Extracting Information Networks from Text

by

Filipe de S4 Mesquita

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

(© Filipe de Sa Mesquita, 2015

Abstract

This work is concerned with the problem of extracting structured information net-
works from a text corpus. The nodes of the network are recognizable entities, typ-
ically people, locations, or organizations, while the edges denote relations among
such entities. We use state-of-the-art natural language processing tools to identify
the entities and focus on extracting instances of relations. The first relation extrac-
tion approaches were supervised and relation-specific, producing new instances of
relations known a priori. While effective, this paradigm is not applicable in cases
where the relations are not known a priori or when the number of relations is high.
Recently, open relation extraction (ORE) techniques were developed to extract in-
stances of arbitrary relations while requiring fewer training examples. Because of
their appeal to applications that rely on large-scale relation extraction, a major re-
quirement for ORE methods is low computational cost. Several ORE approaches
have been proposed recently, covering a wide range of NLP machinery, from “shal-
low” (e.g., part-of-speech tagging) to “deep” (e.g., semantic role labeling — SRL),
thus raising the question of what is the trade-off between NLP depth (and associ-
ated computational cost) and effectiveness. We study this trade-off in depth, and
make the following contributions. First, we introduce a fair and objective bench-
mark for this task, and report on an experimental comparison of 11 ORE methods
shedding some light on the state-of-the-art. Next, we propose rule-based methods
that achieve higher effectiveness at lower computational cost than the previous best

approaches. Also, we address the problem of extracting nested relations (i.e., rela-

i

tions that accept relation instances as arguments) and n-ary relations (i.e., relations
with n > 2 arguments). Previously, all methods for extracting these types of rela-
tions were based on SRL, which can be up to 1000 times slower than methods based
on shallow NLP. Finally, we describe an elegant solution that starts with shallow ex-
traction methods and decides, on-the-fly and on a per-sentence basis, whether or not
to deploy deeper extraction methods based on dependency parsing and SRL. Our
solution prioritizes extra computational resources for sentences describing relation
instances that are likely to be extracted by deeper methods. We show experimen-
tally that this solution can achieve much higher effectiveness at a fraction of the

cost of SRL.

iii

Preface

Most of the research conducted for this thesis forms part of a project led by Profes-
sor Denilson Barbosa within the NSERC Business Intelligence Network on “Dis-
cerning Intelligence from Text”. Professor Denilson Barbosa has provided guidance
for the work presented in this thesis and assisted with the manuscript composition
by providing editorial feedback.

Chapter 1 and Chapter 2 are my original work. Chapter 3 appeared at the
AAALI International Conference on Weblogs and Social Media, Data Challenge
Workshop [65], the ACM Transactions on the Web Journal [62], the ACM SIG-
MOD/PODS Ph.D. Symposium [63] and the NIST Text Analysis Conference [67].
The technical apparatus, experimental analysis and manuscript composition pre-
sented in this chapter are the result of a collaboration between Yuval Merhav and 1.
Yuval Merhav and I are equal contributors for this work and received guidance from
Denilson Barbosa, Wai Gen Yee and Ophir Frieder. I am the sole contributor for
the improvements introduced in SONEX 2.0 (Section 3.9). Ying Xu, Aditya Bhar-
gava, Mirko Bronzi and Grzegorz Kondrak assisted with SONEX 2.0’s evaluation
as presented in Section 3.9.

Chapter 4 is my original work and appeared at the AAAI International Confer-
ence on Weblogs and Social Media [64]. The work in Chapter 5 and Chapter 6
appeared at the ACL Conference on Empirical Methods in Natural Language Pro-
cessing [66]. I was responsible for designing EXEMPLAR and the benchmark for
open relation extraction. Jordan Schmidek assisted with part of the implementa-
tion of EXEMPLAR and competitor methods. He also assisted on the manuscript

composition and experimental analysis. Chapter 7 is my original work.

v

To my wife Camila

For her self-giving and self-sacrificing love.

Acknowledgements

First and foremost, I would like to thank Jesus for being my Lord and my God.
Without Him, life has no purpose. I would like to thank my wife Camila for bearing
with a financially poor, mentally absent and mildly depressed graduate student for
7 years. Eu te amo muito, amore. I am also thankful for Sofia, the most precious
graduation gift I could have ever asked for. Vocé € muito especial pro papai, filha!

I would like to thank my advisor, Professor Denilson Barbosa, for pushing me
over my limits and persevering through our ups and downs. I am sorry for my stub-
bornness. I have the utmost respect (and no envy) for your job. Many thanks to the
members of the supervisory committee, Randy Goebel, Davood Rafiei, Greg Kon-
drak, Joerg Sander, Marek Reformat and Giuseppe Carenini, for investing time into
improving this work. I would also like to thank my collaborators: Yuval Merhav,
Jordan Schmidek, Zhaochen Guo, Mirko Bronzi, Ying Xu and Aditya Bhargava.
This work was only possible because of you.

Paizao e Maezinha, obrigado pelo apoio incondicional, pelas oragdes e pelas
palavras sempre cheias de sabedoria. Priscila, Débora e Thalita, vocés sdao as mel-
hores irmds do mundo. Amo muito vocés, familia querida. Também quero agrade-
cer meu sogro e sogras (Francisco, Hilda e Tota), cunhados (Bruna e Gabriel) e
concunhado/amigo—irmao (Micael) pelo apoio durante o nascimento da Sofia e a
defesa do doutorado. Sou muito grato por vocés terem me aceitado na sua familia
(sabendo que eu ia tirar a Camila de perto de vocés).

I would like to thank Eli Cortez, Steve Meredith, Altigran Soares da Silva,
Mario Nascimento and Jon Putz for their valuable advice and support during critical
moments of this journey. Eli, vocé € um grande amigo—irmao. Obrigado por revisar

a tese e por me motivar a terminé-la. Steve, Altigran, Mario and Jon, I am grateful

vi

for having such great mentors.

I acknowledge the productive conversations with Gerhard Weikum, Evange-
los Milios, Raymond Ng, Paolo Merialdo, Tamer Ozsu, Rachel Pottinger, Frank
Tompa, Renée Miller, Iluju Kiringa and Laks Lakshmanan. Thanks for your kind-
ness and patience.

I would like to thank Tom Hendrickson, Michael Deering, George Minett and
everyone at Mitre Media for believing in me and my vision of leveraging data and
the scientific method as the foundation for business growth.

This journey would be impossible to bear without these great friends, listed in no
particular order: Junior & Jenise, Henrique & Juliana, Steve & Maria Rita, Graham
& Eva, Adrian & Keristan, Peter & Kirsten, Julian & Pascale, Logan & Jasmine,
Darryl & Denae, Dale & Kathleen, Jon & Esther, Philip & Kyla, Fred & Lilly,
Marlos & Poliana, Getulio & Viviane, Brian & Chelsey, Filipe & Rebeca, Filipe
& Ana, Andre & Suellene, Rick & Jean, Daniel & Carol, Ben & Andrea, Steve &
Nicole, Chris & Natalie, Pimpy & Jeanette, Micah & Kristi, Steve & Jamie, Ben &
Alicia, Pirooz & Niousha, Chris & Erika, Josh & Libriel, Kenyé & Ana, Markeetoo
& Ninna, Siza & Marta, Levi Lelis, Jackson Zi, Familia Magalhdes Sousa, Rafael
Kitauchi, Jean & Fernanda, Heyde Marques, Beto Oliveira, Milton & Samara, Pr.
Manoel & Lena, Pr. Junior & Arthunilza, Pr. Jaime & Luisa e Pr. Horta & Ana.
Thanks for sharing life with me, friends.

Sou muito grato a todos das familias “de S4” & “Mesquita” pelo carinho e
suporte. Sou grato ao vO Evilazio e as vos Marias. Sou grato aos tios e tias: Lucia,
Lucio, Nelson & Rosanila, Oliveira & Socorro, Thelma, Isabel, Flavio & Janice,
Daniel & Neide, Danilo, Otoni, € Bento & Lena. Também sou grato aos primos e
primas.

Finally, I acknowledge the generous support of the Natural Sciences and Engi-
neering Research Council of Canada through BIN (the Business Intelligence Net-

work) and Alberta Innovates — Technology Futures.

Vil

Table of Contents

Introduction

1.1 Applications
1.2 Background
1.3 Challenges. e
1.4 Problem Statement,
1.5 Outline e

Background and Related Work

2.1 Natural Language Processing Tools

2.2 Named Entity Recognition

2.3 Open Relation Extraction
2.3.1 Unsupervised methods
2.3.2 Unlexicalized methods
2.3.3 Beyond binary relations

2.4 Evaluation of Relation Extraction.

SONEX: A Clustering-Based Approach
3.1 Overview e
3.1.1 Annotating Sentences with Named Entities
3.1.2 Creating Entity Pairs
3.1.3 Clustering Entity Pairs
3.1.4 LabelingClusters
3.2 Weighting Schemes Usedin SONEX
3.2.1 The Domain Frequency
322 Usingthedf Score
3.3 Setup of Experimental Evaluation
3.3.1 Building the Ground Truth
332 DIscussion e
333 Metricso
34 Resultsonthe INTERdataset
3.4.1 Comparison of Clustering Methods
34.2 Comparison of Clustering Features
3.4.3 Effectiveness of Pruning by Weight
3.4.4 Effectiveness of Pruning by Support
345 PruningbylIn-degree
3.4.6 Summary of Observations on INTER
3.5 Results on the NOISY Dataset
3.5.1 Comparison of Clustering Features
3.5.2 Manual Evaluation of Clusters
3.5.3 Summary of Observations on NOISY
3.6 Evaluation of Relation Labels
3.6.1 EvaluationMethod

ComparisontoReVerb
Applying ORE on the Blogosphere
SONEX 2.0
3.9.1 Improving Clustering
3.9.2 Improving Feature Extraction
39.3 Experimental Results
3.10 Conclusion

oo

Meta-CRF: Extracting Nested Relations

4.1 OVerview e

4.2 Extracting Flat and Nested Instances
42.1 TheAlgorithm
422 TheMeta-CRFModel
423 Features
4.2.4 The need for syntactic features
4.2.5 Limitations of Meta-CRF

4.3 Experiments e e
4.3.1 Comparison between Open-CRF and Meta-CRF
4.3.2 Contribution of Individual Features

44 Summary e e e e e

EXEMPLAR: Extracting N-ary Relations

5.1 Overviewo

5.2 Predicates and Predicate Types

5.3 The EXEMPLARMethod
5.3.1 Preprocessing
5.3.2 Detecting triggers
5.3.3 Detecting arguments androles
5.3.4 Filtering incomplete instances

54 Conclusion L

The Effectiveness—Efficiency Trade-off

6.1 Compared OREMethods

6.2 Experimental Study oo oo
6.2.1 Binaryrelations—Setup
6.2.2 Limitations and fairness
6.2.3 Binary relations—Results
6.2.4 Binary relations — Discussion
6.2.5 N-aryrelations
6.2.6 Automatically annotated sentences

6.3 Conclusion

Efficiens: Allocating Computational Resources for Efficient ORE

7.1 OVerviewo e
7.2 The Efficiens Method L.
7.2.1 Extracting relation instances with an Efficiens module . .
7.3 Learning e e
7.4 Choosing sentences for the v and S subsets
7.5 Experiments

7.5.1 Comparison with ORE methods
7.5.2 Evaluation of our improvement score
7.5.3 Performance of Efficiens with our improvement score . . .
7.6 Conclusion

1X

112
113
114

. 114

116
117
119
119
121

. 123

8 Conclusion
8.1 Method-specific observations
8.2 Directions for futurework 0oL,
8.2.1 Improving Efficiency
8.2.2 Improving Effectiveness
Bibliography
Appendices
A Converting SRL annotations into ORE annotations

B Features Used In Efficiens

127
129
130
130
131
133
143
144

146

List of Tables

(@) ()1 ESN W N =

LW W LW W
— \O 00

3.17

4.1

4.2

Entity pairs from the Spinn3r dataset.
Ranked part of speech patterns used by SONEX.
Unigram features for the pair Youtube/ ORG] — Google[ORG] with
IDF and DF (ORG-ORG) scores
Relations in the ground truth. The column Freebase Types shows
the types assigned by Freebase, while the column Domain shows
the closest types that can be inferred by our NER system.
Cumulative distribution of number of pairs as a function of support
for the INTER dataset.
Results for single, complete and average link method when using
the best threshold for each of them.
Summary of results on INTER.
df scores for the dominant domains (INTER vs NOISY).
Manual evaluation of the clusters of the 10 largest relations.
Top stemmed terms for the 4 biggest relations, represented by the
biggest cluster extracted for each relation.
INTER labels.
NOISY labels. o o
Annotators Agreement with Kappa Statistics
Labelexamples.
Comparison between SONEX and ReVerb.
POS patterns employed by SONEX 2.0. The patterns can contain
the following symbols: A (sequence with any adjective, adverb, par-
ticle, modal and determiner), N (sequence of nouns), V (sequence
of verbs), P (preposition), S (possessive pronoun, possessive wh-
pronoun or possessive ending), C (coordinating conjunction) and
W (Wh-pronoun).
The slots in descendants order of precision as measured in the pre-
liminary experiment. For brevity, only the top and bottom five are

Details about the examples used in experiments. “Original sen-
tences” indicates the sentence collected from the ICWSM dataset,
“Examples” are sentences annotated with arguments and predicates
(describing nested instances, flat instances and no instances). “To-
kens” indicates the number of tokens in all examples. ‘“Relational
tokens” indicate tokens labeled as predicates (B-REL, I-REL) and
“Non relational tokens” indicate tokens labeled as O-REL.
Results for Open-CRF and Meta-CRF in each round of a tenfold
cross-validation evaluation. “Improvement” indicates the relative
gain in performance by Meta-CRF over Open-CRF.

X1

4.3

4.4

il
Wi

QR
DN —

O
W

7.2

The performance of Open-CRF and Meta-CRF on average for ex-
amples describing nested instances, flat instances and no instances.
“Improvement” indicates the relative gain in performance by Meta-

CRFoOver Open-CRF. o v vt i it e 83
Impact of extending Open-CRF with individual features. “+ Fea-
ture” indicates the model Open-CRF extended with “Feature”. 83

Patterns representing 86% of the relation instances with three or
more arguments. Frequencies collected from 100 relations from

the New York Times Corpus. Predicates are underlined. 88
Predicate types recognized by EXEMPLAR. 88
Dependencies that connect arguments and triggers. Arguments are

in bold and triggers are underlined. 91
Binary relation datasets. Lo 98

Results for the task of extracting binary relations. Methods are or-
dered by computing time per sentence (in seconds). Best results for

each column are underlined and highlightedinbold. 102
Results for n-ary relations. 106
Results for binary relations automatically annotated using Freebase

and WordNet. L Lo 107

F-measure and time (seconds per sentence) for different values of

aand 5. . .. 124
Throughput (i.e., the number of sentences processed per second)
for several levels of f-measure. 125

Xii

List of Figures

1.1

1.2

2.1

et
Wi

9 o ke

o bRh LW LW
DN — —t e — NoNee)
= O

W

Ego-centric perspective of the information network extracted by
SONEX from the Spinn3r dataset, focusing on Barack Obama. The
Shapes and colors represent entity types: red diamonds indicate
Persons, black triangles indicate Organizations, blue circles indi-
cate Locations and green squares indicate Miscellaneous. The size
of the nodes indicate their centrality in the network, and the width
of the edges indicate their support, measured by the number of sen-
tences that express that relation. For clarity, only edges with highest
supportare shown. Lo
Example information networks partly extracted from the the sen-
tence “The A.P. reports that the U.S. will punish Russia for its at-
tack to Georgia in the region of South Ossetia”.

Comparison of evaluation methods for open relation extraction. . . .

Workflow for extracting annotated sentences from the actual blog
POSES. . . o e e e e
The workflow for relation extraction.
SONEX architecture. The Server sends blog posts to Entity Extrac-
tors, which parse the posts and send them back to the server to be
saved in a database. The Relation Extractor takes parsed posts from
the database and identifies relations between entities.
Domain Frequency examples.
Comparison of clustering methods on INTER (features: unigrams,
weights: tf-edf).
Comparison of textual features on INTER, if -idf Vs. tf -idf - df
(clustering method: average link).
Comparison of weight-based pruning on different features on IN-
TER using average link
Recall “with” and “without” feature pruning
Effect of support on accuracy in INTER using average link, with
unigrams and pruning by df and«df
In-degree: The number of incoming links.
Experimentson NOISY
Results on Inter and NOISY: Duplicates Vs. No Duplicates

Algorithm for finding statements and meta statements.
A CRF model used to recognize the predicate “to punish” for the
instance containing “U.S.” and “Moscow™.
Parse tree for the sentence “AP reported Russia’s conflict with Geor-
gia” following the Penn TreeBank terminology [7]. Non terminals
are numbered for easy identification. Tokens are highlighted in bold
and part-of-speech tags are iniitalic.

Xiil

8

4.4

5.1

5.2
6.1

6.2
6.3

7.1

7.2

7.3

7.4

7.5

Dependency tree for the sentence “AP reported Russia’s conflict
with Georgia”. 78

A dependency tree generated from an input sentence. EXEMPLAR’S
pre-processing step automatically identifies sentence boundaries,
generates a dependency tree for each sentence and extracts named
entities. Entities are in bold, triggers are underline and arrows rep-

resent dependencies.o 86
Rules for assigning roles to arguments. 92
Average f-measure vs average time for NYT-500, WEB-500 and
PEN-100. 103
Average precision vs average recall for NYT-500, WEB-500 and
PEN-100. e 104
Examples of annotated sentences from WEB-500, NYT-500 and
PENN-100. 111

The Efficiens Pipeline. Sentences are buffered before the Efficiens[POS]
modules until the buffer is full. All buffered sentences are then pro-
cessed by Efficiens[POS]. The « subset of sentences goes through
Efficiens[DEP]. Finally, the /5 subset of sentences goes through Ef-
ficiens[SRL]. 115
The architecture of a module. Each module employs a set of NLP

tools, such as POS tagging, dependency parsing or SRL. Using the
information provided by these tools, this module detects predicates

and arguments of this predicate. 115
Predicate types recognized by Efficiens with example sentences.
Triggers are underlined in examples. The column “Triggers” shows

the number of triggers accepted for each type. Copula+noun ac-

cepts two triggers when the copula is explicitly mentioned. It also
accepts one trigger when the copula is implicitly mentioned via ap-
POSILION. o e 115
Average f-measure vs average time for NYT-500, WEB-500 and
PEN-100. EFF[POS], EFF[DEP] and EFF[SRL] represent the per-
formance of each Efficiens module when applied for all sentences. . 120
Recall of the rankings used to choose the a and [subsets (dashed

line). Each k represents a percentage of sentences at the top of

the ranking. We also plot the expected recall fora random ranking
(solidline). 122

X1V

Chapter 1

Introduction

Information extraction (IE), the task of providing a structured representation of in-
formation expressed in text, is a long-standing challenge in natural language pro-
cessing (NLP) which has been re-invigorated with the ever-increasing availability
of textual content online. Examples of invaluable sources of information in tex-
tual format are news, encyclopedias, scientific literature, and the blogosphere (i.e.,
the collection of social media sites). The automatic extraction of information from
these corpora promises a viable approach for acquiring knowledge and discovering
the issues that engage society in thousands of collective and parallel conversations
online.

Two prominent information extraction tasks are named entity recognition and
relation extraction. The former is concerned with detecting mentions to real-world
entities (e.g., people, organizations) in a text corpus, while the latter refers to detect-

ing relations involving these entities. For instance, consider the following sentence:

“Before Georgia was invaded by Russia, its infrastructure became a

target of destabilizing cyber attacks.”

From this sentence, a named entity recognition system would detect the entities
“Georgia” and “Russia”, while a relation extraction system would identify that this
pair of entities (“Georgia”, “Russia”) is an instance of the relation “invaded by”.
This thesis is concerned with the problem of relation extraction and builds upon
previous work for named entity recognition.

The traditional approach to relation extraction requires training data for every

relation of interest [1, 11, 12, 23, 26, 39, 69, 97]. Methods that follow this approach
rely on supervised learning, where a classifier is trained to identify instances of
one single relation. Particularly, traditional methods require the user to provide
a set of annotated sentences describing instances of this relation. Each sentence
must be annotated with a pair of entities and a flag indicating whether this pair is
an instance of the given relation or not. Examples of annotated sentences for the

relation “invaded by” are:

(+, “Before Georgia was invaded by Russia, its infrastructure became

a target of destabilizing cyber attacks.”).

(+, “After twelve years of not complying with the UN Security Coun-

cil, Iraq was eventually invaded by the United States.”).

(—, “After twelve years of not complying with the UN Security Coun-

cil, Iraq was eventually invaded by the United States.”).

where entity pairs are highlighted in bold, ‘+’ indicates that the annotated pair
is a relation instance and ‘—’ indicates that the annotated pair is not an instance.
Sentences flagged with ‘+’ and ‘—’ are called positive and negative examples, re-
spectively. The effort of producing these examples for each relation is considerably
high, making traditional methods a poor choice when the number of target relations
is large.

Open relation extraction (ORE) offers an alternative to the traditional approach
by extracting unseen relations as they come [6, 19, 28, 45, 59, 71, 86, 95]. The task
in ORE is to recognize all relations described in a corpus. To do so, ORE systems
must extract instances of any relation and the predicate (or label) that describes
this relation from the text alone. While some ORE methods require no training
data whatsoever, other methods require annotated sentences for training. For ORE
methods that do require training data, sentences are annotated with a predicate in

addition to the entity pair. For example, consider the following annotated sentence:

(+,“Before Georgia was invaded by Russia, its infrastructure became

a target of destabilizing cyber attacks.”)

where the entity pair is in bold and the predicate is underlined. Unlike traditional
methods, ORE methods use these sentences to train a classifier that can detect in-
stances of any relation, as opposed to instances of a specific relation. These ORE
methods assume that people describe most relation instances using a limited num-
ber of syntactic patterns, regardless of the relation. Therefore, a classifier can learn
these patterns to expose the relation instances described in a corpus. Because the
effort of training an ORE method does not depend on the number of target relations,
ORE scales better than traditional relation extraction. Therefore, ORE is suitable
for applications that require the extraction of a large (or even unknown) number of
relations.

ORE methods expose the content of large text corpora as information networks’,
where nodes are named entities and edges represent relation instances. These net-
works summarize the relationships and events described in a corpus. For example,
Figure 1.1 shows an ego-centric network [42] around the entity “Barack Obama’?.
This network was built with data extracted from blog posts collected between Au-
gust and September of 2008, before the United States Presidential Elections. The
self-evident power of the network in Figure 1.1 to illustrate the discussions in the
blogosphere is very compelling: it accurately shows important entities discussed
during the election, and the most prominent relations amongst them. The figure
also shows some unexpected connections, such as Britney Spears and Paris Hilton;
they were used in a campaign advertisement by John McCain, who tried to asso-
ciate Barack Obama with the two celebrities who “are often portrayed as frivolous

and irresponsible” [20].

1.1 Applications

One important application of ORE and information networks is to support open-

domain question answering (Open QA), where questions are not bound to any ap-

!Information networks differ from knowledge bases in that their goal is to represent every relation
instance described in a corpus regardless of whether this instance is a fact or not. However, these
networks can be used as a source of information for the automatic construction of knowledge bases.

2This network was automatically extracted by one of our methods (SONEX) from a large sample
of the blogosphere; the analysis and visualization of the network was done with NodeXL (http:
//nodex1.codeplex.com/).

UNITED
STATES IRAQ

UROPE

IRAN |SRAEL FGHANISTAN

RUSSIA ALASKA

NEW

AMERICA YORK
REUTERS
SARAH
PALIN
GOP
UBH
P
%
S %3
HILLARY %, 3 WASHINGTON
CLINTON Ls,; o,
7
Met witp
MUSLIM BARACK opponent JOHN
OBAMA Toad over MCCAIN
Wi
WHITE P
S,
HOUSE N /@7/
& Q
e GEORGE W BUSH
D
()
b7
J o
$ w =
© o
DEMOCRATIC | & < ®
$ & o
N 2 CONGRESS
@ DEMOCRATS
: MICHIGAN
JOE FLORIDA
BIDDEN o— O

DEMOCRATIC PARTY REPUBLICANS ~ BRITNEYSPEARS PARIS HILTON

Figure 1.1: Ego-centric perspective of the information network extracted by
SONEX from the Spinn3r dataset, focusing on Barack Obama. The Shapes and
colors represent entity types: red diamonds indicate Persons, black triangles indi-
cate Organizations, blue circles indicate Locations and green squares indicate Mis-
cellaneous. The size of the nodes indicate their centrality in the network, and the
width of the edges indicate their support, measured by the number of sentences that
express that relation. For clarity, only edges with highest support are shown.

plication domain [37]. Open QA systems such as Watson [30] extract answers from
existing knowledge bases and textual sources. The authors of Watson report that
using Freebase?, a large knowledge base about several domains, can at best help
with only 25% of the questions, forcing Watson to rely on textual sources alone
for the remaining questions. In this setting, ORE is a better choice than traditional
relation extraction since relations of interest are not known in advance.

Information networks can also support entity search [17], which differentiates

3http://www.freebase.com.

itself from web search by answering keyword-based queries with a ranking of en-
tities as opposed to a ranking of web pages. The score for an entity relies on the
available information about this entity, including every event and relationship in
which it is involved. The sheer number of possible events and relationships make
traditional relation extraction impractical for entity search.

Information networks have been used for knowledge base population [85], the
task of augmenting an incomplete knowledge base with entities and relation in-
stances described in a corpus. These networks have also been used to acquire com-
mon sense knowledge [3, 87] and derive logical inference rules from text [53, 54,

84].

1.2 Background

In this thesis, we address the problem of extracting relation instances from a given
corpus following the ORE paradigm. Unlike most work on ORE, we do not limit
ourselves to binary relations — those that involve only two entities. Instead, we
investigate the large-scale extraction of binary, n-ary, flat and nested relations. The

problem of ORE is defined as follows.

Definition 1 (Open Relation Extraction). Given a corpus, extract a set of named
entities £ and a set of relation instances R = {ry,...,r,}. A relation instance
is a tuple r; = (p,ai,...,a,), where p is a predicate and a; is an argument. An
argument can be an entity or a relation instance (i.e.,, a; € E''U R). The role of
an argument is defined by the function p(r;,a;) — {subject, direct_object,
prep_object}, where prep_object folds into many roles, one for each preposi-

tion in a language.

Entities. A named entity is a textual descriptor (usually a proper name) of a
real-world object or abstract concept (e.g., “Capitalism”). Named entity recog-
nition (NER) is the task of identifying named entities in a corpus and their types
from a pre-defined set of types [70]. Traditional NER systems focus on recogniz-

ing proper names of people, organizations, locations and miscellaneous (i.e., other

proper names). The more recent open-domain NER is the task of recognizing enti-
ties of any type [27]. This approach is perhaps more suitable for ORE, enabling an
ORE method to extract relations involving any type of entity.

The task of grouping names and other entity mentions (e.g., noun phrases, pro-
nouns) that refer to the same named entity is called coreference resolution [75].
NER and coreference resolution are open problems and continue to receive atten-
tion from the NLP community. Solving these problems is outside of the scope of
this thesis. Instead, we rely on off-the-shelf tools to recognize and resolve named
entities. Other ORE methods in the literature avoid NER altogether and consider

each noun phrase in text as a separate entity.

Relations and instances. A relation specifies a class of events (e.g., “invaded
by”’) or relationships (e.g., “colony of) and its instances. A relation instance spec-
ifies the entities involved in one individual event or relationship. In particular, an
instance is a tuple (p, a1, . . ., a,), where p is a predicate (or label) and a; is an argu-
ment. An example of instance is (“invaded by”, “Georgia”, “Russia”). An argument
can be an entity or another relation instance, as discussed later. A relation is a set

of all instances that have the same predicate.

Arity. Relations can be classified by the number of arguments they accept. A
binary relation accepts exactly two arguments and its arguments are tuples of the
form (p, a1, as)*. Moreover, a generalization of binary relations are n-ary relations
— relations whose instances present n arguments (n > 0). For example, consider

the sentence:
“Russia invaded Georgia through the region of South Ossetia.”

This sentence describes the instance (“invaded”, “Russia”, “Georgia”, “South Os-
setia”), where each entity plays one of the following roles, respectively: invader,

defender and entry point.

“For better readability, we may also represent binary relation instances as (a1, p, a2). It will be
clear from context which of these two forms is being used.

Roles. Each argument in an instance plays a different role and this role is defined
by the argument’s position. Traditional methods require the user to provide the role
for each position (e.g., invader in the example above). However, ORE meth-
ods do not have access to user-provided roles and need to assign roles that can be
used for any relation. For this, ORE methods define roles based on grammatical
elements. Most ORE methods address the problem of extracting binary relations
only and defines that a; plays the role of a subject and ay plays the role of an
object. For n-ary relations, we adopt additional roles subdividing object into
more specific roles: direct _object and prep_object. The role prep_object

folds into many different roles, one for each preposition of a language.

Nesting. We say that a relation is flat when it only accepts entities as arguments.
Conversely, nested relations accept both entities and other relation instances as ar-

guments. To see an example of nested relations, consider the sentence:

“The Associated Press reported that Russia invaded Georgia through

South Ossetia.”

Observe that the “Associated Press” reported an invasion event, which can be ex-
pressed as a relation instance. Therefore, the reporting event can be expressed as a

nested relation instance:

(“reported”, “Associated Press”, (“invaded”, “Russia”, “Georgia”, “South

Ossetia”))

Nested relations serve to expose the context of an instance, including its source
(e.g., who reported an event), repercussion (e.g., who criticized an event) and rela-

tionships with other instances (e.g., what happened after an event).

Information networks. An information network, such as the network illustrated
in Figure 1.2(a), is a graph where nodes are entities and edges are relation instances.
We say that this networks is flat, since it cannot represent nested relations. To
represent nested relations, we define a reified version of information networks. A

reified network is a graph where a node is either an entity or a relation instance.

7

| Georgia | | S. Ossetia I | Chechnya |

(a) A standard information network exposing
events and relationships involving Russia. En-
tities are nodes and relation instances are la-
beled, directed edges. An edge’s origin node
plays the role of a subject and the target
node plays the role of an object. The edge
label is the predicate.

s s
punish#1 }<d—[report#1]
d

S S

(attack#1][attack#2 |

S Z o

| Georgia | | S. Ossetia | | Chechnya |

(b) A reified version of the same network,
showing n-ary and nested relations. A
node represents either an entity or an in-
stance. ~ Edges connect instances (origin
node) to one of their arguments (target
node). A label represents one of the follow-
ing roles: subject (labeled ‘s’), direct

object (labeled ‘d’) and prepositional
object (labeled with a preposition).

Figure 1.2: Example information networks partly extracted from the the sentence
“The A.P. reports that the U.S. will punish Russia for its attack to Georgia in the
region of South Ossetia”.

Edges connect an instance to one of its arguments. Figure 1.2(b) illustrates a reified

information network.

1.3 Challenges

Efficiency. ORE methods are often applied to large corpora and, as a conse-
quence, are required to use as few computational resources as possible. This re-
quirement limits the use of sophisticated features extracted with deep NLP tools.
Therefore, the greatest challenges for ORE is detecting predicates and arguments

through a shallow representation of a sentence’s structure.

Predicate detection. Unlike traditional relation extraction, ORE must extract the
predicates from the text. Predicates can be a single word (e.g., “reported”) or
phrases composed by multiple words (“gave for adoption™). These words are of-
ten non-contiguous in the text. Deciding which words compose a predicate is a

challenge for ORE. To see this, consider the following example sentence:

“Bob gave Alice for adoption weeks after she was born.”

where “Bob” and “Alice” are entities and “gave for adoption” is a predicate de-
scribing the relation between them. Most ORE methods would detect “gave” as a
predicate and miss the words “for adoption”. For this example, “gave” would be an

incomplete predicate.

Argument detection. The detection of arguments is also a challenging task. ORE
methods often struggle to detect whether an entity appearing near to a predicate
is an arguments of this predicate or not. For an example, consider the following

sentence:

“Bramlett missed a tip-in and Jefferson put up an 8-foot air ball as the

buzzer sounded.”

where “Bramlett” and “Jefferson” are entities. A method looking at the text between
these entities (i.e., “Bramlett missed a tip-in and Jefferson’) may incorrectly infer

that “Jefferson” is an argument of “missed”.

Nested relations. When dealing with nested relations, ORE methods must deter-
mine whether the argument of a predicate is an entity or an instance expressed in

the same sentence. For an example, consider the following sentence:
“The Associated Press reported Russia’s conflict with Georgia.”

Observe that “Russia” and “Georgia” form an instance describing the conflict be-
tween them (“conflict with”, “Russia”, “Georgia”). Furthermore, observe that this
instance and “Associated Press” form another instance whose predicate is “reported”.
However, without a deep representation of the sentence above, a method may incor-

rectly recognize “Russia” (as opposed to the conflict) as an argument of “reported”.

1.4 Problem Statement

Massive corpora such as the Web require ORE methods to focus on both effec-

tiveness (high precision and recall) and efficiency (low computational cost). An

9

important discussion regarding the trade-off between effectiveness and efficiency
is whether ORE methods should rely on “shallow” (e.g., part-of-speech tagging)
vs “deep” (e.g., full parsing) NLP techniques. One side of the argument favors
shallow NLP, claiming deep NLP techniques cost orders of magnitude more and
provide much less dramatic gains in terms of effectiveness [19]. The counterpoint,
illustrated with a recent analysis on a industrial-scale Web crawl [25], is that the
diversity with which information is encoded in text is too high. Framing the debate
as “shallow” versus “deep” is perhaps convenient, but nevertheless an oversimpli-
fication. Broadly speaking, relation extraction methods can be grouped according
to the level of sophistication of the NLP techniques they rely upon: (1) shallow
parsing, (2) dependency parsing and (3) semantic role labelling (SRL). This thesis

sheds more light into the debate by addressing the following problems:

Problem 1. Understand the trade-off between computational cost and effectiveness

in ORE.

