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Abstract 

Gulf War Illness (GWI) is a complex debilitating condition presenting with a diverse array 

of symptoms that include fatigue, memory and cognitive difficulties, headaches, sleep 

disturbances, gastrointestinal problems, skin rashes, as well as musculoskeletal/joint 

pain. It affects up to one third of the US veterans returning from the 1991 Persian Gulf 

conflict (Operation Desert Storm). The overarching objective of this study is to integrate 

clinical understanding of the disease with basic research in molecular medicine using a 

systems biology approach to pinpoint underlying mechanisms of disease and inform 

treatment more effectively. 

In the first part of this thesis, we survey several popular reverse engineering 

methods for inferring directed networks from time course data and assess their suitability 

to the narrow range of conditions and low sampling frequencies typical of human clinical 

studies.  Based on this assessment we develop a novel variant of such methods that 

leverages simulations of biologically realistic artificial networks to optimize the recovery 

of actual biological networks from data in a problem-specific manner. Using this 

simulation-based tuning approach we identify and extract candidate immune signaling 

patterns, which are then filtered by projecting onto a literature-informed mechanistic 

model of immune regulation. This literature-informed data mining identified 

characteristically active feed-forward mechanisms connecting IL-23 and IL-17 through 

IL-6 and IL-10 as distinguishing control elements in GWI. Furthermore, simulations of an 

IL-6 receptor antagonist applied in combination with either a Th1 (IL-2, IFNγ, TNFα) or 

IL-23 receptor antagonist predicted a partial rescue of immune response circuitry in 

GWI. 

To support the in vivo testing of these in silico predictions, the last part of this 

thesis is directed at establishing the mechanistic similarity of the human GWI condition 
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with a stress-potentiated response to neurotoxic exposure in mouse. In support of this, 

undirected networks were constructed linking 12 cytokines measured in peripheral blood 

in mice challenged with Lipopolysaccheride (LPS) after exposure to the sarin surrogate 

DFP (Diisopropyl fluorophosphates) under conditions of simulated stress induced by 

corticosterone (CORT) doping of their drinking water. An evolutionarily conserved GWI- 

specific motif linking IL-6, IL-8, IL1β, TNF-α, IL-5 and IFN-γ was identified supporting the 

alignment of mouse and human cytokine co-expression networks. Collectively this thesis 

proposes a network identification methodology which is robust to the limitations of 

human data, testable hypotheses supporting the partial recovery of immune signaling 

networks in GWI-affected veterans and the network informed validation of an animal 

model in which such hypotheses might be explored in vivo. 
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Preface 

This thesis is an original work by Saurabh Vashishtha. The major part of the research 

conducted under this thesis forms part of a multi-year study funded by the US 

Department of Defense entitled “Understanding Gulf War Illness: An Integrative 

Modeling Approach”.  This study was led by an international research consortium, 

consisting of a clinical core led by Dr. Nancy Klimas at Nova Southeastern University, 

Fort Lauderdale, MI, USA, an animal model core led by Dr. James O’ Callaghan at the 

Centers for Disease Control and Prevention (CDC) - National Inst. for Occupational 

Safety and Health (NIOSH) and a computational core led by Adjunct Associate 

Professor Dr. Gordon Broderick at the University of Alberta where the current thesis 

work was performed.  

 The current work consists of three core components making up chapters 2, 3 and 

4 of this thesis. Chapter 2 of this thesis describing the analytical framework has been 

published as Vashishtha S, Broderick G, Craddock TJA, Fletcher MA, Klimas NG (2015) 

“Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an 

Upper Bound under Constraints Typical of In Vivo Studies?” PLoS ONE 10(5): 

e0127364. The quantitative analysis and simulation experiments described in Chapter 2 

were my original work. Dr. Gordon Broderick was the principal academic supervisor, 

corresponding author and oversaw study design, concept formulations and manuscript 

composition. 

 Chapter 3 of this thesis consists of an application of this framework to human 

subject data and is being submitted for publication as Vashishtha S, Broderick G, 

Craddock TJA, Barnes ZM, Collado F, Fletcher MA, Klimas NG “Leveraging Prior 

Knowledge to Recover Characteristic Immune Regulatory Motifs in Gulf War Illness” in 

Frontiers in Physiology. The clinical assessment and human subject selection were 
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performed under the direction of Dr. Nancy Klimas with all omics experimental 

measurements conducted under the direction of Dr. Mary Ann Fletcher. All human 

subject work was conducted under protocols approved by the IRB at Nova Southeastern 

University, the Miami Veterans Affairs Medical Center and the University of Alberta (Pro 

00005853). The statistical analysis and inference and analysis of directed networks 

described in Chapter 3 were my original work. 

In Chapter 4 of this thesis, we assess the relevance of a mouse exposure model 

to the human illness condition. All animal procedures were performed under the direction 

of Dr. James P. O’Callaghan at CDC-NIOSH according to protocols approved by the 

latter’s Institutional Animal Care and Use Committee and the U.S. Army Medical 

Research and Materiel Command Animal Care and Use Review Office. The CDC-

NIOSH animal facility is certified by the Association for Assessment and Accreditation of 

Laboratory Animal Care International (AAALAC International). I was involved in all the 

steps of the quantitative analysis of experimental data as well as the inference of 

undirected networks and their novel analysis using the principles of network theory 

under the supervision of Dr. Gordon Broderick.  
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1.1 Introduction 

1.1.1 Gulf War Illness: Background 

An alarming number of the veterans returned from 1990-91 Persian Gulf War theatre 

reported a complex constellation of symptoms including debilitating fatigue, 

musculoskeletal discomfort, skin rashes, and cognitive dysfunction [1, 2]. Studies have 

shown that these numerous chronic nonspecific symptoms are reported by Gulf War 

veterans more often than their non-deployed peers [2]. The term Gulf War Illness (GWI) 

has now been used to describe these chronic inexplicable symptoms, which is estimated 

to affect approximately 25 - 32% of the 7,00,000 Gulf War veterans returning from the 

Operation Desert Storm [2]. The etiology of this complex multi-symptom illness that 

affects multiple systems including immune, endocrine and nervous systems remains 

unknown.  

1.1.2 Case definition 

Several case definitions have been used to define the GWI symptoms including chronic 

multi-symptom illness (CMI) [2], the Kansas GWI definition [3], the Haley syndrome 

criteria [4] and adaptations of these frameworks. Of these, Fukuda/CMI and the Steele/ 

Kansas definitions are the most commonly used definitions to define GWI. According to 

CMI, A GWI veteran must report one or more symptoms present for 6 months or longer 

from at least two of the following three categories [2]: (i) Fatigue, (ii) Mood and cognition 

(symptoms of feeling depressed, difficulty in remembering or concentrating, feeling 

moody, feeling anxious, trouble finding words, or difficulty sleeping), and (iii) 

Musculoskeletal (symptoms of joint pain, joint stiffness, or muscle pain). In comparison, 

the Kansas case definition of GWI requires veterans to have multiple moderate to severe 

chronic symptoms in at least three of the following six defined symptom domains: 

Fatigue / sleep problems, Somatic pain, Neurologic / cognitive / mood symptoms, 



 

3 

Gastrointestinal symptoms, Respiratory symptoms and Skin abnormalities. Veterans 

who have severe psychiatric disorders or other medical conditions that might predict 

similar symptoms are excluded in the Kansas criteria [3]. The Fukuda/CMI criterion is 

broader and generally served as the initial base for screening veterans for the 

Steele/Kansas GWI definition. The CMI case definition was recommended for clinical 

use and the Kansas definition was recommended for research use by 2014 Institute of 

Medicine (IOM) panel [5]. 

1.1.3 Potential causes of GWI 

Several conditions, events and exposures encountered by servicemen including 

infectious agents, medical prophylactic treatment with reversible and irreversible 

acetylcholinesterase (AChE) inhibitors such as pyridostigmine bromide (PB) and 

pesticides containing organophosphates such as chlorpyrifos (CPF), chlorpyrifos oxon 

(CPO), permethrin (PER) and dichlorvos, the insect repellent, N,N-diethyl-meta-

toluamide (DEET), depleted uranium, oil fires and burn pit exposures, chemical and 

biological warfare agents such as exposure to nerve agent, sarin gas as well as 

physiological and psychological combat stress have been proposed as potential 

instigators to the development of GWI [2, 6]. Several epidemiological studies have been 

performed to uncover the actual cause of the GWI. Some studies have linked all of the 

exposures such as PB, organophosphate pesticides, and nerve agents as well as 

environmental and physical challenges to GWI [7-9], whereas others pointed towards 

only a limited number of significant risk factors for GWI [10, 11]. These huge differences 

in the findings of epidemiological studies suggest enormous inconsistency in the prior 

information (data) used to reach the conclusions and may lead to errors in evaluating 

associations between GWI and Gulf War exposures [12]. Indeed, there is scarce 

information about the exposures since limited official records of specific exposures in 
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specific veteran groups were kept. Therefore, veterans were asked to self-report the 

details of exposures. Despite this heterogeneity, the use of organophosphate pesticides 

and PB during the Gulf War were consistently identified as the most significant risk 

factors for GWI across all studies and populations on the considerations of confounding 

effects of concurrent exposures [13]. In parallel with epidemiological studies, several 

animal models of GWI have been developed and used to study the individual as well as 

synergistic effects of different exposures in the Gulf war theatre. These studies also 

suggest that individual/synergistic effects of several organophosphates such as PB, 

CPF, CPO, DEET and/or nerve gas Sarin exposure in the presence/absence of 

physiological stress may lead to the symptoms as seen in GWI.  

1.1.4 Debilitating pathophysiology 

Our understanding of the pathophysiology of GWI generally remains incomplete despite 

evidence pointing to the involvement of the basic stress response. As a result, we still do 

not have a characteristic biomarker for this illness. Interestingly, symptoms of GWI 

including, long-term and severe fatigue that is not relieved by rest, gastrointestinal 

disorders, and neurological impairments, clinically resemble that of another stress-

mediated illness: Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) [14-

16] to such an extent that GWI has been addressed as a different subset of CFS/ME. 

Furthermore, immune and neuroendocrine irregularities such as impaired NK cell 

cytotoxicity as well as dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress 

response axis have been reported in both CFS/ME [17-19] and GWI [20-22]. Reduction 

in NK cell cytotoxicity has been associated with reduced levels of perforin in CFS/ME 

[23]. Similarly levels of intracellular perforin have also been observed in CD3−/CD56+ 

NK and CD3+/CD8+ cytotoxic T cells in GW veterans [24]. However, mechanistic details 

behind these similarities remain uncharacterized.  
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Conversely, several studies have highlighted significant differences between 

CFS/ME and GWI. First and foremost, unlike CFS/ME, multiple factors including 

environmental exposures, toxins, vaccines, and unknown infectious agents have been 

associated as potential triggers for GWI [2]. Furthermore, an evaluation of the presence 

of fibromyalgia (FM), multiple chemical sensitivity and psychiatric comorbidity in male 

veterans and male civilians with CFS/ME suggested that CFS/ME may have different 

underlying cause in veterans versus civilian populations [25]. Moreover, early studies of 

cytokine transcripts were able to differentiate the Gulf war veterans diagnosed with 

CFS/ME from healthy controls. Gulf war veterans with CFS had significantly higher 

levels of IL-2, IL-10, IFN-γ and TNF-α transcripts than healthy veterans returned from the 

Gulf war theatre. However, non-veterans suffering from CFS/ME were not significantly 

different from their respective controls [26]. In addition, our group has more recently 

observed differences in the immune signatures in GWI as well as CFS/ME in gender 

specific manner [27]. A linear classification model was constructed using stepwise 

variable selection to differentiate male and female, GWI and CFS/ME subjects from 

controls and each other. In this study, a decreased Th2 polarity was reported in female 

subjects with CFS/ME as compared to GWI and differences in IL-23/Th17/IL-17 axis 

were suggested to delineate GWI and CFS/ME. In particular, this study was able to 

differentiate female GWI and female CFS/ME subjects almost perfectly on the basis of 

IL-1b and IL-5 levels alone, albeit in a small pilot cohort (n = 10). However, male GWI 

could not be distinguished easily from their CFS/ME counterparts on the basis of 

minimally overlapping cytokine markers as these typically trended in the same direction 

compared to control. However, male GWI subjects were successfully differentiated from 

their CFS/ME counterparts in another recent study from our group where a 3-way 

multivariate projection model based on 12 markers of endocrine and immune function 

measured at three time points before during and after maximal exercise was used to 
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differentiate GWI subjects from healthy as well as CFS/ME subjects [28].  More recently, 

Khaiboulina and colleagues surveyed 77 serum cytokines and used Random Forest 

algorithm to identify a group of five cytokines namely, IL-7, IL-4, TNF-α, IL-13 and IL-17F 

to distinguish GWI and CFS/ME groups [29]. Their results suggested the involvement of 

Th1 and Th17 cytokines in GWI while Th1 and Th2 cytokines as well as a more diverse 

group of inflammatory cytokines and mononuclear chemo-attractant cytokines were 

suggested to characterize CFS/ME [29]. These observations, taken together, suggest 

different pathophysiology for both the illnesses namely, GWI and CFS/ME despite their 

overlapping clinical presentation. Nonetheless, pathophysiology of ME/CFS and GWI still 

remain elusive and more research is needed to characterize the underlying mechanisms 

and address the similarities as well as the differences between these illnesses. 

1.2 Multiple system dysfunction in GW veterans 

1.2.1 Immune dysregulation  

The immune system is a remarkably complex system of the body that protects the host 

from both external (such as bacteria and viruses) and internal threats (such as malignant 

transformation). In general, the immune system is separated into two branches namely, 

‘the innate immune system’ and ‘the adaptive immune system’. The innate immune 

system comprises primarily, white blood cells (leukocytes) such as Natural Killer (NK) 

cells, mast cells, eosinophils, basophils and phagocytic cells such as macrophages, 

neutrophils and dendritic cells to identify and eliminate the pathogens whereas the 

adaptive immune system consists of lymphocytes such as T cells and B cells [30]. The 

innate immune system responds rapidly to common pathogens but has a lack of 

specificity, whereas the adaptive immune system responds precisely, but takes several 

days or weeks to develop the response. However, subsequent exposure leads to a more 

vigorous and rapid adaptive memory response [31]. Multiple studies have reported 
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alterations in the immune cells of Gulf war veterans. For example, CD19+ B cell 

population along with the concentration of autoantibodies directed against myelin basic 

protein (MBP) in striated as well as smooth muscles were significantly elevated in GW 

veterans [20]. Moreover, significantly decreased cytotoxic activity of NK cells was 

reported in Gulf war veterans in comparison to controls [20, 26]. Similar impairment of 

NK cell activity was also reported in the ME/CFS patients [19].  

1.2.1.1 Cytokines and their dysregulation in GWI 

Immune cells communicate extensively with each other in mounting a response. This 

networked communication between immune cells is facilitated by small (~5-20 kDa) 

multifunctional immunomodulating glycoproteins called ‘cytokines’ that play important 

role in cell signaling. Over 300 cytokines have been identified so far including a host of 

chemokines, lymphokines, interferons (IFNs) and growth factors. In general, all major 

cytokines can be grouped into six families namely, Interleukins, Interferons (IFNs), 

Tumor Necrosis Factors (TNF) family, chemokines, growth factors and colony 

stimulating factors (CSF) (Table 1.1).  Several other classification schemes have been 

utilized to group cytokines on the basis of their function (pro-inflammatory and anti-

inflammatory), three-dimensional structure (Type-1 and Type-2 cytokines) and the 

structural homology of their receptors. A prominent feature of cytokines is that they allow 

the integration of immune cell behaviour in time across locations as immune responses 

are generated and may act in autocrine (on the cells that secrete them), paracrine 

(nearby cells), or in some instances in endocrine manner (on distant cells). Generally, 

cytokines are pleiotropic in nature i.e. a cytokine can have multiple functions. For 

example, interleukin-4 (IL-4) promotes the differentiation of the naive T cell, activates B- 

cells to produce immunoglobulin E, and inhibits macrophage activation [32].  
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Table 1.1: Cytokine families with their representative cytokines and their actions 
 

 

In addition, cytokines can also be redundant in their actions i.e., many cytokines 

can have similar functions, for example, IL-2, IL-4, and IL-5 all stimulate proliferation of B 

cells [32]. This already complex cytokine action is further complicated by the fact that 

cytokines can act synergistically as well as antagonistically. Moreover, cytokines are 

often produced in a cascade as one cytokine binds to a receptor of target cell and 

evokes it to synthesize additional cytokines in response to a challenge. Cytokines play 

important roles in cellular activation, relocation and differentiation and in maintaining 

tissue homeostasis [33]. Circulating immune cells and tissue-specific cells secrete 

cytokines in response to trauma, inflammation and infection to send signals to other 

Cytokine family Representative cytokines Actions 

Interferon family IFN-α, IFN-β, IFN-γ Antiviral proteins 

Tumor Necrosis 
Factor Family 

TNF-α, TNF-β Regulate inflammatory 
and immune responses 

Interleukin family All subfamilies from IL-1 to IL-20 Various actions 
depending on the 
interleukin and source 
cell 

Chemokine family IL-8, MCP-1, MIP-1α, MIP-1β, 
RANTES 

Direct cell migration, 
adhesion and 
activation 

Haematopoietins 
or colony 
stimulating factors 

IL-3, G-CSF (granulocyte colony 
stimulating factor), GM-CSF 
(Granulocyte-macrophage-CSF), M-
CSF (Macrophage-CSF) 

Promote cell 
proliferation and 
differentiation 

Growth factors TGF-α (Transforming growth factor 
α), TGF-β (Transforming growth 
factor-β), Epidermal growth factors, 
Fibroblast growth factors, Platelet-
derived growth factors 1& 2 

Regulation of immune 
cells 
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cells. As a result of this, certain specific cytokine levels may be up or down regulated to 

provide the proper cues to target cells. Accordingly, these specific cytokines along with 

the cells they recruit determine the nature of immune response at a given location and 

given time. For example, IL-12 alone generates a Th1 pro-inflammatory response as a 

ligand to macrophages in JAK-STAT pathway, but this response is down regulated in the 

presence of IL-10 [34]. Depending on the cues, the target cells may activate, proliferate, 

or move to the site of infection or immune attack in response to the signals received from 

the cytokines. Anomalies in this communication may cause certain chronic conditions.  

Since, immune cells and cytokines work in concert to formulate an effective 

immune response to an antigen or immune challenge, it was not totally unexpected to 

observe anomalies in the expression of cytokines in the GW veteran population. Several 

early studies of immune dysfunction in GW veterans confirmed altered cytokine levels in 

GWI though some early findings were contradictory. For example, Rook and Zumla 

initially proposed a shift towards type-2 (Th2) response as a characteristic immune 

signature in this population [35]. However, this was not observed in the several other 

veteran cohorts. In 1999, Zhang and coworkers found evidence of a type-1 (Th1) 

response with significant up regulation of RNA transcript for IL-2 and IFNγ, but neither 

IL-4 nor IL-6 in a population of gulf war veterans with CFS [26]. Similarly, the findings of 

Skowera and colleagues [36] suggested primarily an ongoing Th1-type immune 

activation in symptomatic GW veterans with elevated levels of IL-2, and IFN-γ producing 

CD4+ cells in the absence of in vitro stimulation and an expansion of IL-10 producing 

memory CD4+ cells in the presence of in vitro stimulation [36]. Conversely, regression 

and factor analytic methods were used in Brimacombe et al. (2002) to conclude a 

relationship of Th1 markers with the diagnosis of CFS and Th2 markers with the 

cognitive abilities in GW veterans [37]. Not surprisingly, Peakman and coworkers in 

2006 conducted a broad survey of literature and found no evidence to support 
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dominant polarization towards Th2 immune status alone in symptomatic GW veterans 

[38]. An exploration of vaccination effects found a mix of Th1 (IFNγ and IL-2) and Th2 

(predominantly IL-13) recall response to anthrax vaccine, whereas response to plague 

was polarized toward Th1 in male GW veterans [39]. Our preliminary works in small 

cohorts of GW veterans are also consistent with a mixed Th1: Th2 immune status [28, 

40]. Our group has found higher TNFα response to Phytohemagglutinin (PHA) 

stimulation in GWI subjects at rest as well as IL-5 and IFNγ response during the course 

of a maximal exercise challenge [28]. Similarly, several other investigators have either 

observed or proposed the dysfunction of immune system in GW veterans [41-44].  

Among these studies of immune system alterations, some specific studies [40, 

45] from our group are of note, namely our investigation of immune signaling networks 

across several levels of biology using the mathematical foundations of graph theory.  In 

a pilot study, we observed differences in the topology of immune signaling networks in 

healthy and GW veterans [40]. Graph theoretical analysis suggested the differences in 

the connectivity of NPY, IL-1α, TNF-α and CD2+/CD26+ nodes in healthy and GWI 

networks at rest. Physiological stress of Graded exercise caused significant restructuring 

around nodes for CD19+ B cell population, IL-5, IL-6 and soluble CD26 concentrations 

that was subsided post-exercise. More detailed analysis suggested that these 

restructured B and T cell motifs were in strong influence of IL-1α and CD2+/CD26+ 

nodes that potentially boosted lymphocyte and HPA axis stimulation in the context of 

mixed Th1:Th2 immune signature [40]. More recently, our group used gene expression 

profiles of peripheral blood mononuclear cells (PBMC) to numerically estimate the 

activity of 500 documented pathways in GW veterans and compared them with that of 

healthy veteran subjects. Our results suggested significant increases in the activity of 

pathways related to neuroendocrine-immune signalling and inflammatory activity in GWI, 

and significant decrease in the pathways related to apoptotic signalling [45]. 
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Furthermore, multilayered networks linking these pathways with symptom severity via 

changes in immune cell abundance, function and signaling were constructed. 

Uninterrupted links of pathway clusters supporting “neuronal development and 

migration” as well as “androgen mediated activation of NF-kB” with GWI symptoms via 

nodes representing the changes in the plasma levels of IL-10 and numbers of CD2+ 

suggested an over-expression of known exercise response mechanisms as well as 

illness-specific changes that may involve an overlapping stress-potentiated neuro-

inflammatory response [45]. Taken together, these observations provide additional 

evidence of immune dysfunction in GW veterans. 

1.2.2 Neuro-endocrine dysfunction  

There is mounting evidence suggesting neuroendocrine and immunological dysfunction 

in Gulf war veterans that may be potentiated by response to stress whether 

psychological, physiological, chemical or other. In a series of studies, Golier and 

colleagues investigated the possible link of the dysregulation of the hypothalamus-

pituitary-adrenal (HPA) axis with the pathophysiology of GWI [21, 22, 46, 47]. The HPA-

axis is a well-integrated neuroendocrine circuit that connects immune and endocrine 

systems with the central nervous system (CNS). Dysregulation in the HPA axis might 

significantly impact the function and status of the immune system as well as supporting 

neuroinflammation. Golier and colleagues in 2006 exposed symptomatic Gulf war 

veterans without any psychiatric illness, veterans with Post-traumatic stress disorder 

(PTSD) alone as well as non-deployed veterans to a synthetic glucocorticoid such as 

dexamethasone (DEX) and compared the levels of adreno corticotropin hormone 

(ACTH) in each group. They found that the suppression of the secretion of ACTH by the 

synthetic glucocorticoid was significantly aggravated in symptomatic Gulf War veterans 

without psychiatric illness, as well as in veterans with Post traumatic stress disorder 
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(PTSD) alone in comparison to the non-deployed veterans [21], suggesting altered 

feedback regulation of the HPA axis. In addition, the suppression of in situ cortisol by 

exposure to DEX was also found to be significantly greater in Gulf War veterans without 

psychiatric illness and Gulf War veterans with PTSD only than non-deployed veterans 

and Gulf War veterans with both PTSD and Major depression disorder (MDD) [22]. The 

main finding of this study was that Gulf War deployment was associated with 

significantly greater cortisol suppression by DEX on controlling for weight, smoking 

status, PTSD, and MDD. PTSD was not associated with response to DEX. Further, 

these same investigators observed substantial reductions in both basal and metyrapone-

stimulated levels of ACTH compared to healthy non-deployed veterans, suggesting that 

this might be due to a significantly attenuated ACTH response by the pituitary in 

veterans with GWI without PTSD [46, 47]. However, the mechanisms behind this 

reduced drive to the HPA axis for the excess responsiveness to neuroendocrine 

challenge have yet to be characterized. Other associated pathophysiology may include 

hypersensitivity of normal cytokine feedback to the HPA axis [48] as well as the 

expected stress-induced release of neuropeptides such as NPY and its mediation of 

innate immune response and cortisol levels [49].  

1.2.3 Neurological dysfunction  

As mentioned earlier, GW veterans were potentially exposed to several neurotoxic 

agents in the war theater such as pesticides, chemical warfare and PB, etc... 

Accordingly, increased rate of several neurological conditions such as Amyotrophic 

lateral sclerosis (ALS), brain cancers, migraine/headaches, seizures, neuritis and 

neuralgia, multiple sclerosis (MS) and Parkinson’s disease (PD) have been reported in 

GW veterans [13]. However, there has been a lack of consistency in the reports of 

occurrence of these neurological conditions. For instance, several studies have reported 
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higher rate of ALS in GW veterans until Horner and colleagues in 2008, suggested it as 

a time-dependent outbreak that disappeared after 10 years of deployment [50]. In 

accordance, epidemiological studies performed afterwards support the findings of 

Horner et al. (2008) [50] and did not find mortalities from ALS in deployed GW veterans 

in excess of controls [51]. Similarly, no significant differences were found in mortality due 

to brain cancer, Parkinson’s Disease (PD) and Multiple Sclerosis (MS) overall in GW 

veterans and controls [51]. Similarly, there were no significant differences in the 

occurrence of MS in GW veterans in comparison to non-veterans [52]. Nonetheless, 

another study reported 64% of the GW veterans with CFS/ME as well as non-veterans 

with CFS/ME were diagnosed with chronic migraines/headaches, which is significantly 

higher rate than that seen in healthy controls [53]. Moreover, veterans exposed to the 

highest levels of contaminants from oil well fires were reported to have increased rates 

of brain cancer deaths [51]. Results such as this support the existence of possible 

subgroups in GWI [13].  

In keeping with this, the results of neuroimaging studies have also supported the 

existence of subgroups in the GWI population. In 2003, Rayhan and colleagues [54] 

performed repeated 2-back working memory test with functional magnetic resonance 

imaging (fMRI) before and after bicycle exercise stress test and assessed the levels of 

lactate metabolite in the prefrontal cortex prior to and after an exercise challenge in ill 

GW veterans. Some veterans had decreased 2-back score but significantly elevated 

prefrontal lactate levels whereas some veterans had increased 2-back score compared 

to no change in 2-back score in healthy controls. Receiver-operating curve (ROC) 

assessment of classification on the basis of prefrontal lactate levels prior to exercise 

demonstrated the possible existence of two diametrically opposed subgroups in GWI 

[54]. Similarly, Weiner (2005) performed magnetic resonance imaging (MRI) and 
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spectroscopy (MRS) to initially identify brain metabolic abnormalities in choline/creatine 

ratios in GW veterans meeting Haley Syndrome 2 (Confusion-ataxia) criteria for GWI 

[55] but failed to confirm these findings in another study with a separate group where N -

acetylaspartate (NAA), creatine and choline levels did not differ significantly in 

symptomatic versus asymptomatic GW veterans [56].  

Reduced white and grey matter volumes in cortical regions, reduced signalling in 

the thalamus, caudate, hippocampus, globus pallidus and putamen have been 

consistently reported in several imaging studies [57-59]. Specifically, fatigue, pain and 

hyperalgesia in this population were associated with the diminished white matter integrity 

in GW veterans with CFS/ME or CMI in a group of fMRI studies [53, 54, 57]. Other 

imaging studies used physostigmine infusions to challenge the cholinergic system [58, 

60] and reported abnormal cerebral blood flow through the hippocampus before the 

physostigmine challenge, and after the challenge in an fMRI study [58]. Veterans 

satisfying the criteria of Haley syndromes 2 (Confusion-ataxia) and 3 (Neuropathic pain) 

showed significantly abnormal increases in regional cerebral blood flow in the 

hippocampus of both hemispheres [58]. Another study using single-photon emission 

computed tomography (SPECT) reported similarly elevated cerebral blood flow after a 

physostigmine challenge [60] collectively suggesting the exposure to chemicals in War 

Theater that can act on the cholinergic system. Collectively, all these findings suggest 

abnormalities in the central nervous system of this population. 

1.2.4 Dysfunction of other systems  

As, mentioned earlier, several lines of research have suggested dysfunction in immune, 

endocrine and central nervous signaling in GWI. Other abnormalities have also been 

reported in this population in recent years. For example, In 2014, Georgopoulos and 

coworkers [44] reported a significant reduction in the six alleles of a protective human 
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leukocyte antigen. In a follow up study by the same group in 2016, Authors [61] 

demonstrated the presence of HLA- and non-HLA-related neural influences on 

Neurological-Cognitive-Mood (NCM), Pain and Fatigue symptom severity in GWI, 

suggesting an involvement of genetic vulnerability to disruption of neuro-immune 

function. In another line of research, mitochondrial dysfunction has been linked to GWI 

with a hypothesis that chemical exposures related to the Gulf War can be toxic to 

mitochondria and can cause the symptoms related to GWI such as fatigue and 

dysfunction of brain, muscle, gastro-intestine, sleep and autonomic nervous system [13]. 

Recently, It has been observed that post-exercise recovery rate of phosphocreatine was 

significantly slower in GW veterans in comparison to controls matched for the age, sex 

and ethnicity [62]. Phosphocreatine is a back-up energy source for muscles that is 

depleted during exercise, and the speed of recovery is dependent on the rate of 

mitochondrial ATP synthesis. Delayed recovery of phosphocreatine has been confirmed 

as a robust measure of mitochondrial defects in vivo [63]. More recently, significantly 

elevated mitochondrial DNA lesion frequencies and mitochondrial DNA copy numbers 

(mtDNAcn) were found in the peripheral blood mononuclear cells (PBMC) of GW 

veterans than controls, indicating the mitochondrial dysfunction in this population, albeit 

in a pilot cohort [64]. 

The findings of these human studies provide strong evidence of the broad insult 

to multiple affected systems. However, there are no widely accepted broadly applicable 

clinical markers of GWI known at this time. There are many reasons that might have 

affected the progression towards definitive clinical markers.  For example, early studies 

of GWI were hampered by a still evolving case definition and studies are still challenged 

by the highly heterogeneous nature of this illness group. Moreover, there are no specific 

details of exposures that could explain who exposed to what chemicals. Importantly to 
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this work, conventional approaches still focused narrowly on small sets of markers 

without casting these in the context of a coordinated network of interacting cellular and 

molecular components. It is our belief that connectivity offers a highly complementary 

perspective, one that supports a higher contextual resolution that more faithfully 

represents mechanisms of illness.  Focus on these mechanisms rather than expression 

of markers promises among other things to facilitate the translational integration of 

human and animal studies targeting different systems of the body thereby helping fill the 

remaining gaps in our understanding.  

1.3 Animal models of GWI 

Faced with a scarcity of data rigorously linking specific groups of Gulf war veterans to 

their different exposures, various animal models were tested across a range of possible 

exposures. For example, veterans were widely exposed to carbamates (in prophylactic 

medicines), organophosphates (in pesticides and nerve agents) that act as reversible or 

irreversible inhibitor of AChE enzyme activity respectively. Therefore, chronic inhibition 

of AChE enzyme activity by organophosphates and/or carbamates is widely 

hypothesized as a key mechanism underlying the persistent sickness behaviour that 

manifests in GWI veterans. Acetylcholine (ACh) is a neurotransmitter that binds to its 

receptors present on postsynaptic membrane for transmitting signals to and from 

innervated muscles. AChE enzyme is an enzyme capable of hydrolyzing the ACh and as 

a result, it helps in maintaining the low level of ACh on the postsynaptic membrane, 

required for uninterrupted neurotransmission [65]. The inhibition of AChE enzyme 

inhibits the hydrolysis of ACh leading to increase in concentration at the postsynaptic 

membrane. This eventually causes disrupted neurotransmission and the hyper-

stimulation of nicotinic and muscarinic receptors [65]. Various animal models including 

rat, mouse, insects and bovine have been used to study the adverse effects of a number 
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of chemical exposures in Gulf war such as pesticides, PB, insect repellants, nerve 

agents and stress either alone or in combination as well as underlying mechanisms 

including AChE inhibition [13]. 

Of all the exposures, PB, a carbamate medication that also acts as reversible 

inhibitor of the AChE enzyme activity was perhaps the most widely studied as a 

causative agent of GWI. This hypothesis was further supported by the fact that the 1991 

Gulf war was the only conflict in which PB was widely used by military personnel as a 

prophylactic measure to protect against effects of possible nerve gas attacks [66]. 

Indeed, the findings of the early studies established the adverse effects of PB on nerve 

and immune function [67, 68], along with its effects on cardiovascular structure [69], 

muscular [70] and gastrointestinal systems [71]. More recently, the administration of PB 

prior to a stressor was linked to long-term learning and social behavioural changes such 

as implulsiveness and aggressiveness in a rat model of GWI [72]. In an extension of this 

study, the expression of genes associated with stress response, learning and memory 

were surveyed in the hippocampus and hypothalamus of rats. Their results suggested 

that exposure to PB prior to stress applied daily for 10 days increased the expression of 

three genes in the hippocampal region implicated in memory development, namely 

brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and 

calcium/calmodulin-protein kinase II alpha (CamKII) [73]. However, these changes in 

gene expression in the central nervous system (CNS) were not linked to a disruption of 

Blood Brain Barrier (BBB) integrity [74].  

In addition to PB, veterans were exposed to several other irreversible and 

reversible AChE inhibiting organophosphates, such as pyrehtroid-based pesticide 

Permethrin (PER), Chloropyrifos (CPF), Chlorpyrifos Oxon (CPO), the insect repellant N, 

N-diethyl-m-toluamide (DEET) and possibly low levels of the nerve gas Sarin. In recent 
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years, the effects of these potential organophosphate exposures have also been 

investigated in various animal models of GWI with or without PB. For example, exposure 

to acute levels of PB and PER for 10 days in a mouse model of GWI leads to an 

increase in the anxiety-like behaviour, psychomotor problems and delayed cognitive 

impairment in exposed animals [75]. In addition, an increased astrogliosis was observed 

in exposed mice after 150 days (chronic post-exposure) [75]. The elevated levels of 

precursors of phosphocholine that are required for the endogenous synthesis of ACh 

enzyme namely, phosphatidylcholine (PC) and sphingomyelin (SM) further supported 

this mouse model of GWI [76]. In another mouse model of GWI, 6 month-old mice 

exposed to the CPF alone as well as in combination with PB and PER (CPF + PB + 

PER) showed significantly reduced levels of the synaptophysin in the hippocampus and 

number of doublecortin positive cells in dentate gyrus (DG) [77]. This significant 

reduction in synaptophysin and doublecortin indicate compromised synaptic integrity and 

altered neuronal differentiation. In addition, a significant increase in brain acetylcholine 

(ACh) levels was also observed in mice exposed to CPF with or without PB and PER 

[77].  In addition, the effects of combined exposure to PB, DEET and PER with or 

without physiological stress for 4 weeks were investigated in adult mice [78]. Mice 

exposed to the combination of PB + DEET + PER exhibited depressive and anxiety-like 

behaviour with spatial learning and memory dysfunction. Mild stress exacerbated these 

behavioural impairments in spatial learning and memory. Indeed, the mice exposed to 

PB, DEET and PER exhibited reduced neurogenesis, partial neuron loss, and mild 

inflammation in the hippocampus even 2 months after exposure [78]. Consistent with 

this, mice exposed to PB+DEET for a period of 2 weeks followed by a sarin gas 

surrogate, diisopropyl fluorophosphate (DFP), exhibited alterations in dopamine and 

glutamatergic neurotransmission. As with combined exposure to PB + DEET + DFP, 

exposure to CPF as well as DFP alone for a week, caused similar effects in these mice 
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[79]. In a separate study in 2011, Middlemore-Risher and colleagues observed a 

concentration-dependent increase in mitochondrial length, a decrease in mitochondrial 

number (indicative of increased fusion events), and a decrease in mitochondrial 

movement in axons of rats after 1 or 24 h exposure to CPF and its active metabolite 

CPO [80]. Interestingly enough, these changes occurred at concentrations of CPF and 

CPO that did not inhibit acetyl cholinesterase activity, again suggesting the involvement 

of some mechanism other than cholinergic transmission [80]. Likewise, mice exposed to 

CPF for 5-days at subclinical level showed an early (2-7 days) increase in synaptic 

transmission in the CA3-CA1 region of the hippocampus after CPF injection. Conversely, 

a decrease in the CA1 spine density as well as synaptic transmission was observed in 

these mice as long as 3 months later [81]. Moreover, signs of cholinergic toxicity were 

absent in these mice again suggesting a mechanism other than AChE inhibition for 

these adverse effects [81]. Similar to CPF exposure, a low dose exposure to DFP for 5 

days caused chronic depression, anxiety and memory problems even after 3 months of 

the exposure in a rat model of GWI [82]. Moreover, chronic low dose of DFP exposure 

was able to damage the neurons in these rats [82]. Indeed, exposure to DFP alone was 

able to cause neuroinflammation throughout the brain of mice as well as rats [83, 84].  

However, prior exposure to corticosterone equivalent to levels induced by physiological 

stress potentiated the neuroinflammation caused by DFP alone in both rat and mouse 

models of GWI [83, 84]. In contrast, a chronic 2-week exposure to PB/DEET in the 

absence of stress hormone neither produced neuroinflammation alone nor was able to 

raise the level of neuroinflammation caused by DFP in this model of GWI [83].  

Indeed, animal models provide critical insights into the effects of exposure to 

agents used in the GW theatre and results strongly support a neuro-immune basis for 

this illness. However, similar cytokine or phospholipid surveys are not easily obtained 

from human brains. Also, animal models until now have largely focused indirectly on the 
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effects of exposure and have not attempted to directly mimic neuro-immune signaling in 

the brains of affected veterans. Despite the collective body of evidence from the animal 

studies mentioned above, the picture of the GWI pathobiology in humans is still blurred. 

Nonetheless, findings from animal and human studies alike suggest that the synergistic 

or individual adverse effects of organophosphates present in theatre in prophylactic 

medicines, pesticides and nerve agents along with physiological or psychological stress 

might have altered neuro-immune signaling in genetically susceptible GW veterans. 

