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Abstract 

Species worldwide are becoming increasingly threatened due to the rapid 

changes in climate and land use induced by human activities. The loss of species 

threatens the provision of food, goods and many other ecosystem services essential 

to the sustainability and well-being of human society. It is therefore important to 

monitor, assess and predict the loss of biodiversity at both the species and ecosystem 

levels so the need for any intervention can be determined. A major challenge to this 

task is a lack of consistent and scale-independent evaluation methods. My thesis 

strives to address this gap by testing some currently available methods and proposing 

improved ones to assess the endangerment status of species and the degeneration of 

ecosystems.   

In chapter two, I derived a model to estimate the loss of species abundance 

based on both the area of occupancy and spatial autocorrelation of occupied cells. 

This new model performed generally better in predictive power than an existing 

area-based model. In chapter three, I tested a spatial analysis tool, called a 

scalogram, for assessing the impact of disturbance on species extinction. Scalograms 

describe how the value of a metric changes with spatial scale (e.g., grain size) 

following some simple relationship, such as a power-law or a simple linear equation. 

I showed that it is feasible to estimate species extinction risk by analyzing the change 

in landscape metrics over spatial scales. In chapter four, I tested the hypothesis that 

the collapse of the power-law patch-size distribution could signal an early warning 

for ecosystem degeneration (i.e., desertification of grassland). I found that a power-

law patch-size distribution was dependent on a species’ abundance, spatial 
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aggregation and the spatial scale of analysis. All three factors could cause the patch-

size distribution to deflect from the power-law model. Thus, I concluded that the 

power-law model was not suitable for indicating ecosystem degeneration. 

Understanding status of endangered-species and ecosystem degeneration is 

profoundly important in biological conservation. Methods developed in my thesis 

provide potentially useful tools for assessing extinction risk in the real world. The 

applications of these methods are expected to contribute to the study, legislation and 

practice in landscape management and biological conservation. 
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Chapter 1: Introduction 

1.1 Research background 

Species extinction is probably one of the few ecological terms ingrained in 

our minds since childhood. When a kid is staring at the skeleton of a dinosaur in a 

museum, or watching the movie Jurassic Park in the theatre, they are already 

touched by species extinction. In the scientific field, the extinction of species has 

been attracting ecologists’ attention for centuries. In the late 1850s, Charles Darwin 

(1859) stated his view of species extinction: “species and groups of species gradually 

disappear, one after another, first from one spot, then from another, and finally from 

the world.” 

1.1.1 Why species extinction matters 

Species extinction inevitably leads to the abatement of biodiversity, which is 

integral to human civilization. Loss of species usually have detrimental impacts on 

productivity, reducing the basic supply of crops, domestic animals, fibers, medicines, 

and other daily necessities for human societies (Tilman 2000; Cardinale et al. 2012). 

It also affects many other essential ecosystem services, such as biogeochemical 

cycles (Ewel et al. 1991; Hooper and Vitousek 1998), air and water purification 

(Bolund and Hunhammar 1999; Boulton et al. 2008), climate regulation (Lovelock 

and Kump 1994; Harding and Lovelock 1996), pest and disease control (Roelfs 

1988; Altieri 1999), barriers to biological invasion (Kennedy et al. 2002; Tilman 

1997), and resistance and resilience to perturbation (Naeem and Li 1997; McCann 

2000). 
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Furthermore, loss of species severs our connection to nature and history: 

species inspire songs, stories, dances, poetry, and festivals (Alonso et al. 2001; 

Wheeler et al. 2012). Certain rare species, such as the pandas in China, are the 

treasures of these nations, and their extinction would hurt the national prides of these 

countries.   

1.1.2 Major topics in studying species extinction 

There are numerous studies addressing issue of species extinction. By 

choosing ‘species extinction’ as a key word in the ‘Web of Science’ database, one 

can find more than 113,200 articles that had been published by the end of 2015. In 

this introduction, I provide a broad context by illustrating three relevant topics.  

Identifying the causes of species extinction 

Based on the fossil record, it is generally accepted that five mass extinctions 

have occurred since the Cambrian Period (~540 million years ago). These rapid and 

worldwide decreases in the number of life forms on the planet happened during the 

End Ordovician, Late Devonian, End Permian, End Triassic and End Cretaceous 

periods (Raup and Sepkoski 1982; Labandeira and Sepkoski 1993; Macleod et al. 

1997; McElwain and Punyasena 2007; Alroy 2008). The natural events associated 

with causing these mass extinctions include climate warming, sea-level falls 

associate with glaciations and asteroid impacts (Grieve and Cintala 1993; Wignall 

2001; Morgan et al. 2006; Peters 2008; Barnosky et al. 2011).  

The rate of species extinction today is much higher than the average 

extinction rate over evolutionary time, and the major causes documented in the 
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literature include climate change, habitat loss, pollution, over-hunting/egg collecting, 

species invasion, and interactions between these (Diamond 1989; Tilman et al. 1994; 

Vitousek et al. 1997, Mace et al. 2008). 

Estimating species extinction rates  

Although over 99.9 % of species that ever existed are thought to be already 

extinct, the background extinction rate is relatively even, at 0.0001-0.00001% per 

year or 1-10 species per year based on fossil records (Raup 1991). Surprisingly, the 

near-term extinction rate is estimated to be 1,000 to 10,000 times higher than the 

background rate (Primm et al 1995; Dirzo and Raven 2003; MEA 2005). Some 

scientists, therefore, believe that we are currently in the midst of a human-caused 

mass extinction that differs from the previous five natural mass extinctions (Dirzo 

and Raven 2003; Barnosky et al. 2011).  

However, precise contemporary extinction rates are unknown and there are 

many methodological difficulties in their estimation. For example, the number of 

species extinctions predicted from the power-law species-area relationship are often 

higher than the ones being actually observed (May and Lawton 1995; Rosenzweig 

1995). The concept of the extinction debt has been a common explanation for this 

overestimation, stating that the fewer individuals still alive after the habitat is 

destroyed do not form a viable population, and that a time lag occurs between 

species extinction and habitat loss (Tilman et al. 1994). Recently, He and Hubbell 

(2011) showed that the discrepancy between the predicted and observed extinctions 

actually arises mathematically from the use of the power-law species-area curve 
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when species are not randomly distributed in nature. By comparing estimated 

extinctions using the species- and endemics-area curves and testing in 10 datasets 

across the world, they found that the resulting overestimation of species extinctions 

could be higher than 160%.    

Assessing species extinction risk 

Globally the International Union for Conservation of Nature (IUCN) Red List 

of Threatened Species is the most widely adopted and comprehensive system for the 

assessment of species extinction risk (IUCN-SSC 2004; Mace et al. 2008). The 

outline of the system was proposed by Mace and Lande (1991), and through a 

continuing process of review, redevelopment, and further review, the Red List 

system has become more reliable and widely accepted since 2001 (Mace et al. 2008). 

At the heart of the IUCN Red List system is the five endangerment assessment 

criteria that determine the risk category based on the reduction in population size and 

the spatial extent of species occurrence. A species that meets at least one of the five 

criteria is placed in a threatened category. For example, according to Criterion A, a 

species is considered as Vulnerable, Endangered, or Critically Endangered if its 

population size decreases, respectively, by 30, 50 or 80% within 10 years or three 

generations, whichever is longer (IUCN-SSC 2010). By Criterion B, the 

endangerment status of a species is determined by the reduction in the area of its 

occupancy.  

The IUCN criteria have been adopted for assessing a diverse range of 

taxonomic groups over different temporal and spatial scales. Both population- and 
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range-size based methods are well-suited for the studies of birds, marine and 

freshwater species (Knapp et al. 2011; Verreycken et al. 2014); population-size-

based methods are the primary criterion for the vast majority of mammal species 

(Clausnitzer et al. 2009; Molnar et al. 2010; Rozylowicz and Dobre 2010; Tyler 

2010; Wittmer et al. 2010; Wittemyer et al. 2013; Mosnier et al. 2015; Srivathsa et 

al. 2015); while range-size-based methods are more suitable for insects (Adriaens et 

al. 2014), amphibians, reptiles, and plants (Clausnitzer et al. 2009; Rakotoarinivo et 

al. 2014; Rossi et al. 2014; Brummitt et al. 2015; Garavito et al. 2015). For different 

spatial scales, range-size based methods are more suitable to national, continental or 

global distribution of species (La Sorte and Jetz 2010; Comeros-Raynal et al 2012; 

Brace et al. 2014; Puri et al. 2015), while population-size-based methods are widely 

considered in relatively small sample plots (Lewis and Senior 2011; Song et al. 

2013; Nourani et al. 2015). Also, range-size-based methods are the predominant 

approach for assessing long-term data, especially deriving from fossil records 

(Grund et al. 2012; Tietje and Kiessling 2013; Dunhill and Wills 2015; Saupe et al. 

2015).  

The IUCN criteria have fuelled the expansion of the knowledge of species 

endangerment status for a wide array of taxonomic groups. Hoffman et al. (2010) 

reviewed the current endangerment status of the world’s vertebrates, and found that 

13%, 21%, and 30% of birds, mammals, and amphibians were assigned as 

threatened, respectively. Collen et al. (2014) showed that approximately 20% of 

freshwater species were purportedly at risk. Davies and Baum (2012) found that 

13.5% of assessed marine species were placed in the category of threatened species.  
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1.1.3 Gaps and issues in current methods 

The discrepancy between population- and range-size-based methods 

Although population-size-based methods are biologically more justifiable, 

long-term data on population size at biogeographic scales are rarely available for 

many, if not most, species. In contrast, data on the area of occupancy are relatively 

easy to obtain but range-size-based criteria are more arbitrary and lack biotic 

justification. Also, there is a wealth of empirical evidence that the endangerment 

status result based on one criterion may contrast strikingly with that using others. For 

instance, Fox et al. (2011) found that distribution data may underestimate the 

extinction risk of butterflies at 10×10 km scale. The authors recommended that the 

appropriate grain size for studying the spatial patterns of butterflies was 2×2 km. 

However, in a case study on plant species, Abeli et al. (2009) found to the contrary, 

showing that range-size-based methods overestimated endangerment status because 

of the restricted distribution of the target plant species.  

Two main issues emerging from the above examples are: 1) discrepancy 

between the population-size based and the range-size based methods, and 2) 

dependence of the result on the scale of measurement. A solution to the first issue is 

introduced in the following paragraph, and the scale-dependence issue is discussed 

below this.  

To address the discrepancy between the two major endangerment criteria, He 

(2012) derived a model making explicit the link between the area of a species’ 
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occurrence map and the loss of abundance. The model assumes that the spatial 

distribution of the study species remains unchanged before and after disturbance. 

This assumption is an approximation. In reality, the spatial patterns may vary due to 

the nature of different disturbances, and therefore, additional parameters are needed 

to take account of the changes in spatial patterns. Thus, in this thesis, I derived a new 

model to assess a species extinction risk by integrating the criteria A and B in the 

IUCN system and also considering the autocorrelation in species’ spatial 

distribution.  

The scale dependence of the measurement  

The range size criteria of the IUCN system, along with a number of other 

landscape metrics, have been widely accepted in biodiversity assessments (reviewed 

in Uuemaa et al. 2009). Particular to the group of organisms on which my thesis 

mainly focuses, Burton and Samuelson (2008) and Hernandez-Stefanoni and Dupuy 

(2008) found that woody species richness and abundance were closely associated 

with high proportion of forest cover. Additionally, Moser et al. (2002) and Kumar et 

al. (2006) showed that forest edge length and edge density enhanced vascular plant 

species richness, and that forest fragmentation promoted the establishment of pioneer 

species. However, as shown in the case of butterflies by Fox et al. (2011), spatial 

patterns are largely subject to the scale of observation, which is one of the major 

concerns in landscape ecology (Gardner et al. 1987; Wiens 1989; Levin 1992; Wu 

and Loucks 1995). The scale-dependence issue leaves ecologists needing to use a 

great deal of personal discretion concerning how they interpret and compare patterns 

obtained at different spatial scales. 
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In a series of systematic studies, landscape ecologists found that the behavior 

of some commonly used landscape metrics (i.e., number of patches, edge length, and 

mean patch size) showed predictable patterns when presented in scalograms—plots 

that reveal the dependence of landscape metrics on the grid size of measurement. 

Moreover, these patterns could be described by simple linear, power-law or 

exponential functions (Wu et al. 2002; Wu 2004; Shen et al. 2004). Following this 

line of research, I extended these scaling relationships by linking changes in 

scalograms with species extinction risk. My approach is more general and scale-

independent than other multiscale analyses, which can lead to controversial results as 

shown in the aforementioned case study on butterflies (Fox et al. 2011). 

Methods for assessing the degeneration of ecosystem    

The elevated current species extinction rate may lead to the loss of 

biodiversity at both species and ecosystem level. Rodriguez. et al. (2011) and Keith 

et al. (2013) independently modified and redeveloped the IUCN’s criteria for 

assessing the degeneration of ecosystems based mainly on the distribution range of 

ecosystems. In one related but distinct research field—bifurcation and chaos—many 

indices have been put forward to predict the onset of ecosystem degeneration, 

including recovery time and length, spatial and temporal correlation and variance of 

species abundance/coverage (Wilssel 1984; Verarrt et al. 2012; Carpenter et al. 

2011; Drake et al. 2010; Dai et al. 2013; also see review papers in Scheffer et al. 

2009; Scheffer et al. 2013). However, one disadvantage of these quantities is that 

they are time and labor-intensive measures. As a more practical alternative, Kefi et 
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al. (2007) hypothesized that any deviation in the empirical patch-size distribution of 

vegetation from the power-law model was indicative of ecosystem degeneration.  

Many researchers have however, been critical of Kefi et al.’s (2007) method. 

For instance, Maestre and Escudero (2009) and Weerman et al. (2012) showed that a 

truncated power-law model was a better alternative to the power-law in describing 

patch-size distributions of perennial vegetation and diatom biofilms with no recent 

disturbance. The ongoing debate indicates that power-law behaviour is unlikely to be 

universal but is dependent on the circumstances from which the data arise. One 

unanswered question likely to be crucial to the debate is whether the power-law is 

robust to changes in abundance, spatial aggregation and spatial scales. 

 

1. 2 Research Objectives  

The rate at which humans have been altering the global ecosystem makes the 

loss of biodiversity one of the world’s most pressing crises. Thus, understanding the 

endangerment status of species and ecosystems is central to conservation planning 

and sustainable development. Although much effort has been devoted to developing 

practical methods for assessing species extinction risk and ecosystem degeneration, 

important issues remain unsolved including (though not limited to) discrepancies in 

implied endangerment status among different criteria; and, uncertainties in the scale 

dependence of different measures used to assess landscape condition.  

A desirable method to replace existing approaches would be adequately 

simple and consistent for use in assessing a wide array of taxonomic groups over 

different spatial and temporal scales. The central theme of my thesis is to test 
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existing methods for this potential and to develop new approaches for assessing 

species extinction risk and ecosystem degeneration. The remainder of my thesis is 

organized as follows. 

In chapter two, the species’ endangerment status is assessed based on the use 

of occurrence maps. I derived a model by incorporating the changes in range sizes 

and spatial autocorrelation. This newly derived model was compared with He’s 

(2012) area-based model at multiple scales by both simulation and empirical data 

and showed improved performance.  

In chapter three, the endangerment status of species is assessed by the use of 

scalograms of landscape metrics, which are formed by progressively computing the 

values of each metric over a spectrum of scales. The results indicated that the use of 

scalograms is a promising avenue to address the scale-dependence issue in assessing 

species extinction risk based on occurrence maps. Particularly, the scalograms of 

number of patches and edge length had the strongest predictive power among all the 

selected landscape metrics. 

In chapter four, the use of the power-law model for predicting ecosystem 

degeneration was carefully examined. I comprehensively tested the effects of scale, 

abundance and spatial aggregation on the spatial patterns observed. The results 

showed that the power-law distribution was sensitive to all the three factors, and that 

the deviation of patch-size distribution from the power-law could be triggered by 

intrinsic characteristics of spatial patterns (i.e., abundance and spatial aggregation) as 

well as changing spatial scales.  
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The augmented methods developed in my thesis are practical in application, 

and provide promising tools to assess species extinction risk in disturbed 

environments. These methods can also lead to considerable savings in labor, cost and 

time required to achieve biological conservation and can inform interventions 

designed to prevent further loss of biodiversity at both species and ecosystem level. 

The applications of these methods together with the criteria of the IUCN system are 

expected to significantly contribute to both the study and practice of conservation 

planning and landscape management.  
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Chapter 2: Assessing species extinction risk based on occupancy and spatial 

autocorrelation of species 

 

2.1 Abstract 

One of the most important yet challenging tasks in biological conservation is 

to assess the extinction risk of species. Most of the currently available methods 

evaluate extinction risk based on changes in either population size or distribution 

range over a given period of time. Although population-size-based methods are 

biologically more justifiable, data on the change in population size are seldom 

available for most species. To solve this issue, an area-based model was recently 

derived based on maps of species occupancy and was shown to be effective in 

predicting extinction risk at any given spatial scale. However, it is as yet unknown 

how different spatial distributions of species affect model performance. In this paper, 

I generalized this method by incorporating spatial autocorrelation using joint counts 

of neighboring cells in an occurrence map. I assessed the performance of this 

generalized model using both simulated and empirical data at multiple spatial scales. 

