variables are reduced to 6 principal components in such a way that a 

significant amount of its variance is explained. Results from the PCA are shown in Fig. 6-4. Since 

the 6 principal components explain 80% of the variance of the data, the optimal number of clusters 

is also set to 6 in accordance with the findings in Ding and He (2014). Although this approach is 

used in this study, clustering can also be performed directly on the static data. 

Fig. 6-5 shows the 3D and 2D clustering results in the principal components space. Each plot 

represents a well and the clusters are highlighted with different colors. The model training, data 

compression (through PCA), and K-means clustering processes are shown in Fig. 6-6. The 

outcome of this step is to identify a set of clusters based on static (geologic) data alone. The results 

are used to classify any new well based on its static data. Besides, the appropriate/historical 
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operational strategies for a given cluster can be obtained by assembling the corresponding dynamic 

(operational) variables from all well-pairs associated with that particular cluster.  

 

Figure 6-4: Percentage of variance explained from PCA. 

 

(a)         (b) 

Figure 6-5: K-Means Clustering. (a) – cluster assignments-3D, (b) – cluster assignments-2D 
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Figure 6-6: Modeling process. 

 

6.2.1.4. Assessing Forecast Uncertainty in Real-time 

In this section, we demonstrate how the predictive models developed in section 6.2.1.3 can be used 

to forecast production for a new well based on its static data and subsequently update this forecast 

and the associated uncertainty as new production data is collected. As discussed in section 6.2.1.2, 

all the well-pairs in the training dataset have already been classified as either a P10, P50, or P90 

type well. The prior probability distribution of the occurrence of a P10, P50, or P90 type well, 

𝑃(𝑃𝑅0
), can be estimated using Eqn. 1.  

 



120 

 

𝑃(𝑃𝑅0
) =

𝑁𝑃𝑅

𝑁𝑤𝑒𝑙𝑙𝑠_𝑡𝑜𝑡𝑎𝑙  
 

(1) 
 

subscript R denotes 10, 50, or 90, while 𝑃𝑅 represents P10, P50, or P90. 𝑁𝑃𝑅
 is the number of 𝑃𝑅 

type well-pairs and 𝑁𝑤𝑒𝑙𝑙𝑠_𝑡𝑜𝑡𝑎𝑙 is the total number of well-pairs used in the training dataset. For a 

new well with no production data, the probability distribution for the well type of this well is that 

of the prior distribution 𝑃(𝑃𝑅0
). Therefore, 𝑃(𝑃𝑅0

) signifies 3 probabilities: that a well is a P10 

type well, a P50 type well, or a P90 type well, at day zero, respectively. 

As more production data are obtained, 𝑃(𝑃𝑅0
) is updated to posterior probability 𝑃(𝑃𝑅0

|𝑃𝑅𝑡
). 

𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) represents the probability of a well being classified as a well type PR at day zero 

conditional to its classification based on production data collected up to day t. The updating 

procedure is further explained as follows: 

i. After 𝑥 production timesteps of t (i.e., t = xt), a measure of closeness (or deviation) of 

actual production data to the model prediction is defined as: 

𝑒𝑃𝑅
=

|∑ (𝑞𝑜𝑃𝑅

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝑞𝑜
𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)𝑥

𝑖=1 |

𝑥
 , 

(2) 

where 𝑒𝑃𝑅
 is the deviation of actual production data from the P10, P50, or P90 predictions 

from the random forest models: 𝑞𝑜𝑃𝑅

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖
 is the model’s P10, P50, or P90 oil production 

prediction at timestep 𝑖, and 𝑞𝑜
𝑎𝑐𝑡𝑢𝑎𝑙,𝑖

 is the actual oil production data at timestep 𝑖. 

ii. 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) is estimated using the Bayes theorem as shown in Eqns. 3. 
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𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) =
𝑃(𝑃𝑅𝑡

|𝑃𝑅0
) 𝑃(𝑃𝑅0

)

𝑃 (𝑃𝑅𝑡
)

, (3) 

where 𝑃(𝑃𝑅𝑡
|𝑃𝑅0

) is the likelihood function or the conditional probability that a well is a 

𝑃𝑅 type well after producing up until day 𝑡, given 𝑃𝑅0. 𝑃(𝑃𝑅𝑡
|𝑃𝑅0

) is calculated using Eqn. 

4 below. 

𝑃(𝑃𝑅𝑡
|𝑃𝑅0

) =

1
𝑒𝑃𝑅

1
𝑒𝑃10

+
1

𝑒𝑃50

+
1

𝑒𝑃90

 
 

(4) 

Eqn. 3 can also be expressed as:  

𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) =
𝑃(𝑃𝑅𝑡

|𝑃𝑅0
)𝑃(𝑃𝑅0

)

𝑃(𝑃𝑅𝑡
|𝑃100

)𝑃(𝑃100
) + 𝑃(𝑃𝑅𝑡

|𝑃500
)𝑃(𝑃500

) + 𝑃(𝑃𝑅𝑡
|𝑃900

)𝑃(𝑃900
)
 

(5) 

Since the denominator in Eqn. 5 cannot be assessed easily, a normalization constant, 𝛼 is 

used (Russell and Norvig, 2016). Hence, 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) is calculated by computing the terms 

within the angle brackets, followed by normalization as shown in Eqn. 6. 

𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) = 𝛼〈𝑃(𝑃𝑅𝑡
|𝑃𝑅0

) 𝑃(𝑃𝑅0
)〉  (6) 

Step (ii) is repeated as data is obtained, hence, there is a resulting change in 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) with 

time. 

At time t, geologic uncertainty is assessed by sampling the P10, P50, and P90 geologic data 

multiple times with replacement. The probability distribution for each sampling is 𝑃(𝑃𝑅0
) when 

determining forecast uncertainty at day zero, while the probability distribution is 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) for 

forecasts after production up till day, 𝑡.  
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For each sampled set of static variables, which is drawn from either a P10, P50, or P90 geologic 

data is converted to principal components, which are fed into the K-means clustering for cluster 

assignment and the dynamic variables are extracted from all well-pairs corresponding to that 

particular cluster (section 6.2.1.3), capturing the operational uncertainty. Next, both the static and 

dynamic variables are used to predict/forecast SAGD injection/production using the trained 

random forest models. Hence, the coupling of geologic and operational uncertainty is achieved. 

An example is presented in Fig. 6-7. Assuming we sample either the P10, P50, or P90 geologic 

data of Well-X, Well-X is assigned to a cluster based on the sampled geologic data, then n sets of 

operational constraints are extracted (where n is the number of well-pairs belonging to that 

particular cluster). Next, the random forest models are executed n times to forecast n Well-X’s 

injection and production profiles from day 𝑡. Finally, Well-X’s geologic data is sampled 𝑘 times, 

resulting in 𝑘 × 𝑛 predicted injection and production profiles. The 𝑘 × 𝑛 predictions represent the 

uncertainty in forecast due to both geologic and operational uncertainties, and this uncertainty band 

or interval varies as 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) changes with time. It should be noted that the actual number of 

unique rate profiles is 3 × 𝑛 since there are just 3 sets of geologic data. 
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Figure 6-7: A forecasting and uncertainty analysis case for a hypothetical well, Well-X 

 

6.2.2. Case Study 2: Optimization of Steam Allocation 

Optimization of steam allocation is often challenging due to the uncertainty (or confidence) 

interval being high for some well-pairs. A probabilistic approach is formulated, such that the 

greater the uncertainty, the lesser the weight that should be applied to the steam allocation 

determination for that well-pair. A simple rescaling to available steam capacity gives the absolute 

steam allocation for each well-pair. As time progresses, and due to the Bayesian updating, the 

confidence interval converges and becomes fairly constant (or stable) for each well-pair. At that 

point, the probability of steam allocation weighting, based on the confidence interval becomes 

unnecessary and the allocation process can proceed as determined by any optimization algorithm. 

A common optimization algorithm is the genetic algorithm (GA) in which solutions are 

represented as chromosomes; a population of solutions is initialized randomly. Each chromosome 

is evaluated according to a fitness or objective function, which is a measure of how good a solution 
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or chromosome is when compared to other solutions in the same population. A process of fitness-

based selection of parent chromosomes and their recombination is performed iteratively, and 

successive generations of the population are created with a decrease or increase in the fitness 

values of the chromosomes, depending on whether the optimization is a minimization or 

maximization problem, until a stopping criterion is met. 

 

6.2.2.1. Optimization Framework 

In this sub-section, a steam allocation optimization framework that proceeds after all the well-

pairs have had their uncertainty band stabilized is presented. In essence, this is equivalent to using 

a history-matched model for steam allocation optimization. The GA-based optimization 

framework is performed for 10 well-pairs. An economic objective function is defined based on 

NPV. Usually, GA is used for minimization problems, and since the aim is to maximize NPV, the 

objective function is defined as 
1

𝑁𝑃𝑉
.  Note that due to the correlation between steam injection rate 

and injection bottom-hole pressure (the independent variable), the optimization of injection 

bottom-hole pressure implies that steam injection rate is optimized. Hence, the decision variables 

are the injection bottom-hole pressures.  To reduce the dimension of the decision variable space 

and complexity of the optimization problem, monthly injection bottom-hole pressures are used.  

A salient assumption here is that all the well-pairs used in demonstrating this optimization process 

have their uncertainty interval stabilized after 12 months of operation (which may not necessarily 

be so in reality). Hence, for each well-pair, we select, out of the P10, P50, and P90 predictions, 

the one that gives the least deviation between actual and predicted data after 12 months starting 
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from day zero. The geologic data associated with that prediction are extracted for the optimization 

process. Since we will be making forecasts for the next 22 months, optimization is based on a 22-

month forecast period (between months 13 and 34). To estimate the oil rate for a given well-pair, 

we used the producer operational data of another well-pair in the training dataset, whose geologic 

data is the closest to the extracted geologic data of that given well-pair (in terms of minimum 

Euclidean distance in the PCA space). 

The decision variables are given by; 

[𝑃𝑖𝑛𝑗]  = [

𝑃𝑖𝑛𝑗1,1

.
𝑃𝑖𝑛𝑗𝑚,1

𝑃𝑖𝑛𝑗1,2

.
𝑃𝑖𝑛𝑗𝑚,2

…
…
…

𝑃𝑖𝑛𝑗1,𝑧

…
𝑃𝑖𝑛𝑗𝑚,𝑧

]  (7) 

[𝑃𝑖𝑛𝑗] denotes the decision matrix and 𝑃𝑖𝑛𝑗𝑚,𝑧
 is the injector bottom-hole pressure for well 𝑧 at 

month 𝑚. In this study, z = 10 and m = 22., hence the number of decision variables is 220 (10 

well-pairs × 22 months forecast period/well pair). Eqn. 7 can be expressed in the vectorized form 

as; 

              �⃗� = [𝑣1 𝑣2 … …  𝑣𝑧×𝑚] = [𝑃𝑖𝑛𝑗1,1
 … 𝑃𝑖𝑛𝑗𝑚,1

 𝑃𝑖𝑛𝑗1,2
… 𝑃𝑖𝑛𝑗𝑚,2

… 𝑃𝑖𝑛𝑗1,𝑧
… 𝑃𝑖𝑛𝑗𝑚,𝑧

]        (8) 

where �⃗� is the decision vector. The objective function, 𝑓(�⃗�) is defined as; 

𝑓(�⃗�) = [
1

NPV
] 

(9) 

NPV (assuming there are no initial investments) is calculated using Eqn. 10. 

NPV = ∑

6.2898 . [(∑ 𝑄𝑜𝑖

𝑁𝑤𝑒𝑙𝑙𝑠
𝑘 ) . 𝑃𝑊𝐶𝑆 − (∑ 𝑄𝑠𝑖

𝑁𝑤𝑒𝑙𝑙𝑠
𝑘 ) .