Considering the extensive cross-talk between the brain and the periphery we propose 

that the evaluation of easily accessible clinical markers with far reaching inflammatory 

effects such as cytokines offers a promising opportunity for identifying biomarkers as 

well as therapeutic solutions for GWI. 

1.4 Cytokines: Potential biomarkers of cell signalling in GWI 

As mentioned earlier, the involvement of complex patterns of cytokine signaling in most 

of the aspects of immune response has gained in appreciation in the last two decades 

and cytokine surveys have been widely used as reliable indicators of inflammation, 

disease state, or response to therapy in a wide variety of pathologies. Measurement of 

peripheral cytokine levels remain an attractive avenue to evaluate the state and severity 

of inflammation in different diseases where diagnostic tests are currently either too 

invasive or not available at all. For example, altered cytokine profiles have been 

observed in several complex chronic illnesses including, Gulf War Illness (GWI) [26, 27, 

29], rheumatoid arthritis (RA) [85], Chronic Fatigue Syndrome (CFS) [86, 87], Multiple 

Sclerosis (MS) [88, 89], Inflammatory Bowel Diseases (IBDs) such as Ulcerative Colitis 

(UC) [90, 91] and Crohn’s Disease [91, 92] as well as several types of cancers including 

colorectal carcinoma [93], ovarian cancer [94] and pancreatic cancer [95]. Accordingly, 

cytokine panels are increasingly used as clinical markers of pathogenesis in a range of 
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diseases [34]. Moreover, cytokine therapies are also among the most promising avenues 

of treatment in several infectious, autoimmune and immunosuppressive illnesses [96].  

Indeed, the therapeutic administration of cytokines, modulation of cytokine action, or at 

times immune gene therapy is being used for a wide range of infectious and 

autoimmune diseases, in immuno-compromised patients with AIDS, and in neoplasia 

[96].  

As mentioned earlier, human as well as animal studies of GWI have confirmed 

the alterations in the expression levels of inflammatory cytokines in the periphery and 

brain respectively, suggesting an inflammatory response to stress and neurotoxins [26, 

27, 83]. Indeed, inflammation is a major part of GWI and can affect multiple behaviours 

including sleep, pain, appetite and cognition (learning and memory) that could fit into the 

definition of ‘sickness behaviour’. Interestingly, it is already known that cytokines can 

interact with neurons [97] and in turn give rise to a ‘sickness behaviour’ [98]. Therefore, 

a basic understanding of the complex inner-workings of the immune system moves us 

one step closer to integrating sickness behaviour symptoms with what we know about 

physiology.  

Despite these observations, it is still challenging to use cytokines as a diagnostic 

tool due to their complex pleiotropy. The levels of individual cytokines vary greatly from 

person to person due to several factors such as physiological environment including 

stress, fitness level and feeding state of individual, their location, signals received by the 

releasing cells and the type of target cells [99]. Therefore, it is challenging for traditional 

univariate approaches that study one element at a time to decode their behaviour as a 

part of an integrated ecosystem. Historically, experimental techniques such as enzyme-

linked immune sorbent assays (ELISAs) were restricted to measuring a small number of 

cytokines in each sample. However, commercially available multiplex assays have now 

enabled the quantitative measurements of fifty or more cytokines simultaneously and are 
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allowing investigators to address the contextual complexity of immune responses [99]. 

With the advent of these new broad-spectrum assays it is now possible to observe and 

map the community-wide immune dialogues supported by cytokine signaling and deploy 

new data analytical techniques of these patterns towards the study of chronic complex 

illnesses such as GWI. 

1.5 Systems Biology: Background 

Although the reductionist approach of studying individual elements of biological systems 

has served us well in the past and continues to provide insights into the workings of 

these entities, it is increasingly clear that these diverse, pleiotropic units exist in the 

context of a larger and well-integrated community and interact dynamically to produce a 

coherent behaviour directed at efficiently accomplishing their biological function [100]. 

Our current understanding of networked biological systems is that they are robust to 

random perturbations and external attacks across different scales of biology. Indeed, 

robust networks ensure the maintenance of specific functionalities against perturbations 

or challenges by applying alternative modes of action through adequate control of 

structural and functional components [101]. In biological systems specifically, the 

maintenance of functionality is determined by the individual biological constituents 

involved and underlying communication patterns among them [100]. A perturbation such 

as an immune challenge or environmental condition might force a biological system to 

move out of its normal stable steady state i.e. resting homeostasis. If conditions are such 

that the system remains within a prescribed operating range (basin of attraction), then it 

will return back to its original resting state upon removal of the challenge. 

Notwithstanding, if a significant challenge persists and results in conditions outside the 

normal response envelope the system may adopt an alternative response to the 

perturbation by recruiting failsafe mechanisms not normally used. The existence of 
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functionally redundant constituents for example, duplicate genes, parallel pathways that 

might complement the function of other genes/ pathways through alternative 

mechanisms in case of failure have been reported in several biological systems [102-

104]. Such an adaptive response to external stimuli would manifest as an observable 

restructuring of interaction patterns among the active constituents of that biological 

system.  

The properties that emerge from the collective behaviour of this kind of complex 

interaction between entities are challenging to explain by traditional piecewise 

approaches. In the last two decades, the rise of “omics” research (genomics, proteomics, 

metabolomics etc.) and the emergence of high throughput technologies such as next-

generation sequencing, gene expression profiling, mass spectrometry, and multiplex 

assays as well as flow cytometry and other technologies offering single-cell resolution 

have provided breadth of coverage to capture the comprehensive snapshots of 

biological processes in a cellular environment by their extended capability of measuring 

multiple genes, proteins, metabolites, cells and/or cytokines [105]. Indeed, enormous 

amounts of data are generated today through these next-gen technologies. However, 

the data generated is similar to the list of parts of any engineered system such as radio, 

television, or a car’s electric system without any wiring diagram or manual [106]. It is 

impossible to fix or recreate a complex system without the wiring diagram. By the same 

token, it is necessary to understand the underlying wiring patterns of the complex human 

physiological systems if we are to formulate and test clinical hypotheses in any but the 

simplest of pathologies, otherwise this enormous amount of data may eventually leave 

us data rich and knowledge poor [105]. A holistic systems biological approach provides a 

framework that bridges experiments with mathematical and computational concepts to 

infer the complex interactions of interdependent cellular components (cells, genes, 

proteins, metabolites etc.) within a biological system, the evolution of these system-wide 
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relationships with time and the emergent behaviours they support in response to 

external perturbations at various levels of biological complexity [105].  

1.5.1 Inference of regulatory interactions 

One of the key challenges in studying biological systems is to unravel the underlying 

complex interactions that determine the function and behaviour of a biological system. 

This complexity is such that much of this underlying circuitry is still unknown after 

decades of efforts, especially as it applies to higher organisms such as humans. As a 

consequence of this inherent interactivity in biological systems, changes in the 

expression levels of active biological markers reflect the underlying recruitment and 

instantiation of an active regulatory mechanisms and this can be represented as 

changes in network structure. Therefore, a better understanding of the structure of these 

co-expression networks has the potential to enhance our diagnostic potential [107]. 

Social and behavioural networks are widely studied using the principles of classical 

statistics and graph theory. Application of these principles can be directly extended to 

another level of biology. For example, gene co-expression networks are widely studied 

using Pearson or Spearman’s correlation coefficients as measure of association. More 

sophisticated measures such as mutual information have also been deployed in tools 

such as ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) 

[108]. ARACNE has been used to map nonlinear associations among transcription 

factors and their target genes in several diseases including brain tumors [109], 

oncogenesis [110] and Schizophrenia [111]. Though informative, the inferred undirected 

networks represent static snapshots of the underlying interactions, typically at rest. 

Indeed such association networks fail to elucidate the direction of flow of regulatory 

information and as such are devoid of cause and effect information.  
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Most biological systems are dynamic in nature and therefore the 

expression/abundance of genes/proteins or other biomolecules changes with time and in 

response to different perturbations and so their interaction patterns. Static regulatory 

networks are unable to capture the evolution of regulatory networks. Approaches such 

as Dynamic Bayesian networks [112], regression based approaches such as TIGRESS 

[113], GENIE3 [114] and others have been developed to infer the structure of directed 

graphs active in the data. The added knowledge about the direction and mode of 

information flow could be very helpful to identify the underlying regulatory principles. For 

example, enrichment of specific feed-forward motifs was identified in a microRNA-

transcription factor regulatory network of Schizophrenia documented in the databases 

[115]. In principle, one should know the structure of regulatory interactions a priori to 

identify such specific principles of regulation. However, a major challenge for the 

systems/network biology is that a significant part of regulatory circuitry still remains to be 

discovered. In such cases, the temporal patterns of expression/abundance must be used 

as proxy to infer causality. The inference of underlying wiring of complex biological 

systems with the help of computational and mathematical methods may help us to 

predict the missing circuitry that can be further verified experimentally. Several methods 

were developed for the inference of directed networks from time course data using 

different mathematical foundations. These methods range from simple and effective 

methodologies such as rate equation models [116] to more complex model forms such 

as formal Hill kinetics [117].  

1.5.2 Wiring of biological systems is not random 

In general, any complex system with interacting constituents can generally be 

represented as graphs/networks where individual constituents represented as 

nodes/vertices and the interactions among them represented as edges/links. Depending 
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on the type of data available, these edges can further illustrate the direction of regulation 

as well as the mode of action i.e., activator or inhibitor in the regulatory network to 

further facilitate the simulation of complex system behaviours. Real world networks were 

initially considered random in structure and studied using the model proposed by Erdos-

Renyi [118]. In the late 90s, two simultaneous studies observed that real world networks 

connectivity is not randomly distributed but arranged according to certain principles. In 

particular, Watts and Strogatz (1998) [119] observed that any node in a real world 

network could be reached from any other node by following only a few links. In other 

words, the average path length between two nodes or the diameter of a real-world 

network is relatively shorter than that of random networks. Structures such as these 

were said to have a small-world architecture [119]. In addition, small-world networks 

exhibit a high degree of clustering meaning essentially that any two nodes having a 

same third node as a shared neighbour have a higher probability of being neighbours to 

one another and can be described as having a high clustering coefficient. 

Simultaneously, Barabási and Albert (1999) [120] observed that the degree distribution 

in real world networks including biological networks do not follow a Poisson distribution 

rather approximates the power law distribution: 

r k( ) ~ k-g                                              (1.1), 

where, γ is the degree component. They termed this structure as ‘scale-free’. Power law 

distribution implies that most nodes in a real-world network have a few connections with 

increasingly small number of highly connected ‘hubs’. Several biological networks such 

as metabolic networks, neuronal network in Caenorhabditis elegans, and protein-protein 

interaction networks have been reported with the characteristics of both scale-free as 

well as small-world networks [119, 121]. These observations in biological networks have 

revolutionized the application of graph/network theory to the systematic analysis of 
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design principles in complex biological networks and have given rise to a new field called 

‘Network Biology’. Several of the classical graph theoretical measures of topology 

namely, degree distribution, clustering coefficient, shortest path length etc. have been 

widely used to study the global topological properties of biological networks. As per our 

current understanding, the global structural features of biological networks ensure 

robustness against random attacks and exposures. For example, higher clustering 

coefficients imply the existence of topological modules or a community structure in a 

biological network. These modules define the tightly connected sets of genes, proteins 

or cells that accomplish a certain function together and confer robustness to the system 

from random environmental perturbations or bacterial and viral attacks by virtue of their 

usually weak connections to more remote outer nodes/modules [122]. Many studies 

supported the existence of modules or community structure in biological networks for 

example, metabolic networks [123], gene regulatory networks and protein-protein 

interaction networks [124]. Moreover, alterations in topological modules have been 

reported in several diseases such as Inflammatory bowel disease (IBD) [125], 

Alzheimer’s [126] and Parkinson’s disease [127].  

In addition, several other local specialized patterns of interaction such as ‘hubs’, 

‘motifs’, and ‘bottlenecks’ are reported in biological networks and have been shown to 

play important roles in maintaining the robust function of a biological system. For 

example, highly connected ‘hubs’ in otherwise sparsely connected biological networks 

create inhomogeneity in network structure that eventually provides robustness against 

frequently occurring random errors [128]. However, this is traded off with the lethality 

caused by the removal of ‘hub’ nodes from the network. Hub proteins tend to be 

encoded by essential genes and the removal of highly connected ‘hubs’ proteins from 

the protein-protein interaction networks confirmed to be lethal at least in the model 

organisms [129]. Similarly, ‘motifs’ that are specific patterns of interactions among small 
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subset of 3-4 nodes are significantly overrepresented in complex biological networks 

compared to random networks [130] and have been shown to play important roles in 

ensuring the robustness of biological systems [131]. For example, positive and negative 

feedback loops are used in a wide range of regulatory networks, including the cell cycle, 

the circadian clock and chemotaxis [100, 132]. Similarly, so-called ‘bottlenecks’ are the 

genes/proteins with high network betweenness centralities; these have an even higher 

tendency than a hub gene/ protein of being essential to network function [133]. Findings 

such as these underscore the importance of changes in local topological properties such 

as betweenness centrality, degree centrality (hub nodes) or activation of an alternative 

motif as such, can lead to the significant alterations in the overall function of a biological 

network. Several other graph theoretical measures such as closeness centrality, 

eigenvector centrality as well as hub and authority scores are available to further 

quantify local changes in network connectivity and provide details into the importance of 

a node in the context of the greater network.  

1.6 Hypothesis and current study 

As described in several of the sections above, GWI is a debilitating illness with complex 

constellation of symptoms that affect several systems of the body including immune, 

endocrine and nervous system. Although, several animal and human studies link GWI to 

the stress response, there is still no clear idea of its pathophysiology. One of the 

important reasons behind this ambiguity may be that most of the animal and human 

studies were limited to the survey of a handful of genes/cytokines/phospholipids and did 

not study them as part of a complex system of interacting components. It is now 

increasingly clear that biological systems are robust and try to maintain their core 

functionalities against attacks and challenges by using alternative mechanisms 

supported through specific topological structures of molecular and cellular networks. In 
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doing so, the system can move back and forth from its stable steady state to alternative 

response states within the variety of basins. In certain cases such as in response to an 

illness, the human physiological system might move out of range of its central basin or 

resting state to an alternative homeostatic region in an effort to adapt and under certain 

conditions it might not come back to its original state [101]. In this study, we hypothesize 

that GWI is a condition where the regulation of principal physiological systems have 

been displaced from their original homeostasis to a less efficient but persistent 

alternative regulatory regime. In this thesis, we focus on immune function and the 

cytokine signaling networks that oversee this as it applies to Gulf war veterans. Since 

cytokines work in close collaboration with each other, therefore we further hypothesize 

that the cytokine communication patterns would be altered in response to a challenge in 

veterans affected with GWI in a way that differs significantly from their healthy 

counterparts. In principle, these regulatory networks can be used to identify alternative 

steady states by considering the biochemical kinetics of the system. Such stable 

regulatory modes each support alternative patterns of interaction and will manifest as 

structurally different biomarker association networks. In this thesis, we focus on 

exploring this further by studying changes in immune networks manifested in 

experimental; data collected in different subject groups by using formal graph theoretical 

methods. We posit that characteristic network signatures exist for chronic illness 

conditions and that these may eventually determine important drug targets. Specifically, 

they may support the network-informed design of treatments able to overcome the 

biochemical energy barrier separating stable healthy immune regulation from the 

persistent dysregulated GWI homeostatic regime (Figure 1.1).  The hypothesis being 

that the illness-specific appearance of subsets of associations and the disappearance of 

others may indirectly point to the characteristic activation and inactivation of signaling 

mechanisms involved in perpetuating illness.  This focus on normalizing associations 
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differs significantly from the conventional clinical use of observational data, which 

remains rooted in the normalization of individual marker expression.  Interventions 

directed at restoring abhorrent association patterns instead of normalizing marker 

expression would in essence be targeting root-cause illness mechanisms. Indeed this 

work presents metrics for describing a departure from desired regulatory patterns of 

marker co-expression that can be used as quantitative measures of illness severity and 

conversely measures of success of an intervention.    

 

 
Figure 1.1: Conceptual framework of the hypothesis: GWI homeostatic regime is 
different from the homestatic regime in healthy controls and require to cross an energy 
barrier to move to the healthy regime. Studying the alterations in the underlying 
molecular patterns may help to plan the treatment to identify the drug targets in the 
circuitry to make the circuitry more like healthy controls and cross the energy barrier. 
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Several systems-directed studies conducted by our group have compared the 

topological architecture in immune signaling networks constructed from a priori defined 

clinical groups of GWI and healthy controls with the aim of identifying illness-specific 

network features. Indeed, this research has successfully identified individual elements 

and local sub-assemblies that drive the symptom-mediated shifts in the topology of 

these networks across several levels of biological complexity [40, 45]. However, these 

studies consisted of early analyses in static snapshot data and as such did not support 

direct consideration of the subsequent dynamical modes supporting the emergence and 

exacerbation of symptoms [134,135]. 

In this thesis, we move towards the inference of directed networks from time 

course data in an effort to gain additional insight into altered immune regulatory 

principles that might support the persistence of GWI. As mentioned earlier, several 

methods with different mathematical backgrounds have been proposed for the 

identification of underlying directed regulatory networks. However, there remain several 

unanswered questions regarding the identifiability of directed networks under 

experimental constraints typical of in vivo studies such as, suitability and performance of 

methods, data requirements, and other important aspects such as optimization of 

parameters for improving the performance of these methods. In Chapter 2, we explore 

the issues mentioned above in detail. In Chapter 3, we define functional sets in a 

multiplex panel of 16-cytokines and use the insights and methods developed in Chapter 

2 along with prior knowledge of cytokine signaling to infer the interaction networks 

among these functional sets. A theoretical comparison of the immune network structure 

across subject groups identified significant feed-forward mediation of IL-23 and IL-17 by 

IL-6 and IL-10 as distinguishing control elements that were characteristically active in 

GWI versus healthy veterans. Furthermore, simulated restructuring of the regulatory 

circuitry in GWI that would result by applying an IL-6 receptor antagonist in combination 
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with either a Th1 (IL-2, IFNγ, TNFα) or IL-23 receptor antagonist predicted a partial 

rescue of immune response elements previously associated with illness severity.  

In Chapter 4, we extended the systems biological approach to study the cytokine 

communication patterns in a mouse model of GWI and constructed the undirected co-

expression patterns among 12-cytokines in response to the neurotoxin relevant to GWI 

namely, Diisopropyl fluorophosphates (DFP), a sarin gas surrogate with and without 

prior physiological stress. Although, the effects of DFP were subdued in the conventional 

comparison of immune marker levels. Clear topological differences due to the inclusion 

of DFP in the exposure regimen were evident in the comparison of immune association 

networks in response to CORT LPS and CORT DFP LPS exposures. Our results also 

confirm the role of CORT in the exacerbation and consistency of inflammatory response 

in the periphery. Further, we attempted to align these immune response networks to 

DFP in mice with prior exposure to CORT equivalent to physiological stress with the 

immune signaling network observed in human subjects affected with GWI. To our 

surprise, we identified an evolutionarily conserved characteristic active motif that was 

shared between the mouse and high trauma GWI. The detailed studies are described in 

chapters ahead. 
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2.1 Introduction 

Before the emergence of high throughput techniques, biology was deeply entrenched in 

a reductionist study of one component gene or protein at a time. Though now often 

depreciated, such studies have provided a wealth of information about the various roles 

of individual molecular entities. With the advent of high throughput techniques such as 

microarray, mass spectrometry, RNA-seq, chip-seq and multi-channel flow cytometry, it 

is now possible to simultaneously survey many cellular components including mRNA, 

proteins, and metabolites. There is now a growing appreciation that almost all biological 

morphologies and functions emerge as a result of complex interactions between 

constituent molecules or entities [1]. These interactions drive fundamental processes 

within various intra-cellular compartments, ultimately determining the behaviour of a cell 

as well as the extent and nature of signaling with neighbouring cells [2] in both health 

and disease. As such, understanding these interactions can ultimately lead to more 

effective clinical treatments. Specifically, an integrative systems approach to biology has 

the potential to provide new insights into complex illnesses by leveraging broad 

molecular and cellular surveys [3] to cast various disease-associated genes and related 

pathways [4] in the proper mechanistic context. However, two major challenges exist: (i) 

the accurate identification of biological regulatory networks, also called reverse 

engineering and, (ii) the quantitative study of regulatory network structure and function, 

as it applies to clinical medicine. 

In the past two decades, the reverse engineering of causal gene regulatory 

networks from time course expression profiles has received special attention with a 

number of methods and mathematical formulations being proposed for network 

inference. In Appendix 2.1, we present a summary of the principal methods grouped into 

several broad classes, namely: Logic-based models such as Boolean networks (BN) [4-
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9], probability based methods such as dynamic Bayesian networks (DBN) [10-17] 

information theoretic approaches [18, 19], and Ordinary Differential Equations (Linear 

and Non-linear) based methods [20-28].  In addition, model free approaches with roots in 

machine learning/data mining [29-31] and hybrid methods [18, 32-35] have also become 

popular avenues for the inference of directed biological regulatory networks from time 

course data. A number of excellent reviews exist that describe the underlying principles, 

advantages and limitations of various inference methods [36-45]. However, with the 

exception of the DREAM (Dialogue on Reverse Engineering Assessment and Methods) 

community-wide challenge [46-50], very few initiatives have sought to compare the 

relative performance of these methods directly [51-54] and in quantitative terms. They do 

agree nonetheless that the availability of suitable data constitutes one of the primary 

obstacles to the more complete and accurate inference of directed biological networks 

[49]. This is only exacerbated with in vivo human or animal studies where blood can only 

be sampled at low frequency (10– 15 time points) across a relatively short time horizon 

(24 hours or less). Moreover, for budgetary reasons such detailed studies are typically 

limited to relatively small subject groups (often less than 20 subjects) examined under a 

select number of response conditions (often only 1) [55].  

It is very important to keep such experimental limitations in mind if in addition to 

recovering connectivity one is also attempting to infer directed networks for the purpose 

of designing candidate treatment courses that might be directly predictive of clinical trial 

outcomes in human subjects. If this is the objective then the method must also allow the 

user to simulate the dosage and timing of specific network perturbations. While several 

important inference algorithms have been proposed (Appendix 2.1), many require a 

quantity and type (e.g., knockout) of data that is more consistent with in vitro 

experimentation in cell cultures than with in vivo experimentation in human or animal 

subjects. For example, Boolean network (BN) models allow the user to draw on a 
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broader body of a priori knowledge and represent response dynamics as discrete on off 

transitions with a simple delay. However, BN algorithms such as REVEAL [6] remain 

computationally expensive and sensitive to experimental noise [56]. Moreover, discrete 

on-off behaviour remains a coarse-grained approximation with a resolution that is 

typically unsuitable for treatment design beyond the initial exploratory phases. These 

issues are partially addressed by computationally faster and noise-tolerant probabilistic 

Boolean networks (PBN) [8, 9] where relationships between variables are captured as 

joint probability distributions. Dynamic Bayesian networks (DBN) offer further 

improvements in the analysis of experimental time course data [57] and several 

algorithms have been proposed including BANJO [10] BNFINDER [14, 15], GlobalMIT 

[13], and DREM [16, 17]. While DBNs can infer feedback loops they continue to require 

data exceeding that of typical in vivo animal studies despite efforts to control 

computational complexity with alternative scoring methods such as GlobalMIT [13] and 

BNFINDER 2 [15]. Similar to DBNs, information theoretic algorithms such as Dynamic 

CLR [18] and TD-ARACNE [19], have become available to infer regulatory networks 

from time course data. In general, information theoretic approaches use a generalization 

of the pair-wise correlation coefficient called mutual information (MI) [58]. As with the 

basic Bayesian model, MI is a non-parametric measure, making no assumption 

regarding the distribution of the data. Although such methods typically require 

substantial amounts of data, improvements in performance reported for TD-ARACNE are 

such that we have retained the latter as a candidate method in the current comparative 

analysis. 

Making simplifying assumptions about the distribution of the data allows one to 

move towards more conventional regression-based models. Perhaps the simplest of 

these are time delay forecasting models that are based on Granger causality. With roots 

in machine learning and data mining these methods are often called model-free since 
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they do not assume any regulatory model structure a priori. However, their general 

applicability is accompanied by a substantial data requirement that matches or even 

exceeds that of DBNs [59] despite the recent introduction of LASSO penalties [31, 60]. 

The discrete time equivalent of an ODE, a classical difference equation, can be obtained 

by restricting this type of forecast model to a single time step lag in the response 

variable and no lag in the regressor variables. Indeed this is the basic model underlying 

the TSNI integral method [20] evaluated in this work. Classical continuous ODE models 

have long been used to describe biochemical reaction kinetics. The data requirements of 

ODE based methods, at least in their basic linear form, can be quite succinct and this 

form can readily capture the direction and type of regulation. These models can also be 

used directly to simulate treatment perturbations making them well suited to support the 

computational design of clinical interventions. Of the popular ODE-based methods 

surveyed in Appendix 2.1, some like NIR [22], and the Inferelator [25] require additional 

prior information, for example the use of gene knockout data, making them less suitable 

for human in-vivo studies. Moving beyond a linear ODE formulation several variants of 

the nonlinear ODE S-system model have been proposed such as TDSS [27] and 

NeRDS [28]. However, increases in the number of model parameters leads to a 

corresponding increase in the data requirements [28]. Moreover, this does not 

necessarily lead to an increase in fidelity as some of the results presented here will 

show. Hybrid methods combine the strengths of different methodologies. For example, 

the algorithm proposed in [18] combines the scalability of information theoretic method 

CLR and causal inference capability of ODE based method, the Inferelator. However, 

with few exceptions [34], these methods require the expression time course be 

supplemented with different types of data such as knockout and knockdown data that 

are not frequently available for human subjects [18, 32, 33].  

In the present study, we focus on the inference of local directed regulatory 
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networks from time course data with properties similar to those that might be obtained 

from animal or human subjects under in vivo conditions. In keeping with this, we have 

attempted to assess algorithms whose data requirements (data type and quantity) are in 

line with that typically available from in vivo time course studies and that also support the 

resolution required to simulate treatment kinetics. Based on our survey of methods, we 

found ODE-based algorithms like TSNI [24], TSNI integral [20] and the one proposed in 

Yeung et al. (2002) [21], most suitable. The algorithm proposed in [21] and TSNI use 

similar techniques of Singular Value Decomposition (SVD) and Principal Component 

Analysis (PCA) for dimensionality reduction. In contrast, TSNI integral uses a forward 

stepwise regression technique to infer sparse directed networks. Furthermore the 

conventional gradient formulation of the rate equation is re-written as finite difference 

equations in TSNI integral to improve performance on noisy experimental data [20]. The 

architecture of these methods, like most, is based on generic core components that 

include feature selection and parameter estimation steps. To further explore how 

performance might be affected by design choices in these component parts we 

constructed and re-assembled these simple generic building blocks de novo, applying 

two popular classes of feature selection to a conventional linear ODE model namely the 

truncation of candidate terms or their projection onto composite constructs. Finally, we 

also assessed the performance of TD-ARACNE [19] since the latter is reported to have 

circumvented the typically large data requirements associated with conventional 

information theoretic methods. Because there are no widely agreed upon benchmark 

circuits in humans where the true circuit structure is known we used simulated data 

generated by a gene network simulator NetSim [61] to provide an equitable benchmark. 

This also made it possible to alter the underlying network size as well as sampling rate 

and the number of time courses in each data set. To our knowledge this type of 

standardized comparison focused on methods that are robust to the constraints of in 
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vivo human studies and that also offer sufficient temporal resolution for simulation-based 

treatment design has not been conducted previously, especially not at the level of the 

component parts. 

We found that all methods performed similarly on noise-free simulated data, with 

the exception of the information theoretic method TD-ARACNE, which typically exhibited 

a lower median performance. In selecting ODE model terms, truncation was less tolerant 

of experimental noise than projection-based approaches. Irrespective of noise levels, we 

found that all methods were extremely affected by the reduction in network edge density 

obtained in larger networks. In smaller simulated networks consisting of 5– 10 nodes 

with edge densities similar to typical biological networks (10– 30%), values in excess of 

0.40 were obtained for the F-score, an aggregate measure summarizing precision and 

recall. To explore the broader applicability of these results, we assessed the leading 

ODE-based methods in recovering the DREAM 3 in silico 10-node networks [48], the 5-

node Yeast synthetic IRMA network [62] as well as a 9-node human HeLa cell cycle 

network [30, 63]. Results were comparable to those obtained on NetSim simulated 

networks of similar size and edge density. All methods were found to be more sensitive 

to the number of time courses than to sample frequency. Based on the results of this 

simulation study, at least 10 time course experiments, sampled at 10 time points, would 

be required to infer a 10 node network with a median recall and median F score of 

53%(±3%) and 0.39 (±0.04) respectively. In aggregating multiple experiments the most 

significant improvement in performance was obtained by using the broken stick 

projection method on groups of 10 or more time course profiles. 

It would appear that inference of directed regulatory networks still faces 

challenges and that less intrusive sampling techniques, i.e. higher frequency, and safer 

perturbation protocols may be required if we are to infer regulatory networks that fully 

exploit the breadth of current multiplex surveys. It should be noted that the basic 
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inference models examined in this work are not novel, nor were they intended to be. 

Instead the analysis conducted here focused specifically on how standard methods 

might be deployed under conditions typical of in vivo studies in human or animal 

subjects. Our results emphasize the value of aggregating networks identified from 

individual time courses and the stratification of subjects into groups. This work also 

highlighted the importance of tuning the algorithm parameters using a priori simulation of 

artificial biological networks comparable in size and complexity. Indeed, default 

parameter values do not perform well across a broad range of conditions and even a 

simple reverse engineering model if tuned correctly has the potential to perform as well 

as more sophisticated methods. For the moment at least, both the data and the methods 

appear better suited to the study of individual transcription factor sub networks, as well 

as cytokine signaling and flow cytometric studies in groups of experimental subjects. 

2.2 Materials and Methods 

2.2.1 Ethical approval 

This study received ethics approval by the University of Alberta Health Research Ethics 

Board (MS4_Pro00018859) and the Miami Veterans Affairs Medical Center Research 

and Development Committee (file 4987.76). 

2.2.2 Simulated experimental data 

To reliably assess the performance of the selected methods we used simulated data 

such that the true structure of the underlying regulatory network was known, and we 

could alter network parameters in a controlled manner (network size, time points, noise 

levels, etc.). All reference networks were created and their behaviour simulated using a 

gene network simulator known as NetSim [61]. NetSim enforces some of the known 

topological properties of biological regulatory networks such as sparseness, scale-free 
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distribution of connectivity, and clustering granularity independent of the number of 

nodes. Un-weighted directed networks were produced where the sign of the edge 

(positive or negative) described the type of regulatory action (+1 for promotion or -1 for 

inhibition). These network interactions were then translated into fuzzy logic statements 

by NetSim. The target transition state for a given node at time t+1 is determined by 

resolving the fuzzy logic statement describing the regulation of that node. A sigmoidal 

activation function is then used by NetSim to modulate the incremental transition from 

the node’ s current state in the direction of its target state. This incremental change in 

state is weighted by a time constant capturing both synthesis and degradation dynamics. 

In all simulations the parameters describing node dynamics were sampled from 

Gaussian distributions with mean and standard deviation as recommended by the 

authors. Similarly the initial states were assigned randomly for all nodes at the beginning 

of each simulation run. Consistent with the current literature [19], we computed all 

performance metrics based on the direction (source to target) but not the type of 

interaction (promotion or inhibition). Reverse engineering algorithms are commonly 

evaluated based on the recovery of regulatory networks using very similar or even 

identical models as those used in the generation of simulation data. In this work we 

made concerted efforts to avoid this; using standard ODE and probabilistic models to 

recover networks from data that was generated by logic-based simulation instead. We 

consider this to be a more challenging task. 

2.2.3 Selected network identification methods 

2.2.3.1 Rate equation models  

A standard rate equation model is a popular formulation used as the foundation for a 

broad group of contemporary network identification methods [21-24], including that of 

one proposed by Yeung and colleagues [21], Network Identification by multiple 
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Regression (NIR) [22], Mode-of-action by Network Identification (MNI) [64], Time Series 

Network Identification (TSNI) [24], TSNI integral [20] and others. According to this model, 

the rate of change in concentration of one gene/transcript/protein can be described 

through a linear system of ordinary differential equations (ODEs) as a function of the 

current concentration of other genes/ transcripts/proteins as described in Eq 1, where ai,j  

is the parameter describing interaction between node i  and j . More precisely, it 

represents the influence of node j on the rate of change of expression of node i. A 

positive value of ai,j  represents activation of node i  by node j, negative value represents 

inhibition and zero value represents no interaction between node j  and i . 

   

  
                                          (2.1), 

Eq (2.1) can be rewritten in the matrix form (Eq 2.2 ). Here, X is an n x1 vector and A is 

an n x n matrix containing the weight of all the edges of the network. This matrix has 

also been called the adjacency matrix.  

                      (2.2), 

Many methods including the popular time-series network identification (TSNI) method 

proposed in [24] accommodate external perturbations u(t)  to the system. For example, 

dose response experiments provide a strong basis for the identification of system 

dynamics. In accounting for external perturbations, Eq 2.2 will become, 

                       (2.3), 

Here, B is similar in size to A and u (t) represents the external perturbation at time t.  

While most ODE-based methods use the instantaneous derivative at time t, a 

recent extension called TSNI integral [20] uses an equivalent model integrated and 

rewritten as a finite difference equation (Eq 2.4) as a means of improving robustness in 

the presence of experimental noise. 
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               (2.4) 

Whether based on the conventional differential equation or the equivalent finite 

difference equation, the final form is that of a linear regression model where estimates 

for the values of the unknown parameter sets A and B (Eq 2.3) are recovered from the 

experimental data. 

In biological systems, the regressor terms in these equations are not expressed 

independently of one another but rather follow coordinated patterns. Traditional ordinary 

least squares estimation will generally perform poorly when correlated or collinear terms 

are used together as these leading to an increase in the uncertainty in parameter 

estimation referred to as variance inflation [65]. This is typically resolved by one of the 

two basic approaches namely truncation and projection. The first of these consists in 

selecting subsets of the original regressors that are minimally redundant. In this work we 

used a stepwise variable selection [66] method whereby terms were evaluated 

sequentially based on their respective partial-F test values. Model terms with a p (partial 

F) < 0.05 were selected for recruitment into the ODE regression model while those 

currently in the model but showing a revised p (partial F) > 0.10 were pruned. 

The second approach consists of projecting the original regressor variables onto 

a new set of aggregate constructs that are mutually independent. These constructs or 

latent vectors consist of weighted linear combinations of the original variables and are 

typically estimated using a diagonal covariance matrix estimate produced by singular 

value decomposition (SVD) or principal component analysis (PCA) [67]. The most 

significant of these latent vectors (LV) then serve as a basis for least square regression 

and the identification of the parameter set A. While there exist as many LV as original 

variables, the bulk of the shared signal is typically recovered in the first few features. In 

this work we used an extension of standard PCA called partial least squares (PLS) 
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regression [68, 69] to identify the structure of the LVs. We then evaluated two methods 

for selecting the number of these features that should be retained, namely the so-called 

broken stick method, a variant of Horn’ s technique [70] for determining significant 

decrease in the importance of the leading eigenvalues [71], and the Bartlett’ s method 

[72] which evaluates the trailing eigenvalues for equality. These and other methods are 

reviewed in Jackson (1991b) [73] and more recently Peres-Neto et al., (2005) [74]. 

Finally, consistent with the compatible literature, we also applied pre-processing of the 

data that included log transformation and z-score normalization. We also applied a first 

order hold interpolation model for inferring values between sample points. 

2.2.3.1.1 Parameter tuning of ODE-based models 

Both stepwise sequential selection and PLS projection methods were evaluated for 

identification of the conventional ODE model. The finite difference formulation was 

evaluated as implemented in the TSNI integral method. The latter uses stepwise feature 

selection in its estimation of the parameter set A. In addition, for this method we used 

the final prediction error (TSNIF) with the default parameters values with the exception of 

the parameter ‘ restk’ which we tuned to obtain the maximum F score, a combined 

measure of positive predictive value (PPV) and recall. The ‘restk’ parameter imposes 

sparseness to the inferred network and therefore affects the F score directly. For more 

details on TSNI integral, we refer readers to [20]. TSNI integral is freely available at the 

URL: http://dibernardo.tigem.it/softwares/time-series-network-identification-tsni integral. 

In order to assess permutations of the basic algorithmic components associated 

with the conventional ODE formulation, we implemented these separately rather than 

use the specific combinations encoded into existing packages. In these implementations 

we again tuned the algorithm parameters to each problem scenario in an attempt to 

provide best achievable F score. For example, in the case of stepwise variable selection 



 

57 

the null probability threshold values for inclusion and removal into the model (penter and 

premovel) were tuned. To mimic this in the case of projection methods the variable 

influence on projection (VIP) [68] was used. Based on this metric PLS regression terms 

were ranked according to the weight of their contribution to the latent vectors capturing 

the most overall variability in the data. Typically a VIP> 1.0 is considered significant; this 

threshold was optimized here for each scenario. Finally, in order to retain only the most 

important edges the resulting networks were pruned on the basis of the quantile rank of 

the edge weight. Here again the quantile threshold applied to the edge weight was tuned 

for each scenario. This was done using a global optimization method, namely a 

constrained simulated annealing, to balance computational cost and thoroughness. All 

algorithms were encoded in MatLab using the functions available in the Statistics 

Toolbox and the Global Optimization Toolbox (The MathWorks, Inc., Natick, MA). 

2.2.3.2  Information theoretic Time-Delay ARACNE (TD-ARACNE) 

TD-ARACNE [19] is an extended version of the popular information-theoretic algorithm 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) [75] that also 

retrieves the statistical time dependency between sequential gene expression profiles. 

Similar to ARACNe, the information theoretic measure of Mutual Information (MI) is used 

to capture the dependency between two molecular species or network nodes, with 

statistically independent nodes having a MI value of 0. The MI value between two nodes 

i and j can be represented as described in Eq 2.5. 

MI
i , j
= H

i
+H

j
-H

i , j
                      (2.5), 

where Hi and Hj are the entropies of nodes i and j respectively. Entropy H is defined as 

follows where p(xi) is the probability that node i will assume state i=1:n: 

           
 
                                   (2.6) 

TD-ARACNE infers directed networks in three steps: 1) detection of the time 
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point corresponding to the initial change in expression for all individual nodes e.g genes, 

2) network construction based on pair-wise MI and 3) network pruning. The first step is 

meant to identify possible regulator nodes or genes based on the sequence of activation. 