The results showed that the generalized model had better predictions than the 

original area-based model, particularly when species are of high abundance, strongly 

aggregated in distribution, or mapped at coarse scales. In the case of less abundant 

species, differences in the two model predictions are minimal. 
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2.2 Introduction 

It is recognized that simple and efficient ways of assessing extinction risk are 

important for conservation biologists (Lamoreux et al. 2003; Mace et al. 2008). Most 

of the currently available methods, including the five quantitative criteria proposed 

by the International Union for Conservation of Nature (IUCN) Red List system, 

evaluate extinction risk based on the change of species population size or their 

distribution ranges over a given period of time (IUCN-SSC 2004). Although 

population-size-based methods are biologically more justifiable, their 

implementation in practice is often restricted because accurate population size 

estimates and long-term dynamics on the landscape to regional scales required are 

rarely available (Possingham et al. 2002; Lamoreux et al. 2003; Robbirt et al. 2006; 

Mace et al. 2008). However, the alternative area-based criterion (i.e., Criterion B in 

IUCN’s Red List system), which assigns a species to an endangerment category if 

the extent (or area) of occupancy is lower than a threshold value, is arguably more 

arbitrary and less biologically justifiable.  

To circumvent the need for species abundance data and make an explicit link 

between species occupancy and extinction risk, He (2012) developed a model based 

on the area of species occurrence: 

               ,    (1) 

or     
        

       
 ,     (2) 

where   is the original occupancy of a species and    is the resulting occupancy after 

a certain proportion ( ) of the population is removed. This model effectively 

combines the IUCN Red List Criteria A and B within a single method. It is based on 
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Criterion A, which is biological more justifiable, but uses data on occupancy rather 

than population size, which is more easily attainable than abundance data and has 

been widely used as a proxy measure of species abundance (Wilson et al. 2004; 

Cardillo et al. 2008, Mace et al. 2008).  

The model has its origins in extinction theory derived from population 

genetics and ecology (Mace and Lande 1991, Lande 1993, Caughley 1994). 

Although originally based on an assumption of random species distributions, it is 

also consistent with non-random (negative binomial) occupancy-abundance 

distributions (He 2012). This area-based model, for the first time, makes explicit the 

relationship between the area of distribution and species extinction risk and provides 

a useful tool for conservation and management planning. It answers the question of 

how much loss in population size will result from a given loss in area of occurrence. 

Although this model is simple, robust to changes in scale and free of 

parameters, it assumes that the spatial distribution pattern of the study species 

remains unchanged before and after disturbance (Johnson et al. 1993; He 2012). This 

assumption is reasonable for many species as shown by He (2012), but different 

types of disturbance could lead to different spatial patterns in the post-change 

landscape. For example, selective logging and retention-patch harvesting create 

different spatial patterns of distribution, while insect/pathogen infection and wind 

disturbance could result in changes to species distributions (Sousa 1984; He et al. 

2002; Scheller and Mladenoff 2005; Karst et al. 2014). The area-based model can be 

improved to incorporate the possibility of a change in spatial pattern before and after 

disturbance through the introduction of new parameters to equation 1. 
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To account for the possibility of changes in spatial patterns of species 

distribution before and after disturbance requires explicit consideration of spatial 

autocorrelation in occupancy. The objective of this study was to account for spatial 

autocorrelation in the model proposed by He (2012) and thereby improve its 

accuracy and reliability in predicting species’ extinction risk. I tested and compared 

the performance of the extended and original models under various combinations of 

abundance and spatial distributions at multiple scales using both simulations and 

empirical data. The significance and limitations of the model in risk assessment 

applications are discussed. 

 

2.3 Methods 

2.3.1 Model 

Several authors have proposed methods to quantify spatial autocorrelation in 

distribution patterns (Conlisk et al. 2009, Solow and Smith 2010, Yin and He 2014). 

In this study, I adopted the method of Yin and He (2014) to quantify spatial 

autocorrelation by joint statistics between empty versus occupied neighboring cells 

in an occurrence map. This is a simple yet germane measurement for spatial 

autocorrelation of a binary map (Cliff and Ord 1973). Compared with He’s (2012) 

area-based model, the new model takes account of spatial autocorrelation in species 

distribution by introducing two new model parameters: 

          
  
 
     

,    (3) 

or     
 

  
 

        

       
,     (4) 
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where   is the percentage loss of population size,   and    are proportions of 

occupied area over the total area of a study for a  target species before and after 

disturbance,   and    are measures of spatial autocorrelation of the distributions of 

the species before and after disturbance, respectively.  

To derive Eq. 3 and Eq. 4, I firstly recognized the following relationship 

derived from the binomial distribution for random distribution of species (He and 

Gaston 2000).  

       
 

 
         (5) 

   
       

     
 

 
 
      (6) 

where    is species abundance,   is total study area,   is cell size (mapping 

resolution) and   is occupancy of the species. 

Eq. 6 can be used to estimate species abundance from the occurrence map for 

randomly distributed species (He and Gaston 2000). In reality, most species are 

aggregated resulting in the underestimation of abundance if a random assumption is 

used (Conlisk et al. 2009; Hwang and He 2011; Azaele, et al. 2012). The real species 

abundance ( ) can be corrected by multiplying the estimated abundance (  ) by an 

autocorrelation index ( ):  

              (7) 

where   = 1 for randomly distributed species (  will be defined in next subsection). 

Substituting Eq. 7 in Eq. 5 gives:  
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      (8) 

Similarly, one can establish a relationship between species abundance and 

area of occupancy after disturbance (   and   , respectively) as 

         
 

 
 
  
       (9) 

where    is species abundance after disturbance,    is the resultant area of 

occupancy for the target species after disturbance, and    is an autocorrelation index 

after disturbance (see the definition of    in next subsection). Given the loss of 

population ( ), species abundance before and after disturbance (  and   , 

respectively) follows a simple function:  

                 (10) 

Solving Eq. 8, Eq. 9, and Eq. 10 together leads to Eq. 3 and Eq. 4 

2.3.2 Measuring spatial autocorrelation in the model 

 Eq. 8 was derived by Yin and He (2014) to estimate species abundance from 

a given occurrence map. Here, I adopted the approach of Yin and He (2014) to 

compute the two spatial autocorrelation parameters (  and   ) by counting the 

number of joints between adjacent black (occupied) and white (unoccupied) cells 

based on the distribution maps before and after disturbance, respectively. It is a 

simple yet germane measurement for the spatial autocorrelation of a binary map 

(Cliff and Ord 1973). Two types of joints are considered in this analysis. The first 

one is the black and white joints in the first-order neighborhood, which represents 
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the number of joints by neighboring black and white cells sharing the same edge 

(Figure 2-1, left). These are denoted as BW joints. The degree of spatial 

autocorrelation associated with BW joints is defined as 

    
     

      
 ,      (11) 

where       is the expected number of BW joints under random distribution and 

      is the observed number of BW joints (Figure 2-1, left). 

The second joint type is black and white joints of the second-order 

neighborhood (Figure 2-1, right), which defines the number of joints by neighboring 

black and white cells sharing the same edge or diagonal vertex and is denoted as 

DBW joints. Similarly, the spatial autocorrelation associated with DBW joints can 

be measured as 

     
      

      
 ,     (12) 

where        is the expected number of vertex joint under random distribution 

and        is the observed number of vertex joint (Figure 2-1, right). These two I 

indices measure the degree of spatial aggregation for binary distribution maps. If a 

species is randomly distributed, I is expected to be 1. I > 1 indicates aggregation, 

while I < 1 indicates regular distribution. 

 

2.3.3 Testing the model 

I tested and compared the performance of Models (2) and (4) using both 

simulated and empirical data. In both studies a 50-ha (1000×500 m) plot was used to 

define the study extent. I varied species abundances from 1000 to 5000, in 

increments of 1000 and manipulated the amount of spatial aggregation in four 
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scenarios from random to highly aggregated distributions. For each scenario I 

simulated 1000 replicates. Therefore, there are 20000 samples in total (5 abundance 

× 4 spatial distributions × 1000 replicates).  

Spatial clustering distributions were generated using the rThomas function in 

the package ‘spatstat’ of R 3.0.3 (R Development Core Team, 2014). This program 

does not generate exactly the same number of pre-fixed trees. To account for this I 

only retained a species if its simulated number of individuals was no more than 105 

% or less than 95 % of the pre-fixed abundance. Three parameters in rThomas 

determine a cluster distribution: number of clusters (Ƙ), number of individuals 

within each cluster (µ), and radius of a cluster (RC). In this analysis, I made the 

following two assumptions: 1) Ƙ and µ were equivalent to   , where N was species 

abundance; 2) maximum radius of a cluster (MRC) equaled  
 

   
 , where A is the 

area of the study plot. I simulated three different RC, representing different degrees 

of spatial aggregations described above, which equal 1/4 MRC, 1/3 MRC, and 1/2 

MRC, respectively. The examples of a simulated species with 1000 individuals 

under the four different spatial distributions are given in Figure 2-2. The R code for 

the simulation is provided in Appendix 1.  

For obtaining an occupancy map, the entire 50-ha plot was converted into a 

lattice system at a given cell size (i.e., 10×10 m). A cell is defined as occupied if it 

contains at least one individual, otherwise it is empty. To assess the impact of 

disturbance, I randomly removed    (= 30, 50 and 80%) of individuals of a target 

species to represent the reduction in population size due to the disturbance. These 

three values, respectively, represent vulnerable, endangered and critical endangered 
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criteria of the IUCN Red List. Species occupancy ( ) and spatial autocorrelation 

index ( ) were calculated from the occurrence map before the disturbance, while 

reduced species occupancy (  ) and reduced spatial autocorrelation index (  ) were 

computed from the occurrence map after the disturbance. Models (2) and (4) were 

applied to estimate c (the extinction risk as defined by the IUCN Criterion A) based 

on occurrence maps before and after disturbance (the IUCN Criterion B). The R code 

for the computation of occupancy and spatial spatial autocorrelation index is 

provided in Appendix 2. 

The mean predicted values of extinction risk and their standard errors of 1000 

replicates were compared across various scenarios. The agreement between the 

predicted values of extinction risk and the known risk (as defined by the 30, 50 and 

80% reduction in population size in the simulation) was measured by the relative 

root mean squared error (rRMSE) as follows: 

       
 

 
  

     

  
   

       (13) 

where    is the predicted extinction risk for species  , and    is the known extinction 

risk of the species, and   is the total number of replicates for each scenario. To 

examine the impact of cell size on the performance of the two models, I repeated the 

above work at three different spatial scales: a=10×10, 20×20, and 25×25 m. 

I further tested the two models using an empirical set of data consisting of 

302 tree species distributed in a 50 ha stem-mapping plot from Barro Colorado 

Island (BCI), Panama (Condit et al. 1996). Species with more than 10000 individuals 

were excluded since they fully saturated the occurrence map. Species with very low 

abundance (< 10 individuals) were also excluded because those species do not have 
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enough population size for implementing 50% or 80% reduction. In total, 240 

species were analyzed. As previously stated, different types of disturbance may 

result in different spatial patterns. Because the diameter at breast height (DBH) is 

available for every tree in the BCI plot, I implemented selective logging by removing 

c = 30, 50 and 80 % of individuals with larger DBH for each species. Following the 

procedures described in the above, the predicted values of extinction risk by the two 

models were compared at the three scales.  

 

2.4 Results 

As shown in Figures 2-3 – 2-5, the rRMSEs for model (4) with either BW or 

DBW joints were almost always smaller than that of model (2), indicating the 

superiority of model (4). There was little difference between the BW joints and 

DBW joints for model (4) in predicting extinction risk, suggesting that both the first-

order and second-order joints could effectively describe spatial autocorrelation in 

species distribution. 

The performance of all models became progressively worse with increasing 

of abundance, spatial aggregation and mapping resolution (Tables 2-1 – 2-15; 

Figures 2-3 – 2-5). For instance, the rRMSEs of the model (2) and model (4) with 

BW joints and DBW joints raised considerably from 0.174 to 0.469 (model 2), 0.109 

to 0.476 (model 4 with BW joints), and 0.108 to 0.476 (model 4 with DBW joint), 

respectively, when the abundance increased from 1000 to 5000 while the spatial 

distribution was slightly aggregated and the cell size equaled 25 m (Figure 2-3b – 2-

3r). Also, the estimated values of extinction risk of the models were 0.300 (same as 
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the true value) under random distribution, but dropped to 0.218 (model 2), 0.249 

(model 4 with BW joints) and 0.249 (model 4 with DBW joints) under the slightly 

aggregated distribution at 25 m scale (Table 2-1, last column). Similarly, the 

mapping scale could affect the performance of both models. When the cell size 

increased from 10 to 25 m, while abundance equaled 5000 and spatial distribution 

was at high aggregation, the rRMSEs changed sharply from 0.436 to 0.684 (model 

2), 0.145 to 0.617 (model 4 with BW joints), and 0.147 to 0.617 (model 4 with DBW 

joints), respectively (Figure 2-3d). Although both models performed worse when 

abundance was high, large scale and high intensity of aggregation, model (4) clearly 

outperformed model (2) with closer predicted values. There was little difference 

however between the two joints structures in model (4).   

Results for the empirical BCI data were similar to the simulations and show 

that both models were scale dependent (Table 2-16). For instance, the predicted 

values of extinction risk by model (2) and model (4) with BW joints dropped from 

0.483 and 0.493 to 0.459 and 0.474, respectively, when population reduction c=0.5 

was implemented and the cell size increased from 10 to 25 m. In general, consistent 

with the simulation results, model (4) performed better than model (2). 

 

2.5 Discussion 

The IUCN’s Red List of Threatened Species is perhaps the most widely 

adopted system for evaluating species’ extinction risk (Eken et al. 2004, Miller et al. 

2007, Mace et al. 2008). At the core of the IUCN Red List system is the five 

endangerment assessment criteria. Criterion A makes use of population size as a 
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measurement. It is biologically justifiable but its application is hampered due largely 

to the paucity of abundance data for most species. Criterion B determines species 

endangerment status according to the size of occupied area. Although occupancy 

data are relatively easy to acquire, this criterion does not have much biological 

support and is less accurate because factors other than abundance can alter a species’ 

occupancy, such as the change in spatial distribution of species patterns. He’s (2012) 

method integrates the IUCN’s criteria A and B based on the justifiable criterion A 

but using the more easily obtained occupancy data. In this study, I further improved 

this method by taking into account of spatial autocorrelation.  

Equipped with models (2) and (4), one can estimate the loss of abundance of 

a species given the change in the occurrence map of this species over a certain period 

of time. My results showed that model (4), that accounts for spatial autocorrelation 

in species distribution, performed better than model (2). The trade-off of model (4) is 

that there are two extra parameters (I and Ic) to estimate. This means model (4) can 

only be applied to situations where occurrence maps are available, while model (2) is 

equally applicable to occurrence maps or data of site occurrence (i.e., 

presence/absence across spatially discontinuous sites). Given an occurrence map, the 

estimation of I or Ic is straightforward. 

Simulation results showed that high abundance, intensive aggregation, and 

coarse scale affected both models (Tables 2-1– 2-15 and Figures 2-3 – 2-5). As 

expected, under random distribution, both models performed equally well 

irrespective of the abundance and mapping resolutions, because the reduction in 

occupancy and the loss of abundance is precisely captured by model (2). This 
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relationship deteriorated progressively with increasing spatial aggregation, becoming 

worse with increasing abundance and mapping resolution (Figures 2-3 – 2-5). Model 

(4) improves on model (2) by introducing spatial autocorrelation to assess and 

consider spatial aggregation. It thus ameliorates the effects of abundance, scale, and 

spatial aggregation and improves its performance.  

The predictions of model (2) were always smaller than the true extinction risk 

when the spatial distribution was aggregated (Tables 2-1 – 2-15). The logic behind 

this is simple: the random assumption underestimated the degree of spatial 

aggregation. When the parameters of spatial autocorrelation were considered, the 

predictions of model (4) could be biased high or low, indicating that this method was 

scale dependent and the appropriate grid cell was determined by both abundance and 

spatial aggregation. For example, the appropriate grid size should be between 10 and 

20 m when the abundance was 1000 because the predictions of model (4) were 

biased high when grid cell was 20, while the predictions were biased low when grid 

cell was 10 (Table 2-1). However, the appropriate grid size should be smaller than 10 

m, when the abundance was 5000 since the predictions were always biased low 

(Table 2-13), indicating the parameters adopted in the model still underestimated the 

degree of real spatial aggregation. The BW/DBW joints considered in model (4) 

were first nearest neighbors, and the model could be further improved by 

incorporating high-order nearest neighbors.       

It is notable that the difference between the predicted values of the two 

models in the empirical data set was less evident than that in the simulation (Figure 

2-3 and Table 2-16). This is because the densities of most empirical species are not 
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as high as those in the simulation tests. There are only 44 species that have 

abundance larger than 1000, let alone 5000 in the 50 ha BCI plot. Another reason is 

that very few species in the BCI plot show such aggregated distributions as those of 

“highly aggregated” pattern (Figure 2-2d; see also Condit et al. 2000). Nevertheless, 

it is true that the model (4) almost always performed as good as or better than model 

(2). Although we recommend the use of model (4), the difference between model (4) 

and (2) is likely to be insignificant for most empirical datasets unless highly 

abundant species are present such as those in the simulation. 

Understanding the endangerment status of species is profoundly important to 

biological conservation and management decision making. With the increasing 

documentation of species’ distributions worldwide (Gaston 2000; Guralnick and Hill 

2009), methods such as the one developed in this study, together with other criteria 

of the IUCN system, provide useful tools to assess species extinction risk. in the real 

world. These methods have application in research, policy development and practical 

biological management and conservation.    

 

2.6 Conclusions  

Population size-based and area-based methods are two major criteria for 

assessing species extinction risk. Although population size-based methods are more 

biologically justifiable in assessing species, the paucity of long-term data restricts its 

application. Area-based methods are easy to implement but more arbitrary and 

lacking in biological meaning. In this study, a novel extinction risk model was 
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developed by incorporating spatial autocorrelation indices into a recently derived 

area-model based on occupancy.  

