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Abstract

There are varieties of time-varying processes in chemical engineering industrial ap-

plications. These processes are abundant among lumped and distributed parameter

systems and in batch systems they involve time-dependent change of parameters

and/or geometry within lumped and/or distributed parameter systems settings. The

focus of this thesis is on optimal state estimation and tracking regulation of two

fed-batch processes with time-varying parameters and geometry. The first process is

nonlinear time-varying microalgae growth and lipid production. An optimal reference

trajectory is identified for maximum lipid production and moving horizon estimator

along with model predictive control is realized for reference trajectory tracking of

lipid production model. The second process is Czochralski crystal growth process

which has moving boundary parabolic partial deferential equation describing heat

transfer as dynamic model coupled with a lumped parameter model of pulling dy-

namics. Galerkin’s method is used to reduce the distributed parameter model’s order

and an observer is developed to reconstruct temperature distribution evolution over

the entire crystal domain during growth process. The performance of the observer is

examined by implementing the observer on finite element model of the heat transfer

in crystal. Furthermore, finite element model of the heat transfer along with finite el-

ement model of anisotropic thermal stresses in growing crystal are utilized to identify
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an optimal trajectory and develop a model predictive reference trajectory tracking

controller for temperature distribution in the Czochralski crystal growth process to

maximize the crystal cooling while maintaining the thermally induced stresses below

the critical value in order to improve the quality of the grown crystal.
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Chapter 1

Introduction

1.1 Introduction

Batch processes are abundant in chemical engineering industry and are widely applied

in modern industries to produce a large quantity of products with high consistency.

Generally, a batch process is defined as a process that leads to the production of

finite quantities of material by subjecting quantities of input materials to an ordered

set of processing activities over a finite period of time using one or more pieces of

equipment (Instrument Society of America, 1995). In batch process, due to cycle

to cycle (non-continuous) operations, finite operation time and sensitivity to initial

conditions and disturbances, there are fundamental control tasks to be accomplished

such as to identify the optimal/desired set-point/trajectory, realize perfect tracking

of the desired trajectory in each cycle, robustly track the desired trajectory as close

as possible in the presence of uncertainties and comply with the process input and

output constraints for implementation.

In most of the processes in industry, the dynamic models are assumed to be time-

invariant and/or modeled by lumped parameters. However, neglecting time-varying

and spatially distributed parameters in process models can decrease the modelling
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1.1: Introduction 2

accuracy and, consequently, the estimation and control efficiency. There are abun-

dant processes in industry that can not be modelled as time-invariant and/or lumped

parameter models and require different methodology rather than conventional meth-

ods to overcome the control and estimation challenges. This work provided strategies

for control and estimation in two different categories of such processes.

Optimization, monitoring and controlling of industrial processes with time-varying

parameters has recently gained increasing interest. Such processes exist in many in-

dustrial applications and cannot be handled by conventional control theory methods.

This research is focused on developing a plausible framework to optimize, monitor

and control the processes with time-varying parameters. Two specific applications are

investigated and discussed, bio-fuel production from microalgae, and quality assur-

ance of the single crystal production. The microalgae growth and bio-fuel production

is governed by a nonlinear and time-varying model, where the crystal growth and

temperature distribution model is a distributed parameter system with time-varying

domain and parameters.

The first application is optimization and control of microalgae bioreactor. The

motivation for extracting bio-fuel from microalgae is to find a sustainable and reli-

able replacement for the conventional fuels; however, due to the low production rate,

bio-fuel produced from microalgae is not economically feasible. Optimal control of

microalgae bioreactor is one of the large number of option to overcome the low lipid

production rate, which can result in economic feasibility of microalgae bio-fuel pro-

duction process. The process can be optimized by scheduling the nutrient feeding into

the microalgae bioreactor. An optimal feeding strategy can be provided to maximize

bio-fuel production from microalgae. The optimal strategy is enriched by monitoring

and controlling strategies to ensure the performance of the bioreactor in realistic op-
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erating conditions.

Off-line optimization and on-line Model Predictive Control (MPC) implementa-

tion are used to maximize and regulate lipid production in a fed-batch heterotrophic

microalgae cultivation of Auxenochlorella protothecoides. A complex time-varying mi-

croalgae fed-batch growth and lipid production model, taken from De la Hoz Siegler

et al. (2011), is used and a large-scale nonlinear programming optimization along

with moving horizon estimator and model predictive control are applied to maximize,

monitor and maintain the lipid concentration in the bioreactor. An optimal feeding

strategy for lipid production is determined using the state-of-the-art interior point

optimizer (IPOPT) solver. Moving horizon estimator (MHE) and MPC are used

to estimate unmeasurable state (nitrogen concentration) and provide regulation of a

highly nonlinear and time-varying microalgae growth process as a realizable real-time

control strategy. In addition to the constrained large-scale optimization, naturally

present input constraints (lower and upper bound on feed rates) and state constraints

(lower bound on all concentration related states and upper bound on glucose concen-

tration) are accounted for in explicit manner with moving horizon estimator and

model predictive controller. The estimator and controller design is based on a set of

linearized models in microalgae growth fed-batch process. A reliable and computa-

tionally efficient optimization, estimation and regulation procedure suitable for the

real-time microalgae bioreactor operation is provided which accounts for constraints

and measurement noises present in the realistic operation conditions (Abdollahi and

Dubljevic, 2012).

The second application considered in thesis is silicon single crystal production by

Czochralski process. Single crystals have unique mechanical, physical and electri-

cal properties that justify their high demand in microelectronics and optoelectron-
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ics(Sinno and Brown, 1999; Sinno et al., 2000). Temperature distribution in the

crystal during the crystallization is the most important factor in dislocation density

distribution and magnitude and residual stresses in the crystal which can alter the

crystal’s quality and physical properties significantly (Sinno et al., 2000; Gevelber,

1994). To assure the quality of the crystal, a potential solution is to maintain the

temperature gradients and thermal stresses at a desirable level. The spatial tempera-

ture distribution, heat transfer between the solid-liquid interface, the coupled growth

dynamics, time-varying domain and time-varying parameters make the existing con-

trol strategies inapplicable. On the other hand, the temperature distribution over the

crystal domain is not directly measurable and a temperature distribution estimation

is required for monitoring purposes and utilization of a full state feedback controller.

The coupled growth dynamics and heat transfer equations are derived and re-

duced to a low dimensional model (Abdollahi et al., 2014). A mechanical geometric

crystal growth model is developed to describe the crystal length and radius evolution

and a controller is synthesized by output-input linearization of the model to regu-

late and track crystal radius. This controller accounts for parametric uncertainty in

the crystal growth rate. The associated parabolic PDE model of heat conduction

is considered over the time-varying crystal domain and coupled with crystal growth

dynamics. An infinite-dimensional representation of the thermal evolution is derived

considering slow time-varying process effects and computational framework of the

Galerkin’s method is used for parabolic PDE order reduction and observer synthe-

sis for temperature distribution reconstruction over the entire crystal domain. The

proposed low-order observer is utilized to reconstruct temperature distribution from

boundary temperature measurements. A finite element model of the process is devel-

oped to study the performance of the observer developed with geometric uncertainties
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in the model.

After developing an estimation strategy for temperature distribution evolution, a

model predictive temperature tracking control strategy is provided to track the ref-

erence trajectory. The controller is developed in order to maximize crystal cooling

while maintaining the thermally induced stresses at a desirable level. The similar

approach is taken as for the microalgae bioreactor control. An optimal trajectory

is identified by off-line optimization and considering the constraints on temperature

gradients and thermal stresses to avoid dislocation generation in crystal. Then the

reference trajectory is used to implement model predictive tracking control in order

to follow the desirable temperature distribution evolution. Finite element model of

temperature distribution is used for model reduction and directly used as the temper-

ature evolution model. Another finite element model is utilized to model the thermal

stresses in the crystal, which is used to explicitly develop the constraints on thermal

stresses during the crystallization process.

The organization of the thesis is as following: after the Introduction, optimization,

control and estimation in microalgae bioreactor is provided in Chapter 2. Chapter 3

focuses on temperature distribution estimation in Czochralski crystal growth process

and is followed by model predictive temperature distribution tracking of Czochralski

crystal growth process in Chapter 4. Finally, Chapter 5 concludes the thesis and

provides some ideas about possible future contributions.

1.2 References

Abdollahi, J., Dubljevic, S., 2012. Lipid production optimization and optimal control
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Chapter 2

Lipid Production Optimization and
Optimal Control of Heterotrophic
Microalgae Fed-Batch Bioreactor

2.1 Introduction

Economic and population growth have steadily increased the global energy demand.

It is expected that the world will need almost 60% more energy, if current policies for

energy management are held (Patil et al., 2008). Due to finite resources of fossil fuels

and the impact of their consumption on environment, they do not make sustainable

and reliable sources of energy any longer (Chisti, 2007; Hoffert et al., 2002; Khan

et al., 2009). Therefore, there is a need for development of new energy sources such

as biofuels that are renewable and environmentally sustainable. Currently, biodiesel

and bio-ethanol are produced on a large industrial scale. They are replacements for

petroleum for internal combustion engines, and are derived from food crops, which

results in food-fuel conflict (Patil et al., 2008). On the other hand, biomass resources

in many cases require appropriate compensation (e.g. replanting), otherwise their use

may give rise to a massive biomass deficit and serious environmental problems (e.g.
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deforestation) (Patil et al., 2008).

In order to deal with the mentioned issues, one solution is to use heterotrophic

microalgae as a substitute for the crops and other feedstock and consequently the

produced biofuel can be used instead of traditional fuels. Heterotrophic microalgae

cultivation requires less water and land compared to phototrophic microalgae, crops

and other feedstock, it is productive throughout the year and is characterized by a

high growth rate (Hoffert et al., 2002). However, biofuel production from microalgae

is not commercially viable due to low performance of bioreactors.

In order to achieve good performance and efficiency, bioreactors require advanced

regulation procedures to ensure performance and efficiency of bioprocesses. In gen-

eral, a biological process is a network of complex biochemical reactions manipulated

by enzymes (Mailleret et al., 2004; Farza et al., 1997). In fact, such kinetic networks

give rise to highly complex and nonlinear dynamics of enzymes, nutrients and product

concentrations in bioreactors. Modelling these dynamics with few states and param-

eters is a challenging task which may provide a relevant reduced order model of the

process with usually time-varying and uncertain parameters. In addition to model un-

certainties arising from complex biosystem dynamics, accurate and fast biochemical

sensors are limited and difficult to realize in practice, which makes optimal bioreactor

operation a challenging task. Therefore, in order to cope with such a complex biosys-

tem, it is necessary to obtain sufficiently accurate and reliable information about the

states and systems parameters to come to efficient monitoring and regulation (Farza

et al., 1997).

State and parameter estimation methods are well developed techniques in the pro-

cess system science whose purpose is to handle unknown states and uncertainties in

a model. There are several studies confirming that parameter and state estimation
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using linear and extended Kalman filter (EKF) fails or shows weak performance for

the biological systems (Bastin and Dochain, 1990; Gonzalez et al., 2001; Selisteanu

et al., 2007). Hence, using nonlinear observers for the state and parameter estima-

tion of bioreactors has been successful and attracted much attention in recent years

(Alcaraz-Gonzlez et al., 2005; Farza et al., 1998). In Alcaraz-Gonzlez et al. (2005),

the state estimation scheme is designed based on an asymptotic observer with a tune-

able convergence rate. This robust observer is verified numerically by simulation on

the waste water treatment model. Farza et al. (1998) studied kinetic rates estimation

in bioreactors and provided a theoretical framework for the kinetic rate estimation in

bioreactors. Along the same line, Zhang and Guay (2002) used an adaptive nonlinear

observer to estimate states and parameters of a microbial growth model. They used

Lyapunov stability techniques and verified their approach by numerical simulations.

On the other hand, with respect to control synthesis, predictive control method-

ologies can be used with state estimation to solve the control problem while handling

the governing constraints. Sendrescu et al. (2011), El Bahja et al. (2009) and Tebbani

et al. (2010) used nonlinear model predictive control (NMPC) for state regulation.

Sendrescu et al. (2011) used NMPC to regulate sates in a nonlinear bioprocess with

known states and with no constraints present. Nonlinear model predictive control

is used for unconstrained state regulation in a lipase production bioprocess, while

states are estimated using Kalman Filter (El Bahja et al., 2009). Tebbani et al.

(2010) converted a constrained bioprocess control problem to an unconstrained non-

linear programming, and solved the constrained control problem to maximize cultures

of Escherichia coli.

One of the strategies to ensure that the efficiency of lipid production is guaranteed

is to force the microalgae states to track a reliable predefined reference trajectory.
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Using the growth model, the states and inputs evolution can be determined such that

the maximum lipid density is achieved. Calculation of the optimal trajectory is a

difficult task due to complexity of the model, constrained states and inputs and also

due to the time scale of the optimization problem. For example, the lipid production

optimization problem has been handled empirically by Hsieh and Wu (2009) and

Doucha and Lvansky (2012) to find a strategy to maximize cell density based on

experimental results. Wu and Shi (2007) optimized the cell density using a hybrid

neural network model.

There are three main approaches for nonlinear constrained optimization. Se-

quential quadratic programming (SQP), Interior point and nested projection meth-

ods (Biegler, 2010). SQP algorithms are based on extension of Newton’s method

to quadratic problems and the computational expense of solution is limited to the

quadratic problems solution. Active set selection and linear algebra used to solve

KKT conditions determine the computational efficiency of the algorithm. These al-

gorithms use few functions and derivative evaluations, but in the case of large-scale

programs and large number of constraints they are computationally expensive due to

necessity to choose an active set. Interior point or barrier methods are also based on

the Newton’s method but they do not use the active set and they deal with relaxed

KKT conditions; therefore they can be used to handle large-scale programs. Nested

projection methods are more efficient in the case of highly nonlinear objective function

and constraints. They do not solve KKT conditions simultaneously, but decompose

the problem and then use Newton’s type methods, and as consequence they require

more function evaluations (Biegler, 2010).

The Interior Point Optimizer (IPOPT) developed by Wachter and Biegler (2006),

is a large-scale optimization solver for constrained nonlinear programs and can be
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applied to the lipid production model. The solution provided by the IPOPT might

not achieve global optimum solution. Theoretically, the solution for the IPOPT solver

is not global, and there is also a proven example (Wachter and Biegler, 2000) that

the interior point method fails to globally converge. However, practically, searching

within an active set enforced by constraints, the possibility to achieve a global solu-

tion is more likely. In addition, multiple runs with different initial guesses over the

search domain is helpful to avoid local optimums. IPOPT is used to optimize biopro-

cesses, for example Estrada et al. (2009) used IPOPT to solve a large-scale nonlinear

program of algae growth in the water reservoir, and IPOPT is also used for optimal

management of the water treatment bioreactor by Alvarez-Vzquez et al. (2010).

In this chapter, microalgae growth and lipid production model are used in a large-

scale nonlinear programming format to obtain optimal feeding strategy and conse-

quent state trajectories in the presence of physically relevant constraints. The large-

scale constrained optimization solution realized by IPOPT uses perfect model and

yields desired optimal input evolutions. However, the optimization can not account

for the influence of possible disturbances in the feeds or bioreactor conditions, so that

the obtained reference trajectory provides a desired state evolution to form a sequence

of locally reduced and linearized models to synthesize control and estimation strategy

for the regulation of lipid production rate. Subsequent linear time invariant models

are used by the constrained moving horizon estimator (MHE) to construct full states

of the process, since some of the states are not available for direct measurements (ni-

trogen concentration). With the real-time knowledge of the states, model predictive

reference trajectory tracking is implemented to maintain optimal performance of the

process.

This chapter is based on the experimental work of De la Hoz Siegler et al. (2012).
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The contribution of the present chapter focuses on the predetermined optimal tra-

jectory, simplicity for scaled-up implementation and also on handling constraints in

estimation, control and optimization procedure. Tracking the predetermined optimal

reference trajectory is a reliable way to maximize lipid concentration in a bioreactor,

which maintains the efficiency of a single bioreactor at a desired level, and can be

applied to different bioreactors to achieve the same properties of lipid. Using linear

models for control and estimation guarantees the convexity of optimization in model

predictive control, and therefore reduces the computational effort. In addition, linear

models employed in algorithm simplify the algorithm implementation and realization

on embedded controllers. Moreover, model predictive techniques used for control and

estimation can handle constraints on inputs and states in explicit manner which is

not common in conventional control algorithms.

