
Parallel Accelerated Optimization Techniques
for Large-Scale Power System Planning and Operation

by

Shengjun Huang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Energy Systems

Department of Electrical and Computer Engineering
University of Alberta

c©Shengjun Huang, 2018

Abstract

Electricity is ubiquitous in modern life, nevertheless, its availability and reliability are not

granted. Actually, providing reliable electricity is an enormously complex technical chal-

lenge even on the most routine of days, which requires trained and skilled operators, so-

phisticated computers and communications, and sufficient planning and designing. A

broad set of interrelated decisions should be made for scheduling and operating various

types of devices for electricity generation, transmission, and distribution subject to engi-

neering, market, and regulatory constraints.

Due to the nonlinear and non-convex power flow equality constraints, discrete control

and decision variables, and large system scales, the decision-making process is extremely

daunting that demands a high level of computational intelligence and speed. In addition,

developments in the power industry, such as the introduction of renewable energy and

smart grid, have brought new challenges on this tough issue, including uncertainty fac-

tors and real-time responses. Therefore, most conventional off-line optimization tools are

required to be merged into on-line modes. On the other hand, rapid advances in digital

computers, smart meters, and communication technologies, etc., provide great opportuni-

ties and powerful tools.

In the context of coexisting challenges and opportunities, possibilities for the acceler-

ation of various optimization techniques for large-scale power system planning and op-

eration problems are investigated in this thesis via algorithm customization, framework

development, and parallel processing. Eight fundamental problems are investigated with

the coverage of all three major domains of power systems. Four categories are separated

for the classification of them in this thesis.

• Planning of transmission system. Due to the boost of loading levels and the wide

utilization of distributed generators, Transmission Expansion Planning (TEP) has re-

gained its significance for investigation. In this thesis, a Multi-Group Particle Swarm

Optimization (MGPSO) algorithm is proposed to solve DC TEP based on the multi-

group co-evolution strategy and Linear Equation System (LES) transformation. Su-

ii

periority over commercial software Lingo is established with case studies. In addi-

tion, based on the disjunctive model, Security Constrained TEP (SCTEP) problem is

formulated into a Mixed-Integer Linear Programming (MILP) problem. Branch-and-

Cut Benders Decomposition (BCBD) method is developed with the integration of BD

into a B&C framework, resulting in better performance over MILP solver Cplex.

• Operation of transmission system. Alternating Current Power Flow (ACPF) anal-

ysis is one of the most fundamental tasks for the transmission system operation

and optimization problems, such as Real-Time Contingency Analysis (RTCA). Explo-

ration on the single ACPF solution has been conducted on Graphics Processing Unit

(GPU) with Fast Decoupled (FD) method, where both Matlab and Compute Unified

Device Architecture (CUDA) are employed for programming. Due to the limited

performance, RTCA which comprises multiple ACPFs is addressed with Compensa-

tion Method (CM). Based on the sensitivity analysis of similar ACPFs, the number

of matrix decomposition has been greatly reduced. Good performance on accuracy,

convergence, and scalability of CM running on GPU with CUDA has been validated.

• Operation of generation system. Optimal operation of generation system dominates

the economy and security of the whole electricity supply process. In this thesis, Se-

curity Constrained Unit Commitment (SCUC) and Real-Time Optimal Power Flow

(RTOPF) are solved to determine the on-off status and the amount of active power

output of each thermal generator, respectively. Potential of different Robust Opti-

mization (RO) frameworks are fully discussed within the context of parallel comput-

ing. Minimization of the prediction error with the consideration of renewable energy

is investigated for RTOPF based on the GPU parallel processing.

• Operation of distribution system. Due to the low voltage level of distribution net-

work, significant power losses are encountered. In order to minimize them, two

problems are investigated from different aspects: Distribution Network Reconfigu-

ration (DNRC) and Real-Time Volt/Var Optimization (RTVVO). Two major concerns

of DNRC have been addressed with the proposed efficient decimal solution encod-

ing and decoding strategy and the acceleration of distribution network power flow

(DNPF) process. In terms of RTVVO, detailed formulation of transformers and other

devices is integrated into the Direct Approach (DA). Well-established data structure

and thread organization pattern are also provided for GPU implementation.

iii

Preface

The material presented in this thesis is based on original work by Shengjun Huang. As

detailed in the following, material from some chapters of this thesis has been published

in conference proceedings and as journal articles under the supervision of Dr. Venkata

Dinavahi in concept formation and by providing comments and corrections to the article

manuscript.

Chapter 2 includes the results from the following papers:

• S. Huang, V. Dinavahi, “Multi-group particle swarm optimization for transmission

expansion planning solution based on LU decomposition”, IET Gener. Transm. Dis-

trib., vol. 11, no. 6, pp. 1434–1442, May 2017.

• S. Huang, V. Dinavahi, “Security constrained transmission expansion planning by

accelerated benders decomposition”, Proc. North Amer. Power Symp., Denver, CO,

USA, Sept. 2016, pp. 1–6.

• S. Huang, V. Dinavahi, “A branch-and-cut Benders decomposition algorithm for

transmission expansion planning”, accepted in IEEE Syst. J., pp. 1–11, Nov. 2017.

Chapter 3 includes the results from the following papers:

• S. Huang, V. Dinavahi, “Performance analysis of GPU-accelerated fast decoupled

power flow using direct linear solver”, Proc. IEEE Electr. Power Energy Conf., Saska-

toon, Canada, Oct. 2017, pp. 1-6.

• S. Huang, V. Dinavahi, “Real-time contingency analysis on massively parallel archi-

tectures with compensation method, Under Revision in IEEE Trans. Power Syst., pp.

1-8, Aug. 2017, (TPWRS-01226-2017).

iv

Chapter 4 includes the results from the following papers:

• S. Huang, V. Dinavahi, “A comparison of implicit and explicit methods for contin-

gency constrained unit commitment”, Proc. North Amer. Power Symp., Morgantown,

WV, USA, Sept. 2017, pp. 1–6.

• S. Huang, V. Dinavahi, “Fast batched solution for real-time optimal power flow with

penetration of renewable energy”, Accepted in IEEE Access, pp. 1–13, Feb. 2018.

Chapter 5 includes the results from the following papers:

• S. Huang, V. Dinavahi, “Fast distribution network reconfiguration with graph the-

ory”, Under Revision in IET Gener. Transm. Distrib., pp. 1-9, Sept. 2017, (GTD-2017-

1488).

• S. Huang, V. Dinavahi, “GPU-based parallel real-time volt/var optimization for dis-

tribution network considering distributed generators”, Under Revision in IET Gener.

Transm. Distrib., pp. 1-10, Nov. 2017, (GTD-SI-2017-1887).

v

To my wife, Shufang Wang

who is always a constant source of support and encouragement

and to my parents for their unconditional love

and to the universe.

vi

Acknowledgements

I would like to express my deepest appreciation to Dr. Venkata Dinavahi, who is the su-

pervisor for my Ph.D. program at the University of Alberta, for his enlightening guidance,

continuous support, and enthusiastic encouragement. It was my great fortune and privi-

lege to work with Dr. Dinavahi. He has been and will always be the role model for me.

I thank my colleagues and friends at the RTX-Lab with whom I had a wonderful time

during my Ph.D. program.

I would like to acknowledge Dr. Bo Guo and Dr. Tao Zhang from the National Uni-

versity of Defense Technology, who paved the way for my research at the very beginning.

Special thanks should be granted to Ms. Xiaoping Yin and Dr. Dong Wang, without their

solely encouragement and sacrifice, I could not achieve my dream to study abroad.

Many thanks to everyone I met, including but not limited to: Dr. Yabing Zha, Dr. Yajie

Liu, Dr. Rui Wang, Dr. Hongtao Lei, Dr. Xiaoyuan Liu, Dr. Yan Zhang, Ms. Sujuan Wang, Dr.

Mohammed Hussain, Mr. Junhong Li, Mr. Lu Liu, Mr. Minghui Huang, Mr. Yunhe Zhou, Ms.

Yining Fang, Mr. Guoxin Li, Mr. Chuang Xu, Dr. Xingcheng Hu, Mr. Fudong Li, Dr. Long

Yang, Ms. Yue Wang, Mr. Zhuoxuan Shen, Mr. Peng Liu, Mr. Zhichao Shi, Mr. Huangke Chen,

and Mr. Jingliang Li, etc. Specifically, three roommates are greatly appreciated: Mr. Min

Tang, Mr. Ziling Wei, and Mr. Keyu Wu.

I would like to thank my wife Ms. Shufang Wang for every single sight she gave to me.

Expectations and concerns from my grandparents, parents, and the whole big family will

be always remembered and cherished.

This thesis work was supported by the China Scholarship Council under Grant No.

201403170337. I greatly appreciate the financial support.

vii

Table of Contents

1 Introduction 1

1.1 Backgrounds . 1

1.2 Problem Definition and Scope . 4

1.2.1 Security Constrained Transmission Expansion Planning 4

1.2.2 Real-Time Contingency Analysis . 5

1.2.3 Security Constrained Unit Commitment 6

1.2.4 Real-Time Optimal Power Flow . 6

1.2.5 Distribution Network Reconfiguration 7

1.2.6 Real-Time Volt/Var Optimization . 7

1.3 Literature Review . 8

1.3.1 SCTEP with Benders Decomposition and Particle Swarm Optimization 8

1.3.2 Parallel RTCA with Compensation Method 10

1.3.3 SCUC with Robust Optimization Framework 11

1.3.4 Parallel RTOPF with Penetration of Renewable Energy 13

1.3.5 Fast DNRC with Graph Theory and Direct Approach 15

1.3.6 Parallel RTVVO with Distributed Generators 16

1.4 Motivation and Objective . 17

1.5 Thesis Outline . 20

2 Transmission Expansion Planning: TEP and SCTEP 24

2.1 Introduction . 24

2.2 Transmission Expansion Planning . 25

2.2.1 TEP Problem Formulation . 25

2.2.1.1 DC Power Flow Model . 25

2.2.1.2 Linear Programming Subproblem 26

2.2.1.3 Linear Programming Transformation 26

2.2.2 Multi-Group Particle Swarm Optimization 28

2.2.2.1 Problem Codification . 28

2.2.2.2 Population Initialization . 28

2.2.2.3 Particle Evolution . 30

2.2.2.4 Multi-Group Co-evolution 30

2.2.2.5 Mutation Mechanism . 31

viii

2.2.2.6 Fitness Evaluation . 32

2.2.2.7 Terminate Condition . 34

2.2.2.8 Implementation Framework 35

2.2.3 Case Studies and Discussion . 35

2.2.3.1 Benchmark Systems . 35

2.2.3.2 Parameter Settings . 36

2.2.3.3 Main Results . 36

2.2.3.4 Speedup Analysis . 39

2.2.3.5 Performance Evaluation of Multi-Group Co-evolution . . . 41

2.2.3.6 Performance Evaluation of Initialization Procedure 41

2.2.3.7 Performance Evaluation of LU Decomposition 41

2.3 Security Constrained Transmission Expansion Planning 42

2.3.1 Problem Formulation . 42

2.3.1.1 Disjunctive Model . 42

2.3.1.2 Stochastic Programming . 44

2.3.2 Solution Methodology . 46

2.3.2.1 Benders Decomposition . 46

2.3.2.2 Branch-and-Cut Benders Decomposition 47

2.3.2.3 Acceleration Strategies . 49

2.3.3 Computational Experiments . 51

2.3.3.1 The Test Bed . 52

2.3.3.2 Results . 53

2.3.3.3 Qualitative Evaluation . 56

2.3.3.4 Sensitivity Analysis . 57

2.3.3.5 Performance Analysis . 58

2.4 Summary . 61

3 Transmission System Optimal Operation: ACPF and RTCA 62

3.1 Introduction . 62

3.2 Alternating Current Power Flow . 63

3.2.1 ACPF Solution Methodologies . 63

3.2.1.1 Newton-Raphson Method 63

3.2.1.2 Fast Decoupled Method . 64

3.2.2 Direct Linear Solver . 66

3.2.3 GPU Implementation with Matlab . 68

3.2.3.1 GPU Programming Features in Matlab 68

3.2.3.2 Various Implementation Strategies 69

3.2.3.3 Experimental Results and Discussions 69

3.2.4 GPU Implementation with CUDA . 72

3.2.4.1 GPU Programming Features in CUDA 72

ix

3.2.4.2 Implementation Schemes . 73

3.2.4.3 Experimental Results and Discussions 73

3.3 Real-Time Contingency Analysis . 74

3.3.1 Compensation Method . 75

3.3.2 Parallel Implementation on GPUs . 78

3.3.2.1 Data Structure and Precision 79

3.3.2.2 Sparse Linear Solver . 80

3.3.2.3 Single GPU Architecture . 82

3.3.2.4 Multiple-GPU Architecture 85

3.3.3 Experimental Results . 86

3.3.3.1 Accuracy and Convergence of GPU-based Parallel CM . . . 86

3.3.3.2 Performance of CM on Various Parallel Architectures . . . 87

3.3.3.3 Comparison with Other Parallel Computing Methods . . . 91

3.4 Summary . 94

4 Generation System Optimal Operation: SCUC and RTOPF 95

4.1 Introduction . 95

4.2 Security Constrained Unit Commitment . 96

4.2.1 Problem Formulation . 96

4.2.2 Solution Methodology . 98

4.2.2.1 Decomposition Framework 98

4.2.2.2 Explicit Method . 98

4.2.2.3 Implicit Method . 100

4.2.2.4 Acceleration Strategies . 101

4.2.3 Numerical Results and Discussion . 102

4.2.3.1 Benchmark Systems . 102

4.2.3.2 Performance Evaluation of Benders Cuts and Constraint Sets 104

4.2.3.3 Performance Evaluation of Parallel Implementation 104

4.2.3.4 Performance Evaluation of Multi-cut Strategy 104

4.2.3.5 Performance Comparison between Explicit and Implicit Meth-

ods with MILP Solver . 105

4.2.3.6 Sensitivity Analysis for KG and KL 105

4.2.3.7 Potential Exploration for Large-scale Implementation . . . 105

4.3 Real-Time Optimal Power Flow . 106

4.3.1 Mathematical Formulation . 106

4.3.1.1 Optimization Model . 107

4.3.1.2 Uncertainty Management . 108

4.3.2 Primal-Dual Interior Point Method . 109

4.3.2.1 Notations . 110

4.3.2.2 Derivations . 111

x

4.3.3 Parallel Implementation on GPU . 112

4.3.3.1 GPU and Compute Unified Device Architecture 113

4.3.3.2 Rules for Heterogeneous Computing 114

4.3.3.3 Implementation Flowchart 114

4.3.3.4 Kernels Design . 115

4.3.4 Case Studies . 119

4.3.4.1 Network and Input Data . 119

4.3.4.2 Results on CPU Platform . 120

4.3.4.3 Results on GPU Platform . 121

4.3.4.4 Discussions . 122

4.4 Summary . 124

5 Distribution System Optimal Operation: DNRC and RTVVO 125

5.1 Introduction . 125

5.2 Distribution Network Reconfiguration . 126

5.2.1 Solution Encoding and Decoding Strategy 126

5.2.1.1 Stage 1: Network Analysis 126

5.2.1.2 Stage 2: Solution Representation 127

5.2.1.3 Supplementary Explanation 129

5.2.2 Distribution Network Power Flow Analysis 130

5.2.2.1 Solution Process of the DST 130

5.2.2.2 Matrix Generation . 131

5.2.2.3 Supplementary Explanation 133

5.2.3 Numerical Experiments . 135

5.2.3.1 PLD Method vs. MST Method for Solution Decoding 135

5.2.3.2 MRD Method vs. BRD Method for DNPF Solution 138

5.2.3.3 Performance Evaluation with Full DNRC Solution 139

5.3 Real-Time Volt/Var Optimization . 142

5.3.1 Problem Formulation . 142

5.3.1.1 Direct Approach Power Flow Method 143

5.3.1.2 Mathematical Formulation of Components 144

5.3.1.3 Mathematical Formulation of RTVVO 146

5.3.2 Solution Framework . 147

5.3.3 Parallel Implementation . 149

5.3.3.1 Data Structure . 150

5.3.3.2 Thread Organization . 151

5.3.4 Case Studies . 155

5.3.4.1 Solution Validation . 157

5.3.4.2 Solution Efficiency . 158

5.4 Summary . 160

xi

6 Conclusions and Future Works 161

6.1 Contributions of Thesis . 161

6.2 Directions for Future Work . 163

Bibliography 165

Appendix A Derivation of the Compensation Method Implementation Steps 179

Appendix B Proof of Inverse Matrix Modification Lemma 180

xii

List of Tables

2.1 Scale and complexity of test cases. 36

2.2 Control parameters of MGPSO for different cases. 36

2.3 Run time of different simulations (s). 37

2.4 Summary of results for the case studies. 38

2.5 Solutions and costs for 79-bus system (×1,000,000 US $). 39

2.6 Definition of decision variables x and ys. 45

2.7 Scales and complexity of considered benchmark test systems. 52

2.8 Computational results for test systems with 5 different types of methods. . . 53

2.9 Rank table for the performance of 5 types of methods. 57

2.10 Different types of algorithms for performance analysis. 59

3.1 General information of benchmark systems. 69

3.2 Execution time of different types of FD with dense matrices using Matlab (s). 70

3.3 Execution time of different types of FD with sparse matrices using Matlab (s). 70

3.4 Fill-in reductions achieved by the AMD and RCM algorithms. 73

3.5 Speedups gained by the AMD and RCM algorithms implemented with CUDA

over the fastest Matlab implementation. 75

3.6 Solution differences between parallel CM and Matpower NR and FD. 86

3.7 Number of scenarios considered for different cases. 88

3.8 Execution time (ms) of sequential CM with single-thread CPU. 88

3.9 Execution time (ms) and speedup of parallel CM with multi-thread CPU. . . 88

3.10 Execution time (ms) and speedup of CM with single GPU. 90

3.11 Execution time (ms) and speedup of CM with multiple GPUs. 91

3.12 Runtime reported in the literature with GS running on GPU. 92

3.13 Runtime reported in the literature with NR running on GPU. 93

4.1 Scales and complexity of benchmark test systems under n−1−1 contingency

criterion. 102

4.2 Alternative versions of algorithms. 104

4.3 Computational results for different KG and KL values. 105

4.4 Accessible factorization methods of cuSolver in various modes. 119

4.5 Execution time of RTOPF with different platforms (s). 120

xiii

4.6 Speedup of different methods over regular CPU implementation. 120

4.7 Effectiveness of the initiated solution based on different numbers of scenar-

ios for the hot start linear system. 123

5.1 Scales of the benchmark systems. 135

5.2 Execution time of the PLD and MST methods to decode N solutions for the

14-bus system. 137

5.3 Execution time of the PLD and MST methods to decode N =10,000 solutions

for different systems. 137

5.4 Execution times of DNPF solution based on the MRD and BRD methods. . . 139

5.5 Configuration of different algorithms. 139

5.6 Average active power losses by 20 trials (kW). 140

5.7 Average execution time by 20 trials (s) . 140

5.8 The number of components for different test systems. 157

5.9 The average active power loss error between different implementations for

the 1760-bus system in 20 trials. 157

5.10 The number of atom operations for the updating of [DLF] with two differ-

ent methods. 158

5.11 Execution time of the RTVVO for various implementation schemes. 159

5.12 Achieved speedup over CPU M for various methods. 159

5.13 Achieved speedup over CPU S for various methods. 160

xiv

List of Figures

1.1 Basic structure of the electric power system [1]. 2

1.2 A schematic classification of mathematical optimization methods. 3

1.3 Implicit and explicit implementation frameworks for robust optimization

method. 12

1.4 Traditional implementation framework of RTOPF. 14

1.5 Outline of this thesis along with technical details. 23

2.1 Sample points of different random sequences: (a) Sobol sequence; (b) pseudo-

random sequence. 29

2.2 The relationship between E and W for different N 29

2.3 Illustration of PSO evolution strategies: (a) single-group evolution; (b) multi-

group co-evolution. 31

2.4 Transform probability for point mutation. 32

2.5 Flowchart for network analysis. 33

2.6 Speedup analysis between MGPSO and Lingo 11.0. 40

2.7 Relationship between the speedup and the search space size. 40

2.8 Convergence characteristic of single- and multi-group PSO for 46-bus system. 41

2.9 Initiated and candidate circuits on corridor 1− 2. 43

2.10 Flowchart of BD within classical implementation framework. 48

2.11 Flowchart of BD within B&C implementation framework. 48

2.12 ILP hull versus LP hull. 50

2.13 Number of equivalent solutions for the Garver 6-bus system without valid

inequality. 51

2.14 Behavior of optimality gap for the IEEE 24-bus test system. 54

2.15 Behavior of optimality gap for the IEEE 118-bus test system. 55

2.16 Behavior of optimality gap for the South Brazilian 46-bus system. 56

2.17 Solution configuration and execution time for different K values with the

Garver 6-bus system. 57

2.18 Lower and upper bounds for BCBD of the 46-bus system. 58

2.19 Convergence properties of different algorithms for the 46-bus system. 60

3.1 General framework of the fast decoupled method for power flow analysis. . 66

xv

3.2 Difference on the number of fill-ins by row and column switching. 67

3.3 Execution time of different types of FD with dense matrices. 71

3.4 Execution time of different types of FD with sparse matrices. 71

3.5 Execution time proportions of different steps for the FD with lu(). 72

3.6 Sparsity structure of B′ and L′B +U ′
B for caseB. 74

3.7 Execution time of FD with cuSOLVER based on AMD and RCM. 75

3.8 Demonstration of fixed pattern calculation. 77

3.9 Flowchart of the compensation method. 79

3.10 Transformation from CSC to CSR by matrix transposition. 80

3.11 Convergence properties of CM for a 2746-bus test system with single and

double precision. 81

3.12 Performance illustration of AMD on a 2746-bus test system with sparsity

pattern (nnz is the number of nonzero elements). 81

3.13 Execution pattern of integrated kernel and decoupled kernels. 83

3.14 Decoupled kernels for the solution of equations (3.20)–(3.23). 84

3.15 Coalesced access of θ in kernel Update(). 85

3.16 Convergence properties of FD and parallel CM on different cases. 87

3.17 Speedup of parallel CM with multi-thread CPU. 89

3.18 Speedup comparison between multi-thread CPU and GPU. 91

3.19 Speedup ratio of multiple GPUs over single GPU. 92

3.20 Runtime reported in the literature with NR running on GPU. 93

4.1 Decomposition framework for the solution of SCUC with CCG. 99

4.2 Behavior of convergence for different algorithms. 103

4.3 Behavior of time consumption for different algorithms. 103

4.4 Behavior of convergence of Alg.I.2 for IEEE 118-bus test system. 106

4.5 Daily solar irradiation (global CMP22) and wind speed (height 19ft) at NREL

Solar Radiation Research Laboratory on May 2, 2017 [2]. 109

4.6 Illustration of scenarios for the power output of REGs. 109

4.7 Three-stage solution process of the hot-start RTOPF with REGs. 110

4.8 CUDA thread hierarchy and processing flow. 113

4.9 The execution time proportion of different operations of PDIPM. 115

4.10 Parallel implementation flowchart of concurrent PDIPM with heterogeneous

architecture. 116

4.11 Demonstration of CSR format. 117

4.12 Achieved speedups by OpenMP on various test systems with different num-

bers of threads enabled. 121

4.13 Solution process comparison between the regular and batched QR factoriza-

tion. 122

xvi

4.14 Execution time of case 300-bus with different batch sizes (1, 32, 64, 128, 256,

512, 1024). 123

5.1 Configuration of the target distribution network. 127

5.2 Intermediate results of network analysis. 128

5.3 Encoded real number solution vector and its decoding. 129

5.4 Implementation frameworks of different decoding techniques: (a) PLD method;

(b) MST method. 130

5.5 Intermediate results of matrix BIBC generation. 132

5.6 Frequency of branches chosen for breaking in the 14-bus system. 136

5.7 Execution time of the PLD and MST methods in double logarithmic coordi-

nate system. 137

5.8 Execution time of different algorithms for the DNRC solution. 141

5.9 Speedup gained by Alg4 for the DNRC solution. 141

5.10 Schematic framework of RTVVO for the distributed network. 143

5.11 Pi-equivalent model of the medium-length line. 145

5.12 Pi-equivalent model of the OLTC transformer. 145

5.13 General flowchart of the PSO utilized in the RTVVO module. 148

5.14 Unified vector storage structure across different particles. 150

5.15 Sparse storage patterns of DLF matrix in CSR format with {p, i, x} and {p, i, xp, xx}.151

5.16 Thread organization for parallel regular mapping. 152

5.17 Thread organization for parallel reduction within each block. 153

5.18 Thread organization for parallel matrix-vector multiplication within each

block. 154

5.19 Thread organization for parallel irregular mapping. 154

5.20 Thread organization for parallel matrix transpose. 156

5.21 Convergence property of different types of implementation. 158

xvii

List of Acronyms

AC Alternating Current
BCBD Branch-and-Cut Benders Decomposition algorithm
BCBV Branch-Current to Bus-Voltage matrix
BD Benders Decomposition
BIBC Bus-Injection to Branch-Current matrix
BRD Branch-based Reachability Detection
CCG Column-and-Constraint Generation algorithm
CM Compensation Method
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DC Direct Current
DFS Depth-First Search
DG Distributed Generator
DNPF Distribution Network Power Flow
DNRC Distribution Network Reconfiguration
FDPF Fast Decoupled Power Flow
GPU Graphics Processing Unit
GS Gauss-Seidel
HPC High-Performance Computing
LES Linear Equation System
MGPSO Multi-Group Particle Swarm Optimization
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Non-Linear Programming
MRD Matrix-based Reachability Detection
MST Minimum Spanning Tree
NR Newton-Raphson
OLTC On-Load Tap Changer
PDIPM Primal-Dual Interior Point Method
PLD Probability-based Loop Destruction
PSO Particle Swarm Optimization
RO Robust Optimization
RTCA Real-Time Contingency Analysis
RTOPF Real-Time Optimal Power Flow
RTS Radial Tree Structure
RTVVO Real-Time Volt/Var Optimization
SC Switched Capacitor
SCTEP Security Constrained Transmission Expansion Planning
SCUC Security Constrained Unit Commitment

xviii

Nomenclature

Sets

C Set of candidate transmission lines.

E Set of existing transmission lines.

Gi Set of indices of the generating units at bus i.

Nb Set of buses.

Ng Set of thermal generators.

Nl Set of transmission lines.

Nr Set of renewable generators.

S Set of security contingencies/scenarios.

T Set of indices of the time periods.

Parameters

ag, bg, cg Coefficients of the quadratic cost function of generator g.

Ag, Bg Parameters for piecewise linearizion of quadratic cost function.

cij Construction cost for transmission line ij.

CD
g , CU

g Shutdown/Startup cost of generator g.

di Load demand at node i.

d Vector of load demand for each bus.

Di(t) Load demand at bus i in period t.

f̄ij Maximum power flow on transmission line ij.

ḡi Maximum amount of generation at node i.

ḡ Vector of maximum power generation for each generator.

Gij , Bij Transfer conductance and susceptance between buses i and j.

K Maximum number of circuits can be built for each line.

KG, KL Number of generators and transmission lines under a contingency

criterion.

M Large constant number used for linearization or penalty.

m Particle swarm optimization algorithm population size.

nb Total number of buses.

xix

nc Total number of transmission lines.

ng Total number of generators.

nt Total number of unimproved iterations before termination.

n0
ij Initial number of circuits on corridor ij.

n
0(s)
ij Initial number of circuits on corridor ij for scenario s.

P Penalty factor for loss of load.

PG0
g Active power output of generator g in the previous subinterval.

P̄g Maximum power output of generator g.

P g Minimum power output of generator g.

R(t) Spinning reserve requirement in period t.

RD
g , RU

g Ramp-down/Ramp-up rate limit for generator g.

S The bus-branch incidence matrix.

TD
g , TU

g Minimum down/up time for generator g.

θ̄i Maximum value of the phase angle at bus i.

γij Susceptance of transmission line ij.

z
(s)
g , z

(s)
ij Binary parameter: 0 if generator g (transmission line ij) is under

contingency at scenario s; 1 otherwise.

α Weight parameter for the objective function.

ǫ Small value regraded terminate condition.

γij Susceptance of transmission line ij.
down, up Ramp down and up limits of thermal generator.
min, max Lower and upper limits of specified variables.

Decision Variables

cdg(t) Shutdown cost of generator g in period t.

c
p(s)
g (t) Production cost of generator g in period t on scenario s.

cug (t) Startup cost of generator g in period t.

fij Power flow on line ij.

f
0(s)
ij Power flow of the original circuit ij at scenario s.

f
k(s)
ij Power flow of the kth parallel circuit ij at scenario s.

f
(s)
ij (t) Power flow on transmission line ij in period t on scenario s.

f Vector of power flow for each corridor.

g
(s)
i Amount of generation at node i at scenario s.

g Vector of power generation for each generator.

nij Number of candidate circuit to be built for corridor i− j.

xx

nk
ij Binary variables indicating whether the kth parallel circuit of corri-

dor ij is built.

PG
g , QG

g Active and reactive power output of generator g.

PR
r , QR

r Active and reactive power output of REG r.

PD
i , QD

i Active and reactive power demand of bus i.

p
(s)
g (t) Power output of generator g in period t on scenario s.

Qw The worst system operation cost.

rk Loss of load for bus k.

r
(s)
i Loss of load for bus i at scenario s.

r
(s)
i (t) Loss of load for bus i in period t on scenario s.

r Vector of load curtailment for each bus.

vg(t) Binary decision variable: 1 if generator g is online in period t; 0

otherwise.

Vi, Vj Voltages magnitude at node bus i and j.

zg, zij Binary decision variables have the same meaning with z
(s)
g and z

(s)
ij .

θij Voltage angle difference between buses i and j.

θi Voltage angle at node bus i.

θ
(s)
i Voltage angle of node i at scenario s.

θ
(s)
i (t) Phase angle at bus i in period t on scenario s.

β, τ, δ, η, Dual variables corresponding to the economic dispatch constraints.

ζ, ξ, ρ Dual variables corresponding to the economic dispatch constraints.

xxi

1
Introduction

Interdisciplinary backgrounds of power systems, operations research, and computer engi-

neering lead to the main theme of this thesis: accelerating various optimization techniques

for the fast solution of large-scale power system planning and operation problems via al-

gorithm customization, framework development, and parallel processing.

1.1 Backgrounds

Electricity is one of the most important discoveries that is deeply involved in modern

life. From the moment we open our eyes in the morning to the time we go to bed in the

evening, electricity is consumed by all devices around us, including light, refrigerator, air

conditioner, washing machine, computer, television, and mobile phone, etc. In addition to

domestic applications, more extensive utilizations are attributed to industrial production

and public service, such as food, water, clothing, transportation, communication, hospital,

bank, and school, etc. We cannot imagine what the world will turn out to be without elec-

tricity.

Different from other types of energy, electricity flows at a speed close to the speed

of light and cannot be stored in large amount for industrial application. Therefore, it is

generated the instant that it is consumed. Failure to preserve this equilibrium will result

in power shortage or even outage. In order to achieve the stable and efficient electricity

supply for the whole society, the electric power system is built and maintained as a basic

national infrastructure. Generally, it covers wide geographical regions and includes tens

of thousands of components. Based on the functionality, a power system can be broadly

divided into: the generation system that supplies the power; the transmission system that

1

Chapter 1. Introduction 2

Transmission lines
765, 500, 345, 230, and 138 kV

Transmission Customer
138kV or 230kV

Generating Station

Generating
Step Up

Transformer

Substation
Step Down
Transformer

Generation

Green:
Blue:

Subtransmission
Customer

26kV and 69kV

Primary Customer
13kV and 4kV

Secondary Customer
120V and 240V

Transmission
Distribution

Color Key:

Red:

CustomerBlack:

Figure 1.1: Basic structure of the electric power system [1].

carries the power from generators to the load centers; and the distribution system that

feeds the power to nearby homes and industries. The basic structure is illustrated in Fig.

1.1. At the beginning, lower voltage (10 to 25 kV) electricity is produced by generators

driven with various types of energy sources, such as coal, oil, natural gas, hydropower,

nuclear, wind, photovoltaic, etc. Then, it is stepped up to a higher voltage (138 to 765 kV)

to reduce losses for the long distance shipping over transmission lines. Finally, stepping

down is performed in the distribution center for the service of industrial (4 to 69 kV) and

residential (120 to 240 V) customers.

Providing reliable electricity is an enormously complex technical challenge even on

the most routine of days, which requires trained and skilled operators, sophisticated com-

puters and communications, and sufficient planning and designing [3]. A broad set of

interrelated decisions should be made for planning and operating various types of de-

vices for electricity generation, transmission, and distribution subject to engineering, mar-

ket, and regulatory constraints. Due to nonlinear and non-convex power flow equality

constraints, discrete control and decision variables, and large system sizes, the decision-

making process is usually daunting that demands a high level of computational intelli-

gence and speed. In addition, developments in the power industry, such as the intro-

duction of renewable energy and smart grid, have brought new challenges on this tough

issue, including uncertainty factors and real-time response. Therefore, most conventional

off-line optimization tools are required to be merged into on-line operations. On the other

hand, advanced progress is also achieved on digital computers, smart meters, and com-

munication technologies, etc., which provides great opportunities and powerful weapons.

Therefore, in this thesis, we intend to investigate the acceleration possibility of advanced

optimization techniques based on the development of new devices and technologies, for

the purpose of addressing new challenges during the solution of large-scale power system

planning and operation problems.

Chapter 1. Introduction 3

Mathematical Optimization

Methods

Analytical Optimization

Numerical Optimization Heuristic Algorithms

Meta-heuristic Algorithms

Deterministic Algorithms

Figure 1.2: A schematic classification of mathematical optimization methods.

Fig. 1.2 illustrates a schematic classification of mathematical optimization methods

utilized in the solution of engineering problems. For the majority of practical applica-

tions with strong nonlinear property and high dimensionality, the derivation of an analyt-

ical solution is convoluted or even intractable. Therefore, numerical optimization meth-

ods, which can be classified into deterministic algorithms, heuristic algorithms, and meta-

heuristic algorithms, gain more popularity than analytical optimization methods.

Deterministic algorithms are based on rigorous mechanism and free of randomness,

such that they will converge into global optimal solution in a finite number of iterations,

and the optimality could be indicated by the lower and upper bounds at each iteration.

Examples include Benders Decomposition (BD) [4], Robust Optimization (RO) [5], and

Primal-Dual Interior Point Method (PDIPM) [6], etc. Simplification might be required to

utilize the deterministic methods, such as linearization and continuous relaxation. Heuris-

tic algorithms utilize problem dependent rules or the current information gathered by the

algorithm to decide the next solution steps. These types of methods can achieve global op-

timal or suboptimal solution in a short time with limited computational effort, but the per-

formance is problem dependent and would be poor for large-scale systems. Meta-heuristic

algorithms are robust, with the capability of solving very general problems regardless of

their size and whether they are convex or non-convex, continuous or discrete; however, the

computation is more intensive than heuristic algorithms, and the optimality of the final so-

lution cannot be validated by themselves. They consider the target problem as block-box

without deep insight into inner structures. A series of candidates consists of the genetic

algorithm, simulated annealing, and Particle Swarm Optimization (PSO), etc. Accelera-

tion possibilities on the deterministic and meta-heuristic algorithms will be explored in

this thesis due to their preferable properties, i.e., customization and acceleration strategies

on the solution methodology can be easily extended to other applications.

Enhancement on the solution efficiency to fulfill on-line and real-time optimization can

be achieved through algorithm refining and parallel processing. The former relates to solid

Chapter 1. Introduction 4

backgrounds on specified algorithm derivation, thus the detailed discussion is devoted to

subsequent chapters. In terms of parallel processing, exacting full computing power from

modern hardware architectures is not trivial, which requires the knowledge and efforts

from both the application and the computer architecture domain [7], including but not

limited to algorithm-level optimization, data structure optimization, special hardware in-

structions, and parallel programming, etc. Since most engineers have limited access to

supercomputers and large-scale Central Processing Unit (CPU) clusters, the multi-core

CPU and many-core Graphics Processing Unit (GPU) received more attention. In order

to address various general tasks, the cores in CPU are powerful and highly optimized for

complex operations. Nevertheless, the number is limited and the latency for launching is

high. In addition, the performance is directly dependent on the clock speed, which is away

from the expectation of Moore’s law and experiencing a reducing upward trend due to

thermodynamic concerns, i.e., the limitation is reaching. On the other hand, thousands of

smaller and lighter cores are integrated into GPU to handle millions of threads simultane-

ously. Initially designed for graphics and video rendering, GPU has been introduced in the

High-Performance Computing (HPC) community with the release of NVIDIAr Compute

Unified Device Architecture (CUDA) [8], a C-based Application Programming Interface

(API) for GPU parallel programming. Based on CUDA, the extremely high floating point

performance of GPU can be harnessed for general scientific computation on inexpensive

accessible desktop computers.

1.2 Problem Definition and Scope

In this section, the target problems addressed in this thesis are defined to clearly identify

the scope of this thesis. In order to cover all three parts of the power system, i.e., genera-

tion, transmission, and distribution, several problems are determined for investigation as

follows.

1.2.1 Security Constrained Transmission Expansion Planning

Continued increase in loading levels and generation capabilities have underscored the ne-

cessity of building new transmission lines to relieve the critically burdened power sys-

tem, which comprises the Transmission Expansion Planning (TEP) problem. Proposed

in 1970 [9], emphasis is originally put on the economic profits, i.e., minimizing the to-

tal investigation and operation cost. Reliability and environmental concerns are added

subsequently during the radial evolution of power systems, evolving TEP into Security

Constrained TEP (SCTEP) [10, 11]. SCTEP determines how to expand and reinforce the

transmission network in order to supply electricity to consumers in a secure and economic

Chapter 1. Introduction 5

fashion, where the forecast load growth over a specific time span and the available genera-

tion assets are known as inputs for decision-making. SCTEP will continue to assume great

importance in the current context of smart grid [11], where large amounts of distributed

generators collecting renewable energy need to be integrated, bringing in a lot of variation,

dynamics, and uncertainty.

Security, in a deterministic sense (which is the current common industry practice), is the

capability of a power system to withstand a specified set of credible contingencies [10,12].

Modeling security drastically increases the complexity of the resulting problem since the

unavailability of system components needs to be characterized. One of the most exten-

sively adopted criteria in the literature on SCTEP is the N − 1 security criterion, which

states that the system should be expanded in such a way that if a line is withdrawn the

resulting system should still operate adequately [13, 14].

Two main types of models have been widely used to represent the transmission net-

work in TEP studies: the DC and AC power flow models. The classical DC model is, in

general, a mixed-integer, nonlinear, non-convex, and NP-hard problem, which presents a

major challenge to all known optimization approaches, ranging from analytical method

to heuristic and meta-heuristic algorithms [15, 16]. Another widely utilized DC model is

the disjunctive model, which is derived from the classical DC model by representing the

integer decision variables with binary decision variables, and eliminating the nonlinear

property by the introduction of linearizing constant (big-M), resulting in a Mixed-Integer

Linear Programming (MILP) problem. Since the MILP can be addressed with various op-

timized off-the-shelf solvers, the disjunctive model is mainly employed for the solution of

SCTEP [10]. Full Alternating Current (AC) model is considered only at a later stage of the

planning process when the most attractive topologies have been determined [17].

1.2.2 Real-Time Contingency Analysis

In order to achieve the steady-state security of power system under the outage of compo-

nents, a lot of contingency scenarios are generated based on the state estimator. Contin-

gency analysis (CA) is developed to investigate these scenarios with the solution of the

corresponding AC power flows within a specified time span. CA is paramount for mod-

ern power systems as it forms the basis for important operator actions that help to improve

system reliability, optimize generator dispatch, manage disparate resources, prevent cas-

cading outages, and enhance market operations [18].

The number of possible contingency scenarios for N−k security criteria is
∑k

n=1
N !

n!(N−n)! ,

which holds an exponential relationship with N and k. During the last few decades, the

Chapter 1. Introduction 6

system scale has expanded and more stringent criteria have been proposed, i.e., both N

and k are increased, which introduces great challenges for CA, especially in the context

of smart grid, where decisions for fast reaction should be made in real-time. In order to

address the Real-Time CA (RTCA), both algorithm and hardware can be resorted since the

parameters for different scenarios are similar with only a few variations.

1.2.3 Security Constrained Unit Commitment

The electricity supply and demand equilibrium is dynamically maintained within mil-

liseconds, but the generators cannot produce power immediately when it is started, thus

they should be planned in advance to deal with component outages and load variations.

The Unit Commitment (UC) problem is proposed to determine the start-up and shutdown

schedules of thermal units to satisfy the forecast demand over certain time periods (24h to

1 week) [19]. It is a combinatorial optimization problem with the objective of minimizing

operation cost and subjects to a lot of constraints.

Reliability and security are crucial for modern power systems. Unexpected outages

of power grid components can result in dramatic electricity shortages or even large-scale

blackouts, therefore, Security Constrained UC (SCUC) is developed. For the sake of com-

putational tractability, the set of credible contingencies is of reduced size, being typically

associated with the well-known N − 1 and N − 2 security criteria. However, the more

generalized N − KG − KL contingency criterion is always desirable for practical appli-

cations [20], which furnishes the system (N components) with the capability of surviving

from the sudden unavailability of KG generation units and KL transmission lines.

1.2.4 Real-Time Optimal Power Flow

Introduced in 1962 [21], the Optimal Power Flow (OPF) problem intends to achieve vari-

ous objectives, such as total generation cost, system loss, bus voltage deviation, emission of

generating units, number of control actions, and load shedding, etc., via the optimization

of operation parameters of components in the power system [19]. Accordingly, constraints

related to power flow equations, system security, and equipment operating limits should

be satisfied.

In the context of smart grid, the high penetration of intermittent renewable energy

generators is remarkable, resulting in the conventional power grid monitoring and anal-

ysis tools no longer sufficient on the solution capability and efficiency. Therefore, Real-

Time OPF (RTOPF) is proposed to merge the off-line decision-making to on-line opera-

tion [22, 23]. Given the large uncertainty, nonlinear AC power flow, limited reaction time,

Chapter 1. Introduction 7

and strict security criterion, the demand for an efficient and generally applicable compu-

tational analysis framework is of critical importance.

1.2.5 Distribution Network Reconfiguration

As the most extensive part of a power system, the distribution network is the last step

to deliver the electric power from generator to consumer. At the planning stage, it is de-

signed as interconnected with switches, while during operation it is arranged as radial tree

configuration [19]. Due to the low voltage levels, significant power loss is encountered.

Therefore, the Distribution Network Reconfiguration (DNRC) problem is developed to

determine the open/close status of switches such that the active power loss is minimized.

Other goals are also achievable in DNRC, such as high reliability [24] and smooth voltage

profile [25].

During the solution of DNRC, two main concerns need to be addressed: Radial Tree

Structure (RTS) and Distribution Network Power Flow (DNPF). In order to maintain the

RTS, the number of lines must be smaller than the number of buses by one unit according

to the graph theory [26]. On the other hand, due to the wide range of resistance R and reac-

tance X in the distribution network, a big ratio of R/X may appear, resulting the efficient

Fast Decoupled Power Flow (FDPF) algorithm fail to converge since the major assump-

tion R ≪ X is violated [19]. In addition, the Gauss-Seidel (GS) or Newton-Raphson (NR)

methods are too complicated and time-consuming to tackle the DNPF due to the RTS [27].

1.2.6 Real-Time Volt/Var Optimization

One of the major responsibilities of the distribution network is the voltage and reactive

power (var) management, i.e., achieving high efficiency, reliability, and quality on the

power supply. A lot of control devices are available to fulfill that goal, such as On-Load

Tap Changer (OLTC) transformer, Voltage Regulator (VR), and Switched Capacitor (SC),

etc. In terms of how to determine/adjust the operating parameters of these facilities, the

Volt/Var Optimization (VVO) is proposed [28–30]: minimizing system active power losses

while satisfying equality constraints to node active and reactive power balances, as well as

lower/upper bounds of node voltages.

