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Abstract

Extensive games model scenarios where multiple agents interact with a potentially stochastic en-

vironment. In the case of two-player zero-sum games, we have efficient techniques for computing

solutions. These solutions are optimal in that they guarantee the player the highest expected re-

ward against a worst-case opponent. Unfortunately, there are many interesting two-player zero-sum

games that are too large for the state-of-the-art solvers. For example, heads-up Texas Hold’em has

1018 game states and requires over two petabytes of storage to record a single strategy1. A popular

approach for tackling these large games is to use an abstraction technique to create a smaller game

that models the original game. A solution to the smaller abstract game can be computed and is

presumed good in the original game. A common assumption is that the more accurately the abstract

game models the original game the stronger the resulting strategy will be. There is substantial em-

pirical evidence to support this assumption and, prior to this work, it had not been questioned. In

this thesis, we show that this assumption is not true. That is, using a larger, more accurate, abstract

game can lead to weaker strategies. To show this, we must first formalize what it means to abstract a

game as well as what it means for an abstraction to be bigger or more informed. We then show that

the assumption fails to hold under two criteria for evaluating a strategy. The first is exploitability,

which measures performance against a worst-case adversary. The second is a new evaluation crite-

rion called the domination value, which essentially measures how many mistakes (actions that one

should never take) a strategy makes. Despite these abstraction pathologies, we argue that solutions

to the larger abstract games tend to make fewer mistakes. This leads us to develop a new technique,

called strategy grafting, that can be used to augment a strong base strategy. It does this by decom-

posing an extensive game into multiple sub-games. These sub-games are then solved separately, but

with shared knowledge of the underlying base strategy. This technique allows us to make effective

use of much larger strategy spaces than previously possible. We provide a weak theoretical guaran-

tee on the quality of this new technique, but we show in practice that it does quite well even when

the conditions on our theoretical results do not hold. Furthermore, when evaluated under our new

criterion, we notice that grafted strategies tend to make fewer mistakes than their base strategy.

1Estimated assuming four bytes per action while additionally taking advantage of suit isomorphisms.
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Chapter 1

Introduction

Extensive games provide a general model for describing the interactions of multiple agents within

a potentially stochastic environment. They subsume other sequential decision making models such

as finite horizon Markov decision processes, finite horizon partially observable Markov decision

processes, and many other multi-agent scenarios such as stochastic games. This makes extensive

games a powerful tool for representing a variety of complex situations. Moreover, it means that

techniques for computing solutions to extensive games are a valuable commodity that can be ap-

plied in many different domains. The usefulness of the extensive game model is dependent on the

availability of solution techniques that scale well with respect to the size of the model. Recent re-

search, particularly motivated by the domain of poker, has resulted in significant developments in

scalable solution techniques for two-player zero-sum extensive games. Here, by a solution we mean

a strategy that provides the highest expected reward against a worst-case adversary. The classic

linear programming techniques [13] can solve games with approximately 107 states [2] on modern

machines. More recent techniques [6, 23], which can explicitly maintain the sparse structure of the

problem, can solve games with over 1012 states.

Despite this dramatic improvement, there still remains many interesting extensive games whose

solutions cannot be found due to current algorithmic and hardware limitations. Fixed-limit heads-up

Texas Hold’em poker, the smallest poker game that is played competitively by humans, has 1018 [2]

states and would require over 2 petabytes of storage [12] to even write down a complete strategy.

It is unrealistic to think that we are close to techniques capable of solving this game. Though we

cannot solve this game, we do have techniques that allow computer programs to play this game at a

world-class level. Polaris, a computer poker player created by the University of Alberta’s Computer

Poker Research Group, beat world-class Texas Hold’em professionals by a statistically significant

margin in the summer of 2008. This event was the first time a computer program has won a poker

game (with statistical confidence) against human professionals.

Currently, the top computer poker programs use abstraction techniques to shrink these intractable

games to a manageable size [2, 12, 7, 6, 8, 9, 22, 23]. These techniques are designed with the hope

of maintaining the important strategic structure of the game while omitting the less relevant details.

1



These smaller abstract games are then solved with a state-of-the-art game-solver and the strategy

found is played in the original game. The hope is that the abstract game captures enough of the

structure of the original game so that the underlying strategy, which can play the abstract game

perfectly, is in turn a good strategy in the original game.

This line of research is backed by the following underlying assumption:

Assumption 1 By abstracting less, and therefore using richer strategy spaces and retaining more

strategic detail of the original game, the quality of a strategy found by solving an abstract game

should improve.

This assumption has been stated multiple times (e.g., [12, 7, 8, 23]), but no prior work has questioned

its validity. Empirical evidence has shown that, in the domain of poker, solving larger abstract

games has lead to stronger strategies. Roughly speaking, the AAAI Computer Poker Competition

has been won every year by the team that solved the largest abstract game. Furthermore, the field

of competitors has been stronger each year. This evidence of ever improving computer performance

is apparent from the results of competitions against human players as well. In 2003, the first game-

theoretic solutions to Texas Hold’em could compete with strong amateurs [2]. In just five years,

the most advanced programs can now beat top-rated professional players. This empirical evidence,

along with common sense, has lead us to believe that we are indeed more closely approximating

solutions by increasing the size of our abstract games.

1.1 Contributions

This thesis makes the flowing contributions:

• A formalization of abstraction and refinement along with a formal restatement of As-

sumption 1.

Throughout this work, we will closely analyze Assumption 1. But before we can dissect this as-

sumption, we must first formalize what it means to abstract an extensive game. We will provide

a mathematical foundation defining what an abstraction is. With this formulation we can define a

notion for when an abstraction is bigger or more informed than another. This notion, refinement,

roughly means that the strategies available in a coarser abstraction are also available in a finer ab-

straction. A player using a finer abstraction has the same, and potentially more, information available

to her at every point in the game where she must make a decision.

With this mathematical foundation in place, we will then formalize the underlying assumption

that refining an abstract game will lead a better, less exploitable, strategy. From this, we arrive at

multiple monotonicity assumptions, which formalize Assumption 1. Roughly speaking, a monotonic

property holds if any refinement of an abstraction will lead to an improvement in terms of a strategy’s

exploitability.

2



• Counterexamples to Assumption 1.

We will disprove all of these assumptions by providing an abundance of counterexamples in variants

of a small poker game, Leduc Hold’em. Furthermore, since the abstraction techniques we employ

in these small poker games are similar to those used by top poker programs, these counterexamples

lead us to believe that the monotonicity assumptions are unlikely to hold in the large poker games

of interest. This work, along with the formalization of an abstraction, was published in Abstraction

Pathologies and Extensive Games [21]. These two contributions are discussed in Chapter 3.

• The introduction of domination value and its relationship to refinement.

Despite our result that Assumption 1 does not hold, it is hard to throw all the empirical evidence

aside completely. We continue our analysis by motivating why larger abstract games appear to pro-

duce higher quality strategies. We use the notion of a dominated strategy, which is a strategy that

should never be played against any opponent, to argue that solutions to larger abstract games tend to

make fewer mistakes. This is quite advantageous in settings like the AAAI Computer Poker Com-

petition as the top poker programs typically do not attempt to exploit an opponent’s weaknesses.

That is, they benefit only from an opponent’s errors, but make no effort to maximize this benefit.

To measure the effect of playing dominated strategies, we introduce the domination value, an eval-

uation criteria that measures how much could be lost by a strategy making errors against a rational

opponent. We then measure and compare the domination value of various Leduc Hold’em strategies

with exploitability. We show that, though non-monotonicities still exist when using the domination

value as our evaluation criterion, that strategies with lower domination values tend to do better in a

tournament setting. That is, the domination value is highly correlated with what our intuition and

empirical evidence has suggested in tournament settings. Furthermore, an arbitrary solution to an

abstract game tends to be quite good compared to to the best possible solution in terms of its domi-

nation value, which is something we did not see under the exploitability analysis. This contribution

is discussed in Chapter 4.

• The introduction of a new algorithm, strategy grafting, which uses a divide and conquer

approach to build solutions for larger abstract spaces than can be explicitly solved.

With the insight that domination value could perhaps play a more important role than exploitability

in regard to the quality of a strategy, we revisit the idea of using a divide and conquer approach,

which can have a negative effect on exploitability, to allow for the use of larger strategy spaces.

Decomposing an extensive game into sub-games, which are then solved separately, has been trou-

blesome and error-prone when applied to games with imperfect information. In a game with im-

perfect information all the parts of a strong strategy work together. For example, in a poker game,

if a player never bluffs then whenever she bets her observant opponent will know she has a good

hand. That is, how she acts with the hands that she does not currently hold matters in terms of her

3



opponent’s ability to determine which hand she actually does hold. Previous attempts to decompose

games with imperfect information have failed to adequately address this issue. We propose a new

method, called strategy grafting, which is designed to combat this problem. Here, we use sub-game

decomposition, but each sub-game is solved with some additional shared information, the same base

strategy. Though each sub-game is solved independently, the solution to a sub-game coordinates its

play with the common base strategy. As a result, when the sub-games are combined they work well

with each other in practice. We show, through theoretical analysis of this method, that we are al-

most guaranteed to improve the quality of our strategy if we know our opponent’s abstraction. We

also show empirically in both small and large poker games that this method does very well against

opponents that use the current state-of-the-art methods even when their abstraction is not known.

This contribution, which is discussed in Chapter 5, was published in Strategy Grafting in Extensive

Games [20].

4



Chapter 2

Background

Before we describe our contributions, we must review some necessary background material. We

begin by formalizing the extensive form game and the Nash equilibrium solution concept. After, we

will review a variety of poker games as well as the abstraction techniques used by the state-of-the-art

programs.

2.1 Extensive Games

Extensive games are a useful tool for modeling environments with multiple agents. Players and

chance alternate taking actions until a terminal history is reached. At a terminal history, the game

ends and each player receives a reward. However, players may not be able to completely observe

the actual choices of the other players or chance. This allows for scenarios where two distinct

sequences of actions may not be distinguishable by the player required to act, thus creating a game

with imperfect information.

Definition 1 (Extensive Game) [16, p. 200] A finite extensive game with imperfect information is

denoted Γ and has the following components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of actions, such that the empty sequence is

in H and every prefix of a sequence in H is also in H . Z ⊆ H is the set of terminal histories.

A(h) = {a : (h, a) ∈ H} are the actions available after a non-terminal history h ∈ H \ Z.

• A player function P that assigns to each non-terminal history a member of N ∪ {c}, where

c represents chance. P (h) is the player who takes an action after the history h. If P (h) = c,

then chance determines the action taken after history h. Let Hi be the set of histories where

player i chooses the next action.

• A function fc that associates with every history h for which P (h) = c a probability distribu-

tion fc(·|h) on A(h). fc(a|h) is the probability that a occurs given h.

5



• For each player i ∈ N , a partition Ii of Hi called the information partition of player i; a set

Ii ∈ Ii is an information set for player i. For every h, h′ ∈ Ii, we require that A(h) = A(h′).

We shall denote Ih as the information set containing history h.

• For each player i ∈ N , a utility function ui that assigns each terminal history a real value.

ui(z) is rewarded to player i for reaching terminal history z. If N = {1, 2} and for all z,

u1(z) = −u2(z), an extensive form game is said to be zero-sum.

Histories in the same information set are indistinguishable to the player making the decision.

This can result in some information partitions that force odd and unrealistic situations on a player

where they are forced to forget their previous decisions. If all players can recall their previous

actions and corresponding information sets, the game is said to be one of perfect recall. In this

thesis, we will only consider games exhibiting perfect recall.

Matrix Games

One useful subclass1 of extensive games are matrix games. In these games, all players choose their

actions simultaneously and the combined joint-action defines the reward for each player. That is,

each player has a single information set and chance never takes action. For example, Paper-Rock-

Scissors (also known as Ro-Sham-Bo), is a zero-sum matrix game, which we display in Figure 2.1.

Here, the values in the matrix are the rewards for the row-player for each joint action. For example,

if the row-player plays Rock and the column-player plays paper, then the row-player will lose a

reward of 1, and the column-player will gain a reward of 1. Matrix games are less interesting than

extensive games, but we will use them later to illustrate some of our contributions.

rock paper scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Figure 2.1: An example matrix game: Paper-Rock-Scissors

2.1.1 Strategies and Solution Concepts

A strategy for player i, σi, in an extensive game, Γ, is a function that assigns a probability distri-

bution over A(h) to each h ∈ Hi, where σi(h) = σi(h′) for all h and h′ in the same information

set. That is, a strategy must give the same distribution over actions to all histories in the same infor-

mation set. If player i is following σi, then whenever a history h is reached where P (h) = i, player

i samples from σi(h) to choose her action. We let Σi be the set of possible strategies for player i.

A strategy profile, σ, is a set consisting of a strategy for each player, {σ1, . . . , σn}, with σ−i

referring to the set of all the strategies in σ except σi.
1Matrix games and extensive games have the same expressive power, but extensive games are more succinct in many

cases.
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We define ui(σ) to be the expected reward for player i when all players play according to σ. For

ease of notation, we let ui(σ1, σ2) = ui({σ1, σ2}) and ui(σ−i, σ
′
i) = ui(σ−i ∪ {σ′i}).

Best Response

If player i knows the strategies of the other players, then she can compute a utility maximizing

response. Given σ−i, we say player i’s best response is any strategy that maximizes

bi(σ−i) = max
σ′

i∈Σi

ui(σ−i, σ
′
i), (2.1)

where bi(σ−i) is called the best response value to σ−i.

Nash Equilibrium

Typically, the opposing players’ strategies are not known in advance, so it is not possible for a player

to simply compute a best response to determine her strategy. When a best response is unavailable,

one often turns to the Nash equilibrium solution concept.