The initial change of expression (IcE) in a sequence of expression values for gene ga; 

ga
0, ga

1, … ga
t can be defined as follows (Eq 2.7) where τup and τdown are two fold-change 

thresholds defining relative increase or decrease in expression.    

IcE g
a( ) = arg

j
min g

a

0 g
a

j ³ t
up

 or g
a

j g
a

0 £ t
down

é
ë

ù
û                     (2.7) 

In the second step, TD-ARACNE uses bootstrapping to identify significant 

statistical dependencies between the activation of gene a at time t and gene b at time 

t+Δt. This is subject to the constraint of temporal precedence whereby gene ‘a’ may only 

influence gene ‘b’ if IcE(ga ) ≤ IcE (gb ). In the last step TD-ARACNE uses an additional 

information theoretic measure Data Processing Inequality (DPI) [76] to identify and 

remove indirect associations, first among synchronously expressed nodes and in a 

second step across time points. TD-ARACNE is freely available as part of the 

Bioconductor package and can be downloaded from 

http://www.bioconductor.org/packages/2.12/bioc/html/TDARACNE.html or from 

http://bioinformatics.biogem.it. For further details about TD-ARACNE, we refer readers to 

Zoppoli et al. (2009) [19]. In our assessment, all user-adjustable parameters were set to 

the optimal values recommended by the authors for a network of equivalent node 

degree. 

2.2.4 Assessing network recovery 

We assessed the performance of each selected method on the different sizes of 

networks, noise levels and time points. We use standard statistical measures such as 

positive predictive value (PPV), recall and F1 score to report the performance for each 

method. PPV describes the number of correctly identified connections as a fraction of all 
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connections inferred, both correctly (true positive, TP) and incorrectly identified (false 

positive, FP) (Eq 2.8). Recall is calculated as the number of connections that were 

correctly recovered by the algorithm expressed as a fraction of all connections present in 

the true simulated network, namely those that were recovered (true positive, TP) as well 

as those that were missed (false negative, FN) (Eq 2.9). 

  PPV =
Truly inferred connections

Total inferred connections
=

TP

TP +FP
                     (2.8) 

 Recall= 
Truly inferred connections

Total no. of connections in true network
=

TP

TP+FN
                   (2.9) 

F1 score (F) is an aggregate measure combining PPV and recall. It is akin to the 

geometric mean of PPV and recall and can be represented as follows: 

  
             

          
                     (2.10) 

2.3 Results 

2.3.1 Personalized networks 

Personalized medicine is directed at the identification of illness and intervention at the 

level of a specific individual. While this is an attractive goal, several questions arise. For 

example, if we wanted to recover a network from a single experiment for a given 

individual, how well would we do on average in a diverse population? Moreover, how 

would the result change for the same person from one day to the next? 

2.3.1.1 Mapping individuals with a single time course experiment  

To explore the effects of person-to-person variability on network recovery we used 

NetSim to generate 20 sparse modular networks randomly, composed of 10 nodes each 

and with similar topological characteristics. Each simulated 10-node network consisted 

of 10–20 interactions that translated into median edge density of 15.6%. Edge density 

for a directed network of E edges and N nodes can be calculated as E/N(N-1). This 
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number of nodes and edge density is consistent with the scale found in synthetic 

biological networks that have been studied in vitro. For example, E.coli SOS response 

network that is often used in the evaluation of reverse engineering methods consists 8–9 

nodes [19, 24] and the edge density of cortico-cortical fiber tract of the mammalian brain 

ranges between 10–30% [77]. We used each simulated network to generate a single 

time course that was sampled at 10, 25 and 50 time points. Expression profiles were 

generated both with and without 20% Gaussian noise allowing us to assess the effect of 

sampling frequency and experimental noise respectively on the performance of selected 

methods (Figure 2.1). For noise-free data all methods performed over a narrow range of 

median F scores (0.2–0.26) (Appendix 2.2a).  

Nonetheless, results of a two-way analysis of variance (ANOVA) presented in 

Table 2.1 show that F score is significantly affected by the choice of method irrespective 

of noise (p <=0.001). Though sampling frequency did not affect F scores significantly in 

the presence of 20% Gaussian noise (p = 0.69) over this initial range of values, this 

factor did trend towards significance in the absence of noise (p = 0.07). 

Table 2.1. Impact of sample size, experimental noise and algorithm selection on 
network recovery: Results of a two-way ANOVA for the F score obtained by applying 
the 5 reverse engineering methods to single time course simulations of 20 different 
sparse and modular 10-node biological networks sampled at 10, 25 and 50 time points, 
both with and without 20% experimental noise (Figure 2.1). 

Effect Sum Sq. d.f. Median Sq. F Null p 

0% Noise 

     Time points 0.0224 2 0.0112 2.66 0.07 

Method 0.0772 4 0.0193 4.57 0.0014 

Method x Time points 0.0313 8 0.0039 0.93 0.49 

20% Noise 

     Time points 0.0046 2 0.0023 0.377 0.69 

Method 0.1986 4 0.0497 8.055 0 

Method x Time points 0.0494 8 0.0062 1.001 0.44 
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Figure 2.1: Median performance of selected methods across a range of networks: 
20 different simulated networks of 10 nodes each were used to generate a single time 
course profile sampled at 10, 25 and 50 time points. Box plots show the median and 
inter-quartile range of F scores for selected methods namely, Broken stick, Bartlett, TSNI 
integral, stepwise and TD-ARACNe (left to right), on the datasets in the absence of noise 
(Box plots on the left) and on the datasets with 20% random noise added (Box plots on 
the right). 

Indeed while the majority of methods appear relatively robust (Figure 2.1 and 

Appendix 2.2a,b) the inclusion of noise produced a noticeable decrease in network recall 

and corresponding significant decrease in the median F score in the case of the 

stepwise fit method. Both Bartlett’s and broken stick methods for the selection of latent 

features in the ODE projection model produced comparable results in terms of PPV, 

recall and F score values. On average, both of these methods could infer 70–95% of the 

true network (median recall). However, this required that 5–7 connections be inferred for 



 

62 

every true connection recovered, leading to low median PPV. Slightly better PPV values 

were obtained with the stepwise fit to the conventional ODE however in the presence of 

noise this method could only infer 15–30% of the true network leading to lower F scores. 

The finite equation based TSNI integral provided equivalent or slightly better median 

PPV but with a loss of approximately 5–30% in coverage of the true network (median 

recall) resulting median F scores comparable to those obtained with the projection 

techniques. The information theoretic method TD-ARACNE produced the sparsest 

estimates of all selected methods. TD-ARACNE was able to infer one true connection 

out of every 4–6 inferred connections i.e. 18–25% PPV. However, this improvement in 

PPV cost most of the reference network unrecovered (Figure 2.1). Also, only minimal 

effects of noise were observed on PPV, recall and F score at any of the three sampling 

frequencies for this method. 

2.3.1.2 Variations in time course from the same individual 

In addition to person-to-person variability we may also expect a slightly different 

response from the same person on any given day. To explore the consistency of 

recovery for a specific network from any single experiment we randomly generated a 

reference network of 10 nodes consisting of 19 interactions (i.e. 21% edge density) with 

modular topology using NetSim. We then used this fixed reference network to simulate 

20 different expression time courses each initiated at random conditions. These were 

once again sampled at 10, 25 or 50 time points respectively in the presence and 

absence of 20% noise. Similar trends in performance were observed when using the 

different methods for the recovery of a single reference network as was observed across 

the different networks (data not shown). Improved F scores were observed at higher 

edge density but these remained below 0.40 even in the absence of noise. 
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2.3.1.3 Scaling to larger networks  

Most of the proposed network inference methods have been found to work better on 

small sub-networks of 5–10 nodes whether they be rate equation based such as TSNI 

integral or information theoretic like TD-ARACNE [19, 20]. However, Vinh and 

colleagues in 2012 [78], questioned how representative the recovery statistics might be 

on such small networks. To explore this further, we used the above-mentioned methods 

to recover networks including those composed of a larger number of nodes than that 

found in the synthetic networks typically reported. We constructed random reference 

networks composed of 5,10,15, 20, 30 and 50 nodes and with decreasing order of edge 

densities of 40, 21, 11, 8, 5 and 3% respectively, all with the same properties of 

sparseness and modularity. Each network was used to generate 20 simulated time 

course experiments, sampled at 50 time points, where 20% Gaussian noise was added 

to mimic experimental noise (Appendix 2.3). Overall a significant drop in median F-score 

was observed with increasing number of nodes or decreasing edge density for all the 

methods (Table 2.2, p<0.01). Rate equation models, both ODE from projection-based 

regression and difference equation formulations (i.e. TSNI integral) performed better 

than TD-ARACNE and step-wise truncation on sparse networks constructed with up to 

15 nodes i.e. with 11–40% edge densities. However, for networks with edge densities of 

less than 10% or more than 15 nodes, no noticeable difference in performance was 

observed among methods (Figure 2.2). All methods delivered an F score below 0.10 in 

their recovery of a 50-node sparse modular network with 3% edge density. In the case of 

rate equation models identified with projection methods (i.e. ODE-Bartlett and ODE-

broken stick) and TSNI integral, the loss in performance was driven mainly by a loss in 

PPV. This was not the case for the remaining methods, stepwise regression and TD-

ARACNe, where both PPV and recall were adversely affected by increasing node 

degree and decreasing edge density (Appendix 2.3). 
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Figure 2.2: Effect of network scale and edge density on the performance of 
different methods. For each network scale of node degree between 5 and 50 nodes, a 
single reference network was created. From each network 20 simulated time courses 
were obtained using different initial conditions and sampled at 50 time points. All time 
courses included 20% Gaussian noise. F scores were obtained based on the network 
recovered from each simulated time course and median values plotted against node 
scale and with respective edge density. 

Table 2.2 Two-way ANOVA of F score values corresponding to the recovery of random 
reference networks composed of 5,10,15, 20, 30 and 50 nodes with 40,21,11,8,5,and 
3% edge densities respectively, all with the same properties of sparseness and 
modularity. Each network was used to generate 20 simulated time course experiments, 
sampled at 50 time points, where 20% Gaussian noise was added to mimic experimental 
noise (Figure 2.2, Appendix 2.3) 

Effect 
Sum 
Sq. 

d.f. 
Median 

Sq. 
F Null p 

Method 0.662 4 0.165 61.14 0.00 

Node degree/Edge 
density 

9.312 5 1.862 688.44 0.00 

Method x Node 
degree 

0.598 20 0.029 11.06 0.00 
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2.3.2 Using repeated time course experiments 

As experimental subjects are typically stratified into more homogenous phenotypic 

groups for study, it may be more relevant to the current realm of clinical research to 

examine the effects of noise when aggregating several time course experiments in some 

way. Instead of considering the median performance in recovering the same underlying 

network at the level of individual time courses we next considered how combining these 

separate experiments might allow us to make a stronger statement about the group. This 

could be compared to the difference between narrow patient sub-typing and 

personalized medicine. 

2.3.2.1 Combining networks from the same individual 

First, we explored how repeating a challenge multiple times on the same subject might 

bring us closer to our eventual goal of delivering personalized medicine. We constructed 

a 10-node reference network with 19 interactions i.e. with 21% edge density and used it 

to generate 20 time course experiments, each sampled with 50 time points. Next, we 

added 20% Gaussian noise similar to the previous cases discussed above. We then 

applied a simple voting scheme to aggregate the networks inferred from each individual 

time course. A quorum rule was applied to each element across the 20-adjacency 

arrays. A specific element was conserved in the final consensus array if it was identified 

as significant in certain minimum number of time course experiments. For example, if an 

edge was present more frequently than a certain threshold, say 12 times across the 20 

adjacency matrices, then that edge would be considered as present in the underlying 

network shared by the grouped experiments. The threshold frequency of occurrence for 

the selection of edges was determined by optimization on the basis of maximum F score 

achievable. Typically, a threshold of greater than 50% occurrence was sufficient to 

deliver stable solutions in inferring a given edge. Because of its higher sensitivity to 
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noise we omitted the stepwise truncation-based approach from this analysis. TD-

ARACNE was included despite achieving a poor median recall on single time course 

experiments to provide a basis for comparison with an information theoretic approach.  

In order to examine the effect of group size we repeated our analysis with each 

selected method on groups of 5, 10, 15 and 20 time course experiments respectively, 

each sampled at 50 time points (Table 2.3). As might be expected, the performance of 

these methods improved when inferring the networks from a group of time courses. 

Though TSNI integral (Table 2.3) was the least responsive when increasing the number 

of time courses from 1 to 20 trajectories, projection-based approaches overall produced 

noticeably better F-scores than did TD-ARACNE. With the latter the optimal threshold 

values for inclusion were so low that the aggregated consensus network approximated 

the set union of all individually inferred networks. In other words an edge was accepted 

into the aggregate network if it was present in any one of individual networks. 

Interestingly, TD-ARACNE continued to show an increasing trend in F-score while the 

other methods achieved a peak performance at group sizes of 10 or 20 trajectories. F-

score is a composite measure and the improvement brought about by aggregation can 

be better visualized using an example network. In Figure 2.3 we present a simulated 10-

node network with 19 connections (21% edge density). A group of 15 time course 

experiments with 50 time points each were simulated using NetSim. 

Figure 2.3A and 2.3C show one of the 15 inferred networks resembling the 

median performance of TD-ARACNE and broken stick respectively whereas, Figure 2.3B 

and 2.3D show the consensus networks obtained after the aggregation of 15 inferred 

networks. In the case of TD-ARACNE, aggregation of networks increases the number of 

predicted edges whereas this same operation reduced the number of edges predicted in 

consensus by the broken stick method. At the level of the individual network in Figure 

2.3A, TD-ARACNE predicted very sparse network of 12 connections and predicted 3 out 
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of 19 true connections resulting in median PPV, recall and F score values of 25%, 16% 

and 0.19 respectively. This performance improved on aggregation of 15 inferred 

networks where 9 of the 19 true connections were inferred correctly; increasing recall 

from 16% to 47% (Figure 2.3B). PPV also increased from 25 to 29%, yielding an 

aggregate network F score of 0.32. 

Table 2.3: Impact of grouping single time courses: Improvement in performance of 
selected methods by inferring a consensus network for a group of time series 
experimental data. The reference network consists 10 nodes with 19 edges i.e. (21% 
edge density). Each experimental time series have 50 time points. A consensus 
threshold to achieve best possible F score value was used to infer consensus network. 
 

Method 
Group 
size PPV Recall F score 

% increase  
F score 

Bartlett's 

20 0.41 0.37 0.39 

3-30% 
increase 

15 0.36 0.53 0.43 

10 0.24 0.63 0.35 

5 0.24 0.58 0.34 

1* 0.21 0.76 0.33 

          
 

Broken stick 

20 0.47 0.42 0.44 

22-41% 
increase 

15 0.57 0.42 0.48 

10 0.31 0.79 0.44 

5 0.24 0.84 0.38 

1* 0.19 0.84 0.31 

 
 

TSNI integral 

20 0.31 0.58 0.4 

12-24% 
increase 

15 0.3 0.68 0.41 

10 0.32 0.63 0.42 

5 0.3 0.53 0.38 

1* 0.25 0.53 0.34 

  

TD-ARACNE 

20 0.31 0.47 0.38 

63-100% 
increase 

15 0.29 0.47 0.36 

10 0.21 0.58 0.31 

5 0.24 0.53 0.33 

1* 0.25 0.16 0.19 

* The PPV, recall and F score values reported are equal to the median values 
obtained from the 20 time courses of above-mentioned network. 
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Figure 2.3: Recovery of an example 10-node network: (A) Median inference by TD-
ARACNE using single time course, (B) best possible inference by TD-ARACNE using a 
group of 15 simulated time courses for the same network, (C) Median inference by 
broken stick method using single time course and (D) best possible inference by broken 
stick using a group of 15 simulated time courses for the same network. 

However, the threshold occurrence for the inclusion of an edge in the consensus 

network was very low i.e. 3 events. In other words, selected edges in the aggregated 

network were the ones that were inferred in 3 or more networks out of 15 inferred 

networks. In comparison inference with broken stick achieved median recall of 84% on 

individual networks i.e. on average 16 out of the 19 true connections could be inferred 

from a single time course experiment with 50 time points (Figure 2.3C). Unfortunately in 

order to predict these 16 true connections (recall = 84%) 65 false positive connections 

were inferred (grey colored), leading to a PPV of 20%. When aggregating across a 

group of 15 experiments, the broken stick method inferred a consensus network of 14 

connections, 8 of which were present in the true network (Figure 2.3D). This important 
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reduction in false positive predictions translated into a PPV of 57%. Though some loss in 

recall (42%) was incurred, the result was nonetheless a net gain in median F score (F = 

0.48 vs 0.32). In assessing these performance metrics it is important to remember that 

we considered only direction of the edges, as is the norm in current literature. 

2.3.2.2 Describing illness sub-group by aggregating networks across individuals 

To verify how robust these results might be across different networks of the same size 

we simulated groups of 1, 5,10,15 and 20 time courses, sampled at 50 time points 

from10 different networks each comprised of 10 nodes with edge densities ranging from 

0.10–0.20. These simulated time courses were then analyzed using both projection 

methods and TSNI integral (Figure 2.4). Despite being reasonably robust to noise, TD-

ARACNE typically lagged projection based methods and TSNI integral in performance 

(Table 2.3 and Figure 2.3). For this reason, we omitted TD-ARACNE from further 

analysis. Median PPV, recall and F score for each group were calculated along with the 

standard error. As expected, the greater the number of time courses in a group of 

diverse individuals, better the performance of the method. However these improvements 

once again begin to taper off beyond 10–15 time courses. The F score could be 

improved by a factor of ~1.5 over that of a single time course by using 10 experiments 

with the broken stick model and 15 experiments for Bartlett’s model and TSNI integral. 

This improvement in F score for the broken stick method was driven by an initial 

increase in median PPV at the expense of recall. Similar but less dramatic trends were 

found for TSNI integral. In contrast, recall values for the Bartlett method recovered and 

trended positively for group sizes above 10 time courses (Figure 2.4). Once again while 

the median performance of TSNI integral was slightly better on single time course 

experiments, the broken stick projection method delivered equivalent or slightly better 

performance at all other group sizes (5–20) when sampling 50 time points (Figure 2.4). A 
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two-way ANOVA of F-score values from grouped data confirmed the significance of this 

difference in performance between methods (p = 0.008) (Table 2.4). While the choice of 

group size also produced a significant affect on F score (p = 0.000), the combined effect 

of method and group size did not (Table 2.4). Further analysis revealed that the benefit 

of increasing group size dissipated quickly and that there was no significant effect (p = 

0.40) on F score values for groups of 10 and more time courses. However even at these 

larger group sizes the choice of method (p = 0.03) continued to be a significant factor 

(not shown). 

 

 

Figure 2.4: Effect of grouping time courses: Median performance calculated across 
subsets from 10 different 10-node simulated networks recovered using (A) Broken stick 
(B) Bartlett’s and (C) TSNI integral methods applied to groups of time courses. Each 
network was used to generate groups of 1, 5, 10, 15 and 20 simulated time courses 
each sampled at 50 time points. All simulations included 20% experimental noise. 
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Table 2.4: Impact of time course aggregation into subject groups. Two way ANOVA 
of F score values corresponding to the recovery of 10 different networks of 10 nodes 
with similar properties of sparseness and modularity and with edge densities similar to 
those of biological networks (10–20%) using groups of 1, 5, 10, 15 and 20 time courses. 
Each time coursewas simulated at 50 time points and 20% Gaussian noise was added 
to mimic experimental noise 
 

Effect Sum Sq. d.f. Median Sq. F Null p 

Method 0.0726 2 0.0363 4.96 0.0083 

Group size 0.3306 4 0.083 11.3 0 

Method x Group size 0.0245 8 0.003 0.42 0.91 

            

 

2.3.2.3 Sampling for group inference 

Network recovery in the previous sections was based on the availability of 50 time 

points. However, in actual in vivo studies the collection of samples at multiple time points 

is a significant challenge from the perspective of subject well being and cost. To explore 

the minimum number of time points that might be required by each method, we 

simulated groups of 1,5,10,15 and 20 time courses sampled at 5, 10 and 50 time points. 

We found that the broken stick model was less sensitive to the number of time points 

than the Bartlett and TSNI models. While the former produced the highest F scores 

when 10 and 50 samples were drawn, this improvement was only noticeable when a 

group of more than 10 time courses was used (Fig 2.5). In contrast, drawing 50 samples 

was uniformly better when using the Bartlett method almost regardless of group size. In 

the case of TSNI integral, the use of 10 samples was sufficient to produce comparable 

results, 5 samples being inadequate for all group sizes. These preliminary results 

suggest that while similarly affected by group size, the broken stick and TSNI integral 

methods may be fairly tolerant of lower sample frequency. The Bartlett method on the 

other hand would require the largest number of samples. 
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Figure 2.5: Minimum Sampling for grouping: Median F scores calculated on 10 
different simulated 10-node networks recovered using (A) Broken stick (B) Bartlett’s and 
(C) TSNI integral methods on group of expression profiles. Each network was used to 
generate groups of 1, 5, 10, 15 and 20 simulated time courses each sampled at 5 (blue), 
10 (red) and 50 (black) time points. All simulations included 20% experimental noise. 

 

2.3.3 General applicability of the results 

2.3.3.1 Generalization of findings to the DREAM challenge 

In order to facilitate a broader comparison of these findings we applied this same 

methodology to the in silico benchmark dataset provided under the DREAM3 sub-

challenge for a set of 10-node networks. This dataset was generated using an open 

source Java tool, GeneNetWeaver [79], and consisted overall of 5 simulated network 

structures with corresponding steady state and time series data. A modular topology was 
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produced based on patterns of tightly connected gene clusters extracted from 

experimentally validated regulatory networks. More precisely, 2 out of 5 network 

structures were based on gene modules extracted from in vivo networks of E.coli [80] 

and the other 3 on modules from the S.cerevisiae in vivo network [12]. A thermodynamic 

quantitative model of gene regulation that includes both transcription and translation [81] 

was applied to these network structures to generate dynamic and static simulated 

experimental data [79]. 

In keeping with the focus of our current analysis, we used only the dynamic 

perturbation data. Specifically, we applied both projection-based feature selection 

techniques along with TSNI integral on the 4 time series provided in DREAM3 for the 

E.coli2 network of 15 interactions and compared their performance with the median 

performance obtained using NetSim data for networks with a comparable number of 

interactions (median interactions = 14). We found that all the selected methods 

performed similarly in terms of PPV, recall and F score on networks of comparable 

topology simulated with either NetSim or GeneNetWeaver (Appendix 2.4) suggesting 

that both simulators are designed to capture the similar network properties. 

Further, we compared the performance of these methods with that of reported in 

Yip et al. (2010) [26], the winning team in the DREAM3 challenge. The latter inferred the 

underlying networks by combining the inferences obtained from a null hypothesis noise 

model applied to static knockout/ knock down data, as well as linear and nonlinear ODE 

models applied to perturbation time course data. Seven different batches were formed 

consisting of a consensus of different model inferences. We focused first on the results 

reported by Yip and coworkers [26] using only the time course data to support the 

consensus of a similar linear ODE model with a more sophisticated nonlinear model 

(Batch 1 Table 6 of Yip et al., 2010). We then compared the results of assessed ODE 

models identified from time course perturbation data with that reported in Yip et al. 
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(2010) [26] for the null hypothesis noise model identified from static knockout/ 

knockdown data (Batch 1 Table 3 of Yip et al., 2010). When applied to the DREAM3 

perturbation time series data, the basic feature selection techniques assessed here 

based on a simple linear ODE model (br--oken stick, Bartlett’ s and TSNI integral) perfo- 

Table 2.5: Recovering a 10-node network from a DREAM-3 data set. Comparison of 
the performance obtained in inferring a 10-node network using the generic methods 
presented here versus the best performing methods in the DREAM 3 sub-challenge, 
namely the basic noise model and the combined linear/ nonlinear model. 
 

E.coli 1 (11 interactions) 

Method Predicted Correct PPV  Recall F score 

Yip et. al. Noise model 11 7 0.64 0.64 0.64 

Yip et al. linear/nonlinear model 6 1 0.16 0.09 0.12 

Broken stick 70 9 0.13 0.82 0.22 

Bartlett's method 77 10 0.13 0.91 0.23 

TSNI integral 10 2 0.15 0.14 0.29 

E.coli 2 (15 interactions) 

Yip et. al. Noise model 16 12 0.75 0.8 0.77 

Yip et al. linear/nonlinear model 5 1 0.2 0.07 0.1 

Broken stick 73 12 0.16 0.8 0.27 

Bartlett's method 82 14 0.17 0.9 0.28 

TSNI integral 28 6 0.21 0.4 0.27 

Yeast 1(10 interactions) 

Yip et. al. Noise model 11 9 0.82 0.9 0.86 

Yip et al. linear/nonlinear model 5 0 0 0 0 

Broken stick 72 8 0.11 0.8 0.19 

Bartlett's method 83 10 0.12 1 0.22 

TSNI integral 27 2 0.07 0.2 0.11 

Yeast 2(25 interactions) 

Yip et. al. Noise model 13 9 0.69 0.36 0.47 

Yip et al. linear/nonlinear model 5 1 0.2 0.04 0.07 

Broken stick 71 19 0.26 0.74 0.38 

Bartlett's method 83 23 0.28 0.9 0.42 

TSNI integral 31 9 0.29 0.36 0.32 

Yeast 3(22 interactions) 

Yip et. al. Noise model 12 8 0.67 0.36 0.47 

Yip et al. linear/nonlinear model 5 4 0.8 0.18 0.29 

Broken stick 70 14 0.2 0.61 0.3 

Bartlett's method 80 18 0.22 0.8 0.34 

TSNI integral 31 9 0.29 0.41 0.34 
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-rmed better than the combination of linear and nonlinear ODE models used in Yip et al. 

(2010) [26] for all networks (Table 2.5). This being said all ODE models, including those 

studied in this work, were outpaced by identification based exclusively on homozygous 

deletion data when inferring sparse networks i.e. networks with 10-15 interactions. 

However, Bartlett’s and broken stick method of feature selection from time course data 

approached the performance of the noise model on slightly denser but still sparse 

networks i.e. Yeast 2 (25 interactions) and Yeast 3 (22 interactions) respectively (Table 

2.5). F scores for the inference of the networks with 10, 15, 22 and 25 interactions were 

improved with increasing edge density for Bartlett’ s (0.22, 0.28, 0.34 and 0.42) and 

broken stick method (0.19, 0.27, 0.3 and 0.38) respectively whereas that of the noise 

model fell (Table 2.5). 

In 2010, Marbach and colleagues [49] further confirmed that the homozygous 

deletion data was the most informative of all types of data used in DREAM 3 challenge. 

However, knockdown/knockout data is not easily accessible in human subjects. In 

further agreement to the findings of [26] and [49], we also found that complex nonlinear 

models and/ or complex adjustments to linear models did not add significant value to the 

inference of regulatory interactions and that much simpler more computationally efficient 

models performed as well when feature selection parameters were optimized based on a 

priori simulations. 

2.3.4 Recovery of Yeast synthetic gene network 

As an additional verification of the applicability of the simulated networks used here, we 

again applied our simple model to data obtained from a synthetic biological network. In 

2009, Cantone and coworkers  [62] constructed a synthetic network of five genes in the 

simple eukaryotic organism Saccharomyces cerevisiae for in vivo Reverse-engineering 
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and Modeling Assessment (IRMA). This synthetic network includes a variety of 

regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks 

on a smaller scale. The network was also designed to be negligibly affected by 

endogenous genes, and to respond to galactose, which activates transcription of its 

genes. 

We used the switch ‘ on’ and switch ‘ off’ time series data generated for the IRMA 

network and inferred the underlying regulatory interactions using projection-based 

feature selection and TSNI integral. Since the underlying structure of the IRMA network 

was known a priori we tuned the parameters accordingly for the algorithms in question to 

optimize network identification based on data averaged across of 5 time courses. All 

three methods performed comparably in terms of the F-score on both datasets, with the 

Bartlett’ s method being best performer on the switch ‘on’ and switch ‘off’ time series 

data respectively (Table 2.6). With the exception of TSNI integral on switch off data, all 

methods were found to achieve better PPV than a random reconstruction on this 

synthetic network. Although ODE-based TSNI, the predecessor of TSNI integral along 

with NIR method was reported to achieve better performance on switch ‘on’ time series 

(F score = 0.80) by Cantone and colleagues [62]. However Bartlett’ s method (0.67) 

outperformed these methods (0.60) on switch ‘off’ time series [62].  

Table 2.6: Reconstruction of 5-node synthetic Yeast IRMA network. Broken stick, 
Bartlett’s and TSNI integral were evaluated on the dynamic data of Yeast 5 node 
synthetic IRMA network against performance of TSNI and NIR reported in Cantone et al. 
(2009) [62]. Values in parentheses show the performance when self-regulation is not 
considered in the inference as in DREAM 3 challenge. 
 
 

  Switch on data Switch off data 

Method PPV  Recall F score PPV  Recall F score 

Broken stick 0.4(0.5) 0.67(0.67) 0.5(0.57) 0.67(0.67) 0.33(0.33) 0.44(0.44) 

Bartlet 0.6(0.75) 0.5(0.5) 0.55(0.6) 0.56(0.56) 0.83(0.83) 0.67(0.67) 

TSNI integral 0.4(0.63) 0.83(0.83) 0.53(0.71) 0.29(0.44) 0.67(0.67) 0.40(0.53) 

Cantone et al. 1 0.67 0.8 0.75 0.5 0.6 
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Note that the performance of these methods in recovering the 5-node IRMA 

network appears better than that obtained in the case of 5-node NetSim networks with 

similar edge density. This is due to different optimization objectives. In the case of the 

NetSim networks, the tuning parameters were optimized to produce maximal median F 

score on a group of 20 time course profiles whereas the parameter values used in 

recovering the IRMA network were identified by maximizing F score on a single target 

time course profile.  

2.3.5 Recovery of Human gene network in HeLa Cell culture 

In addition to the DREAM3 and yeast IRMA data, we also used microarray time course 

data sampled to characterize periodically expressed transcripts during cell division in 

human HeLa cell line cultures [82]. This data is available at http://genome-

www.stanford.edu/Human-CellCycle/HeLa. In 2008, Sambo and colleagues extracted 

the expression of 9 genes with known and documented interactions in the BIOGRID 

database (www.thebiogrid.org) sampled at 47 time points from this dataset in their 

assessment of the reverse engineering method CNET [63]. This same time course 

dataset has since been used for the assessment of several inference methods [30, 31]. 

It is important to note that the BIOGRID database is updated as new biological 

knowledge of these interactions becomes available. For example, the network obtained 

from BIOGRID in [30] is an updated version from the one used in [63] incorporating new 

interactions. We assessed projection-based feature selection techniques and TSNI 

integral on the BIOGRID networks used in [63] and [30] respectively. Interestingly, 

assessment on this network provided an opportunity to compare the performance of 

projection-based methods with other methods by only using perturbation data without 

any additional data types.   Although this data provides an opportunity to further assess 
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our simulation results in reconstructing a human gene regulatory network it is important 

to remember that this remains data sampled from an in vitro cell culture system and 

hence may be sampled at a much higher rate than typically available under in vivo 

studies of human subjects. In our assessment, both projection-based techniques 

namely, broken stick (F scores = 0.40 and 0.56) and Bartlett’ s method (0.47 and 0.60) 

not only outperform TSNI integral (0.17 and 0.26) in the reconstruction of 9-gene HeLa 

cell cycle network but also match the performance of methods used in [63] and [30] 

respectively (Fig 2.6; Table 2.7). These results re-affirm that even simple models tuned 

with a priori simulated data, can potentially perform as well as complex methods. 

 

Figure 2.6: Reconstruction of human HeLa cell cycle network. Directed graphs 
recovered using (i) Broken stick (ii) Bartlett’s feature selection and (iii) TSNI integral 
methods applied to the BIOGRID reference network reported in Sambo et al. (2008) and 
Lozano et al. (2009) (A and B). Solid lines represent correctly inferred interactions (true 
positives) where as dash lines represent incorrectly inferred connections (False 
positives). 
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Table 2.7: Reconstruction of 9-gene BIOGRID network related to Human HeLa cell 
cycle. Recovery of 9-gene BIOGRID network involved in human HeLa cell cycle by 
applying broken stick and Bartlett’s feature selection methods compared to TSNI 
integral. These two versions of BIOGRID network were used to assess proposed 
methods in Sambo et al. (2008) and Lozano et al. (2009) respectively. Reported 
performance of these methods is also included. 
 

Network PPV Recall F score 

BioGrid network in Sambo et al. 
2008 

   Sambo et al. 2008 0.36 0.44 0.40 

Broken stick method 0.36 0.44 0.40 

Bartlett's method 0.50 0.44 0.47 

TSNI Integral 0.10 0.44 0.17 

BioGrid network in Lozano et al. 
2008 

   Lozano et al. 2009 0.50 0.72 0.59 

Broken stick method 0.63 0.50 0.56 

Bartlett's method 0.65 0.55 0.60 

TSNI Integral 0.22 0.30 0.26 

    

 

2.4 Discussion 

The main purpose of this study was to examine the core design features of some of the 

basic classes of methods currently available for the reverse engineering of biological 

networks. In particular, we attempted to gauge their applicability to data collected under 

experimental constraints typical of in vivo studies where the range of allowable 

perturbations (e.g., virtual absence of knockout data), the sample frequency and the 

number of subjects are all significantly limited. Using the two alternative types of 

parameter estimation commonly applied in the identification of ODE models we 

assessed the recovery of known networks from simulated perturbation time course data 

produced by the NetSim platform. Importantly, this was done under a range of sampling 

frequencies and group sample sizes, key parameters in the design of such experiments. 

The conventional gradient-based ODE form was also compared to the equivalent time-



 

80 

lagged difference equation (TSNI integral). In addition, the performance of TD-ARACNE, 

a recently reported information theoretic method adapted for use with time course 

experiments was also assessed. Finally, the general applicability of our simulation 

results was explored by reconstructing in silico networks using data from the DREAM3 

challenge, from the synthetic IRMA network as well as from 9-gene HeLa cell cycle 

network. In our analysis, none of the methods evaluated performed to the standards of 

their reported average performance on single simulated time courses created using the 

logic-based NetSim. It is important to note that in many cases the edge count of the 

simulated networks was not reported. In addition many of these methods were typically 

assessed under the more ideal condition where simulated time course data was 

generated using models similar to those encoded in the reverse engineering algorithm. 

For example, in evaluating the probabilistic method TD-ARACNe, a random network was 

used to define a set of statistical dependencies then translated these into stochastic 

differential equations to simulate the actual time course data [19].  

Likewise, the authors of TSNI integral used very similar differential equation 

models to generate both the test data and to perform the reverse engineering [20]. 

Though this is an important departure from real-world conditions, it nonetheless offers a 

possible upper bound for the performance achievable under near ideal conditions. 

Despite such favourable conditions these reverse engineering methods barely achieve 

an F score of 0.4 in recovering a 10-node network from 50 time points sampled with 10% 

noise (based on Table 1 in [20] and Table 2 in [19]). Based on this body of literature, an 

F score of 0.40 might be considered a near ideal performance for these methods in 

recovering networks with small to moderate node degree using single time course data 

alone.  

Here we purposely generated data using a simulation method based on a fuzzy 

logic framework that differed significantly from the ODE model structure used for reverse 
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engineering. Though still artificial, we consider this situation more realistic. 

Understandably under these conditions the recovery performance based on single time 

courses consisted in a median F score of 0.30 or less. Rather than focus on the recovery 

of networks in individual subjects, we used the commonly accepted practice in human 

studies of stratifying the cohorts into groups of subjects. In our analysis, projection 

methods applied to the standard ODE as well as the difference equation model (TSNI 

integral) were successful in recovering typical biological networks having edge densities 

of 10– 30%, producing a median F score of 0.40 or more when used on groups of time 

courses. This translated into a predictive precision (PPV) in the range of ~30– 40% with 

recall values between ~50– 60% for simulated data from sparsely connected artificial 

networks designed to exhibit key topological properties similar to those expected in real 

biological networks. Interestingly, this is consistent with values obtained from in vivo 

regulatory sub-networks surveyed in human immune cells. In recent work, MINDy, an 

extension of the information theoretic method ARACNe, was applied to the genome wide 

identification of modulators of the MYC transcription factor using 254 gene expression 

sets previously generated for several studies of normal and tumor-related B-cell 

phenotypes [83]. A literature-based assessment using the Ingenuity software (Ingenuity 

Systems) revealed that of the 83 reported direct and indirect modulators of MYC 

expressed in B cells and present on the array, 29 had been recovered correctly, a recall 

of 35%. Furthermore, 17 of the 35 transcription factors inferred as MYC modulators were 

either literature-validated (6 or 17%) or had enriched binding sites, leading to an overall 

upper bound on precision of 48%. It is important to remember that in contrast to these 

local regulatory modules we intentionally focused in this work on the recovery of 

networks exhibiting the same edge densities as those observed in broader biological 

networks, namely 10 – 30% [77]. We considered this a more challenging task than the 

recovery of more densely connected sub-networks that are typically used for 
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benchmarking.  

Indeed, our results show that edge density and performance of the selected 

network recovery methods are directly proportional with higher values of edge density 

leading to better performance. The recovery of sparse networks is also highly relevant. 

Several noteworthy biological networks are known to have low edge density, for example 

this can be as low as 3.85% between neurons in C. elegans, and global protein-protein 

interaction networks in human show edge densities of ~0.4%. Our results suggest that in 

such sparse networks one might expect reasonable recovery only in the better-

connected component sub-networks where edge density is maintained above 10%. 

Examples of such networks include cytokine signaling between immune cells (60% edge 

density), cytokine signaling with tissue (40%) and neural networks of cat brain (30% 

edge density) [84].  

For the sparser networks studied here, we found that ODE-based methods 

generally performed better than TD-ARACNE under conditions that approximated in vivo 

time-course studies, namely when data collection was restricted to smaller subject 

groups and infrequent sampling. Among the ODE based methods, stepwise feature 

selection was less tolerant of experimental noise. Projection-based methods typically 

faired better as they aggregate terms into composite features, creating an averaging 

effect that attenuates noise. Unfortunately as we report in this work, projection methods 

tend to produce far less parsimonious models and a high rate of false positive calls. This 

is only compounded further in real biological networks where indirect associations may 

be introduced by unobserved moderators [85, 86]. Inferring networks from a set of 

expression time course profiles improved the performance of all selected methods.  