Similar to the unit commitment problem in the transmission network, VVO is usually

performed on a day-ahead time span based on the forecast demand [28], which is marked

as DAVVO. Although DAVVO has been thoroughly investigated [28–39], the capability of

this type of decision process in responding to fast variations is limited. In the last decades,

Distributed Generators (DGs), including fuel cell, photovoltaic cell, wind turbine, and

Chapter 1. Introduction 8

micro-turbine, etc., have been widely integrated into distribution networks, which is of

great significance for the reduction of transmission loss as well as carbon emission. On

the other hand, the high penetration of DG also brings large fluctuations, resulting in the

fact that the DAVVO solution is non-optimal or even infeasible. Therefore, Real-Time VVO

(RTVVO) has been proposed [40–43] to address these issues.

The popularity of the utilization of new technologies, such as Advanced Metering In-

frastructure (AMI), keeps increasing in the context of smart grid. Two-way communication

can be provided by the AMI system to collect the information/data from smart meters and

distribute the instruction/command to devices at the same time, i.e., RTVVO is technically

possible from the perspective of communication. Nevertheless, in terms of fast computa-

tion for real-time decision-making, the technique is far from mature.

1.3 Literature Review

Various target problems, as well as the related optimization methodologies and solution

frameworks, are reviewed as follows.

1.3.1 SCTEP with Benders Decomposition and Particle Swarm Optimization

In the literature, SCTEP is usually formulated as a MILP problem based on the disjunctive

model. To tackle this tough MILP problem, a lot of proposals are developed, such as the

direct MILP solution method [44] and the adjustable robust optimization approach [10].

However, both methods formulate all the scenarios/contingencies into one whole MILP

problem, leading to the number of decision variables and constraints increases to a scale

of thousands or even millions, which presents a major challenge for several popular com-

mercial MILP solvers, such as Cplex and Lingo. Therefore, two types of strategies are

commonly utilized:

• Meta-heuristic Methods: Due to the straightforward implementation scheme and

global convergence capability, meta-heuristic methods are widely utilized in the so-

lution of SCTEP. However, the execution time remains a bottleneck for meta-heuristic

algorithms when dealing with large-scale TEP problems due to the long time con-

sumed by thousands of times of LP solution (which has been reported by [45] that

it may take up to 90% of the total elapsed time). Therefore, for the purpose of im-

proving the performance, two alternatives have been emphasized in the literature:

(i) an efficient LP solver [46], and (ii) a better metaheuristic algorithm [47]. To fill this

Chapter 1. Introduction 9

gap, an efficient LP solution process was proposed by [45], where the LP subprob-

lem was transformed into another equivalent LP problem with reduced numbers of

constraints and variables, resulting in less solution time. On the other hand, as a

popular meta-heuristic method, PSO gained widespread application in the solution

of TEP. Many successful results have been reported in the solution of TEP with clas-

sical PSO and its variants, of which the most popular enhancement strategies include

high diversity initialization [48], replication and selection [49], mutation [49–51], and

evolutionary adaptation strategy [52]. In addition, four types of PSO are discussed

in [53] as a survey, and a multi-objective PSO has also been proposed in [54].

• Decomposition Methods: This type of method intends to alleviate the computation

by separating the complex full problem into several smaller subproblems, among

which BD has received the most attention in the literature. One of the pioneering

works that introduce BD into TEP solving is [55], where a minimum value of the dis-

junctive parameter is derived to eliminate the numerical difficulties when utilizing

the disjunctive model; however, the security constraints are not considered. Since

then, several investigations have sought to improve the performance of BD from two

aspects: master problem and subproblem. Generally, the master problem of SCTEP

is MILP, which is the most time-consuming part for large-scale problems since the

solution techniques are not as efficient as these for LP, thus several enhancements

have been investigated to relieve the complexity and solution space of MILP [56–58].

On the other hand, efforts have also been poured into generating more effective

cuts from subproblem [57–59], to eliminate regions that contain suboptimal or non-

improving solutions [60], thus reducing the total number of iterations required for

the whole algorithm. Specifically, [56] introduced a local search procedure to solve

the master problem, where considerably decreased computational time is reported

when compared with classical BD; however, additional constraints are applied to re-

duce the search space at the time of problem formulation, i.e., the original problem

has been revised. [57] introduced a lot of interesting improvements employed by a

practical project using textual description, such as inexact master problem resolution

mechanism, semi-relaxed cuts for discrete decision variables, and the combination of

mono-cut and multi-cut, etc.; nevertheless, few technical and mathematical details

were exhibited. [58] introduced two valid inequalities to reduce the search space of

the master problem, as well as multiple generation cuts and strong high-density cut

to boost the convergent efficiency. [59] proposed a set of appropriate Benders cuts

specifically tailored for the binary decision variables, and the effectiveness of stan-

dard and modified disjunctive model has also been studied.

Chapter 1. Introduction 10

1.3.2 Parallel RTCA with Compensation Method

Conventionally, two directions have been exploited to alleviate the difficult compromise

between a large number of contingency scenarios and the limited solution time:

• Robust selection procedure: Since the evaluation of all scenarios is impractical, a

subset is usually generated for analysis according to appropriate selection rules, such

as the performance index contingency ranking method [61]. The size of the subset

has considerable impact on the solution process of RTCA: if it is very large (conser-

vative principle), the subsequent evaluation burden would be heavy; if it is relatively

small (progressive principle), the critical scenarios might be skipped.

• Fast evaluation methodology: The cardinality of the contingency set can still be very

large for practical systems even if progressive selection strategy was utilized, thus

HPC architecture is resorted for acceleration. Investigations on RTCA with HPC

were implemented on the multi-core CPU architecture [62–68], such as shared mem-

ory computers, distributed systems, and CPU clusters. Although the performance

reported is acceptable, their application scope is limited due to demands on specific

hardware or large computer infrastructure. On the other hand, the many-core GPU

architecture is accessible for the common researcher with PC or workstation.

On the GPU platform, both the Direct Current Power Flow (DCPF) and Alternating

Current Power Flow (ACPF) have been implemented to formulate the RTCA by [69–71]

and [72–75] respectively. The DCPF is a linear simplification of real systems, with great

advantages on the computation efficiency and convergence; however, the accuracy and

capability of the solution is insufficient, e.g., inability to check voltage limit violations.

On the contrary, the nonlinear ACPF is more accurate but complicated. In the literature,

several sophisticated methods have been implemented on GPU to address ACPF-based

RTCA, such as the Newton-Raphson (NR) method [72–77] and the Fast Decoupled (FD)

method [72, 78].

Compared with NR, the FD is algorithmically more efficient due to smaller dimension

of Jacobian matrix and fewer times of factorization [61]. Although superiority has been

granted to the FD by theoretical analysis, improvement and enhancement on it for the

solution of RTCA during practical application are still necessary. The process of FD for

single RTCA problem can be concluded as the solution of a series of Axi = bi, for which

the direct method [71, 72, 74, 75] seems to be more attractive than the iterative method [69]

since A is fixed. Taking the LU decomposition as an example, A is factorized into L and

Chapter 1. Introduction 11

U matrices, and yi is generated from Lyi = bi by forward substitution, then xi is deduced

from Uxi = yi by backward substitution. During the whole process, the factorization

takes the majority of the elapsed time even though it is executed only once while Forward

and Backward (F/B) substitutions are performed several times. In order to accelerate the

solution, efforts have been put forward on the sparse LU decomposition, such as reducing

the number of fill-ins [79].

Nevertheless, in reality, RTCA comes with large numbers of scenarios, which can be

represented as Akxi = bi (k distinguishes different scenarios). The solution methodology

depicted above for single-scenario RTCA can be easily expanded into multi-scenario RTCA

since each scenario is spontaneously independent. According to the classical FD method,

each Ak should be factorized to perform the F/B substitutions. In order to boost the effi-

ciency to a higher extent, the concept of Compensation Method (CM) is proposed [61, 80],

which factorizes the matrix A of base case for only once, and deduces compensation factors

for each scenario during the F/B substitutions, thus the time and effort corresponding to

LU decomposition for all the other scenarios can be saved. In addition to the superb solu-

tion efficiency, the CM processes satisfactory accuracy. Theoretically, the CM is integrated

within the framework of FD, and FD derives from the same mathematical formulation

with NR, therefore, the CM, FD, and NR should generate the same accuracy of results if

the same convergence criterion is adopted. Different from the FD and NR with high pop-

ularity, the CM has not been reported with GPU architecture.

1.3.3 SCUC with Robust Optimization Framework

Under the criteria of N −KG −KL, the breakdown of each component is a random prob-

ability event. Conventionally, reserve adjustment method [81] is widely utilized to deal

with outage due to its easy application [82], however, it is usually criticized for economic

inefficiency or even inadequacy. Stochastic programming technique is authoritative in the

formulation and solution of problems with uncertainty, which assures that the optimal so-

lution is feasible for all (or almost all) of the possible realizations. Nevertheless, how to

identify an accurate probability distribution of different types of uncertainties remains a

great challenge for practical application. Instead of the hard-to-obtain probability distri-

bution function, only the bounds of uncertainty are required for the Robust Optimization

(RO) [5, 20, 83–86] approach. The obtained solution is global optimal and feasible for the

worst case of uncertainty set, as well as all the other possibilities.

Commonly, the RO approach might lead to a higher cost (the “price of robustness”)

since it protects against the most severe event regardless of its low probability. Neverthe-

less, it still gained close attention in the solution of SCUC since the reliability has a con-

Chapter 1. Introduction 12

Master Problem

(MILP)

Subproblem

(Bi-level max-min)

Master Problem

(MILP)

Implicit Method Explicit Method

Subproblems

(LPs)

Cuts and constraints

Heavy computation

Light computation

Temporary schedules

Figure 1.3: Implicit and explicit implementation frameworks for robust optimization
method.

servatism nature, i.e., the final solution should withstand the worst circumstance. SCUC

was first solved by [84] with RO under n − K contingency criteria, however, neither the

transmission capacity constraints nor the transmission line contingencies were considered.

This work was extended by [20] with full consideration of transmission constraints and

contingencies, but a heuristic was introduced to reduce the solution time, which made

the optimality of the final solution difficult to identify. In [85], both generation unit and

transmission line contingencies were investigated; nevertheless, this study was restricted

on single-period SCUC (one-time decision rather than the 24-hours successive decision),

i.e., time-coupling constraints were omitted. Reference [86] enhanced this work from the

consideration of day-ahead schedule.

RO employs a two-stage decomposition framework for the solution of SCUC, which

divides the whole problem into two stages or problems as shown in Fig. 1.3. The mas-

ter problem aims to minimize the total costs while satisfying the constraints from pre-

contingency and post-contingency (cuts or constraint sets). At each iteration, the master

problem is solved first to generate an intermediate solution (unit commitment schedule),

which is then validated by subproblems to find the most violated scenario from all realiza-

tions of uncertainty set. If there exists a violated contingency scenario, one or more cuts

will be generated and included in the master problem, and it goes to the next iteration;

otherwise, the solution process is terminated since all realizations are satisfied. In terms of

how to identify the worst case in the second stage, two schemes are illustrated in Fig. 1.3.

• Implicit Method: To distinguish the most serious situation, the implicit method re-

sorts to the bi-level max−min programming. The maxmin problem in the solution

Chapter 1. Introduction 13

approach is NP-hard, and is usually converted into a bilinear maxmax problem ac-

cording to the strong duality theory, which is then relaxed and linearized based on

the outer approach [87] or disjunctive constraints [85], resulting into an MILP prob-

lem [88, 89].

• Explicit Method: As shown in Fig. 1.3, enumeration strategy is adopted by the

explicit method to determine the worst scene. Since the number of subproblems

presents an exponential dependence with n, KG, and KL, the explicit method is crit-

icized a lot. Nevertheless, it is easier to be parallelized.

1.3.4 Parallel RTOPF with Penetration of Renewable Energy

Two types of methodologies are commonly resorted to address the RTOPF problem with

the consideration of renewable energy generators:

• Probabilistic method: Suppose the probability distribution functions of the uncer-

tain demands and generators are given, the stochastic optimization problem is for-

mulated and addressed with Chance-Constrained Programming (CCP) technique,

which ensures that each constraint will be satisfied in a predefined high probability.

The CCP is a relatively robust approach, nevertheless, it is complex and difficult to

solve and; therefore, its application is usually restricted to long-term off-line opti-

mization [90–92].

• Deterministic method: Instead of performing the prediction with historical data and

mathematical statistical model, different types of sensors designed for temperature,

luminance, and wind speed, etc., can be widely utilized for observing. Since the

obtained dataset consists of fixed real values rather than PDFs, a deterministic op-

timization problem can be formulated, whose solution is easier and more accurate

when compared with its probabilistic counterpart.

Based on the above analysis, the deterministic method is advisable for the solution of

RTOPF. As reported in [22, 23, 93], the RTOPF is carried out in every 5–15 min intervals

based on the static snapshot forecast data. Fig. 1.4 illustrates the traditional implemen-

tation framework of RTOPF. At the beginning of each interval i, RTOPFi is carried out

to produce the control decisions for interval i + 1. Theoretically, the real-time observed

dataset Oi+1 should be utilized as the input for RTOPFi since the decision is made for in-

terval i+ 1. Nevertheless, Oi+1 cannot be gathered until ti+1, i.e., utilizing Oi+1 at ti is not

Chapter 1. Introduction 14

1O

RTOPF1 based on F1 RTOPF2 based on F2 RTOPF3 based on F3

1t 2t 3t 4t

Forecast data set:
1F 2F 3F

Observed data set: 2O 3O 4O

4F

1O1

RTOPF1 based on F1 RTOPF2 based on F2F RTOPF3 based on F3F

1t 2t 3t 4t

Forecast data set:
1F1 2F2 3F3

Observed data set: 2O2 3O3 4O4

4F4

Implementation:

xxInterval 1xx xxInterval 2xx xxInterval 3xx

Figure 1.4: Traditional implementation framework of RTOPF.

achievable. Therefore, forecast dataset Fi is generated for the substitution of Oi+1. Since Fi

is derived from Oi, and Oi is different from Qi+1 as their time-stamps are various, therefore

the variation between Fi and Oi+1 is inevitable, and it goes higher as the length of interval

increases. In order to mitigate the forecasting error, a lot of research effort has been put

on the development of advanced physical and statistical algorithms, such as conditional

kernel density estimation [94], artificial neural network [95], and numerical weather pre-

diction grids [96], etc.

The aforementioned methodologies provide one promising direction to improve the

accuracy of deterministic RTOPF; however, the pure prediction technique is approaching

its maximum capability. Therefore, further improvements from other directions have been

explored. In [93], the regular RTOPF scheduling interval (10 min) has been divided into

several subintervals (1 min) based on the introduction of participation factors for each

generator. The time resolution has been enhanced, thus the prediction error was reduced.

On the other hand, acceleration on the solution process of RTOPF is also constructive for

the reduction of the length of intervals in Fig. 1.4. The projected gradient descent was

employed for on-line OPF in [97], where good performance has been reported for both

solution efficiency and global convergence. Ref. [98] combines the genetic algorithm and

two-point estimate method to effectively tackle the uncertainties. Quasi-Newton method

is resorted to developing a real-time algorithm for AC OPF in [99], where the second order

information is utilized to provide suboptimal solutions on a fast timescale.

Although these methods are valid and beneficial, they share one common limitation

that Fi in Fig. 1.4 is directly utilized to represent Oi+1, i.e., there is an implicit hypothesis

that the forecast data set is 100% acceptable during each interval, which may not always be

true. To address this issue, several Fi were generated to predict Qi+1 in [100]. By solving

different RTOPFs corresponding to each Fi, a lookup table was maintained. At time ti+1,

the Oi+1 is available, then the closest Fi can be determined, thus quick decisions can be

made by indexing the lookup table. This solution framework is beneficial to minimize to

eliminate the forecasting error between Fi and Oi+1; however, the intensive computational

Chapter 1. Introduction 15

burden due to large numbers of Fi consists one of its greatest drawbacks, thus only 2 REGs

and 49 scenarios were considered in [100]. In addition, the difference between Fi and Oi+1

might still be large after minimization. To address these two concerns, the GPU is benefi-

cial for the acceleration of lookup table formulation since RTOPFs corresponding to each

Fi are independent and can be solved in parallel.

1.3.5 Fast DNRC with Graph Theory and Direct Approach

As indicated in the problem definition, two main concerns need to be addressed for the so-

lution of DNRC. In terms of the RTS issue, two types of heuristics are widely investigated:

• Modification: This kind of method begins with an RTS tree. Firstly, add a new link to

the tree. Due to RTS feature and graph theory, the resulted figure does not hold RTS

since a cycle is formulated. Secondly, in order to obtain RTS again, select one edge

belonging to the cycle and remove it. This method is named branch exchange in the lit-

erature, i.e., exchanging two edges in different sets. Within this framework, various

strategies are proposed [101–103] to determine the selection strategy for branches.

• Generation: This type of method starts from the full graph G. A successive process

should be implemented to generate a candidate RTS. At each step, identify one cycle

in G, and then select one edge in that cycle to delete. By doing this, that loop is bro-

ken. The process continues until there is no cycle in G. Based on how to select edge

in each loop, different methods are developed [104–107].

Although these heuristics are straightforward and easy to implement, they are greedy

and the final solution depends on the initial configuration [19], thus it is a local optimum

rather than the global best. Therefore, they are commonly integrated into a meta-heuristic

framework to achieve the global optima. Nevertheless, the encoding and decoding strate-

gies are usually complicated or inefficient due to the identification of different loops. For

example, the integer coded genetic algorithm is utilized in [108], where crossover and

mutation operations are based on the matroid theory, which is highly dependent on the

loops. Instead of dealing with loops, a novel decimal encoding technique is proposed

in [27], where the RTS is naturally guaranteed for each candidate based on the Minimum

Spanning Tree (MST) calculation. Given an initial graph G with varied weights of edges,

different trees can be generated by advanced MST algorithms. This method is direct, but

the solution process is time-consuming because the MST searching is computationally in-

tensive and involved into each candidate generation.

Chapter 1. Introduction 16

To address the DNPF concern, techniques widely utilized for transmission network

have been modified and applied, such as the FD [109–111] and NR [112–114] algorithms.

One limitation of this kind of method is that the successive admittance matrices must be

updated in each iteration due to the topology variation. The construction and factoriza-

tion of these matrices bring heavy computation burden, thus the solution efficiency is

limited. On the other hand, the Backward/Forward Sweep (BFS) method [115] and its

variants [116, 117] have gained great popularity for the DNPF solution due to their good

convergence and easy applicability. One major drawback of the BFS as summarized in the

literature [118] is the requirement on the numbering schemes for the system buses and/or

branches, which could reduce the flexibility and affect its ability to accommodate changes

in topology. In addition, the solution time of DNPF with BFS is mainly determined by the

number of system buses, thus the capability for large-scale systems is restrained.

Instead of the time-consuming LU decomposition and backward/forward substitution,

a distinctive Direct Approach (DA) was proposed in [119], where only the matrix multipli-

cations were involved. The essential processes related to two newly defined matrices, i.e.,

the Bus-Injection to Branch-Current (BIBC) matrix and the Branch-Current to Bus-Voltage

(BCBV) matrix. The advantageous of DST has been revealed in [119, 120]. Although the

formulation algorithm of BIBC and BCBV reported in [119] is intuitive, the efficiency is

limited since only one branch is considered at each step.

1.3.6 Parallel RTVVO with Distributed Generators

Due to different nature of control devices, VVO is conventionally formulated as a Mixed-

Integer Non-Linear Programming (MINLP) problem with complex numbers and constraints.

Two types of methods have been widely utilized for the solution of such a Nondeterminis-

tic Polynomial hard (NP-hard) problem: 1) mathematical programming methods, includ-

ing robust optimization [29, 33], mixed-integer programming [28, 32], BD [34], model pre-

dictive control [35], etc.; 2) meta-heuristic methods, such as genetic algorithm [36,37], PSO

[38, 39], simulated annealing [40], etc. A common feature for many of the proposed math-

ematical programming methods is the relaxation of original variables and constraints [36].

For example, linear power flow formulation is utilized in [28], and integer variables are re-

laxed into continuous during computation and discretized subsequently in [31]. Although

relaxation can facilitate computation and mathematical programming methods are deter-

ministic, the accuracy is sacrificed. On the other hand, the meta-heuristic methods are ca-

pable to address various types of problems of their original form, such as non-linear, non-

convex, mixed-integer, NP-hard, and combinatorial, etc. Therefore, the ACPF calculation

for distribution network can be fully integrated into the VVO framework. Nevertheless,

they are usually computational intensive.

Chapter 1. Introduction 17

In order to alleviate the computational burden and accelerate the solution process of

VVO, parallel computing technique has been introduced in [38]. The parallel realization

of PSO was fulfilled with OpenMP [121] on CPU, resulting speedups of 1.95×, 3.42×, and

3.72×with 2, 4, and 8 threads, respectively. It is observable that the parallel efficiency faced

with the bottleneck on the 8 threads. In addition, the investigated system is only 14-bus,

which is partially due to the contradiction between real-time requirement and solution ef-

ficiency. Actually, for other references related to VVO, whether the real-time and ACPF

are considered or not, the target system scales are also limited without the introduction of

HPC platform and parallel computing technique.

1.4 Motivation and Objective

As discussed in the literature review, the advantageous endeavor has been made to im-

prove the solution efficiency and accuracy of optimization problems for large-scale power

systems planning and operation. Although most of them are remarkable with magnifi-

cent results, the exploration is still far away from the destination since new challenges and

opportunities continue to emerge. Therefore, taking new opportunities to address new

challenges consists the major motivation of this work. The derivation of countermeasures

is mainly based on algorithm refining and computation architecture updating according

to the characteristics of target problems and solution methodologies. Since the challenges

have been illustrated in the above, the following is devoted to opportunities extraction,

which also comprises the main objective of this work.

• Meta-Heuristic Algorithms for TEP

When utilizing meta-heuristic algorithm for the solution of TEP, the execution time

is still a bottleneck, which is mainly due to premature of meta-heuristics and large

numbers of LP solution. The population of classical PSO and most of its variants are

led by a single global best, which usually results into premature and local optimal so-

lution; therefore, their applications are commonly limited to small- or medium-scale

systems. In this study, acceleration strategies will be proposed with the combination

of multi-group co-evolution strategy and LU decomposition method for TEP.

• Deterministic Algorithms for SCTEP

As a deterministic algorithm, BD has been widely utilized for the solution of SCTEP,

however, most of them are implemented in the classical framework, i.e., iteratively

solving MILP master problem and LP subproblem until the convergence criteria are

met. It can be very expensive from a computational viewpoint since the solution of

MILP (which is much harder to be tackled than LP) is heavily involved. Therefore,

Chapter 1. Introduction 18

in this thesis, instead of solving the MILP master problem, the BD process will be in-

tegrated into a Branch-and-Cut (B&C) framework to save computational effort and

execution time, where only the relaxed LP master problem needs to be solved at each

node. In addition, acceleration strategies will also be investigated.

• Fast Decoupled Method and Direct Linear Solver for ACPF with GPU

ACPF analysis is one of the most fundamental tasks for the power system operation

and optimization, which dominates the essential steps of many practical problems.

FDPF received much attention for the solution of ACPF due to its lighter computa-

tion burden. In the process of FDPF, a lot of Linear Equation Systems (LESs) can be

solved with both iterative and direct solvers. Although it is reported that the iterative

solver is more desirable for the solution of large-scale LESs in the context of paral-

lel computing, this work intends to explore the potential of direct solver for DNPF.

The procedure of the direct solver usually consists of factorization and substitution,

which matches the property of FDPF, i.e., factorization results are reusable. In addi-

tion, the direct solver is more robust for ill-conditioned problems. Implementation

will be conducted on GPU with both Matlab and CUDA.

• Compensation Method for RTCA with GPU

A series of ACPFs need to be efficiently solved in the RTCA problem. Although FDPF

with direct linear solver and GPU has gained good performance for the solution of

single ACPF, improvement is still possible since all the ACPFs are similar. Based on

the factorization result of a specific matrix, the CM can derive factorization results

for other similar matrices with limited operations based on the sensitivity analysis.

Nevertheless, the implementation of CM on GPU has never been reported to the best

of our knowledge. Thus, this work intends to fill this gap with the presentation of

detailed implementation schemes and performance validations.

• Robust Optimization Frameworks for SCUC

Two implementation frameworks have been developed for RO, where implicit method

gained a good reputation and explicit method was criticized a lot. However, with the

popularity of parallel processing, some promising features of explicit method should

not be overlooked: 1) each subproblem of characteristic is LP, which is much easier to

solve than MILP; 2) the subproblems are independent with each other, thus they can

be solved simultaneously, i.e., suitable for parallel computing; 3) not only the most

violated scenario can be found, other violated contingencies can also be identified,

therefore, more cuts can be generated to enhance the convergence; 4) more infor-

mation on the violated scenarios is beneficial for the releasing of the conservatism.

Chapter 1. Introduction 19

Therefore, in this thesis, both frameworks will be implemented and compared to

evaluate their potential for SCUC, especially in the context of parallel computing.

• Primal-Dual Interior Point Method for RTOPF with Batched GPU

With the introduction of renewable energy generators and loads, the forecasting error

is inevitable. One of the possible alternatives to minimize the mismatch is generat-

ing more scenarios for estimation. Based on the results from different scenarios, a

lookup table can be maintained, which can be quickly indexed when the uncertainty

is realized. However, the implementation is not trivial since large numbers of sce-

narios should be addressed within limited time. In order to address this concern, all

scenarios will be solved simultaneously with batched GPU mode, where PDIPM is

employed for optimization. By tuning matrices into the same sparsity pattern, the

batched mode can do the factorization for a lot of matrices at the same time. Not

only the execution time but also the storage space can be saved.

• Direct Approach and Graph Theory for DNRC

During the solution of DNRC, two main concerns are RTS and DNPF. Although the

MST method performs better than other algorithms for the pursuing of RTS, it is

still computationally expensive. In this work, a new RTS formulation strategy based

on the loop detection and destruction will be proposed. Since a lot of radial trees

need to be generated from the graph (original distribution network) during the so-

lution process, the graph loop information is reusable, thus computation effort can

be saved. On the other hand, the DA is one of the most efficient methods for DNPF.

Improvements on the [BIBC] and [BCBD] matrices formulation will be generated

in this study based on the adjacency and path matrices from graph theory. Instead

of the classical method that considering one switch at a time, the proposed method

handles all branches concurrently with matrix operations.

• PSO and GPU for RTVVO

The popularity AMI is driving the DAVVO into RTVVO from the perspective of com-

munication and controlling. Nevertheless, the solution efficiency of RTVVO is rarely

discussed in the literature. This thesis intends to fill that gap. Firstly, the DNPF solu-

tion method within RTVVO will be changed from NR and FDPF into DA due to its

regulated matrix operations. Full mathematical model of VVO control components

is formulated and integrated into the solution process of DA, including SC, OLTC,

and DG. Then, a whole solution scheme developed with PSO will be implemented

on GPU, with data structure design and thread organization are fully revealed.

Chapter 1. Introduction 20

1.5 Thesis Outline

In this thesis, two computation platforms, five programming languages, three parallel ar-

chitectures, four solver packages, and twelve algorithms/methods are utilized and con-

sulted to achieve the performance enhancement for various large-scale power system plan-

ning and operation problems. Fig. 1.5 illustrates the mapping relationship between these

items and main chapters. Supportive descriptions are given as follows:

• Chapter 1: Introduction - In the context of coexisting challenges and opportunities,

various power systems planning and operation optimization problems are defined

and clarified to highlight the scope of the thesis in this chapter. Advantageous work

related to each problem is reviewed to sketch out the achievements and limitations.

Finally, the motivation, objective, and outline are summarized.

• Chapter 2: Transmission System Optimal Expansion Planning: TEP and SCTEP

- Due to the boost of loading levels and the wide utilization of distributed genera-

tors, TEP has regained its significance for investigation. Without generation redis-

patch, the LP subproblem of DC TEP is transformed into LES, which is much easier

to be solved than LP with LU decomposition. Based on the discrete PSO frame-

work, MGPSO is proposed with the introduction of beneficial enhancements, such

as Sobol sequence initialization method, multi-group co-evolution strategy, and mu-

tation mechanism. Superiority over commercial software Lingo is established with

case studies. On the other hand, the disjunctive model is utilized to formulate the

SCTEP into MILP problem, where integer numbers are replaced with binary num-

bers and nonlinear constraints are relaxed into linear ones with the introduction of

linearizing constant (big-M). Due to large numbers of decision variables, BD is em-

ployed to divide and conquer. In order to achieve better solution efficiency, BCBD

algorithm is proposed by the integration of BD into a B&C framework. Different

from BD with MILP master problem, the master problem in BCBD is LP, which is

much less computationally intensive than MILP. Four acceleration strategies are de-

veloped to further improve the efficiency of BCBD. Better performance has been ob-

served from the comparison with MILP solver Cplex, reducing the execution time

from days to hours.

• Chapter 3: Transmission System Optimal Operation: FDPF and RTCA - ACPF

analysis is one of the most fundamental tasks for the transmission system operation

and optimization problems, therefore achieving high solution efficiency for ACPF

analysis from HPC architecture is a leading and important challenge in power sys-

tem analytics and computation. This chapter starts the solution of single ACPF with

Chapter 1. Introduction 21

Matlab and CUDA based on FD method and GPU platform. Data storage formats

and fill-in reduction algorithms are compared and discussed. With this experience,

single ACPF is evolved into multiple ACPF, i.e., the RTCA problem. Instead of solv-

ing ACPF individually with FD method, the CM is employed to solve all ACPFs

simultaneously. Based on the sensitivity analysis of similar ACPFs, the number of

matrix decomposition has been greatly reduced. Strategies and principles on the

data structure, kernel function, and memory management are designed for GPU im-

plementation. Good performance on accuracy, convergence, and scalability of CM

running on GPU with CUDA has been validated with five benchmark systems rang-

ing from 300- to 13,659-bus. It is concluded that the parallel CM is promising for

industrial application since it is capable to finish the whole N − 1 RTCA analysis for

the 13,659-bus system within one minute.

• Chapter 4: Generation System Optimal Operation: SCUC and RTOPF - All power

in the grid is provided by the generator, thus the optimal operation of generation

system is of great significance for the economy and security. In this chapter, SCUC is

solved to determine the on-off status of each thermal generator. In order to reveal the

capability of different methods on the solution of CCUC, both explicit and implicit

decomposition frameworks have been investigated, as well as their inner feedback

strategies, such as BD and CCG algorithm. In addition, sensitivity analysis, multi-

cut strategy, and parallel implementation have also been analyzed and discussed.

Results indicate that explicit method is competitive with the implicit method in the

context of parallel computing. On the other hand, RTOPF is introduced to optimize

the active power output of thermal generators. Nevertheless, the prediction error is

inevitable if renewable energy is considered. To improve the solution efficiency and

accuracy of RTOPF, a three-stage framework for parallel processing is developed. In

Stage 1, uncertainties from renewable generators and demand loads are character-

ized with scenarios. Large numbers of RTOPFs corresponding to each scenario are

formulated and addressed in Stage 2, where the linear systems are regulated into the

same sparsity pattern and then tackled in a batched style with the GPU. Results from

Stage 2 are utilized in Stage 3 to perform a hot-start RTOPF, where the forecasting

error can be minimized. Case studies are implemented on various systems to vali-

date the effectiveness of the proposed implementation framework with GPU batched

mode.

• Chapter 5: Distribution System Optimal Operation: DNRC and RTVVO - Due to

the low voltage level of distribution network, significant power losses are encoun-

tered. In order to minimize them, DNRC and RTVVO are investigated from two

different aspects, i.e., determining the open/close status of switches and controlling

Chapter 1. Introduction 22

a set of devices, respectively. In order to accelerate the solution process of DNRC,

two essential components of meta-heuristic algorithms are investigated: solution

representation and fitness evaluation. An efficient decimal solution encoding and

decoding strategy is proposed based on the graph theory. DNPF solution process

is also accelerated based on the new generation process of [BIBC] matrix in DA.

Superiority of the two proposals over advanced counterparts reported in the litera-

ture is established with case studies. GPU is introduced in this chapter for the first

time to evolve the day-ahead VVO into RTVVO. PSO is employed as the solution

framework, where DNPF subproblem is addressed with DA. Mathematical formula-

tion of various components is integrated into DA to achieve higher accuracy. Well-

established data structure and thread organization pattern are also provided for GPU

implementation. Based on the comparison with CPU implementations, the promise

of the proposed GPU parallel implementation scheme for practical application is es-

tablished.

• Chapter 6: Conclusions and Future Works - The contribution of this research and

the future works are summarized in this chapter.

Chapter 1. Introduction 23

T
E

P
:

S
C

T
E

P
1

:

S
C

T
E

P
2

:

F
D

P
F

:

R
T

C
A

:

C
C

U
C

:

R
T

O
P

F
:

D
N

R
C

:

R
T

V
V

O
:

C
h

a
p

te
r

2

T
ra

n
sm

is
si

o
n

 S
y

st
e

m

O
p

ti
m

a
l
E

x
p

a
n

si
o

n

P
la

n
n

in
g

C
h

a
p

te
r

3

T
ra

n
sm

is
si

o
n

 S
y

st
e

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

C
h

a
p

te
r

4

G
e

n
e

ra
ti

o
n

 S
y

st
e

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

C
h

a
p

te
r

5

D
is

tr
ib

u
ti

o
n

 S
y
s
te

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

A
lg

o
ri

th
m

 &
 M

e
th

o
d

:

1
5

.
P

S
O

 (
P

a
rt

ic
le

 S
w

a
rm

 O
p

ti
m

iz
a

ti
o

n
);

1
6

.
R

O
 (

R
o

b
u

st
 O

p
ti

m
iz

a
ti

o
n

);
1

7
.

B
D

 (
B

e
n

d
e

rs
 D

e
co

m
p

o
si

ti
o

n
);

1
8

.
P

D
IP

M
 (

P
ri

m
a

l-
D

u
a

l
In

te
ri

o
r

P
o

in
t

M
e

th
o

d
);

1
9

.
C

C
G

 (
C

o
lu

m
n

-a
n

d
-C

o
n

st
ra

in
t

G
e

n
e

ra
ti

o
n

);
2

0
.

B
&

C
 (

B
ra

n
ch

-a
n

d
-C

u
t)

;

2
1

.
C

M
 (

C
o

m
p

e
n

sa
ti

o
n

 M
e

th
o

d
);

2
2

.
D

A
 (

D
ir

e
ct

 A
p

p
ro

a
ch

);
2

3
.

LU
 (

LU
 F

a
ct

o
ri

za
ti

o
n

);

2
4

.
Q

R
 (

Q
R

 F
a

ct
o

ri
za

ti
o

n
);

2
5

.
M

IL
P

 (
M

ix
e

d
-I

n
te

g
e

r
Li

n
e

a
r

P
ro

gr
a

m
m

in
g

);
2

6
.

G
ra

p
h

 T
h

e
o

ry

S
o

lv
e

r:
1

1
.

Lp
so

lv
e

r;
1

2
.

cu
S

o
lv

e
r;

1
3

.
cu

S
p

a
rs

e
;

1
4

.
C

sp
a

rs
e

.

P
a

ra
ll

e
l A

rc
h

it
e

ct
u

re
:

8
.

O
p

e
n

M
P

;
9

.
C

U
D

A
 (

C
o

m
p

u
te

 U
n

if
ie

d
 D

e
v

ic
e

 A
rc

h
it

e
ct

u
re

);
1

0
.

g
p

u
A

rr
a

y
.

P
ro

gr
a

m
m

in
g

 L
a

n
g

u
a

ge
:

3
.

C
+

+
;

4
.

M
a

tl
a

b
;

5
.

Li
n

g
o

;
6

.
IB

M
 I

LO
G

 C
p

le
x

.
7

.
A

M
P

L
(A

 M
a

th
e

m
a

ti
ca

l
P

ro
g

ra
m

m
in

g
La

n
g

u
a

g
e

).

C
o

m
p

u
ta

ti
o

n
 P

la
tf

o
rm

:
1

.
C

P
U

 (
C

e
n

tr
a

l P
ro

ce
ss

in
g

 U
n

it
);

2
.

G
P

U
 (

G
ra

p
h

ic
s

P
ro

ce
ss

in
g

 U
n

it
).

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6

T
E

P
:

S
C

T
E

P
1

:

S
C

T
E

P
2

:

F
D

P
F

:

R
T

C
A

:

C
C

U
C

:

R
T

O
P

F
:

D
N

R
C

:

R
T

V
V

O
:

C
h

a
p

te
r

2

T
ra

n
sm

is
si

o
n

 S
y

st
e

m

O
p

ti
m

a
l
E

x
p

a
n

si
o

n

P
la

n
n

in
g

C
h

a
p

te
r

3

T
ra

n
sm

is
si

o
n

 S
y

st
e

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

C
h

a
p

te
r

4

G
e

n
e

ra
ti

o
n

 S
y

st
e

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

C
h

a
p

te
r

5

D
is

tr
ib

u
ti

o
n

 S
y
s
te

m

O
p

ti
m

a
l
O

p
e

ra
ti

o
n

A
lg

o
ri

th
m

 &
 M

e
th

o
d

:

1
5

.
P

S
O

 (
P

a
rt

ic
le

 S
w

a
rm

 O
p

ti
m

iz
a

ti
o

n
);

1
6

.
R

O
 (

R
o

b
u

st
 O

p
ti

m
iz

a
ti

o
n

);
1

7
.

B
D

 (
B

e
n

d
e

rs
 D

e
co

m
p

o
si

ti
o

n
);

1
8

.
P

D
IP

M
 (

P
ri

m
a

l-
D

u
a

l
In

te
ri

o
r

P
o

in
t

M
e

th
o

d
);

1
9

.
C

C
G

 (
C

o
lu

m
n

-a
n

d
-C

o
n

st
ra

in
t

G
e

n
e

ra
ti

o
n

);
2

0
.

B
&

C
 (

B
ra

n
ch

-a
n

d
-C

u
t)

;

2
1

.
C

M
 (

C
o

m
p

e
n

sa
ti

o
n

 M
e

th
o

d
);

2
2

.
D

A
 (

D
ir

e
ct

 A
p

p
ro

a
ch

);
2

3
.

LU
 (

LU
 F

a
ct

o
ri

za
ti

o
n

);

2
4

.
Q

R
 (

Q
R

 F
a

ct
o

ri
za

ti
o

n
);

2
5

.
M

IL
P

 (
M

ix
e

d
-I

n
te

g
e

r
Li

n
e

a
r

P
ro

gr
a

m
m

in
g

);
2

6
.

G
ra

p
h

 T
h

e
o

ry

S
o

lv
e

r:
1

1
.

Lp
so

lv
e

r;
1

2
.

cu
S

o
lv

e
r;

1
3

.
cu

S
p

a
rs

e
;

1
4

.
C

sp
a

rs
e

.

P
a

ra
ll

e
l A

rc
h

it
e

ct
u

re
:

8
.

O
p

e
n

M
P

;
9

.
C

U
D

A
 (

C
o

m
p

u
te

 U
n

if
ie

d
 D

e
v

ic
e

 A
rc

h
it

e
ct

u
re

);
1

0
.

g
p

u
A

rr
a

y
.

P
ro

gr
a

m
m

in
g

 L
a

n
g

u
a

ge
:

3
.

C
+

+
;

4
.

M
a

tl
a

b
;

5
.

Li
n

g
o

;
6

.
IB

M
 I

LO
G

 C
p

le
x

.
7

.
A

M
P

L
(A

 M
a

th
e

m
a

ti
ca

l
P

ro
g

ra
m

m
in

g
La

n
g

u
a

g
e

).

C
o

m
p

u
ta

ti
o

n
 P

la
tf

o
rm

:
1

.
C

P
U

 (
C

e
n

tr
a

l P
ro

ce
ss

in
g

 U
n

it
);

2
.

G
P

U
 (

G
ra

p
h

ic
s

P
ro

ce
ss

in
g

 U
n

it
).

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6

F
ig

u
re

1.
5:

O
u

tl
in

e
o

f
th

is
th

es
is

al
o

n
g

w
it

h
te

ch
n

ic
al

d
et

ai
ls

.

2
Transmission System Optimal Expansion

Planning: TEP and SCTEP

2.1 Introduction

The emergence of a great number of regional planning projects worldwide has consid-

erably increased the complexity and relevance of TEP, prompting intensive research and

investigation on the formulation and solution [48, 59]. In addition, reliability and secu-

rity concerns of electricity supply during this radical evolution of modern power sys-

tems is causing operators and engineers to find improved and efficient solutions to SCTEP

[10, 122]. In this chapter, both problems are addressed with meta-heuristic and determin-

istic methods, respectively.

At the beginning, the widely utilized DC power flow model is employed for TEP, re-

sulting in a mixed-integer, nonlinear, non-convex, and NP-hard problem [123]. Due to

its great complexity, the meta-heuristic method PSO is determined since it is robust for

various types of problems. In order to further improve the solution efficiency, the evo-

lutionary mechanism is enhanced, including Sobal sequence initialization, multi-group

co-evolution, and mutation. In addition, the fitness evaluation process is also accelerated

by replacing the LP with LES, which is much easier to be solved with LU decomposition.

Based on the experience for TEP, the SCTEP is investigated subsequently. The consider-

ation of security criteria greatly increases the complexity, thus the disjunctive power flow

model is utilized, leading to a MILP problem. Although there are various off-the-shelf

solvers available for MILP problems, major concerns are still emerged for large-scale sys-

tems due to their thousands or millions of decision variables and constraints. Therefore,

24

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 25

BD is introduced to divide and conquer. In the literature, there are few fields where BD

can work very well without much additional implementation work, i.e., enhancements to

BD are almost always necessary. Instead of the classical acceleration strategies to generate

tighter cuts, a new implementation framework is proposed by integrating the BD into a

B&C skeleton, resulting in the BCBD algorithm. Furthermore, four acceleration strategies

are also tailored for the solution of SCTEP.

2.2 Transmission Expansion Planning

This section intends to address the TEP with MGPSO, where formulation and implementa-

tion details are presented in subsection 2.2.1 and 2.2.2 respectively; performance validation

is demonstrated in subsection 2.2.3.

2.2.1 TEP Problem Formulation

2.2.1.1 DC Power Flow Model

DC power flow model is the basic network model for TEP study, which can be formulated

as follows:

min
nij , rk, fij , θi, gi

∑

(i,j)∈C
cijnij + P

∑

k∈Nb

rk, (2.1)

s.t. Sf + g + r = d, (2.2)

fij − γij
(

n0
ij + nij

)

(θi − θj) = 0, (2.3)

|fij | ≤
(

n0
ij + nij

)

f̄ij , (2.4)

0 ≤ g ≤ ḡ, (2.5)

0 ≤ r ≤ d, (2.6)

0 ≤ nij ≤ n̄ij , nij integer, θi and θj unbounded. (2.7)

where

Sij =











−1, if branch i− j originates from bus i,

1, if branch i− j terminates at bus j,

0, otherwise.

(2.8)

The objective function (2.1) comprises of the construction cost
∑

(i,j)∈C cijnij and the

load curtailment penalty P
∑

k∈Nb
rk. Equation (2.2) is the bus balance constraint. Equa-

tions (2.3) – (2.4) are DC power flow constraints. Equations (2.5) – (2.7) are limit constraints

for the generation, load curtailment, and the number of new lines to be built.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 26

Algorithm 2.1 Pseudo code of meta-heuristic algorithms for TEP solution

1: Propose a candidate solution vector n.
2: while Terminate conditions are not met do

3: Evaluate the quality of n by LP (2.9) – (2.12).
4: Evolve to a new solution n by several operation processes, such as crossover, muta-

tion, velocity adjusting, etc.
5: end while

6: return The final solution.

2.2.1.2 Linear Programming Subproblem

The TEP (2.1) is a MINLP problem, which has been proved to be a hard combinatorial

problem [45,46]. However, if a candidate solution n is given, i.e., n̂ij is fixed, problem (2.1)

– (2.7) can be converted into an LP problem and rewritten as follows:

min
rk, gi, θi

∑

(i,j)∈C
cijn̂ij + P

∑

k∈Nb

rk, (2.9)

s.t. Bθ + g + r = d, (2.10)

γij
(

n0
ij + n̂ij

)

|θi − θj | ≤
(

n0
ij + n̂ij

)

f̄ij , (2.11)

Constraints (2.5)− (2.7). (2.12)

where constraints (2.10) and (2.11) are derived from (2.2) and (2.4) respectively, with fij

replaced by γij

(

n0
ij + n̂ij

)

(θi − θj) according to (2.3). Accordingly, Sf is rewritten into

Bθ, where θ represents the vector of voltage phase angles, and B is a symmetric singular

matrix generated by:

B = −S
(((

γ. ∗
(

n0 + n
))

11×nb

)

. ∗ ST
)

, (2.13)

where 11×nb
is a vector of ones by the scale of 1 × nb and “.∗” means element-wise multi-

plication operator in Matlab, γ, n0, and n are vectors of γij , n
0
ij , and n̂ij respectively, nb is

the total number of buses.