Definition 2 (Nash Equilibrium) A Nash equilibrium is a strategy profile σ∗ where for all players

ui(σ∗) = bi(σ∗−i) (2.2)

An approximation of a Nash equilibrium or ε-Nash equilibrium is a strategy profile σ where for all

players

ui(σ) + ε ≥ bi(σ−i) (2.3)

If σ∗ is a Nash equilibrium, then every player is playing a best response to σ∗−i and therefore no

player can benefit by deviating her strategy from σ∗. At an ε-equilibrium, no player can benefit

more than ε by deviating from σ. All finite games have at least one Nash equilibrium. From here in,

when we refer to an equilibrium we are referring to a Nash equilibrium.

2.2 Zero-sum Games

For the remainder of this work we will talk only of two-player zero-sum games with perfect recall.

Adopting some conventions, we will refer to player 1 using female pronouns, and her opponent,

player 2, using male pronouns. Unless specified otherwise, our goal will be to find a good strategy

for player 1 to play against an unknown player 2.

Minimax Theorem

An equilibrium strategy is a strategy that belongs to some equilibrium in a zero-sum game. We

denote the set of equilibrium strategies for player i as Σ∗
i . An equilibrium strategy maximizes a

player’s worst-case utility over all possible opponent strategies. This can also be thought of as

minimizing the best-case utility of the player. Mathematically, this equivalence is stated in the

Minimax Theorem [15].
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Theorem 1 (Minimax Theorem) For any zero-sum extensive game Γ, we have

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2) (2.4)

where v∗ is the value of Γ for player 1.

As a corollary we have for all equilibrium σ∗ and all σ′1 ∈ Σ1, σ′2 ∈ Σ2

v∗ = b1(σ∗2) ≤ u1(σ∗1 , σ′2), and (2.5)

−v∗ = b2(σ∗1) ≤ u2(σ∗2 , σ′1) (2.6)

Furthermore, for any σ we have

v∗ ≤ b1(σ2), and (2.7)

−v∗ ≤ b2(σ1) (2.8)

In a zero-sum game we say it is optimal to play an equilibrium strategy because it guarantees

the player the highest expected utility in the worst-case. Any deviation from equilibrium by the

opponent can only benefit the player. Similarly, any deviation from equilibrium by the player can

be exploited by a knowledgeable opponent. In this sense we can call computing an equilibrium in a

zero-sum game solving the game.

Exploitability

An approximation of an equilibrium strategy can be evaluated by how far from the game’s value an

opponent can shift the game. We call this difference a strategy’s exploitability.

Definition 3 We define the exploitability of player i for a strategy σi, written εi(σi), as

ε1(σ1) = b2(σ1) + v∗, and (2.9)

ε2(σ2) = b1(σ2)− v∗ (2.10)

Exploitability measures how much an opponent who knows σi can benefit by player i’s failure to

play an equilibrium strategy. It is a worst-case bound on the quality of a strategy. This makes

exploitability the natural metric for evaluating any technique whose goal is to compute a strong

strategy with no knowledge of how an opponent might play. Note that for all σi, εi(σi) ≥ 0 and for

all equilibria σ∗, εi(σ∗i ) = 0. Also, note that the smallest ε for which a profile is an ε-equilibrium is

maxi εi(σi).

2.2.1 Algorithms for Computing Equilibrium Strategies

In general, there is no known efficient algorithms for computing a Nash equilibrium. Fortunately,

in the case of zero-sum games with perfect recall there are efficient techniques for computing an

ε-Nash equilibrium. We will discuss these techniques in the next few sections.

8



Sequence Form

Sequence form was a huge breakthrough towards solving large extensive games. Prior to its exis-

tence, an extensive game was first converted into normal form (i.e., a matrix game) and an equilib-

rium was then found using a linear program. Unfortunately, the size of a sequential game in normal

form is typically exponential in the size of the game’s description, which made its use impractical

for all but toy games. Unlike normal form, the size of the sequence form representation of a game

is linear in the size of the game’s description. Furthermore, the sequence form description is itself a

set of linear constraints, which allows us to employ linear programming techniques to solve for an

equilibrium. The key insight that allows for all of this is that an arbitrary sequence of actions for a

player, {(I1, a1), . . . , (In, an)}, can be described uniquely by the last pair, (In, an) as long as the

underlying game exhibits perfect recall.

The sequence form representation of a game is made up of the following components:

• An m by n payoff matrix A. We call the row player x and the column player y. Entry (i, j)

of A is the reward for player x if x plays sequence i and y plays sequence j.

• A constraint matrix E and vector e. We say x is a valid sequence form strategy (called a

realization plan) if Ex = e and x ≥ 0.

• A constraint matrix F and vector f . This pair is the analog of E and e for player y.

Every sequence of actions for a player, including the empty sequence, has an associated realization

weight, which is a single entry in the realization plan. Let us denote the realization weight for se-

quence {(I1, a1), . . . , (In, an), (In+1, an+1)} as w(In+1, an+1) and its parent sequence, p(In+1).

The constraint matrices assign the realization weight for the empty sequence a value of 1. Further-

more, the sum of the realization weights of the form w(In+1, ∗) must equal w(p(In+1)). An entry

(i, j) in the payoff matrix, A, is assigned to be the expected utility for the row-player if the joint

sequence of actions leads to a terminal history. If the joint sequence of actions does not end the

game, or is invalid, the entry is set to 0.

Given a realization plan, one can compute the probability distribution at a history as:

σ(a|h) =
w(Ih, a)∑

a′∈A(Ih) w(Ih, a′)
(2.11)

Note that if the denominator is zero, then the history is never reached by the player and thus there

is no need for us to compute the distribution. The consequence of this setup is, that given two

realization plans, the expected utility for the row-player can be computed as yAx, which is bi-linear.

This leads to simple linear programs for computing a best response.

Given a sequence form game and a strategy y, the best response for x and its value, bx(y), can

be computed with the following linear program:

bx(y) = max
x

yAx subject to Ex = e, x ≥ 0 (2.12)
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Though the best response linear program for y can be written similarly, it is useful to consider its

dual program. That is, given a sequence form game and a strategy x, the best response value for y,

by(x), can be computed with the linear program:

by(x) = min
u

fu subject to Fu ≤ Ax (2.13)

From this, we can derive the linear program for computing a Nash equilibrium strategy for x as:

by(x∗) = min
u,x

fu subject to Fu ≤ Ax, Ex = e, x ≥ 0 (2.14)

Koller and Pfeffer first made use of sequence form and linear programming in their GALA

system to solve a variety of games [13]. The size of the games they solved with this technique are

tiny compared to what can be solved today. This is mainly because linear programming packages

have trouble maintaining the explicit sparsity of the payoff and constraint matrices. This can lead

to a much higher memory requirement to actually solve an equilibrium than it does to write down

the description of the linear program. For more details on sequence form, please refer to Efficient

Computation of Behavior Strategies [19].

Excessive Gap Technique

The excessive gap technique is a non-smooth optimization technique that was devised by Nes-

terov [14]. It is an anytime first-order primal-dual algorithm that is guaranteed to be within ε of a

solution after O( 1
ε ) iterations. Nesterov’s algorithm is not applicable to all non-smooth optimization

problems, hence how it surpasses the best-case convergence rate of O( 1
ε2 ) for general non-smooth

optimization [14].

On each iteration, the excessive gap technique must compute a couple of matrix multiplications

and solve a few simple optimization problems. The algorithm is quite fast in practice as these inner

optimizations typically have a closed-form solution that can be computed rather quickly. Gilpin et

al. showed that the excessive gap technique can be used along with the sequence form representation

to solve for a Nash equilibrium in a zero-sum extensive game [6]. Since this technique maintains the

sparsity of the payoff matrix, it can solve much larger games than a general linear program solver.

Counterfactual Regret Minimization

The concept of regret minimization is quite versatile. It is most easy to understand in the context

of a multi-armed bandit problem. Here, at each time step the player must select a probability distri-

bution over a fixed set of actions. After this selection, a bounded reward is assigned to each action

(potentially by an all-knowing adversary) and the player receives her expected reward. The goal

of the player is to minimize her external regret, which is the difference between the accumulated

reward of the best single action and the total expected payoff she has received. That is, her regret is

how much better off she would have been playing the best action for the entire time. If her regret
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grows sublinearly as time passes, i.e., her time-averaged regret approaches zero, we say that she

has no-regret. For bandit problems, there exist many no-regret algorithms, such as Hedge [1] and

regret-matching [10], which is based off Blackwell’s approachability theorem [4].

The link between regret minimization and equilibria in zero-sum games is well-known. If two

no-regret learners play a zero-sum game for T time steps and each has an average external regret of

less than ε, then their average strategies form an 2ε-equilibrium.

PROOF. Let σt
i be the strategy used by player i on time step t, and σT

i be player i’s time-averaged

strategy. We are given:
1
T

max
σ′

i∈Σi

T∑
t=1

ui(σ′i, σ
t
−i)− ui(σt

i , σ
t
−i) ≤ ε

Which by the linearity of expectation and the second term not depending on σ′i gives

−
∑T

t=1 ui(σt
i , σ

t
−i)

T
+ max

σ′
i∈Σi

ui(σ′i, σ
T
−i) ≤ ε

Since u2(·) = −u1(·), we can sum the two inequalities to get

max
σ′
1∈Σ1

u1(σ′1, σ
T
2 ) + max

σ′
2∈Σ2

u2(σT
1 , σ′2) ≤ 2ε

As ∀x′, f(x′) ≤ maxx f(x), for all i we have

u−i(σT ) + max
σ′

i∈Σi

ui(σ′i, σ
T
−i) ≤ 2ε

By again using u−i(·) = −ui(·), we get our desired result of

bi(σT
−i) ≤ ui(σT ) + 2ε

Using this fact, one can apply Hedge or regret-matching directly to matrix games to solve for an

equilibria, but they cannot be applied as-is to extensive games.

Recently, Zinkevich et al. showed how any regret minimizing algorithm could be efficiently

applied in extensive games [23]. This required the introduction of the notion of counterfactual

utility and counterfactual regret. The counterfactual utility for action a at information set I is the

expected utility for taking action a given that information set I is reached weighted by the probability

that chance and the opponent would play to reach I . If at each information set a no-regret learner

minimizes counterfactual regret, which is its external regret with respect to counterfactual utility,

then the external regret of the time-averaged strategy will also be minimized. Here, when we refer

to the time-averaged strategy in an extensive game, we mean the average of the realization plan not

the average of the action distributions at each information set.

This technique uses memory proportional to the resulting strategy profile and it is required to

walk the entire game tree on each iteration. Zinkevich et al. also showed that a chance-sampled

11



variant of the technique had even better practical and theoretical performance for poker games. In

this variant, the no-regret learners minimize an unbiased estimator of the counterfactual regret, as

opposed to the actual counterfactual regret. The particular unbiased estimator allows one to sample

chance’s actions and, instead of walking the full game tree, merely play a single hand of poker on

each iteration.

2.3 Poker Games

Poker games provide a versatile test-bed for many Artifical Intelligence techniques. First, they

include imperfect information, unlike many other games that have been studied, such as Chess,

Checkers and Go. Second, they can be easily scaled to a desired size and complexity by varying the

number of cards in the deck, the number and size of the betting rounds, the number of betting options

as well as the number of opponents. Third, many poker games are played by human professionals,

which provides another method for evaluating the performance of our programs.

In this thesis we will use a variety of poker games to perform our experiments. Their rules are

described in the next few sections.

2.3.1 Texas Hold’em

Texas Hold’em is a popular poker game that is played by people online, in casinos, and at home

with friends for stakes from as low as pennies per hand up to as high as millions of dollars per hand.

Because of its popularity, it has attracted the attention of artificial intelligence researchers, whose

programs compete annually in the AAAI Computer Poker Competition [24].

Heads-up Texas Hold’em is a two-player poker game. One player is designated the small blind

and the other the big blind. Each blind is required to make a forced bet into the pot. For the small

blind this bet is one chip, for the big blind, this is two chips. A round of betting called the preflop

occurs after each of the players has been dealt two private cards from a standard deck of shuffled

cards. Three community cards are then dealt face-up for both players to see. A second round of

betting called the flop occurs. Two subsequent rounds of betting called the turn and the river then

occur and prior to each of these rounds a single community card is dealt face-up. After the river

betting has finished and neither player has folded, the player with the best five card poker hand

made from their private cards and the community cards wins all the chips in the pot.

The betting rounds all follow the same structure, regardless of the style of betting being used.

The small blind acts first preflop. She may call or bet. Actions then alternate between the two

players. When facing a bet, a player can fold, call or raise. Folding forfeits the chips in the pot to

the opponent and the hand ends. Calling requires the player to match the bet faced and the betting

round ends. Raising requires a player to match the current bet faced and place an additional bet into

the pot. After a raise, the opposing player must then respond with an action of his own. If the first

player to act initially checks or calls, then the next player has the option of checking, which ends
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the betting round, or betting. The subsequent betting rounds are similar to the preflop, with two

exceptions. First, the big blind is the first player to act in these rounds. This gives an advantage to

the small bind, as she gets to see how the big blind acts prior to taking action herself. We say she

has a positional advantage, or position. Second, the big blind can check as his initial action as he

does not face a bet at the start of these rounds.

There are two betting variants that are commonly used when playing Texas Hold’em. The first

is what is called fixed-limit betting. This is because there is a limit on the number of bets that can

occur in a round and each bet is of a fixed size. On the preflop, there can be no more than three bets.

All subsequent rounds allow for a maximum of four bets. On the preflop and flop, the bet size is

fixed to be two chips, which is called a small bet. On the turn and river, the bet size doubles to four

chips, which is called a big bet.

