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Abstract

Text Attribute Transfer (TAT) is a natural language processing task that involves

changing certain attributes (e.g., sentiment and formality) of a given text while pre-

serving other attributes. Recently, prompting approaches have been explored in TAT

with the emergence of various pretrained language models (PLMs), where a textual

prompt is used to query a PLM to generate attribute-transferred texts word by word

in an autoregressive manner. However, such a generation process is less controllable

and early prediction errors may negatively affect future word predictions. Conse-

quently, these issues will lead to low performance in general.

In this thesis, we propose a prompt-based editing approach to text attribute trans-

fer. Specifically, we prompt a PLM for text attribute classification and use the clas-

sification probability to derive a score of the attribute to be transferred. Then, we

perform discrete search with word-level editing to maximize a comprehensive scor-

ing function for a TAT task. In this way, we transform a prompt-based generation

problem into a classification one, which does not suffer from the error accumulation

problem and is more controllable than the autoregressive generation of sentences. In

our experiments, we perform automatic evaluation on multiple benchmark datasets,

and we show that our approach largely outperforms the existing systems that have

20 times more parameters. Additional empirical analyses further demonstrate the

effectiveness of our approach.
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Simplicity, is the essence of life.

Life is full of trial and error. One failure doesn’t mean you’re out of the picture.
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Chapter 1

Introduction

1.1 Background

There has been a surge of interest in Natural Language Processing (NLP) in both

industry and academia, largely driven by significant progress in the field of language

models in recent years. This progress can be credited to a variety of factors, including

access to more computational resources, datasets with better quality, and the devel-

opment of deep learning architectures. As a result, NLP has reached a point where it

is able to solve various complicated tasks such as machine translation (Sennrich et al.,

2016; Lample et al., 2018a; Xu et al., 2021; Deguchi et al., 2023) and mathematical

reasoning (Wei et al., 2022c; Wang et al., 2022; Kojima et al., 2022; Zhou et al., 2023).

In this thesis, we focus on text attribute transfer (Fu et al., 2019), a common

research area of NLP, which aims to automatically rewrite a sentence, changing cer-

tain attributes from one type to another, such as transferring the positive-sentiment

sentence “He loves playing different sports” into a negative one “He hates playing

different sports”. An example is illustrated in Figure 1.1. During the transfer, the

designated attributes (e.g., sentiment and formality) of a sentence must be changed,

whereas other attributes should be preserved. Text attribute transfer (TAT) has wide

applications in the real world, such as personalized response generation (Yang et al.,

2017; Zheng et al., 2021), text debiasing (Nogueira dos Santos et al., 2018; Xiang

et al., 2012; Ma et al., 2020), text simplification (Woodsend and Lapata, 2011; Dong
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Figure 1.1: Example of text attribute transfer. A positive-sentiment sentence is
transferred to be a negative one.

et al., 2019; Kumar et al., 2020), paraphrase generation (Chen et al., 2019; Liu et al.,

2020b; Krishna et al., 2020), and stylistic headline generation (Liu et al., 2020a; Jin

et al., 2020; Zhan et al., 2022).

Early work on TAT mainly falls into three categories, and each of them has its own

drawback:

• Parallel supervision with labelled source–target sentence pairs in a sequence-

to-sequence manner (Zhu et al., 2010; Rao and Tetreault, 2018; Zhang et al.,

2020b). However, obtaining parallel training data is labor-intensive and time-

consuming, which remains a significant challenge for TAT.

• Non-parallel supervision with labels only, such as learning latent represen-

tations of sentences (Shen et al., 2017; John et al., 2019; Goyal et al., 2021).

However, for some sentences, the representation of those designated attributes

and the other attributes are implicitly intertwined, and the explicit separation

of them is not always possible, resulting in suboptimal model performance.

• Unsupervised generative methods, such as constructing pseudo-parallel

training data for learning (Lample et al., 2018b; Luo et al., 2019; Krishna et al.,

2020). However, these methods require a complicated training process to opti-

mize the model, which lacks efficiency. In addition, poor-quality data construc-

tion would also possibly lead to low performance in general.

Very recently, prompting methods have been explored in TAT (Reif et al., 2022;

Suzgun et al., 2022), as large-scale pretrained language models (PLMs) enable us to

perform various natural language generation tasks in a zero-shot (Wei et al., 2022a;

2



Sanh et al., 2022; Kojima et al., 2022) or exemplar-based manner (Brown et al., 2020;

Schick and Schütze, 2021a; Wei et al., 2022c).

Previous work uses a prompt (e.g., a piece of text “Rewrite the text to be posi-

tive:”) to query a PLM, which will then generate an attribute-transferred sentence in

an autoregressive manner (Reif et al., 2022; Suzgun et al., 2022). However, such au-

toregressive generation is less controllable, as words are generated one after another

by the PLM. This can lead to an error accumulation issue where early prediction

errors of the PLM will affect its future predictions, leading to less satisfactory perfor-

mance in general. In this thesis, we also follow the prompt-based setting. This setting

does not require any training samples or labels, but directly performs inference with

PLMs; thus, it is more challenging than the above three settings.

1.2 Thesis Contributions

In this thesis, we propose a prompt-based editing approach to TAT, aiming to make

the attribute-transfer generation more controllable. We first design a PLM-based

classifier. Specifically, we prompt a PLM for classification of the attribute to be

transferred and use the classification probability to compute a score of the attribute

to be transferred, denoted as ftransfer. Then, we perform steepest-ascent hill climbing

(SAHC; Russell and Norvig, 2010) for discrete search with word-level editing (such

as replacement, insertion, and deletion) to maximize a heuristically defined scoring

function for TAT tasks. In this way, we transform a prompt-based generation problem

into a classification one, which mainly involves a one-word prediction and is generally

believed to be easier than multiple-word predictions in an autoregressive sentence

generation.

Our approach provides several advantages. First, it does not suffer from the error

accumulation problem, because it performs word-level local edits scattered through-

out the entire sentence rather than generating a sentence word by word. Further, we

design a discrete search algorithm through iterative editing. This algorithm combines

3



the score derived from attribute classification with other scoring functions, including

language fluency and non-transfer attribute similarity, and leads to a more control-

lable and refined generation of sentences.

In our experiments, we use Eleuther AI’s GPT-J-6B (an off-the-shelf PLM)1 and

conduct automatic evaluation on multiple benchmark datasets. The experimental

results show that our prompt-based editing approach largely outperforms the existing

prompting systems that have 20 times more parameters. Additional empirical analysis

shows the effectiveness of different scoring components and the proposed discrete

search algorithm in our approach.

To sum up, the main contributions of this paper include:

• We propose a prompt-based editing approach, which transforms a prompt-based

text generation into a classification problem on text attribute transfer, and

generates more controllable sentences than autoregressive generation.

• We design a discrete search algorithm for editing, further ensuring the control-

lable generation of sentences.

• We conduct comprehensive experiments and provide detailed empirical analyses

on multiple benchmark datasets to verify the effectiveness of our approach.

1.3 Thesis Structure

In this chapter, I introduced the background and motivation of this thesis, and stated

the thesis contributions.

In Chapter 2, I will present the related work. In particular, I will start by providing

the background for language models, ranging from explaining the basic Transformer

architecture to introducing both regular-scale pretrained language models and large-

scale language models. Then, I will introduce different prompting approaches and

several paradigms of text attribute transfer.

1https://github.com/kingoflolz/mesh-transformer-jax
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In Chapter 3, I will demonstrate the details of our prompt-based editing approach

to text attribute transfer. I will first explain the framework of our prompt-based

classifier, which is designed to transform the prompt-based generation problem into

a classification one and also to compute a score of the attribute to be transferred.

Second, I will introduce two additional search objectives that help measure the quality

of a sentence. Then, I will introduce our proposed discrete search algorithm for

iterative word-level editing.

In Chapter 4, I will present the experimental results of our approach. It starts with

an introduction to several experimental setups. Then we will show the main results,

followed by quantitative and qualitative analyses to demonstrate the effectiveness of

different components in our approach.

In Chapter 5, I will conclude the findings and contributions of this thesis. We will

also discuss the limitations of our approach that can be addressed in the future.

5



Chapter 2

Background and Related Work

2.1 Overview

Natural Language Processing (NLP) is a field within Artificial Intelligence (AI), with

the goal of enabling machines to automatically comprehend and produce human-like

texts. NLP involves two aspects: natural language understanding (NLU) and natural

language generation (NLG), and our work focuses on the latter. In recent years, the

development of pretrained language models (PLMs) has led to strong performance in

various NLG tasks. Following this trend, our work delves into text attribute transfer

(TAT), a subarea of NLG, aiming to transform certain attributes of a sentence from

one type to another while preserving the other attributes.

In this chapter, I will introduce the background knowledge of our research work.

In Section 2.2, I will describe the studies on language models from the Transformer

architecture to different categories of PLMs. In Section 2.3, I will introduce two types

of prompting methods: prompt-based classification and generation. In Section 2.4,

I will explain several paradigms of TAT: parallel supervision, non-parallel supervi-

sion, and unsupervised learning methods, followed by an introduction to the recently

proposed prompt-based paradigm.

6
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Figure 2.1: The Transformer architecture. This diagram is adapted from (Vaswani
et al., 2017). Note that the self-attention layer in the decoder is slightly modified
from the one in the encoder, and we omit the difference for simplicity.

2.2 Language Models

2.2.1 Transformer

The Transformer (Vaswani et al., 2017) is a prevailing neural architecture that is

initially designed as a sequence-to-sequence model with an encoder and a decoder. In

particular, the encoder encodes the input sequence into a list of continuous embed-

dings that incorporate information about the entire input; the decoder then decodes

these embeddings for the next-token prediction.

The architecture of the Transformer is shown in Figure 2.1. Specifically, the encoder

and decoder are composed of a stack of N layers with the same parameters. Each layer

in the encoder consists of two sub-layers: a self-attention layer and a fully connected

feed-forward neural network. In addition, residual connections (He et al., 2016) and

layer normalization (Ba et al., 2016) are employed around these two sub-layers.