Since MINLP (2.1) – (2.7) contains large numbers of constraints, which provides great

obstacles for meta-heuristic algorithm with conventional constraint handling methods,

such as penalty function method, therefore, another more efficient strategy (shown in Al-

gorithm 2.1) has been proposed and employed by the majority of meta-heuristic algo-

rithms when tackling TEP problems.

2.2.1.3 Linear Programming Transformation

In order to gain higher solution efficiency, the LP (2.9) – (2.12) was transformed into a new

form by [45] via a series of processes, resulting in the number of decision variables reduced

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 27

from 2nb to nb, and the number of constraints decreased from 2nb + 2nc to nb + 2nc + 1,

where nc is the number of candidate circuits. Due to the reduction in problem scale, the

revised LP formulation gained a better performance than Minos 5.4 software in [45]. How-

ever, it was pointed by the authors themselves that the proposed transformation presented

a disadvantage of requiring the inversion of matrix B in an explicit way, which is relatively

computationally intensive.

Instead of transforming the original LP into another LP with reduced scales, an LES

is extracted in this section since it is much easier to be addressed. Different from the LP

solution process with simplex method or interior point method, where large numbers of

iterations are required, the LES can be efficiently solved by matrix inverse or LU decompo-

sition. In order to fulfill the transformation from LP to LES, the following two assumptions

are proposed:

• Assumption 1: rk = 0 for all k. It is required that all load buses are satisfied by

generation buses for the optimal solution, i.e., for each bus the loss of load is 0, which

means rk = 0.

• Assumption 2: g = ḡ. This assumption holds for all the TEP without the considera-

tion of generation redispatch, such as the real Brazilian 46-bus system [13,17,48,124].

Based on Assumptions 1 and 2, LP problem (2.9) – (2.12) can be modified into:

min
sij , θi

∑

(i,j)∈C
cijn̂ij + P

∑

(i,j)∈C
sij , (2.14)

s.t. Bθ + ḡ = d, (2.15)

γij
(

n0
ij + n̂ij

)

|θi − θj | ≤
(

n0
ij + n̂ij

)

f̄ij + sij , (2.16)

sij ≥ 0. (2.17)

where sij is the relaxation coefficient. Compared with (2.9) – (2.12), decision variables g

and r are eliminated, as well as the constraints of limitation for them.

The key point for solving LP (2.14) – (2.17) is deriving θ from LES (2.15), after which, an-

other decision variable sij is very easy to be extracted from (2.16) with simple substitution

process. There are several methods to tackle with LES (2.15), such as LU decomposition.

The details to solve (2.14) – (2.17) will be explicated by Algorithm 2.2 in the next section.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 28

2.2.2 Multi-Group Particle Swarm Optimization

PSO was first proposed by Kennedy and Eberhart [125] in 1995 with the core idea of shar-

ing information between particles, local best, and global best, which can be expressed as:

vk+1
i = w0v

k
i + c1w1(p

k
i − xki) + c2w2(g

k − xki), (2.18)

xk+1
i = xki + vk+1

i , (2.19)

where vk+1
i and vki are the velocities of particle i at the (k + 1)th and (k)th iteration; xk+1

i

and xki are the positions of particle i at the (k+1)th and (k)th iteration; w0 ∈ [0, 1] is the in-

ertia weight; c1, c2 ∈ [0, 2] are the self-knowledge and social-learning factors; w1, w2 ∈ [0, 1]

are random numbers; pki is the local best of particle i till (k)th iteration; gk is the global best

till (k)th iteration. Based on the classical PSO, a MGPSO has been proposed for the solu-

tion of TEP problem as follows.

2.2.2.1 Problem Codification

The design of any iterative meta-heuristic algorithm requires an encoding of the solution,

which plays a crucial role in the efficiency and effectiveness. Several alternative codifica-

tion approaches were proposed in the literature, including binary codification, indepen-

dent bits, and decimal codification, etc. In this work, the decimal codification is employed

based on the following two considerations:

• Both binary and independent bits have Hamming cliffs, introducing great obstacles

for convergence. For example, two successive numbers 3 and 4 in decimal will be

expressed totally inverse by binary bits as “011” and “100” respectively.

• The individual length is longer if the solution is represented by binary bits and the

transform process from binary to decimal will be executed for thousands of times,

which requires more computational resources.

2.2.2.2 Population Initialization

In order to gain higher diversity, Sobol sequence [126] is adopted in this work. Differ-

ent from the classical pseudo-random sequences, the Sobol sequence is a quasi-random

sequence. It can be observed from Fig. 2.1 that the Sobol sequence is more uniformly sam-

pled than pseudo-random sequence, where a total number of N = 500 points is sampled

for each method in a 1 × 1 square area. In order to do a numerical analysis, both axes

are divided into W = 1...10 segments, resulting in W 2 square subareas. If the points are

ideally distributed in even, each subarea should have N/W 2 points. Suppose subarea ij

has yij points (i = 1...W , j = 1...W), then the abstract biases for each subarea from its ideal

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 29

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2.1: Sample points of different random sequences: (a) Sobol sequence; (b) pseudo-
random sequence.

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

E
(a

v
e

ra
g

e
b

ia
s
)

W (number of segments)

Sobol (100 points)
Sobol (200 points)
Sobol (500 points)
Sobol (1000 points)
Pseudo (100 points)
Pseudo (200 points)
Pseudo (500 points)
Pseudo (1000 points)

Figure 2.2: The relationship between E and W for different N .

value can be derived, and their average value E can be used to illustrate the uniformity of

each sequence.

E =

∑W
i=1

∑W
j=1 |yij −N/W 2|

W 2
. (2.20)

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 30

Fig. 2.2 shows the average bias E across different W and N . It can be seen that for

the fixed N , E is getting smaller as W increases, which is due to the reduction of the

ideal value N/W 2. Another important feature is that the average bias of Sobol sequence

is always smaller than pseudo sequence for any fixed N and W , indicating that the Sobol

sequence is evenly distributed, i.e., diversity is guaranteed.

2.2.2.3 Particle Evolution

Particle evolution is the kernel of all types of PSO ranging from single-group to multi-

group. For the discrete version of PSO, the most commonly utilized method is regulating

velocity and position to be integer using functions such as fix(), round(), and ceil(). With

the continuous of convergent process, the current solution xki is getting close to its local

best pki and global best gk, thus the real value of velocity is usually within an interval of

(−1, 1) according to (2.18). At this circumstance, fix() and ceil() may have huge error,

such as fix(0.9) = 0 and ceil(0.1) = 1, therefore round() is utilized by [48] and (2.18) is

also modified into (2.21) to increase diversity, especially for the final stages.

vk+1
i = round

(

w0W0v
k
i + c1W1(p

k
i − xki) + c2W2(g

k − xki)
)

, (2.21)

where W0 is a random number taking discrete values of 0, 1, or−1; W1 and W2 are random

discrete numbers of either 0 or 1; all the other variables and parameters share the same def-

inition as (2.18) and (2.19). Different from (2.18), equation (2.21) provides more possibilities

by the introduction of W0, W1, and W2, such as temperately eliminating the influence of

velocity, local best, and global best by setting W0, W1, and W2 into 0 respectively. The

search direction can even be turned totally inverse if W0 = −1. These possibilities bring

more diversity to the searching process. The performance of this strategy has been verified

by [48], and it will be employed as the evolution strategy for each particle of MGPSO. If

the velocity is too high, particles might fly past good solutions; if it is too small, particles

may not capable to explore beyond local regions [127]. Therefore, the velocity is restricted

into [−2, 2] in this work.

2.2.2.4 Multi-Group Co-evolution

Although particle evolution strategy shown above has a good performance reported in

[48], beneficial improvements are still in demand. For example, the current global best gk

involves in the evolution process of all particles in (2.21), which forces the whole popula-

tion to converge to a small space dominated by gk, leaving large areas unexplored, where

the real global optimum might exist, i.e., the final solution is a local best. Therefore, in or-

der to reduce the strong influence of single global best, the whole population was divided

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 31

(a)

(b)

Figure 2.3: Illustration of PSO evolution strategies: (a) single-group evolution; (b) multi-
group co-evolution.

into ng groups to keep diversity, and each group (j = 1 · · ·ng) has a global best gkj until

iteration k. The multi-group co-evolution strategy is guided by the following two rules:

• All the global best of different groups are different. If gkj1 = gkj2 while j1 6= j2, then

a mutation process should be triggered on either gkj1 or gkj2 . This rule makes each

group driven by different “leader”, which forces the whole population to explore

more space.

• The global bests of different groups should share information with each other. Two-

point crossover was employed to perform the information exchange on randomly

selected gkj1 and gkj2 , with two obvious benefits: a) improving the gene characteristics

of poor fitness individuals, and b) introducing diversity on good fitness candidates.

Fig. 2.3 shows the difference between single-group evolution and multi-group co-

evolution, where particles are represented by solid circles and the influences are illustrated

with dashed arrows. In Fig. 2.3 (a), all the particles are influenced by the population global

best, while in Fig. 2.3 (b) the particles are driven by each group’s global best, and each

global best is influenced by other global bests, which maintains a good trade-off between

population diversity and global convergence.

2.2.2.5 Mutation Mechanism

To prevent premature convergence and enable the MGPSO algorithm escape from the local

optimal, the mutation process has been carried out in three steps:

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 32

a = 0 a = 1

a = 3 a = 2

p = 0.4

p = 0.4

p
=

 0
.4

p
 =

 0
.4

Figure 2.4: Transform probability for point mutation.

• Determine the candidate mutation individual according to a mutation rate rm. In-

stead of doing the mutation directly on points of each individual with the same

probability, this step could enable large numbers of particles undisturbed, leaving

the feasibility maintained.

• Replace the mutation candidate with its local best. This process gives a good starting

point for mutation, i.e., the mutation always finds the points near the local best,

representing a higher probability to get good results.

• Perform the mutation process on the points determined by a selection probability of

rp. The point mutation process is carried out according to the transformation proba-

bility shown in Fig. 2.4. For example, the probability for a = 0 to mutate into a = 1,

a = 2, and a = 3 is 0.4, 0.2, and 0.4, respectively.

2.2.2.6 Fitness Evaluation

Fitness evaluation and constraint handling consume the largest part of the time for almost

all meta-heuristic algorithms. According to the power balance constraints, if the candidate

solution n is infeasible, there must be some loss of load for buses, which then will be mul-

tiplied by P for penalty. In order to save computational effort, the sum of power imbalance

is directly valued as M (which is a big constant number) for all infeasible candidate with-

out any solution of LP. On the other hand, the LES (2.15) should be figured out to get the

objective function value for feasible solutions.

For the purpose of checking the feasibility of each candidate n, a process of network

analysis consisted of connectivity detection and feasibility verification has been proposed,

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 33

1

1

2

1 2

1

1

1 1

1

11

1121

2

1

1 1

11

1121

2

1

1 1

Y
N

N
Y

Y
N

Y

N

N

Y

N

Y

Y

Y

N

N

Input demand vector d and generation vector g, set k = 1

Start

Input nb, nc, n
0, and n

Set adjacency matrix M = zeros(nb, nb), indicate vector Q = zeros(1, nb),

top = 1, stack(top) = 1, and k = 1

n0(k)+ n(k)> 0 ?

Output Q

End

Suppose the solution is feasible, i.e., Feasible=1

Q(k) == 0 && d(k) + g(k) >0 ?

Feasible=0k = k+1

Output Feasible

k < nc ?

i, j are the subscripts of n(k),

 set M(i, j) = 1, M(j, i) = 1
k = k + 1

top == 0 ?

L = length(stack), x = stack(top), y = 1

M(x, y) == 1 && Q(y) == 0 ?

top = top + 1,

stack(top) = y,

Q(y) = 1

y < nc ?y = y + 1

length(stack) == L ?

stack(top) = [], top = top 1

k < nc ?

fd
 C

o
n
n

ec
ti

v
it

y
 D

et
ec

ti
o

n
fd

d
d

F
ea

si
b
il

it
y

 V
er

if
ic

a
ti

o
n

ff

Figure 2.5: Flowchart for network analysis.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 34

Algorithm 2.2 LU decomposition method for LP (2.14) – (2.17)

1: Get the lower triangle matrix L and the upper triangle matrix U of Bnonsingular by
(2.23), where lu() is the LU decomposition function defined in Matlab.

2: Derive the θnonsingular by (2.24), where “\” is the left division operator in Matlab.
3: Set the value of θi for the eliminated buses (slack and those with Q(i) = 0) as 0.
4: Generate the slack variable values sij by (2.16).
5: Return the objective function value of (2.14).

which is presented in Fig. 2.5. The connectivity detection is implemented for each bus to

check whether it is connected to the grid or not, where the Depth-First Search (DFS) algo-

rithm [128] from graph theory is adopted. The result is represented by a binary vector Q

consists of nb elements, if Q(i) = 1, then bus i is connected, otherwise, it is disconnected.

Based on Q, the feasibility verification is performed. If the set of disconnected buses con-

tains generation or load buses, then the power balance will be destroyed, i.e., the solution

is infeasible; otherwise, candidate n is feasible.

As discussed above, the objective value of infeasible solution will be directly valued

as P , while for the feasible candidate, LES (2.15) should be solved. It is required that

the matrix B in (2.15) should be non-singular for the utilization of LU decomposition.

However, the original B is singular, thus two steps are implemented: 1) delete column i

and row i of B if Q(i) = 0, resulting in Bconnected; 2) select a slack bus j and eliminate the

corresponding row and column to get the final non-singular matrix Bnonsingular. Similarly,

the singular LES (2.15) can be transformed into a non-singular LES:

Bnonsingularθnonsingular + ḡnonsingular = dnonsingular, (2.22)

where dnonsingular and ḡnonsingular are demand and generation vectors with slack bus and

those with Q(i) = 0 eliminated. The process, based on LU decomposition since it is more

efficient than matrix inverse method, to derive the objective function value of feasible can-

didate is illustrated in Algorithm 2.2.

[L,U] = lu(Bnonsingular), (2.23)

θnonsingular = U\(L\(dnonsingular − ḡnonsingular)). (2.24)

2.2.2.7 Terminate Condition

The algorithm terminates if the incumbent (the best solution found so far) does not im-

prove after a specified number nt of iterations or the maximum numbers of iteration G is

reached.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 35

Algorithm 2.3 Pseudo Code of MGPSO

1: Input original data set Φ, where the number of candidate circuits nc is included;
2: Initialize parameters: population size m, number of group ng, maximum generation

G, power imbalance penalty value M , penalty factor P , and terminate criterion nt;
3: Initialize variable matrices and vectors: population X = Sobol(m,nc), velocity V =
−1 + 2 × rand(m,nc), global best solution and its fitness value for each group Sg =
ones(ng, nc) and Fg = inf (ng, 1), local best solution and its fitness value for each indi-
vidual Sl = ones(m,nc) and Fl = inf (m, 1); (Reported in section 2.2.2.2)

4: Set unimproved counter c = 0 and the global best of the whole population fb =∞;
5: for i = 1 to G do (Reported in section 2.2.2.7)
6: F = Fitness Evaluation(X , Φ, P , M); (Reported in section 2.2.2.6)
7: [Fg, Fl, Sg, Sl] = Group-based Coevolution(F , ng, Fg, Fl, Sg, Sl, Φ, P , M); (Reported in

section 2.2.2.4)
8: [X , V , Sl] = Particle Mutation(X , V , Sl); (Reported in section 2.2.2.5)
9: [X , V] = Particle Evolution(X , V , Sg, Sl); (Reported in section 2.2.2.3)

10: if min(Fg) < fb then

11: Let fb = min(Fg) and c = 0;
12: else

13: c = c+ 1;
14: end if

15: if c >= nt then (Reported in section 2.2.2.7)
16: break;
17: end if

18: end for

19: return global best fb and the total number of iteration i.

2.2.2.8 Implementation Framework

The overall implementation framework of MGPSO is illustrated by Algorithm 2.3 with

pseudo code, where the key functions in lines 6 – 9 have been explicated in the above sub-

sections.

2.2.3 Case Studies and Discussion

Two types of tools are employed to perform the case studies, Matlab 2015b and Lingo 11.0,

which are all run on a Windows desktop with an Intel Xeon E5-2620 CPU at 2.10 GHz with

32 GB RAM. In addition, results from the literature are also included for discussion.

2.2.3.1 Benchmark Systems

Five systems without generation redispatch are considered in this study: the Garver 6-

bus system [9, 17], the IEEE 24-bus system with the third future generation plan [129], the

South Brazilian 46-bus system [124], the Southeast Brazilian 79-bus system [130, 131], and

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 36

Table 2.1: Scale and complexity of test cases.

Systems n̄ij nb nc Search space size

6-bus 4 6 15 515 ≈ 3.05× 1010

24-bus 3 24 41 441 ≈ 4.84× 1024

46-bus 3 46 79 479 ≈ 3.65× 1047

79-bus 3 79 143 4143 ≈ 1.24× 1086

118-bus 2 118 186 3186 ≈ 5.55× 1088

Table 2.2: Control parameters of MGPSO for different cases.

Systems m ng P M G nt

6-bus 20 4 70 400 200 30
24-bus 200 20 30 400 400 80
46-bus 800 40 400 800 1000 100
79-bus 2000 80 600 2000 2000 300
118-bus 2000 80 600 2000 2000 300

the IEEE 118-bus system [132]. The former four are the same with the systems studied in

[123], while the last one is modified from [132] by reducing the maximum capacity of each

line to 40% of its original value due to over sufficient condition. All of these are classical

benchmark systems and have been investigated by several researchers, an overview of

whose scale and complexity is shown in Table 2.1.

2.2.3.2 Parameter Settings

Control parameters are significant for algorithm performance in relation to solution quality

as well as convergence speed, which are usually problem dependent. In this work, all

control parameters related to MGPSO are manually tuned based on a few preliminary

experiments, which are given in Table 2.2. It should be noted that these parameters may

not be optimal since the comprehensive test is not fully implemented. Apart from the

above parameters related with cases, c1, c2, and w0 are robust for all 4 cases, with c1 = 2.0,

c2 = 2.0, and w0 is expressed as follows:

w0 = wmax − (wmax − wmin)× i/G, (2.25)

where wmax = 0.6 and wmin = 0.2, i is the current iteration count.

2.2.3.3 Main Results

It will be instructive to review the results reported in the literature before introducing the

outputs obtained by MGPSO. In 2014, a work [123] was done to analyze the complexity of

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 37

Table 2.3: Run time of different simulations (s).

Systems 6-bus 24-bus 46-bus 79-bus

BARON ǫr = 0.1 1 2 972 28800∗

BARON ǫr = 0.01 1 4 5347 28800∗

BARON ǫr = 0.001 1 4 6418 28800∗

∗ Best solution has not been found by 28800s.

TEP with the Branch-and-Reduce Optimization Navigator (BARON). The result is given in

Table 2.3, where ǫr is the relative termination tolerance. It was concluded that BARON con-

verged very fast for the 6-bus and 24-bus systems, however, the execution time increased

sharply for the 46-bus system, and it even could not get the historical best solution after a

computation time of 8 hours for the 79-bus system.

Table 2.4 illustrates the main result of commercial software Lingo 11.0 and MGPSO

programmed with Matlab 2015b running on the same desktop; results reported by Mod-

ified PSO (MPSO) [48] are also included for referencing rather than comparison since the

simulation platform is different. Different versions of MPSO were reported in [48], where

the fastest one with convergence rate over 50% and 100% are chosen for referencing. For

the 6-bus and 24-bus systems, MPSO is slower than BARON, but it is a little bit faster for

the 46-bus system. The convergence rate of these systems can reach 100% for 10 times of

trial. No result has been reported by MPSO for the large-scale 79-bus system.

The default setting of nonlinear programming solver Lingo is adopted in this work for

fair comparison. The precision of elapsed time for Lingo is 1s. A total number of 30 times

has been tested for each instance. It can be concluded that Lingo performs better than

MPSO on the execution time; however, the convergence rate of Lingo is relatively low for

medium- and large-scale systems, the reason is that the option ‘global solver’ is disabled

in the default setting. Although the Lingo is very fast with the default setting, the global

optimal solution cannot be guaranteed, which is due to the non-convex and multi-modal

feature of TEP. On the other hand, the global optimal can be always reached if ‘global

solver’ is enabled, at the expense of much longer solution time as its low efficiency. For

example, as shown in Table 2.4, the average solution time of the 24-bus system with Lingo

on default setting is only 26.900s, but it turns to be 09:24:11 (33851s, 1258 times longer)

after calling the ‘global solver’. The same solver has also been implemented on 46-bus and

79-bus systems, but the solution process cannot terminate after a running of 2 days.

A detailed comparison is conducted between MGPSO and Lingo. For the 6-bus system,

both methods converge very fast and accurate, but when it comes to the 24-bus system, the

global best of 218 Million US$ (MUS) is not reachable for some trials of Lingo, even the run-

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 38

T
ab

le
2.

4:
S

u
m

m
ar

y
o

f
re

su
lt

s
fo

r
th

e
ca

se
st

u
d

ie
s.

S
y

st
em

s
A

lg
.

C
o

st
(×

1,
00

0,
00

0
U

S
$)

C
o

n
v

er
g

en
ce

T
im

e
(s

)
It

er
at

io
n

s
B

es
t

W
o

rs
t

A
v

g
.

T
ri

al
S

u
cd

.
M

in
.

M
ax

.
A

v
g

.

6-
b

u
s

M
P

S
O

1
0.

20
0

0.
23

1
0.

20
3

10
9

2.
75

0
3.

20
3

2.
84

5
≤

20
0

M
P

S
O

2
0.

20
0

0.
20

0
0.

20
0

10
10

10
.6

72
10

.8
28

10
.7

33
≤

40
0

L
IN

G
O

0.
20

0
0.

20
0

0.
20

0
30

30
<

1.
00

0
<

1.
00

0
<

1.
00

0
—

—
M

G
P

S
O

0.
20

0
0.

20
0

0.
20

0
30

30
0.

13
9

0.
23

2
0.

17
5

48
∼

57

24
-b

u
s

M
P

S
O

1
21

8.
00

0
28

4.
00

0
23

2.
80

0
10

7
—

—
—

—
26

.0
50

12
6∼

24
5

M
P

S
O

2
21

8.
00

0
21

8.
00

0
21

8.
00

0
10

10
—

—
—

—
14

.8
84

17
3∼

34
2

L
IN

G
O

21
8.

00
0

24
3.

00
0

22
7.

20
0

30
19

16
.0

00
38

.0
00

26
.9

00
—

—
M

G
P

S
O

21
8.

00
0

21
8.

00
0

21
8.

00
0

30
30

5.
78

0
9.

58
1

6.
92

7
19

2∼
20

8

46
-b

u
s

M
P

S
O

1
15

4.
42

0
16

6.
04

0
15

8.
81

0
10

6
27

9.
70

0
1,

14
6.

30
0

—
—

≤
15

00
M

P
S

O
2

15
4.

42
0

15
4.

42
0

15
4.

42
0

10
10

63
3.

14
0

1,
17

0.
30

0
81

6.
27

0
≤

25
00

L
IN

G
O

15
4.

42
0

16
4.

75
2

15
8.

59
7

30
11

20
0.

00
0

1,
61

6.
00

0
64

4.
57

0
—

—
M

G
P

S
O

15
4.

42
0

15
4.

42
0

15
4.

42
0

30
30

79
.1

42
11

3.
80

0
95

.0
70

37
5∼

39
4

79
-b

u
s

L
IN

G
O

43
1.

90
0

47
8.

50
0

45
8.

20
7

30
15

2,
27

9.
00

0
65

,5
94

.0
00

12
,6

61
.2

00
—

—
M

G
P

S
O

45
7.

80
0

45
7.

80
0

45
7.

80
0

30
30

87
6.

78
9

1,
09

6.
29

3
1,

01
4.

78
4

72
1∼

75
5

11
8-

b
u

s
L

IN
G

O
91

5.
80

0
96

7.
60

0
93

3.
13

8
30

13
2,

45
2.

00
0

72
,3

84
.0

00
14

,2
11

.7
00

—
—

M
G

P
S

O
92

9.
40

0
92

9.
40

0
92

9.
40

0
30

30
92

6.
81

3
1,

25
9.

91
5

1,
11

0.
26

9
74

2∼
78

3

—
—

:
D

at
a

is
n

o
t

b
ee

n
re

p
o

rt
ed

b
y

th
e

li
te

ra
tu

re
.

1
an

d
2
:

T
h

e
fa

st
es

t
v

er
si

o
n

g
en

er
at

ed
fr

o
m

[4
8]

w
it

h
co

n
v

er
g

en
ce

ra
te

o
v

er
50
%

an
d
10
0%

;

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 39

Table 2.5: Solutions and costs for 79-bus system (×1,000,000 US $).

Solution Cost

n18−19 = 1, n21−20 = 1, n21−23 = 1, n23−25 = 1, n24−09 = 2, n28−33 = 1,
n28−60 = 1, n30−29 = 1, n34−56 = 1, n35−38 = 1, n38−41 = 1, n40−56 = 1,
n40−72 = 1, n48−51 = 1, n58−59 = 1, n59−53 = 1, n59−67 = 1, n62−61 = 2,
n62−64 = 1, n63−64 = 1, n64−65 = 1, n69−72 = 1.

424.800 [131]

n18−19 = 1, n21−20 = 1, n21−23 = 1, n24−09 = 2, n25−60 = 2, n30−29 = 1,
n34−56 = 2, n34−64 = 1, n35−38 = 1, n38−41 = 2, n40−41 = 1, n40−56 = 2,
n40−72 = 1, n48−51 = 1, n48−71 = 1, n58−59 = 1, n59−53 = 1, n59−67 = 1,
n63−64 = 1, n64−65 = 1, n69−72 = 2.

454.100 [130]

n18−19 = 1, n21−20 = 1, n21−23 = 1, n24−09 = 2, n25−26 = 2, n26−29 = 1,
n29−31 = 1, n34−56 = 1, n35−55 = 1, n38−41 = 1, n40−56 = 1, n48−51 = 1,
n58−59 = 1, n59−53 = 1, n59−67 = 1, n62−61 = 2, n62−64 = 1, n64−65 = 1.

457.800

n18−19 = 1, n21−20 = 3, n21−23 = 1, n23−25 = 1, n24−09 = 2, n28−33 = 1,
n28−60 = 1, n30−29 = 1, n34−56 = 1, n35−38 = 1, n38−41 = 1, n40−56 = 1,
n40−72 = 1, n48−51 = 1, n58−59 = 1, n59−53 = 1, n59−67 = 1, n62−61 = 2,
n62−64 = 1, n64−65 = 1, n69−72 = 1.

431.900

ning time is longer than MGPSO, for which the convergence rate is 100%. MPSO, Lingo,

and MGPSO get the same global optimal with [133, 134] for the 46-bus system of 154.42

MUS with a probability of 100%, 63.33%, and 100%, respectively. For the 79- and 118-

bus system, no common acceptable global optimal has been reported, thus the best result

gained by MGPSO of 457.8 and 929.4 MUS are regarded as the criterion for convergence

judgment. As shown in Table 2.4, Lingo performs better or no worse than MGPSO for 15

and 13 times; however, the average cost is slightly higher and running time is more than

12 times longer.

For the 79-bus system, a solution with the cost of 424.8 MUS was reported by [131],

however, 9.562 MW loss of load existed on bus #30. Interestingly, [134] also reported a

solution of 444.49 MUS, which was indicated by the same author in [133] (where they up-

dated the result to be 478.99 MUS without loss of load) that a total loss of load of about 37

MW was presented. Additionally, a configuration with a cost of 454.1 MUS was illustrated

by [130] without loss of load. In this work, a new result of 431.9 MUS without loss of load

has been generated. Table 2.5 shows the details of each solution, where the solution with a

cost of 457.8MUS is also explicated.

2.2.3.4 Speedup Analysis

In order to do the numerical speedup analysis, the average execution time for Lingo to

solve the 6-bus system in Table 2.4 is approximately assumed to be 0.3s, therefore the

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 40

6-bus 24-bus 46-bus 79-bus 118-bus
10-1

100

101

102

103

104

105

T
im

e
(s

)

Systems

LINGO
MGPSO
Speedup

1

3

5

7

9

11

13

S
p

e
e

d
u

p

Figure 2.6: Speedup analysis between MGPSO and Lingo 11.0.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

S
p

e
e

d
u

p

Search Space Size (10x)

Figure 2.7: Relationship between the speedup and the search space size.

speedup for MGPSO over Lingo is ×1.7. For the other systems, a speedup of ×3.9, ×6.8,

×12.5, and ×12.8 is also achieved respectively, which is illustrated in Fig. 2.6. The dashed

line from 6-bus to 79-bus system indicates that the slope goes higher as system scale in-

creases, i.e., the speedup is higher for larger systems. The suddenly flattened trend from

79-bus to 118-bus system is due to their similar search space size shown in Table 2.1. Ac-

tually, the speedup has a linear relationship (shown in Fig. 2.7) with the search space size.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 41

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

O
b

je
c
tiv

e
V

a
lu

e
(M

U
S

$
)

Number of Iterations

Single-Group PSO
Multi-Group PSO

154.420

Figure 2.8: Convergence characteristic of single- and multi-group PSO for 46-bus system.

2.2.3.5 Performance Evaluation of Multi-Group Co-evolution

In order to identify the performance improvement brought by multi-group co-evolution,

both single- and multi-group PSO have been implemented. The 46-bus system was deter-

mined as the target testbed due to its proper difficulty. Fig. 2.8 depicts the behavior of

convergence for both algorithms. It can be noticed that the multi-group co-evolution strat-

egy brings two influences: 1) compared with single-group PSO, the MGPSO converges

slower and the solution time is also longer; 2) the quality of final solution obtained by MG-

PSO is better.

2.2.3.6 Performance Evaluation of Initialization Procedure

The performance evaluation of initialization procedure cannot be distinguished with only

one execution since the random sequence has been involved. After 30 times of experiment

on the 46-bus system, MGPSO with and without the Sobol sequence gains a convergence

rate of 100% and 91.4% respectively to the global optimal.

2.2.3.7 Performance Evaluation of LU Decomposition

The LU decomposition does not affect the convergence characteristic; it impacts the reduc-

tion of solution time of fitness evaluation at each iteration. As illustrated in Table 2.4, the

average execution time for MGPSO is 95.070s. In this section, two more experiments are

carried out: 1) if the LU decomposition is replaced by the matrix inverse process, the so-

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 42

lution time will increase to be 126.941s; 2) if the network analysis shown in Fig. 2.5 is also

eliminated, an average time of 180.107s should be required to finish the solution process.

2.3 Security Constrained Transmission Expansion Planning

In this section, the security criteria are considered for TEP formulation, leading to the

SCTEP problem. Instead of the MINLP formulated in the above section with DC power

flow, the disjunctive model is employed for SCTEP, resulting in a MILP in section 2.3.1.

Decomposition algorithms are employed for problem solution in section 2.3.2 due to large

numbers of decision variables and constraints, including BD, BCBD, and acceleration strate-

gies. Finally, computational experiments are implemented in section 2.3.3 to perform de-

tailed sensitivity analysis and performance evaluation.

2.3.1 Problem Formulation

2.3.1.1 Disjunctive Model

Derived from the classical DC power flow model, the disjunctive model is formulated by

representing the integer decision variables with binary decision variables, and eliminating

the nonlinear property by the utilization of linearizing constant (big-M). Although the

linearization process introduces large numbers of decision variables and constraints, it is

still widely employed for the solution of SCTEP since the whole characteristic of DC power

flow model is maintained. The disjunctive model is given as [10, 44, 56, 58, 59]:

min
nk
ij , r

(s)
i , f0(s)

ij , fk(s)
ij , g(s)i , θ(s)i

K
∑

k=1

∑

(i,j)∈C
cijn

k
ij +

|S|
∑

s=1



P

|Nb|
∑

i=1

r
(s)
i



 , (2.26)

s.t. nk+1
ij ≤ nk

ij , k = 1,...,K − 1, ij ∈ C (2.27)

∑

ij∈E

f
0(s)
ij +

K
∑

k=1

∑

ij∈C

f
k(s)
ij + g

(s)
i + r

(s)
i = di, i ∈ Nb (2.28)

f
0(s)
ij − γijn

0(s)
ij

(

θ
(s)
i − θ

(s)
j

)

= 0, ij ∈ E (2.29)

|fk(s)
ij − γij

(

θ
(s)
i − θ

(s)
j

)

| ≤M
(

1− nk
ij

)

, ij ∈ C (2.30)

|f0(s)
ij | ≤ f̄ijn

0(s)
ij , ij ∈ E (2.31)

|fk(s)
ij | ≤ f̄ijn

k
ij , ij ∈ C (2.32)

0 ≤ g
(s)
i ≤ ḡi, i ∈ Nb (2.33)

0 ≤ r
(s)
i ≤ di, i ∈ Nb (2.34)

nk
ij ∈ {0, 1}, k = 1,...,K.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 43

Bus 1 Bus 2

0

12 2n =

1

12 0 1n or=

2

12 0 1n or=

3

12 0 1n or=

4

12 0 1n or=

Figure 2.9: Initiated and candidate circuits on corridor 1− 2.

The objective function (2.26) comprises of construction cost and load curtailment penalty;

constraint (2.27) is a valid inequality strategy utilized to refine the solution space by elim-

inating equivalent solutions, which will be explained in section 2.3.2.3; constraint (2.28) is

the load balance requirement for each bus, i.e. Kirchhoff’s current law; constraints (2.29)

and (2.30) represent the Kirchhoff’s voltage law for existing and candidate circuits; power

flow is limited by (2.31) and (2.32); and finally, the amount of generation and load cur-

tailment are restricted by (2.33) and (2.34). The configuration of parameter n0
ij and binary

decision variables nk
ij(k = 1,...,K) are exemplified by Fig. 2.9 on corridor 1− 2.

Scenario set S related to N − 1 transmission line outage can be defined as either a full

version for the convenience of formulation,

S = C, (2.35)

or a refined one to save computational time.

S = {ij|n0
ij +

K
∑

k=1

nk
ij > 0, ij ∈ C}. (2.36)

For a given solution, it is sufficient only when it can withstand the loss of any ij ∈ S . If

(2.35) is utilized, the outage of all ij ∈ C should be checked; on the other hand, (2.36) only

exams those corridors with original or newly built circuits.

All the components in (2.26) – (2.34) with the superscript (s) are scenario dependent

decision variables, which will be valued automatically in the process of problem solving,

except for n
0(s)
ij , which is a parameter required to describe each scenario that needs to be

predefined. Suppose isjs is the corresponding unavailable corridor in scenario s, then the

process of n
0(s)
ij assignment as well as contingency construction can be given by Algorithm

2.4. The main logic of Algorithm 2.4 lies in the fact that the paralleled circuits are equiv-

alent with each other. When a contingency on corridor isjs needs to be formulated, we

first check whether there are any existing initial circuits; if yes, then model this scenario by

reducing one initial circuit (step 5); otherwise, set the power flow of the first parallel link to

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 44

Algorithm 2.4 Contingency Construction

1: for Each considered contingency s do

2: for Each candidate and existing circuit ij do

3: if Considered circuit ij is corridor isjs then

4: if n0
isjs

> 0 then

5: Set n
0(s)
ij = n0

isjs
− 1.

6: else

7: Replace constraint (2.30) when k = 1 by f
1(s)
ij = 0.

8: end if

9: else

10: Set n
0(s)
ij = n0

ij .
11: end if

12: end for

13: end for

be 0 (step 7), which means n1
isjs

is withdrawn. Obviously, step 7 satisfies the circumstance

that no power flow needs to be taken by isjs; otherwise, at least 1 parallel link needs to

be built; however it must start from n2
isjs

= 1 (where n1
isjs

still needs to be valued as 1

according to valid inequality (2.27)) since f
1(s)
ij = 0 due to step 7, which means the cost of

n1
isjs

has been counted although it provides no contribution to the power flow. The above

algorithm is suitable for both definitions of S given in (2.35) and (2.36).

2.3.1.2 Stochastic Programming

The MILP disjunctive model of SCTEP is usually treated as the two-stage stochastic pro-

gramming problem [56–59], which can be formulated as follows:

min
x,ys

cTx + PqT1 y1 + PqT2 y2 · · ·+ PqTs ys (2.37)

s.t. Ax ≤ b,

T1x + W1y1 ≤ h1,

T2x + W2y2 ≤ h2,

: + · · · ≤ :

Tsx + Wsys ≤ hs,

x ∈X , y1 ≥ 0, · · · , ys ≥ 0.

where c and qs are the cost vectors; x is a vector that denotes the integer decision variables

restricted by a set of X ; ys are the continuous variables for each scenario s; A, b, Ts, Ws,

and hs are coefficient matrices and vectors. The detailed configurations of decision vari-

ables x and ys are given in Table 2.6. The structures of coefficient matrices and vectors can

be determined accordingly based on Table 2.6 and (2.26) – (2.34).

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 45

Table 2.6: Definition of decision variables x and ys.

Vars. Properties Configurations

x Bin.

{

[

nk
ij

]

ij∈C, k=1...K

}

y1 Cont.

{

[

f
0(1)
ij

]

ij∈E
,
[

f
k(1)
ij

]

ij∈C, k=1...K
,
[

g
(1)
i

]

i∈Nb

,
[

r
(1)
i

]

i∈Nb

,
[

θ
(1)
i

]

i∈Nb

}

y2 Cont.

{

[

f
0(2)
ij

]

ij∈E
,
[

f
k(2)
ij

]

ij∈C, k=1...K
,
[

g
(2)
i

]

i∈Nb

,
[

r
(2)
i

]

i∈Nb

,
[

θ
(2)
i

]

i∈Nb

}

· · · Cont. · · ·
ys Cont.

{

[

f
0(s)
ij

]

ij∈E
,
[

f
k(s)
ij

]

ij∈C, k=1...K
,
[

g
(s)
i

]

i∈Nb

,
[

r
(s)
i

]

i∈Nb

,
[

θ
(s)
i

]

i∈Nb

}

It is relatively straightforward to translate the MILP disjunctive model (2.26) into stochas-

tic programming (2.37) by converting constraints (2.28) – (2.34) into Tsx +Wsys ≤ hs for

each scenario s and keeping the other constraints and objective function the same. The

solution process for stochastic programming is usually implemented in an iterative man-

ner. At each iteration, the master problem (first stage) is solved to obtain a temporary

integer solution, which will be verified by subproblems (scenarios, referred as the second

stage), where feasibility or optimality cuts may be generated according to specified rules,

and then added to the master problem for the next iteration solution. The procedure ter-

minates if no cuts can be extracted from the second stage. During the above course, the

non-anticipativity constraint [135] of stochastic programming prescribes that all the second

stage subproblems should receive the same temporary solution from the first stage, which

means each scenario is independent with the temporary solution. In this work, scenario

s is determined by Algorithm 2.4, where the intermediate solution n̄k
ij is not related, i.e.,

non-anticipativity constraints are maintained.

It should be noted that, from the viewpoint of practical operation, if any loss of load

r
(s)
i is positive, the solution is invalid; however, mathematically speaking, with the intro-

duction of r
(s)
i , the system is always feasible, i.e., any solution of n̄k

ij will not violate any

constraints since there always has at least a scheme of r
(s)
i = di to compensate the load

imbalance in (2.28). Therefore, the generated two-stage stochastic programming is a com-

plete recourse problem, i.e., all the first stage solutions are feasible in the second stage.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 46

2.3.2 Solution Methodology

2.3.2.1 Benders Decomposition

BD separates the original problem (2.37) into Master Problem [MP] and Sub-Problem [SP]

according to binary and continuous decision variables. In addition, the dual problem of

[SP] should be generated and marked as [DP].

[MP] min
x

cTx+Q (2.38)

s.t. Ax ≤ b, x ∈X , (2.39)

[SP] min
ys

qTs ys (2.40)

s.t. Wsys ≤ hs − Tsx̄, ys ≥ 0, s ∈ S . (2.41)

[DP] max
us

(hs − Tsx̄)
Tus (2.42)

s.t. W T
s us ≤ qs, us ≤ 0, s ∈ S , (2.43)

where Q =
∑

s∈S psQs is the weighted sum of objective values from each subproblem for

scenario s; x̄ is the temporary solution of [MP], us is the dual values for constraints in [SP].

As this is a complete recourse problem, [SP] is always feasible, thus [DP] is bounded,

and the objective function value of [DP] provides a valid lower bound for [SP] according

to dual theory, therefore an optimality cut can be generated:

Qs ≥ (hs − Tsx)
T ūs, s ∈ S , (2.44)

where ūs is the optimal solution of [DP]. Since the feasibility of [SP] is always valid, feasi-

bility cuts are not required in this problem. After the adding of optimality cut, the [MP] is

evolved as:

[MP] min
x

cTx+Q (2.45)

s.t. Ax ≤ b, x ∈X , (2.46)

Q ≥
∑

s∈S

ps(hs − Tsx)
T ūi

s, i = 1...N (2.47)

where N is the current iteration number.

In each iteration, the lower bound LB is the objective value of [MP], and the upper

bound UB is determined by the objective value of [DP], i.e., UB′ = cT x̄ +
∑

s∈S ps(hs −
Tsx̄)

T ūs. The solution process of BD is given in Algorithm 2.5. After initialization, the

[MP] is first solved, with temporary solution x̄ and objective value LB′ obtained. Update

LB into LB′ if LB′ > LB. Based on x̄, the [DP] for each scenario s can be solved to gen-

erate optimality cuts (2.47) and UB′. Then, cuts are added into [MP] and UB is updated

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 47

Algorithm 2.5 Benders Decomposition (simplified version)

1: Set ǫ = 10−6, LB = −∞ and UB = +∞.
2: while |UB − LB| > ǫ do

3: Solve [MP] with all generated cuts to get a solution x̄ with objective value LB′.
4: if LB′ > LB then

5: Set LB = LB′.
6: end if

7: Solve [DP] with x̄ for each scenario s, denote the optimal solution as ūs.
8: Calculate UB′ = cT x̄+

∑

s∈S ps(hs − Tsx̄)
T ūs.

9: Generate cut (2.47) based on ūs, and add it into [MP].
10: if UB′ < UB then

11: Set UB = UB′.
12: end if

13: end while

into UB′ if UB′ < UB. The above iterative process terminates if |UB − LB| ≤ ǫ. The

transferred data between [MP] and [DP] is their optimal solution x̄ and ūs. It should be

noted that Algorithm 2.5 is a simplified version of classical BD since the feasibility cuts are

omitted. For more details of BD implementation on the power system, please refer to [136].

An illustrative flowchart of implementation framework is given in Fig. 2.10. Nevertheless,

repeatedly solving [MP] to optimality, adding a cut and re-solving it can be very expensive

in terms of computational resources.

2.3.2.2 Branch-and-Cut Benders Decomposition

In order to relieve the computational burden of [MP], a Branch-and-check strategy was

advocated in [137], where only one MILP search tree of [MP] was built and maintained,

i.e., [MP] is solved into optimality by only once, whereas all the efforts spent on each node

of the tree are solving the LP relaxed [MP], which is much easier and faster compared

with MILP solution. In spirit of this strategy, we integrated BD into the B&C framework

provided by ILOG-Cplex concert technology, resulting in the BCBD algorithm. The step

by step implementation process is illustrated by Algorithm 2.6. It is obvious that the key

steps of Algorithm 2.5 are line 3 and lines 7 – 9 which are all represented and highlighted

in Algorithm 2.6. The solution framework of BCBD is illustrated in Fig. 2.11. It can be

seen that only LP is addressed in both [MP] and [DP].

Large numbers of constraints will be involved in large-scale problems, however, many

of them are redundant or at least not binding near the optimal solution, and any of them

can be ruled out without prior information. One proper method to handle these constraints

is to set them as lazy constraints and put them into a pool in Cplex. When a solution is

generated, the solver will check if any lazy constraints are violated and, if so, adds them

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 48

Iteration 1 Iteration 2

Solve subproblem or dual

subproblem to optimality (LP)

Solve master problem to

optimality (MILP or ILP)

UB – LB > ε ?

Update LB

Update UB Generate cut

N
Y

Start

Initialize ε = 10
-6

, LB = -∞, UB = + ∞

Solve subproblem or dual

subproblem to optimality (LP)

Solve master problem to

optimality (MILP or ILP)

UB – LB > ε ?