Accordingly, the recovery of personalized networks would require the use of multiple 

time-course experiments applied to the same subject. This is a less than desirable 

protocol for several reasons. A much more attainable goal consists of grouping patients 
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suffering from the same variant and/or stage of a disease and that share other clinical 

parameters, such as age, BMI, sex, ethnicity etc. Our analysis suggests that at least 10 

time courses would be required for the inference of a representative network for a group 

of such individuals. Sample frequency is another important design consideration. We 

found the more parsimonious of the projection approaches i.e., broken stick and TSNI 

performed consistently when at least 10 time points were used. Our results also 

suggested that inclusion of additional time course experiments could not correct for 

insufficient longitudinal sampling.  

Nor was there much to be gained on this type of perturbation data by increasing 

the complexity of the model. Marbach and colleagues [49] conducted a comparative 

analysis of results from all DREAM3 participating teams, some of which used 

sophisticated non-linear and computationally intensive methods. Though accuracies in 

excess of 0.60 were produced on small networks (10 nodes) they found that these 

results were heavily dependent on the type of data available. Indeed, the top five teams 

all integrated steady-state knockout and knock down data with time-series perturbation 

data, leveraging the complementary nature of these data sources. In fact, even though 

both linear and non-linear differential equations were used by the winning team [26], the 

best performance was based on a simple statistical noise model applied solely to 

steady-state homozygous knockout data. The use of more complex nonlinear ODE 

forms contributed little if anything towards improving the identification of the underlying 

networks [49]. Indeed, in single networks of 10 nodes we obtained comparable or better 

results using a linear ODE model alone on time course perturbation data. Though clearly 

a very important contributor to the accurate recovery of biological networks, the 

availability of large-scale deletion libraries in higher mammalian species is currently 

limited though ongoing efforts focused on the mouse genome are making inroads [87]. 

Even if such libraries were available for Homo sapiens, their analysis supports the broad 
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identification of direct regulatory structure but does not support the identification of co-

regulatory motifs nor does it support the identification of regulatory kinetics supporting 

pharmacokinetic studies. The latter will require kinetic experiments over a range of 

frequencies as well as dose response methodology [88, 89].  

Though preliminary and rooted in a set of basic assumptions regarding the 

properties of the data, these findings offer an approximate set of guidelines for the 

design of pilot studies directed at the inference of in vivo network regulatory kinetics as 

well as some approximate bounds on what we may realistically expect from simple in 

vivo perturbation studies. Our results and those of others suggest that even in the 

favorable case of more densely connected sub-networks such as those surrounding 

transcription factors, the reverse engineering algorithms and the current generation of 

confirmatory assays may have reached an upper bound in terms of their ability to 

recover the underlying regulatory network from experimental time course data. This 

points to the larger issue of information content in the data collected, which is limited by 

the breadth of experimental conditions that can be safely deployed in human subjects. 

Despite advances in the reverse engineering algorithms, more informative data sets will 

be required if we are to realize the potential of personalized network medicine. 

Algorithms continue to be developed that design new incremental sets of experiments in 

order to iteratively refine the recovery of the network model [90]. However the data 

requirements and the extent of the perturbations involved make these more suitable to in 

vitro studies for the moment. The translation of such methods to human studies will rely 

on the development of less invasive sampling techniques as well as the development of 

perturbation techniques that interrogate the physiological system at amplitudes 

comparable to that of background noise i.e., at scales that are biochemically relevant but 

not physiologically disruptive [91, 92]. These are typically based on methods adapted 

from the basic control theory of closed loop identification and are still in their infancy in 
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biology and medicine. In the end, the ultimate bottleneck at the present time may well be 

our limited ability to generate informative data rather than the design of any particular 

reverse engineering algorithm. 
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3 Chapter 3: Leveraging Prior Knowledge to 
Recover Characteristic Immune Regulatory 
Motifs in Gulf War Illness. 



 

95 

3.1 Introduction  

Gulf War Illness (GWI) is a complex multi-symptom illness [1] associated with 

deployment to the Persian Gulf between 1990-91 and presenting with symptoms that 

manifest across several of the body’s principal regulatory systems [2-4]. Among these, 

our work and the work of others suggest alterations to the hypothalamic-pituitary-adrenal 

(HPA) response to challenge [5, 6] and that such alterations may become persistent and 

stable dysregulations [7]. Exercise has been used as a minimally invasive means of 

interrogating HPA axis response [8], one that is especially appropriate given that a chief 

presenting symptom of GWI is debilitating fatigue. Though data suggest that peak 

exercise capacity is comparable [9], these individuals report higher fatigue [10] and differ 

significantly from healthy control subjects in their ability to recover from these 

challenges. More recently in 2013, Rayhan and colleagues [11] have shown that these 

differences in recovery from exercise may support the identification of GWI subgroups 

with significant differences in autonomic response and distinct cognitive vs physical 

constructs of Chalder fatigue profile [12]. Exercise induced exacerbation of symptoms or 

post-exertional malaise (PEM) [13] has also emerged as a distinguishing feature in a 

sister illness myalgic encephalomyelitis/ chronic fatigue syndrome (ME/ CFS) [14] with 

these individuals achieving significantly lower values for oxygen consumption and 

workload at peak exercise and at the anaerobic threshold 24 hours after an initial 

maximal exercise challenge.  

Our own pilot work has shown that this altered capacity for recovery from 

exercise also manifests as distinct trajectories in immune marker co-expression [15] and 

that these illness-specific alterations differ between men and women [16]. Signaling 

patterns that emerge in response to exercise were structurally different in GWI with the 

latter drawing on a larger network of alternate signaling paths in an effort to respond 
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adequately to challenge [17].  Moreover, these differences were linked to changes in 

symptom severity, extending through multiple layers of biology to altered patterns of 

gene expression [18] along select signaling pathways [19].  Not unexpectedly, more 

recent work has shown this also extends to altered cell metabolism [20], an experimental 

observation further validated with in silico simulations of mitochondrial function [21]. 

While this earlier work supported the association of symptom clusters with 

characteristic patterns of immune marker co-expression, it was based on samples 

collected prior to exercise, at peak effort and at 4 hours post-exercise.  As a result, the 

experimental sampling frequency was insufficient to support the identification of classical 

rate equations models [22] that in turn might provide additional insight into the causal 

mechanisms driving an altered immune signaling in GWI. The objective of this work is to 

discover such causal mechanisms that might become characteristically activated during 

exercise in GWI as well as elements of immune regulation that might be conspicuously 

absent. Towards this we have extended sampling to include 8 blood draws collected 

prior to, during and up to 4 hours after peak exercise in n= 12 veterans with Gulf War 

Illness n=11 healthy veterans.  In an effort to cast this data in the context of a priori 

knowledge, we apply as a mechanistic scaffold an extension of a literature-based model 

of immune signaling [23] previously reported by our group. We project individual cytokine 

and chemokine measurements on to functional sets used in Folcik et al. (2007; 2011) 

[24, 25] and apply a rate equation framework which favors the identification of directed 

control actions over naïve fit to data [22]. Candidate causal relationships inferred from 

the data are then compared to the documented signaling mechanisms in the literature-

based model. Results of this analysis again suggest that immune response to exercise 

challenge in GWI veterans draws on a set of known immune signaling mechanisms that 

differ significantly from the signaling pattern expressed in healthy veterans. Of the 50 

immune signaling interactions extracted from the literature, roughly half (19) were found 
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active in the combined exercise response data. However, only 4 signals were common 

to both illness and healthy groups while 7 were uniquely active in GWI and 10 uniquely 

active in healthy veterans.  Many of these differences involved mechanisms mediating 

the coordinated activity of innate immune response with the Th1 and Th17 adaptive 

immune axes.  In addition to documented signaling mechanisms several undocumented 

empirical interactions were identified from the data. Though many may represent false 

positive events, others may constitute candidates for further experimentation and 

analysis.  Simulations where the immune sub-circuit in GWI was remodeled by 

abrogating the actions of MK6 (IL-6) concurrently with CK1 (principally IL-2, TNFa) or 

MK1A (IL-1a) predicted only partial rescue of immune response during recovery from 

exercise.  These data-informed predictions are consistent with earlier theoretical results 

from our group suggesting that lasting remission in GWI may require acting on a broader 

physiology, namely one that includes endocrine oversight of immune function [26].  

3.2 Material and Methods 

3.2.1 Cohort recruitment 

A subset of n=12 GWI subjects and n=12 healthy but sedentary Gulf War era veterans 

were recruited from a larger ongoing study at the Miami Veterans Administration Medical 

Center. Subjects were male and ranged in age between 40 and 60, and of comparable 

body mass index (BMI), ethnicity and duration of illness. Inclusion criteria was derived 

from Fukuda et al. (1998) [27] and consisted in identifying veterans deployed to the 

theater of operations between August 8, 1990 and July 31, 1991, with one or more 

symptoms present after 6 months from at least 2 of the following: fatigue; mood and 

cognitive complaints; and musculoskeletal complaints. Subjects were in good health 

prior to 1990, and had no current exclusionary diagnoses [28]. Medications that could 

have impacted immune function were excluded. Use of the Fukuda definition in GWI is 
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supported by Collins and coworkers in 2002 [29]. Summary results of the included 

subset of subject demographics and exercise performance are listed in Table 3.1. 

Additional details about this cohort can be found in [19]. 

3.2.2 Graded eXercise Test (GXT) 

All subjects included in the study (HC and GWI) underwent a maximal Graded eXercise 

Test (GXT) to stimulate immune response. A Vmax Spectra 29c Cardiopulmonary 

Exercise Testing Instrument, Sensor-Medics Ergoline 800 fully automated cycle 

ergometer, and SensorMedics Marquette MAX 1 Sress ECG were used during the GXT. 

Following the McArdle protocol [30], subjects pedaled at an initial output of 60W for 2 

min, followed by an increase of 30W every 2 min until the subject reached: (1) a plateau 

in maximal oxygen consumption (VO2); (2) a respiratory exchange ratio >1.15; or (3) the 

subject stopped the test. A total of 8 blood draws were conducted on each subject. First 

blood draw (T0) was conducted prior to exercise following a 30-min rest. Second and 

third blood draws were conducted ~3-5 min. after starting the exercise test (T0+3) and 

upon reaching peak effort (VO2 max) (T1) respectively, followed by blood draws at 10, 

20, 30, 60 min., and 4 hours after VO2 max (T1+10, T1+20, T1+30, T1+60, and T2). All 

control subjects were screened as sedentary upon recruitment on the basis of their 

response to a questionnaire [31]. Analysis in this same cohort [16] of the weight-adjusted 

maximum VO2 measured in L/min/kg indicated a decline in the average maximum VO2 

achievable with healthy controls performing best (p=0.04). In light of this finding we 

suggest that results presented here be interpreted as immune response at maximum 

perceived exertion but not necessarily at equivalent exercise intensity. We consider 

reduced exercise capacity to be another symptom of GWI.  The characteristic immune 

response patterns measured at maximum perceived exertion capture this implicitly.  

 



 

99 

Table 3.1 Summary of demographic variables and exercise performance for 
Healthy control and GWI subjects. 

Demographic Variable  HC GWI 

Subjects  12 12 

Race 
  0 4 2 

1 6 4 

2 2 6 

Age (years) 47.08(1.31) 45(1.16) 

Body mass Index (BMI) 30.14(1.45) 33.38(1.59) 

Time to VO2 max 17(1.8) 14(1.01) 

 

Ethics statement. All subjects signed an informed consent approved by the Institutional 

Review Board of the University of Miami and the Miami Veterans Affairs Medical Center. 

Ethics review and approval for data analysis was also obtained by the IRB of the 

University of Alberta. 

3.2.3 Cytokine profiling 

Plasma was separated from each sample within 2 h of collection and stored at -80° C 

until assayed. Concentration levels of 16 cytokines were measured in plasma using 

Quansys reagents and 96 well plates based chemiluminescent imaging instrument 

(Quansys Biosciences, Logan, Utah). The Q-Plex™ Human Cytokine- Screen (16-plex) 

is a quantitative enzyme-linked immunoabsorbent assay (ELISA), where 16 distinct 

capture antibodies have been absorbed to each well of a 96-well plate in a defined array. 

The range of the standard curves and exposure time were adjusted previously to provide 

reliable comparisons between subject groups in this illness population at both low and 

high cytokine concentrations in plasma. Quadruplicate determinations were made, i.e., 

each sample was run in duplicate in two separate assays. The standard sample 

concentrations used to establish second order polynomial calibration curves for each 

cytokine as well as the detection limits for this assay have been described in detail in 



 

100 

previous work by our group [32]. In brief, these support an average coefficient of 

variability (CV) of 0.20 for inter-assay comparisons and a value of 0.09 for intra-assay 

repeatability. 

3.2.4 Quantitative analysis  

3.2.4.1 Statistical evaluation of cytokine data  

Prior to analysis, the raw cytokine concentration data was filtered and normalized. All the 

cytokine levels that were undetectable (zeros) were replaced by the minimum 

concentration level of that particular cytokine observed across all the subjects (HC and 

GWI). The raw cytokine data was linearly interpolated across the entire time course 

using the minimum time interval (i.e. ~3 min) to provide equally spaced sample 

estimates. Further, interpolated data was log2 transformed and normalized for every 

cytokine across both groups by subtracting the average log2 transformed cytokine levels 

at rest (T0) in the HC group for each cytokine.  This normalized log2 transformed data is 

finally converted to fold change by calculating the log2 normalized cytokine 

concentration exponent of 2.  Summary statistics of the filtered and normalized cytokine 

concentration levels (pg/ml) are reported in Appendix 3.1 and presented graphically in 

Appendix 3.2. We identified an outlier in the healthy control subjects with out-of-range 

expression levels in several cytokines, namely IL-2, IL-6 and IL-13. This subject was 

removed from further study leaving n=11 healthy control subjects.  

  Differences in the time course trajectory of individual cytokines from one subject 

to the next were characterized using the SMETS (Semi Metric Ensemble Time Series) 

measure developed for the comparison of multiple time series of arbitrary length [33]. In 

order to generate distribution statistics for this measure of divergence in trajectory we 

combined a leave-one-out cross-validation strategy with standard bootstrapping.  More 

precisely, a group of n=10 of 11 (HC) time series randomly sub-sampled without 
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replacement were compared with another group of n=10 of 12 (GWI) time series also 

randomly sub-sampled without replacement. This was done repeatedly (100 times) for 

each of the 16 cytokines. Intra-group and inter-group SMETS values were calculated by 

comparing each of the 10 subsampled time series from one group with each other as 

well as with each of the 10 subsampled time series from the opposing group. Differences 

in the resulting distributions of intra and inter-group SMETS values were tested for 

significance using the t test and the Wilcoxon ranksum test. The SMETS algorithm and 

sub-sampling technique are described further in Appendix 3.3. 

3.2.4.2 Aggregating cytokines into functional sets 

In previous work, our group updated and further developed the network of documented 

immune signaling interactions used by the agent-based Basic Immune Simulator [24] to 

create an augmented model of innate and adaptive immune cell signaling [23]. In this 

model, aggregated functional groups were used to represent various adaptive immune 

cell subsets (namely, Th1, Th2, Th17 for T helper cell populations and cytotoxic T 

lymphocytes as CTL), as were sub-populations of innate immune cells (natural killer cells 

or NK and dendritic cells or DC). In much the same way individual cytokines were 

grouped based on the predominant cell population of origin and mode of action. For 

example, cytokines released primarily by monocytes (DCs) were grouped into a 

monokine (MK) group whereas cytokines released by lymphocytes such as NKs, Th1, 

Th2, and CTLs are grouped into a lymphokine group (CK). These groups were further 

subdivided into monokine MK1 and cytokine CK1 forming the pro-inflammatory cytokine 

functional sub-groups, with MK2 and CK2 comprising the corresponding anti-

inflammatory sets. The remaining cytokine groups were composed of individual 

cytokines (e.g., MK15 contains only IL-15) (Table 3.2).  
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Table 3.2: Aggregated Cytokine groupings. Resulting aggregated variables used in 
the extracted cytokine network from the immune signaling model reported in Fritsch et 
al. (2013) [23]. MK1A and MK1B represent the first and second principal components 
respectively obtained from individual cytokines. 

Node ID Group Cytokines 

1. MK1A IL-1α, IL-1β, IL-8 and IL-12 

2. MK1B IL-1α, IL-1β, IL-8 and IL-12 

3. MK2 IL-10 

4. MK6 IL-6 

5. MK15 IL-15 

6. MK23 IL-23 

7. CK1 IL-2, IFNγ, TNFα and TNFβ 

8. CK2 IL-4, IL-5 and IL-13 
9. CK17 IL-17 

 

In order to take advantage of this documented signaling network it was 

necessary to aggregate the individual cytokines measured experimentally in this work 

into their corresponding functional sets as defined in [23]. In cases where the functional 

sets contained multiple cytokines, such as MK1, CK1 and CK2, the activation level for 

the aggregate set was estimated by applying principal component analysis (PCA) to the 

concentration levels of the constituent cytokines and using the first component score as 

a joint measure of expression. As a general rule, a second additional principal 

component was used only if the first component captured less than 80% of the variability 

in the aggregate set. This was the case for MK1 that was scored as two separate co-

expression patterns MK1A and MK1B (Table 3.2, 3.3). As shown in Table 3.3, cytokine 

co-expression patterns were relatively consistent across subject groups for sets MK1A 

and B, with over 75% and 10% of the overall variability captured by the first and second 

latent vectors respectively. This was not the case for CK1 and CK2 where the shared 

variability captured by PC1 was visibly - lower in GWI (0.41 and 0.68 respectively) 

suggesting that cytokines aggregated under CK1 and CK2 behaved less cohesively in 

the illness group. With the exception of set CK2, the loading coefficients for PC1 were 
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consistent in sign (positive or negative) across both subject groups. Accordingly, in order 

to create a common coordinate system and facilitate the comparison of network 

structures across groups, aggregate expression for these sets was estimated using a 

PCA model based on profiles from all subjects thereby capturing co-expression patterns 

shared by both groups (HC and GWI).    

Table 3.3: Variance captured by the first principal component (PC1) for aggregated 
cytokine variables and their respective loadings. In healthy and GWI models data 
from respective individual groups was used for PCA whereas all the data was combined 
in HC+GWI model for PCA. Variance for MK1b represents the fractional variance 
covered by second principal component (PC2). Data was normalized, interpolated and 
converted to fold change before the PCA calculations. 

Variable Aggregated cytokines Healthy GWI Healthy+GWI 

MK1a Tot Variance (PC1) 0.7568 0.8292 0.7873 

     

 IL-1a 0.9877 0.9974 0.9931 

 IL-1b -0.0594 -0.0447 -0.0536 

 IL-8 -0.1386 -0.0502 -0.0968 

 IL-12 -0.0424 -0.0267 -0.0378 

     

MK1b Fract. Tot Variance (PC2) 0.1321 0.1075 0.121 

     

 IL-1a 0.1437 0.0513 0.0984 

 IL-1b 0.2803 0.3054 0.2972 

 IL-8 0.9413 0.9039 0.9267 

 IL-12 -0.1218 -0.2950 -0.2078 

     

CK1 Tot Variance (PC1) 0.9234 0.4105 0.8874 

     

 IL-2 0.9917 0.5938 0.9913 

 IFN-y -0.0245 -0.2533 -0.0269 

 TNF-a 0.0031 0.7621 0.0149 

 TNF-b 0.1261 0.0492 0.1278 

     

CK2 Tot Variance (PC1) 0.9811 0.6788 0.9613 

     

 IL-4 0.0963 0.9225 0.0921 

 IL-5 0.7585 -0.0470 0.7568 

  IL-13 0.6445 -0.3832 0.6471 
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3.2.4.3 Creation of literature-based reference networks  

Building on our earlier literature-based model describing cytokine-cell immune signaling 

[23], we removed immune cell nodes lying between any two cytokines to create an 

abstracted graph of cytokine-cytokine interaction. Only edges connecting first (cytokine-

cytokine) and second neighbour cytokines (cytokine-cell-cytokine) were included in the 

final network. In the latter case, the aggregate mode of action linking cytokines was 

determined by multiplying the sign of the intervening edges. For example, in Fritsch et al. 

(2013) [23] the MK2 cytokine set inhibits the dendritic cell set (DC1) which typically 

promotes the secretion of MK15. In the abstraction presented here this translates into a 

direct inhibition of MK15 by MK2. In addition, as MK1 was divided into two subsets, note 

that all outgoing and incoming edges for MK1 were directly propagated to MK1A and 

MK1B nodes.  

 To further consolidate this network, we also extracted interactions linking the 16 

cytokines measured in our experiments using the “Search Tool for the Retrieval of 

Interacting Genes” (STRING) database [34]. Interactions in the STRING database are 

included and scored on the basis of several supporting sources such as co-occurrence 

in manually curated literature and co-expression in available experimental databases to 

name a few. Every interaction in the STRING database was assigned a confidence 

score with direction and type of regulation predicted for most edges (except direct 

physical binding) based on natural language processing (NLP) [34]. It is important to 

note that these scores do not indicate the strength or the specificity of the interaction. 

Instead, they are indicators of confidence, i.e. how likely STRING judges an interaction 

to be true, given the available evidence. All scores rank from 0 to 1, with 1 being the 

highest possible confidence. A score of 0.5 would indicate that roughly every second 

interaction might be erroneous (i.e., a false positive). Scores are assigned to individual 

evidences and a combined score is computed using the weightage of every score. It is 
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important to note that all the interactions retained in the extracted cytokine network had 

a confidence score of ≥0.80 with respect to their predicted direction based on human 

studies. Source and target cytokine nodes associated with each edge along with 

supporting evidence and confidence scores are summarized in Appendix 3.4. We then 

translated this basic cytokine-cytokine network into one linking the 9 cytokine sets 

described in [23]. Since MK1A, MK1B, CK1 and CK2 individually represent several 

cytokines in one aggregated variable multiple edges among constituent cytokines within 

or between aggregate sets were also rationalized using the union of all incoming and 

outgoing edges for that cytokine sub-network. This yielded an abstracted network with 

38 edges linking 9 aggregate sets from an initial directed network of 47 edges linking 16 

individual cytokines extracted from STRING database. As might be expected these two 

reference networks overlapped substantially with 30 interactions sharing source, target 

and direction across both networks. Building on this consensus and including 

interactions unique to each, we created a single unified reference network with 50 

directed edges linking 9-aggregate cytokine nodes (Appendix 3.5).   

3.2.4.4 Inferring directed cytokine networks from data 

An ordinary differential equation (ODE) based model was used to infer directed 

interactions among the grouped cytokine variables. These models have been widely 

used for the inference of regulatory networks. In this model, we use a simple linear rate 

equation to describe the rate of change of concentration of every aggregated cytokine 

variable as described in Equation 1:  

   

  
                                              (3.1), 

where ai,j describes the influence of node j on the rate of change of expression of node i. 

A positive value of ai,j  represents activation of node i  by node j, negative value 
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represents inhibition and zero value represents no interaction between node j  and i . Eq. 

1 can also be rewritten in the matrix form (Eq.2). 

                            (3.2), 

where X is an n x 1 vector and A is an n x n matrix containing the weight of all the edges 

of the network. 

Consistent with our recent work [22], we used an extension of standard PCA 

called partial least squares (PLS) regression [35, 36] for the estimation of latent vectors. 

Furthermore, we used the broken-stick technique, a variant of the Horn’s technique 

(Horn, 1965 [37]) to select appropriate number of latent vectors to be retained for 

identification of unknown parameter set A in Eq 2. Note that this method was chosen 

over Bartlett’s method (Bartlett, 1950 [38]), which is more permissive and therefore more 

prone to false positives in the inference of interactions [22, 39]. Parameters of the 

broken stick method were tuned to provide the maximum F score values for the 

inference of the combined literature-based reference network described in the previous 

section (Appendix 3.5). A global optimization method, constrained simulated annealing, 

was used to balance computational cost and thoroughness.  

All algorithms were encoded in MatLab using the functions available in the 

Statistics, Machine learning and Global Optimization toolboxes (The MathWorks, Inc., 

Natick, MA). For more details about parameter tuning we refer the reader to [22]. 

3.2.4.5 Network analysis 

3.2.4.5.1 Graph edit distance (GED)  

Weighted Graph edit distances (GED) (Bunke, 2000 [40]) were calculated to quantify the 

topological differences among the networks of same group (intra GEDs) as well as 

between networks of two groups (inter GEDs). A weighted Graph Edit Distance (GED) 
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corresponds to the “cost” associated with the edit operations to transform a graph into 

the other [41, 42]. Here, we make the cost of these edit operations proportional to the 

differences in the edge weights. The weighted GED between two networks of order N 

with adjacency matrices A and B is: 

               
 
   

 
                                             (3.3), 

where, aij and bij are the weights for an element in adjacency matrix A and B 

respectively. Statistical significance of the edit costs separating networks across illness 

groups compared to networks within groups was based on repeated random sub-

sampling of subjects. Local restructuring of the networks that drive these global 

topological differences was described in terms of node centrality measures such as 

betweenness centrality, degree centrality and closeness centrality. Furthermore, ‘hubs’ 

and ‘authority’ centrality scores were used to further differentiate the local topological 

features of healthy networks from GWI networks. Details of these metrics are described 

in Appendix 3.6. A general review of basic metrics used to describe global and local 

network structure and their applications in biology may also be found in [43] and [44].  

 All calculations related to network identification and rationalization as well as the 

analysis of network attributes were conducted with the MATLAB software environment 

(The MathWorks Inc., Natick, MA). Note that, MatLab 2016a was used for node centrality 

measures calculations. The graphical rendering of directed networks was performed 

using ‘Orthogonal’ layout of yEd graph editor program (yWorks Gmbh, Germany).  

3.2.4.5.2 Simulation engine  

The dynamic behaviour supported by the directed cytokine networks identified in this 

work was explored by using the discrete state simulation engine NetSim [45] where the 

target transition state for any given cytokine node at time t+1 is determined by resolving 

the fuzzy logic statement describing the regulation of that node.  A sigmoidal activation 
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function is then used by NetSim to modulate the incremental transition from the node’s 

current state in the direction of its target state.  This incremental change in state is 

weighted by a time constant capturing both synthesis and degradation dynamics. In all 

simulations the parameters describing node dynamics were sampled from Gaussian 

distributions with mean and standard deviation as recommended by the authors. As 

recovery dynamics are of specific interest here, the initial states for each simulation were 

set to values measured at peak exercise effort.  

3.3 Results 

Although the exercise capacity of GWI veterans approaches that of healthy controls in 

terms of % peak effort and the time required to reach maximal VO2, they differ 

significantly in their ability to recover from this challenge. This impaired recovery 

presents as an exacerbation of GWI symptoms and has been documented in several 

studies as post-exertional malaise [10, 46]. Therefore, we have focused in this work on 

isolating and comparing the networked response of the immune system in GWI subjects 

to that of HC subjects in the recovery phase.  Specifically, we consider the 4-hour time 

period starting at the VO2 max time point and described by 6 out of the 8 time points 

measured. 

3.3.1 Divergence in exercise response of individual cytokines  

The distribution of SMETS values describing the separation of time course response in 

the recovery phase for each individual cytokine both within and between subject groups 

was calculated using a leave-one-out repeated sub-sampling scheme. The mean values 

and standard error for intra-group, pooled intra-group (HC+GWI) and inter-group SMETS 

divergence values are reported in Appendix 3.7A. The corresponding SMETS median 

values and the median absolute deviation from the median (MADM) are reported in 
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Appendix 3.7B. Results show that individual cytokine response trajectories differed 

significantly between subject groups for most cytokines surveyed based on a Wilcoxon 

ranksum and Students’s t tests (Appendix 3.7C).  The between group SMETS 

divergence values were significantly greater than within group values among healthy 

control subjects, GWI subjects or both groups pooled. The only exceptions were IL-1α, 

IL-23, TNF-α and TNF-β that did not differ significantly between groups when compared 

to the distribution of SMETS values separating subjects within the healthy control group. 

Among the cytokines that differed significantly in trajectory between groups, average (or 

median) SMETS values in IL-2, 13 and 17 separating GWI from HC subjects were at 

least 1.5 times the corresponding SMETS values separating subjects within the same 

group. It should be noted that in general, cytokine dynamics were more diverse in HC 

subjects, with higher mean intra-group SMETS values in 11 of 16 cytokines. Only in the 

case of IL-5, 10, 17, 23 and TNF-β were these within group differences statistically 

significant. 

3.3.2 Remodeling of cytokine networks inferred from experimental data 

In order to align the empirical analysis with the data mined mechanistic model we first 

projected the cytokine profiles measured at the 6 recovery phase time points into the 

space defined by the aggregate sets described in Table 3.2 and 3.3, then captured the 

dynamic trajectories of these sets by fitting the parameters of a first order linear ODE 

(Eq.1). This was performed for each individual subject in each group yielding subject-

specific directed immune response networks. To emphasize network features 

characteristic of each illness group a combination of leave-one-out and bootstrapping is 

applied as described in the Methods section. We re-sampled 100 random subsets of 10 

subjects without replacement from 11 in HC and 12 subjects in the GWI group 

respectively. Individual cytokine networks were inferred for every subject of each subset. 
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Within each subsample a consensus network was identified by majority rule whereby 

only edges shared by at least 6 out of the 10 networks were retained.  These 100 

consensus networks identified for each illness group were used to support comparative 

statistics directed at establishing the significance of network remodeling in GWI. 

Comparing these empirical networks in terms of graph edit distance (GED) we found 

significant remodeling of the topology across groups compared to the pooled within 

group variability (HC and GWI) (pinter<<<0.01) (Figure 3.1).  

 

 

Figure 3.1: Significantly altered immune circuitry. Graph edit distance (GED) 
distributions comparison between HC (blue) and GWI (orange) intra GEDs and inter 
group GEDs (yellow). 
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Moreover, within group GED was significantly higher in HC compared to GWI 

(pintra<<<0.01) indicating that consensus networks were more topologically diverse in this 

group. To assess the nature of this remodeling we quantified the role of each cytokine in 

the signaling network in terms of centrality measures such as node degree, 

betweenness centrality and closeness centrality. In addition, hub and authority scores 

were also calculated to further highlight dominant contributors to the topology (Table 3.4; 

Appendix 3.8; Appendix 3.9 A-D). These measures point to a major reshuffling of roles 

for each cytokine in the GWI consensus networks. The differences between weighted 

median betweenness centrality scores were significant for all cytokine functional sets 

except MK1B (p<0.05) (Appendix 3.9A). In general, weighted median betweenness 

centrality scores were higher in HC consensus networks (Appendix 3.8) with MK6 (0.25),  

 

Table 3.4: Summary of changes in cytokine node centrality. Increase or decrease in 
fold change for individual node centrality measures (GWI/HC) highlighting p <0.05 and 
FC<0.5 (red star) and FC > 2 (green star).  Results show significant change in the roles 
of a broad majority of aggregate cytokine sets used in the immune signaling model of 
Fritsch et al. (2013) [23], including MK2, 6 and 15, key components of the GWI 
regulatory motif. Recall MK1A and B represent the first and second principal 
components respectively derived from the co-expression patterns of IL-1α, IL-1β, IL-8 
and IL-12.   

 

Node 
names 

Weight. 
betw 
cent 

Weight. 
Inclose
ness 

Weight. 
Outclose
ness 

Weight. 
Indeg 

Weight. 
Outdeg 

Weight. 
Hub 
ranks 

Weight. 
Auth. 
ranks 

MK1A 1.6 1.97 1.05 1.67 1.5 4.75* 0.86 

MK1B 

 

1.98 1.45 2 1.25 2.72* 0.72 

MK2 2.25* 1.56 2.25* 0.83 3.00* 3.76* 0.84 

MK6 0.14* 1.78 0.95 2.33* 1 1.25 2.38* 

MK15 0.17* 1.18 1.57 1.33 1 0.49* 1.98 

MK23 0.57 1.09 1.91 0.9 1 0.40* 1.21 

CK1 ** 2.96* 1.5 1.5 1.5 2.22* 0.22* 

CK2 0.20* 1.1 1.57 
 

1 0.56 5.23* 

CK17 ** 1.18 1.63 0.33 1.33 1.43 0.41* 

 



 

112 

MK15 (0.21) and CK2 (0.18) nodes being most influential and differing significantly from 

corresponding values in GWI (p<0.01) (Appendix 3.8; Appendix 3.9A). Conversely in 

GWI, MK1B (0.20), MK2 (0.16) and MK1A (0.14) nodes had the highest median 

betweeness centrality values but these differed from HC only in the case of MK2 

(p<0.01). In keeping with a less centralized topology in GWI, node accessibility from 

other nodes (Incloseness centrality) and access to other nodes (Outcloseness centrality) 

was generally higher in GWI consensus networks (p<0.05) (Appendix 3.8; Appendix 

3.9B). For example, MK23 (3.74), CK2 (2.75) and MK2 (2.57) were the most accessible 

nodes (weighted incloseness centralities) to the other nodes of immune network in HC. 

These nodes were replaced in terms of accessibility by MK1B (4.38), CK1 (4.35) and 

MK1A (4.24) in GWI. Conversely, MK6 (2.96), MK1B (2.67) and MK15 (2.61) have the 

three highest median weighted outcloseness or access to the network in HC whereas 

MK2 (4.25), MK15 (4.11) and MK23 (3.94) nodes have best access in GWI consensus 

networks. Not surprisingly these differences are in close alignment with median indegree 

and outdegree values, which were also generally higher in GWI consensus networks 

(Appendix 3.9C). With the exception of CK2, all nodes differed significantly in indegree 

and outdegree between HC and GWI with MK6 undergoing the biggest shift in indegree 

and MK2 the largest in outdegree centrality.  

Hub and authority metrics offer a summary measure of these changes in 

incoming and outgoing connectivity at each node that also takes into consideration the 

impact of these changes in terms of reach across the broader network and the shifting 

involvement of influential nodes (Appendix 3.9D). For example, increased hub-rank for 

node CK1 suggest increased regulatory broadcasting in GWI despite less prompting by 

incoming signals or lower authority score. Similarly, nodes MK1A, MK1B and MK2 show 

increased regulatory broadcasting with only modest (FC<2) changes in authority score.   

Conversely MK15 and MK 23 show markedly lower levels of broadcasting to influential 
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nodes despite similar or higher prompting.  Differences across these metrics are 

summarized in Table 3.4.  

3.3.3 Concordance with a literature-based reference network 

Based on the subsampling scheme described above, 100 subsamples were created in 

each of the HC and GWI clinical phenotypes. These 100 subsamples each consisted of 

10 subject-specific empirical networks. When casting these against documented 

signalling mechanisms we found that they were sufficiently diverse in both GWI and HC 

to collectively canvas over 80% of the documented immune circuitry during exercise in at 

least half of the instances (median recall 0.82 HC, 0.84 GWI). Similarly, roughly 60% of 

the regulatory interactions predicted from the data were also documented in the 

literature in at least half of the cases (median PPV=0.61 HC, 0.60 GWI) (Appendix 

3.10A).  If we restrict this to only those interactions shared across subjects within each 

subsample the proportion of documented immune circuitry inferred as active from the 

data decreases comparably in both HC and GWI subject groups to just below 40% 

(Appendix 3.10B; median recall 0.37 HC, 0.39 GWI).   Finally, by enforcing unanimity 

across all individual samples in all subsample sets we obtain empirical networks derived 

from the data in each group, which converge to a similar number of interactions 

(Appendix 3.10C; 19 HC, 24 GWI) supporting a connection or edge density of roughly 

20-30%. In both HC and GWI groups, the proportion of documented interactions inferred 

as active across networks decreased almost in step as increasing levels of agreement 

were applied, falling from initial levels >80% to settle at somewhat similar values of 29% 

in HC and 22% in GWI.  In contrast, while the proportion of predicted interactions 

validated by the literature-based model increased in the healthy control group from 61 to 

74%, it decreased substantially from 60 to 46% in the GWI group with increased 

consensus (Appendix 3.10C; median PPV 0.74 HC, 0.46 GWI). Notwithstanding 
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spurious false positives expected of this limited group size, this would suggest that in 

GWI a higher proportion of immune signaling diverges from patterns commonly 

associated with healthy physiology.  Focusing our analysis on only those interactions 

represented unanimously in the data collected in each group and documented in the 

literature-based model, we obtain conserved characteristic motifs for HC and GWI 

consisting of 14 and 11 regulatory interactions respectively (Table 3.5). Only 4 of these 

interactions were shared across illness groups leaving 7 documented regulatory 

interactions characteristically active in GWI alone. Of these 4 shared interactions, only 

the positive regulation of MK1A by CK2 retained the same mode of action, the remaining 

3 took on opposing regulatory actions across groups suggesting involvement of 

unobserved intermediate regulatory elements. In addition, we notice that CK17 is 

uniquely targeted for active regulation by several mediators in GWI whereas it is an 

active regulator in the HC circuit. One such regulator of CK17 in GWI is MK23, which is 

also involved in a characteristic positive feedback loop with MK2 in GWI (Figure 3.2B). 

Positive feedback regulation is characteristic of self-sustaining cascades and the 

emergence of multiple stable resting states. In contrast, no positive feedback loops were 

identified as active during recovery from exercise in HC (Figure 3.2A). In addition to 

feedback regulation, feed-forward control circuits are found extensively in nature and 

serve very specific regulatory functions. Alon (2007) [47] defines 8 such recurring 

regulatory building blocks or network motifs, classifying them as coherent or incoherent 

controllers.  The latter motif serves as a basic pulse generator and response accelerator 

whereas the former responds to persistent input with a ‘sign-sensitive delay’, i.e. 

delaying activation but allowing rapid deactivation. 
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Table 3.5: Documented immune signals represented in experimental data. Immune 
signaling interactions documented in the literature (Fritsch et al., (2013)) [23] and the 
STRING database (Szklarczyk et al. (2015)) [34] that were also represented in the 
experimental data collected under exercise challenge in Gulf War Illness (GWI) veterans 
as well as healthy control veterans (HC). Shaded source-target interactions are shared 
between both illness groups in direction but not necessarily mode of action. Cytokine 
sets appearing as unique sources or targets in each group are underlined and italicized. 
 

