
University of Alberta

A Data Cleaning Framework for Trajectory Clustering

by

Agzam Idrissov

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Agzam Idrissov
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof

may be printed or otherwise reproduced in any material form whatsoever without the author’s prior
written permission.

To my late father Yergazy Idrissov, to my loving mother Lyazzat Idrissova, to my
great brother Alisher and to my dear friends
For all the endless support and inspiration

Abstract

Recent proliferation of low-cost and lightweight GPS tracking devices led to a large

increase in the amounts of collected mobility data. The rapidly emerging field of

location-based services requires accurate and informative knowledge mining from

these large quantities of data. One such mobility knowledge mining task is trajec-

tory clustering, where one tries to find paths that have been travelled frequently.

Most existing trajectory clustering techniques do not discuss cleaning the data be-

fore applying a clustering algorithm. Since “noisy” data can have a significant

effect on the clustering process, preprocessing such trajectory data will likely im-

prove trajectory clustering results. In this thesis, we present a trajectory data clean-

ing framework, which consists of four steps: Outlier Detection, Stop Detection,

Interpolation and Map Matching. We evaluate our framework using popular clus-

tering algorithms and distance functions, and show that our proposed preprocessing

(cleaning) framework indeed does improve the quality of obtained clusters.

Acknowledgements

First of all, I would like to sincerely thank my supervisor, Dr. Mario A. Nascimento,

without whose guidance, encouragement and patience this thesis would never be

completed. It was an honour for me to work with such a friendly, but professional

at the same time, advisor.

I am also very grateful to Kazakhstan International Scholarship “Bolashak” for all

the provided financial support. “Bolashak” gave me an opportunity to come to

Canada and work on my degree at the University.

Finally, I would like to thank the Department of Computing Science at the Univer-

sity of Alberta for the enormous help throughout the whole period of my study.

Table of Contents

1 Introduction 1

2 Related Work 6
2.1 Trajectory Preprocessing . 6

2.1.1 Additional Information GPS Preprocessing 6
2.1.2 GPS Preprocessing without Additional Information 7

2.2 Distance Functions . 8
2.2.1 Euclidean Distance . 9
2.2.2 PCA Distance . 9
2.2.3 DTW Distance . 10
2.2.4 LCSS Distance . 11

2.3 Clustering . 12
2.3.1 Partitioning Methods . 12
2.3.2 Hierarchical Methods . 13
2.3.3 Density-based Clustering 15
2.3.4 Other methods . 17

2.4 Trajectory Clustering Algorithms 17

3 Trajectory Data Cleaning Framework 20
3.1 Stop Detection . 20
3.2 Interpolation . 23
3.3 Outlier Detection . 26
3.4 Map Matching . 27

4 Experiments and Results 31
4.1 Experimental Setup . 31
4.2 Results . 32

4.2.1 Clustering Results . 32
4.2.2 Outlier Detection Evaluation 42

4.3 Experiments and Results Conclusion 46

5 Conclusions and Future Work 48

Bibliography 50

List of Figures

2.1 DBSCAN clustering algorithm pseudocode 16
2.2 Distance function components in TRACLUS, taken from [37] . . . 19
2.3 Line segment clustering algorithm in TRACLUS, taken from [37] . 19

3.1 Processing of trajectories with and without stop by using DTW . . . 21
3.2 CB-SMOT algorithm pseudocode [48] 22
3.3 A stop, detected by an estimated Eps parameter 23
3.4 A missing segment on a trajectory 24
3.5 An example of an outlier . 26
3.6 Speed distributions for Nokia and GeoLife datasets 28
3.7 Fuzzyfication of the input parameters, taken from [50] 29

4.1 QMeasure for DTW with fixed minPts parameter for the Nokia dataset 33
4.2 QMeasure for DTW with fixed Eps parameter for the Nokia dataset 33
4.3 QMeasure for DTW with fixed minPts parameter for the GeoLife

dataset . 34
4.4 QMeasure for DTW with fixed Eps parameter for GeoLife dataset . 35
4.5 QMeasure for LCSS with fixed minPts parameter for the Nokia

dataset . 35
4.6 QMeasure for LCSS with fixed Eps parameter for the Nokia dataset 36
4.7 QMeasure for LCSS with fixed minPts parameter for the GeoLife

dataset . 37
4.8 QMeasure for LCSS with fixed Eps parameter for the GeoLife dataset 37
4.9 QMeasure for TRACLUS with fixed Eps parameter for the Nokia

dataset . 38
4.10 QMeasure for TRACLUS with fixed minLns parameter for the Nokia

dataset . 38
4.11 QMeasure for TRACLUS with fixed Eps parameter for the GeoLife

dataset . 39
4.12 QMeasure for TRACLUS with fixed minLns parameter for the Ge-

oLife dataset . 39
4.13 Examples of crude trajectory approximation by TRACLUS 40
4.14 QMeasure for DTW with fixed Eps parameter for the Nokia dataset

(Mode 2) . 40
4.15 QMeasure for DTW with fixed minPts parameter for the Nokia

dataset (Mode 2) . 41
4.16 QMeasure for DTW with fixed Eps parameter for the GeoLife dataset

(Mode 2) . 41
4.17 QMeasure for DTW with fixed minPts parameter for the GeoLife

dataset (Mode 2) . 42
4.18 GPS points before and after the Map Matching step 42
4.19 QMeasure for DTW after the Map Matching step for the Nokia

dataset, fixed Eps . 43

4.20 QMeasure for DTW after the Map Matching step for the Nokia
dataset, fixed minPts . 43

4.21 QMeasure for DTW after the Map Matching step for the GeoLife
dataset, fixed Eps . 44

4.22 QMeasure for DTW after the Map Matching step for the GeoLife
dataset, fixed minPts . 44

4.23 Manually inserted outliers . 45
4.24 The F-measure for various α settings for outlier detection 46

Chapter 1

Introduction

Perceiving and understanding movement patterns and behaviour has been a per-

vasive problem across multiple research fields [26]. Ornithologists may want to

analyse birds’ seasonal migration to detect any changes that were caused by certain

environmental phenomena. Anthropologists may study people’s movements to test

their hypothesis regarding migration and population flow. Urban planning special-

ists can find hot routes - paths that are travelled most frequently to adjust further

city growth accordingly. Other examples of applications of mobility data analysis

include, but are not limited to, geo-marketing, transportation logistics and environ-

mental management.

Today, with the proliferation of low-cost and portable GPS devices, tracking object

movements is becoming more and more accessible. For example, animals and birds

are easily equipped with lightweight GPS transmitters, whose readings are then

regularly collected for further study. Aside from privacy issues, gathering human

mobility data is becoming fairly accessible as well. With the development of wire-

less technologies, even rural areas are being covered by mobile network providers

[26]. This usage of GPS-equipped devices (e.g. smartphones) allows the obtaining

of large amounts of mobility data. For instance, Nokia’s Lausanne dataset contains

200 people’s location information for over the course of two years [36].

Since the volume of available mobility data is rapidly increasing, analysis of such

large amounts of data is becoming not trivial for the domain experts. While it is

relatively easy to analyse movement behaviour of a small number of individuals,

performing the same task for thousands of objects will take enormous amount of

1

effort and time. Therefore, appropriate knowledge discovery tools should be used

to aggregate the data in some way and then the generated output is presented to an

expert in a more clear and intuitive way. One of the main phases of the knowledge

discovery in databases is data mining [28].

Data mining is an ensemble of statistical, machine learning and database tools that

are aimed for knowledge discovery from large datasets, which makes the data more

understandable for the final user [30]. According to [28], there are three most pop-

ular data mining techniques:

• Predictive modelling: In this technique, classification methods are used to

learn the appropriate model based on a smaller set of already labelled training

data. Then, when a new entry comes in, the learnt model tries to classify

and label this new object. For instance, a pedestrian’s future location can be

estimated based on the model constructed from his/her movement history.

• Association analysis: The main goal of this method is to find notable rela-

tions between features in datasets. These relations are usually expressed by

association rules with minimum confidence levels. One example could be a

rule that states that a customer, who buys cereal will likely also buy milk in

one transaction.

• Clustering: In clustering, the given dataset is partitioned into smaller clusters

(groups), where elements are similar to each other, while being dissimilar to

the objects of a different cluster. For instance, one may want to find groups

of objects that were moving close to each other for a certain amount of time.

One of the popular tasks in mobility data mining is trajectory clustering. In the

context of this thesis, a trajectory is defined as a sequence of temporally ordered

points with spatial (e.g. longitude, latitude) and non-spatial attributes (e.g. object

ID). Therefore, trajectory clustering is the process of grouping similar trajectories

together.

In general, trajectory clustering can refer to several types of analysis. Some appli-

cations require finding clusters of trajectories where objects moved close to each

2

other at the same time, i.e. both spatial and temporal collocation is needed. Other

works focus on trajectories that made similar turns in one moment of time, i.e. spa-

tial collocation is neglected [26]. The focus of this thesis will be on, arguably, the

most common trajectory clustering subtask - finding groups of trajectories where

objects travelled along the same path during the whole duration of a sampling, i.e.

temporal collocation is not considered. This trajectory clustering subtask is often

employed in a large amount of applications in various research fields. In [1], this

kind of trajectory cluster analysis was performed to find high concentrations of sul-

phate and nitrate in the atmosphere above the Belfast area. The authors of [8] use

trajectory clustering to improve the accuracy of their automatic pedestrian counting

video system. One biomedical application is presented in [29], where Haniu et al.

perform trajectory clustering analysis to study postnatal protein development. An-

drienko et al. find trajectory clusters in evacuation traces after an explosion to study

people’s behaviour in critical situations [6].