This new model was compared with the area-based one at multiple spatial 

scales with both simulated and empirical data sets. A random disturbance was 

applied in simulations, while selective logging was implemented in empirical testing. 

This analysis yields the following main results: 1) the newly derived model 

outperformed the original area-based model in both the simulation and empirical 

testing; and 2) both models were subjected to high abundance, large scale and 

intensive spatial aggregation. However, predictive performance in the original area-

based model declined faster than with the new model under these conditions and it 

provides an improved means to estimate extinction risk over a broader range of 

conditions. 



 
 

39 
 

2.7 Literature cited 

Azaele S, Cornell SJ, Kunin WE. 2012. Downscaling species occupancy from coarse 

spatial scales. Ecological Applications 22(3): 1004-1014. 

Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A. 2008. The 

predictability of extinction: biological and external correlates of decline in 

mammals. Proceedings of the Royal Society B-Biological Sciences 275(1641): 

1441-1448. 

Caughley G. 1994. Directions in conservation biology. Journal of Animal Ecology 

63(2): 215-244. 

Cliff AD, Ord JK. 1973. Spatial autocorrelation. Pion, London. 

Conlisk E, Conlisk J, Enquist B, Thompson J, Harte J. 2009. Improved abundance 

prediction from presence-absence data. Global Ecology and Biogeography 

18(1): 1-10. 

Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster M, et al. 2004. 

Key biodiversity areas as site conservation targets. Bioscience 54(12): 1110-

1118. 

Gaston KJ. 2000. Global patterns in biodiversity. Nature 405(6783): 220-227. 

Guralnick R, Hill A. 2009. Biodiversity informatics: automated approaches for 

documenting global biodiversity patterns and processes. Bioinformatics 25(4): 

421-428. 

He F. 2012. Area-based assessment of extinction risk. Ecology 93(5): 974-980. 

He F, Gaston KJ. 2000. Estimating species abundance from occurrence. American 

Naturalist 156(5): 553-559. 



 
 

40 
 

He H, Mladenoff DJ, Gustafson EJ. 2002. Study of landscape change under forest 

harvesting and climate warming-induced fire disturbance. Forest Ecology and 

Management 155(1-3): 257-270. 

Hwang W, He F. 2011. Estimating abundance from presence/absence maps. Methods 

in Ecology and Evolution 2(5): 550-559. 

IUCN-SSC. 2004. Guidelines for using the IUCN Red List categories and criteria. 

Version 8.1. International Union for Conservation of Nature, Standards and 

Petitions Subcommittee, Gland, Switzerland. 

Johnson NL, Kotz S, Kemp AW. 1993. Univariate discrete distribtuions.  John 

Wiley, New York, New York, USA. 

Karst J, Randall MJ, Gehring CA. 2014. Consequences for ectomycorrhizal fungi of 

the selective loss or gain of pine across landscapes. Botany 92(12): 855-865. 

Lamoreux J, Akcakaya HR, Bennun L, Collar NJ, Boitani L, Brackett D, et al. 2003. 

Value of the IUCN Red List. Trends in Ecology & Evolution 18(5): 214-215. 

Lande R. 1993. Risks of population extinction from demographic and environmental 

stochasticity and random catastrophes. American Naturalist 142(6): 911-927. 

Mace GM, Lande R. 1991. Assessing exinction threats - toward a reevaluation of 

IUCN threatened species categories. Conservation Biology 5(2): 148-157. 

Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akcakaya HR, Leader-Williams 

N, et al. 2008. Quantification of Extinction Risk: IUCN's System for 

Classifying Threatened Species. Conservation Biology 22(6): 1424-1442. 

Miller RM, Rodriguez JP, Aniskowicz-Fowler T, Bambaradeniya C, Boles R, Eaton 

MA, et al. 2007. National threatened species listing based on IUCN criteria and 



 
 

41 
 

regional guidelines: Current status and future perspectives. Conservation 

Biology 21(3): 684-696. 

Possingham HP, Andelman SJ, Burgman MA, Medellin RA, Master LL, Keith DA. 

2002. Limits to the use of threatened species lists. Trends in Ecology & 

Evolution 17(11): 503-507. 

R Development Core Team. 2014. R: a language and environment for statistical 

computing. The R Foundation for Statistical Computing, Vienna, Austria. 

Available at: http://www.r-project.org/. 

Robbirt KM, Roberts DL, Hawkins JA. 2006. Comparing IUCN and probabilistic 

assessments of threat: Do IUCN red list criteria conflate rarity and threat? 

Biodiversity and Conservation 15(6): 1903-1912. 

Scheller RM, Mladenoff DJ. 2005. A spatially interactive simulation of climate 

change, harvesting, wind, and tree species migration and projected changes to 

forest composition and biomass in northern Wisconsin, USA. Global Change 

Biology 11(2): 307-321. 

Solow AR, Smith WK. 2010. On Predicting Abundance from Occupancy. American 

Naturalist 176(1): 96-98. 

Sousa WP. 1984. The role of disturbance in natural communities. Annual Review of 

Ecology and Systematics 15: 353-391. 

Wilson RJ, Thomas CD, Fox R, Roy DB, Kunin WE. 2004. Spatial patterns in 

species distributions reveal biodiversity change. Nature 432(7015): 393-396. 

Yin D, He F. 2014. A simple method for estimating species abundance from 

occurrence maps. Methods in Ecology and Evolution 5(4): 336-343. 



 
 

42 
 

Table 2-1. Predicted extinction risk by models (2) and (4) with 1000 initial individuals when c=30% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.300 (0.006) 0.300 (0.013) 0.300 (0.018) 

Slightly aggregated 0.291 (0.007) 0.267 (0.016) 0.252 (0.020) 

Moderately aggregated 0.281 (0.008) 0.235 (0.017) 0.210 (0.021) 

Highly aggregated 0.259 (0.010) 0.187 (0.018) 0.159 (0.020) 

Model (4) with 

BW joints 

Random 0.300 (0.008) 0.300 (0.018) 0.300 (0.024) 

Slightly aggregated 0.306 (0.010) 0.299 (0.023) 0.288 (0.030) 

Moderately aggregated 0.312 (0.011) 0.300 (0.027) 0.276 (0.036) 

Highly aggregated 0.320 (0.015) 0.272 (0.032) 0.228 (0.037) 

Model (4) with 

DBW joints 

Random 0.300 (0.008) 0.300 (0.017) 0.300 (0.024) 

Slightly aggregated 0.306 (0.010) 0.299 (0.022) 0.287 (0.030) 

Moderately aggregated 0.312 (0.011) 0.300 (0.027) 0.276 (0.035) 

Highly aggregated 0.320 (0.015) 0.272 (0.032) 0.228 (0.037) 
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Table 2-2. Predicted extinction risk by models (2) and (4) with 1000 initial individuals when c=50% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.500 (0.005) 0.500 (0.012) 0.500 (0.016) 

Slightly aggregated 0.490 (0.007) 0.461 (0.016) 0.441 (0.021) 

Moderately aggregated 0.477 (0.008) 0.417 (0.019) 0.382 (0.024) 

Highly aggregated 0.449 (0.010) 0.348 (0.020) 0.304 (0.025) 

Model (4) with 

BW joints 

Random 0.500 (0.007) 0.500 (0.016) 0.499 (0.022) 

Slightly aggregated 0.506 (0.009) 0.503 (0.020) 0.489 (0.029) 

Moderately aggregated 0.515 (0.010) 0.504 (0.024) 0.477 (0.034) 

Highly aggregated 0.526 (0.013) 0.476 (0.031) 0.418 (0.038) 

Model (4) with 

DBW joints 

Random 0.500 (0.007) 0.500 (0.016) 0.500 (0.022) 

Slightly aggregated 0.506 (0.009) 0.503 (0.020) 0.489 (0.028) 

Moderately aggregated 0.515 (0.010) 0.504 (0.024) 0.476 (0.034) 

Highly aggregated 0.526 (0.013) 0.475 (0.031) 0.417 (0.037) 
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Table 2-3. Predicted extinction risk by models (2) and (4) with 1000 initial individuals when c=80% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.800 (0.003) 0.800 (0.006) 0.800 (0.008) 

Slightly aggregated 0.793 (0.003) 0.774 (0.009) 0.760 (0.014) 

Moderately aggregated 0.785 (0.004) 0.742 (0.012) 0.713 (0.017) 

Highly aggregated 0.766 (0.006) 0.680 (0.016) 0.632 (0.021) 

Model (4) with 

BW joints 

Random 0.800 (0.004) 0.800 (0.008) 0.800 (0.010) 

Slightly aggregated 0.805 (0.005) 0.805 (0.010) 0.799 (0.014) 

Moderately aggregated 0.810 (0.005) 0.809 (0.011) 0.796 (0.016) 

Highly aggregated 0.819 (0.007) 0.797 (0.015) 0.760 (0.021) 

Model (4) with 

DBW joints 

Random 0.800 (0.003) 0.800 (0.007) 0.800 (0.010) 

Slightly aggregated 0.805 (0.004) 0.805 (0.010) 0.799 (0.014) 

Moderately aggregated 0.810 (0.005) 0.809 (0.011) 0.796 (0.015) 

Highly aggregated 0.819 (0.007) 0.796 (0.015) 0.759 (0.021) 
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Table 2-4. Predicted extinction risk by models (2) and (4) with 2000 initial individuals when c=30% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.300 (0.006) 0.300 (0.016) 0.300 (0.025) 

Slightly aggregated 0.283 (0.007) 0.241 (0.018) 0.218 (0.024) 

Moderately aggregated 0.263 (0.009) 0.193 (0.017) 0.166 (0.020) 

Highly aggregated 0.227 (0.010) 0.144 (0.016) 0.125 (0.018) 

Model (4) 

with BW 

joints 

Random 0.300 (0.008) 0.300 (0.021) 0.300 (0.032) 

Slightly aggregated 0.307 (0.011) 0.277 (0.028) 0.249 (0.038) 

Moderately aggregated 0.314 (0.013) 0.260 (0.030) 0.220 (0.037) 

Highly aggregated 0.315 (0.017) 0.208 (0.031) 0.167 (0.034) 

Model (4) 

with DBW 

joints 

Random 0.300 (0.008) 0.300 (0.020) 0.300 (0.032) 

Slightly aggregated 0.307 (0.010) 0.277 (0.028) 0.249 (0.038) 

Moderately aggregated 0.314 (0.013) 0.259 (0.030) 0.219 (0.037) 

Highly aggregated 0.314 (0.016) 0.207 (0.031) 0.167 (0.034) 
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Table 2-5. Predicted extinction risk by models (2) and (4) with 2000 initial individuals when c=50% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.500 (0.005) 0.500 (0.014) 0.500 (0.021) 

Slightly aggregated 0.479 (0.008) 0.426 (0.020) 0.394 (0.026) 

Moderately aggregated 0.454 (0.009) 0.358 (0.021) 0.315 (0.026) 

Highly aggregated 0.407 (0.012) 0.278 (0.019) 0.242 (0.024) 

Model (4) 

with BW 

joints 

Random 0.500 (0.007) 0.501 (0.019) 0.500 (0.027) 

Slightly aggregated 0.508 (0.010) 0.478 (0.026) 0.442 (0.038) 

Moderately aggregated 0.518 (0.012) 0.459 (0.029) 0.401 (0.042) 

Highly aggregated 0.523 (0.015) 0.390 (0.030) 0.322 (0.039) 

Model (4) 

with DBW 

joints 

Random 0.500 (0.007) 0.501 (0.018) 0.500 (0.026) 

Slightly aggregated 0.509 (0.009) 0.478 (0.025) 0.442 (0.037) 

Moderately aggregated 0.517 (0.012) 0.459 (0.029) 0.400 (0.042) 

Highly aggregated 0.522 (0.014) 0.389 (0.030) 0.321 (0.039) 
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Table 2-6. Predicted extinction risk by models (2) and (4) with 2000 initial individuals when c=80% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.800 (0.003) 0.800 (0.006) 0.800 (0.009) 

Slightly aggregated 0.787 (0.004) 0.748 (0.013) 0.722 (0.019) 

Moderately aggregated 0.769 (0.006) 0.690 (0.016) 0.645 (0.021) 

Highly aggregated 0.734 (0.008) 0.600 (0.019) 0.545 (0.023) 

Model (4) 

with BW 

joints 

Random 0.800 (0.004) 0.800 (0.008) 0.800 (0.012) 

Slightly aggregated 0.807 (0.005) 0.793 (0.012) 0.772 (0.018) 

Moderately aggregated 0.814 (0.006) 0.786 (0.015) 0.747 (0.021) 

Highly aggregated 0.821 (0.007) 0.741 (0.018) 0.675 (0.025) 

Model (4) 

with DBW 

joints 

Random 0.800 (0.004) 0.800 (0.008) 0.800 (0.012) 

Slightly aggregated 0.807 (0.005) 0.793 (0.012) 0.772 (0.018) 

Moderately aggregated 0.814 (0.006) 0.785 (0.015) 0.746 (0.021) 

Highly aggregated 0.820 (0.007) 0.740 (0.018) 0.674 (0.025) 
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Table 2-7. Predicted extinction risk by models (2) and (4) with 3000 initial individuals when c=30% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.300 (0.006) 0.301 (0.019) 0.302 (0.036) 

Slightly aggregated 0.275 (0.008) 0.220 (0.021) 0.193 (0.026) 

Moderately aggregated 0.247 (0.009) 0.166 (0.017) 0.141 (0.021) 

Highly aggregated 0.202 (0.010) 0.125 (0.015) 0.109 (0.018) 

Model (4) with 

BW joints 

Random 0.299 (0.008) 0.300 (0.025) 0.301 (0.045) 

Slightly aggregated 0.304 (0.011) 0.254 (0.032) 0.216 (0.046) 

Moderately aggregated 0.309 (0.014) 0.222 (0.032) 0.177 (0.040) 

Highly aggregated 0.299 (0.018) 0.173 (0.030) 0.141 (0.032) 

Model (4) with 

DBW joints 

Random 0.299 (0.008) 0.300 (0.024) 0.301 (0.045) 

Slightly aggregated 0.304 (0.011) 0.253 (0.031) 0.215 (0.046) 

Moderately aggregated 0.309 (0.014) 0.222 (0.031) 0.176 (0.039) 

Highly aggregated 0.298 (0.018) 0.172 (0.029) 0.141 (0.032) 
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Table 2-8. Predicted extinction risk by models (2) and (4) with 3000 initial individuals when c=50% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.500 (0.006) 0.500 (0.017) 0.502 (0.030) 

Slightly aggregated 0.470 (0.008) 0.397 (0.022) 0.358 (0.031) 

Moderately aggregated 0.434 (0.010) 0.317 (0.020) 0.274 (0.025) 

Highly aggregated 0.372 (0.012) 0.242 (0.019) 0.213 (0.022) 

Model (4) with 

BW joints 

Random 0.500 (0.008) 0.500 (0.021) 0.502 (0.036) 

Slightly aggregated 0.508 (0.010) 0.449 (0.030) 0.398 (0.046) 

Moderately aggregated 0.515 (0.013) 0.411 (0.031) 0.342 (0.041) 

Highly aggregated 0.507 (0.016) 0.331 (0.033) 0.274 (0.037) 

Model (4) with 

DBW joints 

Random 0.500 (0.007) 0.500 (0.021) 0.502 (0.036) 

Slightly aggregated 0.508 (0.010) 0.449 (0.030) 0.397 (0.046) 

Moderately aggregated 0.515 (0.012) 0.411 (0.031) 0.341 (0.040) 

Highly aggregated 0.506 (0.016) 0.330 (0.033) 0.273 (0.036) 
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Table 2-9. Predicted extinction risk by models (2) and (4) with 3000 initial individuals when c=80% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.800 (0.003) 0.800 (0.007) 0.801 (0.013) 

Slightly aggregated 0.780 (0.005) 0.725 (0.016) 0.690 (0.023) 

Moderately aggregated 0.754 (0.006) 0.648 (0.017) 0.594 (0.023) 

Highly aggregated 0.703 (0.009) 0.545 (0.019) 0.489 (0.023) 

Model (4) with 

BW joints 

Random 0.800 (0.004) 0.800 (0.009) 0.801 (0.015) 

Slightly aggregated 0.807 (0.005) 0.776 (0.015) 0.741 (0.024) 

Moderately aggregated 0.814 (0.006) 0.755 (0.017) 0.697 (0.025) 

Highly aggregated 0.816 (0.008) 0.685 (0.022) 0.606 (0.029) 

Model (4) with 

DBW joints 

Random 0.800 (0.004) 0.800 (0.009) 0.801 (0.015) 

Slightly aggregated 0.807 (0.005) 0.776 (0.015) 0.740 (0.024) 

Moderately aggregated 0.814 (0.006) 0.754 (0.017) 0.696 (0.025) 

Highly aggregated 0.815 (0.007) 0.683 (0.022) 0.605 (0.029) 
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Table 2-10. Predicted extinction risk by models (2) and (4) with 4000 initial individuals when c=30% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.300 (0.007) 0.301 (0.025) 0.304 (0.058) 

Slightly aggregated 0.267 (0.009) 0.201 (0.021) 0.174 (0.028) 

Moderately aggregated 0.233 (0.010) 0.150 (0.017) 0.129 (0.020) 

Highly aggregated 0.184 (0.010) 0.114 (0.014) 0.101 (0.017) 

Model (4) with 

BW joints 

Random 0.300 (0.009) 0.300 (0.029) 0.304 (0.069) 