Source  Target 
Agonist (+1) / 
Antagonist (-1) 

Active in 
Illness Group 

CK1 MK6 -1 GWI 

CK1 MK15 -1 GWI 

CK2 MK1A 1 GWI 

MK1A CK17 -1 GWI 

MK1B CK1  1 GWI 

MK1B MK23 1 GWI 

MK6 CK17 -1 GWI 

MK15 CK1  1 GWI 

MK15 MK2  1 GWI 

MK23 MK1B -1 GWI 

MK23 MK2  1 GWI 

    CK1 MK15 1 HC 

CK1 MK23 1 HC 

CK2 MK1A 1 HC 

CK2 MK1B 1 HC 

CK17 MK6 -1 HC 

MK1A MK1B -1 HC 

MK2 CK1 -1 HC 

MK2 MK2 -1 HC 

MK2 MK15 -1 HC 

MK6 CK2 1 HC 

MK23 MK1B 1 HC 

MK23 MK2  -1 HC 

MK23 MK15 -1 HC 

MK23 MK23 -1 HC 
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Figure 3.2: Mechanistically informed regulatory motif in A) Healthy control and B) 
GWI. Regulatory interactions extracted from documented prior knowledge that are 
uniquely represented in the experimental data in A) healthy and B) GWI during recovery 
from maximum exercise.  Solid lines represent documented interactions and dashed 
lines show undocumented interactions in literature. Green arrows indicate a stimulatory 
action while red “T” terminators indicate suppressive actions.   

Interestingly, the only coherent type 2 motif identified was characteristic of the 

active HC sub-circuit, suggesting increased robustness to rapid fluctuations in the 

delayed down-regulation of MK15 by MK2 (Figure 3.3). While incoherent type 1 FFL 

pulse-generating motifs were found active in both illness and healthy groups, the GWI 

sub-circuit presented with a unique incoherent type 1 regulation of CK17 by MK23. 

Incoherent feed-forward control motifs produce bimodal behaviour [48] as well as 

supporting a ratio-based control function e.g. fold change over background [49]. Of note, 

CK17 was also the object of coherent type2 control in GWI only. In both motifs we find 

an apparent inhibitory action of MK23 on CK17, which contradicts the well-documented 

positive contribution of IL-23 to the maintenance and development of Th17 cells [50]. It is 

important to note that the control action in question was inferred from the experimental 

data only and was not supported by the literature-based model.  



 

117 

 

 

 

Figure 3.3: Basic regulatory control motifs in HC and GWI. Minimal regulatory 
component feed-forward control motifs suggested by Alon (2007) [47]; emerge as unique 
features in the sub-circuits for Healthy and GWI groups. Specifically, incoherent type 1 
and coherent type 2 feed-forward loops (FFL) unique to HC (upper lane), indicating 
robustness to sudden disturbances. The GWI circuit however presents with the 
incoherent type 1 and 3 and coherent type 1 and type 2 FFLs.   
 

Indeed, if we consider the documented control actions in the GWI circuit (Figure 

3.2B), we find a cascade linking MK23 to CK17 through the intermediaries MK1B, CK1, 

and MK6 with alternating control actions such that the net effect is an indirect inhibition 

of CK17 (Appendix 3.11).  The incoherent FFL motifs identified should therefore be 

considered apparent motifs that summarize the net control effects. 

3.3.4 Simulated ad hoc cytokine inhibition 

In the previous section we identify a characteristic control sub-circuitry active during 

recovery from exercise in each illness group. This active sub-circuitry consists of control 
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actions inferred for experimental data with some of these being further validated against 

a literature-informed template consisting of known documented mechanistic interactions 

(Figure 3.2A, B). One could now ask if there exist minor changes to this circuitry that 

might allow the GWI sub-circuit to perform at least partially like the healthy control sub-

circuit in response to exercise. Mainstream pharmaceutical immune-therapy often 

involves delivering small molecules that act as immune agonists or antagonists.  As the 

GWI circuit is de facto more abundantly connected we simulate the effects of a 

pharmaceutical blockade of receptors for a specific cytokine functional group by 

removing all outgoing edges from that network node.  This was applied to all nodes in 

the GWI circuit individually and in pairs with the objective of minimizing the topological 

differences with the healthy control circuit quantified as the graph edit distance. The 

original GWI circuit diverges topologically from the HC circuit with a weighted graph edit 

distance (GED) of 0.2569 (0.0021 Std. Err).  Results presented in Appendix 3.12 

suggest that attenuating MK6 signaling is the single best intervention target, reducing 

the deviation in GWI network topology from HC to 0.2427, a small but statistically 

significant reduction (~5%).  Similarity to the healthy control circuit architecture is further 

improved slightly by combining MK6 blockade with a CK1 antagonist (GED 0.2338). The 

effects of these changes in GWI network signaling on expected immune response 

behaviour were then simulated using the NetSim environment in order to provide a data 

agnostic perspective.  Results presented in Figure 3.4 suggest that this topologically 

motivated approach nonetheless produced a rescue of the MK1B and CK17 response, a 

characteristic component in GWI. Transient restorative effects on MK2 and MK15 

responses were also produced but were accompanied by a significant abrogating the 

otherwise normal MK6 response. 
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Figure 3.4: Simulating regulatory circuit response to MK6 and CK1 antagonism. 
Simulated response to a step perturbation applied to the characteristic circuits for GWI 
(GWI, red line), healthy control (HC, green line), as well as the pharmaceutically edited 
GWI network (Treated, blue line).  Improved adherence to output from the healthy 
control circuit is produced for cytokine sets CK17and MK1B, with transient restorative 
effects on MK2 and MK15. This is accompanied by significant worsening in MK6 
response. 

The second leading alteration to the GWI immune circuitry consisted in a 

concurrent blockade of MK6 and MK23 receptor function. Response of this modified 

GWI immune circuit to a simulated relaxation is described in Figure 3.5. Results indicate 

that this strategy would improve adherence to the predicted healthy control circuit 

response in cytokine sets MK1A, MK1B, and CK2 without inducing significant negative 

effects in other cytokine responses. It is important to note that these simulations assume 

that with the exception of pharmaceutically targeted cytokine signals the remainder of 

the circuitry is still active.  
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Figure 3.5: Simulating regulatory circuit response to MK6 and MK23 antagonism. 
Simulated response to a step perturbation applied to the characteristic circuits for GWI 
(GWI, red line), healthy control (HC, green line), as well as the pharmaceutically edited 
GWI network (Treated, blue line).  Improved adherences to output from the healthy 
control circuit are produced for cytokine sets MK1A, MK1B, and CK2 without significant 
negative effects on other sets. 

Moreover, it also assumes that although some corrective results are produced at 

the level of individual cytokine sets that the overall immune network continues to operate 

in the vicinity of the GWI regulatory regime and as such does not significantly activate 

any new cytokine signaling mechanisms. We have shown previously that certain 

cytokine sets act as primary drivers of symptom burden, including IL-1a (MK1A) and IL-

10 (MK2), and though not curative that mediating these may reduce illness severity [19].       

3.4 Discussion 

 In this study, we used a Graded eXercise Test (GXT) to stimulate immune signaling in a 

group of N=12 veterans with Gulf War Illness (GWI) and N= 11 healthy control subjects. 
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Cytokine levels in blood serum were measured at 8 time points spanning from initial time 

point at rest to 4 hours post-effort. Statistical analysis using the SMETS metric of the 

differences in response dynamics for individual cytokines during recovery confirmed that 

the majority of these differed significantly in GWI compared to HC.  The only exceptions 

to this were responses in IL-1α, IL-23, TNF-α and TNF-β, which did not differ 

significantly between groups compared to the distribution SMETS distances separating 

HC subjects from one another. Considering the smaller cohort and heterogenous nature 

of GWI, we explored the underlying candidate mechanisms driving these divergent 

choreographed behaviours, rather than the highly variable expression profiles they 

support. In particular, we identified directed interaction networks from the data collected 

in each group, aggregating these cytokines into functional sets to facilitate the 

integration of these empirical interactions with documented immune signals described in 

work by Folcik and colleagues [24, 25] and used subsequently in simulations by our 

group [23].  This literature-based network was further reinforced by including immune 

signaling interactions reported in the latest version of the STRING database [34].  

Integration of literature-based and data-derived signaling components indicated that 

vastly different subsets of immune circuitry become active in each group during recovery 

with a smaller proportion of these being documented in our reference circuit for GWI 

than HC. Significant differences in topology occurred specifically regarding involvement 

of MK2, MK6 and MK15 in the broader network, key components of the GWI regulatory 

motif.  This remodeling of the signaling networks manifested in part through the 

emergence of characteristic feed-forward control motifs proposed as basic regulatory 

building blocks by Alon (2007) [47].  Not surprisingly feed-forward mediation of MK23 

and CK17 by MK2 and MK6 emerged as distinguishing control elements that were 

characteristically active in GWI during recovery from exercise. Interestingly, when 

assessing topological changes that might be imparted to the GWI sub-circuit to produce 
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a circuitry that best resembles that of HC, abrogating MK6 (IL-6) signaling arose the 

single most impactful modification.  Combining this with a concurrent blockade of 

inflammatory Th1 cytokine under CK1 (IL-2, IFN-γ, TNF-α, TNF-β) further improved 

alignment in topology between the GWI and HC active sub-circuits.  Simulating the 

effects of these changes in connectivity suggested that this joint blockade of MK6 and 

CK1 might allow for the recovery of normal response dynamics in MK1B (primarily IL-1b 

and IL-8), MK2 (IL-10) and CK17 (IL-17) response dynamics albeit while worsening MK6 

(IL-6) response.  In previous work by our group [19], IL-10 (MK2) arose as a strong 

correlate of increased illness severity, specifically multidimensional fatigue inventory 

(MFI) [51] describing increased general and physical fatigue accompanied by reduced 

activity and motivation scores. Increases in IL-10 also correlated with decreased general 

well being scores under the SF-26, a 36-item short-form survey [52] assessing health-

related quality of life.  In addition to reducing symptom burden, theoretical simulations by 

our group [26] identified inhibition of Th1 (CK1) inflammatory cytokines as a main 

component in a two-pronged intervention that could potentially deliver lasting remission 

from GWI.   

The pharmaceutical blockade strategy that delivered the next best topological 

alignment of GWI and HC sub-circuits consisted of jointly inhibiting MK6 (IL-6) and MK23 

(IL-23) receptors. Interestingly IL-23 modulation has recently attracted interest as a 

potentially important therapeutic target relevant to a broad range of autoimmune 

illnesses [50, 53, 54]. Moreover, activation of STAT3 [55], a key component of IL-23/ IL-

17 signaling has been linked to neurotoxin induced neuro-inflammatory hyper-

responsiveness in a mouse model of GWI. Similarly, selective antagonism of IL-6 

receptor signaling has shown established efficacy in treating several autoimmune 

illnesses and in repairing Th17 /Treg imbalance [56]. Moreover, anti-IL-6 therapies have 

proven especially useful for example in treating rheumatoid arthritis in patients 
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unresponsive to TNF inhibitors [57]. Simulation of this dual IL-6/ IL-23 blockade suggests 

that this strategy might support the rescue of MK1A and MK1B (IL-1α, IL-1 β, IL-8 and 

IL-12) as well as responses in Th2 cytokines under CK2 (IL-4, 5 and 13).  This is 

accomplished under this scenario without negatively impacting other responses. Once 

again, our previous work indicated that changes in IL-4 and IL-12 correlated significantly 

with changes in MFI scores for motivation and the Krupp Fatigue Severity Inventory 

(Krupp FSI) [58]. Likewise changes in IL-1α and IL-5 correlated with changes in SF36 

measures for physical function, physical limit, pain, and vitality. Moreover, results of 

another analysis by our group [17] suggested that initial variations in IL-1α levels might 

catalyze much broader immune activation during exercise and serve as an important 

driver of exacerbation in GWI.   

Collectively these results suggest that pharmacologically altering active immune 

circuit topology can inform on strategies that while not curative may nonetheless deliver 

reduction in symptom burden in GWI. Moreover, the numerical protocol used in this work 

is currently serving as the basis for the study of larger cohort of n=300 directed at further 

verifying these characteristic changes in immune signaling network structure.  

Importantly, predictions made on the basis of interventional restoration of network 

structure, e.g. Th1 blockade, is being tested in an animal model of GWI and being 

translated to human clinical trials. It is important to recall that these characteristic circuits 

represent immune signaling that is predominantly active within the stable regulatory 

regime that we propose perpetuates GWI [59].  As such we also propose that although a 

broader response circuitry is available in principle, that for the most part, the topology of 

this active sub-circuitry will remain dominant within this homeostatic regime and these 

pharmaceutical interventions are reasonably well represented by edits to this 

characteristic circuit.  This assumption becomes less valid the greater the deviation from 

the chronic stable state. Nonetheless, this simple approach offers not only a 
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mechanistically informed molecular motif for GWI but may also inform on beneficial 

strategies for illness management. 
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4 Chapter 4: Potentiation of a persistent immune 
response to Gulf war related exposures by 
prior physiological stress is conserved across 
species: A network study   
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4.1 Introduction 

Gulf war illness (GWI) is an archetypal, medically unexplained chronic condition 

occurring in approximately one third of the veterans of the 1990-91 Gulf War and 

affecting multiple systems of the body including nervous, endocrine and immune 

systems resulting in a fully or partially coordinated set of symptoms: fatigue, 

musculoskeletal pain, cognitive dysfunction, chemical sensitivities, loss of memory and 

sleep disruption [1-4]. The resemblance of these symptoms to ‘sickness behaviour,’ a 

behavioural condition associated with brain inflammatory responses [5, 6], has led to a 

neuro-immune-based hypothesis on the underlying pathobiology of GWI [2, 7-9]. While 

the underlying changes in neurochemistry driving these symptoms are difficult to 

observe directly they may manifest indirectly through changes in the periphery.  Indeed, 

it is now well known that the peripheral immune system and central nervous system 

(CNS) work in close collaboration to maintain the homeostasis, appropriate 

responsiveness at increased metabolic demand, as well as to coordinate an appropriate 

inflammatory response to physical, psychological or immune stresses [10, 11]. Cytokines 

play an important role as messengers in the peripheral immune system and transmit 

signals to the CNS. In fact, several mechanisms exist for the communication between 

peripheral cytokines and the CNS. Many cytokines can directly cross the Blood Brain 

Barrier (BBB) with the help of a saturable transport system that consists of cytokine 

transporters capable of altering the permeability of the BBB [5, 12, 13]. Of course, 

primary afferent nerves, such as vagal nerves during abdominal and visceral infections 

and trigeminal nerves during oro-lingual infections, can also be directly activated by 

peripheral cytokines to transmit signals to the CNS [14, 15]. In another mechanism, 

proinflammatory cytokines, such as IL-1β, produced in response to pathogen-associated 

molecular patterns sensed by toll-like receptors of macrophage-like cells residing in the 
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circumventricular organs and choroid plexus can diffuse through the BBB into the CNS 

[5, 16]. In addition, IL-1 receptors have been observed on perivascular macrophages 

and endothelial cells of brain venules [5]. Activation of these IL‑ 1 receptors by 

circulating cytokines results in the local production of prostaglandin E2 (PGE2). This 

communication between peripheral cytokines and the brain can lead to the activation of 

microglial cells that eventually produce proinflammatory cytokines and chemokines in 

the brain [5]. It has been demonstrated that an immune system activated by peripheral 

lipopolysaccharide (LPS) administration leads to increased cytokine levels in the brain, 

especially proinflammatory cytokines, such as IL-1β, IL-6 and TNFα [17, 18]. In addition, 

peripheral immune challenge and pain stimulation can lead to the activation of microglial 

cells [17, 19]. 

 Consistent with this ongoing collaborative exchange between the CNS and 

peripheral immune signaling, several human studies have reported alterations in the 

immune and endocrine response in GWI veterans. For example, significantly higher 

levels of IL-2, IL-10, IFN-γ, and TNF-α transcripts in peripheral blood mononuclear cells 

(PBMC) were reported in early studies of GW veterans experiencing chronic fatigue 

when compared to healthy veteran control subjects, while non-veterans with ME/CFS 

were much more difficult to distinguish [20]. Similarly, significantly elevated levels of IL-2 

and IFN-γ expression were reported in unstimulated PBMCs from GWI compared to 

asymptomatic veterans [21]. Moreover, members of our group reported concurrent 

expression of IFN-γ with Th2 cytokine IL-5 in Phytohaemagglutinin (PHA)-stimulated 

PBMC culture during the course of a standardized exercise challenge [22]. In a limited 

number of studies, these characteristic differences in peripheral immune signature have 

been linked to symptom burden. In a recent preliminary study, IL-1β and IL-15 levels in 

blood were associated with increased fatigue in pilot cohort of GWI veterans [23]. This is 

consistent with an earlier study by our group where we found Short Form 36 (SF36) 
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measures for physical function, physical limit, pain severity, and vitality cluster together 

and were linked to IL-1α, IL-2 and IL-5 levels [24].   We also found that changes in 

peripheral expression of IL-10 had the broadest effects on illness severity, including 

direct correlation with 4 of the 5 constructs for multidimensional fatigue index (MFI).  

These effects correlated with the activation of pathways related to neuronal development 

and androgen mediated NF-κB signaling as intracellular markers of GWI symptom 

burden in peripheral blood.  Currently, an animal model that mimics the etiology of GWI 

remains the best opportunity of capturing how these correlates of severity in the 

periphery are reflected by changes in the brain.  

While the etiology of this illness remains elusive more than two decades after the 

war, observations in several animal and human studies have supported the involvement 

of neuroimmune and/or neuroinflammatory dysfunction as a plausible cause of GWI [6, 

25]. Multiple exposures and conditions have been hypothesized as the causal agents to 

instigate the symptoms of GWI. Of these, nerve agent exposure in the war zone, 

prophylactic treatments with the pyridostigmine bromide (PB), and continuous exposure 

to pesticides/insect repellants in theater exacerbated by combat stress have been put 

forth as the leading causes of GWI [26, 27]. Many of these exposures involved either 

reversible or irreversible acetylcholinesterase (AChE) inhibitors; prophylactic PB is a 

reversible AChE inhibitor, whereas the nerve gas Sarin, its surrogate diisopropyl 

fluorophosphate (DFP), and a broad class of pesticides including chlorpyrifos and 

dichlorvos are organophosphates that act as irreversible AChE inhibitors. Importantly the 

widely used insect repellent DEET (N, N-diethyl-meta-toluamide) is a weak AChE 

inhibitor that may also increase the activity of other AChE antagonists [28]. Therefore, a 

combined effect of exposure to AChE inhibitors, in the context of combat stress and 

corresponding physiological effects has been widely hypothesized as a cause of GWI 

and examined in several animal models [6-8, 29-35].  
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Stress has long been associated with various physical and psychiatric 

pathologies in humans. In response to stressors, the adrenal cortex secretes stress 

hormones, such as glucocorticoids (i.e. cortisol), that are well known for their 

immunosuppressive or anti-inflammatory properties [36]. However, recent findings of 

animal studies suggest that duration (acute or chronic) and timing (before or after an 

immune challenge) of exposure determine the type of inflammatory response to 

glucocorticoids (GCs) [37-39]. Specifically, GCs are known to suppress the expression of 

IL-1β in both the periphery and the CNS [40]. Conversely, glucocorticoids were shown to 

cause sensitization of isolated hippocampal microglia through an increased 

proinflammatory response to peripheral LPS as measured through IL-β and IL-6 levels 

[41]. Interestingly, while prior exposure to GCs enhanced the inflammatory response to 

LPS injection in both the liver (peripheral) and hippocampus (central), exposure to GCs 

post-LPS leads to suppression of the inflammatory response [42]. Similar patterns of 

response to the acute and chronic exposure to GCs prior to a challenge are extended 

from CNS to HPA axis [37-39]. Consistent with this, we have recently shown that the 

prior exposure to corticosterone (CORT) equivalent to levels expected under conditions 

of high physiological stress [36, 43] exacerbates the neuroinflammation caused by acute 

exposure to DFP, a surrogate of Sarin, in mice as well as rats [6-8]. Similar 

neuroinflammatory effects and their exacerbation by the prior exposure to CORT have 

also been observed in response to exposure to other irreversible AChE inhibitors such 

as CPO (chlorpyrifos Oxon) [7], methamphetamines [44], as well as bacterial LPS and 

viral dsRNA [45]. These observations suggest that chronic/subchronic prior exposure to 

high levels of CORT exerts a priming effect on the CNS leading to a hyper-

responsiveness to subsequent neurotoxic or neuroinflammatory stimuli. Many other 

studies have also demonstrated that CORT has a synergistic effect on the 

proinflammatory response induced by LPS in different compartments as shown through 
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increased expression of proinflammatory cytokines such as IL-1β, IL-6 and TNFα, 

increased core body temperature and activation of the NF-B signaling pathway [41, 45-

49]. Overall, these studies demonstrate that peripheral exposure to CORT has 

proinflammatory effects in the periphery and the CNS, especially when administered 

before a potent immune challenge. Indeed, these observations in animal models 

together suggest that the prior physiological stress and exposure to irreversible AchE 

inhibitors could be the potential instigating agents for the neuroinflammation in GWI. 

While it remains difficult to examine broadly the expression of neuroinflammatory 

cytokines in human brain, structural and functional alterations observed in brain-imaging 

studies of GWI offer evidence of persistent neuroinflammation in these affected 

veterans. For example, significantly elevated cerebral blood flow (CBF) was observed in 

the hippocampus, amygdala, caudate and thalamic areas in the brain of symptomatic 

Gulf war veterans, when peripherally challenged with a reversible cholinesterase 

inhibitor, Physostigmine [50, 51]. Moreover, reduction in the grey and white matter of ill 

veterans has been consistently reported in several MRI studies [52, 53]. 

Though these animal models provided key insights into the effects of different 

individual or combination of exposures, confirming their relevance to GWI will require 

additional validation alignment in immune and endocrine marker expression in a 

compartment that is accessible in both human and mouse, namely in peripheral blood. 

Ideally this would extend beyond the conventional comparison of expression levels in 

individual markers, as these are manifest in specific patterns that evolve across time as 

a result of the underlying regulatory mechanisms. Indeed, one could argue that recovery 

of the same regulatory interactions in the animal model is a more valid measure of 

fidelity since treatment will be focused on mediating these illness mechanisms.  In the 

present study, we try to emulate the age of human subjects at the time of exposure by 

using the mice of 8-12 weeks of age. This age is considered as the 20-26 years of age in 
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human equivalent years. Moreover, 8-12 weeks is more commonly used age in animal 

model because of two important limiting factors: increased cost associated with using 

older animals and maintenance of historical data comparability [54]. Further, we 

emulated the current condition in Gulf War veterans, 25 years after war by extending the 

observation period of a previously published mouse model of acute exposure of 1-week 

to more chronic exposure conditions of 3- and 12-week. Further, we applied graph 

theoretical methods to identify and analyze the alterations in cytokine signaling patterns 

due to the individual and combination of exposures in a mouse model of GWI. Further, 

these patterns of immune cytokine signaling in mice were compared to the co-activity 

patterns among same cytokines in GW veterans in response to a graded exercise 

challenge.  

4.2 Materials and Methods 

4.2.1 Mouse sample collection and processing 

4.2.1.1 Animals 

Adult male C57BL/6J mice (n = 5 mice per group; 8-12 weeks of age) were purchased 

from Jackson Labs (Bar Harbor, ME, USA). All procedures were performed under 

protocols approved by the Institutional Animal Care and Use Committee of the Centers 

for Disease Control and Prevention, National Institute for Occupational Safety and 

Health and U.S. Army Medical Research and Materiel Command Animal Care and Use 

Review Office and the animal facility was certified by AAALAC International. Upon 

receipt, the mice were housed individually in a temperature-controlled (21 ± 1C) 

and humidity-controlled (50 ± 10%) colony room maintained under filtered positive 

pressure ventilation on a 12-h light/12-h dark cycle beginning at 06:00 EDT. Food 

(Harlan 7913 irradiated NIH-31 modified 6% rodent chow) and water were available ad 

libitum. 
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4.2.1.2 Materials 

The following chemicals were kindly provided by or obtained from the sources indicated: 

DFP and LPS from Escherichia coli serotype 055:B5:  Cat. Number L2880, Sigma-

Aldrich, St. Louis, MO, USA, CORT: Steraloids, Inc., Newport, RI, USA. All other 

reagents were of at least analytical grade and obtained from a variety of commercial 

sources. 

4.2.1.3 Dosing  

Similar to our previous studies [7, 9], CORT was given in the drinking water (200 mg/L in 

0.6% ethanol, EtOH) for 4 days prior to DFP (3 mg/kg, s.c.) or saline (0.9%) injection. 

For 3- or 12-week exposures, CORT was given every other week prior to LPS or vehicle 

injection on day 18 or 87, respectively. It is important to note that the dose of LPS we 

used here, was chosen for it’s inability to mount a significant immune response without 

prior CORT exposure.  We did this, because we were hoping to avoid a situation where 

the combined response to CORT and LPS would wash out any additive effect introduced 

by DFP exposure. The schematic view of the dosing paradigm has been presented in 

Figure 4.1. 

A)  3 weeks 

B) 12 weeks 
 
 
 

 

 

0 1 2 3 
Weeks 

LPS DFP CORT 
CORT 

CORT CORT CORT CORT CORT 

Figure 4.1: Dosing paradigm in 3 weeks and 12 weeks exposure. CORT was given 
prior to DFP/ Saline injection and CORT was repeated every other week in 3-weeks and 
12-weeks regimen before LPS or vehicle injection. 
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4.2.1.4 Serum cytokine measurement 

Mice were killed by decapitation at 6 hours post LPS exposure. Trunk blood was 

collected from the decapitated animals for serum isolation as described previously in 

[54]. Serum was frozen at -85°C until subsequent cytokine analysis.  Serum cytokine 

expression was measured as previously described in [55]. 

4.2.2 Human Sample collection and processing 

4.2.2.1 Cohort recruitment & assessment 

As part of a larger ongoing study a subset GWI subjects (n = 27) and healthy but 

sedentary Gulf War era veterans (n = 27) were recruited from the Miami Veterans 

Administration Medical Center. All subjects were comparable in age, body mass index 

(BMI), ethnicity and duration of illness. Subjects were male and ranged in age between 

40 and 55. Inclusion criteria was derived from [1], and consisted in identifying veterans 

deployed to the theater of operations between August 8, 1990 and July 31, 1991, with 

one or more symptoms present after 6 months from at least 2 of the following: fatigue; 

mood and cognitive complaints; and musculoskeletal complaints. Subjects were in good 

health prior to 1990, and had no current exclusionary diagnoses [56]. Medications that 

could have impacted immune function were excluded. In 2002, Collins and coworkers 

[57] also supported the use of the Fukuda definition in GWI. Summary results of subject 

demographics and exercise performance are listed in Appendix 4.1.  

All subjects underwent a physical examination and medical history including the 

GWI symptom checklist as per the case definition. Assessments included fatigue 

measurement through a 20-item self-report instrument Multidimensional Fatigue 

Inventory (MFI) [58], quality of life assessment through the Medical Outcomes Study 36-

item short-form survey (SF-36) [59], The Krupp Fatigue Severity Inventory (Krupp FSI) 

for measurement of the perceptions of fatigue severity [60] while the impact of symptoms 



 

139 

on the activities of daily life was measured with the Sickness Impact Profile (SIP) [61]. 

Subjects were screened for quantity and quality of sleep, and evaluated for the likelihood 

of primary sleep disorders using the Pittsburgh Sleep Quality Index (PSQI) [62]. 

Designed to assess symptoms of post-traumatic stress disorder (PTSD), the Davidson 

Trauma Scale (DTS) [63] was applied to those subjects who reported a traumatic 

experience (death of loved one, assault, injury, etc.). This instrument is divided into three 

components: intrusion, avoidance, and hyper-arousal. The DTS for all three components 

are mentioned in Appendix 4.2. While 66% of the GWI cohort presented DTS scores 

consistent with PTSD, this data is available only for a small fraction of healthy control 

subjects. Finally, aspects of cognitive impairment were assessed using the Paced 

Auditory Serial Addition Task (PASAT). This serial-addition task is used to assess the 

rate of information processing, sustained attention, and working memory [64].  

A standard maximal Graded eXercise Test (GXT) was used to stimulate the 

immune response. Vmax Spectra 29c Cardiopulmonary Exercise Testing Instrument, 

Sensor-Medics Ergoline 800 fully automated cycle ergometer, and SensorMedics 

Marquette MAX 1 Sress ECG were used for the test. Subjects pedaled at an initial 

output of 60W for 2 min, followed by an increase of 30W every 2 min until the subject 

reached: (1) a plateau in maximal oxygen consumption (VO2); (2) a respiratory 

exchange ratio >1.15; or (3) the subject stopped the test [65]. A first blood draw was 

conducted prior to exercise following a 30-min rest. Second and third blood draws were 

conducted upon reaching peak effort (VO2 max) and at 4-h post exercise respectively. 

Summary exercise performance results are also presented in Appendix 4.1. All control 

subjects were screened as sedentary based on their response to a questionnaire upon 

recruitment. This was subsequently confirmed by the aerobic capacities obtained (VO2 

max) [66]. Adjusted maximum VO2 levels were comparable between GWI and control 

groups but were significantly lower for the CFS disease control group (p < 0.05). Trends 
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existed towards shorter exercise bouts in both illness groups but these did not achieve 

statistical significance. 

4.2.2.2 Cytokine profiling 

Plasma was also separated from each human sample within 2 h of collection and stored 

at -80°C until assayed. We measured 16 cytokines in plasma using Quansys reagents 

and instrument (Quansys Biosciences, Logan, Utah). The Quansys Imager, driven by an 

8.4 megapixel Canon 20D digital SLR camera, supports 96 well plate based 

chemiluminescent imaging. The Q-Plex™ Human Cytokine-Screen (16-plex) is a 

quantitative enzyme-linked immunoabsorbent assay (ELISA) where sixteen distinct 

capture antibodies have been absorbed to each well of a 96-well plate in a defined array. 

The range of the standard curves and exposure time were adjusted previously to provide 

reliable comparisons between subject groups in this illness population at both low and 

high cytokine concentrations in plasma. Second order polynomial regression models 

were used as standard calibration curves. Quadruplicate determinations were made, i.e., 

each sample was run in duplicate in two separate assays. Statistics reported previously 

in Broderick et al. (2010) [67] indicated an average coefficient of variability (CV) of 0.20 

for inter-assay and 0.09 for intra-assay repeatability.  

4.3 Numerical analysis 

4.3.1 Statistical analysis 

Prior to analysis, the raw cytokine expression data from mice challenged with LPS at 3 

and 12 weeks following all permutations of priming with Corticosterone, exposure to 

DFP, or both was log2 transformed along with data from saline treated control mice. The 

average log2 transformed cytokine levels for the saline control animals were subtracted 

from the log2-transformed cytokine levels for each individual combination of priming and 
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neurotoxic exposure. This normalized log2 transformed data is finally converted to fold 

change levels by calculating the log2 normalized cytokine concentration exponent of 2. 

Further, one-way ANOVA (Analysis of variance) was performed to analyze the effects of 

different individual and combinations of CORT priming and exposure.  

Similar to the mice, the average log2 transformed data for healthy human 

subjects at rest (T0) was subtracted from log2 transformed cytokine concentrations for 

healthy controls (HC) and GWI at rest (T0), peak effort (T1) and recovery (T2) time 

points and finally converted to fold change levels by calculating the log2 normalized 

cytokine concentration exponent of 2. Further, the fold change levels for healthy and 

GWI subjects were compared for the equality of medians at each time point using Mann-

Whitney-Wilcoxon ranksum test. A two-way ANOVA was also performed to evaluate the 

significance of group, time and combined effects. 

4.3.2 Identification of cytokine co-expression networks 

A simple linear correlation was used as a measure of association to describe the co-

expression of cytokines. It is important to note that because of the high degree of 

concordance between genetically identical mice we concatenated groups of control 

(n=5) and exposed (n=5) animals to incorporate the perturbation and create a stronger 

basis for the correlation analysis. Further, a leave-one-out subsampling strategy was 

applied to the concatenated data of N=10 (n=5 control and n=5 exposed) mice and a 

mouse from each group i.e. exposed as well unexposed was left out in each subsample 

set of N=8 (n=4 exposed and n=4 control) mice. Within each of the resulting 25 (15 in 

cases where n=3) subsampled sets correlation coefficients between cytokine pairs were 

computed along with their respective null probability estimates. Null probability p was 

computed by transforming the correlation to create a t statistic having n-2 degrees of 

freedom for n observations. Confidence bounds were based on an asymptotic normal 
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distribution of 0.5*log ((1+r (xi xj | xk))/(1-r (xi xj | xk))), with an approximate variance equal 

to 1/(n-3) when variables have a multivariate normal distribution. As there exist 66 (n (n-

1)/2) possible pair-wise interactions, null probability values were adjusted for multiple 

comparisons using the Benjamini Hochberg method for estimating the false discovery 

rate (FDR). Further, correlation networks for each group were generated with a 75% 

consensus across sub-sampled networks to ensure the existence of at least one edge in 

each consensus network. More precisely, only edges that were assigned a significant 

correlation (p<0.05) at a low false discovery rate (FDR<0.05) in 3 out of 4 subsample 

networks were included in the consensus co-expression networks.  

Since human subjects, unlike mice, are not genetically identical a slightly different 

strategy was used for the concatenation and subsampling of data to deal with the added 

biological variability. A set of n=10 healthy and n=10 GWI subjects were randomly 

selected without replacement and concatenated to make a combined set of N=20. This 

random selection without replacement is performed 100 times. Further, we constructed 

100 subsampled correlation networks with a null probability of p<0.05 and FDR<0.05 as 

described in the case of mice. Once again, a 75% agreement across subsample 

networks was used to construct the consensus correlation network.  

4.3.3 Network analysis 

General topological differences in networks were evaluated using graph edit distance 

[68] generalized for continuously weighted graphs. The graph edit distance is based on 

the minimum summed ‘‘cost” involved in removing and inserting graph edges to 

transform one network into another. The distance implied is proportional to the 

magnitude of the weighted change in each edge. The weighted graph edit distance, 

dGED, between two undirected networks of order N with adjacency matrices, A and B, 

can be described as follows: 
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                       (4.1). 

The null probabilities of significance of differences in graph edit distances (GED) 

were calculated by comparing the GEDs of different subsampled networks. In addition to 

general topological changes, changes that occur in a node are also of significance since 

they derive these general topological differences. Median node centrality measures such 

as degree centrality, betweenness centrality, and closeness centrality are also reported 

to describe the local changes in the networks around each node.  Moreover, we also 

reported the importance of nodes in terms of hubs and authorities in the networks. 

Further details about these node centrality measures could be seen in Appendix 3.6. 

4.4 Results 

4.4.1 Distinctive cytokine profiles in mice 

In this study, we have expanded upon our previously published acute exposure model 

[6, 7, 9] to evaluate a more chronic exposure condition in 3- and 12-week paradigms. 

The rationale behind evaluating these more extended time points is to try to emulate a 

condition in the animal model that is more relevant to the current state of the affected 

Gulf war veterans, now over 25 years removed from the 1991 conflict.  Furthermore, we 

have found previously that repeated exposure to weeklong bouts of CORT results in a 

compounding increase in LPS-induced neuroinflammation [45].  By layering this effect 

with an early exposure to DFP by using our acute GWI model, we can evaluate 

persistent GWI-related alterations in immune signaling by also attempting to mimic 

cumulative and exacerbating effects of random stressors occurring in day-to-day lives of 

the returning veterans.   

The median cytokine expression fold change measured in response to every 

individual or combination of exposures was compared to the median cytokine expression 

fold change in saline-treated animals using a non-parametric Mann Whitney test 
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(Appendix 4.3). Further, one-way Analysis of Variance (ANOVA) was used to compare 

the cytokine response in FC levels of different exposures with each other as well as with 

the cytokine FC levels in response to saline to identify significant exposure effects 

(Figure 4.2). As shown in Appendix 4.3, the median fold change (FC) levels for the IL-6, 

TNF-α and KC in mice challenged with LPS, with or without priming with CORT and with 

or without exposure to DFP, were all significantly different from the median FC levels 

measured in saline-treated animals at 3 weeks (p<0.05). Significant effects of LPS 

challenge were also evident in the same cytokines in one-way ANOVA (Figure 4.2). 

Furthermore, median FC levels of these same cytokines were found significantly 

different with an inclusion of IL-10 in Mann Whitney as well as ANOVA tests even at 12 

weeks in response to all LPS challenges except DFP LPS challenge (Figure 4.2). 

Conversely, delayed effects of DFP exposure were evident on IL-1β cytokine profile in 

one-way analysis of variance (ANOVA) comparison of the 12-week LPS and DFP LPS 

cytokine profiles (Figure 4.2). Prior inclusion of CORT in the dosing regimen significantly 

amplified the effects caused by LPS and DFP+LPS exposures, evident from significant 

differences in the cytokine profiles of many of the surveyed cytokines.  

In all of the comparisons, there were definitely some individual effects of DFP 

exposure however these effects were so subtle that they were not clearly evident. 

Therefore, we compared the cytokine FC levels in response to LPS challenge in the 3-

week as well as the 12-week paradigms with and without prior DFP exposure in the 

absence of CORT priming and performed one-way ANOVA to isolate the effects of DFP. 

A significant group effect of DFP exposure was observed on IL-1β FC levels in the 3-

week profiles, this effect on IL-1β persisted to 12 weeks but did not achieve significance 

(Appendix 4.3). In addition, we compared the profiles in response to LPS challenge with 

and without DFP exposure but with prior CORT priming i.e. CORT LPS and Cort DFP 

LPS at 3 weeks and 12 weeks, respectively. Significant group effects for DFP exposure 
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were obtained when CORT priming was present for IL-1α and IL-4 cytokine profiles at 3 

weeks; however, none of the cytokines showed significant group effects in the 12-week 

cytokine profiles.  

 

 
Figure 4.2: Persistent cytokine expression. Fold change in response to LPS 
challenge following DFP exposure with repeated CORT priming compared to saline 
control animals have shown broad group effects (one-way ANOVA) in the same 
cytokines after 21 days and even after 90 days (with some additional ones). DFP 
exposure was a specific driver of early IL-1b, these differences in IL-1b was persistent 
but could not achieve the significance level. Error bars represent standard error, * sign 
represents significant effects of exposure in comparison to saline control fold change 
levels. 
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ANOVA results show that CORT priming affected several of the cytokines 

significantly namely, IL-1β, IL-5, IL-6, IL-10, TNF-α, KC and MIP-2 irrespective of the 

observation time and IFN-γ in day 90 profiles only. The inclusion of DFP with CORT 

expanded the breadth of these effects to several other cytokines namely, IL-1α, IL-1β 

and IL-4 in the 3-week profiles whereas the effects of DFP in the 12 week profiles were 

so subtle that no significant change in the effect of CORT was discernable (Appendix 

4.3). 