The problem of data quality arises when the existing trajectory clustering algo-

rithms are used on the real world datasets. Usually, trajectory data is collected by

attaching a GPS device to an object. Ideally, the accuracy of GPS positioning is 5-

10 meters [57]. However, in the real world this accuracy is significantly decreased

due to the following factors [34, 61]:

• limited satellite visibility

• satellite or receiver problems

• atmospheric and ionospheric conditions

• multi-path signal reflection

• signal blocking

The last two error sources are especially significant in urban areas where a signal

reflects from several buildings or even becomes totally obstructed. These errors can

substantially distort the recorded GPS positions [61].

When data quality decreases, clustering quality will also be affected. In [41], the

3

authors conducted a study where they have shown that improving data quality will

also increase the clustering accuracy. In particular, they added Gaussian noise to

GPS coordinates of a dataset and visually compared the difference between the

resulted clusters of points. They discovered that adding this noise made clusters

break down into smaller clusters, while, visually, these clusters should have been

the members of one large cluster.

In this work, however, our task is a bit different - instead of investigating the effects

of noise on performing clustering of points, we attempt to improve the trajectory

clustering quality by processing a dataset before clustering. Following this, we

propose a trajectory cleaning framework for mobility datasets, which can be applied

to any given trajectory dataset prior to trajectory clustering. Our framework consists

of four main steps:

• Outlier Detection. As shown in [41] outliers can significantly decrease the

clustering quality. Therefore, during this step, outliers are detected and re-

moved using statistical methods.

• Stop detection. Since our goal is to find frequently travelled paths, we are

interested in clustering the actual movements of objects. Hence, the gather-

ings of points where an object spent some time without any movement is not

relevant to our task. Therefore, this step finds these stops and removes them.

• Interpolation. During GPS sampling it is often the case when a GPS receiver

looses connectivity with the satellites. In such cases, parts of a trajectory

remain missing. The Interpolation step fills those and the empty segments

that resulted after the Stop Detection step with needed points.

• Map Matching. This step is optional and can be applied when a high accuracy

map of a location where GPS points were sampled is present. During this step

points are matched to actual roads and routes on the obtained map to improve

overall data quality.

We then evaluate our framework by computing inter-cluster similarities for two

cases: clusterings that were obtained before applying our cleaning framework and

4

after. The conducted experiments show that our trajectory cleaning framework is

able to significantly improve the quality of the resulted clusters with respect to the

chosen clustering quality measure on the real world datasets.

The rest of the paper is organized as follows. Chapter 2 discusses the related work

that has been done prior. Chapter 3 describes the proposed trajectory cleaning

framework itself and each of the 4 steps. Then, the evaluation of our framework

is presented in Chapter 4. Finally, Chapter 5 concludes the thesis and sets direc-

tions for future work.

5

Chapter 2

Related Work

In this chapter we will discuss the existing literature related to our research. We will

start with other previously proposed trajectory preprocessing frameworks. Then,

existing proposed trajectory clustering algorithms and distance functions are dis-

cussed, because some of them are used during experimental evaluation of the pro-

posed framework. Finally, we will touch on trajectory-specific clustering algo-

rithms.

2.1 Trajectory Preprocessing

In general, GPS data preprocessing methods can be divided into two categories.

One group of algorithms uses only collected attributes of a GPS reading (such as

longitude, latitude, speed and heading) to detect noise points. Other methods use

additional satellite information (e.g. the number of the visible satellites) to prepro-

cess the GPS readings and make a decision whether each point can be considered

reliable. In the following, we will briefly survey existing algorithms of both cate-

gories.

2.1.1 Additional Information GPS Preprocessing

One of the earlier works in this field is presented in [14], where authors use satellite-

receiver pseudorange and signal frequency information for outlier detection. An-

other group of methods [46, 61, 56] use positional dilution of precision, a parameter,

which represents how good the satellite visibility was at the time of sampling. For

6

instance, if this parameter is smaller than 5, the point is considered unreliable and

dismissed from further processing. Another algorithm that uses additional informa-

tion is presented in [16], where authors also apply map matching method to clean

the dataset. However, for its outlier detection step, that algorithm requires the num-

ber of visible satellites in a processed dataset, which is not always available. In

our work, we will focus on algorithms that do not require any additional satellite-

receiver information, since most GPS datasets do not always have this information

readily available.

2.1.2 GPS Preprocessing without Additional Information

During the stop detection step of our framework we will extend the algorithm pro-

posed in [4]. In that trajectory preprocessing framework, the authors propose to use

the concepts of stops and moves for the semantic enrichment of trajectories. Stops

are places on a trajectory where an object spent some minimum amount of time.

Moves are parts of a trajectory between stops. The framework consists of three

steps: Data Cleaning, Adding Semantics and Transformation steps. In the Data

Cleaning step, several restrictions are applied to a raw dataset to eliminate some of

the noise:

• the speed between two points should be less than a predefined threshold

• points are sorted in the order of timestamps

• points with the same timestamps are removed

• a trajectory should have some minimum number of points

The Adding Semantics step detects stops and moves, while the Transformation step

adjusts the output format of previous steps for the chosen data mining algorithm.

Our framework differs from the above approach in two key aspects. First, in the

above method, outliers are detected using a fixed speed threshold. Such approach

will fail to consider cases when average speeds are different (e.g. a person may be

walking or driving a car). We address this limitation by using a statistical approach

7

to determine appropriate speed thresholds to detect outliers. Second, we use inter-

polation to fill the missing segments of a trajectory that were resulted after the stop

removal. In addition, if an accurate road network map is present, we apply map

matching algorithm to improve the accuracy of the GPS point coordinates.

A slightly different approach is taken in [54], where the authors also have a three-

step preprocessing framework: data filtering and smoothing, trips and activities

detection, and mode detection. During the first step, a dataset is filtered by assum-

ing the maximum speed and error buffer and then smoothed by using the Gaussian

Kernel. Then, stops and moves are detected using the minimum time spent in one

location. Lastly, travel modes (e.g. pedestrian, bicycle, car, train) are detected us-

ing fuzzy membership functions. The authors also mention including map matching

algorithm in the data filtering step, but there is no indication of conducting exper-

iments that include that in the paper. In addition, during the stop detection phase,

authors use fixed speed and distance thresholds which are not tied to a travel mode.

This might cause problems when the average speed varies. For instance, one might

define a car’s movement a stop, when the average speed is less than 5 km/h. How-

ever, for a pedestrian it is still a movement, not a stop. A fixed threshold speed will

detect only one type of a stop, but not both. In addition, in our work we attempt to

evaluate how data cleaning actually affects trajectory clustering quality.

2.2 Distance Functions

Many trajectory clustering approaches rely on specifically designed distance func-

tions [62, 15, 59]. A distance function is a metric that is used to determine the

similarity between two trajectories in a set of trajectories. If the distance function

value for two given objects is small, then these objects are considered similar. Con-

versely, a large distance function value suggests that the objects are dissimilar.

Distance functions usually have the following properties [2]:

• the distance cannot be negative

• if two objects are equal, the distance between them is zero

8

• if the distance from object A to object B is x, then the distance from B to A

is also equal to x (symmetry)

• the distance from object A to object C via object B is less or equal to the

distance from A to C directly (triangle inequality)

Typically, most distance functions for trajectory clustering are adopted from the

time series domain [65], because a trajectory is, in essence, a time series, where

each observation is represented by a set of spatial coordinates. Next, we briefly

survey the existing literature regarding trajectory distance functions. We use nota-

tions adopted from [42] and [65], which compare performances of several popular

distance measures.

Suppose two trajectoriesA andB are represented by sets of two dimensional points,

with coordinates x and y and denoted as (axi ; a
y
i) and (bxj ; b

y
j), respectively. In the

following, we will define a distance D between these two trajectories on based the

chosen distance function.

2.2.1 Euclidean Distance

The Euclidean distance between two points is defined as the length of the line seg-

ment that connects these two points. Therefore, the Euclidean distance between

two trajectories is simply the average distance between respective points of both

trajectories [21]:

DEuclidean(A,B) =
1

N

N∑
i=1

[
(axi − bxi)2 + (ayi − b

y
i)

2
] 1

2

To determine the Euclidean distance between two trajectories, they need to be of

the same length N , i.e. the number of points in both trajectories needs to be equal.

This limits the applicability of this distance function for most real world trajectory

datasets.

2.2.2 PCA Distance

In [10], the authors propose the Principal Component Analysis (PCA) on trajecto-

ries. First, the dimensionalities of all the trajectories are reduced to a set of one

9

dimensional vectors. Then, this set of vectors is merged into one data table, which

represents the whole set of trajectories. After that, eigenvector decomposition of the

covariance matrix is applied to extract the PCA components. Then, the transforma-

tion matrix Φ is used to obtain the Principal Component (PC) coefficients which

represent each trajectory:

Y = ΦT
M

[
X − X̄

]
where X is the matrix that contains all the trajectories, X̄ is the dataset mean vector

and Y is the resulted matrix with PC coefficients. Finally, the PCA distance be-

tween two trajectories is equal to the Euclidean distance between the respective PC

coefficients of the two trajectories.

Piece-wise analysis of PCA distance allows handling of noise in trajectory data.

However, like in Euclidean distance, only trajectories with equal sizes can be pro-

cessed with this algorithm.

2.2.3 DTW Distance

Dynamic Time Warping distance (DTW) [12] attempts to find the optimal align-

ment between two given time series in a non-linear fashion [38]. First, a DTW

distance matrix is created, where the Euclidean distances between points of com-

pared trajectories are stored. Then, a warping path is defined as a set of elements

of a DTW distance matrix that satisfies the following conditions:

• boundary condition: the first element of a warping path should always be

equal to the top left element of the DTW distance matrix. Similarly, the

last element of a warping path should be the same as the last (bottom right)

element of the DTW matrix

• continuity condition: the next element of a warping path is always chosen

from the adjacent cells of the matrix

• monotonicity condition: the indexes of points in a warping path should al-

ways increase or stay the same

10

Note, that a warping path can be found using dynamic programming approach, so

one does not need to traverse the whole distance matrix.