Slightly aggregated 0.302 (0.012) 0.231 (0.034) 0.190 (0.053) 

Moderately aggregated 0.302 (0.014) 0.196 (0.034) 0.154 (0.042) 

Highly aggregated 0.280 (0.018) 0.154 (0.028) 0.124 (0.029) 

Model (4) with 

DBW joints 

Random 0.300 (0.009) 0.300 (0.029) 0.304 (0.075) 

Slightly aggregated 0.302 (0.011) 0.231 (0.034) 0.189 (0.052) 

Moderately aggregated 0.302 (0.014) 0.196 (0.033) 0.154 (0.041) 

Highly aggregated 0.279 (0.018) 0.153 (0.027) 0.125 (0.029) 
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Table 2-11. Predicted extinction risk by models (2) and (4) with 4000 initial individuals when c=50% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.500 (0.006) 0.502 (0.020) 0.504 (0.045) 

Slightly aggregated 0.460 (0.009) 0.371 (0.024) 0.329 (0.033) 

Moderately aggregated 0.415 (0.011) 0.287 (0.022) 0.249 (0.026) 

Highly aggregated 0.345 (0.011) 0.221 (0.018) 0.197 (0.022) 

Model (4) with 

BW joints 

Random 0.500 (0.008) 0.502 (0.025) 0.503 (0.054) 

Slightly aggregated 0.505 (0.011) 0.421 (0.034) 0.361 (0.053) 

Moderately aggregated 0.509 (0.013) 0.370 (0.034) 0.298 (0.044) 

Highly aggregated 0.487 (0.017) 0.295 (0.031) 0.246 (0.037) 

Model (4) with 

DBW joints 

Random 0.500 (0.008) 0.502 (0.025) 0.503 (0.058) 

Slightly aggregated 0.505 (0.011) 0.420 (0.034) 0.361 (0.052) 

Moderately aggregated 0.508 (0.013) 0.370 (0.034) 0.298 (0.043) 

Highly aggregated 0.486 (0.017) 0.295 (0.030) 0.246 (0.037) 
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Table 2-12. Predicted extinction risk by models (2) and (4) with 4000 initial individuals when c=80% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.800 (0.003) 0.800 (0.009) 0.801 (0.019) 

Slightly aggregated 0.773 (0.006) 0.701 (0.019) 0.659 (0.027) 

Moderately aggregated 0.740 (0.008) 0.613 (0.020) 0.555 (0.025) 

Highly aggregated 0.677 (0.009) 0.507 (0.020) 0.455 (0.024) 

Model (4) with 

BW joints 

Random 0.800 (0.004) 0.800 (0.011) 0.801 (0.022) 

Slightly aggregated 0.806 (0.005) 0.757 (0.018) 0.710 (0.030) 

Moderately aggregated 0.812 (0.006) 0.724 (0.020) 0.652 (0.028) 

Highly aggregated 0.806 (0.008) 0.639 (0.023) 0.558 (0.031) 

Model (4) with 

DBW joints 

Random 0.800 (0.004) 0.800 (0.011) 0.801 (0.024) 

Slightly aggregated 0.806 (0.005) 0.757 (0.018) 0.710 (0.029) 

Moderately aggregated 0.812 (0.006) 0.723 (0.020) 0.651 (0.028) 

Highly aggregated 0.805 (0.008) 0.638 (0.023) 0.557 (0.030) 
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Table 2-13. Predicted extinction risk by models (2) and (4) with 5000 initial individuals when c=30% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m)  

10 20 25 

Model (2) Random 0.300 (0.007) 0.303 (0.033) 0.285 (0.065) 

Slightly aggregated 0.259 (0.009) 0.187 (0.022) 0.162 (0.030) 

Moderately aggregated 0.221 (0.010) 0.138 (0.016) 0.119 (0.020) 

Highly aggregated 0.170 (0.009) 0.107 (0.014) 0.095 (0.016) 

Model (4) with 

BW joints 

Random 0.300 (0.009) 0.304 (0.038) 0.286 (0.079) 

Slightly aggregated 0.297 (0.012) 0.213 (0.040) 0.169 (0.057) 

Moderately aggregated 0.296 (0.016) 0.175 (0.033) 0.137 (0.039) 

Highly aggregated 0.261 (0.018) 0.140 (0.027) 0.117 (0.030) 

Model (4) with 

DBW joints 

Random 0.300 (0.009) 0.304 (0.038) 0.287 (0.096) 

Slightly aggregated 0.296 (0.012) 0.212 (0.039) 0.169 (0.056) 

Moderately aggregated 0.295 (0.015) 0.175 (0.032) 0.137 (0.038) 

Highly aggregated 0.260 (0.018) 0.140 (0.026) 0.117 (0.029) 
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Table 2-14. Predicted extinction risk by models (2) and (4) with 5000 initial individuals when c=50% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.500 (0.006) 0.502 (0.025) 0.488 (0.045) 

Slightly aggregated 0.450 (0.010) 0.349 (0.026) 0.306 (0.036) 

Moderately aggregated 0.399 (0.011) 0.266 (0.021) 0.233 (0.026) 

Highly aggregated 0.321 (0.011) 0.207 (0.017) 0.184 (0.021) 

Model (4) with 

BW joints 

Random 0.500 (0.009) 0.502 (0.030) 0.488 (0.060) 

Slightly aggregated 0.500 (0.011) 0.393 (0.041) 0.325 (0.061) 

Moderately aggregated 0.500 (0.014) 0.337 (0.036) 0.272 (0.045) 

Highly aggregated 0.463 (0.018) 0.270 (0.031) 0.226 (0.036) 

Model (4) with 

DBW joints 

Random 0.500 (0.008) 0.502 (0.030) 0.489 (0.073) 

Slightly aggregated 0.500 (0.011) 0.393 (0.040) 0.325 (0.060) 

Moderately aggregated 0.500 (0.014) 0.336 (0.035) 0.271 (0.045) 

Highly aggregated 0.462 (0.018) 0.269 (0.030) 0.226 (0.036) 
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Table 2-15. Predicted extinction risk by models (2) and (4) with 5000 initial individuals when c=80% of population 

reduction. Values in the parenthesis are standard errors for 1000 replications. 

Models Spatial distribution Cell size (m) 

10 20 25 

Model (2) Random 0.800 (0.003) 0.801 (0.011) 0.795 (0.018) 

Slightly aggregated 0.766 (0.006) 0.681 (0.020) 0.633 (0.030) 

Moderately aggregated 0.726 (0.009) 0.583 (0.020) 0.525 (0.026) 

Highly aggregated 0.653 (0.010) 0.479 (0.019) 0.430 (0.024) 

Model (4) with 

BW joints 

Random 0.800 (0.004) 0.801 (0.013) 0.795 (0.024) 

Slightly aggregated 0.804 (0.006) 0.737 (0.021) 0.678 (0.036) 

Moderately aggregated 0.809 (0.007) 0.693 (0.023) 0.613 (0.034) 

Highly aggregated 0.794 (0.009) 0.602 (0.024) 0.523 (0.033) 

Model (4) with 

DBW joints 

Random 0.800 (0.004) 0.801 (0.013) 0.796 (0.030) 

Slightly aggregated 0.804 (0.005) 0.737 (0.021) 0.678 (0.036) 

Moderately aggregated 0.808 (0.007) 0.692 (0.023) 0.612 (0.033) 

Highly aggregated 0.793 (0.008) 0.600 (0.024) 0.522 (0.032) 
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Table 2-16. Predicted extinction risk by models (2) and (4) for BCI plot data. Values in the parenthesis are standard errors 

for 240 species. 

Implemented 

extinction risk 

Cell size (m) Predicted extinction risk 

Model (2) Model (4) with BW joints Model (4) with DBW joints 

c = 30% 10 0.293 (0.046) 0.300 (0.052) 0.300 (0.050) 

 20 0.282 (0.053) 0.291 (0.057) 0.291 (0.055) 

 25 0.279 (0.058) 0.290 (0.060) 0.288 (0.059) 

c = 50% 10 0.483 (0.061) 0.493 (0.061) 0.493 (0.063) 

20 0.465 (0.073) 0.479 (0.077) 0.477 (0.076) 

25 0.459 (0.076) 0.474 (0.075) 0.472 (0.075) 

c = 80% 10 0.783 (0.053) 0.793 (0.048) 0.792 (0.047) 

 20 0.769 (0.065) 0.779 (0.074) 0.777 (0.074) 

 25 0.761 (0.073) 0.768 (0.086) 0.766 (0.083) 
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Figure 2-1. Illustration of the black and white joints for the first-order neighborhood 

and second-order neighborhood. The occupied and empty cells are denoted as black 

(B) and white (W), respectively. 
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Figure 2-2. Distributions of a simulated species with 1000 individuals under random 

(a), slightly aggregated (b), moderately aggregated (c), and highly aggregated (d) 

patterns in a 1000×500 m plot.  
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Figure 2-3. rRMSEs for model (2) (black lines), model (4) with BW joints (red 

lines) and with DBW joints (green lines) for different combinations of abundance 

and spatial aggregation when disturbance intensity c = 0.3 was implemented. Red 

lines and green lines overlap in most cases.  
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Figure 2-4. rRMSEs for the area-based model (black lines), the spatial-area model 

with BW joints (red lines), and the spatial-area model with DBW joints (green lines) 

in multiple scenarios when disturbance intensity c=0.5 was implemented.  
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Figure 2-5. rRMSEs for the area-based model (black lines), the spatial-area model 

with BW joints (red lines), and the spatial-area model with DBW joints (green lines) 

in multiple scenarios when disturbance intensity c=0.8 was implemented. 

 

 

 



 
 

63 
 

Chapter 3: Testing the robustness of scalograms of landscape metrics and their 

application to the assessment of extinction risk 

3.1 Abstract 

The scale dependence of ecological patterns is a major impediment to 

depicting spatially structured landscapes. A widely adopted solution is to investigate 

the changes in landscape metrics over a spectrum of spatial scales, using so-called 

scalograms. Despite of the importance of scalograms for understanding the behavior 

of landscape metrics, their application in landscape management and biological 

conservation has not been explored. This chapter examines changes in the 

scalograms of six commonly used landscape metrics responding to various 

disturbance intensities. The predictive power of this method was tested through both 

simulated and empirical data. The results indicated that the scalograms of the 

number of patches (NP), mean patch size (MPS), patch size standard deviation 

(PSSD) and largest patch index (LPI) were robust to changes in abundance and 

spatial distributions; while for the predictive power, the scalograms of the number of 

patches (NP), edge length (EL), and mean patch size (MPS) performed well in both 

simulation and empirical testing. The results show the scalograms tested in this 

chapter could be useful for assessing species extinction risk in highly structured 

landscapes.  
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3.2 Introduction 

The measurement and interpretation of spatially structured landscapes is 

necessary for understanding ecological processes and has received much research 

attention (Turner 1989; Levin 1992; Wu and Levin 1994; Wu et al. 2002). A major 

impediment to quantifying and monitoring a landscape is the scale multiplicity of 

heterogeneity. That is, landscape patterns depend on the scale at which they arise 

(Gardner et al. 1987; Wiens 1989; Levin 1992; Wu and Loucks 1995). A well-

known example is the coastline paradox, which implies that a landmass has no single 

well-defined perimeter, and that the length highly depends on the observed spatial 

scale (Mandelbrot 1983; Peitgen 2004).  

In the last three decades, many studies have improved our understanding of 

the effect of scale by using both simulated and empirical tests (Gardner et al. 1987; 

Delcourt and Delcourt 1996; Hargis et al. 1998; Saura and Martinez-Millan 2001; 

Baldwin et al. 2004; Saura 2004; Saura and Castro 2007). In a series of studies, Wu 

et al. (2002), Wu (2004) and Shen et al. (2004) investigated scalograms of landscape 

metrics by progressively computing the values of the metrics over a spectrum of 

scales. These researchers divided about 20 commonly used landscape metrics into 

three categories: simple scaling function (type 1), staircase-like scaling behavior 

(type 2), and unpredictable (type 3). In the type 1 category, metrics are predictable 

by changes in scale and these relationships can be fitted by either the linear, 

logarithmic or power-law function. Examples of type 1 landscape metrics include the 

number of patches (NP), patch density (PD), and total edge (TE). Type 2 includes 

metrics, such as patch richness (PR) and patch richness density (PRD), which exhibit 
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stair-case behavior across scales. In type 3 metrics, scale response is unpredictable, 

showing erratic patterns in response to changing scales. Mean patch fractal 

dimension (MPFD) and contagion (CONT) fall into this type.   

Although these analyses on the scalogram are interesting and have received 

much attention in the literature (Wu 2013), the application of predictable scalograms 

is limited to downscaling the values of landscape metrics from coarse scales to fine 

scales (e.g., Pablo and Entraigas 2014). Researchers studying the consequences of 

biophysical processes and human activities often undertake tedious, potentially 

redundant computations and comparisons of landscape metrics over both grain sizes 

and study extents (e.g., Hudak et al. 2004, Cayuela et al. 2006 and Wu et al. 2011). 

The use of scalograms would avoid this necessity, but their applications in landscape 

management and biological conservation have not been evaluated. 

To make scalograms useful requires a better understanding of how these 

scaling relations respond to various intensities of external disturbances. The intent of 

this analysis is to model the relationship between the changes in scalograms and the 

levels of disturbance intensities. In previous studies, Leimgruber et al. (2002) and 

Frate (2014) showed clear effects of disturbance on scalograms, but these studies did 

not test the generality of their findings due largely to the lack of spatial patterns 

affected by different levels of disturbance intensities in real landscapes. In this study, 

I use simulation to solve this problem. The advantage of simulation is that we can 

easily test the robustness of scalograms to the change in species abundance and other 

key determinants of spatial patterns (i.e., spatial distribution). 
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The specific objectives of this chapter are twofold. First, I modeled the 

scalograms of six selected landscape metrics and tested the robustness of these 

models to the change in abundance and spatial distributions of species. Second, I 

studied the variation in the scalograms of landscape metrics in response to changing 

disturbance intensities. I used both simulated and empirical data to conduct this 

analysis. It is noteworthy that in the literature the term ‘scale’ could refer to extent, 

grain size, spatial lag, or cartographic rate (Wiens 1989; Lam and Quattrochi 1992; 

Schneider 2001; Dungan et al. 2002; Wu et al. 2006). In this study, I restrict the term 

‘scale’ to refer only to grid size or cell size unless specified otherwise.  

 

3.3 Methods 

3.3.1 Constructing scalograms of landscape metrics 

Six landscape metrics belonging to type 1 category were adopted in this 

study, including the Number of Patches, Edge Length, Mean Patch Size, patch size 

standard deviation (PSSD), patch size coefficient of variation (PSCV), and large 

patch index (LPI). A brief summary of these metrics is presented in Table 3-1. The 

scalograms of the landscape metrics were obtained by progressively computing the 

values of the metrics over a spectrum of grid sizes. The formation of one single large 

patch should not be allowed when selecting suitable grid sizes. In this study, the 

scalograms were based on the following grid sizes: a = 5×5, 6.25×6.25, 8×8, 10×10, 

12.5×12.5, 15.625×15.625, 20×20, and 25×25 m. After comprehensively comparing 

the behavior of the scalograms with various abundance and spatial distributions, the 
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scalogram of NP was found to be best fitted by the exponential model, and the 

scalograms of the other five landscape metrics were best fitted by the power-law 

model (Table 3-1).  

3.3.2 Simulation test 

Testing the robustness of scalograms to changing abundance and spatial 

distributions 

In simulations, I fixed the study extent to a 100-ha (1000×1000 m) area and 

in scenarios I varied species abundance from 1000 to 5000 by increments of 1000 

individuals, and spatial distributions from random, slightly aggregated, moderately 

aggregated, to highly aggregated. 1000 replications were repeated for each scenario, 

and there were 20000 samples in total (5 abundance × 4 spatial distributions × 1000 

repetitions).  

The aggregated distributions were generated by using rThomas in the 

package of ‘spatstat’ in R 3.0.3 (R Core Development Team 2014). This program 

does not generate exactly the same number of pre-fixed trees. To account for this I 

only retained a species if its simulated number of individuals was no more than 105 

% or less than 95 % of the pre-fixed abundance. Three main factors determine a 

cluster distribution: number of clusters (Ƙ), number of individuals within each 

cluster (µ), and radius of a cluster (RC). In this chapter, I made the following two 

assumptions: 1) Ƙ and µ were equal to   , where N was the given species 

abundance; 2) the maximum radius of a cluster (MRC) equaled  
 

   
, where A was 
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the area of extent, and N was the abundance for a given species. I simulated four 

different radii to represent different degrees of clustering, equaling to 1/4 MRC, 1/3 

MRC, and 1/2 MRC, respectively. Figure 3-1 gives an example of a simulated 

species with 1000 individuals under four different spatial distributions. The R code 

for the simulation is provided in Appendix 1. 

To obtain the occupancy data, the entire 100-ha plot was gridded by a given 

grid size (i.e., 10×10 m). A cell was defined as being occupied if it contains at least 

one individual, otherwise it is defined as empty. A patch is defined by rook 

neighbors—adjacent occupied cells shared with the same edge. The values of the six 

selected metrics (NP, EL, MPS, PSSD, PSCV and LPI; Table 3-2) were calculated 

by the program R 3.0.3 (R Core Development Team 2014) at this given grid size. R 

code was provided in Appendix 3. The scalograms of the metrics were then 

computed based on the eight aforementioned grid sizes (5 to 25 m). Since the 

scalograms of the six metrics followed simple linear functions after transformation, 

the coefficient of determination (R
2
) was used to determine the goodness-of-fit of the 

scalograms under different scenarios. 