4.4.2 Immune co-expression patterns in mice 

As shown in the previous section, traditional analysis of individual cytokine profiles can 

only reveal subtle effects of DFP on cytokine fold change in mice. However, cytokines 

are expressed via underlying mechanisms in a coordinated manner by a diverse 

community of immune cells to mount responses to immune challenge. To glimpse these 

underlying mechanisms of action, we constructed co-expression networks using linear 

correlation as a robust measure of association among markers of immune signaling in 

mice challenged with LPS with and without DFP exposure and CORT priming. As 

mentioned earlier in the methods section, subsamples of exposed and unexposed mice 

were created by concatenating cytokine profiles from both groups and a correlation 

response network was constructed for each subsample. Further, all the cytokine-

cytokine associations (edges) that were present in 75% or more networks were used to 

construct a consensus correlation network for each condition and compared to elucidate 

the individual effects.  

No uniformly conserved edges were identified in response to LPS challenge 

alone at 3 weeks that were present in 75% of networks and only one edge was identified 

as conserved in 75% of the networks in response to LPS challenge with prior exposure 

to DFP in the 3-week paradigm. Similarly, only two conserved connections were 
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observed in each LPS and DFP LPS response network at 12 weeks. It is not surprising 

considering the dose of LPS that we are using in these experiments was chosen for it’s 

inability to mount a significant immune response without prior CORT exposure.  In other 

words, LPS challenge alone or with prior DFP exposure were not capable of triggering a 

strong coordinated immune response that was also consistent across subsets of 

animals. Therefore, these exposure-challenge conditions were not included in further 

analysis. Interestingly, inclusion of CORT to the dosing regimen prior to LPS challenge 

with and without DFP exposure not only primed the immune response but also made the 

co-activity patterns of these cytokines very consistent (Figure 4.3 and 4.4).  

 

 
 

Figure 4.3: Effects of prior DFP exposure on consensus networks. Consensus of 
75% of networks in mouse exposed to LPS challenge on day 21 (3 weeks) after 
repeated periodic exposure to CORT (A) without and (B) with prior exposure to DFP. 
Thin edges (dashed/solid) represent the edges shared in the both networks. Dashed 
lines represent edges that were also present in 90-day network in response to same 
exposure. Node sizes represent the degree and node colour represents the node 
betweenness centralities. 
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Figure 4.4: Effects of prior DFP exposure on consensus networks. Consensus of 
75% of networks in mouse exposed to LPS challenge on day 90 (12-weeks) after 
repeated periodic exposure to CORT without (A) and with (B) prior exposure to DFP. 
Thin edges represent the edges shared in the both networks. Thick edges represent the 
edges unique to each network. Dashed lines represent the persistent edges in the 
networks. Node sizes represent the degree and node color represents the node 
betweenness centralities.     

Figures 4.3 (A & B) and 4.4 (A & B) represent the consensus of 75% response 

networks to the prior CORT priming followed by LPS challenge at 3 weeks and repeated 

to 12 weeks without and with DFP exposure, respectively. These networks were visibly 

very different in their architecture. The results in Figures 4.3 and 4.4 indicate that the 

consensus immune networks in response to CORT priming and LPS challenge without 

DFP exposure were generally smaller than the networks obtained with DFP exposure. 

While extending the CORT priming to 12 weeks increased the size of the CORT LPS 

response networks by 30%, this effect was amplified by DFP exposure leading to a 

doubling of network size. To describe the structural changes of the consensus networks 

in statistical terms, we compared the individual response networks obtained for each 

subsampled set of subjects. First, networks describing the response in CORT DFP LPS 

groups at 3- and 12-weeks were compared to networks obtained without DFP exposure 

(CORT LPS) to elucidate the topological separation introduced by this neurotoxin. The 3-
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week CORT DFP LPS and CORT LPS response networks were separated by a median 

graph edit distance (GED) of 3.58 (14.5 times the within-group median absolute 

deviation (MAD) of 0.2470). This median inter-group GED separation was increased 

further to 3.92 (MAD=0.42) at 12 weeks. These topological differences suggest a role of 

DFP exposure in the alteration of co-activity patterns. Further, the median inter-group 

GED between the 12 week response networks (3.92) was significantly different 

(p<<<0.001) from the median inter group GED at 3 weeks response networks (3.58), 

suggesting a measurable exacerbation of topological differences as a result of extending 

the repeated CORT priming regimen to 12 weeks.  

Next, networks obtained for CORT LPS and CORT DFP LPS groups at 3 weeks 

were compared directly to their counterparts at 12 weeks. The CORT LPS networks 

obtained in the 3-week paradigm were separated by median GED of 3.81 (MAD=0.34) 

from the networks obtained in response to the extended, 12-week CORT regimen. 

Further, the median GED between the networks in response to CORT DFP LPS 

exposure at 3 and 12 weeks were significantly (p<<<0.001) increased to 4.41 

(MAD=0.26) suggesting a greater role of extended CORT regimen in the exacerbation of 

topological differences caused by DFP. This separation of structure is also evident in the 

consensus response networks.  

Part of these topological differences resulted from the emergence of new 

signaling connections in consensus networks. Indeed, a large part of the topology in 

these consensus networks was unique to individual exposures. For example, all the thick 

edges i.e. 10 of 15 edges in Figure 4.3B and 20 of 31 edges in Figure 4B were unique to 

the inclusion of DFP in the dosing regimen and all the solid edges were unique to the 

extension of CORT priming to 12 weeks. Conversely, extension of the CORT dosing 

regimen played a role in galvanizing the persistence of core components in the immune 

response. Several connections that were observed in the CORT LPS and CORT DFP 
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LPS response networks at 3 weeks were also present in the response networks at 12 

weeks in the CORT LPS (i.e. 6 of 10 edges) and CORT DFP LPS (i.e. 11 of 15 edges) 

exposure groups (dashed lines in Figure 4.3 & 4.4A; Figure 4.3 & 4.4B). This 

redistribution in the local network structure has also caused a shift in the importance of 

individual nodes. To identify areas of the immune network where most of this 

redistribution occurred, we calculated node centrality measures such as node degree 

centrality, betweenness centrality, closeness centrality and eigenvector centrality.  

Based on these centrality measures, important changes in the role of individual 

cytokines were observed as a result of DFP exposure as well as extended priming with 

CORT (Appendix 4.4; Figure 4.3 and 4.4). Exhibiting the highest betweenness centrality 

scores, IL-6 and IL-1β emerged as the most central information propagators in response 

to CORT LPS exposure at 3 weeks. Though, IL-6 maintained this central role under 

exposure to DFP (CORT DFP LPS), IL-1β was no longer among the most central nodes 

in the 3 week consensus network (Figure 4.3 A, B). The importance of IL-6 in the early 

response was fleeting, however, as repeated CORT priming up to 12 weeks saw this 

cytokine decline in importance, becoming the least central node in the 12 week CORT 

LPS challenge consensus response network in the absence of DFP exposure (Figure 

4.3A; 4.4A). Inclusion of DFP exposure shifted the movement of information at the 12-

week challenge through IFN-γ away from IL-1β (Figure 4.4A, B). Once again, extended 

CORT priming with prior DFP (CORT DFP LPS) exposure saw IL-6 slip from the most 

central to one of the least central nodes in terms of betweenness centrality (Figure 4.3B; 

4.4B). To determine the statistical significance of these alterations in node centrality 

observed in the conserved consensus networks, we computed these same node 

centrality measures for each individual response network from subset of subsampled 

mice (Appendix 4.5).  
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General trends in individual networks follow the trends in consensus networks. 

Namely, there were very few nodes with high median betweenness centralities in 

response networks for CORT LPS at 3 weeks, as well as 12 weeks. Inclusion of DFP in 

the dosing regimen (CORT DFP LPS) redistributed this information-processing load 

more broadly as reflected by the reduction in the betweenness centrality of the 

previously high centrality nodes and a corresponding increase in the previously low 

betweenness centrality nodes in the 3-week response networks. For instance, at 3 

weeks the largest reductions were seen in the betweenness centrality of IL-6 and IL-1β 

whereas IL-8 (MIP-2) saw the largest increase in median betweenness centrality with 

DFP exposure. Despite this redistribution, IL-6 remained the most central node in these 

networks in response to CORT DFP LPS exposure at 3 weeks, with IL-8 (MIP-2) 

replacing IL-1β as the second most central node. Interestingly, this redistribution 

continued in the 12-week response networks, but this time the betweenness centrality of 

most nodes was increased. IFN-γ and IL-8 (KC) gained the most in terms of 

betweenness centrality and emerged as the most central nodes in 12-week networks in 

response to CORT DFP LPS exposure (Appendix 4.5). Even in the absence of DFP 

exposure, extended CORT priming significantly affected the betweenness centrality of 

several cytokines namely, IL-1α, IL-6 and IL-10 in the 12-week response networks. 

However this effect was broadened significantly with inclusion of DFP exposure in the 

regimen, excluding only IL-4, IL-12p70 and TNF-α. This very broad reshuffling in the role 

of individual cytokines under CORT DFP LPS exposure conditions suggests a further 

heightening of the effects of DFP under conditions mimicking chronic stress.  Not 

surprisingly, exposure to DFP as well as repeated administration of Cort also 

significantly impacted other node centrality measures such as eigenvector centrality, 

closeness centrality and degree centrality in several cytokines further confirming a major 

redistribution of involvement in the activation of response mechanisms to the nerve 
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agent DFP and physiological stress. The detailed comparisons of these centrality scores 

in response to different combinations of exposure and priming are reported in Appendix 

4.5.  

4.4.3 Cytokine profiles in GWI human cohort 

Human data collected from GWI subjects was analyzed by first considering all the GWI 

subjects (n=27) and secondly by focusing on a sub-group of GWI subjects with a 

Davidson Trauma Score (DTS) of 50 indicative of a higher exposure to trauma (n=17). 

All data was converted to fold change with respect to healthy veteran control subjects at 

each of 3 time points, namely at rest (T0), at peak exercise effort (T1) and 4 hours post 

exercise (T2). As mentioned earlier, 16 peripheral cytokines were measured in humans 

whereas 12 cytokines were measured in mice. Therefore, data for only those human 

cytokines or cytokine homologues that were also measured in mice were used in this 

analysis.  

Of the 12 cytokines measured in mice, 10 cytokines were also measured in the 

humans. As KC and MIP-2 are not found in humans, we used their homologue IL-8 in 

humans and duplicated it to use it as KC and MIP-2. While less than ideal, the 

documented importance of IL-8 in exercise response is such that signaling events 

around IL-8 were considered important to retain in the analysis. Hereafter, we refer to IL-

8 as IL-8 (MIP-2/KC). Therefore, we present only 11 cytokines in the descriptive 

statistical analysis of human data (Figure 4.5). The mean fold change levels and 

standard error along with null probability p values obtained from a non-parametric Mann-

Whitney Wilcoxon ranksum test are reported in Appendix 4.6A &B and shown in the 

Figure 4.5 A & B.  
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Figure 4.5: Effect of exercise on Mean fold change levels: Mean fold change level 
comparison in A) All GWI subjects and, B) high trauma GWI subjects and HC controls; ‘*’ 
represents the statistically significant difference in GWI and HC median FC levels using 
Wilcoxon ranksum test. Error bars represent standard error.    

Differences between the median FC levels of all GWI with respect to healthy 

control subjects were not significant for most cytokines. However, when we took only 

high trauma GWI subjects into consideration and compared them with their matching 

healthy controls, significant differences were observed in the median FC levels of IL-6, 

IFN-γ and IL-8 at rest, IL-4, IL-5, IL-6, IFN-γ, TNF-α and IL-8 at peak effort and IL-6 and 

IL-8 during recovery (Figure 4.5B). Further, we performed a two-way analysis of variance 

(ANOVA) and compared FC levels of all GWI as well as high trauma GWI with their 

healthy counterparts. Interestingly, GWI subjects with or without suspected high trauma 

exposure did not show any significant time or interaction effects (Appendix 4.7). 

However, significant group effects were observed in the GWI subjects with and without a 

trauma-based stratification. More precisely, IL-2, IL-6, IFN-γ and IL-8 (KC/MIP-2) 

showed significant group effects in the overall set of all GWI subjects.  In addition to 
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these cytokines IL-1β and TNF-α also show significant group effects in subset of high 

trauma GWI subjects (Appendix 4.7). 

4.4.4 Immune co-activity patterns overlap across species 

While animal models have been serving as important predictors of human immune 

responses for several decades, there is surprisingly little literature where immune 

responses have been directly and broadly compared across species in the context of a 

particular disease. Here, we attempt to compare directly and quantitatively peripheral 

cytokine immune response networks in a mouse model of GWI with the corresponding 

peripheral immune response networks identified from GWI human subjects. As 

mentioned earlier, a “leave-two-out” strategy of subsampling was applied to 

concatenated subsets of mouse cytokine profiles. On the other hand, GWI human 

subjects were either stratified as high trauma (HT) or were not stratified at all. Ten GWI 

subjects from the overall set of all GWI subjects were concatenated with healthy controls 

and randomly subsampled 100 times without replacement. This same procedure of 

concatenation and random subsampling was followed for the HT GWI subjects. The 

larger number of subjects, as well as the larger subsample size, served to mitigate the 

higher variability in the human data relative to the genetically identical mice. A response 

network was identified for each subset sampled either from all GWI subjects or the HT 

subjects only. Consensus networks were constructed from interactions that were 

conserved in at least 75% or more of the individual subsampled networks similar to the 

approach applied to the mouse data.  

The response networks obtained for individual subsets sampled from the overall 

GWI group were significantly smaller in size than the response networks obtained in 

subsets of HT GWI veterans at all three exercise challenge time points (p<0.05). The 

median sizes of networks generated using all GWI subjects at each time point were 21, 
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32, and 29 edges at rest, peak effort and during recovery, respectively. In contrast, 

median sizes of response networks for HT subjects were 27, 36 and 31 edges at rest, 

peak effort and recovery time points, respectively. Moreover, only 4, 7, and 7 edges, 

respectively, were present in the 75% consensus networks for all subjects.  However, 

11, 22 and 24 edges were identified in the HT subject group at rest, peak effort and 

recovery time points, respectively, suggesting a more consistent response across HT 

subjects.  

Next, human and mouse networks obtained for individual subsamples were 

compared to each other and median GEDs were computed to quantify the topological 

separation within and between groups (Figure 4.6). The response networks in the CORT 

LPS and CORT DFP LPS exposed mice at 3 weeks were significantly (p<<<0.05) closer 

to GWI response networks in comparison to the 12-week response networks irrespective 

of exercise challenge time points.  

 

 

Figure 4.6: Graph edit distances in mouse and human networks: Graph edit 
distances obtained from the comparison of the networks in response to an LPS 
challenge without (A) and with (B) DFP exposure after repeated priming with CORT on 
day 21 (3-week) and again on day 90 (12-week) with the networks in response to a 
graded exercise challenge in all (HT+LT) human subjects as well as subjects with high 
trauma (HT). 3-weeks exposure networks in mouse were significantly closer to human 
response networks at peak effort (p<<<0.05; Wilcoxon ranksum) irrespective of 
exposure. 
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Indeed, networks obtained in response to CORT LPS or CORT DFP LPS at 3 

weeks were closest to the GWI response networks obtained at peak effort (Figure 4.6). 

Furthermore, the 3-week, CORT DFP LPS networks offered the closest topological 

match to networks identified at peak effort in the HT GWI subgroup (Figure 4.6). Based 

on the results of the analysis described above, we compared the 75% consensus 

response network obtained at peak effort in HT humans (22 edges) with the 75% 

consensus networks obtained in mice in response to CORT DFP LPS exposure at 3 

weeks (15 edges). A significant part of the consensus response network in mice (13 

edges) was also shared with HT human networks at peak effort (T1). Since, 11 of the 15 

edges expressed in the mouse consensus response network at 3 weeks were 

persistently expressed in the response network at 12 weeks, we also compared the 

latter with the consensus response network in HT humans at peak effort (T1). 

Interestingly, 14 of the 31 edges in the mouse consensus response network obtained for 

the CORT DFP LPS exposure group at 12 weeks were shared with the HT human 

response network at peak effort (T1). 

Encouraged by these results, we further evaluated how many of the 11 edges 

persisting in the mouse from 3 to 12 weeks might be active in the human subjects during 

and after exercise. We found that 8 of 11 persistent edges in the mouse response 

networks to the CORT DFP LPS exposure were also present in the HT human exercise 

response networks at peak effort (T1) and 5 of these 8 edges persisted into the recovery 

phase (T2) (Figure 4.7).  These edges capture interactions between IL-6, IL-8, TNFα and 

IFNγ. At peak effort, additional interactions with IL-1β and IL-5 also emerge as persistent 

interactions in mouse that are shared with the human immune response in the HT GWI 

group. 
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Figure 4.7: Persistently shared motifs across species and time. Edges that were shared 
in mice exposed to DFP and CORT prior to LPS immune challenge after 3 weeks and 12 
weeks with response networks in high trauma affected GWI subjects at (A) peak effort 
and (B) recovery. Dashed edges represent the edges shared in mice across 3 and 12-
week time points as well as in response networks in HT GWI subjects at peak effort and 
recovery.  

  

4.5 Discussion 

In this work, we use an enhancement of the previously described acute GWI exposure 

model [6-9, 55] that captures the short-term effects of stress potentiated exposure, but 

also describes a time horizon compatible with the time out-of-theatre of GWI veterans 

and their current health status.  Implicit to this, the animal model also mimics the periodic 

sub-chronic stress experienced by the affected veterans over the period of two decades 

since their active duty, in addition to the exposure and stressors experienced in theatre. 

In this work specifically, we extend our previous analysis of neuroinflammatory markers 

in brain [6, 7, 9] and blood [55] with a comprehensive profiling of inflammatory markers 

in the peripheral blood in order to support direct comparison with these immune 

responses more suitably surveyed in this compartment in human subjects.  

We have shown here that though the effects of DFP remain subdued and are not 

clearly evident in the peripheral cytokine profiles after a considerably long period of time, 
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these effects are clearly reflected by considerable alterations in consensus co-activity 

patterns expressed in response to an immune challenge in mice. While conventional 

comparison of cytokines pointed towards the limited effects of DFP on only IL-1β levels 

in mice that were persistent but not significant (Appendix 4.3), In contrast, inclusion of 

DFP exposure to CORT LPS enlarged the size of cytokine co-expression networks. The 

effects of DFP were not only limited to the global structure of networks but also affected 

the local topological patterns in these networks. More specifically, DFP also broadly 

distributed the information-processing load among cytokines, an effect that is even more 

pronounced following 12 weeks of repeated CORT priming. Moreover, these alterations 

are only exacerbated with the extended exposure to periodic CORT. In addition, we 

have also shown that the CORT DFP LPS exposure enlarged the persistent immune 

response motif in mice. Snapshots at 3 and 12 weeks also indicate a gradual alteration 

in the mechanism of response to immune challenge by the alterations in the centralities 

of nodes. For example, IL-6 was the most central node in immune response networks in 

response to CORT LPS and CORT DFP LPS at 3 weeks, but was replaced by IFN-γ and 

IL-1β at 12 weeks in CORT DFP LPS and CORT LPS groups, respectively.  

Despite the fact that we used a low level LPS challenge to activate the immune 

system in mice and maximal exercise to prompt the immune response in human 

subjects, we observed highly conserved elements across species unique to the GWI 

condition. Specifically, we observed that the immune response co-activity patterns in 

mice exposed to DFP were topologically more similar to the GWI response networks in 

human subjects, specifically at peak exercise effort, and that this was especially true of 

GWI veterans with high trauma exposure scores. Indeed, a significantly large part of the 

persistent consensus motif in CORT DFP LPS exposed mice was shared with the GWI 

consensus response network at peak effort and persisted in large part during recovery 

from exercise. 
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 While we can only largely speculate what any individual veteran with GWI was 

exposed to in theater, the current results validate our theory that chronic high levels of 

physiological stress combined with exposure to nerve agent or other organophosphate, 

AChE inhibitors was a likely initiating event that is perpetuated through periodic 

exposure to physiological stress and subsequent immune challenges.  An important 

finding of the current study is that the peripheral cytokine profiles generated in the 3-

week co-expression networks more closely associate with current immune profiles from 

veterans with GWI than the 12-week networks.  This result is interesting because many 

other animal models of GWI that do not use repeated CORT priming see significant 

results only months after exposure [69, 70].  Indeed, longer post-exposure time points 

are sought after to better correlate animal age and time post-exposure to the current 

condition of GWI-suffering veterans who were exposed over 25 years ago.  However, 

using our intermittent CORT exposure, we have shortened the time frame of exposure in 

our GWI paradigm, allowing for more timely and efficient evaluation of inflammatory 

response, as well as a paradigm that is more conducive to therapeutic testing and 

evaluation. 

These robust and persistent co-expression motifs included interactions between 

cytokines not typically associated with exercise response in addition to exercise-relevant 

cytokines. Cytokines such as IL-6 and IL-8 are well known myokines and expected to be 

a part of the exercise response network motif, however presence of IL1β, TNF-α, IL-5 

and IFN-γ in a GWI-specific motif is interesting. In fact, IL-1β and TNF-α are not normally 

recruited during exercise in healthy subjects [71]. Moreover, elevated IL-1β is widely 

associated with psychological stress, depression, neuropathic pain and other cognitive 

issues [72, 73], all of which are symptoms associated with GWI. Moreover, exercise has 

been shown to attenuate the IL-1β levels in subjects affected with major depressive 

disorder (MDD) and to relieve the symptoms of hypersomnia [74]. Similarly, attenuation 
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of IL-5 has been reported in response to exercise in several autoimmune or 

inflammatory illnesses, e.g. asthma [75]. Moreover, the presence of IL-5 is consistent 

with our previous findings of involvement of the Th2-component of the immune system 

[24]. Similarly, the presence of TNF-α as a highly conserved, central signaling element in 

these response networks aligns with data naïve, mechanistic work by our group where 

simulations showed that TNF would be a target of interest to produce immune-based 

homeostatic reset as a potential treatment for GWI [76].  

These results together show that the basic immune response mechanisms 

activated under challenge in exposed mice overlap with those in GWI subjects. These 

mechanisms are persistent and unique to the illness group, especially in veterans with 

high trauma exposure. Although, a diversion from the conventional approach, the 

validation of an animal model using graph theoretical principles is more valid than 

transient expression profiles as it directly represents our ability to reproduce illness 

mechanisms. 
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5.1 General Discussion 
Over the years, the focus of the most immunological studies has been on studying the 

individual biological entities such as genes, proteins, metabolites, cells etc..., however, 

technological advances in the last two decades are moving our understanding of health 

and disease from individual entities to their microenvironment. With the advent of high 

throughput technologies such as microarray, next generation sequencing, flow cytometry 

and multiplex bead assays, now we have capability to query the whole transcriptome, 

and broad swaths of the proteome, metabolome and microbiome in an organism. The 

traditional piecewise approaches of comparing individual expressions/concentrations of 

biological entities (genes, proteins, metabolites etc.) are not able to adequately 

represent and support the interpretation of the complex interactions underlying cellular 

communications that manifest in the data generated from these advanced experimental 

techniques. As a result, the development and application of such mathematical and 

computational concepts had also been greatly evolved in last two decades to better infer 

the complex interactions of this myriad of interdependent cellular components (cells, 

genes, proteins, metabolites etc.), the evolution of these system-wide relationships with 

time and the emergent behaviours they support in response to external perturbations at 

various levels of biological complexity. Accordingly, a large number of studies now 

consider the coexistence of relevant cells, genes, proteins, cytokines, metabolites and 

even microbiota in a community structure as an inherent characteristic of biological and 

physiological systems and use relevant mathematical models to infer the regulatory or 

co-expression networks from the measured experimental data. 

In the past two decades, the reverse engineering of causal regulatory networks 

from time course expression profiles has received special attention with a number of 

methods and mathematical formulations being proposed for network inference. Although 
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competitions such as the DREAM challenges [1-4] provide an ongoing forum for 

evaluating new iterations of these methods, several important questions regarding their 

suitability and performance, their data requirements, and the optimal identification of 

parameters remain areas of active research. The first part of this thesis (Chapter 2 and 

3) is focused on addressing some of the questions mentioned above, specifically 

regarding the identification of directed regulatory networks under constraints applicable 

to in-vivo studies. The insights obtained were used for the inference from time series 

data of directed regulatory interaction patterns among cytokines in the peripheral 

immune system in human subjects with a debilitating condition also known as, ‘Gulf War 

illness’ (GWI). This reverse engineering of mechanisms controlling the dynamics of 

cytokine expression in turn allow us to identify characteristic immune regulatory motifs of 

GWI that may serve as potential therapeutic avenues. 

In the chapter 2 of the thesis, we surveyed a number of reverse engineering 

methods and selected some basic classes of these methods suitable for data collected 

under constraints specific to in-vivo studies where the range of allowable perturbations 

(e.g. virtual absence of knockout data), the sampling frequency and the number of 

subjects are all significantly limited. Artificial perturbation time course data with the same 

basic network properties found in biological systems was generated through NetSim 

simulations [5] and used to assess the performance of conventional gradient-based ODE 

model, equivalent time-lagged difference equation (TSNI integral) [6] and an information 

theoretic method adapted for use with time course experiments, TD-ARACNE (Time 

delay-ARACNE) [7]. In particular, the components of conventional ODE-based methods 

were constructed and reassembled de-novo by applying two popular classes of feature 

selection namely the truncation of candidate terms (stepwise method) or their projection 

onto composite constructs (broken stick and Bartlett’s methods). These models were 

then used to explore how performance might be affected by design choices in these 
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component parts. Finally, the general applicability of simulation results was explored by 

reconstructing in silico networks using data from the DREAM3 challenge, from the 

synthetic IRMA network [8] as well as from 9-gene HeLa cell cycle network [9, 10].  

None of the methods evaluated in chapter 2 matched their reported average 

performance on single simulated time courses created using the logic-based NetSim [5]. 

In general, ODE-based methods performed better than the information-theoretic TD-

ARACNE under conditions that approximated in vivo time-course studies. Among the 

ODE based methods, projection-based methods typically performed better though all 

exhibited a high rate of false positive calls.  

These more classical projection-based feature selection techniques (broken stick, 

Bartlett’ s and TSNI integral) did not however outperform the method proposed in Yip et 

al. (2010) [11] on DREAM3 data.  It is important to note however that most of the correct 

identifications made by the latter were obtained on the basis of homozygous deletion 

(knock out) data by applying a null hypothesis noise model [12, 13]. Unfortunately, knock 

out/knock down data are not easily available from in vivo studies of human subjects. 

Indeed when applied to the DREAM3 perturbation time series data, the projection 

techniques mentioned above outperformed the predictions of linear and nonlinear ODE 

models used in Yip et al. (2010) [11] for all networks. Further, we have shown that the 

performance of projection-based methods namely, broken stick and Bartlett’s method 

not only outperform the TSNI integral for the inference of 5-node IRMA network as well 

as 9-gene HeLa cell cycle network but also match the performance of best performing 

methods reported for the inference of these networks [8-10, 14]. These results re-affirm 

that even simple models have the potential to perform as well as more complex 

methods, if tuned a priori with simulated data.  

Not surprisingly, we also show that inferring networks from a set of multiple 

expression time course profiles can improve the performance of all selected methods 
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though sample size effects are not well quantified in the literature. Our analysis suggests 

that at least 10 time courses would be required for the inference of a representative 

network for a group of individuals. Moreover, we found that the more parsimonious of the 

projection approaches i.e., broken stick and TSNI performed consistently when at least 

10 time points were used. This analysis in chapter 2 not only offers a comparative 

survey of reverse engineering methods for the inference of in vivo network regulatory 

kinetics but also attempts to quantitatively delineate the type and amount of data that 

might be required under the narrow experimental conditions that can be safely deployed 

in human subjects. Moreover, this analysis offers a reasonably robust numerical protocol 

with an approximate set of best practices that might be applied to the design of such 

studies for example, the selection of a suitable inference method, their data 

requirements in terms of sampling frequency and replicate experiments. Importantly, we 

propose a model-based optimization of tuning parameters conducted prior to inference 

using simulated data designed to mimic the anticipated in vivo perturbation study. 

The numerical protocol developed in Chapter 2 was used to inform key elements 

in the analysis of human data in Chapter 3. Specifically, the method that consistently 

performed best in a priori analysis was selected for the inference of directed networks. 

Prior knowledge of the experimental design was used to direct the simulation of time 

course data with parameter setting predicted to support optimal network recovery used 

to improve the inference the actual immune networks being surveyed in the human 

subject data. Using simulations to inform these choices, 16 blood-borne immune 

markers were measured to interrogate the immune response to physiological stress at 9 

time points before, during and after maximum exercise challenge in n=12 GWI veterans 

and n=12 healthy veteran controls deployed to the same theatre.  

Statistical analysis using the SMETS metric [15] of the differences in response 

dynamics for individual cytokines during recovery confirmed that the majority of these 
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differed significantly in GWI compared to HC with the exception of IL-1α, IL-23, TNF-α 

and TNF-β. Individual immune markers were then combined into 9 functional cytokine 

sets in order to facilitate the integration of interactions identified empirically from the time 

course data with documented immune signaling mechanisms described in work by [16, 

17] and explored further in simulation work by our group [18]. Classical rate equations 

capturing cytokine expression dynamics observed in the data were further informed by 

prior structural knowledge obtained from the literature to produce directed networks for 

the healthy and GWI subject groups separately. Using sub-sampling as a means of 

estimating the stability of these networks, statistically significant topological differences 

were observed in the networks for healthy and GWI group networks. This was supported 

by significantly higher inter-group Graph Edit Distances (GED) (pinter<<<0.01) compared 

to intra-group variability. Similarly, node centrality measures showed a major reshuffling 

around functional nodes including IL-10 (MK2), IL-6 (MK6) and IL-15 (MK15) suggesting 

significant changes in terms of their role as immune information propagators. 

Interestingly, these nodes form the major component of a characteristic GWI regulatory 

motif. Indeed, a close inspection of directed networks for each subject group supported 

the identification of feed-forward mediation of IL-23 (MK23) and IL-17 (MK17) by IL-6 

(MK6) and IL-10 (MK2) characteristically active in GWI. Consistent with this observation 

in human subjects, activation of STAT3, a key component of IL-23/ IL-17 signaling has 

been linked to neurotoxin induced neuro-inflammatory hyper-responsiveness in a mouse 

model of GWI [19].  

Moreover, simulations of IL-6 (MK6) receptor inhibition along with that of a Th1 

cytokine under the set CK1 (IL-2, IFN-γ, TNF-α, TNF-β) or that of the IL-23 receptor was 

predicted to support a partial rescue of immune response elements.  Interestingly, these 

same elements were associated with illness severity in our previous study [20]. Indeed, 

simulations mimicking a joint blockade of IL-6 (MK6) and Th1 cytokine activity (CK1) 
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indicate the recovery of normal response dynamics in inflammatory mediators, primarily 

IL-1b and IL-8 (MK1B), as well as anti-inflammatory IL-10 (MK2) and Th17 mediator IL-

17 (CK17) albeit while worsening IL-6 (MK6) response. Anti-IL-6 therapies have proven 

especially useful for example in treating rheumatoid arthritis in patients unresponsive to 

TNF inhibitors [21]. Moreover, IL-10 (MK2) has been strongly correlated with increased 

illness severity in GWI [20], reported in measures such as multidimensional fatigue 

inventory (MFI) [22] and SF-26, a 36-item short-form survey [23] assessing health-

related quality of life.  Restoration of IL-10 might reduce the symptom burden of GWI 

subjects and could improve quality of life.  

Similarly, simulation of the dual IL-6/ IL-23 blockade suggests that this strategy 

might support the rescue of MK1A and MK1B functional sets which include IL-1α, IL-1β, 

IL-8 and IL-12 as well as responses in Th2 cytokines IL-4, 5 and 13 included in set CK2. 

This is accomplished without negatively impacting other cytokine responses.  Once 

again, changes in IL-4 and IL-12 correlated significantly in GWI [20] with changes in MFI 

scores for motivation and the Krupp Fatigue Severity Inventory (Krupp FSI) [24]. 

Likewise changes in IL-1α and IL-5 correlated with changes in SF36 measures for 

physical function, physical limit, pain, and vitality. Moreover, results of another analysis 

by our group [25] suggested that initial variations in IL-1α levels might catalyze much 

broader immune activation during exercise and serve as an important driver of 

exacerbation in GWI.   

In the final study of this thesis work, we extend study of cytokine signaling 

networks to the immune system of animal models of GWI. In particular, we propose that 

the recovery of like network structures representing immune response is more 

mechanistically meaningful than alignment of expression profiles in supporting the 

validity of an animal exposure model for GWI.  We compare the peripheral immune 

response networks identified from data collected in human subjects with that measured 
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in an extended version of mouse model developed by colleagues at the CDC and 

consisting of exposure to a Sarin gas surrogate under conditions simulating 

environmental stress. Network signatures are identified from animal data both for early 

response (3-weeks) and prolonged chronic response (12 weeks), as time frame more 

appropriately emulating the current-day condition of GWI subjects more than two 

decades after their exposure in theatre. The effects on immune signaling of Gulf War 

related exposures such as DFP, a surrogate of nerve gas Sarin were evaluated by 

constructing undirected co-expression response networks linking 12 cytokines after 3 

and 12-weeks. This was done in the presence and absence of the stress hormone 

corticosterone (CORT) simulating physiological stress and assessed as changes in the 

normal immune response to the common bacterial protein lipopolysaccharide (LPS), 

namely: wild type LPS response, CORT-potentiated LPS, LPS response following 

exposure to the neurotoxicant DFP with and without CORT potentiation. Graph 

theoretical principles were used to compare the structure of undirected networks 

identified under each protocol with each other to identify stress and exposure-related 

alterations. In addition, undirected networks inferred from responses to LPS challenge in 

the wake of CORT and combined CORT-DFP exposures after 3 and 12-weeks were 

compared to undirected networks linking the same cytokines in human GWI subjects. 

This served to highlight active immune mechanisms that are conserved across the 

species under specific conditions of stress hormone priming and neurotoxic exposure, 

thereby supporting the validity and applicability of the proposed animal exposure 

protocol. 

Consistent with the hypothesis that stress potentiates a shift in signaling patterns 

imparted by neurotoxic exposure, only subdued effects of DFP were observed in the 

conventional comparison of cytokine profiles. In contrast, significant alterations in global 

as well as local topological features of the cytokine association networks were clearly 
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visible when comparing CORT LPS and CORT DFP LPS response networks at the 3-

week and 12-week time points respectively. For example, IL-6 was the most central 

node in LPS immune response networks following CORT and CORT DFP treatment at 3 

weeks, but was replaced as a central mediator by IFN-γ and IL-1β at 12 weeks in CORT 

DFP and CORT treatment groups, respectively. In general, CORT DFP LPS response 

networks at 3 weeks were significantly (p<<<0.05) closer to GWI response networks 

irrespective of exercise challenge time point (rest, maximum effort, recovery). However, 

the 3-week combined CORT DFP LPS response networks offered the closest topological 

match to networks identified at peak exercise effort in the high-trauma (HT) subgroup of 

veterans with GWI. Furthermore, a persistent motif of interactions linking IL-6, IL-8, 

TNFα, IFNγ, IL-1β and IL-5 in mouse was also shared with the human immune response 

network in the HT GWI group at peak effort. Interestingly, the inhibition of receptors for 

IL-6 and any of the Th1 cytokines under the CK1 functional set  (IL-2, IFN-γ, TNF-α, 

TNF-β) was predicted to support a partial remission from illness severity in GWI in 

Chapter 3 of this thesis. The presence of IL-1β and TNF-α in motif conserved across 

exposed mice and human GWI subjects is even more noteworthy because these 

cytokines are not normally recruited in healthy subjects during exercise [26]. 

5.2 Conclusions and Future perspectives 

The contribution of this thesis work to the ongoing research of GWI is several fold. The 

work in chapter 2 of the thesis sets the stage for the chapter 3. In particular, an ever-

increasing variety of methods are proposed regularly for the inference of regulatory 

networks each claiming to perform better than the others. However, with the exception of 

DREAM challenges, there are very limited efforts to independently evaluate the 

performance of these methods in quantitative terms. In chapter 2, we have specifically 

focused on methods that are robust to the constraints of in vivo human studies. This type 
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of standardized comparison, especially one conducted at the level of component parts of 

the methods, has not been previously conducted to the best of our knowledge.  Also 

novel is the use of such analyses to provide general guidelines for the experimental 

design of human pilot studies. Leveraging these contributions to the methodology, 

Chapter 3 of the thesis offers the first ever study of directed networks in GWI literature. 

Identification of characteristic feed-forward regulatory motif in GWI offers new insight into 

illness specific mechanisms of immune signaling and points towards the involvement of 

IL-23 IL-17 dysregulation. This finding can and should be further tested in animal models 

of GWI. In the end, chapter 4 of this thesis offers a unique comparison of co-expression 

networks across species in GWI, supporting the applicability of an exposure model in 

mouse to the human condition. To our knowledge, this type of network based 

comparison highlighting the mechanistic overlap between human condition and animal 

model has also been never attempted before in GWI, or other complex conditions. This 

type of graph theoretical analysis not only recovers the common active elements across 

species but also provides a better resolution for the validation of animal models.  

As mentioned earlier, this research work provides a robust framework to move 

further in ongoing GWI research. First, the findings of Chapter 3 should also be validated 

in the animal model of GWI as the one evaluated and validated in Chapter 4. In addition, 

this analysis is restricted to the immune dysregulaiton in human male veterans. 

Therefore, a similar study of female veterans should be undertaken to elucidate the 

differences between the male and female hormone-mediated immunity. Moreover, the 

analysis performed in Chapter 4 should be further extended to a comprehensive survey 

of the neuroinflammatory markers along with peripheral immune markers in animal 

models of GWI. This would allow for a much more comprehensive view of illness across 

the blood brain barrier as well as supporting the identification of key elements that play 

role in affecting balance between physiological compartments. In addition, an interesting 
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avenue would be to investigate the involvement of a single cell population in GWI. The 

involvement of NK cells has been suspected since long time [27]. Latest advancements 

in technology such as Single- cell RNA-seq would allow us to use transcript abundance 

in each immune cell sub-population to better determine the specific cell populations 

responsible for changes in overall cytokine expression as well as look within these cells 

at changes in pathway activation. Finally, further time course evaluations in animal 

models of GWI with added sampling both in the short term and long-term responses 

support a more robust identification of directed circuitry and the mechanistic shift 

towards persistent illness. 
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Appendix 2.1: Review of methods. Review of methods for the reverse engineering of directed networks from time course 
data published over the past 10 years with the inclusion of select older references describing seminal methods that remain 
popular. 
 

