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Abstract 

The environmental performance of an economic unit is often conditioned on both time (in terms 

of its history of pollution) and space (in terms of the performance and capital investments for 

abatement by its neighbors). However, despite large literatures addressing each of these linkages 

individually, consideration of dynamic and spatial linkages within a unified empirical framework 

is rare. This study jointly explores the temporal and spatial linkages that determine tradeoffs and 

complementarities in environmental performance of industrial firms. Our main objective is to 

examine the role of research and development (R&D) in reducing pollution. While technological 

change has been purported as a key driver in policy efforts to achieve a clean energy future, the 

question of `to what extent does technological change directly reduce GHG-emissions?' has 

received little attention. This omission is striking given the amount of resources that is channeled 

into R&D at both the national and regional levels throughout the world. To identify the role of 

technological change on pollution, we pair a panel dataset on carbon dioxide equivalent 

emissions from Canadian industrial firms for the period 2004-2016 with provincial R&D 

expenditures over the same period. We control for key observed determinants of firm activity at 

the industry-sector and provincial levels based on a thorough review of the theoretical and 

empirical literature. We control for the remaining unobserved firm-level and time-specific 

influences using two-way firm and time fixed effects, respectively. We estimate our model using 

a generalized method of moments Spatial Lag Dynamic Panel Data framework which 

simultaneously accounts for the dynamic panel data problem and the endogenous spatial lag 

problem. Our results show that technological change measured through R&D expenditures, 

significantly reduces industrial firm emissions, yet not at a rate that is not large enough to 

counteract the boost in emissions associated with increased economic activity during periods of 
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economic growth. Further, physical-science based R&D is more effective than social-science 

based R&D in reducing emissions. In addition, our study finds evidence to suggest that both the 

dynamic and spatial spillovers of pollution effects have a significant, positive effect on firm-level 

pollution. Thus, much of the empirical literature on this issue, which focuses either on dynamics 

or on spatial linkages but not both, suffers from a misspecification error.  
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Chapter 1: Introduction 

1.0 Introduction and Objectives  

Most scientists agree that a key way to avoid the costs of climate change, air pollution and other 

key indicators of environmental degradation is to reduce our reliance on fossil fuels as an energy 

source. However, many national and global institutions have been slow to respond with 

meaningful environmental policy actions because of the likelihood of negative impacts on 

economic growth. The lack of political will to respond to this issue is evident through the failure 

of international agreements to reduce greenhouse gas (GHG) emissions, such as the Kyoto 

Protocol (National Post, 2011). 

In Canada, a key national policy approach, taken in lieu of a dramatic restructuring of the 

energy system, is an emphasis on investment in research and development (R&D) (Popp, 2016). 

Further, clean technology is increasingly purported as a leading instrument to combat climate 

change (Government of Canada, 2019a). The success of this approach relies on the assumption 

that technological advancements reduce emissions and are economically feasible. However, 

regulators are often unsure of how much technological improvement is ultimately achievable 

(Freeman and Haveman, 1972). In fact, the actual proportion of R&D spending to gross domestic 

product (GDP, chained dollars) has increased only marginally from 2004 (1.68% of GDP) to 

2016 (1.76% of GDP) within Canada (Author’s computation; Stats Canada, 2019).    

Surprisingly, there is very little direct empirical evidence on the effect of R&D on 

pollution, and the linkage of R&D efforts to pollution remains unclear in many empirical 

contexts (Jaffe et al., 2003). While R&D policies are justified by themselves to contribute to 

secure technological potential and economic growth (Trajtenberg, 1990; Lichtenberg, 1992), an 

even stronger justification for investment in R&D can be built if these expenditures can be 
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shown to causally reduce GHG-emissions. Scholars argue that the relationship between 

technological change and pollution requires more unpacking, and that there is an urgent need for 

research exploring the specific channels through which technological change is linked to 

environmental quality outcomes (Arimura et al., 2007; Jaffe et al., 2003).  

Understanding the impact of policies that encourage technological change on the 

environment requires a deeper understanding of both the economic factors that drive 

‘environmentally-friendly technology’ adoption, as well as the complex interplay of technology 

adoption, pollution abatement and economic growth. For instance, some scholars argue that the 

linkages between economic growth and the environment can only be assessed by careful 

consideration of dynamics (Mohapatra et al., 2016). Kolstad and Krautkraemer (1993) show that 

pollution, the negative externality associated with increased economic activity during a period of 

economic growth, is likely to accumulate and become more evident in the long run. It is also 

possible that, due to changes in environmental policy though time, there would be endogenous 

policy responses that reduce pollution over time. This in turn would impact the net effect of 

economic growth on the environment. Furthermore, significant evidence from the technological-

change literature suggests that facilities can get locked-in to a particular technological regime or 

become path dependent, as the costs of employing more efficient technology are often high 

(Goodstein, 1995). 

Meanwhile, other scholars argue that linkages between economic growth and the 

environment can be assessed by careful consideration of spatial spillovers (Cole et al., 2013; 

Huang, 2018). There is longstanding evidence that spatial effects can contradict or invalidate the 

results of time series models (Rey and Montouri, 1999). Pollution levels of firms can be spatially 

correlated for a number of reasons. For instance, ‘best practices’ in pollution control and 
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technology adoption may be passed between firms via ‘demonstration’ effects (Cole et al., 2013). 

Through this mechanism, a facility may adjust their own environmental performance in response 

to neighboring facilities’ environmental performance (Zheng et al., 2014; Zhao et al., 2015; Li et 

al., 2017; Huang et al., 2017; Cheng, 2016). LeSage and Pace (2009) warn that ignoring spatial 

correlation of pollution may lead to biased estimations.  

Some quantitative studies are beginning to account for the dynamic considerations of 

pollution outlined in the pollution path persistence literature (Jaffe et al., 2003). However, most 

fail to account for spatial spillovers of pollution. Even fewer studies in the technological change-

environment literature account for spatial spillovers of pollution or integrate both approaches 

(e.g. Huang, 2018; Zheng et al., 2014). 

The first objective of this study is to econometrically estimate the impact of technological 

change, measured through provincial R&D expenditures in Canada, on pollution by Canadian 

firms. Secondly, our study aims to provide insight into the mechanism through which 

technological change influences industrial pollution outcomes by analyzing how different types 

of R&D expenditures (e.g., physical and social sciences) may have heterogeneous impacts on 

pollution.  

Our approach for modeling pollution is consistent with the economic growth–

environment literature, led by Copeland and Taylor (2004) and Antweiler et al. (2001). This 

literature develops a theoretical model of pollution demand and supply to derive the response of 

pollution to economic determinants. This recent literature provides a more nuanced interpretation 

of the economic causal effects of pollution, compared to its previous counterpart, the 

environmental Kuznets curve (EKC) literature (Grossman and Krueger, 1995). Our introduction 
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of R&D expenditures into this framework draws on the literature on endogenous technological 

change and sustainable growth. Scholars in this field extend the Schumpeterian growth theory, 

where R&D efforts lead to an improvement of total factor productivity, thereby lowering the 

emissions-intensity of production (Hart, 2004; Zhang et al., 2017). This approach is similar to 

studies such as Cole et al.’s (2005) study that uses a region’s technological absorptive capability, 

proxied through foreign direct investment, as a measure of progress towards lower emission-

intensive processes and techniques of production. Since R&D has both public and private 

qualities, in the absence of firm-level data on ‘invention, innovation and diffusion’ R&D offers a 

credible measure of technological improvement (Jaffe et al., 2003).  

To examine heterogeneity in pollution impacts across different types of R&D 

expenditures, we separate out R&D into two variables that explain the ‘science types’ of the 

R&D: ‘social sciences, humanities and the arts’ and ‘natural sciences and engineering’ R&D 

expenditures. The two decomposed variables provide more information for assessing the 

potential technological change channels, and subsequently, the policies that would have the most 

significant impact on emissions reductions at the level of the firm. For instance, ‘natural sciences 

and engineering’ R&D may significantly reduce firm-level emissions through directly reducing 

the cost of improved capital and machinery, but ‘social sciences, humanities and the arts’ R&D 

may achieve the same result through institutional design, as well as through awareness and 

education programs (Diamond, 1996). Thus, a technological change policy can become more 

effective at leveraging a pollution reduction outcome (e.g. reducing facility emissions) if the 

specific factors that influence that outcome (e.g. increasing access to engineered carbon capture 

and storage technologies; or better education and awareness of the benefits of a technology) are 

thoughtfully invested in and allocated.  



5 

 

We use a novel spatial-temporal econometric model to estimate the dynamic and spatial 

spillover effects of pollution and provide insight into how dynamic and spatial linkages influence 

a firm’s pollution decisions. Ours is the first study to consider the impact of R&D expenditures 

on the environment by simultaneously accounting for spatial and dynamic considerations.  We 

utilize a facility-level panel dataset of carbon dioxide equivalent (CO2eq. ) emissions, which 

includes observations on 225 Canadian facilities for the period of 2004-2016. The pollution 

dataset collected annually by Environment and Climate Change Canada includes all Canadian 

facilities that pollute more than 50 kilotonnes (kt) of CO2eq. emissions per year. The dataset 

includes both NAICS sector information and spatial coordinates for the facilities, which allows 

us to incorporate both industry and geographical spillover considerations into our analysis. We 

proxy investment in technological change through total expenditures on R&D at the provincial 

level.  

Our study makes three novel contributions. First, we contribute to the recent empirical 

economic growth-environment literature on the casual effect of technological change on 

pollution. Ours is the only study that estimates the casual emissions effect of R&D expenditures 

using a spatial-dynamic approach, which decomposes R&D into heterogeneous subcomponents. 

Second, by decomposing R&D into science types, our study provides insight into the mechanism 

through which R&D influences industrial emissions. Lastly, by implementing a generalized 

method of moments (GMM) spatial lag dynamic panel data model, our study contributes to the 

empirical literature on spatial spillovers of pollution, which is critical for understanding the role 

of ‘demonstration effects’ between large emitters. More specifically, our study provides an 

estimate of spatial spillovers of pollution or ‘emissions-mimicking’ behavior that the spatial 

spillovers literature suggests can exist between neighboring firms (Cheng, 2016).  
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 Our study is a timely analysis for Canada, the ninth largest emitting country in the world 

(Government of Canada, 2018). In recent years, there has been a growing concern to reduce 

emissions, with a particular focus on reducing industrial (heavy industry, oil and gas, and 

electricity sector) emissions, which accounted for approximately 38% of total CO2eq. emissions 

in 2016 (Environment and Climate Change Canada, 2018). Between 2007 and 2018, 85% of 

provinces implemented a carbon pricing regime for large emitters, with the first ‘large industrial 

emitters carbon pricing’ regime coming into place in 2007 for Alberta (Read, 2014). 

Furthermore, the remaining 15% of Canadian provinces have been subject to anticipatory 

conversations of industrial carbon pricing, as Canadian national climate change priorities were 

outlined in the Pan-Canadian Framework on Clean Growth and Climate Change and formally 

announced by the Government of Canada in December, 2016. The framework outlined a federal 

carbon pricing schedule for large industrial emitters that would apply to all provinces effective 

January, 2019.  These national frameworks and agendas to mitigate climate change, only further 

exemplify how crucial understanding the casual effect of R&D expenditures on emissions 

reduction outcomes is on the design of climate change policy in Canada. 