Update LB

Update UB

End

Generate cut

N
Y

O
t
h

e
r

It
e

r
a

ti
o

n
s

Figure 2.10: Flowchart of BD within classical implementation framework.

Cutting plane method Cutting plane method

Benders decomposition method Benders decomposition method

Solve subproblem or dual

subproblem to optimality (LP)

Solve relaxed master

problem to optimality (LP)

Generate cut
Branch

Generate

cutting planes

Generate

cutting planes

Solve subproblem or dual

subproblem to optimality (LP)

Solve relaxed master

problem to optimality (LP)

Generate cut

Branch

Branch

Branch-and-bound Framework

Node

1

Root

node

Node

2

Figure 2.11: Flowchart of BD within B&C implementation framework.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 49

Algorithm 2.6 BCBD Algorithm

1: Add the original [MP] into tree L, set final solution x∗ = null and value v∗ = +∞.
2: while L is not empty do

3: Select a node [MP] from L.
4: Solve the LP relaxation of [MP] to obtain an optimal solution x̄ with objective value

v. (corresponding to line 3 in Algorithm 2.5)
5: if LP is infeasible then

6: Prune the node.
7: else if v ≥ v∗ then

8: Prune the node.
9: else if x̄ is integer then

10: Solve [DP] based on x̄ and generate Benders cuts. (corresponding to lines 7 – 9 in
Algorithm 2.5)

11: if No cuts generated then

12: Update v∗ = v and x∗ = x̄, prune the node.
13: else

14: Add the cuts to the LP relaxation and return to line 4.
15: end if

16: else

17: if A candidate solution x̄′ is found then

18: Search for cutting planes that are violated by x̄′.
19: Solve [DP] based on x̄′ and generate Benders cuts. (corresponding to lines 7 – 9 in

Algorithm 2.5)
20: If any cutting planes or Benders cuts are found, add them to the LP relaxation

and return to line 4.
21: end if

22: Choose one non-integral variable from x̄ to branch, create two nodes and add
them to L.

23: end if

24: end while

25: return Final solution x∗ and value v∗.

to the active set. Lazy constraints that were previously added but have not been binding

for a while will be returned to the pool. In Algorithm 2.6, the lazy constraint with callback

function is utilized, which is guaranteed to be checked every time Cplex B&C framework

finds a candidate solution (see line 17), regardless of how the candidate is found (such as,

node LP solution, rounding, and various heuristics).

2.3.2.3 Acceleration Strategies

To improve the solution performance, four acceleration strategies are employed in this

work. They are beneficial from different aspects: generating high-quality initiate points,

increasing the number of cuts, restricting the solution space, and obtaining tighter cuts.

Their performance on classical BD framework has been reported in [138]; however, im-

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 50

0 1 2 3 4 5
0

1

2

3

4

5
LP

hullILP
hull

LP cuts Optimal cost curve

Figure 2.12: ILP hull versus LP hull.

plementation on the developed BCBD framework has never been revealed before. For

simplicity, only the first method is depicted in detail.

i. Two-phase Method

As shown in Fig. 2.12, the convex hull of the feasible region of the MILP is always con-

tained within the LP relaxation, thus all added LP cuts are valid for MILP, which leads to

the two-phase method [138]. In the two-phase method, the MILP problem is relaxed into

LP and solved to optimality by BD in Phase 1, all the generated cuts are sent to Phase 2

where the integrality property of MILP is considered. The general implementation frame-

work is given in Algorithm 2.7. It has been proved by experiments that this method plays

a major role in making the MILP start from a high-quality point (global optimal of LP re-

laxation), especially when the MILP has a small integrality gap.

ii. Multicut Method

Instead of returning only one cut at each iteration to [MP] as shown in (2.47) for the clas-

sical BD, a multicut strategy can be employed to enhance the convergence efficiency by

generating one cut from each scenario [57, 58, 139, 140], i.e., multiple cuts are introduced

for each iteration.

iii. Valid Inequality

In SCTEP, the circuits built in parallel are similar, thus there will be several equivalent op-

timal solutions, which may introduce complexity during the solution process. Results for

the Garver 6-bus system is shown in Fig. 2.13, where the maximum number of equivalent

solutions is as large as 4.70 × 1011. Therefore, in order to save computational efforts for

solution searching and make the optimal solution logically unique, valid inequality (2.27)

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 51

Algorithm 2.7 Two-Phase BCBD Algorithm

1: Phase 1:
2: Remove integrality constraints on all variables.
3: Solve the problem using Algorithm 2.5, and keep all the generated cuts.
4: Phase 2:
5: Reintroduce integrality constraints on the master problem variables.
6: Add all cuts generated from Phase 1 into master problem, and solve the problem using

Algorithm 2.6.

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

6

Number of equivalent solutions (linear scale)

L
in

e
a

r
s
c
a

le

Total number of circuits

×1011

100

102

104

106

108

1010

1012

1014

Number of equivalent solutions (log scale)

L
o

g
s
c
a

le

Figure 2.13: Number of equivalent solutions for the Garver 6-bus system without valid
inequality.

is employed for all systems and algorithms considered in this work.

iv. Optimal Preconditioning

One of the preconditions for the optimality of SCTEP solution is Q = 0 in (2.45), which

means no loss of load is tolerable. Since ps is positive, then Q = 0 is equivalent with

Qs = 0 for all s ∈ S . Therefore, this optimality precondition can be embedded into the

Benders cut generation (2.44) by forcing Qs = 0.

2.3.3 Computational Experiments

To evaluate the performance of the proposed algorithm, we implemented our method in

C++ and embedded it within the ILOG-Cplex concert technology framework, based on

ILOG-Cplex 12.5.1. The implementation platform is a 64-bit Windows desktop with 32GB

RAM and Intel Xeon E5-2620 CPUs at 2.10GHz.

In our experiment, the Cplex MILP solver is employed for comparison. In order to

achieve the best performance from the MILP solver, two key modes are investigated:

(i) sequential and parallel implementation mode; and (ii) traditional and dynamic B&C

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 52

Table 2.7: Scales and complexity of considered benchmark test systems.

Items 6-bus 24-bus 46-bus 118-bus 300-bus

No. of buses: 6 24 46 118 300

No. of candidate branches: 15 41 79 186 411

No. of parallel circuits: 4 2 3 2 1

No. of scenarios: 15 41 79 186 411

No. of binary variables: 60 82 237 372 411

No. of continuous variables: 1,395 7,995 35,886 169,632 707,742

No. of equality constraints: 315 2,665 9,875 56,544 292,221

No. of inequality constraints: 10,125 179,867 1,248,200 16,709,868 203,718,726

Data resources [17] [129] [17] [143] [143]

search pattern. Therefore, four solvers are identified in total: MILP dynamic (1 thread),

MILP dynamic (24 threads), MILP traditional (1 thread), and MILP traditional (24 threads).

All the other parameters of MILP solver are kept at their default settings, such as primal

heuristics, branching variable selection, and next node selection. On the other hand, since

the lazy constraint callback function does not support the dynamic search and may not

be thread safe, our algorithm is only implemented in sequential mode with the traditional

pattern: BCBD traditional (1 thread).

A tolerance of ǫ = 10−6 is employed for all experiments. All algorithms are forced to

terminate after exceeding a maximum run time of 48 hours. Big-M is determined by the

following equation in accordance with [59, 141], and [142],

Mij = 2θ̄γij , (2.48)

where θ̄ is the maximum bus voltage angle.

2.3.3.1 The Test Bed

In order to investigate the full potential of the considered methods and algorithms, five

classical benchmark systems of different sizes are employed: the Garver 6-bus system, the

IEEE 24-bus test system, the South Brazilian 46-bus system, the IEEE 118-bus test system,

and the IEEE 300-bus test system. An overview of the scales and complexity are illustrated

in Table 2.7, as well as the available data resources.

The whole feasible region is fully considered as the input for all algorithms. It should

be pointed out that, for IEEE 118- and 300-bus test systems, the maximum capacity of each

line has been reduced to 40% of the capacity given originally to increase the complexity

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 53

Table 2.8: Computational results for test systems with 5 different types of methods.

Alg.
6-bus 24-bus 118-bus 46-bus 300-bus

T.(s) Gap T.(s) Gap T(s) Gap T.(h) Gap T.(h) Gap

A 2.97 99.97% 2,201.6 32.75% 1,861.6 99.89% 48.0 18.5% 48.0 27.5%

B 3.52 99.97% 246.31 0.00% 1,487.1 99.89% 32.3 17.4% 48.0 18.9%

C 5.72 99.97% 1,230.7 31.99% 709.75 99.89% 48.0 30.3% 48.0 33.2%

D 5.19 99.97% 317.80 27.98% 481.33 99.89% 33.6 16.7% 48.0 20.7%

E 0.47 0.00% 1,516.1 21.07% 62.65 0.00% 15.6 0.0% 48.0 5.4%

A: MILP dynamic (1 thread) B: MILP dynamic (24 threads) C: MILP traditional (1 thread)

D: MILP traditional (24 threads) E: BCBD traditional (1 thread)

of the problem [59]. Additionally, the original data set of [143] does not contain the price

information; in this work, an assumption on the transmission line investment cost, similar

to [59], is adopted:

cij = 1000Lij f̄ij , (2.49)

where Lij is the length of circuit ij.

2.3.3.2 Results

Unlike other algorithms with parameters which need to be tuned before implementation,

BCBD as well as the other 4 MILP solvers are totally parameter free. The comprehensive

results of the five test systems are given in Table 2.8, where the gap is defined by (2.50) and

sampled when the fastest algorithm terminates.

Gap = (UB − LB)/UB. (2.50)

Table 2.8 is interpreted as follows according to different systems. Detailed performance

comparison between various algorithms within one system will be given in section 2.3.3.5.

i. Garver 6-bus System

Although K is valued as 4, the solution space of this small-scale system is still limited,

thus all methods achieve the convergence in seconds. With the help of B&C framework

and acceleration strategies, the BCBD is almost 10× faster to arrive at the global optimal

solution when compared with MILP solvers. Dynamic MILP algorithms significantly per-

form better than the traditional ones in this system.

ii. IEEE 24-bus Test System

This is a medium-scale system, all algorithms are able to achieve the global optimal solu-

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 54

0 500 1000 1500 2000 2500
0%

25%

50%

75%

100%
MILP_dynamic (1 thread)
MILP_dynamic (24 threads)
MILP_traditional (1 thread)
MILP_traditional (24 threads)
BCBD_traditional (1 thread)

O
p
ti
m

a
lit

y
g
a
p

Elapsed time (s)

Figure 2.14: Behavior of optimality gap for the IEEE 24-bus test system.

tion within 40 minutes. It can be concluded from Table 2.8 that parallel implementation

with 24 threads works much better than the sequential ones, but it is hard to distinguish

which one performs better than another for the dynamic and the traditional mode. The

convergence curves for different algorithms are illustrated in Fig. 2.14. BCBD converges

faster than all the other four MILP solvers in the early stage, which is due to the two-phase

method; however, the MILP solvers with 24 threads suddenly converged into the global

optimal solution in the later stage, which is due to the built-in heuristics. Different with

some efficient heuristics designed for specific problems, the built-in heuristics in Cplex are

designed for a general purpose, thus their performance for SCTEP is not stable.

iii. IEEE 118-bus Test System

Although this system has a large solution space due to a large number of decision vari-

ables, it is not so much difficult when compared with IEEE 24-bus system from the aspect

of solution time. The reason is that the configuration is more sufficient for the 118-bus

system, i.e., the number of circuits needed to be built is limited. Different from the re-

sults of the former system, BCBD shows its advantage over the other four MILP solvers in

this system, where a speedup of 29.71, 23.74, 11.33, and 7.68 is gained respectively. When

BCBD terminates, an optimality gap of 99.89% is still holding for all the other methods,

although two of them run in parallel with 24 threads. It can be seen from Fig. 2.15 that

several MILP solvers experience a long flat at the beginning, indicating that it is very hard

to find a feasible solution for this problem. Another interesting phenomenon is the sharp

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 55

0 400 800 1200 1600 2000
0%

25%

50%

75%

100%

MILP_dynamic (1 thread)
MILP_dynamic (24 threads)
MILP_traditional (1 thread)
MILP_traditional (24 threads)
BCBD_traditional (1 thread)

O
p
ti
m

a
lit

y
g
a
p

Elapsed time (s)

Figure 2.15: Behavior of optimality gap for the IEEE 118-bus test system.

decrease in the final stage, which is due to the special structure of this problem that it may

be easy to derive the global optimal solution from lots of feasible solutions. BCBD can find

a high-quality feasible solution with less effort by the help of all generated cuts from Phase

1; thus it performs dramatically well for this problem. This can also be observed from the

fact that the convergence process of BCBD is similar with the last stages of MILP traditional

(1 thread).

iv. South Brazilian 46-bus System

This is a medium-scale real system, but its solution is more difficult than the 118-bus sys-

tem. The fastest algorithm BCBD requires 15.61h to meet the gap of 0.00%; in contrast, two

MILP solvers could not even converge after running for 48h: a gap of 22.80% and 11.22% is

still remaining, respectively. It should be noted that parallel implementation plays a major

role for MILP solvers in the solution of this test system. The sequential BCBD is 16h faster

than the successfully converged MILP solvers, although they are implemented in paral-

lel with 24 threads. Fig. 2.16 demonstrates the behavior of optimality gap for the 46-bus

system. It can be seen that it takes almost 16h for MILP solvers working in parallel mode

to converge into a gap of 15%; however, it is just hundreds of seconds for BCBD, which

is greatly due to the two-phase acceleration strategy. Both BCBD and the other two par-

allel MILP solvers spent nearly 16h to fulfill the rest searching process, which proves that

integrating BD into B&C framework is competitive when compared with parallel MILP

solvers for really tough problems.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 56

0 8 16 24 32 40 48
0%

25%

50%

75%

100%
MILP_dynamic (1 thread)
MILP_dynamic (24 threads)
MILP_traditional (1 thread)
MILP_traditional (24 threads)
BCBD_traditional (1 thread)

O
p

ti
m

a
lit

y
g

a
p

Elapsed time (h)

Figure 2.16: Behavior of optimality gap for the South Brazilian 46-bus system.

v. IEEE 300-bus Test System

This large-scale system provides great challenges for all five methods since no method

can finish the searching within 48h. Nevertheless, the superiority of BCBD can still be

identified by the finally achieved gaps. Although the last gap is only 5.41% for BCBD, it

may takes tens of hours to arrive at 0.00% according to the previous experience for 46-bus

system shown in Fig. 2.16. In terms of MILP solvers with larger termination gaps, require-

ment on the execution time and effort is much higher.

2.3.3.3 Qualitative Evaluation

In order to distinguish which pattern and mode of MILP solver performs better for SCTEP,

a qualitative evaluation is introduced in Table 2.9, where the number in each column rep-

resents the performance rank of the corresponding algorithm for each problem, i.e., the

fastest one ranks 1 and the slowest one ranks 5. By adding the numbers for each row,

there has 8(rowE) < 12(rowB) < 14(rowD) < 20(rowA) < 21(rowC). It can be concluded that

BCBD performs better than the others across the five test systems. Two more conclusions

can also be drawn for different versions of the MILP solver: (i) parallel implementation

works better than sequential, since 12(rowB) < 20(rowA) and 14(rowD) < 21(rowC) in dynamic

and traditional modes respectively; (ii) dynamic mode performs better than traditional, as

20(rowA) < 21(rowC) and 12(rowB) < 14(rowD) in sequential and parallel environments re-

spectively.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 57

Table 2.9: Rank table for the performance of 5 types of methods.

Algorithms 6-bus 24-bus 118-bus 46-bus 300-bus Sum

MILP dynamic (1 thread) 2 5 5 4 4 20

MILP dynamic (24 threads) 3 1 4 2 2 12

MILP traditional (1 thread) 5 3 3 5 5 21

MILP traditional (24 threads) 4 2 2 3 3 14

BCBD traditional (1 thread) 1 4 1 1 1 8

1-2 5-6 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6ijCircuit

40 6138 60 20 38 20 40 31 30 59 20 48 63 30ijcCost

1

ijn

2

ijn

3

ijn 0 00 0 0 0 0 0 0 0 0 0 0 0 1

0 00 0 0 0 1 0 0 1 0 1 0 0 1

0 00 0 0 0 0 0 0 0 0 1 0 0 1
3K =

()180C =

1

ijn

2

ijn

3

ijn

4

ijn

0 00 0 0 0 0 0 0 0 0 0 0 0 1

0 00 0 0 0 0 0 0 0 0 0 0 0 0

0 00 0 0 0 1 0 0 1 0 1 0 0 1

0 00 0 0 0 0 0 0 0 0 1 0 0 1

4K =

()180C =

1

ijn

2

ijn

0 00 0 0 0 0 1 0 1 0 1 0 0 1

0 00 0 0 0 0 0 0 1 0 1 0 0 12K =

()200C =

Execution Time (s)

A B C D E

1.94 2.23 2.70 2.66 0.24

2.61 3.03 4.61 4.47 0.33

2.97 3.52 5.72 5.19 0.47

A: MILP_dynamic (1 thread) B: MILP_dynamic (24 threads) C: MILP_traditional (1 thread)
D: MILP_traditional (24 threads) E: BCBD_traditional (1 thread)

1

ijn 1 11 1 1 1 1 1 1 1 1 1 1 1 1
1K =

(Infeasible) 0.51 0.74 0.86 0.81 0.07

Figure 2.17: Solution configuration and execution time for different K values with the
Garver 6-bus system.

2.3.3.4 Sensitivity Analysis

As shown in Table 2.7, K has a large difference on the number of binary variables Knc, con-

tinuous variables |S| ·((K+1)nc+3nb), and inequality constraints |S| ·(5Knc+4nbnc+nc).

Therefore, a sensitivity analysis on the solution configuration and efficiency for different K

values based on the Garver 6-bus system is conducted in this subsection. Fig. 2.17 depicts

all the results, which can be analyzed from two aspects:

• Solution configuration: If K = 1, there is no feasible solution even if all candidate

circuits are built. One reason is that the requirement of large number of circuits on

key corridors, such as 4 − 6, is very hard to be replaced by other corridors. When

K = 2, global optimal solution is accessible with a total cost of 200M$. As K increases

to 3, one more circuit can be built on corridor 4− 6, which results in a cost reduction

of 20M$. Nevertheless, the cost cannot be reduced further by increasing K since

n4
ij = 0 for all ij ∈ C, which means the saturation point for the Garver 6-bus system

is K = 3.

• Solution efficiency: Discussion for K = 1 is skipped since there is no feasible solu-

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 58

0 3 6 9 12 15 18
1.8x105

2.0x105

2.2x105

2.4x105

O
b

je
c
tiv

e
v
a

lu
e

(U
S

$
)

Elapsed time (h)

Upper bound
Lower bound

213156

Figure 2.18: Lower and upper bounds for BCBD of the 46-bus system.

tion. Comparing K = 4 with K = 3 and K = 2, it can be seen that the execution time

increases for all algorithms as K increases, although K = 4 and K = 3 have the same

optimal solution configuration. The reason is that a large K value represents larger

solution space.

2.3.3.5 Performance Analysis

Although the superiority of BCBD over MILP solvers has been revealed in the above dis-

cussion, which component (B&C framework or acceleration strategies) facilitates the com-

putational improvement is still not recognized. Therefore, further detailed comparison has

been carried out in this subsection to figure out that issue.

Lower bound is employed to depict the convergence process. As shown in section

2.3.2.1, the lower bound is determined by the objective value of master problem. With

the adding of cuts at each iteration, the master problem becomes more constrained; there-

fore, the objective value will increase monotonically, which provides a good parameter

to describe the convergence characteristic. On the other hand, the upper bound fluctu-

ates heavily since it is related with subproblems, where a large penalty may be triggered

irregularly. Fig. 2.18 shows the lower and upper bounds for BCBD of the 46-bus system,

where the fluctuated upper bound is flattened by lines 10 – 12 in Algorithm 2.5. Compared

with the upper bound with long flat intervals, the lower bound provides more information

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 59

Table 2.10: Different types of algorithms for performance analysis.

Algorithms Description

Alg.1 MILP dynamic (24 threads)

Alg.2 CLBD without acceleration strategies

Alg.3 BCBD without acceleration strategies

Alg.4 CLBD without multi-cut strategy

Alg.5 BCBD without multi-cut strategy

Alg.6 CLBD with full acceleration strategies

Alg.7 BCBD with full acceleration strategies

about the convergence process.

As shown in Table 2.8 and Fig. 2.14 – Fig. 2.16, the solution processes of 6-, 24-, and

118-bus systems are short and not stable (e.g., frequently sharp decrease), while the execu-

tion time of 300-bus system is too long and the convergence is not guaranteed. Therefore,

the 46-bus system is finally determined as the test bed due to its moderate convergence

process and time consumption.

In order to distinguish the performance enhancement achieved from different compo-

nents, seven types of algorithms are separated from BCBD and classical BD (CLBD) for

comparison, which are listed in Table 2.10. Fig. 2.19 illustrates the growth trend of the

lower bound for Alg.1–Alg.7 on the 46-bus system, where several findings can be observed:

• Alg.7 is faster than Alg.1, showing that the B&C framework and acceleration strate-

gies are successful for the MILP solution of SCTEP.

• Alg.7 terminates at 16h, while Alg.6 cannot find the global optimal until 48h, indicat-

ing that the B&C framework plays an important role in the performance improve-

ment.

• Alg.6 converges faster than Alg.7 at the very beginning, the reason is that the incum-

bents in the searching tree of BCBD are not yet the optimum solution of the mas-

ter problem, therefore, the cuts generated from subproblems cannot cut the feasible

region efficiently. For CLBD, the optimal solution from master problem is always

utilized.

• Alg.6 performances better than Alg.1 in the first 30 hours; however, MILP solver sud-

denly jumps to the global optimal at 33h due to the dynamic search mechanism,

which is also an evidence that the MILP solver has been greatly advanced in the last

decades [44].

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 60

0 6 12 18 24 30 36 42 48
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

L
o

w
e

r
B

o
u

n
d

(U
S

$
)

Elapsed time (h)

Alg.1 Alg.2
Alg.3 Alg.4
Alg.5 Alg.6
Alg.7

213156

Cut off due to not enough memory

Figure 2.19: Convergence properties of different algorithms for the 46-bus system.

• It has been revealed that BD may not work well without much additional enhance-

ments; therefore Alg.2 and Alg.3 show a weak performance.

• Alg.4 and Alg.5 present good performance compared to Alg.2 and Alg.3 respectively,

proving that the other three acceleration strategies except multi-cut contribute a lot

in the iterative process.

• The acceleration acquired by the introduction of multi-cut strategy is depicted by the

fact that Alg.7 and Alg.6 perform better than Alg.5 and Alg.4.

• One drawback of BCBD is that it may run out of memory when a huge B&C search-

ing tree must be maintained, as shown by Alg.3 and Alg.5. On the other hand, CLBD

has lower requirements on the computational resources even if it runs for 48 hours.

To sum up, both the B&C framework and acceleration strategies contribute a lot to

boost the efficiency of BCBD, making it perform better than the MILP solver and CLBD.

Note that the searching tree of BCBD should be trimmed efficiently, otherwise it will

grow to be very large and run out of the memory; therefore, the acceleration strategies

are paramount for the success of BCBD. In terms of CLBD, the master problem is solved

independently at each iteration, and the occupied memory will be freed when solving the

subproblems.

Chapter 2. Transmission Expansion Planning: TEP and SCTEP 61

2.4 Summary

Two subproblems related to the transmission system optimal expansion planning are in-

vestigated in this chapter, i.e., TEP and SCTEP.

Based on the DC power flow model, the TEP is formulated as a MINLP. Due to the

NP-hard property, meta-heuristic PSO is introduced for the problem solution. In order to

ameliorate the performance on both efficiency and quality, the MGPSO framework as well

as enhancement strategies are proposed. Case studies on five test systems with as many as

186 candidate transmission circuits are presented to verify the proposed MGPSO, showing

that the method achieves considerable speedup compared to commercial software Lingo

in execution time. The achieved speedup has a linear relationship with search space size,

indicating that the MGPSO algorithm is scalable. Performance evaluation has also been

carried out on several enhancement strategies to distinguish their contribution.

Disjunctive model is employed to formulate the SCTEP problem, resulting in a MILP

that can be directly solved with commercial software. Nevertheless, challenges still exist

for large-scale systems due to large numbers of decision variables and constraints. There-

fore, the BCBD algorithm is proposed by integrating BD into the B&C framework. Dif-

ferent with the classical BD framework, where the master problem is MILP, the BCBD

replaces the MILP with LP, resulting in great reduction in computational resource and ex-

ecution time. Four acceleration strategies have also been investigated to enhance the con-

vergence efficiency as well as to restrict the solution space. Comprehensive computational

experiments between BCBD and commercial MILP solver Cplex are conducted on five

benchmark test systems ranging from 6 to 300 buses. Although parallel computing with

24 threads is enabled for some MILP solvers, the superiority of BCBD has been validated

for the majority of systems. Detailed performance analysis has also been conducted to dis-

tinguish the performance improvements from B&C framework and acceleration strategies,

where seven types of algorithms separated from BCBD and classical BD are involved. The

results indicate that both the B&C framework and acceleration strategies contribute a lot

to boost the efficiency of BCBD.

3
Transmission System Optimal Operation:

ACPF and RTCA

3.1 Introduction

Alternating Current Power Flow (ACPF) analysis is one of the most fundamental tasks for

the transmission system operation and optimization [61], which dominates the essential

steps of many practical problems, such as contingency analysis, economic dispatch, opti-

mal power flow, etc. The challenge of quick solution techniques always exists for the ACPF,

since the shorter calculation time means better situational awareness, faster response, and

less adverse impact on the system. Therefore, achieving high solution efficiency for ACPF

analysis from HPC architecture is a leading and important challenge in power system ana-

lytics and computation. Except for the time-critical features, ACPF is also confronted with

great challenges from the increasing system size [78]. On the other hand, as an applica-

tion of ACPF, the RTCA is paramount for modern power systems as it forms the basis

for important operator actions that help to improve system stability, optimize generator

dispatch, manage disparate resources, prevent cascading outages, and enhance market

operations. In order to alleviate the solution pressure of ACPF and RTCA, different pro-

posals developed by combining advanced algorithms and modern computation facilities

are investigated and evaluated in this chapter.

Historically, a lot of promising algorithms are developed for ACPF analysis, of which

the NR [165] and FD [166] method received extensive attention due to their favorable con-

vergence characteristics. Although derived from the NR, the FD is much simpler and more

efficient algorithmically [61]. According to their philosophy, the nonlinear ACPF problem

is addressed by a successive solution of LESs. Despite the fact that the iterative solver is

62

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 63

more desirable for the solution of large-scale LESs in the context of parallel computing [78],

the direct solver is utilized for FD in this work since their solution procedures are coordi-

nated, which is beneficial for data reuse. In addition, the direct solver is more robust for

ill-conditioned problems. GPU implementation with Matlab and CUDA are carried out to

evaluate various computational architectures, data storage formats, and fill-in reduction

algorithms.

A series of ACPF need to be solved in RTCA with short time. Although the ACPF so-

lution procedure investigated above can be directly extended to RTCA, the performance

might be further improved with CM, where the sensitivity information between various

ACPFs is utilized to save computation resources. Detailed implementation schemes with

GPU and CUDA are provided with direct linear solver, including data structure, kernel

function, and memory management strategies and principles. Comparison with open-

source package Matpower [143] and state-of-the-art parallel computing methods are pre-

sented, where the superiority of parallel CM has been established.

3.2 Alternating Current Power Flow

This section intends to address the ACPF on GPU architecture with FD method and direct

linear solver. Both NR and FD methods are reviewed in section 3.2.1 to demonstrate the

superiority of FD. The direct linear solver is introduced in section 3.2.2 for the solution of

LES in each iteration. GPU implementation of FD based on direct linear solver with Matlab

and CUDA are presented in sections 3.2.3 and 3.2.4 respectively, as well as the experimen-

tal results and discussions.

3.2.1 ACPF Solution Methodologies

3.2.1.1 Newton-Raphson Method

Given a specified network configuration and generator power output, the ACPF deter-

mines node voltages and branch power flows such that the system operates under steady-

state, i.e., the power imbalance at each bus is less or equal to a predefined tolerance ǫ. The

nodal power flow equations can be given as [61]:

∆Pi = Pis − Vi

∑

j∈i

Vj(Gij cos θij +Bij sin θij) = 0, (3.1)

∆Qi = Qis − Vi

∑

j∈i

Vj(Gij sin θij −Bij cos θij) = 0, (3.2)

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 64

Algorithm 3.1 Iterative Process of the Newton-Raphson Method

1: Data preparation.
2: Calculate ∆P and ∆Q from (3.1) and (3.2) with guessed V and θ.
3: while ||∆P ||∞ > ǫ or ||∆Q||∞ > ǫ do

4: Update Jacobian matrices H , N , J , and L in (3.3).
5: LU factorization of the new coefficient matrix in (3.3).
6: Generate ∆θ and ∆V by F/B substitutions in (3.3).
7: Update V and θ with θ = θ −∆θ and V = V −∆V .
8: Calculate ∆P and ∆Q from (3.1) and (3.2).
9: end while

10: Output V and θ.

where ∆P/Pis and ∆Q/Qis are the errors/specified values of the active and reactive pow-

ers. The ACPF can then be expressed as follows: for specified Pis and Qis, find voltage

vector V and θ such that the power errors ∆P and ∆Q are less or equal to a predefined

tolerance ǫ, i.e., ||∆P ||∞ ≤ ǫ and ||∆Q||∞ ≤ ǫ.

By neglecting the high-order terms of the Taylor expanding series of (3.1) and (3.2), the

NR method reduces to a concise form:
[

∆P

∆Q

]

=

[

H N

J L

] [

∆θ

∆V /V

]

, (3.3)

where V is a diagonal matrix with the diagonal elements being the node voltage magni-

tudes; the elements of the Jacobian matrices H , N , J , and L can be generated by taking

partial derivations of (3.1) and (3.2). The iterative process of NR is given by Algorithm 3.1.

3.2.1.2 Fast Decoupled Method

By eliminating N and J in (3.3), and then rewriting H and L in the form of V BV (where

two expressions are utilized for transmission line: cos θij ≈ 1 and Gij sin θij ≪ Bij), the

correction equation of FD method is obtained as [61]:

∆P /V = B′∆θ, (3.4)

∆Q/V = B′′∆V , (3.5)

where B′ and B′′ are symmetric square matrices with the dimension of n−1 and n−r−1,

whose off-diagonal and diagonal elements are given in (3.6) and (3.7); n and r are the

number of buses and PV nodes.

B′
ii =

∑

j∈i

xij
r2ij + x2ij

, B′
ij = −

xij
r2ij + x2ij

, B′
jj =

∑

j∈i

xij
r2ij + x2ij

, (3.6)

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 65

Algorithm 3.2 Iterative Process of the Fast-Decoupled Method

1: Data preparation.
2: Generate matrices B′ and B′′ according to (3.6) and (3.7).
3: LU factorization of B′ and B′′ for (3.4) and (3.5).
4: Calculate ∆P and ∆Q from (3.1) and (3.2) with guessed V and θ.
5: Set P -iteration indicator piter = 1.
6: while ||∆P ||∞ > ǫ or ||∆Q||∞ > ǫ do

7: if piter == 1 then

8: Generate ∆θ by F/B substitutions in (3.4).
9: Update θ with θ = θ −∆θ.

10: Set piter = 0.
11: else

12: Generate ∆V by F/B substitutions in (3.5).
13: Update V with V = V −∆V .
14: Set piter = 1.
15: end if

16: Calculate ∆P and ∆Q from (3.1) and (3.2).
17: end while

18: Output V and θ.

B′′
ii =

B′′
jj

k2ij
, B′′

ij =
−1

kijxij
, B′′

jj =
∑

j∈i

(

1

xij
+ 0.5bij

)

, (3.7)

where rij , xij , bij , and kij are the resistance, reactance, total line charging susceptance, and

transformer off nominal turns ratio of branch ij, respectively.

The iterative process of FD is demonstrated by Algorithm 3.2. It should be noted that

the Lines 4 and 5 in Algorithm 3.1 are replaced by Lines 2 and 3 in Algorithm 3.2 and

moved out of the while loop, resulting in a lot of time saving on the Jacobian matrix update

and factorization, i.e., the FD is more efficient in terms of execution time. On the other

hand, the variable coefficient matrix of NR’s correction equation (3.3) is fixed for FD in

(3.4) and (3.5), leading to a deterioration of convergence rate from quadratic to linear on

the logarithmic coordinates, which means that the NR converges faster in accordance with

the number of iterations.

In order to solve (3.4) efficiently, their coefficient matrices B′ and B′′ are factorized at

the very beginning, and then at each iteration, the modification step length ∆θ and ∆V

can be quickly identified by B/F substitutions. For a LES, the B/F substitutions dependent

on the factorization result of coefficient matrix and the Right Hand Side (RHS) vector. In

terms of LES (3.4), the RHSs are the active and reactive power mismatches, which can be

quickly generated by the nodal power equations at each iteration. Fig. 3.1 depicts a general

framework of the FD for the ACPF.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 66

Start

End

Data preparation, including B , B , V, and θ, etc.

LU factorization of B and B

(||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max_I ?

tpq = = 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Output result

Set P-iteration indicator tpq = 1, and iteration number iter = 1

Generate Δθ by substitution

Update θ, set tpq = 0, iter = iter + 1

Generate ΔV by substitution

Update V, set tpq = 1, iter = iter + 1

Y
N

Y N

Start

End

Data preparation, including B , B , V,VV and θ, etc.

LU factorization of B and B

(((||||||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max___I ?

tpqt = = 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Output result

Set P-iteration indicator tpqt = 1, and iteration number iter = 1

Generate Δθ by substitution

Update θ, set tpqt = 0, iter = iter + 1

Generate ΔV by substitution

Update V, VV set tpqt = 1, iter = iter + 1

Y
N

Y N

Calculate ΔP and ΔQ with initially guessed V and θ

2:

3:

1:

5:

6,8:

4:

10:

11:

7,9:

12:

Figure 3.1: General framework of the fast decoupled method for power flow analysis.

3.2.2 Direct Linear Solver

For simplicity, the LES (3.4) is represented by a standard form in this section,

Ax = b, (3.8)

where the coefficient matrix A is sparse due to the nature of the power system structure.

Generally, after factorization, the lower and upper triangular matrices of a sparse matrix

are still sparse [79]. Nevertheless, the fill-ins (matrix entries modified from zero to non-

zero by the factorization) are usually inevitable as shown in Fig. 3.2, which demands extra

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 67

8 2 2 2 1 8 2 2 2

2 4 0.25 1 3.5 0.5 0.5

2 4 0.25 0.1429 1 3.4286 0.5714

2 4 0.25 0.1429 0.1667 1 3.3333

A AA A L U

é ù é ù é ù

ê ú ê ú ê ú
- -

ê ú ê ú ê ú= Þ = =
ê ú ê ú ê ú- -

ê ú ê ú ê ú
- -ë û ë û ë û

4 2 1 4 2

4 2 1 4 2

4 2 1 4 2

2 2 2 8 0.5 0.5 0.5 1 5

B BB B L U

é ù é ù é ù

ê ú ê ú ê ú

ê ú ê ú ê ú= Þ = =
ê ú ê ú ê ú

ê ú ê ú ê ú

ë û ë û ë û

A A

é ù é ù é ù8 2 2 2 1 8 2 2 22 2 1 8
ê ú ê ú ê ú
2 4 0.25 1 3.5 0.5 0.50.25 1 3

é ù é ù é ùé ù é ù é ù

ê ú ê ú ê ú
2 4 0.25 1 3.5 0.5 0.50.25 1 3

A A L UA A

ê ú ê ú ê úê ú ê ú ê ú
2 4 0.25 1 3.5 0.5 0.50.25 1 30.25 1 30.25 1 3 0.5 00.5 0

A AA AA A L UA AA A L U
ê ú ê ú ê ú2 4 0.25 0.1429 1 3.4286 0.57140.25 0.1429 1 3

A A
ê ú ê úê ú ê ú= =A AA A L UA A L UA A A AA AA A L UA AA A L UA A

0.1429 1 3.4286 01 30.1429 1 3.4286 0
ê ú ê ú ê ú

ê ú ê ú ê úê ú ê ú ê ú2 4 0.25 0.1429 1 3.4286 0.57140.25 0.1429 1 30.25 0.1429 1 30.25 0.1429 1 3

ë û ë û ë û2 4 0.25 0.1429 0.1667 1 3.33332 4 0.25 0.1429 0.1667 1 3
ê ú ê ú ê úê ú ê ú ê ú
2 4 0.25 0.1429 0.1667 1 3.33332 4 0.25 0.1429 0.1667 1 32 4 0.25 0.1429 0.1667 1 32 4 0.25 0.1429 0.1667 1 30.1429 0.

B B

é ù é ù é ù4 2 1 4 24 2 1 4
ê ú ê ú ê ú

4 2 1 4 24 2 1 4

é ù é ù é ùé ù é ù é ù

ê ú ê ú ê ú
4 2 1 4 24 2 1 4

B B L UB B

ê ú ê ú ê úê ú ê ú ê ú
4 2 1 4 24 2 1 44 2 1 44 2 1 4

B BB BB B L UB BB B
ê ú ê ú ê ú4 2 1 4 24 2 1 4

B B
ê ú ê úê ú ê ú= =B BB B L UB B L UB B B BB BB B L UB BB BB B

ê ú ê ú ê ú

ê ú ê ú ê úê ú ê ú ê ú4 2 1 4 24 2 1 44 2 1 44 2 1 4

ë û ë û ë û2 2 2 8 0.5 0.5 0.5 1 52 8 0.5 0.5 0.5 1
ê ú ê ú ê úê ú ê ú ê ú
2 2 2 8 0.5 0.5 0.5 1 5

Figure 3.2: Difference on the number of fill-ins by row and column switching.

memory space and more arithmetic operations. Fortunately, it can be greatly reduced by

simple row and column switching, whose performance is demonstrated in Fig. 3.2 by

shifting A to B. The transformation is commonly described as,

B = QAQT , (3.9)

where Q is the permutation matrix derived from permutation array q. In terms of Fig. 3.2,

Q and q are given as,

Q =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, q =









4
3
2
1









.

It should be noted that there is only one entry with value 1 for each row and column in

Q, while all the other elements are 0. In addition, Q has the following property,

QQT = QTQ = I . (3.10)

Based on the introduction of Q, the following equations can be deduced,

Ax = b ⇒ AQTQx = b ⇒ QAQTQx = Qb. (3.11)

Remark Qx = x̂ and Qb = b̂, then equation (3.11) can be rewritten as,

Bx̂ = b̂. (3.12)

On the basis of the above analysis, the solution process of (3.8) can be summarized as

follows:

• Step 1: Generate permutation array q and matrix Q.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 68

• Step 2: Construct B according to (3.9) and then factorize it into LB and UB .

• Step 3: Establish b̂. Except for the matrix-vector multiplication b̂ = Qb, the vector b̂

can also be quickly generated with,

b̂i = bqi . (3.13)

• Step 4: Deduce x̂ with B/F substitution,

LBŷ = b̂ ⇒ ŷ = L−1B b̂, (3.14)

UBx̂ = ŷ ⇒ x̂ = U−1
B ŷ. (3.15)

• Step 5: Retrieve the final result x by any of the following methods,

x = QT x̂, (3.16)

xqi = x̂i. (3.17)

3.2.3 GPU Implementation with Matlab

3.2.3.1 GPU Programming Features in Matlab

Without user intervention, the Matlab code will run on the CPU and all data will be stored

in the workspace allocated by Matlab in CPU. On the other hand, the GPU also provides

a few Gigabytes of space called device memory. All the data stored in the device mem-

ory should be in the type of gpuArray. The data transformation from CPU to GPU is

explicitly fulfilled by the function gpuArray(), or it can also be performed implicitly by

any GPU-Enabled Built-in Functions (GEBFs), such as mtimes(). A full list of the latest

GEBFs is posted in [159]. In contrast, retrieving data from GPU to CPU can be achieved by

the function gather().

The type of the input data determines where the GEBF will be executed. If any input

arguments are with the type of gpuArray, the GEBF will be executed on the GPU; oth-

erwise, the CPU will be utilized for calculation. Therefore, the simplest way to employ

GPU for computation in Matlab is to employ two steps: 1) convert all the input data into

gpuArray type; and 2) fetch results from device memory after the algorithm termination.

Intermediate data generated from GEBFs running on GPU will be automatically stored in

device memory in the type of gpuArray. The data transfer rate between CPU and GPU is

limited by the PCIe interface bandwidth.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 69

Table 3.1: General information of benchmark systems.

Cases
System scales B′ B′′

Bus Branch Size Sparsity Size Sparsity

A 300 411 299 0.9875 231 0.9851
B 1,354 1,991 1,353 0.9974 1,094 0.9972
C 2,746 3,279 2,745 0.9988 2,382 0.9988
D 9,241 16,049 9,240 0.9996 7,796 0.9995
E 13,659 20,467 13,658 0.9997 9,567 0.9996

3.2.3.2 Various Implementation Strategies

In order to explore the performance of the FD for ACPF in detail, different data storage for-

mats, LES solution techniques, and implementation platforms are investigated and com-

pared, which can be divided into the following three pairs:

• CPU versus GPU: As two different architectures, CPU and GPU have distinctive

area of expertise. Generally, CPU is suitable for randomly accessed computing, while

GPU is skillful for intensively regulated calculation.

• lu() versus mldivide(): Except for the factorization strategy introduced in sec-

tion 3.2.2, which is based on the GEBF lu(), Matlab also provides another powerful

LES solution technique mldivide(). The former gains profits from the iterative

process of ACPF, where the coefficient matrices of LESs are fixed. Based on the de-

tection of the coefficient matrix property, the latter dispatches an appropriate solver

from its formidable arsenal to minimize the computation time.

• Dense versus Sparse: As shown in Table 3.1, the coefficient matrices B′ and B′′ are

extremely sparse and suitable for sparse technique application. Nevertheless, the

two GEBFs lu() and mldivide() do not support sparse gpuArray at present, i.e.,

the sparse version of FD on GPU is not feasible on the basis of GEBFs. Therefore,

only the dense FD is implemented on the GPU.

3.2.3.3 Experimental Results and Discussions

Five benchmark systems retrieved from [143] are utilized for numerical experiments. Table

3.1 summarizes basic information on the power system scale, matrix size, and sparsity. The

implementation platform includes: Intel Xeon E5-2620 CPU with 32GB RAM, Nvidiar

GeForce Titan Black GPU, Matlab version 2015b, CUDA version 8.0, and Visual Studio

2015.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 70

Table 3.2: Execution time of different types of FD with dense matrices using Matlab (s).

Cases
lu() mldivide()

CPU GPU CPU GPU

A 0.018 0.257 0.063 0.160
B 0.282 1.402 0.751 0.762

C 1.420 8.048 6.606 4.203
D 17.413 out of memory 141.371 out of memory
E 37.847 out of memory 327.209 out of memory

Table 3.3: Execution time of different types of FD with sparse matrices using Matlab (s).

Cases
lu() mldivide()

CPU GPU CPU GPU

A 0.008 not supported 0.015 not supported
B 0.062 not supported 0.059 not supported
C 0.198 not supported 0.173 not supported
D 4.143 not supported 0.964 not supported
E 7.986 not supported 1.303 not supported

All the results are grouped into Table 3.2 and Table 3.3 according to dense and sparse

storage types respectively. Fig. 3.3 and Fig. 3.4 give the visualization for Table 3.2 and

Table 3.3 for the purpose of identifying the increasing trend of execution time along with

system size. The following observations can be collected corresponding to the above com-

parison categories:

• CPU versus GPU: Since there is no GPU result in Table 3.3, the finding is drawn

from Table 3.2 and Fig. 3.3. If lu() is employed, the CPU is always faster than GPU,

but the speedup decreases from 14.5× in CaseA to 5.7× in CaseC. As highlighted in

Table 3.2, GPU outperforms CPU in CaseC where mldivide() is utilized. Overall,

two remarks should be given: 1) GPU performs better for larger systems; and 2)

the limited device memory space restricts its utilization for large-scale systems with

dense matrices.