The second betting variant is called no-limit betting. With this style of betting, there are fewer

restrictions on the amount of chips that a player may bet and there is no limit to the number of bets

a player may make in a round. In no-limit, a player may bet almost any amount of his remaining

chips. A bet size is valid if it is at least the size of the preceding bet on the same round or if the

raise puts the player all-in, that is, the player bets all of her remaining chips. If no bet has been

made, a player must bet at least two chips. In the no-limit Texas Hold’em game played in the AAAI

Computer Poker Competition, each player starts with 400 chips.

Note that when we later refer to a poker game without mentioning the number of players, or

style of betting, we mean the two-player fixed-limit variant.

2.3.2 Leduc Hold’em

Texas Hold’em, which has been the focus of much of the recent research, is too large to feasibly

compute the exploitability of a strategy, much less an equilibrium profile. As a consequence, we

chose to use a smaller poker game called Leduc Hold’em [18] for some of our experiments. In this

game the deck contains two Kings, two Queens and two Jacks. Each player initially pays one chip

into the pot, called an ante, and is dealt a single private card. After a round of betting, a community

card is dealt face up. After a subsequent round of betting, if neither player has folded, both players

reveal their private cards. If either player pairs their card with the community card they win the

chips in the pot. Otherwise, the player with the highest private card is the winner. In the event both

players have the same private card, they draw and split the chips in the pot. In Leduc Hold’em, the

first player must act first on both betting rounds.

Like Texas Hold’em, fixed-limit Leduc Hold’em restricts the number and size of the bets that

can be made. Here, the total number of bets in a round is not allowed to exceed two. Furthermore,

each bet in the first round, the preflop, is fixed to be two chips. The subsequent betting round, the

flop, has a fixed size of four chips. In no-limit Leduc Hold’em, each player starts with a thirteen

chip stack (including the ante). Here, the minimum bet is one chip, as opposed to two in no-limit
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Texas Hold’em.

2.4 Abstraction

Heads-up Texas Hold’em has approximately 1018 histories grouped into 1014 information sets. Be-

cause of its size, we cannot compute a Nash equilibrium for this game. One approach that has been

successful in tackling this challenge is abstraction. Here, one models the large game with a much

smaller game; one small enough that we can successfully compute an equilibrium. The smaller

game, or abstract game, is created using an abstraction technique. The goal of an abstraction tech-

nique is to retain the important strategic features of the original game while reducing its size. We

then use an equilibrium strategy found in the abstract game to play the original or full game. The

hope here is that the equilibrium strategy from the abstract game will be a good approximation of

an equilibrium strategy in the full game.

For large poker games, there are two types of abstraction that are commonly employed. We

discuss these two types in the next two sections.

2.4.1 Card Abstraction

Card abstraction is typically done by grouping together hands of similar strength or distribution over

future strengths. In the abstract game a player cannot distinguish between the hands in a group. The

intuition is that hands of similar current or future strength can be played with a similar strategy.

Grouping hands in this fashion requires a strength metric, typically placing some weight on the

expected probability of winning at a showdown as well as on the variance of this probability. When

using this method to abstract cards, the size of the abstract game is determined by the size of each

hand group.

Johanson describes a method for creating abstractions using a metric called hand strength squared [12],

which creates roughly equal sized groups based on a metric that incorporates both the expectation

and variance of future strength. A method by Gilpin et al. uses a bottom-up approach to create a

potential-aware abstraction [8]. This method, called GameShrink, works by clustering the terminal

nodes and then repeatedly clustering earlier rounds based upon distances between distributions over

future clusters. Both of these methods have proven to be effective in poker competitions.

2.4.2 Betting Abstraction

In the large no-limit games, using card abstraction alone is not enough to make manageable abstract

games. Much of the size of the no-limit games comes from the large number of betting options

available to the players. Here, we use betting abstraction, which typically restricts the number of

betting options from each history. Each additional betting option has an exponential effect on the

size of the game, so often only two or three bet sizes are made available to the player. A pot sized

bet and an all-in bet are frequently among the ones chosen. When using the abstract strategy to play
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in the full game, a program must translate the size of the bets in the game to and from actions in

the abstract game. For example, if an opponent bets five chips when four chips were in the pot, the

agent would likely translate this bet to a pot bet, or four chips. This translation can be particularly

troublesome as an opponent can make awkward sized bets that do not map well to the abstract game.

These bets distort the agent’s belief of the number of chips in the pot and can lead to poor decision

making.

Gilpin and colleagues describe the action abstraction and translation for their no-limit agent

used in the 2007 AAAI Computer Poker Competition [9]. The main concept is that if the opponent

makes a bet of size b that does not map directly into the abstract game, we compare that size to the

surrounding bet sizes that do exist in the abstract game, for instance a and c, and translate it to the

closest one. If a < b < c then we define the closer size to be whichever ratio of b
a or c

b is smallest.

This allows us to play an abstract strategy in the full game. Schnizlein et al. use a similar translation

approach, but they allow for what is called soft translation [17]. Here, instead of using the ratios to

translate to a single bet size, the ratios determine a probability distribution over which betting action

was taken by the opponent. This usually reduces the exploitability of the strategy in the full game.
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Chapter 3

Monotonicity and Abstraction
Pathologies

3.1 Motivation

Extensive games have received considerable attention recently as the natural model for decision-

making in poker. In fact, this research on artificial intelligence in poker has driven substantial

algorithmic advancements in solving zero-sum extensive games. The traditional linear programming

technique of Koller and Pfeffer [13] was unrivaled for over a decade, and could be used to solve

games with 108 histories. In the past three years, a number of competing techniques have been

developed by competitors in the AAAI Computer Poker Competitions [24], with some now able to

solve games with about 1012 histories [23, 6].

While algorithmic advances have made it possible to solve very large extensive games, the small-

est variants of poker played by humans are still much too large to solve. The standard approach to

this problem is to use abstraction [2]. The idea is to construct (automatically or by hand) a tractably

sized game that abstracts (ideally less important) details of the players’ information at each decision.

Hopefully, this smaller game retains much of the information of strategic structure. This game is

constructed to be small enough that it is tractable to find a near equilibrium solution. One hopes

this solution will hopefully perform well in the full game. The algorithmic advances in solving large

extensive games allow for larger and larger abstractions. This improvement results in bigger abstract

games, and presumably stronger strategies.

The dramatic advancements that have come out of the AAAI Poker Competitions, suggests this

may be true. That is, bigger abstract games appear to result in stronger strategies. In the first year of

the event, teams used linear programming techniques to solve small games, containing only a subset

of the betting rounds [2, 7]. These small abstract games were then pieced together to create an over-

all poker strategy. In the following years, new equilibrium solving techniques were introduced and

teams were able to solve a single abstract game to find a complete strategy [6, 22, 23]. In the follow-

ing year, further enhancements and optimizations were made to solve even larger abstract games.
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Each year, (roughly speaking) solving the largest abstract game has won the competition. Hence, a

strategy of merely building and solving the largest possible (carefully constructed) abstracted games

has been employed by the top teams, with the presumption that this will monotonically lead to

stronger poker strategies. In fact, the success of this approach in the competition is evidence that the

basic presumption may be true.

In this chapter, we begin by formalizing what it means to abstract a game. We then introduce a

straightforward notion for what it means for an abstraction to be bigger. After this formalization, we

examine the effect of abstraction on the strength of the resulting strategy in the worst-case, which

is equivalent to saying how close of an approximation the strategy is to an equilibrium strategy. In

particular, we examine the key presumption of the previous paragraph that finer abstractions will

make the resulting strategy stronger in the full game. Our conclusion is that this presumption is not

true in general. We, in fact, show a variety of abstraction pathologies: examples where refining an

abstraction can result in a weaker strategy in the full game. These counterexamples are all in a small

poker variant with only six cards, which allows us to compute exact measurements of a strategy’s

strength. The pathologies are also not limited to abstractions involving only chance nodes (common

to all poker abstractions) or only players’ actions (common to abstractions in no-limit variants).

3.2 Abstraction

Before we can quantify the effect that abstraction has on the quality of a strategy we must formalize

the assumptions. This first requires us to define what it means to abstract a game. There are two

methods for creating a smaller game from a larger one. First, we can merge information sets together.

Second, we can restrict the actions a player can take from a history. We can also do a combination

of these two methods.

Definition 4 (Abstraction) An abstraction for player i is a pair αi =
〈
αIi , αA

i

〉
, where,

• αIi is a partitioning of Hi, defining a set of abstract information sets that must be coarser1

than Ii, and

• αA
i is a function on histories where αA

i (h) ⊆ A(h) and αA
i (h) = αA

i (h′) for all histories h

and h′ in the same abstract information set. We will call this the abstract action set.

The null abstraction for player i, is φi = 〈Ii, A〉. An abstraction α is a set of abstractions αi,

one for each player. Finally, for any abstraction α, the abstract game, Γα, is the extensive game

obtained from Γ by replacing Ii with αIi and A(h) with αA
i (h) when P (h) = i, for all i.2

Strategies for abstract games are defined in the same manner as for unabstracted games, but the

function must assign the same distribution to all histories in the abstraction information set, and
1Recall that partition A is coarser than partition B, if and only if every set in B is a subset of some set in A, or equivalently

x and y are in the same set in A if x and y are in the same set in B.
2As discussed earlier some partitions of information can result in situations where a player is forced to forget their own

past decisions. We only consider abstractions that result in an abstract game with perfect recall.
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assign zero probability to actions not in the abstract action set. We will use the notation Σα
i to refer

to the set of strategies for player i in the abstract game Γα.

3.2.1 Refinement

Having defined formally what it means to abstract a game, we must formalize what it means for one

abstraction to be bigger or superior to another. We use the notion of refinement for this purpose.

Definition 5 (Refinement) Let αi and βi be abstractions for player i. We say αi refines βi, written

αi w βi, if and only if βIi is coarser than αIi and αA
i (h) ⊇ βA

i (h) for all h ∈ Hi. If αi w βi and

βi w αi then we say αi and βi are equivalent, written αi ≡ βi. In addition, we say α refines β, or

α w β, if and only if αi w βi for all i.

A refinement, therefore, allows the player’s decisions to be contingent on all the same information

(and possibly more). A refinement also allows a player to make all of the same choices (and possibly

more). As a result, a refinement necessarily gives the player at least as many available strategies.

Theorem 2 If α w β then for all i, Σα
i ⊇ Σβ

i .

PROOF. Suppose σi ∈ Σβ
i . For any h and h′ in the same abstract information set of αi, they must

also be in the same abstract information set of βi since βIi is coarser than αIi . Therefore σi(h) =

σi(h′). Furthermore, since σi(h) defines a distribution over βA
i (h) it also defines a distribution over

the superset αA
i (h). Thus σi ∈ Σα

i .

3.3 Monotonicity

One might presume that by refining an abstraction, and thus having more available strategies, that

better strategies would be found. However, solving games does not mean finding the best strategy

from the available set, but rather finding a pair of strategies, one for each player, that are in equilib-

rium. The abstraction for each player matters. Still, one might presume that giving more available

strategies to all players would result in a strategy that is closer to equilibrium in the full game. We

can state these presumptions formally, using our notion of exploitability, εi(σi), as the quantitative

value for how far σi is from an equilibrium strategy.

Property 1 (Monotonicity) Let α and β be abstractions, where α w β.

(a) Strong Monotonicity for player i: If σα and σβ are Nash equilibria for Γα and Γβ respec-

tively, εi(σα
i ) ≤ εi(σ

β
i ).

(b) Weak Monotonicity for player i: Let Σα,∗ and Σβ,∗ be the set of all Nash equilibria for Γα

and Γβ (respectively), minσ∈Σα,∗ εi(σi) ≤ minσ∈Σβ,∗ εi(σi).
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If the (strong or weak) monotonicity property for player i holds only if α−i ≡ β−i, i.e., we only

refine the player’s abstraction, then we call it player monotonic. If it only holds if αi ≡ βi, i.e., we

only refine the opponent’s abstraction, then we call it opponent monotonic.

Strong monotonicity requires that every equilibrium strategy in the finer abstract game be less

exploitable than every equilibrium strategy in the coarser abstract game. This is the most hopeful

property, and the one that is presumed by work that seeks to use larger and larger abstractions (since

most game solvers make no claims about the equilibria they find or approximate). Extensive games,

though, may have many equilibria, and some of these may be closer to optimal in the full game

than others. Weak monotonicity states that the best equilibrium strategy in the finer abstract game is

less exploitable than the best equilibrium strategy in the coarser game. Player and opponent (weak

and strong) monotonicity are weaker monotonicity properties that refer to when a refinement only

affects the player’s or opponent’s abstraction, respectively.

Unfortunately, none of these monotonicity properties hold in general. We show specific coun-

terexamples of all of them in the counterexamples section. However, before moving on to these

counterexamples, there are a few items we must discuss.

3.3.1 Null Opponent Monotonicity

First, there is one condition under which we can prove monotonicity does hold. If we use an abstrac-

tion where the opponent plays in the null abstraction (i.e., the full game), then we see monotonicity

in refining the player’s abstraction.

Theorem 3 Let α and β be abstractions where α w β and α2 ≡ β2 ≡ φ2. If σα and σβ are Nash

equilibria for Γα and Γβ , respectively, then ε1(σα
1 ) ≤ ε1(σ

β
1 ).

PROOF. We use the definition of ε1 (steps 3.1 and 3.4) and the Minimax Theorem (steps 3.2 and

3.4), plus the fact that a maximum over a set is no larger than the maximum over a superset (step

3.3) to prove this theorem.

v∗ − ε1(σα
1 ) = min

σ2∈Σ2
u1(σα

1 , σ2) (3.1)

= max
σ1∈Σα

1

min
σ2∈Σ2

u1(σ1, σ2) (3.2)

≥ max
σ1∈Σβ

1

min
σ2∈Σ2

u1(σ1, σ2) (3.3)

= min
σ2∈Σ2

u1(σ
β
1 , σ2) = v∗ − ε1(σ

β
1 ). (3.4)

Removing v∗ followed by negating the sides of the inequality and flipping the ≥ to ≤ gives us our

result.