The rest of the paper is organized as follows. Section 2 presents a review of the economic 

growth-environment; technological change-environment; and spatial spillovers of pollution 

literatures and outlines a simple conceptual model for pollution supply and demand. Section 3 

describes the data. Sections 4 and 5 present our econometric approach and results, respectively. 

The final section concludes.

https://www.canada.ca/content/dam/themes/environment/documents/weather1/20170106-1-en.pdf
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Chapter 2: Literature Review 

Our study is related to three interlinking literatures that explain how economic factors influence 

pollution response. First, the economic growth-environment literature led by Copeland and 

Taylor (2004) and Antweiler et al. (2001), decomposes the dynamic determinants of pollution 

response into three distinct categories. This literature suggests that incorporating dynamic 

determinants of pollution is important, as failing to control for unobserved time effects in 

pollution response can bias coefficient estimates. Second, the spatial spillovers of pollution 

literature posits that firm emissions are spatially correlated for a number of reasons and failing to 

account for spatial effects can invalidate the results of dynamic models. Finally, these two bodies 

of literature are complimented by studies that look at the economic determinants of pollution, 

more generally. This final subset of literature is important to consider as omitted variable bias 

could additionally bias coefficient estimates in our model.  

2.0 Dynamics of Pollution Response 

Assessing the impact of economic growth on the environment firstly involves careful 

consideration of dynamics (Mohapatra et al., 2016). The most prevalent literature that explores 

the dynamic, causal relationship between economic growth and the environment is a literature 

led by Copeland and Taylor (2004) and Antweiler et al. (2001). This literature develops a 

theoretical model of pollution demand and supply to derive the response of pollution to 

economic determinants. In particular, Copeland and Taylor’s (2004) study treats pollution as a 

factor in the production of a dirty good in a small open economy. The demand for pollution 

depends on the share of dirty goods in total production, and the scale of production in the 

economy. The supply of pollution depends on regional environmental policies and the 

technological advances that make the production of a dirty good less pollution intensive. In 
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addition, regional governments can use policy instruments to regulate emissions, as well as 

incentivize technological advances in the economy (Jaffe et al., 2003). Following a similar 

theoretical framework, pollution in facility i at time t can be written as: 

𝑧𝑖𝑡 =  𝑠𝑖𝑡𝑒𝑖𝑡𝜙𝑖𝑡                                                                   (Eq. 1) 

where 𝑠𝑖𝑡 is the scale of production, 𝑒𝑖𝑡 is the emissions intensity of production which depends on 

the facility’s technological emissions reduction capacity (i.e. efficiency of production), and 𝜙𝑖𝑡 is 

the capital-intensity of production, expressed in relation to labour intensity. Differentiating this 

expression yields a reduced form that decomposes the total growth effect on pollution into three 

components: 

𝑑𝑧𝑖𝑡

𝑧𝑖𝑡
=  

𝑑𝑠𝑖𝑡

𝑠𝑖𝑡
+  

𝑑𝑒𝑖𝑡

𝑒𝑖𝑡
+

𝑑𝜙𝑖𝑡

𝜙𝑖𝑡
                                                    (Eq. 2) 

This equation suggests that the total magnitude of change in pollution is due to changes 

in these three terms which jointly determine the impact on the environment. 

First, the scale effect, 
𝑑𝑠𝑖𝑡

𝑠𝑖𝑡
, captures the increase in pollution as a result of an expansion of 

economic activity in a region, ceteris paribus. Many studies have found the relationship between 

GDP per capita and pollution to be significant (Cole and Elliott, 2003; Shafik, 1994; Selden and 

Song, 1994; Mohapatra et al., 2016; Grossman and Krueger, 1995). The scale effect is assumed 

to have an unambiguously positive effect on pollution. 

Second, the composition effect, 
𝑑𝜙𝑖𝑡

𝜙𝑖𝑡
 , reflects the ratio of dirty goods to clean goods in 

total production. This effect is motivated by the premise that capital-intensive industries are more 

pollution-intensive, in general, as they consume more natural resources, such as metal and diesel 



9 

 

fuel. In contrast, labour-intensive industries tend to be more environmentally friendly, with 

cleaner inputs and production procedures (Cole and Elliott, 2005). Thus, the ratio of capital-to-

labour is often used to proxy the composition of dirty to clean industries in the economy. Studies 

suggest the composition effect, measured through the capital-labour ratio, has a positive effect on 

pollution, although this is not universally resolved in the literature (Mohapatra et al., 2016).  The 

majority of studies suggest the composition effect has a positive effect on pollution. 

The final component included in this literature is the technique effect, 
𝑑𝑒𝑖𝑡

𝑒𝑖𝑡
 , which posits a 

reduction in the emissions-intensity of production, often due to a substitution of dirty and 

inefficient technology by more sophisticated and cleaner methods (Grossman and Krueger, 

1995). Studies, such as the one by Antle and Heidebrink (1995), propose that we observe the 

technique effect because the income elasticity of environmental demand is changing through 

time. Assuming environmental quality is a normal good, this theory suggests that higher incomes 

are correlated with higher living standards and also a higher preference for environment quality. 

Thus, the literature suggests this effect is theoretically motivated by rising incomes, or any 

additional factors, that lead to higher preferences for environmental quality. In theory, these 

preferences induce higher environmental regulations and more stringent policy that incentivizes 

pollution abatement methods and improvements in technology that increase the efficiency of 

production inputs and by-products, thus lowering the emissions intensity of production. The 

technique effect is assumed to have an unambiguously negative effect on pollution (Antweiler et 

al., 2001).  

While the scale effect and composition effect are expected to increase pollution response, 

the technique effect is an impactful pollution determinant to study from an emissions-reduction 
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policy perspective, as it acts as the lever that lowers emissions intensity of production through 

time. For example, a study by Mohapatra et al. (2016) using panel data on GHG emissions in 

Canada, found that the technique effect, defined as income induced policy response, significantly 

reduces pollution during periods of growth. The study concludes that the inclusion of the 

technique effect is important in its own right, as it is ‘one of the few forces that can decouple the 

inextricable link between economic growth and environmental quality’. In summary, the 

technique effect captures all incentives (e.g. environmental regulation) for firms to lower the 

emissions intensity of production through time.  

There are three interlinking components that are required to explain how the technique 

effect lowers emissions intensity at a level of a firm. First, rising incomes may be correlated with 

a higher preference for environmental quality. Second, the higher preference for environmental 

quality induces more stringent environmental regulation through time. Finally, more stringent 

environmental regulation imposes a cost on polluting, which in turn incentivizes firms to either 

reduce their emissions intensity of production or face the compliance costs associated with the 

respective policy instrument outlined by their jurisdiction or province (Calel and Dechezleprêtre, 

2016; Hicks, 1932; Grossman and Krueger, 1995; Jaffe and Palmer, 1997; Downing and White, 

1986).  

It should be noted that neither rising incomes, nor the creation of environmental 

regulation, directly reduces the emissions intensity of production with respect to a firm. Instead, 

the interconnection of higher environmental preferences and more stringent environmental 

regulation, impose a price signal for facilities to implement more efficient emissions technology, 

which otherwise would not occur in the absence of these drivers. These incentives are predicted 

by the induced innovation hypothesis, which suggests that firms, as profit-maximizers, respond 
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to the price incentives associated with increased environmental regulatory costs and are thus, 

incentivized to implement more efficient technologies through time (Jaffe et al., 2003). Thus, 

observing the technique effect largely relies on the effective implementation of emissions 

technology and pollution abatement methods at the level of the firm.  

The process of environmental regulation triggering low-emissions technologies in order 

to offset environmental compliance costs, is additionally described by the ‘Porter hypothesis’ 

(Porter, 1991). This hypothesis suggests that firms respond to environmental regulation by 

implementing cost-cutting efficiency improvements and investing in product and/or process 

innovation that increases total factor productivity and offsets regulatory costs. This hypothesis 

contrasts with the ‘pollution haven hypothesis’ (McGuire, 1982) which argues that high 

regulatory costs crowd out productive investment in innovation or efficiency improvements, and 

eventually results in firm-relocation to jurisdictions with less stringent environmental policies. 

Several studies provide evidence supporting the Porter hypothesis and the theory that 

environmental regulation can induce firm-level investment in clean technologies in the long run 

(Dechezleprêtre & Sato, 2017).  

A key challenge in this literature is empirically testing the Porter hypothesis due to 

difficulty of measuring the extent to which firms face regulatory costs, and subsequently proceed 

with low-emissions technological changes (Jaffe et al., 1995). Several studies suggest that R&D 

expenditures is a good proxy for environmental regulation induced technological change, as 

there is a significant, positive correlation between environmental regulation stringency and the 

level of R&D spending within industries over time (Calel and Dechezleprêtre, 2016; Jaffe and 

Palmer, 1997). This observation, in turn, has led to an expansion of studies that explore how 

environmental regulation can induce investment in R&D and low-emissions technology. 
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Although many studies have found low-emissions technologies adoption rates are increasing 

through time (Li and Just, 2018; IRENA, 2018), few studies attempt to quantitatively estimate 

the casual effect of technological change on emissions at the level of a firm.  

The study that comes closest to this objective is Zhang et al. (2017), who use aggregate 

data on 30 Chinese provinces to estimate the effect of technological progress on carbon 

emissions. Their study finds that technological progress, measured through total factor 

productivity growth, significantly reduces provincial carbon emissions. The study, while using a 

system GMM approach to address endogeneity using lags of the independent variables as 

instruments, fails to account for the economic determinants of pollution outlined in the recent 

economic growth-environment literature (e.g. scale, composition, and technique effects). 

Furthermore, a study by Lee and Min (2015) examined the effects of firm-level 

‘environmentally-friendly’ technological change on carbon emissions of Japanese manufacturing 

firms’ using annual data between 2001 and 2010. Their study defines ‘environmentally-friendly’ 

technological change as a firm’s expenditures on R&D particularly aimed at environmental 

purposes. Using an OLS regression model, their study finds that this type of R&D, has a 

significant, negative effect on firm-level carbon emissions. However, the inclusion of firm-level 

R&D directly in the facility emissions equation raises concerns about endogeneity.  

Our study differs from both of these studies as ours is the first study to consider the 

impact of R&D expenditures on the environment while simultaneously accounting for spatial and 

dynamic considerations. Further, we are the first to econometrically estimate the impact of 

technological change, measured through provincial R&D expenditures in Canada, on pollution 

by Canadian firms.  
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2.1 Spatial Spillovers of Pollution 

In addition to considering the dynamic impacts of pollution, many scholars argue that 

assessing the causal impact of economic growth on the environment must involve careful 

consideration of spatial spillovers (Cole et al., 2013; Huang, 2018). According to this literature, 

pollution levels of firms can be spatially correlated for a number of reasons. Cole et al. (2013) 

suggest there are four main reasons why pollution response can be spatially correlated between 

geographically-proximate facilities. First, location-specific provincial and/or federal 

environmental regulation can cause firms to have similar pollution intensities. Second, the 

industry agglomeration literature suggests that comparable pollution intensities tend to 

concentrate in specific areas due to land-use zoning and other land-use regulation. Third, the 

‘best practices’ theory suggests the most efficient pollution control and technology adoption 

methods may be passed between firms via ‘demonstration’ or ‘imitation’ effects, in order to 

avoid compliance costs. Finally, the ‘yardstick competition’ theory suggests firms implement 

energy efficiency technologies in order to appear ‘more progressive’ than neighboring facilities 

and gain social license from consumers.  