• lu() versus mldivide(): To evaluate the performance of lu() and mldivide(),

the implementation platform should be separated. On the GPU, the superiority of

mldivide() has been validated by all successive cases. On the other hand, if run on

CPU, lu() outperforms mldivide()with dense matrices in Table 3.2; nevertheless,

the circumstance is totally reversed for sparse matrices in Table 3.3. Therefore, the

superiority depends on which architecture is utilized.

• Dense versus Sparse: According to Table 3.2 and Table 3.3, it is obvious that the

sparse techniques benefit both lu() and mldivier() in CPU. Although dense ma-

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 71

0 3000 6000 9000 12000 15000
0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

E
x
e

c
u

tio
n

T
im

e
(s

)

System Scale

lu() + CPU
lu() + GPU
mldivide() + CPU
mldivide() + GPU

Figure 3.3: Execution time of different types of FD with dense matrices.

0 3000 6000 9000 12000 15000
0

2

4

6

8

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.10

0.15

0.20

E
x
e

c
u

tio
n

T
im

e
(s

)

System Scale

lu() + CPU
mldivide() + CPU

Figure 3.4: Execution time of different types of FD with sparse matrices.

trix is fully supported with GPU, the performance is only mediocre. On the contrary,

the support for GPU with sparse matrices requires further investigation.

In addition to the above findings corresponding to implementation, more observa-

tions related with computation complexity and scalability are accessible. Without rigor-

ous mathematical analysis, the execution time in the same platform can be regarded as an

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 72

0.266

0.037

0.757

0.416

0.833

0.098

0.318

0.13
0.145

Dense + CPU
(time: 1.420s)

Dense + GPU
(time: 8.048s)

Sparse + CPU
(time: 0.198s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n

Implementation Types

Factorization
Substitution
Others

Figure 3.5: Execution time proportions of different steps for the FD with lu().

indication of computation burden. For each line in Fig. 3.3 and Fig. 3.4, the computing

environment of all five cases is the same; therefore, the line increasing trend represents the

computation complexity. It can be seen in Fig. 3.3 that all lines are steep, which means the

execute time increases faster than the system scales. On the other hand, the solid line in

Fig. 3.4 is the mostly flat, i.e., the scalability of sparse mldivide() is more favorable.

The main steps of FD shown in Fig. 3.1 and section 3.2.1 are also analyzed. Fig. 3.5

illustrates the execution time proportion of main steps for CaseC. It can be seen that the

substitution process, which is highly sequential, heavily drags the performance in GPU

with dense matrices. The improvement on sparse matrices should be put on the factoriza-

tion process in the future since it consumes the largest amount of time.

3.2.4 GPU Implementation with CUDA

3.2.4.1 GPU Programming Features in CUDA

Different with C functions running on the CPU only once with one call, the kernels are

CUDA C extended functions that can be executed N times simultaneously with N differ-

ent threads. Kernels access the input data from device memory spaces, including global,

constant, texture, shared, and local memories [8]. The memory throughput and multipro-

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 73

Table 3.4: Fill-in reductions achieved by the AMD and RCM algorithms.

Cases
Default AMD reordering RCM reordering

Size Size Reduction Size Reduction

A 7,889 1,640 79.21% 2,515 68.12%
B 149,064 6,934 95.35% 13,036 91.25%
C 451,657 17,328 96.16% 58,326 87.09%
D 3,709,484 65,876 98.22% 200,921 94.58%
E 4,078,641 79,751 98.04% 228,221 94.40%

cessor occupancy achieved by the kernels greatly determine the parallel efficiency of

the whole application, which demands careful code tuning and proper algorithm struc-

ture design. Fortunately, a lot of GPU-accelerated libraries containing highly-optimized

algorithms and functions are provided by CUDA [160], such as cuBLAS, cuSPARSE, and

cuSOLVER.

3.2.4.2 Implementation Schemes

Although execution on GPU with single data type is much faster, it cannot meet the preci-

sion requirement of ǫ = 10−8; therefore, the double precision data is utilized in this work.

Except for the data preparation and condition judgments, the majority of FD steps shown

in Fig. 3.1 are fulfilled with the refined kernels contained in cuSOLVER, such as LU fac-

torization and substitution. As indicated in section 3.2.2, for sparse coefficient matrices,

the permutation is of key importance for the reduction of the fill-ins. Two strategies for re-

ordering provided by cuSOLVER are implemented, i.e., reverse Cuthill-Mckee (RCM) and

Approximate Minimum Degree (AMD) algorithms. The intuitive performance of RCM

and AMD is illustrated in Fig. 3.6, where B′ is generated from CaseB. It can be seen

that both AMD and RCM gain excellent performance by curtailing the number of fill-ins

from 149,064 to 6,934 and 13,036 respectively, with the reduction rate reaching 95.35% and

91.25% respectively. The behavior of AMD and RCM for other cases are summarized in

Table 3.4.

3.2.4.3 Experimental Results and Discussions

It is noticeable in Table 3.4 that the AMD outperforms RCM in the fill-in reduction; never-

theless, the performance is reversed when they are integrated in the FD, which is shown in

Fig. 3.7. The speedup of RCM over AMD is also demonstrated in Fig. 3.7, which indicates

that the difference is even higher for large-scale systems. One of the explanation for this re-

versal is that the AMD pursues more powerful algorithmic performance with the sacrifice

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 74

Figure 3.6: Sparsity structure of B′ and L′B +U ′
B for caseB.

of longer execution time, which means the AMD is more preferable for memory-restricted

circumstances.

Several types of FD coded with Matlab are implemented in section 3.2.3.1; however,

the performance of GPU-enabled ones is unsatisfactory. Therefore, the most efficient CPU

version (sparse matrix and mldivide() with Matlab running on CPU, the fourth column

of Table 3.3) is utilized in this subsection for comparison with AMD and RCM, whose

execution time is given in Fig. 3.7. Table 3.5 summarizes the results. Although AMD is

much slower than RCM, it is still more efficient than the Matlab implementation. RCM

gains a maximum speedup of 4.16× over the fastest Matlab execution in CaseE with only

0.313s.

3.3 Real-Time Contingency Analysis

Although FD method (Algorithm 3.2) achieves good performance in the solution of single

ACPF, its performance on RTCA (where multiple ACPFs need to be solved in short time)

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 75

0.005 0.022
0.056

0.241

0.313

0.005
0.031

0.081

0.601

1.103

1

1.36
1.45

2.49

3.52

A B C D E
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
e

c
u

tio
n

T
im

e
(s

)

Cases

RCM
AMD

0

1

2

3

4

S
p

e
e

d
u

p

Figure 3.7: Execution time of FD with cuSOLVER based on AMD and RCM.

Table 3.5: Speedups gained by the AMD and RCM algorithms implemented with CUDA
over the fastest Matlab implementation.

Algorithms CaseA CaseB CaseC CaseD CaseE

AMD 3.05 1.95 2.14 1.60 1.18
RCM 3.05 2.66 3.09 4.00 4.16

is limited. If nc ACPFs are addressed with Algorithm 3.2, there will be nc times of LU

decomposition for B′ and B′′, which is a heavy computational workload. Fortunately, the

CM is capable to reduce the number of LU factorization from nc to 1 since the coefficient

matrices for different scenarios are similar. Section 3.3.1 illustrates the solution process of

CM with detailed formulation and flowchart. Sparse linear solver as well as programming

strategies related to data structure designing and coding are given in section 3.3.2. Com-

prehensive comparisons with Matpower and state-of-the-art methods are given in section

3.3.3 to validate the performance of the proposal.

3.3.1 Compensation Method

Instead of concentrating on single ACPF, this section demands to address practical RTCA

with multiple ACPFs/scenarios. Evidently, Algorithm 3.2 can be directly utilized to tackle

each scenario, but the performance is poor since large numbers of LU decomposition

should be performed. Inversely, the CM intends to save the time and effort correspond-

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 76

ing to LU factorization of different scenarios since their coefficients B′ and B′′ are very

similar. Take the scenario of branch ij outage as an example, the implementation process

of CM [80] can be summarized as follows. As inputs, the information related to the base

case is available, i.e., B′ and B′′ are known and already decomposed into B′ = L′U ′ and

B′′ = L′′U ′′. For simplicity, only the solution steps of (3.4) are given; (3.5) can be addressed

accordingly.

1. Based on the topology variation induced by the outage of branch ij, B′ can be up-

dated as:

B′
∗ = B′ +∆B′

∗ = B′ +M ′
∗δb

′
∗M

′T
∗ , (3.18)

where subscript ∗ is a stamp for the specified scenario, i.e., outage of branch ij; δb′∗
is a m ×m matrix containing correction information, m = {1, 2}; M ′

∗ is a n ×m in-

cidence matrix relates to i and j. The details on generating δb′∗, M
′
∗, and m will be

demonstrated later.

2. Calculate intermediate matrix:

B′−1
∗ = B′−1 −B′−1M ′

∗c∗M
′T
∗ B′−1, (3.19)

c′∗ =
[

I + δb′∗M
′T
∗ (U ′−1(L′−1M ′

∗))
]−1

δb′∗, (3.20)

where I is a m×m identical matrix.

3. Calculate the voltage angle variation vector as follows:

∆θ∗ = L′−1(∆P∗/V∗), (3.21)

∆θ∗ = ∆θ∗ −L′−1
(

M ′
∗c
′
∗M

′T
∗ (U ′−1∆θ∗)

)

, (3.22)

∆θ∗ = U ′−1∆θ∗. (3.23)

The detailed derivation process of the above steps based on inverse matrix modifica-

tion lemma [170] is given in Appendices A and B.

It should be noted that all the inverse operations of L′ and U ′ can be performed by

F/B substitutions to reduce the computation burden, which are marked in the above by

parentheses. Although the inverse operation indicated by brackets in (3.20) is inevitable,

fortunately, the matrix size (m × m) is limited. The matrix inverse operations for m = 1

and m = 2 are trivial, i.e.,

[

a
]−1

=
[

1
a

]

and

[

a b
c d

]−1

=

[

d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

]

. (3.24)

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 77

()
1

* * * * * * * *

T TM c M U M c M uq
-

¢ ¢ ¢ ¢ ¢D =

1

11 12

21 22

1

1
1

* * *
1

1

i

j

n

u

u
c c

c c
u

u
-

é ùé ù

ê úê ú

ê úê ú

ê úê ú

é ù é ù ê úê ú
= ê ú ê ú ê úê ú

ë ûë û
ê úê ú

ê úê ú

ê úê ú

ê úê ú
ë û ë û

1

11 12 11 12

21 22 21 22

1

* *

*

* *

i i j

j i j

n

u

uc c c u c u

uc c c u c u

u
-

é ùé ù é ù

ê úê ú ê ú

ê úê ú ê ú

ê úê ú ê ú+

ê úê ú ê ú
= =

ê úê ú ê ú

ê úê ú ê ú+
ê úê ú ê ú

ê úê ú ê ú

ê úê ú ê ú
ë û ë ûë û

i

j

i j i j

i

j

i

j

(())
1

* * * * * * * *()
T T

)
T T
(

1M c M U M c M u(* * * * * * * ** * * * * * * *()
T TT T
(

1

* * ** * *
¢ ¢

T TT T
)

T TT T
(

1M c M UM c M UT TT TT T
(

1T TT TT TT T
)* * ** * *)

T T
)

T TT T

* * ** * *

T TT TT T
)

T T
)

T TT TT TT TT TT TT TT T

* * *

é ù1u11é ù

ê ú
1é ùé ù1

ê ú

é ùé ù

ê ú

ê úê ú

ê ú

ê úê ú

ê ú
iuii

ê úê ú

ê ú1
ê úê ú

é ù11 12
* ** *

11 12c c11 111 1 é ù1
**
ê ú

i
ê úê ú

iui

ê ú

ê úê ú1

= ê ú* ** *
11 12

* ** ** ** *
11 12

ê ú******ê ú

ê úê ú

ê ú

ê úê ú

ë û1
ê úê ú

1ë û21 22c c21 221 2

ê úê ú
c c

ê úu
ê úê ú

ê ú1
ê úê ú

ê ú
jujj

ê úê ú
jujj

ê ú

1ê úê ú1

ê ú

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ë û
ê úê ú

ë û1nun-11nn
ê úê úu

ê ú

ê ú

ê úê ú

ê úê ú

ê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê ú
j

ê ú

ê úê ú

ê ú

ê úê ú

é ùé ù é ùé ù1u11é ùé ù1

ê ú ê ú

é ù é ùé ù é ù

ê ú
11é ùé ù1

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê úê ú

ê úc c11 12 1111 12 11
ê ú* *i jc u c uc u2 11 122 11 122 11* ** *i ji j1212

ê ú ê úê ú ê ú

ê úu
2 112 112 112 112 112 11

u
2 112 112 112 112 11

ê úê ú

* ** *c uc u* ** *2 112 112 112 112 112 112 112 112 112 112 112 112 112 11
ê ú

11 12 112 11

*

ê úê ú
11 12 1111 12 1111 12 1111 12 11c c11 12 1111 111 12 1111 12 1111 12 11

ê ú
2 112 11 i j12

ê úê ú
2 112 112 112 11 i j122 112 112 112 112 11 i ji j1212

ê ú
2 11

= =
ê úê ú

ê ú ê ú

ê úê ú

ê ú
*

ê úê ú
= == =
ê ú

ê úê ú
= == =

ê úê ú

ê úc c
ê úê ú

ê ú* *c u c uc u* ** *
ê úê ú

ê úuu
ê úê ú

* ** *c uc u* ** *u
ê ú

21 22 212 21c c21 22 2121 22 21
ê ú

2 212 21 i j222 212 212 21 i ji j2222
ê úê ú

i jc u2222i ji j2222c uc uc u2 212 212 212 212 21
ê úê úc cc cc cc c21 22 2121 221 22 2121 22 2121 22 21 c uc u

ê ú
2 212 21j2 21

u
2 212 212 212 21

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê úê ú

ê ú ê ú

ê ú ê úê ú ê ú

ê ú

ê úê ú

ë û ë û
ê ú ê úê ú ê úê ú

ë û1nun-11nnuê úê úu

ê úê úê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê úê ú ê úê úê úê ú

ê úê úê úê ú

ê ú

ê úê ú
= =

ê ú

ê úê ú
= == =

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê úê ú
j

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

ê úê ú

ê ú

ê úê ú

ê ú

ê úê ú

i

jj

i j
ê úê ú

ê úê ú

ê úê úê úê ú

ê úê ú

ê úê ú

ê úê úê úê ú

ê úê ú

ê úê ú

ê úê ú

i

j

Figure 3.8: Demonstration of fixed pattern calculation.

Algorithm 3.3 Data preparation of δb′∗ and M ′
∗

1: if Node i is a slack bus then

2: Let M ′
∗ = e′j and δb′∗ = −

xij

r2ij+x2
ij

.

3: else

4: if Node j is a slack bus then

5: Let M ′
∗ = e′i and δb′∗ = −

xij

r2ij+x2
ij

.

6: else

7: Set ρ′ = − xij

r2ij+x2
ij

,

8: Let M ′
∗ =

[

e′i e′j

]

and δb′∗ =

[

ρ′ −ρ′
−ρ′ ρ′

]

.

9: end if

10: end if

11: Output δb′∗ and M ′
∗.

More notes are given for the calculations related with M ′
∗. Due to its highly sparse and

fixed pattern, the calculation can be predefined to save time and effort, i.e., only few fixed

points of the final result should be calculated and filled. Take
(

M ′
∗c
′
∗M

′T
∗ (U ′−1∆θ∗)

)

in

(3.22) as an example, suppose m = 2 and rewriting the dense column vector (U ′−1∆θ∗)

as u∗, the solution process is illustrated by Fig. 3.8, where the final result can be directly

derived and filled without any intermediate calculation.

The critical step of utilizing CM is constructing δb′∗ and M ′
∗, which dominates the so-

lution steps (3.20)–(3.23). The pattern and value of δb′∗ and M ′
∗ are dependent on the pa-

rameters of branch ij and the node type of bus i and j. The pseudo code of generating δb′∗

and M ′
∗ is summarized in Algorithm 3.3, where e′i and e′j are basis vectors with size n− 1.

Accordingly, the generation process for δb′′∗ and M ′′
∗ is given by Algorithm 3.4, where e′′i

and e′′j are basis vectors with size n− r − 1.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 78

Algorithm 3.4 Data preparation of δb′′∗ and M ′′
∗

1: if Node i is a PQ bus then

2: if Node j is a PQ bus then

3: Set σ = 1
kijxij

and ρ′′ = − 1
xij
− 0.5bij ,

4: Let M ′′
∗ =

[

e′′i e′′j

]

and δb′′∗ =

[

ρ′′/k2ij σ

σ ρ′′

]

.

5: else

6: Let M ′′
∗ = e′′i and δb′′∗ = − 1

xij
− 0.5bij .

7: end if

8: else

9: if Node j is a PQ bus then

10: Let M ′′
∗ = e′′j and δb′′∗ = − 1

xij
− 0.5bij .

11: else

12: Let M ′′
∗ = 0 and δb′′∗ = 0.

13: end if

14: end if

15: Output δb′′∗ and M ′′
∗ .

Fig. 3.9 illustrates the flowchart of CM. It can be seen that the kernel of FD has been

fully inherited, i.e., each step of Algorithm 3.2 has been reused without revision except

for Steps 8 and 12. The calculation of ∆θ and ∆V is performed by F/B substitutions with

Lines 8 and 12 in Algorithm 3.2, while in CM, it is fulfilled by the execution of (3.20) –

(3.23) corresponding to Lines 12 and 13 in Fig. 3.9. Another difference lies in Steps 6 and

7 of CM. The latter has been described by Algorithm 3.3 and Algorithm 3.4, while the

former is omitted since it is similar to (3.18).

In order to validate the solution efficiency, the CM is implemented on a 2746-bus

test system. It takes 40.31ms to analyze each scenario, which means 1,488 contingen-

cies can be evaluated every minute. Nevertheless, in industry application, this perfor-

mance is far from satisfactory. For example, Midcontinent Independent System Operator

(MISO) [161], Electric Reliability Council of Texas (ERCOT) [66], and Pennsylvania-New

Jersey-Maryland Interconnection (PJM) [162] simulate 2,875, 3938, and 6,000 contingency

scenarios of large-scale power system in one minute, respectively.

3.3.2 Parallel Implementation on GPUs

Since the sequential CM is not sufficient for industry application, advanced parallel hard-

ware GPU is resorted for acceleration in this section, where CUDA [8] version 8.0 is em-

ployed for programming.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 79

Start

End

Data preparation

Generate matrices B and B

LU factorization of B and B

Set scenario order scno = 1

scno < Max_C ?scno = scno + 1

Update data bus admittance matrix

Generate compensation variables δb , M , δb , M , c* , c*

Calculate ΔP and ΔQ with initially guessed V and θ

(||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max_I ?

piter == 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Collect data for scenario i

Output data for all scenarios

2:

3:

1:

5:

6:

4:

8:

9:

7:

11:

12, 13:

10:

14, 15:

17, 18, 19:

16:

20:

21:

Set P-iteration indicator piter = 1, and iteration number iter = 1

:1

:2

:4

:5

:6, 17

:7, 11, 15

:8, 12

:9-10, 13-14

:16

:18

CPU

GPU

CPU

:3

Steps of

Algorithm 3.2

Generate Δθ by compensation

Update θ, set piter = 0, iter = iter + 1

Generate ΔV by compensation

Update V, set piter = 1, iter = iter + 1

Y
N

Y N

Y

N

Start

End

Data preparation

Generate matrices B and B

LU factorization of B and B

Set scenario order scno = 1

scno sc < Max_C ??scno = scno + 1

Update data bus admittance matrix

Generate compensation variables δb , M , δb , M , c* , c*

Calculate ΔP and ΔQ with initially guessed V and θ

(((||||||ΔP|| > ε or ||ΔQ|| > ε) and iter < Max__I ?

piter == 1 ?

Calculate ΔP and ΔQ with newly updated V and θ

Collect data for scenario i

Output data for all scenarios

2:

3:

1:

5:

6:

4:

8:

9:

7:

11:

12, 13:

10:

14, 15:

17, 18, 19:

16:

20:

21:

Set P-iteration indicator piter = 1, and iteration number iter = 1

:1

:2

:4

:5

:6, 17

:7, 11, 15

:8, 12

:9-10, 13-14

:16

:18

CPU

GPU

CPU

:3

Steps of

Algorithm 3.2

Generate Δθ by compensation

Update θ, set piter = 0, iter = iter + 1

Generate ΔV by compensation

Update V, VV set piter = 1, iter = iter + 1

Y
N

Y N

Y

N

Steps of

CM

Figure 3.9: Flowchart of the compensation method.

3.3.2.1 Data Structure and Precision

It is widely accepted that sparse matrix techniques should be adopted for the solution of

large-scale power systems due to their high sparsity ratio of bus admittance matrix Y .

In order to reduce the amount of data transfer and the number of atomic operations, the

sparse storage formats are commonly employed. In accordance with [79] and [143], the

Compressed Sparse Column (CSC) format is utilized for the storage of Y , B′, L′, U ′, B′′,

L′′ and U ′′. Unfortunately, part of cuSparse library [163] operations do not support the

CSC format, such as matrix-vector multiplication (related with Y) and F/B substitutions

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 80

7 0 0 0

3 8 0 0

0 4 1 0

5 0 2 6

A

é ù

ê ú

ê ú=
ê ú

ê ú

ë û

7 3 0 5

0 8 4 0

0 0 1 2

0 0 0 6

TA

é ù

ê ú

ê ú=
ê ú

ê ú

ë û

CSR format of A

CSR_cols 0 0 1 1 2 0 2 3

CSR_rows 0 1 3 5 8

CSR_vals 7 3 8 4 1 5 2 6

CSC format of A
T

CSC_cols 0 1 3 5 8

CSC_rows 0 0 1 1 2 0 2 3

CSC_vals 7 3 8 4 1 5 2 6

CSC format of A

CSC_cols 0 3 5 7 8

CSC_rows 0 1 3 1 2 2 3 3

CSC_vals 7 3 5 8 4 1 2 6

A

é ù7 0 0 0
ê ú
3 8 0 0

é ùé ù

ê ú
3 8 0 0
ê úê ú
3 8 0 0

=
ê ú0 4 1 0
ê úê ú

ê ú

ê úê ú0 4 1 0

ë û5 0 2 6
ê úê ú
5 0 2 6

TAAAA

é ù7 3 0 5
ê ú
0 8 4 0

é ùé ù

ê ú
0 8 4 0
ê úê ú
0 8 4 0

=
ê ú0 0 1 2
ê úê ú

ê ú

ê úê ú0 0 1 2

ë û0 0 0 6
ê úê ú
0 0 0 6

CSR format of A

CSR_cols 0 0 1 1 2 0 2 3

CSR_rows 0 1 3 5 8

CSR_vals 7 3 8 4 1 5 2 6

CSC format of A
T

CSC_cols 0 1 3 5 8

CSC_rows 0 0 1 1 2 0 2 3

CSC_vals 7 3 8 4 1 5 2 6

CSC format of A

CSC_cols 0 3 5 7 8

CSC_rows 0 1 3 1 2 2 3 3

CSC_vals 7 3 5 8 4 1 2 6

Figure 3.10: Transformation from CSC to CSR by matrix transposition.

(implemented on L′, U ′, L′′ and U ′′). Therefore, L′, U ′, L′′ and U ′′ are translated into the

Compressed Sparse Row (CSR) format from CSC. The transformation can be performed

by a matrix transposition, which is demonstrated in Fig. 3.10. On the other hand, the ma-

trix Y is free from transformation due to its symmetry, i.e., its CSC is the same with CSR.

Except for the matrices, all the vectors are stored in dense format.

In this work, the NVIDIA GeForce GTX 1080 GPU is utilized, whose compute capa-

bility is 6.1 with 8.876TFLOP/s and 277.36GFLOP/s on single and double precision. Al-

though the single precision is much faster, the accuracy is limited, which is illustrated by

Fig. 3.11, therefore the double precision is finally applied.

3.3.2.2 Sparse Linear Solver

The linear solver is a basic component of key importance for the whole performance of

NR, FD, and CM, especially for NR, where it may take 80% of the total execution time [75].

Two types of sparse linear solver are intensively discussed: iterative methods and direct

methods. Although the former demands less memory and the solution process is control-

lable based on absolute or relative error [69, 78], the latter is more popular in the commu-

nity [71–77].

Decomposition or factorization of the coefficient matrix A is ubiquitous in direct meth-

ods. Although the sparsity of A is inherited by L and U , there still exists a lot of fill-ins

(entries in L and U that do not appear in A). Generally, fewer fill-ins means less require-

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 81

0 2 4 6 8 10 12 14 16

1E-10

1E-8

1E-6

1E-4

0.01

1

100

P
o

w
e

r
E

rr
o

r

Iterations

Single precision
Double precision

Figure 3.11: Convergence properties of CM for a 2746-bus test system with single and
double precision.

LU factor of B (nnz = 451,657)Original Matrix B (nnz = 9,281) LU factor of AMD ordered B (nnz = 17,328)

Figure 3.12: Performance illustration of AMD on a 2746-bus test system with sparsity pat-
tern (nnz is the number of nonzero elements).

ment on the system memory and atomic operations; therefore, the AMD algorithm [79] is

utilized, which is a heuristic to find the permutation P such that PAP T has fewer fill-ins

than A after the factorization. Fig. 3.12 illustrates the performance of AMD on the Jaco-

bian matrix B′ of a 2746-bus system. After AMD ordering, the B′ is more concise, and the

number of fill-ins after LU factorization is reduced from 451,657 to 17,328, which means

the reduction rate reaches 96.16%.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 82

3.3.2.3 Single GPU Architecture

i. Kernel Design Strategies

One kernel function can be executed N times in parallel if N different CUDA threads

are launched. Since all scenarios are independent, a naive parallel implementation strat-

egy is that integrating all the CM steps into one whole kernel function and running in

a fixed thread, whose execution pattern is demonstrated by Fig. 3.13 (a). Although the

integrated kernel strategy is straightforward and the waiting time can be minimized by

static/dynamic load balancing [65], it is not suitable for CUDA due to its random data

access feature. In CUDA, the parallel threads are managed, scheduled, and executed in

groups of 32 called warps. A warp executes one common instruction at a time, and the full

efficiency is achieved when all 32 threads within the warp agree on their execution path

(coalesced access) [8]. Faced with path diversity, the warp serially executes each branch

path by disabling threads that are not on that path. When all paths complete, the warp

converges back to the same execution path. In Fig. 3.13 (a), threads 1 – 4 in the same

warp should access successive addresses and do the same operations to achieve growth in

performance. However, at tA, thread 2 starts to execute step 2 whereas the other threads

are still doing step 1, thus the coalesced access is declined. In addition, the path diversity

increases as time goes on.

In order to achieve coalesced access, the whole kernel function is decoupled in Fig.

3.13 (b), i.e., each step is realized with one kernel function. It is observable that all threads

do the same operations (go to the same path) within various intervals, e.g., execute step 1

from 0 to tE and step 2 from tE to tF . Therefore, there is no branch diversity within warps.

On the other hand, successive addresses are easily accessed by threads since scenario data

is commonly stored in regulation. Detailed access pattern will be exemplified in the fol-

lowing subsection. Compared with Fig. 3.13 (a) and (b), the execution efficiencies of thread

2 for step 1 should be similar, i.e., tA ≈ tD. The reason is that coalesced execution pattern

is also achieved by Fig. 3.13 (a) from 0 to tA. However, due to path diversity, deterioration

will subsequently emerge in Fig. 3.13 (a), thus tB > tE and tC > tF .

It should be noted that there is an implicit barrier between the successive kernels,

which guarantees the logical sequence between iterations. Theoretically, wait time always

exists before the barrier, but it is relatively small since the work load for each scenario on

each kernel is even. Due to the multiple kernels execution, different steps of one specified

scenario may not be executed on the same thread, which is illustrated in Fig. 3.13 (b).

ii. Kernel Functions

In this work, nc scenarios are solved simultaneously in a step-by-step pattern, with each

step corresponding to one kernel. Fig. 3.14 demonstrates the implementation scheme of

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 83

7 0 0 0

7 3 0 5

Time
(a) Integrated kernel: all steps are included in one whole kernel

S
ce

n
ar

io
s

 step 1 (thread 2)

 step 1 (thread 1)

 step 1 (thread 3)

 step 1 (thread 4)

1

2

3

4

 step 2 (thread 3)

 step 2 (thread 4)

 step 2 (thread 2)

 step 2 (thread 1)

Time
(b) Decoupled kernel: different steps are performed by various kernels

 step 1 (thread 2)

 step 1 (thread 1)

 step 1 (thread 3)

 step 1 (thread 4)

1

2

3

4

 step 2 (thread 4)

 step 2 (thread 1)

 step 2 (thread 3)

 step 2 (thread 2)

S
ce

n
ar

io
s

tA

Kernel

Kernel 1 Kernel 2 Kernel ...

tB tC

tD tE tF

Figure 3.13: Execution pattern of integrated kernel and decoupled kernels.

key steps of CM, where both self-built and cusparse library provided kernels are uti-

lized. It should be noted that, every operation shown in Fig. 3.14 will be executed for

nc times with one for each scenario. As indicated in Section 3.3.1, all scenarios derive the

solutions from the base case, i.e., triangle matrices L′ and U ′ are the same for all scenarios.

Therefore, equations Ta = L′−1M ′
∗ for all scenarios can be jointly considered as a sparse

triangular linear system with multiple right-hand sides. Library cusparse provides ef-

ficient solution routine for this kind of systems. Kernel cusparseDcsrsm analysis()

performs the matrix analysis of L′ and U ′. This function needs to be executed only once

since its result is reusable. Kernel cusparseDcsrsm solve() is utilized to generate the

result based on matrix analysis information.

For all cusparse kernels, the thread utilization mechanism is concealed. On the other

hand, the thread organization of self-built kernel is tuned based on the target data storage

pattern to achieve coalesced access. Take the kernel Update() in Fig. 3.15 as an exam-

ple, where θ is stored scenario after scenario. If each scenario is intuitively performed with

one thread, diversity will occur since threads 1 and 2 will access discrete addresses θ0 and

θn at the same time. Therefore, each scenario is attributed to one warp in Fig. 3.15, where

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 84

7 0 0 0

7 3 0 5

))

T

q q q

Calculate intermediate result
*c

Calculate intermediate result

m
a

i
n

(
)

Calculate temporary vector
1 1

*a b aT L M T U T- -
¢ ¢ ¢= =

Analysis matrix topology

() (),L UInfo analysis L Info analysis U
¢ ¢

¢ ¢= =

cusparseDcsrsm_solve() Execute

kernel_Cal_cpstar() Execute

cusparseDcsrsm_analysis() Execute

cusparseDcsrsm_solve() Execute

kernel_Cal_temp() Execute

cusparseDcsrsm_solve() Execute

kernel_Update() Execute

cusparseDcsrsm_solve() Execute

kernel_Update() Execute

 CPU function GPU funtion Description and mathematical formulation

*q

11 12

* *

21 22

11 22 12 21

22 121

* *

21 11

c cT

c b

c c

c c c c

c c

c

c c

t t
T I b M T

t t

det t t t t

t det t det
c T b

t det t det

d

r r
d

r r

-

é ù
¢ ¢= + = ê ú

ë û

= -

¢ ¢- -é ù é ù
¢ ¢= = ê ú ê ú

¢ ¢- -ë ûë û

()
1 1

* * * *

* * *

1

* *

1

* *

* * *

, d

T

e d

f e

f

L P V T U

T M c M T

T L T

T

U

q q

q q

q q

q q q

- -

-

-

¢ ¢D = D = D

¢ ¢ ¢=

¢=

D = D -

¢D = D

= -D

Figure 3.14: Decoupled kernels for the solution of equations (3.20)–(3.23).

lanes 0 – 31 will access a series of successive addresses θ0 – θ31. Different warps are inde-

pendent of each other, and the branch divergence over warps does not affect performance.

ii. Memory Management

CUDA threads may access data from on-chip (register, shared memory, and L2 cache) and

off-chip memories (global memory). The former is very fast but the size is limited, while

the latter is large but more latency is required for accessing. To pursue a balance between

the performance and feasibility, both are utilized with principles:

• To achieve the best performance of on-chip memory, all the small size intermediate

vectors are stored as scalar variables. Take Tc in Fig. 3.14 as an example, instead of

storing a matrix or vector, all the elements are declared as independent variables.

• All the long vectors and large matrices are stored in global memory, which can be

accessed by every kernel for reading and writing. The maintenance of data in device

memory is also beneficial to minimize the data exchange between host and device

memories.

• Shared memory is widely utilized due to its low access latency, especially for the

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 85

7 0 0 0

7 3 0 5

__global__ void kernel_Update(double *theta, const int N_s, const int n,

const double *Delta_theta,) {

 int i, thread_id = blockIdx.x * blockDim.x + threadIdx.x;

 int warp_id = thread_id / 32;

 int lane_id = thread_id & (32 - 1);

 if (warp_id < N_s) {

 for (i = lane_id; i < n; i += 32) {

 theta[warp_id * n + i] -= Delta_theta[warp_id * n + i];

 }

 }

}

lane[0] lane[1] lane[2] lane[31] lane[0] lane[31] lane[0] lane[?]

warp[…]

(scenario...)

warp[1]

(scenario 2)
θn+31θn+2 ...θn θn+1 θn+32 ... θn+63 θn+64 ... θ2n-1

warp[0]

(scenario 1)

]

)
θ0 θ1 θ2 ... θ31 θ32 ... θ63 θ64 ... θn-1θ θ θ θ θ θ θ θ

θθθ θ θ θ θ θ

Figure 3.15: Coalesced access of θ in kernel Update().

reduction operations, including the calculation of summation, minimum, and maxi-

mum values of a vector. For example, vector ∆P is copied into the shared memory

before calculating ||∆P ||∞.

As indicated in Fig. 3.14, the CPU main function calls the GPU kernels but cannot get

any feedback from them. The common strategy of controlling is data exchange between

CPU and GPU via cudaMemcpy(). However, due to the limited bandwidth of PCIe, fewer

data transformations are better. In this work, except for the data to start CM, which is

copied from CPU to GPU at the beginning, only one boolean variable (showing that the

termination condition has been met or not) is transferred from GPU to CPU at the end of

each iteration.

3.3.2.4 Multiple-GPU Architecture

In order to further accelerate the computation, multiple-GPU architecture is also explored.

As the scenarios are solidly independent, there is no communication between different

devices; therefore, the implementation is relatively straightforward, i.e., evenly distribute

the workload to all the devices. Each device is administrated by one CPU thread, which is

launched by OpenMP in this work.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 86

Table 3.6: Solution differences between parallel CM and Matpower NR and FD.

Cases Names and scales in [143]
∆ = max{|∆P |, |∆Q|}

CM vs. NR CM vs. FD

CaseA case300 6.16× 10−9 2.16× 10−14

CaseB case1354pegase 6.79× 10−9 8.33× 10−13

CaseC case2746wp 2.85× 10−9 9.99× 10−13

CaseD case9241pegase 4.93× 10−9 7.61× 10−13

CaseE case13659pegase 2.38× 10−9 1.09× 10−13

3.3.3 Experimental Results

Five benchmark cases reported in [143] with scales ranging from 300 to 13,659 buses are

employed in this section to validate the performance of the parallel CM with respect to

accuracy and execution time. Based on the open source package Matpower 6.0b2 [143],

the first test is provided to validate the accuracy and convergence properties of CM. The

second test measures the execution time and speedup of CM in different platforms (CPU

and GPU) with various implementation schemes (sequential and parallel). Finally, three

types of state-of-the-art GPU-based parallel computing methods reported in the literature

are included for discussion. Both CPU- and GPU-based CM are implemented with Visual

Studio 2015 on a PC equipped with 12 physical Intel Xeon E5-2620 2.10GHz CPU cores

and 2 NVIDIA GTX 1080 GPUs, running on Windows 8.1 operating system. Matlab ver-

sion 2015b is utilized to execute Matpower. For all experiments, the convergence criteria ǫ

is set as 10−8 p.u.

3.3.3.1 Accuracy and Convergence of GPU-based Parallel CM

For any RTCA solution method, the credibility is of higher priority over efficiency. Thus

the accuracy and convergence properties of GPU-based parallel CM are evaluated in this

subsection. Matpower is introduced as a reference, where both NR and FD algorithms are

utilized. For each test system, the same scenario is solved with three different methods.

Table 3.6 summarizes the maximum differences between them on the node active/reactive

powers max{|∆P |, |∆Q|}. The data of column 3 is determined by the tolerance ǫ, while

column 4 shows that the parallel CM is highly identical with Matpower FD. Therefore, it

can be concluded that the proposed parallel implementation of CM based on GPU is cred-

ible.

Fig. 3.16 illustrates the convergence properties of parallel CM and NR on different

cases, where parabola and straight lines can be approximated for the NR and CM on the

logarithmic coordinate due to their quadratic and geometric convergent properties respec-

tively. It should be noted that only the maximum error after Q iteration is collected for

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 87

0 2 4 6 8 10 12 14 16

1E-12

1E-10

1E-8

1E-6

1E-4

0.01

1

100

P
o

w
e

r
E

rr
o

r

Iterations

caseA (NR) caseA (CM)
caseB (NR) caseB (CM)
caseC (NR) caseC (CM)
caseD (NR) caseD (CM)
caseE (NR) caseE (CM)

Figure 3.16: Convergence properties of FD and parallel CM on different cases.

the lines of CM. If maximum errors after both P and Q iterations are recorded, a wavy

line with the same trend will appear. Although the CM takes more iterations to meet the

convergence criteria, its computing requirement and execution time is far less than that

of the NR. The comparison on the convergence process between CM and FD is omitted

since they always take the same number of iterations before termination, which can also

be accessed from the theoretical analysis in Section 3.3.1.

3.3.3.2 Performance of CM on Various Parallel Architectures

In order to fully explore the potential of CM and parallel architectures, many implemen-

tation schemes are tested and compared. For each case, nc different scenarios generated

by the withdrawing of a single transmission line are considered and solved, i.e., the N − 1

contingency criterion is addressed without any scenario reduction strategy. Table 3.7 illus-

trates the values of nc for various cases. Due to the large variance of nc, the total execution

time for RTCA with the solution of all scenarios presents great differences across cases.

Therefore, it is regulated by the division of nc in the following, i.e., the henceforth reported

time is the average execution time for the full iterative solution of single scenario.

All CM implementation schemes to be presented below follow the flowchart shown in

Fig. 3.9, where the LU decomposition for B′ and B′′ at the very beginning is performed

based on algorithms developed in [79]. The main differences between various implemen-

tation schemes are: 1) all considered scenarios will be evaluated in either sequential or

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 88

Table 3.7: Number of scenarios considered for different cases.
Cases CaseA CaseB CaseC CaseD CaseE

nc 411 1,991 3,514 16,049 20,467

Table 3.8: Execution time (ms) of sequential CM with single-thread CPU.

Cases CaseA CaseB CaseC CaseD CaseE

T0 2.514 12.127 40.382 157.671 220.976

Table 3.9: Execution time (ms) and speedup of parallel CM with multi-thread CPU.

Cases CaseA CaseB CaseC CaseD CaseE

T1,2 1.386 6.627 21.971 82.897 115.573
T1,4 0.768 3.631 11.976 43.604 60.508
T1,8 0.453 2.102 6.831 23.689 32.382
T1,12 0.391 1.739 5.571 17.877 23.977

S1,2 1.81 1.83 1.84 1.90 1.91
S1,4 3.27 3.34 3.37 3.62 3.65
S1,8 5.54 5.77 5.91 6.66 6.82
S1,12 6.43 6.97 7.25 8.82 9.22

parallel, which will be specified subsequently; 2) on GPU platform, the F/B substitution is

performed with cusparse kernel functions presented in Section 3.3.2.3; 3) on CPU plat-

form, the F/B substitution is executed based on the routines provided by [79]. It should

be noted that the basic mechanism and program logic of other steps are the same for both

CPU and GPU versions, but the realized codes are different due to special GPU imple-

mentation strategies. Take the updating of θ as an example, the code for GPU execution is

shown in Fig. 3.15, where a lot of indices are included for threads, lanes, and warps.

i. Sequential CM with Single-Thread CPU

In this test, the single-thread CPU computing architecture is utilized, where all scenar-

ios are evaluated in series with CPU. The execution time T0 is reported in Table 3.8 with

the coverage of all steps after the initial data reading, including admittance matrix genera-

tion, LU decomposition, compensation matrices construction, F/B substitution, and power

mismatch calculation, etc. This test is determined as the reference for speedup analysis of

other tests since it is the basic version of CPU implementation. The speedup S is defined

as follows:

Sx =
T0

Tx
, (3.25)

where subscript x represents the following tests.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 89

S
1,120

S
1,8

2

CaseA

4S
p
e
e
d
u
p 6

CaseB

8

S
1,4

10

CaseC
CaseD

S
1,2CaseE

2

3

4

5

6

7

8

9

Figure 3.17: Speedup of parallel CM with multi-thread CPU.

ii. Parallel CM with Multi-Thread CPU

In order to accelerate the solution process of RTCA, multi-thread CPU is employed in this

test, where all scenarios are assessed in parallel with CPU based on OpenMP. The CPU

part shown in Fig. 3.9 is performed with the main thread, and the GPU part is fulfilled by

y threads for concurrent execution. All scenarios are evenly distributed to y threads. In

this test, y takes the values of 2, 4, 8, and 12 with the PC specified above. The execution

time T1,y and speedup S1,y are summarized and illustrated in Table 3.9 and Fig. 3.17. Com-

pared with T0, a speedup is achieved with parallel computing. Two observations can be

obtained: 1) For every y, S1,y is higher with larger cases. The parallel efficiency depends on

both task workload and thread launch latency. If the latency is fixed, heavier work for each

launch brings higher parallel efficiency. Thus, larger cases have higher speedups. 2) For

each case, S1,y rises with y, but the increase rate is decreasing. The biggest performance

gain is obtained by the thread number increasing from 1 to 2. More threads bring complex

coordination challenge, thus the parallel efficiency is lower although the absolute speedup

value is higher.

iii. Parallel CM with Single GPU

Due to the limited memory bandwidth, the saturation point of multi-thread CPU imple-

mentation is approaching, which means adding more CPU cores does not result in remark-

able enhancement on the computational performance. Therefore, the GPU is introduced

as an alternative. Based on the flowchart shown in Fig. 3.9 and details revealed in Section

III.C, two tests are implemented, i.e., single GPU with integrated and decoupled kernels,

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 90

Table 3.10: Execution time (ms) and speedup of CM with single GPU.

Cases CaseA CaseB CaseC CaseD CaseE

T2,I 1.002 1.358 2.749 7.455 9.804
T2,D 0.899 1.118 2.069 4.548 5.750

S2,I 2.51 8.93 14.69 21.15 22.54
S2,D 2.80 10.85 19.52 34.67 38.43

whose execution time are marked as T2,I and T2,D respectively. In addition to all steps cov-

ered by T0 and T1,y, the device memory allocation and data transmission between CPU and

GPU are included in T2,I and T2,D. As shown in Fig. 3.9, all the iterative processes within

each scenario are executed on GPU without the data exchange with CPU. The data copy

from CPU to GPU is mainly done before the launch of GPU, where grid configuration and

decomposed matrices (L′, U ′, L′′, and U ′′) are transferred to device memory. The feedback

from GPU to CPU is only one binary vector with the length of nc, where ‘1’ represents the

corresponding scenario is sufficient, and vice versa. Therefore, the communication time Tc

mainly depends on the system scale (which dominates the size of matrices), whereas nc

has a limited influence on Tc. In our tests, Tc is always less than 5% of the total execution

time. Table 3.10 summarizes the main results. It is observable from S2,I and S2,D that the

proposed decoupled kernel performs better than integrated kernel for all cases. In addi-

tion, S2,D has a better scalability from CaseA to CaseE since the increase rates are higher,

such as 34.67
2.80 > 21.15

2.51 and 38.43
2.80 > 22.54

2.51 . The fastest multi-thread CPU execution is compared

with GPU implementations in Fig. 3.18, which validates the superiority of GPU parallel

architecture for RTCA.

iv. Parallel CM with Multiple GPUs

Based on T2,D, the total execution time of N − 1 RTCA for CaseD and CaseE is 72.99s

and 117.69s, respectively. In order to finish the solution within one minute, two-GPUs

architecture is employed for acceleration. The implementation scheme is similar to single

GPU, except that all scenarios are evenly distributed to two GPUs. Each GPU is managed

with one CPU thread, and the CPU threads are separated with OpenMP. Since the CPU

threads are launched for only once, the latency is insignificant when compared with the

total execution time. Table 3.11 reports the results, where a maximum of 75.70× speedup

is gained by the decoupled kernel strategy, which facilitates the RTCA to complete within

one minute. In order to investigate the parallel efficiency of multiple GPUs, comparison

with single GPU is demonstrated in Fig. 3.19. It is noticeable that both S3,I/S2,I and

S3,D/S2,D are close to 2.0, which means the scalability of multiple GPUs is satisfactory. The

main reasons are: 1) all scenarios are independent, such that there is no communication

and synchronization between two GPUs; 2) the iterative process of ACPF is fully executed

on GPU without the data exchange between CPU and GPU.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 91

CaseA CaseB CaseC CaseD CaseE

0

5

10

15

20

25

30

35

40

S
p

e
e

d
u

p

S
1,12

S
2,I

S
2,D

Figure 3.18: Speedup comparison between multi-thread CPU and GPU.