Unfortunately, unless there is considerable asymmetry in the number of choices available to

the two players, solving a game where even one player operates in the null abstraction is typically
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infeasible. This is certainly true in the large poker games that have been examined recently in the

literature. Although the result gives some insight as to when abstraction is safe, it does not give a

foundation for the practical use of abstraction.

3.3.2 Weak Monotonicity

Second, as alluded to earlier, not all abstract equilibrium strategies are equivalent in terms of ex-

ploitability in the full game. Strong monotonicity requires all equilibria in a finer abstraction to be

stronger than all equilibria in a coarser abstraction. However, it may be that some equilibria are

weaker or stronger than others. This is the premise of our weak monotonicity property. In this

section we look into the best equilibrium for a particular abstraction, which first requires some new

algorithmic developments.

In games that we can compute an equilibrium with an unabstracted opponent, we can efficiently

find the best abstract equilibrium strategy using the following linear program:

min
u,v,x

gv subject to Gv ≤ Bx, Fu ≤ Ax, fu = t∗, Ex = e, x ≥ 0 (3.5)

Here (A,E, e, F, f) is the sequence form description of Γα and (B,E, e,G, g) is the sequence form

description of a new game Γβ . In Γβ , β1 ≡ α1 and β2 ≡ φ. t∗ is the value of Γα.

Theorem 4 Any x∗ that is part of an optimal solution to (3.5) is an equilibrium strategy in Γα and

no other equilibrium strategy of Γα is less exploitable in Γ.

In our proof, we will refer to the sequence form linear programs found in background sec-

tion 2.2.1.

PROOF. Let (u∗, v∗, x∗) be an optimal solution to (3.5). Clearly, (u∗, x∗) is a feasible point of

(2.14) as the constraints of (2.14) are a subset of the constraints of (3.5). Furthermore, this point is

optimal as (2.14) has optimal value t∗ and the objective function, gu, is constrained in (3.5) to meet

this condition. This implies x∗ is an equilibrium strategy of Γα. Let x0 be any equilibrium strategy

of Γα. We can find u0 and v0 using (2.13) in Γα and Γ respectively. This implies (u0, v0, x0) is

a feasible point of (3.5). We note that if we only let v vary in (3.5) it is equivalent to (2.13) and

therefore the value at (u0, v0, x0) is by(x0). Finally, the value of (3.5) at a feasible point must be

no less than the value at an optimal point. Therefore, by(x∗) ≤ by(x0), which implies x0 can be no

less exploitable than x∗. We note that the best response values in this proof are in Γβ , but since our

opponent’s abstraction is φ, these best response values are the same as in Γ.

Unfortunately, solving (3.5) requires as much work as solving Γβ , which involves a full rep-

resentation of one player’s strategy space. However, we can still use this approach to examine

abstractions in small games, allowing us to explore the weak monotonicity property. Solving for the

worst case equilibrium strategy, although interesting, does not appear to be tractable for even small

games. Therefore, we do not examine it here.
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Figure 3.1: Visual representation of no-limit Leduc Hold’em action abstraction refinements

3.4 Counterexamples

To show counterexamples to all the useful monotonicity properties, we make use of Leduc and no-

limit Leduc Hold’em. Both of which are described in the background, Section 2.3. These games are

both small enough that abstraction is not necessary to solve for an equilibrium, but they are complex

enough that we can see the effects that abstraction has on the exploitability of a strategy.

In our poker games, we use millibets per hand (or mb/h) to evaluate how well one program

does against another or to describe how exploitable a program is. A millibet is one thousandth of

a small bet in the fixed limit games or one thousandth of the smallest bet available in the no-limit

games.

3.4.1 No-limit Leduc Hold’em

We will start by showing counterexamples to action abstraction in no-limit Leduc Hold’em. All the

experiments in this section were performed by fellow Master’s student David Schnizlein.

In the abstract games, each player has up to four betting options. These options are 50% pot (h),

100% pot (p), 200% pot (d) and all-in (a). Different abstractions are created by disallowing one or

more of h, p, and d. When half pot or double pot are disallowed, any bets that would have been

translated to them are instead translated to a pot bet. Similarly, if pot is also disallowed then all bets

are translated to all-in. This ensures that an abstraction with more bets, like hpda, is a refinement

of an abstraction with fewer bets, like pda. Figure 3.1 shows this visually. Note that this is not

the translation described by Gilpin et al. as their technique may not refine an abstraction with the

addition of new betting choices. The betting abstractions we use are FULL, hpda, hpa, pda, pa,

and a. Though these betting abstractions were hand-picked, they are representative of abstractions

selected by teams competing in the computer poker competitions.

Since we can abstract the player and the opponent separately, we denote an abstract game by the
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Abstraction Exploitability
FULL-FULL 0.0
hpda-FULL 0.4
pda-FULL 0.4
hpa-FULL 2.8
pa-FULL 2.8
a-FULL 5.7
hpda-hpda 94.0
FULL-hpda 103.2
a-hpda 116.8
pda-hpda 118.5
hpa-hpda 135.2
pa-hpda 138.3
hpa-hpa 185.4
pa-hpa 185.8
pda-hpa 190.4
FULL-hpa 193.7
a-a 238.0
pa-a 246.2
FULL-a 247.7
pda-pda 255.4
FULL-pda 276.1
pa-pa 373.3
FULL-pa 390.4

Table 3.1: Exploitability of various no-limit Leduc Hold’em strategies

player’s abstraction followed by the opponent’s abstraction. For example, the abstract game hpda-

pa is the game where the player uses the hpda abstraction and the opponent uses the pa abstraction.

For each abstract game, we found a single equilibrium strategy for the player using the sequence

form linear program and CPLEX [11]. The exploitability of that strategy in the full game was then

computed. A subset of the results are displayed in Table 3.1.

We see that when our opponent uses the FULL abstraction that the exploitability of our various

abstractions are ordered correctly as required by Theorem 3. We also see that this ordering breaks as

soon as our opponent is abstracted. One example is that a-a is only 238.0 mb/h exploitable while pa-

a is 246.2 mb/h exploitable. Similarly, pa-pa is even more exploitable at 373.3 mb/h. Again, these

are counterexamples to strong player and strong opponent monotonicity. In other words, giving the

player or the opponent more actions can result in a more exploitable strategy. These examples show

that none of the strong monotonicity properties hold when using action abstraction.

3.4.2 Leduc Hold’em

We used Leduc Hold’em to explore the effects of card abstraction on exploitability. Here, we

explore both weak and strong monotonicity. We start by describing our card abstractions and their

effects on strong monotonicity.

In our experiments, we start by abstracting the initial deal of the private card. For example,
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Figure 3.2: Visual representation of Leduc Hold’em card abstraction refinements

normally the player can separate their private card into King (K), Queen (Q), or Jack (J). One ab-

stracted view is that the private card is either a King (K) or not a King (JQ). Similarly, an abstracted

view of the community card is either the private card was paired (pair), or it was not (nopair).

The abstractions we used in our experiment are FULL, J.Q.K/pair.nopair, JQ.K/pair.nopair, J.QK/-

pair.nopair, and JQK/pair.nopair. Here, FULL denotes the null abstraction, while periods between

the cards separate information sets. For simplicity’s sake, we drop pair.nopair from the description

of the abstractions as it does not add ambiguity. For example, the JQ.K abstraction means that the

player cannot differentiate between a Jack and a Queen preflop. Note that J.Q.K refines both JQ.K

and J.QK, both of which refine JQK. Figure 3.2 shows these refinements visually. Though these

card abstractions were hand-picked, they are similar to the abstractions that would be found by the

automatic abstraction techniques that are used in the computer poker competitions.

A subset of the results of this experiment are displayed in Table 3.2. The abstraction in this

table refers to the abstract game defined by abstracting both players as in the previous experiments.

Like in the no-limit experiments, we solved a single equilibrium strategy for the player using the

sequence form linear program and CPLEX [11] and computed its exploitability in the full game.

As is required by Theorem 3, monotonicity holds when our opponent uses the FULL abstrac-

tion. However, there are several examples where monotonicity fails to hold when our opponent is

abstracted. For instance, JQ.K-JQ.K is only exploitable by 272.2 mb/h whereas JQ.K-J.Q.K is ex-

ploitable by 274.1 mb/h. In turn, this strategy is even less exploitable than the one for J.Q.K-J.Q.K,

which is exploitable by 359.9 mb/h. These are explicit counterexamples to both strong player mono-

tonicity and strong opponent monotonicity. In other words, refining the card abstractions for both

players, as is classically done for competitions, can produce a more exploitable strategy.

Though we cannot tractably compute the best equilibrium strategies in many games we are

interested in, we can examine them in Leduc Hold’em. In Table 3.3 we show a subset of the results

of an experiment, which uses the same card abstractions from our first limit experiment. A new

column is added to Table 3.2, which refers to the exploitability of the best equilibrium strategy. That
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Abstraction Exploitability
FULL-FULL 0.0
J.Q.K-FULL 55.2
JQ.K-FULL 69.0
J.QK-FULL 126.3
JQK-FULL 219.3
JQ.K-JQ.K 272.2
JQ.K-J.Q.K 274.1
FULL-J.QK 345.7
FULL-JQ.K 348.9
J.Q.K-J.Q.K 359.9
J.Q.K-JQ.K 401.3
J.QK-J.QK 440.6
FULL-JQK 459.5
FULL-J.Q.K 491.0
JQK-JQK 755.8

Table 3.2: Exploitability of various limit Leduc Hold’em strategies

is, the exploitability of the least exploitable abstract equilibrium strategy in the full game.

We find that even when we use the best equilibrium that we still see counterexamples to mono-

tonicity. The exploitability of the best equilibrium strategy in the J.Q.K-J.Q.K abstract game is 358.6

mb/h, whereas the best equilibrium for JQ.K-J.Q.K is only exploitable by 78.8 mb/h, violating weak

player monotonicity. Perhaps even more disturbing is the fact that JQ.K-JQ.K, which is obtained

from the previously mentioned game by merging the Jack and Queen for both players, is only ex-

ploitable by 272.2 mb/h. In this case, even if we managed to converge to the best strategy in the

larger game it is still worse than one we happened to converge to in the smaller game.

When ordered by the least exploitable equilibrium strategy we see many opposite trends as when

ordered by the exploitability of the strategy that the linear program solver happened upon. First, if we

could indeed find the best strategy, it appears we would like to give our player as much information

about the game as possible. There exists an equilibrium strategy in the abstract game FULL-J.Q.K

that is only exploitable by 1.7 mb/h, however our equilibrium solver happened upon one exploitable

by 491 mb/h. This difference is incredible when you consider we can guarantee ourselves a strategy

that is exploitable by 219.3 mb/h when using JQK-FULL, in which our player does not have any

knowledge of her own private card prior to the community card’s arrival! Second, even when giving

our player as many options as possible, there is a counterexample to weak opponent monotonicity

as we would rather give our opponent JQK than the refined J.QK. Finally, there is an example

of both giving ourselves or our opponent more options leading to higher best case exploitability.

Specifically, JQ.K-J.Q.K is better than J.Q.K-J.Q.K and J.Q.K-JQ.K is better than J.Q.K-J.Q.K.
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Abstraction Exploitability Exploitability
(Best)

FULL-FULL 0.0 0.0
FULL-J.Q.K 491.0 1.7
FULL-JQK 459.5 10.1
FULL-J.QK 345.7 45.3
J.Q.K-FULL 55.2 55.2
FULL-JQ.K 348.9 57.7
JQ.K-FULL 69.0 69.0
JQ.K-J.Q.K 274.1 78.8
J.Q.K-JQ.K 401.3 88.8
J.QK-FULL 126.3 126.3
JQK-FULL 219.3 219.3
JQ.K-JQ.K 272.2 272.2
J.Q.K-J.Q.K 359.9 358.6
J.QK-J.QK 440.6 440.6
JQK-JQK 755.8 710.2

Table 3.3: Best-case Exploitability of various limit Leduc Hold’em strategies

a b c d
A 7 2 8 0
B 7 10 5 6

Figure 3.3: An example matrix game to demonstrate abstraction pathologies

3.5 Discussion

We used a smaller game, Leduc Hold’em, earlier so that we could analyze abstract game strategies

in terms of their exploitability in the full game. However, we did not carefully construct this game

or the abstractions to create the counterexamples we have presented. Leduc Hold’em is a scaled

version of Texas Hold’em in which the number of cards was reduced and the betting simplified. The

counterexamples arose naturally from the same kind of abstractions used in Texas Hold’em – card

abstractions that group hands with similar strength and potential and restricting the betting actions.

Since these pathologies are common in this small poker game, we expect them to also be common

in larger poker games.

We now introduce an even simpler game to further illustrate how these pathologies arise. Con-

sider the zero-sum matrix game shown in Figure 3.3. As mentioned in the background, matrix games

are a special case of extensive games where players simultaneously choose an action. Their joint

decision identifies an entry in the matrix specifying the utility for the row-player, where the utility

for column-player is simply the negation of this entry. In this game, the row-player has two actions,

A and B, and the column-player has four actions, a, b, c, and d. An abstraction of this game is

obtained by eliminating one or more actions for either player.

