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Abstract

The warm vaporized solveninjection process has been proposed as a more
environmentally friendly alternative to stedrased technologies for bitumen recovery.
The process typically involves injecting heated solvent vapor into a horizontal injector; the
solvent condenses and dissggvinto bitumen, while the diluted oleic phase would flow
towards a horizontal producer. An optimization process is important because of its potential
reduction of solvent loss to the reservoir and energy requirements while maximizing
bitumen recovery. Here, this research proposes a workflow for optimizing the multiple
conflicting performance objectives associated with the warm vaporized solvent injection
process. Specific considerations phase behavior constraints, multiple realizations of
reservoir hetemgeneity, and computational efficiency are considered. It is expected that
this workflow can be readily integrated into the design and deemsaking processes in

reservoir management, especially where multiple geostatistical realizations are involved.

Apart from performing automated optimization and quantification of geological
uncertainties and requiring lower computational effort compared to reservoir simulation,
datadriven models offer better accuracy than samalytical or proxy models based on

Butler 6 s equati on. Hence, t his t hesi-tene al s o p
forecasting, uncertainty assessment of SAGD profiles, and optimization of steam allocation

using a real SAGD dataset which includes operational data, geological, and well design
parameters. The workflow includes the development of a predictive model using the

random forest algorithm, and clustering, Bayesian updating, Monte Carlo sampling, and



iii
genetic algorithm for the redéiime prediction of SAGD injection and production dataisTh
workflow can update predictions in reahe, perform uncertainty quantification of the

forecasts, and optimize steam allocation, making it a practical tool for development

planning and fielewide optimization.
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Introduction

Mosto f Canadads oil sands are | ocated in Wester

Saskatchewarand the heavy oil/bitumersourcesan be produced through#itu thermal and/or
solventbased method®ue to the high viscosity of bitumen, theal and solvent based methods

are implemented to lighten bitumen viscosity through heat transfer (in the form of steam or hot
water injection) and/or mass transfer (injection of light hydrocarbon solventstmndioxide).

The most commorthermal extragon techniqueis steamassisted gravity drainage (SAGD)
method whichinvolves the injection of higlguality steam into the reservoir to thermally mobilize
viscous heavy oil or bitumeithe recent challenges that are associated with SAGD include high
operding costs, technical constraints, water consumption, and greenhouse gas (GHG) emissions,
hence nofthermal methods (e.g., solvemtled recovery processes) have been proposed as

promising alternatives.

Solventbased and steasolvent hybrid methods oftarilize a similar weHpair configuration as
the SAGD process. For examplee warmVapor Extraction VAPEX) process, which involves
the injection of vaporized solvent between the dew point to superheated condisois such
that it can dissolve intthe bitumenCompared to the SAGD, solvebasedechniques usually
costmore to operate, hence the need for optimization of the pertinent operational constnagnts
techniques such as the genetic algori(@a)., however, one of itemitationsis slow computation

time.

This researchfocuses on three major workflows which consists of: (1)multi-objective

optimization ofthe warm VAPEX process assuming homogeneous resevidi considering



phase behavior constrain{®) is an exparnsn of (1) to considea heterogenous reservoir; (3)
reaktime forecasting and optimization of reabrld SAGD injection and production da{@) and
(2) are performed using the Nalominated Sorting Genetic Algorithm Il (NSGA proposed by

Deb et al. (R00). Chapter 3 elaboratesdproblem statement and objectiveshis research

A practical workflow for optimizing various design variables associated with selbzessd
bitumen recovery processes is importahterefore,a workflow, which optimizesmultiple
conflicting objective functions fahe warm VAPEX process assuming homogeneous resgis/oir
proposed in Chapter. Fhe addition of noitondensable gas (methane) into the solvent (propane)
is examined. Theesign variablearepropane mole fractionnjection pressure and temperature
and the bjective functions(i.e., oil recovery factor, solvent retainéd-oil ratio, and energy
consumptiof, are definedThe workflow combines experimental design, proxy modeling through
the artificial neural network (ANN), and NSGIAto estimate the optimal decision variables. The
ANN technique is incorporated treduce the computahal costs associated with reservoir
simulations. Specific considerations includinghase behavioconstraints and computational
efficiency are examined and incorporated. It is anticipated that this workflow can be readily

integrated into the design andaisionrmaking processes in reservoir management.

Chapter 5elaborateson a robustmulti-objective optimization workflowsimilar to the one in
Chapter 4butfor a more practical scenario of the warm VAPEX progegslving geostatistical
realizations ofreservoir heterogeneitie$o account for geologic uncertainty, a separate proxy
model is constructed for each realization, and for each objective function, the minimum, the
weighted mean, and the maximum over these realizations are considered. Theedeygbopach

can identify a set of optimal design variables in a computationally efficient maisepresence



of shale baffles or barriers can affect the performance of the warm vaporized solvent injection

process.

In Chapter 6 a novel algorithm forreattime forecastingand optimization(based on the Net
Present Value (NPVYf SAGD processs proposedThismachine learninframeworkcan update
predictions in reatime, be applied for the quantification of the uncertainties associated with the
foreaasts, and optimize steam allocation, making it a practical tool for development planning and

field-wide optimization.

Sincethis is a papebased thesi€haptes 4, 5, and @onsistof literature reviewandsummary

Chapter 7 highlights thgeneral conclsions and recommendatiofiem this work.



Chapter 2 Problem Statement and Research Objectives

For slventbased bitumen extraction processémdeoffs exist betweenits performance
objectivessuch(e.g., solvent loss, recovery factor, energguirement)thereforerequiring the
multi-objective optimizatioMOOQO) framework Also, it is imperative to incorporatthe phase
behaviofthermodynamic propertiesf noncondensable gaseis a MOO problem sinc¢hese
gasesare usually present insolvens. Usually, $nce it is impossible to determine thectual
distribution of reservoirheterogeneities reservoir models are represented with multiple
realizationsof propertieqe.g.,low-case, miecaseand highcase) usingtochastic method3he
uncertain distribution of theeservoir properties can makeptimization to be challenging,
therefore theoptimal solutiongnay be identified byconsidering avorstcasescenario best case
scenario or simply by finding the averagé a performance objective ovéne realizations
However, theprocess of determining tlogtimal decision variables using reservoindelingand
sensitivity analysisis computationally inefficient and less effective, hence rieedfor the

integration ofdatadriven or machine learning (ML) technique.