7



Different from the encoder, the decoder inserts an additional cross-attention layer,

which is situated between the self-attention layer and the feed-forward neural network,

acting on the encoder output. A linear transformation and softmax layer are further

applied to convert the decoder output into a categorical probability distribution of

the next token over the Transformer’s entire vocabulary.

The key to the Transformer is the use of an attention mechanism, also called

Scaled Dot-Product Attention, focusing on different parts of the input sequence when

generating the output. The Transformer attention is computed under three matrix

representations, which are queries Q, keys K, and values V . In particular, the atten-

tion is given by:

Attention(Q,K, V ) = softmax

(︃
QK⊤
√
dk

)︃
V (2.1)

where QK⊤ is the dot product of queries with all the keys, dk is the dimension of

the queries and keys, and 1√
dk

is used as a scaling factor to mitigate the gradient

vanishing problem caused by the softmax function (Vaswani et al., 2017).

2.2.2 Pretrained Language Models

Leveraging the Transformer architecture, researchers have developed various pre-

trained language models (PLMs), such as BERT (Devlin et al., 2019), RoBERTa (Liu

et al., 2019), GPT-2 (Radford et al., 2019), and T5 (Raffel et al., 2020). These lan-

guage models are pretrained on extensive datasets and consist of a massive number

of parameters. They are then used as a backbone and achieve strong performance on

various NLP tasks (Liu et al., 2021). Generally, these PLMs are developed into three

categories:

• Encoder-only models, such as BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019), utilize the Transformer encoder architecture. When words from

a piece of text are fed as input, the self-attention mechanism processes each

word, incorporating both left and right context and thus rendering the attention

8



mechanism bidirectional. This feature enables the model to perform masked

word prediction in many text generation tasks, where a word in a sentence is

masked out and the model predicts the missing word based on the surrounding

context.

• Decoder-only models, such as GPT-2 (Radford et al., 2019) and GPT-3 (Brown

et al., 2020), are based on the Transformer decoder architecture. Different from

encoder-only models, these decoder-only models use causal attention to process

a piece of text, where the prediction of each word only depends on the preceding

words in the sequence and not on future words. This allows the model to treat

the input sequence as a prefix and then generate an output in a left-to-right

manner. Consequently, these models are typically used for left-to-right sequence

generation tasks.

• Encoder–decoder models, such as T5 (Raffel et al., 2020) and BART (Lewis

et al., 2020), have two Transformer components: an encoder and a decoder. The

encoder converts an input sequence into a contextual representation, and the

decoder uses the representation to generate a corresponding output sequence.

Therefore, these models are mainly applied to sequence-to-sequence text gener-

ation tasks.

Overall, PLMs in the encoder-only, decoder-only, and encoder–decoder categories

each have distinct architectures and specific application scenarios, highlighting the

adaptability of the Transformer architecture. Their unique features have driven ad-

vancements across various NLP tasks, ranging from masked word prediction to text

generation, and lead to a notable trend of scaling up PLMs. In the following subsec-

tion, I will demonstrate the progress achieved by scaling up these PLMs.

9



2.2.3 Large Language Models

Recently, researchers have found that scaling up the model size, pretraining data size,

and the amount of computation resource leads to a largely improved performance and

capacity for a variety of tasks, following the scaling law in Kaplan et al. (2020). This

phenomenon motivates the creation of ever-larger PLMs, such as the 175-billion-

parameter GPT-3 (Brown et al., 2020), the 540-billion-parameter PaLM (Chowdhery

et al., 2022), and the 176-billion-parameter BLOOM (Scao et al., 2022).

Although the scaling operation is mainly conducted on model size while maintain-

ing a similar Transformer architecture and pretraining data, these large-scale PLMs

show different behaviors from regular-scale PLMs (e.g., 330-million-parameter BERT

and 1.5-billion-parameter GPT-2) and demonstrate surprising abilities to solve a se-

ries of challenging NLP tasks (Wei et al., 2022b). For example, GPT-3 is able to

achieve strong performance on the commonsense, logical, and arithmetic reasoning

tasks1 with only a few exemplars in terms of in-context learning (Brown et al., 2020),

whereas a 350-million-parameter GPT model performs poorly (Wei et al., 2022c). To

this end, researchers use the term, Large language models (LLMs), to categorize these

large-scale PLMs (Brown et al., 2020; Chowdhery et al., 2022; Scao et al., 2022; Thop-

pilan et al., 2022). Then, ChatGPT2 (or GPT-3.5) and GPT-4 (OpenAI, 2023), both

adapted from the basic GPT model, have exhibited an extraordinary ability to engage

in conversations with humans and even multimodal capabilities of interacting with

images, videos, speech, and code. Overall, LLMs are able to tackle complex tasks

and deliver great performance in understanding and generating human-like texts,

representing a monumental breakthrough in the field of NLP.

In this thesis, we use a regular-scale PLM, Eleuther AI’s GPT-J-6B3 in our ap-

proach and compare the experimental results with several LLMs, including 175-

1It should also be mentioned that only models that are over 100 billion parameters yield perfor-
mance gains on these reasoning tasks (Wei et al., 2022c).

2https://openai.com/blog/chatgpt/
3https://github.com/kingoflolz/mesh-transformer-jax
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Figure 2.2: An overview of prompt-based classification. Previous work (Gao et al.,
2021) uses a masked language model with a textual template to perform text classi-
fication.

billion-parameter GPT-3, 128-billion-parameter LLM, and 128-billion-parameter LLM-

dialog, on two attribute transfer benchmark datasets.

2.3 Prompting Methods

Prompting methods use a piece of text to query a PLM to provide desired outputs (Liu

et al., 2021). The simplest prompting method, perhaps, is zero-shot prompting (Wei

et al., 2022a; Sanh et al., 2022; Suzgun et al., 2022), which directly prompts a PLM

to perform an NLP task (see Figure 2.2 and 2.3), but may result in returning less

well-formatted or illogical sentences (Reif et al., 2022). Another prompting method

is few-shot prompting (Brown et al., 2020; Schick and Schütze, 2021a,b; Wei et al.,

2022c). This method requires several task-specific exemplars for the PLMs, but it is

able to achieve higher performance than zero-shot prompting and is therefore more

widely applied in various NLP tasks (Schick and Schütze, 2021a; Brown et al., 2020;

Wei et al., 2022c).

2.3.1 Prompt-Based Classification

Prompting methods were initially applied to natural language classification tasks such

as sentiment classification, textual entailment, and question answering (Brown et al.,

2020; Schick and Schütze, 2021b; Gao et al., 2021; Min et al., 2022; Wei et al., 2022a).
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An overview of prompt-based classification is shown in Figure 2.2, where a PLM is

asked to predict the masked word given a prompt “The sentiment of the text {the beef

taco is tasty} is [MASK].” for binary sentiment classification, and the predicted word

is then projected to a label positive by a pre-defined verbalizer (Schick and Schütze,

2021b). Such a prediction process is also called masked language modeling (Devlin

et al., 2019).

Different from masked language modeling that predicts a word inside a sentence,

another widely applied approach to prompt-based classification is next-word predic-

tion. This approach mainly uses GPT model series, such as GPT-2 (Radford et al.,

2019), to predict the next word conditioning on the whole preceding words in a se-

quence, denoted as

P (sT+1|s1, · · · , sT ) (2.2)

where a prompt is modeled as an input sequence s = (s1, s2, · · · , sT ) with length T ,

and the next word sT+1 is predicted for classification.

2.3.2 Prompt-Based Generation

With the emergence of various PLMs (Devlin et al., 2019; Radford et al., 2019; Brown

et al., 2020; Raffel et al., 2020), prompting methods have recently been widely applied

to natural language generation tasks (Liu et al., 2021), such as text attribute trans-

fer (Reif et al., 2022; Suzgun et al., 2022), machine translation (Radford et al., 2019;

Brown et al., 2020; Raffel et al., 2020), and text summrization (Schumann et al., 2020;

Liu et al., 2022a). An overview of prompt-based generation is shown in Figure 2.3,

where a piece of text “Rewrite the sentence to be more positive: the beef taco is

bland” prompts the PLM to perform next-token prediction multiple times and thus

autoregressively generate a complete sentence the beef taco is tasty.

Recently, generative reasoning tasks, such as commonsense, symbolic, and arith-

metic reasoning, have been built to explore LLMs’ ability to solve complicated tasks (Rae

et al., 2021; Srivastava et al., 2023). Concurrently, a series of chain-of-thoughts (CoT)
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Figure 2.3: An illustration of prompt-based generation: previous work (Reif et al.,
2022) uses a prompt to query a frozen pretrained language model (PLM), which
generates an attribute-transferred sentence in an autoregressive manner.

prompting methods have been proposed to show LLMs’ reasoning ability (Wei et al.,

2022c; Wang et al., 2022; Zhou et al., 2023; Kojima et al., 2022; Li et al., 2023). Wei

et al. (2022c) propose CoT prompting to solve some complicated generative reasoning

tasks in a few-shot manner. This prompting method uses a few manually designed

exemplars containing reasoning paths to encourage LLMs to perform multi-step think-

ing and then generate a reasoning path with the final answer for the question. Wang

et al. (2022) generate a number of reasoning paths from an LLM via CoI prompting

and use a majority voting mechanism to select the most consistent output as the

answer. In addition, Kojima et al. (2022) propose zero-shot CoT prompting, which

adds a piece of reasoning text Let’s think step by step after the question to generate

a reasoning path at the first stage, and then combines the generated path with the

question to generate a final answer. Zhou et al. (2023) decompose a complex prob-

lem into multiple subproblems and solve them sequentially before obtaining the final

answer. Overall, these prompting methods mainly propose different prompt engineer-

ing techniques to encourage LLMs to perform reasoning in a stepwise manner and

generate desired answers.
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Attribute Source Target

Politeness Polite: Could you please send me the data? Impolite: Send me the data!!

Simplicity Expert: Many cause dyspnea, pleuritic chest pain.

Layman: The most common symptoms, regardless

of the type of fluid in the pleural space or its cause,

are shortness of breath and chest pain.