Several warping paths may exist between two trajectories. Now, suppose w0, w1, ...,

wi, ..., wK are the elements of the warping path W that has the minimum distance

sum among all the warping paths. Then, the DTW distance between two trajectories

is defined as follows.

DDTW =

i=1∑
K

wi

K

Unlike the above distances, DTW distance does not require trajectories to have the

same number of points. This is due to the “warping” nature of this distance measure.

However, because DTW considers each point of a trajectory, DTW has been shown

to be quite sensitive to noise [42].

2.2.4 LCSS Distance

Vlachos et al. [59] propose another similarity measure based on the well-known

Longest Common Subsequence problem (LCSS). The key idea of this approach is

similar to DTW: try to align two time series by allowing them to stretch. How-

ever, unlike DTW algorithm, LCSS calculates the number of matches (LCSS score)

rather than the actual distance between respective points. If there is no match be-

tween the compared points, these points will not contribute to the overall score.

This allows LCSS to alleviate the effect of outliers to the final distance. Given tra-

jectories A and B with sizes N and M respectively, the LCSS score between them

is defined as [59]:

LCSS(A,B) =

0, if A or B is empty
1 + LCSSσ,ε(First(N − 1, A), F irst(M − 1, B)),

if ||aN − bM || < ε and |N −M | ≤ σ

max(LCSSσ,ε(First(N − 1, A), B),

LCSSσ,ε(A,F irst(M − 1, B))), otherwise

where First(F, T) is a set of all points F except the last point of a trajectory T .

LCSS uses two thresholds: a distance threshold ε and a temporal threshold σ. Two

points are considered a match if their distance is within ε and if the time difference

11

between them does not exceed σ.

Then, the distance between trajectories A and B is defined as:

DLCSS = 1− LCSSσ,ε(A,B)

max(N,M)

In this work we use both DTW and LCSS distances to show that when these dis-

tance functions are used, proper trajectory preprocessing can improve clustering

quality. While DTW is known for its sensitivity to noisy data [42], our experiments

show that we can also improve clustering accuracy by applying our framework prior

to using LCSS as a distance function for clustering. We will discuss clustering al-

gorithms in the next section.

2.3 Clustering

Clustering (often called cluster analysis) is considered an important unsupervised

learning problem in data mining. Given a set of unlabelled data, the goal of clus-

tering is to identify the inner structure of the given dataset without labels available

[28]. Then, a cluster is a set of objects, where objects are similar to each other

within a cluster and dissimilar to the objects of another cluster.

Next, we will briefly discuss existing clustering algorithms, which can be divided

into four main groups [51]:

• partitioning methods

• hierarchical methods

• density-based methods

• other methods

2.3.1 Partitioning Methods

Partitioning clustering methods split the whole dataset into smaller sets according

to the chosen partitioning criteria [51]. For instance, in k-means [40], given the

number of clusters k, the algorithm will divide the whole dataset into k clusters.

12

The partitioning in k-means is achieved by finding the centroid for each cluster,

such that its distance to the rest of the points inside the cluster would be as small

as possible. The algorithm starts by randomly dividing the whole dataset into k

partitions. Then, for each partition, the centroid is calculated and all the objects

are assigned to a partition with the closest centroid. After that, new centroids are

calculated and the process iterates until all the centroids remain unchanged.

While k-means is simple, it suffers from several serious drawbacks. First, the num-

ber of clusters should be known a priori. Second, k-means tends to produce clus-

ters of circular shapes, although there could be actual clusters with various shapes.

Lastly, the algorithm is quite sensitive to noise [51]. A variation of k-means, an

algorithm called k-median, tries to alleviate this problem. Instead of using the com-

puted centroid point itself (this point may not exist in the data because the location

of this point is computed), k-median uses an actual data point which is closest to

the computed centroid. The C-means [13] fuzzy algorithm is another representative

of the partitioning clustering methods. Fuzziness probability shows to what degree

certain event occurs. For instance, instead of strict statements, like “true” or “false”,

fuzziness allows the use of statements such as “true to a certain degree”, “slightly

cold” and “moderately high”. In clustering that uses traditional binary logic, each

data point will either belong or not belong to a cluster. In contrast, in fuzzy clus-

tering each point is assigned a degree of membership to each cluster. That is, one

point can belong to several clusters with varying degrees of membership.

C-means also starts with dividing data into c partitions. Then, for each partition,

the centroid is calculated based on some initial guess. Next, the degree of mem-

bership of an each point is calculated for all clusters. After that, new centroids for

each cluster are calculated based on the given distance function and the degrees

of membership. This process continues until the maximum change in degrees of

membership fails to exceed the given stop condition threshold [13].

2.3.2 Hierarchical Methods

Partitioning clustering methods fail to detect clusters with varying densities, be-

cause global parameters (such as k in k-means) that would find those clusters with

13

different densities cannot be determined a priori [20]. Hierarchical clustering al-

leviates this problem by representing clusters in the form of a tree (often called a

dendrogram). There are two types of hierarchical algorithms: agglomerative and

divisive [11]. In agglomerative clustering each object is initially a separate clus-

ter. These clusters are then recursively merged until the whole dataset becomes a

single cluster. Conversely, in divisive clustering, the process starts with the whole

dataset being one cluster and then divides it into smaller clusters based on a cluster

closeness threshold. Both agglomerative and divisive approaches allow generating

a dendrogram. The cluster closeness is then determined based on the following

distance functions for clusters [51]:

• single link: the minimum pairwise distance between the elements of one clus-

ter

• complete link: the maximum pairwise distance between the elements of one

cluster

• average link: average pairwise distance between the elements of one cluster

In [64], the authors propose an iterative and dynamic hierarchical clustering al-

gorithm, Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH).

One of the problems with the previous clustering algorithms is that they try to clus-

ter the whole dataset at once, which sometimes may not fit into the main memory.

BIRCH tries to alleviate this problem by incrementally building a tree of (cluster-

ing) features and then accessing those features depending on the memory capacity.

In essence, each clustering feature contains a set of pointers to its descendants in

the tree, where this set of descendants represents a sub cluster of a node. Then, the

size of the whole tree is adjusted using a threshold on the diameter of a leaf cluster.

The diameter of a cluster is defined by the distance (e.g. Euclidean) between the

two mutually furthest points that belong to this cluster.

BIRCH starts with scanning all data points and creates a tree of clustering features.

Then, the algorithm scans all the leaf nodes (nodes on the bottom of a tree) and

generates a smaller tree by merging clusters based on the given leaf cluster diam-

eter threshold. Then, the whole tree is given as an input to any existing clustering

14

algorithm for further clustering. Finally, the postprocessing step which removes

outliers is applied to the resulted tree. During this step, for each generated cluster,

a centroid seed is calculated; points that are too far from that seed are considered

outliers and removed.

Since BIRCH uses centroids to redistribute points within each cluster, it fails to de-

tect clusters with non-uniform shapes [27]. This problem is addressed by CURE

[27], which uses both centroid and graph-based redistribution of points. First,

CURE randomly scatters representative points to cover non-spherical shapes of

clusters. Then, a cluster is represented by using c number of representative points.

This way, the single link distance between two clusters is defined by the minimum

distance between any two representatives of those clusters. However, this algorithm

suffers from one significant disadvantage: as in partitioning methods, the number

of clusters should be specified in advance in order for the methods to stop during

bottom up joining of clusters.

In general, hierarchical clustering has several key advantages compared to parti-

tioning methods, such as not needing to specify the number of clusters in advance

(except for CURE as discussed above) and convenient interpretation of clustering

results. The main disadvantage of these methods is that they cannot change clus-

tering after splitting or merging of clusters is made. In other words, the clusters are

formed based on the local decisions, which may not be globally reasonable. Thus,

the results are sensitive to the order in which data is processed [51].

2.3.3 Density-based Clustering

Density-based clustering algorithms attempt to use the density of data points in

certain areas to find clusters. Arguably, the most well-known algorithm in this field

is DBSCAN [23]. Given two parameters, the neighbourhood distance threshold

Eps and the minimum required number of points within neighbourhood MinPts,

DBSCAN clusters each point based on the following types of points:

• Core point: a point P that has at least minPts points within its Eps -

neighbourhood. Eps-neighbourhood of a point is defined as the maximal

set points that lie within Eps distance from that point.

15

Figure 2.1: DBSCAN clustering algorithm pseudocode

• Directly density-reachable points: all the points within core point’s Eps-

neighbourhood (non-core points are called border points)

• Density-reachable points: points that can reach each other via some sequence

of other directly density reachable points

• Density-connected points: two points that are both density reachable to a

common point

Following the above definitions, a cluster in DBSCAN is then formed from the

maximal set of mutually density-connected points.

The algorithm starts by randomly choosing a point and checking its Eps - neigh-

bourhood. If this point satisfies the core-point condition, then the cluster based

on all density-connected points is formed. Then, all the points within the Eps-

neighbourhood of density-reachable points are added to the cluster as long as their

density is large enough (ExpandCluster function in the pseudo code below). If

the point is a border point and does not have any density-reachable points, then the

next random unclustered point is chosen for further processing. Points that are nei-

ther core points, nor border points are considered noise. A pseudo code of the basic

version of DBSCAN is presented in Figure 2.1.

In this work, we will use DBSCAN three times. First, a modification of this al-

gorithm is used during the stop detection step of our framework. Stops are de-

tected by clustering dense areas, where an object spent a significant amount of

time. Second, we will use DBSCAN when evaluating our framework and inves-

16

tigate whether trajectory cleaning actually produces better clustering. Lastly, one

of the most well-known trajectory clustering algorithms, TRACLUS [37], uses a

variant of DBSCAN to perform line segment clustering; to evaluate our framework

further, we will use TRACLUS as well.