In the ensuing sections we provide a description of the microalgae bioreactor

model, with the microalgae mathematical model. The following three sections deal

with feeding strategy optimization, formulation of moving horizon estimator (MHE)

for the state estimation, and model predictive controller (MPC) for the reference tra-

jectory tracking. Finally, we provide simulation results and biological interpretation

of the results with the emphasis on possible presence of noise in the process regulation.

2.2 Microalgae growth and lipid production model

Microalgae growth takes place in a bioreactor vessel where microalgae cells grow in

the presence of required nutrients and essential substances. Depending on the feeding

strategy, different pathways of the growth and lipid production can be achieved by

microalgae species (De la Hoz Siegler et al., 2011). These growth and lipid production

pathways are governed by biochemical reactions in the microalgae cells. Detailed
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modelling of all these reactions is not a feasible task at the moment. The most

common approach to derive a mathematical model is to use a few most effective

variables in the process. The mathematical model is based on the material balance

applied to the bioreactor and is given in Eqs.2.1-2.6. The model parameters are

identified using experimental data in De la Hoz Siegler et al. (2011):

dS1

dt
= −ρx+ si1

f i1
V
− S1D (2.1)

dS2

dt
= − 1

Yx/s
µx− 1

Yp/s
πx− kmx+ si2

f i2
V
− S2D (2.2)

dx

dt
= µx− xD (2.3)

dp

dt
= πx− 1

Yx/p
µx− pD (2.4)

dq

dt
= ρx− 1

Yx/q
µx− qD (2.5)

dV

dt
= V D − f o (2.6)

This model, given by Eqs.2.1-2.6, represents the heterotrophic growth and lipid pro-

duction of Auxenochlorella protothecoides. The model is based on the assumption

that algae cells are composed of three components, active biomass (x), lipid content

(p), and nitrogen content (q). These three components can transfer to each other with

constant rates (Yi/j). Another important variable is glucose concentration (S2), which

is used to support cell growth and lipid production, while nitrogen (S1) is taken into

the cells and supports cell growth. µ is the growth rate, π is the lipid production rate

and ρ is the nitrogen uptake rate into the cells, while si1 and si2 are the concentrations

of nutrients in feeds, V is the volume of the bioreactor, while D is reserved for the

dilution rate which is equal to D = (f i1 + f i2)/V and km is the maintenance factor.

f i1 and f i2 are the feed rates of glycine and glucose as the sources of nitrogen and
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glucose, respectively. These nutrient feed rates are available control inputs applied to

the fed-batch process model. There is also an outflow (f 0) which is only used for the

measurements and monitoring purposes.

Nonlinearities in the model description arise from the algae growth and nutrient con-

sumption rate functions. The rate functions (µ, π, ρ) depend on the states of the

system, which are given below:

µ =µm
S2

Kµ + S2 +
S2

2

Ki2

q̃

Kq̃ + q̃
exp(−

1
t

∫ t
0
q̃dt

Ki1

) (2.7)

π =πm
S2

Kπ + S2

(1− p̃) (2.8)

ρ =ρm
S1

Kρ + S1

(2.9)

where q̃ and p̃ are the mass fraction of nitrogen and lipid in the cells, respectively

(q̃ = q/(x+ p+ q), p̃ = p(x+ p+ q)). As it can be seen in Eq.2.7, the growth

rate depends on glucose concentrations (S2) and nitrogen content in the cells. This

dependency is described as multiplication of Michaelis-Menten kinetics for glucose and

nitrogen sources. The growth rate also depends on the history of nitrogen content

in the cells. Lipid production and nitrogen uptake rates are also assumed to obey

Michaelis-Menten kinetics. The parameters of the microalgae model are shown in

Table 2.1. In the experimental realization of a microalgae bioreactor, which is done by

Nadadoor et al. (2012), the same states are measured using laser Raman spectroscopy.

In general, the states of the growth model can be measured offline, while for the

real-time online measurements, Raman spectroscopy can be utilized. In the microal-

gae bioreactor used in this chapter, the nitrogen concentration (S1) in the bioreactor

can not be detected directly by the Raman spectroscopy method and should be esti-
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Table 2.1: Microalgae growth and lipid production model parameters

Parameter Value Unit
Yx/s 0.55 -
Yp/s 0.34 -
Yx/q 56.67 -
Yx/p 11.84 -
km 0.19 1/d
µm 14.18 1/d
Kµ 8.45 g/L
Kq̃ 0.0041 -
ρm 0.93 1/d
Kρ 0.14 g/L
πm 0.50 1/d
Kπ 0.09 g/L
Ki2 49.50 g/L
Ki1 0.016 -

mated on the basis of reliable real-time measurements for further regulation purposes.

2.3 Optimization, Estimation and Control meth-

ods

The main objective of this chapter is to demonstrate reliable lipid production max-

imization in the microalgae bioreactor by application of advanced optimization, es-

timation and control techniques. In general, the control strategy implementation

requires both full knowledge of the state trough measurement or estimation, and a

reliable reference trajectory. In this chapter, the reference trajectory is obtained by

using the interior point optimizer (IPOPT), and the states are estimated using a

moving horizon estimator; then, with full states available, a model predictive control

based strategy is used to track a desired reference trajectory. As linear MPC and

MHE are used, reliable linear models are required which are achieved by subsequent
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process model linearization.

2.3.1 Feeding Strategy Optimization

Microalgae lipid concentration in the bioreactor can be manipulated by determining

nutrient feed rates. Glucose and glycine feed rate profiles determine the growth

and lipid production trajectories. In order to obtain an optimal trajectory in the

sense of lipid production, the IPOPT optimization method is used to maximize lipid

concentration in the bioreactor by manipulating nutrient input rates. The process

dynamic is highly nonlinear and there are constraints on the states, process inputs and

final bioreactor volume which induce model complexity that can be handled only by

large-scale nonlinear optimization programs. In order to handle the nonlinearity and

complexity of the model, the process model and the underlying optimization problem

is formulated on the basis of the model given by Eqs.2.1-2.9 as a nonlinear program.

The total process time is eight days and time discretization is accurate enough, with

sampling time of 30 minutes and the total process time of eight days that induces

768 manipulating parameters in the program. In addition, the process discretization

in time will produce over 6000 equality and inequality constraints. Therefore, the

optimization problem is transformed to a large-scale nonlinear program with over

6000 constraints. Due to significant complexity, conventional numerical algorithms

are not able to solve a large-scale nonlinear program with enough accuracy and within

a reasonable time period, and cannot to be implemented in the on-line autonomous

control and monitoring. The nonlinear program is formulated in Eqs.2.10-2.13 as
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follows:

ξk+1 = ξk + hf(ξk, uk) (2.10)

0 6 uk 6 umax (2.11)

0 6 ξk 6 ξmax (2.12)

V tf = 2 (2.13)

where ξ = [S1, S2, x, p, q, V ] is the state vector and ξk is the state vector at time

k. The dynamic model of microalgae is realized with equality constraints given by

Eqs.2.10-2.13 and inequality constraints given by Eqs.2.11-2.12, which yields nonlin-

ear program to be solved. Table 2.2 shows the constraints used in the optimization

of lipid production. Due to the model structure, Eqs.2.1-2.6, negative inputs are

manifested as an increase in the lipid and biomass concentration, which means that

the constraints on the inputs are necessary and will be active in the lipid production

optimization by IPOPT. The other active constraint is the volume of the bioreactor

which is finite. The maximum volume should not exceed 2 litres. In addition, there is

also a constraint on the maximum nutrient concentration to prevent dehydration of

the microalgae cells. Finally, the large-scale nonlinear program is solved using AMPL

as interface and by utilization of the IPOPT solver. The resulted input feeds and

state trajectories are used as reference state trajectories for the subsequent control

and estimator design.

2.3.2 Model Linearization

Handling a nonlinear and time-varying system by successive approximations yielding

linear models requires taking account of the physical process time relevant scales and
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Table 2.2: List of constraints

Variable Lower bound Upper bound Unit
Glucose concentration (S2) 0 50 g/L
Nitrogen feed rate (f i1) 0 2 mL/h
Glucose feed rate (f i2) 0 10 mL/h
Nitrogen feed rate change (∆f i1) -0.2 0.2 mL/h
Glucose feed rate change (∆f i2) -1 1 mL/h
Bioreactor volume (Vmax) - 2 litres

adequate and computationally reliable procedure that can be applied robustly in real-

time. In particular, the microalgae process can not be approximated by a single linear

model, as the single linearized model is not able to predict the system’s behaviour

through the entire bioreactor single cycle run. In this chapter we generate a set of

linearized models along the optimal trajectories obtained by the IPOPT large-scale

optimization. The algorithm linearizes the mathematical model based on the states

at the current time along the reference state trajectory, so that MPC and MHE are

designed based on these local linear models. Local linear models are obtained by

replacing the time-varying integral term in Eq.2.7 by a constant parameter. This in-

tegral term depends only on the measurable states and it is numerically calculated by

replacing a constant parameter, given by Eq.2.14, at each instance of the linearization

process. Therefore we have:

1

t

∫ t

0

q̃(t)dt =
1

kT

k∑
j=1

q̃(j)T (2.14)

Linearized models are accurate enough for 40 sampling times and therefore, to reduce

computational effort, local linear models are used for about 2 hours of the process

time.
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2.3.3 Moving Horizon Estimator (MHE)

Due to necessity to utilize the entire knowledge of the state in the regulation achieved

by model predictive control algorithm, non measured bioreactor system’s states (nitro-

gen concentration) need to be estimated accurately enough. One of suitable observers

(estimators) in the presence of input and state constraints is a moving horizon estima-

tor (MHE). As it can be inferred from the mathematical model Eqs.2.1-2.6, the origin

is a single stable equilibrium of the dynamical model, and the states can not take neg-

ative values was this is imposed by a physical condition that the concentrations can

not be negative. These physical restrictions associated with the model are manifested

as restrictions on the states and inputs allowed signs specified in the observer design.

In addition, the limit on glucose concentration available in the feed stream, which

is considered as an input constraint, encourages the usage of an observer which can

handle constraints.

State estimation by the moving horizon estimator is based on an idea similar to

the synthesis of model predictive control. In the moving horizon state estimation

approach, the state is estimated by solving an optimization problem in an iterative

manner over the moving time horizon. In comparison with the model predictive con-

troller, where future deviations of predictions from the reference value are minimized,

the MHE minimizes past deviations of the trajectory from the output measured val-

ues. The MHE estimates all states and accounts for the noise in previous N steps

(estimation horizon) by optimization based on online available measurements. At each

step, previous states and noises will be reconstructed such that the error between the

measured outputs and model predictions is minimized. Supposing that there is an

initial guess about the states (ξ̄k−N−1) at the time k −N − 1, the consequent states
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can be calculated by Eqs.2.15-2.16 (Muske and Rawlings, 1993b):

ξ̂k−N−1|k = ξ̄k−N−1|k−N + ω̂k−N−1|k (2.15)

ξ̂j+1|k = Aξ̂j|k +Buj + ω̂j|k (2.16)

where ξ̂ is the estimated state vector (ξ = [S1, S2, x, p, q, V ]T ), ω̂j is noise estimate at

the step j and ω̂k−N−1|k−N is reserved to modify uncertainties in the initial guess of the

first state in the estimation window. The MHE problem is stated as a minimization

problem of the objective function (Ψk) and is stated in Eq.2.17:

min
{ω̂k−N−1|k,··· ,ω̂k−1|k}

Ψk = ω̂Tk−N−1|kQ0ω̂k−N−1|k (2.17)

+
k−1∑

j=k−N

ω̂Tj|kQω̂j|k +
k∑

j=k−N

êTj|kRêj|k

subject to:

ξ̂k−N−1|k = ξ̄k−N−1|k + ω̂k−N−1|k (2.18)

ξ̂j+1|k = Aξ̂j|k +Buj + ω̂j|k (2.19)

yj = Cξ̂j|k + êj|k (2.20)

where A,B,C are local linear matrices and êj/k is the error between the measurements

and predicted output (êj|k = yj − Cξ̂j|k). The state estimation is subjected to the

state constraints and chemically and/or biologically represented state variables can

not take negative values in Eqs.2.1-2.6, which is enforced by:

ξ̂j|k > 0 (2.21)
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Substituting êj/k from Eq.2.20 into Eq.2.17 results in a convex quadratic program

which can be solved by MATLAB or any commercial optimization package. Then,

Eqs.2.15-2.16 will be used to reconstruct the states.

2.3.4 Model Predictive Control (MPC)

Knowing the optimal reference trajectory and having the knowledge of all states,

the MPC is designed to track the reference trajectory. Model predictive control uses

the mathematical model of the process to predict future behaviour of the process

and optimize the input actions in order to plan the best action to reach a desired

objective. Usually, the MPC objective is to achieve regulation or trajectory tracking.

The optimization objective with reference to the tracking problem is defined as (Muske

and Rawlings, 1993a):

min
u0···uN−1

Φ =
N∑
j=1

(yrj − Cξj)TQ′(yrj − Cξj)

+
N−1∑
j=0

(uj − urj)TR′(uj − urj) (2.22)

yrj and urj are the reference trajectory and reference inputs at point j and Cξj is the

process output. Q′ and R′ are positive definite penalty matrices. The optimization

is also subject to the process dynamics and the constraints given by Eqs.2.23-2.26.

ξj+1 = Aξj +Buj (2.23)

yj = Cξj (2.24)

0 6 uj 6 umax (2.25)

0 6 ξj 6 ξmax (2.26)
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The trajectory obtained from Eqs.2.10-2.13 is used as a reference trajectory and an

MPC reference tracking controller is constructed to track the reference obtained as

a solution of a nonlinear program, Eqs.2.10-2.13. The reference trajectory tracking

control is formulated as Eqs.2.22-2.26 and inputs, [u0 · · ·uN−1], are determined such

that the objective function, Eq.2.22, is minimized. Once the sequence of optimal

inputs from optimization problem is obtained, [u0 · · ·uN−1], only the first input, u∗ =

u0, is implemented and the process is iteratively repeated over a receding horizon.

The schematic of integrated estimation, control and optimization strategy is given

in Fig.2.1. As it can be seen, the maximization process is carried out in two steps.

In an off-line optimization step, the IPOPT solver is used to determine the optimal

reference trajectory that has taken into account all the present constraints on the

inputs and states. In an on-line step, providing the reference trajectory is in place,

local linear models are used by MPC to track the predetermined optimal trajectory.

At the same time, MHE provides full information of the states to MPC. Both MPC

and MHE account for constraints used for off-line optimization.

2.4 Results and Discussion

Applying the above-mentioned procedure, obtained results are shown in Table 2.3

along with the results from previous work of De la Hoz Siegler et al. (2012). There

are significant improvements in maximum lipid and biomass production using the

suggested model predictive estimation, control and optimization strategies. Namely,

the maximum magnitude of the lipid concentration achieved is 109 gr/litre which is

36% higher than the reported value (De la Hoz Siegler et al., 2012) while the biomass

concentration increased by 24%. The improvement in biomass and lipid production
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IPOPT MPC Bioreactor

Model reduction 

and Linearization

MHE

Off-line Optimization On-line Implementation

ξ̂

0 6 f i 6 umax

0 6 ξk 6 ξmax

f iref

ξref

S2, x, p, q, V

Linear model

A,B,C

Linear model

A,B,C

0 6 uk 6 umax

0 6 ξk 6 ξmax

V tf = 2

Figure 2.1: Schematic of optimization, estimation and control procedure in microalgae
bioreactor.
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Table 2.3: Oil production optimization results compared to (De la Hoz Siegler et al.,
2012)

Parameter De la Hoz Siegler et al. (2012) Obtained by IPOPT optimization unit
Biomass concentration 144 178 g/L
Lipid Concentration 80 109 g/L
Average lipid productivity 10.3 13.8 g/Ld
Maximum lipid productivity 20.1 21.3 g/Ld
Average Biomass productivity 15 23 g/Ld
Maximum lipid productivity 60 61.2 g/Ld
Oil content 60 62 %

is achieved taking into account all the constraints present in realistic real-time im-

plementation. Maximum lipid and biomass productivity, which is reported in Table

2.3, occurs during the exponential growth and lipid accumulation period and is char-

acteristic of microalgae cells growth process. These productivities are independent

of the feeding strategies and can be seen as a measure of verification with respect

to previous experimental work. The achieved values for maximum productivities are

within an acceptable range, with a 2% and 6% difference with respect to the reported

values in De la Hoz Siegler et al. (2012). The achieved oil content of microalgae cells

also shows a slight difference compared to the previous work. The same oil content

of cells shows that the improvement is achieved by a higher biomass production. In

other words, higher biomass production rate and the same oil content mean higher

lipid production rate. As it can be also seen in Table 2.3, the average biomass pro-

ductivity is increased by 53% while the increase in average lipid productivity is about

34%.