Problem 2. Investigate whether it is possible achieve the same level of effectiveness

achieved by state-of-the-art ORE systems at considerably lower computational cost.

To address Problem 1, we propose new benchmarks for ORE and compare the
effectiveness and computational cost of over 10 ORE methods. To address Prob-
lem 2, this thesis studies ORE methods that are significantly less expensive than
methods based on deep NLP, while providing the same level of effectiveness. Prior
to this thesis, only methods based on semantic role labeling (SRL) were able to ex-
tract n-ary, nested relations [19]. According to our experiments, SRL-based meth-
ods can be up to 1000 times slower than methods based on shallow parsing. We
investigate methods that can extract all types of relations while requiring a fraction

of the computational cost required for SRL.

1.5 Outline

We start by discussing the current state of ORE in Chapter 2. In addition to dis-
cussing existing ORE methods, we discuss the existing methodologies for evalua-

tion these methods.

10

Chapter 3 discusses SONEX [62], a method that efficiently extracts binary re-
lations. SONEX identifies every entity pair (e.g., “Google”, “Apple Inc.”) and all
sentences where this pair is mentioned together. From these sentences, SONEX ex-
tracts a context (e.g., a list of surrounding words) for the pair and apply clustering
techniques to group together pairs with similar contexts. SONEX sees each cluster
of entity pairs as a relation. This method aims at high efficiency by analyzing all
sentences mentioning an entity pair at once, as opposed to analyze each sentence
individually.

In Chapter 4, we discuss a method called Meta-CRF [64] for extracting nested
relations from text. In this chapter, we describe a machine learning approach lever-
aging dependency parsing to recognize whether the argument of a relation is an
entity or another relation. As expected, the effectiveness gained by applying depen-
dency parsing comes at the expense of additional computational time.

Chapter 5 introduces the EXEMPLAR [66] method and addresses the extraction
of n-ary relations. EXEMPLAR relies on handcrafted rules over dependency parsing
to detect the precise relationship between an argument and a relation. Unlike its
competitors, EXEMPLAR’s rules detect each argument of a relation individually by
looking at the path between an entity and a relational word. This allows EXEM-
PLAR to extract any number of arguments for a particular relation. Our experiments
show that our method outperforms its competitors while requiring less computa-
tional time.

In Chapter 6, we propose a novel benchmark for ORE [66]. This benchmark al-
lowed us to study the trade-off between effectiveness and efficiency by comparing
several ORE methods in a fair and objective way. Somewhat surprising, our evalua-
tion indicates that EXEMPLAR is more effective and more efficient than SRL-based
methods when extracting both binary and n-ary relations. EXEMPLAR also presents
a higher effectiveness level than methods based on shallow parsing, although it is
much less efficient than these methods.

In Chapter 7, we discuss Efficiens, a method that can apply shallow parsing, de-
pendency parsing or SRL over each sentence. While the previous methods present

fixed levels of effectiveness and efficiency, Efficiens determines its level of effi-

11

ciency and tries to maximize its own effectiveness. It does so by taking a user-
defined time budget and carefully choosing which tools to apply to each sentence
while respecting the budget. Efficiens applies dependency parsing and SRL to sen-
tences that are more likely to benefit from the additional information provided by
these tools and, as a result, increase the overall number of correctly extracted in-
stances.

Chapter 8 concludes with an overview of the contributions of this work and

possible directions for ORE.

12

Chapter 2
Background and Related Work

2.1 Natural Language Processing Tools

Information extraction relies on a pipeline of NLP tools to extract sentences and
their syntactic structures from a given document. NLP tools represent a document
as a list of tokens. Sentence splitting tools detect tokens that mark the end of a
sentence. Part-of-speech (POS) taggers annotate each token with one of the POS
tags defined by the Penn Treebank [58]. Full parsing tools produce complete parse
trees, based on constituency or dependency grammars, for each sentence. On the
other hand, shallow (or partial) parsing tools detect flat non-overlapping segments
(i.e., sequence of consecutive tokens) representing non-recursive phrases, such as

verb phrases, noun phrases and prepositional phrases.

2.2 Named Entity Recognition

NER aims at identifying named entities and their types, which are traditionally
classified into person, organization, location and miscellaneous [70]. Existing NER
tools are able to recognize named entities with accuracy around 90% in well-written
texts [31]. The methods presented in thesis leverage two state-of-the-art NER sys-
tems: the Stanford NER [31] and the Illinois Named Entity Tagger [76]. Our meth-
ods can work with any NER system.

A named entity may be mentioned in many different ways in a corpus. The
task of chaining together all mentions that refer to the same entity is known as

coreference resolution [4]. The scope of this task can be either a single docu-

13

ment (within-document) or the entire corpus (cross-document) [4]. One approach
to cross-document coreference is linking entity mentions to entries on an external
knowledge-base such as Wikipedia [22]. Our methods rely on the Orthomatcher
tool [10] from the GATE framework! for within-document coreference resolution.
Moreover, our methods also rely on an adaptation of the entity linking method pro-
posed by Cucerzan [22]. However, our methods can work with any coreference

resolution tool.

2.3 Open Relation Extraction

The problem addressed in this work is relation extraction, the task of detecting rela-
tions among named entities. Traditionally, relation extraction has been formulated
as a classification problem, where the task is to decide whether or not a pair of
entities (usually co-occurring in the same sentence) is an instance of a given re-
lation [97]. For example, a method trained to recognize the relation “competitor
of”’, must decide whether a given pair (“IBM”—“Apple Inc.”) is an instance of this
relation or not.

Three traditional relation extraction approaches are prominent: supervised learn-
ing, bootstrapping and distant supervision. Methods based on supervised learning
use classifiers that exploit linguistic and statistical features from hand-tagged sen-
tences [12, 21, 23, 32, 39, 49, 79, 97]. To alleviate the burden of annotating tens
of thousands of sentences, recent approaches rely on other sources of training data.
Bootstrapping methods require the user to provide a small set of entity pairs be-
longing to a target relation [1, 11, 26]. These pairs are used to find patterns that
can extract more pairs of this relation. Similarly, distant supervision methods [69]
leverage databases to collect many entity pairs that are instances of a relation. Us-
ing a large corpus, these methods extract all sentences containing any of these entity
pairs. Extracted sentences are then used as training data for a supervised classifier.

Although effective in many applications, the traditional paradigm presents lim-

itations. Traditional methods learn to extract a single predefined relation. This

'http://gate.ac.uk/

14

requires a user to provide examples for each relation of interest, which is impracti-
cal when the number of relations is large. Distant supervision methods, while not
requiring training effort, are limited to the relations readily available in databases.
The large-scale extraction of unlimited, unanticipated relations has been termed
open relation extraction (ORE) [6].There are two distinct approaches for ORE: (1)

unsupervised learning and (2) unlexicalized learning.

2.3.1 Unsupervised methods

Unsupervised methods apply clustering algorithms to produce relations. They rely
on the the context of an entity pair, that is, the tokens surrounding them in all sen-
tences where they appear together. These methods work under the assumption that
the context of an entity pair often describes the relation of this pair. Therefore, they
see relation extraction as a clustering problem, where entity pairs are the objects to
be clustered, and clusters contain instances of the same relation.

Hasegawa et al. [43] introduced this approach and proposed the use of single to-
kens (unigrams) in between an entity pair as its context. Following the vector space
model [57], an entity pair is represented by a context vector, where each dimension
corresponds to a single token. The weight given to each dimension is defined by
the popular f - idf weighting scheme. Context vectors (along their respective en-
tity pairs) are then clustered via hierarchical agglomerative clustering (HAC), using
the cosine measure to calculate the similarity between two vectors. Each produced
cluster specifies the instances of a relation and the token with the highest aver-
age weight within a cluster is the relation’s label. Hasegawa et al. evaluated this
approach using the 1995 New York Times corpus; they analyzed the data set manu-
ally and identified 48 relations containing 242 entity pairs in total. As discussed in
Chapter 3, this thesis extends this approach by proposing additional context features
(e.g., bigrams, trigrams), a novel weighting scheme that outperforms ¢f - idf and a
larger dataset for evaluation. In addition, we discuss how to overcome limitations
inherent to HAC, such as its inability to identify multiple clusters (i.e., relations)

for an entity pair and its high time complexity (at least quadratic).

15

2.3.2 Unlexicalized methods

Unlexicalized methods rely on supervised learning to recognize the general struc-
ture in which relations are expressed in English, allowing them to detect instances
of any relation. These methods rely on syntactic information only (e.g., POS tags,
functional words, dependencies) and ignore content words (e.g., nouns, verbs).
Such a framework contrasts with traditional relation extraction, where content words

are prominent features used to detect instances of a particular relation.

TextRunner. The inspiring work of TextRunner [5] introduced the unlexicalized
approach. For a pair of noun phrases in an individual sentence, TextRunner applies
a Naive-Bayes classifier to decide whether the tokens in between the pair describe a
relation instance or not. TextRunner is called self-supervised since it uses heuristic
rules to produce its own positive and negative examples of how relations are ex-
pressed in English. These rules rely on dependency parsing, which can be too com-
putational expensive for large corpora. Therefore, dependency parsing is applied
only to a small subset of sentences to produce training examples. These examples
are used to learn a classifier that uses POS tagging only, which requires much less
computational resources than dependency parsing.

A new version of TextRunner uses Conditional Random Fields as opposed to a
Naive Bayes classifier [6]. In this new version, relation extraction is seen as a se-
quence labeling problem. The tokens in between a pair comprise the input sequence
and a sequence of produced labels, one for each token, is the output sequence. Each
label defines whether the associated token is a relational token (i.e., it describes the
relation between the pair) or not. TextRunner was evaluated on 10 relation types
and its performance was compared to the performance of KnowlItAll [26], a tradi-
tional relation extraction system. The authors also applied small manual evaluations
and estimation techniques to evaluate the actual performance of the system when
extracting relations from the web. While TextRunner can only extract binary rela-
tions, we propose a CRF-based method that is able to extract both binary relations

and nested relations in Chapter 4.

16

WOE. WOE [92] is a method inspired by TextRunner that proposes another way
to construct training for ORE. WOE uses the relations in Wikipedia Infoboxes to
find sentences in an unlabelled corpus that mention these relations. These sentences
are then used as training data; WOE was evaluated with three corpora: WSJ from

Penn Treebank [58], Wikipediaz, and the Web.

ReVerb. TextRunner’s authors introduced ReVerb as a next generation ORE sys-
tem by showing its advantages over TextRunner [28] and WOE. The authors claim
that ReVerb is able to extract better predicates by using simple POS patterns as op-
posed to a supervised classifier. ReVerb extracts three types of predicates: verb,
verb+preposition and verb+noun-+preposition. The latter predicate type is particu-
larly useful to describe light verb constructions such as “made a deal with”. First,
ReVerb extracts all phrases matching the aforementioned predicate types and marks
them as candidate predicates. For each phrase, ReVerb then heuristically choose the
entities surrounding each phrase (i.e., immediately before and after it) as the rela-
tion arguments. Since this heuristic may produce many false positives, a logistic
regression classifier is applied to assign a confidence score to the relation instance.
This allows users to define a confidence threshold according to their sensitivity to
false positives and their need to extract a large number of instances. For instance,
a high threshold eliminates many instances but produces fewer false positives. Re-
Verb have been shown to outperform TextRunner in an experiment with 500 sen-

tences [28].

OLLIE. So far we have discussed unlexicalized methods that leverage POS tag-
ging only. Recent methods have explored the benefit of dependency parsing to
ORE. These methods look at the dependency path between two entities as a poten-
tial description of the relation between them. OLLIE [59] tries to decide whether the
words in a dependency path describe a relation instance by learning patterns. This
process is as follows. The authors of OLLIE collected 110,000 high-confidence

instances extracted by ReVerb from a large Web collection (ClueWeb *). Next,

http://wikipedia.org
3http://lemurproject.org/clueweb09.php/

17

they retrieved 18 million sentences containing these instances and run a depen-
dency parser over all these sentences. For each sentence, OLLIE tried to transform
the dependency path between the two arguments into an extraction pattern. This
is done by keeping only syntactic restrictions in the nodes (e.g., verbs are matched
with POS tags only) and abstracting all preposition edges to a general “prep_*”
edge. Some constraints on the path are enforced to avoid creating purely syntac-
tic patterns that do not generalize to all relations. Paths that failed to pass these
constraints are turned into semantic-lexical patterns. This is done by grouping all
sentences presenting the same failed path and attaching a lexical restriction to one
or more nodes. A lexical restriction is a list of words that are allowed for one spe-
cific node. Once all extraction patterns are produced, OLLIE tries to match them to

new sentences to find new relation instances.

PATTY. Another method based on dependency parsing is used by PATTY [71].
The goal of PATTY is construct a taxonomy of relations, where one may find syn-
onym relations such as “is romantically involved with” and “is dating”. PATTY also
tries to find relations (e.g., “is dating”) that are subsumed by others (e.g., “knows”).
Observe that the problem addressed by PATTY is slightly different from ORE; how-
ever, PATTY applies an ORE extractor to find the list of relations to be included in
the taxonomy. Our discussion focus on PATTY’s extractor only. This extractor
first detects all named entities in a sentence. For every pair of named entities, it
then finds the path in the dependency tree between the two named entities. The
extractor then decides whether the path is a relation pattern using heuristics, one of
them being that the path must start with one of the following dependency edges:
nsubj (nominal subject), rcmod (relative clausal modifier) and partmod (participial

modifier).

TreeKernel. The TreeKernel [95] method presents an alternative to extraction
patterns for ORE by leveraging SVM tree kernels. TreeKernel consider two prob-
lems: (1) whether a sentence describes any relation instance involving a given pair

of entities and (2) whether a sentence describes a particular relation instance (r,

18

ai, as), where r, a; and a, are given. Although the first problem is useful to study
implicit relations and other relations not mediated by a verb or a noun, this the-
sis focuses on the second problem. TreeKernel produces candidate relations by
applying a set of syntactic patterns, which expands those used by ReVerb. TreeK-
ernel then produces candidate instances by combining all possible entity pairs with
candidate relations from a sentence (within certain constraints). Given a candidate
instance, TreeKernel extracts either the path between the two entities, if it includes
all relational words; or the shortest paths between each entity and a relational word,
separately. A tree kernel classifier then decides whether the candidate instance is
indeed a relation instance using as features the similarity between the input paths
and the paths provided during training. Training data was hand-tagged by the au-
thors over 756 sentences from the Penn Treebank [58]. By using a tree kernel, this
method is not limited to a finite number of features and, as a consequence, may
present a higher classification accuracy. However, tree kernels require additional
computational time and it is not clear whether the extra time pays off in many ap-

plications.

SRL-IE. Recently, a method based on semantic role labeling (SRL), called SRL-
IE, has shown that the effectiveness of ORE methods can be improved with seman-
tic features [19]. The task of SRL is to identify the arguments of a (verb or noun)
predicate. A predicate is a single word that must be mapped into one of the seman-
tic frames, as defined in repositories such as PropBank [74] and NomBank [68].
An argument is any phrase in the sentence acting as an agent, patient, instrument
or any other semantic role available for the predicate in the repository. The SRL-IE
method [19] uses rules to map SRL annotations into ORE instances. This method
treats the predicate (along with its modifiers) as the predicate. The relation argu-
ments are all entities labeled by the SRL system as arguments (including adjuncts),
regardless of their roles. We implemented our version of SRL-IE by relying on
the output of two SRL systems: Lund [45] and SwiRL [86]. SwiRL is trained on
PropBank and therefore is only able to label arguments with verb predicates. Lund,

on the other hand, is trained on both PropBank and NomBank, making it able to

19

extract relations with both verb and noun predicates. Most SRL systems employ
many classifiers on top of a pipeline of NLP tools that includes POS tagging and
dependency parsing. This architecture often makes them more expensive than the

ORE methods discussed so far.

2.3.3 Beyond binary relations

While most ORE methods extract binary relations only, OLLIE and SRL-IE are
able to extract n-ary (n > 2) relations. OLLIE produces n-ary instances by merging
binary instances extracted from a the same sentence that have the same subject and

predicates (without the preposition). For example, the binary instances
(“A”, “met with”, “B”) and (“A”, “met in”, “C”)

would be merged to form the n-ary instance
(“A”, “met”, “with B”, “in C”).

SRL-IE extracts n-ary relations by detecting each argument of a predicate indi-
vidually. Rather than detecting the relation between a pair of arguments, SRL-IE
detects the relationship between an argument and a predicate. This approach allows
SRL-IE to extract any number of arguments for a predicate seamlessly. SRL-IE
also detects nested relations when a predicate is contained by an argument in a

parse tree.

2.4 Evaluation of Relation Extraction

The creation of evaluation datasets for ORE is an extremely time-consuming task.
Figure 2.1 compares current evaluation methods for ORE in two dimensions: (1)

scale and (2) ability to measure precision and recall.

Precision and recall at large scale. The evaluation of “true” precision and recall
at large scale is an open problem in ORE. Manually annotating every relation de-
scribed in millions of documents is virtually impossible. We discuss alternatives as

follows.

20

Precision Only Precision & Recall

Small Scale Result inspection Manual benchmark

Large Scale | Database as ground truth ?

Figure 2.1: Comparison of evaluation methods for open relation extraction.

Manual benchmark. Benchmarks are often created by human annotators, who
analyze a given corpus to identify relations described in it; these relations are con-
sidered the ground truth for the corpus. The first widely-used RE benchmark was
produced by the Message Understanding Conference in 1998 (MUC-7), the last
conference of the series [55]. This benchmark contains 3 relations (employee_of,
manufacture_of and location_of) and 200 news articles divided equally in training
and test sets. MUC was succeeded by the ACE program, who produced bench-
marks almost annually from 2003 to 2008. The 2008 benchmark presents 415 news
articles annotated with a total of 25 relations [72]. Because of their focus on tra-
ditional RE and limited number of relations, ACE and MUC benchmarks are often
inappropriate for open RE.

Chapters 6 discusses a novel benchmark for ORE. Our benchmark is the first to
support the evaluation of a wide range of ORE methods by annotating predicates
and their arguments in thousands of sentences. Our annotations allow several vari-
ations for a particular predicate, covering all possible styles of predicates produced

by ORE methods.

Result inspection. A more affordable evaluation method is to manually inspect
the relations extracted by a system [5, 43, 98, 99]. The effort necessary to inspect
a system’s output is much lower than inspecting the whole corpus. However, this
method can only measure precision. ReVerb [28] use this method on multiple sys-
tems and measure their recall by using as ground truth the union of all extracted
instances deemed as correct. It is worth noting that this measure is not true recall,
but rather an upper bound on true recall. In addition, the recall measured this way

cannot be compared by independent studies.

21

Database as ground truth. An automatic method for evaluating a open RE sys-
tem is to use a database as ground truth [1, 65, 69]. By restricting the evaluation to
the relations found in the database, one may measure the precision of a system with
a comprehensive database. Occasionally, the precision may be affected by relation
instances that are described in the corpus that are not true anymore (e.g., “Pluto is
a planet”). A greater problem concerns measuring recall. Because a corpus often
describe fewer instances than the database, using the database as ground truth may
over-penalize a system. As discussed in Chapter 3, this problem can be mitigated by
evaluating only the entity pairs that appear in both the system’s extracted instances
and the database. While this approach cannot assess true recall, it can provide an

estimation of precision.

22

Chapter 3

SONEX: A Clustering-Based
Approach

We started our pursuit for an effective and efficient ORE method by extending a
clustering-based approach proposed by Hasegawa et. al. [43]. Our system, SONEX,
identifies entities and extract sentences that relate such entities, followed by using
text clustering algorithms to identify the relations within the information network.
We propose a new term weighting scheme that significantly improves on the state-
of-the-art in the task of relation extraction both when used in conjunction with the
standard #f - idf scheme, and also when used as a pruning filter. We describe an
effective method for creating ORE benchmarks for that relies on a curated online
database that is comparable to the hand-crafted evaluation datasets used in the liter-
ature. From this benchmark we derive a much larger dataset which mimics realistic
conditions for the task of ORE. We report on extensive experiments on both datasets
which shed light not only on the accuracy levels achieved by ORE tools but also on
how to tune such tools for better results.

The work presented in this chapter appeared at the AAAI International Confer-
ence on Weblogs and Social Media ICWSM’10), Data Challenge Workshop [65],
the ACM Transactions on the Web Journal [62], the ACM SIGMOD/PODS Ph.D.
Symposium [63] and the NIST Text Analysis Conference [67].

23

Entity 1 | Context | Entity 2

and vice presidential running mate

(Barack Obama, PER) and his running mate Sen. (Joe Biden, PER)

received a fundraising bump after he named
running mate

(John McCain, PER) has chosen as his running mate (Sarah Palin, PER)

apparently even didn’t bother Googling

Table 3.1: Entity pairs from the Spinn3r dataset.
3.1 Overview

We assume a set &/ of unique entities in the network. Each entity is represented as
a (name, type)-pair. We assume a set 1" of entity types, which are usually automat-
ically assigned to each recognized entity; in our work we consider the types PER
(for Person), ORG (Organization), LOC (Location) or MI SC (Miscellaneous).

An edge ([, e1, e2) in the network represents a relation instance (i.e., a relation-

ship or event) with label (i.e., predicate) [involving entities ey, e5, such as
r = (opponent, (Barack Obama, PER), (John McCain, PER)).

The domain of an instance is defined by the types of the entities in it; for instance,
the domain of r above is PER-PER. A relation consists of the set of all edges
(i.e., instances) that have the same label. We call a relation homogeneous if all its
instances have the same domain. Finally, a network consists of a set of entities and
a set of instances involving such entities.

Identifying a relation instance (if one exists) involving entities e;, e is done by
analyzing the sentences that mention e; and e, together. An entity pair is defined
by two entities e; and ey together with the context in which they co-occur. For
our purposes, the context can be any textual feature that allows the identification of
the relation for the given pair. As an illustration, Table 3.1 shows two entity pairs
and their context. In this case, the context consists of the exact text in between the
entities from all sentences in the corpus where they are mentioned together. As
we discuss later, we actually employ standard Information Retrieval techniques to
extract the context from the text in the sentences. Like with an instance, the domain
of a pair consists of the types of the entities in that pair. The popularity (or support)

of an entity pair is defined by the number of sentences connecting the two entities.

24

Problem Definition. We can now define our problem more precisely. Given a
collection of documents (blog posts in the work described here), the problem ad-
dressed by SONEX is to extract a flat information network (recall Section 1.2)
containing all relation instances described in the collection. This problem has been

termed Open Relation Extraction (ORE) in the literature [6].

Challenges. Many challenges exist in developing an ORE solution. First, recog-
nizing and disambiguating entities in a multi-document setting remains a difficult
task [48]. Second, the unsupervised nature of the problem means that one has to
identify all relations from the text only. This is done by identifying relational terms
in the sentences connecting pairs of entities. Relational terms are words (usually

29 ¢

one or two) that describe a relation (for instance, terms like “running mate”, “oppo-

9% ¢

nent”, “governor of”” are relational terms, while “fundraising” and “Googling” are
not). Finally, another massive challenge is that of evaluating the resulting relations
extracted by the ORE system: as discussed further below, the state-of-the-art in
the literature relies on small-scale benchmarks and/or manual evaluation. However,
neither approach applies to the domain we address (blogs).

It is worth mentioning that, besides the technical challenges mentioned above,
there are other practical issues that must be overcome if one wants to deploy any
ORE system in the blogosphere. For instance, often, bloggers copy text from each
other, leaving a high number of duplicate content. This, in turn, introduces consid-
erable bias in the final network extracted by the system. One common solution is
to work on distinct sentences. Also, most algorithms involved in ORE are compu-

tationally intensive, and considerable engineering is required to arrive at practical

systems.

Outline and Contributions. Figure 3.1 and Figure 3.2 show the steps of our ORE
solution, SONEX. Figure 3.1 illustrates the workflow that analyzes blog posts to
produce sentences annotated with named entities. For instance, this workflow pro-

duces sentences like

“(Obama, PER) meets (Pope Benedict, PER) at the (Vatican, LOC)”

25

Blog Extract Recognize Resolve Annotated
Sentences || Entitities P Coreferences Sentences

Figure 3.1: Workflow for extracting annotated sentences from the actual blog posts.

Create Cluster ; Label Extracted
Entity Pairs i Entity Pairs Clusters

Figure 3.2: The workflow for relation extraction.

Sentence
Repository

where each entity represented as a (name, type)-pair. This workflow uses off-the-
shelf tools as discussed in Section 3.1.1. These annotated sentences are the input for
the relation extraction workflow, which is illustrated in Figure 3.2 and discussed in
the following sections. This workflow starts by creating entity pairs and extracting
their context (Section 3.1.2). For instance, our example sentence contains the entity
pair: ((Obama, PER), (Pope Benedict, PER)). The context of this pair includes the
word “meets” (from our example) and any other word appearing in between this
pair from any sentence in the corpus. After extracting entity pairs, SONEX uses
a clustering algorithm to group pairs with similar context together (Section 3.1.3).
Finally, SONEX finds a representative term (usually one or two words) from each
cluster and assign it as the relation label. (Section 3.1.4)

We deployed SONEX on the ICWSM 2009 Spinn3r corpus of weblog posts [13],
focusing on posts in English (25 million out of 44 million in total), collected be-
tween August Ist, 2008 and October 1st, 2008. The total size of the corpus is 142
GB (uncompressed). It spans a number of big news events (e.g., 2008 Olympics,
US presidential election, the beginning of the financial crisis) as well as everything
else one might expect to find in blog posts. SONEX runs in a distributed fashion,
lending itself as a highly scalable solution: using 10 commodity desktop PCs, we
were able to extract entity pairs from 10 million blog posts per day.

SONEX builds on state-of-the-art text clustering methods to group the entity
pairs into (un-labeled) relations. We tested various algorithms, using different tex-

tual features for the context for the entity pairs. We observed that the customary

26

tf -idf weighting scheme is often sub-optimal in the task of relation extraction as
it does not take into account the context in which a relation is defined. Thus, we
use a novel weighting scheme that combines ¢f - idf with what we call the domain
frequency (df), which exploits semantic information about the relations being ex-
tracted. We show that our new weighting scheme outperforms the state of the art.

As for the evaluation, we developed a method that exploits a curated database
(Freebase in this work) to generate a benchmark, specific for the Spinn3r corpus,
suitable to evaluate the output of SONEX. Our resulting benchmark is comparable
in size to the best hand-crafted ones described in the literature, but is (of course)
restricted to the entity pairs that appear in the intersection of the curated database
and the Spinn3r corpus. We complement this fully unsupervised evaluation with
a manual evaluation considering several thousands of possible pairs, to assess the
performance of SONEX on a more realistic scenario.

In summary, our contributions are as follows:

e We present the first large-scale study on using a text clustering-based ap-

proach to ORE on the blogosphere, indicating promising results;

e We introduce a novel weighting scheme that outperforms the classical ¢f - idf

in the task of relation extraction;

e We develop a fully automated and rigorous method for testing the accuracy

of relation extraction system, tailored to a specific corpus.

3.1.1 Annotating Sentences with Named Entities

The first step in SONEX is processing the blog posts in the corpus to obtain anno-
tated sentences in which named entities are mentioned. From these sentences, we
construct the entity pairs which are then clustered during the relation identification
(discussed in next section). Figure 3.1 illustrates the workflow for extracting the
annotated sentences from the blog posts. The process starts with the identification
of sentence boundaries (using LingPipe!), followed by a conversion of each sen-

tence into plain (ASCII) text for easier manipulation. (In the process, HTML tags

'http://alias—1i.com/lingpipe

27

and entities referring to special characters and punctuation marks are dealt with);
this is accomplished with the Apache Commons library? and Unicode characters
are converted into ASCII using the LVG component of the SPECIALIST library?).

The second step consists of identifying entities in each sentence and assigning
their types. For this, we use the LBJ Tagger*, a NER system [76]. LBJ relies on
the so-called BILOU scheme: the classifiers are trained to recognize the Beginning,
the Inside, the Outside and the Last tokens of multi-token entities as well as single
token (Unit-length) entities. It has been shown that this approach outperforms the
more widely used BIO scheme [76], which recognizes the Beginning, the Inside
and the Outside of an entity name only. LBJ assigns one of four types (PER, ORG,
LOC or MISC) to each entity it identifies.

The final step is to identify names that refer to the same real-world entity. This
is accomplished using a coreference resolution tool to group these names together.
In this work, we used Orthomatcher from the GATE framework®, which has been
shown experimentally to yield very high precision (0.96) and recall (0.93) on news
stories [10]. Observe that the coreference resolution is performed for entities within

a blog post only.

Architecture. SONEX comprises three independent modules (Figure 3.3): Server,
Entity Extractor and Relation Extractor. The Server and the Entity Extractor imple-
ment the workflow in Figure 3.1 as follows. The Server fires multiple threads for
reading blog posts from the corpus, sending such posts to one Entity Extractor pro-
cess, and collecting the results from all Entity Extractors, storing them in a local
database of annotated sentences. Each Entity Extractor fires a number of threads to
process the blog posts from the post queue (usually, we set the number of threads
to match the number of cores in the host machine). Each thread performs the entire
workflow of Figure 3.1 on a single post. Annotated sentences produced by each

thread are stored in the sentence queue and eventually sent back to the Server for

’http://commons.apache.org/lang/
3http://lexsrv3.nlm.nih.gov/SPECIALIST/
“http://12r.cs.uiuc.edu/~cogcomp/software.php
Shttp://gate.ac.uk/

28

Server Sentence Extractor 1

| Post Queue

() blog :
posts

- ((Senence) Thvead m

annotated
sentences Sentence Extractor 2

Original
Blog
Posts

Thread 1
Post Queue

Sentence
Queue

Relation
Extractor

Sentence

Repository Sentence Extractor N

Figure 3.3: SONEX architecture. The Server sends blog posts to Entity Extractors,
which parse the posts and send them back to the server to be saved in a database.
The Relation Extractor takes parsed posts from the database and identifies relations
between entities.

storage. We do not store sentences with less than two entities since they are not
used to create entity pairs. In our current implementation, we use Berkeley DBS as

the back-end engine for storing the annotated sentences.

Handling duplicate sententences. To avoid storing duplicate sentences, we ig-
nore sentences whose MDS5 [77] signature collides with the signature of a stored
sentence. We found that 20% (around 10 million) of the sentences containing two

or more entities were duplicates.

3.1.2 Creating Entity Pairs

Figure 3.2 illustrates the process of relation identification per se, which is done
once all annotated sentences are extracted from the corpus. The first step is to
build the entity pairs from the repository of extracted sentences. To accomplish
this, we implemented a filtering step that allows us to choose which sentences to
be considered for the analysis. For the experiments reported here, we used two

filtering criteria: (1) the number of words separating the entities in the sentence,

Shttp://www.oracle.com/technetwork/database/berkeleydb/.

29

which we fix to no longer than 5 as suggested by previous work [43]; and (2) the
support for the entity pair, defined as the number of sentences that contain the entity
pair, which we vary in different experiments as discussed later. Once the sentences
are filtered, building the entity pairs consists of extracting the textual features used

for clustering, as discussed below.

Representing Entity Pairs. Following [43], we adopt the Vector Space Model
(VSM) to represent the context of the entity pairs. That is, we collect the interven-
ing features between a pair of entities for each co-occurrence in the entire dataset,
constructing the context vector of the pair. Every pair is represented by a single
vector. Our ultimate goal is to cluster entity pairs that belong to the same relation.
Regardless of the clustering algorithm in use, the feature space plays an essential

role. SONEX currently can use any of the the following features:

e Unigrams: The basic feature space containing all stemmed [46] single words

in the context of a entity pair, excluding stop words.

e Bigrams: Many relations may be better described by more than one word
(e.g., Vice President). For this reason, we include word bigrams, that is, two

words that appear in sequence.

e Part of Speech Patterns (POS): Banko and Etzioni claim that many binary
relations in English are expressed using a compact set of relation-independent
linguistics patterns [6]. We assume that a context sentence contains one rela-
tion at most. Hence, using the Stanford POS Tagger [88], we extract one of
the predefined part of speech patterns listed in Table 3.2 from sentences. If a
context sentence contains more than one pattern, only the highest ranked one
is extracted. We ranked the patterns according to their frequency on sentences

as estimated by previous work [6].

In building the vectors, we remove all stop words. We consider a feature to be
a stop word only if all of its terms appear in the stop words list (e.g., “capital of” is

not removed since it contains one term that is not a stop word).

30

Rank | PoS Pattern Example
1 to+Verb to acquire

2 Verb+Prep acquired by
3 Noun+Prep | acquisition of
4 Verb offered

5 Noun deal

Table 3.2: Ranked part of speech patterns used by SONEX.

3.1.3 Clustering Entity Pairs

We use Hierarchical Agglomerative Clustering (HAC) to cluster entity pairs. HAC
is a good option for our task since it does not require the number of clusters in
advance. Also, it is used by [43] and was reported to outperform K-Means for our
task [80, 98]. The HAC algorithm starts by placing each entity pair in a distinct
cluster and produces a hierarchy of cluster by successively merging clusters with
highest similarity. In our experiments, we cut this hierarchy at a pre-determined
level of similarity by defining a clustering threshold. For example, if the clustering
threshold is 0.5, we stop the clustering process when the highest similarity between
two clusters is below or equal 0.5.

To measure the similarity between two clusters, we compared the single, com-
plete, and average link approaches. Single link considers only the similarity be-
tween the closest two entity pairs from distinct clusters, while complete link con-
siders the furthest ones. The average link considers the average similarity between

all entity pairs from distinct clusters [36, 56].