Biasedness
Biased: A new downtown is being developed Neutral: A new downtown is being developed

which will bring back... which its promoters hope will bring back...

Grammar Ungrammatical: My cousin is 12years old. Grammatical: My cousin is 12 years old.

Table 2.1: Illustrative examples of different attribute transfer tasks.

2.4 Text Attribute Transfer

Text attribute transfer (TAT) aims at transforming certain attributes (e.g., sentiment

and formality) of a given text while keeping the other attributes (Fu et al., 2019).

Other than the sentiment mentioned in Figure 1.1, there are also some other com-

monly explored attributes, such as politeness, simplicity, biasedness, and grammar.

Examples of these attributes are illustrated in Table 2.1.

Traditional approaches to attribute-transfer generation involve supervised meth-

ods with parallel training data, where a source sentence is paired with a target sen-

tence (Xu et al., 2012; Zhang et al., 2015; Rao and Tetreault, 2018; Wang et al., 2019,

2020). Xu et al. (2012) use a phrase-based machine translation model to explore au-

tomatic paraphrasing in a designated attribute and evaluate the effectiveness of new

metrics as well as models in generating attribute-transferred paraphrases. Wang et al.

(2019) explore three different strategies to incorporate rule-based systems into a lan-

guage model, keeping more information from the original sentence. Wang et al. (2020)

integrate rule-based systems with a language model to employ a shared encoder and

two decoders to capture the attributes of formality and informality, respectively, and

use auxiliary losses to ensure the shared latent space captures semantic information.

However, obtaining parallel data is labor-intensive and time-consuming, remaining a

significant challenge for this task.

To mitigate the need for parallel data, one line of research focuses on non-parallel

14



supervision, where it trains the model on a non-parallel but attribute-labeled cor-

pus (Shen et al., 2017; Bao et al., 2019; Goyal et al., 2021; John et al., 2019; Li et al.,

2018; Riley et al., 2021). John et al. (2019) train an autoencoder to disentangle the

representation of designated attributes and other attributes in a sentence. Riley et al.

(2021) extract a vector of the attribute to be transferred from a piece of text and use

it to condition the decoder for denoising and reconstructing a corrupted sentence. Li

et al. (2018) combine retrieval and generation to edit a candidate sentence similar to

the source input incrementally. Goyal et al. (2021) train multiple language models as

discriminators for each of the designated attributes. However, explicit separation of

the representation of attributes to be transferred and other attributes is not always

possible because in some sentences they can be implicitly intertwined.

Another line of research is devoted to unsupervised learning methods, which con-

structs pseudo-parallel training data for pretraining the model (Lample et al., 2018b;

Luo et al., 2019; Chen et al., 2019; Krishna et al., 2020; Reid and Zhong, 2021).

Luo et al. (2019) generate pseudo-parallel training data via back-translation (Lample

et al., 2018a) and apply policy gradient training to learn one-step mappings between

the corpora of source and target attributes. Krishna et al. (2020) create pseudo-

parallel training data via two-step paraphrasing to fine-tune a language model for

generating attribute-transferred sentences. Reid and Zhong (2021) first train an at-

tribute classifier to perform synthesis of source–target sentence pairs, which are then

used to train a Levenshtein editor and perform multi-span edits. However, these

unsupervised learning methods require a complicated training procedure, which is

not efficient. In addition, poor-quality data synthesis would possibly lead to low

performance in general.

Recently, with the emergence of various LLMs, researchers have developed sev-

eral prompt-based approaches that generate attribute-transferred texts in a zero-

shot (Suzgun et al., 2022) or exemplar-based manner (Reif et al., 2022). Such meth-

ods do not require a learning process or any training labels. Reif et al. (2022) prompt

15



large-scale PLMs to generate sentences in various designated attributes. Suzgun et al.

(2022) generate multiple candidate sentences and then use a re-ranking mechanism

to choose one with the highest score as the final output.

Our approach follows the prompt-based setting and directly performs attribute

transfer without any training procedure. However, unlike other work that mainly

performs autoregressive generation, our approach proposes a new prompt-based edit-

ing paradigm for text generation, where we not only design a PLM-based scoring

function but also develop a discrete search algorithm that is particularly suited to

our scenario.

2.5 Summary

In this section, I first introduced the Transformer architecture and three categories of

PLMs: encoder-only, decoder-only, and encoder–decoder models. I also discussed the

recent development of LLMs, which have achieved strong performance in interacting

with humans in conversations and also multimodal abilities of image, videos, speech,

and code, attracting people’s attention all over the world. Then, I moved on to the

introduction of two different types of prompting methods, prompt-based classification

and generation. They both use a piece of text to query a PLM to either perform the

next-word prediction for classification or an autoregressive generation of words. These

two prompting methods have been rapidly developed with the emergence of LLMs.

Finally, I discussed different categories of paradigms for text attribute transfer

(TAT). I started with a traditional approach to this task, parallel supervision, which

requires labor and time. Then I moved on to non-parallel supervision and unsuper-

vised learning methods, which are utilized to alleviate the demand for parallel data.

However, non-parallel supervision may not explicitly separate the representation of

attributes to be transferred and other attributes in some sentences where the rep-

resentation is intertwined; unsupervised learning methods may lack efficiency, and

the synthesis of low-quality data could result in poor performance. I also introduced
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the recently proposed prompt-based paradigm for the task of TAT, which utilizes

the LLMs and does not require a training procedure. Our approach also follows the

prompt-based paradigm.
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Chapter 3

Approach

3.1 Overview

In this chapter, I will explain the details of our prompt-based editing approach to

text attribute transfer. Given an input sentence x = (x1, x2, · · · , xn), our goal is

to generate a sentence y = (y1, y2, · · · , yn) that transfers the designated attribute

of x. As shown in Figure 3.1, the framework of our approach involves prompting a

pretrained language model (PLM) to predict the sentiment of a candidate sentence.

Then, we perform discrete search and iterative word-level edits of a candidate sentence

to maximize a comprehensive scoring function that involves the PLM’s classification

probability. The highest-scored candidate is taken as the attribute-transferred sen-

tence.

The approach consists of three main components: a prompt-based classifier, search

objective, and discrete search. In Section 3.2, I will introduce the prompt-based clas-

sifier, which is designed to perform attribute classification using a PLM and compute

a score of the attribute to be transferred. In Section 3.3, I will explain two addi-

tional search objectives that help control the quality of generated sentences in our

approach: language fluency and non-transfer attribute similarity. In Section 3.4, I will

introduce three types of editing operations and the discrete search algorithm applied

in our approach.
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3.2 Prompt-Based Classifier

In previous work, researchers directly prompt a PLM to obtain attribute-transferred

sentences (Figure 2.3; Reif et al., 2022; Suzgun et al., 2022). However, this could

be a challenging process, as the PLM has to generate the sentence in a zero-shot or

exemplar-based manner; such a process is autoregressive and less controllable.

To address this, we design a prompt-based classifier, transforming the attribute

transfer task from text generation into a classification problem. Specifically, we

prompt a PLM for attribute classification and calculate the score of the attribute

to be transferred. This involves only one single-step prediction and is much simpler

than generating the whole sentence.

Given a candidate sentence [y], we intuitively design the prompt as

promptcls(y) ≡ The [t] of the text { [y] } is : (3.1)

where [t] is the attribute to be transferred, such as sentiment or formality in our

experiments, and “{” and “}” are delimiter pairs. It should be mentioned that we

follow Reif et al. (2022) and mainly use the delimiter pairs “{” and “}” in our prompt

for experiments. More detail of prompt engineering is shown in Section 4.5.3.

Based on the above prompt, we perform the next-word prediction to obtain a

probability. Specifically, the PLM computes the conditional probability of the next

word w in the vocabulary given the prompt, denoted by PPLM(w | promptcls(y)).

Instead of looking at the probability distribution over the whole vocabulary of

a PLM, we restrict our attention to the attribute to be transferred. We denote si

as the representative word of the ith value of the attribute to be transferred. In our

experiments, we have several specific settings: sentiment, formality, and Shakespeare-

to-modern transfer. Here, si is simply chosen to be the most intuitive word, namely,

positive and negative for the sentiment setting, formal and informal for the for-

mality setting, old and modern for the Shakespeare-to-modern setting1. In gen-

1We followed the prompt in Suzgun et al. (2022) and used old to represent the attribute of
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Figure 3.1: An illustration of our prompt-based editing approach, which involves one-
word classification (e.g., positive or negative in sentiment transfer; formal or informal
in formality transfer).

eral, the predicted probabilities of the two attributes are PPLM(s1 | promptcls(y)) and

PPLM(s2 | promptcls(y)).

To compute the score of the attribute to be transferred, we consider the ratio

of those two probabilities. Suppose a sentence in one transfer attribute s1 is to be

changed to another attribute s2, we design the score as follows:

ftransfer(y) =
PPLM(s2 | promptcls(y))

PPLM(s1 | promptcls(y))
(3.2)

Such a ratio measures the candidate’s relative affiliation with different attributes to

be transferred.2 It is more robust than the predicted probability PPLM(· | promptcls(y)),

which could be affected by the data sample per se.

Shakespeare.
2While our datasets only consider the transfer between two attributes, our approach can be easily

extended to multiple attributes in a one-vs-one or one-vs-all manner.
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3.3 Search Objective

We apply an edit-based search for text attribute transfer. This follows the recent

development of search-based text generation (Li et al., 2020; Kumar et al., 2020; Jolly

et al., 2022; Liu et al., 2022a; Mou, 2022), where local edits (e.g., word changes) are

performed to maximize a heuristically defined objective function. However, different

from previous search-based work, we propose to prompt an off-the-shelf PLM to

compute the score ftransfer(y) and do not require any task-specific training procedure.

Overall, our objective function involves three aspects:

f(y;x) = ftransfer(y) · ffluency(y) · fsimilarity(y,x) (3.3)

where the scorer ftransfer is designed in Section 3.2; ffluency and fsimilarity are language

fluency and non-transfer attribute similarity scorers, mostly adopted from previous

work and explained in detail below.