2.3.4 Other methods

An evolutionary improvement over DBSCAN is proposed in [7]. One problem with

DBSCAN was that it is not designed to detect clusters with varying densities. Or-

dering Points To Identify the Clustering Structure (OPTICS) addresses this problem

by using the hierarchical approach in conjunction with density-based clustering.

While the same Eps and MinPts parameters are used, OPTICS creates cluster

hierarchies with different densities by varying the Eps parameter. In essence, a

dendrogram of density-connected clusters is created for a more intuitive and conve-

nient interpretation of the structure of the given dataset.

Even though OPTICS is considered a more advanced clustering algorithm, in this

work we will use DBSCAN for its prevalence among trajectory clustering ap-

proaches [37, 39, 9]. Note, however that our framework can be easily applied prior

to any clustering algorithm of choice.

2.4 Trajectory Clustering Algorithms

One of the common tasks in analysing motion data is finding frequently traversed

routes - trajectory clusters. One of the first steps in this field is presented in [24],

where authors present a probabilistic modelling approach to trajectory clustering.

First, trajectories are represented by a mixture of regression models. Then, the

Expectation-Maximization algorithm (also referred to as EM-Step) is used to esti-

mate the needed weights for the created model. During the E-step, for each trajec-

tory, a matrix Z with degrees of membership for each cluster is computed. Then,

given membership matrix Z, the M-step calculates the maximum likelihood pa-

rameter estimates for the created model. Finally, clusters are extracted from the

given data based on the learnt model. A similar algorithm is proposed in [3], where

17

authors use the Hidden Markov models instead of the mixture regression models.

However, one limitation of this category of algorithms is that large amounts of noise

cause a decrease of the accuracy of the EM-step [63].

Visual approaches constitute another category of trajectory clustering methods. An-

drienko et al. [5] propose a visually-aided algorithm that uses human expertise to

iteratively improve clustering results. Schreck et al. [53] mix Self-Organizing Ko-

honen Maps clustering with visually interactive human expert judgement to produce

better clusters. However, in this thesis, our focus is on clustering methods that do

not rely on any expert interaction.

A geometric approach is proposed in [44], where the authors divide trajectories into

segments with temporally close endpoints. Then, those segments are clustered us-

ing OPTICS and the average Euclidean distance function. Because this algorithm

considers only contemporary line-segments, it will not detect frequently travelled

routes that are separated in time. Our goal, however, is to find paths that were trav-

elled during the whole sampling period.

One of the most well-known trajectory clustering approaches is presented in TRA-

CLUS [37]. Like in the above method ([44]), the main idea of this algorithm is to

perform trajectory partitioning and to cluster the resulted subtrajectories.

First, each trajectory is approximated using a subset of characteristic points - points

where the trajectory’s direction changes significantly. This is achieved using the

Minimum Description Length principle, where these characteristic points are cho-

sen in such way, that the resulted line segments would best describe the original

trajectory and their number would be as small as possible. Then, the line segments

between the consecutive characteristic points participate in the clustering process.

The distance function for the clustering process considers the mutual angle, the

length of line segments and the distance between endpoints of those line segments

[37] as shown in Figure 2.2.

Then, the distance function between two line segments Li and Lj is defined as the

weighted sum of perpendicular, parallel and angular distances:

dist(Li, Lj) = w⊥ · d⊥(Li, Lj) + w‖ · d‖(Li, Lj) + wθ · dθ(Li, Lj)

18

Figure 2.2: Distance function components in TRACLUS, taken from [37]

Figure 2.3: Line segment clustering algorithm in TRACLUS, taken from [37]

Finally, the authors use a modified version of DBSCAN to cluster all line segments

using the defined distance function (the pseudocode for this line segment clustering

algorithm is presented in Figure 2.3). The difference is that TRACLUS does not

consider trajectories that have an insufficient number of the line segments (denoted

as PTR in Figure 2.3). Lastly, for each cluster of line segments an average direc-

tion vector called a representative trajectory is computed.

Another contribution of TRACLUS is that the authors use a clustering quality mea-

sure to evaluate the produced clusters. We will use this measure (discussed in Sec-

tion 4.1) and the algorithm itself later during the experiments for the quantitative

evaluation of our framework.

19

Chapter 3

Trajectory Data Cleaning
Framework

In this chapter the proposed trajectory data cleaning framework is presented. First,

gatherings of points where an object spent a considerable amount of time (stops)

are detected and removed in the Stop Detection step. Second, in the Interpola-

tion step, missing parts of each trajectory are completed with generated and evenly

spread points. Then, during the Outlier Detection step noise points and outliers

are removed using a statistical approach. Finally, when an accurate geographical

map is present, a map matching algorithm can be applied a posteriori to further

improve data quality. The description of the used map matching procedure is given

in Section 3.4.

3.1 Stop Detection

The main motivation behind the elimination of stops is that, in most cases, analysts

are interested in the actual movement of an object. However, in the real world,

objects often make short stops during travel. Cars stop at intersections, animals

stop to eat grass or drink water, pedestrians stop to talk to other people - these kinds

of stops do not contribute to the actual movement. In fact, many popular distance

functions that are used for mobility data analysis are quite sensitive to them. For

instance, as shown in Figure 3.1, since DTW compares each point in a trajectory,

visually similar trajectories will have a higher distance function value between them

because of those stops. While trajectory A (without a stop) and trajectory B (with

20

Figure 3.1: Processing of trajectories with and without stop by using DTW

a stop) are similar, the DTW distance between trajectory A and trajectory B will

be larger compared to the distance between trajectory A and trajectory C (without

a stop).

Our stop detection method is based on Palma et al.’s work [48] on discovering

interesting places on a trajectory. In this work, the authors present an algorithm

called CB-SMOT that finds interesting places (stops) on a trajectory using density-

based clustering. We will use the idea behind this stop detection algorithm as one

of the steps in our framework to find these stops and eliminate them.

In the original work the authors require a user to specify two parameters: MinTime

- minimum amount of time spent at one location and Eps - the distance threshold,

which is used to represent how close points should lie to each other to be considered

a stop. We will show that it is possible to detect stops without the need to specify

Eps.

CB-SMOT stop detection algorithm uses the DBSCAN clustering method to find

places where the point density is high enough to be considered a stop. A stop is

defined as a place on a trajectory where an object spent some minimum amount of

time. Stops are, in essence, clusters that were formed from all the density-reachable

points from the respective core points.

The difference between CB-SMOT and DBSCAN’s point clustering scheme is in

their core point conditions. While the latter uses the minimum number of points

(MinPts parameter) to define cluster density, in the former, the stops are based on

the minimum time spent in one location (MinTime). This way, a core point P

21

Figure 3.2: CB-SMOT algorithm pseudocode [48]

with respect to Eps and MinTime in CB-SMOT is defined as a point that satisfies

the following condition:

Tlatest − Tearliest ≤MinTime

where Tlatest and Tearliest are two points with, respectively, the latest and the earliest

timestamps that lie within the Eps-neighbourhood of the candidate core point P .

This condition means that not all high density regions will be considered as stops,

but only those where the object spent a relatively large (with respect to MinTime

parameter) amount of time.

The authors also present a heuristic to estimate the Eps parameter by using a quan-

tile function over the standard deviation of distances between consecutive points of

a trajectory. However, a user still needs to enter a parameter called area that repre-

sents the approximate proportion of stop points per trajectory. The relevant pseudo

code of CB-SMOT is shown in Figure 3.2.

In our work, we modified the algorithm to automate the Eps parameter selection.

In CB-SMOT, a user needs to specify the area parameter, which represents a pro-

portion of points that can possibly generate stops and are used for the further Eps

parameter estimation. However, we found out that using the mean of consecutive

distances between points forEps parameter is sufficient for finding these stops. Our

22

Figure 3.3: A stop, detected by an estimated Eps parameter

experiments show that this parameter estimation technique can be successfully ap-

plied to detect all the major stops on a trajectory. Figure 3.3 illustrates an example

of a stop that was found using our improved version of the original CB-SMOT al-

gorithm. While the same stop could be found by the original CB-SMOT algorithm,

our modification of this method does not require the area parameter.

After all the stops on a trajectory are detected, we remove them and fill the resulted

gap in the next step of our framework - Interpolation, which is described in the next

section. This way, even though a stop is removed, the information that an object

travelled at a particular location is preserved.

3.2 Interpolation

Limited satellite visibility or receiver issues can lead to situations when a GPS re-

ceiver is unable to record object’s current position for extended amounts of time,

which results in a loss of sampling points of a trajectory. Moreover, an additional

loss of sampling points could be introduced when the stops are removed from a

trajectory. As a result, trajectories often contain missing segments that do not have

any sampling points. A missing segment is a part of a trajectory that, according to

a given GPS sampling rate and object’s movement direction should be there, but is

missing [32]. An example of such missing segment is shown in Figure 3.4.

Like in the case with stops, the presence of missing segments can also affect the

clustering quality. For instance, both DTW and LCSS will be affected, because

23

Figure 3.4: A missing segment on a trajectory

they compare trajectories in a piece-wise fashion. The absence of a considerable

part of a trajectory will surely affect how the distances to other trajectories are cal-

culated.

Let pi and pi+1 be consecutive points on a trajectory with timestamps tpi and tpi+1
,

respectively. Also, let φ and ψ be the interpolation and trajectory breaking thresh-

olds, respectively as well. Then, if ψ > tpi+1
− tpi > φ, the interpolation procedure

is used to fill the missing segment with points. If, however, tpi+1
− tpi > ψ, we

will not interpolate this missing segment. Instead, we will break down the given

trajectory into two separate subtrajectories, so that each endpoint of the missing

segment would belong to a separate trajectory. The motivation behind this is that if

the signal is missing for long durations of time compared to the usual sampling rate,

it is often the case that the object is probably inside a building or some other place

where there is no signal reception, i.e. the object reached its destination. Thus, we

divide this trajectory into two parts according to the trajectory breaking threshold,

which corresponds to the average amount of time without receiving any GPS signal

24

[32].