Assessing extinction risk by scalograms 

To implement an artificial disturbance resulting in increased extinction risk, I 

randomly removed the c = 5, 10, 20, 30, 40, 50, 60, 70, and 80% of individuals of a 

target species. There were a total of 10 disturbance intensity levels including the 

original pattern without a disturbance (c = 0). Eight disturbance intensities were 

applied for modeling the changes in the scalograms (which were captured by the 
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changes in both the intercept and slope) responding to different disturbance 

intensities, with the remaining two (c = 50 and 80%) being retained for the 

interpolation and extrapolation of the resultant abundance (1- c), respectively. 

The mean predicted values of the resultant abundance and standard errors of 

1000 repetitions were compared across various scenarios. The agreement between 

the predictions and the true abundance (1-c) was measured by the relative root mean 

squared error (rRMSE) as follows: 

       
 

 
  

     

  
   

    ,        (1) 

where    is the predicted resultant abundance for species  ,    is the real extinction 

risk implemented for this species, and   is the total number of repetitions for each 

scenario. The predictions of models fitted to scalograms for patch size standard 

deviation (PSSD), patch size coefficient of variance (PSCV) and largest patch index 

(LPI) were poor, and therefore, I only report the predictions for the number of 

patches (NP), edge length (EL) and mean patch size (MPS). 

3.3.3 Empirical test 

The empirical data was obtained from a 50-ha (1000×500 m) tropical rain 

forest plot on Barro Colorado Island (BCI), Panama. Every individual of tree and 

shrub species with a diameter at breast height (DBH) larger than 1 cm was measured 

and identified to species, and its’ spatial coordinates were recorded. The plot was 

resurveyed every five years since 1980. The detailed description of the BCI plot was 

provided in Condit et al. (1996). In this analysis, I used the 1980 census, which 
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contains 302 tree species, but I investigated only 31 of them because they satisfied 

the requirement that one large patch should not be formed at any selected grid size 

(from 5 to 25 m).  

Following the same procedures as in the simulation (Section 3.3.2), I 

constructed the scalograms for the six landscape metrics for each species and 

examined the changes in the parameters of the scalograms in response to different 

disturbance intensities. Since DBH was recorded for each individual in the BCI plot, 

I applied selective logging as the external disturbance:   = 5, 10, 20, 30, 40, 50, 60, 

70 or 80 % of the individuals of a target species with larger DBH were removed. 

Two disturbance intensities (c = 50 and 80%) were retained for interpolation and 

extrapolation, respectively, while others were used to model the changes in the 

scalograms with the disturbance intensities. The rRMSEs (Eq. 1) were used to 

measure the agreement between the predicted and the real disturbance intensities.  

 

3.4 Results 

3.4.1 Robustness of scalograms to changing abundance and spatial distributions 

A brief summary of the six selected landscape metrics and their simple 

mathematic forms are presented in Table 3-1. The mean R
2
 and the standard 

deviation for 1000 replicates of the scalograms with varied abundance and spatial 

distributions are reported in Table 3-2.  
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The results from the simulations showed that the scalograms of the number of 

patches (NP), mean patch size (MPS), patch size standard deviation (PSSD), and 

largest patch index (LPI) were comparatively robust to changes in abundance and 

spatial distribution, with the mean R
2 

greater
 
than 0.9 in all scenarios. In contrast the 

scalograms of edge length (EL) and patch size coefficient of variance (PSCV) were 

sensitive to both abundance and spatial aggregation. The mean R
2
 of the scalogram 

of PSCV was 0.979 when the abundance was 1000 and spatial distribution was 

random, but the power law distribution of PSCV collapsed when the abundance was 

5000 and spatial distribution was aggregated (R
2
 < 0.15; Table 3-2). The behavior of 

the scalogram of Edge Length differed between scenarios of increasing abundance 

and spatial aggregation. When the abundance was 1000, the scalogram of EL 

collapsed with increased spatial aggregation, whereas the R
2
 of the scalogram 

increased with spatial aggregation when the abundance was larger than 2000.  

The results from the BCI plot were consistent with those from the simulation. 

The scalograms of the number of patches (NP), mean patch size (MPS), patch size 

standard deviation (PSSD), and largest patch index (LPI) were robust over the 

spectrum of grid sizes; whereas the power law distributions of edge length (EL) and 

patch size coefficient of variance (PSCV) were poor models (R
2
 =0.514 and 0.351, 

respectively; Table 3-3). The results from the simulation and the empirical data 

implied that the scalograms of EL and PSCV may follow other non-linear functions 

(see Discussion). 
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3.4.2 Estimating species extinction risk by scalograms 

As mentioned in Section 3.3.2, the predictions of patch size standard 

deviation (PSSD), patch size coefficient of variance (PSCV) and largest patch index 

(LPI) were poor.  Thus, I only report the predictions of the number of patches (NP), 

edge length (EL) and mean patch size (MPS)  (Tables 3-4, 3-5 and 3-6, respectively) 

and their rRMSEs (Figure 3-2). The intercept and the slope of the scalogram of NP, 

and the intercept of the scalogram of EL were fitted by the power law function; 

while the slope of the scalogram of EL, and the intercept and the slope of MPS were 

fitted by the simple linear function. 

The predicted values of the resultant abundance (1-c, which is 0.5 in the 

interpolation) were relatively constant and close to the true values no matter what the 

abundance and spatial distributions were used (Tables 3-4, 3-5 and 3-6). The 

rRMSES of the intercept and slope of the scalogram of edge length (EL) were 

always smaller than 0.133, while the rRMSES of the intercept and slope of the 

scalogram of the number of patches (NP) and mean patch size (MPS) were smaller 

than 0.15 and 0.3 respectively in most scenarios (Figure 3-2).  The predictions of the 

three metrics became progressively worse in the extrapolation (c=0.8) with increased 

abundance and spatial aggregation. Among the three metrics, NP worked 

comparatively well with the rRMSES smaller than 0.3 in most cases. The 

extrapolation of EL and MPS were unacceptable, with rRMSES values that were up 

to or larger than 1 (Figure 3-2). 
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The empirical results conform to those from simulations. The intercept of the 

scalograms of the number of patches (NP) and of edge length (EL) performed best, 

with the rRMSEs being 0.042 and 0.008 in the interpolation (c=0.5), and 0.106 and 

0.137 in the extrapolation (c=0.8), respectively (Table 3-7). The slope of the 

scalogram of mean patch size (MPS) worked well in the interpolation (c=0.5) with 

rRMSES being 0.090, but it became worse in the extrapolation (c=0.8) with 

rRMSES increasing to be 0.653. 

 

 3.5 Discussion 

Landscape metrics have been widely used in biodiversity assessment (see the 

review of Uuemaa et al. 2009). Particularly, for plant species on which this chapter 

focuses, coverage, edge length, and edge density of forest are all positively 

associated with species richness and abundance (Moser et al. 2002; Kumar et al 2006; 

Samuelson 2008; Hernandez-Stefanoni and Dupuy 2008). However, the scale of 

observation is the major impediment to description of spatial patterns in 

hierarchically structured landscapes, thereby hindering the interpretation and 

comparison of results from different studies (Wiens 1989; Levin 1992; Wu and 

Loucks 1995). In this chapter, I extended the use of scalograms in assessing species 

extinction risk, and showed that it was a promising avenue to overcome the scale-

dependence issues in landscape management and biological conservation.   

In the previous study on scalograms, Wu (2004) found that 12 landscape 

metrics can be classified as type 1 metrics, which have simple scale relations. In this 
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study, I examined only six of them, including the number of patches (NP), edge 

length (EL), mean patch size (MPS), patch size standard deviation (PSSD), patch 

size coefficient of variance (PSCV) and largest patch index (LPI). I focused on class-

level landscapes and excluded the landscape-level metrics in Wu’s (2004) study 

(e.g., Shannon’s Diversity Index). Additionally, some metrics are numerically related. 

For instance, over a fixed extent patch density (PD) is mathematically related to NP. 

Although the parameters in their scalograms differed considerably, their predictions 

were identical and PD was thereby excluded from this analysis.  

The results indicated that abundance and spatial aggregation had little effect 

on the scalograms of the number of patches (NP), mean patch size (MPS), patch size 

standard deviation (PSSD), and largest patch index (LPI) (R
2
 larger than 0.96 in most 

scenarios; Figure 3-2), which is a critical premise for their application in assessing 

species extinction risk. The scale relations of edge length (EL) and patch size 

coefficient of variance (PSCV) were vulnerable to changing abundance and spatial 

aggregation (R
2 

became lower with increased abundance and spatial aggregation; 

Figure 3-2), implying that their scalograms may follow some non-linear relations. As 

He and Hubbell (2003) showed, the relationship between Edge Length and grid size 

is a bell-shaped curve. One can imagine that EL increases first with the increased 

grid size due to the enlargement of the contour of each occupied grid; meanwhile, 

NP decreases consistently with the grid size because of many small patches merging 

into a few large ones. When NP decreases by a more than off-setting amount relative 

to the growing contour, EL then decreases. The grid size where the maximum value 

of EL occurs is determined by both the abundance and spatial distribution. The R
2
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for EL in Table 3-2 implied that the grid size at which the threshold value occurs was 

comparatively large (close to 25 m) when the abundance was low and the spatial 

distribution was random but relatively small (close to 5 m) when abundance was 

high and the spatial distribution was aggregated. The robustness of a polynomial 

distribution for EL was outside the scope of this chapter, and its application to 

assessing extinction risk still awaits further study.   

Given the robustness of the scalograms and their predictive power, the 

number of patches (NP) and mean patch size (MPS) are recommended for estimating 

the loss of species abundance (which is the extinction risk as defined by the IUCN 

Criterion A) based on distribution maps (the IUCN Criterion B). Particularly, when 

the abundance was 1000 in the simulation, the rRMSES of NP and MPS were 

smaller than 0.08 and 0.14 in the interpolation (c=0.5), respectively (Figure 3-2). 

This feature of model performance is important because conservation biologists are 

more concerned about species of low abundance. In extrapolations NP also provided 

a better prediction when the abundance was low, with rRMSES smaller than 0.14 

even in highly aggregated spatial distributions. Extrapolations for both NP and MPS 

became worse with increased abundance and spatial aggregation, and the rRMSES of 

MPS could be as high as 3.6.  

The application of this method requires detailed stem-mapping data for the 

first census of a plot, but only needs occupancy data for subsequent surveys. One can 

apply artificial disturbance intensities on the original landscape patterns, and 

construct a relationship between the changes in the scalograms and different 

disturbance intensity levels. The true risk of extinction risk can be estimated by the 
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scalograms of the number of patches (NP) or mean patch size (MPS) obtained from 

the occurrence map for spatial patterns after the disturbance. 

It has been widely recognized that landscape metrics are scale dependent, 

forming so-called scalograms (Wu et al. 2002; Wu 2004; Shen et al. 2004). Despite 

the importance of the scalogram for investigating the behavior of landscape metrics 

over spatial scales, its application in conservation biology is not well explored. This 

study explored the changes in scalograms in responding to different levels of 

disturbance intensity. The results showed that it was likely to be a new and 

promising avenue for estimating species extinction risk. A nontrivial feature of the 

use of scalograms is that it circumvents the scale-dependence issue, which is a major 

concern in landscape ecology. The method developed in this chapter is expected to 

facilitate assessing the endangerment status of species in spatially structured 

landscapes, thereby contributing to the study and practice in landscape management 

and biological conservation.    

 

3.6 Conclusion 

Scalograms are important for understanding behaviors of landscape metrics 

over spatial scales, but their applications in landscape management and biological 

conservation are not well studied. This present paper developed a new framework to 

fill this gap by exploring the changes in scalograms in responding to disturbance 

intensities. The performance of this new method was thoroughly tested by using both 

simulated and empirical data sets.  
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The results revealed that the scalograms of the number of patches (NP), mean 

patch size (MPS), patch size standard deviation (PSSD), and largest patch index (LPI) 

were robust to changing abundance and spatial distribution. The predictions of the 

number of patches (NP), edge length (EL), and mean patch size (MPS) were 

relatively accurate, especially for interpolation. Given the robustness of the 

scalograms and their excellent predictive power, I recommend that NP and MPS are 

the most useful for the assessment of species extinction risk.   
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Table 3-1. Summary of the six commonly used landscape metrics  

Landscape metrics Abbreviation Description and Formula Scalogram Models 

Number of Patches NP Total number of patches in the 

landscape 
Exponential:           

Edge Length EL Sum of the lengths of all edge 

segments (m) 
Power law:       

Mean Patch Size MPS The average area of patches (m
2
) Power law:       

Patch Size Standard 

Deviation 

PSSD The standard deviation of patch 

size in the landscape ( m
2
) 

Power law:       

Patch Size Coefficient 

of Variance 

PSCV The ration of standard deviation 

of patch size to mean patch size  
Power law:       

Largest Patch Index LPI The ration of the area of the 

largest patches to the total area 

of the landscape 

Power law:       
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Table 3-2. R
2
 for the scalogram models of the six landscape metrics in the 

simulation 

Abundance Spatial 

distribution* 

NP EL PSCV MPS PSSD LPI 

1000 Random 0.936 

(0.008) 

0.986 

(0.001) 

0.991 

(0.007) 

0.984 

(0.002) 

0.988 

(0.003) 

0.978 

(0.009) 

 Slight 0.959 

(0.008) 

0.975 

(0.004) 

0.971 

(0.015) 

0.983 

(0.002) 

0.981 

(0.005) 

0.970 

(0.011) 

 Moderate 0.973 

(0.007) 

0.954 

(0.008) 

0.984 

(0.009) 

0.982 

(0.003) 

0.986 

(0.005) 

0.981 

 (0.009) 

 High 

 

0.989 

(0.004) 

0.883 

(0.021) 

0.963 

(0.026) 

0.983 

(0.003) 

0.994 

(0.003) 

0.991 

 (0.005) 

2000 Random 0.905 

(0.011) 

0.922 

(0.004) 

0.945 

(0.012) 

0.929 

(0.007) 

0.935 

(0.005) 

0.928 

(0.010) 

 Slight 0.972 

(0.008) 

0.869 

(0.018) 

0.975 

(0.011) 

0.969 

(0.005) 

0.975 

(0.007) 

0.976 

(0.010) 

 Moderate 0.989 

(0.004) 

0.770 

(0.034) 

0.971 

(0.021) 

0.977 

(0.004) 

0.990 

(0.004) 

0.989 

(0.005) 

 High 

 

0.996 

(0.002) 

0.491 

(0.064) 

0.860 

(0.006) 

0.986 

(0.003) 

0.996 

(0.001) 

0.988 

(0.007) 

3000 Random 0.923 

(0.011) 

0.747 

(0.009) 

0.867 

(0.034) 

0.897 

(0.012) 

0.929 

(0.004) 

0.933 

(0.008) 

 Slight 0.982 

(0.006) 

0.630 

(0.041) 

0.967 

(0.015) 

0.964 

(0.006) 

0.982 

(0.006) 

0.985 

(0.006) 

 Moderate 0.995 

(0.002) 

0.428 

(0.060) 

0.935 

(0.035) 

0.979 

(0.004) 

0.993 

(0.002) 

0.989 

(0.005) 

 High 

 

0.992 

(0.004) 

0.082 

(0.042) 

0.769 

(0.0839) 

0.990 

(0.002) 

0.995 

(0.003) 

0.983 

(0.010) 

4000 Random 0.944 

(0.003) 

0.423 

(0.016) 

0.883 

(0.029) 

0.900 

(0.005) 

0.936 

(0.003) 

0.950 

(0.007) 

 Slight 0.990 

(0.004) 

0.293 

(0.054) 

0.926 

(0.025) 

0.966 

(0.007) 

0.988 

(0.004) 

0.987 

(0.004) 

 Moderate 0.997 

(0.002) 

0.104 

(0.044) 

0.899 

(0.041) 

0.981 

(0.004) 

0.994 

(0.001) 

0.989 

(0.006) 

 High 

 

0.986 

(0.005) 

0.027 

(0.024) 

0.698 

(0.111) 

0.993 

(0.002) 

0.994 

(0.003) 

0.978 

(0.012) 

5000 Random 0.947 

(0.014) 

0.104 

(0.011) 

0.855 

(0.032) 

0.907 

(0.008) 

0.949 

(0.004) 

0.967 

(0.006) 

 Slight 0.994 

(0.003) 

0.054 

(0.028) 

0.865 

(0.029) 

0.969 

(0.006) 

0.991 

(0.002) 

0.984 

(0.005) 

 Moderate 0.996 

(0.003) 

0.005 

(0.007) 

0.845 

(0.055) 

0.984 

(0.004) 

0.994 

(0.002) 

0.984 

(0.009) 

 High 

 

0.982 

(0.006) 

0.182 

(0.043) 

0.603 

(0.141) 

0.994 

(0.001) 

0.994 

(0.004) 

0.973 

(0.014) 

Note: values in the parenthesis are standard errors for 1000 repetitions.  
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Table 3-3. R
2
 for the scalogram models of the six landscape metrics in the BCI plot 

 NP EL PSCV MPS PSSD LPI 

R
2
 

 

0.981 

(0.027) 

0.779 

(0.224) 

0.920 

(0.163) 

0.979 

(0.010) 

0.983 

(0.010) 

0.979 

(0.013) 
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Table 3-4. Predictions of the resultant abundance (1-c) by the scalograms of NP in 

the simulation 

 Parameters Spatial 

distribution 

Abundance 

1000 2000 3000 4000 5000 

c=0.5 intercept Random 49.49 (0.70) 48.75 (0.48) 48.34 (0.69) 49.98 (1.07) 52.60 (2.15) 