3.3.1 Language Fluency

A language fluency scorer provides an approximation of how fluent a candidate sen-

tence y is. In our work, we follow Suzgun et al. (2022) and use GPT-2 (Rad-

ford et al., 2019) to obtain the fluency score. For a tokenized candidate output

y = {y1, y2, · · · , yt}, we first calculate the perplexity (PPL) of y :

PPL(y) = exp

{︄
−1

t

t∑︂
i

logPGPT-2(yi|y<i)

}︄
(3.4)

where PGPT-2(yi|y<i) is the likelihood of the ith token yi conditioned on the preceding

tokens y<i according to the GPT-2 model, and t is the length of y. We use the

entire vocabulary of the GPT-2 model with the widely used byte-pair encoding (BPE)

algorithm (Sennrich et al., 2016), which encodes rare and unknown words as sequences

of common subword units, and yi here is a token after the BPE segmentation.

Since a lower PPL means a more fluent sequence, we use the reciprocal of PPL to
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represent the fluency score:

ffluency(y) =

[︃
1

PPL(y)

]︃α
(3.5)

By substituting Equation 3.4 into Equation 3.5, we obtain the fluency score of the

candidate output y:

ffluency(y) =

⎛⎝[︄
t∏︂

i=1

PGPT-2(yi|y<i)

]︄ 1
t

⎞⎠α

(3.6)

where α is a hyperparameter balancing ffluency with other scoring functions. Notice

that a weighting hyperparameter is not needed for the scorer ftransfer because the

relative weights of different scorers are given in ffluency and fsimilarity.

3.3.2 Non-Transfer Attribute Similarity

The non-transfer attribute similarity scorer measures the similarity of attributes to

be preserved between a candidate sentence y and an input sentence x. In our work,

we adopt word- and sentence-level scorers as in Li et al. (2020).

A word-level scorer focuses on keyword information, where the keywords in the

input sentence x are extracted by the Rake system (Rose et al., 2010). As for each

keyword, we find the closest word in the candidate sentence x in terms of cosine

similarity. Then, the pretrained RoBERTa model (Liu et al., 2019) is adopted to

compute the contextualized representation, denoted by RBT(w, s), for a word w in

some sentence s.

The word-level score is defined as the lowest similarity among all the keywords,

encouraging the output sentence to contain all the keywords of the input. Specifically,

the score is given by

fword(y,x) = min
k∈keyword(x)

max
yi∈y

cos(RBT(k,x),RBT(yi,y)) (3.7)

where keyword(x) is the list of keywords existing in sentence x.
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A sentence-level scorer computes the cosine similarity of two sentence vectors as

fsent(y,x) = cos(y,x) =
y⊤x

||y|| · ||x||
(3.8)

where the sentence vectors y and x are also encoded by RoBERTa.

In particular, the sentence vectors are obtained by mean pooling of the word em-

beddings in the sentence. Given a sentence s = (s1, s2, · · · , sN), we obtain the sentence

vector s by:

s =
1

N

N∑︂
i=1

RBT(si, s) (3.9)

Here, Equation 3.9 itself serves as the pooling operation, which averages the word

embeddings to obtain a single vector representation for the whole sentence.

Finally, the similarity scorer is computed as the product of word- and sentence-level

scores:

fsimilarity(y,x) = fword(y,x)β · fsent(y,x)γ (3.10)

where β and γ are the weighting hyperparameters.

3.4 Discrete Search Algorithm

We perform attribute-transfer generation by discrete search using local editing oper-

ations, such as word insertion, deletion, and replacement, following previous work (Li

et al., 2020; Liu et al., 2020b). However, we propose to use steepest-ascent hill climb-

ing (SAHC; Russell and Norvig, 2010) as our discrete search algorithm.

3.4.1 Word Editing

The discrete search algorithm performs one word-level edit operation at a time, which

changes the candidate sentence locally. We mainly follow Miao et al. (2019) and

provide the detail of each edit operation as follows:

Replacement. In the process of editing a candidate sentence y = (y1, y2, · · · , yN),

we first choose the word at the position i to be replaced with the mask token
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“[MASK]”. Then, we adopt RoBERTa based on its property of masked language

modeling and predict a candidate token at the chosen position.

Due to efficiency concerns, we select top-k candidate words predicted by RoBERTa.

Specifically, RoBERTa encodes the whole candidate sentence y into a contextualized

representation H ∈ Rn×d where n is the sequence length and d is the dimension of

hidden size. Subsequently, the prediction layer in RoBERTa applies linear transfor-

mation on H to generate an output matrix Z = HW⊤ ∈ Rn×dv , where W ∈ Rdv×d

is the weight matrix of the layer, and dv represents the PLM’s vocabulary size. In

the masked word prediction at the chosen position i, RoBERTa utilizes the soft-

max function over the ith row of the matrix Z, which is represented as the vector

z = (z1, z2, · · · , zdv) ∈ Rdv . The softmax computation produces a categorical proba-

bility distribution P . For every element in the vector z, the probability is computed

as

Pj = softmax(z)j =
ezj∑︁dv
k=1 e

zk
(3.11)

where zj is the jth element in the vector z.

We sort the probability distribution P in descending order and establish a list

of top-k candidate words based on their predicted probabilities. In this way, we

replace the word at the chosen position with each candidate word from the list,

thereby generating k candidate sentences considering all the N positions in terms of

replacement.

Insertion. We choose a position i either between two words or at the start of

a sentence, and then insert a mask token “[MASK]” into it. Same as the operation

of replacement, we still adopt RoBERTa to predict and get a list of top-k candidate

words based on the predicted probabilities and have k candidate sentences in terms

of insertion.

Deletion. We choose the word at the position i and simply remove the word from

the sentence to have one candidate output.

During development, we measured the edit distance between the input sentences
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and reference outputs for both the sentiment and formality transfer settings. Our

observation is that the average edit distance is 2.9 steps for sentiment transfer and

4.7 steps for formality transfer. Therefore, we set the maximum number of edit steps

to 5 to maintain their resemblance. This, unfortunately, renders previous search

algorithms—such as simulated annealing (SA; Liu et al., 2020b) and first-choice hill

climbing (FCHC; Schumann et al., 2020)—ineffective, as they cannot fully make use

of limited search steps. In the following subsection, we will introduce our proposed

search algorithm, which is suitable for the scenario of conducting the discrete search

in a few edit steps.

3.4.2 Steepest-Ascent Hill Climbing Algorithm

In our work, we propose to use steepest-ascent hill climbing (SAHC; Russell and

Norvig, 2010) for discrete search. It greedily finds the best edit for every search

step and selects the best candidate before reaching the maximum edit steps. As

will be detailed in Section 4.5.2, we conduct an analysis of different search discrete

algorithms, and our proposed SAHC algorithm can effectively perform attribute-

transfer generation, significantly improving efficiency compared with other search

algorithms such as SA and FCHC.

Moreover, we design an additional stopping criterion that the search terminates

when the prompted PLM predicts that the attribute has been transferred even if it

has not reached the maximum edit steps. This not only improves time efficiency but

also encourages non-transfer attribute preservation.

We summarize our approach in Algorithm 1, which performs the following steps:

Step 1. The original sentence x is taken as input, and this is used to initialize the

state with y(0) = x.

Step 2. The search step t loops from 1 and goes up to the maximum edit step T .

Step 3. At a search step t, the SAHC algorithm enumerates all the editing posi-

tions and operations.
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Algorithm 1 Prompt-Based Editing

1: Input: Original sentence x, iterative steps T
2: y(0) = x
3: for t ∈ {1, · · · , T} do
4: Enumerate all edit positions and operations
5: Obtain the highest-scored candidate y′ by Eqn. (3.3)
6: if ftransfer(y

′) > 1 then ▷ PLM believes attribute transferred
7: return y′

8: if f(y(t−1),x) ≥ f(y′,x) then ▷ Local optimum found
9: return y(t−1)

10: else: y(t) = y′

11: return y(T )

Step 4. The highest-scored candidate y′ is obtained according to Equation 3.3.

Step 5. If the score ftransfer(y
′) is larger than one, it indicates that the PLM

believes the attribute of y′ to be transferred to the target one, thereby SAHC returns

y′ as the final output and terminates the search.

Step 6. If the overall score of the current sentence y(t−1) is equal to or greater

than y′ that of the candidate y(t−1), it indicates that the local optimum has been

found. In such a case, SAHC returns y′ as the final output and terminates the

search. Otherwise, proceed to Step 7.

Step 7. SAHC takes the candidate y′ as the current sentence and goes back to

Step 2 for further discrete search.

Step 8. If SAHC has reached the maximum edit step T without early termination,

it ends up returning y(T ) as the final search output.

3.5 Summary

In this chapter, I went through three significant aspects of our proposed approach:

the prompt-based classifier, search objective, and search algorithm.

I started by demonstrating the framework of the prompt-based classifier, which

is designed to transform the prompt-based generation problem into a classification

one. Specifically, the classifier is a frozen pretrained language model, and we use a

prompt to query the language model to predict the probabilities of certain words.
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The probabilities are then used to compute a score of the attribute to be transferred

for the following search objective.

I then focused on the search objective for local search and offered a detailed ex-

planation for each scorer individually. The language fluency scorer, the non-transfer

attribute similarity scorer, and the above-mentioned transfer scorer are combined to

provide the overall score of a candidate sentence. In our case, we used the reciprocal

of perplexity to represent language fluency because lower perplexity equals higher

fluency; we further incorporated both word- and sentence-level scores for comprehen-

sively representing the similarity of attributes to be preserved between inputs and

model outputs.