Table 3.11: Execution time (ms) and speedup of CM with multiple GPUs.

Cases CaseA CaseB CaseC CaseD CaseE

T3,I 0.553 0.733 1.468 3.895 5.077
T3,D 0.473 0.582 1.072 2.320 2.919

S3,I 4.55 16.54 27.51 40.48 43.52
S3,D 5.32 20.84 37.67 67.96 75.70

3.3.3.3 Comparison with Other Parallel Computing Methods

The superiority of parallel CM running on GPUs is established in the above subsection

with the comparison of CM running on CPU. This subsection is devoted to the compari-

son against three types of state-of-the-art parallel computing methods running on GPU.

i. Comparison with Parallel Gauss-Seidel (GS) Method

In [72, 73, 76], the GS was implemented on GPU for power flow analysis, whose solution

time is summarized in Table 3.12. Although larger cases have been reported in [76] and

[72], the performance is far away from [73] due to the utilization of dense matrix. The

maximum case given in [73] is the 300-bus system, which consumes 56.293ms for each

scenario, while that number is only 0.473ms for parallel CM in this work. Therefore, the

advantage of CM over GS is identified.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 92

CaseA CaseB CaseC CaseD CaseE

0.0

0.5

1.0

1.5

2.0

2.5

R
a

tio

S
3,I

/ S
2,I

S
3,D

/ S
2,D

Figure 3.19: Speedup ratio of multiple GPUs over single GPU.

Table 3.12: Runtime reported in the literature with GS running on GPU.

System Scales Ref. [76] Ref. [72] Ref. [73]

4-bus 0.012
9-bus 22.397 327.600

30-bus 22.551 705.100 0.511
118-bus 50.719 3,296.300 2.346
300-bus 118.519 7,299.200 56.293
678-bus 154.513
974-bus 19,603.000

2,383-bus 826.617
3,061-bus 3,061.353

ii. Comparison with Parallel NR Method

Although the combination of NR with GPU has also been introduced in [72, 76, 77], only

the high-quality results reported by [73–75] are included in Table 3.13 for comparison. The

data in Table 3.13 has been illustrated in Fig. 3.20. It is obvious that the parallel CM con-

sumes less time for all scales of cases, including small, medium, and large.

iii. Comparison with Parallel FD Method

In [72], the performance of FD on GPU is better than GS and NR; however, it is limited due

to the utilization of dense matrix. [78] implements the FD on GPU with preconditioned

conjugate gradient iterative solver and inexact Newton method. Although the reported

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 93

Table 3.13: Runtime reported in the literature with NR running on GPU.

System Scales Ref. [73] Ref. [74] Ref. [75] This work

4-bus 0.012
30-bus 0.052

118-bus 0.142
300-bus 0.632 0.473

1,354-bus 0.582
1,586-bus 0.614∗

2,228-bus 1.104∗

2,383-bus 9.010
2,746-bus 1.072
8,503-bus 5.471∗

9,241-bus 2.320
12,404-bus 4.026∗

13,659-bus 2.919
21,801-bus 4.767∗

0 5000 10000 15000 20000 25000
0

2

4

6

8

10

R
u

n
tim

e
(m

s
)

Scales

Ref. [15]
Ref. [16]
Ref. [17]
This paper

Figure 3.20: Runtime reported in the literature with NR running on GPU.

execution time is 260 ∼ 1,210ms for cases with scales 1,354 ∼ 13,173, it is a worthwhile

endeavor (especially for large-scale systems) since the majority of works rely on the direct

solver.

Chapter 3. Transmission System Optimal Operation: ACPF and RTCA 94

3.4 Summary

This chapter devotes to the acceleration of single and multiple ACPFs for the optimal op-

eration of transmission system.

Based on the algorithmic analysis of NR and FD, the single scenario ACPF is addressed

with FD and direct linear solver. In order to obtain further acceleration performance, GPU

implementations with Matlab and CUDA are explored with various data storage formats

and fill-in reduction algorithms. Case studies validate the efficiency of direct linear solver

and FD method. The superiority of CUDA over Matlab with GPU is established.

RTCA is an important energy management system functionality in many electric util-

ities, it is faced with the challenge of high computational burden since multiple ACPFs

need to be solved in limited time. To address this issue, the parallel implementation of

CM on multiple-GPU architecture is investigated. Accuracy and efficiency have been vali-

dated with case studies on five benchmark systems ranging from 300 to 13,659 buses. The

generated speedups are significant when compared with Matpower and sequential CM. In

addition, superiority over other state-of-the-art parallel computing methods is observed.

In conclusion, the parallel CM is promising for industrial application of RTCA with the

capability of analyzing 20,556 scenarios for the 13,659-bus system.

4
Generation System Optimal Operation: SCUC

and RTOPF

4.1 Introduction

All power in the grid is provided by the generator, thus its optimal operation is of great

significance for the whole power system on the aspects of both economy and security.

Since generators cannot instantly turn on and produce power, on-off operation schedule

must be planned in advance so that enough generation is always available under various

predefined contingency scenarios, such as generators or transmission lines go out or load

demand increases. The decision process is summarized as SCUC and conducted over a

certain time period, such as 24h. Due to the discrete on and off status, the SCUC presents

great challenges on execution time and memory space, especially for large-scale systems.

For a fixed time-stamp, decisions on the output of each generator to minimize the total

generation cost should be made with respect to power equilibrium. This is a real-time

decision process where forecasting error is inevitable with the remarkable penetration of

intermittent Renewable Energy Generators (REGs).

Unexpected outage of power grid components, which is mainly triggered by extreme

weather events or other random factors, can result in dramatic electricity shortages or even

large-scale blackouts. For the purpose of withstanding a specified level of destruction, the

n − KG − KL security criterion is employed for SCUC formulation, which furnishes the

system (n components) with the capability of surviving from the sudden unavailability

of KG generation units and KL transmission lines. RO is introduced for the solution of

SCUC, whose two-stage decomposition framework is implemented with implicit and ex-

plicit methods. Different types of acceleration strategies and parallel computing potentials

95

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 96

are investigated to demonstrate the promising of RO for SCUC.

RTOPF determines the optimal output of each generator to minimize the operation

cost in real-time. To improve the solution efficiency and accuracy of RTOPF, a three-stage

framework for parallel processing with GPU is employed in this chapter. In Stage 1, un-

certainties from renewable generators and demand loads are characterized with scenarios.

Large numbers of RTOPFs corresponding to each scenario are formulated and addressed

in Stage 2, where the linear systems are regulated into the same sparsity pattern and then

tackled in a batched style with the GPU. Results from Stage 2 are utilized in Stage 3 to

perform a hot-start RTOPF, where the forecasting error can be minimized.

4.2 Security Constrained Unit Commitment

This section intends to reveal the capability of explicit and implicit decomposition frame-

works of RO for the solution of SCUC. In section 4.2.1, problem formulation of SCUC

is given. Detailed methodology development for RO is presented in section 4.2.2, as

well as their inner feedback strategies, such as Benders decomposition and Column-and-

Constraint Generation (CCG) algorithm. Sensitivity analysis, multi-cut strategy, and paral-

lel implementation have also been analyzed and discussed in section 4.2.3 with case stud-

ies.

4.2.1 Problem Formulation

Based on [20], [85], and [144], the SCUC can be given as:

min
vg, cug , cdg, Qw, cp(0)g , r(0)i , p(0)g , θ(0)i , f (0)

ij







∑

t∈T

∑

g∈Ng

(

cp(0)g (t) + cug (t) + cdg(t)
)

+Qw







, (4.1)

s.t. − vg(t− 1) + vg(t)− vg(h) ≤ 0, ∀g ∈ Ng, ∀t ∈ T , ∀h : 1 ≤ h− (t− 1) ≤ TU
g (4.2)

vg(t− 1)− vg(t) + vg(h) ≤ 1, ∀g ∈ Ng, ∀t ∈ T , ∀h : 1 ≤ h− (t− 1) ≤ TD
g (4.3)

cug (t) ≥ CU
g (vg(t)− vg(t− 1)) , ∀g ∈ Ng, ∀t ∈ T (4.4)

cdg(t) ≥ CD
g (vg(t− 1)− vg(t)) , ∀g ∈ Ng, ∀t ∈ T (4.5)

cp(0)g (t) = Agvg(t) +Bgp
(0)
g (t), ∀g ∈ Ng, ∀t ∈ T (4.6)

cug (t), c
d
g(t) ≥ 0, vg(t) ∈ {0,1}, ∀g ∈ Ng, ∀t ∈ T (4.7)

(

p(0)g , f
(0)
ij , r

(0)
i , θ

(0)
i

)

∈ X(0) (4.8)

Qw = max
s∈S







min
p
(s)
g , f (s)

ij , r(s)i , θ(s)i

∑

t∈T

∑

i∈Nb

Pr
(s)
i (t)







(4.9)

(

p(s)g , f
(s)
ij , r

(s)
i , θ

(s)
i

)

∈ X(s), ∀s ∈ S (4.10)

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 97

where

X(s) =
{

(

p(s)g , f
(s)
ij , r

(s)
i , θ

(s)
i

)

:

z(s)g vg(t)P g ≤ p(s)g (t) ≤ z(s)g vg(t)P̄g, ∀g ∈ Ng, ∀t ∈ T (4.11)

− z
(s)
ij f̄ij ≤ f

(s)
ij (t) ≤ z

(s)
ij f̄ij , ∀(i,j) ∈ Nl, ∀t ∈ T (4.12)

f
(s)
ij (t) =

z
(s)
ij

xij
(θ

(s)
i (t)− θ

(s)
j (t)), ∀(i,j) ∈ Nl,∀t ∈ T (4.13)

p(s)g (t)− p(s)g (t− 1) ≤ (2− vg(t− 1)− vg(t))P g + (1 + vg(t− 1)− vg(t))R
U
g ,

∀g ∈ Ng, ∀t ∈ T (4.14)

p(s)g (t− 1)− p(s)g (t) ≤ (2− vg(t− 1)− vg(t))P̄g + (1− vg(t− 1) + vg(t))R
D
g ,

∀g ∈ Ng, ∀t ∈ T (4.15)

− r
(s)
i (t) ≤

∑

∀j∈Nl(·,i)

f
(s)
ji (t)−

∑

∀j∈Nl(i,·)

f
(s)
ij (t) +

∑

g∈Gi

p(s)g (t)−Di(t) ≤ r
(s)
i (t),

∀i ∈ Nb, ∀t ∈ T (4.16)

p(s)g (t), r
(s)
i (t) ≥ 0, ∀i ∈ Nb, ∀g ∈ Ng, ∀t ∈ T

}

. (4.17)

The minimizing objective function (4.1) comprises of pre-contingency operation cost

and post-contingency power imbalance penalty. Pre- and post-contingency constraints are

modeled by (4.2)–(4.8) and (4.9)–(4.10) respectively. Constraints (4.2) and (4.3) represent

the restrictions on the minimum up and down time for units. Start-up and shut-down

costs are modeled in (4.4) and (4.5) respectively. Nonnegative and binary constraints are

stated in (4.7). Economic Dispatch (ED) problems for pre- and post-contingency are given

by (4.8) and (4.10). (4.9) indicates that Qw is the penalty for the worst-case of contingency.

For a fixed unit commitment decision vg(t) under any contingency scenario s, the ED is

formulated as (4.11)–(4.17), where constraints on unit generation limit (4.11), transmission

line capacity (4.12), power flow (4.13), ramping up/down limit (4.14)–(4.15), nodal power

balance (4.16) are considered. (4.17) indicates the nonnegative constraints.

For simplicity, the piecewise linear approximation of the quadratic production cost

function (4.18) is represented by (4.6), where parameters Ag and Bg are defined by (4.19)

and (4.20).

cpg(t) = agvg(t) + bgpg(t) + cgp
2
g(t), ∀g ∈ Ng, ∀t ∈ T , (4.18)

Ag = ag − cgP gP̄g, ∀g ∈ Ng, (4.19)

Bg = bg + cgP̄g + cgP g, ∀g ∈ Ng. (4.20)

The contingency set S corresponding to the n − KG − KL contingency criterion is

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 98

defined as,

S =

{

(zg,zij) ∈ {0,1}
∣

∣

∣

∣

∑

g∈G zg ≥ |G| −KG,
∑

(i,j)∈Nl
zij ≥ |L| −KL

}

. (4.21)

4.2.2 Solution Methodology

4.2.2.1 Decomposition Framework

The specific SCUC problem (4.1)–(4.10) can be reformulated as a compact form (4.22), with

cTx + P
∑|S|

s=1 q
T
s ys, Ax ≤ b, and Tsx +Wsys ≤ hs corresponds to (4.1) and (4.9), (4.2)–

(4.8), and (4.10), respectively. Where x and ys are the pre- and post-contingency decision

variables; c, qs, A, b, Ts, Ws, and hs are coefficient matrices and vectors. The objective

function (4.22) should be minx,ys

{

cTx+ P maxs∈S qTs ys

}

in its original form, which is not

suitable for the off-the-shelf MILP solver due to the min−max programming. Since the

final objective is eliminating the power imbalance, i.e., pursuing min
{

maxs∈S qTs ys

}

= 0,

which is equivalent with seeking min
{

∑|S|
s=1 q

T
s ys

}

= 0 as qTs ys ≥ 0. Therefore, MILP

problem (4.22) is deduced.

Although (4.22) is applicable for available solver, it may present great challenges or

even be intractable when faced with large-scale systems due to large numbers of decision

variables and constraints. Therefore, decomposition strategy is usually employed to re-

duce the problem size. Fig. 4.1 presents a general decomposition framework suitable for

both explicit and implicit methods.

min
x,ys

cTx + PqT1 y1 + PqT2 y2 · · ·+ PqTs ys (4.22)

s.t. Ax ≤ b,

T1x + W1y1 ≤ h1,

T2x + W2y2 ≤ h2,

: + · · · ≤ :

Tsx + Wsys ≤ hs.

4.2.2.2 Explicit Method

i. Subproblems

Explicit method formulate each realization of the uncertainty set S into a subproblem

(4.23), where z
(s)
g and z

(s)
ij are fixed. By solving all of them, the most violated scenario

can be determined.

min
p
(s)
g , f (s)

ij , r(s)i , θ(s)i

∑

t∈T

∑

i∈Nb

Pr
(s)
i (t) (4.23)

s.t. (p(s)g , f
(s)
ij , r

(s)
i , θ

(s)
i) ∈ X(s). (4.24)

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 99

. .

T

x
min c x

s t Ax b

ì
ï
í

£ïî

1 1 1 1

s s s s

W y h T x

W y h T x

ì £ -

ï
£ -í

ï
£ -î

£ -
Check the feasibility for all constraint

sets, explicitly or implicitly

Is there any violated sets?

Index the most violated one with si

and add it into the master problem

Start

End

Solve the master problem, and

generate an intermediate solution x

. . ,

,

i i

i i i i

T T

s s
x

s s s s

min c x Pq y

s t Ax b

T x W y h

ì + +

ï

ï £
í

+ £ï

ï
î

Yes

No

Solve the revised master problem, and

generate an intermediate solution x

Figure 4.1: Decomposition framework for the solution of SCUC with CCG.

Q
(s)
it =

∑

t∈T





∑

g∈G

βt+
g z(s)g vg(t)P̄g −

∑

g∈G

βt−
g z(s)g vg(t)P g +

∑

(i,j)∈Nl

τ t+ij z
(s)
ij f̄ij +

∑

(i,j)∈Nl

τ t−ij z
(s)
ij f̄ij

+
∑

i∈I

ξt+i Di(t) +
∑

g∈G

ηt−g
(

(2− vg(t− 1)− vg(t))P g + (1 + vg(t− 1)− vg(t))R
U
g

)

−
∑

i∈I

ξt−i Di(t) +
∑

g∈G

ηt+g
(

(2− vg(t− 1)− vg(t))P̄g + (1− vg(t− 1) + vg(t))R
D
g

)



 .

(4.25)

In order to deduce Benders cuts, the corresponding dual problem (4.25)–(4.30) should

be generated.

max Q
(s)
it (β, τ , ζ, η, ξ | v∗) see (4.25)

s.t. βt+
g − βt−

g + ηt−g − η(t+1)−
g + η(t+1)+

g − ηt+g +
∑

Gi∋g

ξt+i −
∑

Gi∋g

ξt−i ≤ 0, ∀g ∈ G, ∀t ∈ T

(4.26)

τ t+ij − τ t−ij + ζtij −
∑

i∈(i,j)
ξt+i +

∑

j∈(i,j)
ξt+j +

∑

i∈(i,j)
ξt−i −

∑

j∈(i,j)
ξt−j = 0, ∀(i,j) ∈ Nl, ∀t ∈ T

(4.27)

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 100

∑

j∈Nl(i,·)

z
(s)
ij

xij
ζtij −

∑

j∈Nl(·,i)

z
(s)
ji

xji
ζtji = 0, ∀i ∈ I , ∀t ∈ T (4.28)

− ξt+i − ξt−i ≤ P , ∀i ∈ I , ∀t ∈ T (4.29)

β±, τ±, η±, ξ± ≤ 0, ζ unrestricted. (4.30)

where the subscript it represents the number of iteration; β−/β+, τ−/τ+, and ξ−/ξ+ are

dual variables for the left/right hand side of constraints (4.11), (4.12), and (4.16); ζ, η−,

and η+ are dual variables for constraints (4.13), (4.14), and (4.15), respectively. Constraints

(4.26), (4.27), (4.28), and (4.29) correspond to the variables p
(s)
g (t), f

(s)
ij (t), θ

(s)
i (t), and r

(s)
i (t)

in (4.11)–(4.16). The upper script ∗ represents the fixed value, and henceforth.

For the worst scenario and all the other violated scenarios, a Benders optimality cut

can be generated, which is shown in (4.31). The Benders feasibility cut is omitted since the

subproblem is always feasible due to the slack variable r
(s)
i (t).

Qw ≥ Q
(s)
it (v | β∗, τ∗, ζ∗, η∗, ξ∗), ∀s ∈ S . (4.31)

ii. Master Problem

Take the optimality cuts (4.31) into consideration, the master problem is described as:

min
vg

∑

t∈T

∑

g∈G

(

cp(0)g (t) + cug (t) + cdg(t)
)

+Qw (4.32)

s.t. constraints (4.2)–(4.8) and (4.31). (4.33)

iii. Bounds

The lower bound LB is the objective function value of master problem (4.32), and the

upper bound UB is,

UB =
∑

t∈T

∑

g∈G

(

cp(0)∗g (t) + cu∗g (t) + cd∗g (t)
)

+max
s∈S

{

Q
(s)
it (v∗, β∗, τ∗, ζ∗, η∗, ξ∗)

}

. (4.34)

If the optimality criteria is met, i.e., |UB − LB| ≤ ǫ, then stop the process; otherwise,

start a new iteration to solve the master problem.

4.2.2.3 Implicit Method

i. Subproblem

Implicit decomposition considers all the contingency scenario into one whole subproblem,

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 101

where z
(s)
g and z

(s)
ij are binary decision variables. The primal max–min subproblem is:

Qw = max
zg,zij

{

∆, (4.35)

s.t. (zg, zij) ∈ S , (4.36)

∆ = min
p
(s)
g , f (s)

ij , r(s)i , θ(s)i

[

∑

t∈T

∑

i∈Nb

Pri(t), (4.37)

s.t. (4.11)–(4.17) without (s).
]}

(4.38)

The inner problem (4.37) has the same form with (4.23), therefore, its dual problem is

similar with (4.25)–(4.30). By replacing (4.37) with (4.25)–(4.30), the max–min subproblem

turns into max–max, which can be equivalently rewritten as a maximizing problem. How-

ever, several bilinear terms emerged in objective function (4.25) and constraints (4.28) since

zg and zij are also decision variables, such as βt+
g zg. In order to linearize the problem, the

bilinear term will be replaced with new variables, i.e., Bt+
g = βt+

g zg, and the following

disjunctive constraints should be added.

−(1− zg)M ≤ Bt+
g − βt+

g ≤ (1− zg)M , (4.39)

−zgM ≤ Bt+
g ≤ zgM . (4.40)

ii. Master Problem and Bounds

By solving the MILP subproblem, the worst contingency can be identified, then Benders

cuts (4.31) can be generated. The remaining steps corresponding to the master problem

and bounds are the same with the explicit method.

4.2.2.4 Acceleration Strategies

i. Parallel Computing

For the explicit method, all subproblems are independent and of the same scale, if parallel

computing is utilized, the solution time for subproblems is almost inversely proportional

to the number of processors [145]. On the other hand, there is only one MILP subprob-

lem in the implicit method, which is not suitable for parallel implementation. In terms of

MILP master problem, the parallel implementation can be worthwhile only if the calcula-

tion time for the subproblems can be reduced to the point where the master problem time

becomes a significant fraction of the whole [146].

ii. Multi-cut Strategy

As shown above, each contingency scenario can generate one Benders cut and one con-

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 102

Table 4.1: Scales and complexity of benchmark test systems under n − 1 − 1 contingency
criterion.

Items 24-bus system 118-bus system

No. of buses: 24 118
No. of generators: 14 56
No. of transm. lines: 46 189
No. of scenarios: 645 10,585
No. of bin. variables: 336 1,344
No. of cont. variables: 1,889,233 136,422,169
No. of constraints: 3,378,347 230,945,121

straint set, containing information of the solution space, which benefits for the convergence

process. If the complexity of the master is not considered, more cuts and constraints mean

faster convergence. Therefore, a π-cut strategy can be proposed for the explicit method,

which determines the most violated π realizations and adds corresponding cuts and con-

straints into the master problem.

4.2.3 Numerical Results and Discussion

In this section, all the numerical tests are performed on AMPL IDE 3.1.0 using CPLEX

12.6.3 solver on a PC running on 64-bit Windows 8.1 operating system, with quad-core

Intel Xeon E5-2620 v2 CPU (2.1 GHz) and 32 GB RAM. Parameters P , M and ǫ are valued

as 103, 103 and 10−3.

4.2.3.1 Benchmark Systems

Extensive performance evaluation and sensitivity analysis are implemented on the IEEE

24-bus test system [147] to illustrate the efficacy of explicit and implicit methods. The

resilience against multiple contingencies is increased by adding 4 generators and 5 trans-

mission lines. As a consequence, the system is able to withstand the n− 3− 0 and n− 2− 1

contingency criteria. The IEEE 118-bus test system [132] is introduced to show the po-

tential under large-scale circumstances, where 2 generators and 3 circuits are enhanced to

meet the n − 1 − 1 contingency criterion. Table 4.1 gives an overview of the scales and

complexity of both systems.

In order to extensively compare the explicit and implicit methods, several algorithms

are separated and shown in Table 4.2. The convergence behavior and time consumption is

illustrated in Fig. 4.2 and Fig. 4.3, where a cutoff time of 1000s is employed. The global

optimal objective value is 952,164$.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 103

0 100 200 300 400 500 600 700 800 900 1000

949

950

951

952

0 200 400 600 800 1000

948.57

948.60

948.63

948.66

948.69

C
o

s
t
(1

0
0

0
$

)

Time (s)

Alg.I.1
Alg.I.2
Alg.I.3
Alg.E.1
Alg.E.2
Alg.E.3
Alg.E.4
Alg.E.5

952.164

Figure 4.2: Behavior of convergence for different algorithms.

426.1

223.6

905.4

707.9

228.7

599.3

Alg.E.1
Alg.I.1 Alg.E.2

Alg.I.2 Alg.E.3
Alg.I.3 Alg.E.4

Alg.E.5
Alg.C.6

0

125

250

375

500

625

750

875

1000
>72h>72h

E
la

p
s
e

d
T

im
e

(s
)

Algorithms

Master Problem
Subproblem

>72h

Figure 4.3: Behavior of time consumption for different algorithms.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 104

Table 4.2: Alternative versions of algorithms.

Algorithms Description

Alg.E.1/Alg.I.1: Explicit/Implicit method with Benders cuts only.

Alg.E.2/Alg.I.2: Explicit/Implicit method with constraint sets only.

Alg.E.3/Alg.I.3: Explicit/Implicit method with both constraint sets and Benders cuts.

Alg.E.4: Alg.E.2 with its subproblems solved in parallel by 24 threads.

Alg.E.5: Alg.E.2 with multi-cut strategy.

Alg.C.6: Commercial MILP solver CPLEX 12.6.3.

4.2.3.2 Performance Evaluation of Benders Cuts and Constraint Sets

According to Fig. 4.3, both Alg.E.1 and Alg.I.1 cannot terminate after a run time of 1000s,

while Alg.E.2 and Alg.I.2 converge at 426.1s and 223.6s, indicating that CCG is more ef-

ficient than Benders cuts. On the other hand, Alg.E.3 and Alg.I.3 are even slower than

Alg.E.2 and Alg.I.2 with both CCG and Benders cuts involved, which means the introduc-

tion of Benders cuts even drags the solution efficiency. The reason is that a slack variable

r
(s)
i (t) is required during the solution process of Benders decomposition, which expands

the scale for both master problem and subproblems.

4.2.3.3 Performance Evaluation of Parallel Implementation

It is noticeable in Fig. 4.3 that the time consumed by subproblem is much higher in the

explicit method, while the master problem consumes almost the same amount of time for

both methods, especially for Alg.E.2 and Alg.I.2. Therefore, the parallel implementation is

introduced in Alg.E.4 based on Alg.E.2. The solution time is reduced from 426.1s to 228.7s,

which is comparable to Alg.I.2 with 223.6s; thus the performance improvement gained by

parallel computing is promising.

4.2.3.4 Performance Evaluation of Multi-cut Strategy

In Alg.E.5, two sets of constraints are added in each iteration, i.e., π = 2. However, it

spends more time than Alg.E.2 although their subproblems spend the same time. Which

means adding one more set of constraints only increases the size of the master problem, but

does not enhance the convergence, i.e., the benefit of multi-cut strategy is not significant.

One reason is that the two most violated scenarios are similar and one of them is redun-

dant. Another reason lies in the small number of iterations before termination, which can

be seen from Fig. 4.2.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 105

Table 4.3: Computational results for different KG and KL values.

KG KL Cost ($) Time (s) KG KL Cost ($) Time (s)

0 0 948,582 2.328 2 0 953,380 267.375
0 1 948,932 11.939 2 1 956,259 4,336.830
0 2 Infeasible ——– 2 2 Infeasible ——–
1 0 949,810 58.266 3 0 958,028 3,655.560
1 1 952,164 223.592 3 1 Infeasible ——–
1 2 Infeasible ——– 4 0 Infeasible ——–

4.2.3.5 Performance Comparison between Explicit and Implicit Methods with MILP

Solver

If the cutoff time of 1000s is replaced by 72h, the algorithms Alg.E.1 and Alg.I.1 end with a

gap of 8.3% and 1.6% respectively; however, no valuable solution was reported by Alg.C.6.

Therefore, two advantages can be drawn from decomposition methods in comparison to

direct MILP solution: 1) the solution process is observable, i.e., each intermediate solu-

tion can be output and its quality can also be identified by gap, and 2) the decomposition

strategy makes the large-scale problem tractable in terms of execution time and memory

resources.

4.2.3.6 Sensitivity Analysis for KG and KL

Table 4.3 summarizes the total cost and execution time in terms of different values of KG

and KL. As can be seen, the cost goes higher as KG and KL increase, since more units

should be turned on to compensate for the failure of components. Comparing the most se-

vere contingency with the sufficient one, only 1% additional cost is introduced; however,

the solution time increases heavily from 2s to more than 1h, showing that the complexity of

the problem is exponentially related with KG and KL. It is also noticeable that the system

is more capable of surviving the loss of generator than the outage of circuits. The reason

is that generator is much easier to be substituted by others if the network is still sufficient,

while the loss of circuits usually results in node isolation.

4.2.3.7 Potential Exploration for Large-scale Implementation

The comprehensive case study and discussion on IEEE 24-bus test system reveals that the

implicit method Alg.I.2 and parallel explicit method Alg.E.4 are superior to other algo-

rithms and solvers. Their potential on the large-scale instance is validated by the IEEE

118-bus test system in this section. Fig. 4.4 depicts the convergence behavior of Alg.I.2,

which terminates at 3h after 3 iterations, while Alg.C.6 runs out of memory at 1.2h. The

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 106

0.0 0.5 1.0 1.5 2.0 2.5 3.0

657.0

657.5

658.0

658.5

659.0

659.5

C
o

s
t
(1

0
0

0
$

)

Time (h)

Subproblem Solution

Master Problem Solution

Obj. value

0

1000

2000

3000

4000

5000

6000

7000

Loss of load

L
o

s
s

o
f
lo

a
d

(M
W

)

Figure 4.4: Behavior of convergence of Alg.I.2 for IEEE 118-bus test system.

solution process of Alg.E.4 is similar with that of Alg.I.2 illustrated in Fig. 4.4 except for the

solution time of subproblems. Finally, Alg.E.4 takes 3.79h in total for solution. Although

Alg.I.2 is faster, it may be intractable for larger systems since all the contingency scenarios

are included in one MILP subproblem. On the other hand, the solver’s limits on the solu-

tion of Alg.E.4’s individual LP subproblem are far from being reached.

4.3 Real-Time Optimal Power Flow

As shown in Fig. 1.4, the forecasting error is inevitable during the traditional imple-

mentation framework of RTOPF. In order to enhance the accuracy, a three-stage solution

framework is developed in this section based on the PDIMP. Mathematical formulation

of RTOPF is presented in section 4.3.1. PDIPM is reviewed in section 4.3.2 as a prelimi-

nary for the description of parallel computing. Section 4.3.3 illustrates the implementation

details of PDIPM with GPU heterogeneous computing. Case studies with both CPU and

GPU platforms are reported in section 4.3.4.

4.3.1 Mathematical Formulation

This section briefly introduces the definition and formulation of classical RTOPF, where

all the utilized variables and parameters are defined in the nomenclature. To achieve the

efficiency and accuracy, a three-stage process is developed for the solution of RTOPF with

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 107

REGs, where scenario reduction algorithm and hot-start strategy will be employed.

4.3.1.1 Optimization Model

The RTOPF is expressed as follows: “determining the thermal generator output to min-

imize the total operation cost based on the forecasted power output of REGs, demand

loads, and current status of thermal units”.

i. Objective Function

The OPF can be designed to optimize a wide range of goals [19], such as total generation

cost, system loss, and emission, etc. The operation cost of the generator is determined for

optimization in this work, which is expressed by a quadratic function as follows:

minF =
∑

g∈Ng

[

ag
(

PG
g

)2
+ bgP

G
g + cg

]

. (4.41)

ii. Nodal Power Balance Constraints

The active and reactive power balance on bus i ∈ Nb can be written as:

PG
i + PR

i − PD
i = Vi

∑

j∈Nb

Vj(Gij cos θij +Bij sin θij), (4.42)

QG
i +QR

i −QD
i = Vi

∑

j∈Nb

Vj(Gij sin θij −Bij cos θij). (4.43)

If i /∈ Ng or i /∈ Nr, then PG
i = QG

i = 0 and PR
i = QR

i = 0, respectively. It should be

noted that the intersection of Ng and Nr may not be empty.

iii. Generator Capacity Constraints

For generator g ∈ Ng, its active and reactive power output are limited, which can be ex-

pressed as:

PG,min
g ≤ PG

g ≤ PG,max
g , (4.44)

QG,min
g ≤ QG

g ≤ QG,max
g . (4.45)

iv. Ramp Rate Constraints

The ramp rate limit of generator g ∈ Ng is considered as follows:

PG0
g −RG,down

g ≤ PG
g ≤ PG0

g +RG,up
g . (4.46)

v. Voltage Deviation Constraints

The voltage magnitude at bus i ∈ Nb is restricted by its lower and upper limits:

V min
i ≤ Vi ≤ V max

i . (4.47)

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 108

vi. Line Security Constraints

The maximum power flow on line ij ∈ Nl should not exceed its capacity for security

concerns:

fmin
ij ≤ fij ≤ fmax

ij . (4.48)

In [148], the constraints (4.48) have been proven to be practically equivalent to (4.49).

θmin
ij ≤ (θij = θi − θj) ≤ θmax

ij . (4.49)

4.3.1.2 Uncertainty Management

It should be noted that in the above equations (4.42)–(4.43), the terms PR
i , PD

i , QR
i , and

QD
i are fixed forecast values of the next interval. Practically, the output of REG is greatly

dependent on the meteorological data, such as the daily solar irradiation and wind speed.

Fig. 4.5 gives an example at NREL Solar Radiation Research Laboratory (latitude 39.74◦N,

longitude 105.18◦W, elevation 1829m, and time zone GMT-7) on May 2, 2017 [2]. It can

be seen that, for hours resolution, the fluctuation is large and random, i.e., the prediction

accuracy is not guaranteed. In the sub-figure, the variation is depicted in every minute,

which is more stable and easier to forecast. In this work, although the decision interval

is determined as 30s, the prediction can only be performed with significant uncertainty.

Therefore, additional enhancement might be required.

Consider the forecasted active power output of REG r is PR
r , probable scenarios around

PR
r are also likely to be realized, such as (1 ± q)PR

r , where q can be 5% or 10%. Take Fig.

4.6 as an example, picking one value of these 3 high probable estimations of each REG, a

scenario can be generated. It is obvious that the total number of scenarios is 3nr if there

are nr REGs, which will increase sharply if the dynamics of loads and more values of q are

considered. For each scenario, there will be one RTOPF to be built and addressed. More

scenarios represent higher accuracy, but the computation may be excessive. Thus, scenario

reduction strategies should be employed to strike a balance between the heavy computa-

tional burden and prediction accuracy.

Fig. 4.7 demonstrates the stages of the whole solution process of RTOPF with REGs

integrated. Stage 1 is devoted to scenario preparation, where the utilized prediction al-

gorithm and scenario reduction strategy are out of the scope of this thesis, for more de-

tails please refer to [96, 149, 150]. RTOPF formulation and solution is performed in Stage

2, where the heaviest computation resources are consumed. To achieve high solution effi-

ciency, GPU-based acceleration techniques are introduced in this work. Stage 3 is designed

to refine the solution specified from the lookup table and eliminate the forecast error.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 109

0 6 12 18 24

0.0

0.3

0.6

0.9

1.2

1.5

0 6 12 18 24

0

2

4

6

8

10

12.0 12.1 12.2 12.3

0.0

0.3

0.6

0.9

1.2

1.5

12.0 12.1 12.2 12.3
0

2

4

6

8

10

Time (h)

S
o

la
r

ir
ra

d
ia

tio
n

(K
W

/m
^2

)
W

in
d

s
p

e
e

d
(m

/s
)

Figure 4.5: Daily solar irradiation (global CMP22) and wind speed (height 19ft) at NREL
Solar Radiation Research Laboratory on May 2, 2017 [2].

2

RP

() 21 Rq P+

() 21 Rq P-

1

RP

() 11 Rq P+

() 11 Rq P-

3

RP

() 31 Rq P+

() 31 Rq P-

r

R

nP

()1
r

R

nq P+

()1
r

R

nq P-

P
o

w
e

r
o

u
tp

u
t

e
s
ti

m
a

ti
o

n
s

Renewable energy generator indices
1 2 3 rn

Scenario 1

Scenario 4

Scenario 2

Scenario 3

Figure 4.6: Illustration of scenarios for the power output of REGs.

4.3.2 Primal-Dual Interior Point Method

This section reviews the steps of PDIPM [6] for the solution of nonlinear programming

problem. The notations are summarized at the beginning, then the derivations are pre-

sented.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 110

t t t t

,

O

t t t t

F F F

O O O

F

1 2 3 n

1.1 Gather meteorological data for the next interval;

1.2 Forecast the REG power output with prediction algorithms;

1.3 Scenario generation and reduction.

Stage 1

(Light)

2.1 Gather thermal generator status to form ramp constraints;

2.2 Forecast power loads to form power balance constraints;

2.3 Formulate RTOPFs based on each scenario;

2.4 Solve these RTOPFs in parallel and maintain a lookup table.

Stage 2

(Heavy)

3.1 Gather REG status to determine the closest scenario;

3.2 Index the RTOPF solution from the lookup table;

3.3 Formulate RTOPF based on the REG status obtained in 3.1;

3.4 Utilize the solution given in 3.2 as a hot-start point, solve

the the RTOPF developed in 3.3.

Stage 3

(Light)

Figure 4.7: Three-stage solution process of the hot-start RTOPF with REGs.

4.3.2.1 Notations

Given a real vector X = [x1, x2, . . . , xn]
T , the first (transpose of the gradient) and second

partial (Hessian matrix) derivatives of a scalar function f(X) : Rn → R is given as:

fX =
∂f

∂X
=

[

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]

, (4.50)

fXX =
∂2f

∂X2
=









∂2f

∂x2
1

. . . ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n









. (4.51)

The vector function F : Rn → R
m is stated as F (X) = [f1(X), f2(X), . . . , fm(X)]T ,

whose first derivatives (Jacobian matrix) is:

FX =
∂F

∂X
=







∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn






. (4.52)

A matrix of partial derivatives of F (X) based on the vector λ is:

FXX(λ) =
∂(FX

Tλ)

∂X
. (4.53)

Additionally, [X] represents a diagonal matrix whose diagonal elements are valued by

vector X , and e is the vector with all ones.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 111

4.3.2.2 Derivations

For simplicity, the OPF problem (4.41)–(4.48) stated in Section 4.3.1.1 can be rewritten into

a compact form as follows:

min f(X), (4.54)

s.t. G(X) = 0, (4.55)

H(X) ≤ 0. (4.56)

where X is the vector [PG
1 , . . . , PG

n , QG
1 , . . . , QG

n , V1, . . . , Vm, θ1, . . . , θm]; functions f :

R
n → R, G : Rn → R

p, and H : Rn → R
q corresponds to (4.41), (4.42) – (4.43), and (4.44) –

(4.47) and (4.49), respectively.

By introducing a barrier function, a perturbation parameter γ, and a positive slack

vector Z, the problem is evolved into:

min

[

f(X)− γ

q
∑

i=1

ln(Zi)

]

, (4.57)

s.t. G(X) = 0, (4.58)

H(X) + Z = 0, (4.59)

Z > 0. (4.60)

The Lagrangian function of this equality constrained problem (4.57)–(4.60) is:

Lγ = f(X) + λTG(X) + µT (H(X) + Z)− γ

q
∑

i=1

ln(Zi). (4.61)

The first and second particle derivatives of (4.61) over X is given as:

Lγ
X = fX +GXλ+HXµ, (4.62)

Lγ
XX = fXX +GXX(λ) +HXX(µ). (4.63)

Based on the Karush-Kuhn-Tucker conditions and Newton’s method, the following itera-

tive updating procedure can be performed with initiated X , Z, λ, µ, and γ:

• Step 1: Compute ∆X and ∆λ according to:

[

M GX
T

GX 0

] [

∆X
∆λ

]

=

[

−N
−G(X)

]

, (4.64)

where

M = Lγ
XX +HX

T [Z]−1[µ]HX , (4.65)

N = Lγ
X

T
+HX

T [Z]−1(γe+ [µ]H(X)). (4.66)

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 112

max

{

max{||G(X)||∞, ||H(X)||∞}
1 + max{||X||∞, ||Z||∞}

,
||Lγ

X ||∞
1 + max{||λ||∞, ||µ||∞}

,
ZTµ

1 + ||X||∞
,
|f − f0|
1 + |f0|

}

< ǫ.

(4.76)

• Step 2: Compute ∆Z and ∆µ from:

∆Z = −H(X)− Z −HX∆X , (4.67)

∆µ = −µ+ [Z]−1(γe− [µ]∆Z). (4.68)

• Step 3: Update variables X , Z, λ, and µ according to:

X = X + αp∆X , (4.69)

Z = Z + αp∆Z, (4.70)

λ = λ+ αd∆λ, (4.71)

µ = µ+ αd∆µ. (4.72)

where the primal and dual scale factors αp and αd is derived by the following equa-

tions with constant parameter ξ = 0.99995:

αp = min

(

ξ min
∆Zi<0

(

− Zi

∆Zi

)

, 1

)

, (4.73)

αd = min

(

ξ min
∆µi<0

(

− µi

∆µi

)

, 1

)

. (4.74)

• Step 4: Update perturbation parameter γ by the following mechanism, where σ is

set to 0.1:

γ = σ
ZTµ

q
. (4.75)

• Step 5: Terminate the solution process if convergent criteria (4.76) is met, where f

and f0 are the objective function value of the current and previous iterations respec-

tively; ǫ is valued as 1.0× 10−6. Otherwise, go to Step 1.

4.3.3 Parallel Implementation on GPU

This section summarizes general features of Nvidiar GPU architecture and heterogeneous

computing, with processing flow and instruction rules are described. Based on these regu-

lations, a detailed parallel implementation scheme is elaborated. Finally, the batched linear

solver is presented.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 113

1 2 3 n
CPU

Host memory

Device memory

GPU

Grid 0

Block 0 Block N

Grid M

Block 0 Block N

CUDA
threads

 Processing flow on CUDA:

 Copy the data from host to device;

 CPU send the instructions to GPU;

 GPU execute the processing in parallel;

 Copy the result from device to host.

PCIe

In
st

ru
ct

io
n

s

CPU
main

thread

Figure 4.8: CUDA thread hierarchy and processing flow.

4.3.3.1 GPU and Compute Unified Device Architecture

Initially designed for graphic and image processing, GPU has been introduced for the

general-purpose scientific computing in recent years [151]. Its popularity on HPC commu-

nity was soared by the release of Nvidiar CUDA [8]. In CUDA, the function designed for

GPU implementation is named as kernel. Different from regular C function where one call

means one execution, the kernel can be executed simultaneously by multiple CUDA threads

with one call. As shown in Fig. 4.8, the threads are organized in a three-level hierarchy,

i.e., each thread is contained in a block and many block consist of a grid. During execution,

the dimensions of grid and block are specified, as well as their indices, thus each thread can

be uniquely identified and controlled. The CUDA programming model is heterogeneous,

i.e., all the kernels execute on GPU while the rest of the C program run on CPU. In addition,

the host and device memories are logically separated. CUDA threads can access the device

memory during execution, including local memory, shared memory, global memory, etc.

CPU thread manages the bilateral data transfer between the host and device memory via

the API function cudaMemcpy(), which is physically performed by PCIe interface. Based

on these restrictions, a brief processing flow is given in Fig. 4.8.

In GPU, each thread is executed on one CUDA core, an arithmetic unit contained in the

Streaming Multiprocessor (SM). The SM receives computation task in the unit of block. Each

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 114

thread in one block can be concurrently executed in one SM, and one SM can also take care

of multiple blocks at the same time. Different blocks are independent with each other, while

threads within one block can cooperate via shared memory and barrier.

4.3.3.2 Rules for Heterogeneous Computing

Although GPU has far more cores than CPU, its frequency is significantly lower than CPU

core and several important features are missing, such as interrupts and virtual memory;

therefore, GPU may not always outperform CPU [152]. Actually, the GPU is productive

in the manipulation of large amounts of data with many streams, while the CPU excels at

doing complex operations on a small set of data.

The SM organizes threads in groups of 32 and called warps. If all 32 threads in a warp

are on the same path, the execution is coherent and efficient [8]. On the other hand, if di-

vergence occurred on the data-dependent conditional branch, each thread will be checked

individually and sequentially, i.e., parallelism is limited. Similarly, the warp memory ac-

cess share the same characteristic. If the target address of all 32 threads is successive,

the coalesced memory request will be performed; otherwise, up to 32 requests may be

launched. The memory access pattern consists one of the most important obstacles for the

performance of GPU computing [75]. The GPU-accelerated libraries provided by Nvidiar

contribute to a potential. With minimal changes, one can integrate them into the domes-

tic code. Since these libraries are highly optimized, the performance is usually remark-

able [153]. It should also be noted that the bandwidth of PCIe is relatively slow and might

be the bottleneck for data-intensive problems [8].