Slight 50.21 (0.61) 50.26 (0.73) 50.71 (0.91) 51.30 (1.21) 51.91 (1.35) 

Moderate 50.45 (0.70) 50.92 (0.91) 51.56 (1.17) 52.07 (1.35) 52.51 (1.62) 

High 50.86 (0.99) 51.80 (1.30) 52.50 (1.54) 52.81 (1.82) 52.94 (2.36) 

Slope Random 49.75 (2.50) 48.85 (1.20) 49.65 (1.18) 52.38 (1.59) 55.20 (2.77) 

Slight 50.23 (2.72) 50.97 (1.89) 51.73 (1.78) 52.42 (2.15) 52.85 (2.32) 

Moderate 50.94 (2.66) 51.86 (2.20) 52.58 (2.48) 52.95 (2.55) 53.12 (2.81) 

High 51.72 (2.99) 52.89 (2.88) 53.35 (3.10) 53.35 (3.44) 52.98 (4.23) 

c=0.8 Intercept Random 19.62 (0.28) 21.79 (0.37) 22.58 (0.51) 21.44 (0.44) 19.52 (0.51) 

Slight 19.41 (0.37) 19.59 (0.48) 19.18 (0.57) 18.50 (0.70) 17.81 (0.71) 

Moderate 19.24 (0.43) 18.79 (0.54) 18.10 (0.60) 17.26 (0.73) 16.56 (0.90) 

High 18.72 (0.57) 17.53 (0.72) 16.58 (0.83) 15.85 (0.95) 15.33 (1.05) 

Slope Random 20.86 (2.82) 21.83 (1.36) 21.14 (0.93) 19.11 (0.82) 16.80 (0.87) 

Slight 19.88 (2.83) 18.94 (1.69) 17.91 (1.35) 17.06 (1.34) 16.36 (1.23) 

Moderate 19.34 (2.76) 17.74 (1.73) 16.69 (1.51) 15.99 (1.51) 15.23 (1.71) 

High 18.13 (2.57) 16.34 (2.05) 15.35 (1.93) 14.98 (1.94) 14.63 (2.00) 

Note: values in the parenthesis are standard errors for 1000 repetitions.   
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Table 3-5. Predictions of the resultant abundance (1-c) by the scalograms of EL in 

the simulation 

 Parameters Spatial 

distribution 

Abundance 

1000 2000 3000 4000 5000 

c=0.5 intercept Random 50.39 (0.21) 50.13 (0.19) 49.95 (0.18) 49.80 (0.16) 49.71 (0.16) 

Slight 50.35 (0.25) 50.16 (0.23) 50.07 (0.23) 50.06 (0.66) 50.08 (0.24) 

Moderate 50.33 (0.30) 50.22 (0.29) 50.21 (0.28) 50.27 (0.28) 50.35 (0.26) 

High 50.32 (0.35) 50.35 (0.34) 50.49 (0.33) 50.68 (0.31) 50.82 (0.33) 

Slope Random 50.38 (3.40) 50.03 (1.59) 50.12 (1.02) 50.16 (0.70) 50.29 (0.57) 

Slight 50.46 (3.15) 50.58 (1.66) 50.82 (1.15) 51.15 (0.95) 51.34 (0.81) 

Moderate 50.63 (3.06) 51.07 (1.70) 51.48 (1.20) 51.87 (1.04) 52.22 (0.91) 

High 51.11 (2.43) 51.86 (1.56) 52.48 (1.26) 53.12 (1.06) 53.46 (1.03) 

c=0.8 Intercept Random 19.20 (0.14) 19.61 (0.13) 19.92 (0.12) 20.17 (0.12) 20.39 (0.11) 

Slight 19.25 (0.17) 19.59 (0.16) 19.75 (0.15) 19.84 (0.16) 19.86 (0.17) 

Moderate 19.32 (0.20) 19.55 (0.18) 19.61 (0.18) 19.56 (0.18) 19.47 (0.19) 

High 19.37 (0.24) 19.43 (0.23) 19.23 (0.22) 18.99 (0.22) 18.76 (0.66) 

Slope Random 20.40 (4.64) 19.73 (2.22) 19.55 (1.47) 19.27 (1.10) 19.27 (0.84) 

Slight 19.12 (4.26) 17.95 (2.37) 16.85 (1.74) 16.05 (1.42) 15.20 (1.29) 

Moderate 18.31 (4.12) 16.24 (2.39) 14.83 (1.79) 13.54 (1.26) 12.22 (1.49) 

High 16.78 (3.66) 14.06 (2.47) 11.35 (2.04) 9.62 (1.74) 7.98 (1.61) 

Note: values in the parenthesis are standard errors for 1000 repetitions.  
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Table 3-6. Predictions of the resultant abundance (1-c) by the scalograms of MPS in 

the simulation 

 Parameters Spatial 

distribution 

Abundance 

1000 2000 3000 4000 5000 

c=0.5 intercept Random 49.31 (3.06) 48.38 (1.40) 48.34 (1.39) 51.24 (1.99) 55.74 (3.67) 

Slight 50.30 (3.83) 51.61 (2.93) 53.31 (3.15) 55.28 (4.02) 57.43 (4.60) 

Moderate 51.60 (4.05) 54.13 (4.14) 57.20 (5.23) 60.51 (6.57) 64.93 (8.41) 

High 53.67 (5.46) 59.95 (7.51) 69.21 (0.99) 69.89 (13.3) 57.47 (18.8) 

Slope Random 49.50 (2.44) 48.54 (1.13) 48.46 (1.12) 50.69 (1.60) 53.96 (2.82) 

Slight 50.20 (2.88) 51.14 (2.06) 52.21 (2.00) 53.31 (2.37) 54.17 (2.53) 

Moderate 51.13 (2.84) 52.65 (2.51) 54.01 (2.84) 54.99 (2.96) 55.72 (3.25) 

High 52.42 (3.40) 54.78 (3.42) 56.27 (3.77) 57.05 (4.26) 57.19 (5.51) 

c=0.8 Intercept Random 23.19 (3.59) 27.19 (1.72) 25.08 (1.68) 19.62 (1.49) 13.22 (2.03) 

Slight 19.41 (4.56) 15.67 (3.84) 11.28 (4.05) 6.82 (4.48) 3.65 (3.27) 

Moderate 16.55 (5.05) 9.33 (5.01) 3.82 (4.07) 1.50 (3.00) 1.19 (2.77) 

High 10.89 (6.20) 2.84 (4.62) 5.60 (15.03) 49.75 (45.8) 95.38 (35.6) 

Slope Random 22.69 (2.88) 26.26 (1.45) 24.74 (1.42) 20.07 (1.22) 14.74 (1.61) 

Slight 19.51 (3.54) 16.71 (2.78) 13.56 (2.73) 10.43 (3.03)  7.66 (2.98) 

Moderate 17.24 (3.81) 12.16 (3.29) 7.98 (3.31) 4.76 (3.37) 2.47 (2.89) 

High 13.10 (4.36) 6.03 (4.13) 2.37 (3.04) 1.01 (2.10) 0.62 (1.81) 

Note: values in the parenthesis are standard errors for 1000 repetitions.   
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Table 3-7. Predictions of the resultant abundance (1-c) by the scalograms of NP, EL 

and MPS in the BCI plot. 

Disturbance 

intensity 

Landscape 

metrics 

Parameter Predictions rRMSE 

c = 50 % NP Intercept 50.40 (2.11) 0.042 

  Slope 49.89 (2.17) 0.043 

 EL Intercept 50.25 (0.34) 0.008 

  Slope 51.40 (6.02) 0.122 

 MPS Intercept 51.12 (6.64) 0.133 

  Slope 51.59 (4.27) 0.090 

c = 80 % NP Intercept 19.75 (2.14) 0.106 

  Slope 25.81 (8.36) 0.504 

 EL Intercept 19.61 (0.63) 0.037 

  Slope 19.78 (9.36) 0.462 

 MPS Intercept 30.96 (19.2) 1.097 

  Slope 24.10 (12.6) 0.653 
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Figure 3-1. Example simulated species distributions with 1000 individuals under 

four different spatial patterns: (a) random distribution; (b) slightly aggregated 

distribution; (c) moderately aggregated distribution; (d) highly aggregated 

distribution. 
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(Figure on the previous page) 

Figure 3-2 . rRMSEs for the predictions of the scalograms of NP, EL and MPS in different scenarios with various 

abundance and spatial distributions. Black solid lines: the interpolation of the intercept of the scalograms (c = 50 %); black 

dashed lines: the interpolation of the slope of the scalograms (c = 50 %); red solid lines: the extrapolation of the intercept 

of the scalograms (c = 80 %); red dashed lines: the extrapolation of the slope of the scalograms (c = 80 %). 
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Chapter 4: Could the power-law signal an early warning for ecosystem 

degeneration caused by external disturbance? 

4.1 Abstract 

 The power-law function has long been used to model the spatial distribution 

of species. A recent study has shown that failing to fit to the power-law could be an 

early warning of ecosystem degeneration. The generality of this finding has been 

widely discussed, but a question critical to the debate has been overlooked: whether 

the power-law model is subject only to the effect of disturbance or whether it can be 

affected by other factors? To answer this question, I compared the power-law model 

with a truncated power-law model, analyzing the possible effects of spatial scale, 

species abundance and spatial distribution on these two models. The results of both 

simulation and empirical analysis showed that the two models were sensitive to the 

effects of abundance, spatial aggregation and scale, and that the power-law model 

was inferior to the truncated model. The results suggest that power-law model is of 

little use for signaling early warning of ecosystem degeneration as a result of 

disturbance.   
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4.2 Introduction 

 With few exceptions, the distribution of species in landscapes is often 

heterogeneous, forming spatially patchy patterns (Roth 1976; Niemela et al. 1992; 

Brown 1995). Among the many methods and models used to describe the geometric 

and statistical properties of species distribution, the power-law model is particularly 

prominent. It predicts that the majority of species in nature have many small patches 

with a few large ones – the number of patches along patch size forms a log-log linear 

relationship. This relationship has been widely studied both in theory and 

application. In theory, random walks (Sneppen et al. 1995), phase transitions and 

critical phenomena (Reynolds et al. 1977; He and Hubbell 2003), self-organized 

criticality (Bak et al. 1987; Drossel and Schwabl 1992), combinations of 

exponentials (Miller 1957) and Yule’s birth and death stochastic process can give 

rise to a power-law distribution.  

In applications, Kefi et al. (2007) hypothesized that the power-law model 

could be used to indicate the degeneration of ecosystem caused by external 

disturbance. The rationale behind Kefi et al.’s work is the argument that under 

catastrophic regime shifts, many complex systems contain critical thresholds (or so-

called ‘tipping points’), at which highly stable systems shift abruptly to a low stable 

state (see reviews in Scheffer et al. 2009 and Scheffer et al. 2012). Examples of 

catastrophic regime shifts in ecology include lake eutrophication, desertification of 

arid/semi-arid ecosystems, and collapse of fish stocks (Beisner et al. 2003; Scheffer 

et al. 2003; Rietkerk et al. 2004; Hsieh et al. 2006; Litzow 2008). Recent studies 

have shown that systems close to a tipping point would release early warning signals. 
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For instance, when a tipping point is approaching, the recovery time and length, 

spatial correlation and variance of abundance or coverage, and autocorrelation 

between adjacent neighbors will increase dramatically (Wilssel 1984; Verarrt et al. 

2012; Carpenter et al. 2011; Drake et al. 2010; Dai et al. 2013). Thus, it seems 

reasonable to use those measures (i.e., recovery time, spatial correlation, variance 

and autocorrelation, etc.) to indicate the approach of a critical state transition in a 

study system.  

However, a major disadvantage of these measures is that they are all time- 

and labor-intensive to measure. Alternatively, the power-law model provides a 

simple tool potentially useful for predicting ecosystem degeneration. Kefi et al. 

(2007) showed in the absence of grazing that patch-size patterns of vegetation cover 

follow a power-law distribution, while the power-law model failed to fit the patch-

size distribution when there was intensive grazing leading to the onset of 

desertification. 

 Maestre and Escudero (2009) and Weerman et al. (2012), however, 

questioned the generality of Kefi et al.’s finding and showed that a truncated power-

law model was a better alternative to describing patch-size distributions of perennial 

vegetation and diatom biofilms with no recent disturbance history. Also, in a case 

study of oak woodland in Southern Portugal, Costa et al. (2014) found that the 

truncated power-law gave a better fit to patch-size distributions before the 

occurrence of wildfire. The discrepancy of the patch-size distribution suggests that 

the power-law model is unlikely to apply universally but is contingent on the 

circumstances from which data arise.  
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There are many factors other than disturbance that could result in non-power-

law distributions such as the spatial scale of observation and the abundance and 

spatial distribution of species. First, scale is without doubt the prime issue affecting 

spatial patterns (Wien 1989; Levin 1992). He and Hubbell’s percolation theory 

(2003) showed that the number of patches decreases with increasing grain size, 

indicating that spatial pattern may be sensitive to the scale at which the pattern is 

mapped. Second, spatial distributions can take many forms and result in various 

patch size distributions. For example, Scanlon et al. (2007) showed that random 

spatial distribution of patches could derail the power-law model. Third, species of 

different abundance can also have different patch size distribution that may cause the 

failure of the power-law distribution. Percolation theory (Stauffer and Ahorany 

1992; He and Hubbell 2003) predicts that a large patch forms when the proportion of 

occupied patches reaches a threshold of 0.59 for random distribution, thereby leading 

to the abrupt reduction of the number of patches, which may also derail the power-

law model. 

 An important premise of the use of power-law model is that the patch size 

distribution should be robust to factors other than disturbance. But as previously 

mentioned, any observed lack of fit of the model could be simply due to the scale of 

observation, or spatial distribution rather than disturbance. Moreover, the possible 

effects of those factors other than disturbance on the power-law model are little 

examined. In this chapter, I tested whether the power-law model was robust to 

changes in scale, abundance, and spatial distribution. I used both simulations and 
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empirical data to compare the power-law model and a truncated power-law model by 

varying spatial scale, abundance and spatial distribution of species. 

 

4.3 Methods 

4.3.1 Simulation scenarios and empirical data 

 I firstly simulated species distributions in a 50-ha area (1000×500 m) that 

defines the study extent. In the simulation, I varied abundance (400, 1000, 2000, 

3000, 4000 and 5000 individuals), scale (5, 10 and 20 m) and spatial distribution 

(regular, random and four different degrees of aggregated distribution). In total there 

were 108 different scenarios (6 abundance × 3 scales × 6 spatial distributions). I did 

1000 replicates for each scenario. 

 To generate regular and clustered distributions, I used the functions rStrauss 

and rThomas in the ‘spatstat’ package of R 3.0.3 (R Development Core Team 2014), 

respectively. The two programs do not generate exactly the same number of pre-

fixed trees. To account for this I retained only a species if its simulated number of 

individuals was no more than 105 % or less than 95 % of the pre-fixed abundance. 

To generate the clustered distributions, I made the following assumptions: 1) 

Number of parent trees are equal to    (round to integer), where N was the total 

number of individuals; 2) the maximum distance between a parent tree and offspring 

(MD) equaled  
 

   
, where A is study area (50 ha). I simulated four different 

distances between parent trees and offspring (DPO), representing different degree of 

aggregation, which are 1/4 MD, 1/3 MD, 1/2 MD and 3/4 MD, respectively (see 
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Figure 4-1).  The R code for the simulation of aggregated distribution is provided in 

Appendix 1. 

 I also used empirical data to evaluate the effects of spatial scale, species 

abundance and spatial aggregation on the performance of the power-law and 

truncated power-law models. I used the first census data of 50 ha (1000×500 m) plot 

on the Barro Colorado Island (BCI), Panama, which was established in 1980-1982. 

Most of the island, including 48 ha of the 50-ha plot, has seen no human disturbance 

other than research activities for over 500 years (Condit et al. 1996). There are 302 

species, with the most abundant species having 31,934 stems.  

4.3.2 Generating patch-size distributions 

 Given a real or a simulated species, I divided the whole plot (1000×500 m) 

into small grid cells according to the grain size (e.g., 20 m). If there was at least one 

individual located in the cell, the cell was occupied, otherwise it was considered to 

be empty. I then clustered the occupied cells sharing an edge into a patch (Figure 4-

2a), and plotted the number of patches (N(S)) against the patch size (S) to draw the 

patch-size distribution (Figure 4-2b). This is equivalent to the patch-size distribution 

of vegetation cover in Kefi et al. (2007). The patch size distributions for three 

different grain sizes (5×5, 10×10 or 20×20 m) were analyzed in this study. The R 

code for the calculation of the number of patches is provided in Appendix 3. 

4.3.4 Statistical analysis 

 I used the power-law model (         , where N(S) represents the 

number of patches, S represents patch size and   and   are two parameters to be 

estimated) and a truncated power-law model (               
  

 
 , where Sx is a 
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parameter to make the model more flexible) to fit patch-size distributions obtained 

from the simulated and empirical species data at three scales. Because there were 

two parameters in the power-law model and three in the truncated power-law model, 

at least four patch-size classes were required for estimating model coefficients. To 

make the fitting more reliable, I only considered the simulated species that had six 

patch-size classes. I used Akaike’s Information Criterion (AIC) to judge which 

model had the most support, which is determined by both the residue and the number 

of parameters in the model. A lower AIC value indicates the superiority of a model.  

 

4.4 Results 

4.4.1 Simulation test 

Of the 108 simulated scenarios, 67 met the model fitting requirement that 

species that had six patch-size classes or better. The number of patch-size 

distributions where the power-law had a superior model fit (lower AIC value) never 

exceeded 550 patch-size distributions (Figure 4-3). For the total of 1000 simulations 

this represents around half of the data and is broadly consistent with a random 

expectation: neither the power law-model nor the truncated model had clear 

superiority over each other.  