Through these mechanisms, a facility may adjust their own environmental performance in 

response to neighboring facilities’ environmental performance (Zheng et al., 2014; Zhao et al., 

2015; Li et al., 2017; Huang et al., 2017; Cheng, 2016). LeSage and Pace (2009) warn that 

ignoring spatial correlation of pollution may lead to biased coefficient estimates. While some 

quantitative studies are beginning to account for the dynamic considerations of pollution outlined 

in the pollution path persistence literature (Jaffe et al., 2003), most studies fail to account for 

spatial spillovers of pollution.  
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The study that comes the closest to exploring the impact of technological progress on the 

environment, while simultaneously accounting for spatial and dynamic considerations, is a study 

by Huang (2018). They utilize a dynamic spatial model to analyze the driving forces of China’s 

provincial carbon intensity over the period 2000–2014. They find that technological progress is 

an important determinant of regional pollution response. However, their measure of 

technological progress, measured through the ratio of gross domestic product to capital-labour 

ratio, is likely to be correlated with their scale effect measure (ratio of gross domestic product) 

and composition effect measure (capital-labour ratio). This correlation may mask the true 

technological change effect on pollution.  

Our study uses a similar spatial lag dynamic panel data model approach as Huang’s 

(2018) study, however we rely on the theory of the technological change-environment literature 

to motivate R&D expenditures as an empirically-supported measure of technological progress 

and diffusion, both provincially and through time. Further, our analysis is novel in that it 

decomposes R&D expenditures into different types of R&D (e.g., physical and social sciences) 

to test the underlying mechanisms through which technological change impacts firm-level 

pollution response.  

2.2 Additional Determinants of Pollution 

In additional to the three key economic levers (scale, composition and technique effects) 

identified by the economic-growth environment literature, many studies have identified a number 

of additional economic variables that have a significant effect on pollution response (e.g. 

Gassebner et al., 2010; Copeland and Taylor, 2004; Lamla, 2009). Our goal in this section is to 

summarize empirically-supported, additional determinants of pollution that are deemed 

important to control for, in order to avoid omitted variable bias. Further, including the 
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empirically-supported variables outlined below allows us to test the sensitivity of the casual 

effect of R&D expenditures on firm-level pollution response. 

International Trade 

International trade intensity is frequently linked to pollution in the economic growth-

environment literature. Similar to economic growth, the trade effect can be disaggregated into 

three components: a scale effect, a technique effect, and a composition effect. Cole and Elliott 

(2003) explain that through the scale effect, an increase in trade intensity can result in an 

increase in the size of an economy, which can occur as a result of liberalization-induced 

increases in market access. Hence, trade could increase environmental degradation. The 

opposing view presented by Cole (2004) suggests that an increase in trade could result in greater 

competitive pressure or greater access to ‘greener’ production technologies and could thus result 

in emissions reductions. This body of literature concludes that international trade intensity is a 

significant determinant of pollution response and may have a positive or negative effect on 

emissions. We include international trade intensity in our analysis as a control variable.  

Foreign Direct Investment 

Studies suggest the foreign direct investment (FDI) is also linked to pollution. For 

example, Antweiler et al. (2001) suggest that international capital transactions may influence 

pollution. Furthermore, a study by Cole and Elliott (2005) include FDI in their analysis of 

pollution intensities from US industries. They motivate FDI in their analysis following the work 

of Van den Bulcke and Zhang (1998), who suggested FDI can result in increased financial 

resources, new technology, and a skill-upgraded work force for the country on the receiving side 

of the investment. The results of Cole and Elliott’s (2002) dynamic estimation additionally 
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suggest FDI is a significant determinant of pollution. Foreign direct investment is included as a 

relevant determinant of pollution in our analysis. 

Population Density 

According to the literature, population density is also a significant determinant of 

pollution. This is because population density can proxy informal regulatory pressure, as greater 

lobbying pressure is often correlated with a larger number of people in a particular area (Cole et 

al., 2013). Further, a study by Stern (2005) argues that a higher population would mean more 

people are affected by pollution and thus, the benefit of abatement increases. However, 

additional studies suggest the expected sign of population density is priori ambiguous. For 

example a study by Klick (2002), using population density as a determinant of pollution, 

explains that the effect of individual pollution may aggravate when more people concentrate in 

one area, thus higher population densities leads to increased aggregate pollution. Population 

density is included in our analysis as a control variable.   

Pollution Abatement Expenditures 

The economics-environment literature suggests that pollution abatement and R&D are 

intrinsically linked together (Tsur and Zemel, 2005; Kollenbach, 2015). Studies also suggest that 

pollution abatement is relatively costly, yet investments in R&D often place downwards pressure 

on price (Kollenbach, 2015). Jaffe et al. (2005) explains how a policy aimed at reducing 

pollution has two effects: 1) the present effect of pollution reduction efforts today (pollution 

abatement expenditures); and 2) the future incentives and investment decisions firms face with 

regard to technological developments to reduce pollution, often with the goal of achieving them 

at a lower cost (innovation). Other studies also argue that pollution abatement expenditures may 
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proxy environmental regulation stringency (Levinson and Taylor, 2008). Overall, many scholars 

argue pollution abatement expenditures are an important determinant of pollution, although it is 

not unanimous that this proxy captures the full effect of emissions reduction at the level of a firm 

(Antweiler et al., 2001; Gray and Shadbegian, 2004). For this reason, provincial pollution 

abatement expenditures is included in our analysis as a control variable.  

Education 

In the technological change literature, R&D is often cited as a form of ‘knowledge 

accumulation’ in which facilities learn-by-doing and through time, and implement the most 

effective technologies to reduce costs (Goulder and Mathai, 2000). However, analogous studies 

that explore the relationship between economic growth and the environment often capture 

‘knowledge accumulation’ through a direct measure of education levels in a region. For example, 

both Torras and Boyce (1998) and Klick (2002) include measures of education as control 

variables in their analysis of economic growth and pollution intensity. Both measures of 

education and technological change are suggested to capture knowledge or technological 

spillovers. Overall, many scholars deem investments in education an important determinant of 

pollution (Nieto and Quevedo, 2005; Gertler and Wolfe, 2006). A measure of education is 

included in our analysis for this reason. 
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Chapter 3: Data 

3.0 Data Source Description 

In order to address our objective, this study utilizes facility-level panel data on carbon dioxide 

equivalent (CO2eq. ) emissions. Our main variable of interest is the level of CO2eq. emissions 

from large emitters in Canada for the years of 2004-2016. Despite this data being calculated from 

input and output uses at the facility and not measured directly, this measure is generally accepted 

in the literature as a sufficiently precise proxy of air pollution (Lamla, 2009).  

The CO2eq. emissions data is collected from Environment and Climate Change Canada’s 

(ECCC) Greenhouse Gas Reporting Program and accessed through the Open Data Portal. This 

dataset exists because of the regulatory requirement under Section 46 of the Canadian 

Environmental Protection Act to report GHG emissions as a commercial entity that produces 

more than 50 kilotonnes of CO2eq. emissions per year. A complete set of emissions data (in 

tonnes of CO2eq.) by facility is available from 2004-2016 from this source. The GHGs 

comprising the CO2eq. measure includes: carbon dioxide (CO2), methane (CH4), nitrous oxide 

(𝑁2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6).  

Starting in 2004, facilities that emit the equivalent of 50 kilotonnes (kt) or more of 

CO2eq. emissions per year are required to submit a greenhouse gas emissions report to ECCC. 

Facilities with emissions below 50 kt can voluntarily report their GHG emissions. In 2016, 596 

facilities reported their GHG emissions to Environment and Climate Change Canada for 2016, 

totaling 263 megatonnes (Mt) CO2eq. An increasing number of firms report each year as a lower 

reporting threshold was implemented through time. By 2017, the reporting threshold requires any 

facility emitting 10 kt or more CO2eq. emissions per year to report to the ECCC. 
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In our analysis, we analyze the 225 Canadian facilities that report annually for the entire 

time period of 2004-2016. We confirm that these firms are the same through time by using their 

unique facility identifier. This means that our emissions panel dataset is balanced. Although 

balancing the dataset reduces the representativeness of the sample, we acknowledge that this step 

was completed in order to avoid the introduction of bias associated with ECCC lowering the 

mandated emissions reporting threshold through time. The ECCC claims that “since 2005, total 

emissions from all reporting facilities have decreased overall by 5%” (or approximately 15Mt) 

(Environment and Climate Change Canada, 2017, p.1). However, ECCC does not seem to factor 

in the consideration that lowering the reporting threshold and calculating the average emissions 

value with more low-emissions facilities in the pool, would unambiguously result in a lower 

emissions average. For this reason, we only analyze the 225 firms that have complete CO2eq. 

emissions observations throughout the 13-year panel.  

The CO2eq. emissions dataset also provides spatial information (latitude/longitude 

coordinates) of the facilities located across Canada and the NAICS industry code for the facility. 

This allows us to complete a spatial analysis by facility and link economic datasets at both the 

provincial and sectoral level. More specifically, this information allows us to include a spatial lag 

of the dependent variable (CO2eq. emissions) in our dynamic panel data regression in order to 

capture spatial spillovers of facility CO2eq. emissions. The spatially lagged emissions variable is 

implemented by creating a geographically weighted matrix (weighted based on inverse 

geographical proximity in kilometres and created using the ‘spwmatrix’ command in STATA) 

and using matrix multiplication to create a spatially weighted emissions variable. 

Our main variable of interest, technological change, is proxied through gross provincial 

expenditures on R&D (constant 2007 prices; $ x 1,000,000; total expenditures; all sectors; by 
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science type; by province). This variable was collected from Statistics Canada. All measurements 

of R&D expenditures include all private and public funders and all performers of the R&D 

activity for the province. This choice was made due to many scholars suggesting that R&D has 

both public and private good characteristics (Jaffe et al., 2003). Therefore, the assumption that 

private and public sectors of the economy can have heterogeneous impacts in terms of 

technological spillovers is not pursued in this thesis. This data is collected for the years of 2003-

2015 (one-year lag of panel). We followed this approach as the empirical literature suggests 

there can be a lag for the effects of technological change to be realized (Jaffe et al., 2003).  