𝑋𝑠𝑡𝑒𝑎𝑚

𝑐𝑆𝑂𝑅𝑎𝑣𝑔
]

(1 + 𝑟)𝑖

𝑚

𝑖=1

 

(10) 

 



126 

 

where 𝑄𝑜𝑖
 and 𝑄𝑠𝑖

 are the total oil production and steam injection volumes (in m3) for month 𝑖 

(assuming there are 30 days in a month), 𝑃𝑊𝐶𝑆 is the price per barrel for Western Canadian Select 

oil grade, 𝑋𝑠𝑡𝑒𝑎𝑚 is the cost of steam (per barrel of oil), 𝑐𝑆𝑂𝑅𝑎𝑣𝑔 is the average cumulative steam-

to-oil ratio across SAGD well-pairs, 𝑁𝑤𝑒𝑙𝑙𝑠 denotes the total number of well-pairs and 𝑟 is the 

monthly discount rate. 6.2898 is the conversion rate from barrel to m3, and 𝑃𝑊𝐶𝑆, 

𝑋𝑠𝑡𝑒𝑎𝑚, 𝑐𝑆𝑂𝑅𝑎𝑣𝑔 and 𝑟 are assumed to be equal to $25/bbl., $2.5/bbl., 2.5 bbl./bbl. and 9% 

respectively (Cenovus Energy Inc, 2018, 2019; Millington and Murillo, 2015; National Energy 

Board, 2006). Usually, discount rates are per annum; hence the conversion of an annual discount 

rate to a monthly rate is shown in Eqn. 11 below. 

𝑟 = (1 + 𝑑)
1

12 − 1, 
(11) 

where 𝑑 denotes the annual compound discount rate.  

The GA optimization parameters are shown in Table 6-3. The initial population is sampled from a 

set of uniform probability distributions. Since the typical operator of a SAGD field is usually steam 

constrained, a good step is to add this constraint to the loss function of the predictive model used 

to resolve an optimization problem.  However, the random forest method (the modeling technique 

for this case study) does not allow easy access to the prediction loss function, as opposed to other 

techniques such as a Long Short Term Memory network (LSTM). An LSTM network can be 

trained using various gradient-based techniques, where constraints can be explicitly defined as part 

of the loss function using techniques such as the Lagrangian multipliers. On the other hand, such 

formulation is not common in the naïve form of the random forest modeling.  To account for steam 

capacity constraints during both model prediction and steam allocation optimization in this work, 
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we, therefore, explicitly set the upper bound (a proxy for steam constraint) using the operational 

data from a subset of the training dataset. To define the lower and upper bounds of the decision 

vector for each of the well-pairs, we select, out of the clusters they are assigned to, n injector 

bottom-hole pressure measurements (between months 13 and 34). The lower bound is the 10th 

percentile of the n injector bottom-hole pressures values while the upper bound is the 90th 

percentile. To establish a baseline for comparison, a base case is constructed based on the median 

injector bottom-hole pressure. 

 

Table 6-3: Parameters for GA optimization 

Parameter Value 

Population size 50 

Number of generations 50 

Mutation operator Gaussian 

Crossover operator Scattered 

Number of decision variables 220 

 

6.3. Results and Discussions 

6.3.1. Real-time Uncertainty Assessment of Forecasts 

In this section, we present the results for real-time uncertainty assessment using the proposed 

workflow on Well-1 and compared the predictions against the P10, P50, and P90 forecast profiles 

from a semi-analytical SAGD model which is based on Butler’s theory as shown from Fig. 6-8 to 
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Fig. 6-16. The figures are presented for every 100 days of live data obtained, with the uncertainty 

assessment plots to the left and the comparison plots to the right. The dips in the uncertainty band 

(or interval) are the shut-ins or other operational events being transferred from the well-pairs in 

the training dataset belonging to the same cluster as Well-1. The median value of the forecasts (or 

predictions) which make up the uncertainty band is represented with a blue line.  

The proposed approach can assess prediction uncertainty in real-time as more data are obtained. 

As shown in Fig. 6-8a, at day zero, the prediction uncertainty interval at the early SAGD stage is 

large, and this is due to limited data (as there are no prior production data) and the high variability 

(or uncertainty) in the start-up and ramp-up phase of SAGD well-pairs. A similar result can also 

be seen after production for 100 days (Fig. 6-9a) while the model prediction data initially follow 

the P10 profile (Fig. 6-8b and Fig. 6-9b). The forecasts (and its associated uncertainty) are updated 

as more data are obtained, leading to the reduction in the uncertainty interval (Fig. 6-10a and Fig. 

6-11a), and better injection/production forecasts compared to the semi-analytical SAGD model 

(Fig. 6-10b and Fig. 6-11b), up till after 300 days of production in which there are no significant 

changes in the interval (Fig. 6-12). This is because 𝑃(𝑃𝑅0
|𝑃𝑅𝑡

) does not change significantly after 

300 days, leading to the sampling of the same geological data and subsequent convergence to a 

particular cluster (cluster 6). Hence, similar prediction uncertainty interval onwards as shown in 

Figs. 6-12 to 6-16. 

In addition to predicting more accurately than the semi-analytical SAGD model, the 

implementation of this workflow is faster than numerical reservoir simulation as it took 

approximately 1 hour of computing time in total using a workstation with 16.0 GB installed RAM 
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and Intel(R) Core (TM) i5 processor while a 10 well-pair simulation using available commercial 

reservoir simulators is expected to take several days. 

 

                 (a)         (b) 

Figure 6-8: No prior data. (a) – prediction confidence interval, (b) - comparison with forecast profiles from 
semi-analytical model 
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(a)         (b) 

Figure 6-9: After 100 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 

 

 

                                             (a)                        (b) 

Figure 6-10: After 200 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 
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                                              (a)                         (b) 

Figure 6-11: After 300 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 

 

 

(a)        (b) 

Figure 6-12: After 400 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 
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(a)         (b) 

Figure 6-13: After 500 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 

 

 

(a)      (b) 

Figure 6-14: After 600 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 

 



133 

 

Furthermore, since operational uncertainty is based on the multiple probable sets of operational 

constraints within cluster 6, abnormal well events can easily be detected, and this is highlighted in 

Fig. 6-15. There is a significant difference between the actual and predicted data between the 500th 

and 700th day, indicating a suspicious case of over-injection (as there is no corresponding 

increment in oil production); therefore, such detections may allow for faster implementation of 

corrective measures. 

 

 

(a)       (b) 

Figure 6-15: After 700 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 
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(a)         (b) 

Figure 6-16: After 800 days of production. (a) – prediction confidence interval, (b) - comparison with 
forecast profiles from semi-analytical model 

 

6.3.2. Optimization of Steam Allocation 

The results of steam allocation optimization for 10 well-pairs, using the approach described in 

section 6.2.2 is discussed here. The optimization plot is shown in Fig. 6-17. By operating at the 

optimal steam injection rates, there is a 5% increase in NPV, from an initial value of $220MM to 

$230MM. 
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Figure 6-17: Minimization of. fitness value (1/NPV) 

 

 

The optimal steam injection and their corresponding oil production rates for some of the well-pairs 

being considered are presented in Figs. 6-18 and 6-19. (The results for the other well-pairs can be 

found in the appendix section). The model’s match to the 12-month historical data is represented 

with a black line.  The red line represents the base case, and it is interesting to note that for most 

of these well-pairs, the optimal steam injection and oil production rates are similar to the base case, 

indicating that the well-pairs are being operated near optimal levels. 

However, the optimal steam injection and oil production rates are greater than the base case for 

Well 9, whereas, on average, the optimal steam injection rate is lower than the base case in well-

pairs 3 and 6. The implication of these results is that it is optimal to starve well-pairs 3 and 6 of 

some steam and re-allocate it to Well 9 to produce more oil. Usually, well-pairs that require lower 

steam injection rates for similar oil production rates as the base case are indicative of good geology. 

Also, it is evident that Well 9 had more potential to produce oil but was starved of steam in the 
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non-optimized scenario. This is a typical case of how our optimization framework can be used in 

real-time steam allocation decisions. 

 

 

(a)         (b) 

Figure 6-18: Comparison between base case and optimal rates. (a) – Well-pair 3, (b) – Well-pair 6 

Well-pair 3 Well-pair 6 
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Figure 6-19: Comparison between base case and optimal rates: Well-pair 9 

 

6.4. Summary 

A machine learning workflow for real-time SAGD production forecasts and uncertainty 

quantification of model predictions is presented. We began by introducing the machine learning 

concepts used in this work, which include various supervised learning (random forest algorithm) 

and unsupervised learning (PCA and K-means clustering) techniques. Then, utilized the 

relationship between PCA and K-means clustering analyses as the basis for selecting the optimal 

number of clusters. Next, we demonstrated a Bayesian-based workflow to determine the prediction 

uncertainty due to geology through Monte Carlo sampling (the posterior probability distributions 

are updated by incorporating the new production data) and operational uncertainty. Finally, a steam 

allocation optimization scheme is adopted: using the steam model, the oil model, and genetic 

algorithm, the steam injection rates are optimized based on an economic objective function (NPV). 

Therefore, the following conclusions can be drawn from our work. 

Well-pair 9 
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1. It is possible to perform real-time forecasting and uncertainty quantification 

simultaneously. 

2. By customizing a series of machine learning tools, we coupled geological and operational 

uncertainty, allowing for appropriate diagnosis of anomalous well events. 

3. The predictive model is faster than numerical reservoir simulation and less expensive, 

which can lead to significant cost savings. The ability to integrate real-time production data 

and geologic uncertainties to update our understanding of the subsurface conditions and 

generate reliable forecasts can also lead to increased oil production, reduced steam usage, 

increased operational efficiency, and reduced GHG emissions intensity. 

4. The machine learning workflow and examples (based on actual SAGD data) explored in 

this study will find immediate application in field-wide steam allocation optimization and 

SAGD well/field surveillance. 

5. The use of a comprehensive real field dataset is a key novelty of this work. Previous studies 

often utilize incomplete data from public data or synthetic data, rendering extrapolating 

their conclusions and models to field applications challenging. 
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Chapter 7 Conclusions and Recommendations 

7.1. Conclusions 

The conclusions from this research are summarized as follows. 

A MOO workflow that incorporates reservoir simulation, proxy modeling and the NSGA-II 

algorithm is created to identify the optimal operational parameters for the warm VAPEX process 

while considering a homogenous and multiple realizations of a heterogenous reservoir case. The 

workflow also consists of a novel parameterization scheme which considers the interdependency 

between the operational parameters, ensuring that the injection conditions of solvent mixtures are 

either at the dew point or within a particular window of superheated conditions. The MOO 

workflow can reveal subtle patterns in the decision variables that are not easily identifiable through 

sensitivity analysis. Since reservoir models are usually in form of multiple realizations, and due to 

the presence of non-condensable gases in injected solvents for many solvent-based techniques, this 

workflow is robust and has the potential to be applied to real field cases of solvent-based processes. 

Also, this research demonstrates the ability of a data-driven workflow to perform real-time SAGD 

forecasting, uncertainty quantification and steam allocation optimization. The incorporation of 

operational uncertainty within this workflow facilitates appropriate detection of anomalous well 

events. Similar to many machine learning framework, the data-driven model is computational 

efficient and less expensive compared to numerical reservoir modeling. 
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7.2. Recommendations 

A top-down model which couples subsurface physics with a surface network (i.e., wells and 

surface production system) within an optimization framework should be explored. It is also 

recommended to use real data to train the proxy models that are required for the generation of the 

objective function values. 

The integration of distributed temperature sensing (DTS) data, distributed acoustic sensing (DAS) 

data and consideration of completion information (e.g. the impact of splitters, flow control devices 

(FCDs) and their configurations) is a good opportunity for future work as it could easily be 

incorporated into the proposed workflow. It is expected that the learnings from this work can also 

be applied to the understanding of solvent-aided technology. In particular, the SAGD data-driven 

model should be modified with the knowledge of solvent physics, for faster forecast, uncertainty 

analysis, optimization and decision making. 
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Appendices 

Appendix 1: Supplementary steam allocation optimization results from Chapter 6. 

 

 

(a)         (b) 

Figure A1: Comparison between base case and optimal rates. (a) – Well-pair 1, (b) – Well-pair 2 

 

 

(a)      (b) 

Figure A2: Comparison between base case and optimal rates. (a) – Well-pair 4, (b) – Well-pair 5 

Well-pair 1 Well-pair 2 

Well-pair 4 
Well-pair -5 
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(a)         (b) 

Figure A3: Comparison between base case and optimal rates. (a) – Well-pair 7, (b) – Well-pair 8 

 

 

Figure A4: Comparison between base case and optimal rates: Well-pair 10 
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Appendix 2: Dataset used in proxy model development in Chapter 4. 