3.1.4 Labeling Clusters

The last phase is to label every cluster with a descriptive name. Following the state-
of-the-art in this area [35, 89], SONEX uses information from the cluster itself to

extract candidate labels as follows:

e Centroid: The centroid of each cluster (arithmetic mean for each dimension
over all the points in the cluster) is computed, and then the feature with the

largest mean value is selected as the cluster’s label.

31

¢ Standard Deviation (SDEV): A disadvantage of the centroid method is that
the mean can be too biased towards one pair. To mitigate this problem, we
propose to penalize terms with large standard deviation among the cluster’s
pairs. In this method, the feature to be selected as the label is the one that
maximizes the value of the mean divided by its standard deviation among all

the pairs within a cluster.

3.2 Weighting Schemes Used in SONEX

As discussed earlier, the contexts of entity pairs are represented using the vector
space model. The state-of-the-art in text clustering assigns weights to the terms
according to the standard tf - idf scheme. More precisely, for each term ¢ in the
context of an entity pair, ¢f is the frequency of the term in the context, while

D

where |D] is the total number of entity pairs, and |d : ¢ € d| is the number of
entity pairs containing term ¢. The standard cosine similarity is used to compute the
similarity between context vectors during clustering.

Intuitively, the justification for using #df is that a term appearing in many doc-
uments (i.e., many contexts in our setting) would not be a good discriminator [78],
and thus should weigh proportionally less than other, more rare terms. For the task
of relation extraction however, we are interested specifically in terms that describe
relations. Note that in our settings a document is a context vector of one entity pair,
which means that the fewer pairs a term appears in, the higher idf score it would
have. Consequently, it is not necessarily the case that terms that are associated with
high ¢df weights would be good relation discriminators. On the other hand, popu-
lar relational terms that apply to many entity pairs would have relatively lower idf
weights. To overcome this limitation, we use a new weight that accounts for the
relative discriminative power of a term within a given relation domain, as discussed

next.

32

Term | IDF | DF (ORG-ORG) | Term | IDF | DF (ORG-ORG) |

ubiquitious | 11.6 1.00 blogs 6.4 0.14
sale 5.9 0.80 services 5.9 0.13
parent 6.8 0.78 instead 4.0 0.12
uploader 10.5 0.66 free 5.0 0.12
purchase 6.3 0.62 similar 5.7 0.12
add 6.1 0.33 recently 4.2 0.12
traffic 7.0 0.55 disappointing | 8.2 0.12
downloader | 10.9 0.50 dominate 6.4 0.11
dailymotion | 9.5 0.50 hosted 5.6 0.10
bought 5.2 0.49 hmmm 9.3 0.10
buying 5.8 0.47 giant 54 < 0.1
integrated 7.3 0.44 various 5.7 < 0.1
partnership | 6.7 0.42 revealed 5.2 < 0.1
pipped 8.9 0.37 experiencing | 7.7 < 0.1
embedded 7.6 0.36 fifth 6.5 < 0.1
add 6.1 0.33 implication 8.5 < 0.1
acquired 5.6 0.33 owner 6.0 < 0.1
channel 6.3 0.28 corporate 6.4 < 0.1
web 5.8 0.26 comments 5.2 < 0.1
video 4.9 0.24 according 4.5 <0.1
sellout 9,2 0.23 resources 6.9 < 0.1
revenues 8.6 0.21 grounds 7.8 < 0.1
account 6.0 0.18 poked 6.9 < 0.1
evading 9.8 0.16 belongs 6.2 < 0.1
eclipsed 7.8 0.16 authors 7.4 < 0.1
company 4.7 0.15 hooked 7.1 < 0.1

Table 3.3: Unigram features for the pair Youtube/ ORG] — Google[ORG] with IDF
and DF (ORG-ORG) scores

3.2.1 The Domain Frequency

It is natural to expect that the relations extracted in SONEX are strongly correlated
with a given context. For instance, marriage is a relation between two persons
and thus belongs to the domain PER-PER. We exploit this observation to boost the
weight of relational terms associated with marriage (e.g., “wife”, “spouse”, etc.) in
those clusters where the domain is also PER-PER. We do it by computing a domain
frequency (df) score for every term. The more dominant a term in a given domain
compared to other domains, the higher its df score would be.

We start with a motivating example before diving into the details about how we

compute domain frequency. We initially built SONEX with the traditional tf - idf

33

and were unsatisfied with the results. Consequently, we examined the data to find
a better way to score terms and filter noise. For example, we noticed that the pair
Youtube[ORG] — Google[ORG] (associated with the “Acquired by” relation) was
not clustered correctly. In Table 3.3 we listed all the Unigram features we extracted
for the pair from the entire collection sorted by their domain frequency score for
ORG-ORG (recall that these are the intervening features between the pair for each
co-occurrence in the entire dataset). For clarity the terms were not stemmed.

Clearly, most terms are irrelevant which make it difficult to cluster the pair
correctly. We listed in bold all terms that we think are useful. Besides “belongs”,
all these terms have high domain frequency scores. However, most of these terms
do not have high IDF scores. Term frequencies within a pair are also not helpful in
many cases since many pairs are mentioned only a few times in the text. Next, we
define the domain frequency score.

Definition. Let P be the set of entity pairs, let 7" be the set of all entity types,
and let D = T'x T be the set of all possible relation domains. The domain frequency
(df) of aterm ¢, appearing in the context of some entity pair in P, in a given relation
domain i € D, denoted df;(t), is defined as

_ fi(t)
Z1§jgn fj(t) ’

where f;(t) is the frequency with which term ¢ appears in the context of entity pairs

dfi(t) (3.2)

of domain 7 € D, and n is the number of domains in D.

Specificity of the df. Unlike the idf score, which is a global measure of the
discriminating power of a term, the df score is domain-specific. Thus, intuitively,
the df score would favour specific relational terms (e.g., “wife”” which is specific to
personal relations) as opposed to generic ones (e.g., “member of” which applies to
several domains). To validate this hypothesis, we computed the df scores of several
relational terms found in the clusters produced by SONEX on the main Spinn3r
corpus (details in the next section).

Figure 3.4 shows the relative df scores of 8 relational terms (mayor, wife,

CEO, acquire, capital, headquarters, coach, and author) which illustrate well

34

the strengths of the df score. We can see that for the majority of terms (Fig-
ure 3.4(a)—(f)), there is a single domain for which the term has a clearly dominant

df score: LOC—PER for mayor, PER-PER for wife, ORG-PER for CEOQ, etc.

Dependency on NER Types. Looking again at Figure 3.4, there are two cases in
which the df score does not seem to discriminate a reasonable domain. For coach,
the dominant domain is LOC-PER, which can be explained by the common use of
the city (or state) name as a proxy for a team as in the sentence “Syracuse football
coach Greg Robinson”. Note, however, that the problem in this case is the difficulty
for the NER to determine that “Syracuse” refers to the university. These are some
examples of correctly identified pairs in the coach relation but in which the NER

types are misleading:

e LOC-PER domain: (England, Fabio Capello); (Croatia, Slaven Bilic); (Sun-

derland, Roy Keane).

e MISC—PER domain: (Titans, Jeff Fisher); (Jets, Eric Mangini); (Texans, Gary
Kubiak).

This problem is compounded further for the case of author, as book titles (or
part of them) are often proper names of places, persons, organizations and other
kinds of entities, making the task of type identification extremely difficult. Some

examples from our experiments are:

e PER-PER domain: (Eoin Colfer, Artemis Fowl); (J.K. Rowling, Harry Pot-

ter)

e PER-ORG domain: (Donna Cutting, The Celebrity Experience); (Adam Smith,
The Wealth of Nations)

e PER-LOC domain: (George Orwell, Animal Farm); (Cormac Mccarthy, The
Road)

35

Domain Freq.

Domain Freq.

Domain Freq.

Domain Freq.

Domain Freq.

Q9 %% 9 % S % % % %
o R) %, W by Ko ey &
,o% (OO (OO % S /@O % & e
(a) mayor. (b) wife.

g

=

E

]

=)

<}

[a)]
X R, '?‘o (>
0'90 ‘(;9 '9@ ®
(d) acquire.

g

=

=

g

=)

<}

A

(e) capital. (f) headquarters.
1

. 08 1

g

£ 06 g

e

g o4 E

o

A 0.2 I oy]

° S & K e‘ 47/1‘7 % O»I
N 42% %o 2, %, B EX
® e 0 R % %
(g) coach. (h) author.

Figure 3.4: Domain Frequency examples.

36

3.2.2 Using the df Score

We use df score for two purposes in our work. First, for clustering, we compute the
weights of the terms inside all vectors using the product ¢f-idf - df . Second, we also
use the df score as a filtering tool, by removing terms from vectors whenever their
df scores lower than a threshold. Going back to the Youtube[ORG] — Google[ORG]
example in Table 3.3, we can see that minimum df filtering helps with removing
many noisy terms. We also use maximum IDF filtering which helps with removing
terms that have high df scores only because they are rare and appear only within
one domain (e.g., ubiquitious (misspelled in source) and uploader in this example).

As we shall see in the experimental evaluation, even in the presence of incorrect
type assignments made by the NER tool, the use of df scores improves the accuracy
of SONEX. It is also worth mentioning that computing the df scores can be done

fairly efficiently, and as soon as all entity pairs are extracted.

3.3 Setup of Experimental Evaluation

Evaluating ORE systems is a difficult problem, especially in the scale with which
we employ SONEX, namely, the blogosphere. To the best of our knowledge, no
public benchmark exists for the task of information extraction from informal text
such as those often found in social media sites. Furthermore, existing relation ex-
traction benchmarks, such as ACE RDC 2003 and 2004 (recall Section 2), are built
from news corpora, whose texts are produced and revised by professional writers
and journalists, and, clearly, do not represent the challenges of the task on blogs.
Given the lack of benchmarks, the current evaluation approaches rely on manual
evaluations (e.g., [43, 80]), whose main limitation is that they do not scale. In fact,
it is not even clear whether a manual evaluation through crowd-sourcing (e.g., us-
ing Mechanical Turk) would be feasible given that ORE systems such as SONEX
extract hundreds of thousands of relation instances from millions of blog posts.

A different approach to evaluating an information extraction system is to rely
on an existing database as the ground truth [48]. This approach, often employed in

constrained information extraction settings usually focusing on a specific domain,

37

has the main advantage that it allows for an automatic (and objective) evaluation.
However, one disadvantage of this approach is that precision and recall must always
be evaluated against the relation instances that lie in the intersection between the

corpus and the reference database.

Our approach. We combine the two methods above in our work. We build a
reference dataset for automatic evaluation by automatically matching entity pairs
in our clustering task against a publicly available curated database. We call the
resulting dataset INTER (for intersection) from now on. From INTER, we derive
a clean ground truth against which we verify by hand. We build a larger dataset
by adding approximately 30,000 entity pairs from our original set into INTER, to
study the accuracy of our system in a more realistic scenario. We call this second
database NOISY.

The 30,000 entity pairs in NOISY represent approximately 30% of the total
number of extracted entity pairs. We initially created five different samples rep-
resenting 10%, 20%, 30%, 40% and 50% of all extracted entity pairs. We got
significantly more features with 30% than with 10% and 20%, but only a few more
with 40% and 50%. In addition, we observed that the results for 40% and 50% are
similar to those for 30%. Hence, our NOISY dataset is likely to be a representative
sample of all entity pairs while requiring significantly less processing time.

We evaluate SONEX by reporting precision, recall, and f-measure numbers for
our system running on INTER and NOISY against the ground truth, in a variety
of settings. We also report the manual evaluation (conducted by volunteers) of
samples of the instances identified by SONEX but which are outside of the ground
truth. Finally, we report the semantic similarity between the labels identified by

SONEX and those in the ground truth.

3.3.1 Building the Ground Truth

We build the ground truth by automatically matching the entity pairs in our task

against a publicly-available, curated database. For the results reported, we used

38

Relation Freebase Types Domain # Pairs

Capital Country — City/Town LOC-LOC 77
Governor State — Governor LOC-PER 66
Marriage Person Name — Person Name PER-PER 42

Athlete Representing Olym. athlete — Country PER-LOC 40
Written work Author — Work written PER-MISC 26
Headquarters Company — City/Town ORG-LOC 21

President Country — President LOC-PER 20
Prime Minister Country — Prime Minister LOC-PER 18
City Mayor City/Town — Mayor LOC-PER 15
Company Founded Company Founder — Company ORG-PER 12
Acquired by Company — Company ORG-ORG 11
Films Produced Film Producer — Film PER-MISC 11
House Speaker US House of Represent. — Speaker | ORG-PER 7
Album by Musical Artist — Musical Album PER-MISC 6
Single by (song) Musical Artist — Musical Track PER-MISC 6
Football Head Coach | Football Head Coach — Footb. Team | ORG-PER 5
Products Company — Product ORG-MISC 4
Basketball Coach Basketball Coach — Basket. Team ORG-PER 3
Vice President Country — Vice President LOC-PER 3
Bishop City/Town — Bishop LOC-PER 2
Total | 395

Table 3.4: Relations in the ground truth. The column Freebase Types shows the
types assigned by Freebase, while the column Domain shows the closest types that
can be inferred by our NER system.

Freebase’, a collaborative online database maintained by an active community of
users. At the time of writing, Freebase contained over 12 million interconnected
topics, most of which correspond to entities in our terminology. Entities in Free-
base are connected through properties, which correspond to relations. For example,

“Microsoft” is connected to “Bill Gates” through the property “founders”.

Choosing Relations for the Ground Truth. To identify which relations were de-
scribed by the Spinn3r dataset, we picked three samples of 1,000 entity pairs each.
The first sample contains pairs whose support is greater than 300 sentences; the
second contains pairs whose support is between 100 and 300 sentences, while the
third sample contains pairs whose support is between 10 and 100 sentences. We

matched® every entity in this sample against the topics in Freebase. Our ground

"http://www.freebase.com
8Using exact string matching.

39

Support Level | Number of Pairs

> 10 395
> 15 300
> 20 247
> 25 214
> 30 176
> 35 147
> 40 133

Table 3.5: Cumulative distribution of number of pairs as a function of support for
the INTER dataset.

truth then consists of those pairs of topics from Freebase that match entities in our
sample and are connected both in Freebase (through a property) and in our sample
(by forming an entity pair). We clean the resulting set of entity pairs by standardiz-
ing the NER types for all entities which are automatically extracted, hence having
all relations homogenous as a result.

Table 3.4 shows the relations in our ground truth and their respective domains

and cardinalities.

3.3.2 Discussion

As outlined above, we test SONEX on two datasets: INTER, which consists of
the pairs in the intersection between Freebase and entity pairs extracted from the
Spinn3r corpus, and NOISY, which consists of INTER augmented with approxi-
mately 30,000 more entity pairs derived from Spinn3r.

The INTER dataset poses, in many ways, similar challenges to those used in
the state-of-the-art in ORE for evaluation purposes. Two significant differences are
that INTER contains many more relations than in other works that rely on manual
evaluation (e.g., [43] use only two relations), and that INTER contains many entity
pairs whose support is lower than the minimum support used in previous works.
Both [43] and [80] set the minimum support for clustering at 30 sentences, under
the justification that this yields better results. (We confirm this observation exper-
imentally in Section 3.4.4). Instead of 30, we set the minimum support for entity
pairs in INTER at 10 sentences. Table 3.5 shows a cumulative distribution of the

number of pairs for various levels of support in INTER.

40

While INTER reproduces the experimental conditions as in a manual evalua-
tion, it is hardly a representative of the realistic conditions that would be faced by
any practical ORE system designed for the blogosphere. We design NOISY with
the intent of testing SONEX on a more challenging scenario, by adding thousands
of entity pairs that make the clustering task much harder, serving, in a sense, as
“noise”. Others have used the same approach, but at a much smaller scale: [80]
added 800 “noise” pairs into a ground truth of 200 pairs, while we add approxi-
mately 30,000 entity pairs into a ground truth of 395 pairs.

It is important to note that by this ground truth we built we do not attempt to
evaluate the absolute true recall/precision. The problem with a true precision/recall
evaluation is this: we can only find the intersection of what the system produces
and what is in the reference database (Freebase in our case), but this does not give
true precision (as there are many correctly extracted instances which are not in
Freebase), nor true recall (as there are instances in the database which are not in
the corpus—and hence could never be extracted in the first place). For recall, the
problem is particularly worse because it does not matter how much of Freebase is
extracted by the system, what really matters is how much of Freebase is actually in
the corpus. To find that out, however, we need a perfect extraction system, as one
cannot build a gold-standard manually on 25M blog posts. We are confident to say
that if we did build such a true recall evaluation set from Freebase, the recall of the
output of any Open IE system on Spinn3r would be extremely low, as the Spinn3r

data were crawled during a two month period.

3.3.3 Metrics

We measure the similarity between the relations extracted by SONEX and the rela-
tions defined in our ground truth, using precision, recall and their harmonic mean,
the f(1)-measure [S7]. When evaluating clusters, high precision is achieved when
most pairs that are clustered together by the ORE system indeed belong to the same
relation in the ground truth. Conversely, high recall occurs when most of the pairs
that belong to the same relation in the ground truth are clustered together. As cus-

tomary, we interpret f-measure as a proxy for “accuracy” in our discussion.

41

More precisely, we define two sets S, ' containing pairs of entity pairs that
belong to the same relation in the output of SONEX and in the ground truth, re-

spectively:

S ={(p,q) | p # q, and p and q are clustered together by SONEX}

F ={(p,q) | p # q, and p and q belong to the same relation in the ground truth}

With these, we define:

|SnF 2.P-R

1SN F|
11 d f- = —.
ca an measure P T R

recision = ———— re —_—
P i F]

3.4 Results on the INTER dataset

We now report the results on INTER. The first experiment we performed concerned
identifying the best settings of the clustering algorithm, as well as the best textual
features for clustering. The second experiment studied the impact of pruning terms

from the contexts according to their weights (using idf and df scores).

Terminology. For clarity, we will refer to the clustering threshold (recall Sec-

tion 3.1.3) as 7 in the sequel.

3.4.1 Comparison of Clustering Methods

Figure 3.5(a) shows the quality of the clusters produced by three different clustering
approaches: single, complete, and average link, for 0 < 7 < 0.5 (we omit results
for 7 > 0.5 as the accuracy consistently decreased for all methods in this scenario).
In these tests, we use unigrams to build the vectors, and if - «df as the weighting
scheme. The Cosine similarity is used throughout all of the experiments.

The behaviour of the single link approach was as follows. For 0 < 7 < 0.2, this
approach yields few relations but with many pairs in them, resulting in high recall
but low precision. When 7 ~ 0.3, we observed a large improvement in precision
at the expense of recall, yielding the best f-measure for this method. However, for
7 > 0.3, the decrease in recall is more significant than the increase in precision;

consequently, the f-measure value drops.

42

0.9

1 ——,
‘average link —— TR * ‘
0.8 [, complete link ---- b) \
[% single link -« - | 08 | ' _
0.7 [T, \\\\ y
06 F R PP o N 0u 000, 4 \
2 ‘ B e et oo T TION s 06 : g
3 05p i e s s = :
o) 4l ; k|] . L\
£ o4 : & 04 A
O.S‘F B " S
) N
02 pasecessseeccccer] 0.2 average link —— e A
0.1 F - complete link ---- ey
single link -- & -
0 Il Il Il Il O Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1
clustering threshold recall
(a) Clustering methods. (b) Precision vs recall.

Figure 3.5: Comparison of clustering methods on INTER (features: unigrams,
weights: tf -udf).

Method | P | R | Fl | 7
Single link | 0.96 | 0.46 | 0.61 | 0.3

Complete link | 0.97 | 0.62 | 0.75 | 0.001
Average link | 0.80 | 0.82 | 0.81 | 0.012

Table 3.6: Results for single, complete and average link method when using the
best threshold for each of them.

The behaviour of both average and complete link are much easier to character-
ize. Complete link yields fairly high precision at the expense of recall even for very
small values of 7; further, recall drops consistently as 7 increases, without any no-
ticeable increase in precision. Average link truly serves as a compromise between
the two other methods. As with single link, we observed precision increasing with
T grows, but the best f-score is achieved with a much smaller threshold (7 ~ 0.01).
We also noticed a drop in recall as 7 grows for average link; however, this drop is
not nearly as severe as with complete link.

Figure 3.5(b) sheds more light on how each method trades precision and recall.
The graph shows the maximum precision for different levels of recall (ranging from
0 to 11in 0.1 intervals). We observe that all three methods present high precision for
recall below 0.45. For single link, the precision quickly decreases for recall values
approaching 0.5, while complete and average link still maintain high precision for
these recall values. However, average link is able to maintain better recall for higher
precision levels than complete link. Recall values above 0.9 are only achieved when

all pairs are grouped into a few big clusters, which leads to poor precision values

43

ur|1igrams (dlf) """"
0.95 | unigrams --e-- |
uni+bigrams (df) ——

09 uni+bigrams ——]|
0.85 | pos (df) - = - |
pos - o -

038 bigrams (df) —+

f-measure

075 |
07 F
0.65 |-
06 [|
055 L& 4 e L L
0 002 004 006 008 Of

clustering threshold

Figure 3.6: Comparison of textual features on INTER, tfdf Vs. tf4df-df (clustering
method: average link).

below 0.2; this is common to all methods.

Table 3.6 shows the best results of each method in our first experiment. Over-
all, the highest accuracy of all methods is achieved by average link (0.81), outper-
forming both complete link (0.75) and single link (0.61). For this reason, we used
average link as the clustering method for all other experiments we conducted. It is
worth mentioning that while we show only the results obtained with unigrams as
the clustering feature, we observed the same behaviour with the other features as

well.

3.4.2 Comparison of Clustering Features

Figure 3.6 shows the performance of the different features implemented by SONEX
(recall Section 3.1.2) when using the standard tf - idf weighting scheme compared
to tf -adf - df .

Several observations are possible from this graph. First, all features performed
well, except for bigrams alone. Second, the combination unigrams+bigrams per-
forms the best overall both when ¢f - idf alone is used (f-score of 0.82), as well as
when df is also used (f-score of 0.87). The part of speech (POS) feature is slightly
outperformed by the combination unigrams+bigrams (which, as a matter of fact,
subsumed the POS features in our tests). Finally, the use of df increases the f-
measure with all features, sometimes substantially (the highest increase was close

to 12% in the case of unigrams).

44

A closer analysis on the impact of the df score revealed that it helps most in
cases when a given pair’s context vector includes proportionally more non-relational
terms with high df as opposed to actual relational terms, thus confirming our in-
tuition for the usefulness of this weight. In general, the majority of mis-clustered
pairs were those whose contexts contained little useful information about their re-
lationship. For example, the most useful text connecting the pair ((AARP, ORG),
(Washington, LOC)), belonging to the headquarters relation in the ground truth,
were “convention in”, “gathering this morning in”, “poverty event in”, and “confer-
ence in”. Worse still, some entity pairs do not have any context once one removes
stop words. Finally, one reason for the poor results produced by using bigrams
in isolation is low recall, caused by its inability to extract relations from entity
pairs with only one word among them, as in the sentence “(Delaware, LOC) sena-
tor (Joe Biden, PER)”.

It is interesting that the POS feature performed lower than Unigram+Bigrams.
The results show that while the best run obtained high precision (0.92), its recall
value is significantly lower than the best results achieved by the Unigram+Bigrams
feature (0.64 Vs. 0.80). Low recall is expected in rule-based systems. Consider for
example the sentence “Carmen Electra and ex Dave Navarro were...”. The term
“ex” is important for this pair but the tagger tags it as a foreign word and we cannot
extract it using our POS patterns. If we could train the Stanford tagger on large
annotated web text, we maybe could have improved its accuracy on the Spinn3r
collection. However, even then, we have other issues such as sparsity and variabil-
ity of the relations. For example, we extracted the pair ((Eamon Sullivan, PER),
(Australia, L.OC)) from Freebase. This pairs belongs to the “Athlete Representing”
relation. This is a difficult relation since many pairs do not include the explicit
relation such as “PER representing LOC”. Consider for example: “Eamon Sul-
livan takes silver for Australia”. The phrase “takes silver for” is the only con-
text we extracted for this pair, and the extracted POS pattern is “silver for”. This
will not match the POS pattern extracted from the pair ((Shawn Johnson, PER),
(US, 10C)) in the sentence “Shawn Johnson won silver putting the US ...”

Since the best features were unigrams in isolation and the combination uni-

45

0.95 0.95 T
0.9 - . R 09 F A i
0.85 | / S— g 085 F [——— §
° 08 ’t.” e '7*7 P j, o 08 ;\ 7 ::;1}& A= TN +,
Z 0rs | | R : Z 075 | | T R
o065 |] 065} | KR
06 L | unigrams + both —— | 06l I uni+bigrams + both —— |
. fe unigrams + df ---*-- . b uni+bigrams + df --=--
0.55 | ! unigrams + max idf —« 0.55 ! uni+bigrams + max idf —+ 4
£ unigrams -« - f uni+bigrams -- & -
05 L | | | | 05 b | | | |
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
clustering threshold clustering threshold
(a) Feature: unigrams. (b) Feature: uni+bigrams.

Figure 3.7: Comparison of weight-based pruning on different features on INTER
using average link

Feature | Clustering Method | Max idf | Min df | f-score

avg. link; 7 = 0.02 5 — 0.79

Unigrams avg. link; 7 = 0.01 — 0.4 0.87
avg. link; 7 = 0.02 5 0.4 0.89

avg. link; 7 = 0.02 5 — 0.84

Uni+Bigrams | avg. link; 7 = 0.01 — 0.4 0.86
avg. link; 7 = 0.02 5 0.4 0.90

Table 3.7: Summary of results on INTER.
grams-+bigrams, we only use them in our last experiment with INTER.

3.4.3 Effectiveness of Pruning by Weight

Now, we show the effect of pruning terms from the contexts of entity pairs accord-
ing to their ¢df and df scores. We use a maximum df threshold to filter out terms
that appear in the context of too few entity pairs. Conversely, we use a minimum
df threshold to prune terms within a given context only (in other words, a term
with low df score on a given domain may still be used in the context of another
entity pair, from a different domain). We experimented with each filter in isolation,
and found empirically that the best results were achieved when the maximum idf
threshold was set to 5, and the minimum df threshold was set to 0.4.

Figures 3.7(a) shows the effects of each pruning criterion in isolation, and in
combination for when using unigrams only. A similar plot for unigrams+bigrams is

shown in Figure 3.7(b). A general trend is clear in the two scenarios: both pruning

46

0.95 T T T T

3 best system (pruning) —+—
09 \ best system (no pruning) - --- b
0.85 | \\ B
08 | x \\ i

075 S——

recall
1t

07 | I
0.65 | T]
06 | i
0.55 |- -

0.5 1 1 1 I
0 0.02 0.04 0.06 0.08 0.1

clustering threshold

Figure 3.8: Recall “with” and “without” feature pruning

methods improve accuracy in a wide range of values for 7. The best f-score (0.89 for
unigrams, and 0.90 for unigrams+bigrams) is achieved when both pruning strategies
are used. Table 3.7 shows the best overall results on INTER we achieved.

One important issue to consider is that aggressive pruning can have a negative
effect on recall. Figure 3.8 shows the best version of the system with Vs. without
feature pruning (refers to Figure 3.7(b) “uni+bigrams + both” Vs. “uni+bigrams”).
There is a negative effect on recall in threshold zero (pruning makes a few extra
pairs “empty” of context), but we can see that recall drops faster without pruning.
Interestingly, we see that pruning can also have a positive effect on recall; not only
precision. The main reason is that Noisy features increase the number of candidate
clusters a pair can be merged with, which makes low precision clusters, but also
increases the number of clusters that contain a specific relation; this has a negative
effect on recall, as recall is maximized when all the pairs belonging to a specific

relation are in the same cluster.

3.4.4 Effectiveness of Pruning by Support

We also assessed the impact of pruning pairs by their support on the accuracy of the
results, motivated by the fact that, in a sense, the support of a pair (i.e., the number
of sentences for that pair) can be used as crude measure of “popularity” for that pair.

We partitioned our evaluation pairs into three groups, according to their support:

e high, with support greater than 39 sentences;

47

f-measure

high support ——
medium support - * -
all —-=--
IIow suppolrt A

0.3 i 1 L
0 0.02 0.04 0.06 0.08 0.1
clustering threshold

Figure 3.9: Effect of support on accuracy in INTER using average link, with uni-
grams and pruning by df and idf

e medium, with support between 18 and 39 sentences; and
e [ow, with support less than 18 sentences.

This partition yields three roughly equi-sized subsets: high has 133 pairs, medium
has 132 pairs, and low has 130 pairs.

Figure 3.9 shows the accuracy levels for the different partitions in INTER. (To
facilitate the reading of the results, accuracy, in this experiment, is measured rela-
tive to the pairs in the given partition.) The graph shows a direct correlation between
support and accuracy. This is expected, because the higher the support, the higher
the number of terms in the contexts (which, in turn, allows for better clustering).
There is a marked difference in accuracy levels when contrasting low-support with
medium-support, and medium-support with high-support, indicating that the rela-

tionship between support and accuracy is not linear.

3.4.5 Pruning by In-degree

Another interesting feature to look at in blogs, which is part of the metadata of the
Spinn3r collection and related to the previous experiment on support, is the effect of
the number of in-coming links on performance. Figure 3.10 (a) shows the in-degree
distribution of the sites in the Spinn3r collection. We can see that the majority of
the sites have a low in-degree (there are 8,989, 885 sites with in-degree of zero).

It is worth mentioning that in this experiment we excluded sites that were assigned

48

an in-degree of “-1” in the collection (i.e., unknown). There are two interesting

questions to ask:

1. Do the more “popular” blogs provide more reliable content in a way that

performance (accuracy or speed) can be improved?

2. Sites with extremely high in-degree can be sometimes spam; can we improve

SONEX performance by excluding such sites?

Figure 3.10 (b) shows the performance of SONEX (INTER, unigrams, no prun-
ing) on different subsets of the blogs based on in-degree values. The top 10% and
top 20% of sites contain most of the ground truth pairs but not all of them; to avoid
low recall due to missing pairs, we removed such pairs from the ground truth of
these two subsets. The results show that top 10% and top 20% achieved the lowest
scores among the subsets. This bolsters the results from Figure 3.9 that there is a
correlation between “support” of a pair and performance. Interestingly, the run on
top 50% achieved only slightly lower results than the best run. This shows that the
top 50% provides enough support for successfully cluster the pairs, which is useful
since this subset is significantly smaller than the entire collection and processing it
is significantly faster. We also see the effect of excluding the top sites by indegree.
Excluding the top 10% and top 20% does not affect the performance; however, ex-
cluding the top 50% sites hurts the performance quite a bit, which is not surprising

given the results achieved by using only the top 50% subset.

3.4.6 Summary of Observations on INTER
We can summarize our findings on the experiments on INTER as follows:
e Clustering Method.

— Average link consistently outperformed single and complete link in terms

of f-measure, as shown in Figure 3.5(a);

— Complete link produced the fewest incorrect instances (i.e., achieved

highest precision), as shown in Table 3.6;

49

Number of sites (log scale)

1

1e+07

f-measure

0.8

top 10% sites by indegree —+—

top 20% sites by indegree

top 50% sites by indegree ---*---
sites with indegree > 0 =

sites with indegree >=0 ---<---
excluding top 10% sites by indegree -

excluding top 20% sites by indegree -- -e-- -
exf:luding top‘50% sites py indegreg e

0.02 0.04 0.06 0.08 0.1
clustering threshold

(b) performance.

Figure 3.10: In-degree: The number of incoming links.

— The best clustering features are unigrams and the combination of uni-

— Using tf-idf -df (instead of ¢f-idf alone) increased accuracy up to 12%,

— pruning terms by maximum ¢df and minimum df improves accuracy

substantially, as shown in Figures 3.7(a) and 3.7(b);

inaegree ‘
1e+06 XXX
00000 F
10000
1000
100 |
10 |
1 1
1 10 100 1000 10000 100000 1e+06
Indegree (# of incoming links) (log scale)
(a) distribution.
Features.
grams+bigrams, as shown in Figure 3.6;
Weighting.
as shown in Figure 3.6;
Pruning.
Results.

— F-measure values as high as 0.9 were achieved using average link on

the combination unigrams+bigrams, with 7 ~ 0.02, and tf - idf - df,

when entity pairs are pruned by df > 0.4 and «df < 5, as shown in

Figure 3.7(b). This is an 11% improvement over our baseline setting

(tf -idf with unigrams) as proposed by Hasegawa et. al. [43].

50

0.9 ———+F —— T — T 0.9 ——— t —— T T
cf “/f I
i 0.8 | / P PR 7
° g E * B o 07T x - % 4
o ’ q g 06 E
g g
- 8 T 05} g
best pruning on INTER —— best pruning on INTER ——
best pruning on NOISY --*-- | 04 | best pruning on NOISY --*-- |
NOISY (df) —=- NOISY (dfy =
‘NOISY (n(? df/pruning) e ‘ ‘NOISY (ng df/pruning) e
0.3 -
0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
clustering threshold clustering threshold
(a) F-measure: Unigrams. (b) F-measure: Unigrams + Bigrams.
1 - 1 ———
3 iy T \..f: R [e— — T
LN N . 3 \
0.8 |- R g 0.8 [. i
. o \ W . T \
5 o6l 1 5§ o6 IR NN .
@ B \ @ R \
(%) (%)
© . [}
a 04r g & 04} i
best pruning on INTER BN - best pruning on INTER ——
02 best pruning on NOISY --x-- 1 0.2 best pruning on NOISY --- b
NOISY (dfy = NOISY (dfy —+
0 NOISY (n9 df/prunjng) e ‘ 0 NOISY (ng df/prun‘ing) e ‘
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall Recall

(c) Precision-Recall: Unigrams. (d) Precision-Recall: Unigrams + Bigrams.