Statistics Canada provides more detailed information on the intended use of R&D 

expenditures by science type. Thus, we include two variables to capture the intended purpose of 

the R&D expenditures in our analysis: ‘Physical-R&D’, which includes natural sciences and 

engineering R&D expenditures; and ‘Social-R&D’, which includes social sciences, humanities 

and the arts R&D expenditures. To clarify, total ‘R&D’ is the sum of both ‘Physical-R&D’ and 

‘Social-R&D’. The purpose of decomposing R&D expenditures into ‘Physical-R&D’ and 

‘Social-R&D’ is to capture whether one form of R&D expenditures has a more significant effect 

on pollution outcomes at the level of an industrial facility. We hypothesize that ‘Physical-R&D’ 

would have a more significant emissions effect on industrial facilities due to the capital-intensive 

nature of industrial operations. We do not draw the same hypothesis for ‘Social-R&D’. In 

summary, we test three R&D variables in our analysis: ‘R&D’ (total R&D); ‘Physical-R&D’ 

(natural sciences and engineering R&D); and ‘Social-R&D’ (social sciences, humanities and the 

arts R&D). All three R&D variables, as well as all economic variables listed below, were 

collected for all 10 Canadian provinces: Newfoundland, Prince Edward Island, Nova Scotia, 

New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columba.  



21 

 

In addition to the facility CO2eq. emissions dataset and R&D variables, this study also 

utilizes annual provincial data from CANSIM (Canadian Socio-Economic Information 

Management System), accessed through Statistics Canada. We collected annual provincial 

variables for the years of 2004-2016, which include: ‘GDPPC’ gross domestic product per capita 

(equal to provincial gross domestic product at market prices [chained 2012, $ x 1,000,000] 

divided by provincial population) ; ‘INCOMEPC’ real gross domestic income per capita 

(chained 2002 $, divided by provincial population); ‘TRADE-open’ international trade openness 

(equal to provincial international exports and imports to other countries [$ x 1,000,000] divided 

by provincial GDP [chained 2012, $ x 1,000,000]); ‘POPD’ annual population density (equal to 

provincial population estimates on July 1st divided by provincial land area in square kilometres); 

‘EDU-employ’ proportion of provincial workforce (persons, age 15 and older) working in 

educational services and lastly, ‘POLLAB’ expenditures on pollution abatement and control 

processes (end-of-pipe) by sector ($ x 1,000,000).1  

Due to data availability, some variables were also collected at the sectoral level. The 

inclusion of sectors is based on the North American Industry Classification System (NAICS). 

The sectoral variables included in our study are matched based on NAICS codes reported by 

facilities in the pollution dataset. Five sectors were included in the dataset including: Mining and 

Oil and Gas Extraction [21]; Utilities [22]; Manufacturing [31-33]; Transportation and 

Warehousing [48-49]; and Administrative and Support, Waste Management and Remediation 

Services [56]. Sectoral-level variables collected from Statistics Canada for the period of 2004-

2016, include: ‘FDI’ foreign direct investment in Canada (annual, $ x 1,000,000); and ‘KL’ 

 
1 We note that this measure of pollution abatement expenditures came from two separate biannual data tables to 

allow this proxy to match the panel time period. We took the average value between biannual values of pollution 

abatement by province. We are careful in our interpretation of this variable in the results. 
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capital-labour ratio (equal to investment in fixed non-residential capital [chained 2012, $ x 

1,000,000] divided by labour [total number of jobs, by sector and province]).
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Chapter 4: Empirical Analysis 

4.0 Empirical Model  

To examine the effect of technological change on environmental performance of industrial firms, 

we specify a spatial-dynamic model of emissions:  

𝒚𝑖,𝑡 = 𝜑𝒚𝑖,𝑡−1 +  𝜌𝑾𝒚𝑖,𝑡 + 𝑿𝑖,𝑡𝜷 +  𝝀𝑖 +  𝜸𝑡 + 𝝃𝑖,𝑡                          (Eq. 3) 

where 𝒚𝑖,𝑡 and 𝒚𝑖,𝑡−1 denote n×1 vectors of current and lagged CO2eq. emissions of industrial 

firms at time t = 2004 … 2016 (operating in in sector s and province r). 𝑾 is a n×n, row-

standardized spatial weight matrix based on the geographical proximity in square kilometers 

from latitude and longitude coordinates of each firm. 𝑿𝑖,𝑡 denotes a n×k matrix of time varying 

explanatory variables at the sectoral and provincial levels with corresponding coefficient vector 

𝜷 . The vectors, 𝝀𝑖 and 𝜸𝑡, denote firm and time fixed effects that capture unobserved 

heterogeneity in emissions across firms and common covariate time-specific shocks, 

respectively. Finally, 𝝃𝑡 is a n×1 vector of idiosyncratic shocks, that captures unobserved effects 

on 𝒚𝑡, and is assumed to be normally distributed, zero-mean, homoskedastic and serially 

uncorrelated within and across firms.  

The coefficient, 𝜑, on lagged emissions captures persistence in emission levels through 

time, and controls, in reduced form, for the effect of facility-specific time-varying factors that 

could influence emissions. Many studies fail to account for the dynamic considerations of 

emissions, through which industrial pollution tends to persist through time. If 𝜑 is positive, then 

this result provides support for the hypothesis that firm pollution accumulates in the long run. If 

𝜑 is negative, then this result provides support for the hypothesis that firm pollution diminishes 
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in the long run. If 𝜑 is insignificant, then there is no evidence to suggest either hypothesis is 

occurring.  

The coefficient, 𝜌, captures the effect of spatial spillovers of pollution between firms. 𝜌 

allows us to directly test the hypothesis of spatial-spillovers in pollution, due to net and possibly 

complimentary effects of: location-specific regulation, industry agglomeration, ‘best practices’ 

of pollution control passed between firms, and ‘yardstick competition’ between firms to gain 

social license. If 𝜌 is positive, then there is evidence to support the hypothesis that there are 

complimentary positive spatial effects between firms; therefore, a facility surrounded by high-

polluting facilities is significantly more likely to exhibit high-polluting behaviors, and vice versa 

for low-polluting firms. If instead, 𝜌 is negative, then there is evidence to suggest that a facility 

surrounded by high-polluting facilities is significantly more likely to exhibit low-polluting 

behaviors, and vice versa for low-polluting firms. There are no theories that suggest a negative 

spatial-spillover trend is likely to occur between industrial emitters. If 𝜌 is insignificant, then 

there is no evidence to suggest either spatial spillovers of pollution effect is occurring.  

We include in 𝑿𝑖,𝑡 a series of covariates based on our literature review in the previous 

section (discussed in detail in the upcoming subsection). Our control variables in 𝑿𝑖,𝑡 include 

both provincial and sectoral variables. We do not include firm-level variables, such as firm-level 

R&D expenditures or employment, given limited data availability and to avoid obvious 

endogeneity issues associated with their inclusion.  

Estimation of equation 3 presents two distinct challenges. First, ignoring the spatial 

terms, the presence of the lagged dependent variable, 𝒚𝑖,𝑡−1, in the panel data model creates an 

endogeneity problem. Equation 3 cannot be estimated by pooled OLS or generalized least 
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squares since the errors and individual unobserved heterogeneity (𝝀i) will be correlated with the 

lagged dependent variable. Fixed effects estimation is also inconsistent given the finite time 

dimension (Hsiao, 2007). A solution prosed by Arellano and Bond (1991) is to use differencing 

together with instrumental variable methods. The consistent generalized method of moments 

(GMM) estimator used under this approach uses lags of the level or differences of emissions as 

instruments for the lagged emission variable after the firm and time fixed effects are removed by 

first-differencing.  

A second challenge in estimating equation 3 is that, ignoring the dynamic lagged 

emission variable, the lagged spatial term, 𝑾𝒚𝑖,𝑡, is endogenous due to the reflection problem 

(Manski, 1993). The result of the reflection problem is not being able to disentangle two-way 

directional causality of the neighbor in relation to the individual (‘I am my neighbor’s 

neighbor’).  Kelejian and Prucha (1998) propose a solution where the endogenous spatial lag 

term is instrumented using spatial lags of the exogenous explanatory variables as instruments. 

Following Kelejian and Prucha, we specify the 𝑾𝑿𝑖,𝑡 matrix as valid spatial instruments for our 

analysis. This form of instrumentation, combine with GMM estimation, simultaneously controls 

for the joint dependence of the 𝑾𝒚𝑖,𝑡 and 𝝃𝑖,𝑡 in each cross-section (Liu and Saraiva, 2015). 

Finally, there is concern of instrument validity whereby the instruments need to be 

uncorrelated with the error term of equation 3. With an over-identified system, instrument 

validity can be tested using the Sargan test (Arellano and Bond, 1991). We use this approach to 

jointly test the validity of both the spatial and dynamic instrumental variables.  

We follow Shehata, et al. (2012) who provide an integrated framework to overcome the 

above challenges by instrumenting for both the endogenous spatial lag and the endogenous 
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lagged dependent variable, while differencing out the fixed effects (Davies and Vadlammanti, 

2013). More specifically, we account for dynamic and spatial effects of facility emissions by 

using a Spatial Lag Dynamic Panel Data model (SDPD), which combines both spatial and 

dynamic lags and relies on GMM estimation. This approach also aligns with the work of 

Kukenova and Monteiro (2008), who suggests that the spatial lag dynamic panel data GMM 

estimator outperforms the spatial maximum likelihood estimator (MLE); spatial dynamic MLE 

(Elhorst, 2005); and spatial dynamic quasi-MLE (Yu et al., 2008), in terms of bias, root mean 

squared error and standard-error accuracy. Overall, through this integrated approach SDPD 

allows us to instrument the endogenous lagged and spatially-lagged dependent variable, as well 

as control for the presence of measurement errors (Madariaga and Ponce, 2007).  

4.1 Specification and Expected Signs 

The descriptive statistics and expected signs of all variables are presented in Table 1 

below. For all models, the dependent variable, facility emissions, as well as the lag and spatial-

lag covariates and the main variables of interest: R&D, Physical-R&D and Social-R&D, are 

expressed in logarithmic form. All other explanatory variables are expressed in linear form for 

the analysis.
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Table 1. Summary of descriptive statistics, predicted signs and variable definitions.2 

Variable Mean St. Dev. Min Max 
Pred. 

sign3 
Definition 

Lag- 

Emissions 
892,644 1,676,330 6379 1.64e+07 + 

Ln (One year temporal lag of 

facility GHG emissions, T-1) 

Spatial-lag 

emissions 
921,985 1,259,868 10,989 1.56e+07 + 

Ln (Inverse Km^2 

geographical proximity 

spatial-lag of facility GHG 

emissions) 

R&D 5,608.8 4,890.245 46 14,490 - 
Ln (Total provincial R&D 

expenditures, T-1) 

Physical-

R&D 
5160.2 4503.408 38 13559 - 

Ln (Total provincial 

‘physical-science’ R&D 

expenditures, T-1) 

Social-

R&D 
448.66 403.19 7.0 1369 - 

Ln (Total provincial ‘social-

science’ R&D expenditures, 

T-1) 

GDPPC 0.4743 0.1936 0.2089 0.7786 + Provincial GDP per capita 

KL 5.668 50.66 0.00002 664.1 + Sectoral capital-labour ratio 

POLLAB 201.96 213.08 0.9818 1276 - 
Provincial pollution 

abatement expenditures 

INCOME

PC 
54,462 13,965.0 31,626.2 80,031.8 - 

Provincial gross domestic 

income per capita 

TRADE-

open 
0.6030 0.1037 0.3799 1.098 +/- 

Provincial international-trade 

openness = (Provincial EX + 

IM)/ Provincial GDP 

EDU-

employ 
0.0695 0.0075 0.0583 0.1038 +/- 

Provincial proportion of 

labour force in educational 

services 

FDI 108234.5 74832.13 569.8333 198820 - 
Sectoral foreign direct 

investment 

POPD 7.775038 4.691518 1.373872 26.28759 +/- 
Provincial population density, 

persons per sq. km 

 
2 The ‘Mean’ value for the above explanatory variables reflects the average value of the variable for all facilities 

represented in our dataset. For example, the ‘true mean’ of R&D expenditures across all provinces in Canada is $2.5 

billion annually. Whereas in our dataset, there is a higher proportion of facilities located in high R&D spending 

provinces, therefore across all facilities the ‘average R&D’ facilities face is $5.6 Billion. 