Case 

# 

Temperature 

(oC) 

Pressure 

(kPa) 

C3 mole 

fraction 

SolOR 

(m3/m3) 
RF (%) 1/RF 

Normalized 

Enthalpy 

1 25 2226 0.5 109.545 10.65 9.39 0.093 

2 30 2585 0.5 94.840 17.20 5.81 0.171 

3 35 3003 0.5 85.894 26.78 3.73 0.278 

4 40 3499 0.5 84.357 34.89 2.87 0.383 

5 45 4104 0.5 86.290 40.72 2.46 0.480 

6 50 4890 0.5 89.142 49.09 2.04 0.616 

7 30 2226 0.5 104.999 10.61 9.42 0.100 

8 35 2585 0.5 91.234 17.85 5.60 0.180 

9 40 3003 0.5 84.106 27.35 3.66 0.287 

10 45 3499 0.5 83.670 34.74 2.88 0.385 

11 50 4104 0.5 86.499 39.49 2.53 0.475 

12 55 4890 0.5 88.938 49.20 2.03 0.618 

13 35 2226 0.5 95.778 10.51 9.51 0.115 

14 40 2585 0.5 85.982 18.35 5.45 0.196 

15 45 3003 0.5 81.325 28.06 3.56 0.299 

16 50 3499 0.5 81.973 35.72 2.80 0.395 

17 55 4104 0.5 85.037 41.90 2.39 0.498 

18 60 4890 0.5 89.144 49.09 2.04 0.622 

19 40 2226 0.5 86.821 10.38 9.63 0.131 

20 45 2585 0.5 78.343 19.21 5.21 0.220 

21 50 3003 0.5 76.935 27.28 3.67 0.311 

22 55 3499 0.5 79.498 35.81 2.79 0.411 

23 60 4104 0.5 84.262 40.16 2.49 0.490 

24 65 4890 0.5 88.342 49.90 2.00 0.633 

25 45 2226 0.5 78.676 10.32 9.69 0.147 

26 50 2585 0.5 72.555 18.03 5.55 0.231 

27 55 3003 0.5 72.525 27.37 3.65 0.330 

28 60 3499 0.5 75.814 33.90 2.95 0.414 

29 65 4104 0.5 80.183 43.82 2.28 0.533 

30 70 4890 0.5 87.754 50.24 1.99 0.640 

31 25 1967 0.55 109.977 9.90 10.11 0.083 
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32 30 2272 0.55 96.590 15.41 6.49 0.151 

33 35 2622 0.55 86.165 25.05 3.99 0.253 

34 40 3027 0.55 83.429 33.28 3.00 0.355 

35 45 3502 0.55 85.838 37.14 2.69 0.431 

36 50 4076 0.55 87.148 46.29 2.16 0.557 

37 30 1967 0.55 103.891 9.83 10.17 0.092 

38 35 2272 0.55 93.343 15.25 6.56 0.157 

39 40 2622 0.55 84.282 25.03 3.99 0.259 

40 45 3027 0.55 83.300 31.83 3.14 0.348 

41 50 3502 0.55 84.767 38.00 2.63 0.440 

42 55 4076 0.55 87.927 44.03 2.27 0.543 

43 35 1967 0.55 94.194 9.69 10.32 0.108 

44 40 2272 0.55 86.003 15.68 6.38 0.174 

45 45 2622 0.55 79.531 26.18 3.82 0.280 

46 50 3027 0.55 80.882 32.18 3.11 0.358 

47 55 3502 0.55 83.438 38.60 2.59 0.450 

48 60 4076 0.55 87.480 43.89 2.28 0.546 

49 40 1967 0.55 86.452 9.18 10.89 0.121 

50 45 2272 0.55 79.020 15.56 6.43 0.191 

51 50 2622 0.55 74.218 25.64 3.90 0.294 

52 55 3027 0.55 76.812 33.25 3.01 0.383 

53 60 3502 0.55 80.748 39.69 2.52 0.472 

54 65 4076 0.55 85.537 46.02 2.17 0.569 

55 45 1967 0.55 78.011 8.82 11.34 0.135 

56 50 2272 0.55 71.775 16.45 6.08 0.215 

57 55 2622 0.55 70.327 25.44 3.93 0.311 

58 60 3027 0.55 71.976 34.35 2.91 0.408 

59 65 3502 0.55 76.948 38.48 2.60 0.479 

60 70 4076 0.55 82.787 44.41 2.25 0.573 

61 25 1762 0.6 109.358 9.40 10.64 0.077 

62 30 2027 0.6 99.437 13.30 7.52 0.131 

63 35 2328 0.6 86.997 22.59 4.43 0.227 

64 40 2672 0.6 82.917 31.96 3.13 0.334 

65 45 3066 0.6 83.910 38.00 2.63 0.421 

66 50 3527 0.6 87.470 41.29 2.42 0.496 



158 

 

67 30 1762 0.6 102.000 9.35 10.70 0.087 

68 35 2027 0.6 94.575 13.40 7.46 0.140 

69 40 2328 0.6 84.029 23.39 4.28 0.239 

70 45 2672 0.6 81.802 31.46 3.18 0.334 

71 50 3066 0.6 84.361 35.29 2.83 0.404 

72 55 3527 0.6 85.831 43.59 2.29 0.517 

73 35 1762 0.6 92.864 9.02 11.08 0.102 

74 40 2027 0.6 86.235 13.56 7.37 0.158 

75 45 2328 0.6 78.876 23.51 4.25 0.257 

76 50 2672 0.6 78.667 31.43 3.18 0.347 

77 55 3066 0.6 81.472 36.54 2.74 0.421 

78 60 3527 0.6 85.419 42.28 2.37 0.512 

79 40 1762 0.6 85.993 8.59 11.64 0.115 

80 45 2027 0.6 79.165 13.50 7.41 0.173 

81 50 2328 0.6 73.402 24.02 4.16 0.278 

82 55 2672 0.6 74.939 32.34 3.09 0.372 

83 60 3066 0.6 78.053 36.68 2.73 0.441 

84 65 3527 0.6 82.362 43.26 2.31 0.535 

85 45 1762 0.6 77.600 8.24 12.14 0.128 

86 50 2027 0.6 71.761 14.19 7.05 0.195 

87 55 2328 0.6 69.033 23.02 4.34 0.289 

88 60 2672 0.6 70.747 31.04 3.22 0.377 

89 65 3066 0.6 74.079 37.99 2.63 0.469 

90 70 3527 0.6 77.817 46.41 2.15 0.575 

91 25 1595 0.65 109.097 8.87 11.27 0.070 

92 30 1830 0.65 100.818 12.30 8.13 0.120 

93 35 2094 0.65 88.554 20.34 4.92 0.205 

94 40 2392 0.65 82.663 30.31 3.30 0.312 

95 45 2731 0.65 83.848 35.12 2.85 0.387 

96 50 3117 0.65 84.712 43.59 2.29 0.495 

97 30 1595 0.65 100.546 8.91 11.22 0.084 

98 35 1830 0.65 94.319 12.35 8.10 0.131 

99 40 2094 0.65 83.108 22.16 4.51 0.226 

100 45 2392 0.65 80.921 29.95 3.34 0.317 

101 50 2731 0.65 81.206 37.86 2.64 0.410 
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102 55 3117 0.65 84.658 42.47 2.35 0.493 

103 35 1595 0.65 92.006 8.42 11.88 0.096 

104 40 1830 0.65 86.730 12.19 8.20 0.146 

105 45 2094 0.65 78.313 21.58 4.63 0.239 

106 50 2392 0.65 77.327 30.29 3.30 0.335 

107 55 2731 0.65 79.489 36.63 2.73 0.417 

108 60 3117 0.65 82.696 42.29 2.36 0.500 

109 40 1595 0.65 84.625 8.11 12.33 0.109 

110 45 1830 0.65 78.740 12.38 8.08 0.163 

111 50 2094 0.65 72.526 22.30 4.49 0.262 

112 55 2392 0.65 73.220 29.99 3.33 0.350 

113 60 2731 0.65 75.846 34.96 2.86 0.421 

114 65 3117 0.65 79.427 41.99 2.38 0.513 

115 45 1595 0.65 76.524 7.76 12.89 0.122 

116 50 1830 0.65 71.796 13.12 7.62 0.184 

117 55 2094 0.65 68.117 22.04 4.54 0.278 

118 60 2392 0.65 69.324 28.86 3.46 0.358 

119 65 2731 0.65 72.362 34.62 2.89 0.435 

120 70 3117 0.65 76.032 40.65 2.46 0.520 

121 25 1457 0.7 108.839 8.53 11.72 0.066 

122 30 1667 0.7 102.339 11.30 8.85 0.110 

123 35 1902 0.7 89.573 18.74 5.34 0.189 

124 40 2166 0.7 82.433 29.19 3.43 0.297 

125 45 2462 0.7 83.156 34.63 2.89 0.374 

126 50 2795 0.7 84.506 41.00 2.44 0.463 

127 30 1457 0.7 99.127 8.39 11.92 0.080 

128 35 1667 0.7 93.945 11.98 8.35 0.127 

129 40 1902 0.7 83.661 20.20 4.95 0.211 

130 45 2166 0.7 78.977 30.07 3.33 0.312 

131 50 2462 0.7 80.312 36.66 2.73 0.394 

132 55 2795 0.7 82.757 42.46 2.36 0.480 

133 35 1457 0.7 90.878 7.98 12.53 0.093 

134 40 1667 0.7 86.567 11.28 8.87 0.138 

135 45 1902 0.7 78.215 20.01 5.00 0.226 

136 50 2166 0.7 75.497 29.74 3.36 0.328 
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137 55 2462 0.7 78.143 33.93 2.95 0.392 

138 60 2795 0.7 81.172 40.88 2.45 0.483 

139 40 1457 0.7 84.219 7.61 13.14 0.105 

140 45 1667 0.7 79.252 11.49 8.70 0.155 

141 50 1902 0.7 72.407 19.97 5.01 0.242 

142 55 2166 0.7 71.537 29.33 3.41 0.341 

143 60 2462 0.7 74.358 34.35 2.91 0.410 

144 65 2795 0.7 76.860 42.97 2.33 0.512 

145 45 1457 0.7 76.269 7.40 13.51 0.118 

146 50 1667 0.7 71.928 11.72 8.54 0.172 

147 55 1902 0.7 67.680 21.34 4.69 0.269 

148 60 2166 0.7 68.165 28.40 3.52 0.350 

149 65 2462 0.7 70.168 36.40 2.75 0.443 

150 70 2795 0.7 73.629 42.42 2.36 0.527 

151 25 1340 0.75 106.834 8.21 12.18 0.063 

152 30 1530 0.75 102.076 10.95 9.13 0.105 

153 35 1742 0.75 88.706 18.56 5.39 0.184 

154 40 1978 0.75 82.429 27.85 3.59 0.282 

155 45 2241 0.75 81.787 35.60 2.81 0.374 

156 50 2534 0.75 83.709 39.64 2.52 0.444 

157 30 1340 0.75 97.557 8.04 12.44 0.077 

158 35 1530 0.75 95.980 10.85 9.22 0.119 

159 40 1742 0.75 83.029 19.14 5.22 0.201 

160 45 1978 0.75 78.996 28.21 3.54 0.296 

161 50 2241 0.75 79.846 34.84 2.87 0.377 

162 55 2534 0.75 81.762 41.78 2.39 0.466 

163 35 1340 0.75 89.603 7.68 13.02 0.090 

164 40 1530 0.75 86.942 10.53 9.49 0.131 

165 45 1742 0.75 77.498 18.98 5.27 0.215 

166 50 1978 0.75 74.079 28.77 3.48 0.316 

167 55 2241 0.75 76.643 33.54 2.98 0.384 

168 60 2534 0.75 78.439 41.48 2.41 0.479 

169 40 1340 0.75 82.404 7.34 13.62 0.102 

170 45 1530 0.75 79.663 10.68 9.36 0.147 

171 50 1742 0.75 72.511 18.80 5.32 0.231 
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172 55 1978 0.75 70.338 28.91 3.46 0.335 