Figure 3.11: Experiments on NOISY
3.5 Results on the NOISY Dataset

We now report our results on NOISY, contrasting them with those on INTER, in
order to highlight the challenges of extracting relations in more realistic conditions.
First, we show results of an automatic evaluation of SONEX on NOISY, in which,
as customary, we perform the clustering on all pairs in NOISY but report the results
on only those pairs known to be in the ground truth. Since average link clustering
achieved the best results for NOISY as well, we do not report results for single
and complete link. Next, we complement this analysis with results of a manual
evaluation on the pairs not in the ground truth, performed by volunteer Computing

Science students in our lab.

51

Dataset[wife [CEO [capital [author [coach [mayor [acquire [HQ

INTER 0.97 0.99 1.00 1.00 0.99 0.99 1.00 0.92

NOISY 0.76 0.92 0.52 0.21 0.41 0.89 0.57 0.52

| PER-PER | ORG-PER | LOC-LOC | PER-MISC | ORG-PER | LOC-PER | ORG-ORG | ORG-LOC

Table 3.8: df scores for the dominant domains (INTER vs NOISY).

3.5.1 Comparison of Clustering Features

Figure 3.11 shows a comparison of SONEX’s accuracy on NOISY when using two
different feature sets: unigrams and unigrams+bigrams. The most striking obser-
vation is the substantial decrease of the results on NOISY compared to the best
results on INTER. We observed a similar drop for the other feature sets as well
(POS and bigrams alone). Such a decrease is, of course, expected: NOISY contains
not only thousands more entity pairs than INTER, but also hundreds (if not thou-
sands) more relations as well, making the clustering task much harder in practice.
Moreover, many context vectors contain terms related to more than one relation
because sometimes there is more than one relation between the entities in the pair.
Given the approximate nature of text clustering, it is only to be expected that some
entity pairs which are clustered together on INTER will be clustered separately on
a larger set of entity pairs. In the INTER dataset this is not a problem since the total
number of relations is small, and the pair is likely to end up in a cluster representing
its strongest relation.

Another challenge when dealing with NOISY is that it contains, as expected,
considerably more NER mistakes, thus affecting the effectiveness of our df score.
While on INTER we can expect to find homogeneous relations since we manually
corrected all NER type mistakes for every entity pair, on NOISY, this is virtually
hopeless. Now, all domains are inferred from the types assigned by the NER tool; as
a result, all df scores decrease. For example, the df score for wife in the PER-PER
domain drops from 0.97 on INTER to 0.76 on NOISY. Table 3.8 lists a comparison
between the df scores generated using the INTER and NOISY datasets. Never-
theless, Figure 3.11 shows that using the minimum df pruning strategy still yields

considerably better results than performing no pruning.

52

Relation Domain ‘ # Pairs (INTER) ‘ Incorrect Types ‘ Precision

Capital LOC-LOC 182 (64) 29 (16%) 0.87
Governor LOC-PER 139 (63) 0 0.72
Athlete PER-LOC 7(4) 0 0.71
Marriage PER-PER 129 (13) 1 (0.8%) 0.77
Written work PER-MISC 105 (17) 60 (57%) 0.84
Headquarters ORG-LOC 28 (11) 0 0.86
President LOC-PER 245 (18) 84 (34%) 0.64
Prime Minister LOC-PER 134 (17) 51 (38%) 0.67
City Mayor LOC-PER 31 (14) 0 0.94
Company Founded | ORG-PER 98 (9) 9 (9%) 0.47
Total | 1098(230) | 234Q21%) | 0.75

Table 3.9: Manual evaluation of the clusters of the 10 largest relations.

3.5.2 Manual Evaluation of Clusters

We now report on a manual evaluation of SONEX on entity pairs which are not
in INTER (nor in the ground truth). Since manual evaluation is expensive and
error-prone, we restrict this exercise to samples of the 10 largest clusters (each cor-
responding to each of the 10 largest relations in our ground truth—recall Table 3.4)
found by SONEX. The evaluation was performed by 8 volunteers in our lab. Each
volunteer was given a relation label, and a list of entity pairs. We report only pre-
cision since recall is unknown, which in this case indicates the fraction of entity
pairs in each sample that, in the volunteer’s opinion, truly belongs to the given rela-
tion. The results shown here correspond to clusters produced using the settings that
produced the best results (recall Figure 3.11).

Table 3.9 shows the precision results obtained in this evaluation. Overall, 75%
of the 1098 entity pairs evaluated were deemed correct by the volunteers. However,
the precision of individual relations varied greatly (ranging from 0.47 for “Company
Founded” to 0.94 for “City Mayor”). The “Company Founded” cluster contains
many Company — CEO pairs that do not belong to the “Company Founded” rela-
tion; this yields significantly lower results than average. Since there is a large over-
lap between founders and CEOs in real life (e.g., CEO(BIill Gates, Microsoft) and
Founder(Bill Gates, Microsoft)), a cluster containing “Company Founded” pairs

would have context related to both founders and CEOs. Therefore, the CEO por-

53

tion of the context attracts other pairs that belong solely to the CEO relation (e.g.,
CEO(Eric Schmidt, Google)). Since the HAC algorithm assigns every pair to only
one cluster, it would be able to separate both relations with high precision only if
every pair in the intersection of “Company Founded” and “Company CEQO” is only
mentioned in one of the contexts, which is unrealistic to expect.

Two additional observations are worth mentioning. First, the impact of the large
number of entity pairs on identifying relations defined by general terms such as
“president” was significant. (Further evidence of this issue is given in the “Athlete
Representing” cluster in Table 3.10, explained in the next section.) Second, the
fraction of entity pairs where at least one entity is assigned an incorrect type from
the NER tool is disproportionately higher for domains involving type LOC® (4th
column in Table 3.9). The majority of the mistakes are LOC entities labeled as

MISC.

3.5.3 Summary of Observations on NOISY

The following general observations can be made from our analysis:
e Clustering Method.
— As with INTER, the best clustering method was average link.
e Features.

— As with INTER, the best clustering features were unigrams and uni-

grams+bigrams;
o Weighting.

— The df score improved the results, despite the high number of incorrect

domains due to NER mistakes, as shown in Table 3.8;

e Pruning.

A close look at Table 3.9 also shows a large number of errors for the PER-MISC, but this is not
surprising, as the MISC type by definition contains many kinds of entities.

54

— Pruning terms by maximum ¢df and minimum df improves accuracy

substantially, as shown in Figures 3.11(a) and 3.11(b);
e Results.

— F-measure values as high as 0.79 were achieved using average link on
the combination unigrams+bigrams, using pruning by df and idf, as

shown in Figure 3.11.

— The incorrect type identification by the NER tool is disproportionately

higher for locations, as shown in Table 3.9;
¢ Manual Evaluation of Clusters.

— Precision levels around 75% on average and as high as 94% were achieved,

as shown in Table 3.9.

It is worth mentioning that SONEX significantly improved over our baseline

settings (tf -¢df with unigrams) on both INTER and NOISY.

3.6 Evaluation of Relation Labels

This experiment aims at evaluating the quality of the labels assigned to the clusters
by SONEX. As discussed in Section 3.1.4, we use two methods for extracting labels
from the contexts of the pairs in the resulting clusters: using the centroid term, as in
the state-of-the-art, and a variant that smoothes out term weights to avoid outliers,
which we call SDEV.

Both the Centroid and SDEV methods select one stemmed term from the context
of one or more entity pairs in the cluster, and, as such, do not always produce
a meaningful label. As an illustration, Table 3.10 shows the top-3 stemmed terms
and their mean weights within a cluster for the 4 biggest relations on NOISY, across
all feature sets we considered. We obtain a more readable (un-stemmed) label for
each cluster based on the frequency of original terms corresponding to a given stem.
For example, in our experiments, “capit” becomes ‘“‘capital” since this is the most

frequent term among all terms that stem to “capit”.

55

Feature First (weight) ‘ Second (weight) ‘ Third (weight)
Capital cluster
unigrams capit (8.0) citi (4.7) coast (2.5)
unigrams-+bigrams capit (14.0) citi (8.1) citi of (8.0)
bigrams s capit (13.2) capit of (12.8) citi of (12.7)
POS capit (4.1) citi of (3.4) capit of (3.3)
Governor cluster
unigrams gov (220.1) governor (118.0) govenor (0.8)
unigrams+bigrams gov (287.3) governor (149.5) s governor (11.4)
bigrams s governor (22.4) attorney gener (15.7) s gov (7.1)
POS gov (95.1) governor (62.8) sen (23.4)
Marriage cluster
unigrams wife (37.9) husband (25.3) hubbi (6.3)
unigrams-+bigrams wife (30.2) husband (20.0) hi wife (1.4)
bigrams sex (12.8) father of (4.9) the father (4.1)
POS husband (26.5) boyfriend (8.7) wife of (6.3)
Athlete Representing cluster
unigrams rep (17.5) convent (17.4) congressman (5.6)
unigrams-+bigrams secret (2.6) met (2.41) met with (1.0)
bigrams ambassador as (2.6) | the righteous (2.3) left of (2.3)
POS left of (2.6) winningest (2.1) decor (1.3)

Table 3.10: Top stemmed terms for the 4 biggest relations, represented by the
biggest cluster extracted for each relation.

Further Evidence of the Difficulty of Extracting General Relations. In pass-
ing, we point to Table 3.10 to return to the difficulty of automatically extracting the
“Athlete Representing” relation, connecting athletes and their countries'®, whose
main relational term is represent. Because there are many different relations ex-
pressed through the verb represent besides being an Olympic athlete (e.g., as an
elected official), entity pairs from this relation end up clustered within these other
relations and vice-versa. Evidence of this is the fact that among the top-3 terms for

this cluster we can find terms indicating political representation (“congressman”

and “ambassador”) as well as other very generic terms (“met with”).

3.6.1 Evaluation Method

There is still no standard evaluation methodology for cluster labelling, and there are

no standard benchmarks to compare alternative labelling methods [14]. To evaluate

10This was a popular topic at the time the Spinn3r data was collected, right after the Beijing
Olympic games.

56

. Omiotis Manual
Relation
Centroid ‘ SDEV ‘ Difference || Centroid ‘ SDEV ‘ Difference
Capital 5.00 5.00 0.00 5.00 4.50 0.50
Governor 3.97 2.03 1.94 442 3.45 0.97
Athlete Repr. 1.00 4.76 3.76 2.66 4.30 1.10
Marriage 3.97 3.97 0.00 4.60 4.60 0.00
Author 3.92 2.96 0.96 4.18 4.89 0.71
Headquarters 4.55 1.15 3.40 4.47 3.97 0.50
President 4.60 4.60 0.00 4.52 4.52 0.00
Prime Minister 4.89 4.89 0.00 3.72 3.72 0.00
Mayor 5.00 5.00 0.00 4.80 4.80 0.00
Founder 5.00 5.00 0.00 5.00 4.00 1.00
Average || 419 | 394 | 025 | 433 | 427 | 0.06
Table 3.11: INTER labels.
. Omiotis Manual
Relation
Centroid | SDEV | Difference || Centroid | SDEV | Difference
Capital 4.60 291 1.69 4.30 2.09 2.21
Governor 391 2.05 1.86 4.17 1.35 2.82
Athlete Repr. 1.29 1.88 0.59 1.95 2.47 0.52
Marriage 3.66 2.90 0.76 3.96 4.30 0.34
Author 2.86 3.05 0.19 3.73 3.75 0.02
Headquarters 3.60 3.35 0.25 3.20 3.31 0.11
President 3.15 2.35 0.80 4.58 3.52 1.06
Prime Minister 4.56 4.56 0.00 3.68 3.70 0.02
Mayor 4.73 5.00 0.27 4.81 4.81 0.00
Founder 3.00 3.00 0.00 3.50 3.25 0.20
Average || 354 [310 | 064 | 378 | 325 | 052

Table 3.12: NOISY labels.

an extracted label, we resort to the semantic relatedness of the un-stemmed term
with the relation label corresponding to the relevant cluster in our ground truth.
Semantic relatedness methods are widely used in text mining tasks [34]; we used
Omiotis!!, a system for measuring the relatedness between words, based on Word-
Net!? [90]. Omiotis reports relatedness in a scale from 1 to 5, where 1 indicates
very weak relatedness and 5 indicates very strong relatedness. In addition, we re-
peat a similar evaluation conducted manually and using the same relatedness scale,

for comparison. This manual assessment was done by four Computing Science

Unttp://omiotis.hua.gr
2http://wordnet .princeton.edu/

57

Annotators \ Observed Agreement (By Chance) \ Kappa \ Weighted Kappa

Al-A2 61.11% (26.92%) 0.46 0.68
Al1-A3 53.70% (24.18%) 0.38 0.62
Al-A4 55.56% (23.29%) 0.42 0.63
A2-A3 59.26% (27.91%) 0.43 0.66
A2-A4 50.00% (24.86%) 0.33 0.62
A3-A4 52.94% (24.07%) 0.38 0.65

Table 3.13: Annotators Agreement with Kappa Statistics

students in our lab who did not participate in the previous evaluation.

Table 3.11 presents the average relatedness levels for the Centroid and SDEV
methods on the INTER dataset, while Table 3.12 shows results for the clusters pro-
duced from the NOISY dataset, after removing entity pairs that are not in the in-
tersection. In consistency with the clustering results, the INTER labels are more
accurate than the ones obtained on NOISY. Also, on average, Centroid outperforms
SDEYV on all evaluations. Overall, the relatedness scores reported by Omiotis are
very close to the manually assigned ones, with minor differences ranging from 0.14
to 0.33 on average. No labels show high discrepancy between the Omiotis and
manual assessment. The only relation with consistent assessment of low score on
NOISY is “Athlete Representing”. From our observations we learn that this relation
is not often mentioned explicitly in the text which makes it hard to identify using
our approach that only looks for clues in text between two entities. Varied results
between relations is very common in previous works as well, with systems that use
tf -df only for weighting [43].

Table 3.13 shows the degree of agreement among the annotators using the Kappa
statistical measure [33]. The degree of agreement ranges from 50% to 62%, which
is significantly better than the degree of agreement by chance. However, these re-
sults demonstrate the challenge of finding labels that satisfy different users. We
do not have any instance where none of the annotators agree on and also no high
discrepancy among annotators (e.g., scores 1 and 5 for the same label). Most dis-
agreements differ by a single score. The “Kappa” column only considers exact
matches between annotators. On the other hand, the “Weighted Kappa” column

considers the difference between scores (e.g., 4 is closer than 3 when compared

58

. INTER NOISY
Relation
Centroid SDEV Centroid SDEV
Capital capital city capital living
Governor gov delegation gov today
Athlete Representing won representing rep representative
Marriage husband wife wife married
Written work book wrote book book
Headquarters headquarters based headquarters | headquarters
President president president presidential political
Prime Minister prime prime minister minister
Mayor mayor mayor mayor mayor
Founder founder cofounder chairman head
Table 3.14: Label examples.
with 5).

Example Relation Labels. Table 3.14 shows the highest ranked relation labels

extracted by SONEX on both INTER and NOISY for the ten largest clusters.

3.7 Comparison to ReVerb

In the previous sections, we presented an extensive evaluation of SONEX and how
it extends the work of Hasegawa et al [43] for extracting relations from the blogo-
sphere. In this section, we perform a comparative experiment between our system
and ReVerb, a state-of-the-art self-supervised system [28]. We use the implemen-
tation distributed by the authors'.

One of the challenges of evaluating systems like SONEX and ReVerb is that
they outcomes are not the same. ReVerb recognizes instances at sentence level.
For example, ReVerb would extract the relation “is opponent of” from the sentence
“Obama is opponent of McCain”. Each of these sentence-level instances is often
evaluated as correct or incorrect by human judges. On the other hand, SONEX ex-
tracts relations at corpus level. In order to compare both systems at the same level,
we convert ReVerb’s instances into corpus-level ones by applying a simple aggre-
gation method proposed by TextRunner [5]. All pairs of entities connected through

a specific relation (e.g. “is opponent of”) in at least a sentence are grouped together

Bnttp://reverb.cs.washington.edu/

59

Systems \ Purity \ Inv. Purity

ReVerb 0.97 0.22
SONEX | 0.96 0.77

Table 3.15: Comparison between SONEX and ReVerb.

into one cluster. Observe that this process may produce overlapping clusters, i.e.,
two clusters may share entity pairs.

The evaluation measures used in the previous sections cannot be used to eval-
uate overlapping clustering. Therefore, we adopt the following measures for this
experiment: purity and inverse purity [2]. These measures rely on the precision and

recall of a cluster C; given a relation R;:

precision(C;, R;) = % recall(C;, R;) = precision(R;, C;)

Purity is computed by taking the weighted average of maximal precision values:
1
purity = i ; arg max precision(C;, R;) (3.3)

where M is the number of clusters. On the other hand, inverse purity focuses on

the cluster with maximum recall for each relation:

1
inverse purity = ¥ Z argmax recall(C;, R;) (3.4)
J

where N is the number of relations. A high purity value means that the produced
clusters contain very few undesired entity pairs in each cluster. Moreover, a high
inverse purity value means that most entity pairs in a relation can be found in a
single cluster.

The INTER dataset was used in this experiment. We provide both SONEX and
ReVerb with the same sentences and entities. We configured SONEX with the best
setting we found in previous experiments: average link with threshold 0.02, the
unigrams+bigrams feature set, the ¢f -idf - df weighting scheme and pruning on df
and df .

Table 3.15 presents the results for SONEX and ReVerb. Observe that both sys-

tems achieved very high purity levels, while SONEX shows a large lead in inverse

60

T T T T
09 F »rigfe. T
T R
08 | . N
fa_. U N a- Lma Ao
e o7t /T 7 e
=1 : |t
7] 1
8 06 | ,vv: |
.E ’ 4'17’
05/ . i
|/ best results on INTER (no duplicates) ——
04 L/ best results on INTER (duplicates) --=-- i
" [} bestresults on NOISY (no duplicates) =~
03 ! btlest results on NOISYI(dupIicatels) e
o 0.02 0.04 0.06 0.08 0.1

clustering threshold

Figure 3.12: Results on Inter and NOISY: Duplicates Vs. No Duplicates

purity. The low inverse purity value for ReVerb is due to its tendency of scatter-
ing entity pairs of a relation into small clusters. For example, ReVerb produced
clusters such as “is acquired by”, “has been bought by”, “was purchased by” and
“was acquired by”, all containing small subsets of the relation “Acquired by”. This
phenomenon can be explained by ReVerb’s reliance on sentence-level instances and
the variety of ways a relation can be expressed in English. These results show the

importance of relation extraction methods that work beyond sentence boundaries,

such as SONEX.

3.8 Applying ORE on the Blogosphere

We highlight the main issues we encountered in extracting relations from the blo-

gosphere and how we address them.

1. Duplicate content that skewed the true distribution of terms. Figure 3.12
shows that duplicates indeed hurt performance on both INTER and NOISY;
hence, we eliminated duplicates. The problem with duplicates is that they
affect the weights assigned to features. The more times a feature appears in
a context of a pair, the greater effect it has (the term frequency part). But
what we really want to know is the term frequency of the features in different
occurrences of the pair (such as different blog posts) rather than counting
the same occurrence (same source) multiple times just because the text was

duplicated. This also affects the domain frequency and IDF weights.

61

2. Misspellings and noise in general. We used a filtering on the idf score to get

rid of noisy terms (e.g., “ubiquitious” and “hmmm” in Table 3.3)

3. The performance of the NER tool was shown to be lower for blog posts
than for news articles (see [76]). The filtering based on domain frequency
helped us to get rid of many misclassified or wrong entities (i.e., wrong
boundary). For example, the NER created the pair ({(Ted Mcginley, PER),
(Children, ORG)) from the sentence “Ted Mcginley from Married with Chil-
dren”. Since both the entity type and boundary are wrong, it is better to
exclude this pair. The only feature we extracted for this pair is “married”.
Since the domain frequency for “married” in the domain PER-ORG is ex-
tremely small, this feature was filtered and consequently the pair was filtered
for having no features. Overall, we filtered 3336 pairs (approximately 11%
of the NOISY dataset) using the filterings on idf and df in the experiments
with the NOISY dataset.

These are all blog related, although not unique only to blogs, and are relevant to

the web at large.

3.9 SONEX 2.0

This section presents SONEX 2.0, an improved version of our system whose goal
is to increase efficiency and effectiveness. We discuss some of the limitations of
SONEX 1.0 and explain how SONEX 2.0 overcome these limitations. This work
appeared at the ACM SIGMOD/PODS Ph.D. Symposium [63] and the NIST Text
Analysis Conference [67].

3.9.1 Improving Clustering

In order to cluster context vectors, SONEX 1.0 uses the Hierarchical Agglomera-
tive Clustering (HAC) algorithm [57]. One of the advantages of HAC over many
other clustering algorithms is that it does not require the number of clusters as a
parameter for stopping the clustering. The user can instead provide a similarity

threshold. The clustering stops when the similarity of the clusters being merged is

62

below the threshold. Not requiring the number of clusters is a desirable property
since one can seldom estimate the number of relations described in a collection a
priori. On the other hand, HAC does not scale well for a large number of vectors.
This is because the time and space complexity for HAC is at least quadratic in the
number of vectors [57]. Therefore, SONEX 1.0 can be infeasible when the number
of context vectors is massive. In addition, HAC is not capable of extracting more
than one relation for a pair of entities. This make SONEX a poor choice for pairs
that present multiple relations expressed in the corpus.

To address both limitations, SONEX 2.0 adopts the buckshot clustering algo-
rithm [24]. Buckshot addresses HAC’s quadratic complexity by applying HAC
over a sample of the vectors, instead of all vectors. By clustering a sample size
VN , Wwhere NV is the total number of vectors, HAC can find cluster centroids in lin-
ear time and space. It is well-accepted that the centroids of clusters produced from
a representative sample are often as good as the centroids of the clusters produced
from all vectors [24]. To better handle entity pairs with multiple relations, buckshot
is able to assign a vector to multiple clusters as long as the similarity between the
vector and the cluster centroids is above a threshold.

The steps of the buckshot approach are as follows:

1. Choose a sample. The original buckshot approach recommends choosing a
random sample of size v/N. This approach works well when entity pairs are
required to present a minimum support (i.e., number of sentences where they
appear together). However, when all entity pairs are taken into consideration
(regardless of their support), we observed that the random approach chooses
many vectors containing only a few non-zero features. Since these vectors do
not provide much variations on how a particular relation is expressed, many
duplicate clusters are likely to be produced — one for each variation (e.g.,
“acquired”, “acquisition of”). In this scenario, a user may ask SONEX to

choose vectors with the highest />-norm instead.

2. Apply HAC. SONEX 2.0 applies HAC over the sample of vectors and pro-

duce a number of clusters, according to the clustering similarity threshold.

63

Description Pattern Example

close apposition AT N 7 Apple new CEO Cook
apposition+preposition | , A7 N P A? Cook, new CEO of Apple
possessive+noun , C7S A? N P? A?)7 Apple’s new CEO, Cook
verb (,W)? A7 V A? Cook now leads Apple
verb+preposition (, W)? A7V A? P A? Apple is led by Cook
verb+noun+preposition | (, W)? A? V. A? N A7 P A? | Cook is the CEO of Apple

Table 3.16: POS patterns employed by SONEX 2.0. The patterns can contain the
following symbols: A (sequence with any adjective, adverb, particle, modal and de-
terminer), N (sequence of nouns), V (sequence of verbs), P (preposition), S (posses-
sive pronoun, possessive wh-pronoun or possessive ending), C (coordinating con-
junction) and W (Wh-pronoun).

This process is identical of how SONEX 1.0 produces clusters, except that it

is applied to a sample as opposed to all vectors.

3. Assign remaining vectors to one or more clusters. This step consists in
assign each remaining vector (those not in the sample) to one of the clusters
produced in the previous step. The original buckshot approach adopts the
Assign-To-Nearest method, where the vector is assigned to the cluster whose
centroid is the most similar to the vector. In order to allow for an entity pair
to have multiple relations, SONEX also allow the user to opt for assigning
a vector to every cluster whose similarity between vector and the cluster’s

centroid is above a threshold.

3.9.2 Improving Feature Extraction

SONEX 2.0 also improves the quality of the features extracted from individual
sentences. As our experiments show, unigrams and bigrams can be quite effective
for clustering similar context vectors; however, they are poor choices for describing
long, more specific relations (e.g., “is chief operational officer of”, “is honorary
vice chairman for”).

Our system employs an improved set of POS patterns to extract relational terms
for an entity pair. These terms are then used as features for the clustering. Our
improved patterns are much more selective about the terms they can extract, elimi-

nating noisy features and improving the quality of the cluster labels.

64

Table 5.1 shows six POS patterns used by SONEX 2.0 to extract relational terms
for an entity pair. Given all entity pairs within a window of X tokens (X = 10 in
our current implementation), our method tries to match one of the POS patterns
with the text in between them. If our method is able to find a match, it concatenates
verbs, nouns and prepositions to produce a term.

Finally, SONEX 2.0 applies 4 filtering rules to discard non-relational terms. A

term is discarded when:

1. The entity after the term is followed by a noun or possessive ending (’s).
2. The entity after the term is preceded by the preposition “that”.
3. The text between the entities contain the word “say”.

4. The entity before the term is preceded by the preposition “of”.

Hearst patterns. SONEX 2.0 also improves the extraction of features by remov-
ing Hearst patterns, a set of patterns discovered by Hearst [44] that describe entity

types. For an example, consider the sentence:

“Blackberry is losing market share to tech companies such as Apple

and Google”.

where the phrase in italics matches one of the Hearst patterns: entity type + “such
as” + list of entities. Phrases like this one can introduce noisy terms (e.g., “tech
companies”) in between the entities of a relation instance (e.g., “Blackberry” and
“Google”). To eliminate this problem, SONEX 2.0 transforms every sentence con-
taining one of these phrases as follows. Each sentence is duplicated into several
sentences, one for each listed entity, and the phrase matching a Hearst pattern is
replaced by one of the listed entities. For instance, the following sentences would

be generated from our example:

“Blackberry is losing market share to Apple”,

“Blackberry is losing market share to Google”.

SONEX 2.0 applies the same transformation for sentences that do not present
Hearst patterns but contain a phrase listing three or more entities. For example,

consider the sentence:

65

“Blackberry is losing market share to Apple, Google and Microsoft”,

where the text in italics lists three named entities. This sentence would be trans-

formed into three sentences:

“Blackberry is losing market share to Apple”,
“Blackberry is losing market share to Google”,

“Blackberry is losing market share to Microsoft”.

3.9.3 Experimental Results

We discuss the efficiency and effectiveness of SONEX 2.0 by evaluating the new
clustering algorithm and the improved feature extraction separately. Chapter 6 dis-
cusses an experiment with several ORE methods and evaluates a new method using
SONEX 2.0’s improved patterns to extract relation instances (i.e., without cluster-
ing). Our experiment shows that our improved patterns are competitive, outper-
forming ReVerb in both precision and recall. This method is also more effective
and efficient than some methods based on dependency parsing and SRL.

We evaluated the effectiveness of the buckshot algorithm by participating of the
Text Analysis Conference (TAC)'*, which is promoted by NIST [67]. Particularly,
we submitted SONEX 2.0 to the slot-filling task [67]. This task comprises the
identification of values for certain attributes, or slots, about an entity. Each named
entity is given as a query and the answers are called slot fillers. The evaluation
consisted of 100 queries, being 50 people and 50 organizations. Examples of slots
are per:date_of birth (a person’s date of birth) and org: subsidiaries
(the child companies of a company). Each slot allows either a single answer (e.g.,
per:date_of birth) oralist of answers (e.g., org: subsidiaries).

SONEX 2.0 extracted and clustered more than three million vectors from the
TAC source collection, a number well beyond the capacity of SONEX 1.0. To find
cluster centroids, we used a sample of 10,000 entity pairs, which is higher than the

suggested 1732 pairs (1/3, 000, 000) but still feasible. For this submission, we used

Bhttp://www.nist.gov/tac/

66

Slot Precision
ORG:Number of Employees 0.95
PER:Employee of 0.92
PER:Member of 0.92
ORG:Headquarters 0.90
PER:Place of birth 0.88
PER:Children 0.66
ORG:Subsidiaries 0.65
ORG:Alternate Names 0.56
ORG:Parents 0.55
ORG:Shareholders 0.50
Average 0.79

Table 3.17: The slots in descendants order of precision as measured in the prelimi-
nary experiment. For brevity, only the top and bottom five are shown.

unigrams as features and set the clustering threshold to 0.001, since it achieved the
best results in our previous experiments with blog posts. We adopted the Assign-
To-Nearest method [24], where the assigned cluster is the one that maximizes the
similarity between the vector and the cluster centroid. We labelled each cluster with
the token in the cluster centroid with the highest weight.

We use the cluster label that SONEX provides to map a cluster to its appropriate
slot (if any). To do so, we manually construct a list of valid labels for each slot by
observing which clusters generated from the training data correspond to which slots.
For example, we defined that a cluster with the label “husband” should be mapped

to the per: spouse slot.

Preliminary results. We conducted a preliminary experiment to estimate the pre-
cision of the clusters produced by SONEX. We randomly selected 50 entity pairs
from clusters mapped to slots. We asked four students to verify whether the en-
tity pairs of each slot were supported by any document in source collection. Entity
pairs with a supporting document were deemed as correct. Table 3.17 shows the
precision for ten slots, being five with highest score and five with the lowest. The

average precision for all slots is 0.79.

67

TAC results. Our submission achieved 36.84% precision and 5.18% recall, while
the median values among all submissions were 10.31% and 16.5%, respectively.
One could expect a low recall score from SONEX 2.0, given it works better for
entity pairs with high support; however, we were surprised by the low precision
score in our TAC submission (in light of our preliminary experiment). In order
to understand the discrepancy between the results from TAC and our experiment,
we looked carefully at the answers not judged as correct. Out of those 84 non-
correct answers, 62 were incorrect, 15 were redundant and 7 were inexact. The
majority of incorrect answers are from the slots per:employee_of (21) and
per:top.members_employees (13). Analyzing the slot fillers for these two
slots, we have found that 38% of the incorrect answer in these slots are due to
mistakes when handling entities. For example, the coreference resolver used by
SONEX, OrthoMatcher [10], incorrectly determined that “U.N.” (United Nations)
and “US Navy” refer to the same entity (possibly because the initials of “US Navy”
match “U.N.”). This coreference decision resulted in a wrong extraction from the
text portion “U.N. nuclear watchdog chief Mohamed ElBaradei”. In particular,
SONEX answered “US Navy” (instead of “U.N.”) for the slot per:employee of
of the entity “Mohamed ElBaradei”. Another major reason for our low results is that
most of the evaluated entity pairs had very low support, appearing in only 1 or 2
sentences. Extracting relations for pairs with such a low support is a challenge for

any clustering-based method.

3.10 Conclusion

We presented SONEX, an ORE system for extracting information networks from
the blogosphere that works by identifying named entities from the text, clustering
the sentences that connect those entities, and extracting prominent terms from the
clusters to use as labels. We improved effectiveness by introducing the Domain
Frequency (df) score, a new term-weighting score designed for identifying rela-
tional terms within different domains, and showed that it substantially increases the

accuracy of our system in every test we performed. We believe that df can be uti-

68

lized in various of applications, with the advantage that in practice, for many such
applications, the list of terms and scores can be used off-the-shelf with no further
effort. Also, the df score computation is based on probability (we do not consider
the NER to be part of it), and as such, it can be utilized in other languages with
similar structure to English.

SONEX 2.0, the new version of our system, addresses two shortcomings of
using hierarchical agglomerative clustering for ORE: its quadratic complexity and
inability to identify more than one relation per entity pair. By applying the buckshot
algorithm, we can cluster entity pairs in linear time and assign an entity pair to
multiple clusters. SONEX 2.0 also employs an improved method to extract the
context of an entity pair. This method leverages part-of-speech patterns to find a
sequence of words that describe a relation.

We reported the first results on large-scale experiments with clustering-based
ORE systems on social media text, studying the effect of several parameters for such
an approach. We also discussed an automatic way of obtaining high-quality test
data from an online curated database. Our experimental evaluation showed textual
clustering techniques to be a viable option for building an ORE system. More
importantly, our results shed some light on the accuracy of state-the-art extraction

tools in this setting, as well as on ways of tuning such systems for higher accuracy.

69

Chapter 4

Meta-CRF: Extracting Nested
Relations

So far, we have discussed SONEX, a system that produces flat information net-
works. In such networks, named entities are represented by nodes and relations
are represented by edges. Despite their effectiveness, flat information networks are
somewhat primitive, as they are unable to represent certain interesting, more subtle

relations expressed in the text. For example, consider the following sentence:
“Associated Press reported on the Russian attack to Georgia.”

Observe that flat information networks cannot naturally express that the Associated
Press (AP) reported on the attack, since the attack is represented by an instance.
Thus, the relation between AP (which is a node in the network) and the attack
(which isn’t) cannot be directly represented. A relation that accepts instances (in
addition to entities) as arguments are referred to as nested relations in the Infor-
mation Extraction literature [18, 19]. This chapter presents an ORE method that
extract both flat and nested relations. The work presented here appeared at the

AAALI International Conference on Weblogs and Social Media (ICWSM’11) [64].

4.1 Overview

As discussed in Chapter 1, we extend information networks by representing both
entities and instances as nodes. In the terminology of knowledge representation,

representing an instance as a node is called reification [91, 96]. Hence, we refer to

70

these networks as reified networks. Figure 1.2(b) in Page 8 shows an example of

such a reified network.