3 Predicted sign of coefficient estimate. 
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R&D captures provincial technological change, and is our main indicator of the technique 

effect. The coefficient on this variable allows us to directly test the marginal effect of 

technological change on industrial firm emissions, while accounting for both spatial and dynamic 

properties of pollution and two-way fixed effects. If the coefficient on R&D is negative, then 

there is evidence to support the hypothesis that increased technological expenditures have a net 

negative effect on industrial firm emissions; therefore, a facility in a province with higher 

technological investment is significantly more likely to exhibit pollution-reduction behaviors, 

compared to a facility in a province with low-technology investment, on average. If instead, the 

coefficient on R&D is positive, then there is evidence to suggest that a facility in a province with 

higher technological investment is significantly more likely to exhibit high-polluting behaviors, 

compared to a facility in a province with low-technology investment, on average. If the 

coefficient on R&D is insignificant, then there is no evidence to suggest either firm-level 

pollution behavior is occurring.  

The additional specifications of Physical-R&D and Social-R&D allow us to test the 

individual effects of different types of R&D on industrial facility emissions. More specifically it 

allows us to test whether Physical-R&D has a more significant emissions effect compared to 

Social-R&D, hypothesized due to the capital-intensive nature of industrial emissions. If the 

coefficient on Physical-R&D [Social-R&D] is negative, then there is evidence to support the 

hypothesis that increased provincial technological expenditures in natural sciences and 

engineering [social sciences, humanities, and the arts] have a net negative effect on industrial 

firm emissions; therefore, a facility in a province with higher technological investment in 

Physical-R&D [Social-R&D] is significantly more likely to exhibit pollution-reduction 

behaviors, compared to a facility in a province with low-technology investment in Physical-R&D 
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[Social-R&D], on average. If instead, the coefficient on Physical-R&D [Social-R&D] is positive, 

then there is evidence to suggest that a facility in a province with higher technological 

investment in natural sciences and engineering [social sciences, humanities, and the arts] is 

significantly more likely to exhibit high-polluting behaviors, compared to a facility in a province 

with low-technology investment in Physical-R&D [Social-R&D], on average. If the coefficients 

on Physical-R&D and Social-R&D are insignificant, then there is no evidence to suggest either 

firm-level pollution behavior is occurring.  

Our measure of the scale effect is GDPPC, which captures the increase in pollution as a 

result of an expansion of economic activity in a province, scaled by population. The inclusion of 

this variable allows us to control for provincial economic fluctuations and test the extent to 

which firm-level pollution outcomes are driven solely by expansions in economic activity. If the 

coefficient on GDPPC is positive, then there is evidence to support the hypothesis that increasing 

provincial economic activity is directly linked to increases in industrial firm emissions; therefore, 

a facility in a province with high GDPPC is significantly more likely to exhibit higher-pollution 

behaviors, compared to a facility in a province with low GDPPC, on average. If instead, the 

coefficient on GDPPC is negative, then there is evidence to suggest that a facility in a province 

with high GDPPC is significantly more likely to exhibit emission reductions behaviors, 

compared to a facility in a province with low GDPPC, on average.  If the coefficient on GDPPC 

is insignificant, then there is no evidence to suggest either firm-level pollution behavior is 

determined by differences in provincial economic output.  

Our measure of the composition effect is KL, which captures the ratio of capital-to-labour 

inputs in total production by sector. The inclusion of this variable allows us to control for 

sectoral differences in capital and labour inputs, as well as test the hypothesis that firms with 
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higher ratios of capital-to-labour inputs are more pollution intensive. If the coefficient on KL is 

positive, then there is evidence to support the hypothesis that higher levels of sectoral capital 

inputs (compared to labour) is directly linked to increases in industrial firm emissions; therefore, 

a facility in a sector with high KL is significantly more likely to exhibit higher-pollution 

behaviors, compared to a facility in a sector with low KL, on average. If instead, the coefficient 

on KL is negative, then there is evidence to suggest that a facility in a sector with high KL is 

significantly more likely to exhibit emission reductions behaviors, compared to a facility in a 

sector with low KL, on average.  If the coefficient on KL is insignificant, then there is no 

evidence to suggest either firm-level pollution behavior is determined by differences in sectoral 

input levels.   

We include two alternative technique effect measures, motivated by the economic 

growth-environment literature, POLLAB and INCOMEPC. POLLAB captures ‘end-of-pipe’ 

expenditures on pollution abatement by province and proxies provincial environmental 

regulation stringency. The inclusion of this variable allows us to control for estimated provincial 

stringency differences in environmental regulation, as well as test the hypothesis that firms in 

provinces with higher ‘end-of-pipe’ pollution control expenditures results in lower industrial 

emissions, on average. If the coefficient on POLLAB is negative, then there is evidence to 

support the hypothesis that higher levels of provincial pollution abatement expenditures is 

directly linked to decreases in industrial firm emissions; therefore, a facility in a province with 

high environmental regulation stringency is significantly more likely to exhibit pollution-

reduction behaviors, compared to a facility in a province with low environmental regulation 

stringency, on average. If instead, the coefficient on POLLAB is positive, then there is evidence 

to suggest that a facility in a province with high environmental regulation stringency is 



31 

 

significantly more likely to exhibit high-polluting behaviors, compared to a facility in a province 

with low environmental regulation stringency, on average.  If the coefficient on POLLAB is 

insignificant, then there is no evidence to suggest either firm-level pollution behavior is 

occurring.   

INCOMEPC captures the decrease in pollution as a result of an increase in real provincial 

income, scaled by population. The inclusion of this variable allows us to control for provincial 

differences in real income levels; as well as test the hypothesis that higher incomes are correlated 

with higher living standards and a higher preference for environment quality. If the coefficient 

on INCOMEPC is negative, then there is evidence to support the hypothesis that higher levels of 

provincial INCOMEPC is directly linked to decreases in industrial firm emissions; therefore, a 

facility in a province with high INCOMEPC is significantly more likely to exhibit pollution 

reduction behaviors, compared to a facility in a province with low INCOMEPC, on average. If 

instead, the coefficient on INCOMEPC is positive, then there is evidence to suggest that a 

facility in a province with high INCOMEPC is significantly more likely to exhibit high-polluting 

behaviors, compared to a facility in a province with low INCOMEPC, on average.  If the 

coefficient on INCOMEPC is insignificant, then there is no evidence to suggest either firm-level 

pollution behavior is occurring.   

Motivated by the economic growth environment literature, four additional pollution 

determinants are included in our empirical specification: TRADE-open; EDU-employ; FDI; and 

POPD. TRADE-open captures the pollution effect associated with an expansion of net 

international trade flows by provinces, scaled by provincial GDP. The inclusion of this variable 

allows us to account for the net flow of goods and services in and out of a province; and test the 

extent to which firm-level pollution outcomes are driven solely by expansions in international 
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trade activity. If the coefficient on TRADE-open is positive, then there is evidence to support the 

hypothesis that increasing provincial trade activity is directly linked to increases in industrial 

firm emissions; therefore, a facility in a province with a high trade-openness is significantly 

more likely to exhibit higher-pollution behaviors, compared to a facility in a province with a low 

trade-openness, on average. If instead, the coefficient on TRADE-open is negative, then there is 

evidence to suggest that a facility in a province with a high trade-openness is significantly more 

likely to exhibit emission-reductions behaviors, compared to a facility in a province with a low 

trade-openness, on average.  If the coefficient on TRADE-open is insignificant, then there is no 

evidence to suggest either firm-level pollution behavior is determined by differences in 

international trade flows by Canadian provinces.  

EDU-employ is a direct measure of education levels in a region, scaled by population. 

The inclusion of this variable allows us to control for provincial differences in knowledge 

accumulation; and test the hypothesis that higher levels of knowledge accumulation encourages 

facilities, through a learning-by-doing process, to implement the most effective pollution-

reduction technologies and reduce compliance costs in the long run. If the coefficient on EDU-

employ is negative, then there is evidence to support the hypothesis that higher levels of 

provincial knowledge accumulation is directly linked to decreases in industrial firm emissions; 

therefore, a facility in a province with high EDU-employ is significantly more likely to exhibit 

pollution reduction behaviors, compared to a facility in a province with low EDU-employ, on 

average. If instead, the coefficient on EDU-employ is positive, then there is evidence to suggest 

that a facility in a province with high EDU-employ is significantly more likely to exhibit high-

polluting behaviors, compared to a facility in a province with low EDU-employ, on average.  If 
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the coefficient on EDU-employ is insignificant, then there is no evidence to suggest either firm-

level pollution behavior is due to provincial differences in knowledge accumulation.   

FDI captures foreign direct investment, by sector. The inclusion of this variable allows us 

to control for sectoral differences in international capital shocks that may influence pollution; as 

well as, test the hypothesis that sectors that receive increased access to financial resources, new 

technology and a skill-upgraded work force are less-pollution intensive. If the coefficient on FDI 

is negative, then there is evidence to support the hypothesis that higher levels of sectoral foreign 

direct investment is directly linked to decreases in industrial firm emissions; therefore, a facility 

in a sector with high FDI is significantly more likely to exhibit pollution-reduction behaviors, 

compared to a facility in a sector with low FDI, on average. If instead, the coefficient on FDI is 

positive, then there is evidence to suggest that a facility in a sector with high FDI is significantly 

more likely to exhibit high-polluting behaviors, compared to a facility in a sector with low FDI, 

on average.  If the coefficient on FDI is insignificant, then there is no evidence to suggest either 

firm-level pollution behavior is determined by differences in sectoral-level foreign direct 

investment.   