173 60 2241 0.75 72.471 35.24 2.84 0.412 

174 65 2534 0.75 75.502 41.15 2.43 0.493 

175 45 1340 0.75 74.994 7.09 14.10 0.115 

176 50 1530 0.75 72.084 10.86 9.21 0.164 

177 55 1742 0.75 67.603 19.11 5.23 0.249 

178 60 1978 0.75 67.329 28.34 3.53 0.346 

179 65 2241 0.75 69.583 34.13 2.93 0.422 

180 70 2534 0.75 72.063 39.73 2.52 0.500 

181 25 1240 0.8 104.565 7.84 12.75 0.061 

182 30 1414 0.8 100.928 10.56 9.47 0.100 

183 35 1606 0.8 90.192 16.52 6.05 0.167 

184 40 1820 0.8 81.739 27.39 3.65 0.274 

185 45 2056 0.8 80.602 35.32 2.83 0.364 

186 50 2317 0.8 82.940 40.21 2.49 0.439 

187 30 1240 0.8 95.295 7.70 12.99 0.074 

188 35 1414 0.8 93.267 10.45 9.57 0.115 

189 40 1606 0.8 83.613 17.34 5.77 0.187 

190 45 1820 0.8 77.421 28.58 3.50 0.295 

191 50 2056 0.8 78.737 34.30 2.92 0.371 

192 55 2317 0.8 80.832 40.45 2.47 0.451 

193 35 1240 0.8 87.235 7.18 13.93 0.085 

194 40 1414 0.8 86.263 10.20 9.80 0.128 

195 45 1606 0.8 78.012 17.22 5.81 0.201 

196 50 1820 0.8 73.732 27.80 3.60 0.308 

197 55 2056 0.8 74.494 34.50 2.90 0.387 

198 60 2317 0.8 77.460 39.69 2.52 0.461 

199 40 1240 0.8 80.394 6.88 14.54 0.097 

200 45 1414 0.8 78.420 9.81 10.19 0.140 

201 50 1606 0.8 72.514 17.03 5.87 0.216 

202 55 1820 0.8 69.671 28.18 3.55 0.324 

203 60 2056 0.8 71.575 34.77 2.88 0.405 

204 65 2317 0.8 73.635 41.98 2.38 0.494 

205 45 1240 0.8 72.437 6.65 15.04 0.110 

206 50 1414 0.8 71.351 10.19 9.81 0.158 
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207 55 1606 0.8 67.907 18.09 5.53 0.238 

208 60 1820 0.8 66.604 28.23 3.54 0.341 

209 65 2056 0.8 68.479 35.63 2.81 0.426 

210 70 2317 0.8 71.197 39.07 2.56 0.488 

211 25 1153 0.85 101.744 7.58 13.19 0.059 

212 30 1313 0.85 98.794 10.44 9.58 0.099 

213 35 1489 0.85 91.116 14.96 6.68 0.155 

214 40 1684 0.85 81.745 25.99 3.85 0.260 

215 45 1898 0.85 79.402 36.06 2.77 0.364 

216 50 2134 0.85 82.079 40.43 2.47 0.434 

217 30 1153 0.85 92.408 7.36 13.59 0.072 

218 35 1313 0.85 91.170 9.90 10.10 0.110 

219 40 1489 0.85 83.067 16.47 6.07 0.180 

220 45 1684 0.85 76.771 27.55 3.63 0.287 

221 50 1898 0.85 77.570 34.18 2.93 0.367 

222 55 2134 0.85 79.120 42.56 2.35 0.461 

223 35 1153 0.85 84.013 7.01 14.27 0.083 

224 40 1313 0.85 84.268 9.54 10.49 0.122 

225 45 1489 0.85 77.589 16.94 5.90 0.197 

226 50 1684 0.85 72.660 27.85 3.59 0.304 

227 55 1898 0.85 73.364 35.92 2.78 0.394 

228 60 2134 0.85 76.010 41.95 2.38 0.474 

229 40 1153 0.85 77.479 6.55 15.27 0.093 

230 45 1313 0.85 77.521 9.25 10.81 0.134 

231 50 1489 0.85 72.571 16.25 6.15 0.208 

232 55 1684 0.85 69.343 27.54 3.63 0.318 

233 60 1898 0.85 70.519 35.06 2.85 0.403 

234 65 2134 0.85 72.891 41.06 2.44 0.483 

235 45 1153 0.85 70.322 6.38 15.66 0.106 

236 50 1313 0.85 69.667 9.71 10.29 0.152 

237 55 1489 0.85 67.380 16.88 5.93 0.228 

238 60 1684 0.85 66.344 27.12 3.69 0.330 

239 65 1898 0.85 68.426 32.57 3.07 0.401 

240 70 2134 0.85 70.107 39.68 2.52 0.487 

241 25 1078 0.9 98.266 7.48 13.36 0.058 
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242 30 1225 0.9 97.825 9.73 10.28 0.093 

243 35 1388 0.9 89.960 14.74 6.79 0.153 

244 40 1566 0.9 80.725 25.86 3.87 0.256 

245 45 1762 0.9 79.149 34.73 2.88 0.351 

246 50 1976 0.9 80.322 42.53 2.35 0.442 

247 30 1078 0.9 89.545 7.21 13.87 0.070 

248 35 1225 0.9 90.370 9.49 10.54 0.106 

249 40 1388 0.9 82.837 16.30 6.14 0.178 

250 45 1566 0.9 76.808 25.52 3.92 0.270 

251 50 1762 0.9 76.118 35.05 2.85 0.369 

252 55 1976 0.9 77.720 42.70 2.34 0.459 

253 35 1078 0.9 81.941 6.83 14.64 0.081 

254 40 1225 0.9 83.189 9.60 10.41 0.121 

255 45 1388 0.9 76.837 16.51 6.06 0.193 

256 50 1566 0.9 72.300 26.28 3.81 0.290 

257 55 1762 0.9 72.551 37.89 2.64 0.404 

258 60 1976 0.9 74.955 42.76 2.34 0.473 

259 40 1078 0.9 75.827 6.50 15.38 0.092 

260 45 1225 0.9 76.366 8.95 11.18 0.130 

261 50 1388 0.9 71.542 15.92 6.28 0.203 

262 55 1566 0.9 69.066 26.12 3.83 0.304 

263 60 1762 0.9 69.793 35.66 2.80 0.403 

264 65 1976 0.9 72.375 41.13 2.43 0.477 

265 45 1078 0.9 68.964 6.20 16.12 0.103 

266 50 1225 0.9 68.837 9.24 10.82 0.146 

267 55 1388 0.9 66.928 16.75 5.97 0.224 

268 60 1566 0.9 65.922 25.99 3.85 0.319 

269 65 1762 0.9 67.834 33.33 3.00 0.401 

270 70 1976 0.9 69.791 41.26 2.42 0.494 
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Appendix 3: Dataset used in proxy model development in Chapter 5. 

Realization #1 - Low-Case 

Case 

# 

Temperature 

(oC) 

Pressure 

(kPa) 

C3 mole 

fraction 

SolOR 

(m3/m3) 
RF (%) 1/RF 

Normalized 

Enthalpy 

1 25 2226 0.5 109.715 11.08 9.03 0.050 

2 30 2585 0.5 94.269 17.75 5.63 0.094 

3 35 3003 0.5 87.460 28.98 3.45 0.158 

4 40 3499 0.5 84.497 37.10 2.70 0.234 

5 45 4104 0.5 85.790 43.45 2.30 0.324 

6 50 4890 0.5 91.016 49.20 2.03 0.425 

7 30 2226 0.5 105.381 11.01 9.08 0.089 

8 35 2585 0.5 90.986 18.17 5.50 0.144 

9 40 3003 0.5 86.388 29.34 3.41 0.219 

10 45 3499 0.5 83.468 37.56 2.66 0.306 

11 50 4104 0.5 85.148 43.45 2.30 0.407 

12 55 4890 0.5 90.576 49.82 2.01 0.516 

13 35 2226 0.5 96.183 10.98 9.10 0.146 

14 40 2585 0.5 85.595 18.91 5.29 0.232 

15 45 3003 0.5 84.584 29.50 3.39 0.311 

16 50 3499 0.5 82.146 38.31 2.61 0.401 

17 55 4104 0.5 84.917 43.98 2.27 0.510 

18 60 4890 0.5 89.892 50.58 1.98 0.626 

19 40 2226 0.5 87.947 10.64 9.40 0.180 

20 45 2585 0.5 80.610 18.85 5.30 0.282 

21 50 3003 0.5 79.906 29.43 3.40 0.416 

22 55 3499 0.5 79.519 38.92 2.57 0.578 

23 60 4104 0.5 84.633 44.33 2.26 0.659 

24 65 4890 0.5 89.148 51.40 1.95 0.764 

25 45 2226 0.5 79.372 10.56 9.47 0.216 

26 50 2585 0.5 73.574 19.18 5.21 0.329 

27 55 3003 0.5 75.122 29.23 3.42 0.464 

28 60 3499 0.5 75.806 37.86 2.64 0.637 

29 65 4104 0.5 82.058 44.88 2.23 0.873 
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30 70 4890 0.5 88.146 52.37 1.91 0.973 

31 25 1967 0.55 109.327 10.33 9.68 0.046 

32 30 2272 0.55 97.971 15.48 6.46 0.087 

33 35 2622 0.55 89.591 25.51 3.92 0.145 

34 40 3027 0.55 84.410 34.53 2.90 0.219 

35 45 3502 0.55 84.850 41.32 2.42 0.303 

36 50 4076 0.55 89.387 46.81 2.14 0.403 

37 30 1967 0.55 104.002 10.14 9.86 0.085 

38 35 2272 0.55 94.926 15.26 6.55 0.137 

39 40 2622 0.55 86.759 26.62 3.76 0.207 

40 45 3027 0.55 82.984 35.09 2.85 0.290 

41 50 3502 0.55 84.340 41.62 2.40 0.385 

42 55 4076 0.55 88.316 47.38 2.11 0.496 

43 35 1967 0.55 94.750 9.80 10.21 0.129 

44 40 2272 0.55 86.209 16.23 6.16 0.204 

45 45 2622 0.55 82.382 26.93 3.71 0.314 

46 50 3027 0.55 81.079 36.04 2.77 0.399 

47 55 3502 0.55 83.453 42.26 2.37 0.495 

48 60 4076 0.55 87.869 47.62 2.10 0.612 

49 40 1967 0.55 86.929 9.45 10.58 0.158 

50 45 2272 0.55 79.013 16.11 6.21 0.246 

51 50 2622 0.55 76.368 27.24 3.67 0.366 

52 55 3027 0.55 76.904 36.20 2.76 0.504 

53 60 3502 0.55 80.542 42.72 2.34 0.687 

54 65 4076 0.55 86.737 48.84 2.05 0.794 

55 45 1967 0.55 78.981 9.22 10.85 0.189 

56 50 2272 0.55 71.752 16.65 6.01 0.288 

57 55 2622 0.55 71.925 27.16 3.68 0.407 

58 60 3027 0.55 72.983 35.30 2.83 0.553 

59 65 3502 0.55 77.144 42.13 2.37 0.746 

60 70 4076 0.55 83.751 49.13 2.04 1.000 

61 25 1762 0.6 109.282 9.60 10.41 0.043 

62 30 2027 0.6 100.302 13.64 7.33 0.082 

63 35 2328 0.6 90.694 23.47 4.26 0.136 

64 40 2672 0.6 84.370 32.81 3.05 0.206 
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65 45 3066 0.6 84.027 39.84 2.51 0.286 

66 50 3527 0.6 88.002 44.99 2.22 0.381 

67 30 1762 0.6 101.459 9.70 10.31 0.081 

68 35 2027 0.6 95.234 13.73 7.29 0.132 

69 40 2328 0.6 88.137 23.70 4.22 0.198 

70 45 2672 0.6 82.408 33.51 2.98 0.279 

71 50 3066 0.6 82.920 40.24 2.48 0.369 

72 55 3527 0.6 87.215 45.40 2.20 0.475 

73 35 1762 0.6 92.620 9.30 10.76 0.115 

74 40 2027 0.6 86.929 14.06 7.11 0.183 

75 45 2328 0.6 82.120 24.25 4.12 0.280 

76 50 2672 0.6 78.750 34.47 2.90 0.400 

77 55 3066 0.6 81.266 40.42 2.47 0.506 

78 60 3527 0.6 86.522 46.16 2.17 0.605 

79 40 1762 0.6 85.548 8.89 11.25 0.140 

80 45 2027 0.6 79.909 14.24 7.02 0.219 

81 50 2328 0.6 76.128 24.60 4.07 0.327 

82 55 2672 0.6 75.181 34.04 2.94 0.449 

83 60 3066 0.6 78.138 40.49 2.47 0.607 

84 65 3527 0.6 83.870 47.00 2.13 0.812 

85 45 1762 0.6 77.415 8.69 11.51 0.167 

86 50 2027 0.6 72.652 15.11 6.62 0.256 

87 55 2328 0.6 71.350 24.69 4.05 0.364 

88 60 2672 0.6 70.957 33.38 3.00 0.491 

89 65 3066 0.6 74.460 39.71 2.52 0.657 

90 70 3527 0.6 80.889 46.38 2.16 0.870 

91 25 1595 0.65 108.797 9.15 10.92 0.041 

92 30 1830 0.65 101.455 12.61 7.93 0.078 

93 35 2094 0.65 90.422 20.84 4.80 0.128 

94 40 2392 0.65 85.043 31.27 3.20 0.195 

95 45 2731 0.65 83.131 39.18 2.55 0.273 

96 50 3117 0.65 86.607 44.32 2.26 0.364 

97 30 1595 0.65 99.975 9.01 11.10 0.077 

98 35 1830 0.65 94.714 12.74 7.85 0.128 

99 40 2094 0.65 87.236 21.72 4.60 0.192 
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100 45 2392 0.65 82.633 31.64 3.16 0.271 