Also, aML -basedapproactfor reattime forecastinguncertainty quantificatioand optimization
of the SAGD methodwhile considering operational anéservoir uncertaintis uncommon, and
the use ofeal fielddatafor this datadriven approachs not in public domainAlthough, sem
analytical models (Dehdari and Dong, 2017) have bpmposed forSAGD production
forecasting, they have not been widely adojechuse of the difficulty in integratirggperational

data into the models



Therefore, the objective of this research is to creMe dasedvorkflow thatincludesnumerical
reservoir modeling, proxy modeling andParetebasedviOO algorithmfor the optimization ofa
solventbased proces#anothe datadrivenworkflow which usesctualfield dataset for dynamic
forecasting, uncertainty quantification, and optimization of steam allocation during SAGD

operationis also proposed



Chapter 3 Methodology

Several techniques exish searcing for the optimal decision variabléor a constrained
optimization problemwhich may be expresed in terms of minimizing or maximizimglaective
functionf(x) of decision vector = (0w, ®, én )whose valuefimited to the bounde

0w W ,andare constrainetb meet aset ofconstraints includingquality’Q ® mand
inequality constraint2 w 1= However, an optimization problem may be expressed such that
there are no constrgs andno bounddor x, andthis is referred to an unconstrained optimization

problem

Optimization problems caalso be categorized based»nf(x), Q w and™Q & . For example,
singlevariableand multivariableproblens areunconstrained problesrwith onedimensionalx
and multidimensionak respectively An ogimization problem comprising of a line® w and
"Q w, andnonlinear’ Q w and"Q w are linearly constrained and nbtnearly constrained
optimization problems respectively. For the linearly constrained problefs) a@fre linear anc
are continous variables, such problems are called linear pragkamasn-linearly constrained
optimizationproblem with anontlinear obective function may be referred to asanlinearly
constrained notinear programThe proposed workflows in Chapters 4 ancbhsist of a multi

variable, multiobjective, nodinearly constrained nelinear program.

To find the solutions for anptimization problem, several algorithms exist. These algorithms or
heuristics can be gradiebasede.g.gradient descenstochastic gradient descgriessiarbased
(e.gNewt on 6 s QuasiNtehmt do n 6 s Manre ¢ Un anettjod ét, or algorithms \ith

non-differentiable objective functions (e.gimulated annealing, particlevarm optimization



differential evolution, geneti@lgorithm, etc). The genetic algorithmis implemaited in this
researcldue to its advantageasich asability to do a globalsearchresistance to being trapped in
local optima (Sivanandam and Deepa, 2008pacity to handle noisy objective functions, use of
function evaluations instead of derivatiy@&ittencourt and Horne, 19973tc. The algorithm is

explained below.

3.1.Genetic Algorithm

The genetic algorithnfGA) is an optimization technique inspired by natural evolutighich
operates based on a populution of artificial chromosomes or solutions, where each chromosome
has a fitnes value or objection function, which is a measure ofjtiadity of the solutios to an
optimization problemThe GA begins by randomly creating a populatidhen the process of
selectionwhich isbasdon the fitness function, and recombination is p@nfed b producea new
generation opopulation Usually selection is done with replacement with highty fit chromesom
having the possibility of being selected more than oBgamples of selection methods include

Roulette Wheeltournament, random stochastic and truncation selection.

Recombinatiorconsists of two probabilistic genetic operators which are crossover and mutation.
The crossover opergin involves the genetic mixing of two patechromosomes selectead
produce offpring chromosomes. The execution of the crossover operator is dependant on
random number between 0 andahich is generated based onraform probability distribution

This number ixomparedo a predetermined crossover rate, and if this is greatergrossover

occurs. A crossover operator is appligden the random number is less than or equal to the



crossover rateOnepoint, multrpoint and uniform crossover are common crossover operations.
The nutationis performed after crossover and tbgerdion is applied to one parent chromosome

by flipping one or more allel@he value occuring at a position in a chromosombg decision on
whether to perform mutation is similar to crossover (i.e. based on a comparision between a pre
determined rate to a random numb&ice mutation rates are usually small, it is less likely for it

to occur.

The process of selection andoenbination is performed iteratively and a sequence of successor
generationf a populationare created with decrease oincrease in the fitness vakief the
chromosomesiepending on whether the optimization is a minimization ot maximization problem,

until a stopping criterion is met.

For multiobjective optimization problemsariant of the GA, such as then-Dominated Sorting

Genetic Algorithm (NSGA) can be used.

3.2. Data-Driven Modeling Concepts

As previously discussed, the determination ofraptdecision variablessing GAis based otthe
minimization or maximization of a fitness or objective function. For petroleum engineering
problems, objective functions can be reservoir models, however, since these functions are
evaluated for eacthromosome in a populatipand reservoir simulatiomsay take several hours

or days to complete, the solution of such problems may require huge computional footprint and lot



of time.Hencemakingdatadriven or machine learning (ML) techniques to becie. The ML-

based objective functions ansuallyrefered to as proxy models.

Machine learnings the use of statisticainathematical toolsr heuristics coupled withdomain
knowledgeto model aphysicalsystemof interest ML algorithms arecategorized asupervised
(e.g.,linearregressionfandomforestalgorithm artificial neural networKANN), support vector
machinesetc), unsupervisedK-means hierarchical clusteringprincipal component analysis
(PCA), etc.)and reinforcement leaimg. To develop a datdriven modelthree sets of data are
required, which are: training set, test set and validation set. The trainingsgtias/edfor model
training and thevalidationsetprovides an unbiased assessment of the model performamug
training,which sometimes triggers the termination of the training process. The test set is required
to perform an unbiased evaluation of the model at the end of the training process. Usually, the
training set take a larger proportion of #@iredatasebr observationsompared to the test and
validation set A subset of a particular observation fed into the modeéfisrred to as input
variablesor predictors, while thexpected output (in the case of supervised learning) is called a
target variableTherefore, m supervised learning, there is a functional mapping frorpriggictors

to the target variablesUnsupervised learninglgorithms do notrequire target variablesin



10

reinforcement learning, an agent learns from interaction wstlentzironment through different

trial and error techniques in order to maximize a reward function.