POPD, captures population density, scaled by provincial area in square kilometers. The 

inclusion of this variable allows us to proxy informal regulatory pressure, as greater lobbying 

pressure is often correlated with a larger number of people in a particular area. In addition, 

including POPD allows us to test the hypotheses that provinces with more people leads to: more 

concentrated pollution levels (+), or lower pollution levels due to a higher net benefit of pollution 

abatement (-). If the coefficient on POPD is negative, then there is evidence to support the 

hypothesis that higher provincial population densities are directly linked to decreases in 

industrial firm emissions; therefore, a facility in a province with high POPD is significantly more 
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likely to exhibit pollution reduction behaviors, compared to a facility in a province with low 

POPD, on average. If instead, the coefficient on POPD is positive, then there is evidence to 

suggest that a facility in a province with high POPD is significantly more likely to exhibit high-

polluting behaviors, compared to a facility in a province with low POPD, on average.  If the 

coefficient on POPD is insignificant, then there is no evidence to suggest either firm-level 

pollution behavior is occurring due to differences in provincial population density.
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Chapter 5: Results of Spatial Lag Dynamic Panel Data Model 

5.0 Model Estimation 

Our baseline specification, which is common across all models presented in this section, includes 

lagged-emissions, spatially-lagged emissions, the scale effect (GDPPC), the composition effect 

(KL), TRADE-openness, POLLAB, INCOMEPC, and one of the three categories of our main 

variable of interest: R&D, Physical-R&D, or Social-R&D. In total we present the results of nine 

spatial-dynamic model estimations.  In models 1 to 3, we test the validity of our technique effect 

measure, R&D, by incorporating the alternative, empirically-motivated technique effect 

measures: pollution abatement expenditures, POLLAB, and income per capita, INCOMEPC. In 

models 5 and 6 we decompose the science-categories of R&D into Physical-R&D and Social-

R&D, respectively. To test the sensitivity of our results with the inclusion of other empirically-

supported pollution determinants, we estimate three additional specifications that independently 

introduce the following control variables: EDU-employ; FDI; and POPD (models 7, 8 and 9, 

respectively). Across all models, technological change, measured through provincial R&D 

expenditures, has a significant and negative impact on facility emissions.  

The Sargan Test is used to ensure that both the spatial and dynamic instruments are valid. 

In all models iterated, we fail to reject the null hypotheses that the instruments are valid (results 

are presented in Table 2 below). Based on the quite stable adjusted R-squared values across all 

models, we assert that our models have a high goodness-of-fit and that the percentage of 

explained variation in the dependent variable, emissions, is not simply due to adding more 

explanatory variables to the estimation.  Based on a Wald Test across all models, we reject the 

null hypothesis that the estimated coefficients are simultaneously equal to zero. This suggests 

that removing explanatory variables from the estimation will harm the fit of our model. The F-
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statistic and Log-likelihood Test additionally confirm the significance of our coefficient 

estimates.  

Table 2 presents the results of the Spatial Lag Dynamic Panel Data GMM estimator. 

Interestingly, the results are highly consistent with most of our expected signs on coefficients in 

all our models, as outlined by Table 1 in the empirical section. This finding provides additional 

support for the overall fit of the model
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Table 2. Summary of Spatial Lag Dynamic Panel Data Regression (N = 2700)  
Note: ***p < 0.01; **p < 0.05; *p < 0.10; Values in brackets are t-statistics  

Variable 1 2 3 4 5 6 7 8 9 

𝜑 (Lag- 

emissions) 

0.391*** 

(19.20) 

0.345*** 

(17.52) 

0.391*** 

(19.44) 

0.342*** 

(17.51) 

0.343*** 

(17.45) 

0.325*** 

(15.83) 

0.345*** 

(17.58) 

0.342*** 

(18.32) 

0.355*** 

(17.45) 

𝜌 (Spatial-lag 

emissions) 

0.216*** 

(5.09) 

0.108*** 

(2.90) 

0.192*** 

(4.50) 

0.090** 

(2.40) 

0.092** 

(2.43) 

0.099*** 

(2.57) 

0.097*** 

(2.73) 

0.091** 

(2.43) 

0.092** 

(2.37) 

GDPPC 
0.288** 

(2.37) 

1.02*** 

(5.24) 

0.506*** 

(3.63) 

1.198*** 

(5.79) 

1.234*** 

(6.00) 

1.441*** 

(5.87) 

1.009*** 

(4.65) 

1.185*** 

(5.75) 

1.184*** 

(4.31) 

KL 
0.0003 

(0.44) 

0.0001 

(0.20) 

0.0004 

(0.71) 

0.0003 

(0.41) 

0.0003 

(0.39) 

0.0005 

(0.73) 

0.0003 

(0.41) 

0.0002 

(0.24) 

0.0005 

(0.71) 

TRADE-open 
0.565*** 

(6.01) 

0.787*** 

(7.95) 

0.540*** 

(5.67) 

0.756*** 

(7.56) 

0.759*** 

(7.57) 

0.734*** 

(7.35) 

0.701*** 

(6.80) 

0.746*** 

(7.49) 

0.741*** 

(7.35) 

POLLAB   
4.74e-4*** 

(2.57) 

3.40e-5** 

(2.30) 

3.42e-5** 

(2.35) 

4.79e-5*** 

(3.31) 

3.12e-5** 

(2.18) 

3.10e-5** 

(2.10) 

3.39e-5** 

(2.21) 

INCOMEPC  
-5.01e-6*** 

(-5.07) 
 

-4.92e-6*** 

(-4.91) 

-5.08e-6*** 

 (-5.10) 

-5.74e-6*** 

(-4.96) 

-4.51e-6*** 

(-4.58) 

-4.78e-6*** 

(-4.77) 

-4.81e-6*** 

(-3.97) 

constant 
5.862*** 

(8.24) 

7.41*** 

(11.52) 

5.761*** 

(8.10) 

7.362*** 

(11.39) 

7.344*** 

(11.62) 

6.512*** 

(10.79) 

7.60*** 

(11.64) 

7.41*** 

(11.75) 

7.18*** 

(10.73) 

R&D 
-0.151*** 

(-3.76) 

-0.122*** 

(-3.10) 

-0.113*** 

(-2.64) 

-0.093** 

(-2.17) 
  

-0.100** 

(-2.35) 

-0.097** 

(-2.30) 

-0.092** 

(-2.13) 

Physical-R&D      
-0.096** 

(-2.38) 
    

Social R&D      
0.028 

(0.91) 
   

EDU-employ       
-2.72 

(-1.56) 
   

FDI        
-7.85e-8 

(-0.88) 
 

POPD         
-0.0004 

(-0.02) 

Adj R-sq 0.162 0.147 0.169 0.151 0.154 0.148 0.151 0.161 0.156 

Wald Test 526.75 470.74 553.98 486.95 488.04 474.82 486.77 525.33 508.15 

F-stat 87.79 67.25 79.14 60.8 61.01 59.35 54.09 58.37 56.46 

Log likelihood 283.33 229.45 287.89 227.38 227.02 199.41 232.63 225.50 246.54 

Sargan LM 0.127 0.290 0.153 0.286 0.301 0.257 0.225 0.298 0.281 
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5.1 Results 

The coefficient estimate on lagged emissions, 𝜑, which captures persistence in emission 

levels through time, is positive and significant across all models. The magnitude of the 

coefficient is less than unity signaling a stationary process of the evolution of emissions over 

time. The positive coefficient suggests that a 1% increase in a facility’s average previous-year 

CO2eq. emissions results in a 0.325% to 0.391% increase in present day CO2eq. emissions, 

ceteris paribus. Or, a 10% increase in a facility’s previous-year CO2eq. emissions results in 

3.25% to 3.91% increase in present day CO2eq. emissions, on average. This result provides 

support for the hypothesis that firm pollution accumulates in the long run. We conclude that 

there is systematic temporal-persistence between historical and current pollution levels for 

industrial facilities in Canada, on average. This result, indicating that lagged-emissions is a 

significant determinant of industrial pollution, is consistent with the literature on the dynamic 

effects of economic growth and pollution. This temporal-persistence in emissions is justified by 

several theories, such as: technological path-dependency (disincentive associated with high costs 

of switching to more environmentally-friendly technological regimes); or, economies of scale 

(incentive for facilities to maximize profits and recuperate high start-up costs through increased 

production).  

The coefficient estimate on spatially-lagged emissions, 𝜌, which captures the effect of 

spatial spillovers of pollution between firms, is positive and significant across all models. The 

positive coefficient on spatially-lagged emissions suggests that a 1% increase in neighborhood 

average CO2eq. emissions results in a 0.090% to 0.216% increase in own-facility 

CO2eq. emissions, ceteris paribus. Or, a 10% increase in neighborhood CO2eq. emissions results 

in 0.90% to 2.16% increase in own-facility CO2eq. emissions, on average. Since 𝜌 is positive, we 
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conclude that a facility surrounded by high-polluting facilities is significantly more likely to 

exhibit high-polluting behaviors, and vice versa for low-polluting firms. This finding is 

consistent with the spatial spillovers of pollution literature and reveals a positive complimentary 

emissions effect for firms in close geographical-proximity. This finding reveals the extent to 

which facility emissions are influenced by the emissions of neighboring facilities and confirms 

the significance of including a spatially lagged dependent variable in the empirical analysis of 

industrial pollution. Further analysis is required to deduce whether this spatial-spillover of 

emissions effect is associated with individual or complimentary theories, such as: location-

specific regulation, industry agglomeration, ‘best practices’ of pollution control passed between 

firms, and ‘yardstick competition’ between firms to gain social license.  

The coefficient estimate on our technique effect measure, R&D, which captures the 

marginal effect of technological change on industrial firm emissions, is negative and significant 

across all models. This estimate allows us to address the main objective of this thesis. The 

negative coefficient on R&D suggests that a 1% increase in R&D spending at the level of the 

province results on average in a 0.092% to 0.151% decrease in CO2eq. emissions at the level of 

the facility. Assuming average facility emissions and R&D levels, we find that a provincial R&D 

shock of $56 million (a 1% increase in average provincial R&D expenditures for facilities in our 

sample), would result in a CO2eq. emissions reduction of 0.82-1.35 kilotonnes (kt) per facility 

(0.092% to 0.151% decrease in facility CO2eq. emissions), on average. As the average industrial 

CO2eq. emissions for an individual facility is approximately 893 kt for our sample, we conclude 

that the overall emissions impact of technological change, measured through R&D expenditures, 

is relatively small. An alternative interpretation of this result is that the average total cost of 

R&D per unit of CO2eq. reduction is $185/tonne to $304/tonne. This result suggests that the cost 
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of emissions reduction technology is considerably higher than the $30/tonne regulatory price on 

CO2eq. emissions currently in place in Canada.  

Although the emissions effect of R&D is relatively small in proportion, our results 

provide evidence to support the hypothesis that increased technological expenditures have a net 

negative effect on industrial firm emissions; and that a facility in a province with higher 

technological investment is significantly more likely to exhibit pollution-reduction behaviors, 

compared to a facility in a province with low-technology investment, on average. This finding 

aligns with the theory contributed by the technological change-environment literature. In 

addition, this finding is consistent with the economic growth-environment literature led by 

Copeland and Taylor (2004), which posits that the technique effect reduces the emissions-

intensity of production, often due to a substitution of dirty and inefficient technology for more 

sophisticated and cleaner methods. Further analysis is required to deduce the mechanisms 

through which technological change permeates into industrial facilities and thereby, reduces 

emissions, on average. Preliminary insights surrounding the relationship between technology and 

industrial facilities in Canada are presented in the conclusion section of this thesis, with the aim 

of inspiring future inquiry.  

The additional specifications of Physical-R&D and Social-R&D are added in models 5 

and 6, to test the individual effects of different types of R&D on industrial facility emissions. 