Our last aspect was the discrete search algorithm. I explained three editing op-

erations in detail, including replacement, insertion, and deletion. Then, I described

the SAHC algorithm designed for editing sentences within a limited number of search

steps, instead of using FCHC or SA, based on our observation of the attribute trans-

fer tasks. In addition, we designed a stopping criterion to terminate the local search

when the candidate sentence’s attribute is predicted to be transferred, which largely

improves time efficiency and non-transfer attribute preservation.
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Chapter 4

Experiments

4.1 Overview

In this chapter, I will first introduce our experimental setups in Section 4.2, including

the introduction of four benchmark datasets, implementation details, and different

baseline prompting approaches. In Section 4.3, I will provide detailed explanations

for different evaluation metrics. Section 4.4 will focus on the main results on four

datasets. Then, I will show a series of detailed empirical analyses in Section 4.5,

including ablation study, analysis of different discrete search algorithms, delimiter

pairs, and editing operations. Finally, I will provide case studies of model outputs in

Section 4.6.

4.2 Experimental Setup

4.2.1 Datasets

We evaluated our prompt-based editing approach on three attribute transfer tasks:

sentiment, formality, and Shakespeare-to-modern transfer. We divide these tasks into

two settings:

• No meaning-preserving: Sentiment transfer does not preserve the meaning

during the transfer process.

• Meaning-preserving: Formality and Shakespeare-to-modern transfer pre-
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serve the meaning during the transfer process.

Both of the settings are addressed by our prompt-based editing approach.

We used Yelp reviews (Yelp; Zhang et al., 2015) and Amazon reviews (Amazon;

He and McAuley, 2016) for sentiment transfer. These two datasets have been widely

used in previous work (Li et al., 2018; Luo et al., 2019; John et al., 2019; Reif et al.,

2022; Suzgun et al., 2022). Yelp contains reviews for restaurants and other busi-

nesses, while Amazon contains product reviews that were obtained from the Amazon

website. Both Yelp and Amazon datasets contain 500 positive and 500 negative

sentences in the test set.

Then, we used Grammarly’s Yahoo Answers Formality Corpus (Gyafc; Rao and

Tetreault, 2018) for formality transfer. This dataset is also widely used in previous

work (Luo et al., 2019; Lai et al., 2021; Reif et al., 2022; Suzgun et al., 2022). Gyafc

consists of sentences that were extracted from a question-answering forum (Yahoo

Answers). We chose the “Family & Relationships” domain, following Luo et al.

(2019) and Suzgun et al. (2022). The test set contains 500 formal and 500 informal

sentences.

In addition, we adopted the Shakespeare dataset (Xu et al., 2012) for Shakespeare-

to-modern transfer and used the test set provided in Suzgun et al. (2022) for a fair

comparison. The test set contains 599 Shakespeare sentences from William Shake-

speare’s Romeo and Juliet, written in Shakespeare and modern English.

An overview of the datasets is shown in Table 4.1.

4.2.2 Implementation Details

We utilized Eleuther AI’s off-the-shelf GPT-J-6B as the prompt-based classifier.

GPT-J-6B features 28 encoder layers, each having 16 attention heads. Further, we

used a non-finetuned pretrained language model RoBERTa-Large (Liu et al., 2019)

to encode the sentences, and to predict top-k words as candidate edits (Section 3.3).

We set k = 50 for all four datasets.
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Dataset Attribute Example Sentence Pair Size

Yelp
Negative moving past the shape, they were dry and truly tasteless. 500

Positive moving past the shape, they were dry and truly tasty. 500

Amazon
Negative nokia knows how to design a very terrible interface. 500

Positive nokia knows how to design a very good interface. 500

Gyafc
Informal and so what if it’s a rebound relationship for both of u? 500

Formal what if it is a rebound relationship for both of you? 500

Shakespeare
Shakespeare is rosaline, whom thou didst love so dear, so soon forsaken? 599

Modern have you given up so quickly on rosaline, whom you loved so much? 599

Table 4.1: Overview of text attribute transfer datasets used in this work

Regarding the weighting hyperparameters1 α, β, and γ of the search objective f(y)

in Eqn. (3.3), they are 1
4
, 1

6
, and 1

6
for both Yelp and Amazon datasets, and 1

4
, 3

8
,

and 3
8

for both Gyafc and Shakespeare datasets.

Our proposed approach was developed with Python 3.7 and Pytorch 1.11.0. The

experiments were conducted on NVIDIA A100 SXM4 GPUs.

4.2.3 Baseline Approaches

We compared our proposed method with one naive and three competing baseline

approaches:

• Add “not”. This method adds the word “not” at the start of a sentence,

which is specifically applied to sentiment transfer.

• Vanilla Prompting. This baseline method queries a PLM with the prompt

Here is some text: {[x]}. Here is a rewrite of the text, which is more [s]: {

where [x] is the input and [s] is the attribute to be transferred (e.g., positive and

negative in sentiment transfer, and formal and informal in formality transfer)

to directly obtain an attribute-transferred sentence, as shown in Figure 2.3. In

1We used the hyperparameters in Li et al. (2020) and did not tune them.
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Dataset [Few-Shot Examples] and [Test-Time Input]

Yelp

The sentiment of the text {this place is awful!} is: positive \n ### \n
The sentiment of the text {this place is amazing!} is: positive \n ###
\n The sentiment of the text {I hated their black tea and hated hot
chocolate selections!} is: negative \n ### \n The sentiment of the text
{I hated their black tea and hated hot chocolate selections!} is: positive
\n ### \n The sentiment of the text{it’s small yet they make you feel
right at home.} is:

Gyafc

The formality of the text {ohhh i dont́ intend to be mean ...} is: informal
\n ### \n The formality of the text {i do not intend to be mean} is:
formal \n ### \n The formality of the text {,,, that sucks man but u
gotta move on :)} is: formal \n ### \n The formality of the text {that
is unfortunate, but you need to move on} is: formal \n ### \n The
formality of the text {and so what if it is a rebound relationship for both
of you ?} is:

Shakespeare

The genre of the text {what hast thou there ?} is: old \n ### \n The
genre of the text {i do not intend to be mean} is: modern \n ### \n
The genre of the text {talk not to me, for i’ll not speak a word.} is:
formal \n ### \n The genre of the text {don’t talk to me, because i
won’t answer you.} is: modern \n ### \n The genre of the text {as
mine on hers, so hers is set on mine, and all combined, save what thou
must combine by holy marriage.} is:

Table 4.2: A complete list of exemplars used in our few-shot experiments for all
attribute transfer tasks. Here, the color gray is used to highlight the examples used
in the few-shot prompt and the color violet represents a test-time input example.

all attribute transfer tasks, we used four exemplars in the few-shot setting, as

displayed in Table 4.2.

• Distant-Exemplar Prompting. We adopted the approach in Reif et al.

(2022), which queries a large-scale PLM (such as LLM, LLM-dialog, and 175-

billion-parameter GPT-3) with several attribute-transferred exemplars in a few-

shot manner. However, their exemplars have a different label from the test

cases, and thus we call it distant-exemplar prompting. We use the same prompt

provided by Reif et al. (2022) to obtain results with the GPT-3 curie (6.7B)

and the off-the-shelf GPT-J-6B for the four benchmark datasets.
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• Prompt & Rerank. This prompting method (Suzgun et al., 2022) proposes to

generate multiple candidate outputs from different manually designed prompts

(e.g., different textual templates or different delimiter pairs); then, they rerank

the outputs by a heuristically defined scoring function. It should be mentioned

that the paper (Suzgun et al., 2022) adopts a setting that is non-compatible

with prior work; specifically, they report different directions of sentiment trans-

fer separately, while excluding informal-to-formal transfer in the formality ex-

periment. Therefore, we replicated their work under the standard settings (Luo

et al., 2019; Reif et al., 2022).

To the best of our knowledge, distant-exemplar prompting (Reif et al., 2022) and

Prompt & Rerank (Suzgun et al., 2022) are the only prior studies that conduct

prompting methods on text attribute transfer. In the following subsection, I will

introduce the metrics we used for automatic evaluation.

4.3 Evaluation Metrics

We evaluated different approaches in terms of the following evaluation metrics.

Attribute transfer accuracy. The accuracy score measures the success rate of

attribute-transferred model outputs. Following the practice in Reif et al. (2022), Lai

et al. (2021), and Krishna et al. (2020), we used several pretrained classifiers for at-

tribute classification to determine whether a generated output possesses the desired

attribute. In particular, SiEBERT (Hartmann et al., 2022) is used for sentiment clas-

sification, an off-the-shelf RoBERTa-Large (Liu et al., 2019) is fine-tuned separately

for formality classification and Shakespeare-to-modern classification.

Given a corpus of model outputs D = {y(m), r(m)}Mm=1, where the target label

r ∈ {0, 1}2 and M is the number of model outputs in one attribute transfer task, the

accuracy score (ACC) is then computed as the success rate of attribute-transferred

2In sentiment transfer, we denote negative as 0 and positive as 1; in formality transfer, we denote
informal as 0 and formal as 1; in Shakespeare-to-modern transfer, we denote old as 0, modern as 1.
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sentences:

ACC =

∑︁M
m=1 1{C(y(m)) = r(m)}

M
(4.1)

where C(·) is the function of binary classification of a sentence, and 1(·) is the indicator

function that it is 1 when the condition is true or 0 when false.

BLEU. The BLEU score measures the similarity between the model outputs and

human-written reference sentences that are provided by (Luo et al., 2019). It is

commonly used in research of text attribute transfer (Shen et al., 2017; Dai et al.,

2019; Lyu et al., 2021) to measure the preservation of non-transfer attributes. In this

work, we used the script multi-bleu.perl to obtain the BLEU-4 score following Luo

et al. (2019) and Reif et al. (2022).

The script calculates the n-gram precision of a candidate sentence with respect to

a list of reference sentences. Precision is cut by the maximum occurrence of each

n gram across different references, preventing the system from repeating common

words. To evaluate the generated texts at the corpus level, the n-gram precision pn

is computed as

pn =

∑︁
C∈Cands

∑︁
n-gram∈C Countclip(n-gram)∑︁

C∈Cands

∑︁
n-gram∈C Count(n-gram)

(4.2)

where “Cands” represents the candidate sentences, and the Countclip(·) operation

counts the number of matching n-grams clipped to the maximum occurrences in

reference sentences, while the Count(·) operation counts the number of n-grams in

the candidate sentences (Wen et al., 2022).