Basic 
Model/Appr

oach 

Parameter 
estimation 

Algorithm 
name 

Features Data used 
 

References 
 

URL 

Logic based 
methods 

Mutual 
iformation 
analysis 

REVerse 
Engineering  
Algorithm 
(REVEAL) 

infers RBNs from large volumes of 
expression data.                                          
Mutual information analysis to 
determine connections between the 
nodes. works best with only a low 
number of inputs (connections) per 
gene                                          

N/A 

Liang et al. 
1998 Pacific 
Symposium on 
Biocomputing 

N/A 

Coefficient of 
Determination 

Probabilistic 
Boolean 
Network (PBN) 

Incorporates probability in classical 
Boolean networks.                         
Probabilistic Boolean networks can 
be inferred using Coefficient of 
Determination (COD) 

N/A 
Schmulevich 
et al. 2002 
Bioinformatics 

N/A 

K-means 
clustering + 

Support vector 
regression 

N/A 

 Enumerate Boolean activation–
inhibition networks to match 
discretized data. Algorithm 
generates several likely possibilities 
instead of a single network. Can be 
considered as a simple PBN 

 45,112 probes per 
array at 12 time 
points.                    
23 clusters were 
made using K-means 
which were further 
refined to 12 
representing 903 
networks 

 
Martin et al. 
2007 
Bioinformatics 

N/A 

Chi square 
test  

Chi-square 
testing (CST) 
based Boolean 
network (BN) 

Significantly improves the 
computation time: Approx. 70 times 
faster when error sizes of Best-fit 
extension problem are 0.                                                     
False positive rate is less than 
original BN.                                                                
Can be used to infer larger 
networks. 

Simulated: 40 
nodes*8 time points * 
40 samples Real: 
Yeast cell cycle data:  
20 genes* 18 time 
points Also applied to 
800 genes related to 
Yeast cell cycle 

Kim et al. 2007 
BMC 
Bioinformatics 

http://bibs.s
nu.ac.kr/su
pplement/2
006/Boolea
n/ 
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Conditional 
and/or joint 
probability 

BDe (Bayesian 
Dirichlet 

equivalence)'O
R' BIC 

(Bayesian 
inform. 

criterion)+ 
Influence 
score to 

predict the 
sign. 

 Bayesian 
ANalysis with 
Java Objects 
(BANJO) 

Can infer directed acyclic networks 
from dynamic data.                      
performance drops exponentially on 
using less than 300 data points.             
Bde scoring metric with heuristic 
search outperforms BIC.                             
Novel Influence score helps in 
pruning network.  

min- 20 genes*25 
data points; max- 20 
genes * 5000 data 
points                                                                          
20 genes * 2000 
observations-Smith 
et al. 

Yu et al. 2004 
Bioinformatics; 
Smith et al. 
2006 PLoS 
Comp. Biol. 

http://www.
cs.duke.ed
u/~amink/s
oftware/ban
jo/ 

 information 
theoretic 

metric mutual 
information 
test (MIT) 

GlobalMIT 

Under some mild assumptions, 
global optimal Dynamic Bayesian 
networks can be reconstructed.                                                                                                    
Faster in runtime than another DBN 
based algorithm BNFINDER 

20 genes * 2000 
observations 

Vinh et al. 
2011.Bioinfor
matics 

http://code.
google.com
/p/globalmit 

Bayesian–
Dirichlet 

equivalence 
(BDe) & 
minimal 

description  
length (MDL) 
in BNFinder;                                                  

Mutual 
Information 

Criteria (MIC) 
included in 
BNFinder2 

BNFinder and 
BNFinder2 

BNFinder2 is parallelized for faster 
learning of network.                                    
Able to choose network specificity 
based on statistical criteria                      
Much Faster than BANJO and even 
BNFinder                                                  
Directed acyclic graphs 

20 variables * 2000 
observations 

Wilczynski and 
Dojer 2009. 
Bioinformatic;                         
Dojer et al. 
2013. 
Bioinformatics 

https://laun
chpad.net/b
nfinder; 
http://bioput
er.mimuw.e
du.pl/softw
are/bnf/ 

Input-Output 
Hidden 

Markov Model 
(IOHMM)/logis
tic regression 

classifier 

Dynamic 
Regulatory 
Events Miner 
(DREM, 
DREM2.0) 

Require dynamic expression data & 
static CHIP data.                                 
Identifies bifurcation events, places 
in the time series where a set of 
genes that were previously 
coexpressed diverges. 

whole S.cerevisiae 
genome (~6200 
genes) * 5 time 
points on Amino 
acid; strvation + 34 
Transcription factor 
(TF) CHIP-CHIP data 
+ 75 TF in Yeast 
growing media 

Ernst et al. 
2007 Mol.Sys 
bio.  Schulz et 
al.2012 BMC 
systems Biol. 

http://www.
sb.cs.cmu.
edu/drem 
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Information 
Theoretic 

time 
dependent 

mutual 
information+da
ta processing 

inequality 
(DPI) 

Time-delay 
ARACNE 

Capable of inferring directed 
networks of small size.                    
Detect time-delayed dependencies 
between the expression profiles. 
Use of DPI to break up fully 
connected triplets 

10 genes*10-50 time 
points *20 samples-
simulated;                                                       
10-30 genes*50 time 
points * 20 samples-
simulated;                                                                   
5 profiles of 15 time 
points & 5 profiles of 
21 time pts.- 5 node 
IRMA;                                                                        
1 profile of 14 time 
points- 8 gene 
network 

Zoppoli et al. 
2010 BMC 
Bioinformatics 

http://bioco
nductor.org
/packages/r
elease/bioc
/html/TDAR
ACNE.html 

Dynamic 
mutual 

information+ 
Background 
correction 

Dynamic CLR 
(Context 
Likelihood  of 
Relatedness) 

Modification of a popular algorithm 
CLR to use with dynamic data. 
Developed as part of a pipeline to 
use with ODE model Inferelator. 
Compute mutual information using 
a smoothing B-spline approach. 
Background correction of dynamic 
MI values is the key step of 
algorithm 

DREAM 2 50 node 
insilico network data.                     
Time seires had 50 
genes * 26 time 
points for each 
perturbation of 23 
performed. 

Madar et al. 
2010 PLoS 
ONE 

 

Linear 
Ordinary 

Differential 
equations 

(ODE) 

Singular Value 
Decomposition 
(SVD) / L1 

N/A 
Also uses L1 regression to select 
sparsest solution                        
Ability to infer directed connections 

Simulated networks 
from 10-1000 genes* 
10-120 time points 

Yeung et. al. 
2002  

N/A 

Multiple linear 
regression 
with multiple 
perturbation 
residual sum 
of square error 
(RSS) 
minimization 
criterion 

Network 
inference by 
reverse 
engineering 
(NIR) 

Assumes system at steady state 
and perturbations to be small so 
that system returns to steady state 
soon after the removal of 
perturbation.                                                                                              
Can work on steady state as well 
as time series data 

9 genes of E.coli 
SOS network* 9 
perturbations 

Gardner et al. 
Science 2003 

http://dibern
ardo.tigem.i
t/softwares/
network-
inference-
by-reverse-
engineering
-nir 

Regression/LA
SSO with CV 
to select 
shrinkage 
parameter 

The Inferelator 

Integration of gene knockout data 
with expression data            
Attractive ODE method for large 
network inference                   
Method uses gene expression as a 
function of the levels of TFs. Model 

72 TFs * 10 
environmental 
factors as 
regulators*1934 
genes of 
Halobacterium NRC-

Bonneau et al. 
2006 Genome 
Biol. 

http://err.bi
o.nyu.edu/i
nferelator/ 
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can predict time series and 
equilibirium expression levels. 

1 

Principal 
component 
analysis (PCA) 
for dimension 
reduction 

Time Series 
Network  
Identification 
(TSNI) 

Able to infer directed gene 
regulatory networks                                     
A gene of interest can be defined 
for perturbation                          
More suitable for finding 
perturbation targets                                    
First model is converted to discrete 
form and then back to continuous. 

10 genes* 5 time 
points - Simulated                               
E.Coli SOS network 
with 5 time points - 
Real network 1000 
genes*10 time points 
- Simulated 

Bansal et al. 
2006. 
Bioinformatics 
Della Gatta et 
al. 2008 
Genome 
Research 

http://dibern
ardo.tigem.i
t/softwares/
time-series-
network-
identificatio
n-tsni 

forward step-
wise 
regression 
method 
Bootstrapping 
/Akaike’s Final 
Prediction 
error (FPE) 

TSNI integral 

Instead of converting to discrete 
form and back to continuous during  
taking derivative, model was 
integrated to deal with noise.   
Extended version of TSNI, 
Performs better than TSNI or in 
worst case similar 

10 genes * 
10,20,50,100 time 
points * 20 networks 
each- Simulated                                                                    
20 genes*20,40,100 
time points* 20 
networks each-
Simulated                                                                         
E.Coli SOS (9 
genes)* 5 time pts. - 
Real 

Bansal and Di 
Bernardo 
2007. IET 
Syst. Biol. 

http://dibern
ardo.tigem.i
t/softwares/
time-series-
network-
identificatio
n-tsni-
integral 

Newton’s 
method to find 
local minima of 
objective 
function                     
Runge-Kutta 
method for 
estimation of 
gradient and 
Hessian. 

N/A 

Two different models were used to 
infer networks from static and 
dynamicdata. Noise model- static 
data; Differential eq. model- 
Dynamic data and predictions were 
merged to made final prediction.                                                                                                       
Noise model has been found to 
infer more connection from deletion 
data. 

DREAM 3 data: 5 
datasets each for 10, 
50 and 100 genes* 
21 time pts 

Yip et al. 2010 
PLoS One 

N/A 

Nonlinear 
ordinary 

differential 
equations 

Pearson 
correlation 
coeff. (PCC) to 
identify the 
most probable 
lag of the 

Time-delayed S-
system (TDSS) 
model 

Capable of inferring time-delayed 
and instantaneous interactions                       
time delay parameters can be 
fractional                                     
innovative model evaluation to 
narrow down the search space 

Simulated data for 5 
node and 20 node 
networks                                                     
IRMA network- on: 5 
genes * 15 time pts.; 
off: 5 genes * 21 time 

Chowdhury et 
al. 2013 BMC 
Bioinform. 

N/A 
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interaction 
between any 
pair of genes.                                  
Trigonometric 
differential 
evolution 
(TDE) for 
optimization               
Multistage 
refinement 
algorithm 
(MRA) for 
pruning 

pts.                                                                    
E.Coli SOS network: 
8 genes * 50 time pts 
* 5 experiments 

A novel 
coupling 
metric used to 
measure the 
effect of one 
component on 
another to 
rank potential 
edges.   

Network 
Reconstruction 
via Dynamic 
Systems 
(NeRDS) 

nonparametric, additive model used 
instead of linear approximation.                                                                                      
Derivatives are estimated using 
smoothing-splines rather than finite 
differences.                                                                                                
Large data requirements. 

Data simulated from 
a model of Embden-
Meyerhof glycolytic 
pathway in the 
Lactocaccus Lactis 
bacterium: 6 
metabolites * 100 
time pts * 6 exp.                  
Simulated data for a 
model of mouse 
embryonic stem 
cells: 6 genes * 100 
time pts * 6 exp.                                 
10 and 100time 
series simulated 
using 
GeneNetweaver for 
DREAM 3 10-node 
and 100-node 
networks. 

Henderson & 
Michalidis 
2014 
PLoSOne 

N/A 

Hybrid 
methods 

Regression/LA
SSO with CV 
to select 
shrinkage 
parameter 

The inferelator+ 
mixed CLR 

Mixed-CLR is used for 
preprocessing step for inferelator 
1.0 

DREAM 3 100-gene 
network data 

Madar et. al. 
2010 
PLoSOne 

  

Same as 
above 

T-test+mixed-
CLR+The 

2nd position in DREAM3 blind 
network inference challenge 

Knockout: 100 
observations steady 

Greenfield et. 
al. 2010  
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inferelator state PLoSOne 

Bayesian 
formulation of 
linear 
regression 
/Zellner's g 
priors/Bayesia
n information 
criterion (BIC) 

Bayesian Best 
Subset 
Regression 
(BBSR)+ 
Inferelator 

Capable of using dynamic as well 
as static data.                             
Knock-out data was found to be 
most informative.              
Performance of algorithm drops for 
high indegree genes & smaller 
networks.                                                                                               
Second hybrid method ranked 1st 
in DREAM 4 100-gene challenge. 
T-test used for ranking interactions 
from only Knock-out data.     BBSR 
is extension to inferelator that 
enables use of known regulatory 
edges to influence model selection. 

Knockdown: 100 
observations steady 
state                   time 
series: 100 genes* 
966 observations 

Greenfield et. 
al. 2013 
Bioinformatics 

http://bonne
aulab.bio.n
yu.edu/soft
ware.html 

Decision trees 
based method 
called “jump 
trees” for 
identifying the 
promoter state 
trajectory that 
maximises log-
likelihood.                  
Also to identify 
regulators of 
target genes. 

Jump 3 

stochastic differential eq used to 
model dynamics of each node.       
Can reconstruct large networks.                                                    
Performs better for inferring larger 
networks but lags behind model 
based methods such as TSNI and 
INFERELATOR on smaller 
networks. 

DREAM 4: 10 node* 
105 observations                        
DREAM 4: 100 node 
*210 observations                        
IFN-gamma 
activated regulatory 
interactions: 1000 
genes * 25 time pts.                                                               
2 types of data was 
used: Toy data for 
traning & 
Experimental data 

Huynh-Thu & 
Sanguinetti 
Bioinformatics 
2015 

http://home
pages.inf.e
d.ac.uk/vhu
ynht/misc/ju
mp3.zip 

growth-shrink 
algorithm for 
smaller 
network.                                  
Incremental 
association 
Markov 
blanket (IAMB) 
for large 
networks. 

Differential 
Equation-based 
Local Dynamic 
Bayesian 
Network 
(DELDBN)  

 improves the scalability to large 
networks.                                            
Can also be used to infer smaller 
networks.                                            
Do not require enormous data for 
inference of causal networks. 
Shown to perform better than ODE 
methods alone as well as Bayesian 
methods alone on Yeast synthetic 
data. 

5 genes* 10-15 time 
points * 5 time series 
switch on data IRMA 
network.                                                  
1099genes  * 48 time 
points HeLa cell time 
series data 

Li et al. 2011 
Bioinformatics 

R Scripts 
are freely 
available in 
supp. 
information  
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Other 
(Machine 

learning/Dat
a mining) 

Correlation+D
ecision tree 

Time delay gene 
regulatory 
network 
(TdGRN) 

No prior model defined.                                                                        
Needs training dataset to model 
variable time delays between genes 
Use decision tree to discover time 
delayed regulation of every gene 

20 genes* 19 time 
pts for training 
(cdc15 from yeast 
cell cycle).                                                                              
20 genes * 18 , 17 
time pts for inference 
( alpha-factor & cdc-
28).                                                                         
Human Hela cells 
data: 20 genes* 47 
time pts for cross 
validation                                                                               
20 genes *26, 19 
time pts for testing 

Li et al. 2006 
BMC 
Bioinformatics 

N/A 

Granger 
causality+Grou
ped LASSO 

grouped 
graphical 
Granger 
modeling 
(GGGM) 
method 

No prior model define.                                                                         
Needs training dataset to model 
variable time delays between genes 
Make use of the group structure of 
time variables in a time series 

1134 genes* 3 
experiments (12, 27, 
48 time pts) Human 
Hela cell data 

Lozano et al. 
2009 
Bioinformatics 

N/A 

Pair-wise 
correlation+LA
SSO 

Delay-Detection 
LASSO (DD-
LASSO) 

Able to model variable time delays 
between any two genes.              
Pair-wise correlation is used to 
evaluate the correct time delays 
b/w different genes.                                                                                      
LASSO is used to differentiate b/w 
direct and indirect relationships. 
Training dataset not needed 

Simulated data: 
Genes- 50 & 100; 
Time points: 10 & 20; 
Samples: 4, 10 & 50.                                                         
Real data: 9 genes * 
47 time pts from Hela 
Cell cycle data.                                                                                        
11 genes * 18 time 
pts. From Yeast cell 
cycle data 

AlBakry et. al. 
2013 
IEEE/ACM 
Trans. Comp. 
Biol. 
Bioinform. 

N/A 

Multi variate 
auto 
regression(MV
AR)+ Coeff. of 
determination 

Extension of 
GENIE 

Extension of popular GENIE 
algorithm for time course data.       
Random forest based algorithm.                                                    
Introduces adjusted coefficient of 
determination.                      
Performs better or equivalent to 
other established methods 

10,30,50,100 genes * 
10,30,50 time points 
* 50 datasets each-
simulated                                                       
9 genes* 17 time 
points - Real E.Coli 
cell cycle data 

D.A.K. 
Maduranga et 
al. 2013 PRIB 

N/A 
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Appendix 2.2a. Summary performance statistics on single time course: Median (a) and Mean (b) performance of all 
selected methods in recovering 20 different 10-node simulated networks, each from a single time course sampled at 10, 25 
and 50 time points (Figure 2.1) 

Methods 
Time_points 10 25 50 

Noise level (%) 0 20 0 20 0 20 

Bartlett's 
method 

Median PPV (MAD) 0.14 (0.02) 0.15 (0.02) 0.15 (0.005) 0.15 (0.01) 0.15 (0.01) 0.14 (0.02) 

Median Recall (MAD) 0.85 (0.07) 0.85 (0.06) 0.85 (0.07) 0.93 (0.07) 0.79 (0.05) 0.67 (0.09) 

Median F score (MAD) 0.24 (0.03) 0.26 (0.03) 0.26 (0.01) 0.26 (0.02) 0.24 (0.02) 0.23 (0.03) 

Broken stick 

Median PPV (MAD) 0.14 (0.01) 0.16 (0.03) 0.15 (0.01) 0.15 (0.01) 0.15 (0.02) 0.15 (0.02) 

Median Recall (MAD) 0.83 (0.05) 0.65 (0.09) 0.73 (0.06) 0.85 (0.08) 0.79 (0.08) 0.79 (0.07) 

Median F score (MAD) 0.23 (0.02) 0.26 (0.04) 0.25 (0.02) 0.25 (0.02) 0.25 (0.03) 0.24 (0.03) 

TSNI integral 

Median PPV (MAD) 0.17 (0.02) 0.17 (0.02) 0.17 (0.03) 0.16 (0.03) 0.18 (0.04) 0.16 (0.02) 

Median Recall (MAD) 0.61 (0.13) 0.5 (0.09) 0.65 (0.12) 0.55 (0.12) 0.59 (0.12) 0.59 (0.09) 

Median F score (MAD) 0.26 (0.04) 0.25 (0.04) 0.27 (0.04) 0.25 (0.05) 0.27 (0.06) 0.26 (0.03) 

Stepwise 

Median PPV (MAD) 0.18 (0.04) 0.15 (0.03) 0.16 (0.02) 0.21 (0.06) 0.16 (0.02) 0.2 (0.09) 

Median Recall (MAD) 0.31 (0.11) 0.27 (0.07) 0.57 (0.07) 0.17 (0.09) 0.64 (0.13) 0.15 (0.09) 

Median F score (MAD) 0.22 (0.06) 0.19 (0.04) 0.24 (0.03) 0.18 (0.08) 0.26 (0.03) 0.19 (0.09) 

TD-ARACNE 

Median PPV (MAD)  0.17 (0.05) 0.22 (0.05) 0.23 (0.12) 0.23 (0.08) 0.2 (0.07) 0.19 (0.07) 

Median Recall (MAD) 0.25 (0.07) 0.24 (0.08) 0.28 (0.09) 0.23 (0.09) 0.2 (0.08) 0.21 (0.05) 

Median F score (MAD) 0.2 (0.03) 0.24 (0.05) 0.24 (0.07) 0.22 (0.07) 0.19 (0.06) 0.21 (0.05) 
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Appendix 2.2b: Summary performance statistics on single time course: Mean performance of all selected methods in 
recovering 20 different 10-node simulated networks, each from a single time course sampled at 10, 25 and 50 time points 
(Figure 2.1) 

Methods 
Time_points 10 25 50 

Noise level (%) 0 20 0 20 0 20 

Bartlett's 
method 

Mean PPV (SE) 0.15 (0.004) 0.15 (0.006) 0.15 (0.004) 0.15 (0.004) 0.15 (0.005) 0.14 (0.005) 

Mean Recall (SE) 0.85 (0.02) 0.85 (0.02) 0.86 (0.02) 0.93 (0.02) 0.81 (0.02) 0.69 (0.02) 

Mean F score (SE) 0.25 (0.007) 0.26 (0.008) 0.26 (0.005) 0.26 (0.006) 0.25 (0.007) 0.24 (0.008) 

Broken 
stick 

Mean PPV (SE) 0.15 (0.005) 0.16 (0.01) 0.15 (0.005) 0.15 (0.004) 0.15 (0.006) 0.15 (0.005) 

Mean Recall (SE) 0.82 (0.02) 0.65 (0.03) 0.76 (0.02) 0.82 (0.02) 0.8 (0.02) 0.81 (0.02) 

Mean F score (SE) 0.25 (0.007) 0.25 (0.01) 0.25 (0.008) 0.25 (0.007) 0.25 (0.009) 0.25 (0.008) 

TSNI 
integral 

Mean PPV (SE) 0.16 (0.01) 0.14 (0.01) 0.16 (0.01) 0.16 (0.01) 0.16 (0.01) 0.15 (0.01) 

Mean Recall (SE) 0.61 (0.04) 0.41 (0.04) 0.65 (0.03) 0.53 (0.03) 0.56 (0.03) 0.6 (0.04) 

Mean F score (SE) 0.25 (0.01) 0.21 (0.02) 0.25 (0.01) 0.24 (0.02) 0.25 (0.02) 0.24 (0.01) 

Stepwise 

Mean PPV (SE) 0.17 (0.02) 0.17 (0.015) 0.16 (0.009) 0.2 (0.03) 0.16 (0.008) 0.22 (0.04) 

Mean Recall (SE) 0.32 (0.03) 0.29 (0.03) 0.56 (0.03) 0.16 (0.02) 0.63 (0.04) 0.15 (0.02) 

Mean F score (SE) 0.22 (0.02) 0.21 (0.02) 0.25 (0.01) 0.19 (0.02) 0.25 (0.01) 0.19 (0.02) 

TD-
ARACNE 

Mean PPV (SE) 0.17 (0.02) 0.19 (0.02) 0.25 (0.03) 0.23 (0.03) 0.21 (0.03) 0.22 (0.07) 

Mean Recall (SE) 0.23 (0.025) 0.22 (0.03) 0.26 (0.03) 0.25 (0.03) 0.19 (0.02) 0.22 (0.05) 

Mean F score (SE) 0.2 (0.02) 0.22 (0.02) 0.26 (0.02) 0.24 (0.02) 0.2 (0.02) 0.23 (0.05) 
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Appendix 2.3 Median performance of all selected methods across different expression profiles for random networks 
of increasing node degree: Each network was used to generate 20 simulated time course experiments, sampled at 50 time 
points, where 20% Gaussian noise was added to mimic experimental noise. 
 

Network size 5 Nodes 10 Nodes 15 Nodes 20 Nodes 30 Nodes 50 Nodes 

Edge density (%) 40 21 11 8 5 3 

Bartlett's 
method 

Median PPV (MAD) 0.35 (0.03) 0.21 (0.02) 0.1 (0.002) 0.08 (0.0009) <0.1 (0.002) <0.1 (0.0004) 

Median recall (MAD) 0.87 (0.13) 0.76 (0.08) 0.91 (0.04) 0.9 (0.03) 0.78 (0.02) 0.93 (0.014) 

Median F score (MAD) 0.5 (0.04) 0.33 (0.02) 0.18 (0.004) 0.15 (0.001) <0.1 (0.004) <0.1 (0.0009) 

Broken 
stick 

Median PPV (MAD) 0.32 (0.03) 0.19 (0.01) 0.12 (0.01) <0.1 (0.006) <0.1 (0.004) <0.1 (0.003) 

Median Recall (MAD) 0.88 (0.13) 0.84 (0.05) 0.52 (0.04) 0.74 (0.05) 0.82 (0.05) 0.4 (0.04) 

Median F score (MAD) 0.47 (0.04) 0.31 (0.02) 0.19 (0.02) 0.16 (0.01) <0.1 (0.007) <0.1 (0.006) 

TSNI 
integral 

Median PPV (MAD) 0.4 (0.05) 0.25 (0.025) 0.13 (0.02) <0.1 (0.01) <0.1 (0.006) <0.1 (0.004) 

Median Recall (MAD) 0.75 (0.13) 0.53 (0.05) 0.35 (0.04) 0.26 (0.05) 0.33 (0.06) 0.2 (0.03) 

Median F score (MAD) 0.52 (0.07) 0.34 (0.03) 0.19 (0.03) 0.1 (0.02) <0.1 (0.01) <0.1 (0.007) 

Stepwise 

Median PPV (MAD) 0.5 (0.17) 0.23 (0.05) 0.19 (0.03) <0.1 (0.02) <0.1 (0.01) <0.1 (0.008) 

Median Recall (MAD) 0.25 (0.06) 0.16 (0.05) 0.13 (0) 0.14 (0.03) <0.1 (0.02) <0.1 (0.03) 

Median F score (MAD) 0.33 (0.05) 0.19 (0.05) 0.16 (0.02) 0.11 (0.02) <0.1 (0.009) <0.1 (0.01) 

TD-
ARACNE 

Median PPV (MAD) 0.5 (0.17) 0.25 (0.11) 0.14 (0.06) 0.12 (0.06) <0.1 (0.04) <0.1 (0.01) 

Median Recall (MAD) 0.25 (0.13) 0.16 (0.08) 0.17 (0.04) <0.1 (0.03) <0.1 (0.02) <0.1 (0.01) 

Median F score (MAD) 0.3 (0.1) 0.19 (0.1) 0.16 (0.06) 0.08 (0.03) <0.1 (0.02) <0.1 (0.009) 
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Appendix 2.4: Comparing the performance of methods on NetSim and DREAM3 
data. Median PPV, recall and F score obtained by applying broken stick, Bartlett’s and 
TSNI integral methods on comparable networks of DREAM 3 challenge (E.coli2 with 15 
interactions) and NetSim (median value of14 interactions). A set of 20 different networks 
consisting of 12–17 interactions were simulated by NetSim whereas, 4 time series 
provided in DREAM 3 challenge were used for E.Coli2 network. Values in parentheses 
show the performance when self-regulation is not considered. 
 

  Broken stick Bartlett's method TSNI Integral 

 

NetSim 
data 

Dream3 
data 

NetSim 
data 

Dream3 
data 

NetSim 
data 

Dream3 
data 

Median PPV 0.15(0.16) 0.15(0.16) 0.15(0.15) 0.15(0.21) 0.15(0.16) 0.15(0.17) 
Median 
recall  0.84(0.84) 0.8(0.8) 0.5(0.5) 0.4(0.4) 0.93(0.92) 0.9(0.9) 
Median F 
score 0.25(0.26) 0.25(0.27) 0.23(0.23) 0.22(0.27) 0.26(0.27) 0.26(0.28) 
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Appendix 3.1: Summary statistics of Cytokines. Average cytokine levels with standard error () at each time point across 
both groups were calculated by replacing missing values with the minimum values across both subject groups. Mean values 
were calculated across both populations by leaving outliers out of sample size, resulting into n=12 GWI and n=11 HC 
 

Cytoki
nes 

T0 T0+3 T1 T1+10 

GWI Healthy GWI Healthy GWI Healthy GWI Heathy 

hIL-1a 9.49 (2.46) 6.22 (1.40) 7.25 (1.69) 12.02 (3.65) 12.14 (3.25) 12.50 (3.34) 9.79 (2.54) 13.04 (2.97) 

hIL-1b 22.54 (4.36) 21.76(2.26) 21.36 (3.19) 22.82 (4.46) 23.09 (3.89) 19.97 (4.16) 19.73 (2.85) 24.11 (4.23) 

hIL-2 8.20 (1.75) 8.04 (2.04) 8.49 (1.46) 12.00 (2.26) 12.88 (1.73) 9.16 (1.54) 10.43 (2.28) 11.74 (2.70) 

hIL-4 2.09 (0.77) 1.49 (0.49) 2.57 (0.80) 1.00 (0.26) 2.45 (0.62) 1.77 (0.57) 2.29 (0.84) 2.71 (0.75) 

hIL-5 1.59 (0.44) 2.08 (0.46) 1.40 (0.39) 2.15 (0.44) 2.09 (0.48) 2.27 (0.52) 2.11 (0.41) 1.75 (0.44) 

hIL-6 2.25 (0.84) 1.04 (0.34) 1.49 (0.24) 1.41 (0.44) 1.63 (0.62) 2.51 (1.01) 1.60 (0.61) 2.45 (0.71) 

hIL-8 0.82 (0.21) 0.86 (0.16) 0.71 (0.17) 1.13 (0.27) 0.81 (0.16) 1.18 (0.29) 0.71 (0.14) 0.88 (0.23) 

hIL-10 6.45 (1.03) 8.48 (1.80) 6.04 (1.25) 8.38 (1.65) 6.95 (1.43) 5.43 (1.16) 5.85 (1.17) 4.91 (0.93) 

hIL-12 5.80 (0.77) 6.08 (0.72) 5.92 (0.94) 4.48 (0.93) 4.35 (0.65) 5.09 (0.47) 5.22 (0.64) 5.17 (0.59) 

hIL-13 3.24 (0.55) 2.23 (0.57) 3.08 (0.65) 4.08 (1.10) 2.28 (0.68) 3.69 (1.01) 2.74 (0.73) 3.17 (0.72) 

hIL-15 8.09 (2.61) 9.12 (2.28) 8.29 (2.37) 5.92 (1.70) 7.10 (2.14) 7.82 (2.90) 8.61 (1.73) 7.64 (2.19) 

hIL-17 5.07 (1.14) 2.98 (0.60) 4.77 (1.13) 4.26 (0.57) 4.46 (0.87) 4.60 (0.99) 5.77 (0.98) 4.39 (1.07) 

hIL-23 
267.65 
(5.46) 

282.15 
(10.84) 

265.67 
(4.21) 

275.23 
(7.47) 

272.45 
(5.52) 

271.90 
(8.02) 

269.99 
(5.98) 

270.83 
(6.95) 

hIFNy 0.98 (0.11) 0.88 (0.12) 0.81 (0.10) 0.67 (0.12) 0.93 (0.10) 0.82 (0.09) 0.77 (0.08) 0.78 (0.11) 

hTNFa 8.87 (1.65) 8.77 (1.67) 7.21 (1.65) 8.77 (1.85) 9.08 (1.65) 9.13 (1.46) 7.62 (1.77) 7.76 (1.14) 

hTNFb 2.37 (0.55) 2.34 (0.52) 3.51 (0.75) 2.54 (0.54) 2.45 (0.45) 2.00 (0.38) 2.70 (0.61) 2.55 (0.48) 

Cytoki
nes 

T1+20 T1+30 T1+60 T1+4hrs 

GWI Healthy GWI Healthy GWI Healthy GWI Healthy 

hIL-1a 8.60 (2.43) 11.32 (3.35) 11.31 (2.88) 12.19 (4.08) 11.88 (3.13) 9.16 (3.22) 11.51 (2.60) 9.68 (2.54) 

hIL-1b 21.99 (3.70) 27.28 (3.56) 20.44 (4.13) 21.64 (3.89) 18.51 (3.54) 22.67 (4.08) 22.07 (4.35) 22.77 (4.27) 

hIL-2 7.63 (1.40) 9.89 (1.58) 10.69 (1.60) 11.03 (3.13) 9.30 (1.56) 13.30 (3.40) 10.51 (2.17) 12.60 (1.67) 

hIL-4 2.10 (0.51) 1.89 (0.53) 2.29 (0.66) 2.18 (0.77) 3.21 (0.75) 2.31 (0.52) 1.81 (0.48) 2.50 (0.69) 

hIL-5 1.97 (0.41) 2.53 (0.49) 1.84 (0.36) 1.79 (0.35) 2.56 (0.48) 3.18 (0.60) 1.95 (0.37) 1.80 (0.46) 

hIL-6 2.62 (0.81) 3.00 (0.96) 1.96 (0.74) 1.48 (0.26) 1.67 (0.83) 2.55 (0.87) 2.56 (0.50) 2.26 (0.60) 
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hIL-8 0.60 (0.15) 1.12 (0.24) 0.80 (0.19) 0.73 (0.21) 0.63 (0.12) 0.83 (0.20) 1.19 (0.28) 0.68 (0.21) 

hIL-10 9.37 (1.91) 5.91 (1.33) 8.21 (1.47) 6.58 (0.88) 7.19 (1.23) 8.20 (2.03) 7.88 (1.74) 6.77 (1.61) 

hIL-12 5.64 (0.44) 4.53 (0.54) 4.79 (0.73) 4.66 (0.85) 5.28 (1.07) 5.68 (0.90) 4.38 (0.41) 4.61 (0.75) 

hIL-13 3.42 (0.87) 1.70 (0.61) 3.57 (1.11) 3.97 (0.90) 3.18 (0.84) 2.74 (0.72) 3.03 (0.89) 3.92 (1.24) 

hIL-15 9.94 (2.18) 6.74 (1.73) 7.87 (1.65) 12.25 (3.52) 10.29 (2.46) 4.24 (1.70) 8.13 (2.26) 7.86 (1.67) 

hIL-17 2.52 (0.56) 5.89 (1.16) 4.59 (0.96) 3.54 (0.67) 4.62 (1.15) 3.52 (0.85) 4.32 (0.57) 5.30 (1.13) 

hIL-23 
265.90 
(4.11) 

268.29 
(6.13) 

271.33 
(5.48) 

271.38 
(6.57) 

277.35 
(9.85) 

281.82 
(8.37) 

267.29 
(4.50) 

277.65 
(9.35) 

hIFNy 0.83 (0.09) 0.72 (0.09) 0.83 (0.10) 0.79 (0.10) 0.77 (0.12) 0.76 (0.12) 0.73 (0.09) 0.83 (0.12) 

hTNFa 6.83 (1.58) 9.57 (1.77) 9.76 (2.15) 9.88 (1.65) 6.90 (1.18) 7.18 (1.38) 9.64 (1.87) 11.06 (2.69) 

hTNFb 3.05 (0.51) 2.64 (0.66) 2.76 (0.56) 2.21 (0.59) 2.05 (0.32) 3.23 (0.72) 2.30 (0.54) 2.28  (0.60) 
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Appendix 3.2: Overview of cytokine expression. Fold change in cytokine expression 
at each time point over average levels in the control group for (A) individual healthy 
control subjects (HC) and (B) individual GWI subjects 
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Appendix 3.3: The SMETS algorithm 

Differences in the dynamic evolution of every cytokine across subject groups were 

characterized by using an algorithm specifically developed for the comparison of multiple 

time series with arbitrary dimensions named as SMETS 

(Semi Metric Ensemble Time Series) [1]. More precisely, we randomly sub-sampled 

without replacement groups of n=10 of 11 (HC) time series and compared these with 

similarly sub-sampled groups of n=10 of 12 (GWI) time series for each of the 16 

cytokines. This process was repeated 100 times to yield a 100 x 100 array of SMETS 

distances separating HC and GWI subsamples each consisting of 10 trajectories. 

SMETS is a semi-metric that satisfies all the conditions to be a metric such as 

non-negativity, symmetry, identity and reflexivity except triangle-inequality. The SMETS 

distance between two groups of multiple time series and can be expressed as: 

SMETS = d
n
+ EP( )

2

+ P2
       

 (1), SMETS values in equation (1) are calculated in the following two steps:  

Step 1: Partial matching between two groups of multiple time series is performed as 

follows: 

I. First, the Euclidean distances between each of the component time series were 

calculated. 

II. The smallest distance between two component time series (one from each 

model) was calculated as p-norm of d (eq.2). 

         
  

   
 

              (2) 

III. The two most similar component time series were removed from further 

calculations. 

IV. Steps I to III were repeated until all time series from the model with the smallest 

cardinality have been matched. 
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Step 2: Penalizing unmatched series 

Unmatched component time series were penalized not only on the basis of being 

unmatched but also with the consideration of information content in that unmatched 

component. Therefore, unmatched component time series with little information content 

would add much less to the overall distance between two groups of multiple time series. 

Information stored in the component time series is measured in terms of Shannon 

entropy (H).   

            
 
   

                     (3), 

where, tj,i is the i-th data point of the component time series tj; q is the length of the 

component time series, and p(tj,i) is the frequency of the value tj,i in the time series. The 

relative information content REj of each unmatched component time series j is then: 

RE
j
=

min d
j( )¢ H j( )

H
i

i=1

m

å
         (4), 

where dj is the smallest distance between the j-th unmatched component time series and 

any component time series from the smallest model; m is the dimension of the larger 

time series. Therefore the overall entropy penalty EP that accounts for the distance of 

the unmatched components is: 

       
   
             (5),  

Another weaker penalty P is calculated as the ratio of difference and sum of dimensions 

and 2-norm was added to entropy penalty (EP) to comply with the identity condition of 

semi-metric. 