Problem Statement. The problem addressed by Meta-CRF is that of accurately

extracting a reified network from a text corpus.

Definition 2. A reified network consists of a set of unique named entities E, a set
of predicates P and a set of instances 1. An instance © € [is a triple: (aq, p, as),
where p € P is a predicate and a; € F'U I is an argument, which is either a named

entity or an instance. A relation is a set of instances that have the same predicate.

For an example, consider the sentence “Google’s acquisition of YouTube was

finalized by the FTC”. Instances described in this sentence are:

29 &6

11 = (“Google”, “acquisition of”, “YouTube”),

19 = (i1, “was finalized by”, “FTC”).

An instance can be flat or nested. A flat instance presents two entities as argu-
ments (e.g., ¢1) and a nested instance presents one or two instances as arguments
(e.g., i2). A flat relation is a set of flat instances that have the same predicate. A

nested relation is a set of both flat and nested instances that have the same predicate.

Challenges. Extracting reified networks from text presents many challenges. Cor-
rectly extracting relation instances described in text is difficult, given the complex-
ity of the English language and the diversity of writing styles [82]. In particular,
even with well-written text, as illustrated in detail later, the nested structure of some
instances brings problems not found in traditional, “flat” relation extraction. For
instance, one must determine whether a relation instance expressed in a sentence
concerns an entity or another instance (expressed in the same sentence) containing
such entity. This ambiguity undermines a classifier’s ability to differentiate between
flat and nested instances.

In our work, we follow the seminal approach in TextRunner [6], a state-of-

the-art ORE system. Namely, we rely on a supervised method for handling the

71

actual text—we use Conditional Random Fields (CRF), and exploit syntactic fea-
tures found in parse and dependency trees obtained for the sentences. It should be
noted that our goal here is to extend the use of CRF in order to handle both flat
and nested instances. In particular, we extend TextRunner’s Open-CRF method [6].
If successful, our model could be used within the larger framework in TextRunner,
which encompasses both the self-supervision scheme for training the CRF, as well
as the post-processing module that further checks the plausibility of the extracted

instances.

Contributions. We propose a relation extraction method that applies Conditional
Random Fields to extract flat and nested instances seamlessly. We show that the
original CRF model in TextRunner, Open-CRF, lacks discerning power to accurately
handle both kinds of instances, and provide an explanation of why this is the case.
We show the need for relying on more sophisticated syntactic features, and propose
a new CRF model, Meta-CRF, that is powerful enough to differentiate between flat
and nested instances.

We evaluate Meta-CRF on a sample of the ICWSM Spinn3r dataset [13], a cor-
pus with 25 million weblogs in English. In quantitative terms, our experiments
show that Meta-CRF presents substantial improvements over Open-CRF (when both
models are trained with the exact same training examples). More precisely, Meta-
CRF outperforms Open-CRF considerably in terms of recall, and substantially in
terms of accuracy (over 20%). On the other hand, a small loss (3%) is observed in

terms of avoiding false-negatives.

4.2 Extracting Flat and Nested Instances

Pre-processing. We process each document from a corpus separately, as follows.
First, we identify sentence boundaries using LingPipe! and convert each such sen-
tence into plain (ASCII) text for easier manipulation. (In the process, HTML tags

and entities referring to special characters and punctuation marks are dealt with);

'http://alias—1i.com/lingpipe

72

this is accomplished with the Apache Commons library? and Unicode characters
are converted into ASCII using the LVG component of the SPECIALIST library?).

Next, we identify entities in each sentence, using the LBJ Tagger*, a state-of-
the-art named entity recognition (NER) system [76]. LBJ assigns one of four cat-
egories (PER, ORG, LOC or MISC) to each entity it identifies. The final step is to
identify names that refer to the same real-world entity. This is accomplished using
a coreference resolution tool to group these names together. We used Orthomatcher
from the GATE framework®, which has been shown experimentally to yield very
high precision (0.96) and recall (0.93) on news stories [10]. Observe that the coref-
erence resolution is performed for entities within a document only.

Once we process all documents as described above, each sentence is then split
into tokens using the OpenNLP library®. We explain our approach using the fol-

lowing sentence tokens (separated by white spaces, named entities in bold):

“The U.S. is likely to punish Moscow in response to Russia’s conflict

with Georgia .”
In this example, the instances are:

11: (“U.S.”, “to punish”, “Moscow”),

b Ty

19: (“Russia”, “conflict with”, “Georgia”),

13: (71, “response to”, is).

4.2.1 The Algorithm

Our algorithm (Figure 4.1) operates at the argument level, seamlessly considering
both entity arguments and instance arguments. This is achieved as follows. On a
first pass over the sequence of tokens given as input, we first identify all mentions
to named entities and add them the set A which keeps a list of candidate arguments

found in the text (line 2). In our running example, this first step would result in

http://commons.apache.org/lang/
3http://lexsrv3.nlm.nih.gov/SPECIALIST/
“http://12r.cs.uiuc.edu/~cogcomp/software.php
Shttp://gate.ac.uk/
6http://opennlp.sourceforge.net

73

input: Sequence of tokens 7’
output: Set of instances [

I+ 0;

A <« all entities mentioned in 7T7;

C+ AxA; // We consider every pair of candidate arguments
foreach (a;, as) € C do

if a; precedes as in T then

p < Meta-CRF (1, aq, a»);

if p is defined then

I+ IU{(ay,p,a2)};

a’ < sequence of tokens in 7" containing p, a; and as;

/= Remember the newly found candidate argument */
10 C+ PU{d} xA)U(Ax{d});

11 A+ Au{d};

12 end

13 end

14 end

15 return /

o X T AN R W N =

Figure 4.1: Algorithm for finding statements and meta statements.

A ={*U.S”, “Moscow”, “Russia”, “Georgia” }

The algorithm attempts to find all possible instances involving arguments that
appear together in a single sentence (loop 4—14). Thus, for every pair (a1, ay) of
candidate arguments, such that a; precedes a, in a sentence we attempt to detect
whether they are involved in a relation instance (as detailed in the next section).
Meta-CRF returns a predicate p if such a relation instance exists (line 6). If a pred-
icate is returned, the algorithm then (1) adds an instance (ai,p, as) to the set of
instances (line 8), and (2) creates a new argument that corresponds to this instance,
for future consideration with other arguments already identified (lines 10, 11).

In our example, the first instances to be extracted are:

11: (“U.S.”, “to punish”, “Moscow”)

99 ¢

19: (“Russia”, “conflict with”, “Georgia”)

Once they are added to both A and P, we have then:

74

A ={*“U.S.”, “Moscow”, “Russia”, “Georgia”, “U.S. is likely to punish

Moscow”, “Russia’s conflict with Georgia”}

Thus, the algorithm will eventually attempt to identify relation instances involv-
ing other instances, thus producing 73 above. It can be shown that the algorithm
will never consider the same pair of arguments more than once, and thus always

terminates.

4.2.2 The Meta-CRF Model

In this section we discuss how to detect a predicate for a pair of arguments in a
sentence.

We model predicate detection as a sequence labeling problem — given a in-
put sequence of tokens x = zy,...,x,, produce an output sequence of labels
Y = Y1,...,Y, from a set of labels. In particular, we consider tokens in between
two arguments and labels indicating whether a token belongs to a predicate or not.
We adopt the BIO encoding, a widely-used technique in natural language process-
ing [47]. This encoding marks the Beginning, Inside and Outside of a phrase; there-
fore, each token is labeled as B-REL, I-REL or O-REL. Figure 4.2 illustrates the
tokens appearing in between “U.S.” and “Moscow” and their respective labels. To-
kens that should be labelled as B-REL or I-REL are called relational tokens.

Our method, called Meta-CREF, is based on conditional random fields (CRF) [51].
CREF is a graphical model that estimates a conditional probability distribution, de-
noted p(y|x), over label sequence y given the token sequence x. The probability
of a label be assigned to the i-th token is defined by a vector f = {f! f2 ... f&}
of real-valued feature functions of the form f*(y;,y;_1,x,1). Therefore, a feature
function can be defined over the current label y;, the previous label y;_; or any token

in x. Examples of feature functions are:

(Yi, Yi—1,%,4) = [[z; is an adverb]].[[y; = O-REL]]
(Yi, Yi—1,%x,4) = [[z;is a verb]].[[y; = B-REL]].
[[yi—1 = O-REL]]

fl
f2

where the indicator function [[condition]] = 1 if condition is true and zero other-

wise. Each feature function f* is associated with a weight }; therefore, there is

75

ARG [O-REL [O-REL | B-REL 1 I-REL I ARG

u.s. is likely to punish Moscow

. J . J . J | & J | & J . J

Figure 4.2: A CRF model used to recognize the predicate “to punish” for the in-
stance containing “U.S.” and “Moscow”.

a weight vector W = Wy, ... Wy corresponding to f. Finally, we can define the

CRF model as follows:
1 W.F(x,y)

p(ylx) = 700° (4.1)

where F(x,y) = El’jl f(yi, yi—1,%,1) and Z(x) is a normalizing constant equal to
" eW.F(xy')
D€ :

Training Meta-CRF consists in learning the weight vector W. This vector de-

fines the likelihood of associating a label to a individual token as well as transition-

ing from label to label. Meta-CRF uses the CRF implementation provided by the
MALLET library [60].

4.2.3 Features

The set of features used by Meta-CRF is similar to those used by state-of-the-art
relation extraction systems [47]. We use tokens appearing between arguments, their
part of speech, the argument types (statement or entity) and syntactic features from

the parse and dependency tree.

Tokens. Following Open-CRF [6], we include function words as features (e.g.
prepositions and determiners) but not content words such as verbs or nouns. For
example, the tokens used from the sentence “AP reported Russia’s conflict with

(I3 P%2)
S

Georgia” are and “with” only. This is because our method is designed to extract

instances of any relation, not a specific one.

Part of speech. Every token is associated with its part of speech. Intuitively, we

expect that predicates in English follow a limited number of part-of-speech patterns.

76

Banko and Etzioni [6] show that 95% the predicates in their dataset follow eight
simple part-of-speech patterns. An example is “settlement with”, which follows
the pattern: noun+preposition. Figure 4.3 presents the tokens (in bold) from the
sentence “AP reported Russia’s conflict with Georgia” along their part-of-speech

tags (in italics).

Argument Type. While Open-CRF assigns the label “ARG” to both arguments,
we assign a label that corresponds to the type of the argument (“ENTITY” or “IN-
STANCE”).

Parse tree. Our method uses the path length between a token and each argument
in a full parse tree. Intuitively, we expect that the paths between relational tokens
and their arguments to be relatively short. The node representing an argument is the
lowest common ancestor of all tokens in that argument. Figure 4.3 gives an example
parse tree. The arguments “AP”, “Russia” and “Russia’s conflict with Georgia” are
represented by the nodes NPy, NP5 and NP,, respectively. Observe that the path
between NP, and NP5 (NP>—S;—VP3;—NP,—NP;) is longer than the path between
NP, and NP4 (NP,—S;—VP3-NP,), indicating that “AP” and “Russia’s conflict with
Georgia” are more likely to form an instance than “AP” and ‘“Russia” alone. Our
method generates a parse tree for each sentence by using the tools available from

OpenNLP’.

Dependency tree. We also use the path length between a token and each argu-
ment in a dependency tree. Intuitively, shorter paths are likely to indicate stronger
dependency between the tokens and the arguments. Figure 4.4 illustrates an ex-
ample dependency tree. An argument is represented by the root of the minimal
subtree containing all its tokens. For example, “Russia’s conflict with Georgia”
is represented by “conflict”. Observe that the path between “AP” and ‘“Russia”
(AP-reported—conflict—Russia) is longer than the path between “AP” and “Russia’s
conflict with Georgia” (AP-reported—conflict). Our method produces a dependency

tree for each sentence by applying the algorithm from Xia and Palmer [94].

7http://opennlp.sourceforge.net

77

NP4

N/

NP2 NT7
reported Rus5|a ' conflict with Georgia
NNP VBD NNP POS NN IN NNP

Figure 4.3: Parse tree for the sentence “AP reported Russia’s conflict with Georgia”
following the Penn TreeBank terminology [7]. Non terminals are numbered for
easy identification. Tokens are highlighted in bold and part-of-speech tags are in
italic.

reported
AP conflict
VR
Russia with
!
's Georgia

Figure 4.4: Dependency tree for the sentence “AP reported Russia’s conflict with
Georgia”.

4.2.4 The need for syntactic features

State-of-the-art relation extraction systems based on CRF, such as TextRunner’s
Open-CRF, often rely almost exclusively on tokens and their part-of-speech tags.
One problem with this approach is that these features are often insufficient for de-

tecting nested instances in text. To see this, consider the sentence
“The A.P. reported Russia’s conflict with Georgia”

and its parse tree illustrated in Figure 4.3. Observe that “A.P.” and “Russia’s conflict
with Georgia” form an instance of the relation “reported”. Furthermore, observe
that “A.P.”” and “Russia” have the word “reported” between them, but there is no
instance involving these entities.

In both cases, the part of speech sequence is the same: ARGUMENT — VBD —

ARGUMENT. Therefore, a CRF model has no choice but to assign the same label to

78

“reported” in both cases. No matter the label assigned by the model, this label will
be incorrect for at least one of the above argument pairs. This lose-lose situation is
very common when dealing with meta statements, since statement arguments will
always contain entity arguments.

Our solution for the above problem is to rely on the syntactic structure of a sen-
tence. Parse and dependency trees often provide useful hints to determine whether
a sentence describes a relation instance involving two arguments or not. As dis-
cussed in Section 4.2.3, we observe that the path between “A.P.” and “Russia” is
longer than the path between “A.P.”” and “Russia’s conflict with Georgia” in both
parse and dependency trees. Our observations are in agreement with a recent study
that claims that relations can be extracted almost exclusively from the path between

arguments in a dependency tree [12].

4.2.5 Limitations of Meta-CRF

Our method focuses in relation instances whose predicate is explicitly expressed
in the text, and not implied by punctuation or structural clues. In addition, our
method extracts predicates that appear in the text between arguments only. Banko
and Etzioni [6] have showed that more than 80% of predicates are found in the text
window between arguments, as opposed to the windows before and after the pair of
arguments. Moreover, our method focuses on relation instances expressed within a
sentence and is not able to extract instances whose arguments cross sentence bound-
aries. Finally, our method focuses on extracting binary relations (flat or nested) and

is not capable of extracting n-ary relations.

4.3 Experiments

In this section we present the results of an experimental evaluation of Meta-CRF.
Our method uses all features described in Section 4.2.3. We use as baseline a CRF
model that relies on the features used by TextRunner’s Open-CRF (tokens and their

part of speech).

79

Setup. Our experiments use sentences from the ICWSM Spinn3r blog dataset [13].
The ICWSM dataset contains 25 million English posts published between August
Ist and October 1st, 2008. Popular topics include the 2008 U.S. Election, the Rus-
sian conflict with Georgia, the Olympics and the economic crisis. We manually col-
lected a hundred sentences from blog posts containing popular entities in politics
(e.g., Barack Obama, John McCain), sports (e.g., Michael Phelps), entertainment
(e.g., Paris Hilton) and entities involved in the conflict in Georgia (e.g., Russia,
U.S)).

Each collected sentence was used to produce positive (those describing in-
stances) and negative examples (those describing no instances). We produce an
example for each pair of arguments in a sentence. For example, the examples pro-

duced from the sentence “U.S. condemned Russia’s conflict with Georgia™ are:

“U.S. condemned Russia’s conflict with Georgia.”
“U.S. condemned Russia ’s conflict with Georgia.”
“U.S. condemned Russia ’s conflict with Georgia.”

“U.S. condemned Russia’s conflict with Georgia.”

where underlined tokens form a predicate and tokens in bold are arguments. Ob-
serve that the first example describes a nested instance, the second example de-
scribes a flat instance and the last two describe no instances. Producing examples
in this way may result in many negative examples, since there are usually many
pairs of arguments that do not form an instance. To limit the number of negative
examples, we prune out every argument pair where the arguments are separated by
more than 5 tokens.

We use both positive and negative examples to evaluate our method. Table 4.1
provides more information about these examples. Our experiments rely on ten-
fold cross validation by splitting the examples into ten partitions. In each round, a

partition is used for testing while the nine remaining are used for training.

Metrics. The quality of the extraction is measured by the number of tokens cor-

rectly labeled. The extraction accuracy is defined as follows.

80

Unit Quantity

Original Sentences 100

Examples 496
Nested instances 107
Flat instances 111
No instances 278

Tokens 1245
Relational tokens 364
Non relational tokens 881

Table 4.1: Details about the examples used in experiments. “Original sentences”
indicates the sentence collected from the ICWSM dataset, “Examples” are sen-
tences annotated with arguments and predicates (describing nested instances, flat
instances and no instances). “Tokens” indicates the number of tokens in all exam-
ples. “Relational tokens” indicate tokens labeled as predicates (B-REL, I-REL) and
“Non relational tokens” indicate tokens labeled as O-REL.

Number of Correct Labels
A = 4.2
ceuracy Number of Tokens (4.2)

4.3.1 Comparison between Open-CRF and Meta-CRF

We use Open-CRF as our baseline for comparison as it is the state-of-the-art of
CRF-based relation extraction methods. It should be noted that while Open-CRF
is not a method for extracting nested instances (nor their authors claim so), this
comparison is valuable in that it provides an objective way to assess the impact
of using syntactic features when extracting nested instances, as opposed to relying
almost completely on part-of-speech tags for this task.

Table 4.2 presents the accuracy of Open-CRF and Meta-CRF in each experi-
mental round. Observe that Meta-CRF improves Open-CRF performance by over
20% on average. In addition, our method consistently outperforms Open-CRF in
every round with a minimum improvement of 11.6% and maximum improvement
of 34.1%.

Table 4.3 details the performance of Meta-CRF and Open-CRF by reporting their
results on examples that describe nested instances, flat instances and no instances
in separate. Observe that our method almost tripled the results obtained by Open-

CRF when extracting nested instances. Table 4.3 also shows that our method almost

81

Round Open-CRF Meta-CRF Improvement

1 0.78 0.89 14.4%
2 0.75 0.89 17.7%
3 0.77 0.89 14.6%
4 0.72 0.91 25.6%
5 0.69 0.85 22.7%
6 0.71 0.83 16.3%
7 0.70 0.79 11.6%
8 0.67 0.89 34.1%
9 0.63 0.77 21.5%
10 0.68 0.85 25.0%
Average 0.71 0.86 20.1%

Table 4.2: Results for Open-CRF and Meta-CRF in each round of a tenfold cross-
validation evaluation. “Improvement” indicates the relative gain in performance by
Meta-CRF over Open-CRF.

doubled Open-CRF performance on examples containing flat instances. This result
can be explained by our method’s ability to better differentiate direct and nested
instances by using structural information as explained in Section 4.2.4. The lack
of syntactic information led Open-CRF to label most relational tokens as non rela-
tional. An in-depth investigation revealed that Open-CRF was able to correctly label
relation tokens only 21% of the time (a metric known as recall), while our method
reported 78% at the same task. This is because many examples present the same
part-of-speech tag sequence but different labels (recall Section 4.2.3). Open-CRF’s
inclination to label tokens as O-REL also explains why our method was unable to
improve Open-CRF performance at labelling non relational tokens when compared
to our method (3.2% drop). Since O-REL comprises the majority of labels in our ex-
ample set, the Meta-CRF overall improvement (20.1%) was substantially below the
improvement in examples containing nested instances (189.7%) and flat instances

(82.4%).

4.3.2 Contribution of Individual Features

In this experiment our goal is to study the contribution of individual features to
our method’s overall performance. Table 4.4 shows the results for our baseline ex-

tended with the following features: argument types, dependency tree and parse tree.

82

Open-CRF Meta-CRF Improvement

Nested instances 0.271 0.785 189.7%
Flat instances 0.4392 0.801 82.4%
No instances 0.9259 0.8965 -3.2%
All examples 0.71 0.86 20.1%

Table 4.3: The performance of Open-CRF and Meta-CRF on average for examples
describing nested instances, flat instances and no instances. “Improvement” indi-
cates the relative gain in performance by Meta-CRF over Open-CRF.

Method Accuracy Improvement
Open-CRF 0.71 -

+ Argument types 0.82 14.8%

+ Dependency 0.81 14.2%

+ Parse Tree 0.80 12.2%
All Features 0.86 20.1%

Table 4.4: Impact of extending Open-CRF with individual features. “+ Feature”
indicates the model Open-CRF extended with “Feature”.

Observe that all features combined outperformed individual features. Furthermore,
the addition of each individual features produces better accuracy than our baseline.

Another interesting result is that relying on dependency trees yields results as
good as those obtained considering argument types alone, which explicitly provide
weather an argument is an entity or an instance. This result shows the discriminative

power of a dependency tree to differentiate between flat and nested instances.

4.4 Summary

We discussed a method for extracting a reified information network from a corpus.
Unlike previous work, we focus on the simultaneous extraction of flat instances
as well as nested instances. We proposed Meta-CRF, a CRF-based model that ex-
tracts both flat and nested instances seamlessly. Our model extends TextRunner’s
Open-CRF model by also incorporating syntactic features as found in parse and
dependency trees. We showed the need for these syntactic features when dealing
with nested instances. Finally, our evaluation reported that Meta-CRF outperforms

Open-CRF by as much as 20%.

83

Discussion. Overall, our Meta-CRF method was able to extract nested instances
with 0.86 accuracy. Also, Meta-CRF improved the state-of-the-art by over 20%
when extracting both flat and nested instances. These results indicate, in a sense, the
limitation of relying mainly on part-of-speech tags to extract nested relations. The
root of this limitation is that, with Open-CRF, one cannot avoid positive and negative
examples which have the exact same features (recall our example on Section 4.2.3).

It is worth mentioning that this confusion introduced into Open-CRF is unavoid-
able, and not an artifact of the way in which we train the models. In fact, our
examples were produced automatically from pairs of arguments in each sentence.
Also, we tried to achieve the standard 50/50 split between positive (218) and nega-
tive examples (278) by automatically pruning some of the negative examples. Since
negative examples are necessary to properly train a CRF model, it is thus hard to
see a way of avoiding this confusion with Open-CRF.

Our results indicate that Meta-CRF often outperformed Open-CRF even when
extracting flat instances only. This happened, for instance, on sentences such as
“The A.P. reported Russia’s conflict with Georgia”, where we observed that a method
needs to, at least, detect the nested instance involving “A.P.” and the conflict. By do-
ing so, the method avoids extracting spurious relations, such as: (“A.P.”, “reported”,
“Russia”). This improvement over Open-CRF indicates that our model might be
useful in an industry-strength information extraction system such as TextRunner. It
would be interesting, for instance, to investigate whether the self-supervised train-
ing method used in TextRunner can be applied to our model.

Our method’s improvement over Open-CRF comes at expense of processing
time. This is because parse and dependency trees require heavyweight full pars-
ing techniques. Processing time is a real concern when dealing with large amounts
of text. The remaining of this thesis investigates the effectiveness-efficiency trade-
off of using a range of natural language processing tools, such as shallow parsing,

dependency parsing and semantic role labeling.

84

Chapter 5

EXEMPLAR: Extracting /V-ary
Relations

One limitation regarding the effectiveness of most ORE methods, including SONEX
and Meta-CRF, is that they ignore n-ary relations (n > 2). This chapter discusses
EXEMPLAR, an ORE method that extracts n-ary relations by using rules over de-
pendency parsing trees. The work presented in this chapter appeared at the ACL
Conference on Empirical Methods in Natural Language Processing (EMNLP) [66].

5.1 Overview

Problem statement. The problem addressed by EXEMPLAR is the extraction of
n-ary relation instances from a corpus. More specifically, EXEMPLAR takes a list of
dependency trees automatically generated from individual sentences and outputs n-
ary instances. Figure 5.1 shows an example of dependency tree. An n-ary instance

is atuple (p,a,...,a,), where p is a predicate and a; is an argument.

Argument roles. Each argument a; of a relation instance r is associated to a role
p(r,i). In ORE, the roles for each relation are not provided and must be recog-
nized from the text. We use the following roles: subject, direct_object and
prep-object. An argument has a role prep_object when its connected to the
predicate by a preposition. The roles of prepositional objects consist of their prepo-
sition and the suffix “_object”, indicating that each preposition corresponds to a dif-

ferent role. In the sentence “Arthur Blank is the owner of the Falcons”, “Falcons”

85

poss

nsubj amod

NFL approves Falcons' new stadium in Atlanta.

dobj prep_in

Figure 5.1: A dependency tree generated from an input sentence. EXEMPLAR’s
pre-processing step automatically identifies sentence boundaries, generates a de-
pendency tree for each sentence and extracts named entities. Entities are in bold,
triggers are underline and arrows represent dependencies.

is an object of the preposition “of”” and has the role of_object. For an example,

the instance described in Figure 5.1 is represented by the tuple:
r =(“approve stadium”, “NFL”, “Falcons”, “Atlanta”)

and roles p(r, 1) =subject, p(r,2) =of_object and p(r,3) =in_object. Ob-
serve that multiple entities can play the same role in a relation instance. For in-
stance, in the sentence ‘“The Falcons and the Saints played well”, both the “Falcons”
and the “Saints” play the subject role. Furthermore, some predicate types accept
less roles than others. Verb relations accept all three roles, while copula+noun and
verb+noun relations accept subject and prep_object only.

Our roles are different from those used in SRL. SRL roles carry semantic infor-
mation across different relations. This information is unavailable for ORE methods,
and for this reason, we rely on syntactic roles. An open problem is to determine
which syntactic roles correspond to the same semantic role across different rela-

tions [16]. However, this problem is out of the scope of this work.

5.2 Predicates and Predicate Types

Before designing extraction rules for EXEMPLAR, we investigated the structure of
predicates for n-ary relations. We based our investigation in a similar study con-
ducted over binary relations by Banko and Etzioni [6]. They claim that nearly 95%

of predicates are expressed using eight syntactic patterns, the most popular being

86

verb, verb+preposition and noun+preposition. We observed that these patterns are
not suitable for n-ary instances, particularly those patterns containing a preposition.
This is because such a preposition connects the verb or noun in the predicate to one
of the arguments. Following this approach, the predicate of a n-ary instance may

need to contain multiple prepositions. To see this, consider the sentence

“The Saints were beaten by the Falcons in New Orleans.”

which describes a relation instance involving three named entities: “Saints”, “Fal-
cons” and “New Orleans”. If we were to add every preposition connecting “beaten”
to an argument, the predicate for this instance would be “beaten by in”. Producing
predicates in this way is problematic since instances describing the same type of
event (e.g., “beaten”) may be assigned different predicates. For an example, con-

sider the following instances:

(“beaten by in”, “Saints”, “Falcons”, “New Orleans”),

(“beaten by, “Packers”, “Bears”)

These instances should describe two instances of the relation “beaten”, but instead
they belong to different relations because they do not have the same predicate. To
avoid this problem, EXEMPLAR does not include prepositions in predicates.

To investigate the structure of predicates for n-ary relations, we collected 100
sentences describing an n-ary relation instance from a random sample of sentences
in the New York Times Corpus [81]. For this, we used the Stanford NER sys-
tem [31] to automatically recognize named entities and filter out those that contain
two or less entities. Then, we manually reviewed approximately 500 sentences until
we found 100 sentences containing an n-ary instance. We categorized the predicate
found in these sentences according to their syntactic structure. As a result, we found
that 86% of predicates are expressed using one of the patterns shown in Table 5.1.

Observe that some patterns listed in Table 5.1 are redundant. A pattern is re-
dundant when every predicate expressed using this pattern can be expressed using a
different pattern. For instance, the following patterns are redundant: verb (“beat”),
passive verb (“was beaten”) and nominalized verb (“beating””). We only need one of

these patterns to represent all predicates composed by a single verb. In addition, the

87

Pattern Frequency | Examples

Verb 30% Atlanta Falcons beat . ..
Apposition+noun | 19% Arthur Blank, the owner of ...
Passive verb 14% The Saints were beaten by ...
Verb+noun 14% NFL approves new stadium ...
Copula+noun 5% Arthur Blank is the owner of ...
Nominalized verb | 4% The Saints’ overtime loss to ...

Table 5.1: Patterns representing 86% of the relation instances with three or more
arguments. Frequencies collected from 100 relations from the New York Times
Corpus. Predicates are underlined.

Predicate Type | Freq. | Example Variations

Verb 48% | beat Pass. verb, nom. verb
Copula4+noun | 24% | is owner Apposition+noun
Verb+noun 14% | approves stadium | —

Table 5.2: Predicate types recognized by EXEMPLAR.

pattern apposition+noun is redundant, since predicates expressed in this pattern can
also be expressed using the pattern copula+noun (by replacing the apposition for
the verb “be”). Therefore, most predicates can be expressed using one of following

patterns: verb, verb+noun and copula+noun.

Predicate types. We classify predicates by the pattern used to express them. For
instance, a predicate expressed via the pattern verb+noun is called a verb+noun
predicate. Table 5.2 presents a list of predicate types, each one associated with a
non-redundant pattern. We designed EXEMPLAR to specifically recognize predi-
cates of these types, including predicates expressed using one of their redundant

pattern variations. We define each predicate type as follows.
Definition 3. A verb predicate is composed by a single non-copular verb.

Definition 4. A copula+noun predicate is composed by a copular verb and a noun

acting as the copula’s complement.

Definition 5. A verb+noun predicate is composed by a non-copular verb and a

noun acting as the direct object of the verb.

88

5.3 The EXEMPLAR Method

5.3.1 Preprocessing

Given a document, EXEMPLAR extracts its syntactic structure by applying a pipeline
of NLP tools provided by the Stanford Parser [50]. Our method converts the origi-
nal text into sentences, each containing a list of tokens. Each token is tagged with a
lemma and part-of-speech tag. When describing EXEMPLAR’s rules, we often refer
to verbs and nouns. A verb is a token presenting one of the following tags: VB,
VBD, VBG, VBN, VBP and VBZ. In addition, a noun is a token presenting one of
the following tags: NN and NNS'.

EXEMPLAR parses every sentence and produces a dependency tree. EXEM-
PLAR can work with any dependency parser whose output tree follows the Stanford
dependency manual [15]. We have tested the performance of Exemplar using both
the Stanford parser [50]. and the Malt parser [73].

Figure 5.1 illustrates an example of sentence where each word is a token and
arrows represent dependencies among tokens. In this example, “stadium” depends
on “approves” and the arrow connecting them can be read as “the direct object of

approves s stadium’.

Extracting Named Entities. EXEMPLAR employs the Stanford NER [31] to rec-
ognize named entities. We consider these types of entities: people, organization,

location and miscellaneous. Figure 5.1 shows entities highlighted in bold.

5.3.2 Detecting triggers

After recognizing entities, EXEMPLAR detects triggers. A trigger is a single token
that indicates the presence of a predicate. A predicate may have one or two triggers.
For instance, the predicate in our running example (see Figure 5.1) has two triggers.
In addition, the text of a predicate is generated from its triggers. A trigger can be any
noun or verb that was not tagged as being part of a named entity. Other requirements

are enforced for each predicate type as follows.

"For a list with all part-of-speech tags and their description, please refer to: https://www.
ling.upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html

89

Verb predicates. A verb predicate is triggered by any verb that does not present
one of the following dependencies: direct object (dobj), passive subject (nsubjpass)
or copula (cop). This is because a verb presenting one of these dependencies is a
trigger of a different type of predicate, as discussed later. A verb predicate can also
be triggered by a noun, as long as this noun is a nominalized verb. To identify nom-
inalized verbs, EXEMPLAR checks whether a noun is filed under the type “event”
in Wordnet’s Morphosemantic Database?. This list contains nouns that (1) describe
an event and (2) are derived from a verb. An example of such a noun is “beating”,
which is derived from the verb “to beat”.

EXEMPLAR defines the text of a verb predicate by leveraging its triggers. If
the trigger is a verb, EXEMPLAR uses the trigger’s lemma as the predicate. If the
trigger is a noun, the predicate is the lemma of the noun’s original verb (before

nominalization). For instance, the predicate for the trigger “beating” is “beat”.

Copula+noun predicate. The trigger of a copula+noun predicate is a single
noun that presents either: (1) a copula dependency (cop) with a verb or (2) an appo-
sition dependency (appos) with a noun. When the trigger has a copula dependency
with a verb, EXEMPLAR generates the predicate text by concatenating this verb’s
lemma and the trigger’s lemma. For instance, consider the sentence “Arthur Blank
became the owner of the Atlanta Falcons”. EXEMPLAR takes the copula “become”
and the trigger “owner” to generate the predicate “become owner”. Conversely,
when the trigger has an apposition dependency with a noun, EXEMPLAR generates

the the predicate text by concatenating the copula “be” with the trigger’s lemma.

Verb+noun predicate. To recognize verb+noun predicates, EXEMPLAR looks
for a pair of triggers: a verb and a noun acting as its direct object (e.g., “approves
stadium™) or passive subject (e.g., “stadium was approved”). This pair of triggers
must present one of the following dependency types: direct object (dobj) or passive
subject (nsubjpass).

EXEMPLAR generates the predicate text by concatenating the verb’s lemma with

’http://wordnetcode.princeton.edu/standoff-files/
morphosemantic-links.xls

90

Dependency Example

nsubj (Subject) Romeo loves Juliet

dobj (Direct Object) The Prince exiles Romeo
nsubjpass (Pass. Subj.) Romeo was seen in Verona
agent (Pass. Voice Obj.) Juliet is loved by Romeo
10bj (Indirect Object) Romeo gave Juliet a kiss
poss (Possessive) Romeo@ Montague
appos (Apposition) Capulet, Juliet’s father,
amod (Adj. Modifier) The Italian city of Verona
nn (Noun Comp. Mod.) Romeo’s cousin Benvolio
prep_* (Prep. Modifier) Romeo lived in Verona
partmod (Participal Mod.) | Romeo, born in Italy
rcmod (Rel. Clause Mod.) | Juliet, who loved Romeo

Table 5.3: Dependencies that connect arguments and triggers. Arguments are in
bold and triggers are underlined.

the noun’s lemma. In the example of Figure 5.1, the lemmas of triggers “approves”

and “stadium” are concatenated to form the predicate “approve stadium”.