Second, the brevity penalty (BP) is applied to precision pn to penalize overly short

generations and ensure they cannot gain high performance:

BP(r, c) =

{︄
e1−

r
c if r ≤ c

1 if r > c
(4.3)

where c is the sum of generated sentences’ length in the corpus, and r is the sum of

reference sentences’ length.

Finally, the BLEU score is computed as the weighted geometric mean of n-gram
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precisions for n = 1, · · · , 4:

BLEU = BP · exp
(︁1

4

4∑︂
n=1

log pn
)︁

(4.4)

BERTScore. It is a powerful language generation evaluation metric based on

pretrained BERT contextual embeddings (Zhang et al., 2020a). This metric computes

the semantic similarity of a pair of sentences as a sum of cosine similarities between the

embeddings of their tokens. BERTScore (BS) can capture deep semantic meanings

and contextual nuances of the texts and has been widely used in previous work (Liu

and Liu, 2021; Li and Liang, 2021; Liu et al., 2022b).

Specifically, BERTScore matches each token in the input sentence x to a token

in the reference sentence y to compute recall, and each token in y to a token in

x to compute precision. Greedy matching is used to maximize the similarity score,

where each token is matched to the most similar token in the other sentence. Further,

precision and recall are combined to compute an F1 score. For a reference sentence

y and candidate x, the recall, precision scores are

RBERT =
1

|y|
∑︂
yi∈y

max
xj∈x

y⊤
i xj, PBERT =

1

|x|
∑︂
xj∈x

max
yj∈y

y⊤
i xj (4.5)

where xj and yi are token embeddings. Thus, the F1 score (BERTScore) is:

BERTScore = FBERT = 2 · PBERT ·RBERT

PBERT + RBERT

(4.6)

Geometric and Harmonic Mean. We follow Luo et al. (2019) and adopt

the geometric mean (GM) and harmonic mean (HM) to evaluate the overall perfor-

mance based on the transfer accuracy mentioned above and the BLEU score. Given

N attribute-transferred sentences, we first calculate the accuracy (ACC) score and

BLEU score based on Equations 4.1 and 4.4, respectively, and then calculate the GM

score in terms of accuracy and BLEU score as follows:

GM =
2
√

ACC · BLEU (4.7)
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Setting Method Model
#Para Yelp Amazon

(B) ACC BLEU BS GM HM ACC BLEU BS GM HM

- Add “not” - 0 29.2∗ 58.4∗ 94.7 41.3 38.9 36.6 43.6 93.2 39.9 39.8

zero-shot

Vanilla

GPT-J-6B 6 63.7∗ 34.5∗ 90.4 46.9 44.8 56.9 26.6 88.8 38.9 36.3

LLM 128 69.7∗ 28.6∗ - 44.6 40.6 - - - - -

LLM-dialog 128 59.1∗ 17.6∗ - 32.3 27.1 - - - - -

P&R GPT-J-6B 6 68.6∗ 19.8∗ 83.2 35.2 30.1 57.1 21.7 86.6 35.2 31.4

Ours GPT-J-6B 6 73.0∗ 40.1∗ 92.7 54.1 51.7 72.7 28.6 91.1 45.6 41.0

few-shot

Distant
exemplars

GPT-J-6B 6 52.8∗ 35.8∗ - 43.5 42.7 51.0 27.1 90.9 37.2 35.4

GPT-3 curie 6.7 53.0∗ 48.3∗ - 50.6 50.5 72.2 22.9 87.5 40.7 34.8

LLM 128 79.6∗ 16.1∗ - 35.8 26.8 - - - - -

LLM-dialog 128 90.6∗ 10.4∗ - 30.7 18.7 - - - - -

GPT-3 danvinci 175 74.1∗ 43.8∗ - 57.0 55.1 87.3 28.3 91.0 49.7 42.7

P&R GPT-J-6B 6 75.0∗ 42.5∗ 94.0 56.5 54.3 66.8 20.5 86.0 37.0 31.4

Ours GPT-J-6B 6 74.5∗ 48.9∗ 94.4 60.3 59.0 78.5 37.1 92.5 54.0 50.4

Table 4.3: Results on Yelp and Amazon test sets. #Para: Number of param-
eters. GM and HM: Geometric mean and harmonic mean of ACC and BLEU. BS:
BERTScore F1-score scaled between 1 to 100. †We replicated Prompt & Rerank (Suz-
gun et al., 2022) by their released code, as the settings in Suzgun et al. (2022) are
incompatible with other previous work. Results with ∗ are quoted from (Reif et al.,
2022). Other results are given by our experiments. The performance of LLM and
LLM-dialog is not available for Amazon because these PLMs are not public.

Method Model #Para (B) ACC BLEU BS GM HM

Distant exemplars GPT-J-6B 6 39.4 33.1 91.7 36.1 36.0

P&R GPT-J-6B 6 44.4 32.9 91.4 38.2 37.8

Ours GPT-J-6B 6 44.4 33.4 92.7 38.5 38.1

Table 4.4: Four-shot performance on the Gyafc dataset, considering both directions
of informal to formal and formal to informal.

Similarly, we calculate the HM score as

HM =
2

1
ACC

+ 1
BLEU

(4.8)

Again, this calculation follows the standard practice in previous work (Luo et al.,

2019; Li et al., 2020).
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Method Model #Para (B) ACC BLEU BS GM HM

Distant exemplars GPT-J-6B 6 61.0 19.1 87.1 34.1 29.1

P&R GPT-J-6B 6 70.2 21.0 88.0 38.4 32.3

Ours GPT-J-6B 6 57.7 21.5 88.3 35.2 31.3

Table 4.5: Four-shot performance on the Shakespeare dataset, considering the
same Shakespeare-to-modern direction as in Suzgun et al. (2022).

4.4 Experimental Results

Table 4.3 shows the performance of different prompting systems on the Yelp and

Amazon datasets. We observe that our approach achieves the best geometric mean

(GM) and harmonic mean (HM) scores among all the approaches. Compared with

the recently proposed prompting system, Prompt & Rerank (Suzgun et al., 2022), our

approach outperforms by more than 14 and 3 points for GM, and 15 and 5 points for

HM in the zero- and few-shot settings, respectively, averaged across the two datasets.

Further, compared with 175-billion-parameter GPT-3 with distant exemplars (i.e.,

attribute-transferred exemplars containing source texts and outputs written in non-

target labels), our approach yields higher GM and HM scores by more than 3, and 5

points, respectively, also averaged across the two datasets. This is a compelling result,

as our approach yields a better balance between non-transfer attribute preservation

and attribute transfer strength while using a 20x smaller PLM.

Table 4.4 shows the results of different prompting systems on the Gyafc dataset,

where both informal-to-formal and formal-to-informal directions are considered (Luo

et al., 2019; Reif et al., 2022). To ensure a fair comparison with previous prompting

systems, we followed Suzgun et al. (2022) and conducted experiments in a four-shot

setting. As shown, our approach outperforms previous approaches in GM and HM

scores, which is consistent with the results in Table 4.3. It is also noticed that

our approach achieves less improvement on Gyafc than on Yelp and Amazon, as
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formality transfer is more challenging than sentiment transfer.

In addition, Table 4.5 shows the results of different prompting systems on the

Shakespeare dataset. We considered the Shakespeare-to-modern direction and con-

ducted experiments in a four-shot setting following Suzgun et al. (2022). As shown,

our approach does not achieve the best performance in GM and HM scores com-

pared to P&R. One possible reason is that the Shakespeare dataset shows more

word variations between input sentences and references. It also demands more word

reordering, making it more challenging than sentiment and formality transfer.

4.5 Detailed Analyses

In this section, we conduct in-depth analyses to assess the effectiveness of our prompt-

based editing approach. Due to limited time and resources, we chose the sentiment

transfer datasets, Yelp and Amazon, as our testbed.

4.5.1 Ablation Study

To evaluate the contribution of key components in our model, we conducted an abla-

tion study of different scoring functions and our proposed stopping criterion.

Table 4.6 shows that all the scorers play a role in our approach, and that the

prompt-based scorer ftransfer is the most important one. This makes sense, as it is the

only signal of the attribute to be transferred. Without the scorer ftransfer, we would not

be able to perform meaningful attribute transfer. Moreover, we find that the fluency

scorer ffluency slightly hurts attribute transfer accuracy and BLEU scores, which are

the standard metrics in Luo et al. (2019). However, it significantly hurts language

fluency, characterized by an increase in perplexity (PPL) that roughly estimates the

fluency of text (John et al., 2019). Therefore, we deem the fluency scorer ffluency

essential to our model.

In addition, our approach involves a stopping criterion that is designed to terminate

the search process if the PLM believes the certain attribute is successfully transferred.
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Dataset Model ACC BLEU BS GM HM PPL

Yelp

Full model 73.0 40.1 92.7 54.1 51.7 122.7

w/o ftransfer 17.9 25.1 84.2 21.2 33.9 29.3

w/o fsimilarity 74.0 39.0 92.0 53.7 51.1 124.0

w/o ffluency 81.3 39.3 92.3 56.5 53.0 223.6

w/o stop criterion 78.3 25.2 81.2 44.4 38.1 192.4

Amazon

Full model 72.7 28.6 91.1 45.6 41.0 137.2

w/o ftransfer 33.6 20.2 85.7 26.1 25.3 31.5

w/o fsimilarity 71.1 28.1 90.9 44.7 40.3 116.3

w/o ffluency 78.0 28.6 91.1 47.2 41.8 229.9

w/o stop criterion 79.9 19.3 84.9 39.3 31.1 176.3

Table 4.6: Ablation study on the sentiment transfer datasets in the zero-shot setting.
PPL: Perplexity (the smaller, the better). In the “w/o ftransfer” setting, the model
mainly optimizes toward ffluency, so it achieves an extraordinarily low PPL; however,
its designated attribute is usually not transferred, shown by extraordinarily low ACC.
Therefore, this is not a meaningful attribute transfer setting.

As seen from the last row of Table 4.6, more edit steps (w/o stop criterion) improve the

attribute transfer accuracy but drastically hurt BLEU and BERTScore. This shows

that our stopping criterion is able to seek a balance between the transfer strength

and preserving the non-transfer attribute of original texts.