Figure 3.4 gives a visual representation of this game. The x-axis shows the row-player’s strategy

space. For example, a point 30% along the x-axis represents a strategy where the row-player selects
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Figure 3.4: Visual representation of the matrix game in Figure 3.3

action B with probability 0.3 and action A the remainder of the time. Each line corresponds to a

different action for the column player (a, b, c or d). The height of the line above any point on the

x-axis represents the row-player’s expected utility when the row-player plays that particular strategy

and the column-player plays the action represented by the line. For example, if the row-player plays

the strategy P (B) = 0.3 and the column-player selects action b, then the utility for the row-player

is approximately 4.4, whereas if the column-player selects action d the utility for the row player is

approximately 1.8. These points are circled in Figure 3.4. An equilibrium strategy guarantees the

best worst-case value, which in the full game occurs at the intersection of lines c and d, giving at

least a value of slightly more than 5 to the row player.

Consider an abstract game where the column-player only has actions a and b. This abstract

game has a range of equilibrium strategies for the row-player corresponding to the dash-emphasized

segment of line a. Not only are there many equilibrium strategies in this abstract game, but some

of them are better than others in terms of their worst-case utility in the full game. Since the true

equilibrium strategy for the row player lies within this space, this abstract game has a solution that is

not exploitable. Now consider a refinement of this abstraction where the column-player has action

c in addition to a and b. Here, the equilibrium strategy for the row-player shifts to the left to the

intersection of lines b and c. The addition of this action removes the true equilibrium strategy from
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the set of equilibrium strategies in the abstract game. More importantly, this unique equilibrium

strategy has a lower worst-case utility in the full game than any equilibrium strategy in the coarser

abstract game. Why does this occur? In essence, providing an additional action to an opponent has

made the stronger strategies (including the true equilibrium) appear less attractive as the opponent

lacks the ability to play strategies that would show that the alternatives are indeed worse.

Now, we show a pathology that arises from abstracting the row-player’s actions. Suppose that

the row player is only allowed to take action B and the column-player can only take action c. The

equilibrium strategy is the only strategy for the row-player, P (B) = 1, and the row-player has a

worst-case utility of 5. If we refine the game to allow the row player to also take action A, the

equilibrium strategy moves to P (A) = 1, so the row player increases its utility to 8. However, in

the full game this strategy has utility 0 for the row-player in the worst-case. Why does this occur?

Providing additional strategies to a player can encourage the player to exploit the limitations of

the opponent’s abstraction, resulting in a strategy that is more exploitable by actions that become

available to the opponent in the full game.
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Chapter 4

Domination Value

4.1 Motivation

In the previous chapter, we showed that not only do abstraction pathologies exist but they appear

to be common. This runs counter to competition experience and intuition that solving increasingly

larger abstraction games causes monotonic improvement in performance. One potential reason that

these pathologies have not proven problematic in competitions is that when we evaluate strategies in

the tournament setting, most of the strong programs are playing equilibrium-like1 strategies. That is,

the strong programs are not adapting to their opponent’s strategy to exploit any apparent weaknesses;

they win primarily due to poor opponent play.

If we examine Table 4.1 and Table 4.2, we can see the results of the Leduc Hold’em strategies

from the previous chapter played against each other in a tournament setting modeled after the AAAI

Poker Competitions. Just as in these competitions, we analyze the outcome of the tournament in two

fashions. First, Table 4.1 shows the results from what is known as a bankroll competition. Here, the

strategies are ordered by their average expected winnings against all opponents. Second, Table 4.2

shows the results from what is known as a runoff competition. Here, the strategy with the lowest

expected winnings is assigned last place. This strategy is then removed and the runoff competition

is repeated using the remaining opponents until only the winner remains. In a runoff competition

it is sufficient to to have positive expectation against every opponent, regardless of the amount, to

win the competition. However, the winner of the bankroll competition can lose to some opponents

as long as the difference is made up by beating the weaker opponents by a large amount. We should

note that the strategies here play both positions against every opponent and the expected win rate

is the average of the win rates over both positions. Similarly, the exploitability of a strategy is the

average exploitability over both seats. To further clarify, the strategy J.Q.K-JQ.K is two ε-Nash

equilibrium strategies, one for each position in Leduc Hold’em, both of which are solved with the

J.Q.K abstraction for the player and the JQ.K abstraction for the opponent. A crosstable showing

the individual matches, from which these tables are derived, is provided in the appendix.
1An equilibrium-like strategy is a static strategy that seeks to balance its play in order to prevent exploitation by the

opponent. Strategies found by solving an abstract game are equilibrium-like.
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There are a couple of interesting observations that we can gather from the tournament results.

First, though the equilibrium does not lose to any other strategy and wins the runoff competition, it

only places fourth in the bankroll competition. That is, it does not win as much against the weaker

strategies as some of the other off-equilibrium strategies. Second, the exploitability of the strategies

appears to only be weakly correlated with the tournament results with correlation coefficients of

0.15 and 0.30 for the bankroll and runoff tournaments respectively. If we look at the top 20% of

strategies in terms of exploitability, which are all exploitable for less than 200 mb/h, the worst of

them, JQK-FULL, finishes twenty-fourth in both tournaments. The remainder of these strategies

are spread uniformly across the ranks. Third, the strategy that always folds is exploitable by 500

mb/h and would place last in either tournament format. Though most of the strategies are indeed

less exploitable than always fold, J.Q.K-JQK is exploitable for over 600 mb/h and yet it places near

the middle of the tournament in both settings. Finally, the largest strategy in which both players are

abstracted, J.Q.K-J.Q.K, is the highest placed such strategy in the runoff competition, which is what

would have been predicted from previous competition experience. The conclusions we can draw

here are that, though exploitability says that refining an abstraction can lead to worse strategies, the

tournament results still tend to follow our intuition that the larger abstract equilibrium strategies tend

to perform better.

To help understand these results, let us investigate the well-known game of Paper-Rock-Scissors.

The equilibrium strategy in this game is to play each action uniformly at random. The most ex-

ploitable strategy in this game would be to always play the same action (e.g., always play rock).

The equilibrium strategy will not only in expectation tie the most exploitable strategy, but it will

in expectation tie any strategy. This guarantees that it cannot finish on top of a bankroll style

tournament unless all but one of the other entrants to the competition is an equilibrium. That is,

playing the equilibrium strategy in a Paper-Rock-Scissors tournament is a bad idea [3]. Despite this,

equilibrium-like strategies do well in poker games. One possible explanation for this difference is

the presence of dominated strategies in poker games, which do not exist in Paper-Rock-Scissors. We

define a dominated strategy as follows:

Definition 6 (Dominated Strategy) A dominated strategy for player i is a pure strategy2, σi, such

that there exists another strategy, σ′i, where for all opponent strategies σ−i,

ui(σ′i, σ−i) ≥ ui(σi, σ−i) (4.1)

and the inequality must hold strictly for at least one opponent strategy. We say σ′i dominates σi.

This implies that a player can never benefit by playing a dominated strategy. It is, in essence, a

mistake to play a dominated strategy against any opponent. Furthermore, an equilibrium strategy

will never play a dominated strategy. Identifying dominated strategies is difficult in large games as

it requires a linear program of similar size to one for solving the game [5].
2A pure strategy is one that assigns a probability of 1 to a single action at every history.
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Rank Strategy Exploitability
1 FULL-J.QK 270.999
2 FULL-J.Q.K 388.18
3 FULL-JQ.K 334.159
4 FULL-FULL 0
5 J.Q.K-JQ.K 385.69
6 J.Q.K-J.QK 342.33
7 J.Q.K-J.Q.K 320.394
8 J.Q.K-FULL 53.8288
9 JQ.K-JQ.K 266.523
10 JQ.K-J.Q.K 228.787
11 JQ.K-J.QK 228.977
12 J.Q.K-JQK 620.34
13 FULL-JQK 543.635
14 JQ.K-FULL 84.8595
15 J.QK-J.QK 372.979
16 JQ.K-JQK 500.985
17 J.QK-JQ.K 378.093
18 J.QK-J.Q.K 256.532
19 J.QK-FULL 108.937
20 J.QK-JQK 563.338
21 JQK-JQ.K 239.901
22 JQK-J.QK 230.992
23 JQK-J.Q.K 242.141
24 JQK-FULL 199.876
25 JQK-JQK 610.737

Table 4.1: Bankroll Rankings and Exploitability for Leduc Hold’em Tournament
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Rank Strategy Exploitability
1 FULL-FULL 0
2 FULL-J.QK 270.999
3 FULL-J.Q.K 388.18
4 FULL-JQ.K 334.159
5 J.Q.K-J.Q.K 320.394
6 J.Q.K-JQ.K 385.69
7 J.Q.K-FULL 53.8288
8 JQ.K-JQ.K 266.523
9 J.Q.K-J.QK 342.33
10 JQ.K-J.Q.K 228.787
11 JQ.K-J.QK 228.977
12 JQ.K-FULL 84.8595
13 J.QK-JQ.K 378.093
14 J.QK-J.Q.K 256.532
15 J.QK-J.QK 372.979
16 JQ.K-JQK 500.985
17 J.Q.K-JQK 620.34
18 FULL-JQK 543.635
19 J.QK-FULL 108.937
20 J.QK-JQK 563.338
21 JQK-JQ.K 239.901
22 JQK-J.QK 230.992
23 JQK-J.Q.K 242.141
24 JQK-FULL 199.876
25 JQK-JQK 610.737

Table 4.2: Runoff Rankings and Exploitability for Leduc Hold’em Tournament
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a b
A 3 1
B 1 2
C 2 3

Figure 4.1: An example matrix game to demonstrate the effects of opponent refinement on domi-
nated strategies

In this chapter, we will first explore some of the properties of domination and the effect of

refinement on domination. Then, we will introduce a quantitative measure of how often a strategy

makes mistakes, its domination value. Finally, we will use this measure to evaluate our Leduc

Hold’em strategies from Chapter 3.

4.2 Properties of Domination and Refinement

As with exploitability, we can show a similar result for domination when we refine the player’s

abstraction against an unabstracted opponent.

Theorem 5 If α and β are abstractions where α w β and α2 ≡ β2, then if σ1 is a dominated

strategy in Γβ then σ1 is also dominated in Γα.

PROOF. Let σ′1 ∈ Σβ
1 be the strategy that dominates σ1. Since Σβ ⊆ Σα, σ′1 ∈ Σα by Theorem 2.

Thus, Equation 4.1 holds in Γα as σ′1 again dominates σ1.

Corollary 1 If α is an abstraction and α2 ≡ φ2, then if σ1 is dominated in Γα then σ1 is dominated

in Γ.

The proof holds by direct application of Theorem 5. As a direct result of this corollary, if we refine

the player’s abstraction against an unabstracted opponent, we preserve strategy domination.

Theorem 5 states that refining the player’s abstraction cannot add back in a strategy that was

dominated in the coarser game. Unfortunately, the same is not true for refining the opponent’s

abstraction. For example, take the matrix game in Figure 4.1. In the abstract game where the row-

player can play actions A and B and the column-player only a, we see that A dominates B. By refining

the column player to also include action b, B is no longer dominated. Furthermore, B is dominated

by C in the full game. That is, by refining the opponent we can reintroduce dominated strategies.

If we know that our opponent is rational, we know that they will not play any dominated strate-

gies. This means that there could be additional strategies (that are not dominated) that we should

never play since some strategies may become dominated once the opponent’s irrational strategies

are no longer considered. By both players assuming the other is rational, we get a notion known as

iterated dominance.

Definition 7 (Iteratively Dominated Strategy) An iteratively dominated strategy for player i is a

pure strategy σi, such that either σi is a dominated strategy, or there exists a σ′i such that for all
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a b
A 1 5
B 0 6
C 2 0
D 2 4

Figure 4.2: An example matrix game to demonstrate the effect of player refinement on iteratively
dominated strategies

non-iteratively dominated opponent strategies σ−i we have

ui(σ′i, σ−i) ≥ ui(σi, σ−i) (4.2)

The inequality must hold strictly for at least one opponent strategy. Here, we say σ′i iteratively

dominates σi.

Note that the definition of iterative dominance is recursive. Again, like with a dominated strategy, it

is a mistake to play an iteratively dominated strategy against an opponent who is and assumes ratio-

nality. As such, an iteratively dominated strategy will never be played by an equilibrium strategy.

Unlike with simple domination, iterative dominance is not necessarily preserved by refinement

in any situation. It is straightforward to create examples of this using matrix games, as we pre-

viously did for opponent refinement. As an example, we see in Figure 4.2 an example of player

refinement against an unabstracted opponent that leads to the re-introduction of an iteratively domi-

nated strategy. In the abstract game where the only strategies available to the row-player are A and B,

a dominates b (remember, the column-player is minimizing) and therefore A iteratively dominates

B. By refining the player and introducing C, a no longer dominates b, so B is no longer iteratively

dominated. In the full game, D dominates C and therefore a iteratively dominates b, which in turn

makes D iteratively dominate both A and B. By refining the player in the first abstract game, we see

that we can reintroduce a strategy that is iteratively dominated in both the coarser abstract game as

well as the full game.

4.3 Domination Value

An equilibrium strategy makes an opponent indifferent to all non-iteratively dominated strategies.

That is, to tie an equilibrium strategy in expectation, all one must do is play a non-iteratively domi-

nated strategy. This is a much weaker condition than the requirement to play an equilibrium strategy

that is necessary to be unexploitable. This observation leads us to a new evaluation criteria, called

the domination value of a strategy.

Definition 8 (Domination Value) The domination value of a strategy σi, written Domi(σi), is

Dom1(σ1) = max
σ2∈Σ∗

2

u2(σ1, σ2) + v∗, and (4.3)

Dom2(σ2) = max
σ1∈Σ∗

1

u1(σ1, σ2)− v∗
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The domination value of a strategy measures how much value is lost against the worst-case equilib-

rium strategy. That is, by player 1’s failure to assume her opponent is rational, how much additional

value could she lose if her opponent is indeed rational. Note that for all σi, Domi(σi) ≥ 0 and for

all equilibrium strategies σ∗i , Domi(σ∗i ) = 0. However, non-equilibrium strategies may also have

a domination value of zero. In particular, any strategy that does not play any iteratively dominated

strategies will have domination value zero.