P =
m-n

m+n
            (6) 

These penalties (EP and P) along with the distance calculated in equation (2) denote the 
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SMETS value calculated in equation (1). For detailed description of SMETS algorithm, 

we refer reader to [1].  
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Appendix 3.4: Source and target nodes with their respective score in every edge of the 
reference network obtained from STRING database 
 

#node1 node2 coexpression 

Experimentally 
determined  
interaction 

database 
annotated 

Automated 
textmining 

combined 
score 

IL13 IL4 0 0.576 0.8 0.974 0.997 

IL4 IL2 0 0 0.8 0.979 0.995 

IL5 IL4 0 0 0.8 0.979 0.995 

TNF IFNG 0 0.576 0 0.987 0.994 

IL1B IL1A 0.266 0 0.9 0.917 0.993 

IL17A IL6 0 0 0.9 0.941 0.993 

IL5 IL2 0 0 0.8 0.959 0.991 

IL8 IL6 0.169 0 0 0.98 0.983 

IL10 IL4 0 0 0 0.979 0.979 

IL10 IL6 0 0 0 0.979 0.979 

IFNG IL2 0 0 0.9 0.795 0.978 

IL1B IL6 0.158 0 0 0.973 0.976 

TNF IL1B 0.247 0 0 0.96 0.968 

IL10 IL2 0 0 0 0.963 0.963 

IL8 IL1B 0.091 0 0 0.961 0.963 

IL1A IL6 0.226 0 0 0.954 0.962 

IL6 IL2 0 0 0 0.962 0.962 

IL6 IL4 0 0 0 0.961 0.961 

IL13 IL5 0 0 0.8 0.817 0.961 

IL10 IL8 0 0 0 0.961 0.961 

TNF IL8 0 0 0 0.953 0.953 

IL10 TNF 0 0 0 0.949 0.949 

IL12A IL4 0 0 0.9 0.484 0.946 

IL12A IFNG 0 0 0.9 0.47 0.944 

TNF IL2 0 0 0 0.943 0.943 

IL10 IL17A 0 0 0 0.942 0.942 

IL8 IL4 0 0 0 0.939 0.939 

IL8 IL2 0 0 0 0.937 0.937 

IL15 IL2 0 0 0.8 0.7 0.937 

IL1B IL23A 0 0 0.9 0.345 0.931 

IL1B IL4 0 0 0 0.928 0.928 

IL17A IL1B 0 0 0 0.928 0.928 

IL1B IL2 0 0 0 0.928 0.928 

IL17A IL23A 0 0 0 0.927 0.927 

IFNG IL23A 0 0 0.9 0.294 0.926 

IL17A IL8 0 0 0 0.925 0.925 

IL13 IL6 0 0 0 0.924 0.924 
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IL13 IL2 0 0 0.8 0.623 0.921 

IL6 IL23A 0 0 0.9 0.202 0.916 

IL12A IL1B 0 0 0.9 0.18 0.914 

IL12A IL6 0 0 0.8 0.545 0.905 

* scores for choromosomal neighborhood, gene fusion, phylogenetic cooccurence 
 and homology were zero for all edges. 
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Appendix 3.5: Literature based aggregated cytokine network. Cytokine network 
extracted from the immune signaling network in Fritsch et al. 2014 combined with 
cytokine network extracted from the STRING database. Arrow shape () represents 
activation whereas T-shape (----|) represents inhibition. Edges with solid lines represent 
edges common to both networks in terms of direction.  
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Appendix 3.6: Graph Theoretical Metrics 

Node degree centrality. The node degree of a node i is the number of edges linked to i. 

A directed network has two kinds of node degree parameters i.e. Outdegree and 

Indegree. The number of edges directed outwards from a node is counted as outdegree 

whereas number of edges directed towards a node is counted as Indegree. 

 

Node betweenness centrality.  Node betweenness centrality for each node of inferred 

networks was calculated using Brandes algorithm [2]. Betweenness centrality of a node 

n reflects the amount of control that this node employs over the interactions of other 

nodes in the network [3] and can be computed as follows: 

                                                                                                                    (7), 

where s and t are nodes in the network different from n, σst denotes the number of 

shortest paths from s to t, and σst (n) is the number of shortest paths 

from s to t that n lies on. Weighted and unweighted betweenness were calculated for 

each node of every network. Note that, weighted and unweighted betweenness centrality 

scores were normalized for every node as Cb(n)/(N-1).(N-2). 

 

Closeness centrality.  Closeness centrality of a node is the inverse sum of the shortest 

path length from a node to all other nodes of the network and represents the importance 

of a node in context of information processing. It is a measure of how fast information 

spreads from a given node to other reachable nodes in the network [4] and can be 

calculated as follows: 

c i( ) =
A
i

N -1

æ

è
ç

ö

ø
÷

2

1

C
i

                                                                                                            (8),  

where Ai is the number of reachable nodes from node i, N is the number of nodes in the 

network and Ci is the sum of path lengths from node i to all reachable nodes. In directed 
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networks, closeness is represented as ‘Incloseness’ and ‘Outcloseness’. Unlike 

Outcloseness, incloseness is a measure of path lengths from all other nodes to a node i. 

Weighted and unweighted in and out closeness centrality scores were calculated for 

each network.  

 

Hubs and authorities. The 'hubs' and 'authorities' centrality scores are two linked 

centrality measures that are recursive. Klienberg’s HITS algorithm (Klienberg, 1999 [5]) 

was used to iteratively calculate weighted and unweighted scores. The hubs score of a 

node is the sum of the authorities scores of all its successors. Similarly, the authorities 

score is the sum of the hubs scores of all its predecessors. Both scores are normalized 

such that the sum of all hubs scores as well as sum of all authorities scores is 1. As a 

result nodes that receive high Hub scores typically have broadly distributed outgoing 

traffic whereas nodes with high Authority scores typically show broad incoming traffic. 
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Appendix 3.7A: Mean multivariate intra and inter SMETS values with std. errors 
obtained using leave-one-out subsampling 
 

 
n=55 

 
n=55 

 
n=110 

 
n=121 

 

Cytokine 

SMETS HC Vs 
HC 

SMETS GWI Vs 
GWI 

Pooled  intra 
(HC+GWI)SMETS 

Inter SMETS (HC 
Vs GWI) 

Mean 
Std. 
error Mean 

Std. 
error Mean Std. error Mean 

Std. 
error 

IL-1a 11.23 0.71 10.57 0.62 10.90 0.47 12.07 0.31 

IL-1b 2.52 0.09 2.38 0.10 2.45 0.07 2.81 0.04 

IL-2 3.57 0.32 3.01 0.17 3.29 0.18 5.04 0.08 

IL-4 9.65 0.40 8.86 0.40 9.25 0.28 12.01 0.13 

IL-5 2.98 0.15 3.47 0.14 3.23 0.10 4.63 0.04 

IL-6 13.14 0.62 11.94 0.68 12.54 0.46 15.84 0.22 

IL-8 4.28 0.23 3.84 0.18 4.06 0.15 6.03 0.07 

IL-10 2.05 0.10 2.38 0.12 2.21 0.08 2.94 0.04 

IL-12 1.51 0.08 1.50 0.07 1.51 0.05 1.93 0.02 

IL-13 4.97 0.30 5.05 0.33 5.01 0.22 7.06 0.12 

IL-15 5.10 0.30 4.97 0.25 5.03 0.19 6.26 0.14 

IL-17 4.68 0.23 4.05 0.16 4.37 0.14 6.63 0.05 

IL-23 0.36 0.02 0.27 0.01 0.31 0.01 0.37 0.00 

IFNy 1.93 0.09 1.83 0.08 1.88 0.06 2.44 0.02 

TNFa 3.93 0.23 3.71 0.18 3.82 0.15 4.20 0.09 

TNFb 3.74 0.26 2.98 0.20 3.36 0.17 4.08 0.11 
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Appendix 3.7B: Median multivariate intra and inter SMETS values with median absolute 
deviation from median obtained using leave-one-out subsampling 
 

Cytok
ine 

SMETS HC Vs 
HC 

SMETS GWI Vs 
GWI 

Pooled  intra 
(HC+GWI)SMETS 

Inter SMETS 
(HC Vs GWI) 

Median MAD Median 
MA
D Median MAD Median MAD 

IL-1a 12.69 3.74 12.44 2.84 12.57 2.91 12.74 3.20 

IL-1b 2.55 0.54 2.48 0.63 2.49 0.55 2.80 0.29 

IL-2 2.34 0.94 2.83 0.87 2.59 0.94 4.59 0.27 

IL-4 10.80 2.10 9.06 2.16 9.60 2.44 12.24 0.97 

IL-5 2.96 0.93 3.56 0.79 3.34 0.82 4.59 0.31 

IL-6 12.97 3.31 13.30 3.64 13.17 3.69 15.50 1.85 

IL-8 4.74 1.45 4.05 1.12 4.28 1.13 6.05 0.53 

IL-10 2.06 0.66 2.44 0.81 2.23 0.72 3.07 0.34 

IL-12 1.38 0.55 1.59 0.42 1.47 0.47 1.91 0.20 

IL-13 4.06 1.52 4.23 1.46 4.19 1.51 7.03 1.00 

IL-15 4.64 1.38 5.34 1.57 5.18 1.50 5.86 1.22 

IL-17 4.50 1.70 4.16 0.82 4.28 1.13 6.83 0.30 

IL-23 0.39 0.07 0.26 0.07 0.32 0.10 0.36 0.03 

IFNy 2.07 0.52 1.77 0.49 1.88 0.48 2.40 0.18 

TNFa 3.59 1.34 3.94 0.93 3.81 1.24 3.99 0.87 

TNFb 3.13 1.75 2.74 1.21 3.04 1.61 3.46 0.64 
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Appendix 3.7C: Statistical significance of differences in between and within-group 
SMETS values obtained using leave-one-out sub-sampling 

Cyto-
kines 

Multiple time series comparison 

Inter healthy-GWI 
SMETS Vs Intra 

Healthy+GWI 
SMETS 

 Inter healthy-GWI 
SMETS Vs Intra 
healthy SMETS 

 Inter healthy-GWI 
SMETS Vs Intra 

GWI SMETS 

Intra GWI 
SMETS Vs Intra 
healthy SMETS 

values 

Wilcoxon  
ranksum  

Two 
tailed
t test 

Wilcoxon  
ranksum  

Two 
tailed
t test 

Wilcoxon  
ranksum  

Two 
tailed   
t test 

Wilcoxon 
ranksum 

t 
test 

IL-1a 0.13 0.02 0.61 0.10 0.02 0.01 0.25 0.48 

IL-1b 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.29 

IL-2 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.12 

IL-4 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.17 

IL-5 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

IL-6 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.19 

IL-8 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.13 

IL-10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 

IL-12 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.93 

IL-13 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.86 

IL-15 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.75 

IL-17 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 

IL-23 0.00 0.00 0.81 0.35 0.00 0.00 0.00 0.00 

IFNy 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.41 

TNFa 0.04 0.01 0.12 0.09 0.05 0.00 0.44 0.46 

TNFb 0.00 0.00 0.06 0.08 0.00 0.00 0.03 0.02 
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Appendix 3.8: Comparison of weighted node centrality measures. Weighted 
betweenness, incloseness, outcloseness, hub and authority centrality scores of healthy 
consensus networks (Black boxes) were compared with their counterparts in GWI 
consensus networks (red boxes). Lines inside the boxplots show the median values and 
red (+) signs show outliers. 
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Appendix 3.9A: Weighted and unweighted median betweenness centrality with p values 
obtained from their comparisons through Mann Whitney Wilcoxon ranksum test  

Node 
names 

Median Betw. Cent. 

Weighted Unweighted 

Healthy GWI P values Healthy GWI P values 

MK1A 0.09 0.14 0.02 0.09 0.12 0.19 

MK1B 0.21 0.20 0.22 0.14 0.09 0.27 

MK2 0.07 0.16 0.00 0.06 0.10 0.00 

MK6 0.25 0.04 0.00 0.17 0.07 0.00 

MK15 0.21 0.04 0.00 0.12 0.05 0.00 

MK23 0.13 0.07 0.00 0.19 0.03 0.00 

CK1 0.00 0.07 0.00 0.08 0.05 0.70 

CK2 0.18 0.04 0.00 0.19 0.03 0.00 

CK17 0.00 0.00 0.01 0.03 0.03 0.12 

 
 
 
 

  



 

244 

Appendix 3.9B: Weighted and unweighted closeness (in and out) centrality with p-
values obtained from the comparison of median closeness centralities through Mann 
Whitney Wilcoxon ranksum test  

 

Node 
names 

Median incloseness Cent. 

Weighted Unweighted 

Healthy GWI P values Healthy GWI P values 

MK1A 2.15 4.24 0.00 0.067 0.077 0.00 

MK1B 2.22 4.38 0.00 0.067 0.083 0.00 

MK2 2.57 4.02 0.00 0.083 0.083 0.10 

MK6 2.13 3.78 0.00 0.067 0.100 0.00 

MK15 2.55 3.00 0.00 0.056 0.077 0.00 

MK23 3.74 4.08 0.00 0.077 0.083 0.33 

CK1 1.47 4.35 0.00 0.067 0.077 0.00 

CK2 2.75 3.02 0.00 0.063 0.067 0.00 

CK17 1.66 1.96 0.04 0.057 0.053 0.00 

 

Node 
names 

Median outcloseness Cent. 

Weighted Unweighted 

Healthy GWI P values Healthy GWI P values 

MK1A 2.55 2.67 0.02 0.063 0.067 0.63 

MK1B 2.67 3.86 0.00 0.071 0.088 0.00 

MK2 1.89 4.25 0.00 0.050 0.091 0.00 

MK6 2.96 2.81 0.00 0.077 0.067 0.00 

MK15 2.61 4.11 0.00 0.091 0.077 0.00 

MK23 2.07 3.94 0.00 0.067 0.077 0.00 

CK1 2.04 3.06 0.00 0.063 0.070 0.00 

CK2 2.16 3.38 0.00 0.077 0.070 0.00 

CK17 2.39 3.91 0.00 0.067 0.083 0.00 
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Appendix 3.9C: Median indegree and outdegree centralities in healthy and GWI 
subjects with the p values obtained from their comparison using Mann Whitney Wilcoxon 
ranksum test  

 

Node 
names 

Median degree centrality 

indegree  outdegree 

Healthy GWI P values Healthy GWI P values 

MK1A 3 5 0.00 2 3 0.00 

MK1B 2 4 0.00 4 5 0.00 

MK2 6 5 0.00 2 6 0.00 

MK6 3 7 0.00 3 3 0.00 

MK15 3 4 0.00 6 6 0.01 

MK23 5 4.5 0.00 4 4 0.00 

CK1 2 3 0.00 2 3 0.00 

CK2 3 3 0.52 3 3 0.00 

CK17 3 1 0.00 3 4 0.00 
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Appendix 3.9D: Weighted and unweighted hub and authority scores with p-values 
obtained from the comparison of median closeness centralities through Mann Whitney 
Wilcoxon ranksum test  

 

Node 
names 

Median hub ranks 

Weighted Unweighted 

HC GWI P values HC GWI P values 

MK1A 0.02 0.08 0.00 0.05 0.06 0.01 

MK1B 0.06 0.16 0.00 0.12 0.14 0.20 

MK2 0.04 0.14 0.00 0.11 0.15 0.00 

MK6 0.05 0.06 0.00 0.12 0.08 0.00 

MK15 0.27 0.13 0.00 0.21 0.15 0.00 

MK23 0.28 0.11 0.00 0.12 0.12 0.17 

CK1 0.05 0.12 0.00 0.08 0.09 0.00 

CK2 0.13 0.07 0.00 0.09 0.09 0.13 

CK17 0.10 0.14 0.01 0.10 0.13 0.00 

 

Node 
names 

Median authority ranks 

Weighted Unweighted 

HC GWI P values HC GWI P values 

MK1A 0.13 0.11 0.00 0.13 0.13 0.26 

MK1B 0.11 0.08 0.03 0.08 0.11 0.00 

MK2 0.16 0.13 0.00 0.19 0.14 0.00 

MK6 0.10 0.23 0.00 0.09 0.18 0.00 

MK15 0.08 0.16 0.00 0.13 0.13 0.27 

MK23 0.11 0.13 0.00 0.18 0.13 0.00 

CK1 0.25 0.06 0.00 0.10 0.09 0.04 

CK2 0.01 0.06 0.00 0.06 0.07 0.90 

CK17 0.04 0.02 0.00 0.07 0.02 0.00 
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Appendix 3.10: Agreement of empirical and literature-based reference networks.  Edge 
density, PPV, recall and F1 score in the overall group consensus, subject sub-sample 
consensus, and single-subject networks repeatedly subsampled without replacement. 
Significance based on Wilcoxon rank sum test. 

  HC GWI P value (1) 

A) 1000 individual networks (100 repeat subsamples of n=10) 

Inferred Networks 
   Median edge abundance 66(3) 69(4) 0.00 

Median edge density (MAD) 0.81(0.04) 0.85 (0.05) 0.00 

Reference network recovery 
   Median PPV (MAD) 0.61(0.02) 0.60(0.006) 0.00 

 Median Recall (MAD) 0.82(0.04) 0.84(0.04) 0.00 

 Median F score (MAD) 0.71(0.009) 0.70(0.01) 0.16 

    B) 100 within subsample consensus networks (intersection of 10 

    networks within each of 100 subsamples) 
 Inferred Networks 

   Median edge abundance 29(1) 35(1) 0.00 

Median edge density (MAD) 0.36(0.01) 0.43(0.01) 0.00 

Reference network recovery 
   Median PPV (MAD) 0.65(0.01) 0.54(0.01) 0.00 

Median Recall (MAD) 0.37(0.02) 0.39(0.02) 0.00 

Median F score (MAD) 0.47(0.03) 0.45(0.02) 0.00 

    C) Conserved across all subsample consensus networks (intersection 
    of 100 subsample consensus 
networks) 

  Inferred Network 
   Edge abundance 19 24 NA 

Edge density 0.23 0.30 NA 

Reference network recovery 
   PPV 0.74 0.46 NA 

Recall 0.29 0.22 NA 

F1 score 0.41 0.30 NA 
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Appendix 3.11: Expanded inferred association of MK23 with CK17. Deconstruction 
of overall net inhibition of CK17 by MK 23 inferred from the data (dashed lines) into the 
cumulative indirect component control actions documented in the literature (solid lines) 
(green edges promote; red edges inhibit). The apparent inconsistency with reported 
stimulation of the Th17 axis by IL-23 consists of indirect effects involving mediation 
unmeasured immune elements (grey nodes), specifically cortisol and dendritic cell (DC) 
abundance.   
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Appendix 3.12: Mean (standard error) GED on blocking all the outgoing edges from a 
group of two aggregate cytokines in 11 leave one out subsamples with false discovery 
rate (FDR) values obtained from their comparison through the Benjamini Hochberg test. 

Original Mean GED=  0.2569 Std. err= 0.0021 

  MK1A MK1B MK2 MK6 MK15 MK23 CK1 CK2 CK17 

MK1A 
0.2511(
0.0020) 

0.2498(
0.0021) 

0.2476(
0.0020) 

0.2365(
0.0020) 

0.2465(
0.0020) 

0.2432(
0.0020) 

0.2425(
0.0020) 

0.2502(
0.0020) 

0.2473(
0.0020) 

MK1B 0 
0.2557(
0.0022) 

0.2522(
0.0022) 

0.2414(
0.0021) 

0.2511(
0.0022) 

0.2480(
0.0023) 

0.2473(
0.0022) 

0.2548(
0.0022) 

0.2520(
0.0022) 

MK2 0 0 
0.2535(
0.0021) 

0.2390(
0.0022) 

0.2489(
0.0022) 

0.2457(
0.0022) 

0.2450(
0.0021) 

0.2526(
0.0021) 

0.2497(
0.0022) 

MK6 0 0 0 
0.2427(
0.0022) 

0.2379(
0.0022) 

0.2345(
0.0022) 

0.2338(
0.0022) 

0.2418(
0.0022) 

0.2388(
0.0022) 

MK15 0 0 0 0 
0.2524(
0.0021) 

0.2446(
0.0022) 

0.2439(
0.0021) 

0.2515(
0.0021) 

0.2486(
0.0021) 

MK23 0 0 0 0 0 
0.2493(
0.0022) 

0.2406(
0.0022) 

0.2484(
0.0022) 

0.2454(
0.0022) 

CK1 0 0 0 0 0 0 
0.2486(

0.0021) 
0.2477(
0.0021) 

0.2447(
0.0021) 

CK2 0 0 0 0 0 0 0 
0.2561(
0.0021) 

0.2524(
0.0021) 

CK17 0 0 0 0 0 0 0 0 
0.2532(
0.0021) 

 

  MK1A MK1B MK2 MK6 MK15 MK23 CK1 CK2 CK17 

MK1A 0.0594 0.0246 0.0031 0.0000 0.0009 0.0000 0.0000 0.0291 0.0022 

MK1B 1 0.6967 0.1502 0.0000 0.0778 0.0072 0.0033 0.5116 0.1294 

MK2 1 1 0.2670 0.0000 0.0132 0.0007 0.0003 0.1697 0.0250 

MK6 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MK15 1 1 1 1 0.1513 0.0002 0.0001 0.0937 0.0102 

MK23 1 1 1 1 1 0.0175 0.0000 0.0088 0.0005 

CK1 1 1 1 1 1 1 0.0089 0.0041 0.0002 

CK2 1 1 1 1 1 1 1 0.7741 0.1502 

CK17 1 1 1 1 1 1 1 1 0.2356 
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Appendix 4.1: Demographics details of healthy and GWI subjects. GWI subjects are 
also classified as high trauma on the basis of DTS score 

 
HC All GWI high trauma GWI 

Number of subjects 27 27 17 

Race 
   Caucasian 6 9 6 

Hispanic 12 12 6 

African American 0 1 1 

Asian 5 4 3 

Not recorded 4 1 1 

    Age 43(0.29) 42(0.24) 42(0.36) 

Body Mass index (BMI) 27.7 (0.2) 28.6(0.1) 29.6(0.2) 

Peak VO2 max (mL/kg/min) 28.4(1.21) 23.9(1.01)* 24(1)* 

% Predicted peak VO2 max (%) 76(2.9) 65.2(2.6)* 65.06(2.64)* 

Time to VO2 max (min) 8.26(0.55) 6.37(0.46)* 6.18(0.49)* 

* Significantly different from HC in two-tailed t-test 
  

  



 

253 

Appendix 4.2: Davidson Trauma Scales of different categories in 27 GWI subjects. 
DTS scores for 6 subjects were not known 

  High Trauma GWI Low trauma GWI 

No. of subjects 17 4 

Davidson Trauma Scale (DTS) 
 Total DTS 92(5) 27(7) 

Intrusion score 27(1) 7(2) 

Avoidance 36(3) 9(3) 

Hyperarousal 29(1) 11(3) 
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Appendix 4.3: P values obtained from Mann Whitney ranksum test. Cytokine 
profiles for each exposure was compared to median cytokine levels in response to 
Saline 

Cytokine Saline/LPS 
Saline/ CORT 

LPS 
Saline/DFP 

LPS 
Saline/CORT DFP 

LPS 

21-day comparison 
   IL-1a 0.15 0.01 0.22 0.00 

IL-1b 0.84 0.03 0.42 0.02 

IL-2 0.55 0.22 1.00 0.36 

IL-4 0.42 0.42 0.42 0.00 

IL-5 0.84 0.06 0.31 0.03 

IL-6 0.01 0.01 0.01 0.00 

IL-10 0.45 0.06 0.72 0.08 

IL-12 0.55 0.31 0.84 0.33 

IFNg 1.00 0.02 0.84 0.13 

TNFa 0.02 0.01 0.02 0.00 

KC 0.01 0.01 0.01 0.00 

MIP2 0.94 0.01 0.51 0.01 

90 day comparison 
   IL-1a 0.15 0.04 0.14 0.01 

IL-1b 1.00 0.04 0.07 0.01 

IL-2 0.31 0.07 0.14 0.03 

IL-4 0.84 0.57 0.57 0.15 

IL-5 0.10 0.07 0.57 0.01 

IL-6 0.01 0.04 0.07 0.01 

IL-10 0.02 0.04 0.57 0.01 

IL-12 0.55 0.39 0.39 0.55 

IFNg 1.00 0.04 1.00 0.01 

TNFa 0.01 0.04 0.39 0.01 

KC 0.02 0.04 0.07 0.01 

MIP2 0.06 0.04 0.39 0.01 
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Appendix 4.4: Node centrality measures for the nodes of consensus networks in 
response to LPS exposure on 21 and 90 days after periodic CORT exposures with 
(CDL) or without (CL) DFP exposure on day 15 
 

    Betweenness centrality Degree centrality 

S.No. Node 
CL_
21d 

CL_
90d 

CDL_
21d 

CDL_
90d 

CL_
21d 

CL_
90d 

CDL_
21d 

CDL_
90d 

1 IL-1a 0 0 1 0 0 1 3 4 

2 IL-1b 5 5 
1.533

3 2.05 4 3 3 7 

3 IL-2 0 0 0 1 0 0 0 4 

4 IL-4 0 0 0 0 0 0 0 2 

5 IL-5 0 0 
1.233

3 0 3 0 4 3 

6 IL-6 5.5 0 5.6 
0.866

7 3 4 6 5 

7 IL-10 0 0 0 0.95 1 4 0 6 

8 
IL-
12p70 0 0 0 0 0 0 0 0 

9 IFNg 0 0 0 11.4 0 0 2 9 

10 TNF-a 2.5 3 
1.233

3 
4.383

3 4 5 4 8 

11 
IL-8 
(KC) 1 0 0.5 4.4 2 4 3 8 

12 
IL-8 
(MIP-2) 0 3 2.9 0.95 3 5 5 6 

    Eigenvector centrality Closeness centrality 

1 IL-1a 0.08 0.01 0.06 0.06 0.00 0.02 0.03 0.05 

2 IL-1b 0.12 0.06 0.06 0.11 0.04 0.03 0.04 0.06 

3 IL-2 0.08 0.08 0.08 0.05 0.00 0.00 0.00 0.05 

4 IL-4 0.08 0.08 0.08 0.03 0.00 0.00 0.00 0.04 

5 IL-5 0.11 0.08 0.09 0.05 0.03 0.00 0.04 0.05 

6 IL-6 0.06 0.10 0.12 0.08 0.03 0.03 0.05 0.06 

7 IL-10 0.02 0.10 0.08 0.10 0.02 0.03 0.00 0.06 

8 
IL-
12p70 0.08 0.08 0.08 0.08 0.00 0.00 0.00 0.00 

9 IFNg 0.08 0.08 0.06 0.12 0.00 0.00 0.03 0.08 

10 TNF-a 0.12 0.11 0.09 0.11 0.03 0.04 0.04 0.07 

11 
IL-8 
(KC) 0.05 0.10 0.07 0.11 0.03 0.03 0.04 0.07 

12 
IL-8 
(MIP-2) 0.11 0.11 0.11 0.10 0.03 0.04 0.05 0.06 



 

256 

Appendix 4.5: Comparison of node centrality measures in response to exposure to LPS challenge after a repeated priming 
with CORT with and without prior exposure to DFP. Wilcoxon ranksum test was used to compare the median node centrality 
measures. 
 

Nodes 

Median Betweeness centrality     

CL 
21d 

MAD 
CDL 
21d 

MAD 

P val 
CL/C
DL 
21d 

CL 
90d 

MA
D 

CDL 
90d 

MAD 

P val 
CL/C
DL 
90d 

P val 
CL 
21/90d 

P val 
CDL 
21/90 d 

IL-1a 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

IL-1b 3.00 2.00 0.46 0.46 0.00 3.00 3.00 0.90 0.50 0.14 0.92 0.01 

IL-2 0.00 0.00 0.00 0.00 
 

0.00 0.00 1.00 0.70 0.00 
 

0.00 

IL-4 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.47 
 

0.07 

IL-5 0.00 0.00 0.21 0.21 0.00 0.00 0.00 0.00 0.00 0.61 0.70 0.05 

IL-6 5.50 2.50 2.08 1.08 0.01 0.00 0.00 0.25 0.25 0.07 0.00 0.00 

IL-10 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.67 0.28 0.00 0.00 0.00 

IL-12p70 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 
  

0.38 

IFNg 0.00 0.00 0.00 0.00 0.30 0.00 0.00 6.40 3.60 0.00 0.11 0.00 

TNFa 2.50 1.83 1.80 1.28 0.27 0.20 0.20 2.15 1.25 0.08 0.19 0.89 

IL8(KC) 1.00 1.00 0.75 0.50 0.77 0.00 0.00 4.40 1.67 0.00 0.06 0.00 

IL8 (MIP-2) 0.00 0.00 1.88 0.68 0.00 3.20 3.00 0.72 0.23 0.30 0.08 0.00 

Nodes Median eigenvector centrality     

IL-1a 0.08 0.00 0.08 0.01 0.56 0.03 0.02 0.07 0.01 0.01 0.00 0.07 

IL-1b 0.11 0.01 0.08 0.01 0.00 0.08 0.01 0.10 0.00 0.00 0.00 0.00 

IL-2 0.08 0.00 0.08 0.00 0.38 0.08 0.00 0.06 0.01 0.05 0.01 0.00 

IL-4 0.08 0.00 0.08 0.00 0.02 0.08 0.00 0.03 0.01 0.00 
 

0.00 

IL-5 0.09 0.01 0.08 0.01 0.18 0.08 0.00 0.08 0.02 0.70 0.10 0.06 

IL-6 0.09 0.01 0.11 0.01 0.00 0.09 0.01 0.08 0.00 0.00 0.37 0.00 

IL-10 0.03 0.02 0.08 0.00 0.00 0.09 0.01 0.10 0.00 0.87 0.00 0.00 

IL-12p70 0.08 0.00 0.08 0.00 0.85 0.08 0.00 0.08 0.00 0.16 0.08 0.22 

IFNg 0.08 0.00 0.06 0.01 0.04 0.08 0.00 0.11 0.01 0.00 0.42 0.00 
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TNFa 0.12 0.01 0.10 0.01 0.00 0.09 0.01 0.10 0.01 0.08 0.02 0.07 

IL8(KC) 0.07 0.01 0.08 0.01 0.00 0.09 0.01 0.10 0.01 0.11 0.00 0.00 

IL8 (MIP-2) 0.10 0.01 0.10 0.01 0.73 0.10 0.01 0.10 0.00 0.50 1.00 0.34 

Nodes 

Median closeness centrality     

CL 
21d 

MAD 
CDL 
21 d 

MAD 
P val 
CL/CD
L 21d 

CL 
90d 

MA
D 

CDL 
90d 

MAD 
P val 
CL/CD
L 90d 

P val 
CL 
21/90d 

P val 
CDL 
21/90 d 

IL-1a 0.00 0.00 0.04 0.01 0.00 0.04 0.01 0.05 0.00 0.03 0.00 0.01 

IL-1b 0.04 0.00 0.04 0.01 0.36 0.06 0.00 0.06 0.01 0.00 0.01 0.00 

IL-2 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.05 0.00 0.00 0.01 0.00 

IL-4 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.04 0.00 0.00 
 

0.06 

IL-5 0.03 0.00 0.04 0.00 0.00 0.02 0.02 0.05 0.02 0.00 0.07 0.00 

IL-6 0.04 0.00 0.06 0.01 0.00 0.05 0.01 0.06 0.00 0.06 0.02 0.49 

IL-10 0.02 0.00 0.00 0.00 0.00 0.05 0.01 0.06 0.00 0.00 0.00 0.00 

IL-12p70 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.71 0.67 0.26 

IFNg 0.00 0.00 0.04 0.01 0.00 0.03 0.03 0.08 0.00 0.00 0.11 0.00 

TNFa 0.04 0.01 0.05 0.01 0.02 0.05 0.01 0.07 0.01 0.00 0.00 0.00 

IL-8(KC) 0.03 0.00 0.05 0.01 0.00 0.05 0.01 0.08 0.01 0.00 0.00 0.00 

IL-8 (MIP-2) 0.03 0.00 0.05 0.01 0.00 0.06 0.00 0.06 0.00 0.00 0.00 0.00 

Nodes 

Median degree centrality     

CL 
21d 

MAD 
CDL 
21 d 

MAD 
P val 
CL/CD
L 21d 

CL 
90d 

MAD 
CDL 
90d 

MAD 
P val 
CL/CD
L 90d 

P val 
CL 
21/90d 

P val 
CDL 
21/90 d 

IL-1a 0 0 4 1 0.00 3 1 5 1 0.03 0.00 0.07 

IL-1b 4 1 4 1 0.33 7 0 7 1 0.01 0.07 0.00 

IL-2 0 0 0 0 0.38 0 0 4 1 0.00 0.01 0.00 

IL-4 0 0 1 1 0.00 0 0 2 0 0.00 
 

0.25 

IL-5 3 1 4.5 0.5 0.02 1 1 3 3 0.03 0.06 0.82 

IL-6 5 1 7 1 0.00 6 1 6 1 0.72 0.00 0.09 

IL-10 1 0 0 0 0.00 6 1 7 1 0.03 0.00 0.00 

IL-12p70 0 0 0 0 0.86 0 0 0 0 0.71 0.67 0.26 
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IFNg 0 0 3 1 0.00 3 3 9 0 0.00 0.05 0.00 

TNFa 4 1 6 2 0.15 6 1 8 1 0.00 0.00 0.00 

IL-8(KC) 2 1 5 1 0.00 6 1 9 1 0.00 0.00 0.00 

IL-8 (MIP-2) 3 0 6 1 0.00 7 0 7 1 0.51 0.00 0.00 
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Appendix 4.6A: Mean fold change levels and standard error for all cytokines in all GWI subjects and in only high trauma 
subjects 

 
 

HC 
T0 

std.
err 

GWI 
T0 

std. 
err. 

HC 
T1 std.err 

GWI 
T1 

std. 
err. 

HC 
T2 

std. 
err. 

GWI 
T2 

std. 
err. 

All subjects   
           IL-1a       2.85 0.66 1.73 0.35 3.71 0.84 5.41 2.48 3.12 0.69 3.02 0.96 

IL-1b       1.91 0.47 1.35 0.47 2.09 0.45 2.52 0.72 1.55 0.29 1.63 0.46 

IL-2        2.86 1.11 6.73 2.22 3.97 1.55 7.68 2.68 2.10 0.47 6.60 2.23 

IL-4     3.71 2.40 2.77 1.83 7.39 5.77 1.86 0.54 4.71 3.71 1.05 0.19 

IL-5       2.73 1.02 5.27 2.54 3.79 1.44 7.44 3.27 2.51 0.85 4.51 1.90 

IL-6     1.82 0.39 3.67 1.47 2.21 0.43 5.63 2.27 1.70 0.27 4.26 1.56 

IL-10     1.65 0.39 1.29 0.29 2.18 0.47 1.55 0.49 1.67 0.36 1.31 0.30 

IL-12p70 2.94 1.67 2.44 0.71 4.51 2.63 4.74 3.33 1.86 0.56 6.26 4.37 

IFNg       4.17 1.62 15.19 6.72 7.46 3.15 20.01 7.09 4.47 1.72 19.24 6.88 

TNFa      2.54 0.69 2.90 1.01 3.23 0.90 4.23 1.62 2.53 0.70 4.01 1.72 

IL-8 (KC/MIP-2) 1.99 0.51 7.62 2.28 2.58 0.69 7.94 2.13 2.54 0.67 8.58 2.51 

High Trauma subjects 
           IL-1a       2.45 0.60 2.28 0.49 3.63 0.92 8.72 4.87 3.14 0.90 4.90 1.75 

IL-1b       1.59 0.31 2.58 1.20 1.81 0.41 5.63 1.78 2.01 0.37 3.25 1.15 

IL-2        3.00 1.47 5.53 1.74 3.49 1.99 8.78 3.47 1.95 0.47 6.93 2.54 

IL-4     5.60 4.69 1.48 0.23 12.15 11.32 3.28 0.99 8.12 7.27 1.59 0.34 

IL-5       3.50 1.69 4.32 1.62 4.70 2.40 11.99 5.32 2.85 1.41 6.94 3.11 

IL-6     1.69 0.52 6.87 3.57 2.14 0.65 12.50 5.62 1.81 0.36 9.22 3.81 

IL-10     1.64 0.43 1.47 0.41 2.44 0.62 2.22 0.90 1.67 0.34 1.85 0.53 

IL-12p70 3.22 2.23 2.02 0.71 5.00 3.50 1.47 0.42 1.77 0.73 2.09 0.85 

IFNg       3.91 1.74 25.54 11.87 7.34 4.59 33.89 12.13 5.01 2.54 33.34 11.77 

TNFa      2.02 0.57 4.37 1.71 2.58 0.84 6.53 2.77 2.80 1.00 6.30 2.97 

IL-8 (KC/MIP-2) 1.94 0.59 12.27 4.04 2.50 0.80 13.55 3.61 2.83 1.00 14.56 4.37 
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Appendix 4.6B P values obtained from the comparison of HC and GWI fold change 
levels through Wilcoxon ranksum test 
 

Cytokines 

P 
values 
T0 

P 
values 
T1 

P 
values 
T2 

All subjects 
   IL-1a       0.31 0.62 0.58 

IL-1b       0.11 0.71 0.30 

IL-2        0.50 0.45 0.71 

IL-4     0.46 0.94 0.96 

IL-5       0.23 0.48 0.62 

IL-6     0.16 0.39 0.42 

IL-10     0.21 0.10 0.15 

IL-12p70 0.51 0.10 0.46 

IFNg       0.08 0.05 0.11 

TNFa      0.87 0.70 0.48 

IL-8 (KC/MIP-2) 0.03 0.05 0.06 

High Trauma 
subjects 

   IL-1a       0.81 0.82 0.51 

IL-1b       0.86 0.22 0.74 

IL-2        0.34 0.21 0.35 

IL-4     0.16 0.03 0.36 

IL-5       0.05 0.05 0.09 

IL-6     0.00 0.05 0.03 

IL-10     0.65 0.49 0.63 

IL-12p70 0.40 0.20 0.61 

IFNg       0.01 0.00 0.07 

TNFa      0.13 0.04 0.31 

IL-8 (KC/MIP-2) 0.01 0.00 0.03 
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Appendix 4.7: P values for group, time and combined effects obtained from two-way 
analysis of variance (ANOVA) in all GWI subjects and high trauma subjects. 

Cytokine Group  time  interaction 

All subjects 
   IL-1a       0.87 0.17 0.50 

IL-1b       0.96 0.27 0.61 

IL-2        0.01 0.72 0.98 

IL-4     0.18 0.84 0.75 

IL-5       0.10 0.55 0.92 

IL-6     0.02 0.63 0.83 

IL-10     0.16 0.52 0.92 

IL-12p70 0.52 0.75 0.60 

IFNg       0.00 0.73 0.93 

TNFa      0.33 0.70 0.89 

IL-8 (KC/MIP-2) 0.00 0.90 0.98 

High trauma 
subjects 

   IL-1a       0.218 0.227 0.485 

IL-1b       0.018 0.274 0.319 

IL-2        0.017 0.632 0.783 

IL-4     0.175 0.766 0.921 

IL-5       0.091 0.285 0.544 

IL-6     0.004 0.626 0.713 

IL-10     0.878 0.373 0.930 

IL-12p70 0.315 0.766 0.558 

IFNg       0.001 0.781 0.924 

TNFa      0.037 0.709 0.909 

IL-8 (KC/MIP2) 0.000 0.859 0.971 

 
 