Time evolution of the states and inputs is shown in Fig.2.2-2.9, dashed and solid

lines are the reference trajectories and simulation results with MPC and MHE in the

absence of measurement noise, respectively and dash-dotted lines represent results in

the presence of measurement noise. Fig.2.2 shows the estimated nitrogen concentra-
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Figure 2.2: Actual and estimated nitrogen concentration in the bioreactor, S1.

tion in the bioreactor compared to its actual value. The MHE tracks the changes in

nitrogen concentration (S1) and captures its rapid increases in the bioreactor. As the

time elapses, the time-varying term in Eq.2.7 converges to 1 and consequently, as the

time-varying term vanishes, the estimation performance becomes more efficient. The

estimation error between days one and two directly affects the intracellular nitrogen

concentration and as it can be seen in Fig.2.3, the intracellular nitrogen concentration

weakly tracks the reference trajectory in this period. The error in the estimation of

nitrogen concentration directly reflects in the nitrogen uptake rate (Eq.2.9), which

determines how nitrogen is up-taken into microalgae cells.

The active biomass and lipid concentration in the bioreactor is shown in Fig.2.4

and 2.5 and despite relatively poor performance of the state estimation in the first

to the second day-period, the optimal control strategy tracks the reference trajectory

with high efficiency. Finally, Fig.2.6 shows the oil content in microalgae cells. The

oil content of microalgae cells decreases during the first day due to high growth rate,
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Figure 2.3: Intracellular nitrogen concentration, q.

but starts to grow afterward when glucose is present and nitrogen concentration is

limited.

Under an optimized feeding strategy, microalgae cells behave as expected. At low

concentration of glucose and nitrogen, microalgae tend to store glucose as lipids to

continue surviving in the absence of glucose. Glucose is completely consumed after

the second day (Fig.2.7) and it is then that the nutrition-starvation cycle starts to

accumulate lipids in the cells. The optimum control strategy, as it can be seen from

Fig.2.2, 2.7, 2.8 and 2.9, is to feed microalgae to grow to as high biomass concentration

as possible, when due to the craving for nitrogen, microalgae start to produce lipid.

Nutrient feed rates (inputs) are shown in Fig.2.8-2.9. Nitrogen is fed to the biore-

actor only during the first three days to supports algae growth and thereafter ni-

trogen fed is stopped to create nitrogen limited condition which is favourable con-

dition for lipid accumulation (Fig.2.8). The nitrogen feed rate is determined by

constraints, namely upper and lower limits on nitrogen feed rate and feed rate change
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Figure 2.4: Active biomass concentration in the bioreactor, x.
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Figure 2.5: Lipid concentration in the bioreactor, p, and optimal lipid concentration
reference trajectory.
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Figure 2.6: Oil content in the microalgae cells.
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Figure 2.7: Glucose concentration in the bioreactor, S2.
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Figure 2.8: Glycine feed rate (nitrogen source).
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Figure 2.9: Glucose feed rate (carbon source).
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(∆f i1 < 0.2mL/h and f i1 < 2mL/h). The glucose feed rate is governed by the present

input and state constraints. During the first five days of operation, the glucose feed

rate is governed by the constraints on the glucose feed rate change (∆f i2 < 1 mL/h)

and upper limit for the glucose feed rate (f i2 < 10mL/h). The upper limit constraint

on the glucose concentration in the bioreactor (S2) can be seen as an input constraint

between days five and seven (see Fig.2.7 and 2.9).

Under realistic operating conditions, the measurements of biological properties

are highly noisy, so that the presence of noise must be considered in the estima-

tor and controller synthesis. The simulations are repeated for the case with noisy

measurements. A uniform random noise of magnitude 20% of nominal values of the

states is added to the measurements. The achieved results are shown in Figs.2.2-2.9

as dash-dotted lines. It can be seen that even with noisy measurements, the MPC

tracks the reference trajectory. The feed rates in the presence of noise differ from

reference inputs due to quadratic optimization which tries to track the reference lipid

production trajectory. The resulted lipid concentration in the bioreactor is slightly

lower than the maximum possible lipid concentration obtained from IPOPT. Due to

the noisy measurement, the reference trajectories and the inputs are not optimal and

as a result, new feed rates determined by MPC cause a change in the optimal solution

which then leads to a slight violation of constraint associated with the bioreactor vol-

ume (Fig.2.10). However, the constraints on inputs and other states are not violated.

There is an error in tracking of nitrogen (S1) and intracellular nitrogen (q) between

days one and two. The low efficiency of tracking is due to an estimation error for

the nitrogen concentration (Fig.2.2 and 2.3). The glucose concentration (S2) has also

tracking error between days four and seven (Fig.2.7). The noisy measurements and

the reference trajectory close to the glucose constraint give rise to an error in reference
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trajectory tracking of glucose concentration during the mentioned time interval(Fig

2.9).

Choosing sampling time has direct effect on the accuracy of linear models and

computational effort of MPC and MHE. Shorter sampling time will make simulations

more accurate, but on the other hand, for specified control and estimation horizons,

smaller sampling time implies more time steps in the horizon which induces larger

matrices for the evaluation of quadratic programming algorithms. Thus, there is a

trade off between accuracy and computational effort. In this chapter, the sampling

time is chosen to be 3 minutes, while control and estimation horizons are 5 and 2

hours, respectively.

There is a difference between trajectory tracking and simple maximizing of lipid

production. The former is a reliable optimal control method which can be simply

implemented to an experimental bioreactor. In the model predictive trajectory track-

ing, the optimization problem is convex and can be handled and implemented on
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the online realization of a bioreactor with inaccurate measurements. In the optimal

trajectory tracking, the presence of measurement noises can be tolerated by MPC by

tuning the penalty matrices. However, in the case of direct maximization of lipids,

the lack of the reference trajectory will likely decrease the controller efficiency.

If the initial states of the bioreactor are known and are the same as the initial

states of the optimal trajectory, the open loop implementation will result in similar

lipid production, however the states of the bioreactor are unknown and the tracking

strategy is necessary in order to manipulate the production trajectory towards the

optimal trajectory. In addition, tracking control will compensate for present distur-

bances and uncertainties.

The faster biomass and lipid production results in low saturated fatty acid content

and induces lower cold filter plugging point (CFPP) (De la Hoz Siegler et al., 2012)

which is an indication of the fuel’s ability to flow through a filter. Another advantage

of using reference tracking is that the maintaining of the lipid production along the

specified trajectory will guarantee the same lipid quality for different fed batch runs.

In addition, the same quality of lipid for different fed-batch runs will reduce the cost

of lipid to biofuel conversion.

2.5 Conclusion

Lipid production rate of the Auxenochlorella protothecoides microalgae bioreactor is

maximized by using the IPOPT solver for constrained large-scale nonlinear program

formulation. The microalgae bioreactor process dynamics model is reduced and lin-

earized to a set of linear and time invariant models. Then by using the constrained

moving horizon estimator and the set of linear models, nitrogen concentration is es-
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timated. Finally, model predictive control is used to track the obtained reference

trajectory. The optimization results show 36% increase in lipid concentration in the

microalgae bioreactor. Also, The implemented MHE based state estimation and MPC

reference trajectory tracking regulator not only maintain the functionality as moni-

toring and regulation devices in the presence of measurement noise, but show reliable

performance as well.
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Chapter 3

Temperature Distribution
Reconstruction in Czochralski
Crystal Growth Process

3.1 Introduction

The Czochralski (Cz) crystal growth process is a well-known crystallization process

to grow and produce single crystals. The process starts with inserting a small crystal

seed into heated melt and the crystal seed is slowly drawn out of the crucible, with

heated melt of crystal material, allowing the melt to solidify and grow at the melt-

crystal interface. Due to continuous and unbroken crystal lattice in single crystals,

produced crystals have unique mechanical, physical and electrical properties, which

speaks for high demand for quality grown single crystals in microelectronics and opto-

electronics, as well as demand for structurally robust and high temperature resistant

materials (Derby and Brown, 1987; Szabo, 1985; Gevelber and Stephanopoulos, 1987).

Due to the nature of high-tech applications reflecting in high quality of a grown

crystal and high energy and time consuming growth process, there are manufacturing

concerns that should be addressed in the Cz process. In particular, crystal shape and

36
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geometry, as well as crystal quality, are among the most important manufacturing

concerns. The former is usually addressed by producing the crystal with constant

diameter to minimize machining waste. Along the consideration of the crystal ge-

ometry from the standpoint of manufacturing, the crystal quality is also defined by

physical properties of the produced crystal. Uniform composition, dopant concentra-

tion, defects density and residual stresses in crystal are the most important properties

that should be considered in a crystallization process, see Szabo (1985); Gevelber and

Stephanopoulos (1987); Brown (1988); Winkler et al. (2010a).

In the Cz crystal growth process, the presence of solid and liquid phases, melt fluid

flow, thermal and heat transfer phenomena, solid-liquid interface and pulling dynam-

ics make the modelling and control of the Cz process a challenging task (Derby and

Brown, 1986a,b). Due to the crystal growth and phase transition between solid and

liquid phases, the crystal spatial domain undergoes time-varying changes which brings

complexity to the process regulation. There are studies focusing on modelling and

simulation of coupled phenomena together (Cao et al., 2011; Demina and Kalaev,

2011). However, for control and estimation purposes and specially for model based

control/estimation, reduced order models are required. Reduced order models are

used for both radius and temperature control purposes. For example, reduced order

models are developed and used by Irizarry-Rivera et al. for coupled radius and melt

temperature control in the Cz crystal growth process (Irizarry-Rivera and Seider,

1997a,b). In general, to achieve a simpler model description, one can apply suitable

assumptions to decouple the thermal phenomena in the solid crystal and the melt for

the purpose of temperature observation/control in the grown solid crystal. In par-

ticular, in this chapter, the temperature control and/or estimation in a solid grown

crystal is formulated as a heat transfer model with interface phenomena modelled as
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a Dirichlet boundary condition at the melt-solid interface (Ng and Dubljevic, 2012;

Ng et al., 2013; Armaou and Christofides, 2001a) (for details see Eqs.3.25-3.27).

Real-time knowledge of temperature distribution evolution in crystal and its inter-

faces is necessary for monitoring and control purposes. The temperature distribution

and gradients in crystal determine and influence residual stresses, crystal oxygen

and dopant concentration and grown crystal defects concentration (Gevelber and

Stephanopoulos, 1987; Gevelber et al., 1988). However, temperature measurements

over the entire domain are not directly available and can not be realized in practice.

In particular, possibly available and realizable temperature measurement is carried

out at the grown crystal boundary but can not be used to construct the temperature

and temperature gradients directly. Moreover, all the boundary temperatures are

not available for direct sensor applied measurements, namely bottom boundary is the

melt-crystal interface and the top is used for installing pulling devices. Usually, the

only available temperature measurement is at the cylindrical surface of the crystal,

and in order to reconstruct temperature profile over the entire domain and bound-

aries, an estimation strategy is required.

A boundary and in-domain state estimation/reconstruction and control strategies

for parabolic partial differential equation (PDE) systems are well developed and make

an active research area, see Curtain and Zwart (1995); Bensoussan et al. (2007); Krstic

and Smyshlyaev (2008). For example, there are several contributions on control prob-

lems with fixed spatial domain for linear PDEs (Ito, 1990; Bensoussan et al., 2007;

Curtain and Zwart, 1995), nonlinear PDEs (Fard and Sagatun, 2001; Dunbar et al.,

2003; Rudolph et al.), problems with spatially distributed actuation (Ito, 1990; Balas,

1986; Bensoussan et al., 2007) and boundary control problems (Fard and Sagatun,

2001; Dunbar et al., 2003; Liu and Krstic, 2000). Despite distributed parameter con-
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trol strategies, state estimation algorithms for parabolic PDEs are less developed and

are of interest in the context of temperature estimation in the crystal growth pro-

cess. In particular, Xu et al. (1995) provide a simple observer for dissipative bilinear

systems with weak error convergence to zero. The Luenberger observer synthesis is

used by both Vries et al. (2010) for state estimation of the Sturm-Liouville systems,

and Li and Xu (2011) for a higher order PDE describing the rotating body-beam

system. Harkort and Deutscher (2011) have developed an observer based controller

framework for Riesz-spectral systems. Along the same line, Hagen and Mezic (2003)

have studied the observer and control design using spillover analysis for a class of par-

tial differential equations with periodic boundary conditions. State estimation of the

systems governed by parabolic PDEs on a fixed domain are well developed, however

there are limited contributions on parabolic PDEs with a moving boundary setting.

Moving boundaries and time-varying parameters bring complexity to the system

that needs to be addressed in the control and estimation framework. There are several

works focusing on controller design for time-varying parabolic PDEs. For example,

Armaou et al. have reduced a 2-D heat transfer model in the Cz crystal growth

process to a 1-D model, and then synthesized a controller to regulate temperature

distribution in the crystal (Armaou and Christofides, 2001a). They also provided

a non optimal stabilizing robust control law for moving boundary crystal growth

problem (Armaou and Christofides, 2001b). Wang studied various optimal controller

synthesis for stabilization and control of distributed systems with time-dependent

spatial domains, see Wang (1990, 1995), while Ng and Dubljevic contributed on op-

timal boundary control of the Cz crystal growth process with time-varying spatial

domain coupled with pulling dynamics, see Ng and Dubljevic (2012, 2011). In the

former contributions, the developed control laws require full state knowledge of the
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process which motivates this contribution to reconstruct the entire temperature field

in the Cz process from the boundary measurement.

In the Cz process, the boundary movement is the result of the crystal growth in

both radial and axial directions. The time evolution of the solid crystal determines

the crystal shape and consequently, the spatial domain of the governing tempera-

ture evolution equations. The radius regulation and estimation in the Cz process

have attracted several researchers. There are early works on radius regulation, for

example, Gross and Kresten (Gross and Kersten, 1972) worked on the crystal radius

control and Jordan et al. (1983) used the crystal weight signal as a measurement for

control purposes. Recently, Winkler et al. (2010a,b) revisited the radius control and

estimation problem, provided a modelling approach based on capillary forces and a

nonlinear approach combined with a conventional PI controller to estimate and reg-

ulate the crystal radius. Neubert and Winkler (2012) introduced parameters such as

thermal conductivity, latent heat, average axial thermal gradients and actual growth

rate to refine the scheduling of a PI controller for better performance. Hence, one

concludes that the growth dynamics and the temperature distribution evolution in

the crystal are coupled in the Cz process, however this coupling is not taken into

account in the aforementioned works.

In this chapter, a mechanical-geometric crystal growth model is developed based

on the constant crystal growth rate, then assuming a large parametric uncertainty

in the growth rate, a robust controller synthesis is provided using the input-output

linearization for crystal diameter tracking. Time-varying radius and crystal length

evolution, obtained from a nonlinear mechanical-geometric radius evolution model,

determine the spatial domain of the underlying heat transfer model which leads to

the time-varying boundary parabolic partial differential equation (PDE) model of
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the temperature distribution evolution which can be expressed with operators and

embedded in an infinite–dimensional PDE setting. The governing temperature evolu-

tion is approximated by a time-varying parabolic PDE model on a rectangular domain

and a finite dimensional representation of the PDE model is derived using Galerkin’s

method. The effect of time-varying domain is investigated and is taken into account

in order to obtain the low dimensional model. An observer is synthesized using a

reduced finite dimensional model to reconstruct the entire temperature distribution

by using physically realizable temperature measurements. The separation principle is

examined and shown to hold in order to utilize the proposed observer in the output

feedback control synthesis. In addition, a Finite Element Method (FEM) model of

the crystal growth process is used to numerically simulate the temperature evolution

in the solid crystal on the non-trivial and time-varying domain. The developed FEM

model is used as the actual process to evaluate and verify the performance and effi-

ciency of the temperature distribution reconstruction.

The temperature distribution evolution in the crystal affects the crystal quality in

two ways. The first is through influencing the formation, diffusion and aggregation of

point defects and atomic oxygen in the crystal (Sinno and Brown, 1999). The second

is through the residual stresses in the crystal that occur during crystal cooling. An

accurate dynamic model of the point defects in the crystal requires the knowledge of

temperature distribution over the crystal. This chapter focuses on the temperature

estimation and it is a basis for control and optimization of residual stresses and point

defects through manipulating the temperature distribution. The temperature control

can be done to minimize the formation, diffusion or aggregation of point defects and

also to optimally control the cooling process to avoid residual stresses in the crystal.