4.5.2 Analysis of Discrete Search Algorithms

Our steepest-ascent hill climbing (SAHC) algorithm enumerates candidate edits, in-

cluding word deletion, insertion, and replacement (where top-50 candidate words are

considered for efficiency concerns). Then, SAHC selects the best one for the next

round of editing, shown in Algorithm 1.

We compared our SAHC with two stochastic optimization algorithms, first-choice

hill climbing (FCHC; Schumann et al., 2020) and simulated annealing (SA; Liu et al.,

2020b), detailed as follows.
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Dataset Algorithm ACC BLEU BS GM HM

Yelp

SAHC 73.0 40.1 92.7 54.1 51.7

FCHC 67.2 31.8 89.7 46.2 43.1

SA 66.0 28.7 89.1 43.5 40.0

Amazon

SAHC 72.7 28.6 91.1 45.6 41.0

FCHC 64.1 24.8 90.1 39.8 35.7

SA 63.2 23.7 88.9 38.7 34.4

Table 4.7: Results of different discrete search algorithms on Yelp and Amazon
datasets.

• FCHC. During the search process, FCHC iteratively applies stochastic local

changes to an input sentence. If the candidate sentence is better than the

current one, the algorithms will accept the proposed one. Otherwise, it rejects

the candidate and retains the current one.

• SA. SA also applies iterative stochastic word changes to an input sentence,

but its acceptance criterion is different from FCHC. SA can accept a better

candidate, and it may additionally accept the proposed candidate with a small

probability, even if it is worse than the current sentence.

Table 4.7 shows that our SAHC algorithm significantly outperforms FCHC and SA

in both attribute transfer accuracy and the BLEU score, indicating that SAHC in

our scenario is more suited than other discrete search algorithms. This is likely due

to the limited number of edit steps, which requires that the algorithm should make

an effective edit at every search step.

4.5.3 Delimiter Pairs

In practice, we have not performed intensive prompt engineering but simply adopted

the most intuitive expression, as shown in Equation 3.1. However, it is known that

the delimiter pairs in the prompt may affect the model performance (Reif et al., 2022;
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Suzgun et al., 2022). Therefore, we conducted a detailed analysis of different delimiter

pairs’ effects on the quality of model outputs.

Following Suzgun et al. (2022), we conducted experiments with ten delimiter pairs.

Specifically, these ten pairs are: (1) curly brackets {·}, (2) square brackets [·], (3)

angle brackets ⟨·⟩, (4) parentheses (·), (5) quotes “ · ”, (6) dashes – ·–, (7) triple angle

brackets ⟨⟨⟨·⟩⟩⟩, (8) bracket quotes ⟩ “ · ”, (9) asterisk quotes * “ · ”, and (10) double

curly brackets {{·}}.

We refactored the prompt in Equation 3.1 with each of the above-mentioned de-

limiter pairs. For example, if we have an input sentence, “ I like playing tennis! ”,

for sentiment transfer, then the prompt using square brackets would be

The sentiment of the text [ I like playing tennis ! ] is:

Table 4.8 reports the results. We find the delimiter pair “⟨·⟩” yields the best overall

results, achieving the best geometric mean (GM) and harmonic mean (HM) scores

on both datasets, with a GM of 59.4 and an HM of 57.7 on Yelp as well as a GM of

49.7 and an HM of 45.0 on Amazon. On the contrary, the delimiter pair “(·)” yields

the lowest performance in terms of all evaluation metrics.

Nevertheless, in our main experiments, we used the curly brackets following Reif

et al. (2022) and Suzgun et al. (2022) for a fair comparison. Our analysis here

indicates the potential of our approach, suggesting that we can further improve model

performance through some prompt engineering techniques.

4.5.4 Editing Operations

To evaluate the contribution of each edit operation (word deletion, replacement, and

deletion), we conducted experiments on sentiment and formality transfer datasets.

Specifically, we computed the proportion of each operation used in the search process

for each dataset.

The result is shown in Table 4.9. We observe that word replacement is predominant

in the search process in both Yelp and Amazon datasets, likely because of replacing
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Delimiter
Pairs

Yelp Amazon

ACC BLEU BS GM HM ACC BLEU BS GM HM

{·} 73.0 40.1 92.7 54.1 51.7 72.7 28.6 91.1 45.6 41.0

[·] 68.7 39.9 92.5 52.4 50.5 74.0 28.5 91.1 45.9 41.1

⟨·⟩ 76.0 46.5 94.0 59.4 57.7 78.5 31.5 92.2 49.7 45.0

(·) 62.8 37.8 92.0 51.0 48.8 66.7 27.7 90.6 43.0 39.1

“ · ” 70.0 45.1 93.6 56.2 54.8 70.2 30.5 91.7 46.3 42.5

– · – 68.9 40.3 92.8 52.7 50.9 71.1 29.3 91.3 45.6 41.5

⟨⟨⟨·⟩⟩⟩ 77.0 43.9 93.0 58.1 55.9 74.1 29.5 91.3 46.8 42.2

⟩ “ · ” 73.0 42.7 92.9 55.8 53.8 70.4 32.7 92.8 48.0 44.7

* “ · ” 68.7 41.2 92.8 53.2 51.5 71.2 29.9 91.5 46.1 42.1

{{·}} 73.5 44.7 93.4 57.3 55.6 70.8 30.1 91.6 46.2 42.2

Table 4.8: Results on Yelp and Amazon datasets with ten types of delimiter pairs.

Dataset
Edit Operation

Replacement Insertion Deletion

Yelp 53.4% 37.8% 8.8%

Amazon 52.2% 39.1% 8.7%

Gyafc 39.9% 47.5% 12.6%

Table 4.9: Proportion of all three editing operations in Yelp, Amazon and Gyafc
datasets.

adjectives or verbs to convey a different sentiment. On the other hand, word insertion

contributes the most in the Gyafc dataset, indicating that formality transfer may

require adding new words to make sentences more formal or informal. Overall, all

three operations play a role in text attribute transfer, and their contributions vary

across datasets.

4.6 Case Study

We show in Table 4.10 that our method is able to mitigate the error accumulation issue

in an autoregressive generation. This is observed through several example outputs by
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P&R and our approach for Yelp, Amazon, and Gyafc datasets. We saw that the

previous method, which performs autoregressive generation, generates unsatisfactory

and less controllable sentences. For example, given the source input for my purpose

this is the perfect item in the positive-to-negative sentiment transfer of the Amazon

dataset, P&R generates an unrelated sentence starting with So this text has, which

leads to the subsequent improper word predictions a text and to be a rewrite.

By contrast, our prompt-based editing approach transfers the sentiment of a source

sentence from positive to negative by inserting the words but and not, while main-

taining other words from input sentences. This shows that our approach is able to

generate more sensible and controllable sentences.

In addition, we discover that our approach is able to convert certain attributes of

source inputs with multiple edits. For example, given the source sentence i’m unsure

concerning what i should do in formal-to-informal transfer, our approach inserts mul-

tiple tokens (yeah, lol, really, and “...”) at the beginning and replaces should with ’ll

at the end. In this way, the sentence is transferred to an informal one. By allowing

iterative edits and examining all possible positions and editing operations, we enable

multiple word-level edits scattered throughout the sentence and experience a gradual

attribute transfer.

4.7 Summary

In this chapter, we started by introducing the details of two sentiment transfer

datasets, Yelp and Amazon, one formality transfer dataset, Gyafc, and one Shakespeare-

to-modern transfer dataset, Shakespeare. We further evaluated attribute transfer

strength, non-transfer attribute preservation, and overall performance of our approach

in comparison with baseline methods. We used pretrained classifiers to calculate the

classification accuracy, thereby measuring attribute transfer strength; we adopted the

widely used BLEU and BERTScore to measure semantic similarity between model

outputs and reference sentences. In addition, we utilized both geometric mean and
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Yelp Negative −→ Positive Positive −→ Negative

Source so far i’m not really impressed their lunch special is a great value

P&R The text is good now but their lunch is a great value

Ours so far i’m really impressed their lunch special is not a great value

Amazon Negative −→ Positive Positive −→ Negative

Source
i like neutrogena products as a rule,

for my purpose this is the perfect item.
so this was a disappointment.

P&R
i like neutrogena products, for my purpose this is the perfect item. So this text has

so this was a disappointment. two different purposes: to be a text and to be a rewrite...

Ours
overall i like neutrogena products as

but for my purpose this is not the perfect item.
a rule, so this was a success.

Gyafc Informal −→ Formal Formal −→ Informal

Source think about what good it brought about. i’m unsure concerning what i should do.

P&R think about what good it will bring about ... i’m not certain about what to do next...

Ours
please think about what all the good news

yeah lol really ... i’m unsure concerning what i ’ll do.
has brought about.

Table 4.10: Example outputs on the Yelp, Amazon, and Gyafc datasets. Double
directions (positive ↔ negative and formal ↔ informal) are shown, and improperly
generated words are italicized.

harmonic mean between accuracy and the BLEU score to measure the overall perfor-

mance of our approach.

Finally, we conducted experiments on those multiple benchmark datasets and

demonstrated that our prompt-based editing approach outperforms existing systems

on most datasets. In addition, we further conducted a series of detailed analyses of

the generated outputs. These analyses suggest that our scoring functions and discrete

search algorithm can generate controllable attribute-transferred sentences. Overall,

the results indicate that our prompt-based editing approach can alleviate the error

accumulation issue that exists in autoregressive generation and also achieve a strong

balance between transfer strength and non-transfer attribute preservation.
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Chapter 5

Conclusion

5.1 Thesis Summary

Prompting with large language models has shown its capacity for autoregressive gen-

eration in a zero-shot or few-shot manner on different kinds of text generation tasks.

However, such autoregressive generation is less controllable, as words are generated

one after another by the pretrained language model (PLM), and early prediction er-

rors of the PLM will affect its future word predictions, leading to low performance in

general.