101 50 2731 0.65 81.990 39.43 2.54 0.358 

102 55 3117 0.65 85.697 44.59 2.24 0.460 

103 35 1595 0.65 91.311 8.69 11.51 0.103 

104 40 1830 0.65 86.950 12.83 7.80 0.165 

105 45 2094 0.65 81.346 21.70 4.61 0.253 

106 50 2392 0.65 77.442 32.15 3.11 0.364 

107 55 2731 0.65 79.282 39.47 2.53 0.497 

108 60 3117 0.65 84.621 44.95 2.22 0.645 

109 40 1595 0.65 83.974 8.42 11.88 0.125 

110 45 1830 0.65 79.893 12.57 7.95 0.199 

111 50 2094 0.65 75.812 22.26 4.49 0.295 

112 55 2392 0.65 73.598 31.71 3.15 0.406 

113 60 2731 0.65 75.636 38.86 2.57 0.546 

114 65 3117 0.65 82.052 45.09 2.22 0.725 

115 45 1595 0.65 76.328 8.04 12.44 0.150 

116 50 1830 0.65 72.938 13.68 7.31 0.232 

117 55 2094 0.65 70.803 22.64 4.42 0.331 

118 60 2392 0.65 70.067 31.59 3.17 0.442 

119 65 2731 0.65 72.174 38.33 2.61 0.589 

120 70 3117 0.65 78.581 44.01 2.27 0.775 

121 25 1457 0.7 108.931 8.71 11.48 0.039 

122 30 1667 0.7 102.292 11.83 8.45 0.075 

123 35 1902 0.7 90.811 19.74 5.06 0.122 

124 40 2166 0.7 85.841 30.01 3.33 0.186 

125 45 2462 0.7 82.605 38.01 2.63 0.262 

126 50 2795 0.7 84.667 43.50 2.30 0.350 

127 30 1457 0.7 99.051 8.68 11.53 0.071 

128 35 1667 0.7 94.224 12.06 8.29 0.122 

129 40 1902 0.7 85.525 20.34 4.92 0.188 

130 45 2166 0.7 82.107 30.53 3.28 0.269 

131 50 2462 0.7 80.840 38.50 2.60 0.352 

132 55 2795 0.7 84.354 43.66 2.29 0.451 

133 35 1457 0.7 90.840 8.34 12.00 0.094 

134 40 1667 0.7 87.312 11.51 8.69 0.152 
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135 45 1902 0.7 79.816 20.45 4.89 0.230 

136 50 2166 0.7 76.724 31.10 3.22 0.335 

137 55 2462 0.7 77.863 38.64 2.59 0.454 

138 60 2795 0.7 82.844 44.04 2.27 0.608 

139 40 1457 0.7 83.268 7.95 12.57 0.114 

140 45 1667 0.7 80.067 12.11 8.25 0.180 

141 50 1902 0.7 74.313 20.61 4.85 0.270 

142 55 2166 0.7 73.309 30.42 3.29 0.372 

143 60 2462 0.7 74.354 38.14 2.62 0.497 

144 65 2795 0.7 79.562 43.46 2.30 0.657 

145 45 1457 0.7 76.218 7.64 13.08 0.136 

146 50 1667 0.7 72.628 12.31 8.13 0.213 

147 55 1902 0.7 69.731 20.75 4.82 0.303 

148 60 2166 0.7 69.972 30.05 3.33 0.405 

149 65 2462 0.7 71.100 37.69 2.65 0.535 

150 70 2795 0.7 76.554 42.91 2.33 0.700 

151 25 1340 0.75 106.860 8.46 11.82 0.037 

152 30 1530 0.75 101.986 11.43 8.75 0.072 

153 35 1742 0.75 88.527 18.36 5.45 0.117 

154 40 1978 0.75 86.268 28.68 3.49 0.179 

155 45 2241 0.75 82.149 36.87 2.71 0.253 

156 50 2534 0.75 84.064 43.19 2.32 0.338 

157 30 1340 0.75 97.913 8.23 12.15 0.065 

158 35 1530 0.75 94.575 11.32 8.84 0.113 

159 40 1742 0.75 82.921 18.81 5.32 0.176 

160 45 1978 0.75 80.919 30.13 3.32 0.266 

161 50 2241 0.75 79.651 37.55 2.66 0.359 

162 55 2534 0.75 82.969 43.14 2.32 0.449 

163 35 1340 0.75 89.547 7.86 12.73 0.086 

164 40 1530 0.75 87.069 10.84 9.22 0.139 

165 45 1742 0.75 79.037 18.81 5.32 0.212 

166 50 1978 0.75 77.230 29.55 3.38 0.309 

167 55 2241 0.75 76.549 37.27 2.68 0.419 

168 60 2534 0.75 80.973 43.35 2.31 0.558 

169 40 1340 0.75 82.232 7.53 13.29 0.104 
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170 45 1530 0.75 80.001 10.76 9.29 0.166 

171 50 1742 0.75 73.254 19.00 5.26 0.248 

172 55 1978 0.75 72.919 29.26 3.42 0.344 

173 60 2241 0.75 73.506 37.40 2.67 0.457 

174 65 2534 0.75 78.199 42.67 2.34 0.602 

175 45 1340 0.75 75.125 7.34 13.62 0.123 

176 50 1530 0.75 72.617 11.24 8.90 0.197 

177 55 1742 0.75 68.071 19.35 5.17 0.280 

178 60 1978 0.75 69.192 29.31 3.41 0.374 

179 65 2241 0.75 69.856 36.38 2.75 0.491 

180 70 2534 0.75 74.995 41.96 2.38 0.640 

181 25 1240 0.8 105.055 8.05 12.43 0.035 

182 30 1414 0.8 101.733 10.98 9.11 0.069 

183 35 1606 0.8 90.123 16.90 5.92 0.112 

184 40 1820 0.8 86.061 28.03 3.57 0.173 

185 45 2056 0.8 81.434 36.67 2.73 0.246 

186 50 2317 0.8 83.898 43.07 2.32 0.329 

187 30 1240 0.8 95.872 7.94 12.60 0.059 

188 35 1414 0.8 94.062 10.68 9.36 0.106 

189 40 1606 0.8 82.834 17.64 5.67 0.163 

190 45 1820 0.8 81.409 28.59 3.50 0.247 

191 50 2056 0.8 79.044 37.18 2.69 0.347 

192 55 2317 0.8 82.086 42.97 2.33 0.460 

193 35 1240 0.8 87.218 7.49 13.35 0.078 

194 40 1414 0.8 86.822 10.38 9.64 0.129 

195 45 1606 0.8 76.803 17.56 5.69 0.196 

196 50 1820 0.8 76.612 28.35 3.53 0.288 

197 55 2056 0.8 76.114 37.25 2.68 0.388 

198 60 2317 0.8 79.888 43.07 2.32 0.516 

199 40 1240 0.8 80.650 7.16 13.97 0.094 

200 45 1414 0.8 79.463 10.10 9.91 0.154 

201 50 1606 0.8 71.358 18.08 5.53 0.229 

202 55 1820 0.8 72.450 28.26 3.54 0.320 

203 60 2056 0.8 72.087 36.22 2.76 0.424 

204 65 2317 0.8 76.966 42.23 2.37 0.556 
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205 45 1240 0.8 72.298 6.89 14.52 0.112 

206 50 1414 0.8 71.998 10.69 9.36 0.182 

207 55 1606 0.8 68.082 18.08 5.53 0.260 

208 60 1820 0.8 69.052 28.17 3.55 0.349 

209 65 2056 0.8 68.993 35.84 2.79 0.455 

210 70 2317 0.8 73.962 41.61 2.40 0.591 

211 25 1153 0.85 101.922 7.87 12.70 0.033 

212 30 1313 0.85 100.433 10.29 9.71 0.066 

213 35 1489 0.85 91.334 15.67 6.38 0.108 

214 40 1684 0.85 85.443 26.85 3.72 0.166 

215 45 1898 0.85 80.883 36.64 2.73 0.239 

216 50 2134 0.85 83.486 43.49 2.30 0.322 

217 30 1153 0.85 92.863 7.63 13.10 0.055 

218 35 1313 0.85 91.896 10.44 9.58 0.097 

219 40 1489 0.85 83.184 16.57 6.04 0.152 

220 45 1684 0.85 81.384 27.72 3.61 0.230 

221 50 1898 0.85 78.348 36.85 2.71 0.325 

222 55 2134 0.85 82.089 43.60 2.29 0.439 

223 35 1153 0.85 84.541 7.28 13.74 0.071 

224 40 1313 0.85 85.124 10.05 9.95 0.119 

225 45 1489 0.85 76.831 16.79 5.96 0.182 

226 50 1684 0.85 75.409 28.11 3.56 0.268 

227 55 1898 0.85 74.944 36.22 2.76 0.362 

228 60 2134 0.85 78.701 42.84 2.33 0.481 

229 40 1153 0.85 77.648 6.95 14.39 0.086 

230 45 1313 0.85 78.620 9.61 10.41 0.142 

231 50 1489 0.85 71.087 17.00 5.88 0.213 

232 55 1684 0.85 72.576 27.37 3.65 0.299 

233 60 1898 0.85 71.823 35.87 2.79 0.394 

234 65 2134 0.85 76.297 42.83 2.33 0.516 

235 45 1153 0.85 71.039 6.64 15.05 0.102 

236 50 1313 0.85 70.853 10.03 9.97 0.168 

237 55 1489 0.85 65.958 17.72 5.64 0.242 

238 60 1684 0.85 68.575 27.41 3.65 0.325 

239 65 1898 0.85 69.600 36.02 2.78 0.424 
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240 70 2134 0.85 73.491 41.64 2.40 0.549 

241 25 1078 0.9 99.525 7.73 12.94 0.032 

242 30 1225 0.9 98.219 10.05 9.95 0.063 

243 35 1388 0.9 88.443 15.91 6.28 0.104 

244 40 1566 0.9 85.321 25.88 3.86 0.161 

245 45 1762 0.9 80.618 36.48 2.74 0.234 

246 50 1976 0.9 82.419 44.05 2.27 0.316 

247 30 1078 0.9 90.455 7.45 13.41 0.050 

248 35 1225 0.9 90.378 9.81 10.19 0.090 

249 40 1388 0.9 82.993 15.87 6.30 0.142 

250 45 1566 0.9 81.206 26.59 3.76 0.215 

251 50 1762 0.9 78.431 36.81 2.72 0.305 

252 55 1976 0.9 80.517 44.24 2.26 0.410 

253 35 1078 0.9 82.744 7.10 14.08 0.066 

254 40 1225 0.9 83.644 9.38 10.66 0.110 

255 45 1388 0.9 76.011 16.45 6.08 0.169 

256 50 1566 0.9 77.032 26.51 3.77 0.252 

257 55 1762 0.9 75.377 36.24 2.76 0.339 

258 60 1976 0.9 77.667 43.63 2.29 0.449 

259 40 1078 0.9 76.398 6.77 14.78 0.079 

260 45 1225 0.9 75.884 9.09 11.00 0.131 

261 50 1388 0.9 70.533 16.60 6.03 0.199 

262 55 1566 0.9 72.933 26.53 3.77 0.281 

263 60 1762 0.9 72.062 35.75 2.80 0.722 

264 65 1976 0.9 75.281 43.18 2.32 0.943 

265 45 1078 0.9 69.915 6.40 15.61 0.183 

266 50 1225 0.9 69.227 9.42 10.62 0.304 

267 55 1388 0.9 65.134 17.41 5.74 0.443 

268 60 1566 0.9 68.122 27.16 3.68 0.597 

269 65 1762 0.9 69.381 35.24 2.84 0.775 

270 70 1976 0.9 73.294 42.70 2.34 1.000 
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Realization #2 - Mid-Case 

Case 

# 

Temperature 

(oC) 

Pressure 

(kPa) 