The coefficient estimate for Physical-R&D is negative and significant, whereas the coefficient 

estimate on Social-R&D is insignificant across our estimations. As for the first finding, it appears 

that a 1% increase in provincial technological expenditures in natural sciences and engineering 

results on average, results in a 0.096% decrease in facility CO2eq. emissions, ceteris paribus. Or, 

a 10% increase in Physical-R&D results in 0.96% reduction in facility CO2eq. emissions, on 
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average. This provides evidence to support the hypothesis that increased provincial technological 

expenditures in natural sciences and engineering has a net negative effect on industrial firm 

emissions and that a facility in a province with higher technological investment in Physical-R&D 

is significantly more likely to exhibit pollution-reduction behaviors, compared to a facility in a 

province with low-technology investment in Physical-R&D, on average. As the coefficient on 

Social-R&D is insignificant, there is no evidence to suggest firm-level industrial pollution 

behavior is influenced by higher provincial technological investment in social sciences, 

humanities, and the arts. We conclude that there is a high probability that the negative, 

significant ‘total’ R&D emissions effect we observe, is primarily due to the role of provincial 

technological expenditures in natural sciences and engineering. This aligns with our original 

hypothesis that Physical-R&D would have a more significant emissions effect compared to 

Social-R&D, due to the capital-intensive characteristics of industrial operations. We conclude 

that, on average, higher provincial technological investment in natural sciences and engineering 

may be a key mechanism through which technological change permeates into industrial markets 

and translates into firm-level environmental performance outcomes in Canada.  

The coefficient estimate on the scale effect measure, GDPPC, which captures increases in 

pollution as a result of provincial expansions of economic activity per capita, is positive and 

significant across all models. The positive coefficient on GDPPC suggests that on average, a 1 

unit increase in gross domestic product per capita (1 unit= $1,000,000/person) results in a 22.8% 

to 144.1% increase in CO2eq. emissions at the level of the facility, ceteris paribus. Since GDPPC 

is positive, there is evidence to support the hypothesis that increasing provincial economic 

activity is directly linked to increases in industrial firm emissions; therefore, a facility in a 

province with high GDPPC is significantly more likely to exhibit higher-pollution behaviors, 
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compared to a facility in a province with low GDPPC, on average. This finding is consistent with 

the economic growth-environment literature led by Copeland and Taylor (2004), which posits 

that the scale effect is expected to increase pollution response. 

The net effect on pollution can be gleaned by comparing the magnitude of the estimated 

emissions impact of the scale effect measure, GDPPC, and the technique effect measure, R&D. 

Table 3, below, outlines the effect of a R&D and GDP shock of the same magnitude in detail. 

Using the mean values for: facility emissions; provincial R&D expenditures; provincial GDPPC; 

and provincial population values, we compare the emissions effect of an economic shock from 

R&D and GDP of the same magnitude. Our results show that the scale effect largely dominates 

the technique effect (measured through technological change) across all models. Assuming a 

status-quo R&D expenditure of 1.39% of provincial GDP, in conjunction with 1.39% increase in 

provincial GDP, we predict the combined result of the scale and technique effects is a net, 

positive increase in facility CO2eq. emissions of 2.76 to 16.58 kt, per facility. Cumulatively, this 

result means that for all 225 firms we analyzed, a R&D shock reduces emissions 184 kt to 303 

kt; while a GDP-growth shock of the same magnitude increases CO2eq. emissions by 806 kt to 

4,034 kt. The net outcome of these two effects is an additional 622 kt to 3,930 kt of CO2eq. 

emissions entering the atmosphere from a subset of 225 industrial facilities in Canada. This 

result is significant as it suggests that, on average, the current rate of technological advancement 

will reduce industrial CO2eq. emissions at a rate slower than the emissions growth associated 

with increases in economic activity.   
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Table 3. Estimated emissions effect of provincial R&D and provincial GDP shocks, both at 

1.39% of average provincial GDP expenditures. 

 
4 All units reflect kilotonnes of carbon dioxide equivalent emissions from facilities. 

5 ‘225 Facility Change in CO2eq. Emissions’ values do not exactly equal ‘Per Facility Change in CO2eq. Emissions’ 

times 225, as aggregate calculations were completed prior to rounding.  

6 Results were calculated assuming mean provincial R&D expenditures of $5,608.861 ($, million) and mean facility 

emissions of 892,644.3 tonnes of carbon dioxide equivalent emissions per facility. 

7 Results were calculated assuming a mean provincial gross domestic product per capita value of 0.4743 ($, 

million/person), mean provincial population of 848,248 persons per province, and mean facility emissions of 

892,644.3 tonnes of carbon dioxide equivalent emissions per facility. The ratio of annual, mean provincial R&D 

expenditures to provincial GDP expenditures is 0.013939. Thus, a rate of 1.39% is assumed for both estimated R&D 

and GDP shocks.  

8 Only the scale and technique effects were compared as the coefficient estimate on the composition effect is 

insignificant across all models. 

 

 Per Facility Change in 𝐂𝐎𝟐𝐞𝐪. 

Emissions4 

225 Facility Change in 𝐂𝐎𝟐𝐞𝐪. 

Emissions5 

 

Low Case High Case Low Case High Case 

Technique effect6  

(R&D shock of 

1.39% provincial 

GDP) 

- 0.82 kt - 1.35 kt - 184.5 kt - 303.1 kt 

Scale effect7 (GDP 

shock of 1.39% 

average provincial 

GDP) 

+ 3.58 kt + 17.93 kt + 806.3 kt + 4,034 kt 

Net effect8 (sum of 

both technique and 

scale effects) 

+ 2.76 kt + 16.58 kt + 621.8 kt + 3,930 kt 
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The control variables in our model mostly have expected theoretical signs. The 

coefficient estimate on the composition effect measure, KL, which captures the ratio of sectoral 

capital-to-labour inputs in total production, is positive, yet insignificant across all models. 

Although the inclusion of this variable is still valuable as it allows us to control for sectoral 

differences in capital and labour inputs, we are not able to test the hypothesis that firms with 

higher ratios of capital-to-labour inputs are more pollution intensive. Since the coefficient on KL 

is insignificant, there is no evidence to suggest firm-level pollution behavior is determined by 

differences in sectoral capital and labour input levels.  

Across all models, we obtain a significant coefficient estimate for our first alternative 

technique effect measure, POLLAB. The significant coefficient estimate on POLLAB suggests 

that on average, a 1 unit increase in provincial pollution abatement expenditures (1 unit= 

$1,000,000) results, on average, in a 0.0031% to 0.0474% change in CO2eq. emissions at the 

level of the facility, ceteris paribus. We remind the reader that the proxy of pollution abatement 

expenditures came from two separate biannual data tables to allow this proxy to match the panel 

time series. Thus, we are careful with our interpretation of this result. We conclude that 

expenditures on ‘end-of-pipe’ pollution abatement by province has a small marginal effect on 

industrial firm emissions. We suggest, however, that further inquiry into this result be undertaken 

if annual panel data on ‘end-of-pipe’ pollution abatement expenditures becomes available in the 

future. 

Across all models, we obtain a significant coefficient estimate for our second alternative 

technique effect measure, INCOMEPC. The inclusion of this variable is valuable as it allows us 

to control for provincial differences in real income per capita and test the hypothesis that 

provinces with higher real incomes per capita are correlated with higher preferences for 
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environmental quality and lower pollution intensive industrial activity. The significant 

coefficient estimate on INCOMEPC suggests that on average, a 1 unit increase in real income 

per capita (1 unit= $/person) results, on average, in a 0.000451% to 0.000574% decrease in 

CO2eq. emissions at the level of the facility, ceteris paribus. We conclude that provincial real 

income per capita (1 unit= $/person) has a small marginal effect on industrial firm emissions.  

We test the significance of including additional technique effect measures, POLLAB and 

INCOMEPC, in models 1 to 3. We observe a very small dampening effect on the coefficient of 

R&D with the inclusion of either the POLLAB or INCOMEPC covariates. We conclude that the 

inclusion of these alternative technique effects does not have a significant impact on the sign or 

magnitude of the coefficient estimate on our main variable of interest, R&D. 

The coefficient estimate on provincial trade-openness, TRADE-open, which captures 

increases in pollution as a result of provincial expansions of trade activity scaled by GDP, is 

positive and significant across all models. The positive coefficient estimate on TRADE-open 

suggests that on average, a 1 unit increase in trade openness (ratio of international imports and 

exports/provincial GDP) results on average in a 54.0% to 78.7% increase in CO2eq. emissions at 

the level of the facility, ceteris paribus. Since the coefficient on TRADE-open is positive, there is 

evidence to support the hypothesis that increasing provincial trade activity is directly linked to 

increases in industrial firm emissions; therefore, a facility in a province with a high trade-

openness is significantly more likely to exhibit higher-pollution behaviors, compared to a facility 

in a province with a low trade-openness, on average. This finding is consistent with some studies 

in the international trade-environment literature, which posits that the scale effect of trade 

intensity can lead to an increase in pollution response. 
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We obtained negative and insignificant coefficient estimates for our final three 

determinants of pollution, included in our empirical specification: EDU-employ; FDI; and 

POPD. Since the coefficient estimate on EDU-employ is insignificant, we conclude there is no 

evidence to suggest that changes in average, industrial firm-level pollution behavior is due to 

provincial differences in knowledge accumulation. We suggest that additional proxies of 

knowledge accumulation could be pursued in future inquiry of this result. Due to the 

insignificant coefficient estimate on FDI, we conclude that there is no evidence to suggest that 

average, industrial firm-level pollution behavior is determined by differences in sectoral-level 

foreign direct investment. Finally, as the coefficient estimate on POPD is insignificant, there is 

no evidence to suggest average, industrial firm-level pollution behavior is significantly 

influenced by differences in provincial population density. 

5.2 Robustness Check 

We note that clustered standard errors may be a limitation of the results obtained for the 

spatially-lagged emissions coefficient estimate presented in Table 2. In particular, spatial 

correlation of the error terms may exist due to correlation within a cluster (i.e. facilities that 

belong to the same province may have correlated emissions performance). Spatial correlation of 

the error terms violates the assumption that facilities are independent within the same cluster (i.e. 

the same province) and would result in biased coefficient estimates (Sarzosa, 2012). This could 

occur if facilities within the same province have more similar emissions performance compared 

to facilities not within the same province, potentially due to correlated unobservable factors (e.g. 

provincial industrial type or industrial size).  Further, the possibility of clustered standard errors 

would violate the assumption that 𝝃𝑡, the vector of idiosyncratic shocks, is normally distributed, 

zero-mean, homoskedastic and serially uncorrelated within and across firms.   
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We test for spatial correlation of the standard errors by estimating the spatial lag dynamic 

panel data regression and applying a cluster estimation method that clusters standard errors by 

province. The estimation procedure fails to converge, therefore as an additional robustness check 

we create a provincial geographically-weighted spatial weight matrix (inverse geographical 

proximity in kilometres) that only assigns the spatial weighting if a pair of facilities belong to the 

same province. We then use matrix multiplication to create a spatially weighted emissions 

variable that tests the effect of spatial spillovers of pollution between firms within the same 

province (cluster). The results of the re-estimation are presented in Table 4 below. We note that 

we obtain all the same signs and relative magnitudes for all explanatory variables in the model 

compared to our estimation results in Table 2. This robustness check is consistent with our initial 

results, as we obtain a positive and significant coefficient on spatially-lagged emissions. Since 𝜌 

is positive after the re-estimation procedure, we conclude that a facility surrounded by high-

polluting facilities is significantly more likely to exhibit high-polluting behaviors, and vice versa 

for low-polluting firms.  