5.3.3 Detecting arguments and roles

After triggers are identified, EXEMPLAR proceeds to detect arguments. For this,
EXEMPLAR looks at the dependency between an entity and a trigger separately.
EXEMPLAR relies on two observations: (1) an argument is often adjacent to a trig-
ger in the dependency graph, and (2) the type of the dependency can accurately
predict the role of the argument.

Table 5.3 enumerates 12 types of dependencies (from a total of 53) that often
connect arguments and triggers. EXEMPLAR identifies every entity connected to a
trigger via one of these dependency types as a candidate argument.

For instance, consider our running example illustrated in figure 5.1. The entities
“NFL” and “Atlanta” depend on the trigger “approves” and “Falcons” depends on
the trigger “stadium”. Since their dependency types are listed in Table 5.3, these

entities are marked as candidate arguments.

Assigning roles. Given an argument and a trigger, EXEMPLAR determines the

role of the argument by taking into account the trigger’s POS tag (noun or verb), the

91

Trigger | Dependency | Role

Verb >nsubj subject

Verb >agent subject Trigger | Dependency | Role

Verb <partmod subject Verb >nsubj subject

Verb <rcmod subject Verb >agent subject

Verb >dobj direct_object Verb <partmod subject

Verb >subjpass direct_object Verb <rcmod subject

Verb >iobj to_object Verb >iobj to_object
Verb >prep_* prep-object Verb >prep_* prep-object
Noun >prep_by subject Noun >amod of_object
Noun >amod subject Noun >nn of_object
Noun >nn subject Noun >poss of_object
Noun >poss subject Noun >prep_* prep-object
Noun >prep-of direct_object (b) Rules for verb+noun predicates.
Noun >prep_* prep-object

(a) Rules for verb predicates.

Trigger | Dependency | Role

Noun >nsubj subject

Noun >appos subject

Noun <appos subject
Noun <partmod subject

Noun <rcmod subject
Noun >amod of_object
Noun >nn of_object
Noun >poss of_object
Noun >prep_* prep-object

(c) Rules for copula+noun predicates.

Figure 5.2: Rules for assigning roles to arguments.

type of dependency and the direction of the dependency. For simplicity, we define
the direction of a dependency by prefixing its type with “>" when the argument
depends on the trigger and “<” when the trigger depends on the argument.

Figure 5.2 shows EXEMPLAR’s rules that assign roles to arguments. Each pred-
icate type has a different set of rules. Figure 5.2(a) applies to verb predicates, Fig-
ure 5.2(b) applies to verb+noun predicates and Figure 5.2(c) applies to copula+noun
predicates. Rules are represented by triples of the form (¢, d, r), where t is a POS
tag, d is a dependency type and 7 is a role. Given an argument—trigger pair, a rule

is applied as follows:

If trigger’s POS tag = ¢ and dependency type = d then assign role r to

the argument.

For example, the first rule in Figure 5.2(a) specifies that, given an argument—trigger
pair, the argument must be assigned the role subject if the trigger is a verb and
the dependency type between argument and trigger is >nsubj.

The rules with dependency type >prep-* in Figure 5.2 are applied to depen-

92

dency types with “>prep_” followed by any preposition (e.g., >prep-in, >prep-to),
excluding those prepositions that have a specific rule. For instance, Figure 5.2(a)
have a specific rule for preposition “by” (dependency >prep_by). Therefore, the
last rule of Figure 5.2(a) (whose dependency is >prep_*) applies to all prepositions
but “by”. In addition, rules with dependency >prep_* assign a role that matches
the preposition in a given sentence. For example, if the prepositional modifier is

>prep_in, then the preposition is “in” and the assigned role is in_object.

Exceptions. There are three exceptions for the rules above. The first exception
concerns arguments of verb predicates whose dependency type is <partmod (par-
ticipial clause modifier) or <rcmod (relative clause modifier). EXEMPLAR chooses
the role of direct_object (as oppose to subject) for these arguments when the
verb trigger is in passive form. For instance, in the sentence “Barbie, (which was)
invented by Handler”, “Barbie” has the role direct_object because “invented”
is in passive form.

The second exception is for nominalized verb triggers followed by the prepo-
sition “by”, such as in “Georgian invasion by Russia”. An argument connected to
this trigger via one of the dependency types >nn, >amod or >poss is assigned the
role direct_object.

Finallly, there is an exception for copula+noun predicates expressed via close
appositions of the form: “determiner entity noun”, such as “the Greenwood Heights
section of Brooklyn”. In this case, EXEMPLAR assigns the subject role to the

entity between the determiner and the noun.

5.3.4 Filtering incomplete instances

The final step in EXEMPLAR is to remove incomplete relation instances. EXEM-
PLAR removes instances with less than two arguments and instances that present

prep_object only.

93

5.4 Conclusion

We presented EXEMPLAR, an ORE method capable of extracting n-ary relations.
EXEMPLAR leverages rules over dependency trees to detect relation instances. EX-
EMPLAR’s rules are applied to each candidate argument individually as opposed to
all candidate arguments of an instance. This makes EXEMPLAR’s rules simpler and
easier to be designed.

The next chapter discusses an evaluation of EXEMPLAR and other eight ORE
methods over 5 datasets. As shown in the next chapter, EXEMPLAR shows promis-
ing results indicating that rule-based methods may still be very competitive. From
a pragmatic point of view, EXEMPLAR is also preferable because it does not require
training data.

An interesting research question is whether machine learning can be used to
learn more rules for EXEMPLAR in order to improve recall without loss in precision.
Rules could be learned from both dependency parsing and shallow parsing, or just
shallow parsing if computing time is extremely limited. In addition, EXEMPLAR’s
rules may be used as features in machine learning methods, potentially improving

their accuracy.

94

Chapter 6

The Effectiveness—Efficiency
Trade-off

A large number of ORE approaches have been proposed, covering a wide range of
NLP machinery, from ‘““shallow” NLP (e.g., part-of-speech tagging) to “deep” NLP
(e.g., semantic role labeling—SRL). A natural question then is what is the trade-off
between NLP depth (and associated computational cost) versus effectiveness. This
chapter presents a fair and objective experimental comparison of 9 state-of-the-art
approaches over 5 different datasets, and sheds some light on the issue. The work
presented in this chapter appeared the ACL Conference on Empirical Methods in
Natural Language Processing (EMNLP) [66]. Our benchmarks have been published
by the LDC!.

Broadly speaking, existing ORE approaches can be grouped according to the
level of sophistication of the NLP techniques they rely upon: (1) shallow parsing,
(2) dependency parsing and (3) semantic role labelling (SRL). Shallow methods
annotate the sentences with part-of-speech (POS) tags and the ORE approaches in
this category, such as ReVerb [28] and SONEX [62], identify relation instances by
matching patterns over such tags. Dependency parsing gives unambiguous syntactic
relationships among each word in the sentence in the form of a dependency tree,
and the ORE approaches in this category such as PATTY [71], OLLIE [59], Meta-
CRF [64] and TreeKernel [95] identify subtrees connecting the relation trigger and

its arguments. Finally, semantic annotators, such as Lund [45] and SwiRL [86],

'https://catalog.ldc.upenn.edu/LDC2014T27

95

add roles to each node in a parse tree, enabling ORE approaches that identify the
precise connection between each argument and the relation trigger, independently.
Out of five datasets used in our evaluation, four were annotated manually, cov-
ering both well-formed sentences, from the New York Times (NYT) and the Penn
Treebank, as well as mixed-quality sentences from a popular Web corpus. We also
include a much larger dataset with 12,000 sentences from NYT, which were auto-
matically annotated. Another experiment focuses on n-ary relation instances sep-
arately. The results show, as expected, that the three broad classes above are sep-
arated by orders of magnitude when it comes to throughput. In the same period
of time, shallow methods handle ten times more sentences than dependency pars-
ing methods, which in turn handle ten times more sentences than semantic parsing
methods. Nevertheless, the cost-benefit trade-off is not as simple; and the higher
computation cost of dependency or semantic parsing does not always pays off with

higher effectiveness.

6.1 Compared ORE Methods

Shallow ORE. We evaluate two shallow methods: SONEX-p and ReVerb [28].
SONEX-p is a method based on SONEX 2.0’s extraction patterns to detect predi-
cates in a sentence as discussed in Section 3.9.2. SONEX-p does not employ the
clustering module of SONEX. This is because this module recognizes and merges
synonym predicates (e.g., “acquisition of”’, “acquired”) and our benchmarks is not
meant to evaluate the resolution of synonyms, as explained later. SONEX-p re-
lies on Stanford’s CoreNLP library for POS tagging and NER?. The binaries for
SONEX-p is available at the SONEX project website®. To evaluate ReVerb, we use
the source code available at the authors’ website*. ReVerb relies on OpenNLP’s
POS tagger and phrase chunker®. We do not include TextRunner [6] in our evalua-
tion because its authors proposed ReVerb and have shown that ReVerb outperforms

TextRunner in their own evaluation [28].

nttp://nlp.stanford.edu/software/corenlp.shtml
Shttps://sites.google.com/a/ualberta.ca/sonex/
‘https://github.com/knowitall/reverb
Shttps://opennlp.apache.org/

96

Dependency-based ORE. We include five ORE methods based on dependency
parsing in our evaluation: EXEMPLAR[S], EXEMPLAR[M], Meta-CRF, OLLIE,
PATTY-p and TreeKernel. EXEMPLAR[S] and EXEMPLAR[M] are variants of our
EXEMPLAR method that use the Stanford parser [50] and the Malt parser [73], re-
spectively. Both variants rely the Stanford’s CoreNLP library for POS tagging and
NER. The code for EXEMPLAR is available for download online®. Meta-CRF uses
Stanford’s NER for entity recognition and the OpenNLP library’ for POS tagging
and dependency parsing. For OLLIE [59], we use the code available at the author’s
website®. The authors of TreeKernel [95] and PATTY [71] kindly provided us with
the code of their methods. Since we only use PATTY s pattern-based method that
extracts relation instances from a sentence (recall Section 2.3.2), we refer to this
method as PATTY-p. As for the underlying NLP tools used by these methods,
PATTY-p and OLLIE rely on Stanford’s CoreNLP library for POS tagging, NER
and dependency parsing. OLLIE relies on the OpenNLP library for POS tagging

and Malt parser for dependency parsing.

SRL-based ORE. To represent methods based on SRL, we implemented two
methods: Lund-IE and SwiRL-IE. Both methods are based on the SRL-IE ap-
proach [19], which converts SRL annotations into relation instances. Lund-IE is
based on the Lund system [45], while SwiRL-IE is based on the SwiRL system [86].
SwiRL is trained on PropBank and only recognizes verb triggers. On the other
hand, Lund is trained on both PropBank and NomBank, making it able to extract
instances triggered by either a verb or a noun. Since not all SRL arguments are
named entities, we ignore any argument whose head word is not an entity. For this,
we use the Stanford NER® to recognize named entities and the heuristics proposed

by SwiRL’s authors to find the content head word of an argument [86].

97

Dataset Source # Sentences | # Instances
WEB-500 | Search Snippets 500 461
NYT-500 | New York Times 500 150

PENN-100 | Penn Treebank 100 51

Table 6.1: Binary relation datasets.

6.2 Experimental Study

This section compares the effectiveness and efficiency of several ORE methods.
We start by evaluating the extraction of binary relations using manual annotations.
Then, we move to evaluate the extraction of n-ary relations using manual anno-
tations. Finally, we discuss a method to produce automatic annotations for the

evaluation of binary relations.

6.2.1 Binary relations — Setup

We start by evaluating the extraction of binary relations. Table 6.1 shows our ex-
perimental datasets. WEB-500 is a commonly used dataset, developed for the Text-
Runner experiments [6]. This dataset contains 500 sentences extracted from search
engine snippets. These sentences are often incomplete and grammatically unsound,
representing the challenges of dealing with web text. NYT-500 represents the other
end of the spectrum with individual sentences from formal, well written new stories
from the New York Times Corpus [81]. PENN-100 contains sentences from the
Penn Treebank recently used in an evaluation of the TreeKernel method [95]. We
manually annotated the instances for WEB-500 and NYT-500 and use the PENN-

100 annotations provided by TreeKernel’s authors [95].

The task. We manually annotate each sentence as follows. For each sentence, we
annotate two entities and an optional trigger (a single token indicating the presence

of a predicate—see Section 5.3.2) for the predicate describing the relationship be-

Shttps://github.com/U-Alberta/exemplar
"http://opennlp.sourceforge.net
8https://github.com/knowitall/ollie
‘nttp://nlp.stanford.edu/software/CRF-NER.shtml

98

tween them. If such a relationship does not exist, we annotate the two entities only.
In addition, we specify a window of tokens allowed to be in a predicate, including
modifiers of the trigger and prepositions connecting triggers to their arguments.
Given a sentence, a method being evaluated must extract every relation instance
described in this sentence. Our evaluation ignores all extracted instances but one
involving the annotated pair of entities. This instance is deemed correct if its pred-

icate contains the trigger and allowed tokens only.

Annotations. Figure 6.3 in Page 111 shows several examples of annotated sen-
tences. In these sentences, entities are enclosed in triple square brackets, triggers

are enclosed in triple curly brackets and the window of allowed tokens for a predi-

cate is defined by arrows (“~—->"" and “<---"), as in this example:
I’ve got a media call on [[[Google]]l] --—> ’s {{{acqui-
sition}}} of <-—— [[[YouTubel]] ---> today <---.

where “Google” and “YouTube” are entities, “acquisition” is the trigger and the
allowed tokens are “acquisition”, “’s” and “of””. We include time and location mod-
ifiers (e.g., “today”, “here”) in the list of allowed tokens since OLLIE extracts them
as part of the predicate. OLLIE’s predicates may also include auxiliary verbs and
prepositions that are not present in the original sentence. To be fair with OLLIE,

we remove auxiliary verbs and prepositions from OLLIE’s predicates.

Ensuring entities are recognized properly. Since every method uses a different
tool to recognize entities, we try to ensure every method is able to recognize the
entities marked by our annotators. We replace the original entities by a single word,
preventing any method from recognizing only part of an entity. Entities are replaced
by the tokens “Europe” and “Asia”, since we empirically found that, for 99.7% of
the sentences in our experiment, all methods were able to recognize “Europe” and
“Asia” as entities (or nouns, for methods that do not use a NER tool). In addition,
we did not find any occurrence of “Europe” and “Asia” in the original sentences

that could conflict with our entity placeholders.

99

For methods that consider any noun phrase as an entity (ReVerb, OLLIE, SwiRL-
IE and Lund-IE), there is the additional task of identifying whether a noun phrase
containing additional words surrounding “Europe” and “Asia” is still a reference to
the annotated entity. For example, “the beautiful Europe” refers to the entity, while
“Europe’s enemy”” does not. In our evaluation, we ignore noun phrases that do not
reference the annotated entity. For SwiRL-IE and Lund-IE, we ignore any noun
phrase that do not present “Europe” or “Asia” as its head word. For ReVerb and
OLLIE, we ignore noun phrases that do not contain these words in the end of the

phrase.

Dealing with n-ary instances. For EXEMPLAR, Lund-IE and SwiRL-IE, which
extract n-ary instances, our evaluation needs to convert n-ary instances into binary
ones. This is done by selecting all pairs of arguments from a n-ary instance and
creating a new (binary) instance for each of them. We remove binary instances
containing two arguments with the same role. We also remove instances containing

two prepositional objects, regardless of the preposition.

Metrics. Our evaluation focuses on the extraction of relation instances at a sen-
tence level. For this, we assume there is only one instance involving a pair of entities
in a sentence. The number of entity pairs involved with more than one instance was
insignificant in our datasets (less than 0.5%).

The metrics used in this analysis are precision (P), recall (R) and f-measure (F),

defined as usual:

_ # correctly extracted instances R # correctly extracted instances

9

P . (6.1)

extracted instances # annotated instances

2PR
F= 6.2
P+ R 62)

We also measure the total computing time of each method, excluding initializa-
tion or loading any libraries or models in memory. To ensure a fair comparison,
we make sure each method runs in a single-threaded mode, thus utilizing a single

computing core at all times.

100

6.2.2 Limitations and fairness

Our benchmarks are meant to evaluate lexical-syntactic methods; that is, methods
that analyze the lexical-syntactic structure of individual sentences to extract predi-
cates as described in this sentence.

We claim that our benchmarks are fair to all lexical-syntactic methods since our
annotations allow all possible variations of a predicate (e.g., “acquired”, “acquired
part of’, “has just acquired part of’) as long they contain the relation’s trigger word
(“acquired”) and are within a certain window of allowed words. Our benchmarks
would be unfair if a variation was favoured over another, penalizing a method for
including or ignoring non-essential words in the predicate.

On the other hand, our benchmarks are not meant to evaluate semantic methods;
that is, methods that leverage multiple sentences to recognize and merge predicates
that are synonyms. Semantic methods include PATTY, SONEX or any other method
that generates a canonical predicate to represent several synonym predicates. Our
benchmarks are also not meant to evaluate methods that produce relations by infer-
ence.

One way to expand our benchmarks to evaluate semantic methods would be to
allow synonyms for each trigger word. For this, one could map each trigger to a

corresponding WordNet'? sense.

6.2.3 Binary relations — Results

Table 6.2 presents the results for our experiment with binary relations. WEB-500
turned out to contain the easiest sentences as evidenced by the precision of all meth-
ods in this dataset. This is because WEB-500 sentences were collected by querying
a search engine with known relation instances. As a result, 92% of the sentences in
WEB-500 describe a relation instance. The other two datasets, on the other hand,
contain randomly chosen sentences. NYT-500 presents only 30% of sentences de-
scribing an instance, while PENN-500 presents 52%. These findings indicate that
although WEB-500 is a popular dataset, it perhaps does not represent the challenges

Ohttp://wordnet.princeton.edu/

101

Method . NYT-500 . WEB-500 ‘ PENN-100
Time P R F Time P R F Time P R F

ReVerb 0.02 0.70 | 0.11 | 0.18 0.01 092 | 029 | 044 | 0.02 | 0.78 | 0.14 | 0.23
SONEX-p 0.04 0.77 | 0.22 | 0.34 0.02 | 098 | 0.30 | 0.45 0.04 0.92 | 043 | 0.59
OLLIE 0.05 0.62 | 0.27 | 0.38 0.04 0.81 | 0.29 | 043 0.14 0.81 | 043 | 0.56
EXEMPLAR[M] 0.08 0.70 | 0.39 | 0.50 0.06 0.95 | 044 | 0.61 0.16 0.83 | 0.49 | 0.62
Meta-CRF 0.13 0.59 | 0.17 | 0.27 0.08 0.89 | 0.36 | 0.51 0.12 | 1.00 | 0.13 | 0.24
EXEMPLAR[S] 1.03 0.73 | 039 | 0.51 | 047 096 | 046 | 0.62 | 0.62 0.79 | 0.51 | 0.62
PATTY-p 1.18 0.49 | 023 | 0.32 0.48 0.71 | 048 | 0.57 0.66 046 | 0.24 | 0.31
SwiRL-IE 2.96 0.63 | 0.10 | 0.17 1.73 0.97 | 034 | 0.50 2.17 0.89 | 0.16 | 0.27
Lund-IE 11.40 | 0.78 | 0.24 | 0.37 2.69 091 | 0.37 | 0.52 5.21 0.86 | 0.35 | 0.50
TreeKernel - - - - - - - - 0.85 0.85 | 0.33 | 048

Table 6.2: Results for the task of extracting binary relations. Methods are ordered
by computing time per sentence (in seconds). Best results for each column are
underlined and highlighted in bold.

found in web text.

We were unable to run TreeKernel for NYT-500 and WEB-500 for lack of train-
ing data. We ran TreeKernel, as trained by its authors, on the same test set used in
their paper [95].

Comparing methods based on effectiveness (f-measure) or efficiency (compu-
tational cost) alone can be misleading. Instead, we compare methods in terms of
dominance. We say method A dominates method B if A is: (1) more effective and
as efficient as B; (2) more efficient and as effective as B; or (3) both more effective
and more efficient than B. The methods that are not dominated by any other form
the state-of-the-art.

Figure 6.1 plots the effectiveness and efficiency of all methods, averaged over all
datasets (TreeKernel was not included due to missing results). The lines in the plot
identify the state-of-the-art before (dashed) and after (solid) EXEMPLAR. (Note:
Although not clear in the figure, OLLIE and Lund-IE are dominated by SONEX-p
as they tie in f-measure.)

In terms of efficiency, there is a clear separation of approximately one order
of magnitude among methods based on shallow parsing (ReVerb and SONEX-p),
dependency parsing (OLLIE, EXEMPLAR[M], EXEMPLAR|[S], and PATTY-p) and
semantic parsing (SwiRL-IE and Lund-IE). ReVerb is fastest method since it uses
shallow parsing and does not rely on a NER system. SONEX-p is more effective

than ReVerb since it is able to recognize predicates triggered by a noun. However,

102

07 b | L | L |

0.6 | i
. EXEMPLAR[M] EXEMPLARS]
5 05F i
a SONEX-p M OLLIE n
) ” LUND-IE
= 4 F ‘ n -
o 0 PATTY-p

| |
R META-CRF n
0.3 REVERB SWIRL-IE
02 T | MR | MRS | M T
0.01 0.1 1 10

seconds per sentence

Figure 6.1: Average f-measure vs average time for NYT-500, WEB-500 and PEN-
100.

SONEX-p is less efficient then ReVerb because of the overhead introduced by its
NER.

EXEMPLAR[M] and EXEMPLAR([S] closely match OLLIE and PATTY, respec-
tively, since they use the same dependency parsers. As for effectiveness, EXEM-
PLAR outperforms both methods (OLLIE and PATTY). EXEMPLAR is more effec-
tive than these methods mainly because it can recognize more correct instances
(i.e., higher recall), particularly those with verb+noun predicates. This is because
EXEMPLAR allows multiple triggers, which is essential to detect verb+noun predi-
cates. Moreover, EXEMPLAR analyzes the path between an argument and a trigger
separately, as opposed to the whole subtree connecting two arguments. As it turns
out, this design choice greatly simplifies the task of designing good patterns for
predicates with multiple triggers.

Unlike EXEMPLAR, OLLIE considers only one trigger per predicate. As a con-
sequence, OLLIE cannot extract an argument between a verb and noun forming a

verb+predicate. For instance, consider the following sentence:

Although [[[Cubal]] —---> has announced their intention of
{{{joining}}} the [[[North Korean]]] boycott of the Olympics
<--— , the Cuban players have told their American counterparts

during their current tour of the United States that they think
their country will change its mind.

In this example, the argument “North Korean” is in between a verb and noun form-

103

1 1 1 1 1 1 1
LUND-IE SONEXp
09 F wMETA- CRF \ XEMPLAR(S]
SWIRL-IE 0
c \- :
S 08 :
@ REVERB i EXEMPLAR[M
S 7L OLLIE i
s 0.
06 PATTY-p i
|
05 1 1 1 1 1 1

0 0.1 02 03 04 05 06 0.7
recall

Figure 6.2: Average precision vs average recall for NYT-500, WEB-500 and PEN-
100.

ing the predicate “joined boycott”. This pattern can be seen in over 30% of the
instances in the NYT-500 dataset. OLLIE’s lower recall can be explained by its
inability to detect these instances.

The poor performance of PATTY-p and Meta-CRF can be explained as follows.
PATTY-p applies rather permissive extraction patterns, which detect most depen-
dency paths between arguments as a predicate. The original method, PATTY, relies
on redundancy to normalize predicates in order to recover from mistakes done in the
sentence-level. Meta-CRF has achieved high precision but low recall. Such a low
recall is likely due to insufficient training examples, since Meta-CRF was trained
with a few hundred examples only.

Figure 6.2 illustrates the dominance relationship differently, using precision ver-
sus recall. Again, the dashed line shows the previous state-of-the-art, and the solid
line shows the current situation. SONEX-p dominates PATTY-p and Lund-IE, since
they tied in recall. OLLIE, however, achieved greater recall than SONEX-p.

Somewhat surprisingly, EXEMPLAR presents 44% more recall than the more
sophisticated Lund-IE, at a close level of precision. This can be explained by Lund-
IE’s dependency on SRL training data. Particularly, Lund-IE is unable to extract
verb+noun predicates since SRL predicates are single words only. In addition,

Lund-IE was unable to detect predicates triggered by nouns not included in the

104

training data, such as “psychologist” and “company”.
The importance of noun triggers is illustrated by the higher recall of SONEX-p
and Lund-IE when compared, respectively, to ReVerb and SwiRL-IE, similar meth-

ods that handle verb triggers only.

6.2.4 Binary relations — Discussion

Differences in annotation. It is worth noting some differences between our an-
notations (WEB-500 and NYT-500) and the annotations from PEN-100. The first
difference concerns the definition of an entity. Consider the following sentence

from PEN-100:

113

. says Leslie Quick Jr., chairman of the Quick & Reilly discount brokerage
firm.”

Unlike our annotation style, the original annotation defines that “Leslie Quick Jr.”
is the chairman of “the Quick & Reilly discount brokerage firm”, as opposed to
“Quick & Reilly”. While we consider the words surrounding “Quick & Reilly” as
apposition, the original consider them as part of the entity.

Another difference concerns the definition of the RE task. We assume that RE
methods are responsible for resolving co-references when necessary to identify an

instance. For example, consider the sentence:

“It also marks P&G’s growing concern that its Japanese rivals, such as Kao
Corp., may bring their superconcentrates to the U.S.”

According to our annotation style, there is an instance of relation “rivals” involving
“P&G” and “Kao Corp.” in this sentence. Conversely, according to the annotation
style adopted by TreeKernel’s authors [95], the instance of “rivals” involves “Kap
Corp.” and the pronoun “it”, leaving the task of resolving the coreference between
“P&G” and “it” as a posterior step.

These differences in annotation illustrate the challenges of producing a bench-

mark for open relation extraction.

Differences in evaluation methodology. A sentence-level evaluation like ours

focuses on each sentence, separately. On the other hand, the evaluations of SONEX,

105

NYT n-ary
Time | P R F
EXEMPLAR[M] | 0.11 | 0.94 | 0.40 | 0.56

Method

OLLIE 0.12 | 0.87 | 0.14 | 0.25
EXEMPLAR[S] | 0.88 | 0.92 | 0.39 | 0.55
SwiRL-IE 290 | 0.94 | 0.30 | 0.45
Lund-IE 9.20 | 095 | 0.36 | 0.53

Table 6.3: Results for n-ary relations.

ReVerb, PATTY, TreeKernel and OLLIE are performed at the corpus level. Corpus-
level evaluations consider an extracted instance as correct regardless of whether a
method was able to identify one or all sentences that describe this relation instance.

Creating a ground truth for corpus-level evaluations is extremely hard, since
one has to identify and curate all relations described in a corpus. This often involves
detecting synonym predicates and co-referential entities. As a consequence, corpus-
level evaluations perform only an inspection of a method’s extracted instances. This
inspection measures a method’s precision, but is unable to measure recall.

Other differences in methodology are as follows. PATTY’s evaluation con-
cerns predicates (e.g., “wrote hits for”’) and their argument types (e.g. Musician—
Musician), as opposed to relation instances. The evaluations of ReVerb and OLLIE
consider any noun phrase as a potential argument, while the evaluations of TreeK-
ernel and SONEX consider named entities only.

Due to the lack of a ground truth and differences in evaluation methodology,
results from different papers are usually not comparable. This work tries to alleviate
this problem by providing reusable annotations that are flexible and can be used to

evaluate a wide range of methods.

6.2.5 N-ary relations

The goal of this experiment is to evaluate the accuracy and performance of our
method when extracting n-ary relations (n > 2). For this experiment, we manu-
ally tagged 222 sentences with n-ary instances from the New York Times. Every

sentence is annotated with a single trigger and its arguments.

106

NYT 12K

Method

Time P R F
ReVerb 0.01 | 0.84 | 0.11 | 0.19
OLLIE 0.02 | 0.85]0.22 | 0.35
SONEX 0.03 | 0.87 | 0.20 | 0.32

EXEMPLAR[M] | 0.05 | 0.87 | 0.26 | 0.40
EXEMPLAR[S] 1.20 | 0.86 | 0.29 | 0.43

PATTY 1.29 | 0.86 | 0.18 | 0.30
SwiRL-IE 3.58 | 0.87 | 0.16 | 0.27
Lund-IE 11.28 | 0.86 | 0.21 | 0.33

Table 6.4: Results for binary relations automatically annotated using Freebase and
WordNet.

This experiment measures precision and recall over the extracted arguments.
For each sentence, a method is asked to extract a relation instance of the form
(p,aq,as,...,a,), where p is the predicate and a; is an argument. If multiple in-
stances are extracted, we only use the extracted instance whose predicate contains
the annotated trigger, if one exists. We evaluate the correctness by looking at in-
dividual arguments separately. An extracted argument is deemed correct if it is
annotated in the sentence; otherwise, it is deemed incorrect.

Precision and recall are now defined as follows:

__ # correctly extracted arguments R # correctly extracted arguments

extracted arguments ’ # annotated arguments
(6.3)

There are 765 annotated arguments in total. Table 6.3 reports the results for our
experiment with n-ary relations. EXEMPLAR[M] shows a 6% increase in f-measure
over Lund-IE, the second best method, while being almost two orders of magnitude

faster.

6.2.6 Automatically annotated sentences

The creation of datasets for open RE is an extremely time-consuming task. In this

section we investigate whether external data sources such as Freebase!! and Word-

http://www. freebase.com

107

Net'? can be used to automatically annotate a dataset, leading to a useful bench-
mark.

Our automatic annotator annotates an sentence by highlighting a pair of entities
and a single token triggering an instance involving them. It does so by first trying
to link all entities in a sentence to Wikipedia (and consequently to Freebase, since
Freebase is linked to Wikipedia) by using the method proposed by [22]. For each
two entities appearing within 10 tokens of each other in a sentence, our annotator
checks whether Freebase has this entity pair as an instance of a relation. If such an
instance exists, the annotator tries to find a trigger of this instance in the sentence. A
trigger must be a synonym for the Freebase’s relation name (according to WordNet)
and its distance to the nearest entity cannot be more than 5 tokens.

We applied this method for the New York Times and were able to annotate over
60,000 sentences containing over 13,000 distinct entity pairs. For our experiments,
we randomly selected one sentence for each entity pair and separated a thousand

for development and over 12,000 for test.

Comparing with human annotators. Although we expect our automatic anno-
tator to be less accurate than a human annotator, we are interested in measuring the
difference in accuracy between them. To do so, two authors of this paper looked at
our development set and marked each sentence as correct or incorrect. The agree-
ment (that is, the percentage of matching answers) between the humans was 82%.
On other hand, the agreement between our automatic annotator and each human
was 71% and 72%. This shows that our annotator’s accuracy is not too far below
human’s level of accuracy.

Table 6.4 shows the results for the test sentences. Both EXEMPLAR[S] and
EXEMPLAR[M] outperformed all methods in recall, while keeping the same level

of precision.

Phttp://wordnet .princeton.edu/

108

6.3 Conclusion

We presented new benchmarks for ORE enabling a fair and objective evaluation
of several methods. Our benchmarks are fair since they do not penalize an ORE
method for including or excluding non-essential tokens in a predicate. This is
achieved by annotating a trigger and a list of allowed tokens for each predicate.
An extracted predicate is deemed as correct when it contains the trigger and any
number of allowed tokens.

Our evaluation shed some light on the trade-off between effectiveness and ef-
ficiency of ORE methods. For this, we defined that the state of the art in ORE
is composed by methods that are not dominated by any other methods, i.e., no
other method is both more efficient and more effective than these methods. In our
experiments, the state-of-the-art methods for binary relation extraction are: Re-
Verb, SONEX-p, EXEMPLAR[M] (which uses the Malt parser) and EXEMPLAR[S]
(which uses the Stanford parser). ReVerb is the fastest method. SONEX-p outper-
forms ReVerb in effectiveness, but its NER’s overhead make it less efficient. The
EXEMPLAR variations present similar effectiveness, but differ greatly in efficiency.
This is because the Malt parser is almost one order of magnitude faster than the
popular Stanford parser, while producing dependency trees that are almost as good.

An interesting observation is that the state-of-the-art is composed exclusively by
methods that rely on hand-crafted rules. These methods dominate 3 methods based
on machine learning: OLLIE, Lund-IE and SwiRL-IE. However, these methods’
underperformance is not due to their statistical learning approach. Instead, this
underperformance is a statement of the importance of detecting multiple triggers
for a predicate. Over 30% of the instances described in one of our datasets required
the detection of two triggers. Since these methods consider only one trigger, they
were not able to extract these instances. Furthermore, we discussed some issues
with SRL training data that make it inadequate for ORE.

Our experiments indicate that fast yet accurate dependency parsers is a promis-
ing direction for scalable ORE. This is because dependency parsing have a signif-

icant effect in effectiveness when compared to POS tagging. Conversely, SRL’s

109

improvement over dependency parsing is insignificant.

A caveat with our results is that the compared methods differ in many factors,
not only in their underlying NLP machinery. In the next chapter, we present addi-
tional experiments to confirm whether our observations are due to NLP tools used
by these methods or a different factor. For this, we evaluate one method with dif-

ferent NLP tools.