The provided methodology for the temperature reconstruction from boundary
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measurements can be extended to other chemical engineering processes with time-

varying domain and especially with moving front and other material processing ap-

plications with same governing equations such as Bridgman crystal growth process

and/or steel slab annealing (Brown, 1988; Ng et al., 2011). This chapter is focused

on Czochralski crystallization process in order to cover more issues in practical imple-

mentation. Furthermore, the observer synthesis is developed based on reduced order

Galerkin’ model and finite element model realization is provided to verify both the

reduced order model and the observer. Hence that, finite element realization is shown

to be a suitable numerical approach for modelling and simulation of the Czochralski

crystal growth process by comparing and validation of FEM results with experimen-

tal and/or numerical data carried out by different contributors (Thomas et al., 1989;

Derby et al., 1987, 1989; Sackinger et al., 1989).

The organization of the chapter is as follow: after the Introduction, in Section

3.2, translational mechanical-geometric dynamic model for the Cz process is derived

and the controller synthesis is presented to maintain constant crystal diameter in

the presence of parametric uncertainty. In Section 3.3, the solid crystal heat transfer

model is presented and the boundary conditions are defined. The infinite dimensional

PDE model representation with defined spatial operators is developed along with the

model reduction using Galerkin’s method and the influence of time-varying effects is

described. Section 3.4 provides the observer design, FEM model and the implementa-

tion of the estimation strategy. Numerical simulation results are presented in Section

3.5.



3.2: Crystal growth model and radius regulation 43

3.2 Crystal growth model and radius regulation

In the Cz crystal growth process, the crystal is slowly pulled out of the melt, al-

lowing solidification of crystal at the crystal-melt interface. Mechanical pulling rate

influences the crystal profile and determines the shape of the crystal. The crystal

radius and growth can be regulated by a conventional PID controller (Gevelber and

Stephanopoulos, 1987; Gevelber et al., 1988; Gevelber, 1994a,b), however, for more

precise control, model-based approaches can be utilized. Model-based control ap-

proaches have attracted more attention recently, for example, Winkler, Neubert and

Rudolph focused on nonlinear model-based control and estimation of the Cz process

(Winkler et al., 2010a,b; Neubert and Winkler, 2012). As for the model-based con-

trol, a sophisticated process model is required to achieve desired performance. In

this chapter, a new approach is used for radius regulation. The influence of tem-

perature distribution and heat transfer phenomena on crystal growth are seen as an

uncertainty in the crystal growth rate. Then control synthesis is provided to compen-

sate for large parametric uncertainty in the growth rate. The crystal growth model

is derived assuming that the crystallization rate is constant, the deviation from the

nominal growth rate is considered as parametric uncertainty and then the control

synthesis is provided.

3.2.1 First principal crystal growth model

The translational movement has direct influence on the crystal surface profile and

affects the crystal radius (Winkler et al., 2010a). Crystal growth is modelled based

on conservation of mass and Newton’s second law. The schematic of the crystal pulling

dynamics along with the notations are presented in Fig.3.1. In deriving a dynamic
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Figure 3.1: Schematic of the Cz crystal growth process with the realistic geometry of
the process given in the left figure side, and geometric simplifications and parameters
given in the right figure side.

model, the melt-solid interface is assumed to be a horizontal plane (Abdollahi and

Dubljevic, 2013).

Assuming the same density for both the solid crystal and melt, the total volume

(Vt) is constant during the process, that is:

Vt = Vc + Vm + Vl (3.1)

where Vc is the volume of the solid crystal, Vl is the melt volume and Vm is the

meniscus’ volume. Eq.3.1 can be written as:

Vt =

∫ t

0

πRc.i.(τ)2l̇(τ)dτ + Vm + πR2
cruc.(h2(t)− l(t)− h(t)) (3.2)
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where Vc =
∫ t

0
πR2

c.i.l̇dt and Vl = πR2
cruc.(h2(t) − l(t) − h(t)). The schematic of the

crystal and crucible is shown in Fig.3.1. Total mass is constant and assuming a

constant volume for the meniscus, then V̇t = 0 and mass conservation can be written

as follows:

ḣ2(t) = l̇(t)(1− R2
c.i.

R2
cruc.

) (3.3)

where Rc.i.(t) is the crystal radius at the interface. On the other hand, the total mass

subjected to motion is the crystal mass which is given as follows:

Mc = ρcVc = ρc

∫ t

0

πRc.i.(τ)2l̇(τ)dτ (3.4)

and the crystal velocity is the average of the velocity at two crystal ends and is given

as:

vc = ḣ2(t)− l̇(t)/2 = l̇(t)(
1

2
− Rc.i.(t)

2

R2
cruc.

) (3.5)

applying the conservation of linear momentum (Newton’s second law),

d(Mcvc)

dt
= Fext(t) (3.6)

and substituting Eqs.3.4-3.5 into Eq.3.6 results in:

ρcVc(t)l̈(t)(
1

2
−Rc.i.(t)

2

R2
cruc.

)+ρcVc(t)l̇(t)(
−2Rc.i.(t)Ṙc.i.(t)

R2
cruc.

)+ρcl̇(t)(
1

2
−Rc.i.(t)

2

R2
cruc.

)V̇c(t) = Fext(t)

(3.7)

The crystal growth rate can be formulated as a function of heat fluxes in the solid-

liquid interface as following (Duffar, 2010):

l̇(t) =
Φs − Φl

πR2
c.i.ρc∆H

(3.8)
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Considering the constant heat flux at the interface,

l̇(t) =
Cgrowth
Rc.i.(t)2

(3.9)

where

Cgrowth =
Φs − Φl

πρc∆H
(3.10)

Cgrowth depends on the heat fluxes and material characteristics at the interface. Sub-

stituting Eq.3.9 into Eq.3.7 results in:

ρcVc(t)

2
l̈(t) + ρcπCgrowth(

1

2
− Rc.i.(t)

2

R2
cruc.

)l̇(t) = Fext(t) (3.11)

Finally, in the state space form, we denote x1(t) = l(t), x2(t) = l̇(t) and x3(t) = Vc(t),

so the model is given as:

ẋ1(t) = x2(t)

ẋ2(t) =
2

ρcx3(t)
[Fext(t)− ρcπCgrowth(

x2(t)

2
− Cgrowth

R2
cruc.

)] (3.12)

ẋ3(t) = πCgrowth

and the crystal radius, Rc.i., as the output is given as:

Rc.i.(t) =

√
Cgrowth
x2(t)

=

√
Cgrowth

l̇(t)
(3.13)

The crystal growth process starts with inserting seed crystal into the melt and there-

fore the initial condition for Eqs.3.12-3.13 are the initial dimensions of the seed crystal.

Specifically, the initial crystal volume is denoted by x3(0) = Vc0.
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Remark: In the Cz crystal growth process, the Young-Laplace force acts on the solid

crystal. In the above derivation of the growth dynamics of the Cz crystal growth, the

Young-Laplace force is neglected. This force is usually approximated by hydrostatic

force (first term) and the vertical component of the surface tension (second term)

(Duffar, 2010), is described as below:

FY.L. = πgρlR
2
c.i.h+ πgρla

2Rc.i. cos(α0 + αc) (3.14)

where, a is the Laplace constant, α0 and αc are the growth and capillary angles,

ρl is the liquid density and g is the gravitational constant. In this chapter, the

meniscus shape is considered to be constant, therefore, the Young-Laplace force can

be calculated and incorporated into the system as a known disturbance. The crystal

radius, Rc.i., and meniscus height, h, are measured and the capillary angle can be

calculated from the Young-Laplace equation (Irizarry-Rivera and Seider, 1997a):

h = a

√
1− sin(α0 + αc)

1 + a/(
√

2Rc.i.)
(3.15)

3.2.2 Growth control

An important objective in the Cz process is to regulate the crystal radius at a constant

value along the crystal length during the process. In order to achieve this goal, a

controller is designed based on the input-output linearization of the growth model to

regulate the radius at the desired pre-specified crystal radius. Assuming the pulling

force as an input to the growth model and the radius of the crystal as an output, the
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input-output relation is obtained as:

dRc.i.

dt
=

Rc.i.

2(t+ Vc0/πCgrowth)
− R3

c.i.

ρcπC2
growth(t+ Vc0/πCgrowth)

F (t) (3.16)

where Rc.i., the crystal’s radius, is the process output, F (t) = Fext(t)+
ρcπC2

growth

R2
cruc.

is the

input to the growth model, Vc0 is the crystal’s initial volume. Using the input-output

linearization and defining F (t) as:

F (t) =
ρπC2

growth

2R2
c.i.

−
ρπC2

growth(t+ Vc0/πCgrowth)

R3
c.i.

umech.(t) (3.17)

Eq.3.16 is transformed into ṙ(t) = umech.(t). As it can be seen, the radius can be

manipulated directly by umech.(t). In order to regulate the radius at a pre-specified

desired constant value Rd, the control law is chosen to be umech.(t) = −K(Rc.i.−Rd),

where K is a positive number. Therefore, the following control action is derived to

stabilize the process at the constant radius Rd.

Fext(t) = ρcπC
2
growth(

1

2Rc.i.(t)2
− 1

R2
cruc.

) +KρπC2
growth(t+

Vc0
πCgrowth

)
Rc.i.(t)−Rd

Rc.i.(t)3

(3.18)

where K is the controller gain determined in the ensuing section to compensate the

parametric uncertainty in the crystal growth rate.

3.2.3 Modelling uncertainties and disturbance rejection

The main assumption in the mechanical modelling in the previous section is that

the heat flux at the solid-melt interface is constant. However, the heat flux across

the solid-melt interface changes during the process and the dominant heat transfer is
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the melt heat loss through the solid-melt interface. Therefore, in this subsection, we

account for this assumption by considering a parametric uncertainty to the dynamic

model given by Eq.3.12. The deviation of heat flux at the solid-melt interface is

considered as heat fluctuations and is defined as d(t), where:

Φs − Φl

πρc∆H
= Cgrowth + d(t) (3.19)

The controller synthesis is based on constant heat fluxes and the deviation from this

constant value results in a process model with a similar structure as given by Eq.3.12.

The resulting model is given as follows:

ẋ1(t) = x2(t)

ẋ2(t) =
2

ρcx3(t)
[Fext(t)− ρcπ(Cgrowth + d(t))(

x2(t)

2
− Cgrowth + d(t)

R2
cruc.

)]

ẋ3(t) = π(Cgrowth + d(t)) (3.20)

Rc.i.(t) =
√

(Cgrowth + d(t))/x2(t) (3.21)

Applying the control law given by Eq.3.18 to the model, Eqs. 3.20-3.21, result in the

following relation:

Ṙc.i.(t) =
ε Rc.i.(t)

2(t+ Vc0/π(Cgrowth + d(t)))
−K(1− ε)(Rc.i.(t)−Rd) (3.22)

where ε = 1 − C2
growth

(Cgrowth+d(t))2 and d(t) is the deviation from the nominal value of

Cgrowth. The crystal growth rate is assumed to vary from no crystallization to fast

crystallization rates and then it can be concluded that d(t) ∈ (−Cgrowth,∞), while ε

in Eq.3.22 is ε ∈ (−∞, 1). The second term in Eq.3.22 is negative for all ε and the
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first term is negative for ε ∈ (−∞, 0). For ε ∈ (0, 1), the stability of the controller

is guaranteed by defining K in order to have Ṙc.i. = −µ(K)(Rc.i. − Rd(t)). K is

calculated as:

K >
π

2Vc0C2
growth

D(Cgrowth +D)(2Cgrowth +D) (3.23)

where D is an upper limit for disturbance d(t), −Cgrowth < d(t) < D.

The control law, despite the uncertainty in the crystal growth rate, stabilizes the

crystal radius at the desired value. The lower bound on parametric uncertainty, d(t),

is −Cgrowth which corresponds to no solidification in the process and it is assumed that

no crystal melting happens during the process. As long as the crystallization rate is

positive (D > −Cgrowth), the robustness of the control law suffices for regular process

operation (where no melting happens). The advantage of the proposed controller is

that the controller stabilizes the crystal diameter despite the uncertainty in nonmod-

eled thermal dynamics and effects at the crystal-melt interface. In other words, the

radius control synthesis is decoupled from the phenomena that can adversely affect

the crystallization rate and the radius growth.

Remark: The crystal growth model and control strategy provided in this section is

a simple and effective representation of the crystal growth dynamics used to demon-

strate time-varying effects and coupling between the crystal growth and temperature

distribution. However, more complex models (e.g. considering capillary forces, the

meniscus dynamics, etc.) can be realized and replaced with presented model.

3.3 Heat transfer model

A comprehensive model of the Cz crystal growth process concerning heat conduction,

fluid flow in the crucible, capillary forces at the crystal-melt interface, heat radia-
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tion and mechanical pulling dynamics can be found in literature (Derby and Brown,

1987; Brown, 1988; Derby and Brown, 1986a,b). This chapter is concerned with the

temperature distribution and heat transfer time evolution in a solid crystal as a foun-

dation for the full state feedback control synthesis, and therefore domain geometry

of a grown crystal is of paramount importance in modelling efforts.

The crystal domain evolution is determined by the crystal radius and length evo-

lution during the process and is provided in Section 3.2. In the Cz crystal growth

process, the heat transfer within the solid crystal is described by the conduction-

convection PDE model given by Eq.3.24 where convective terms are manifested by

the growth velocity of boundaries. Fig.3.2 shows the process domain with simplifi-

cations made on the crystal domain along with boundary conditions. For modelling

purposes, the crystal domain is assumed to be rectangular and heat transfer equations

are written over the rectangular domain. Two-dimensional Cz growth process’ tem-

perature dynamics is described by the following PDE, see Derby and Brown (1987);

Ng and Dubljevic (2012):

Pe
∂x(r, z, t)

∂t
= ∇ · (kr∇x(r, z, t))− PeV(r, z, t) · ∇x(r, z, t) (3.24)

where x(r, z, t) is the temperature field and ∇ is the spatial gradient operator in

the cylindrical coordinate system, Pe = ρcCpv0Rcruc./ks is the Peclet number, and

v0, Rcruc., ks and kr are the nominal growth rate, crucible radius, regional thermal

conductivity and conductivity ratio, respectively and V(r, z, t) is the velocity vector

field over the entire crystal domain. The PDE is written as an appropriately scaled

time-varying moving boundary temperature model dynamics with neglected boundary

velocity along the radial direction. Therefore, the temperature evolution is given by
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f(z, t)

z

z2(t)

z1(t)

∂T
∂r

∣∣∣
r=Rc(z)

= uth.(t)

∂T
∂r

∣∣∣
r=Rc(z)

= 0

∂T
∂r

∣∣∣
r=Rc(z)

= 0

∂T
∂r

∣∣∣
r=0

= 0

∂T
∂z

∣∣∣
z=l(t)

= 0

T
∣∣
z=0

= Tf

Ωt

∂Ωt

Measurement
point

Figure 3.2: Geometric approximation along with the boundary conditions are given
in left figure side, and the actuation profile function, f(z, t) in Eq.3.39, is given in
right figure side.

the PDE given as follows:

∂x

∂t
=

1

r

∂

∂r

(
k0r

∂x

∂r

)
+ k0

∂2x

∂z2
− Vz(t)

∂x

∂z
(3.25)

where k0 = 1/Pe and Vz(t) is the bulk movement velocity along the axial direction.

The thermal conductivity ratio is equal to one for the crystal, kr = ks/ks = 1.

The boundary conditions along with the boundary actuation are shown in Fig.3.2.

The control actuation is placed at the crystal boundary and assumed to be at a

fixed height from the crucible, which means that the actuation location changes with

respect to the crystal as it grows. Solidification happens at the melt-solid interface

and the temperature is assumed to be the solidification temperature at this boundary.

Hence that this boundary condition at the interface decouples the heat transfer in the

crystal and the melt. Moreover, the process is axisymmetric (no flux at r = 0) and

at all other boundaries, the zero flux condition is assumed. The boundary conditions
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are given as:

x
∣∣∣
z=0

= 0 ;
∂x

∂z

∣∣∣
z=l(t)

= 0 ;
∂x

∂r

∣∣∣
r=0

= 0 (3.26)

∂x

∂r

∣∣∣
r=Rc(z), z<z1(t)

= 0 ;
∂x

∂r

∣∣∣
r=Rc(z), z>z2(t)

= 0 ;
∂x

∂r

∣∣∣
r=Rc(z), z1(t)<z<z2(t)

=
Q(t)

Pe
= uth.(t)

(3.27)

where Rc(z) and l(t) are the crystal radius and length, respectively; Q(t) is the

heat flux from heaters; z1(t) and z2(t) indicate the spatial interval where the heater

is placed, and Rc(z), l(t), z1(t) and z2(t) are determined from the crystal growth

dynamics given by Eq.3.12 and the height of the melt in crucible is given by Eq.3.3.