The y value in Figure 4-3 represents the number of patch-size distributions 

fitted well by the power-law model in 1000 simulations, hence one can easily obtain 

the number of patch-size distributions where the truncated power-law was superior 

through a simple calculation (1000 – the y value in Figure 4-3). Although the 

truncated power-law did work significantly well in some scenarios, e.g., when the 
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abundance equal to 5000 and the distribution being aggregated distribution at 10 m, 

better performance of either model showed no systematic pattern (Figure 4-3f). A 

superior fit for the truncated power-law was not restricted to specific conditions of 

abundance, scale or spatial distribution and any of the three factors could alter the 

patch-size distribution and best fitting model. 

4.4.2 Empirical test 

 I fitted the power-law and truncated power-law model to 35 BCI tree species 

that had at least six patch-size classes and had abundances that ranged from 358 to 

2899. The patch-size distribution of the each species at three different scales (5, 10, 

and 20 m) was fitted by both the power-law and the truncated power-law (Table 4-

1).  

 When the grain size was 5 m (first two columns in Table 4-1), the power-law 

model provided a better fit to patch-size distributions of 12 species (with lower AIC 

value), whose abundances were not significantly different from the remaining 23 

species (p = 0.147 in the t-test). When scaling up from 5 to 10 m (middle two 

columns in Table 4-1), 15 species’ patch-size distributions changed significantly: 

eight of which then deviated from the power-law to the truncated power-law, while 

seven of which changed in the opposite direction. In total, the power-law provided a 

better fit to patch-size distributions of 11 species, whose abundances again did not 

differ from the remaining 24 species (p = 0.233, the data were log-transformed to 

meet the assumption of normality in the t-test). When scaling up from 10 to 20 m 

(last two columns in Table 4-1), 14 species’ patch-size distributions changed 

significantly: eight of which shifted from the power-law to the truncated power-law, 
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while the remaining six changed in the opposite. The power-law provided a better fit 

to patch-size distributions of nine species (with lower AIC value), whose abundances 

were not significantly different from the remaining 26 species (p = 0.175, the data 

were log-transformed to meet the assumption of normality in the t-test).  

 Overall, the results in the BCI plot conformed to those in the simulation, 

indicating that neither the power-law nor the truncated power-law model showed 

clear superiority in fitting patch-size distributions for species. However, unlike the 

simulations, the power-law model fit to a species’ distribution depended on its’ 

specific characteristic (i.e., abundance and spatial pattern) as well as the scale at 

which the spatial pattern was mapped. 

 

4.5 Discussion 

 It has been recognized that power-laws occur in a wide variety of phenomena 

(Bak 1996, Brown et al. 2002, Newman 2005), and two major types of power laws 

are commonly studied in ecology (White et al. 2008), including the bivariate 

relationship between two variables (i.e., species-area relationship and body-size 

allometries) and frequency distribution of some event (i.e., the sizes of earthquakes 

and the numbers of species within certain biological taxa). The focus of this 

chapter—patch size distribution of vegetation cover—belongs to the second type, 

and the application of the power-law distribution is based on the argument of the 

catastrophic regime shift (Scheffer and Carpenter 2003), which has been observed to 

occur in many complex systems, including financial markets (May et al. 2008), 

climate change (Lenton et al. 2008), and water and rangeland ecosystems (Scheffer 
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et al. 2001; Scheffer and Carpenter 2003). Unlike other data-demanding warning 

signals, the use of power-law model is shown to be simple and efficient in predicting 

the desertification of dryland ecosystem caused by grazing pressure (Kefi et al. 2007; 

Kefi et al. 2011).  

 Although the generality and robustness of this method have been questioned 

(Maestre and Escudero 2009; Maestre and Escudero 2010; Weerman et al. 2012; 

Costa et al. 2014), the power-law model is considered to be a useful indicator of 

changes in spatial patterns (Carpenter et al. 2011; Scheffer et al. 2012). For example, 

Schoelynck et al. (2012) and Khalyani et al. (2013) found that the power-law model 

gave a better fit to the cumulative patch-size distributions in real case studies.  

However, the results of this chapter show that power-law model is sensitive 

to the effect of spatial scale, species abundance and spatial distribution of species, 

suggesting that Kefi et al.’s (2007) conclusion that power-law model is useful to 

indicate the effect of disturbance is not reliable. Interestingly, I also found the 

truncated power-law is not superior to the power-law model, which has previously 

been suggested (Maestre and Escudero 2009; Weerman et al. 2012). My analysis 

clearly showed that neither of the tested methods was immune to the effects of scale, 

abundance and spatial distribution of species which can seriously confound the 

power-law or truncated power-law patterns. Thus, the deviation in patch-size 

distribution from power-law behavior is not a reliable pattern to predict ecosystem 

degeneration. 

 Lin et al. (2010) found that with an appropriate binning method, the deviation 

of patch-size distributions from the power-law model was indicative of the 
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degeneration of rangeland in Inner Mongolia, China, whereas the truncated power-

law gave a better fit to all the patch-size distributions when the original data were 

adopted. White et al. (2008) also showed that uncorrected simple logarithmic 

binning would cause bias of the power law distributions. Therefore, it is noteworthy 

that binning method could be another determinant affecting the performance of the 

power-law model. Options for binning data are also highly dependent on the study 

extent and mapping resolution, thereby compromising the universality of the use of 

the power-law for describing patch-size distributions. In this chapter, each bin in x-

axis represents a single patch-size value, and no evidence was found in support of 

Kefi et al.’s work (2007). 

Alternatives to the power-law model should be explored to signal early 

warning in the change of ecosystems. For instance, Corrado et al. (2014) proposed 

that percolation—the formation of one single large patch—could serve as an 

indicator of desertification transitions. Las Heras et al. (2011) suggested a focus on 

the fragmentation and the loss of large vegetation patches when assessing landscape 

structure in semi-arid ecosystems. Finding appropriate warning signals is an 

important task to forecast the occurrence of degeneration and prevent the collapse of 

ecosystems. However, the use of the power-law distribution to indicate or predict 

ecosystem degeneration is unreliable because specific landscape characteristics (i.e., 

abundance and spatial distribution) and methodological issues (i.e., scale and binning 

method) can all cause patch-size distributions to deviate from the power-law model. 
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4.6 Conclusion 

The power-law model which describes that spatial distribution of species 

typically consists of a few large patches with many small ones. The model has been 

used to predict the occurrence of disturbance. However, the application of this 

method in ecology remains controversial because the sensitivity of the power-law 

model to factors other than disturbance has not been thoroughly evaluated.   

In this study, I used simulation and empirical data to evaluate the effects of 

abundance, scale and spatial distribution of species on the performance of the power-

law model and truncated power-law model. These results showed that neither the 

power law-model nor the truncated model had clear superiority over each other. Both 

models were sensitive to abundance, scale and spatial distribution. The failure of 

power-law to fit patch size distribution could be caused by improper scale or specific 

abundance and spatial distribution rather than disturbance. I therefore conclude that 

power-law model or the truncated model has little use to predict ecosystem 

degeneration. 
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Table 4-1. Performances of the power-law and the truncated power-law for the 

patch-size distributions of 35 species in the BCI plot  

Species abundance 5 m 10 m 20 m 

AICPL AICTPL AICPL AICTPL AICPL AICTPL 

Beilshmiedia pendula 2318* 44.62 35.06 48.49 45.50 0.93 -2.77 

Calophyllum longifolium 1130 14.68 15.08 3.75 1.77 27.17 20.77 

Cassipourea elliptica 1007 0.10 1.81 37.62 21.05 1.76 -0.18 

Cecropia insignis 716* 23.67 21.24 28.87 25.72 17.28 16.45 

Cordia bicolor 765* 23.67 4.90 37.83 34.22 10.31 7.32 

Cordia lasiocalyx 1282* 18.37 2.04 33.62 17.10 0.64 -19.19 

Coussarea curvigemia 2079 30.99 32.39 17.16 19.13 20.09 17.44 

Croton billbergianus 358 12.83 6.99 17.39 17.50 9.63 8.36 

Cupania seemannii 1212 15.49 13.18 41.37 43.27 1.27 3.18 

Eugenia galalonensis 1581* 10.90 9.00 54.62 41.62 -4.91 -5.04 

Eugenia oerstediana 1926 
39.21 25.52 

31.34 33.29 7.51 -7.18 

Guarea Guidonia 1838* 37.10 36.18 54.92 43.90 -2.88 -4.68 

Guarea dumetorum 1038 12.79 5.85 12.94 14.42 10.44 12.19 

Lacistema aggregatum 1404* 8.21 8.17 31.14 25.12 6.30 -17.55 

Maquira guianensis 1460 24.19 25.84 41.96 25.46 12.54 5.48 

Miconia argentea 600* 11.75 4.71 23.40 15.87 17.09 12.54 

Ocotea whitei 429 22.96 19.39 5.42 5.81 8.73 3.02 

Oenocarpus mapora 1830 24.98 26.37 71.13 72.19 9.09 5.68 

Ouratea lucens 1193 23.99 24.25 42.55 40.17 25.49 12.88 

Palicourea guianensis 867* 7.075 9.02 21.12 22.20 -5.76 -3.84 

Picramnia latifolia 1047 23.63 6.63 41.36 39.03 -4.26 -3.80 

Poulsenia armata 1404* 34.73 29.43 12.44 6.40 2.24 -13.12 

Prioria copaifera 1382* 49.75 39.01 35.49 17.51 1.46 -13.59 

Protium panamense 2899 30.09 31.33 21.20 15.64 -2.36 -2.34 

Protium tenuifolium 2853* 53.11 42.36 41.35 39.63 5.25 1.71 

Psychotria marginata 554* 7.76 5.34 8.57 7.98 7.71 5.94 

Pterocarpus rohrii 1462 27.83 8.06 50.06 51.92 7.65 6.82 

Quararibea asterolepis 2200* 35.39 22.83 30.18 17.72 8.54 -3.01 

Rinorea sylvatica 2314 27.60 29.59 12.84 9.86 7.28 7.40 

Simarouba amara 1230 24.97 14.08 27.46 28.97 7.35 -4.88 

Socratea exorrhiza 622* 38.67 34.81 15.20 5.27 16.02 7.46 

Swartzia 
simplex_var.grandiflora 

2662 65.24 67.23 42.33 40.36 -6.45 -5.26 

Talisia nervosa 747 11.11 12.40 2.23 29.39 19.75 12.16 

Virola sebifera 1615 21.57 23.40 36.76 28.91 -2.41 -0.44 

Ouratea lucens 1193 23.99 24.25 42.55 40.17 25.49 12.88 
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(Table is on the previous page) 

Note: The AIC value of the power-law model is denoted by AICPL and the AIC value 

of the truncated power-law model is denoted by AICTPL; bold figure means the 

power-law model works better than the truncated power-law model; ‘*’ indicates 

that either the power-law or the truncated power consistently provides a better fit to 

the patch-size distribution of the species across the three scales.  
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Figure 4-1. Illustrations of a simulated species with 1000 individuals in a 50-ha plot under different spatial distributions. (a). regular 

distribution; (b). random distribution; (c). slightly aggregated distribution (distance between parent trees and offspring (DPO) equal to 

3/4 maximum distance (MD)); (d). moderately aggregated distribution (DPO equal to 1/2 MD); (e). more aggregated distribution 

(DPO equal to  1/3 MD); (f). highly aggregated distribution (DPO equal to 1/4 MD). 
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Figure 4-2 Spatial distribution of P. guianensis with 867 individuals in the BCI plot when the grain size equal to 20×20 m. 

(a). the occupancy map of P. guianensis; (b). the patch-size distribution of P. guianensis. 
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Figure 4-3. Number of species patch-size distributions fitted well by the power-law model in 1000 simulations of different scenarios. 

Note that each panel corresponds to the respective spatial distribution shown in Figure 4-1. (a). regular distribution; (b). random 

distribution; (c). slightly aggregated distribution; (d). moderately aggregated distribution; (e). more aggregated distribution; (f). highly 

aggregated distribution.
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Chapter 5: Conclusion remarks 

The ongoing and projected changes in climate and land-use are expected to jeopardize 

survival of many species and disrupt the functioning of otherwise healthy ecosystems (Tilman 

2000; Cardinale 2012). Simple and practical methods are urgently needed for assessing the 

endangerment status of many affected species and quantifying the impact of natural and man-

made disturbances on ecosystem integrity. However, there is a wealth of empirical evidence that 

discrepancy among different criteria and scale-dependence of the measurements are prevalent, 

rendering it difficult to interpret and compare results obtained at different spatial and temporal 

scales (e.g., Abeli et al. 2009; Fox et al. 2011). 

 

5.1 Major findings and contributions of the study 

The main objective of my thesis was to test the robustness of existing methods to 

variations in the scale of observation, abundance and spatial aggregation and to develop 

improved methods for understanding the endangerment status of species and ecosystems in 

spatially structured landscapes.  

In chapter two, I started with the discussion on the pros and cons of an area-based model, 

which was derived by He (2012) and solely based on the occupancy of a species to assess the 

extinction risk. I extended this model to incorporate spatial autocorrelation. Both the necessary 

parameters to incorporate occupancy and spatial autocorrelation are easily obtained from species’ 
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occurrence maps. The newly derived model performed generally better than He’s (2012) model 

particularly when the abundance was high and spatial distribution was aggregated.  

In chapter three, I extended the use of scalograms in assessing extinction risk by linking 

the changes in scalograms with disturbance intensity levels. By testing the robustness of 

scalograms to changing abundance and spatial aggregation and comparing the predictive power, 

I found that the scalograms of both NP and MPS were useful in estimating species extinction risk. 

The use of this method overcomes the scale-variant property when interpreting and comparing 

landscape metrics at a single spatial scale. 

In chapter four, the use of deviations from power-law distributions for predicting 

ecosystem degeneration was carefully examined by changing abundance, spatial aggregation, 

and spatial scales. The results indicated that the power-law of patch-size distribution of 

vegetation covers was vulnerable to all three factors. Thus, I concluded that the deviation of 

patch-size distribution from power-law could not be used as an early signal for indicating 

ecosystem degeneration because the failure of power-law may be triggered by intrinsic 

characteristics of spatial patterns (i.e., abundance and spatial aggregation) as well as changing 

spatial scales, which confounds any effect of disturbance.   

 

5.2 Limitations of the study 

 First of all, the methods developed in this thesis can only be used to unsaturated maps. At 

coarse scales (i.e., a=50×50 and 100×100 m in the BCI plot), percolation happens – a single 
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large patch forms or the map is fully saturated, which causes the number of patches to reduce to 

one. The indices for spatial autocorrelation in chapter 2 and the landscape metrics (i.e., patch size 

standard deviation and mean patch size) in chapter 3 cannot be calculated when all the occupied 

cells are connected, leading to the failure of these methods.  

Second, there is always a trade-off between simplicity and efficiency of any empirical 

method. To improve the performance of the area-based models, two extra parameters to capture 

the spatial autocorrelation have to be introduced into the model. Moreover, all the methods in 

this thesis require lattice data to compute landscape metrics and patch-size distribution of 

vegetation covers. These methods are not as parsimonious and flexible as He’s (2012) model, 

which can be applied for presence/absence data across spatially discontinuous sites. 

Third, my thesis mainly focuses on modelling observed spatial patterns to estimating 

extinction risk. However, in real landscapes, the underlying mechanisms and the ongoing 

processes are also central questions to researchers (Wiens et al. 1993; Wu and Hobbs 2002).  