Suppose there is such a missing segment on a trajectory q. Then, let p0, p1, ...pi, ...p|q|

be the set of points of this trajectory and let points pa and pb be the endpoints of this

missing segment such that 0 < a < b < |q|. Using the Euclidean distance between

pa and pb (denoted asDist(pa, pb)), we can calculate the number of subsegmentsN

that is needed to evenly distribute newly generated points across the whole missing

segment [32]:

N =

2kDist(pa, pb)

a−1∑
j=a−k

Dist(pj, pj+1) +
b+k−1∑
j=b

Dist(pj, pj+1)

where k represents how many points before pa and after pb are considered to calcu-

late the needed number of subsegments N . The distance between newly generated

points pi and pi+1 (where a < i < b) is given as follows:

Dist(pi, pi+1) =
Dist(pa, pb)

N

After the distance between generated consecutive points is found, we create N − 1

points starting from pa towards pb according to this distance. This way, the new

points will be evenly spread across the missing segment.

The last step of the interpolation is to generate timestamps and speed information

based on the calculated number of subsegments. Let tpa and tpb be the timestamps

of points pa and pb. Then, the points generated between both endpoints will have

the following timestamps:

tpa+i
= tpa + i · tpb − tpa

N

where 0 < i < N and pa+i < pb.

Note that this interpolation algorithm is applied not only when the missing segment

is due to a lack of signal, but also when the missing segment is created after the stop

detection and removal.

25

3.3 Outlier Detection

Atmospheric and ionospheric disturbances, signal blocking or limited satellite vis-

ibility can cause the imprecise recording of an object’s positions by a GPS device

[34, 61]. In the context of this thesis, such incorrectly positioned points are referred

to as outliers. An example of such an outlier is shown in Figure 3.5. For instance, if

the average speed during the whole trajectory duration was low and one observation

shows that the speed at this moment of time was unusually high, then one can call

this point an outlier.

Figure 3.5: An example of an outlier

One of the problems of the existing distance functions (e.g. DTW) is that many of

them cannot deal with data imprecisions [18]. The Outlier Detection step of the

proposed framework is aimed to detect points that do not conform to the general

behaviour of a trajectory and to eliminate them.

For the outlier detection in a trajectory, we use a statistical technique called Three

Sigma Rule. According to Pukelsheim [49], outliers can be effectively identified

using the mean and the standard deviation. In this work, we applied this rule on the

calculated speeds to detect points that have unusually high speeds for the current

trajectory. The idea behind this is to detect points that accelerated in an improbable

manner compared to their average behaviour.

26

Let p0, p1, ...pi, ...p|t| be the set of points on a trajectory t. Also, let spi be the speed

of a point pi. Then, the mean of point speeds is defined as:

µ =

|t|∑
i=0

spi

|t|
The standard deviation of speeds is then defined as follows:

σ =

√√√√√ |t|∑
i=0

s2pi

|t|
− µ

After the mean and the standard deviation are found, we apply the Three Sigma

Rule on the calculated speeds. Each point on a trajectory that satisfies the following

condition is considered an outlier:

spi > µ+ α · σ (3.3.1)

Note, that the α parameter here is usually set to 3 according to the Three Sigma

Rule. However, this parameter setting works only if the normal speed distribu-

tion is assumed. While this holds for most real world datasets that contain either

pedestrian or vehicle movement [58, 19], when a dataset has both pedestrian and

vehicle movement mixed, this speed distribution can be exponential. In fact, since

both datasets used for our experiments observe both pedestrian and vehicle travel,

they both exhibit the exponential distribution of speeds as shown in Figure 3.6.

In Chapter 4, we experimentally determine the recommended value for α for the

exponential distribution of speeds. The second assumption is that there are no sev-

eral consecutive outliers. This assumption is also usually true in trajectory datasets,

since the presence of two or more consecutive possible speed outliers usually means

that the object actually travelled to those positions, i.e. those points, probably, are

not outliers. In Chapter 4, this approach is evaluated by manually inserting outliers

to the dataset and testing whether this technique is able to identify them.

3.4 Map Matching

When an accurate road network map is presented, our framework can be enhanced

further by using the map matching technique. Given a set of GPS points and a set

27

Figure 3.6: Speed distributions for Nokia and GeoLife datasets

of roads, map matching tries to align these points to the road segment by which an

object actually travelled. Since road networks are usually more accurate than GPS

readings, map matching allows to improve the accuracy of the observed point’s ac-

curacy.

In this work, we use an approach proposed in [50], which is based on the fuzzy

logic matching. Unlike in binary logic, fuzzy logic uses multiple valued logic sys-

tem. Instead of “true” or “false”, fuzzy logic operates with values such as “true to

some extent”, “small”, “high”, “average” or real number values between zero and

one [45].

In [50], fuzzy logic is used to quantify the set of rules given by an expert to deter-

mine the likelihood of matching a given point to a given road segment. For instance,

let P be a point that needs to be matched, r be the candidate road segment, HD -

the heading difference between P and r, PD - the perpendicular distance between

P and r. Then, the algorithm proceeds as follows. First, four main input variables

are “fuzzyfied”, i.e. assigned a membership function as shown in Figure 3.7: the

speed of the object v, the perpendicular distance PD, the heading difference HD

and the horizontal dilution of precision (HDOP). The HDOP parameter repre-

sents the confidence level of a reading based on the relative positions of satellites

and a receiver [35]. Note, that the HDOP parameter is optional. If this parameter

is unavailable in a dataset, one may simply ignore the rules that are associated with

28

Figure 3.7: Fuzzyfication of the input parameters, taken from [50]

this parameter.

Then, for each rule in the set of defined rules, the likelihood L of matching P to r

is quantified. The following set of rules is used in this phase of the algorithm [50]:

• If (v is HIGH) and (HD is SMALL) then (L is AVERAGE)

• If (v is HIGH) and (HD is LARGE) then (L is LOW)

• If (HDOP is GOOD) and (PD is SMALL) then (L is AVERAGE)

• If (HDOP is GOOD) and (PD is LONG) then (L is LOW)

• If (HD is SMALL) and (PD is SHORT) then (L is HIGH)

• If (HD is LARGE) and (PD is LONG) then (L is LOW)

Then, for each rule above, a degree of membership ωi computed based on the re-

spective membership functions. After that, the final matching likelihood Z, which

shows how likely is that P matches r, is calculated as follows:

Z =

n∑
i=0

ωi · zi
n∑
i=0

ωi

where n is the number of rules and zi is a fuzzy constant the value of which depends

on L:

zi =

10 if Li is LOW
50 if Li is AVERAGE
100 if Li is HIGH

29

Finally, a point is matched to a road segment with the highest matching likelihood.

In the above, we described only the first step of the approach proposed in [50],

which uses only 4 parameters and 6 rules associated with them. Since the next steps

of that map matching framework require routing and road direction information

which are not always available, we will use only the first step of that approach in our

framework. However, our experiments, which are presented in Chapter 4, show that

applying just the first step of this method greatly improves data clustering quality.

30

Chapter 4

Experiments and Results

4.1 Experimental Setup

To evaluate our proposal, we implemented our framework using the Java program-

ming language and applied it to Nokia’s Lausanne Dataset [36] and Microsoft’s

GeoLife Trajectories Dataset [66, 67, 68]. The former dataset contains GPS trajec-

tories of more than 200 users over the course of two years with a sampling rate of

10 seconds. The latter dataset was collected from 178 users over the course of four

years with sampling rate varying between one to five seconds. This sampling rate

applies to 91% of the trajectories.

For each dataset, a set of trajectories was produced as follows. Each user’s ini-

tial raw trajectory was divided into smaller trajectories according to the trajectory

breaking threshold (set to 180 seconds for both datasets), which was described in

Section 3.2. Trajectories with the number of points less than ten were removed from

the further processing, since they do not contribute to the clustering process. Due

to virtual memory constraints during the generation of the distance function matri-

ces, 4000 trajectories (users 002, 005, 007, 009, 010) and 1000 trajectories (user

000) with around 400000 points in total were obtained from Nokia’s Lausanne and

Microsoft’s GeoLife datasets, respectively. We will further refer to these sets of

produced trajectories as raw trajectory sets.

We then applied our framework to each raw trajectory set, which produced the re-

spective cleaned trajectory sets. Next, both raw and cleaned trajectory sets were

given as an input to the following trajectory clustering algorithms: DBSCAN clus-

31

tering using DTW distance function, DBSCAN using LCSS, and TRACLUS. Fi-

nally, for each clustering algorithm we compared how our data cleaning framework

affected the quality of the resulting clustering.

Since there is no “ground truth” available, the problem of quantitative evaluation of

clustering itself becomes non trivial. To our knowledge, there is no widely acknowl-

edged framework to evaluate the accuracy of resulted clusterings without using any

external knowledge. In this work, we used a measure proposed in [37], called

QMeasure, along with visual validation. In addition, we tried different orders of

the steps of our framework to determine which order has the most impact on the

clustering quality.

QMeasure is an internal clustering evaluation measure defined in [37], which repre-

sents the sum of the squared pairwise distances between the elements of one cluster

(TotalSSE), while penalizing for incorrectly identified noise points (NoisePenalty):

QMeasure = TotalSSE +NoisePenalty =

=

|C|∑
i=1

(
1

2|Ci|
∑
x∈Ci

∑
y∈Ci

Dist(x, y)2

)
+

1

2|F |
∑
w∈F

∑
z∈F

Dist(w, z)2

where Ci is a cluster in a set of clusters C, F is a set of noise trajectories and

Dist(x, y) is a distance between trajectories x and y, which can be either the DTW,

LCSS or TRACLUS distance. Note that smaller QMeasure values imply “better”

clustering. Since QMeasure is a purely internal clustering evaluation measure, vi-

sual validation was performed along with quantitative quality measurement.