The Dirichlet boundary condition at the melt/solid interface to decouple the heat

transfer in the solid crystal from the melt temperature(Ng and Dubljevic, 2012; Ng

et al., 2013; Armaou and Christofides, 2001a). The initial condition for temperature

distribution x(r, z, 0) is the equilibrium temperature distribution over the crystal.

The temperature evolution model of the grown crystal consist of a parabolic PDE

model (Eq.3.25) along with boundary conditions (Eqs.3.26-3.27).

For temperature estimation or control purposes, one needs to consider coupled

ODE-PDE equations given by Eqs.3.12 and 3.25-3.27. The coupling between ODE

and PDE systems is through the PDE’s spatial domain which is determined by the

crystal’s radius and length evolution.

3.3.1 Parabolic PDE model representation

Parabolic PDEs can be modelled and numerically solved by the Finite Difference

Method (FDM) and/or Finite Element Method (FEM) (Reddy, 2004). Despite the

accuracy of numerical solutions by FDM and FEM, due to the large scale numerical re-



3.3: Heat transfer model 54

alizations of these methods, they are not suitable for model based control/estimation

purposes. Spectral methods (e.g. Galerkin’s method) allow parabolic PDEs to be

reduced to a low-order dynamic system representation which can be easily used for

control synthesis (Curtain and Zwart, 1995). In order to obtain a low-order model, we

utilize a general operator representation of the parabolic PDE system. In particular,

the infinite-dimensional representation of a parabolic PDE on the time invariant do-

main can serve as basis for appropriately defined approximations on the time-varying

domain within parabolic PDE representation setting. However, the use of the opera-

tors and defining Hilbert space needs to be carefully considered. The idea is to utilize

already existing methods and formulations of parabolic PDEs for fixed domains, and

to assure that we can consider a slow grown crystal domain evolution as a large set

of well defined fixed domains that can take standard form of well defined Hilbert

spaces. In particular, let Ωt ∈ R2 be the spatial domain of the crystal at time in-

stance t ∈ [0, T ], and ∂Ωt be the boundary of the domain Ωt (rectangular boundary

as shown in Fig.3.2). In order to define the appropriate basis, we define Ω as the

union of all possible domains in t ∈ [0, T ] given as (Ng et al., 2013):

Ω =
⋃

t∈[0,T ]

Ωt × {t} (3.28)

Note that, Ω is a fixed open set in R2 with smooth boundary ∂Ω such that Ωt ⊂ Ω

for all t ∈ [0, T ]. Assume {φi(ξ, t)} is a family of orthonormal functions defined on

a subset Ωt for every t ∈ [0, T ] and forms a basis of L2(Ωt). In order to define a set

of eigenfunctions for Ω, we define the complement of Ωt as Ωc
t in the fixed domain Ω,
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the functions {φi(t)} can be extended to the fixed domain Ω as follow:

φ(ξ, t) =


φ(ξ) for ξ ∈ Ωt ,

0 for ξ ∈ Ωc
t

(3.29)

where Ωc
t is the complement of Ωt in Ω. The inner product on L2(Ω), is defined as:

〈φ(t), ψ(t)〉L2(Ω) =

∫
Ω

φ(ξ, t)ψ(ξ, t)dξ =

∫
Ωt

φ(ξ)ψ(ξ)dξ = 〈φ(t), ψ(t)〉L2(Ωt) (3.30)

Implementing the formulation given by Eqs.3.28-3.30, the parabolic PDE model, given

by Eq.3.25, along with boundary conditions, given by Eqs.3.26-3.27, is written in the

state space formulation following the formulation given by Curtain and Zwart (1995)

as:

∂x(t)

∂t
= A(t)x(t) (3.31)

B(t)x(t) = [0, uth.(t), 0]T (3.32)

where x(t) ∈ L2(Ω) is the state of the system. The operator A(t) is given by:

A(t) =
1

r

∂

∂r

(
k0r

∂

∂r

)
+ k0

∂2

∂z2
− Vz(t)

∂

∂z
(3.33)

with the domain:

D(A(t)) = {φ ∈ L2(Ω) : φ,
∂φ

∂z
,
∂φ

∂r
are a.c. and A(t)φ ∈ L2(Ω) (3.34)

φ(0, z, t) = 0,
∂φ

∂r
(r, 0, t) = 0,

∂φ

∂r
(r, l(t), t) = 0}
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where a.c. means absolutely continuous, l(t) and Rc(z) are the crystal length and

radius, respectively. The boundary operator B(t) : L2(Ω) → R3 represents the

boundary conditions in Eq.3.27 and is given by:

B(t)φ =


∂φ
∂r

∣∣∣
r=Rc(z), z<z1(t)

∂φ
∂r

∣∣∣
r=Rc(z), z>z2(t)

∂φ
∂r

∣∣∣
r=Rc(z), z1(t)<z<z2(t)

 (3.35)

The transformation, p(t) = x(t)− b(r, z, t)uth.(t), with function b(r, z, t) satisfying,

B(t)b(r, z, t)uth.(t) = [0, uth.(t), 0]T (3.36)

transfers the PDE model, Eqs.3.25-3.27, to the following PDE with in-domain actu-

ation:

dp(t)

dt
= Ap(t) +Ab(t)uth.(t)− b(t)u̇th.(t)− ḃ(t)uth.(t) (3.37)

where the new A(t) operator is defined as:

A(t) =
1

r

∂

∂r

(
k0r

∂

∂r

)
+ k0

∂2

∂z2
− Vz(t)

∂

∂z
(3.38)

with the domain D(A(t)) = D(A(t))
⋂

ker B(t).

The spatial actuation profile function b(r, z, t) satisfying Eq.3.36 is not unique and it

only requires to satisfy Eq.3.36. In this chapter, b(r, z, t) is considered as the following

function:

b(r, z, t) =
r2

2Rc.i.(t)
f(z, t) +

z2 − 2l(t)z

l(t)2
(3.39)
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In Eq.3.39, Rc.i.(t) and l(t) are time-varying and are determined by the growth dy-

namics, from Eqs.3.12, while f(z, t) is the actuation profile at the boundary in axial

direction, which indicates the interval that reflects input flux to the system (see

Fig.3.2).

3.3.2 Low dimensional model

The PDE represented by Eq.3.25 along with boundary conditions in Eqs.3.26-3.27

is transformed into Eq.3.37 using the transformation x(t) = p(t) + b(r, z, t)uth.(t).

In order to reduce the infinite-dimensional representation of the process to a finite-

dimensional model, Galerkin’s method is used where only a finite number of eigen-

functions is used to describe the PDE state.

The eigenvalue problem, A(t)Φ = λ(t)Φ, is considered with homogenous boundary

conditions:

Φ(0, r, t) = 0 ;
∂Φ

∂z

∣∣∣
z=l(t)

= 0

∂Φ

∂r

∣∣∣
r=0

= 0 ;
∂Φ

∂r

∣∣∣
r=Rc(t)

= 0

Solving the eigenvalue problem for the radial and axial directions yield to a family of

time-parametrized eigenfunctions, φm(z, t), ψn(r, t):

φm(z, t) =

(
l(t)

2
− sin (2αml(t))

4αm

)
e
Vz(t)z

2k0 sin(αmz) (3.40)

where αm is the m-th root of the transcendental equation:

tan(αml(t)) = −2k0

Vz
αm (3.41)
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and,

ψn(r, t) =

√
2

Rc(t)J0(βn)
J0(βnr/Rc(t)) (3.42)

where J0(r) is the Bessel function of the first kind and zero order, and βn is the n-th

root of the J1(βn) = 0. The corresponding eigenvalues are:

λmn(t) = −k0(α2
m + β2

n)− 1

2
k−1

0

Vz(t)
2

2
(3.43)

with corresponding functions:

Φmn(r, z, t) = φm(z, t)ψn(r, t) (3.44)

The weighted norm over the spatial domain is defined as:

〈φi, ψj〉σ =

∫
Ω

φi(z, t)ψj(r, t)σ(r, z, t)dΩ (3.45)

where σ(r, z, t) is defined as:

σ(r, z, t) = σr(r)σz(z) = re−
Vz(t)
k

z (3.46)

such that the operator is self-adjoint with respect to σ(r, z, t).

Then, from Eq.3.37, we can obtain an extended state space system, with state pe(t) =

[uth.(t), p(t)
T ]T , on the extended Hilbert space, He = H

⊕
R which leads to the

following time-varying boundary control problem:

dpe(t)

dt
=

 0 0

A(t)b(t)− ḃ(t) Λ(t) + ∆(t)


uth.(t)
p(t)

+

 1

−b(t)

 ũth.(t) (3.47)
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= Ae(t)pe(t) +Be(t)ũth.(t)

y = T (r, z, t) = Ce(t)pe (3.48)

where pe = [uth.(t) pT ]T is the extended state, ũth.(t) = u̇th.(t), Λ(t) is associated

with the eigenvalues of A(t) and ∆(t) is associated with the time-varying effects of

the eigenfunctions. y = T (r, z, t) is the system output, where Ce(t) is the output

operator which denotes the output measurements. ∆(t) is expressed as follows:

∆(i, j) = 〈Φi,
∂Φj

∂t
〉σ (3.49)

Eq.3.47 is the infinite-dimensional representation of the parabolic PDE of Eq.3.37,

accounting for the time-varying domain geometry. The process model in Eq.3.47

has eigenvalues given by the Λ(t) which may be perturbed by ∆(t) terms evolution.

Therefore, the time-varying domain effects, ∆(t), can influence diagonal matrix Λ(t).

In the next section, it is demonstrated that the matrix ∆(t) is diagonal with negative

entries implying that the time-varying domain will not destabilize the system. From

Eq.3.47, one concludes that the process is driven by the derivative of input and

through the boundary actuation transformation b(t).

3.3.3 Effect of time-varying domain

It can be shown that the effects of the time-varying domain result in off-diagonal

terms evolution given in Eqs.3.47-3.49. Careful inspection of the inner product in

Eq.3.49 reveals that after a finite time passed, the off-diagonal terms will vanish. In

order to calculate 〈Φi,
∂Φj
∂t
〉σ, assume, Φi(r, z, t) = φm(z, t)ψn(r, t) and Φj(r, z, t) =

φq(z, t)ψs(r, t), where m,n, q, s are integer numbers according to Eq.3.44. ∆(i, j)
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given by Eq.3.47 is written as:

∆(i, j) = 〈Φi,
∂Φj

∂t
〉σ = 〈φm, φq〉σz〈ψn,

∂ψs
∂t
〉σr + 〈φm,

∂φq
∂t
〉σz〈ψn, ψs〉σr (3.50)

The eigenfunctions in each direction (radial or axial) are orthonormal and then the

inner product in Eq.3.50 can be written as:

∆(i, j) =



0 if m 6= q & n 6= s

〈ψn, ∂ψs∂t 〉σr if m = q & n 6= s

〈φm, ∂φq∂t 〉σz if m 6= q & n = s

〈φm, ∂φq∂t 〉σz + 〈ψn, ∂ψs∂t 〉σr if m = q & n = s

(3.51)

In order to explore the influence of the terms contained in ∆(t) on the model dynamics

given by Eq.3.47, the eigenfunctions are investigated. Namely, in the case when the

radius controller provided in Eq.3.18 stabilizes the crystal at a desired constant radius

such that it can be assumed that Ṙc.i.(t)→ 0, and which leads according to Eq.3.13,

to the constant crystal growth rate l̇(t). Consequently, the constant crystal radius in

Eq.3.42 results in time-invariant eigenfunctions in radial direction such that:

〈ψn,
∂ψs
∂t
〉σr = 0 (3.52)

In order to calculate the remaining terms in Eq.3.51, the roots of Eq.3.41 are approx-

imated by αm = 1
l(t)

(mπ − π
2
) (see Fig.3.3). The eigenfunctions in Eq.3.40 can then

be simplified as:

φm(z, t) =
l(t)

2
e
Vz(t)z

2k0 sin(αmz) (3.53)



3.4: Observer design and temperature estimation 61

and the remaining term in Eq.3.51, 〈φm, ∂φq∂t 〉σz , is calculated analytically as follows:

〈φm,
∂φq
∂t
〉σz =

1

2
Vz(t)

∫ l(t)

0

sin(αmz)sin(αqz)dz+
1

2
l(t)α̇q(t)

∫ l(t)

0

sin(αmz)cos(αqz)zdz

(3.54)

which leads o:

〈φm,
∂φq
∂t
〉σr = −Vz(t)l(t)

8
δmq (3.55)

where, l(t) and Vz(t) are crystal length and pulling velocity, respectively and δmq is

the Kronecker delta. The time-varying effect represented by ∆(i, j) is reduced to a

diagonal matrix using Eqs.3.51-3.55 and the eigenvalues of the system represented

in Eq.3.47, λei (t) are expressed as λei (t) = λi(t) − Vz(t)l(t)
8

. This diagonal form of the

infinite dimensional representation of temperature dynamics allows for decoupling

between slow and fast modal states and provides a basis for model reduction of

dissipative systems represented by parabolic PDEs. In other words, a few slow modes

can be chosen to model the temperature dynamics with high accuracy.

3.4 Observer design and temperature estimation

The finite dimensional representation of the temperature dynamics, given by Eq.3.47,

is used for temperature estimation. Temperature measurements are available at crys-

tal boundaries and can be used to reconstruct the temperature field over the entire

domain using a few most dominant and slow modes.

It can be shown that point temperature measurements at boundary with the Neu-

mann boundary condition is enough for the entire temperature profile reconstruction.

Assume the measurements are carried out at point (r∗, z∗). Then the temperature
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Figure 3.3: Roots of Eq.3.41 are shown to be approximated by mπ − π
2
.

measurement, x(r∗, z∗, t), can be written as follows:

x(r∗, z∗, t) = b(r∗, z∗, t)uth.(t) +
∞∑
i=1

piΦi(r
∗, z∗, t) = Ce(t)pe(t) (3.56)

where b(r∗, z∗, t) is the boundary transformation function in Eq.3.39, uth.(t) is the

heat flux input, pi is the i-th mode, Φi(r
∗, z∗, t) is the i-th eigenfunction evaluated

at the measurement point, pe(t) is the extended state vector and Ce(t) is the output

operator defined as follow:

Ce(t) = [b(r∗, z∗, t), Φ1(r∗, z∗, t), Φ2(r∗, z∗, t), . . .] (3.57)

Since the input uth.(t) is known, the approximate observability matrix, ON+1 =

[CeT , AeTCeT , ...]T , for the system given by Eq.3.47, for the first N modes is reduced

and can be expressed as Eq.3.58. Note that, as uth.(t) is known and measurable,
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rank(ON+1) = rank(ON) + 1.

ON = [CT , ATCT , ..., AN−1TCT ]T (3.58)

where C = [Φ1, Φ2, . . . , ΦN ](r∗,z∗,t) and A = Λ(t) − Vz(t)l(t)
8

I. Using a linear

transformation, the matrix ON can be transformed into [CT ,ΛTCT , ...,ΛN−1TCT ]T

which has the same rank as ON :

rank(ON) = rank



Φ1 Φ2 . . . ΦN

λ1Φ1 λ2Φ2 . . . λ1ΦN

...
...

. . .
...

λN−1
1 Φ1 λN−1

2 Φ2 . . . λN−1
1 ΦN


(r∗,z∗,t)

The observability matrix is full rank if the eigenvalues do not vanish at the measure-

ment point. Therefore, a single measurement at the boundary with the Neumann

condition will suffice to satisfy the approximate observability condition. Note that

the observability matrix for the parabolic PDE with time-varying domain reduces to

the standard approximate observability matrix (see Ray (1981)).

In order to accomplish model order reduction, modal decomposition is used to

model the parabolic PDE, given by Eq.3.24, and reduce the temperature evolution

to a low dimensional ODE. As expected in the case of parabolic PDEs, the few most

dominant modes of the system can reconstruct the temperature profile with high ac-

curacy. Furthermore, a Luenberger observer is used to estimate the most dominant

modes and to reconstruct the temperature profile. In order to make relevant compari-

son with our findings, we also develop a high fidelity FEM model of the crystal growth

PDE as our plant. The FEM model is constructed on the realistic and non-cylindrical
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Figure 3.4: Temperature distribution reconstruction algorithm and the coupling be-
tween crystal growth and temperature dynamics.

crystal geometry with boundary actuation. A mesh moving scheme is utilized to dis-

cretize the time-varying domain to develop the FEM model of the process. A point

measurement is used for the state reconstruction and is taken at the crystal boundary

(shown in Fig.3.2). In our simulation studies and analysis temperature measurement

from the FEM model is fed back to the observer and the temperature distribution is

reconstructed. The estimation strategy is shown in Fig.3.4. The Luenberger observer

is utilized given as follow:

dp̂e(t)

dt
= Ae(t)p̂e(t) +Be(t)ũth.(t) + L(t)

(
y(t)− ŷ(t)

)
(3.59)

where Ae(t), Be(t) are given in Eq.3.47. L(t) is the observer gain and is evaluated

at each time step in order to place the eigenvalues of the error dynamics, Ae(t) −

L(t)Ce(t), at pre-specified values.