As with exploitability, we have a series of monotonicity properties that we would like to hold

under refinement using domination value instead of exploitability as our evaluation criteria. That is,

our definitions for strong and weak monotonicity, as well as their respective player and opponent

variations, from Chapter 3 remain unchanged after substituting Domi for εi. We should be rather

pessimistic about any of these properties holding, especially after we have already shown that itera-

tive dominance is not preserved under refinement. A second reason for this pessimism is that when

we solve for an arbitrary equilibrium strategy in an abstract game, we have no control over how

much weight is assigned to the iteratively dominated strategies, which is what will determine the

domination value. That is, again there could be some equilibrium strategies from the same abstract

game that are better or worse in terms of their domination values. Indeed, we will see in the results

section that none of the monotonicity properties hold. We will, however, show that domination value

is far more correlated with the outcome of a tournament than exploitability.

4.4 Computing the Domination Value of a Strategy

Before presenting our results, we must first outline how one computes the domination value of a

strategy, as well as the domination value of the best equilibrium strategy in an abstract game. Like

with exploitability, these computations are all done using the sequence form representation of a

game and linear programming. Similarly, these linear programs are all about the size of the one

used to solve an equilibrium in the full game and hence we can only compute the domination value

of a strategy in small games.

We can compute the domination value of a strategy using the following linear program:

Dom2(y) = max
x,u

yA1x− v∗ subject to fu = v∗, Fu ≤ A2x, Ex = e, x ≥ 0 (4.4)

Here, A1 is the payoff matrix for the game where player 2 is abstracted and (A2, E, e, F, f) is the

sequence form representation of the full game.

PROOF. Let (x, u) be a feasible solution (4.4). (x, u) is a feasible point of (2.14), as the constraints

of (2.14) are a subset of the constraints in (4.4). Additionally, (x, u) is in the solution set of (2.14)

as the objective function, fu is constrained to be the optimal value of v∗. Therefore, any feasible x

of (4.4) is an equilibrium strategy for player 1 in the full game. Let (x∗, u∗) be an optimal solution

to (4.4). By definition, u1(x∗, y) = yA1x
∗ ≥ yA1x = u1(x, y) for all x satisfying the constraints
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(or all equilibrium strategies for player 1). Therefore, x provides the greatest utility to player 1 of

all equilibrium.

As with the equilibrium linear program, it is useful for us to look at the dual linear program for

computing the domination value of a strategy for player 1.

Dom1(x) = −max
a,b,c

fc− v∗a− v∗ subject to Eb = ea, Fc ≤ A2x + A1b, b ≥ 0 (4.5)

Again, A1 is the payoff matrix for the game where player 1 is abstract and (A2, E, e, F, f) is the

sequence form representation of the full game. The dual variables have an interesting structure. In

particular, b is a strategy for player 1, but this realization plan normalizes to a, instead of to 1. This

means the expected payoff yAb is off by a constant factor of 1
a when a is non-zero. The vector c is

similar to the dual vector in the standard best response linear program. In that program, the vector

corresponds to the values of the opposing player’s information sets.

As with the equilibrium linear program, we can modify the dual in a simple fashion to find player

1’s best strategy in terms of domination value.

max
a,b,c,x,u

fc− v∗a subject to

E1b = e1a, F1c ≤ A2x + A1b, f3u = t∗, F3u ≤ A3x, E3x = e3, b, x ≥ 0 (4.6)

In this linear program, we make use of (A3, E3, e3, F3, f3), the sequence form representation of Γα,

the game being solved by player 1, as well as t∗, the value of this game. In addition to the previous

variables, we now let x vary. It is straightforward to show that (4.6) solves minx Dom1(x), where x

is constrained to be an equilibrium strategy, by substituting (4.5) for Dom1(x).

4.5 Results

The first results we will present are the domination values for the Leduc Hold’em strategies from

Chapter 3. Table 4.3 shows how each of these strategies does against the equilibrium in the full game

found by CPLEX, against the worst-case equilibrium (the strategy’s domination value) as well as

the optimal domination value for an equilibrium strategy in the same abstract game. The results here

are sorted by the optimal domination value, which we notice is typically close to the domination

value of the arbitrary equilibrium. The only case where there is a difference of more than 20 mb/h

is in the FULL-JQK abstraction. Similarly, the expected outcome against an arbitrary equilibrium is

also typically close to the domination value of the strategy. Here, there is only two strategies with

more than a 20 mb/h difference between the domination value and the expected loss to an arbitrary

equilibrium. We also see that the larger abstract games tend to have lower domination values than

the smaller abstract games. For example, many of the strategies with higher domination values use

the JQK abstraction for one player.

35



Abstraction EV of Equilibrium Domination Value Best Domination Value
FULL-FULL 0 0 0
J.Q.K-JQ.K 8.2628 9.6393 5.6056
FULL-JQ.K 15.9353 16.0543 9.2493
FULL-J.Q.K 13.7653 14.1158 14.1408
FULL-J.QK 23.1978 26.2033 15.7413
FULL-JQK 76.3623 83.9278 16.4323
JQ.K-JQ.K 24.4563 25.6953 25.5933
J.Q.K-J.Q.K 24.3738 27.8143 27.6663
JQ.K-J.Q.K 29.6123 32.5473 32.2413
J.Q.K-J.QK 38.2403 49.6428 38.8658
J.Q.K-FULL 31.0328 44.6188 44.5683
JQ.K-J.QK 39.9943 47.6378 47.6393
JQ.K-FULL 43.0438 54.1853 54.2448
JQ.K-JQK 67.3973 78.1593 58.7938
J.Q.K-JQK 89.3688 99.6298 74.3198
J.QK-JQ.K 71.6203 75.9163 75.4923
J.QK-JQK 89.1768 96.2983 75.7248
J.QK-FULL 99.3133 102.001 100.17
J.QK-J.Q.K 103.907 105.35 105.614
J.QK-J.QK 99.0023 121.061 121.346
JQK-J.Q.K 167.136 171.214 171.202
JQK-J.QK 172.795 175.228 175.737
JQK-JQ.K 177.037 179.729 179.612
JQK-FULL 186.56 189.777 189.602
JQK-JQK 351.151 402.385 390.788

Table 4.3: Domination Values for Leduc Hold’em Strategies

If we look more closely at the table, we can see that, as expected, none of the monotonicity

properties hold. For example, JQ.K-JQ.K is slightly better than J.Q.K-J.Q.K in terms of best-case

domination value for a violation of weak and strong monotonicity, JQ.K-JQK is better than J.Q.K-

JQK for a violation of weak and strong player monotonicity and J.QK-J.Q.K is worse than J.QK-

JQ.K for a violation of weak and strong opponent monotonicity. Though these violations exist, the

magnitude of the violations is much less profound in comparison to the ones we found when using

exploitability as our evaluation criteria.

Next, we look at how domination values of the strategies relate to the outcome of the tournament

settings introduced earlier in this chapter. Table 4.4 and Table 4.5 show the bankroll and runoff

rankings for the Leduc Hold’em tournaments with the domination values of the strategies instead of

their exploitabilities. Here, if we look at the top 20% of strategies in terms of their domination value,

which all have domination values less than 26 mb/h, we see a much higher concentration of strategies

in the higher ranks. For instance, in the bankroll tournament, all of these top strategies are in the top

seven places. Similarly in the runoff tournament, the top strategies are in the top six places. Though

lower domination valued strategies tend to do better than higher ones in both tournaments, it is much

more clear in the runoff tournament that lower domination valued strategies have an edge on higher

36



Rank Strategy Domination Value
1 FULL-J.QK 29.6861
2 FULL-J.Q.K 19.7281
3 FULL-JQ.K 25.8407
4 FULL-FULL 0
5 J.Q.K-JQ.K 13.4704
6 J.Q.K-J.QK 53.4826
7 J.Q.K-J.Q.K 25.3061
8 J.Q.K-FULL 38.6663
9 JQ.K-JQ.K 31.4793
10 JQ.K-J.Q.K 40.323
11 JQ.K-J.QK 53.1916
12 J.Q.K-JQK 84.4869
13 FULL-JQK 80.1915
14 JQ.K-FULL 53.8738
15 J.QK-J.QK 97.1951
16 JQ.K-JQK 69.592
17 J.QK-JQ.K 55.3213
18 J.QK-J.Q.K 78.0052
19 J.QK-FULL 87.131
20 J.QK-JQK 93.0526
21 JQK-JQ.K 149.648
22 JQK-J.QK 144.337
23 JQK-J.Q.K 144.059
24 JQK-FULL 152.766
25 JQK-JQK 284.756

Table 4.4: Bankroll Rankings and Domination Value for Leduc Hold’em Tournament

ones. For both types of tournaments we can see a strong correlation between domination value and

the tournament rankings. The correlation coefficients here are 0.84 and 0.87 for the bankroll and

runoff tournaments respectively. Here, we are referring to the correlation between tournament rank

and domination value.
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Rank Strategy Domination Value
1 FULL-FULL 0
2 FULL-J.QK 29.6861
3 FULL-J.Q.K 19.7281
4 FULL-JQ.K 25.8407
5 J.Q.K-J.Q.K 25.3061
6 J.Q.K-JQ.K 13.4704
7 J.Q.K-FULL 38.6663
8 JQ.K-JQ.K 31.4793
9 J.Q.K-J.QK 53.4826
10 JQ.K-J.Q.K 40.323
11 JQ.K-J.QK 53.1916
12 JQ.K-FULL 53.8738
13 J.QK-JQ.K 55.3213
14 J.QK-J.Q.K 78.0052
15 J.QK-J.QK 97.1951
16 JQ.K-JQK 69.592
17 J.Q.K-JQK 84.4869
18 FULL-JQK 80.1915
19 J.QK-FULL 87.131
20 J.QK-JQK 93.0526
21 JQK-JQ.K 149.648
22 JQK-J.QK 144.337
23 JQK-J.Q.K 144.059
24 JQK-FULL 152.766
25 JQK-JQK 284.756

Table 4.5: Runoff Rankings and Domination Value for Leduc Hold’em Tournament
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Chapter 5

Strategy Grafting

5.1 Motivation

In the last chapter, we provided compelling evidence that using larger strategy spaces typically

improves performance in a tournament setting against equilibrium-like opponents. Unfortunately,

state-of-the-art methods for solving extensive games require enough system memory for at least one

strategy profile. That is, the size of the largest solvable game will likely increase mainly due to

hardware improvements. For this reason, if we wish to use larger strategy spaces we will have to

devise new methods for computing strategies.

Decomposition is a natural approach towards increasing the expressive power of strategies and

indeed it has previously been employed toward this end. Prior approaches that have employed

decomposition in the AAAI Computer Poker Competition, such as solving betting rounds indepen-

dently, have since been abandoned in favor of solving a single abstract game. This is because in

extensive games with imperfect information decomposition can be problematic. One way that equi-

librium strategies guard against strong opponents is through information hiding. The strategy plays

in a fashion such that an observant opponent cannot effectively reconstruct and take advantage of the

player’s private information. Independent solutions to a set of sub-games, though, may not “mesh”

well together. For example, an observant opponent might be able to determine which sub-game is

being played, which itself could be valuable information that could be exploited. In this chapter, we

introduce a new technique, strategy grafting, which attempts to alleviate this concern while using

decomposition to afford us much larger strategy spaces.

5.2 Strategy Grafting

We will start by describing the strategy grafting algorithm and providing some theoretical results

regarding the quality of grafted strategies. Unlike prior techniques, strategy grafting attempts to

solve the sub-games in a fashion so that when they are combined they mesh well with each other,

which should lead to good overall strategy.
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5.2.1 Grafting Partition

In order to formally define a grafted strategy, we must first explain how a game can be divided into

sub-games. We make use of a grafting partition for this.

Definition 9 (Grafting Partition) Let G = {G0, G1, . . . , Gp} be a grafting partition for player i

if and only if:

1. G is a partition of Hi,

2. ∀I ∈ Ii ∃j ∈ {0, . . . , p} such that I ⊆ Gj , and

3. ∀j ∈ {1, . . . , p} if h is a prefix of h′ ∈ Hi and h ∈ Gj then h′ ∈ Gj ∪G0.

G0 is a special member of the partition. We call it the base set.

In words, a grafting partition is a partition of the player’s histories into sub-games. There are two

restrictions on this partition. First, it cannot break up information sets across blocks of the partition.

Second, there is no way to play out the original game such that histories from more than one non-

base set are visited. That is, no sequence of actions can touch more than one non-base set. The

second restriction is what allows for us to solve each graft independently without them interfering

with each other.

5.2.2 Grafted Strategy

Using the elements of a grafting partition, we can construct a set of sub-games. The solutions to

these sub-games are called grafts, and we can combine them naturally, since they are disjoint, into

one single grafted strategy.

Definition 10 (Grafted Strategy) Given a strategy σi ∈ Σi and a grafting partition G for player

i. For j ∈ {1, . . . , p}, define Γσi,j to be an extensive game derived from the original game Γ where

for all h ∈ Hi \ Gj , P (h) = c and fc(a|h) = σi(a|h). In other words, player i only controls her

actions for histories in Gj , and is forced to play according to σi at all other decision points. Let the

graft of Gj , σ∗,j , be an ε-Nash equilibrium strategy of the game Γσi,j . Finally, define the grafted

strategy for player i σ∗i as,

σ∗i (a|h) =
{

σi(a|h) if h ∈ G0

σ∗,ji (a|h) if h ∈ Gj

We will call σi the base strategy and G the grafting partition for the grafted strategy σ∗i .