Table 4. Spatial Correlation of Standard Errors Estimation: Summary of Spatial Lag Dynamic 

Panel Data Regression (N = 2700)  
Note: ***p < 0.01; **p < 0.05; *p < 0.10; Values in brackets are t-statistics  

Variable                 1 

𝜑 (Lag- emissions) 0.343*** (17.51) 

𝜌 (Spatial-lag emissions, weighted by provincial dummy variables) 0.090** (2.40) 

GDPPC 1.198*** (5.79) 

KL 0.0003 (0.41) 

TRADE-open 0.756*** (7.56) 

POLLAB 3.40e-5** (2.30) 

INCOMEPC             -4.92e-6***(-4.91) 

constant 7.362*** (11.39) 

R&D -0.093** (-2.17) 

 

Adj R-sq 0.151 

Wald Test 486.95 

Sargan LM 0.286 
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Chapter 6: Conclusion 

6.0 Summary of Key Findings 

Our study sought to econometrically estimate the impact of technological change, measured 

through provincial R&D expenditures in Canada, on pollution by Canadian firms. Additionally, 

our study aimed to provide insight into the mechanism through which technological change 

influences industrial pollution outcomes by decomposing R&D expenditures into scientific 

categories (physical and social sciences). Finally, our study sought to estimate the dynamic and 

spatial spillover effects of pollution and provide insight into the dynamic and spatial linkages 

that influence a firm’s pollution decisions.  

With regards to our main objective, to estimate the impact of technological change on 

pollution outcomes, we find that technological change, as predicted, had a negative and 

significant impact on average industrial facility emissions. In all nine models, we observe the 

expected signs for most of our control variables and find evidence to support a significant, 

negative emissions effect for our main variable of interest, R&D. We find that a provincial R&D 

shock of $56 million (a 1% increase in average provincial R&D expenditures for facilities in our 

sample), would result in an emissions reduction of 0.82 to 1.35 kt per facility (0.092% to 0.151% 

decrease in facility CO2eq. emissions), on average. As the average industrial CO2eq. emissions 

for an individual facility in our sample is approximately 893 kt, we conclude that the overall 

emissions impact of technological change, measured through R&D expenditures, is relatively 

small in magnitude. In addition, we find that the average total cost of R&D per unit of CO2eq. 

reduction is $185/tonne to $304/tonne. We acknowledge that a potential limitation of our 

research is that our proxy, R&D, may not capture all technological change processes that result 

in emissions reductions at the level of a firm, thus resulting in an underreported value for the 
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negative emissions effect of technological change. However, it is also plausible that the incentive 

structures that encourage industrial facilities to implement lower-emissions technology are weak 

or the costs to alter path-dependent technological regimes are still relatively high.  

In our second objective, we decompose R&D expenditures into scientific categories 

(physical and social sciences), and find evidence to suggest that the significant, negative 

emissions effect associated with total R&D expenditures is predominately channeled through 

‘engineering and natural science’ R&D. This result is not surprising as most of the sectors in our 

sample are highly capital-intensive and would rely heavily on technology upgrades in order to 

reduce emissions. Although, we did not find a significant industrial emissions effect from social-

science R&D expenditures, further examination into the environmental outcomes associated this 

type of R&D may be useful for other emissions contexts in Canada (e.g. transportation sector; 

domestic electricity consumption, etc.). Our results suggest that in terms of industrial emissions, 

‘natural sciences and engineering’ R&D investment is the most effective in achieving emissions 

reduction outcomes. Finally, we note that including only two categories of R&D funding may 

not capture the precise mechanism through which investment in technological change leads to 

industrial emissions reductions. Given more detailed data availability, we suggest that a further 

decomposition of R&D expenditures would be a valuable empirical exercise with significant 

implications for the Canadian literature on economic growth and the environment.  

Following Copeland and Taylor’s (2004) model of pollution, we analyzed the results of 

pollution supply (technological change, proxied through R&D expenditures) in relation to 

pollution demand (scale and composition effects). We find the composition effect to be 

insignificant across all models. However, as predicted by the economic growth-environment 

literature, we find a positive and significant coefficient estimate of the scale effect, measured 
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through provincial GDP per capita. This suggests that expansions of economic activity in a 

province increase industrial pollution, ceteris paribus.  

Similar to the results of a dynamic panel analysis conducted by Mohapatra et al. (2016), 

our results show that the scale effect largely dominates the technique effect (measured through 

technological change) across all models. Assuming a status-quo average R&D expenditure of 

1.39% of provincial GDP, in conjunction with a provincial GDP growth rate of 1.39%, our 

results predict a net positive increase in facility CO2eq. emissions. More specifically, this result 

means that across all 225 firms we analyzed, a R&D shock reduces emissions 184 kt to 303 kt; 

while a GDP-growth shock, of the same magnitude, increases CO2eq. emissions by 806 kt to 

4,034 kt. The net outcome of these two effects is an additional 622 kt to 3,930 kt of 

CO2eq. emissions pollution from a subset of industrial facilities in Canada (we analyze 225 of 

the total 596 industrial facilities reporting to ECCC). Considering that cumulative total emissions 

across all of Canada was approximately 716 megatonnes of carbon dioxide equivalent (Mt 

CO2eq.) in 2017, adding another ~4 Mt CO2eq. from a subset of industrial facilities across 

Canada, means that in order to achieve national emissions reduction targets other sectors will 

have to be more aggressive with their emissions reduction actions. This is if Canada still intends 

to meet its Paris Agreement emissions reduction target, of 524 MtCO2eq., by 2030 (Government 

of Canada, 2019b).  

In line with our final objective, to explore the dynamic and spatial linkages of industrial 

pollution, we find evidence to suggest a firm’s emissions are temporally dependent. We find a 

significant, positive relationship between past and present emissions levels, which suggests that 

facilities with higher historical pollution, are more likely to emit more pollution in the present 

compared to other firms, on average. This result is predicted through the work of Kolstad and 
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Krautkraemer (1993), who suggest pollution is likely accumulate and become more evident in 

the long run; and the path dependence literature which suggests that high start-up costs and 

positive feedback loops (economies of scale) tend towards facilities getting locked-in to a 

particular technological regime through time (Goodstein, 1995). 

In addition to the dynamic effects of pollution, our study finds evidence to suggest that 

positive spatial spillovers of pollution or ‘emissions-mimicking’ behaviors exist between 

neighboring firms in close geographical proximity. In order words, we find on average, that a 

facility surrounded by comparatively high-polluting facilities is significantly more likely to 

exhibit high-polluting behaviors, and vice versa for low-polluting firms. Although we propose 

decomposing the mechanism of spatial spillovers of pollution is an area worthy of future 

research, due to our informal knowledge of Canadian regulation and land-zoning trends we 

hypothesize that this effect most likely occurs due to a combination of all four theories presented 

in the literature review (location-specific regulation, industry agglomeration, ‘best practices’ of 

pollution control passes between firms, and ‘yardstick competition’ between firms to gain social 

license). As predicted by the spatial spillovers literature, our study confirms the significance of 

including a spatial-lag of pollution explanatory variable in the empirical analysis of industrial 

firm emissions.  

6.1 Policy Implications 

Although we find the marginal emissions effect of technological change to be relatively 

small for industrial emitters, our results support the hypothesis that industrial firms are 

responding to incentives to implement technological advancements that lower emissions, on 

average. The exploration of the mechanism, through which technological change reduces 

industrial emissions, is not formally explored in this thesis; however, our informal knowledge of 
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Canadian and provincial carbon pricing regulation allows us to provide two insights that may 

inspire future analysis.  

The first insight is that sector-competitive industrial emissions regulations (such as 

Alberta’s 2018 Carbon Competitiveness Incentive Regulation and the Government of Canada’s 

2019 Output-Based Pricing System), impose two unique signals to large industrial facilities 

(Good, 2018). Under this competitive regulatory regime, each facility in the same sector (e.g. 

distilling) is ranked and assigned an ‘emissions threshold’ relative to its peers in the same sector. 

If a facility operates at a lower emissions intensity than its assigned emissions threshold, it earns 

‘emissions performance credits’ that it can sell on the offsets market. If a facility emits more than 

this threshold, it has to meet it compliance obligation by either paying into a fund, buying offsets 

from other facilities, or by implementing emissions reduction technology to lower its compliance 

costs. In theory, facilities are able to anticipate increases to emissions pricing through time, and 

would be incentivized to implement lower emissions technologies relative to their peers in order 

to lower the costs of operating, as well as earn and sell credits at a price of $30/tonne (Alberta 

CO2eq. price per tonne, in 2018). As this type of regulation creates two unique incentives, 

analyzing firms that operate within and without industrial carbon pricing regimes may be a good 

starting-point for understanding the mechanism through which emissions reduction technology 

permeates the industrial landscape. Further, since ‘sector-competitive’ industrial carbon pricing 

regimes are still in their infancy nationally, empirically exploring how different mixtures of 

incentives (credits vs. compliance costs) influence emissions reduction technology adoption may 

be a fruitful area of future research in the coming years in Canada. 

The second insight into how large industrial facilities may be implementing emissions 

reduction technologies through time, is that provincial and national governments may be largely 
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subsidizing the costs. Within Alberta alone there are many agencies and programs that 

administer emissions reduction technology funding, with the goal of: ‘reducing emissions, 

increasing competitiveness, lowering carbon compliance costs, and improving energy efficiency 

through technology and equipment upgrades’ (Government of Alberta, 2019). A handful of 

current programs and agencies in Alberta include: Sector-Specific Industrial Energy Efficiency 

(SIEE) Program; Oil Sands Innovation Fund (OSIF); Industrial Energy Efficiency funding under 

the Cost Containment Program (CCP); Energy Efficiency Alberta (EEA); and others. Depending 

on the accessibility and detail of public program expenditure data, empirically evaluating the 

effectiveness of emissions reductions outcomes from these funding agencies and programs may 

uncover interesting insights surrounding how firm’s make technological decisions that influence 

environmental performance. 

The main policy application of our study is the result that technological advancements 

significantly reduce average industrial firm emissions, yet not at a rate that is not large enough to 

counteract the positive emissions effect associated with increased economic activity. Our 

analysis suggests that if the rate of technology adoption does not grow, the pollution associated 

with increases in economic activity will significantly dominate the emissions decreases 

associated with emissions reduction technology adoption. Given our estimates, it is likely that 

governments will have to implement more stringent measures in order to achieve the desired 

level of pollution for social welfare outcomes.  

In conclusion, governments and environmental non-profits, seeking to address the 

problems of climate change and pollution, may need to devote more resources towards 

evaluating the effectiveness of technological change as a way to achieve desired pollution 

outcomes. Our analysis contributes to this ongoing conversation by providing an estimate of the 
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industrial emissions effect associated with technological change, measured through R&D 

expenditures, using a spatial lag dynamic panel data model. We suggest that additional insights 

may be gleaned from future empirical analysis surrounding the mechanisms through which firms 

are incentivized to adopt emissions reduction technologies. 
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