Species interaction and different types of disturbance may cause a dynamical system to respond 

differently to environmental changes (Dai et al. 2013; Lever et al. 2014; Dai et al. 2015). For 

instance, Dai et al. (2015) showed that stability and resilience of a system could reduce at 

different rates when two types of disturbance (the direct reduction in abundance representing 

hunting in nature, and decreases in nutrient addition representing progressive deterioration of the 

environment) were applied separately. This line of interesting research begets the attention of 

further studies on the relationship between ecological processes and spatial patterns.  
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5.3 Future research 

 There is a dire need to determine the endangerment status of species and to predict the 

collapse of ecosystems in advance. Powerful tools for researchers to accomplish this task are still 

lacking in practice. Simplicity, efficiency, and scale-independence are three desirable features of 

a useful evaluation criterion for assessing extinction risk. Further studies should aim to develop 

new methods to meet these requirements. Also, the methods developed in this study are well 

tested by simulation, but their applications for the vast array of species groups in heterogeneous 

environments await further exploration.  
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Appendix 

Appendix 1. R code for the simulation of species with aggregated distribution 

library(spatstat) 

generate.clu=function(sp,ka,sig,mu){ 

############################################################################## 

# Simulating spatial clustering distribution 

# sp: abundance of the simulated species 

# ka: intensity of the clusters; k in chapter 2 

# sig: the maximum distances of the offspring to the parent tree; RC in chapter 2 

# mu: expected number of offspring per cluster; u in chapter 2 

############################################################################## 

sp=sp 

ka=ka 

sig=sig 

mu=mu 

 

num=1000 # num is the number of simulations 

for (i in 1:num){ 

repeat{ 

clu=rThomas(ka,sig,mu,win = owin(c(0,1000),c(0,500))) # 

cluster=as.data.frame(clu) 

m=length(clu$x) 

if(m>(sp-0.05*sp)&m<(sp+0.05*sp))break 

} 

write.csv(cluster,file=paste('clusp',sp,'_',i,'_',sig,'.csv',sep='')) 

print(i) 

} 

} 

 

## abundance = 1000 
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# slightly aggregation 

ka=0.00003162278  

sig=80.26293 

mu =31.62278  

sp=1000 

generate.clu(sp,ka,sig,mu) 

 

# intermediate aggregation 

ka=0.00003162278  

sig=50.16433 

mu =31.62278  

sp=1000 

generate.clu(sp,ka,sig,mu) 

 

# highly aggregation  

ka=0.00003162278  

sig=33.44289 

mu =31.62278  

sp=1000 

generate.clu(sp,ka,sig,mu) 

 

## abundance = 2000 

# slightly aggregation 

ka=0.00004472136 

sig=63.27451 

mu =44.72136 

sp=2000 

generate.clu(sp,ka,sig,mu) 

 

# intermediate aggregation 

ka=0.00004472136 
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sig=42.18301 

mu =44.72136 

sp=2000 

generate.clu(sp,ka,sig,mu) 

 

# highly aggregation 

ka=0.00004472136 

sig=28.12201 

mu =44.72136 

sp=2000 

generate.clu(sp,ka,sig,mu) 

 

## abundance = 3000 

# slightly aggregation 

ka=0.00005477226 

sig=57.17498 

mu =54.77226 

sp=3000 

generate.clu(sp,ka,sig,mu) 

 

# intermediate aggregation 

ka=0.00005477226 

sig=38.11665 

mu =54.77226 

sp=3000 

generate.clu(sp,ka,sig,mu) 

 

# highly aggregation 

ka=0.00005477226 

sig=25.4111 

mu =54.77226 
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sp=3000 

generate.clu(sp,ka,sig,mu) 

 

## abundance = 4000 

# slightly aggregation 

ka=0.00006324555 

sig=53.20731 

mu =63.24555 

sp=4000 

generate.clu(sp,ka,sig,mu) 

 

# intermediate aggregation 

ka=0.00006324555 

sig=35.47154 

mu =63.24555 

sp=4000 

generate.clu(sp,ka,sig,mu) 

 

# highly aggregation 

ka=0.00006324555 

sig=23.64769 

mu =63.24555 

sp=4000 

generate.clu(sp,ka,sig,mu) 

 

## abundance = 5000 

# slightly aggregation 

ka=0.00007071068 

sig=50.23037 

mu =70.71068 

sp=5000 



 
 

147 
 

generate.clu(sp,ka,sig,mu) 

 

# intermediate aggregation 

ka=0.00007071068 

sig=33.54691 

mu =70.71068 

sp=5000 

generate.clu(sp,ka,sig,mu) 

 

# highly aggregation 

ka=0.00007071068 

sig=22.36461 

mu =70.71068 

sp=5000 

generate.clu(sp,ka,sig,mu)  
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Appendix 2. R code for computing occupancy and spatial autocorrelation in Chapter 2 

library(SDMTools) 

result.loop=function(cell,sp,sig,plotdim=c(1000,500)){ 

###################################################################### 

# Calculate the Occupancy and Parameters of spatial autocorrelation for Chapter 2 

# cell: a linear size, not area  

# sp: abundance of the data 

# sig: spatial aggregation of the data 

# sp & sig are in the name of the data 

# plotdim: the maximum size of the plot in x and y direction  

####################################################################### 

plotdim=plotdim 

cell=cell 

sp=sp 

sig=sig 

 

for (i in 1:length(cell)){ 

 cellsize=cell[i] 

 result_loop=result.main(cellsize,sp,sig,plotdim) 

 print(i) 

 } 

} 

 

result.main=function(cellsize,sp,sig,plotdim){ 

################################################################# 

# Output and save the results 

# cellsize = a linear size, not area  

# sp: abundance of the data 

# sig: spatial aggregation of the data 

# sp & sig are in the name of the data    

# plotdim = the maximum size of the plot in x and y direction  
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################################################################# 

cellsize=cellsize 

plotdim=plotdim 

abund=sp 

aggreg=sig 

 

nu=5 # the number of simulated data 

res=lapply(1:nu, function(x){data=read.csv(file=paste('clusp',abund,'_',x,'_',aggreg,'.csv',sep=''),header=T) 

                          occup.bci.main(data,cellsize,plotdim)}) 

 

result=matrix(unlist(res),nrow=nu,byrow=T)  

colnames(result)=c('BW','DBW','occupancy','exp_BW','exp_DBW') 

write.csv(result,file=paste('clusp',abund,'_',aggreg,'_c',0,'_',cellsize,'.csv',sep='')) 

} 

 

occup.bci.main=function(data,cellsize,plotdim){ 

################################################################# 

# Calculate occupancy and spatial autocorelation for a target species 

# cellsize = a linear size, not area     

# plotdim = the maximum size of the plot in x and y direction  

################################################################# 

xmax=plotdim[1] 

ymax=plotdim[2] 

nxcell=xmax/cellsize  # No. of cells along x-axis 

nycell=ymax/cellsize  # No. of cells along y-axis 

x=data$x       

y=data$y 

 

codex = x%/%cellsize + 1 

codey = y%/%cellsize + 1 

code = codey + codex * 10000 
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comp = tapply(rep(1, length(code)), code, sum) 

code = rep(1:nxcell,nycell)*10000 + rep(1:nycell, each=nxcell) 

comp1 = rep(0,length(code)) 

names(comp1)=code 

comp1[names(comp)]=comp  # comp1 is abundance map 

  

z=matrix(comp1,nr=nxcell,byrow=F) 

z[which(z>0)]=1   # convert the point data into a binary map   

z1=z 

# calculate the length of occupied contour 

z[2:(nxcell-1),2:(nycell-1)]=0 

if (z[1,1]==1){z[1,1]=2} 

if (z[1,nycell]==1){z[1,nycell]=2} 

if (z[nxcell,1]==1){z[nxcell,1]=2} 

if (z[nxcell,nycell]==1){z[nxcell,nycell]=2} 

sedge=sum(z) 

 

# calculate the diagnol pair of black/white joints 

# moving the matrix to the up right   

z2=z1[-1,] 

z2=z2[,-nycell] 

z2=cbind(rep(0,nxcell-1),z2) 

z2=rbind(z2,rep(0,nycell)) 

z12=z1+z2 

z12=z12[,-1] 

z12=z12[-nxcell,] 

z12[which(z12!=1)]=0 

 

# moving the matrix to the low right 

z3=z1[-nxcell,] 

z3=z3[,-nycell] 
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z3=cbind(rep(0,nxcell-1),z3) 

z3=rbind(rep(0,nycell),z3) 

z13=z1+z3 

z13=z13[-1,] 

z13=z13[,-1] 

z13[which(z13!=1)]=0 

corn=sum(z12)+sum(z13) 

  

ccl.mat= ConnCompLabel(z1) 

ps.data=ClassStat(z1) 

 

BW=ps.data$total.edge[2]-sedge 

DBW=corn 

occupancy=ps.data$prop.landscape[2] 

exp_BW=2*occupancy*(1-occupancy)*(2*nxcell*nycell-nxcell-nycell) 

exp_DBW=4*occupancy*(1-occupancy)*(nxcell-1)*(nycell-1)  

  

res=cbind(BW,DBW,occupancy,exp_BW,exp_DBW) 

return(res) 

} 
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Appendix 3. R code for computing the number of patches and other landscape metrics in 

Chapters 3 and 4 

result.main=function(sp,num,sig,cellsize,plotdim=c(1000,1000)){ 

################################################################# 

# Calculate landscape metrics for chapters 3 and 4 

# sp: abundance of the species 

# num: the number of simulated data 

# sig: spatial aggregation 

# num & sig are in the name of the data         

# cellsize: a linear size, not area     

# plotdim: the maximum size of the plot in x and y direction  

################################################################# 

sp=sp 

num=num 

sig=sig 

cellsize=cellsize 

plotdim=plotdim 

 

numpatch=numeric() # Number of Patches in chapters 3 and 4 

msize=numeric() # Mean Patch Size in chapter 3 

occup_area=numeric() 

shared_edge=numeric() 

elen=numeric() 

noccupied=numeric() 

larg=numeric() # Largest Patch Index in chapter 3 (need to be divided by the total area) 

el_nocontour=numeric()  # Edge Length in chapter 3 

corner=numeric() 

exp_edge=numeric() 
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exp_corn=numeric() 

patch_sd=numeric() # Patch Size Standard Deviation in chapter 3   

patch_cv=numeric() # Patch Size Coefficient of Variance in chapter 3 

 

for (i in 1:num){    

dat=read.csv(file=paste('clusp',sp,'_',i,'_',sig,'.csv',sep=''),header=T)  

occup.bci=occup.bci.main(dat,cellsize,plotdim) 

 

numpatch[i]=occup.bci[[2]] 

msize[i]=occup.bci[[4]] 

occup_area[i]=occup.bci[[3]] 

shared_edge[i]=occup.bci[[5]] 

elen[i]=occup.bci[[6]] 

noccupied[i]=occup.bci[[1]] 

larg[i]=occup.bci[[7]] 

el_nocontour[i]=occup.bci[[8]] 

corner[i]=occup.bci[[9]] 

exp_edge[i]=occup.bci[[10]] 

exp_corn[i]=occup.bci[[11]] 

patch_sd[i]=occup.bci[[12]] 

patch_cv[i]=occup.bci[[13]]  

print(i) 

}   

 

result=cbind(numpatch,msize,noccupied,occup_area,shared_edge,elen,larg,el_nocontour,corner,exp_edge

,exp_corn,patch_sd,patch_cv) 

write.csv(result,file=paste('result',sp,'_',sig,'_c0','_',cellsize,'.csv',sep=''))  

} 
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occup.bci.main=function(data,cellsize,plotdim){ 

################################################################# 

# Calculate occupancy for random distribution of trees      

# cellsize: a linear size, not area     

# plotdim: the maximum size of the plot in x and y direction  

################################################################# 

noccup=numeric()  # no of occupied cells for a species 

xmax=plotdim[1] 

ymax=plotdim[2] 

nxcell=xmax/cellsize  # no of cells along x-axis 

nycell=ymax/cellsize  # no of cells along y-axis 

 

npatch=numeric() 

msize=numeric() 

lsize=numeric()     

x=data$x  

y=data$y 

 

# call program presence.fn which converts the points into 

# presence/absence data 

occup.out=presence.fn(cellsize,nxcell,nycell,x,y,xmax,ymax) 

npt=occup.out[[3]] 

noccup=occup.out[[2]]  # no of occupied cells 

 

# call program patch.size.fn which generize the patch size graph 

patch.size=patch.size.fn(nxcell,nycell,x,y,npt,noccup,cellsize) 

 

occup.bci=list() 

occup.bci[[1]]=noccup 
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occup.bci[[2]]=patch.size[[1]] 

occup.bci[[3]]=patch.size[[3]] 

occup.bci[[4]]=patch.size[[2]] 

occup.bci[[5]]=patch.size[[4]] 

occup.bci[[6]]=patch.size[[5]] 

occup.bci[[7]]=patch.size[[6]] 

occup.bci[[8]]=patch.size[[7]] 

occup.bci[[9]]=patch.size[[8]] 

occup.bci[[10]]=patch.size[[9]] 

occup.bci[[11]]=patch.size[[10]] 

occup.bci[[12]]=patch.size[[11]] 

occup.bci[[13]]=patch.size[[12]] 

return(occup.bci)  

} 

 

################################################## 

# convert cell count into presence/absence data  

# count the number of occupied cells and occupied area  

################################################### 

presence.fn=function(cellsize,nxcell,nycell,x,y,xmax,ymax){ 

 

xx=seq(0,xmax,len=nxcell+1) 

yy=seq(0,ymax,len=nycell+1) 

 

npt=count.fn(cellsize,nxcell,nycell,x,y) #call function count.fn for observed pattern 

 

occup=ifelse(npt>0,1,0)   #convert abundance npt into presence/absence 

 

noccup=0 
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noccup=sum(occup) 

 

occup=matrix(occup,ncol=nxcell) 

  

occup.out=list() 

occup.out[[1]]=occup 

occup.out[[2]]=noccup 

occup.out[[3]]=npt 

return(occup.out) 

} 

 

############################################ 

# count the no of points (trees) in a cell  

############################################ 

count.fn=function(cellsize,nxcell,nycell,x,y){ 

 

# Divide the plot into a grid system with cell size = cellsize 

npt=numeric()   # no of points in each cell 

occup=numeric()  # presence in each cell 

 

ncell=0   # total no of cells 

xlo=-cellsize 

for (i in 1:nxcell){ 

xlo=xlo+cellsize 

xup=xlo+cellsize 

ylo=-cellsize 

 for (j in 1:nycell){ 

 ylo=ylo+cellsize 

 yup=ylo+cellsize 
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 ncell=ncell+1 

 npt[ncell]=length(x[(x>xlo&x<xup)&(y>ylo&y<yup)]) 

 } 

} 

return(npt) 

} 

 

################################# 

# generize the patch size distribution             

################################# 

patch.size.fn=function(nxcell,nycell,x,y,npt,noccup,cellsize){    

zz=npt 

# build up a buffer outside the data  

# add two rows and two columns to the data  

dim(zz)=c(nycell,nxcell) 

z=rep(0,(nycell+1)) 

for (i in 1:nxcell){          

 z=c(z,0,0,zz[,i]) 

}                             

z=c(z,rep(0,(nycell+3))) 

dim(z)=c((nycell+2),(nxcell+2)) 

 

# give a unique number to each occupied cell  

row=dim(z)[1] 

col=dim(z)[2] 

lab=1 

 

for (i in 1:row){      

 for (j in 1:col){    
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  if (z[i,j]>0){   

    z[i,j]=lab  

    lab=lab+1 

  }                  

 }                    

}                       

 

# define patches 

repeat{                           

stop=0 

for (i in 2:(row-1)){             

 for (j in 2:(col-1)){         

  if (z[i,j]>0){              

   z5=c(z[i,j],z[(i+1),j],z[(i-1),j],z[i,(j+1)],z[i,(j-1)]) 

   small=min(subset(z5,z5>0)) 

   if (z[i,j]>small){z[i,j]=small;stop=1} 

   if (z[(i+1),j]>0&z[(i+1),j]>small){z[(i+1),j]=small;stop=1} 

   if (z[(i-1),j]>0&z[(i-1),j]>small){z[(i-1),j]=small;stop=1} 

   if (z[i,(j+1)]>0&z[i,(j+1)]>small){z[i,(j+1)]=small;stop=1} 

   if (z[i,(j-1)]>0&z[i,(j-1)]>small){z[i,(j-1)]=small;stop=1} 

  }                           

 }                            

} 

if(stop==0)break             

}     

 

# count the number of patch and the size 

zzz=as.vector(z) 

number=unique(zzz) 
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npatch=subset(number,number>0) 

numberpatch=0 

numberpatch=length(npatch)     ## calculate the number of patch  

zzz=subset(zzz,zzz>0) 

s=min(zzz) 

l=max(zzz) 

n=rep(0,1000000) 

for (i in s:l){      

 n[i]=length(zzz[zzz==i]) 

}                     

n=subset(n,n>0) 

meansize=(sum(n)/length(unique(zzz)))*cellsize*cellsize # calculate the mean patch size 

sm=min(n) 

la=max(n)*cellsize*cellsize  # calculate the maximum patch size 

pssd=sd(n)*cellsize*cellsize # calculate the standard deviation 

pscv=pssd/meansize # calculate the coefficient of the variance 

nu=unique(n) 

len=length(nu) 

xxx=0 

yyy=0 

for(i in 1:len){              

xxx[i]=nu[i]   # size of patch 

yyy[i]=length(n[n==nu[i]])   # number of patch 

}                              

    

sedge=0  # number of shared edge 

for (i in 2:(row-1)){             

 for (j in 2:(col-1)){  

  if (z[i,j]>0&z[i+1,j]>0&z[i,j+1]==0){sedge=sedge+1} 
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  if (z[i,j]>0&z[i+1,j]==0&z[i,j+1]>0){sedge=sedge+1} 

  if (z[i,j]>0&z[i+1,j]>0&z[i,j+1]>0){sedge=sedge+2} 

 } 

} 

occupany=noccup/(nxcell*nycell) 

el=4*noccup*cellsize-2*sedge*cellsize         

contou=0 

for (i in 2:(row-1)){ 

 if (z[i,2]>0){contou=contou+1} 

 if (z[i,col-1]>0){contou=contou+1} 

} 

   

for (i in 2:(col-1)){ 

 if (z[2,i]>0){contou=contou+1} 

 if (z[row-1,i]>0){contou=contou+1} 

} 

   

el2=4*noccup*cellsize-2*sedge*cellsize-contou*cellsize       

 

# calculate the joint corner                                 

corn=0 

for (i in 2:(row)){ 

 for (j in 2:(col)){ 

  if (z[i-1,j-1]>0){ 

  if (z[i,j]>0){corn=corn+1} 

   }else{if (z[i,j-1]>0&z[i-1,j]>0) {corn=corn+1} 

   }  

 } 

} 
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exp.edge=occupany*occupany*(2*nxcell*nycell-nxcell-nycell) 

exp.corn=(occupany*occupany+(1-occupany)*occupany*occupany)*(nxcell-1)*(nycell-1)                             

  

    

patch.size=list() 

patch.size[[1]]=numberpatch 

patch.size[[2]]=meansize 

patch.size[[3]]=occupany 

patch.size[[4]]=sedge 

patch.size[[5]]=el 

patch.size[[6]]=la 

patch.size[[7]]=el2 

patch.size[[8]]=corn 

patch.size[[9]]=exp.edge 

patch.size[[10]]=exp.corn 

patch.size[[11]]=pssd 

patch.size[[12]]=pscv 

 

return(patch.size) 

}   