There are a few key ideas to observe about grafted strategies that distinguish them from previous

sub-game decomposition methods. First, we start out with a base strategy for the entire game. This

base strategy can be constructed using current techniques for a tractably sized abstraction. It is

important that we use the same base strategy for all grafts, as it is the only information that is passed
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Figure 5.1: An example of Strategy Grafting

between the grafts. Second, when we construct a graft, only the portion of the game that the graft

plays is allowed to vary for our player of interest. The actions over the remainder of the game are

played according to the base strategy. This allows us to choose the size of each set in the grafting

partition, so that it itself is as large as the largest tractably solvable game. Third, note that when we

construct a graft, we continue to use an equilibrium finding technique, but we are not interested in

the pair of strategies. Instead, we are only interested in the strategy for the player of interest over

the grafting block of interest. This means in games like poker, where we are interested in a strategy

for both players, we must construct a grafted strategy separately for each player. Finally, when we

construct a graft, our opponent must learn a strategy for the entire (potentially abstracted) game.

By letting our opponent’s strategy vary completely, our graft will be a strategy that is less prone to

exploitation and force each individual graft to mesh well with the base strategy. The hope is that if

each graft meshes well with the base strategy that they will in turn mesh well with the other grafts

when combined.

In Figure 5.1, we see an example of how strategy grafting works in a simple single player game

with no elements of chance. Here, we use a grafting partition where G0 = {C} and G1 = {A,B}.

When solving for the graft, when play reaches history C she is forced to follow the base strategy

to decide her action. In this case, we use a base strategy that always takes action c from history C,

which results in the player receiving a reward of 3 for taking action v from history A. This altered

game, which is displayed in the right portion of the figure, is what is solved to determine the grafted

strategy.

5.2.3 Grafting Improvement Theorem

Strategy grafting allows us to construct a strategy with more expressive power that what can be

computed by solving a single game. We now show that strategy grafting uses this expressive power

to its advantage, causing an (approximate) improvement over its base strategy. Note that we cannot
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guarantee a strict improvement as the base strategy may already be an optimal strategy.

Theorem 6 For strategies σ1, σ2 where σ2 is an ε-best response to σ1, if σ∗1 is the grafted strategy

for player 1 where σ1 is used as the base strategy and G is the grafting partition then,

u1(σ∗1 , σ2)− u1(σ1, σ2) =
p∑

j=1

(
u1(σ

∗,j
1 , σ2)− u1(σ1, σ2)

)
≥ −3pε.

In other words, the grafted strategy’s improvement against σ2 is equal to the sum of the gains of the

individual grafts against σ2 and this gain is no less than −3pε.

PROOF. Define Zj as follows,

∀j ∈ {1, . . . , p} Zj = {z ∈ Z | ∃h ∈ Gj with h a prefix of z} (5.1)

Z0 = Z \
p⋃

j=1

Zj (5.2)

By condition (3) of Definition 9, Zj=0,...,p are disjoint and therefore form a partition of Z.
p∑

j=1

(
u1(σ

∗,j
1 , σ2)− u1(σ1, σ2)

)
(5.3)

=
p∑

j=1

(∑
z∈Z

u1(z) Pr(z|σ∗,j1 , σ2)−
∑
z∈Z

u1(z) Pr(z|σ1, σ2)

)
(5.4)

=
p∑

j=1

p∑
k=0

∑
z∈Zk

u1(z)
(
Pr(z|σ∗,j1 , σ2)− Pr(z|σ1, σ2)

)
(5.5)

Notice that for all z ∈ Zk 6=j , Pr(z|σ∗,j1 , σ2) = Pr(z|σ1, σ2), so only when k = j is the summand

non-zero.

=
p∑

j=1

∑
z∈Zj

u1(z)
(
Pr(z|σ∗,j1 , σ2)− Pr(z|σ1, σ2)

)
(5.6)

=
p∑

j=1

∑
z∈Zj

u1(z)
(
Pr(z|σ∗1 , σ2)− Pr(z|σ1, σ2)

)
(5.7)

=
∑
z∈Z

u1(z)
(
Pr(z|σ∗1 , σ2)− Pr(z|σ1, σ2)

)
(5.8)

=

(∑
z∈Z

u1(z) Pr(z|σ∗1 , σ2)−
∑
z∈Z

u1(z) Pr(z|σ1, σ2)

)
(5.9)

= u1(σ∗1 , σ2)− u1(σ1, σ2) (5.10)

Furthermore, since σ∗,j1 and σ∗,j2 are strategies of the ε-Nash equilibrium σ∗,j ,

u1(σ
∗,j
1 , σ2) + ε ≥ u1(σ

∗,j
1 , σ∗,j2 ) ≥ u1(σ1, σ

∗,j
2 )− ε (5.11)

Moreover, because σ2 is an ε-best response to σ1,

u1(σ1, σ
∗,j
2 ) ≥ u1(σ1, σ2)− ε (5.12)

So,
∑p

j=1

(
u1(σ

∗,j
1 , σ2)− u1(σ1, σ2)

)
≥ −3pε.
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This theorem leads directly to an important corollary.

Corollary 2 Let α and β be abstractions, where α w β and α−i ≡ β−i. Let σ be an ε-Nash

equilibrium strategy for the game Γβ , then any grafted strategy σ∗1 in Γα with σ1 used as the base

strategy will be at most 3pε worse than σ1 against σ2.

PROOF. By the definition of ε-Nash equilibrium, σ2 is an ε-best response to σ1 in Γβ . Since the

opponent’s abstraction does not change, and σ1 ∈ Σα
1 , σ2 is also an ε-best response in Γα. Therefore

the conditions of Theorem 6 hold and our result follows immediately.

Although these results suggest that a grafted strategy will (approximately) improve on its base

strategy against an equilibrium opponent, there is one caveat: it assumes we know the opponent’s

abstraction or can solve a game with the opponent unabstracted. Without this knowledge or ability,

this guarantee does not hold. However, empirically we know that larger strategy spaces appear to

perform better in tournament settings, so it would not be unreasonable to expect a similar result by

using strategy grafting.

5.3 Results

5.3.1 Leduc Hold’em

First, we will train a variety of grafted strategies in Leduc Hold’em. We will analyze these strategies

in the two tournament settings described in Chapter 4 as well as evaluate them in terms of ex-

ploitability and domination value. The abstractions we will use are the same as the Leduc Hold’em

card abstractions from Chapter 3. As a brief reminder, all abstractions can only distinguish if they

have paired or not postflop. Preflop, they may or may not group cards together.

We chose to train two types of grafted strategies: preflop grafts and flop grafts. Both types

consist of three individual grafts for each player: one to play each card with complete information.

That is, each graft does not abstract the observable cards. These two types differ in that the preflop

grafts play for the entire game whereas the flop grafts only play the game after the flop. For preflop

grafts, this means G0 is empty, i.e., the final grafted strategy is always using the probabilities from

some graft and never the base strategy. For flop grafts, the grafted strategy follows the base strategy

in all preflop information sets. We will use ε-Nash equilibria in the three abstract games as our

base strategies. Each graft is trained with the opponent in the same abstraction as the corresponding

base strategy. Contrary to the previous chapters, each base strategy and graft is trained using chance-

sampled counterfactual regret minimization for one billion iterations, as opposed to a linear program.

The equilibria found are ε-Nash equilibria where no player can benefit more than ε = 10−5 chips

by deviating within the abstract game.

In Table 5.1 and Table 5.2, we see the results of the Leduc Hold’em tournaments from Chapter 4

with the addition of our six grafted strategies. We see that the grafted strategies fair quite well in
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Bankroll Rank Strategy
1 FULL-J.QK
2 FULL-J.Q.K
3 FULL-JQ.K
4 FULL-FULL
5 J.Q.K-J.Q.K preflop grafts
6 J.Q.K-JQ.K
7 J.Q.K-J.Q.K flop grafts
8 J.QK-J.QK preflop grafts
9 J.Q.K-J.QK
10 JQ.K-JQ.K flop grafts
11 JQK-JQK preflop grafts
12 JQ.K-JQ.K preflop grafts
13 J.Q.K-J.Q.K
14 J.Q.K-FULL
15 J.QK-J.QK flop grafts
16 JQ.K-JQ.K
17 JQ.K-J.Q.K
18 JQ.K-J.QK
19 JQ.K-FULL
20 JQK-JQK flop grafts
21 J.QK-J.QK
22 FULL-JQK
23 J.Q.K-JQK
24 J.QK-JQ.K
25 JQ.K-JQK
26 J.QK-J.Q.K
27 J.QK-FULL
28 J.QK-JQK
29 JQK-JQ.K
30 JQK-FULL
31 JQK-JQK
32 JQK-J.QK

Table 5.1: Bankroll Ranking for Leduc Hold’em Tournament with Grafted Strategies

Bankroll Rank Runoff Rank Strategy Exploitability Dom(σ)
5 4 J.Q.K-J.Q.K preflop grafts 486.067 22.5416
7 6 J.Q.K-J.Q.K flop grafts 532.631 25.1121
8 7 J.QK-J.QK preflop grafts 776.2 91.1531
10 11 JQ.K-JQ.K flop grafts 558.157 49.939
11 18 JQK-JQK preflop grafts 761.014 66.0652
12 8 JQ.K-JQ.K preflop grafts 639.748 37.0566
15 13 J.QK-J.QK flop grafts 621.605 96.4149
20 23 JQK-JQK flop grafts 780.344 118.394

J.Q.K-J.Q.K 514.556 35.1924
JQ.K-JQ.K 404.357 40.8234
J.QK-J.QK 610.489 135.223
JQK-JQK 986.812 343.825

Table 5.2: Runoff Ranking, Exploitability and Domination Value of Grafted Strategies
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this field of equilibrium-like strategies. In particular, all of the grafted strategies, with the exception

of JQK-JQK flop grafts, finish in the top half of the bankroll competition. Similar results are seen in

the runoff competition, where only JQK-JQK preflop grafts and its flop graft counterpart are in the

bottom half of the field. The base strategy seems to be of great importance when training a grafted

strategy. Aside from JQK-JQK preflop grafts performing better than two of the two bucket grafts

in the bankroll competition, the order of the grafts corresponds with the size of the base strategy

space. Although the choice of base strategy is important, the grafted strategies do well under both

evaluation criteria and even the worst base strategy sees great relative improvement when used to

train grafted strategies. Another trend we see, is that the preflop grafts do better than the flop experts

in all but one case. We notice that the JQ.K-JQ.K flop grafts strategy beats its preflop counterpart in

the bankroll competition, but only by about 4 mb/h. In the runoff competition, all preflop grafts beat

their corresponding flop grafts.

We see no concrete effect in terms of how the exploitability of a grafted strategy relates to that of

its corresponding base strategy. For example, the J.Q.K-J.Q.K preflop grafts is about 30 mb/h better

than its base strategy, but the J.Q.K-J.Q.K flop grafts is about 20 mb/h worse. All of the JQ.K-JQ.K

and J.QK-J.QK grafts increase exploitability. Though from Chapter 4, we know that exploitability

is not a criteria we can use to accurately predict a strategy’s performance in these tournaments. In

terms of the domination values of the grafts, we see improvement in all but one case. That is, the

JQ.K-JQ.K flop grafts is 9 mb/h worse than its base strategy. As the domination value seems to

be a better predictor of of how well a strategy will do in a tournament, it is not surprising that the

grafted strategies typically improve in this regard. That is, the grafted strategies tend to make fewer

mistakes, either due to them having fewer dominated strategies, or placing less weight on those

dominated strategies.

5.3.2 Texas Hold’em

We used strategy grafting to create a heads-up Texas Hold’em poker program. We used our entrant

to the 2nd Man vs. Machine Poker Challenge, which occurred in Las Vegas in July 2008, as the

base strategy and created a grafted strategy approximately 12.2 times larger using similar abstraction

techniques. This program was entered into the 2009 AAAI Computer Poker Competition. It finished

second in the runoff competition, and third in the bankroll competition out of a field of thirteen

competitors.

In Table 5.3 we see the results of running this large grafted strategy against a variety of our

equilibrium-like strategies. The 20x32 strategy is the largest single abstract game we can solve

to date. It is approximately 2.53 times larger than the base strategy we used. The 20x7 and 12

strategies was our entrants to the 2008 and 2007 AAAI Computer Poker Competitions respectively.

The 14 strategy is a strategy we considered entering in the 2008 competition, but it was ultimately

superseded by the smaller 20x7.

45



Opponent Relative Size Estimated Expected Value (mb/h) 95% Confidence Interval
20x32 2.53 2.1 ±1.1
20x8 (Base) 1 14.5 ±1.1
20x7 0.43 17.6 ±4.4
14 0.82 13.3 ±1.8
12 0.45 18.0 ±3.0

Table 5.3: Grafted Strategy against equilibrium-like opponents in Texas Hold’em

From the results, we can see that the grafted strategy beats all of the players with statistical

significance, even the largest single strategy. We note that the amount at which it beats the smaller

strategies is much more impressive than the amount it beats the largest strategy. Previously, the

Computer Poker Research Group has noticed that doubling the size of an abstract game gave ap-

proximately a 4 to 6 mb/h improvement over the previous generation. By this estimate, the grafted

strategy should beat its base by 15 to 23 mb/h. The amount it beats its base strategy by is in this

range, but it does not appear to beat the previous generations by increasing amounts. Of note, it

actually beats 14 by less than it beats 20x7 even though 20x7 beats 14.