110

1. -—-—> finally <-—- [[[google]]] —---> bought <---
[[[youtube]]]

2. [[[Google]]] —-——> confirms <-—— [[[YouTube]]] -——>
{{{aquisition}}} <-—- - BBC News

3. On January 31 , 2006 , [[[Viacom]]] —-——-> completed
its {{{acquisition}}} of <--- [[[DreamWorks]]] LLC (
) , a producer of live - action motion pictures
, television programming and home entertainment
products

4. [[[Gershwin]]] (1898 - 1937) , —--—> was {{{born}}}
in <-—- Brooklyn , [[[New York]]] , the son of

5. Fascinating facts about [[[Ruth Handler]]] --——>
{{{inventor}}} of <-—-- [[[Barbie]]] in 1959

(a) Examples of annotated sentences from the WEB-500 dataset. Typos, missing punctuations
and any other linguistic issues have been transcribed exactly as found in the source text.

6.

But they will also see the work of the woman

who inspired Mr. Martin ’s tale in the first
place : the artist Allyson Hollingsworth , who
created the photographs and drawings attributed

to [[[Ms. Danes]]] --——> ’s {{{character}}} <-——,
[[[Mirabelle Buttersfield]]] , and who also served
as a consultant on the film

Another character , the [[[Robber Daughter]]] ,

and her mother —---> plot to ‘' {{{kill}}} " <-——-
[[[Gerda]]]l (a light moment with dark undertones ,
which may make some children shudder)

He shot and missed a fallaway 10-footer ,
[[[Bramlett]]] missed a tip-in and [[[Jefferson]]]
put up an 8-foot air ball as the buzzer sounded

(b) Examples of annotated sentences from the NYT-500 dataset. Sentence #8 is an example of
sentence without annotated trigger.

9.

That s when [[[George L. Ball]ll]l] , ———>
{{{chairman}}} of the <--- [[[Prudential Insurance
Co. of Americal]] ———> unit <-—— , took to the
internal intercom system to declare that the plunge
was only ‘' mechanical . 7

10.

A group of Arby ’'s franchisees said they formed

an association to oppose [[[Miami Beach]]] —-——>
{{{financier}}} <-—— [[[Victor Posner]]] ’s control
of the restaurant chain

(c) Examples of annotated sentences from the PENN-100 dataset. This dataset contains many
predicates triggered by a noun.

Figure 6.3: Examples of annotated sentences from WEB-500, NYT-500 and PENN-

100.

111

Chapter 7

Efficiens: Allocating Computational
Resources for Efficient ORE

Current ORE methods apply a fixed set of NLP tools for every sentence. For in-
stance, ReVerb applies POS tagging for every sentence, while EXEMPLAR applies
POS tagging and dependency parsing. These methods do not provide a solution for
cases where the user is willing to allocate more computational resources (e.g., use
more expensive NLP tools) in order to improve the quality of the extracted relations.
This chapter discusses Efficiens, an ORE method that can apply different NLP tools
for each sentence. Efficiens applies POS tagging for all sentences and allows the
user to choose the percentage of sentences that can be processed by dependency
parsing and SRL.

By applying more expensive NLP tools for a sentence, Efficiens can improve
effectiveness. This is because the additional information about a sentence can help
Efficiens to extract more correct instances and less incorrect ones. However, we
have found that improvements like these occur rather infrequently. In particular,
we applied POS tagging, dependency parsing and SRL for our development dataset
containing 300 sentences from the The New York Times. Then, we compared the
instances produced using POS tagging only and those produced using deep NLP
tools (dependency parsing and SRL). We have found that only 7% of the sentences
in this dataset produced better instances with deep NLP tools. In other words, an
extractor that applies deep NLP for all sentences will be wasting computational

resources for 93% of the sentences in this specific dataset. Therefore, it is desir-

112

able for Efficiens (and any ORE method, for that matter) to prioritize sentences
according their likelihood of improving effectiveness with the additional informa-
tion provided by deep NLP tools. In this way, Efficiens would be able to better
allocate computational resources and avoid wasting these resources in sentences

that are unlikely to improve effectiveness.

7.1 Overview

Efficiens takes a budget in the form of two parameters: «, S in the range [0, 1].
These parameters define the number of sentences that can be processed by the more
expensive NLP tools: dependency parsing and SRL. Given a set of N sentences, «
defines that o x N should be processed by dependency parsing, while 3 defines that
a X 8 x N should be processed by SRL. These refer to these subsets as a subset
and 3 subset, respectively. Each of the NV sentences is processed by POS tagging.
Efficiens has a module for each NLP tool. The Efficiens[POS] module relies
on POS tagging, while the Efficiens[DEP] and Efficiens[SRL] rely on dependency
parsing and SRL, respectively. Each module can be used as a stand-alone ORE

method.

Problem statement. Given a set of sentences, the problem addressed by each
Efficiens module is to extract relation instances of the form (p, aq, ..., a,), where
p is a predicate and a; is an argument. Each argument a; must be associated with
one of the following roles: subject, direct _object or prep_object, where
prep_object folds into many roles, one for each preposition.

The problem addressed by Efficiens is to choose which sentences should be
processed by each module in order to maximize effectiveness. Given a corpus and
the budget parameters o and 3, Efficiens selects sentences for the o subset and 3
subset as to maximize the number of correctly extracted instances.

To choose the o and /3 subsets, Efficiens assigns a score to each sentence trying
to assign higher scores to sentences that are more likely to improve the quality of
extracted instances. The « and 3 subsets are composed of the top o x N highest

scored sentences and top 3 x N highest scored sentences, respectively.

113

7.2 The Efficiens Method

Efficiens reads every document sequentially and extracts instances in a single pass
through the corpus. For each document, the Stanford’s CoreNLP library [88] is
used to extract tokens and sentences. Sentences are then processed by a pipeline of

modules, as discussed next.

Efficiens pipeline. Figure 7.1 illustrates the Efficiens pipeline. All sentences are
first processed by the Efficiens|[POS] module, which extracts instances using the
information provided by the Stanford POS tagger [88]. Next, Efficiens scores every
sentence and sends the top a X N sentences (the « subset) to Efficiens[DEP]. In-
stances extracted from the chosen sentences are discarded and instances extracted
from the non chosen sentences are returned. Efficiens|[DEP] applies the Malt depen-
dency parser [73] over the « subset and produces new instances. This module also
exploits the POS tags generated in the previous module. Next, Efficiens chooses
the top o x 5 x N sentences (the (5 subset) from the « subset and sends them to the
final module: Efficiens[SRL]. As before, the instances extracted from non chosen
sentences are returned. Efficiens[SRL] produces instances by leveraging a new ver-
sion' of Lund [8], the SRL system from Mate Tools?. For differentiation, we call
this system Lund2. Lund2 uses an internal dependency parser [9], whose output is
not compatible with the Malt parser. Therefore, Efficiens[SRL] uses features from
SRL and dependency parsing from Lund?2 in addition to the features produced by

the two previous modules.

7.2.1 Extracting relation instances with an Efficiens module

Figure 7.2 illustrates the architecture of an Efficiens module. All modules follow
the same architecture; they differ only over the NLP tool applied to a sentence.
Given a sentence, the first step is run one of the following NLP tools: POS tagging,

dependency parsing or SRL, depending on the module.

'Note that we have evaluated an older version of Lund in Chapter 6.
’https://code.google.com/p/mate-tools/

114

N a% . B% N

| Efficiens Efficiens »| Efficiens

POS DEP RL |
Sentences

Instances Instances Instances

Figure 7.1: The Efficiens Pipeline. Sentences are buffered before the Effi-
ciens[POS] modules until the buffer is full. All buffered sentences are then pro-
cessed by Efficiens[POS]. The « subset of sentences goes through Efficiens[DEP].
Finally, the 3 subset of sentences goes through Efficiens[SRL].

Apply N Predicate N Argument

I
NLP Tools Detection Detection > Instances

Sentence —

Figure 7.2: The architecture of a module. Each module employs a set of NLP tools,
such as POS tagging, dependency parsing or SRL. Using the information provided
by these tools, this module detects predicates and arguments of this predicate.

Detecting predicates. The next step is to detect predicates. For this, an Efficiens
module generates a list of candidate predicates. A candidate is composed by one
trigger (a verb or noun) or two triggers (a verb and noun). In order to be considered
a valid predicate, a candidate must fall into one of the possible predicate types.
Figure 7.3 shows the types of predicates recognized by Efficiens. Our module
tries to classify each candidate into one of five classes: verb+noun, verb+prep+noun,
copula+noun, possessive+noun or “none”, for candidates that do not belong to any
of the predicate types. Our module uses a logistic regression classifier and fol-

lows the “one vs. all” approach to multiclass classification. Our module employs 5

Predicate Type Triggers | Example Sentences

Verb 1 “X acquired Y7, “X was seen with Y”

Verb+noun 2 “X made a deal with Y”, “X invited Y’s leaders”
Verb+prep+noun | 2 “X gave Y up for adoption”, “X will stay on Y’s side”
Copula+noun lor2 “X is the president of Y”, “X, a oper@ls director at Y”
Possessive+noun | 1 “X’s acquisition of Y”, “X’s headquarters at Y”

Figure 7.3: Predicate types recognized by Efficiens with example sentences. Trig-
gers are underlined in examples. The column “Triggers” shows the number of trig-
gers accepted for each type. Copula4+noun accepts two triggers when the copula
is explicitly mentioned. It also accepts one trigger when the copula is implicitly
mentioned via apposition.

115

classifiers, one for each class. Given a candidate, these classifiers return a number
between 0 and 1 indicating the likelihood of the candidate belonging to a particular
class. A candidate whose predicted class is different from “none” is sent to the next

step for argument detection.

Detecting arguments. For each predicate, the argument detection step generates
a list of candidate arguments and classify each candidate according to its role:
subject, direct_object, prep_object, or “none” (for candidates that are not
arguments). A candidate argument is represented by a single noun, which is the
head word of the argument. There is flexibility over which nouns are used as candi-
dates. The user may choose to use any noun (including proper and common nouns),
proper nouns only or nouns marked as entities by a NER. Therefore, Efficiens does
not require a NER. As in the previous step, each type is recognized by an individual
logistic regression classifier.

The advantage of using logistic regression classifiers is that their output can
be interpreted as probabilities, allowing Efficiens to assign a confidence score to
each classification, particularly to the classification of predicates and arguments as
described in this section. Another reason for using logistic regression is that it has

been successfully applied for argument detection in both ORE [28] and SRL [45].

7.3 Learning

Training data for ORE is scarce. Most methods circumvent this problem by produc-
ing training data automatically via heuristics [6, 59] or manually annotating small
datasets [28, 64]. The problem with these circumventions is that they have a neg-
ative impact on a classifier’s accuracy. This is because automatic annotations are
noisy and small datasets seldom provide enough statistical support.

We produce training data for Efficiens by leveraging SRL annotations. While
SRL annotations are quite different from the output of ORE methods, they can be
automatically converted into training data for ORE. One advantages of leveraging
SRL annotations to produce ORE training data is that these annotations are hand-

crafted by experts, which reduces the changes of introducing noise into the training

116

data. Another advantage is that these annotations are available in large quantities
through initiatives like PropBank and NomBank. In particular, we use the dataset
published by the CoNLL-2009 Shared Task [40], that integrates annotations from
several initiatives into a single dataset. Each sentence in this dataset is annotated
with POS tags, a dependency tree and SRL annotations.

To produce training data for Efficiens, we designed a rule-based method similar
to EXEMPLAR that leverages a sentence’s dependency tree and SRL annotations
to produce relation instances. We call this method Trainer and describe its rules
in Appendix A. We use the instances extracted by Trainer to train Efficiens’ lo-
gistic regression classifiers. This process is described as follows. First, we apply
Trainer to extract relation instances from a sentence. These instances are provided
to Efficiens to be used as ground truth. Efficiens generates all candidate predicates
and arguments from a sentence as described in Section 7.2.1 and tries to find these
candidates in the ground truth instances. A candidate found in the ground truth is
labelled with a class according to its type as defined in the ground truth instance. A
candidate not found in the ground truth is labelled “none”.

Efficiens uses the machine learning library LIBLINEAR [29] in conjunction
with Weka framework [41]. The features used for detecting predicates and argu-
ments are no different from most unlexicalized ORE systems (recall Section 2.3.2).

Appendix B discusses the features used by Efficiens.

7.4 Choosing sentences for the o and 5 subsets

Now, we discuss how Efficiens chooses sentences for the o and (3 subsets. After
extracting instances from a sentence, each Efficiens module calculates an improve-
ment score. A sentence with a high improvement score is expected to describe
instances that can be improved with the additional information provided by deep
NLP tools. Therefore, the o and subsets are composed by sentences with the
highest scores.

Efficiens chooses the o and (3 subsets from many small, in-memory lists of

sentences, which is much cheaper than working with a large list of sentences that

117

do not fit memory. For this, Efficiens uses a buffer of fixed size /NV. Before sentences
are sent to Efficiens[POS], they are stored in this buffer. When the buffer is full,
the buffered sentences are sent to Efficiens[POS]. Once Efficiens[POS] processes
all buffered sentences, it calculates the improvement score for each sentence. The
top a X N sentences are chosen for the « subset. Once Efficiens|[DEP] processes
these sentences, it calculates a new improvement score for them. Finally, the top
B x N sentences are chosen for the 3 subset and sent to Efficiens[SRL].

One measure used in our improvement score is the number of extracted in-
stances with exactly 1 argument. This measure comes from the observation that
Efficiens sometimes filters out instances missing an argument. With the additional
information provided by deep NLP tools, Efficiens is often able to recognize the
missing argument.

Another measure in our improvement score is the number of low-confidence
classifications when detecting predicates and arguments. We define the confidence
of a classification as the difference between the probability for the best class (e.g.,
verb+noun) and the probability of the second best class (e.g., copula+noun), as
returned by the logistic regression classifiers. To calculate this measure, we use
the classifications for both predicate types and argument types as discussed in Sec-
tion 7.2.1.

The improvement score for a sentence s; is defined as follows:
improvement(s;) = wy - I(s;) + wy - D(s;,¢) (7.1)

where w; is a weight, I(s;) is the number of instances extracted from s; with exactly
1 argument and D(s) is the number of classifications for s; with confidence equal
to or lower than c. In our experiments, we empirically choose w; = 0.9, wo = 0.1
and ¢ = 0.4 since these values performed the best in our development dataset. We
tested 9 combinations for w; and w, by adding increments of 0.1 to w; until 0.9 and
setting wy to 1 — w;. We performed a similar test to choose the value of c. Other
possible features such as sentence length, total number of extracted instances and
average confidence score for all classifications were tested but failed to increase the

performance of the improvement score.

118

In the next section, we evaluate Efficiens and our improvement score. We will

show that our score consistently outperforms random selection.

7.5 Experiments
7.5.1 Comparison with ORE methods

Setup. To evaluate Efficiens, we use three datasets introduced in Chapter 6: NYT-
500, WEB-500 and PENN-100. Recall that each sentence in a dataset is annotated
with two entities and, if this sentence describes an instance involving them, a predi-
cate is also annotated. We also use the concept of dominance. To recall, we say that
method A dominates method B if A is: (1) more effective and as efficient as B; (2)
more efficient and as effective as B; or (3) both more effective and more efficient
than B. The methods that are not dominated by any other form the state-of-the-art.

As before, the metrics used in this analysis are precision (P), recall (R) and

f-measure (F):

P # correctly extracted instances o # correctly extracted instances (7.2)
N # extracted instances T # annotated instances
2PR
F= 7.3
P+ R 73)

We also measure the total computing time of each method, excluding initializa-
tion or loading any libraries or models in memory. To ensure a fair comparison,
we make sure each method runs in a single-threaded mode, thus utilizing a single

computing core at all times.

Methods. In Chapter 6, we evaluated the f-measure and computational time of
existing ORE methods. We repeat this evaluation here, now including two new
methods: Efficiens and Lund2-1E. Lund2-IE is a new method based on the SRL-IE
approach that relies on Lund2. Lund?2 is also the SRL system used by Efficiens
(recall Section 7.2).

Results. Figure 7.4 compares Efficiens with other ORE methods. Unlike previous

methods, the parameters o and 8 can change the effectiveness and efficiency of

119

07 R | L | T TR
EFF[DEP] EFFISAL]

0.6 - - m EXEMPLARIS] |
o EFF[POS] EXEMPLAR[M]
5 05 4
a m OLLIE [
Q - LUND-IE
(S 4 .
£ 0 PATTY-p

|
0.3 | WdREVERB LUND2HE gwiRLIE
02 P | gl MR | MR T
0.01 0.1 1 10

seconds per sentence

Figure 7.4: Average f-measure vs average time for NYT-500, WEB-500 and PEN-
100. EFF[POS], EFF[DEP] and EFF[SRL] represent the performance of each Effi-
ciens module when applied for all sentences.

our method. Therefore, Efficiens cannot be represented by a single plot. In this
experiment, we show three plots for Efficiens, one for each module. Efficiens[POS]
applies POS tagging only (o = 0.0, 8 = 0.0). Efficiens[DEP] applies dependency
parsing for all sentences (o« = 1.0, 3 = 0.0), and Efficiens[SRL] applies semantic
role labeling for all sentences (o« = 1.0, 5 = 1.0).

The lines in the plot identify the state-of-the-art methods. ReVerb is the fastest
method and therefore is not dominated by any other method. Efficiens[POS] domi-
nates SONEX-p, OLLIE, PATTY-p, SwiRL-IE and Lund-IE. Finally, Efficiens[DEP]

dominates EXEMPLAR[M], while Efficiens[SRL] dominates EXEMPLAR[S].

Discussion. Efficiens shows a gain in effectiveness over methods using similar
features. In particular, Efficiens[POS] is more effective than SONEX-p (both use
Stanford POS tagger) and Efficiens[DEP] is more effective than EXEMPLAR[M]
(both use the Malt dependency parser). These gains in effectiveness show the power
of machine learning over manually crafted rules.

Efficiens is also more efficient than rule-based methods using the same features.
This is because Efficiens does not require a NER system and the time required to

apply classifiers is lower than the time of running the Stanford NER. In addition, the

120

SRL system used by Efficiens (Lund2) is much faster than the other SRL systems
in our comparison.

When compared with its previous version (Lund-IE), Lund2-IE presents higher
efficiency but lower effectiveness. Analyzing the output of this method, we found
that Lund2-IE extracted very few predicates triggered by a noun. We believe that
the root cause of this problem in the SRL training data. NomBank often annotates
the same noun as both the predicate and the argument. For instance, the example for
the predicate “administrator” in NomBank documentation is “Connecticut’s chief
court administrator”, where “administrator” is both the predicate and the argument
representing the job holder. This is the case for most nouns classified as ACTREL
(relational nouns with beneficiaries) and DEFREL (relational nouns for personal
relationships). While this annotation style is common in NomBank, it is not useful
for ORE. Despite using the same training data, Lund-IE seems to avoid tagging
the same noun as both predicate and argument. This seems to be the reason for its
higher effectiveness.

Our experiments indicate that dependency parsing and SRL can contribute to
improving the quality of extracted instances. However, SRL’s contribution is much
lower than the contribution of dependency parsing. Regarding efficiency, running a
SRL system on top of a dependency parser is much more cheaper than we expected.
To see this, recall that Lund?2 is not compatible with the Malt parser used in Effi-
ciens[DEP]. Therefore, Efficiens[SRL] employs Lund2’s dependency parser. As it
turns out, over 90% of the computational cost of Efficiens|SRL] can be attributed to
Lund2’s dependency parser. Hence, Lund2’s SRL module requires only a fraction

of the time needed to generate the dependency trees they use as input.

7.5.2 Evaluation of our improvement score

Now, we evaluate our improvement score on the task of prioritizing sentences to be
processed by Efficiens[DEP] (the « subset) and the sentences to be processed by
Efficiens[SRL] (the /3 subset).

121

1 T T T T T T __b--‘ T 1 T T T T T T X T
o~ P
08 /" n 0.8 ‘/," .
-~ »
—”“ a"’
— 06 L . = 06 g]
[o L [+ -”
&) g [$] Ptad
[} 4 [0
= 04 F o E = 04 F E
v %
P
y R4
0.2 random 0.2 [random
improvement score ====-=: improvement score ====-=:
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
0.1 02 03 04 05 0.6 0.7 08 09 1 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1
k = % sentences k = % sentences

(a) Recall of the ranking used to choose the « (b) Recall of the ranking used to choose the 3
subset. subset.

Figure 7.5: Recall of the rankings used to choose the « and [subsets (dashed line).
Each k£ represents a percentage of sentences at the top of the ranking. We also plot
the expected recall fora random ranking (solid line).

Setup. The goal of this experiment is to evaluate the quality of the ranking de-
fined by our improvement score. For this, we applied every module of the Effi-
ciens pipeline to the NYT-500 dataset and identified the set of sentences containing
improved instances. In particular, we identified the set G; of sentences contain-
ing instances that were improved when comparing the output of Efficiens[POS]
and Efficiens[DEP]. Similarly, we identified the set G5 of sentences containing in-
stances that were improved when comparing the output of Efficiens[DEP] and Ef-
ficiens[SRL]. Observe that G; and G, are the ground truth for the o and /3 subsets,
respectively. That is, a perfect « subset (or 3 subset) is equal to GG; (or G).

We evaluate two rankings in separate: (1) the ranking used to choose the «
subset, whose ground truth is G; and (2) the ranking used to choose the S subset,
whose found truth is GG5. A perfect ranking lists every sentence in GG; before listing
any other sentence.

The quality of a ranking is measured by recall at k [61]:

f in th hat bel .
Recall at k — number of sentences in the top k that belong to GG;

7.4
number of sentences in (G; (7:4)

Results. Figure 7.5 shows the recall of our rankings for various values of £ (0.1,
0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9 and 1). This figure also shows the expected recall

of a random ranking (i.e., the recall value averaged over a large number of random

122

rankings). We observe that our rankings outperform random rankings by a large
margin. The recall improvement of using our rankings over random rankings for
the values of k£ < 1 (the recall value for £ = 1 is 1 for any ranking) is on average

48% for the choosing the alpha subset and 28% for choosing the 3 subset.

Discussion. The results shown in Figure 7.5 indicate that using our improvement
score for selecting the o and [subsets is often a better choice than randomly choos-
ing these subsets. Next section explores the overall impact of our improvement

score to the effectiveness and efficiency of our method.

7.5.3 Performance of Efficiens with our improvement score

Setup. This experiment measures the effectiveness and efficiency of Efficiens for
31 different budgets. Each budget is a combination of values for « and /3, selected
from following list: 0, 0.2, 0.4, 0.6, 0.8, 1. We compare Efficiens’ performance
when using our improvement score and its performance when using a random score.
Given the results shown in Figure 7.5, we expect Efficiens to produce better relation
instances when using our improvement score as opposed to a random score for a

given budget.

Results. Table 7.1 shows the f-measure (effectiveness) and time per sentence (ef-
ficiency) of Efficiens for 31 budgets (combinations of values for «,) when using
our improvement score and a random score. For each budget, the value of f-measure
and time is averaged over 10 runs for both scores. In total, we computed 310 runs
per score. We highlight in bold the highest f-measure value for budget when com-
paring our score with the random score. Observe that this table shows only one
budget with a = 0, since we can only run SRL over sentences that have been
through dependency parsing. In addition, the f-measure value presented by both
scores must to be equal for the following budgets: (0,0), (1,0) and (1,1). This is
because these combinations require all sentences to be processed by Efficiens[POS],
Efficiens[DEP] and Efficiens[SRL], respectively. Since all sentences are processed,

the ordering of the sentences does not affect the result.

123

random improvement score
@ B8 - : :
f-measure | time f-measure (gain) | time

0 0 0.461 0.017 | 0.461 (0%) 0.017
0210 0.484 0.030 | 0.515 (6%) 0.033
0.2 | 0.2 | 0.489 0.041 | 0.521 (6%) 0.048
02 | 04 | 0478 0.044 | 0.523 (9%) 0.057
0.2 | 0.6 | 0.492 0.052 | 0.524 (7%) 0.069
0.2 | 0.8 | 0.491 0.058 | 0.522 (6%) 0.083
021 0.493 0.064 | 0.537 (9%) 0.094
040 0.515 0.035 | 0.558 (8%) 0.038
04|02 | 0518 0.050 | 0.567 (9%) 0.063
04|04 | 0515 0.063 | 0.570 (11%) 0.080
0.4 | 0.6 | 0.521 0.076 | 0.576 (11%) 0.097
04 | 0.8 | 0.520 0.089 | 0.576 (11%) 0.115
04 |1 0.535 0.098 | 0.587 (10%) 0.130
06 |0 0.544 0.039 | 0.557 3%) 0.043
0.6 | 0.2 | 0.546 0.060 | 0.568 (4%) 0.074
0.6 | 0.4 | 0.536 0.081 | 0.581 (8%) 0.097
0.6 | 0.6 | 0.564 0.096 | 0.592 (5%) 0.121
0.6 | 0.8 | 0.562 0.114 | 0.611 (9%) 0.138
06 |1 0.567 0.133 | 0.624 (10%) 0.161
08 |0 0.566 0.043 | 0.589 (4%) 0.046
0.8 | 0.2 | 0.573 0.070 | 0.598 (5%) 0.089
0.8 | 0.4 | 0.581 0.094 | 0.629 (8%) 0.115
0.8 | 0.6 | 0.581 0.118 | 0.639 (10%) 0.143
0.8 | 0.8 | 0.590 0.140 | 0.639 (8%) 0.164
08 | 1 0.595 0.166 | 0.636 (7%) 0.183
1 0 0.589 0.047 | 0.589 (0%) 0.047
1 0.2 | 0.585 0.081 | 0.603 (3%) 0.098
1 0.4 | 0.605 0.111 | 0.631 (4%) 0.134
1 0.6 | 0.615 0.142 | 0.631 (3%) 0.156
1 0.8 | 0.628 0.170 | 0.638 (2%) 0.184
1 1 0.627 0.198 | 0.627 (0%) 0.200

Table 7.1: F-measure and time (seconds per sentence) for different values of o and

8.

Observe that our improvement score achieves greater f-measure than random se-
lection for all budgets where the order of the sentences can affect Efficiens’ perfor-
mance (i.e., excluding the tree budgets mentioned earlier). However, the sentences
selected with our score often take more time to process than those chosen randomly.
This is because our score tends to assign higher scores to longer sentences and these
sentences require more time to be parsed by NLP tools.

To understand the actual impact of our improvement score to Efficiens’ perfor-
mance, we will now discuss a different way to present the values shown in Table 7.1.

For this, we selected several values of f-measure as shown in Table 7.2. For each

124

f-measure | random | improvement score | increase
0.510 28.6 30.3 6.1%
0.515 25.6 26.3 2.6%
0.520 25.6 26.3 2.6%
0.525 25.6 26.3 2.6%
0.530 25.6 26.3 2.6%
0.535 25.6 26.3 2.6%
0.540 25.6 26.3 2.6%
0.545 233 26.3 13.2%
0.550 23.3 26.3 13.2%
0.555 23.3 26.3 13.2%
0.560 23.3 21.7 -6.5%
0.565 233 21.7 -6.5%
0.570 21.3 21.7 2.2%
0.575 213 21.7 2.2%
0.580 21.3 21.7 2.2%
0.585 21.3 21.7 2.2%
0.590 9.0 11.2 24.7%
0.595 9.0 11.2 24.7%
0.600 9.0 10.2 13.3%
0.605 9.0 8.7 -3.5%
0.610 7.0 8.7 23.5%
0.615 7.0 8.7 23.5%
0.620 59 8.7 47.8%
0.625 59 8.7 47.8%
average 10.8%

Table 7.2: Throughput (i.e., the number of sentences processed per second) for
several levels of f-measure.

f-measure value and choice of score, we found the minimum time required to reach
(or surpass) this value in Table 7.1. For example, the minimum time required to
reach or surpass a f-measure value of 0.6 when using the random score is 0.111,
which can be found in the row of the budget (&« = 1,3 = 0.4). Then, we cal-
culated Efficiens’ throughput (i.e., number of sentences processed per second) for

1
each value of f-measure, where throughput = pr.
ime

Discussion. Table 7.2 shows the increase in Efficiens’ throughput when using our
score as opposed to the random score. On average, our score increases Efficiens’
throughput by 10.8% while keeping the same level of effectiveness. This increase
is more accentuated for higher level of effectiveness (f-measure > 0.59). Due to
our score, Efficiens was able to output 47.8% more sentences at the highest level
of f-measure (0.625). These results indicate that carefully selecting sentences to be

processed by more expensive NLP tools is a promising research direction.

125

7.6 Conclusion

We presented Efficiens, an ORE method that takes as input a budget, which limits its
ability to run sophisticated (and expensive) NLP tools over all sentences from a cor-
pus. Efficiens respects the user budget by leveraging a modular architecture, where
each module exploit one of the following tools: POS tagging, dependency parsing
and SRL. These modules work in a pipeline, where a sentence can go throughout
all modules or stop after any module. This allows Efficiens to allocate more or less
time to a sentence according to this sentence’s likelihood of improving the final set
of extracted instances. Our experiments show that our intelligent selection of sen-
tences is better than random selection. Our selection increased the throughput of
Efficiens by 11% on average while keeping the same level of effectiveness as the
random selection. This result shows that allocation of computational resources is a
promising solution for more efficient ORE methods.

Our experiments show that Efficiens dominates every ORE method but ReVerb,
which is faster but not as accurate. These results show that leveraging readily avail-
able training data for SRL is a solution for the lack of training data for ORE.

By combining POS tagging, dependency parsing and SRL within a single frame-
work, Efficiens allows one to measure the real contribution of these features for
ORE. In our experiments, dependency parsing shows an improvement of 15% (0.62
up from 0.54) in f-measure over POS tagging. On the other hand, SRL improves
f-measure by only 2% when compared to dependency parsing.

A reason for the low contribution of SRL features is as follows. SRL systems
use much of the same features as Efficiens, that is, the features extracted from POS
tagging and dependency parsing. Therefore, including the SRL output as a feature
do not provide much additional information. A similar phenomenon is known to
happen in NER. Adding POS tags as features results in little improvement since

NER and POS tagging uses much of the same features [38].

126

Chapter 8

Conclusion

This thesis explored the trade-off between effectiveness and efficiency for open
relation extraction (ORE), the task of extracting unknown relations from large cor-
pora. For this, we presented new benchmarks for ORE enabling a fair and objective
evaluation of a wide range of methods. In particular, we tested 11 methods, which
can be grouped by their underlying NLP tools: part-of-speech (POS) tagger, de-
pendency parser and semantic role labeler (SRL). Our benchmarks are fair since
they do not penalize a method for including or excluding non-essential tokens in
a predicate. In addition, we introduced four ORE methods: SONEX, Meta-CRF,
EXEMPLAR and Efficiens.

Our experiments indicate that dependency parsing offers a significant contribu-
tion to increasing ORE’s effectiveness when compared to POS tagging alone. Our
experiments also indicate that SRL’s contribution to ORE’s effectiveness is limited
or even insignificant when compared to POS tagging and dependency parsing to-
gether. We conjecture that this is because SRL offers little additional information
about a sentence’s structure since SRL uses the same features (POS tagging and
dependency parsing) as ORE.

We expect the relative effectiveness achieved by our experimental methods to be
consistent for other corpora. This is in part because when comparing two methods
using the same underlying NLP tool (e.g., EXEMPLAR[M] vs. Efficiens[DEP]), the
method with higher effectiveness (e.g., Efficiens| DEP]) often contains the instances
correctly extracted by the method with lower effectiveness (e.g., EXEMPLAR[M]).

Moreover, this observation also applies to methods using the same implementation

127

but different features (e.g., Efficiens[POS] vs. Efficiens[DEP]); that is, the method
with higher effectiveness (e.g., Efficiens[DEP]) often contains the instances cor-
rectly extracted by the method with lower effectiveness (e.g., EXEMPLAR[M]). In
both cases, higher effectiveness is achieved by recognizing additional instances pre-
senting a more complex structure in text without missing the extraction of instances
with simpler structures. Therefore, we expect our experimental methods’ relative
effectiveness to be consistent for corpora presenting various levels of text complex-
ity.

Another conclusion from this work is that the computational cost of an ORE
method is dominated by its underlying NLP machinery. This can be seen in our
experiments, where methods using the same NLP tool present similar cost. This
held even for methods whose approaches are vastly different (e.g., Efficiens[POS]
and SONEX-p). This means that cost differences among our experimental methods
are due to the use of different NLP tools, as opposed to the quality of a method’s
implementation. This observation helps corroborate the validity of our experiments.

We have discovered a promising direction to increase ORE’s efficiency. By
comparing the instances extracted by Efficiens[POS] and Efficiens[SRL], we dis-
covered that most sentences (93% in our corpus) do not benefit from dependency
parsing and SRL. That is, for 93% of the sentences, the instances extracted from a
sentence using POS tagging were not improved after applying dependency parsing
and SRL over this same sentence. This happens when a sentence: (1) does not de-
scribe any instances, (2) describes instances that were not correctly extracted with
either Efficiens[POS] or Efficiens[SRL], and (3) describes instances that were cor-
rectly extracted by both methods. This means that running Efficiens[SRL] for all
sentences of a corpus would result in a great waste of resources. To address this
problem, we proposed an intelligent method as part of Efficiens (the improvement

score) for choosing what features to extract from each sentence.

128

8.1 Method-specific observations

SONEX relies on a clustering to group entity pairs into different relations. This
clustering-based approach is one of the fastest solutions for ORE, since it can work
by applying sentence splitting and tokenization only. SONEX can optionally lever-
age POS tagging and work at a higher effectiveness level with an additional compu-
tation cost. As shown in our experiments, clustering works well for pair of entities
occurring together in many sentences. On the other hand, clustering methods are
limited in two aspects: (1) they may not work as well for pair of entities occurring
in few sentences, since features tend to be scarce in this case; and (2) clustering is
a poor choice for extracting n-ary and nested relations. Despite the limitations of
clustering, SONEX’s patterns for the extraction of predicates turned out to be quite
effective as a stand-alone method called SONEX-p.