The proposed observer estimates the temperature distribution evolution in grown
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crystal and in order to utilize the reconstructed temperature distribution for feedback

control purposes, we need to explore the separation principle to ensure the stability

of the closed loop process when output regulation -which includes the gain based

feedback and observer- is employed. We assume that there exists a stabilizing control

law uth.(t) = −Fp(t) for the temperature distribution model, given by:

d

dt

uth.(t)
p(t)

 =

 0 0

A(t)B(t) A(t)


uth.(t)

p(t)

+

 I

−B(t)

 ũth.(t) (3.60)

y = T (r, z, t) =
(
C(t)B(t) C(t)

)uth.(t)
p(t)

 (3.61)

where A(t), A(t), B(t) and C(t) are the operators introduced in Section 3.3.1. The

proposed temperature estimation in Eq.3.59 is written as:

dp̂(t)

dt
= Ap̂(t) + AButh.(t)− Bũth.(t) + L(t)

(
y(t)− Cp̂(t)− CButh.(t)

)
(3.62)

the time notation is not shown for a simpler representation. Substituting uth.(t) =

−F p̂(t), the actual and estimated modes are given by:

dp(t)

dt
= Ap(t)− ABF p̂(t) + BF ˙̂p(t) (3.63)

dp̂(t)

dt
= Ap̂(t)− ABF p̂(t) + BF ˙̂p(t) + LC(p(t)− p̂(t)) (3.64)
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Assuming the error e(t) = p(t)− p̂(t), Eqs.3.63-3.64 can be written as:

[
I −BF

]
˙̂p(t) =

[
A− ABF

]
p̂(t) + LCe(t)

ė(t) =
[
A− LC

]
e(t)

or alternatively as:

ṗ(t) = Γ−1
[
A− ABF

]
p(t) +

[(
I − Γ−1

)(
A− LC

)
+ Γ−1ABF

]
e(t)

ė(t) =
[
A− LC

]
e(t)

where Γ = (I − BF ). The unified closed loop system is given by:

ṗ(t)
ė(t)

 =

Γ−1
(
A− ABF

) (
I − Γ−1

)(
A− LC

)
+ Γ−1ABF

0 A− LC


p(t)
e(t)

 (3.65)

The operators A and A are identical operators with different domains, however,

D(A) ⊂ D(A) and Eq.3.65 can be written as:

ṗ(t)
ė(t)

 =

Γ−1AΓ
(
I − Γ−1

)(
A− LC

)
+ Γ−1ABF

0 A− LC


p(t)
e(t)

 = A

p(t)
e(t)


(3.66)

where the eigenvalues of the unified system, A, are given as σ(A) = σ(Γ−1AΓ)∪σ(A−

LC). Γ is assumed to be invertible and therefore σ(A) = σ(A) ∪ σ(A − LC). Since

the operator A is stable and the eigenvalues of A − LC are placed at pre-specified

locations, the unified closed loop system of control and state estimation, Eq.3.66, is

stable and the separation principle holds. It is concluded that the proposed observer
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can be utilized for state reconstruction in output feedback regulation frameworks.

3.5 Numerical simulation results

The proposed radius control and temperature reconstruction is simulated numerically

and is validated by implementing on a FEM model of the process (see Fig.3.4). The

considerations regarding numerical implementation and results of radius control and

temperature reconstruction are explained in the following paragraphs. The parame-

ters used for numerical simulation are presented in Table 3.1.

The FEM model of heat conduction in the crystal with non-cylindrical and

time-varying domain is utilized as the plant in numerical simulations. The crystal

domain movement is obtained from crystal radius and length evolution dynamics,

Eqs.3.20-3.21, and a mesh moving scheme is utilized to discretize the time-varying

geometry of the domain in developing the finite element model of the process. Due

Table 3.1: Physical and numerical parameters.

Parameter Value Dimensionless value

Solidification temperature, Ts 1430 oC 0
Crystal density, ρc 2420 kg/m3 -
Scaled conductivity, k0 - 0.025
Peclet number, Pe - 0.1
Time scale 87 min 1
Sampling time 1 samples/min 0.01
Spatial discretization - 40,100
Nominal crystal growth rate 5 cm/hour -
ODE controller gain, K 0.005 -
Crucible radius, Rcruc. 7.3 cm 1
Initial crystal radius 3.5 cm 0.48
Desired crystal radius 5 cm 0.68
Initial crystal length 7.3 cm 1
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to the fact that the evolution of the crystal domain is known from the crystal growth

dynamics, the Arbitrary Lagrangian Eulerian (ALE) method (Reddy, 2004) is used

to spatially discretize the domain of interest as shown in Fig.3.5a. The finite element

mesh consists of 10 × 20 two-dimensional linear 4-node elements which discretizes

spatial geometry to 220 degrees of freedom. The evolution of the time-dependent set

of ordinary differential equations obtained from the finite element model is realized

by first-order implicit time integration with the time step dt = 0.01.

The parabolic PDE, Eq.3.25, is represented by a finite dimensional model,

Eq.3.37, using computational framework of the Galerkin’s method. The Galerkin’s

method on a fixed domain is a well known method for order reduction of parabolic

PDE equations, but in the case of a time-varying domain, few considerations should

be taken into account. Temperature distribution evolution in growing crystal is rep-

resented by evolution of both the spectral modes, p(t), and the basis eigenfunctions,

Φi(r, z, t). Hence, due to the time-varying nature of the process, the basis eigen-

functions, obtained from eigenvalue problem, will be also time-varying. In order to

integrate the modes in time and calculate the modes and temperature distribution

evolution, the modes evolution are calculated on a fixed domain and then the result-

ing temperature distribution is mapped into the time evolved new geometry; then

the modes are recalculated by simple projection on the new evolved geometry config-

uration. The algorithm used for numerical implementation of the Galerkin’s method

on the time-varying domain is given by Table 3.2. The geometry and temperature

mappings between different domain configurations are carried out using a property

preserving transformation which preserves the total thermal energy over the domain

(see Fig.3.5b). The domain configuration is obtained from the crystal radius and

length evolution. For a slow time-varying process, the geometry mapping between
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Figure 3.5: (a) Moving mesh used for FE analysis. (b) Galerkin’s method and estima-
tion performed on rectangular domain and the temperature distribution is mapped
to the domain obtained from FEM.
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different domain configurations, T : (r, z) ∈ Ωt0 → (r̂, ẑ) ∈ Ωt, is assumed to be

smooth and invertible and consequently, the temperature transformation is given as,

TΩt(r, z) = J−1TΩt0
(r, z), where J−1 is the determinant of the inverse of the Jacobian

matrix, J = ∂(r, z)/∂(r̂, ẑ).(Izadi and Dubljevic, 2013)

Since the heat flux is provided through an interval on the boundary, the actuation

structure is described by a step function in the z direction, see Fig.3.2. This function

is smoothed out using the sigmoid function to avoid discontinuity when transforming

the temperature profile using the transformation x(t) = p(t) + b(r, z, t)uth(t). Using

the step-like function for actuation and boundary conditions, avoids the Neumann

and Dirichlet boundary condition mismatch at corner points. Moreover, as aforemen-

tioned, the Galerkin decomposition and reduction of the PDE is carried out with the

assumption that the domain is rectangular and the radius variation along the crystal

is ignored.

In the Galerkin’s method, the low dimensional model with twelve dominant modes

is used for temperature simulation. Fig.3.6 shows the obtained first three eigenvalues

using Galerkin’s method compared to the most dominant eigenvalues of the finite

element analysis. As it can be seen, the time-varying behaviour of eigenvalues are

close enough to represent the model by the Galerkin’s method. It can be inferred

that refining the mesh size in FEM will decrease the deviation between eigenvalues

obtained from these methods.

The estimation is carried out through the estimation of the dominant modes us-

ing reduced order model of temperature evolution dynamics. The number of modes

to be used in temperature estimation is determined by the accuracy of the estima-

tion and a minimum number of the modes is chosen. The first two dominant modes

are used for temperature reconstruction. Hence, using in estimation more than two
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,ẑ

)
∈

Ω
t 0

+
∆
t

O
b
ta

in
n
ew

d
om

ai
n

co
n
fi
gu

ra
ti

on

fr
om

gr
ow

th
d
y
n
am

ic
s.

T
Ω
t 0

+
∆
t
(r
,z
,t

0
+

∆
t)

=
J
−

1
T
a
u
x

Ω
t 0

(r
,z
,t

0
+

∆
t)

M
ap

th
e

te
m

p
er

at
u
re

d
is

tr
ib

u
ti

on

to
n
ew

d
om

ai
n

co
n
fi
gu

ra
ti

on
Ω
t 0

+
∆
t.

t
=
t 0

+
∆
t:

p i
(t

0
+

∆
t)

=
〈T

Ω
t 0

+
∆
t
(r
,z
,t

0
+

∆
t)
,Φ

i(
r,
z,
t 0

+
∆
t)
〉

O
b
ta

in
th

e
m

o
d
es

at
t 0

+
∆
t

on
d
om

ai
n

co
n
fi
gu

ra
ti

on
Ω
t 0

+
∆
t

b
y

p
ro

je
ct

in
g

te
m

p
er

at
u
re

on
Φ
i(
r,
z,
t 0

+
∆
t)



3.5: Numerical simulation results 72

0 50 100 150 200 250 300 350 400
−700

−600

−500

−400

−300

−200

−100

0

Time in minutes

T
im

e
−

v
a

ry
in

g
 e

ig
e

n
v

a
lu

e
s

λ3(t)

λ2(t)

λ1(t)

Figure 3.6: Time evolution of the most dominant eigenvalues in Galerkin method
(dashed lines) compared to the few slowest eigenvalues of evolution matrix in Finite
Element Analysis (solid lines).

modes does not significantly increases the estimation accuracy. The estimated modes

(dashed lines) along with the actual modes obtained from reduced order model (solid

lines) are shown in Fig.3.7. Further, the estimated temperature at two different

points (dash-dotted black lines) are compared to temperatures obtained from the fi-

nite element analysis (solid black lines) and Galerkin’s method (dashed black lines)

are shown in Fig.3.8. As it can be seen, despite the inaccuracy of the reduced order

model, estimated temperature asymptotically converges to the actual temperature.

The deviation of the Galerkin’s method from FEM is due to the present geometric

uncertainty in the crystal domain.

The observer performance is evaluated in the case of a model-plant mismatch.

The crystal radius used for observer design and the reduced order Galerkin’s model

are assumed to be different than the finite element numerical model realization. Two

cases of -20% and +20% mismatch between radiuses in the observer and the plant are
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considered and the temperature estimation results are shown in Fig.3.8. The black

lines represent the case with no mismatch while red lines represent +20% mismatch

(radius in observer is greater than the actual value) and blue lines represent the -20%

mismatch. The reduced order Galerkin model’s result and the estimated temperature

are shown by dashed and dash-dotted lines, respectively. Fig.3.8 shows the estima-

tion performance for both cases. As it can be seen the estimation is more accurate

when a smaller crystal radius is considered in the observer design. This is due to the

geometric uncertainty in the crystal shape which is assumed to be rectangular and

considering smaller radius for the observer, slightly compensates for this geometric

uncertainty and results in a better estimation.

The contour plots of the temperature distribution in the crystal at different time

instances are shown in Fig.3.9. Column A shows the 3-D crystal shape along with

the crystal radius evolution as the performance of the radius regulation and the

temperature distribution. Column B, C and D show the FEM results, estimated

temperature and the Galerkin’s method simulation results, respectively. At t = 0, the

temperature distribution in the crystal is unknown and an arbitrary initial condition

is assumed for the observer. As it can be seen, the estimated temperature profile

(column C) captures the temperature evolution of the FEM model (column B). There

is a deviation of the results between FEM and Galerkin’s method (column B and D,

respectively) which is due to the uncertainties in the modeling, however the estimated

temperature distribution shows high degree of agreement with the FEM results.
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Figure 3.7: Estimated modes (dashed lines) compared to the actual modes (solid
lines) for first two modes of the temperature evolution system.
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Figure 3.8: Estimated temperature at crystal boundary (a) and an in-domain point
(b) - Solid lines represent the FEM results, open loop simulation results from
Galerkin’s method are presented by dashed lines, while dash-dotted lines show the
estimated temperatures. Black lines represent the case with no mismatch in crys-
tal radius in the FEM and the observer model, blue and red lines demonstrate the
case with smaller and larger crystal radius in the observer model than the FEM,
respectively.
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Figure 3.9: Snapshots at different time instances (t = 0; 10; 50 and 100 minutes),
Column A: 3-D FE simulation of the temperature distribution evolution in the crys-
tal; B: 2-D FEM results; C: Reconstructed temperature distribution; D: Open loop
Galerkin’s method numerical simulation for comparison with FEM. Note that the
initial temperature distribution is not known for the observer at time zero.
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3.6 Conclusions

The coupled model of crystal growth and temperature distribution evolution in the

Cz crystallization process is provided to describe the radius and temperature evo-

lution in a time-varying domain. The computational framework of the Galerkin’s

method is implemented for order reduction and consequently for a low dimensional

observer synthesis. The parametric uncertainty in the crystal growth dynamics and

geometric uncertainty in parabolic PDE of heat conduction are taken into account

in the synthesis of the radius regulation and estimation of temperature distribution

in the growing crystal. The observer utilizes boundary temperature measurement to

reconstruct the crystal temperature distribution over the entire domain and finally

the obtained reduced order model and the observer is implemented and validated

on a numerically realized finite element model of the Cz crystal growth process. The

achieved results show that despite a parametric uncertainty in the crystal growth rate,

the geometrical uncertainty in the modelling, time-varying parameters and domain,

the reduced order model can be utilized to reconstruct temperature distribution over

the entire crystal domain.

Since the temperature gradients during the crystallization process have a signifi-

cant impact on the grown crystal quality, the reconstructed temperature distribution

over the entire crystal domain can be used as a soft sensor for crystal quality moni-

toring purposes. Moreover, in order to synthesize a temperature regulation or output

feedback controller, the on-line knowledge of the temperature distribution is neces-

sary. The developed framework can be utilized as estimation algorithm along with an

output tracking control framework to track a desired temperature distribution pro-

file to guarantee the process stability and crystal quality during the crystallization



process.

3.7 Notations

α0 : capillary angle

αc : growth angle

∆ : matrix of time-varying effects in eigenvalues

∆H : latent heat

ε : ratio corresponding to uncertainty in crystallization rate

Λ : matrix of eigenvalues

λmn : eigenvalues of the heat equation

Φl : heat flux at the interface in the melt

Φs : heat flux at the interface in the solid crystal

Φmn : eigenfunction of the heat equation

ρc : crystal density

ρl : liquid silicon density

a : Laplace constant

b(r, z, t) : boundary actuation transformation

Cp : heat capacity

Cgrowth : volumetric growth rate

D : bound on the crystallization uncertainty

d : uncertainty in volumetric crystallization rate

f(z, t) : actuation profile

Fext : External pulling force

FY.L. : Young-Laplace force

78
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g : gravitational constant

h : total height of crystal from bottom of crucible

h1 : melt height in crucible

h2 : total length of

K : control gain

k0 : 1/Pe

kr : relative thermal conductivity

ks : regional thermal conductivity

l : crystal length

Mc : crystal mass

p : transformed temperature distribution

pe : extended states of the heat equation

Pe : Peclet number

Q : heater input

Rc : crystal radius as a function of crystal length

Rd : reference crystal radius

Rc.i. : crystal radius at the interface

Rcruc. : crucible radius

umech. : mechanical input

uth. : thermal input

v0 : nominal growth velocity

Vc : crystal volume

vc : average crystal velocity

Vl : liquid volume

Vm : meniscus volume
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Vt : total solid and molten silicon volume

Vz : crystal pulling rate

Vc0 : initial crystal volume

x : temperature distribution

x1 : crystal length

x2 : growth velocity

x3 : crystal volume

z1 : heater location, bottom

z2 : heater location, top
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Chapter 4

Model Predictive Temperature
Tracking in Czochralski Crystal
Growth Process

4.1 Introduction

Single crystals, due to unique mechanical, physical and electrical properties are com-

mon materials in microelectronics, optoelectronics and structurally robust and high

temperature resistant applications (Sinno and Brown, 1999; Sinno et al., 2000). The

Czochralski (Cz) crystal growth process is the most common mass production pro-

cess to produce single crystal. In Cz process, the solid crystal is grown from molten

material (Si, Ga, etc), starting from a small crystal seed and slowly growing by solid-

ification of material at the melt-crystal interface. Due to the high-tech nature single

crystal applications, the quality of the grown crystal is of crucial importance. The

crystal quality is defined by physical properties of the produced crystal such as defects

density and residual stresses in the crystal. These defects and residual stresses are

caused by temperature gradients in the crystal and can be controlled by introducing

a controller to limit possibly large temperature gradient fluctuations, see (Gevelber

85
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and Stephanopoulos, 1987).