The datadriven methods that are employed in this research inéltid& random forest algorithm,

PCA andK-means clustering.

3.2.1. Artificial Neural Network

Theartificial neural networkANN) is created to mimic a biological neuron by accepting signals

(inputs)from neighbouring neurons and processing them. Based on the results of the processing,

a neurorcandecide whether to fire an output signal or.ribthe output signal is triggered, it may
eitherbeO or 1, orreal value between 0 andAn ANN architectire typicallyconsists of an input
vectovlayer, one or more hidden layers, and an output laybe processing process is

implemented by feedingn input vectoiX into each neuronand the output is calculated based on

the functiong(f(x)). f(x)is a linear combination of the elementsi(i.e. w; [ = Jwith 2 é .

the weights)  andor biasb, andg is a nonlinear transfer function foi(x) to the output valua

in the hidden layerTo calculate the output for a successor hidden layer,fed andg(f(@)) is

implemented until the final output valydi.e., the output from the output layés)obtained.
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Input vector —

Input Layer Hidden Layer Qutput Layer
Figure 3-1: ANN Architecture

The weights areipdatedthrough a backpropagation algorithmhich includesan optimization
frameworkwhere theerrorbetween the actual target values and model predictiogstfie Mean

Squarel error, MSE)is minimized after several batches of training.

3.2.2. Random Forest Agorithm

Therandomforest algorithms an ensembliarningmethod whichcombinespredictiors from
decisiontreesfor better predictive accuracyhe algorithm uses bootstrap aggregation or bagging,
which is a random sampling with replacement that redieevariance of decision trees. The
bootstrapped dataset the same size as the original dataseid é&pending on the number of
decision treesnultiple treesare trainegdand the average otitputsfrom thetrees is the predicted
output.Compared to ANN, the random modeling technique has less computational footprint, with

fewer tuning parameters (Muhammad et. al., 2017)
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3.2.3. Principal Component Analysis

Principal component analysis (PCpgrformsdimensimality reductiorfor a dataetby projecting
it to a lower dimension spadeor the inputdataX of dimensionmxn (n = number of variablesn

= number of samplesy meanadjusted datd (of dimensiormxn) is calculated by subtracting the
meanof variable® (j= 1, )foéeachofitsdatapointd (i = 1 )to dirbinate bias
Next, usinga singular value decomposition (SVI@chnique the eigenvectors (oprincipal

components) odnxn covaiance matrixof Z. The covariancenatrix, is computed thus

P v
i o W wh (1)

3.2.4. Kmeans Clustering

K-means is a&aommoncluster analysisnethodfor recommendr systems, anomaly detection,
reservoir characterizatipnetc. Other clustering algorithms includdensity-based scan and
hierarchical clustering. Hneans identifies internal groupings within data by grouping
observationsor samplesinto k-clusters based on similarities data and ameasure of this
similarity is thesquared Euclideadistance Cluster assignmerdf the observations performed
by minimizingthe mearsquared Euclidean distanddrom each observation to its nearelsister

centroid.

2)
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Where' s thej-th cluster centroidp " is 1 if the observationy is assigned to clusté®

otherwisep h is0.

A limitation of K-means isits sensitivty to the initialization of the cluster centroids, henae
common practice is to repeat random initialization of centroids and clustering until optimal
groupingis obtained.To measure the performance of a clustering process, the silhouette value
which meaures the similarity between an observation and its cluster compared to other clusters,
is usedThe silhouette value has an interval-df, [1]; a value close td means that an observation

is misclassified while a value close to 1 means that an obserisicloser to other observations
within its cluster compared to the remaining samples in the dataset. A value of 0 suggests that a

sample can belong to more than cluster.

3.3. Uncertainty Quantification

In the absence of realorld datauncertaintyassessmernis criticalto the analysigrediction,and
optimization of physical systemand acommon source athis uncertainty is data uncertainty
Data uncertaintynay occurin form of a random variabl@ which theaccuracy of a distribution

is dependent otheamount of available datar from measurement erraor whendata exists as a
range of values (Mahadevan and Sarkar, 2008¢ertainty in data can also come freabjective
interpretationof geologic properés Bootstrapping and the Monte Carlo method are some of the
widely adopted techniques for uncertainty analysis. For this researdfiptite Carlosampling
methodis employedas itis used tgredictthe possible outcomes of an uncertain event through

therandom samplingf afinite number of realizationsvhich is based on a probability distribution
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The application of the Monte Carlo sampling can be found in literatures such as Bieker et. al.,
(20069, Al-Mudhafar and Rao (2016) and Mehana et al. (200jhis work the probability
distribution for sampling isleterminedusingthe BayesiarapproachRussell and Norvig, 2016)

The Bayemn theoremis a posterior probability estimation method éstmatingthe likelihood

of an event based on apridata Given events A and Bhé Bgesian theoreman beexpressed

as:

. 00D 00 .
V6P ?6 n <

whereP(A|B) is the conditional of A given the occurrence oPRA) and P(B) ar¢he probabilites
of A and B respectivelyrrespective of any othevent andP(B|A)is the conditional of B given

the occurrence of A2(A|B)is posterior probability anB(A)is prior probability.
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Chapter 4 Incorporating Phase Behavior Constraints in
Multi -Objective Optimization of Warm Vaporized

Solvent Injection Process

Abstract

The warm aporized solvent injection process has been proposed as a more environmentally
friendly alternative to steaibased technologies for bitumen recovery. The process typically
involves injecting heated solvent vapor into a horizontal injector; the solvenerses and
dissolves into bitumen, while the diluted oleic phase would flow towards a horizontal producer.
Despite the promising results reported from several pilot projects near Fort McKay, Alberta,
successful commerciaicale extraction is costly and wdulequire a detailed optimization of the
pertinent design variables. The main challenge is that this is aghjdtitive optimization (MOO)
problem, which aims to balance the traufts between conflicting performance objectives while
honoring the variousperational constraints. In this study, a systematic workflow is formulated to
optimize these multiple conflicting performance objectives considering phase behavior

constraints.