C3 mole 

fraction 

SolOR 

(m3/m3) 
RF (%) 1/RF 

Normalized 

Enthalpy 

1 25 2226 0.5 113.488 11.15 8.97 0.050 

2 30 2585 0.5 97.213 18.24 5.48 0.096 

3 35 3003 0.5 83.671 31.04 3.22 0.159 

4 40 3499 0.5 84.764 39.95 2.50 0.236 

5 45 4104 0.5 86.523 46.96 2.13 0.328 

6 50 4890 0.5 91.138 52.80 1.89 0.433 

7 30 2226 0.5 108.590 11.13 8.98 0.090 

8 35 2585 0.5 95.475 18.48 5.41 0.146 

9 40 3003 0.5 82.506 31.44 3.18 0.221 

10 45 3499 0.5 83.735 40.38 2.48 0.308 

11 50 4104 0.5 85.871 47.34 2.11 0.411 

12 55 4890 0.5 91.158 53.21 1.88 0.525 

13 35 2226 0.5 99.065 11.00 9.09 0.147 

14 40 2585 0.5 90.479 19.17 5.22 0.234 

15 45 3003 0.5 80.757 31.88 3.14 0.312 

16 50 3499 0.5 82.346 40.83 2.45 0.402 

17 55 4104 0.5 85.295 47.80 2.09 0.514 

18 60 4890 0.5 90.931 53.73 1.86 0.635 

19 40 2226 0.5 90.322 10.60 9.43 0.182 

20 45 2585 0.5 82.653 19.07 5.24 0.286 

21 50 3003 0.5 76.998 32.07 3.12 0.415 

22 55 3499 0.5 79.404 41.39 2.42 0.572 

23 60 4104 0.5 84.410 48.30 2.07 0.661 

24 65 4890 0.5 90.294 54.30 1.84 0.773 

25 45 2226 0.5 81.258 10.60 9.44 0.218 

26 50 2585 0.5 74.590 19.37 5.16 0.335 

27 55 3003 0.5 72.965 31.84 3.14 0.534 

28 60 3499 0.5 76.043 40.90 2.44 0.731 

29 65 4104 0.5 81.422 48.56 2.06 1.000 

30 70 4890 0.5 89.461 55.00 1.82 0.982 

31 25 1967 0.55 112.812 10.34 9.67 0.047 
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32 30 2272 0.55 98.527 15.66 6.39 0.088 

33 35 2622 0.55 89.610 27.22 3.67 0.147 

34 40 3027 0.55 84.346 37.73 2.65 0.220 

35 45 3502 0.55 84.882 44.86 2.23 0.305 

36 50 4076 0.55 88.458 50.68 1.97 0.408 

37 30 1967 0.55 106.819 10.27 9.74 0.085 

38 35 2272 0.55 94.681 15.93 6.28 0.138 

39 40 2622 0.55 86.312 27.75 3.60 0.208 

40 45 3027 0.55 83.556 38.05 2.63 0.291 

41 50 3502 0.55 84.167 45.22 2.21 0.387 

42 55 4076 0.55 88.035 51.10 1.96 0.501 

43 35 1967 0.55 97.608 10.03 9.97 0.129 

44 40 2272 0.55 87.396 16.19 6.18 0.206 

45 45 2622 0.55 80.648 28.63 3.49 0.313 

46 50 3027 0.55 81.767 38.41 2.60 0.399 

47 55 3502 0.55 83.095 45.68 2.19 0.497 

48 60 4076 0.55 87.426 51.66 1.94 0.619 

49 40 1967 0.55 89.562 9.61 10.40 0.159 

50 45 2272 0.55 80.064 16.35 6.12 0.249 

51 50 2622 0.55 75.624 28.63 3.49 0.367 

52 55 3027 0.55 78.229 38.41 2.60 0.502 

53 60 3502 0.55 80.893 46.06 2.17 0.682 

54 65 4076 0.55 86.819 52.22 1.91 0.797 

55 45 1967 0.55 81.517 9.36 10.69 0.191 

56 50 2272 0.55 73.104 16.76 5.97 0.293 

57 55 2622 0.55 71.417 28.67 3.49 0.409 

58 60 3027 0.55 74.538 37.96 2.63 0.552 

59 65 3502 0.55 77.658 45.49 2.20 0.744 

60 70 4076 0.55 83.652 52.31 1.91 1.000 

61 25 1762 0.6 111.864 9.74 10.27 0.044 

62 30 2027 0.6 101.710 13.89 7.20 0.083 

63 35 2328 0.6 93.121 24.08 4.15 0.138 

64 40 2672 0.6 83.991 35.86 2.79 0.207 

65 45 3066 0.6 83.585 43.23 2.31 0.288 

66 50 3527 0.6 86.729 49.16 2.03 0.385 
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67 30 1762 0.6 104.620 9.62 10.39 0.082 

68 35 2027 0.6 96.828 13.94 7.17 0.132 

69 40 2328 0.6 89.029 24.56 4.07 0.200 

70 45 2672 0.6 82.684 36.22 2.76 0.279 

71 50 3066 0.6 82.645 43.57 2.30 0.370 

72 55 3527 0.6 86.129 49.58 2.02 0.479 

73 35 1762 0.6 95.633 9.26 10.80 0.115 

74 40 2027 0.6 88.369 14.08 7.10 0.184 

75 45 2328 0.6 82.853 25.20 3.97 0.283 

76 50 2672 0.6 80.435 36.70 2.72 0.398 

77 55 3066 0.6 80.969 43.84 2.28 0.503 

78 60 3527 0.6 84.914 50.08 2.00 0.607 

79 40 1762 0.6 87.644 8.86 11.28 0.141 

80 45 2027 0.6 80.185 14.38 6.96 0.222 

81 50 2328 0.6 78.451 25.31 3.95 0.331 

82 55 2672 0.6 76.702 36.20 2.76 0.448 

83 60 3066 0.6 77.745 43.85 2.28 0.603 

84 65 3527 0.6 82.790 50.52 1.98 0.809 

85 45 1762 0.6 79.807 8.65 11.56 0.169 

86 50 2027 0.6 72.680 14.94 6.69 0.261 

87 55 2328 0.6 74.552 25.48 3.92 0.369 

88 60 2672 0.6 73.775 35.85 2.79 0.490 

89 65 3066 0.6 74.893 43.41 2.30 0.654 

90 70 3527 0.6 79.450 49.77 2.01 0.870 

91 25 1595 0.65 111.526 9.25 10.81 0.042 

92 30 1830 0.65 104.347 12.73 7.85 0.079 

93 35 2094 0.65 92.262 21.58 4.63 0.129 

94 40 2392 0.65 83.505 34.13 2.93 0.196 

95 45 2731 0.65 82.844 41.92 2.39 0.274 

96 50 3117 0.65 85.463 48.12 2.08 0.366 

97 30 1595 0.65 103.159 9.13 10.95 0.078 

98 35 1830 0.65 97.322 12.77 7.83 0.129 

99 40 2094 0.65 90.895 21.89 4.57 0.193 

100 45 2392 0.65 81.906 34.33 2.91 0.270 

101 50 2731 0.65 81.612 42.27 2.37 0.358 
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102 55 3117 0.65 84.454 48.48 2.06 0.461 

103 35 1595 0.65 94.661 8.71 11.49 0.104 

104 40 1830 0.65 88.613 12.67 7.89 0.167 

105 45 2094 0.65 87.159 22.26 4.49 0.256 

106 50 2392 0.65 78.591 34.46 2.90 0.360 

107 55 2731 0.65 79.105 42.65 2.34 0.491 

108 60 3117 0.65 82.598 48.51 2.06 0.636 

109 40 1595 0.65 87.380 8.33 12.01 0.127 

110 45 1830 0.65 80.903 12.75 7.84 0.200 

111 50 2094 0.65 79.896 22.55 4.44 0.300 

112 55 2392 0.65 75.111 34.18 2.93 0.404 

113 60 2731 0.65 76.232 42.19 2.37 0.543 

114 65 3117 0.65 80.154 48.67 2.05 0.723 

115 45 1595 0.65 79.515 8.11 12.33 0.152 

116 50 1830 0.65 73.598 13.44 7.44 0.237 

117 55 2094 0.65 73.004 23.06 4.34 0.336 

118 60 2392 0.65 71.998 34.03 2.94 0.442 

119 65 2731 0.65 72.757 41.79 2.39 0.587 

120 70 3117 0.65 76.757 48.08 2.08 0.774 

121 25 1457 0.7 110.635 8.80 11.36 0.040 

122 30 1667 0.7 104.367 11.97 8.35 0.075 

123 35 1902 0.7 92.991 19.73 5.07 0.123 

124 40 2166 0.7 82.552 32.36 3.09 0.186 

125 45 2462 0.7 82.182 41.01 2.44 0.263 

126 50 2795 0.7 84.384 47.36 2.11 0.351 

127 30 1457 0.7 101.905 8.66 11.55 0.072 

128 35 1667 0.7 97.314 11.99 8.34 0.123 

129 40 1902 0.7 87.089 20.30 4.93 0.189 

130 45 2166 0.7 80.089 32.72 3.06 0.267 

131 50 2462 0.7 80.571 41.35 2.42 0.351 

132 55 2795 0.7 83.422 47.61 2.10 0.450 

133 35 1457 0.7 93.852 8.26 12.11 0.095 

134 40 1667 0.7 89.868 11.67 8.57 0.153 

135 45 1902 0.7 81.037 20.47 4.88 0.234 

136 50 2166 0.7 76.991 33.01 3.03 0.333 
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137 55 2462 0.7 77.703 41.39 2.42 0.450 

138 60 2795 0.7 81.007 47.94 2.09 0.602 

139 40 1457 0.7 87.008 7.86 12.73 0.116 

140 45 1667 0.7 82.080 11.65 8.59 0.183 

141 50 1902 0.7 76.671 20.63 4.85 0.274 

142 55 2166 0.7 73.815 32.69 3.06 0.370 

143 60 2462 0.7 74.641 40.97 2.44 0.495 

144 65 2795 0.7 77.891 47.38 2.11 0.654 

145 45 1457 0.7 79.534 7.56 13.23 0.138 

146 50 1667 0.7 73.802 12.19 8.20 0.217 

147 55 1902 0.7 75.350 20.90 4.79 0.309 

148 60 2166 0.7 70.775 32.45 3.08 0.403 

149 65 2462 0.7 71.959 40.54 2.47 0.533 

150 70 2795 0.7 74.975 46.88 2.13 0.698 

151 25 1340 0.75 110.717 8.38 11.93 0.038 

152 30 1530 0.75 105.156 11.36 8.80 0.073 

153 35 1742 0.75 93.103 18.25 5.48 0.118 

154 40 1978 0.75 81.856 30.98 3.23 0.179 

155 45 2241 0.75 81.394 40.46 2.47 0.253 

156 50 2534 0.75 83.606 46.85 2.13 0.339 

157 30 1340 0.75 101.491 8.17 12.24 0.066 

158 35 1530 0.75 96.829 11.27 8.87 0.114 

159 40 1742 0.75 88.826 18.70 5.35 0.177 

160 45 1978 0.75 79.429 31.75 3.15 0.264 

161 50 2241 0.75 79.358 40.53 2.47 0.352 

162 55 2534 0.75 82.066 47.11 2.12 0.447 

163 35 1340 0.75 93.323 7.80 12.83 0.087 

164 40 1530 0.75 89.231 10.91 9.17 0.140 

165 45 1742 0.75 81.811 18.75 5.33 0.214 

166 50 1978 0.75 75.750 31.62 3.16 0.309 

167 55 2241 0.75 76.253 40.56 2.47 0.415 

168 60 2534 0.75 79.475 47.10 2.12 0.553 

169 40 1340 0.75 86.222 7.42 13.48 0.105 

170 45 1530 0.75 81.880 10.80 9.26 0.168 

171 50 1742 0.75 74.768 19.13 5.23 0.252 
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172 55 1978 0.75 72.462 31.43 3.18 0.343 