From the results, we can gather that the base strategy is still quite an important factor, but one

that can be overcome. Since the grafts are forced to mesh well with the base strategy, a weak base

strategy may not allow the grafts to take full advantage of the extra information they have. For

example, imagine you were to play Texas Hold’em with a younger, less informed sibling, under the

agreement that you would play the first two betting rounds and your sibling the second two. You

might deviate your strategy in a non-optimal fashion in order to compensate for the weaknesses

of your sibling to achieve the best possible outcome. Due to this reliance on the base strategy, it

is unlikely that strategy grafting can provide a overwhelming improvement in the quality of the

resulting strategy, which is reiterated in the results. Despite this, the grafted strategy appears to beat

strategies created with current methods due to the sheer size of the strategies we can now compute.

From this, we see that strategy grafting is a competitive idea that allows one to augment their

existing strategies to create even stronger players. Any improvement to the quality of a base strategy

should in turn improve the quality of the grafted strategy. This means that strategy grafting can be

used transparently on top of more sophisticated frameworks for finding good strategies.
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Chapter 6

Conclusion

In Chapter 3, we observed that abstraction pathologies are prevalent in the the variants of Leduc

Hold’em we examined. That is, after we formalized Assumption 1, we found that by refining and

then solving an abstract game, and thus giving the players more information on which to base their

decisions, we could arrive at a worse approximation of an equilibrium than if we had not refined

said game. Some of the individual counterexamples were quite disturbing. In particular, the best

strategy in the biggest abstract game where both players were abstracted, J.Q.K-J.Q.K, was one of

the more exploitable strategies. That is, many of the smaller abstract games provided us with much

better strategies in terms of exploitability. Another troubling fact was that the best strategies in

terms of exploitability in these abstract games were typically quite terrible themselves or far from

the exploitability of the arbitrary strategy found using CPLEX. Furthermore, these results were not

the fault of the strategy spaces themselves. For example, even the worst strategy space, the Leduc

abstraction that could not distinguish its preflop cards, had a strategy that ranked fourth best out of

all the strategies we tested. Since the abstractions we used in Leduc Hold’em were similar to those

used in the large poker games, we can say with confidence that it is likely these pathologies exist in

the larger games.

This evidence will not stop us from abstracting games in the future. We have little choice but to

employ its use in the large games of interest if we wish to make use of our extensive game solving

algorithms. In poker in particular, these techniques seem to perform quite well, even in light of

these pathologies. That is, the strategies found by solving abstract games are far stronger, against

both human and computer opponents, than any of the previous techniques. Until a technique is

developed to skillfully identify and exploit the weaknesses in these abstract equilibrium strategies,

we are likely safe to continue with our current methods.

In Chapter 4, we explained how the superior performance of the larger strategies by further ana-

lyzing our Leduc Hold’em strategies. We first observed that our Leduc Hold’em strategies followed

a similar pattern to the AAAI Computer Poker Competition when evaluated using the same tourna-

ment formats. That is, even though many of the larger abstract games produced more exploitable

strategies, these strategies still outperformed the strategies from the smaller abstract games. None
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of these strategies attempt to exploit their opponents; they merely benefit from their opponent’s

mistakes. This is a trait shared by most of the strong programs in the AAAI competitions. With

this observation, we introduced the domination value to better measure performance in this setting.

The domination value allowed us to quantitatively measure the amount a strategy might lose due

to mistakes in its play. By using the domination value, as opposed to exploitability, to analyze the

Leduc Hold’em strategies, we found a strong correlation between the outcome of the Leduc tour-

naments and the domination value of the strategies. Even though pathologies exist when using the

domination value as the evaluation criteria, the strategies from the larger abstract games often to

had smaller domination values than the strategies from the smaller abstract games. Furthermore,

the domination value for an arbitrary abstract equilibrium strategy appeared to be close to that of

best possible domination value in that abstract game, which is of high practical value. This evidence

allowed us to conclude that using larger abstract games tends to lead to strategies that make fewer

mistakes, and hence do better against non-exploitive opponents.

It was this observation that allows us to be confident in strategy grafting, a technique we intro-

duced in Chapter 5 that can have a potentially negative effect on exploitability. Previous attempts

to decompose extensive games with imperfect information into sub-games have failed to improve

upon solving a single abstract game. This is most likely due to the fact that all parts of a strong strat-

egy work together. Strategy grafting forces each sub-game strategy to conform to a common base

strategy. We observed that this conformance led to a strong strategy when the sub-game strategies

were combined as evident by the typical decrease in domination value. That is, the grafted strategies

performed well in both the large and small poker games in tournament settings and improved on the

state-of-the-art from 2008.

6.1 Future Work

There are a few directions in which we can move forward with these new results. First, it is possible

to compute the best response value for a strategy in the full game of Texas Hold’em as the program

can be easily distributed. A rough estimate is that it would take approximately six months on a

powerful cluster of computers to compute a single best response value. We cannot compute the

exploitability of a single strategy without knowing the value of the game, which we cannot compute

for Texas Hold’em, but since the game is zero-sum we can compute the exploitability for a strategy

profile. This has multiple implications. First, it could verify our suspicions that these equilibrium-

like strategies are indeed quite exploitable. Second, it can tell us how far from equilibrium our

current strategies are. Third, by computing this for two different abstractions it could potentially

verify that the non-monotonicities are indeed present in the large game. For these reasons, this

computation is clearly of interest, but it is unlikely it answers any pressing questions. Unfortunately,

unlike the exploitability of strategy profile, the domination value of a strategy or a strategy profile

cannot be feasibly computed in the full game.
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A second, more promising direction, would be to further explore the effect of dominated strate-

gies in these games. The equilibrium-like strategies are attempting to hide information in an effort

to maintain low exploitability. We now know that they are not performing this task incredibly well

(at least against a powerful adversary). We are now left to question what effect this information

hiding has on their performance. This is something that neither exploitability nor domination value

can individually measure. That is, exploitability measures both the ability to hide information as

well as avoid making errors, whereas domination value measures only the ability to avoid errors.

The effect that information hiding has on a strategy’s performance does potentially depend on the

opponent. For example, an expert human opponent that can quickly adapt would likely beat a pro-

gram that plays flawlessly, but does not hide information. An equilibrium strategy, though, would

tie a strategy that plays flawlessly, but fails to hide information.

If we are willing to stray from our goal of approximating an equilibrium, as it appears we should,

we can investigate techniques that we know can potentially produce lower quality strategies in the

worst-case, like strategy grafting. One such technique along these lines that could be reinvestigated

would be to use a regret-minimizing learner during play. We know that such a learner will eventually

converge on a best response strategy against any opponent, but a major problem is that matches

are far too short to ever get close to this best response. That is, we are better off computing an

equilibrium ahead of time than trying to learn an exploitive strategy during play in our tournament

settings. One potential way to alleviate this concern is to bootstrap the learner with a good strategy

ahead of time (e.g., an equilibrium-like strategy). If we restrict the learner by only allowing it to

take non-dominated actions, then we can potentially learn an exploitive strategy much more quickly

while avoiding costly mistakes. Moreover, this learner should have similar domination value to

the original base strategy as the two share a common action space. One drawback is that though

the learner can only make the same mistakes as the base strategy, it could potentially make these

mistakes more frequently.

An alternative approach along the same lines would be to deterministically take the action that

maximizes one’s expected value, given some beliefs about the opponent, without considering dom-

inated actions. As opponent modeling is a hard task, it is likely that the beliefs about an opponent

will be wrong in some fashion, but as long as we are not making too many mistakes, one would

presume that this approach could do well, at least against equilibrium-like opponents.
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Appendix A

Crosstables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)Average

(1) 14 34 -26 19 34 27 16 16 42 23 174 154 36 148 77 164 124 109 249 164 155 158 166 301 99.12

(2) -14 52 -19 66 66 64 54 72 76 71 132 126 73 90 152 72 82 79 189 114 112 119 120 177 88.56

(3) -34 -52 -25 60 63 47 41 104 106 88 110 92 85 67 176 46 49 60 146 106 111 117 115 177 77.32

(4) 26 19 25 12 43 21 32 29 39 49 79 76 48 82 64 53 73 84 89 146 140 141 150 258 73.98

(5) -19 -66 -60 -12 34 -7 41 46 41 46 118 114 68 78 145 52 53 92 143 135 142 151 148 239 71.83

(6) -34 -66 -63 -43 -34 -18 8 -20 12 27 140 119 36 111 58 88 76 91 186 149 143 141 151 316 65.62

(7) -27 -64 -47 -21 7 18 16 17 13 24 84 105 39 43 92 46 45 67 119 106 102 113 115 191 50.19

(8) -16 -54 -41 -32 -41 -8 -16 -15 -4 11 77 115 9 58 66 23 41 67 126 95 94 108 106 251 42.46

(9) -16 -72 -104 -29 -46 20 -17 15 10 29 101 88 34 62 80 15 40 58 113 90 93 96 100 191 39.62

(10) -42 -76 -106 -39 -41 -12 -13 4 -10 25 54 39 21 20 58 30 38 45 69 100 97 102 106 177 26.89

(11) -23 -71 -88 -49 -46 -27 -24 -11 -29 -25 63 55 5 56 15 37 42 48 89 88 84 80 95 209 23.93

(12) -174 -132 -110 -79 -118 -140 -84 -77 -101 -54 -63 49 -14 12 -21 29 46 76 98 182 182 182 184 313 7.68

(13) -154 -126 -92 -76 -114 -119 -105 -115 -88 -39 -55 -49 -46 -4 -19 37 38 68 47 200 200 200 200 348 5.57

(14) -36 -73 -85 -48 -68 -36 -39 -9 -34 -21 -5 14 46 14 -6 -7 19 41 59 58 56 63 69 124 4.11

(15) -148 -90 -67 -82 -78 -111 -43 -58 -62 -20 -56 -12 4 -14 9 42 25 46 75 112 100 111 118 244 1.87

(16) -77 -152 -176 -64 -145 -58 -92 -66 -80 -58 -15 21 19 6 -9 -10 38 61 114 141 144 144 146 201 1.41

(17) -164 -72 -46 -53 -52 -88 -46 -23 -15 -30 -37 -29 -37 7 -42 10 14 48 5 88 107 117 104 69 -7.00

(18) -124 -82 -49 -73 -53 -76 -45 -41 -40 -38 -42 -46 -38 -19 -25 -38 -14 18 9 51 45 49 59 82 -22.18

(19) -109 -79 -60 -84 -92 -91 -67 -67 -58 -45 -48 -76 -68 -41 -46 -61 -48 -18 -49 26 31 33 43 64 -42.14

(20) -249 -189 -146 -89 -143 -186 -119 -126 -113 -69 -89 -98 -47 -59 -75 -114 -5 -9 49 149 149 149 149 248 -42.98

(21) -164 -114 -106 -146 -135 -149 -106 -95 -90 -100 -88 -182 -200 -58 -112 -141 -88 -51 -26 -149 10 7 20 -29 -95.49

(22) -155 -112 -111 -140 -142 -143 -102 -94 -93 -97 -84 -182 -200 -56 -100 -144 -107 -45 -31 -149 -10 -3 12 -32 -96.76

(23) -158 -119 -117 -141 -151 -141 -113 -108 -96 -102 -80 -182 -200 -63 -111 -144 -117 -49 -33 -149 -7 3 13 -35 -99.98

(24) -166 -120 -115 -150 -148 -151 -115 -106 -100 -106 -95 -184 -200 -69 -118 -146 -104 -59 -43 -149 -20 -12 -13 -42 -105.39

(25) -301 -177 -177 -258 -239 -316 -191 -251 -191 -177 -209 -313 -348 -124 -244 -201 -69 -82 -64 -248 29 32 35 42 -168.25

Figure A.1: Crosstable for Leduc Hold’em Bankroll Tournament
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Rank Strategy Name
FULL-J.QK 1
FULL-J.Q.K 2
FULL-JQ.K 3
FULL-FULL 4
J.Q.K-JQ.K 5
J.Q.K-J.QK 6
J.Q.K-J.Q.K 7
J.Q.K-FULL 8
JQ.K-JQ.K 9
JQ.K-J.Q.K 10
JQ.K-J.QK 11
J.Q.K-JQK 12
FULL-JQK 13
JQ.K-FULL 14
J.QK-J.QK 15
JQ.K-JQK 16
J.QK-JQ.K 17
J.QK-J.Q.K 18
J.QK-FULL 19
J.QK-JQK 20
JQK-JQ.K 21
JQK-FULL 22
JQK-JQK 23
JQK-J.QK 24

Table A.1: Legend for Table A.1

            
                                
                                
                                
                                
                                
                                
                                
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























 

 

Figure A.2: Crosstable of Leduc Hold’em Bankroll Tournament with Grafted Strategies
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Rank Name
FULL-J.QK 1
FULL-J.Q.K 2
FULL-JQ.K 3
FULL-FULL 4
J.Q.K-J.Q.K preflop grafts 5
J.Q.K-JQ.K 6
J.Q.K-J.Q.K flop grafts 7
J.QK-J.QK preflop grafts 8
J.Q.K-J.QK 9
JQ.K-JQ.K flop grafts 10
JQK-JQK preflop grafts 11
JQ.K-JQ.K preflop grafts 12
J.Q.K-J.Q.K 13
J.Q.K-FULL 14
J.QK-J.QK flop grafts 15
JQ.K-JQ.K 16
JQ.K-J.Q.K 17
JQ.K-J.QK 18
JQ.K-FULL 19
JQK-JQK flop grafts 20
J.QK-J.QK 21
FULL-JQK 22
J.Q.K-JQK 23
J.QK-JQ.K 24
JQ.K-JQK 25
J.QK-J.Q.K 26
J.QK-FULL 27
J.QK-JQK 28
JQK-JQ.K 29
JQK-FULL 30
JQK-JQK 31
JQK-J.QK 32

Table A.2: Legend for Table A.2
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