A 2D synthetic model based on typical Athabasca oil sands properties isucttsto simulate

the warm vaporized solvent process. The addition ofauonlensable gas (methane) into the
solvent (propane) is examined. The resultant changes in thermodynamic properties and
equilibrium phase behavior are considered in determiningpthetical limits of the decision

variables (e.g., bottorhole injection pressure and temperature). The objective functions,
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including oil recovery factor, solvent retaintmoil ratio, and energy consumption, are defined,

and a factorial experimental dgsiis employed to identify a subset of decision variables that
exhibit minimal redundancy internally and create the dataset for proxy model development. To
reduce the computational costs associated with reservoir simulations, proxy models, e.g., the
artificial neural network (ANN), is developed and applied. Finally, a Pé#aeted MOO scheme

is implemented to estimate the optimal decision variables

Despite the higher frorgnd loading requirement of the ANN proxy modeling, the MOO with
proxy modeling stllrequires significantly less execution/running time as compared to a MOO
with traditional flow simulation (e. g., a 97% reduction in CPU time). This reduced running time
is important for alleviating the computational load when evaluating the objectietoiusduring

the optimization process. More importantly, this optimization scheme is capable of identifying a

set of optimal decision variables.

This work presents a practical workflow for optimizing various design variables associated with
many solvenbased bitumen recovery processes. Specific considerations including the practical
limits for operating constraints and computational efficiency are examined and incorporated. It is
anticipated that this workflow can be readily integrated into the desigrdecidionmaking

processes in reservoir management.
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4.1. Introduction

A vast majority of Canadads oil sands are | oc
Alberta and Saskatchewan. According to the Alberta Energy Regulator (2019), close to 80% of

Al bertads heavy oil r e s e-situ ehermacaadror sbhenbgsedo d u c e ¢
methods. Due to their high viscosity and specific gravity, heavy oil and bitumen enhanced oil
recovery schemes are employed to reduce the oil viscosity through heat (in the form of steam or

hot water injection) and/or mass transiajection of light hydrocarbon solvents).

Popular thermal extraction techniques are staasnsted gravity drainage (SAGD) and cyclic
steam stimulation (CSS). Current challenges associated with these techniques include high
operating costs, technical corashts, operational safety concerns, water consumption, and
greenhouse gas (GHG) emissions. Nleermal methods (e.g., solvemased processes) have been
proposed as promising alternatives. These solvaséd (with or without steam) techniques can

potentally offer the following benefits (Zhang et al., 2019a):

1 Injecting pure solvent is suitable for thin reservoirs where heat loss from steam is

substantial.

1 Water treatment cost is lower for solvdrased methods (less or no steam is needed).

1 Limited solventsolubility in water renders these solwdrsised processes to be more

effective in reservoirs underlain by a bottom water zone.
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1 Heat requirement is lower in the pure solvent injection method in contrast to the steam
based method since for most light hydrdmon solvents, the dew point temperature at

reservoir pressure is usually much lower than the steam temperature.

Therefore, many simulations, laboratory, and field studies involving the sdlasat and steam
solvent hybrid methods have been presentadleB and Mokrys (1991) proposed the vapor
extraction (VAPEX) method, which utilizes a similar well configuration as in SAGD. This process
involves the injection of a pure vaporized solvent to reduce the bitumen viscosity. Many previous
simulation studiebave concluded that the production rate from VAPEX is usually too low because
the solvent diffusion rate is too low (Shi and Leung, 2014a, b). A modification of VAPEX is the
warm vaporized solvent (warm VAPEX) method. Warm VAPEX or the patent&bli®
technique (Nenniger and Nenniger, 2001) involves the injection of a heated solvent vapor close to
dew point conditions, allowing the solvent to condense and dissolve once in contact with the in
situ cold bitumen. The solvent is produced with the bitumen,gbparated, and +igjected into

the reservoir. The mechanisms for viscosity reduction in warm VAPEX are solvent diffusion,
solvent dispersion, and heat transfer. Additional heat transfer to the bitumen is achieved through
the release of latent heat aftmmdensation (Nenniger and Dunn, 2008). TREdW® process,

which is a variant of the warm VAPEX method, involves the injection of a pure heated vaporized
solvent, such as propanesfCand pilot test results conducted near Fort McKay, Alberta, have
proven the effectiveness of this technique for commerstale bitumen extraction (Nenniger and
Dunn, 2008). Other simulation studies, such as the-teigiperature multicomponent solvent

vapor extraction (HTMS/APEX) and Azeotropic HTMS/APEX (AHTMS-VAPEX) processes
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developed by Khaledi et al. (2018), also demonstrated that it is possible to leverage the benefits of

solvent dilution with effective heat transfer for achieving optimal recovery.