173 60 2241 0.75 73.557 40.14 2.49 0.455 

174 65 2534 0.75 76.919 46.61 2.15 0.599 

175 45 1340 0.75 79.004 7.12 14.05 0.126 

176 50 1530 0.75 74.698 11.15 8.97 0.200 

177 55 1742 0.75 69.469 19.63 5.09 0.285 

178 60 1978 0.75 69.577 31.37 3.19 0.374 

179 65 2241 0.75 71.339 39.71 2.52 0.489 

180 70 2534 0.75 73.686 46.03 2.17 0.639 

181 25 1240 0.8 108.634 8.07 12.39 0.036 

182 30 1414 0.8 104.406 10.91 9.17 0.070 

183 35 1606 0.8 91.684 17.17 5.82 0.113 

184 40 1820 0.8 81.533 29.72 3.36 0.173 

185 45 2056 0.8 80.489 40.17 2.49 0.245 

186 50 2317 0.8 82.564 46.61 2.15 0.328 

187 30 1240 0.8 99.731 7.84 12.75 0.060 

188 35 1414 0.8 96.387 10.70 9.34 0.106 

189 40 1606 0.8 85.794 17.53 5.70 0.165 

190 45 1820 0.8 78.673 30.36 3.29 0.247 

191 50 2056 0.8 77.956 40.58 2.46 0.343 

192 55 2317 0.8 81.004 46.86 2.13 0.452 

193 35 1240 0.8 91.533 7.47 13.39 0.079 

194 40 1414 0.8 89.081 10.34 9.67 0.130 

195 45 1606 0.8 80.990 17.53 5.70 0.199 

196 50 1820 0.8 75.077 30.36 3.29 0.288 

197 55 2056 0.8 75.360 40.11 2.49 0.385 

198 60 2317 0.8 78.271 46.70 2.14 0.512 

199 40 1240 0.8 84.134 7.14 14.00 0.096 

200 45 1414 0.8 81.358 10.11 9.89 0.155 

201 50 1606 0.8 75.939 17.87 5.60 0.235 

202 55 1820 0.8 71.982 30.37 3.29 0.320 

203 60 2056 0.8 72.938 39.68 2.52 0.421 

204 65 2317 0.8 75.281 46.22 2.16 0.553 

205 45 1240 0.8 76.300 6.89 14.52 0.114 

206 50 1414 0.8 73.796 10.41 9.61 0.185 
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207 55 1606 0.8 69.509 18.46 5.42 0.266 

208 60 1820 0.8 69.164 30.36 3.29 0.348 

209 65 2056 0.8 70.573 39.29 2.54 0.452 

210 70 2317 0.8 72.446 45.60 2.19 0.589 

211 25 1153 0.85 103.554 7.79 12.84 0.034 

212 30 1313 0.85 103.099 10.53 9.49 0.067 

213 35 1489 0.85 91.205 16.03 6.24 0.109 

214 40 1684 0.85 82.090 28.52 3.51 0.167 

215 45 1898 0.85 79.545 39.99 2.50 0.238 

216 50 2134 0.85 81.634 46.93 2.13 0.320 

217 30 1153 0.85 94.854 7.54 13.26 0.055 

218 35 1313 0.85 95.737 10.21 9.80 0.098 

219 40 1489 0.85 84.720 16.37 6.11 0.153 

220 45 1684 0.85 78.027 29.26 3.42 0.230 

221 50 1898 0.85 76.476 40.44 2.47 0.321 

222 55 2134 0.85 80.011 47.22 2.12 0.433 

223 35 1153 0.85 86.620 7.14 14.00 0.072 

224 40 1313 0.85 88.727 9.88 10.12 0.120 

225 45 1489 0.85 78.770 16.44 6.08 0.185 

226 50 1684 0.85 74.828 29.10 3.44 0.268 

227 55 1898 0.85 74.327 39.93 2.50 0.359 

228 60 2134 0.85 77.265 46.63 2.14 0.477 

229 40 1153 0.85 79.027 6.85 14.60 0.087 

230 45 1313 0.85 81.010 9.68 10.34 0.143 

231 50 1489 0.85 73.045 16.77 5.96 0.218 

232 55 1684 0.85 71.842 29.40 3.40 0.300 

233 60 1898 0.85 72.046 39.54 2.53 0.391 

234 65 2134 0.85 74.314 46.11 2.17 0.514 

235 45 1153 0.85 71.429 6.62 15.11 0.104 

236 50 1313 0.85 72.317 9.87 10.14 0.171 

237 55 1489 0.85 69.809 17.24 5.80 0.248 

238 60 1684 0.85 69.116 29.42 3.40 0.326 

239 65 1898 0.85 69.799 39.23 2.55 0.420 

240 70 2134 0.85 71.958 45.67 2.19 0.546 

241 25 1078 0.9 100.628 7.58 13.19 0.032 
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242 30 1225 0.9 100.236 10.24 9.77 0.064 

243 35 1388 0.9 90.360 15.31 6.53 0.105 

244 40 1566 0.9 83.427 27.57 3.63 0.162 

245 45 1762 0.9 78.229 40.41 2.47 0.232 

246 50 1976 0.9 80.670 47.71 2.10 0.313 

247 30 1078 0.9 91.614 7.29 13.72 0.050 

248 35 1225 0.9 92.834 9.92 10.08 0.091 

249 40 1388 0.9 83.910 15.67 6.38 0.143 

250 45 1566 0.9 78.103 28.22 3.54 0.216 

251 50 1762 0.9 75.724 40.66 2.46 0.302 

252 55 1976 0.9 78.613 48.06 2.08 0.406 

253 35 1078 0.9 83.601 6.94 14.42 0.066 

254 40 1225 0.9 85.887 9.51 10.51 0.111 

255 45 1388 0.9 77.545 15.73 6.36 0.172 

256 50 1566 0.9 74.693 28.35 3.53 0.252 

257 55 1762 0.9 73.297 40.33 2.48 0.336 

258 60 1976 0.9 76.116 47.33 2.11 0.445 

259 40 1078 0.9 76.773 6.64 15.06 0.080 

260 45 1225 0.9 78.608 9.21 10.86 0.132 

261 50 1388 0.9 72.050 16.05 6.23 0.202 

262 55 1566 0.9 71.893 28.53 3.51 0.282 

263 60 1762 0.9 71.068 40.03 2.50 0.366 

264 65 1976 0.9 73.719 46.72 2.14 0.478 

265 45 1078 0.9 70.014 6.38 15.69 0.095 

266 50 1225 0.9 71.196 9.26 10.80 0.159 

267 55 1388 0.9 67.795 16.67 6.00 0.456 

268 60 1566 0.9 69.165 28.91 3.46 0.603 

269 65 1762 0.9 69.189 39.57 2.53 0.772 

270 70 1976 0.9 71.262 46.36 2.16 1.000 
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Realization #3 - High-Case 

Case 

# 

Temperature 

(oC) 

Pressure 

(kPa) 

C3 mole 

fraction 

SolOR 

(m3/m3) 
RF (%) 1/RF 

Normalized 

Enthalpy 

1 25 2226 0.5 105.782 12.01 8.33 0.054 

2 30 2585 0.5 86.588 19.80 5.05 0.098 

3 35 3003 0.5 81.165 32.84 3.04 0.159 

4 40 3499 0.5 79.149 42.70 2.34 0.233 

5 45 4104 0.5 82.514 50.25 1.99 0.321 

6 50 4890 0.5 86.772 57.02 1.75 0.419 

7 30 2226 0.5 101.618 12.02 8.32 0.097 

8 35 2585 0.5 83.564 20.37 4.91 0.151 

9 40 3003 0.5 80.067 33.29 3.00 0.222 

10 45 3499 0.5 78.438 43.31 2.31 0.305 

11 50 4104 0.5 81.986 50.79 1.97 0.403 

12 55 4890 0.5 86.671 57.69 1.73 0.510 

13 35 2226 0.5 93.746 11.89 8.41 0.163 

14 40 2585 0.5 80.712 21.37 4.68 0.249 

15 45 3003 0.5 78.342 33.80 2.96 0.316 

16 50 3499 0.5 77.063 43.86 2.28 0.402 

17 55 4104 0.5 81.564 51.48 1.94 0.506 

18 60 4890 0.5 86.502 58.41 1.71 0.619 

19 40 2226 0.5 84.125 11.39 8.78 0.201 

20 45 2585 0.5 74.695 21.46 4.66 0.297 

21 50 3003 0.5 75.962 34.40 2.91 0.425 

22 55 3499 0.5 74.921 44.88 2.23 0.583 

23 60 4104 0.5 80.785 52.19 1.92 0.656 

24 65 4890 0.5 86.528 59.00 1.70 0.756 

25 45 2226 0.5 74.528 11.22 8.91 0.239 

26 50 2585 0.5 68.701 22.06 4.53 0.344 

27 55 3003 0.5 71.678 33.79 2.96 0.473 

28 60 3499 0.5 71.659 44.25 2.26 0.641 

29 65 4104 0.5 78.171 52.82 1.89 0.873 

30 70 4890 0.5 86.360 59.92 1.67 0.969 

31 25 1967 0.55 105.737 11.20 8.92 0.050 
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32 30 2272 0.55 97.068 16.41 6.10 0.093 

33 35 2622 0.55 79.558 29.78 3.36 0.148 

34 40 3027 0.55 78.686 40.08 2.50 0.219 

35 45 3502 0.55 80.662 47.95 2.09 0.301 

36 50 4076 0.55 84.188 54.64 1.83 0.397 

37 30 1967 0.55 100.234 11.16 8.96 0.095 

38 35 2272 0.55 93.968 16.69 5.99 0.147 

39 40 2622 0.55 78.713 30.32 3.30 0.211 

40 45 3027 0.55 77.536 40.67 2.46 0.291 

41 50 3502 0.55 80.324 48.37 2.07 0.383 

42 55 4076 0.55 83.838 55.49 1.80 0.490 

43 35 1967 0.55 91.130 10.90 9.18 0.145 

44 40 2272 0.55 87.533 17.32 5.77 0.224 

45 45 2622 0.55 76.381 31.25 3.20 0.324 

46 50 3027 0.55 76.149 41.18 2.43 0.402 

47 55 3502 0.55 79.617 49.02 2.04 0.495 

48 60 4076 0.55 83.487 56.14 1.78 0.607 

49 40 1967 0.55 82.154 10.39 9.62 0.177 

50 45 2272 0.55 78.414 17.78 5.63 0.265 

51 50 2622 0.55 71.437 30.97 3.23 0.375 

52 55 3027 0.55 72.657 41.96 2.38 0.510 

53 60 3502 0.55 77.544 50.10 2.00 0.691 

54 65 4076 0.55 83.488 56.97 1.76 0.790 

55 45 1967 0.55 73.760 10.13 9.87 0.211 

56 50 2272 0.55 69.597 18.52 5.40 0.307 

57 55 2622 0.55 67.171 30.87 3.24 0.417 

58 60 3027 0.55 69.186 41.05 2.44 0.558 

59 65 3502 0.55 73.954 49.24 2.03 0.749 

60 70 4076 0.55 80.391 57.00 1.75 1.000 

61 25 1762 0.6 102.995 10.67 9.37 0.048 

62 30 2027 0.6 99.921 14.47 6.91 0.088 

63 35 2328 0.6 80.571 26.81 3.73 0.139 

64 40 2672 0.6 80.230 37.79 2.65 0.207 

65 45 3066 0.6 78.605 46.32 2.16 0.285 

66 50 3527 0.6 83.142 53.02 1.89 0.378 
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67 30 1762 0.6 95.500 10.60 9.43 0.094 

68 35 2027 0.6 95.917 14.53 6.88 0.145 

69 40 2328 0.6 78.064 27.45 3.64 0.203 

70 45 2672 0.6 78.084 38.38 2.61 0.281 

71 50 3066 0.6 78.502 46.83 2.14 0.368 

72 55 3527 0.6 82.434 53.90 1.86 0.472 

73 35 1762 0.6 87.394 10.33 9.68 0.130 

74 40 2027 0.6 88.856 14.71 6.80 0.203 

75 45 2328 0.6 73.258 28.30 3.53 0.291 

76 50 2672 0.6 74.626 39.46 2.53 0.408 

77 55 3066 0.6 77.034 46.82 2.14 0.511 

78 60 3527 0.6 81.878 54.26 1.84 0.602 

79 40 1762 0.6 77.863 9.73 10.27 0.158 

80 45 2027 0.6 79.792 14.85 6.73 0.241 

81 50 2328 0.6 68.563 28.46 3.51 0.337 

82 55 2672 0.6 71.160 38.93 2.57 0.456 

83 60 3066 0.6 74.055 47.29 2.11 0.611 

84 65 3527 0.6 79.519 54.99 1.82 0.814 

85 45 1762 0.6 69.934 9.39 10.65 0.189 

86 50 2027 0.6 73.646 15.61 6.40 0.280 

87 55 2328 0.6 65.293 28.55 3.50 0.374 

88 60 2672 0.6 68.296 38.52 2.60 0.498 

89 65 3066 0.6 70.496 46.71 2.14 0.660 

90 70 3527 0.6 75.856 54.20 1.84 0.871 

91 25 1595 0.65 101.999 10.15 9.86 0.046 

92 30 1830 0.65 99.950 13.34 7.50 0.085 

93 35 2094 0.65 81.269 24.23 4.13 0.133 

94 40 2392 0.65 81.164 35.85 2.79 0.198 

95 45 2731 0.65 77.681 45.31 2.21 0.273 

96 50 3117 0.65 81.684 52.04 1.92 0.362 

97 30 1595 0.65 93.813 10.10 9.90 0.089 

98 35 1830 0.65 93.310 13.44 7.44 0.144 

99 40 2094 0.65 78.627 24.60 4.07 0.202 

100 45 2392 0.65 79.412 36.42 2.75 0.275 

101 50 2731 0.65 77.017 45.47 2.20 0.359 
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102 55 3117 0.65 81.303 52.29 1.91 0.458 