Based on the above analysis, three rules for heterogeneous computing is generated as

follows:

• Rule 1: Allocate computational intensive task to GPU, and leave data-dependent

conditional branches for CPU;

• Rule 2: Utilize the coalesced memory access pattern on device memory, and intro-

duce the highly tuned and optimized libraries if it is possible;

• Rule 3: Minimize the amount of data transferred between CPU and GPU.

4.3.3.3 Implementation Flowchart

According to Fig. 4.7, a set of RTOPFs corresponding to different scenarios should be

solved in Stage 2. Since they are mutually independent, parallel implementation is in-

troduced for concurrent solution in this subsection. Fig. 4.9 illustrates the proportion of

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 115

}, ,L L L

}

}

}

}

Matrix preparation (13%) Matrix solution (84%) Parameter update (3%)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 4.9: The execution time proportion of different operations of PDIPM.

execution time for different operations in a single PDIPM. It is obvious that the linear sys-

tem (4.64) solution is the most intensive computational task, which consumes more than

80% of the whole execution time. Therefore, based on Rule 1, this process should be dis-

tributed to GPU. Kernel 2 in Fig. 4.10 achieved this goal. Although the runtime of matrix

preparation and parameter updating in Fig. 4.9 are less, and few data-dependent condi-

tional branches are involved, they are executed on GPU with kernels 1 and 3 respectively

in Fig. 4.10 to minimize the data exchange between host and device (Rule 3), resulting in

that the transferred data in each iteration is only the binary indicator for termination.

At the beginning, data preparation will be conducted on CPU. After data copying, ker-

nel 1 will be launched by the instructions from CPU main thread. The execution of kernel

1 is simultaneous with blocks, where each block corresponds to one scenario. Within one

block, a maximum number of 1024 threads can be called for parallel processing. In CUDA,

there is an implicit barrier between different kernels. Therefore, kernel 2 will not be ex-

ecuted until the matrix preparation processes for all scenarios are finished. This barrier

facilitates the utilization of batched solver for the solution of linear systems in kernel 2,

which will be exemplified in the next subsection. Similarly, the barrier between kernels 2

and 3 guarantees all intermediate results from linear system solution have been updated

for each scenario. The thread organization pattern in kernel 3 is the same with kernel 1.

The termination judgment of (4.76) will be performed in kernel 3 and an indicator will be

generated. Finally, CPU will copy that indicator from device to host memory when all

blocks finished the calculation. The CPU will terminate the whole solution process if the

termination criteria has been met; otherwise, execution instructions will be sent to kernel 1

by CPU to start a new iteration. It should be noted that all the intermediate data produced

or updated by kernels are stored in device memory, thus the data exchange has been min-

imized and the barrier is required.

4.3.3.4 Kernels Design

In this work, all vectors are dense, whereas all matrices are sparse and stored with

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 116

Start

Termination?

End

Y
N

X
C

P
U

X
x

G
P

U
x

X
C

P
U

X

 CPU send the instructions to GPU;

 Copy the data from host to device;

 CPU send the instructions to GPU;

 Copy the result from device to host.

 CPU send the instructions to GPU;

 CPU send the instructions to GPU;

K
e

rn
e

l
1

K
e

rn
e

l
3

Kernel 2

{ }, , , , , ,X Z g l m x s

Calculate partial derivatives according to (4.49)-(4.52).

() () () () (){ }, , , , , , , ,X X X XX XX XXf X G X H X f G H f G Hl m

Establish Lagrangian function (4.60) and partial derivatives (4.61)-(4.62).{ }, ,X XXL L Lg g g

Prepare the coefficient matrix and vector (4.64)-(4.65). { },M N

Construct coefficient matrix and vector.
()

,
0

T

X

X

NM G

G XG

ì ü-é ù é ùï ï
í ýê ú ê ú

-ï ïë ûë ûî þ

Solve the linear system (4.63). { },X lD D

Compute update steps (4.66)-(4.67). { },Z mD D

Compute primal and dual scale factors (4.72)-(4.73). { },p da a

Update variables and parameters according to (4.68)-(4.71) and (4.74).{ }, , , ,X Z l m g

Initiate variables and parameters.

Construct problem (4.56)-(4.59). () () (){ }, , ,f X G X H X Z

Figure 4.10: Parallel implementation flowchart of concurrent PDIPM with heterogeneous
architecture.

Compressed Sparse Row (CSR) format as follows:

A = (PA, IA, XA, mA, nA, zA),

where mA, nA, and zA are the numbers of rows, columns, and nonzero elements; PA, IA,

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 117

}

}

}

}

}

}

}

}

7 0 0 0 10 0

3 8 0 0 9 0

0 4 1 0 0 11

5 0 2 6 12 0

A

é ù

ê ú

ê ú=
ê ú

ê ú

ë û

0 4 0 1 4 1 2 5AI

0 2 5 8AP

7 3 8 9 4 1AX

Dense Matrix
VectorsParameters

4Am =

6An =

12Az =

Sparse Matrix (CSR)

0 2 3 4

5 2 610

12

11 12

Figure 4.11: Demonstration of CSR format.

Algorithm 4.1 Horizontally concatenating of two matrices C = [A | B] in CSR format
(P , I , X , m, n, z)

1: if mA 6= mB then

2: Return “dimension mismatch” message.
3: else

4: Let mC = mA, nC = nA + nB , zC = zA + zB ;
5: Set an indicator ind = 1;
6: for j = 1 · · · mA do

7: for p = PA(j) + 1 · · · PA(j + 1) do

8: Let IC(ind) = IA(p), XC(ind) = XA(p);
9: Update ind = ind+ 1;

10: end for

11: for p = PB(j) + 1 · · · PB(j + 1) do

12: Let IC(ind) = IB(p) + nA, XC(ind) = XB(p);
13: Update ind = ind+ 1;
14: end for

15: Let PC = PA + PB (this is a vector addition).
16: end for

17: end if

Algorithm 4.2 Vertically concatenating of two matrices C =
[

A
B

]

in CSR format
(P , I , X , m, n, z)

1: if nA 6= nB then

2: Return “dimension mismatch” message.
3: else

4: Let nC = nA, mC = mA +mB , zC = zA + zB ;
5: Let IC = [IA, IB] , XC = [XA, XB];
6: Let PC = [PA(1 · · · mA), PA(mA + 1) + PB].
7: end if

and XA are vectors with sizes of mA + 1, zA, and zA, respectively. An illustrative example

is given in Fig. 4.11

i. Kernels 1 and 3

Data preparation and updating are the main tasks for kernels 1 and 3, where a lot of ba-

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 118

sic operations are involved, including matrix/vector element updating, matrix/vector ad-

dition, matrix-matrix/matrix-vector multiplication, matrix transposing, minimizing, and

summation, etc. In order to achieve the best performance, a lot of investigation has been

conducted to achieve the coalesced access pattern based on thread origination and shared

memory utilization [154, 155]. In this work, mature strategies reported in the literature are

widely consulted and employed.

In addition to the basic operations, horizontally and vertically matrices concatenating

are also involved in kernel 1, e.g.,
[

M | GT
X

]

and
[

M
GX

]

. Algorithms 4.1 and 4.2 illustrate

the detailed steps of these two operations in the CSR format, whose parallel implementa-

tion is also conducted within each block based on the aforementioned techniques. Line 6

in Algorithm 4.2 consists of two steps: 1) PA(mA+1)+PB : add the (mA+1)th element of

vector PA into each entry of vector PB ; 2) [PA(1 · · · mA), PA(mA + 1) + PB]: combine the

(1 · · · mA) elements of vector PA with the updated vector PB into one whole vector.

ii. Kernel 2

As shown in Fig. 4.10, a set of linear systems with different coefficient matrices and vectors

should be solved by kernel 2. For simplicity, they are denoted as Ajxj = bj (j = 1, 2, ..., N)

in the following, where N is the number of linear systems. In order to follow the Rule 2,

cuSolver library [156] is introduced for the solution of Ajxj = bj on GPU. Table 4.4 sum-

marizes different types of factorization methods provided by cuSolver in various modes.

In CPU and GPU regular mode, Ajxj = bj will be solved one-by-one in cuSolver kernels.

Although these kernels are highly optimized, the task switching between different linear

systems is inevitable, resulting the whole solution efficiency is limited. On the other hand,

the GPU batched mode can solve all the N linear systems Ajxj = bj at the same time with

only one call, thus full potential of GPU resources are utilized and the solution efficiency

is highly improved. Based on the above analysis, the QR factorization is determined in

this work for the linear equations solution since it is the only method that supported by

cuSolver in the GPU batched mode. The batched mode requires all the coefficient matri-

ces have the same sparsity pattern, thus adjusting has been made on different matrices Aj

in the same iteration as well as different iterations by adding zero values. By doing that,

PA1 = PA2 = ... = PAN
and IA1 = IA2 = ... = IAN

can be achieved. The basic steps of

batched QR solution is depicted as follows:

• Prepare Abatch: Summarize all the individual matrices Aj into one batched matrix

Abatch,

Abatch = {PA1 , IA1 , Xbatch, mA1 , nA1 , zA1},

where vector Vbatch stores the nonzero elements of Aj one after another, i.e., Xbatch =

[XA1 , XA2 , . . . , XAN
].

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 119

Table 4.4: Accessible factorization methods of cuSolver in various modes.

Methods CPU
GPU

regular mode batched mode

Cholesky Factorization
√ √ ×

LU Factorization
√ × ×

QR Factorization
√ √ √

• Generate permutation array q: Generally, there will be extra nonzero entries named

fill-ins appeared after the factorization, which demands extra memory space and

more arithmetic operations. Fortunately, its number can be greatly reduced by matrix

reordering, where a permutation array q is required. In this work, RCM [157] and

AMD [79] are considered. The AMD is finally utilized since the it is faster for all

tested systems.

• Reorder Abatch: The fill-ins reduction is performed by reordering Abatch into

Bbatch = QAbatchQ
T , (4.77)

where Q is derived from q.

• Symbolic analysis of Bbatch: This process is utilized to determine the sparsity pat-

tern of lower and upper triangle matrices of QR factorization, which will be applied

for the parallelism extraction and working space allocation.

• Numerical factorization for Bbatch: This step is performed by all CUDA cores in the

GPU with intensive parallelism. The generated solution xbatch should be reordered

according to q before utilization in the following steps.

4.3.4 Case Studies

4.3.4.1 Network and Input Data

The case studies are carried out on four benchmark systems modified from Matpower

[143], including IEEE 14-bus, IEEE 57-bus, IEEE 118-bus, and IEEE 300-bus test cases,

where 2, 4, 10, and 25 REGs are integrated to substitute thermal generators. For each

system, 1024 scenarios are generated at the beginning of each interval based on the mete-

orological data [158], REG parameter [100], and load profile [99], where time granularity

adjusting, data normalization, and scenario reduction processes are employed. All of these

1024 RTOPFs are tackled by a PC equipped with Intel Xeon E5-2620 CPU and Nvidiar

GeForce GTX 1080 GPU. The programming environment is Visual Studio 2015. For sim-

plicity, only one interval is conducted for comparison.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 120

Table 4.5: Execution time of RTOPF with different platforms (s).

Cases 14-bus 57-bus 118-bus 300-bus

Regular CPU 20.51 106.95 890.95 2,125.40
Parallel CPU 2.29 11.38 91.91 208.47
Regular GPU 1.51 5.88 43.54 85.05
Batched GPU 0.51 2.20 17.19 37.80

Table 4.6: Speedup of different methods over regular CPU implementation.

Cases 14-bus 57-bus 118-bus 300-bus

Regular CPU 1.00 1.00 1.00 1.00
Parallel CPU 8.95 9.40 9.69 10.20
Regular GPU 13.60 18.19 20.47 24.99
Batched GPU 40.22 48.61 51.83 56.23

In order to validate the performance of the framework developed in section 4.3.3, four

types of implementations are compared:

• Regular CPU: All scenarios are solved one-by-one, and the steps shown in Fig. 4.10

is sequentially executed for each scenario. In terms of linear equations solution, the

sparse solver Csparse developed in [79] is utilized.

• Parallel CPU: All scenarios are solved in parallel based on the OpenMP API with

each thread corresponding to one scenario. Within each scenario, the solution pro-

cess is the same with regular CPU implementation, i.e., sequential and Csparse. In

the case study, 12 threads are launched.

• Regular GPU: Parallel implementation on GPU according to the flowchart given in

Fig. 4.10 except that the kernel 2 is performed by cuSolver QR factorization without

batched mode enabled.

• Batched GPU: Parallel implementation on GPU with all the proposals shown in sec-

tion 4.3.3 employed, including the batched QR factorization of cuSolver. The batch

size is set at 1024 in case studies.

Tables 4.5 and 4.6 summarize the main results for the solution time and speedup, where

1024 scenarios are considered for each test system.

4.3.4.2 Results on CPU Platform

In [23], the execution for a 41-bus system with 49 scenarios is about 80s on CPU. Although

the computation platforms are different, the results reported in Table 4.5 with regular CPU

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 121

0 2 4 6 8 10 12

0

2

4

6

8

10

12
14-bus 57-bus 118-bus 300-bus

S
p

e
e

d
u

p

No. of Threads

Figure 4.12: Achieved speedups by OpenMP on various test systems with different num-
bers of threads enabled.

implementation are comparable, e.g., 106.95s is consumed for 57-bus system with 1024 sce-

narios. Nevertheless, it is far away from real-time application. Therefore, parallel comput-

ing with OpenMP is carried out on CPU with 12 threads enabled, resulting in the speedups

from 8.95 to 10.20 for various test systems. It can be seen from Table 4.6 that the speedup is

higher for larger system, which is partially due to the contradiction between overhead of

thread switching and numerical calculation (larger system has heavier computation load).

Fig. 4.12 demonstrates the achieved speedups for various systems with different numbers

of threads launched. It is observable that the marginal profit gained by thread addition

is diminishing, e.g., a speedup of 1.91 can be obtained by 2 threads for 14-bus system,

whereas that number is only 8.95 for 12 threads. The reason is still related to the work-

loads of each scenario.

4.3.4.3 Results on GPU Platform

Although GPU has a smaller frequency than CPU, the number of concurrent threads is

much larger, thus the execution time is shorter than parallel CPU as shown in Table 4.5.

In order to further improve the solution efficiency, batched mode is introduced, whose

solution process is illustrated in Fig. 4.13 as well as the regular QR factorization. Both

modes take 5 steps summarized in section 4.3.3.4 to solve a single or one bunch scenarios

in iteration 1. Since the sparsity pattern of different coefficient matrices is tuned as the

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 122

q

A

A

q

A

A

q

A

A

q

A

A

q

A

A

q

A

A

Numerical factorization

Generate 2q

Prepare 2A

Reorder 2A

Symbolic analysis

Numerical factorization

Generate Nq

Prepare NA

Reorder NA

Symbolic analysis

Numerical factorization

Generate 1q

Prepare 1A

Reorder 1A

Symbolic analysis

Numerical factorization

Generate 2q

Prepare 2A

Reorder 2A

Symbolic analysis

Numerical factorization

Generate Nq

Prepare NA

Reorder NA

Symbolic analysis

Numerical factorization

Generate 1q

Prepare 1A

Reorder 1A

Symbolic analysis

Numerical factorization

Symbolic analysis

Reorder batchA

Generate 1q

Prepare batchA

Numerical factorization

Reorder batchA

Prepare batchA

x
xI

te
ra

ti
o

n
 1

x
x

x
xI

te
ra

ti
o

n
 2

x
x

Regular QR Batched QR

>

»

»

>

»

»

Computational

burden

Figure 4.13: Solution process comparison between the regular and batched QR factoriza-
tion.

same on the batched QR, the results of reorder vector q and symbolic analysis are reusable,

thus a lot of effort has been saved as highlighted with≫ in Fig. 4.13. As reported in Table

4.6, the utilization of batched mode has doubled the speedup obtained by regular GPU

implementation.

4.3.4.4 Discussions

Apart from the above results on the solution time and speedup, the following discussions

are given on two different topics.

i. Batch Sizes

To intensively investigate the performance, different batch sizes are utilized for the solu-

tion of case 300-bus. The result is depicted in Fig. 4.14. The total execution time reduced

quickly from 85.05s to 42.21s with the batch size increased from 1 to 256, validating the

superiority of the batched mode. If the batch size keeps increasing, the runtime still de-

creases, but the rate is limited, indicating that the full potential of GPU is approaching.

Since the fastest improvement occurs at the beginning rather than the later stage, one can

use smaller batch size to increase the capability for larger systems with little sacrifice of ef-

ficiency. For example, the solution time increased 11.67% by reducing the batch size from

2014 to 256 in Fig. 4.14.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 123

0 200 400 600 800 1000

30

40

50

60

70

80

90

E
x
e

c
u

tio
n

T
im

e
(s

)

Batch Size

Figure 4.14: Execution time of case 300-bus with different batch sizes (1, 32, 64, 128, 256,
512, 1024).

Table 4.7: Effectiveness of the initiated solution based on different numbers of scenarios
for the hot start linear system.

No. of scenarios 32 64 128 256 512 1024

No. of iter. for the final hot-start linear system 8 5 3 2 1 1

ii. Hot Start

Table 4.7 summarizes the numbers of iterations for the final hot start linear system of case

118-bus on the basis of different numbers of scenarios. It is observable that the quality of

the initiated solution is higher with more scenarios since the numbers of iterations before

convergence is less. On the other hand, fewer iterations means that the initial solution

is close to the final one, which can also be explained that the requirement for hot start

strategy is more urgent for the circumstance with fewer scenarios. In order to gain better

performance, one can increase the number of scenarios; however, there is a saturation

point, after which the performance cannot be advanced. In the 118-bus case, that point is

512.

Chapter 4. Generation System Optimal Operation: SCUC and RTOPF 124

4.4 Summary

Off-line and real-time decision processes of generator optimal operation are investigated

in this chapter, where discrete and continuous variables are included respectively.

Both explicit and implicit decomposition frameworks have been investigated for the

solution of n −KG −KL SCUC problem. Except for the validation of conventional find-

ing that the CCG dominates on Benders cuts, several other conclusions are made: 1) the

introduction of Benders cuts may even drag the solution efficiency of CCG; 2) the parallel

implementation of explicit method is proportionate with the implicit method; 3) the bene-

fit of multi-cut strategy is not significant; 4) the decomposition framework is superior over

commercial solver for this kind of problem; and 5) the system is more capable of surviving

the loss of generator than the outage of circuits.

In order to minimize the forecasting error related to REGs and demand loads during

the solution of RTOPF, a three-stage framework is employed in this chapter. Scenarios

are generated and filtered in Stage 1 to characterize the uncertainty. Stage 2 tries to min-

imize the prediction interval by GPU acceleration, where heterogeneous computing with

batched linear solver is implemented. Hot-start strategy is introduced in Stage 3 to elim-

inate the prediction error. Comparison between CPU and heterogeneous CPU-GPU plat-

forms are implemented on the IEEE 14-bus, 57-bus, 118-bus, and 300-bus systems, where

both regular and batched solution schemes are included. The results validate the superi-

ority of batched GPU over regular GPU, parallel CPU, and sequential CPU.

5
Distribution System Optimal Operation:

DNRC and RTVVO

5.1 Introduction

Distribution network is the final stage in the power delivery to bridge individual con-

sumers with the transmission system [19]. Due to the low voltage levels, significant power

loss is encountered. Two problems are investigated in this chapter to minimize the active

power loss.

At the planning stage, it is designed as interconnected with switches, while during op-

eration it is arranged as radial tree configuration. Therefore, the active power loss can be

minimized by changing the open/close status fo switches, i.e., DNRC. Meta-heuristic PSO

is utilized to address DNRC due to its MINLP property. In terms of power flow calcula-

tion, the DA is employed since it works better than NR and FD in the distribution network.

In order to accelerate the solution efficiency, two improvements are proposed on the indi-

vidual representation and fitness evaluation.

One of the major responsibilities of distribution network is the voltage and reactive

power (var) management, i.e., achieving high efficiency, reliability, and quality on the

power supply. A lot of control devices are available to fulfill that goal, such as OLTC

transformer, voltage regulator, and SC, etc. The RTVVO is designed to minimize system

active power losses while satisfying equality constraints to node active and reactive power

balances, as well as lower/upper bounds of node voltages. Similar with DNRC, PSO and

DA are employed in the solution process. In addition, the GPU is introduced for accelera-

tion in order to achieve the possibility for real-time application. All the solution process is

125

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 126

executed by GPU with the well-established data structure and thread organization pattern,

resulting in high efficiency by guaranteeing coalesced access within each warp.

5.2 Distribution Network Reconfiguration

In order to accelerate the DNRC solution process, two major concerns are addressed in this

section. In each meta-heuristic algorithm, the individual representation is of great signifi-

cance for the solution efficiency, which is analyzed and improved in section 5.2.1. Section

5.2.2 is devoted to the enhancement on fitness evaluation process, where the DA is revised

based on graph theory. Case studies and discussions are presented in section 5.2.3.

5.2.1 Solution Encoding and Decoding Strategy

The solution of DNRC consists of a series of open branches, which can be intuitively repre-

sented with binary and integer numbers. Although both of them are straightforward and

easy to implement, the radial topology of the network cannot be maintained efficiently,

which results in a large number of infeasible solutions during the evolutionary process;

therefore, the convergence property is limited and the capability for the large-scale system

solution is weak. To alleviate these concerns, a novel encoding technique was developed

in [27], where each branch corresponds to one element in the solution vector and assigned

with a real number. When decoding, the real number corresponding to each branch is

regarded as the weight, thus a weighted undirected graph was established. By doing an

MST computation, the radial topology can be uniquely determined. This method guaran-

tees all solutions are feasible, i.e., the RTS is always preserved.

Although there are several advanced algorithms for MST computing, such as Prim’s,

Kruskal’s, and Boruvka’s algorithms, the computational complexity is still high. In addi-

tion, the MST calculation is required at each candidate generation. To alleviate the compu-

tational burden and improve the solution efficiency, a two-stage probability-based encod-

ing and decoding process is developed in this chapter:

5.2.1.1 Stage 1: Network Analysis

This stage is a preliminary process for solution decoding, which is independent with all

encoded solutions and will be executed for only once. The main objective is to find out the

shortest cycle for each tie switch and organize them in a specific order. Based on this order,

Stage 2 is designed to break these cycles and generate the RTS. For simplicity, a small-scale

distribution system is introduced for illustration, which is shown in Fig. 5.1 and consists

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 127

121343

1

2

7 115

6

0

10

98

5
6

816

7 15

1
29

13144

3
11

Figure 5.1: Configuration of the target distribution network.

of nd = 14 nodes, nb = 13 branches, and ns = 3 tie switches (indicated by dashed lines).

The following steps are responsible for network analysis, where step-by-step temporary

results corresponding to Fig. 5.1 are also revealed.

• Step 1: Open all the switches to generate a radial tree. The result is indicated by Fig.

5.2(a).

• Step 2: Close each tie switch to find a corresponding cycle. This step can be fulfilled

by calculating the shortest path between two nodes of each tie switch in the radial

tree. Fig. 5.2(b) illustrates these cycles with responding to both branch and node ID.

• Step 3: Join the cycles with branch ID into one whole vector C, and determine the

index of each switch in C to generate another vector D. Finally, insert a 0 at the be-

ginning of D. Fig. 5.2(c) demonstrates the ultimate results of Stage 1.

Obviously, the number of cycles is ns; therefore, D is of length ns + 1. On the other

hand, the length of C is problem dependent due to branch reputation at different cycles.

To sum up, the input of network analysis is the initial configuration, and the outputs are

vectors C and D.

5.2.1.2 Stage 2: Solution Representation

Based on vectors C and D, this stage illustrates how to encode and decode decimal solu-

tion vector R.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 128

(a)
12

134

3

1

2 7 11

5

6

0

10

98

5

1
34

Layer 0:

Layer 1:

Layer 2:

Layer 3:

4 3 1 10 12 13 14 7 5 10 11 15 2 1 5 6 8 16(c) C:

 D: 0 7 12 18

(b)

Switch ID

14

15

16

Circle (with node ID)

4 3 1 0 10 12 13 4

7 5 0 10 11 7

2 1 0 5 6 8 2

Circle (with branch ID)

4 3 1 10 12 13 14

7 5 10 11 15

2 1 5 6 8 16

Figure 5.2: Intermediate results of network analysis.

i. Encoding

In order to determine whether a branch should be open or close, a probability value ri ∈
[0, 1] is granted for each branch in this work; therefore, the 1 × (nb + ns) decimal solution

vector R can be encoded intuitively as,

R = {r1, r2, . . . , rnb
, . . . , rnb+ns} .

ii. Decoding

Given a real number encoded solution R as shown in Fig. 5.3 (a), the PLD decoding pro-

cesses are developed as follows:

• Step 1: Generate a 1× ns temporary vector T , whose elements are corresponding to

the probability of each tie switch in R.

• Step 2: Sort T in ascending order and store the 1×ns indexes vector as P . Set k = 0.

• Step 3: Let k = k + 1, find out the Pk-th cycle based on C and D.

• Step 4: Look up the probability value in R for each branch of the Pk-th cycle.

• Step 5: Select the branch with the largest probability value as the one for breaking,

which is marked as Sk.

• Step 6: Update the probability value of the Pk-th cycle in R as −1.00.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 129

0.44 0.41 0.25 0.71 0.78 0.24 0.81 0.94 0.89 0.07 0.99 0.12 0.74 0.63 0.12 0.73R:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k = 1 Pk = 2 Circle: 7 5 10 11 15 Prob: 0.81, 0.78, 0.07, 0.99, 0.12 Max: 0.99 Sk = 11

0.44 0.41 0.25 0.71 -1.00 0.24 -1.00 0.94 0.89 -1.00 -1.00 0.12 0.74 0.63 -1.00 0.73R:

k = 2 Pk = 1 Circle: 4 3 1 10 12 13 14 Prob: 0.71, 0.25, 0.44, -1.00, 0.12, 0.74, 0.63 Max: 0.74 Sk = 13

-1.00 0.41 -1.00 -1.00 -1.00 0.24 -1.00 0.94 0.89 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.73R:

k = 3 Pk = 3 Circle: 2 1 5 6 8 16 Prob: 0.41, -1.00, -1.00, 0.24, 0.94, 0.73 Max: 0.94 Sk = 8

-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.89 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00R:

Swithch ID:

T: 0.63 0.12 0.73

14 15 16 Sorted T: 0.12 0.63 0.73

P: 2 1 3

(a)

(c)

(b)

Figure 5.3: Encoded real number solution vector and its decoding.

• Step 7: If k < ns, go back to Step 3; otherwise, output the decoded solution S.

Temporary results from Step 1 and 2 are illustrated in Fig. 5.3 (b), while other results

are demonstrated in Fig. 5.3 (c).

5.2.1.3 Supplementary Explanation

The basic idea of PLD is branch exchange: Stage 1 is utilized to find the cycle formulated

by closing one switch, and that loop is destroyed in Stage 2 by opening one branch based

on the probability. All the cycles generated from Stage 1 are stored in two vectors C and

D with respect to the specific order. Intuitively, these circles can be broken with the same

order for all decoding process. Nevertheless, this will destroy the randomness and restrict

the solution space. For example, if the destruction of cycle {4− 3− 1− 10− 12− 13− 14}
is always earlier than cycle {7 − 5 − 10 − 11 − 15}, then the branch 10 in the second cycle

will never be broken since its probability is updated into −1.00 after the destruction of the

first cycle. To address this concern, the breaking of different cycles should be conducted

in a random order, that is the reason to introduce vector P in Steps 3 – 6. In terms of how

to determine different P for various decoding process, the easiest method is random gen-

eration. However, this will result in diversity during the convergence process since one R

may be decoded into different S if different P is utilized. In order to guarantee that one

R can only be decoded into a unique S, the P should be the same for each decoding. One

possible strategy is directly deducing P from R, which is fulfilled by Steps 1 – 2.

Although Stage 1 is straightforward, it is more computationally intensive than Stage 2

due to the shortest path searching. Similarly, the MST calculation also comes with heavy

computation. According to the implementation frameworks given in Fig. 5.4, the heavy

computation is involved for all N times of decoding in the MST method, while only 1

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 130

Stage 2: Decoding

Step 1

Step 7

i < N?

i = 1

Output decoded solution

Input N encoded solution

Stage 1: Network Analysis

Step 1

Step 3

N
Y

Prim s, Kruskal s , or

Boruvka s algorithm

i < N?

i = 1

Output decoded solution

Input N encoded solution

N
Y

MST Calculation

(a) (b)

i = i + 1 i = i + 1

Figure 5.4: Implementation frameworks of different decoding techniques: (a) PLD method;
(b) MST method.

network analysis is required for the PLD method; therefore, the computational complexity

of PLD is lighter. Solid quantitative validation will be given in the case studies.

5.2.2 Distribution Network Power Flow Analysis

As indicated in the Introduction, the DST proposed by [119] is advantageous, therefore its

framework is determined for the solution of DNPF. The DST is dominated by BIBC and

BCBV matrices, which are generated by BRD in [119]. After a brief introduction of the

solution process of DST, this section intends to propose a novel and efficient MRD for the

substitution of BRD when formulating BIBC and BCBV.

5.2.2.1 Solution Process of the DST

Given a distribution network with nd nodes, the equivalent current injection for node i at

the k-th iteration is given as,

Iki =

(

Pi + jQi

V k
i

)∗

i ∈ [1, nd], (5.1)

where V k
i is the voltage of bus i at the k-th iteration; Pi and Qi are real and reactive power

injection on node i, respectively; ∗ is the conjugate operator. Consider [V k] and [Ik] are

vectors of V k
i and Iki without reference node. Then the voltage update steps at the k-th

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 131

Algorithm 5.1 Iterative solution process of the DST

1: Initialize [V 0], set iteration k = 1 and [V 1] = [V 0] + 2ǫ.
2: Generate matrices [BIBC], [BCBV], and [DLF].
3: while max

{

|V k − V k−1|
}

> ǫ do

4: Calculate [Ik] according to (5.1).
5: Compute [∆V k] based on (5.2).
6: Update [V k+1] just as (5.3), and set k = k + 1.
7: end while

8: Calculate the power losses based on [V k] and [Ik−1].

iteration is given as,

[∆V k] = [BCBV][BIBC][Ik] = [DLF][Ik]. (5.2)

Therefore, the voltage vector can be updated as,

[V k+1] = [V 0] + [∆V k], (5.3)

where [V 0] is a vector whose all elements are the voltage of reference bus.

Based on the above preliminary description and definition, the iterative solution pro-

cess is summarized in Algorithm 5.1.

5.2.2.2 Matrix Generation

It can be seen from Algorithm 5.1 and (5.1)–(5.3) that matrices [BIBC] and [BCBV] are

essential for the iterative procedure. In order to illustrate how to generate [BIBC], the

distribution system shown in Fig. 5.1 is utilized as an example, where the tie switches

4− 13, 7− 11, and 2− 8 are open to formulate a radial tree. Consider Bi as the current for

branch i. The objective is finding matrices [BIBC] and [BCBV] such that,

[B] = [BIBC][I], (5.4)

[∆V] = [BCBV][B]. (5.5)

At first, the formulation of [BIBC] is illustrated as follows:

• Step 1: Reorganize the branch data. Suppose the input data is the one shown in Fig.

5.5(a), then a radial tree can be generated as in Fig. 5.2(a). This step is exchanging the

‘from’ and ‘to’ ends of each branch such that the ‘from’ has a smaller layer number

than the ‘to’. The intermediate result is shown in Fig. 5.5(b).

• Step 2: Rank the branch data. For any distribution network with nd nodes, there

are nd − 1 branches. After the reorganization, the ‘to’ nodes of branches are different

from each other, which corresponds to nd − 1 non-reference buses. This step ranks

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 132

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

11 1
1

I1 I2 I3 I4 I5 I6 I7 I8 I9 I11 I12 I13I10

1 1
1

1 1 1
1 1 1

1
1

1
1 1 1

1
1 1

1

0

43

1

From To

0 5

10 12

0 10

6 8

1 3

12 13

6 9

5 7

1 2

10 11

5 6

0

21

1

From To

1 3

0 5

5 6

3 4

5 7

6 9

0 10

6 8

10 11

12 13

10 12

2

1

ID

3

5

6

4

7

9

10

8

11

13

12

Z

0

34

1

From To

0 5

12 10

10 0

8 6

3 1

13 12

6 9

7 5

1 2

10 11

6 5

0.075 + j 0.10

Z

0.04 + j 0.04

0.11 + j 0.11

0.11 + j 0.11

0.08 + j 0.11

0.11 + j 0.11

0.09 + j 0.18

0.11 + j 0.11

0.04 + j 0.04

0.08 + j 0.11

0.08 + j 0.11

0.08 + j 0.11

0.09 + j 0.12

(a) (b) (c)

(d) (e)

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

11 1
1

I1 I2 I3 I4 I5 I6 I7 I8 I9 I11 I12 I13I10

1 1
1

1 1 1
1 1 1

1
1

1
1 1 1

1
1 1

1

1

1 1

1

0.075 + j 0.10

0.08 + j 0.11

0.09 + j 0.18

0.04 + j 0.04

0.11 + j 0.11

0.08 + j 0.11

0.11 + j 0.11

0.11 + j 0.11

0.08 + j 0.11

0.11 + j 0.11

0.09 + j 0.12

0.08 + j 0.11

0.04 + j 0.04

Figure 5.5: Intermediate results of matrix BIBC generation.

these branches in an ascending order of their ‘to’ nodes, and then assigns ID to them.

Fig. 5.5(c) illustrates the temporary result.

• Step 3: Construct the adjacency matrix. In order to describe the direct relationship

between [B] and [I], an adjacency matrix [A] is defined. Its size is (nd− 1)× (nd− 1),

containing all branches and non-reference buses. Each element is filled with a binary

number, where Aij = 1 means that Ij can be directly accessed by Bi, and vice versa.

The construction process is as follows: 1) since Bi is identical with Ii, the diagonal

of [A] are all ones; 2) if there is a branch from non-reference node i to j, set Aij = 1.

Fig. 5.5(d) demonstrates [A], where 10 off-diagonal elements are corresponding to 10

branches without reference node.

• Step 4: Calculate the path matrix. According to [119], [BIBC] is a binary matrix,

and BIBCij = 1 represents that Ij can be accessed by Bi either directly or indirectly.

According to the graph theory, this definition is similar to the path matrix, thus the

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 133

[BIBC] is generated as

[BIBC] = f([A]nd−1), (5.6)

where f() is a function that converts any nonzero elements into 1 and keeps zeros

constant. The final obtained result [BIBC] is shown in Fig. 5.5(e).

Based on (5.4), [BIBC] in Fig. 5.5(e) can be interpreted as,















B1 = I1 + I2 + I3 + I4,

B5 = I5 + I6 + I7 + I8 + I9,

...

(5.7)

which is identical with Fig. 5.1. It was stated in [119] that [BIBC] is an upper triangular

matrix. We intend to claim that this is not always true although Fig. 5.5(e) shows an upper

triangular pattern. In Fig. 5.5(c), if the ‘from’ is larger than ‘to’, matrices [A] and [BIBC]

are both not upper triangular. For example, replace the branch 4 − 3 with 4 − 13, the re-

sulting [BIBC] is not triangular.

As indicated in [119] that the construction processes of [BIBC] and [BCBV] are simi-

lar, thus the above process can be reused with minor revision. Actually, these two matrices

were built in the same subroutine in [119] to save computation resources and time. In this

work, the [BCBV] is generated by the following simple equation,

[BCBV] = [BIBC]T [Z], (5.8)

where T is the transpose operator; [Z] is the matrix whose diagonal is the line impedance

shown in Fig. 5.5(c). Combining equations (5.5) and (5.8), we get,















V0 − V4 = Z1B1 + Z3B3 + Z4B4,

V0 − V9 = Z5B5 + Z6B6 + Z9B9,

...

(5.9)

which is identical with Fig. 5.1.

5.2.2.3 Supplementary Explanation

It should be noted that the [A] generated in Step 3 is not the adjacency matrix according

to the definition of graph theory [26] due to the non-zero diagonal. Regard the tree as a

directed graph (each branch is directed from the higher layer to the lower layer) and let

[Y] = [A]− [I], then [Y] is the adjacency matrix coordinated with the definition. According

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 134

to [26], the path matrix can be deduced by,

˜[Y] = [I] + [Y] + [Y]2 + · · ·+ [Y]n−1 + [Y]n, (5.10)

where n is the size of [Y], i.e., n = nd− 1 in this work. The (i,j) entry of [Y]k is equal to the

number of walks from node i to j that use exactly k edges. On the other hand, according

to the binomial expansion theorem:

[A]n = ([I] + [Y])n = [I] + C1
n[Y] + C2

n[Y]2 + · · ·+ [Y]n, (5.11)

where Cr
n are constant numbers valued as n!

r!(n−r)! .

Since there are no cycles in the tree, the maximum number of paths between any two

nodes is one; thus, the elements of [Y]k as well as ˜[Y] are zeros and ones. Therefore, (5.6)

can be rewritten as:

[BIBC] = f ([A]n) = f (([I] + [Y])n) = f([I] + C1
n[Y] + C2

n[Y]2 + · · ·+ [Y]n)

= f([I]) + f(C1
n[Y]) + f(C2

n[Y]2) + · · ·+ f([Y]n)

= f([I]) + f([Y]) + f([Y]2) + · · ·+ f([Y]n)

= [I] + [Y] + [Y]2 + · · ·+ [Y]n = ˜[Y]. (5.12)

Although equation (5.6) is identical with (5.10), the difference on the computational

burden is large. In (5.10), a lot of matrix power should be calculated, such as [Y]n and

[Y]n−1, while there is only one matrix power [A]n executed in (5.6). The complexity of f()

is equivalent with the matrix addition. Thus (5.6) is much more efficient than (5.10).

Furthermore, based on the above analysis and (5.11), we obtain:

f([A]n+k) = f([A]n) + [Y]n+1 + · · ·+ [Y]n+k, k ≥ 0. (5.13)

Since the longest walk in the tree with n nodes is n− 1,

[Y]n = [Y]n+1 = · · · = [Y]n+k = 0, k ≥ 0. (5.14)

Thus,

f([A]n+k) = f([A]n), k ≥ 0. (5.15)

This property can be utilized to further improve the efficiency of (5.6), i.e., to reduce the

number of matrix multiplications from n− 1 to ⌈log2 n⌉. In this example, n = nd − 1 = 13,

therefore f([A]13) = f([A]16), and [A]16 can be generated by ⌈log2 n⌉ = 4 times of matrix

multiplications as follows:

[A]2 = [A]× [A], [A]4 = [A]2 × [A]2,

[A]8 = [A]4 × [A]4, [A]16 = [A]8 × [A]8.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 135

Table 5.1: Scales of the benchmark systems.

Systems Buses Feeders Branches Tie Switches

14-bus 13 3 16 3
33-bus 32 1 37 5
70-bus 68 2 79 11
83-bus 83 11 96 13

136-bus 135 1 156 21

5.2.3 Numerical Experiments

As demonstrated above, two methods are proposed in this work. In order to evaluate

their performance, three types of numerical experiments are implemented in this section.

In the beginning, the comparison between the proposed PLD method and its advanced

counterpart MST method is carried out for the solution decoding. Then, the MRD method

is compared with the BRD method on the DNPF solution. Finally, these methods are inte-

grated into a standard PSO framework for the solution of DNRC. The former two tests are

the partial validation of the effectiveness of the proposed methods for the DNRC solution,

while the last one is a complete performance evaluation.

Five benchmark systems generated from [167] are introduced as the testbed. Table 5.1

summarizes the scales of these systems. All tests are implemented on a PC equipped with

Intel Xeon E5-2620 CPU and Windows 8.1 operating system. Matlab 2017a is employed for

programming and execution.

5.2.3.1 PLD Method vs. MST Method for Solution Decoding

Within the evolutionary computing algorithm framework, the solution decoding process

is executed in each iteration by a number of times; its efficiency is of great significance for

the whole execution. On the other hand, the representation methodology should not con-

tain any bias, i.e., the randomness is valid. This subsection is devoted to the performance

evaluation of the PLD method in terms of two different aspects.

i. Randomness

Without supplementary information, the global optimal may lie anywhere in the solution

space. Therefore, the evolutionary computing algorithm always demands an evenly initial

population to cover the solution space as large as possible. Both the PLD and MST methods

are designed for decimal encoded solutions, whose randomness is guaranteed by a lot of

software, such as Matlab. Theoretically, the randomness of the decoded integer solution is

dominated by the transformation methodology.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 136

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1k

2k

3k
F

re
q

u
e

n
c
y

Branch ID

MST Method
PLD Method

Figure 5.6: Frequency of branches chosen for breaking in the 14-bus system.

For validation and comparison, 10,000 real number encoded solutions are randomly

generated for the 14-bus system. After decoding, 10,000 integer solutions with sizes of

1× ns are obtained, which means there will be 30,000 branches to be chosen for breaking.

Since the number of candidate branches for breaking is only 15 (branch 6− 9 cannot open

as it is not included in any cycles), the frequency of each branch should be 2,000. Fig. 5.6

illustrates the results of both methods, it can be seen that the randomness of the PLD and

the MST methods are similar and satisfactory. For the MST method, branches close to the

root node have a high probability to be chosen for breaking, such as branches 1, 5, and

10. While for the PLD method, branches contained by the shortest cycle are likely to be

determined for loop destruction, e.g., branches 7, 11, and 15.

ii. Efficiency

In order to compare the execution efficiency, both methods are implemented to decode

N={1, 10, 100, 1000, 10000} solutions for the 14-bus system. Table 5.2 summarizes the

comparative results. Fig. 5.7 demonstrates the relationship between the execution time

and the population size in the double logarithmic coordinate system. For the MST method,

decoding each solution involves one whole MST calculation, thus its execution has a linear

relationship with N . On the other hand, the PLD method invokes 2 stages for solution

decoding, where Stages 1 and 2 are executed for 1 and N times. In this example, the

execution time for a single run of Stage 1 and 2 are 5.95ms and 25.72us respectively. Due

to the light computational burden of Stage 2, the total execution time of the PLD method

experiences a slow increase. Based on different properties of execution time, the speedup

keeps increasing as N increases, but the increase rate is reducing.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 137

Table 5.2: Execution time of the PLD and MST methods to decode N solutions for the
14-bus system.

N
Execution Time (ms)

Speedup
PLD Method MST Method [27]

1 5.981 11.424 1.91×

10 6.244 49.031 7.85×

100 8.840 426.557 48.25×

1,000 34.549 4,176.972 120.90×

10,000 289.553 41,735.488 144.14×

1 10 100 1000 10000

7
10

40

70
100

400

700
1000

4000

7000
10000

40000

E
x
e

c
u

tio
n

T
im

e
(m

s
)

Population Size

MST method
PLD Method

Figure 5.7: Execution time of the PLD and MST methods in double logarithmic coordinate
system.

Table 5.3: Execution time of the PLD and MST methods to decode N =10,000 solutions for
different systems.

Systems
Execution Time (s)

Speedup
PLD Method MST Method [27]

14-bus 0.290 41.735 144.14×

33-bus 0.439 41.905 95.46×

70-bus 0.874 42.344 48.45×

83-bus 1.006 42.704 42.45×

136-bus 1.592 43.012 27.02×

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 138

Comparisons between the PLD and MST methods on other systems were also imple-

mented. Table 5.3 demonstrates the results, where N is fixed as 10000. The advantage of

the PLD over MST method is established by the gained speedup. It should be noted that

the execution time of the PLD method goes longer as the system size increases. While the

running time of MST method for different systems seems to be constant. The reason is that

the utilized method for MST calculation is the Matlab built-in Kruskal’s algorithm, which

is highly optimized such that the execution time is insensitive to system scales when the

sizes are moderate.

5.2.3.2 MRD Method vs. BRD Method for DNPF Solution

In this work, the DST framework given in Algorithm 5.1 is utilized for DNPF solution,

where [BIBC], [BCBV], and [DLF] in lines 1 – 2 can be generated by either MRD or

BRD method. In order to compare the efficiency with more details, the solution process of

Algorithm 5.1 is divided into three parts:

• Part I: Data preparation and matrix generation of [BIBC], including line 1 and part

of line 2;

• Part II: Matrix generation of [BCBV] and [DLF], which is described in line 2;

• Part III: Iterative DNPF solution, consisting of lines 3 – 8.