Despite the successful implementation eSblv® at the pilot scaland, to some extent, the field
scale (Emissions Reduction Alberta, 2016), commesaale extraction still requires detailed
optimization of the pertinent decision variables. The first challenge is that this is @ettiive
optimization (MOO) problemwhich aims to balance the trad#s between multiple conflicting
performance objectives while considering operational constraints. Secondly, the commercial
supply of light hydrocarbon solvents usually has ab®@0% hydrocarbon impurities and non
condasable gases, such as methang; {@ncondensable gases may also be added to the solvent
mixture to delay liquid condensation in the solvent chamber (Das, 2008). However, solvent
mixtures usually partition into separate phases (oleic and vapor) insideltent chamber due to
variation in solubility for different components (Das, 2008; Zhang et al., 2019a). Lighter
components (e.@ 1) may accumulate near the top of the reservoir, providing a thermal barrier to
the overburden heat loss, but it may deoinhibiting the chamber from propagating vertically
(Das, 2008; Ma and Leung (2020a); heavier componentsGg.tend to stay in the oleic phase

in the extracted chamber. Apart from reducing the gravity drainage potential (due to density
differences beveen the vapor and liquid phases) for the mobilization of bitumen (Das, 2008), the
accumulation of liquidCz also leads to solvent retention in the reservoir. Hence, the performance
of the warm VAPEX process is contingent on the amount ofcomaensablgas. Thirdly, for a

given solvent concentration and pressure, solvent solubility reduces with increasing temperature;
injection at superheated conditions may hinder liquid condensation at the dwtuemn

interface, with a negative impact on solventfuifon and viscosity reduction. However,
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superheated solvents also provide more thermal energy for viscosity reduction. The net effect of
solvent composition and injection conditions on bitumen recovery and solvent retention is a
complex function of the duinant ratecontrolling step (diffusion or heat transfer) and the extent

of solvent partitioning (condensation) inside the vapor chamber behind the chamber interface. In
the end, conducting a simple sensitivity analysis, where one or two variables adeataxitime,

to identify the optimal solvent concentration, bottbole injection temperature, and pressure is

not feasible. A MOO strategy, which involves all possible combinations of the decision
parameters, is necessary to assess the-tféglbetweermultiple conflicting objectives and the

complex interplay between these decision parameters

Three distinct objective functions, including oil recovery, solvent loss, and energy requirement,
are considered in this study. Solvent type, solvent concemtrabottomhole injection
temperature, bottorhole injection pressure, reservoir heterogeneity, well configuration, and pre
heating period are factors that can influence the performance of the process. In most optimization
studies, a single objective funmti is defined; for example, Abosayir et al. (2013) applied a
hybrid genetic algorithm technique in the optimization of the steaersolvent injection process

in fractured reservoirs (SGER), where the Money Recovery Factor (MRF) combining the
cumulatve steam/solvent injection and production and oil production, was defined. In other cases,
a MOO problem can be formulated as a single objective optimization (SOO) problem by
aggregating all the objectives into one weighted objective function or by clhyaalgiout one of

the objectives into constraints. The limitation, however, is that the-tffsldetween objectives
cannot be easily evaluated when aggregated functions are used. Also, it may be impossible to find

an optimal solution if the search spasenbrconvex (Ngatchou et al., 2005). For instances in
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which there are more than three objective functions, several objective functions can be grouped
considering the tradeffs among them, reducing the total objective function count (Hutahaean et

al., 20T7).

Solving a MOO problem entails searching for an optimal set of solutions along the é{zneial

front. Common MOO techniques include Vector Evaluated Genetic Algorithm (VEGA) (Schaffer,
1985), Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 19%Reference Vector
Evolutionary Algorithm (RVEA) (Cheng et al., 2016), and M«@ibjective Genetic Algorithm
(MOGA) (Fonseca and Fleming, 2011). Other widely adopted MOOs are elitist@hj#ictive
Evolutionary Algorithms (MOEAs) such as Naominated Sding Genetic Algorithral
(NSGA-II) (Deb et al., 2000), Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele,
1998), and the Paretdrchived Evolution Strategy (PAES) (Knowles and Corne, 1999). Many
studies have utilized MOO workflows in van® enhanced oil recovery (EOR), reservoir
modeling, and well placement applications. For example, Hamdi et al. (2018) proposed a MOO
approach which is based on the sequential Gaussian process to history match pressure, gas, oil,
and water production rat&®m a tight reservoir, while RVEA was implemented to history match
the production data for a refi¢ld reservoir model considering more than three objective functions

in Hutahaean et al. (2016). Also, an ensenrfislsed MOO was applied to the optimizatdtong

and shorterm water flooding in Fonseca et al. (2014), and Min et al. (2014) compared a number
of MOO algorithms for production history matching. Proposed by Deb et al. (2000), the-NSGA
I, which is a variant of the genetic algorithm (GA), firalgiverse set of optimal solutions along

a Pareto front by using a nolominated sortingapproachand an elitisbased techniquen

contrast to PAES and SPEA, the NS@As more efficient with a computational complexity©f
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(MN?), whereN is the population size arM is the number of objectives (Deb et al., 2000). Zhang
et al. (2019b) developed a hybrid NS@Avorkflow to history match and optimize an alkakne
surfactanipolymer (ASP) flooding process, where two objectives, includingembvery and
chemical usage, were considered. The NSG#th a similarity-based selection method was used
to optimize the placement of a nwartical well (Rostamian et al., 2019), where the net present
value (NPV) and oil recovery factor are incorporaasdhe objective functions. (Ma and Leung
(2020a) applied a Paretiased multiobjective optimization (i.e., NSGA) for the design of a
warm solvent injection process. In that work, only pOs&vas injected, and the gnjection with

other norcondenshle gases was not explored

The objectives of this study include the following: (1) developing a base simulation model to
examine the influence @ co-injection withCs, bottomhole injection pressure, and temperature

on the performance of the warm VAPEXocess; (2) performing an experimental design to
identify relevant decision variables and sampling a set of training/ testing data that can be used for
constructing various proxy models of the objective functions; (3) integrate an artificial neural
netwak (ANN) proxy modeling technique with MOO (NSGIA to reduce the computational

costs of physickased (simulation) models when the evaluating objective function values; (4)
identifying a set of Paretoptimal decision variables for a MOO problem inclgl®s loss, oll
recovery factor, and injected enthalpy. Although incorporating an economic objective function
(e.g., Net Present Value, NPV), into the optimization framework could be useful; however, due to
the uncertainties in the NPV calculations (mar&enditions and company policies), a single
aggregated economic function is not considered here. Besides, the three individual objective

functions are the key economic drivers for most solvent projects. The MOO framework would
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facilitate the examination dhe tradeoffs that may exist among these objectives. However, the
inclusion of an economic objective function may be considered in future work. GHG emissions
are often quantified by measuring the amount of GHGs produced at the surface: e.g., combustion
of fuel gas to generate steam, thermal energy and power consumption, or while flaring gas.
However, one of the limitations of this study is that those surface facilities are not incorporated in
workflow, and only subsurface conditions and recovery performame captured. Therefore,
explicit quantification of GHG emission in the MOO workflow is not considered. Although there
are some potential sources of GHG emissions for seha&sed technologies, including flaring of
solution gas and solvent, and consuompbf fuel gas for solvent heating, it is widely expected
that the GHG emissions associated with sohNm#ed techniques would be lower than those from
traditional steanbased methods, and that is due to the overall lower operating temperatures
(usuallybetween 7 and 9%C), in comparison to typical steam injection at approximately°230

(Emissions Reduction Alberta, 2016).