103 35 1595 0.65 84.430 9.66 10.35 0.118 

104 40 1830 0.65 84.461 13.20 7.57 0.185 

105 45 2094 0.65 73.798 25.50 3.92 0.265 

106 50 2392 0.65 75.082 37.13 2.69 0.372 

107 55 2731 0.65 74.675 46.43 2.15 0.502 

108 60 3117 0.65 79.812 52.61 1.90 0.653 

109 40 1595 0.65 76.210 9.24 10.83 0.143 

110 45 1830 0.65 75.093 13.22 7.56 0.220 

111 50 2094 0.65 68.755 25.85 3.87 0.307 

112 55 2392 0.65 71.666 36.71 2.72 0.414 

113 60 2731 0.65 71.418 45.62 2.19 0.551 

114 65 3117 0.65 76.514 52.83 1.89 0.728 

115 45 1595 0.65 68.451 8.86 11.29 0.170 

116 50 1830 0.65 72.445 13.71 7.29 0.256 

117 55 2094 0.65 64.319 26.28 3.81 0.341 

118 60 2392 0.65 67.935 36.67 2.73 0.451 

119 65 2731 0.65 68.370 45.11 2.22 0.593 

120 70 3117 0.65 72.880 52.12 1.92 0.776 

121 25 1457 0.7 101.593 9.83 10.18 0.044 

122 30 1667 0.7 100.078 12.52 7.99 0.081 

123 35 1902 0.7 82.005 21.88 4.57 0.128 

124 40 2166 0.7 81.010 34.41 2.91 0.190 

125 45 2462 0.7 77.223 44.00 2.27 0.263 

126 50 2795 0.7 80.824 50.87 1.97 0.349 

127 30 1457 0.7 92.671 9.70 10.31 0.082 

128 35 1667 0.7 92.563 12.61 7.93 0.138 

129 40 1902 0.7 77.951 22.80 4.39 0.201 

130 45 2166 0.7 79.241 34.52 2.90 0.277 

131 50 2462 0.7 75.428 44.35 2.25 0.354 

132 55 2795 0.7 80.311 51.41 1.94 0.450 

133 35 1457 0.7 83.216 9.25 10.81 0.108 

134 40 1667 0.7 84.669 12.14 8.24 0.169 

135 45 1902 0.7 73.806 23.13 4.32 0.244 

136 50 2166 0.7 75.282 35.41 2.82 0.343 
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137 55 2462 0.7 72.863 44.95 2.22 0.459 

138 60 2795 0.7 78.226 52.12 1.92 0.611 

139 40 1457 0.7 75.654 8.84 11.31 0.131 

140 45 1667 0.7 75.541 11.99 8.34 0.202 

141 50 1902 0.7 69.589 23.53 4.25 0.283 

142 55 2166 0.7 72.009 34.84 2.87 0.381 

143 60 2462 0.7 69.565 44.58 2.24 0.502 

144 65 2795 0.7 74.249 51.62 1.94 0.661 

145 45 1457 0.7 67.759 8.51 11.75 0.156 

146 50 1667 0.7 67.164 12.45 8.03 0.236 

147 55 1902 0.7 65.364 24.26 4.12 0.315 

148 60 2166 0.7 68.748 34.47 2.90 0.415 

149 65 2462 0.7 67.103 43.62 2.29 0.539 

150 70 2795 0.7 71.101 50.72 1.97 0.703 

151 25 1340 0.75 100.088 9.42 10.62 0.043 

152 30 1530 0.75 98.401 11.93 8.38 0.079 

153 35 1742 0.75 83.954 19.72 5.07 0.124 

154 40 1978 0.75 79.796 33.19 3.01 0.183 

155 45 2241 0.75 76.339 43.59 2.29 0.255 

156 50 2534 0.75 79.906 50.37 1.99 0.338 

157 30 1340 0.75 90.539 9.28 10.78 0.076 

158 35 1530 0.75 92.500 11.87 8.43 0.127 

159 40 1742 0.75 78.369 20.68 4.84 0.191 

160 45 1978 0.75 78.284 34.27 2.92 0.276 

161 50 2241 0.75 74.333 43.60 2.29 0.369 

162 55 2534 0.75 78.643 50.73 1.97 0.450 

163 35 1340 0.75 81.551 8.84 11.31 0.099 

164 40 1530 0.75 83.908 11.42 8.76 0.156 

165 45 1742 0.75 74.471 21.06 4.75 0.227 

166 50 1978 0.75 74.623 33.85 2.95 0.319 

167 55 2241 0.75 71.327 43.72 2.29 0.424 

168 60 2534 0.75 76.295 50.92 1.96 0.562 

169 40 1340 0.75 74.013 8.45 11.83 0.120 

170 45 1530 0.75 75.437 11.09 9.02 0.186 

171 50 1742 0.75 69.432 21.58 4.63 0.263 



185 

 

172 55 1978 0.75 71.666 33.55 2.98 0.353 

173 60 2241 0.75 68.167 43.19 2.32 0.463 

174 65 2534 0.75 72.625 50.62 1.98 0.606 

175 45 1340 0.75 66.226 8.13 12.30 0.143 

176 50 1530 0.75 67.307 11.39 8.78 0.218 

177 55 1742 0.75 65.787 22.51 4.44 0.293 

178 60 1978 0.75 68.335 33.14 3.02 0.384 

179 65 2241 0.75 65.840 42.60 2.35 0.497 

180 70 2534 0.75 69.827 49.65 2.01 0.644 

181 25 1240 0.8 96.753 9.17 10.91 0.041 

182 30 1414 0.8 97.637 11.56 8.65 0.077 

183 35 1606 0.8 93.113 17.40 5.75 0.122 

184 40 1820 0.8 78.011 32.16 3.11 0.177 

185 45 2056 0.8 75.797 42.75 2.34 0.248 

186 50 2317 0.8 79.000 50.50 1.98 0.330 

187 30 1240 0.8 87.748 8.90 11.24 0.070 

188 35 1414 0.8 89.969 11.43 8.75 0.119 

189 40 1606 0.8 81.633 18.57 5.39 0.179 

190 45 1820 0.8 76.050 32.76 3.05 0.257 

191 50 2056 0.8 73.624 43.78 2.28 0.354 

192 55 2317 0.8 77.240 50.98 1.96 0.464 

193 35 1240 0.8 78.967 8.58 11.65 0.091 

194 40 1414 0.8 81.031 10.97 9.12 0.146 

195 45 1606 0.8 75.497 18.92 5.28 0.213 

196 50 1820 0.8 72.935 32.73 3.06 0.297 

197 55 2056 0.8 69.984 43.32 2.31 0.395 

198 60 2317 0.8 74.455 50.31 1.99 0.521 

199 40 1240 0.8 71.352 8.20 12.19 0.110 

200 45 1414 0.8 73.936 10.56 9.47 0.174 

201 50 1606 0.8 69.802 19.72 5.07 0.246 

202 55 1820 0.8 69.750 32.47 3.08 0.329 

203 60 2056 0.8 67.256 42.48 2.35 0.430 

204 65 2317 0.8 71.306 50.09 2.00 0.561 

205 45 1240 0.8 63.836 7.91 12.63 0.132 

206 50 1414 0.8 66.489 10.77 9.29 0.204 



186 

 

207 55 1606 0.8 65.861 20.90 4.79 0.274 

208 60 1820 0.8 66.899 32.29 3.10 0.358 

209 65 2056 0.8 66.081 41.92 2.39 0.461 

210 70 2317 0.8 68.167 49.33 2.03 0.595 

211 25 1153 0.85 93.516 8.89 11.25 0.040 

212 30 1313 0.85 95.616 11.15 8.97 0.075 

213 35 1489 0.85 95.198 16.11 6.21 0.119 

214 40 1684 0.85 77.088 30.74 3.25 0.172 

215 45 1898 0.85 74.616 42.96 2.33 0.242 

216 50 2134 0.85 78.198 50.58 1.98 0.323 

217 30 1153 0.85 84.963 8.63 11.58 0.065 

218 35 1313 0.85 88.616 10.97 9.12 0.111 

219 40 1489 0.85 87.384 16.75 5.97 0.169 

220 45 1684 0.85 74.773 31.69 3.16 0.240 

221 50 1898 0.85 71.787 43.69 2.29 0.333 

222 55 2134 0.85 76.315 51.37 1.95 0.445 

223 35 1153 0.85 76.179 8.23 12.15 0.084 

224 40 1313 0.85 80.848 10.52 9.51 0.135 

225 45 1489 0.85 80.381 16.91 5.91 0.201 

226 50 1684 0.85 71.510 31.67 3.16 0.278 

227 55 1898 0.85 68.812 42.79 2.34 0.369 

228 60 2134 0.85 73.189 50.47 1.98 0.486 

229 40 1153 0.85 68.678 7.86 12.72 0.102 

230 45 1313 0.85 72.967 10.15 9.85 0.161 

231 50 1489 0.85 71.957 17.92 5.58 0.232 

232 55 1684 0.85 68.842 31.64 3.16 0.309 

233 60 1898 0.85 66.331 42.29 2.36 0.402 

234 65 2134 0.85 70.621 49.59 2.02 0.522 

235 45 1153 0.85 61.671 7.54 13.26 0.121 

236 50 1313 0.85 65.230 10.18 9.83 0.190 

237 55 1489 0.85 65.138 19.26 5.19 0.259 

238 60 1684 0.85 66.422 31.74 3.15 0.335 

239 65 1898 0.85 64.081 41.87 2.39 0.430 

240 70 2134 0.85 67.700 49.41 2.02 0.554 

241 25 1078 0.9 90.741 8.72 11.47 0.039 



187 

 

242 30 1225 0.9 91.655 10.78 9.28 0.073 

243 35 1388 0.9 93.767 15.24 6.56 0.118 

244 40 1566 0.9 76.530 29.82 3.35 0.169 

245 45 1762 0.9 73.482 43.39 2.30 0.237 

246 50 1976 0.9 77.784 51.07 1.96 0.318 

247 30 1078 0.9 82.166 8.44 11.85 0.061 

248 35 1225 0.9 84.557 10.55 9.48 0.104 

249 40 1388 0.9 88.556 15.94 6.28 0.160 

250 45 1566 0.9 73.608 30.77 3.25 0.225 

251 50 1762 0.9 70.923 43.73 2.29 0.313 

252 55 1976 0.9 75.804 51.71 1.93 0.418 

253 35 1078 0.9 74.821 8.01 12.48 0.079 

254 40 1225 0.9 76.591 10.12 9.88 0.126 

255 45 1388 0.9 82.150 15.91 6.29 0.190 

256 50 1566 0.9 70.850 30.74 3.25 0.261 

257 55 1762 0.9 68.185 43.18 2.32 0.347 

258 60 1976 0.9 72.139 50.96 1.96 0.456 

259 40 1078 0.9 67.327 7.69 13.01 0.095 

260 45 1225 0.9 69.175 9.80 10.21 0.150 

261 50 1388 0.9 74.055 16.70 5.99 0.219 

262 55 1566 0.9 68.244 30.89 3.24 0.290 

263 60 1762 0.9 65.106 42.82 2.34 0.377 

264 65 1976 0.9 69.696 50.50 1.98 0.489 

265 45 1078 0.9 59.415 7.42 13.48 0.113 

266 50 1225 0.9 61.649 9.78 10.23                     0.178 

267 55 1388 0.9 66.072 18.19 5.50 0.244 

268 60 1566 0.9 65.859 31.22 3.20 0.315 

269 65 1762 0.9 63.235 42.43 2.36 0.404 

270 70 1976 0.9 67.135 49.57 2.02 0.519 

 