4.2 Results

4.2.1 Clustering Results

For each clustering technique we tried several values of the required input param-

eters. The ranges of both Eps and minPts (minLns for TRACLUS) parameters

for all clustering experiments were chosen based on the visual validation of the

produced clusters. This parameter estimation technique is common in trajectory

clustering approaches that use DBSCAN [60], [17]. Indeed, the parameters that

32

were set to the values outside of the shown range did not result in meaningful clus-

terings; clusters became either too small (couple of lines), or too large (the whole

set of trajectories is identified as one cluster).

Our experiments show that out of the three discussed clustering techniques, the

DTW distance is shown to be the most sensitive to noise and stops. As Figures

4.1, 4.2, 4.3 and 4.4 suggest, the QMeasure decreases after applying the proposed

Figure 4.1: QMeasure for DTW with fixed minPts parameter for the Nokia dataset

Figure 4.2: QMeasure for DTW with fixed Eps parameter for the Nokia dataset

cleaning framework. The overall decline of the QMeasure for Nokia dataset in

Figure 4.1 means that with the increasing Eps, more trajectories are included into

clusters and the number of noise trajectories decreases. Because the noise penalty

(NP) is significantly higher than the sum of squared pairwise distances (TotalSSE),

the QMeasure decreases with the larger Eps values. Conversely, in Figure 4.2, the

33

larger is the value of minPts, the larger is the number of noise trajectories. Since

the number of noise trajectories increments, the NP increases as well, which results

in the ascending values of the QMeasure.

Both produced plots suggest that out of three steps of the proposed framework, the

Stop Detection step had the most impact on clustering quality for the Nokia dataset.

On average, when the clustering was performed using DTW distance function, after

both Outlier Detection and Stop Detection steps, the QMeasure decreased by 62%

compared to the clustering resulted from the raw data, whereas applying only the

Outlier Detection step reduced the QMeasure by roughly 24%. This improvement

was computed as follows:

Improvement =
QMeasurecleaned −QMeasureraw

QMeasureraw
· 100%

Figure 4.3: QMeasure for DTW with fixed minPts parameter for the GeoLife
dataset

Applying our framework to the GeoLife dataset yielded results illustrated in Fig-

ures 4.3 and 4.4. The improvement in the QMeasure for this dataset after the Outlier

Detection step was around 35%, whereas the combined Outlier and Stop Detection

steps yielded a 64 % improvement when using DTW as a distance function. These

results imply that, as expected, DTW is quite sensitive to outliers and stops. Hence,

our framework was able to significantly improve the clustering results for this dis-

tance function.

34

Figure 4.4: QMeasure for DTW with fixed Eps parameter for GeoLife dataset

Unfortunately, the Interpolation step did not result in the improvement of the clus-

tering quality. Most of the times the improvement after this step was too small or,

sometimes, caused actually an increase in the QMeasure. One of the possible rea-

sons for this is that the used interpolation technique connected the endpoints of a

missing segment by means of a straight line segment, i.e. did not take a trajectory’s

shape into account. For future work, we would like to investigate whether consid-

ering the shapes of the previous and the next trajectory segments actually improves

clustering quality.

Figure 4.5: QMeasure for LCSS with fixed minPts parameter for the Nokia dataset

In Figures 4.5 and 4.6 clustering evaluation results are presented for LCSS distance

function when applied to Nokia dataset. The decrease of the QMeasure on the vi-

sually meaningful settings (Eps = 0.5, minPts = 5) after the Outlier Detection

35

Figure 4.6: QMeasure for LCSS with fixed Eps parameter for the Nokia dataset

step was around 38% and approximately 45% after applying both Stop Detection

and Outlier Detection steps.

We believe that the spike in Figure 4.5 resulted from the fact that LCSS uses a

score instead of the actual distance (as in DTW) to determine the similarity be-

tween two trajectories (see Section 2.2.4). In essence, LCSS counts the number

of points from two trajectories that have the smaller distance between them than a

predefined distance threshold. Because of this score, as the Eps becomes larger, at

one moment, noise trajectories rapidly become more dissimilar from the rest of the

clusters. However, during both visually reasonable and unreasonable clusterings,

the values of the QMeasure for the processed dataset were smaller compared to the

raw dataset.

When using LCSS for clustering the GeoLife dataset, our framework was not able

to improve the resulting clustering quality in a significant degree (Figures 4.7 and

4.8). The average improvement in the QMeasure after applying the framework was

only around 1.5%. One of the reasons behind this is that LCSS was able to produce

tighter clusters with the smaller number of the noise trajectories on the visually ad-

equate parameters compared to DTW. In Figure 4.8, all the curves are smooth and

plain, which shows that the clusters did not change much. The spikes in Figure 4.7

have the same nature as in Figure 4.5 - noise trajectories lie further apart from any

cluster member trajectories in terms of LCSS distance. Nonetheless, on the visually

adequate parameters (Eps = 0.3, minPts = 5) the improvement of the QMeasure

36

Figure 4.7: QMeasure for LCSS with fixed minPts parameter for the GeoLife
dataset

Figure 4.8: QMeasure for LCSS with fixed Eps parameter for the GeoLife dataset

was close to 4%. This shows that our framework will result in a better clustering

when needed and will not interfere with a clustering if it is already “good”.

Finally, according to our experiments, as Figures 4.9 and 4.10 suggest, TRACLUS

trajectory clustering framework actually handles outliers and missing segments in

an equal degree to our Outlier Detection and Interpolation steps. At the same time,

our Stop Detection step was able to improve the QMeasure roughly by 23% on av-

erage on the Nokia dataset.

As when clustering with DTW, as the minLns parameter increments, since clusters

contain less trajectories and the number of noise trajectories increases, the QMea-

sure ascends (Figure 4.9). On the contrary, as the Eps parameter increases (Figure

4.10), the QMeasure diminishes because of the decline of the noise penalty sum.

37

Figure 4.9: QMeasure for TRACLUS with fixed Eps parameter for the Nokia
dataset

Figure 4.10: QMeasure for TRACLUS with fixed minLns parameter for the Nokia
dataset

The above applies to the GeoLife dataset as well (Figures 4.11 and Figures 4.12),

where the QMeasure decreased by 9% after applying our framework.

One of the reasons of why our trajectory cleaning framework improved clustering

quality after TRACLUS to a lesser degree compared to DTW and LCSS is that

TRACLUS uses a crude trajectory approximation technique. In TRACLUS, in or-

der to find clusters of subtrajectories, trajectories are approximated using a set of

characteristic points. Figure 4.13 presents an example of such rough trajectory ap-

proximation. Lines resulted from TRACLUS’s trajectory approximation effectively

oversimplify trajectories by not taking the curves of the trajectories into account.

While this is useful when finding frequently travelled vectors of the observed ob-

38

Figure 4.11: QMeasure for TRACLUS with fixed Eps parameter for the GeoLife
dataset

Figure 4.12: QMeasure for TRACLUS with fixed minLns parameter for the GeoLife
dataset

jects, finding the exact positions of objects that belong to each movement cluster

becomes much more complicated, if not impossible.

In addition, the impact of changing the order in which steps of the proposed frame-

work are executed was evaluated. In particular, two main modes were compared to

each other:

• Mode 1: Outlier Detection, Stop Detection, Interpolation (in this order)

• Mode 2: Stop Detection, Interpolation, Outlier Detection (in this order)

The number of modes is limited because the Interpolation step should be executed

after Stop Detection, to fill in the missing segments resulted from Stop Detection.

39

Figure 4.13: Examples of crude trajectory approximation by TRACLUS

While Mode 1 was tested earlier (Figures 4.1 and 4.2), we tested Mode 2 with the

same parameters and compared the QMeasure for both outputs.

Figure 4.14: QMeasure for DTW with fixed Eps parameter for the Nokia dataset
(Mode 2)

Results for Mode 2, which are presented in Figures 4.14, 4.15, 4.16 and 4.17 reveal

that this mode yielded approximately 3% less improvement in the QMeasure than

Mode 1 for Nokia dataset and approximately 2% less improvement for GeoLife

dataset. In addition, applying the Interpolation step after the Outlier Detection

step helped to recover incorrectly identified outliers, that resulted from too rapid

acceleration. Therefore, to achieve the best performance, one needs to execute

steps of the framework in the following order:

1. Outlier Detection

2. Stop Detection

40

Figure 4.15: QMeasure for DTW with fixed minPts parameter for the Nokia dataset
(Mode 2)

Figure 4.16: QMeasure for DTW with fixed Eps parameter for the GeoLife dataset
(Mode 2)

3. Interpolation

Finally, we determined how the Map Matching step affects the clustering. First,

an example of how map matching “tightens” potential trajectory clusters is illus-

trated in Figure 4.18. Since points are matched to a road segment that most likely

corresponds to those points in the real world, trajectories that were matched to this

road segment will be more similar to each other. Consequently, with the increasing

similarity between truly close trajectories, the resulting clustering quality improves

as well.

Results for clustering with DTW distance function and DBSCAN support this claim.

On average, the Map Matching step improved the QMeasure approximately by

41

Figure 4.17: QMeasure for DTW with fixed minPts parameter for the GeoLife
dataset (Mode 2)

Figure 4.18: GPS points before and after the Map Matching step

98% on Nokia dataset (Figures 4.19 and 4.20) and approximately 100% on Geo-

Life dataset (Figures 4.21 and 4.22). Noteworthy, the curves resulted after the Map

Matching step seem much smoother compared to the other steps of the framework.

This is because the Map Matching step does not remove points like other steps, but

merely improves the accuracy of their coordinates with respect to the given road

network. Note, however, that the Map Matching step relies on the accuracy of the

used road network - the more accurate is the road network, the more accurate is the

matching of points to road segments.