The NSGAII MOO algorithm is employed not only because of its common applicability but for

its computational efficiency and elit@pproach for selecting the optimal solutions. There are three
particular contributions from this work. First, a novel parameterization scheme is devised to
represent the interdependency among the three decision variables, ensuring that the injection
condiions are either at the dew point or within a particular window of superheating. This scheme
facilitates crucial phase behavior constraints to be directly incorporated into the MOO framework,
which is a particularly significant consideration in most EORliegfions. Secondly, the results

offer important insights about the optimal operating strategies for the warm vaporized solvent

injection process, where complex physical mechanisms including mass and heat transfer are
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involved. The MOO workflow can reveslubtle patterns in the decision variables that are not
necessarily detectable based on traditional analyses. Thirdly, although some commercial
simulation packages have a buitoptimization module that can perform a variety of sensitivity
analysis, proxymodeling, and muklobjective function optimization, usually, a user is offered
limited flexibility in terms of the problem formulation; for example, only Particle Swarm
Optimization (PSO) algorithm can be used, and the number of objective functions tmaitdd.
Besides, the interdependency of the three decision variables cannot be explicitly incorporated.
Therefore, there is a need to formulate a more flexible framework using other widely adopted and

robust MOO algorithms, such as NS@GA

4.2. Methodblogy

4.2.1 Reservoir Model Description

A synthetic 2D, IK Cartesian, single porospggrmeability homogenous reservoir model, with
reservoir dimensions of 35 x 20 x 32 m is built using a fully implicit thexwoaipositional
reservoir simulatorS TARS E ( C M5 Reséwirln®odel properties representative of the
Athabasca oil sands are assigned (Ma and Leung (2020a, b, c). The simulation is run for 15 years
(5448 days) and arhonth preheating period is imposed. A summary of the model inpatiewen

in Table 41.

Table 4-1: Base model properties for warm VAPEX process
Description Parameters Input

Grid properties Dimension of reservoir (m) 35x20x 32



Permeability for the | direction
(mD)

Permeability for the J direction
(mD)

Permeability for the K direction
(mD)

Porosity (%)
Reference depth (m)
Reservoir pressure (kPa)
Reservoir temperature (°C)

Initial conditions Average initial water saturation

(%)
Molar concentration of

dissolved C1 (mole %)

Components Names

Bitumen viscosity at 15°C and

101.325 kPa (cP)

Rock wettability

Rock/Fluid properties
Model for evaluating 3-phase

kro
Relative permeability end
points
Injector bottom-hole pressure

Well-pair constraints
(kPa)

25

2500

2500

1500

32
200
500

10

13

Bitumen, Propane (CzHs),

Methane (CH4), Water (H20)

562204

Water wet (capillary pressure

ignored)
Stoneods

secor

Kw = 079, krow = 095, krg =

0.50, kw = 0.95

1719
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Producer bottom-hole
1519
pressure (kPa)

Injection temperature (°C) 50

Fig. 4-1 shows the model configuration. Only ehalf of the reservoir domain is constructed,
assuming symmetric propagation of the solvent chamber. Moreover, a simpleisradatedo
improve simulation speed so that multiple case scenarios can be develdpexuhtlyfffor

sensitivity studies and proxy modeling

5=
ko
f
i”

Figure 4-1: lllustration of the simulation domain.

4.2.2 Grid Size, Molecular Diffusion, and Mechanical Dispersivity Sensitivity

To investigate the imgrt of numerical dispersion only (without molecular diffusion and
mechanical dispersivity) on model performance, three grid sizes were examined. For the 1 m x 20

m x 1 m (base case), 0.667 m x 20 m x 0.667 m, and 0.5 m x 20 m x 0.5 m, the total computing
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time are approximately 5 minutes, 20 minutes, and 30 minutes, respectively using a personal

computer with 16.0 GB installed RAM and Intel(R) Core i7 processor

Figs. 4-2 to 4-4 show that model response is sensitive to grid size. In 48.the solvent
sauration, oil saturation, gaseous phaserle fraction, and gas saturation for each grid size are

presented. Solvent saturation is given as

Solvent saturation &Y «f , (1)

where"Y is oil saturationaf is the solvent volume fraction (assuming additivity), which is

expressed as

o - .‘ : — 8 )

0 is the molecular weight of oil)  is the molecular weight of solverit, and” are the

oil and solvent densities, respectively, and is the oil mole fraction.

From Figs4-3 and4-4, it is noted that as the grid size is reduced beyond 0.667 m, any changes in
oil recovery factor, enthalpy, cumulative @jected, and cumulativez@roduced are not overly
significant. The grid size of 0.5 m x 20 m x 0.5 m could not be reduced any further due to wellbore

instability error (wellbore diameter is comparable to the gizd).