The Czochralski crystal growth process modelling require a sophisticated model

of melt fluid flow, thermal and heat transfer phenomena, solid-liquid interface and

pulling dynamics (Demina and Kalaev, 2011; Cao et al., 2011). However, for control

purposes a simplified model for the phenomena of interest would suffice and usual as-

sumptions are made to decouple specific processes to achieve a reduced order model

as a basis for model based control synthesis. In the recent review on the automation

of the Czocharlski crystal growth process (Winkler et al., 2013), both the classical

and modern control realizations which are synthesized on the simplified process model

description have been explored (Winkler et al., 2010a,b). At present time, one can

conclude that a successful controller synthesis relies on the interplay of feedback, feed-

forward control, the reference trajectory tracking and reconstruction of non directly

measurable process states. However, any controller realization is dependent on the

quality of the model used in controller synthesis.

In particular, due to a specific feature of the Czochralski crystal growth process,

the crystal shape undergoes time-varying changes which introduces moving bound-

aries to the parabolic partial differential equations (PDE) model of temperature evo-

lution in the crystal growth process. Along this line, there are several works focusing

on the model based controller design of parabolic PDE models with time-varying

boundary domain, see Armaou and Christofides (2001a,b); Rudolph et al.. For exam-

ple, Ng and Dubljevic (2012); Ng et al. (2013) studied optimal boundary control of

the 2-D temperature model of the Cz crystal growth process with moving boundaries

which is coupled with the crystal pulling dynamics. In these contributions, a sim-

plified geometry (e.g. 1-D or 2-D rectangular domain) is used for control synthesis,

however in realistic operation of Cz process, the crystal growth starts from a small
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three dimensional irregularly shaped seed and grows to a desired radius.

One of the main obstacles in producing high quality large boules of a grown crystal

is the presence of thermal stresses during the crystal cooling. The thermal stresses

result in crystal cracking and fracture in the crystal during the cooling process. The

critical stresses in the crystal depend on the crystal temperature and are usually

caused by temperature difference in radial direction (Gevelber and Stephanopoulos,

1987; Gevelber et al., 1988; Fang et al., 2008). Controlling or limiting these stresses are

crucial to avoid crystal cracking and to ensure the crystal quality. The conventional

method to control these stresses are to adjust the heater temperature in order to main-

tain the temperature distribution around desired levels, however for larger crystals

this method is not successful. In particular, the conventional methods are usually re-

alized as off-line configuration accompanied with large scale simulation studies. The

modern control strategies are helpful for on-line temperature distribution control,

however limitations associated with distributed temperature measurement realiza-

tion, the infinite-dimensional nature of the heat transfer process, time-varying crystal

boundaries, stringent performance requirements reflected in grown crystal quality and

coupled growth and heat transfer dynamics make the control implementation a chal-

lenging task. One of the modern control realizations capable of accounting for the

aforementioned performance and process characteristics in explicit way is the model

predictive control.

Model Predictive Control (MPC) strategies due to their practical and industrially

appealing advantages attracted quite a few contributions in the area of Czochralski

crystal growth and temperature control. For example, Lee et al. (2005) used the

MPC to determine a feedforward trajectory for crystal growth control. Temperature

distribution control in solid crystal and melt is also performed by Ng et al. (2013);
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Irizarry-Rivera and Seider (1997) where the main approach in these contributions is

to use a reduced order model of the complex dynamical system to apply the MPC

and ensure that the desired objectives are satisfied. In Irizarry-Rivera and Seider

(1997) work, the lumped models are considered for both the pulling dynamics and

bulk heat transfer and then two different MPC are coupled to control the radius and

pulling velocity. Although utilizing a more sophisticated model of the process would

be more accurate and performance recommended, the complexity and the computa-

tional efforts associated with more detailed models must be weighted against ability

of these algorithms to be implemented on-line in real-time setting.

The Czochralski crystal growth is a batch slow process (3-5 cm/hr growth rate)

and one of the strategies to ensure the efficiency of process is to force the process

to track a reliable predefined reference trajectory. Using the crystal growth model,

the states and inputs evolution can be determined to achieve the maximum rate of

crystal cooling. The optimal trajectory can be calculated taking into account all

constraints associated with temperature and gradient distributions along with con-

straints on available input. However, due to infinite-dimensional nature of the process

(e.g. PDE model), the trajectory optimization of the process needs to be realized on

a reduced order model with enough accuracy to satisfy stringent production require-

ments. After an optimal trajectory is obtained, it is used in the model predictive

control framework to drive the process towards a desired control objective.

In this chapter, a framework is provided for reference temperature profile tracking

in the Czochralski crystal growth process. A predefined reference crystal shape evo-

lution is used to calculate the optimal temperature trajectory. Dynamical coupling

among the thermal and pulling of crystal model provide a basis for combined finite and

infinite dimensional system setting through the parabolic PDE and ODE model. The
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moving boundary finite element model (FEM) of the conduction-convection thermal

phenomena within the grown reference crystal shape is used to determine the opti-

mal temperature distribution trajectory. Then the MPC is designed to work on the

coupled crystal growth and temperature dynamics to track both the reference crystal

shape and desired temperature distribution. The constraints on the temperature dis-

tribution are derived from the conditions on critical thermal stresses and implemented

in the MPC reference tracking framework. In this chapter, we explore the predeter-

mining optimal trajectory evolution, realizability for practical implementation and

handling of constraints within the control and realizable online real time optimiza-

tion framework. We demonstrate that tracking the predetermined optimal reference

trajectory is a reliable way to maximize cooling efficiency which can be applied to

different settings to achieve a desired goal of minimizing important thermal stresses

during the crystallization process.

The organization of the chapter is as following: after the Introduction section,

a brief descriptions of the growth model, heat transfer model and thermal stresses

are provided in Section 4.2. In the following sections the optimization and the MPC

controller realizations are presented and followed by adequate numerical results and

discussion.

4.2 Heat Transfer model on Moving boundary Do-

main

The crystal growth process model, that we considered in this chapter, consists of

coupled crystal growth and heat transfer dynamics. The crystal growth model dy-

namics depicts crystal radius and length evolution. The time evolution of the heat

transfer model boundaries is determined from the crystal shape (radius and length).
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The crystal shape is also influenced by temperature distribution. Using a robust

controller with respect to uncertainty in crystal growth rate can reduce the problem

to a one-way coupling model realization such that the influence of the temperature

distribution on the crystal growth dynamics is considered as a parametric uncertainty

in the growth rate.

4.2.1 Crystal growth model

The schematic of the crystal pulling dynamics along with the notations are presented

in Fig.4.1. The dynamic model of crystal growth is derived assuming horizontal

melt-solid interface (see Abdollahi et al. (2014)). The planar interface assumption

is relaxed in developing the finite element model of the crystal growth. The crystal

growth model is given by (Abdollahi et al., 2014):

ẋ1(t) = x2(t)

ẋ2(t) =
2

ρcx3(t)
[Fext(t)− ρcπCgrowth(

x2(t)

2
− Cgrowth

R2
cruc.

)] (4.1)

ẋ3(t) = πCgrowth

and the crystal radius, r(t), as the output is given as:

Rc.i.(t) =

√
Cgrowth
x2(t)

=

√
Cgrowth

l̇(t)
(4.2)

where x1(t) = l(t), x2(t) = l̇(t), x3(t) = Vc(t) and Rc.i.(t) are the crystal length,

growth velocity, the crystal volume and the crystal radius, respectively. Fext, Cgrowth,

Rcruc. and ρc are the puling force, volumetric crystal growth rate, crucible radius and

the crystal density, respectively (see Fig.4.1). The control objective is to regulate
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Figure 4.1: Schematic of the Cz crystal growth process with the realistic geometry of
the process given in the left figure side, and geometric simplifications and parameters
given in the right figure side.

the crystal radius at a desired value, Rd , despite the parametric uncertainty. The

controller is designed using input-output linearization of the crystal growth model,

given by:

Fext(t) = ρπC2
growth(

1

2R2
c.i.(t)

− 1

R2
cruc.

) +KρπC2
growth(t+ Vc0/πC)

Rc.i.(t)−Rd

R3
c.i.(t)

(4.3)

where K is the controller gain which is determined to stabilize the crystal radius

at desired value considering the parametric uncertainty in the crystal growth rate

Cnominal − d(t) ≤ Cgrowth ≤ Cnominal + d(t). The control gain, K, is given as:

K >
π

2Vc0C2
growth

D(Cgrowth +D)(2Cgrowth +D) (4.4)
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where D is the upper bound for disturbance d(t) and is assumed to have a lower and

upper limit, −Cgrowth < d(t) < D. The lower limit corresponds to the case of crys-

tallization not occurring and the upper bound, which represents fast crystallization,

can be arbitrarily chosen.

The crystal radius is regulated despite the uncertainty in the crystal growth rate

and since the growth rate is affected by temperature distribution in the crystal, the

robustness of the control law allows the radius control synthesis to be decoupled from

the thermal phenomena that can adversely affect the crystallization rate and the ra-

dius growth. This is an important point in the coupled thermal and pulling of the

crystal modelling used for the control purposes, since the bidirectional coupling can

be effectively reduced by the robust feedback linearizing control to one-directional

coupling from the mechanical to the thermal model. In the ensuing section we pro-

vide a thermal PDE model which domain dynamics is driven by the time-varying

evolution of the x1(t)-state from Eq.4.1 and r(t) from Eq.4.2.

4.2.2 Heat transfer model

In the Czochralski process, the heat transfer within the solid crystal is described by

the conduction-convection PDE model given by Eq.4.5 where convective terms are

manifested by the boundaries growth velocity. The model along with the boundary

conditions (Fig.4.2) are given as follows (Abdollahi et al., 2014; Derby and Brown,

1987):

∂x

∂t
=

1

r

∂

∂r

(
k0r

∂x

∂r

)
+ k0

∂2x

∂z2
− Vz(t)

∂x

∂z
(4.5)
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z2(t)

z1(t)

∂T
∂n̂

∣∣∣
r=Rc(t)

= Q(t)
Pe

∂T
∂n̂

∣∣∣
r=Rc(t)

= 0

∂T
∂n̂

∣∣∣
r=Rc(t)

= 0

∂T
∂n̂

∣∣∣
r=0

= 0

T
∣∣
z=l(t)

= Ttop

T
∣∣
z=0

= Tf

Temperature
measurement
on crystal seed��

���
�:

Figure 4.2: Boundary conditions, actuation interval and measurement point.

x
∣∣∣
z=0

= 0 ; x
∣∣∣
z=l(t)

= xtop ;
∂x

∂r

∣∣∣
r=0

= 0 (4.6)

∂x

∂n̂

∣∣∣
r=Rc(z), z<z1(t)

= 0 ;
∂x

∂n̂

∣∣∣
r=Rc(z), z>z2(t)

= 0 ;
∂x

∂n̂

∣∣∣
r=Rc(z), z1(t)<z<z2(t)

=
Q(t)

Pe
(4.7)

where x(r, z, t) is the scaled temperature within the crystal, k0 = kr/Pe and Vz(t) is

the bulk movement velocity along the axial direction. For detailed description of the

model, see Abdollahi et al. (2014).

In the Czochralski process, due to high operating temperature, the crystal loses

heat at high rate mainly through radiation. This heat loss results in very fast crystal

cooling and consequently results in thermal stresses and dislocation or crystal crack-

ing. In order to model the global thermal behaviour of the process, it is required

to incorporate all the coupled phenomena like conduction-convection in the crystal
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and in the melt, the heat transfer in the meniscus and radiation between all surfaces

along with the crystal growth dynamics and fluid flow. A comprehensive model of

the process would be successful in simulation studies but for the control purpose, a

simpler model of the process is required. In order to have closer thermal behaviour to

real operating conditions, Dirichlet boundary condition is considered at the top of the

crystal and it is considered to be equal to Ttop = 850 ◦C (taken from the experimental

results of Sinno et al. (2000)).

4.2.3 Thermal stresses in crystal

Due to high temperature during the crystal growth process, thermal stresses do occur

and are present during the cool down process. These stresses are translated to strains

which in principle may result in the crystal cracking. Avoiding these stresses during

the crystal production will guarantee reliability of the process quality of the crystal

(Fang et al., 2008). Temperature gradients are also known to be one of important

factors in creating dislocations in the crystal. Decreasing the thermal gradients will

result in lower stresses and consequently reduce dislocations in the crystal. Obtaining

exact stresses in the crystal during the crystallization process requires modelling the

coupled thermal, growth and meniscus dynamics, however there are some conserva-

tive criteria on temperature gradients to avoid stresses exceeding the critical value.

Thermal stresses in the crystal can be obtained with the assumption of plain strain

in the crystal to define the aforementioned criteria for temperature gradients (Gevel-

ber, 1994). The stresses are known to be at their maximum values at the crystal

centre and the crystal surface. Assuming plain strain and a simple meniscus geom-

etry, Gevelber (1994) provided these stresses as temperature dependent functionals

given by:
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σr,norm =


− 5

48
∂T
∂r
Ri at r = 0

0 at r = Ri

(4.8)

σz,norm =


−10

48
∂T
∂r
Ri at r = 0

7
24
∂T
∂r
Ri at r = Ri

(4.9)

σφ,norm =


− 5

48
∂T
∂r
Ri at r = 0

7
24
∂T
∂r
Ri at r = Ri

(4.10)

where Ri denotes the point along the radius coordinate. The maximum stress is

obtained in the growth direction and the stresses are the largest at the crystal surface

and they should be less than critical resolved shear stress (σCRSS). For Silicon crystal,

the critical stress is σCRSS = 5.55 × 106dyn/cm2 and this condition is reduced to

(Gevelber, 1994): ∣∣∣∂T
∂r

∣∣∣Ri


≤ 10.3K for r = R

≤ 28.8K for r = 0

(4.11)

Since the maximum stress occurs at the crystal surface, the temperature gradi-

ents should be minimum at the crystal surface. The constraints on the temperature

gradients can be considered in order to minimize thermal stresses.

To study and utilize the thermal stresses evolution in the control algorithm, the

thermal stresses are solved for the growing silicon crystal. Since the silicon crystal

has cubic atomic lattice structure, the thermal stress analysis is performed using ax-

isymmetric thermoelastic stress model for anisotropic materials provided by Fainberg

and Leister (1996); Chen et al. (2008). The governing equations for the momentum
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balance for axisymmetric geometry is given by:

1

r

∂

∂r
(rσrr) +

∂

∂z
(σrz)−

σφφ
r

= 0 (4.12)

1

r

∂

∂r
(rσrz) +

∂

∂z
(σzz) = 0 (4.13)

where σrr , σzz and σφφ are normal stresses in the radial, axial and tagential directions,

respectively and σrz is the shear stress. The stress-strain relation for anisotropic

thermoelastic material is given by:



σrr

σφφ

σzz

σrz


=



c11 c12 c13 0

c12 c22 c23 0

c13 c23 c33 0

0 0 0 c44





εrr − β1(T − Tref )

εφφ − β2(T − Tref )

εzz − β3(T − Tref )

εrz


(4.14)

where βi is the thermal expansion coefficient in i direction, cij is the elastic coeffi-

cient. T and Tref are the temperature distribution and reference temperature, respec-

tively. The elastic coefficients for cubic crystal lattices reduce to three independent

coefficients and all the other coefficients can be expressed in terms of independent

coefficients as follows: c11 = c22 = c33 = 165.77GPa, c12 = c13 = c23 = 63.93GPa,

c44 = 79.62GPa. The expansion coefficient is constant for all directions, β11 = β22 =

β33 = 4.5× 10−6K−1 (Chen et al., 2008). The strain-displacement relations are given

by:

εrr =
∂u

∂r
, εφφ =

u

r
, εzz =

∂v

∂z
, εrz =

∂u

∂z
+
∂v

∂r
(4.15)

where u and v are displacement components in the radial and axial directions, respec-

tively. Traction free boundary conditions is assumed for crystal surface, tn = σ.n,
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where tn is the traction force normal to the surface and n is the surface normal unit

vector. For the axisymmetric axis, the boundary condition is applied on the displace-

ments, v = 0 and ∂u
∂n

= 0, where n is the unit vector normal to the axisymmetric axis.