4.2.2 Outlier Detection Evaluation

Next, we present the evaluation results for the Outlier Detection step separately.

Since there is no training trajectory data with labelled outliers available, we tested

42

Figure 4.19: QMeasure for DTW after the Map Matching step for the Nokia dataset,
fixed Eps

Figure 4.20: QMeasure for DTW after the Map Matching step for the Nokia dataset,
fixed minPts

this statistical outlier detection technique by manually inserting outliers into the real

world data. First, 10 trajectories with 917 points were taken from the dataset. Then,

we manually labelled existing outliers and manually inserted new outliers so that

the number of outliers would constitute the 5% of the total number of points. This

5% added outlier ratio is typically used for outlier detections studies that involve

simulations [31, 55]. As in the example shown in Figure 4.23, all the outliers were

inserted at reasonable distances from their actual trajectories. These distances were

chosen such that a human expert would identify those points as outliers.

Then, according to the labels of manually inserted outliers, points were classified

into four categories:

43

Figure 4.21: QMeasure for DTW after the Map Matching step for the GeoLife
dataset, fixed Eps

Figure 4.22: QMeasure for DTW after the Map Matching step for the GeoLife
dataset, fixed minPts

• True Positives(TP) is the number of correctly identified outlier points

• True Negatives(TN) is the number of points that were correctly classified as

non-outliers

• False Positives(FP) is the number of non-outliers that were incorrectly clas-

sified as outliers

• False Negatives(FN) is the number of points that were initially labelled as

outliers, but incorrectly identified as non-outliers

44

Figure 4.23: Manually inserted outliers

As discussed in Section 3.3, we detect outliers with unusually high speeds based on

the following condition:

spi > µ+ α · σ

where spi is the speed of a point, µ and σ are the arithmetic mean and the standard

deviation of a set of all speeds of a trajectory, respectively and α is a parameter that

determines how many standard deviations from the mean should a point’s speed be

to be considered an outlier.

Then, we tried a range of values for α to determine such value for this parameter

that would yield the highest F-measure [52], which is classification quality metric

from information retrieval domain. The F-measure is usually used when the num-

ber of instances of a class is rare [43]. Since, in our case, the number of instances

of an outlier class is rare (5%), we decided to choose the F-measure as the perfor-

mance evaluation metric for the outlier detection. Note, that the F-measure varies

between 0 and 1, where 0 means that all the points were classified incorrectly, while

a F-measure of 1 means the opposite - the algorithm found all the outliers and did

not classify any non-outliers as outliers.

The F-measure is the harmonic mean of the precision and the recall, where preci-

sion represents the fraction of outliers among all points classified as outliers and

recall shows what fraction of points that were classified as outliers are actually out-

45

Figure 4.24: The F-measure for various α settings for outlier detection

liers. Then, the F-measure is calculated as follows [47]:

precision =
TP

TP + FP

recall =
TP

TP + FN

F = 2 · precision · recall
precision+ recall

As shown in Figure 4.24, in our experiments, the largest F-measure was equal to

0.71 and was achieved when α = 1.8. To our knowledge, there are no studies that

conduct such outlier detection experiments on trajectory datasets. However, a study

on comparison of the general outlier detection techniques show that our values of

the F-measure are comparable to the F-measures of the general outlier detection

methods (0.4 - 0.82) [22].

4.3 Experiments and Results Conclusion

In this chapter, we presented the evaluation results for the proposed trajectory clean-

ing framework. Our framework has shown to improve the clustering quality when

the DTW and LCSS distance functions are used with the DBSCAN. On the visually

optimal settings, applying the framework led to the decrease of the clustering qual-

ity measure QMeasure. When using TRACLUS, the improvement of the clustering

quality was less compared to DTW and LCSS. However, this lack of improvement

is explained by that algorithm’s simplifying trajectory approximation.

We also show, that when an accurate road network map is available, the quality

46

of clusters could be greatly enhanced using the map matching technique. In both

used datasets, the improvement in the QMeasure was around 100% when using this

technique.

Finally, we evaluate the Outlier Detection step by manually inserting outliers and

measuring the classification quality of the statistical outlier detection algorithm that

we used in this step. Our results show that this classification quality is comparable

to the most accurate algorithms in the general outlier detection domain.

47

Chapter 5

Conclusions and Future Work

Trajectory clustering is a popular data mining task which consists of finding paths

that were travelled frequently. This pattern mining technique finds its application

in a wide variety of areas as urban planning, climatology, medicine and economic

forecasting [25]. However, low trajectory data quality can significantly decrease

the accuracy of the existing clustering algorithms. Therefore, in this work, we have

proposed a data cleaning framework for trajectory clustering, which consists of four

main steps: Outlier Detection, Stop Detection, Interpolation and Map Matching.

By applying this framework to a trajectory dataset, one can:

• detect and remove outliers

• identify and remove gatherings of points without movement that do not con-

tribute to the trajectory clustering process (stops)

• fill in gaps in a trajectory that were resulted from a missing signal

• in case when an accurate road network map is present, improve points’ accu-

racy by matching them to appropriate road segments

The presented framework has several features that are different from other trajectory

data cleaning frameworks that were proposed before. First, some of the previous

approaches required to have an additional GPS information (e.g. the number of

visible satellites), while our framework suffices to have only longitude, latitude and

time stamp readings. Second, even though other frameworks use some of the tech-

niques similar to ours, none of them combine all these steps together. Finally, to our

48

knowledge, only our framework was evaluated using popular clustering techniques.

We evaluated our framework using two trajectory datasets (Nokia MDC and Ge-

oLife Trajectories), two distance functions (DTW and LCSS) and two clustering

algorithms (DBSCAN and TRACLUS), the latter of which is designed specifically

for trajectory clustering. As a quality measure for the comparison between the re-

sulted clusterings we used the QMeasure, which represents the difference between

the sums of squared pairwise distances of clusters’ members and noise. Our ex-

periments show, that applying our framework consistently improves the resulting

clustering quality. In addition, the effects of using different combinations of frame-

work steps were investigated.

For future work, we would like to investigate how to achieve the following:

• improve the Interpolation step. One research direction could be to complete

the missing segments using the similar subtrajectories of nearby trajectories.

For instance, if we know that three persons already passed the location where

the fourth person did not receive a signal, we could use this information to

interpolate the resulted missing segment. Another idea would be to take into

account a trajectory’s shape that follows and precedes the missing segment.

• improve the trajectory splitting mechanism using a trajectory’s both geomet-

ric and temporal features to extract subtrajectories

• take into account the intersecting trajectories during the Stop Detection

• conduct experiments with other distance functions and clustering algorithms

49

Bibliography

[1] S. S. Abdalmogith and R. M. Harrison. The Use of Trajectory Cluster Analysis
to Examine the Long-Range Transport of Secondary Inorganic Aerosol in the
UK. Atmospheric Environment Journal, 39:6686–6695, 2005.

[2] E. Akleman and J. Chen. Generalized Distance Functions. In Proceedings of
the International Conference on Shape Modeling, pages 72–79, 1999.

[3] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering Clusters in
Motion Time-Series Data. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition, volume 1, pages 375–381, 2003.

[4] L .O. Alvares, G. Oliveira, C. A. Heuser, and V. Bogorny. A framework for
trajectory data preprocessing for data mining. In Proceedings of the Inter-
national Conference on Software Engineering and Knowledge Engineering,
pages 698–702, 2009.

[5] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi, and F. Gi-
annotti. Interactive visual clustering of large collections of trajectories. In
IEEE Symposium on Visual Analytics Science and Technology, pages 3 –10,
2009.

[6] G. L. Andrienko and N. V. Andrienko. Interactive Cluster Analysis of Di-
verse Types of Spatiotemporal Data. SigKDD Explorations Journal, 11:19–
28, 2009.

[7] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. OPTICS: Ordering
Points To Identify the Clustering Structure. In Proceedings of the Interna-
tional Conference on Management of Data, pages 49–60, 1999.

[8] G. Antonini and J. P. Thiran. Trajectories Clustering in ICA Space: an Appli-
cation to Automatic Counting of Pedestrians in Video Sequences. In Proceed-
ings of the Conference on Advanced Concepts for Intelligent Vision Systems,
2004.

[9] S. Athavale and N. Sao. Data mining on moving object trajectories. Inter-
national Journal of Computer Science Engineering and Technology, 2:1040–
1042, 2012.

[10] F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Object Trajectory-Based Ac-
tivity Classification and Recognition Using Hidden Markov Models. IEEE
Transactions on Image Processing Journal, 16:1912–1919, 2007.

[11] P. Berkhin. Survey of Clustering Data Mining Techniques. 2002.
Accrue Software, San Jose, California - Technical Report, avail-
able at http://tsrenderer.googlecode.com/svn-history/r37/trunk/doc/papers/
10.1.1.71.1599.pdf.

50

[12] D. J. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns
in Time Series. In Proceedings of AAAI Workshop on Knowledge Discovery
in Databases, pages 359 – 370, 1994.

[13] J. C. Bezdek, R. Ehrlich, and W. Full. FCM: The Fuzzy C-means Clustering
Algorithm. Journal of Computers and Geosciences, 10:191–203, 1984.

[14] G. Blewitt. An Automatic Editing Algorithm for GPS data. Geophysical
Research Letters Journal, 17:199–202, 1990.

[15] D. Buzan, S. Sclaroff, and G. Kollios. Extraction and Clustering of Motion
Trajectories in Video. In Proceedings of the International Conference on Pat-
tern Recognition, volume 2, pages 521–524, 2004.

[16] I. Cavar, H. Markovic, and H. Gold. GPS Vehicles Tracks Data Cleansing
Methodology. In Proceedings of the International Conference on Traffic Sci-
ence. Available at: http://venera.fpz.hr/publications/ICTS%202006.pdf.