To assess the influence of grid sizes, molecular diffusion, and mechanical dispersivity on
numerical and physical dispersion, a sensitivity analysis is performed, and the results are

summarzed inTable4-2. Three different grid sizes, as well agigas combinations of molecular
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diffusion and mechanical dispersivity, are tested. All the values tested are within the ranges that
were reported in Das and Butler (1996) and Perkins and Johnston. (L9é3gsults in Tablé-2

also indicate that oil resery may vary by 15% for the ranges of molecular diffusion and
mechanical dispersivity tested. Therefore, in the end, values of 2.0Bm%dhy and 4.32 x 19

m are assigned for diffusion coefficient and dispersion, respectively; this choice isesansitt

other values reported in the literature (Ji, 2014). As for the grid size, in order to minimize numerical

dispersion, the finest mesh (0.5 m x 20 m x 0.5 m) is selected
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Figure 4-2: Grid size sensitivity.
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Figure 4-3: Grid size sensitivity. (a) T Oil recovery factor; (b) i Oil rate; (c) i Enthalpy Injected.
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Figure 4-4: Grid size sensitivity. (a) i Cumulative solvent injected; (b) i Cumulative solvent produced.

Table 4-2: Grid size, molecular diffusion, and mechanical dispersivity sensitivity results

Grid Size Molecular Diffusion Mechanical Oil Recovery
Case
(m) (m?/day) Dispersivity (m) Factor (%)
1 0.5 4.32 x 107 2.00 x 10* 32
2 0.5 4.32 x 106 2.00 x 10 32

3 0.5 4.32 x 10°% 2.00 x 10® 46
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4 0.5 432 x 10°% 2.00 x 10° a7
5 0.67 4.32 x 107 2.00 x 10* 30
6 0.67 432 x 106 2.00 x 10* 34
7 0.67 432 x10°% 2.00 x 10® 47
8 0.67 432 x10°% 2.00 x 10° 47
9 1 4.32 x 107 2.00 x 10* 32
10 1 4.32 x 10 2.00 x 10* 33
11 1 4.32 x 10°% 2.00 x 10® a7
12 1 4.32 x 10°% 2.00 x 10° a7

4.2 3. Solvent Phase Behaviour and Fluid Model

Understanding the phase behavior of solvent mixtures is critical to optimizing the warm VAPEX
process. Methane, a carrier gas responsible for sgivepagation towards the chamii@tumen
interface, may impede overburden heat loss and help to increase the dew point pressure of the C
Csz mixture at a particular temperature. However, it also acts as an insulative layer, reducing the
transfer of thermaknergy between the solvent chamber and bitumen, which is detrimental to
bitumen recovery. Itis desirable to inject at a condition close to the dew point to maximize mutual
diffusivity between the bulk bitumen and condensed solvent, as well as thertadniafent heat

of vaporization to the colder bitumen (Nenningad Dunn2008). On the other hand, injecting at
superheated conditions may be beneficial in terms of providing additional thermal energy to
mobilize the bitumen. To illustrate the impactdottomholeinjection temperature and pressure,

the RT relationship is examined for severali@ole fractions using WINPRGP (CMG, 201%).
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Fig. 4-5 shows the F relaionship for a G- Cs binary mixture K-values for the reservoir fluids
are shown imMable4-3. From Fig.4-5, it is evident that an increase in Mole fraction leads to an

increase in dew point pressure at a particular temperd&ituenen viscosity plots shown in Fig.

4-6.

faYaYaYal

50% methane

— 45% methane
S 40% methane
< 35% methane
g 30% methane
? 25% methane
g 20% methane
o 15% methane
10% methane
-150 -100 -50 0 50 100
Temperature (°C)
Figure 4-5: P-T Diagram of a methane-propane binary mixture.
Table 4-3: Fluid model
Propane (C 3Hs) Methane (CH 4) Water (H20)
KV1 (kPa) 9.0085 x 10° 5.45475 x 105 1.1860 x 107
KV4 (°C) -1872.46 -879.84 -3816.44
KV5 (°C) -247.99 -265.99 -227.02

Physically, transport across the gaseous (vaporized solvent) phase and oleic (bitumen) phases is
due to rapid kinetic process@ondensation and evaporation), while transport within each phase

is due to convection and diffusion. The bitumen phase close to the interface becomes mobilized
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where the @ concentration has increased sufficiently. Convection (mainly driven by gravity)
would subsequently remove the mobilized bitumen. A boundary layer is formed, where the
bitumen is mobilized due to solvent diffusion, and the mobilized bitumen is removed, controlling
the equilibration process. In particular, the rates at which these twlsamsms are occurring
(diffusion and convection) would depend on the boundary layer thickness. In the numerical
simulation, both these mechanisms are modeled under the following assumptions: (1) equilibrium
is attained at each grid block; (2) the smallesolution is that of a grid block (i.e., it is not possible

to model a boundary layer thickness less than the grid block size); (3) total dispersion is the

combination of molecular diffusion, mechanical dispersion, and numerical dispersion

1,000,000 1,000,000

100,000 |-

10,000 |-

LTI - \\ :

) — \\ |

188 243 300 101 181 261 kL 420 500
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o
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®
= 100000
o

osity @ 101,325 kPa (cp)

Oil Viseo:

Oil Viscs

10,000

—#— STARS Oil Viscosity, Region 1@ 15 C|

Figure 4-6: Bitumen viscosity model

It should be emphasized that various assumptions have been made (dettlors2.3), and the
primary ones are summarized here: (1) 3D effects are not incorporated; the models used here are
2D along the x plane. (2) Blowdown physics are not considered; it is assumed that any solvent

lost in the reservoir is retained and not recobkera(3) The temperature dependency of relative
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permeability functions is neglected. (4) Reservoir heterogeneity is not examined. It is expected
that reservoir heterogeneity would introduce additional mixing, and the diffusion and dispersion
represented e in the homogeneous model are less than what would have been observed in a
heterogeneous reservoir. However, despite the simplifications, the simulation model does capture
many of the key physical mechanisms relevant to the heat and mass transfeeprdtesmodel

is also able to provide both qualitative and quantitative information about the effectcof C
injection with G on bitumen recovery factor and solvent retention in the reservoir. Most
importantly, the focus of this work is to illustrate hawOO workflow can take into account the
phase envelope constraint and be used to gain insights about optimal ranges for several key

operational parameters.