In this thesis, we proposed a novel prompt-based editing approach to text attribute

transfer, which transforms a prompt-based generation problem into a classification

one. The approach consists of three main contributions: prompt-based classifier,

search objective, and discrete search algorithm. First, we introduced the framework

of the prompt-based classifier, which is designed to predict the probability of a certain

attribute value, functioning as the score of the attribute to be transferred. Second, we

introduced language fluency and non-transfer attribute similarity scorers, which are

combined with the transfer scorer to control the quality of generated model outputs.

Finally, we proposed to use the steepest-ascent hill climbing (SAHC) algorithm to

search for the best candidate sentence in each search step. We further designed a

stopping criterion to terminate local search when the candidate sentence’s attribute

is transferred. Consequently, SAHC can perform attribute transfer within a small
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number of edit steps, which largely improves time efficiency and helps preserve the

non-transfer attributes.

We conducted an automatic evaluation on four attribute transfer datasets, and

the experimental results show that our approach largely outperforms the existing

prompting systems on multiple datasets. Moreover, we conduct quantitative analyses

to demonstrate the effectiveness of our scoring functions and discrete search algo-

rithm, and qualitative analyses to verify that our approach highlights the balance

between attribute transfer strength and preservation of other attributes. Overall, our

experiments show that our prompt-based editing approach is able to mitigate the

error accumulation issue in the autoregressive generation process.

5.2 Limitations and Future Work

One limitation of our approach is that local edits cannot help rewrite sentences to a

large extent. This restricts our method to relatively simple attribute transfer tasks.

Inspired by Kumar et al. (2020), we aim to design reordering algorithms that help the

model tackle more complex attribute transfer tasks, such as Shakespeare-to-modern

transfer.

Another limitation of our approach is the inference efficiency, which may not suffice

for real-life applications. A potential solution to our algorithm is to implement it in

a highly parallel manner when evaluating different candidates, within merely five

iterations. Therefore, the efficiency of our SAHC can be much higher than other

search algorithms (such as SA), which requires several hundred search steps (Liu

et al., 2020b). Further, the efficiency can also be improved by learning from the

search results (Li et al., 2020), i.e., fine-tuning a PLM based on our outputs.

In addition, we apply our approach to only three English-based attribute transfer

tasks. In the future, we aim to extend our approach to other languages as well as

other attribute transfer tasks.

Further, it is also important to alleviate the need for manually designed prompts.
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Currently, our work adopts the most straightforward and intuitive prompt design,

without incorporating extensive prompt engineering techniques. In the future, we

aim to investigate prompt tuning (Schick and Schütze, 2021b; Li and Liang, 2021;

Wei et al., 2022a) as a means to mitigate the reliance on designing prompts.
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Gallé, et al. 2022. BLOOM: A 176B-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100.

Timo Schick and Hinrich Schütze. 2021a. Few-shot text generation with natural
language instructions. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 390–402.

Timo Schick and Hinrich Schütze. 2021b. It’s not just size that matters: Small
language models are also few-shot learners. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 2339–2352.

Raphael Schumann, Lili Mou, Yao Lu, Olga Vechtomova, and Katja Markert. 2020.
Discrete optimization for unsupervised sentence summarization with word-level ex-
traction. In Proceedings of Annual Meeting of the Association for Computational
Linguistics, pages 5032–5042.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation
of rare words with subword units. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pages 1715–1725.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S Jaakkola. 2017. Style transfer
from non-parallel text by cross-alignment. In Advances in Neural Information
Processing Systems, pages 6833–6844.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar
Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-
Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex

51

https://aclanthology.org/2021.findings-acl.344
https://aclanthology.org/2021.findings-acl.344
https://aclanthology.org/2022.acl-short.94
https://aclanthology.org/2022.acl-short.94
https://aclanthology.org/2021.acl-long.293
https://aclanthology.org/2021.acl-long.293
https://onlinelibrary.wiley.com/doi/10.1002/9780470689646.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9780470689646.ch1
https://www.pearson.com/uk/educators/higher-education-educators/program/Russell-Artificial-Intelligence-A-Modern-Approach-International-Edition-3rd-Edition/PGM930079.html
https://openreview.net/pdf?id=9Vrb9D0WI4
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://aclanthology.org/2021.emnlp-main.32
https://aclanthology.org/2021.emnlp-main.32
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2021.naacl-main.185
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://proceedings.neurips.cc/paper_files/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf


Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang,
Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Am-
brose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan Andreassen,
Andrea Madotto, Andrea Santilli, et al. 2023. Beyond the imitation game: Quan-
tifying and extrapolating the capabilities of language models. Transactions on
Machine Learning Research.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky. 2022. Prompt-and-Rerank:
A method for zero-shot and few-shot arbitrary textual style transfer with small
language models. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 2195–2222.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
et al. 2022. LaMDA: Language models for dialog applications. arXiv preprint
arXiv:2201.08239.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems, pages 5998–6008.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou.
2022. Self-consistency improves chain of thought reasoning in language models. In
International Conference on Learning Representations.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wenhan Chao. 2019. Harnessing
pre-trained neural networks with rules for formality style transfer. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing and the
International Joint Conference on Natural Language Processing.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wenhan Chao. 2020. Formality style
transfer with shared latent space. In Proceedings of the International Conference
on Computational Linguistics, pages 2236–2249.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2022a. Finetuned language models
are zero-shot learners. In International Conference on Learning Representations.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. 2022b. Emer-
gent abilities of large language models. Transactions on Machine Learning Re-
search.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022c. Chain of thought prompting elicits reasoning in large
language models. In Advances in Neural Information Processing Systems, pages
24824–24837.

Yuqiao Wen, Guoqing Luo, and Lili Mou. 2022. An empirical study on the overlap-
ping problem of open-domain dialogue datasets. In Proceedings of the Language
Resources and Evaluation Conference, pages 146–153.

Kristian Woodsend and Mirella Lapata. 2011. Learning to simplify sentences with
quasi-synchronous grammar and integer programming. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pages 409–420.

52

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://aclanthology.org/2022.emnlp-main.141
https://aclanthology.org/2022.emnlp-main.141
https://aclanthology.org/2022.emnlp-main.141
https://arxiv.org/abs/2201.08239
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/D19-1365/
https://aclanthology.org/D19-1365/
https://aclanthology.org/2020.coling-main.203
https://aclanthology.org/2020.coling-main.203
https://openreview.net/pdf?id=gEZrGCozdqR
https://openreview.net/pdf?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2022.lrec-1.16
https://aclanthology.org/2022.lrec-1.16
https://aclanthology.org/D11-1038
https://aclanthology.org/D11-1038


Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and Carolyn Rose. 2012. Detecting
offensive tweets via topical feature discovery over a large scale twitter corpus. In
Proceedings of the ACM International Conference on Information and Knowledge
Management, pages 1980–1984.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng, and Lei Li. 2021. Vocabulary
learning via optimal transport for neural machine translation. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics and the In-
ternational Joint Conference on Natural Language Processing, pages 7361–7373.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin Cherry. 2012. Para-
phrasing for style. In Proceedings of the International Conference on Computational
Linguistics, pages 2899–2914.

Min Yang, Zhou Zhao, Wei Zhao, Xiaojun Chen, Jia Zhu, Lianqiang Zhou, and Zigang
Cao. 2017. Personalized response generation via domain adaptation. In Proceed-
ings of the International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1021–1024.

Jiaao Zhan, Yang Gao, Yu Bai, and Qianhui Liu. 2022. Stage-wise stylistic headline
generation: Style generation and summarized content insertion. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 4489–4495.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020a. BERTScore: Evaluating text generation with BERT. In International
Conference on Learning Representations.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In Advances in Neural Information Processing
Systems, pages 649–657.

Yi Zhang, Tao Ge, and Xu Sun. 2020b. Parallel data augmentation for formality style
transfer. In Proceedings of Annual Meeting of the Association for Computational
Linguistics, pages 3221–3228.

Yinhe Zheng, Zikai Chen, Rongsheng Zhang, Shilei Huang, Xiaoxi Mao, and Minlie
Huang. 2021. Stylized dialogue response generation using stylized unpaired texts. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 14558–14567.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2023. Least-to-most
prompting enables complex reasoning in large language models. In International
Conference on Learning Representations.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual tree-
based translation model for sentence simplification. In Proceedings of the Interna-
tional Conference on Computational Linguistics, pages 1353–1361.

53

https://dl.acm.org/doi/10.1145/2396761.2398556
https://dl.acm.org/doi/10.1145/2396761.2398556
https://aclanthology.org/2021.acl-long.571
https://aclanthology.org/2021.acl-long.571
https://aclanthology.org/C12-1177
https://aclanthology.org/C12-1177
https://doi.org/10.1145/3077136.3080706
https://doi.org/10.24963/ijcai.2022/623
https://doi.org/10.24963/ijcai.2022/623
https://openreview.net/forum?id=SkeHuCVFDr
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://aclanthology.org/2020.acl-main.294
https://aclanthology.org/2020.acl-main.294
https://ojs.aaai.org/index.php/AAAI/article/view/17711/
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://aclanthology.org/C10-1152
https://aclanthology.org/C10-1152

	Introduction
	Background
	Thesis Contributions
	Thesis Structure

	Background and Related Work
	Overview
	Language Models
	Transformer
	Pretrained Language Models
	Large Language Models

	Prompting Methods
	Prompt-Based Classification
	Prompt-Based Generation

	Text Attribute Transfer
	Summary

	Approach
	Overview
	Prompt-Based Classifier
	Search Objective
	Language Fluency
	Non-Transfer Attribute Similarity

	Discrete Search Algorithm
	Word Editing
	Steepest-Ascent Hill Climbing Algorithm

	Summary

	Experiments
	Overview
	Experimental Setup
	Datasets
	Implementation Details
	Baseline Approaches

	Evaluation Metrics
	Experimental Results
	Detailed Analyses
	Ablation Study
	Analysis of Discrete Search Algorithms
	Delimiter Pairs
	Editing Operations

	Case Study
	Summary

	Conclusion
	Thesis Summary
	Limitations and Future Work