[17] C. Chang and B. Zhou. Multi-granularity Visualization of Trajectory Clusters
Using Sub-trajectory Clustering. In Proceedings of the IEEE International
Conference on Data Mining, pages 577–582, 2009.

[18] L. Chen, M. T. Ozsu, and V. Oria. Robust and Fast Similarity Search for
Moving Object Trajectories. In Proceedings of the International Conference
on Management of Data, pages 491–502, 2005.

[19] W. Daamen and S. P. Hoogendoorn. Free speed distributions based on em-
pirical data in different traffic conditions. In Proceedings of the International
Conference of Pedestrian and Evacuation Dynamics, pages 13–25. 2007.

[20] I. Davidson. Understanding K-Means Non-hierarchical Clustering. 2002.
Technical Report 02-2. Albany: State University of New York. Avail-
able at http://www.cs.albany.edu/ davidson/courses/CSI635/UnderstandingK-
MeansClustering.pdf.

[21] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidel-
berg, 2009.

[22] H. J. Escalante. A Comparison of Outlier Detection Algorithms for Machine
Learning. In Proceedings of the International Conference on Programming
and Software, pages 228–237, 2005.

[23] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
the 2nd International Conference on KDD, pages 226–231, 1996.

[24] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression
models. In Proceedings of the 5th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 63 – 72, 1999.

[25] F. Giannotti. Mobility, data mining and privacy understanding human move-
ment patterns from trajectory data. In Proceedings of the 2011 IEEE 12th
International Conference on Mobile Data Management, volume 1, pages 4–5,
2011.

[26] F. Giannotti and D. Pedreschi. Mobility, Data Mining and Privacy - Geo-
graphic Knowledge Discovery. Springer, 2008.

51

[27] S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient Clustering Algorithm
for Large Databases. In Proceedings of the International Conference on Man-
agement of Data, pages 73–84, 1998.

[28] J. Han and M. Kamber. Data Mining: Concepts and Techniques. San Fran-
cisco, California: Morgan Kaufmann Publishers, 2000.

[29] H. Haniu, N. Komori, N. Takemori, A. Singh, J. D. Ash, and H. Matsumoto.
Proteomic Trajectory Mapping of Biological Transformation: Application to
Developmental Mouse Retina. Proteomics Journal, 6:3251–3261, 2006.

[30] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The Elements of Statis-
tical Learning: Data Mining, Inference and Prediction. Mathematical Intelli-
gencer Journal, 27:83–85, 2005.

[31] P. S. Horn, L. Feng, Y. Li, and A. J. Pesce. Effect of Outliers and Nonhealthy
Individuals on Reference Interval Estimation. Clinical Chemistry Journal,
47:2137–2145, 2001.

[32] A. Idrissov and M. A. Nascimento. A Trajectory Cleaning Framework for Tra-
jectory Clustering. In Nokia Mobile Data Challenge Workshop, 2012. Avail-
able at: research.nokia.com/files/public/mdc-final225-idrissov.pdf.

[33] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Englewood
Hills, New Jersey: Prentice-Hall, 1988.

[34] J. Jun, R. Guensler, and J. Ogle. Smoothing Methods to Minimize Impact
of Global Positioning System Random Error on Travel Distance, Speed, and
Acceleration Profile Estimates. Transportation Research Record Journal,
1972:141–150, 2006.

[35] R.B. Langley. Dilution of precision. GPS World, 10:52–59, 1999.

[36] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornetr, T. Do, O. Dousse,
J. Eberle, and M. Miettinen. The mobile data challenge: Big data for mo-
bile computing research. In Mobile Data Challenge by Nokia Workshop, in
conjunction with International Conference on Pervasive Computing, 2012.

[37] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-group
framework. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 593–604, 2007.

[38] T. W. Liao. Clustering of Time Series Data - a Survey. Pattern Recognition
Journal, 38:1857–1874, 2005.

[39] L. Xu Liu, J. T. Song, B. Guan, Z. X. Wu, and K. J. He. Tra-DBScan: A Algo-
rithm of Clustering Trajectories. Journal of Applied Mechanics and Materials,
121–126:4875–4879, 2012.

[40] S. P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, 28:129–136, 1982.

[41] A. Moreira, M. Y. Santos, M. Wachowicz, and D. Orellana. The impact of data
quality in the context of pedestrian movement analysis. In M. Painho, M. Y.
Santos, H. Pundt, W. Cartwright, G. Gartner, L. Meng, and M. P. Peterson,
editors, Geospatial Thinking, volume 0 of Lecture Notes in Geoinformation
and Cartography, pages 61–78. Springer Berlin Heidelberg, 2010.

52

[42] B. Morris and M. M. Trivedi. Learning Trajectory Patterns by Clustering: Ex-
perimental Studies and Comparative Evaluation. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 312–319, 2009.

[43] Y. Nan, K. M. Chai, W. S. Lee, and H. L. Chieu. Optimizing f-
measure: A tale of two approaches. ICML, 2012. Available at:
http://www.comp.nus.edu.sg/ leews/publications/fscore.pdf.

[44] M. Nanni and D. Pedreschi. Time-focused Clustering of Trajectories of Mov-
ing Objects. Journal of Intelligent Information Systems, 27:267–289, 2006.

[45] V. Novak, I. Perfilieva, and J. Mockor. Mathematical Principles of Fuzzy
Logic. The Kluwer International Series in Engineering and Computer Sci-
ence, 517, 1999.

[46] J. Ogle, R. Guensler, W. Bachman, M. Koutsak, and J. Wolf. Accuracy of
Global Positioning System for Determining Driver Performance Parameters.
Transportation Research Record Journal, 1818:12–24, 2002.

[47] D. L. Olson and D. Delen. Advanced Data Mining Techniques. Springer
Verlag, 2008.

[48] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based
approach for discovering interesting places in trajectories. In Proceedings of
the ACM Symposium on Applied computing, pages 863–868, 2008.

[49] F. Pukelsheim. The three sigma rule. American Statistician Journal, 48:88–
91, 1992.

[50] M. Quddus, R. Noland, and W. Ochieng. A High Accuracy Fuzzy Logic
Based Map Matching Algorithm for Road Transport. Journal of Intelligent
Transportation Systems, 10:103–115, 2006.

[51] B. Rama, P. Jayashree, and S. Jiwani. A survey on clustering: Current sta-
tus and challenging issues. International Journal on Computer Science and
Engineering, 1:2976–2980, 2010.

[52] C. J. Van Rijsbergen. Foundation of Evaluation. Journal of Documentation,
30:365–373, 1974.

[53] T. Schreck, J. Bernard, T. Tekusova, and J. Kohlhammer. Visual Cluster Anal-
ysis of Trajectory Data with Interactive Kohonen Maps. In IEEE Symposium
on Visual Analytics Science and Technology, pages 3–10, 2008.

[54] N. Schuessler and K. W. Axhausen. Processing GPS Raw Data Without Addi-
tional Information. paper presented at the 88th Annual Meeting of the Trans-
portation Research Board, 2009.

[55] W. Stacklies and H. Redestig. Handling of Data Containing Outliers. 2007.
Available at http://rss.acs.unt.edu/Rdoc/library/pcaMethods/ doc/outliers.pdf.

[56] P. Stopher, Q. Jiang, and C. Fitzgerald. Processing gps data from travel sur-
veys. paper presented at the 28th Australasian Transport Research Forum,
2005.

[57] P. R. Stopher and C. C. Stecher. Travel Survey Methods: Quality and Future
Directions. Oxford: Elsevier, 2006.

53

[58] R. E. Turochy and R. Sivanandan. Effectiveness of Unmanned Radar as a
Speed Control Technique in Freeway Work Zones. Presented at the 77th An-
nual Meeting, Transportation Research Board, Washington, D.C., 1998.

[59] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimen-
sional trajectories. In Proceedings of the International Conference on Data
Engineering, pages 673 –684, 2002.

[60] Y. Wang, Q. Han, and H. Pan. A clustering scheme for trajectories in road
networks. In Y. Wu, editor, Proceedings of the 2009 3rd International Con-
ference on Teaching and Computational Science, volume 117 of Advances
in Intelligent and Soft Computing, pages 11–18. Springer Berlin Heidelberg,
2012.

[61] J. Wolf, S. Hallmark, M. Oliveira, R. Guensler, and W. Sarasua. Accuracy Is-
sues with Route Choice Data Collection by Using Global Positioning System.
Transportation Research Record Journal, 1660:66–74, 1999.

[62] Y. Yanagisawa and T. Satoh. Clustering Multidimensional Trajectories based
on Shape and Velocity. In Proceedings of the International Conference on
Data Engineering, 2006.

[63] J. Yin and Q. Yang. Integrating Hidden Markov Models and Spectral Analysis
for Sensory Time Series Clustering. In Proceedings of the IEEE International
Conference on Data Mining, pages 506–513, 2005.

[64] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an Efficient Data Clus-
tering Method for Very Large Databases. In Proceedings of the International
Conference on Management of Data, pages 103–114, 1996.

[65] Z. Zhang, K. Huang, and T. Tan. Comparison of Similarity Measures for Tra-
jectory Clustering in Outdoor Surveillance Scenes. In Proceedings of the In-
ternational Conference on Pattern Recognition, volume 3, pages 1135–1138,
2006.

[66] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma. Understanding Mobility Based
on GPS Data. In Proceedings of the International Conference on Ubiquitous
Computing/Handheld and Ubiquitous Computing, pages 312–321, 2008.

[67] Y. Zheng, X. Xie, and W. Ma. GeoLife: A Collaborative Social Networking
Service among User, Location and Trajectory. IEEE Data(base) Engineering
Bulletin, 33:32–39, 2010.

[68] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining Interesting Locations and
Travel Sequences from GPS Trajectories. In Proceedings of the International
Conference on World Wide Web, pages 791–800, 2009.

54