4.2 4. Selection of Design Variablesind Objective Functions

The identification of the design vables that strongly influence the warm VAPEX process is
crucial to any MOO scheme; hence -#efel full factorial experimental design is employed to
assess qualitatively the influence of various design variables on the objective functions, examine
any corelation among them, and eliminating potential redundant variables. The two objective

functions are solvent retainail ratio (SolOR) and recovery factor (RF):

w 3)

¢

YE a U ¥

@
wherew is the total volume of gaseous &8 injected (in M), ® is the total volume

of Cs recovered at the surface (ifnandw is the total volume of bitumen extracted (if)m
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All the parameters are at surface conditiofsbles 44 and 45 present the experimental design

setup and the results. Tableddis sorted in order of decreasiR§.

Table 4-4: Design input

Design variables Low (-1) High (+1)
C3 mole fraction (fraction) A 0.5 0.9
Bottom-hole injection Pressure (kPa) B 1078 1976
Bottom-hole injection Temperature (°C) C 25 50
Preheating period (months) D 4 12

Table 4-5: Standard order table

# A B C D SOR (Mm3¥m?  RF (%)
8 1 1 1 -1 80.322 42.532
16 1 1 1 1 80.456 42.056
4 1 1 -1 -1 83.582 41.690
12 1 1 -1 1 83.959 40.611
11 -1 1 -1 1 108.706 9.383
10 1 -1 -1 1 97.159 8.707
15 -1 1 1 1 66.544 8.458
3 -1 1 -1 -1 110.986 8.340
2 1 -1 -1 -1 98.266 7.483
14 1 -1 1 1 60.775 7.388
7 -1 1 1 -1 66.781 7.259

6 1 -1 1 -1 59.299 6.063



13 -1 -1 1 1 34.511
9 -1 -1 -1 1 68.306
5 -1 -1 1 -1 30.532
1 -1 -1 -1 -1 65.450

3.017

2.929

2.185

1.988
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The regression model for al@vel factorial experiment with four factors may be expressed as.

w I T8 T & [ & I 8& | &w
I 8w | 8Bw I 8o I 8w
I 8w T dwww T dww
I 8ow | 8ow

I oww -

(4)

I is the interceptba, bg, bc, andbp represent the effects of Factofs B, C, and D respectively,

bas denotes the effect due to the interaction between Factors A and Bbwgilenotes the effect

due to the interaction between Factors A and C, and ddi®the random error term.

Fig. 47 is a Pareto plot showing the absolute values of all model coefficients in decreasing order

as horizontal bars. The sign of each coefficismdenoted by the bar colors; black for positive

coefficients (or effects) and grey for negative coefficients (or effects). The Pareto plot is created

using the PID package (Dunn, 2021) in R software. Similar Pareto plots can be found in several

reference¢Okafor, 2020; Jiju, 2014; Anirban, et. al., 2016). Among the four design variables, the

preheating period (Factor D) exhibited significant redundancy intefnetfgcts of Factor D, or

combinations of D and other factors, are minimal in comparisondiisaA (G mole fraction),

B (bottomhole injection pressure), and @dttomhole injection temperature). This led to the
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choice of G mole fraction bottomholeinjection pressure, and temperature as the primary design
variables for this study. It shoulte mentioned that the maximum operating pressure (MOP) for

all cases is around 5000 kPa, and the maximum threshold is not exceeded

Fig. 47 also show that complex interactions between Factors A, B, and C may have an impact on
the two objective functiondor instance, Factors A and B exhibit a positive effecBofORand

RF, while the combined interaction between several factors (e.g., Factors A and B) has a negative
and positive effect on botBolORandRF, respectively. Besides, the magnitude of infices on

each objective function varies for different combinations of factors. Although these relationships
cannot be exhaustively studied using-l@| factorial design, which neglects interactions at the
intermediate levels, the results offer a prelimynassessment of the complicated traéfs that

may exist between these objectives

Pareto plot Pareto plot
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cDAq I C
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ABCDA BCD |
D cD |
BCD ACD |
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Magnitude of effect Magnitude of effect
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Figure 4-7: 2-level factorial experimental design results. (a) - effect on SolOR; (b) - effect on RF.
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4.2 5. Sensitivity Analysis

In this section, different injection conditions angd@-injection concentrations are tested. First,
for a given G mole fraction, the mixture is injected at different dew point pressure and temperature
for Cy co-injection ranging from 0% to 50%. Next, the solvent is injected at different superheated

conditions by varying the temperature at a given pressure

4.2.5.1.Injection at Dew Point Conditions

Fig. 48 compares the oil viscosity for different €ncentations. As expecte®Fis proportional

to the solvent chamber size. It may also be anticipatedRthaiould decrease with an increase in

C. co-injection (or decrease ink€oncentration); this is true except wheimile fraction exceeds

20%. One of the plausible explanations for this trend reversal is that the dew point pressure of the
C:-Cs mixture, at a fixed temperature, increases wittc@centration; therefore, an increase in
bottomholeinjection pressure ieequired at higher zoncentration, and that increase in injection
pressure leads to a highHeF. The thermal insulation effect ok G observed ifrig. 49, where @

accumulates at the top of the reservoir and acts as a barrier to overburden heat loss.
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Figure 4-8: Effect of co-injecting C1 on oil viscosity. Bottom-hole injection pressure is the dew point
pressure at 50°C.
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Figure 4-9: Effect of C1 co-injection on gas-phase Ci mole fraction. Bottom-hole injection pressure is the
dew point pressure at 50°C.

The effect of @co-injection on G concentration in the oleic phase is also examindtdgr-10.

In addition to its impact ohottomholeinjection pressure and RF, there is a potential tcdtie

the retention of €in the oleic phase. Os needed to keep the solvent in the gaseous phase;
reducing G concentration may cause more liquig t8 accumulate in the nearellbore region

and beretained As shown inFig. 4-10, more G is accumulated in the oleic phase at the base of
the reservoir because of gravity segregatidecording to Fig. 4-11, for low dew point
temperatures (< 38), the temperature is inversely relatedSmOR and theopposite trend is

observed for high dew point temperatures (3G)0This may be due to increased oil production

























































































































































































































































































































