SONEX-p and our remaining methods (Meta-CRF, EXEMPLAR and Efficiens)
adopt the single-pass, sentence-level extraction introduced by the seminal work of
TextRunner [6]. This framework does not share the aforementioned limitations of
clustering-based methods; however, it relies on NLP tools that require additional
computational time. Meta-CRF exploits full parsing to extract nested relations. In
our experiments, full parsing improves not only the quality of nested relations, but
it also improves the quality of flat, binary relations (by way of reducing false posi-
tives).

EXEMPLAR addresses the problem of extracting n-ary relations by using hand-
crafted rules over dependency trees. EXEMPLAR loosely follows the approach of
SRL methods by detecting the particular role of each argument in a relation in-
stance. We argue that this approach is superior to detecting all arguments of an
instance at once. This is because our approach allows for fewer rules, which are
simpler and can be applied to a greater number of sentences.

Efficiens incorporates the strengths of the aforementioned methods in one frame-
work capable of exploiting POS tagging, dependency parsing and SRL. While to-
day’s ORE methods apply the same steps for every sentence, Efficiens decides

which NLP tool to use for each individual sentence. Efficiens allows the users

129

to provide a budget that constraints the use of dependency parsing and SRL to a
fraction of the sentences only. By carefully selecting the subset of sentences to be
processed by these tools, Efficiens is able to process on average 11% more sen-
tences per second than if the sentences were randomly chosen while keeping the

same level of effectiveness.

8.2 Directions for future work

8.2.1 Improving Efficiency

From a practical point of view, most organizations dealing with relation extraction
cannot afford running expensive extractors for all sentences. Therefore, the prob-
lem of maximizing effectiveness within computational constraints is a promising
research direction for ORE. While this thesis has made some contributions to in-
crease the effectiveness and efficiency of ORE, much work is needed to advance

this research area. We propose directions for future work as follows.

Sentence selection for further processing. A promising direction to increase the
efficiency of ORE is to find the small subset of sentences (7% in our corpus) that
lead to increased effectiveness when processed by more expensive NLP tools (de-
pendency parsing and SRL). A method addressing this problem must not introduce
significant overhead to the process of extracting instances. Otherwise, this method’s
cost may detract from its potential impact on the overall effectiveness. A potentially
better solution than our improvement score (recall Chapter 7.4) is to use a super-
vised learning approach. This approach can leverage features already extracted for
relation extraction (see Appendix B) to estimate a sentence’s likelihood to benefit
from further processing. The training examples for this approach require no human
annotation, since examples can be obtained from running two Efficiens modules
(e.g., those based on POS tagging and dependency parsing, respectively) over a
sentence and automatically checking whether its extracted instances are the same.
A sentence whose extracted instances are the same for both modules should rank

lower than a sentence whose extracted instances are different.

130

Text simplification. Another promising direction to increase ORE’s efficiency is
text simplification [83]. ORE methods often struggle to efficiently extract relations
from long, complex sentences. An approach to solve this problem is to re-structure
a complex sentence and replacing it by several others that, together, convey the
same meaning and are more amenable for ORE. This approach has the potential
to reduce computational time (while maintaining effectiveness) by feeding shorter,
simpler sentences to deep NLP tools. This is because these tools are likely to spend
less time parsing parse several short, simple sentences than the original, complex

one [83].

Efficient NLP tools. Given that the cost of extracting features using NLP tools
dominates the cost of most ORE methods, one way to improve the efficiency of

these methods is to improve the efficiency of their underlying NLP tools.

8.2.2 Improving Effectiveness

Other directions for future work concerning ORE’s effectiveness are as follows.

Additional predicate types. Our methods have focused on extracting predicates
triggered by verbs and nouns. However, many predicates are triggered by adjec-

tives. For an example, consider the sentence:
“Georgia is close to Russia”.

where “close” is an adjective and one of the triggers of the copula+adjective pred-
icate “is close”. Recognizing predicates of this type is a way to increase recall of

current ORE methods.

Extraction across sentences. Like most work in this area, we have focused on
extracting instances whose arguments appear in a single sentence. There is a need
for methods that can detect instances whose arguments are scattered across several
sentences. One way to detect an argument appearing in a different sentence than

the predicate is to leverage anaphora resolution and detect a pronoun referring to

131

this argument in the predicate’s sentence. There is also a need for ORE benchmarks

that annotate instances whose arguments cross sentence boundaries.

Cross document extraction. A challenge for full-fledge ORE systems is to rec-
ognize and merge instances that refer to the same event or relationship but were
extracted from different documents. By merging duplicates, these systems improve
the quality of the extracted instances by combining arguments scattered across mul-
tiple documents. This process involves the problems of recognizing synonym pred-
icates (e.g., “is subsidiary” and “acquired”) and determining which syntactic roles
(e.g., subject, direct_object, prep_object) correspond to the same semantic

role (e.g., “parent company”’) across different instances [16].

Extraction of facts. Today’s ORE methods cannot differentiate among instances
describing facts, opinions, rumours, and others. Being able to separate fact from fic-
tion is essential to many applications such as knowledge base population and ques-
tion answering. Recent work has studied tools like T-Verifier [52], which search the
web for evidence of truthfulness. Another direction is to measure truthfulness from
the writing style, source authority and other signals intrinsic to the textual source.
Wau et al. [93] propose a framework for computational fact checking by leveraging
databases as opposed to text. This framework models a claim as a query over a
database and measures truthfulness by find counterarguments, that is, alternative
queries that weaken the original claim. This framework could be used to verify
relation instances extracted from text by converting them into queries over existing

online databases.

ORE evaluation. Finally, there is a need for benchmarks capable of measuring
precision and recall of a full-fledged ORE system in large scale. Large scale is
essential since many ORE systems (e.g., those based on clustering) rely on redun-
dancy, that is, having a relation instance being described in many documents. Since
manually annotating every instance described in millions of documents is virtually
impossible, alternative methods are required. This thesis introduced some alterna-

tives; however, we have only scratched the surface of this problem.

132

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting Relations
from Large Plain-Text Collections. In Proceedings of the Fifth ACM Confer-
ence on Digital Libraries (DL 2000). ACM Press, New York, NY, 85-94.
DOI:http://dx.doi.org/10.1145/336597.336644

Enrique Amig6, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A
Comparison of Extrinsic Clustering Evaluation Metrics Based on Formal Con-
straints. Inf. Retr. 12, 4 (August 2009), 461-486. DOI:http://dx.doi.
org/10.1007/s10791-008-9066-8

Gabor Angeli and Christopher D. Manning. 2014. NaturalLI: Natural Logic
Inference for Common Sense Reasoning. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP ’14).
Association for Computational Linguistics, Stroudsburg, PA, USA, 534 —545.

Amit Bagga and Breck Baldwin. 1998. Entity-based Cross-Document Coref-
erencing Using the Vector Space Model. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th Interna-
tional Conference on Computational Linguistics - Volume I (ACL ’98). Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA, 79-85. DOI:
http://dx.doi.org/10.3115/980845.980859

Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broad-
head, and Oren Etzioni. 2007. Open Information Extraction from the Web.
In Proceedings of the 20th International Joint Conference on Artifical intelli-
gence (IJCAI °07). AAAI Press, Menlo Park, CA, USA, 2670-2676.

Michele Banko and Oren Etzioni. 2008. The Tradeoffs Between Open and
Traditional Relation Extraction. In Proceedings of the Annual Meeting of

the Association for Computational Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, 28-36.

Ann Bies, Mark Ferguson, Karen Katz, and Robert Maclntyre. 1995.
Bracketing Guidelines for Treebank II Style Penn Treebank Project.
(Jan. 1995). http://languagelog.ldc.upenn.edu/myl/
PennTreebankl1995.pdf

Anders Bjorkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. 2010.
A High-performance Syntactic and Semantic Dependency Parser. In Pro-
ceedings of the 23rd International Conference on Computational Linguistics:

Demonstrations (COLING ’10). Association for Computational Linguistics,
Stroudsburg, PA, USA, 33-36.

133

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Bernd Bohnet. 2010. Very High Accuracy and Fast Dependency Parsing is
Not a Contradiction. In Proceedings of the 23rd International Conference
on Computational Linguistics (COLING ’10). Association for Computational
Linguistics, Stroudsburg, PA, USA, 89-97.

Kalina Bontcheva, Marin Dimitrov, Diana Maynard, Valentin Tablan, and
Hamish Cunningham. 2002. Shallow Methods for Named Entity Coreference
Resolution. In Chaines de References et Resolveurs d’Anaphores, Workshop
(TALN ’02). ATALA, Paris, France.

Sergey Brin. 1998. Extracting Patterns and Relations from the World Wide
Web. In Selected Papers from the International Workshop on The World Wide
Web and Databases (WebDB ’98). ACM Press, New York, NY, 172—-183.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A Shortest Path Depen-
dency Kernel for Relation Extraction. In Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Language
Processing (HLT/EMNLP 2005), Raymond J. Mooney (Ed.). Association for
Computational Linguistics, Stroudsburg, PA, USA, 724-731.

K. Burton, A. Java, and I. Soboroff. 2009. The ICWSM 2009 Spinn3r Dataset.
In Proceedings of the Third Annual Conference on Weblogs and Social Media
(ICWSM °09). AAAI Press, Menlo Park, CA, USA.

David Carmel, Haggai Roitman, and Naama Zwerdling. 2009. Enhancing
Cluster Labeling Using Wikipedia. In Proceedings of the 32nd international
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR °09). ACM Press, New York, NY, USA, 139-146.

Marie Catherine de Marneffe and Christopher D. Manning. 2008. Stanford
typed dependencies manual. Technical Report. Stanford University, The Stan-
ford Natural Language Processing Group.

Nathanael Chambers and Dan Jurafsky. 2011. Template-Based Information
Extraction without the Templates. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Tech-
nologies - Volume 1 (HLT ’11). Association for Computational Linguistics,
Stroudsburg, PA, USA, 976-986.

Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. 2007. EntityRank:
Searching Entities Directly and Holistically. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases (VLDB ’07). VLDB Endow-
ment, San Jose, CA, USA, 387-398.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. 2010. Se-
mantic Role Labeling for Open Information Extraction. In Proceedings of the
NAACL HLT 2010 First International Workshop on Formalisms and Method-
ology for Learning by Reading (FAM-LbR ’10). Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 52-60.

Janara Christensen, Mausam, Stephen Soderland, and Oren Etzioni. 2011. An
Analysis of Open Information Extraction based on Semantic Role Labeling.
In Proceedings of the sixth international conference on Knowledge capture.
ACM Press, New York, NY, USA, 113-120. DOI:http://dx.doi.org/
10.1145/1999676.1999697

134

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

CNN. 2008. McCain ad compares Obama to Britney Spears, Paris
Hilton. http://www.cnn.com/2008/POLITICS/07/30/mccain.
ad. (2008). [Online; accessed 16-August-2010].

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M.
Mitchell, Kamal Nigam, and Sean Slattery. 2000. Learning to Construct
Knowledge Bases from the World Wide Web. Artif. Intell. 118, 1-2 (2000),
69-113.

Silviu Cucerzan. 2007. Large-Scale Named Entity Disambiguation Based on
Wikipedia Data. In The 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL 2007). Association for Computational Linguistics, Strouds-
burg, PA, USA, 708-716.

Aron Culotta and Jeffrey S. Sorensen. 2004. Dependency Tree Kernels for
Relation Extraction. In Proceedings of the 42nd Annual Meeting on Associa-
tion for Computational Linguistics (ACL ’04). Association for Computational
Linguistics, Stroudsburg, PA, USA, 423-429.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey.
1992. Scatter/Gather: A Cluster-Based Approach to Browsing Large Doc-
ument Collections. In Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’92). ACM Press, New York, NY, USA, 318-329. DOI:http:
//dx.doi.org/10.1145/133160.133214

Nilesh Dalvi, Ashwin Machanavajjhala, and Bo Pang. 2012. An Analysis of
Structured Data on the Web. Proc. VLDB Endow. 5,7 (2012), 680-691.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander
Yates. 2004. Web-Scale Information Extraction in Knowitall: (Prelimi-
nary Results). In Proceedings of the 13th International Conference on World
Wide Web (WWW °04). ACM Press, New York, NY, USA, 100-110. DOTI:
http://dx.doi.org/10.1145/988672.988687

Richard Evans. 2003. A Framework for Named Entity Recognition in the
Open Domain. In Proceedings of the Recent Advances in Natural Language
Processing (RANLP "03). Association for Computational Linguistics, Strouds-
burg, PA, USA, 137-144.

Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying Rela-
tions for Open Information Extraction. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing (EMNLP ’11). Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA, 1535-1545.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. 2008. LIBLINEAR: A Library for Large Linear Classification. Journal
of Machine Learning Research 9 (2008), 1871-1874.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. 2010. Building Watson: An overview
of the DeepQA project. Al Magazine 31, 3 (2010), 59-79.

135

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. In-
corporating Non-Local Information into Information Extraction Systems by
Gibbs Sampling. In Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics (ACL ’05). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 363-370. DOI:http://dx.doi.org/
10.3115/1219840.1219885

David Fisher, Stephen Soderland, Fangfang Feng, and Wendy Lehnert. 1995.
Description of the UMass System as Used for MUC-6. In Proceedings of
the 6th conference on Message understanding (MUC6 ’95). Association for
Computational Linguistics, Stroudsburg, PA, USA, 127-140. DOI:http:
//dx.doi.org/10.3115/1072399.1072412

Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik. 2003. Statistical
Methods for Rates and Proportions (third ed.). John Wiley & Sons, New
York.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing semantic re-
latedness using Wikipedia-based explicit semantic analysis. In Proceedings of
the 20th International Joint Conference on Artifical Intelligence (IJCAI ’07).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1606-1611.

Eric J. Glover, Kostas Tsioutsiouliklis, Steve Lawrence, David M. Pennock,
and Gary W. Flake. 2002. Using Web Structure for Classifying and Describing
Web Pages. In Proceedings of the 11th International Conference on World
Wide Web (WWW ’02). ACM Press, New York, NY, USA, 562-569. DOTI:
http://dx.doi.org/10.1145/511446.511520

David A. Grossman and Ophir Frieder. 2004. Information Retrieval: Algo-
rithms and Heuristics (2. ed.). Springer, New York, NY, USA.

Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C. N.
Pereira. 1987. TEAM: An Experiment in the Design of Transportable Natural-
language Interfaces. Artif. Intell. 32, 2 (May 1987), 173-243. DOI:http:
//dx.doi.org/10.1016/0004-3702(87)90011~-7

The Stanford Natural Language Processing Group. 2010. Stanford NER CRF
FAQ. http://nlp.stanford.edu/software/crf-faqg.shtml.
(2010). Accessed: 2014-07-24.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min. 2005. Exploring Var-
ious Knowledge in Relation Extraction. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics (ACL ’05). Associa-
tion for Computational Linguistics, Stroudsburg, PA, USA, 427-434. DOT:
http://dx.doi.org/10.3115/1219840.1219893

Jan Haji¢, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,
Maria Antonia Marti, Lluis Marquez, Adam Meyers, Joakim Nivre, Sebastian
Padé, Jan Stépanek, Pavel Strandk, Mihai Surdeanu, Nianwen Xue, and Yi
Zhang. 2009. The CoNLL-2009 Shared Task: Syntactic and Semantic Depen-
dencies in Multiple Languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared Task (CoNLL ’09).
Association for Computational Linguistics, Stroudsburg, PA, USA, 1-18.

136

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and lan H. Witten. 2009. The WEKA Data Mining Software: An
Update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009), 10-18. DOI:http:
//dx.doi.org/10.1145/1656274.1656278

Robert Hanneman and Mark Riddle. 2005. [Introduction to Social Net-
work Methods. University of California, Riverside, Riverside, CA. http:
//faculty.ucr.edu/~hanneman/nettext/

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman. 2004. Discovering
Relations among Named Entities from Large Corpora. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Stroudsburg, PA, USA, 415. DOI:http:
//dx.doi.org/10.3115/1218955.1219008

Marti A. Hearst. 1992. Automatic Acquisition of Hyponyms from Large
Text Corpora. In Proceedings of the 14th Conference on Computational Lin-
guistics - Volume 2 (COLING °92). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 539-545. DOI:http://dx.doi.org/10.
3115/992133.992154

Richard Johansson and Pierre Nugues. 2008. Dependency-Based Semantic
Role Labeling of PropBank. In Proceedings of the 2008 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP "08). Association
for Computational Linguistics, Stroudsburg, PA, USA, 69-78.

Karen Sparck Jones and Peter Willett (Ed.). 1997. Readings in Information
Retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Daniel Jurafsky and James H. Martin. 2008. Speech and Language Processing
(2 ed.). Prentice Hall, Upper Saddle River, NJ, USA.

Daniel Jurafsky and James H. Martin. 2009. Speech and Language Process-
ing: An Introduction to Natural Language Processing, Speech Recognition,
and Computational Linguistics (2nd edition ed.). Prentice-Hall, Upper Saddle
River, NJ, USA.

Nanda Kambhatla. 2004. Combining Lexical, Syntactic and Semantic Fea-
tures with Maximum Entropy Models. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics. Association for Com-
putational Linguistics, Stroudsburg, PA, USA, Article 22, 4 pages.

Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Pars-
ing. In Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics - Volume I (ACL ’03). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 423-430. DOI:http://dx.doi.org/
10.3115/1075096.1075150

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of the International Conference on Machine
Learning (ICML). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 282-2809.

137

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Xian Li, Weiyi Meng, and Clement Yu. 2011. T-Verifier: Verifying Truth-
fulness of Fact Statements. In Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering (ICDE ’11). IEEE Computer Society,
Washington, DC, USA, 63-74. DOT:http://dx.doi.org/10.1109/
ICDE.2011.5767859

Dekang Lin and Patrick Pantel. 2001. DIRT-Discovery of Inference Rules
from Text. In Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’01). ACM, New York,
NY, USA, 323-328. DOI:http://dx.doi.org/10.1145/502512.
502559

Thomas Lin, Mausam, and Oren Etzioni. 2010. Identifying Functional Re-
lations in Web Text. In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP ’10). Association
for Computational Linguistics, Stroudsburg, PA, USA, 1266-1276. http:
//dl.acm.org/citation.cfm?id=1870658.1870781

Philadelphia Linguistic Data Consortium. 2007. Message Understand-
ing Conference (MUC) 7. http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2001T02. (2007).

Oded Maimon and Lior Rokach. 2005. The Data Mining and Knowledge
Discovery Handbook. Springer, New York, NY, USA.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008.
Introduction to Information Retrieval (1 ed.). Cambridge University Press,
Cambridge, England.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Maclntyre,
Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The
Penn Treebank: Annotating Predicate Argument Structure. In Proceedings of
the Workshop on Human Language Technology (HLT ’94). Association for
Computational Linguistics, Stroudsburg, PA, USA, 114-119. DOI:http:
//dx.doi.org/10.3115/1075812.1075835

Mausam, Michael Schmitz, Robert Bart, Stephen Soderland, and Oren Et-
zioni. 2012. Open Language Learning for Information Extraction. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CONLL
"12). Association for Computational Linguistics, Stroudsburg, PA, USA, 523—
534.

Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Lan-
guage Toolkit. (2002). http://mallet.cs.umass.edu

Frank McSherry and Marc Najork. 2008. Computing Information Retrieval
Performance Measures Efficiently in the Presence of Tied Scores. In Proceed-
ings of the IR Research, 30th European Conference on Advances in Infor-
mation Retrieval (ECIR’08). Springer-Verlag, Berlin, Heidelberg, 414—421.
http://dl.acm.org/citation.cfm?1d=1793274.1793325

Yuval Merhav, Filipe Mesquita, Denilson Barbosa, Wai Gen Yee, and Ophir

Frieder. 2012. Extracting Information Networks from the Blogosphere. ACM
Trans. Web 6, 3 (2012), 11.

138

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Filipe Mesquita. 2012. Clustering Techniques for Open Relation Extraction.
In Proceedings of the on SIGMOD/PODS 2012 PhD Symposium (PhD ’12).
ACM Press, New York, NY, USA, 27-32. DOI:http://dx.doi.org/
10.1145/2213598.2213607

Filipe Mesquita and Denilson Barbosa. 2011. Extracting Meta Statements
from the Blogosphere. In Proceedings of the Fifth International Conference
on Weblogs and Social Media (ICWSM ’11). AAAI Press, Menlo Park, CA,
USA, 225-232.

Filipe Mesquita, Yuval Merhav, and Denilson Barbosa. 2010. Extracting In-
formation Networks from the Blogosphere: State-of-the-Art and Challenges.
In Proceedings of the Fourth International Conference on Weblogs and Social
Media, Data Challenge Workshop (ICWSM ’10). AAAI Press, Menlo Park,
CA, USA, Article 3, 8 pages.

Filipe Mesquita, Jordan Schmidek, and Denilson Barbosa. 2013. Effective-
ness and Efficiency of Open Relation Extraction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, Stroudsburg, PA, USA, 447-457.

Filipe Mesquita, Ying Xu, Aditya Bhargava, Mirko Bronzi, Denilson Barbosa,
and Grzegorz Kondrak. 2011. The Effectiveness of Traditional and Open Re-
lation Extraction for the Slot Filling Task at TAC 2011. In Proceedings of the
Fourth Text Analysis Conference. NIST, Gaithersburg, MD, USA, Article 66,
7 pages.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika
Zielinska, Brian Young, and Ralph Grishman. 2004. The NomBank Project:
An Interim Report. In Proceedings of the NAACL HLT 2004 Workshop on
Frontiers in Corpus Annotation. Association for Computational Linguistics,
Stroudsburg, PA, USA, 24-31.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant
Supervision for Relation Extraction without Labeled Data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language Processing of the AFNLP:
Volume 2 (ACL °09). Association for Computational Linguistics, Stroudsburg,
PA, USA, 1003-1011.

David Nadeau and Satoshi Sekine. 2007. A Survey of Named Entity Recogni-
tion and Classification. Lingvisticae Investigationes 30, 1 (2007), 3—26. DOT :
http://dx.doi.org/10.1075/11.30.1.03nad

Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. 2012.
PATTY: A Taxonomy of Relational Patterns with Semantic Types. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-
CoNLL ’12). Association for Computational Linguistics, Stroudsburg, PA,
USA, 1135-1145.

NIST. 2008. Automatic Content Extraction 2008 Evaluation Plan

(ACEO08). http://www.itl.nist.gov/iad/mig/tests/ace/
2008/doc/acel8-evalplan.vl.2d.pdf. (2008).

139

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Joakim Nivre and Jens Nilsson. 2004. Memory-Based Dependency Parsing.
In Proceedings of the Eighth Conference on Computational Natural Language
Learning (CoNLL ’04). Association for Computational Linguistics, Strouds-
burg, PA, USA, 49-56.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposi-
tion Bank: An Annotated Corpus of Semantic Roles. Comput. Linguist.
31, 1 (March 2005), 71-106. DOI:http://dx.doi.org/10.1162/
0891201053630264

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph
Weischedel, and Nianwen Xue. 2011. CoNLL-2011 Shared Task: Mod-
eling Unrestricted Coreference in OntoNotes. In Proceedings of the Fif-
teenth Conference on Computational Natural Language Learning: Shared
Task (CONLL Shared Task ’11). Association for Computational Linguistics,
Stroudsburg, PA, USA, 1-27. http://dl.acm.org/citation.cfm?
1d=2132936.2132937

Lev Ratinov and Dan Roth. 2009. Design Challenges and Misconceptions in
Named Entity Recognition. In Proceedings of the Conference on Computa-
tional Natural Language Learning. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 147-155.

Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm (RFC 1321).
http://www.letf.org/rfc/rfcl321.txt?number=1321.
(1992).

Stephen Robertson. 2004. Understanding Inverse Document Frequency: On
Theoretical Arguments for IDFE. Journal of Documentation 60 (2004), 2004.

Barbara Rosario and Marti A. Hearst. 2004. Classifying Semantic Relations
in Bioscience Texts. In Proceedings of the 42nd Annual Meeting on Associ-
ation for Computational Linguistics. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 430-437.

Benjamin Rosenfeld and Ronen Feldman. 2007. Clustering for Unsupervised
Relation Identification. In Proceedings of the ACM Conference on Information
and Knowledge Management. ACM Press, New York, NY, USA, 411-418.
DOI:http://dx.doi.org/10.1145/1321440.1321499

Evan Sandhaus. 2008. The New York Times Annotated Corpus. https:
//catalog.ldc.upenn.edu/LDC2008T19. (2008).

Sunita Sarawagi. 2008. Information Extraction. Found. Trends databases
1, 3 (March 2008), 261-377. DOI:http://dx.doi.org/10.1561/
1900000003

Jordan Schmidek and Denilson Barbosa. 2014. Improving Open Relation
Extraction via Sentence Re-Structuring. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC’14), Nico-
letta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Hrafn
Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and
Stelios Piperidis (Eds.). European Language Resources Association (ELRA),
Reykjavik, Iceland. http://www.lrec-conf.org/proceedings/
lrec2014/summaries/1038.html

140

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis. 2010.
Learning First-order Horn Clauses from Web Text. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (EMNLP
’10). Association for Computational Linguistics, Stroudsburg, PA, USA,
1088-1098. http://dl.acm.org/citation.cfm?id=1870658.
1870764

S. Soderland, B. Roof, B. Qin, S. Xu, O. Etzioni, and Others. 2010. Adapting
Open Information Extraction to Domain-Specific Relations. Al Magazine 31,
3(2010), 93-102.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003.
Using Predicate-Argument Structures for Information Extraction. In Proceed-
ings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1. Association for Computational Linguistics, Stroudsburg, PA, USA,
8-15.

Niket Tandon, Gerard de Melo, and Gerhard Weikum. 2014. Acquiring
Comparative Commonsense Knowledge from the Web. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press,
Menlo Park, CA, USA, 166-172.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
2003. Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Net-
work. In Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Tech-
nology - Volume 1 (NAACL ’03). Association for Computational Linguistics,
Stroudsburg, PA, USA, 173-180.

Pucktada Treeratpituk and Jamie Callan. 2006. Automatically Labeling Hi-
erarchical Clusters. In Proceedings of the 2006 International Conference
on Digital Government Research (DG.O ’06). ACM Press, New York, NY,
USA, 167-176. DOI:http://dx.doi.org/10.1145/1146598.
1146650

George Tsatsaronis, Iraklis Varlamis, and Michalis Vazirgiannis. 2010. Text
Relatedness Based on a Word Thesaurus. Journal of Artificial Intelligence
Research (JAIR) 37 (2010), 1-39.

W3C. 2010. RDF Primer. http://www.w3.0rg/TR/rdf-primer/.
(December 2010).

Fei Wu and Daniel S. Weld. 2010. Open Information Extraction Using
Wikipedia. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL ’10). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 118-127.

You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014.
Toward Computational Fact-Checking. Proceedings of the VLDB Endowment
7,7 (2014), 589-600.

Fei Xia and Martha Palmer. 2001. Converting Dependency Structures to
Phrase Structures. In Proceedings of the International Conference on Hu-
man Language Technology Research (HLT ’01). Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 1-5. DOI:http://dx.doi.
0rg/10.3115/1072133.1072147

141

[95] Ying Xu, Mi-Young Kim, Kevin Quinn, Randy Goebel, and Denilson Bar-
bosa. 2013. Open Information Extraction with Tree Kernels. In Proceedings
of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, Atlanta, Georgia, 868—877.

[96] G. Yang and M. Kifer. 2003. Reasoning about Anonymous Resources and
Meta Statements on the Semantic Web. J. Data Semantics 2800 (2003), 69—
97.

[97] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel
methods for relation extraction. J. Mach. Learn. Res. 3 (2003), 1083—-1106.

[98] Min Zhang, Jian Su, Danmei Wang, Guodong Zhou, and Chew Lim Tan. 2005.
Discovering Relations Between Named Entities from a Large Raw Corpus
Using Tree Similarity-Based Clustering. In Proceedings of the International

Joint Conference on Natural Language Processing. Springer, New York, NY,
USA, 378-3809.

[99] Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and Ji-Rong Wen. 2009.
StatSnowball: A Statistical Approach to Extracting Entity Relationships. In
Proceedings of the 18th International Conference on World Wide Web (WWW
’09). ACM Press, New York, NY, USA, 101-110. DOI:http://dx.doi.
org/10.1145/1526709.1526724

142

Appendices

143

Appendix A

Converting SRL annotations into
ORE annotations

To produce training data, Efficiens converts SRL annotations to ORE annotations

by applying a set of rules. The rules for detecting predicates are as follows.
e Verb. A predicate with a verb trigger that is a SRL predicate.

e Verb+Noun. A predicate with two triggers, where the verb trigger is a pred-
icate and the noun trigger is an “A1” argument of the verb. In addition, the

dependency from the noun to its parent is of the type “OBJ” (direct object).

e Verb+Prep+Noun. A predicate with two triggers, where the verb is a predi-
cate and the noun is an “A7” argument (z > 1) of the verb. In addition, the

dependency path from the verb to the noun contains a preposition.

e Copula+Noun. A predicate with one or two triggers. If the predicate has
one trigger, it must be a noun and have an inbound or outbound dependency
edge of the type “APPO” (apposition). If the predicate has two triggers, the
noun trigger must depend on the verb trigger and the dependency type must

be “PRD” (Predicative complement).

e Possessive+Noun. A predicate with one trigger, where the trigger is a noun
and one of its children is a proper noun whose dependency type is “NMOD”

(Modifier of nominal).

The rules for detecting arguments are as follows.

144

e Subject. If the trigger is a verb and SRL predicate, the argument must satisfy:
(1) the argument’s SRL role is “A0” or “A1” and (2) the edges in the path from
the trigger to the argument must contain the dependencies “SBJ” (Subject),
“NMOD” (Modifier of nominal) or “LGS” (Logical subject). If the predicate
is a Possessive+Noun, the argument must be a proper noun modifying the
noun trigger. If the predicate is a Copula+Noun with one trigger, this trigger
must be a noun and in an apposition with the argument. If the predicate is a
Copula+Noun with two triggers, the argument must have a “PRD” or “SBJ”

dependency with the verb trigger.

e Direct Object. If the trigger is a verb and SRL predicate, the argument must
satisfy: (1) the argument’s SRL role is “A0” or “A1” and (2) the edges in the
path from the trigger to the argument must contain the dependencies “OBJ”

or “APPO”.

e Prepositional Object. If the trigger is a verb and SRL predicate, the argu-
ment’s SRL role must be “A:”, + > 1. If the trigger is a noun, the argument
must modify the trigger with a preposition or have a dependency on the trig-

ger of type “NMOD”.

145

Appendix B

Features Used In Efficiens

Predicate Detection Features

e TriggerCount+IsHead (POS): The number of triggers for the predicate con-
catenated with a flag indicating whether the noun trigger (if present) is the
head of a noun phrase. All POS features below are concatenated with this

feature.

e isNominalizedVerb (POS): The noun trigger (if present) is listed as a nomi-

nalized verb in WordNet.

e Apposition (POS): A flag indicating whether there is an apposition between

the noun trigger and the noun preceding it.

e PosBefore (POS): Sequence of POS tags for the tokens preceding each trig-
ger, including the POS of the trigger itself. Three sequences are generated
for each trigger, starting at one token up to three. The POS of a trigger is

surround by squared brackets in order to differentiate from other tokens.

e PosAfter (POS): Sequences of POS tags generated as above, now with tokens

succeeding each trigger.
e PosSurround (POS): Concatenation of PosBefore and PosSurround.

e PosBetween (POS): Sequence of POS tags for the tokens in between two

triggers.
e ParentPos (DEP): The POS tag of the trigger’s parent.

146

e DepType (DEP): The type of dependency between the trigger and its parent.

e Apposition (DEP): A flag indicating whether there is an apposition depen-

dency between a trigger and its parent and/or a trigger and its children.

e DepPathEdges (DEP): The edges in the shortest path between two triggers
of a predicate. Each edge is presented by its direction (up or down) and its

dependency type.
e IsPredicate (SRL): A flag indicating whether the trigger is a SRL predicate.

e SrlRole(SRL): The SRL role of the noun trigger considering the verb trigger

as its SRL predicate. The role "none” is used when the has no role.

e ParentSrlRole(SRL): The SRL role of noun trigger’s parent considering the

verb trigger as its SRL predicate.

All sequences of POS tags are normalized by removing adjectives and adverbs
and replacing all tags starting with “NN” to “NN”. In this way, singular nouns,
plural nouns and proper nouns are all represented by the same POS tag. In addition,
continuous sequences of the same POS tag (e.g. “NN-NN-NN”) is replaced by a
single POS tag (e.g., “NN”).

Argument Detection Features

e PredicateType+IsHead (POS): The type of the predicate concatenated with a
flag indicating whether the argument is the head of a noun phrase. All POS

features below are concatenated with this feature.

e Apposition (POS): Is the argument succeeded by a comma, determiner and

the predicate’s noun trigger.

e PreceededByPreposition (POS): A flag indicating whether the argument is

preceded by a preposition.

e PosBetween (POS): Sequence of POS tags for the tokens in between the ar-

gument and the trigger.

147

Lexicon+PosBetween (POS): A sequence of POS tags as in "PosBetween”,

where lexicons are appended to functional words, such as preposition.

DepPathEdges (POS): The edges in the shortest path between an argument
and a trigger. Each edge is presented by its direction (up or down) and its

dependency type.

SrlRole(SRL): The SRL role of the argument considering the trigger as its

SRL predicate. The role “none” is used when the argument has no role.

ParentSrIRole(SRL): The SRL role of the argument’s parent considering the
trigger as its SRL predicate.

148