The thermal stresses has important role in creating dislocations through causing

slip in the crystal structure. It is well known that slip occurs in a plane that resolved

shear stress (σRSS) on that plane is greater than the critical resolved shear stress

(σCRSS). It has been previously shown that slip occurs on {111} plane and [11̄0]

direction (shown in Fig.4.3). Assuming that growth happens at [001] direction, in the

cubical crystal lattice, there are total of 12 slip directions on four planes. It is shown

that these 12 resolved stresses can be expressed as five independent stresses given in

Table 4.1.

The maximum absolute value of the resolved shear stresses occur at different tan-

gential angles. These angles are shown in Table 4.1. The maximum values of these

stresses are used in model predictive control utilization as constraints to minimize

dislocation generation.

Table 4.1: Five independent resolved shear stresses and the angle of maximum stress

Independent resolved shear stress Maximum occurs at φ

σ1 =
√

6
6
σ̄rcos2φ 0, π

σ2 =
√

6
6

[σ̄z − σ̄r 2√
2
sinφsin(φ+ π

4
)] 3π

8
, 7π

8

σ3 =
√

6
6

[σ̄z − σ̄r 2√
2
sinφsin(φ− π

4
)] π

8
, 5π

8

σ4 = −
√

6
6

[σ̄z − σ̄r 2√
2
cosφsin(φ+ π

4
)] π

8
, 5π

8

σ5 = −
√

6
6

[σ̄z + σ̄r
2√
2
cosφsin(φ− π

4
)] 3π

8
, 7π

8
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Figure 4.3: Representaion of stress transformation in slip plane and direction

4.3 Optimization and Temperature Reference Track-

ing

The conduction-convection heat transfer model provided in Section 2.2 is used for

process optimization and control. Since the crystal shape is not known at the begin-

ning of the process, the reference crystal shape (reference crystal radius and length) is

used for trajectory planning and optimization. The heater input Q(t) is determined

such that the maximum cooling achieved and the constraints on the input and the

temperature gradients close to interface not violated. Hence, optimization on the

reference crystal shape is plausible since the radius control law is robust with respect

to uncertainty in growth rate which results from temperature distribution within the

crystal. A low dimensional finite element model of the crystal as the dynamic model

along with quadratic programming are used to determine the heater inputs optimizing

the objective function and satisfying the constraints. The optimization and control
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Figure 4.4: Trajectory optimization and temperature distribution control algorithm
along with thee coupling between crystal growth and temperature dynamics.

framework used in this chapter is shown in Fig.4.4. The presence of non-trivial

crystal shape, moving boundaries and partial actuation in one boundary makes avail-

able options for model reduction and control of the process limited. In this chapter,

we directly use the finite element model (FEM) of the process for optimization and

control synthesis, since the direct use of the FEM model of heat transfer in non-

cylindrical crystal domain is more accurate than the reduced order models, moreover,

the temperature field in this case can be easily translated into thermal stress in the

crystal.

The FEM model of the conduction-convective PDE given by Eqs.4.5-4.7 is ob-

tained and is written as:

Xk+1 = AkXk +Bkuk +Bck

Yk = CkXk (4.16)
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where Xk is the vector of temperature field at nodes of FEM model, Ak, Bk and

Bck are the matrices obtained from FEM. The system output, Yk, is the temperature

gradients at nodes of interest. Due to the moving boundaries and time varying term

in the PDE, the dynamical system given by Eq.4.16 is time-varying.

Knowing the reference crystal shape, the finite element method is used to opti-

mize the temperature distribution evolution for the batch process time. The optimal

inputs are obtained such that the maximum cooling takes place without violating

the constraints on temperature gradients. The most important gradients are those

close to melt-crystal interface and since the radial gradients at the boundary are zero

(boundary condition), the gradients inside the crystal are taken into account. In

order to obtain an optimal trajectory, the following optimization problem is solved

to maximize cooling of the crystal by keeping the temperature gradients within the

desired level.

min
u1,...,uNp

J =

Np∑
k=1

XT
k QXk + uTkRuk (4.17)

subject to:

Xk+1 = AkXk +Bkuk +Bck (4.18)

umin 6 uk 6 umax (4.19)

|Yk| 6 Gmax (4.20)

where Xk and Yk are the nodal temperature and temperature gradients at time k,

respectively and Np is the number of intervals that used to span time horizon of the

whole process. In order to solve the optimization problem, it can be formulated as a



4.3: Optimization and Temperature Reference Tracking 101

large-scale quadratic program when the evolution matrices are known. The reference

crystal shape evolution is utilized to generate FEM matrices for entire process time

and consequently these matrices are used to formulate the quadratic program.

Knowing the optimal reference trajectory, model predictive reference tracking con-

trol is used to track the reference trajectory by measuring crystal temperature at the

crystal surface. Model predictive control uses the finite element model of the process

to predict future behaviour of the process and optimize the input such that the control

action keep the process close to the reference trajectory. For reference temperature

tracking, the model predictive reference tracking is defined as:

min
u0···uNc−1

Φ =
Nc∑
k=1

(yrk − C ′kXk)
TQ′(yrk − C ′kXk)

+
Nc−1∑
j=0

(uk − urk)TR′(uk − urk) (4.21)

subject to:

Xk+1 = AkXk +Bkuk +Bck (4.22)

yk = C ′Xk (4.23)

umin 6 uk 6 umax (4.24)

|Sk| 6 σCRSS (4.25)

where yrk and urk are the reference trajectory and reference inputs at time instance k,

obtained from optimization problem (Eqs.4.17-4.20) and yk = C ′Xk is the tempera-

ture measurement at the crystal surface. Sk is the vector of resolved shear stresses,

σRSS, calculated by solving FEM model of thermal stresses (Eqs.4.12-4.15 and the
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equation provided in Table 4.1) and σCRSS is the critical resolved shear stress of

silicon. Since the relation between thermal stresses, displacements and temperature

distribution are linear, the resolved shear stresses in the crystal after solving by FEM

can be written as:

Sk = A′kXk (4.26)

The trajectory obtained from the finite element model (Eq.4.16) is used as ref-

erence trajectory. Then MPC reference tracking controller is constructed using the

online crystal shape (not reference geometry) to track the temperature reference. The

temperature gradient constraints are present in the MPC formulation to avoid high

gradients in the crystal. The integrated control and optimization is shown in Fig.1.

There are two steps, first to calculate optimal inputs along with optimal temperature

trajectories taking into account all the present constraints. Then by optimal tra-

jectory and the refined finite element model on the tracked crystal shape, reference

temperature tracking is performed. Since the finite element model used for MPC is

different than the model used for optimization (different crystal shape and nonplanar

interface), the constraints need to be present.

4.4 Numerical Simulation Results

The reference temperature tracking provided in this chapter is based on the FEM

model of the Czochralski crystal growth process. The temperature distribution evo-

lution optimization is performed on a pre-defined reference crystal shape. Then the

temperature tracking is provided using the optimal trajectory obtained on the refer-

ence crystal shape and the model predictive reference temperature tracking is imple-

mented on the high fidelity FEM model of the temperature evolution on the realistic



4.4: Numerical Simulation Results 103

crystal shape in the presence of disturbances in the model (see Fig.4.4).

Two finite element model of the process is used. The first is a low dimensional

model with DOF of 80 (5 × 16 two-dimensional linear 4-node elements) for off-line

optimization. This finite element model is constructed on the reference crystal ge-

ometry with planar interface and utilized for off-line optimization. The second finite

element model has 348 DOF (12×29 two-dimensional linear 4-node elements) which is

constructed on the realistic crystal geometry with non-planar interface and is utilized

as the process model to calculate the temperature distribution and thermal stresses

over the crystal domain to verify the proposed control synthesis. The finite element

model for off-line optimization is derived based on the reference crystal shape without

considering the crystal radius control while the the FEM for on-line implementation is

based on the realtime evolution of the crystal geometry. Note that the spatial domain

of the crystal is known from growth dynamics and therefore the Arbitrary Lagrangian

Eulerian (ALE) method (Reddy, 2004) is used to discretize the spatial domain of the

crystal. First-order implicit time integration with the time step dt = 0.005 is used to

obtain the evolution of the time-varying system.

The control synthesis, introduced in Section 4.2, is used to track the reference

crystal radius. The robustness of control law with respect to the parametric uncer-

tainty in crystal growth leads to a decoupled growth dynamics from the heat transfer

model. This decoupled model can be used independently to control the crystal shape,

however due to the present uncertainty, the tracked crystal geometry is slightly dif-

ferent than the reference shape. The reference crystal radius as a function of crystal

length along with 3-D representation of the reference and tracked crystal geometry

are shown in Fig.4.5. The tracking performance of controller is shown as dash-dotted

line. The reference crystal geometry (left hand side) is known and used as the crystal
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Figure 4.5: The reference crystal shape (solid line) and the tracked crystal radius
(dash-dotted line) - The 3-D reference crystal shape along with the tracked 3-D crystal

geometry for temperature distribution evolution optimization and trajectory plan-

ning. The obtained inputs and trajectories are implemented on the realistic crystal

shape (righ hand side) crystal geometry.

Since the desired reference crystal shape evolution is known, the time-varying

crystal mesh can be extracted from the reference crystal shape for the whole process

time. Using the known time-varying mesh, the system dynamics is represented by

FE model (Eqs.4.16). The temperature distribution is assumed to be at equilibrium

at the beginning of the process (temperature distribution initial condition) and the

quadratic programming (QP) is used to optimize the inputs and the temperature

distribution evolution for the whole process. In order to implement the QP, the total

process time is considered to be 3.5 hours with average crystal growth of 5 cm/hours.

The dynamic model is discritized using sampling time of 26 seconds which results

in 500 manipulating variables in QP framework to be optimized. A FE model with
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DOF of 70 is used for optimization which results in 35000 equality constraints along

with more than 35000 inequality constraints on nodal temperatures in QP (T < 0 ,

∂T
∂r
< Gmax and ∂T

∂z
< Gmax).

The MPC is implemented on the more realistic FE model of the process to show

the performance of the controller. The planar melt-crystal interface assumption is re-

laxed and approximated by a second order polynomial in the Cz process model (Chen

et al., 1997) to examine the performance on more realistic crystal geometry. The op-

timal input along with the tracked temperature are shown in Fig.4.6. As it can be

seen the MPC tracks the reference trajectory with higher accuracy at the beginning

of the process. However the tracking efficiency decreases (maximum deviation of 2%)

as the crystal grows and the distance between the actuation and the point of interest

increases. The presented tracking performance is in presence of model disturbance

of random noise with the covariance of 10% of the maximum temperature. In ab-

sence of disturbances the MPC follows the reference with deviation less than 0.1%.

During the process, as the crystal grows, more molten material solidifies and new

material points are created in the crystal. These points are created at the solid-melt

interface at the melting point temperature (Tf ) and then start moving with crystal.

The annealing profile of these points at different heights are shown in Fig.4.7. As

the growth process starts, the material at the interface starts to solidify and its tem-

perature drops down, however the controller interrupts the temperature drop and by

heating the crystal, the temperature increases to avoid occurrence of large gradients.

Temperature distribution evolution and normal stresses’ snapshots for different

time instances are shown in Fig.4.8. The resolved shear stresses that are calculated

from transformation of normal stresses in different planes and directions are shown

for same time instances in Fig.4.9. Fig.4.10 shows the evolution of maximum resolved
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Figure 4.6: Reference input and temperature located on the surface of the crystal
seed along with the input and the tracked temperature in presence of disturbances.
Solid and dash-dotted lines are the reference trajectories while dashed and dotted
lines are the input and the tracked temperature, respectively.

shear stress on the crystal interface. As it can be seen, however the constraints on

σRSS is active only at the beginning of the process, the constraints on the maximum

σRSS is satisfied (see Fig.4.9-4.10). The off-line optimization which is performed by

posing constraints on temperature gradients instead of stresses themselves, despite

simplifications, is an efficient way to limit the resolved shear stresses. Normal stresses

(and consequently, resolved shear stresses) are higher at points far from the solid-melt

interface, however due to higher critical resolved shear stress at lower temperatures,

higher σRSS at points with lower temperature will not generate dislocations. As the

stresses are the direct result of temperature gradients, the heater actuation flattens

the temperature distribution at points closer to the interface which results in lower

gradients in this region and with less gradient, the normal and resolved stresses are

bounded at points close to interface.
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reference; Dashed line: tracked temperature without disturbance; Dash-dotted line:
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ents.
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4.5 Summary

The reference temperature distribution tracking problem is considered in this chapter.

Temperature tracking is performed by tracking a desired point temperature evolution

along with satisfying the present constraints. The optimal temperature trajectory is

obtained using quadratic programming and then the MPC is implemented to con-

trol the coupled crystal growth and conduction-convection heat transfer model. The

provided approach in this chapter uses a simplified model of heat transfer in the

Czochralski crystal growth process that preserves the main effect of temperature dy-

namics and the thermal behaviour of the Czochralski process, however, the approach

can be extended to more comprehensive model by including the heat radiation, the

heater/actuator dynamics and also the heat transfer in fluid and meniscus in both

the optimization and implementation steps.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

In time-varying processes, a reliable way of control and estimation is to utilize the

time-varying effects within regulation and estimation synthesis. In particular, in spa-

tially distributed parameter systems with moving domain, knowing the states evolu-

tion during entire processing time, provides a foundation for optimal control/estimation

strategies. Namely, once the trajectory optimization is performed to determine a op-

timal trajectory for the process, the model predictive control is utilized as tracking

control strategy to maintain the actual trajectory as close as possible to the optimal

desired trajectory.

Trajectory optimization for the time-varying nonlinear and distributed parameter

systems usually results in a complex optimization problem. The optimization prob-

lem is formulated in a quadratic/nonlinear programming framework by discretizing

the process model and considering the whole process dynamic as equality constraints.

In order to solve the optimization problem, interior-point optimization method is

used by IPOPT software and MATLAB for microalgae bioreactor and Czochralski

crystallization process, respectively.

114
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State estimation is provided for both processes. For microalgae bioreactor, moving

horizon estimator is used to estimated nitrogen concentration, this estimation along

with other measurable state are used for model predictive control implementation. In

Czochralski crystal growth process, a distributed parameter observer is developed to

reconstruct the spatial temperature distribution over the crystal domain. The com-

putational framework of Galerkin’s method is utilized for model reduction and few

dominant modes are estimated using Luenberger observer to reconstruct the temper-

ature distribution.

In batch processes, different initial conditions, different disturbances and mea-

surement noises can affect the product quality of different runs of a batch process.

Introducing a reference trajectory along with a trajectory tracking control can mini-

mize this effects and provide a reliable operation performance for different batch runs.

The reference trajectory optimized for maximum lipid production is used for tracking

MPC for microalgae bioreactor and it is shown that the controller performs with high

efficiency in presence of the noises. For the Czochralski crystal growth process, the

trajectory optimized in order to maintain the thermally induced stresses below the

critical value. The performance of the controller is examined by implementing on a

high fidelity finite element model of the process.

5.2 Future Work

The mathematical model of lipid production in the microalgae bioreactor is an exper-

imentally identified model. The model parameters are identified using experimental

data which is performed for a certain range. The results provided for optimization

and control of microalgae bioreactor could be experimentally validated. The obtained
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results from the experiment then can be used for tuning the parameters in the model

to obtain a more accurate model for the range of data collected. Repeating this pro-

cedure will result in more reliable model as well as experimentally validated reference

trajectory.

In Chapter 4, a controller is developed for Cz process. The model predictive tem-

perature tracking controller is a full state feedback controller, however, in realistic

implementation of the controller, the temperature distribution is not measurable and

only few measurements can be realized. It is of practical value to combine and eval-

uate the observer and controller that is suggested in Chapters 3-4 and construct a

output feedback controller.

As it is stated, a simplified model of the Czochralski process used in this work.

For example, the dynamic of heat transfer by radiation is neglected and considered as

the input to the system, the boundary conditions are simplified to no flux boundary

conditions and the model is constructed by axisymmetric assumption. In order to

have a more realistic model, these assumptions (or some of them) can be relaxed

and the controller performance can be examined in presence of these more realistic

conditions.
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