Comparison is implemented according to two aspects:

i. Accuracy

In this work, the BRD method reported in [119] is utilized for accuracy validation of the

MRD method. Since both methods are integrated into Part I of the DST framework, the

final difference on the active power losses is fully dependent on the intermediate results

provided by the BRD and MRD methods, i.e., the [BIBC] matrix. Since [BIBC] consists

of zeros and ones, the difference is easy to identify. Based on the test results for various

systems, the [BIBC] generated by the MRD method is exactly the same as the one formu-

lated by the BRD method. Accordingly, the final power losses are the same. Therefore, the

accuracy of the MRD method is preserved to be the same with the BRD method.

ii. Efficiency

In this subsection, full DST method is implemented to calculate the DNPF for various sys-

tems. Due to alternative methods utilized in Part I, the partial as well as total execution

times are different, which are all summarized in Table 5.4. As shown in the above, Parts II

and III are the same for these two implementations, thus the execution time is similar and

the speedup is close to 1.00. For Part I, the MRD method gains a speedup from 1.75 to 4.85

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 139

Table 5.4: Execution times of DNPF solution based on the MRD and BRD methods.

Syst.
Execution Time (ms) Speedup Exe.

MRD Method BRD Method [119] Time

Parts I II III Sum I II III Sum I II III Sum Redu.

14-bus 0.23 0.02 0.05 0.29 0.40 0.02 0.05 0.46 1.75 0.98 0.98 1.57 36.31%
33-bus 0.29 0.04 0.08 0.41 0.76 0.04 0.08 0.88 2.61 0.98 0.98 2.13 53.15%
70-bus 0.42 0.15 0.13 0.69 1.53 0.15 0.13 1.81 3.68 1.01 1.01 2.61 61.74%
83-bus 0.44 0.18 0.16 0.78 1.81 0.18 0.16 2.15 4.12 0.99 1.00 2.76 63.71%

136-bus 0.72 0.58 0.33 1.62 3.47 0.57 0.33 4.37 4.85 0.99 1.00 2.70 62.93%

Table 5.5: Configuration of different algorithms.

Algorithms
Configurations

PSO PLD MST MRD BRD

Alg1 • • •
Alg2 • • •
Alg3 • • •
Alg4 • • •

for different systems, which means that the method is advantageous. Since the improve-

ment is only valid for Part I, the value of speedup on the total execution time is reduced

to some extent. Take the BRD method as a basis, the last column of Table 5.4 shows the

execution time reduction gained by the MRD method. It is observable that the amount of

reduction is larger than 50% for the majority of systems, and it goes larger as the system

scale increases.

5.2.3.3 Performance Evaluation with Full DNRC Solution

Based on the above results, the superiority of the PLD and MRD over their counterparts

is established. This section intends to evaluate their performance on the full solution of

DNRC. For consistency, different methods are integrated into the same PSO framework,

which is provided by the Matlab optimization toolbox. Therefore, four algorithms are sep-

arated, whose configurations are illustrated in Table 5.5. Each system is tested by all four

algorithms for 20 trials. It should be noted that all the settings of PSO are kept as default

from Matlab except for the population size, which is valued as 256 and 512 for the 14-bus

and all the other systems.

i. Quality

It can be seen from Table 5.6 that the average active power loss is the same for different

algorithms. The reason is that the global optimum is achieved by these algorithms for all

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 140

Table 5.6: Average active power losses by 20 trials (kW).

Systems Alg1 Alg2 Alg3 Alg4

14-bus 84.880 84.880 84.880 84.880

33-bus 139.551 139.551 139.551 139.551

70-bus 203.384 202.929 201.412 201.412

83-bus 469.923 470.182 469.878 469.878

136-bus 285.395 286.412 280.954 280.877

Table 5.7: Average execution time by 20 trials (s)

Systems Alg1 Alg2 Alg3 Alg4

14-bus 17.722 16.912 2.230 1.436

33-bus 20.122 18.021 4.955 2.730

70-bus 99.887 82.303 33.627 16.009

83-bus 110.360 89.776 42.422 17.830

136-bus 262.537 190.515 122.709 46.509

20 trials. As discussed in the above subsection, the MRD shares the same accuracy with

the BRD, thus Alg1 and Alg2 (Alg3 and Alg4) should terminate with the same quality of

results. This prediction has been validated by Table 5.6. On the other hand, Alg3 (Alg4)

presents less power loss than Alg1 (Alg2) for all tests, indicating that the PLD method out-

performs the MST method in the convergent property.

ii. Efficiency

Table 5.7 summarizes the average execution time of different algorithms for various sys-

tems, which is also illustrated in Fig. 5.8. It is obvious that Alg4 performs better than all

the other three algorithms. The difference between Alg1 (Alg3) and Alg2 (Alg4) is marked

as DIF1, which is due to the alternative DNPF solution methods, i.e., MRD and BRD. On

the other hand, the difference between Alg1 (Alg2) and Alg3 (Alg4) is marked as DIF2,

which is due to the alternative solution decoding methods, i.e., PLD and MST. It can be

seen from Fig. 5.8 that DIF2 is larger than DIF1, which means the improvement on the

solution decoding is more significant on the DNRC solution. It is also identical with the

results reported in Table 5.3 and 5.4 that the speedup gained by PLD is larger than the

MRD. However, DIF1 and DIF2 are not as large as the difference demonstrated in Table 5.3

and 5.4, the reason is that the PLD and MRD are just parts of the DNRC solution process.

Fig. 5.9 depicts the speedup gained by Alg4 over the other algorithms. Compared with

Alg1, both MST and BRD are replaced in Alg4, thus the speedup is the largest. Accord-

ing to Table 5.3, the speedup obtained by PLD is decreasing as the system scale increases.

While the circumstance is reverse in Table 5.4 for MRD. In addition, the speedup value

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 141

14-bus 33-bus 70-bus 83-bus 136-bus
0

50

100

150

200

250

300

E
x
e

c
u

tio
n

T
im

e
(s

)

Systems

Alg1
Alg2
Alg3
Alg4

Figure 5.8: Execution time of different algorithms for the DNRC solution.

14-bus 33-bus 70-bus 83-bus 136-bus

2

4

6

8

10

12

S
p

e
e

d
u

p

Systems

Alg4 vs. Alg1
Alg4 vs. Alg2
Alg4 vs. Alg3

Figure 5.9: Speedup gained by Alg4 for the DNRC solution.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 142

and decreasing rate in Table 5.3 are larger. Thus, the total speedup of Alg4 vs. Alg1 is de-

creasing. Finally, it will end up with a compromise between the increasing and decreasing

tendency. Since the MST is updated by PLD, the speedup of Alg4 vs. Alg2 is also signifi-

cant. However, without the updating for the DNPF solution, the speedup decrease rate is

sharper than that of Alg4 vs. Alg1. Both Alg3 and Alg4 utilize PLD for solution decoding,

the only difference is BRD versus MRD, thus the obtained speedup of Alg4 vs. Alg3 in Fig.

5.9 is similar with Table 5.4. The DNPF is much more time-consuming than the solution

decoding in each iteration. Taking the 136-bus system as an example, they are 1.620ms and

0.159ms, respectively. Thus, the total speedups demonstrated in Fig. 5.9 are approaching

the data reported in Table 5.4.

5.3 Real-Time Volt/Var Optimization

This section illustrates the parallel implementation of RTVVO on GPU with PSO and DA.

Section 5.3.1 is devoted to the problem formulation, including the iterative process of DA

method, mathematical model of components, and the whole MINLP optimization model

of RTVVO. PSO solution framework for this problem is briefly introduced in section 5.3.2.

Implementation details related to parallel computing on GPU are revealed in section 5.3.3,

such as the design of data structure and organization of threads. Section 5.3.4 validates the

solution accuracy and efficiency of the proposed implementation scheme with case studies

on four test systems.

5.3.1 Problem Formulation

In this work, three types of control devices are considered for VVO with the objective of

minimizing the total active power loss. Based on the integration of AMI, a general imple-

mentation scheme of RTVVO for distribution network is given in Fig. 5.10. At the begin-

ning, information related to the current and historical status of SC, OLTC, DG, and load is

sampled and collected through smart meters and AMI. Based on these data as well as the

parameters of all components (including short/medium-length line and other devices), the

RTVVO module performs the fast computing and outputs the optimal coordinated sched-

ule for different types of equipment within a fixed time interval, e.g., 10 seconds. Finally,

these instructions are distributed to the corresponding control devices via AMI. Except

for the information collection and instruction distribution, the solution of MINLP RTVVO

problem turns to be the most important task, which is addressed with RTVVO module in

Fig. 5.10. Within RTVVO module, the ACPF calculation will be intensively involved, thus

its solution efficiency is of great significance for the whole decision-making process. In this

work, the DA proposed in [119] is utilized for distribution network ACPF calculation.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 143

FeederFeeder

OLTC

SC

Load

S
h

o
rt

-l
e

n
g

th
 l

in
e

Medium-length l ine

RTVVO

Module

LoadLoad

DG

Information
Collection

Instruction
Distribution

Figure 5.10: Schematic framework of RTVVO for the distributed network.

5.3.1.1 Direct Approach Power Flow Method

Given a distribution network with nb nodes (where node 1 is regarded as the reference

bus), the equivalent current injection for node i at the k-th iteration can be described as:

Iki =

(

P d
i + jQd

i

V k
i

)∗

, i ∈ [2, nb], (5.16)

where ∗ is the conjugate operator. Accordingly, the branch current vector can be obtained:

[Bl]nc×1 = [BIBC]nc×(nb−1)[I](nb−1)×1. (5.17)

Subsequently, the vector for voltage updating can be generated:

[∆V k](nb−1)×1 = [BCBV](nb−1)×nc
[Bl]nc×1. (5.18)

Finally, node voltage vector can be updated:

[V k+1](nb−1)×1 = [V 0](nb−1)×1 + [∆V k](nb−1)×1, (5.19)

where [V 0] is a vector with all elements valued as the voltage of reference bus.

Given an initial flat voltage profile, equations (5.16)–(5.19) can be solved sequentially

and iteratively until the system reaches a steady state, i.e., the node voltage difference

between two successive iterations is less than the specified threshold. Ultimately, the total

active power loss can be obtained:

Ploss =

nc
∑

l=1

zl|Bl|2. (5.20)

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 144

5.3.1.2 Mathematical Formulation of Components

The above formulation is the basic version of DA, where the transformers and lines are

formulated as simple series impedances. Although this is acceptable for short-length lines

and untapped transformers, modifications are required to deal with other common devices

shown in Fig. 5.10, such as DG, SC, medium-length line, and OLTC transformer.

i. Constant power factor model of DG

DG can be installed by the combination of different energy sources (fuel, wind, and so-

lar) and conversion devices (induction generator, static power converter, and synchronous

generator), resulting in various output characteristics [40]. In order to formulate them,

three models are developed [168]: constant power factor model, constant voltage model,

and variable reactive power model, of which the first one is utilized in this work due to its

great popularity.

With specified active power output and power factor, the reactive power output can be

calculated [168]:

Qg
i = P g

i tan
(

cos−1 (fg
i)

)

, (5.21)

then the equivalent node current injection given in (5.16) should be updated as:

Iki =

(

(P d
i − P g

i) + j(Qd
i −Qg

i)

V k
i

)∗

, i ∈ [2, nb]. (5.22)

ii. Discrete steps of SC

Given an SC with step sci , its reactive power injection can be given as:

Qc
i = sci∆Qc

i . (5.23)

Accordingly, based on (5.22), the node current injection need to be updated:

Iki =

(

(P d
i − P g

i) + j(Qd
i −Qg

i −Qc
i)

V k
i

)∗

, i ∈ [2, nb]. (5.24)

iii. Pi-equivalent model of medium-length line

Given a medium-length line between nodes i and j with series impedance zij and total

lumped shunt admittance Yij , a pi-equivalent model can be formulated as Fig. 5.11. Take

the shunt admittance Yi = Yi + 0.5Yij into consideration, the node current injection given

in (5.22) should be updated as:

Iki =

(

(P d
i − P g

i) + j(Qd
i −Qg

i −Qc
i)

V k
i

)∗

+ YiV
k
i , i ∈ [2, nb]. (5.25)

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 145

i j

2

ijY

2

ijY
ijz

Figure 5.11: Pi-equivalent model of the medium-length line.

i j

()
2

1 t

ij t

ij
t

ij

a
S

a

- 1t

ij t

ijt

ij

a
S

a

-

t

ij

ij t

ij

a
z

S
=

i j

Y Y
z

Figure 5.12: Pi-equivalent model of the OLTC transformer.

iv. Pi-equivalent model of OLTC transformer

Given an OLTC transformer between nodes i and j with short circuit admittance St
ij and

regulation tap atij , a pi-equivalent model can be formulated as Fig. 5.12. Similar to Fig.

5.11 and Eq. (5.25), the node current injection needs to be updated with the following

shunt admittances:

Yi = Yi +
1− atij
(atij)

2
St
ij , Yj = Yj +

atij − 1

atij
St
ij . (5.26)

In addition to the shunt admittances, the variation on the series impedance shown in

(5.27) also needs to be integrated into the DA iterative solution process.

zij =
atij
St
ij

. (5.27)

Initially, zij is implicitly included in (5.18) according to the following relationship:

[BCBV](nb−1)×nc
= [BIBC]Tnc×(nb−1)

[z](nb−1)×(nb−1), (5.28)

where [z] is a diagonal matrix with all elements are corresponding zij . It should be noted

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 146

that, the radial distribution network always has nc = nb−1, thus the matrix multiplication

in (5.28) is established; while for the meshed networks, as reported in [119] and [169],

similar processes are also possible. According to (5.17), (5.18), and (5.28), a rewirtten of

(5.18) can be given as:

[∆V k] = [BIBC]T [z][BIBC][I] = [DLF][I]. (5.29)

It should be noted that [BIBC] is constant since it is determined by the network topol-

ogy, whereas [DLF] may change as the variation of parameter atij .

5.3.1.3 Mathematical Formulation of RTVVO

Based on the DA power flow method and component modeling, the mathematical formu-

lation of RTVVO can be given as follows.

i. Objective Function

The objective of RTVVO is to minimize the total active power loss:

min
[P g], [fg], [sc], [at]

{

Ploss =

nc
∑

l=1

zl|Bl|2
}

. (5.30)

ii. Constraints

For this practical problem, the constraints include:

• Distribution network power flow equations:

steady state of (5.16) – (5.29). (5.31)

• Active power constraints of DG:

P g,min
i ≤ P g

i ≤ P g,max
i , P g

i is continuous. (5.32)

• Power factor constraints of DG:

fg,min
i ≤ fg

i ≤ fg,max
i , fg

i is continuous. (5.33)

• Switch step of SC:

sc,min
i ≤ sci ≤ sc,max

i , sci is discrete. (5.34)

• Tap of OLTC transformer:

at,min
ij ≤ atij ≤ at,max

ij , atij is discrete. (5.35)

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 147

• Bus voltage magnitude limits:

V min ≤ |Vi| ≤ V max. (5.36)

• Distribution line thermal limits:

√

P 2
ij +Q2

ij ≤ Smax
ij . (5.37)

• Reactive power overcompensation limits:

nb
∑

i=1

Qc
i +

nb
∑

i=1

Qg
i ≤

nb
∑

i=1

Qd
i . (5.38)

It is noticeable that the practical operation limits for SC and OLTC are usually included

in DAVVO, e.g., there are maximum allowable daily operating times for each device. Since

the RTVVO is designed for a specified time point rather than one whole day, these con-

straints cannot be directly added. Instead, it can be replaced by another constraint in this

work: a component is available for adjusting new commands only when it has been work-

ing at a fixed status for a specified number of time intervals. Accordingly, if OLTC mk is

not available for adjusting at the current RTVVO, then the values of at,min
mk and at,max

mk in

constraint (5.35) should be adjusted into the former status of atmk, thus OLTC mk will still

working at a constant status in the next time interval. That is the reason why historical

operation data is required in RTVVO module. Similar operations can also be conducted

on (5.34) for SC.

5.3.2 Solution Framework

In this work, the PSO framework is utilized for the solution of RTVVO, where DA is inte-

grated for the fitness evaluation of each particle. A general flowchart is given in Fig. 5.13,

where the data exchanging with Fig. 5.10 is highlighted with dashed lines. Since the PSO

has been fully established in the literature, only a few basic details are introduced here:

• Solution encoding: The decision variables in RTVVO are P g
i , fg

i , sci , and atij , where

the former two are encoded as continuous numbers and the rest are regulated as

integer. A single particle is the vector xi = [P g
i , fg

i , sci , a
t
ij] containing all the decision

variables.

• Solution initialization: All particles are uniformly sampled within the solution space

shaped by constraints (5.32)–(5.35). Rounding process will be carried out for the in-

teger decision variables sci and atij .

• Fitness evaluation: Penalty factor will be added in objective function (5.30) to punish

the violations of constraints (5.36)–(5.38). On the other hand, constraint (5.31) will be

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 148

ê ú ê ú

Input the collected information

Initialize the position and velocity of each particle

Evaluate the fitness value of each particle

Update the position and velocity of each particle

Termination?

Output the generated solution

AMI (Information Collection)

AMI (Instruction Distribution)

RTVVO Module

Y
N

Figure 5.13: General flowchart of the PSO utilized in the RTVVO module.

satisfied by DA power flow, and (5.32)–(5.35) will be addressed in solution updating

process.

• Velocity updating: Mechanism reported in [48] is utilized for the velocity updating.

Equation (5.39) and (5.40) corresponds to continuous and discrete decision variables,

respectively.

vk+1
i = w0v

k
i + c1w1(p

k
i − xki) + c2w2(g

k − xki), (5.39)

vk+1
i = round

(

w0W0v
k
i + c1W1(p

k
i − xki) + c2W2(g

k − xki)
)

, (5.40)

where w0 = 1− 0.6k/N , c1 = 2, c2 = 2 are fixed parameters; k is the current iteration

order; N is the maximum number of iterations; w1 and w2 are uniformly random

numbers within [0, 1]; W0 is random number taking discrete values of 0, −1, or 1; W1

and W2 are random discrete numbers of either 0 or 1.

• Solution updating: The solution updating is performed with (5.41). It can be seen

from the initialization process and (5.40) that the discrete decision variables are al-

ways kept in integer form. If the updated decision variable is out of the range regu-

lated by (5.32)–(5.35), it will be forced to the nearest boundary.

xk+1
i = xki + vk+1

i . (5.41)

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 149

Algorithm 5.2 Particle swarm optimization framework for RTVVO

1: Prepare matrix [BIBC] based on graph searching.
2: Input state variables P d

i , Qd
i , zij , Yij , ∆Qc

i , and St
ij .

3: Initialize the population.
4: for each iteration do

5: for each particle do

6: Read decision variables P g
i , fg

i , sci , and atij .
7: Update network configurations Qg

i , Qc
i , Yi, and zij according to (5.21), (5.23), (5.26),

and (5.27).
8: Update matrix [DLF] = [BIBC]T [z][BIBC].
9: Initialize a flat node voltage vector [V 0].

10: while max
{

|V k − V k−1|
}

> ǫ do

11: Calculate [Ik] according to (5.25).
12: Compute [∆V k] based on (5.29).
13: Update [V k+1] based on (5.19), and set k = k + 1.
14: end while

15: Calculate the active power loss based on (5.17) and (5.20).
16: Check the constraints (5.36)–(5.38) and update the fitness value.
17: end for

18: Determine the local and global particles, update the velocity and position
[P g

i , fg
i , sci , a

t
ij] based on (5.39)–(5.41).

19: end for

20: Output the global best particle.

• Termination criteria: In order to guarantee fair comparison in case studies, i.e., the

computation load for different runs are the same and insensitive to random numbers,

the PSO will terminate at a fixed number of iteration in this work. It is also easy to be

extended to other criteria, such as terminating if the global best has not been updated

for a specified number of iterations.

5.3.3 Parallel Implementation

For the purpose of facilitating description, the solution process given in section 5.3.2 is

summarized as Algorithm 5.2 with the detailed data flow from DA and PSO. Since all

particles are mutually independent, each particle at a specified iteration can be manipu-

lated with one thread or block on GPU, therefore, the parallel implementation seems to be

trivial. However, in order to gain superior performance, the design of data structure and

thread organization require further investigation.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 150

][

...

...

...

Y0 Y1 Y2 ...

Y0 Y1 Y2 ...

Y0 Y1 Y2 ...particle 1

particle 2

particle 3

vector elements

Figure 5.14: Unified vector storage structure across different particles.

Algorithm 5.3 DLF translating from {p, i, xp, xx} to {p, i, x}
1: Initialize all x(i) into 0 (suppose x has nx elements).
2: for i = 1 · · · nx do

3: for j = xp(i) · · · (xp(i+ 1)− 1) do

4: x(i) = x(i) + z(xx(j)).
5: end for

6: end for

5.3.3.1 Data Structure

As can be seen from Algorithm 5.2, each particle maintains a copy of all intermediate

vectors and matrix [DLF], whereas the matrix [BIBC] is constant and the same for all

particles. For different vector copies across particles, they are stored as a unified matrix

with each row corresponds to one particle. An illustrative example for vector [Y] is given

in Fig. 5.14. In this work, both [DLF] and [BIBC] are stored with the compressed sparse

row (CSR) format [79] since it enables fast row access and matrix-vector multiplications.

As the CSR structure {p, i, x} can be decomposed into three arrays p, i, and x, the unified

vector storage pattern shown in Fig. 5.14 is also valid for matrix storage. Since the [DLF]

across different particles have the same pattern, vectors p and i are the same for each par-

ticle, thus only vector x is required in different particles for distinction, i.e., the storage

space for p and i is saved.

Although the sparse technique has been utilized, the calculation of [DLF] by two times

of matrix multiplication [DLF] = [BIBC]T [z][BIBC] is still computationally intensive. In

Fig. 5.15, at least 27 atom operations are involved. As the matrix [BIBC] is fixed and all its

elements are either 0 or 1, we intend to improve the computation efficiency by translating

the matrix multiplication into the point-wise substitution. Fig. 5.15 gives an illustrative

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 151

1 1 1 1

2 1 1 2 1

3 1 1 1 3

4 4 4

5 4 4 5

[] [] [][]

1 1 1 1

1 1 1

=1 1 1

1 1 1

1 1 1

TDLF BIBC z BIBC

z z z z

z z z z z

z z z z z

z z z

z z z z

=

é ù é ùé ù é ù

ê ú ê úê ú ê ú
+

ê ú ê úê ú ê ú

ê ú ê úê ú ê ú= +

ê ú ê úê ú ê ú

ê ú ê úê ú ê ú

ê ú ê úê ú ê ú +ë û ë ûë û ë û

DLF_p:

DLF_i:

DLF_x:

DLF_xp:

DLF_xx:

z1 z1 z1 z1 z1+z2 z1 z1 z1 z1+z3 z4 z4 z4 z4+z5

1 2 3 1 2 3 1 2 3 4 5 4 5

1 4 7 10 12 14

1 1 1 1 1 2 1 1 1 1 3 4 4 4 4 5

1 2 3 4 5 7 8 9 10 1712 13 14 15

Figure 5.15: Sparse storage patterns of DLF matrix in CSR format with {p, i, x} and
{p, i, xp, xx}.

example. First, we change the CSR format of [DLF] from {p, i, x} into {p, i, xp, xx}. The

array xx is derived from x by decomposing all atom operations into successive entries, i.e.,

expanding one element z1 + z2 into two elements 1 and 2. For each original element of x,

its new order in xx is recorded as the array xp. Just like the array p, one more element is

supplemented at the end. Given an array [z], it is easy to obtain {p, i, x} from {p, i, xp, xx}
by Algorithm 5.3 with only 16 atom operations. The performance difference between ma-

trix multiplication and point-wise substitution is much larger for bigger systems, which

will be demonstrated in case studies.

5.3.3.2 Thread Organization

CUDA provides a three-level parallelism based on thread hierarchy [8]: different stream-

ing multiprocessor (SM) in GPU is possible for concurrent execution; each SM can launch

multiple blocks at the same time; the threads within one block will be executed simulta-

neously. Different blocks are independent with each other, while threads within one block

can cooperate via shared memory or barrier. The barrier synchronizes all threads in one

block by forcing them to wait at a specified point until everyone has reached. The shared

memory is possessed by each block visible to all threads within that block, but the size is

limited. Since the access latency of shared memory is low, it should be fully utilized when

it is possible. In addition, each thread can access the much bigger global memory of GPU

with a higher latency.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 152

block 0

block 1

block 2
...

...

...

I0 I1 I2 ...

I0 I1 I2 ...

I0 I1 I2 ...

...

...

...

V0 V1 V2 ...

V0 V1 V2 ...

V0 V1 V2 ...

...

...

...

Y0 Y1 Y2 ...

Y0 Y1 Y2 ...

Y0 Y1 Y2 ...Y Y Y

t0 t1 t2

V V V

t0 t1 t2

I I I

t0 t1 t2particle 1

particle 2

particle 3

Figure 5.16: Thread organization for parallel regular mapping.

Although SM receives computation task in the unit of block, it creates, manages, sched-

ules, and executes threads in groups of 32 and named warps [8]. A warp executes one

common instruction at a time. If the target address for all 32 threads is successive, the

access can be fulfilled with full efficiency (called coalesced access); otherwise, the diver-

gence (scattered access) will occur and result into the low bandwidth. Since the efficiency

of warps dominates the whole solution performance, how to guarantee successive data

access is of high priority when organizing threads [75].

In the following subsections, key steps of Algorithm 5.2 are tuned for coalesced access

with thread organization.

i. Parallel Regular Mapping

There are a lot of element-wise calculations and updating operations in Algorithm 5.2,

such as lines 7, 9, 11, 13, and 16, which can be regarded as regular mapping. Take the

line 11 as an example, the last term of (5.25) is Ii = YiVi, Fig. 5.16 illustrates the thread

organization pattern, where
⊗

represents the element-wise mapping process. In alliance

with Fig. 5.14, vectors [Y] and [V] across particles are stored in one matrix. It can be seen

that there is no leap during the access, thus we naturally distribute each particle (one row)

into one block. In Fig. 5.16, all particles are concurrently executed since multiple blocks

can be launched at the same time. Within all blocks, coalesced access is fulfilled by each

warp, e.g., the successive address from Y0 to Y31 are accessed by threads 0 to 31.

ii. Parallel Reduction

Different with regular mapping process, where the length of the input vector is the same

as the output vector, the reduction process takes a vector as input but output only one

value. This type of operation is also involved in Algorithm 5.2, such as the maximizing in

line 10, the minimizing in line 18, and the summation in line 15. It should be noted that

the reduction operation in line 15 is due to (5.20), where the term zl|Bl|2 is calculated with

parallel regular mapping and stored as an intermediate vector. Similar to Fig. 5.16, each

particle (vector) is handled with one block. The thread organization for parallel reduction

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 153

a0 a1 a2 ... a1023 a1024 a1025 a1026 ... a2047 a2048 ...

t0 t1 t2 t1023 t0

b0 b1 b2 ... b511 b512 b513 b514 ... b1023

t0

t0

t1

t1

t2

t2

t1023

t511

c0 c1 c2 ... c255 c256 c257 c258 ... c511

t0 t1 t2

t511 t0 t1 t2

t255 t0 t1 t2 t255

k0 k1

l0

t0 t0

Global

Memory

Synchronize

t512~t1023

idled

t256~t1023

idled

t1~t1023

idled

d0 ~ d255, e0 ~ e127, f0 ~ f63, g0 ~ g31, h0 ~ h15, i0 ~ i7, j0 ~ j3

Synchronize

Synchronize

Synchronize

Shared

Memory

Figure 5.17: Thread organization for parallel reduction within each block.

within each block is illustrated in Fig. 5.17. The first step is copying the original vector

[a] stored in global memory into [b] in shared memory. During this step, reduction process

may be required, e.g., reducing a0 and a1024 to b0. There should be a barrier at the end of

this step to guarantee all shared memory has finished data updating, otherwise, dirty data

will appear and result into a wrong output. The following steps are familiar with the first

one, except that both input and output data are stored in shared memory and the number

of active thread is reduced into half of the former. It can be seen that the coalesced access

is guaranteed at each step, i.e., there is no leap within each warp.

iii. Parallel Matrix-Vector Multiplication

Although the matrix-matrix multiplication in [DLF] = [BIBC]T [z][BIBC] has been elim-

inated by data structure design in the above, the matrix-vector multiplication is inevitable

in line 12 of Algorithm 5.2. In alliance with the previous process, each block is assigned

to one particle, i.e., one matrix-vector multiplication process will be fulfilled within one

block. Fig. 5.18 demonstrates two types of thread organization for parallel matrix-vector

multiplication within each block. After the updating in line 8 of Algorithm 5.2, the matrix

[DLF] is stored in CSR format, which is shown in the bottom of Fig. 5.18. The naive par-

allel implementation of matrix-vector multiplication is to assign each row into one thread

as shown in Fig. 5.18 (a). However, the scattered access will appear when the CSR format

is utilized for matrix storage. For example, thread 0 to 3 need to access the first non-zero

number in the corresponding row at the same time, but these numbers are discontinuous

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 154

[] [][] [][]

1 1 1 1

1 1 2 1 2

1 1 1 3 3

4 4 4

4 4 5 5

[]

=

T
V BIBC z BIBC DLF I

z z z i

z z z z i

z z z z i

z z i

z z z i

D = =

é ùé ù

ê ú ê ú
+

ê ú ê ú

ê ú ê ú+

ê ú ê ú

ê ú ê ú

ê ú ê ú+ë û ë û

DLF_p:

DLF_i:

DLF_x: z1 z1 z1 z1 z1+z2 z1 z1 z1 z1+z3 z4 z4 z4 z4+z5

1 2 3 1 2 3 1 2 3 4 5 4 5

1 4 7 10 12 14

t0

t1

t2

t3

t4

1 1 1 1

1 1 2 1 2

1 1 1 3 3

4 4 4

4 4 5 5

[]

=

V

z z z i

z z z z i

z z z z i

z z i

z z z i

D =

é ùé ù

ê úê ú
+

ê úê ú

ê úê ú+

ê úê ú

ê úê ú

ê úê ú+ë ûë û

t0 t1 t2

t32 t33 t34

(a) one thread per row (scattered access) (b) one warp per row (coalesced access)

Figure 5.18: Thread organization for parallel matrix-vector multiplication within each
block.

[] [][][]

block 0

block 1

block 2

...

...

...

x0 x1 x2 ...

x0 x1 x2 ...

x0 x1 x2 ...

...

...

...

z0 z1 z2 ...

z0 z1 z2 ...

z0 z1 z2 ...

...

...

...

x0 x1 x2 ...

x0 x1 x2 ...

x0 x1 x2 ...

t0 t1 t1 t0 t0 t1particle 1

particle 2

particle 3

(b) one block per element (coalesced access)

(a) one block per particle (scattered access)

block 0

block 1

block 2

...

...

...

x2 x2 x2 ...

x1 x1 x1 ...

x0 x0 x0 ...

...

...

...

z2 z2 z2 ...

z1 z1 z1 ...

z0 z0 z0 ...

...

...

...

x2 x2 x2 ...

x1 x1 x1 ...

x0 x0 x0 ...

t0 t1

t1

t0 t1
particle 1

particle 2

particle 3

t0

Figure 5.19: Thread organization for parallel irregular mapping.

in the vector x. On the other hand, we assign each row into one warp as shown in Fig.

5.18 (b), where the coalesced access has been achieved with illustrative dashed arrows. It

should be noted that the parallel reduction for summation in each row is required.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 155

iv. Parallel Irregular Mapping

Based on the above parallel processing, each step in Algorithm 5.2 can be efficiently exe-

cuted except for line 8, where irregular mapping is confronted. Actually, line 8 of Algo-

rithm 5.2 is realized with Algorithm 5.3. Conventionally, if each block is assigned to one

particle, the scattered access will appear as shown in Fig. 5.19 (a). The reason lies in line

4 of Algorithm 5.3. During the process to access z(xx(j)), although j is in successive for

each thread, the result of xx(j) is discontinuous, resulting in irregular access of vector [z].

In this example, x(0) and x(1) correspond to z(2) and z(1), respectively. In order to achieve

the coalesced access, matrices [x] and [z] shown in Fig. 5.19 (a) are transposed, and we dis-

tribute each element to one block as shown in Fig. 5.19 (b). For the new scheme, thread 0

and 1 in block 0 are launched to update x(0) for particle 1 and 2. Since x(0) corresponds

to z(2) holds for all particles, these two threads should access z(2) of particle 1 and 2, thus

the successive addresses are accessed.

v. Parallel Matrix Transpose

In the process of parallel irregular mapping, matrix transpose is involved. In order to

coordinate with other processes, parallel matrix transpose should be executed. Fig. 5.20

illustrates two kinds of implementation. As shown in Fig. 5.20 (a), the naive matrix trans-

pose will result in scattered access. Nevertheless, the transposing process is divided into

two steps in Fig. 5.20 (b) with the help of shared memory. In step 1, a small piece of the

original matrix is copied into shared memory with one warp for each row. Step 2 is comp-

ing that piece from shared memory to target address with one warp for each column of

the original matrix (when transposed, it appears as one row in the new matrix). It can be

seen that in each step, the coalesced access is obtained. The reason for transposing piece

by piece is that the size of shared memory is limited.

5.3.4 Case Studies

In this section, four distribution networks retrieved from [167] are employed for the case

studies. Based on the original network topology and component data, a lot of VVO devices

are added. For simplicity, the parameter of each type of component added into different

networks is identical. For each system, a maximum of 30% of the total active demand can

be provided with DGs. Each DG has a capacity of 0.5 MW, with a power factor between

-0.9 (lagging) and 0.9 (leading). A maximum of 10% of the total reactive demand can be

supported by SC. The number of switchable stages for each SC is 5, and the stage step is

0.04 MVar. The number of OLTC and medium-length line equal to 10% and 1% of the total

number of branches, respectively. Each OLTC has a tap ratio from 0.9 to 1.1 and can be

divided into 21 steps. Table 5.8 summarizes the basic configuration of each system with

the number of components. It should be noted that all the detailed data is randomly gen-

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 156

...

...

...

x0 x1 x2 ...

x0 x1 x2 ...

x0 x1 x2 ...

...

...

...

x2 x2 x2 ...

x1 x1 x1 ...

x0 x0 x0 ...

t0 t1 t2

...

...

...

x0 x1 x2 ...

x0 x1 x2 ...

x0 x1 x2 ...

...

...

...

x2 x2 x2 ...

x1 x1 x1 ...

x0 x0 x0 ...

t0 t1 t2
Shared

Memory t0 t1 t2

(a) naive matrix transpose (scattered access)

(b) shared memory harnessed transpose (coalesced access)

Figure 5.20: Thread organization for parallel matrix transpose.

erated according to Table 5.8, such as where to install these components. Since different

types of implementation utilize the same randomly generated input data, the comparison

on solution accuracy and efficiency is reasonable.

In order to validate the performance of the GPU-based parallel RTVVO, four types of

implementation have been carried out for comparison:

• CPU M: PSO framework given in Fig. 5.13, where the fitness evaluation of each

particle is performed by Matpower with the built-in Newton-Raphson method;

• CPU S: sequential version of Algorithm 5.2 in CPU with C++;

• CPU P: parallel version of Algorithm 5.2 in CPU with OpenMP, where 12 threads

are launched;

• GPU P: parallel version of Algorithm 5.2 in GPU with CUDA.

For each implementation, the population size of PSO is set as 512, and the maximum

number of iteration is 200. All tests are implemented on the same platform including:

Intel Xeon E5-2620 CPU with 32GB RAM, Nvidia GeForce GTX 1080 GPU, Matlab version

2017a, CUDA version 8.0, and Visual Studio 2015.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 157

Table 5.8: The number of components for different test systems.

Cases Branches DG SC OLTC Medium-length line

136-bus 135 12 4 14 1
415-bus 415 86 52 42 4
880-bus 873 74 37 87 9

1760-bus 1746 150 74 175 17

Table 5.9: The average active power loss error between different implementations for the
1760-bus system in 20 trials.

Methods CPU M CPU S CPU P GPU P

CPU M 0 4.91× 10−7 4.56× 10−7 9.16× 10−7

CPU S 4.91× 10−7 0 6.21× 10−9 8.13× 10−9

CPU P 4.56× 10−7 6.21× 10−9 0 2.79× 10−9

GPU P 9.16× 10−7 8.13× 10−9 2.79× 10−9 0

5.3.4.1 Solution Validation

Although the main objective of this work is achieving high solution efficiency from par-

allel processing with GPU, the accuracy and convergence property of RTVVO should be

guaranteed. Without loss of generality, the 1760-bus system is employed for validation.

i. Accuracy

The DA developed in section 5.3.1 is intensively integrated into Algorithm 5.2, thus its

accuracy dominates the quality of final results. In order to validate its accuracy, 20 PSO

particles are randomly generated and solved with either DA or Matpower in all four im-

plementation environments. The average difference on the obtained active power loss for

different methods is reported in Table 5.9. It can be seen that the error between Matpower

and DA is smaller than 10−6, which means the accuracy of the developed DA is accept-

able. On the other hand, the difference of DA running on different platforms is smaller

than 10−8, indicating that parallel implementation does not spoil the accuracy.

ii. Convergence property

According to the above accuracy analysis, it can be concluded that the difference in the

power flow calculation is negligible. Thus the convergence test is devoted to the vali-

dation of the PSO framework. Based on the same input data and PSO parameters, the

convergence property of different types of implementation corresponding to iteration is

demonstrated in Fig. 5.21. Although there are fluctuations in each line, the convergence

property is similar: 1) the objective value drops very fast in the first 40 iterations, indi-

cating that the PSO is effective to find a high-quality solution for this problem; 2) the im-

provement during the next 40 iteration is still observable, which is due to the disturbance

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 158

0 50 100 150 200
1400

1600

1800

2000

2200

2400

2600

2800

O
b

je
c
tiv

e
v
a

lu
e

(K
w

)

Iteration

CPU_M
CPU_S
CPU_P
GPU_P

Figure 5.21: Convergence property of different types of implementation.

Table 5.10: The number of atom operations for the updating of [DLF] with two different
methods.

Cases Dim.
[BIBC] [DLF] Atom operations

Imp.
Nnz Sparsity Nnz Sparsity M-M mult. Alg. 5.3

136-bus 135 976 5.36% 2,465 13.53% 26,504 12,746 51.91%
415-bus 415 1,950 1.13% 3,585 2.08% 28,010 13,030 53.48%
880-bus 873 23,147 3.04% 125,285 16.44% 4,220,153 2,098,503 50.27%

1760-bus 1746 46,294 1.52% 250,570 8.22% 8,440,306 4,197,006 50.27%

introduced in (5.40); 3) finally, the population turns to be stable in the remaining iterations,

showing that the particles searching around the obtained global best optimal.

5.3.4.2 Solution Efficiency

In this subsection, the improvement on the solution efficiency gained by two proposals

given in section 5.3.3 will be exemplified on four test systems.

i. Performance improvement gained by data structure design

As shown in Fig. 5.15, the number of atom operations required by Algorithm 5.3 is smaller

than the matrix-matrix multiplication. Quantitative results on four large systems are given

in Table 5.10. It can be seen that the data structure redesign is beneficial to reduce over

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 159

Table 5.11: Execution time of the RTVVO for various implementation schemes.

Cases
Total RTVVO execution time (s) Avg. exe. time for single ACPF (ms)

CPU M CPU S CPU P GPU P CPU M CPU S CPU P GPU P

136-bus 574.46 47.34 4.64 2.37 5.61 0.46 0.045 0.023
415-bus 1,295.36 96.36 8.95 3.06 12.65 0.94 0.087 0.030
880-bus 2,744.32 184.88 16.77 3.80 26.80 1.81 0.164 0.037

1760-bus 5,149.69 336.92 29.55 5.41 50.29 3.29 0.289 0.053

Table 5.12: Achieved speedup over CPU M for various methods.

Cases CPU M CPU S CPU P GPU P

136-bus 1.00 12.13 123.81 242.39
415-bus 1.00 13.44 144.73 423.32
880-bus 1.00 14.84 163.64 722.19

1760-bus 1.00 15.28 174.27 951.88

50% of the atom operations for all test systems although the sparsity of [BIBC] and [DLF]

are different. In addition to the superiority of fewer atom operations, the number of index

calculation when traversing CSR matrices is smaller for Algorithm 5.3. Therefore, the Al-

gorithm 5.3 is at least two times faster than the matrix-matrix multiplication.

ii. Performance improvement gained by GPU parallel implementation

In order to validate the performance of various methods, all of them are executed for 20

times with the same input data. One of them has been demonstrated with Fig. 5.21. The

average execution time for different methods is collected in Table 5.11. It can be seen that

the CPU M takes much longer time than the other methods for all test systems. The rea-

son is two-fold: 1) the complexity of Newton-Raphson method is higher than DA; 2) the

execution efficiency of C++ code is higher than the Matlab code. Although the CPU S

is much faster than CPU M, its application in real-time circumstance is still questionable

since minutes of time is required. According to the data reported in Table 5.11, the capabil-

ity of CPU P and GPU P for practical application is promising. A similar conclusion can

also be drawn if the average ACPF execution time is considered.

Taking the execution time of CPU M for different systems as the basis, the achieved

speedup can be obtained as shown in Table. 5.12. The superiority of DA over Matpower

in this kind of problem is established. Consider CPU S as the benchmark in Table 5.13, the

parallel efficiency of OpenMP and CUDA are satisfactory with ranges from 10.20 to 11.40

and from 19.97 to 62.28, respectively. In addition, the speedup goes higher as the system

scale increases.

Chapter 5. Distribution System Optimal Operation: DNRC and RTVVO 160

Table 5.13: Achieved speedup over CPU S for various methods.

CPU M CPU S CPU P GPU P

136-bus 0.082 1.00 10.20 19.97
415-bus 0.074 1.00 10.77 31.49
880-bus 0.067 1.00 11.02 48.65

1760-bus 0.065 1.00 11.40 62.28

5.4 Summary

With the objective of minimizing total active power loss of distribution network, accelera-

tion strategies are investigated in this chapter on two problems: DNRC and RTVVO.

Two main concerns are intensively involved in the solution of DNRC: preserving the

RTS and calculating the DNPF. In this chapter, an effective decimal encoding and decod-

ing technique are proposed, which guarantees the RTS with the least effort when compared

with other state-of-the-art methods. In addition, the solution process of DNPF is enhanced

by the introduction of adjacency and path matrices from graph theory. Case studies are

conducted on five benchmark systems. For individual comparison, the developed meth-

ods outperform their advanced counterparts respectively. When integrated into the stan-

dard PSO framework, the superiority of the proposals is still established.

PSO is also employed as the solution framework for RTVVO, where the full AC power

flow is tackled with the DA method. In the iterative process of DA, the detailed math-

ematical models for DG and other VVO components are integrated. Although PSO and

DA are suitable for parallel processing, the best performance is far away to be reached

by the naive implementation, therefore designs on data structure and thread organization

are proposed. After tuning, all threads in one warp are assigned to access the successive

address, i.e., coalesced access is achieved. In the case study, four systems with the size

ranging from 136-bus to 1760-bus are introduced. The results indicate that the accuracy

and convergence property is satisfactory, and the parallel efficiency is suitable for practical

application.

6
Conclusions and Future Works

Although electricity is ubiquitous in modern life, its availability and reliability are not

granted. Actually, they are highly dependent on the robust planning and stable operation

of power system, which consists of generation, transmission, and distribution systems. In

addition to the security concern, economic profit/cost is another important issue that re-

ceives great attention. Therefore, a lot of optimization problems are proposed to minimize

the cost with respect to various security constraints. Due to non-convex properties, dis-

crete variables, and large system scales, the problem solution process presents great chal-

lenges for various algorithms, solvers, and platforms. In order to address these concerns,

eight problems are investigated in this thesis for the purpose of performance acceleration

via algorithm customization, framework development, and parallel processing, based on

interdisciplinary backgrounds of power systems, operations research, and computer engi-

neering.

6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• MGPSO and LU Decomposition for TEP

The MGPSO algorithm framework is proposed based on the discrete PSO and several

beneficial enhancements, such as Sobol sequence initialization method, multi-group

co-evolution strategy, and mutation mechanism. Specifically, the fitness evaluation

of MGPSO is accelerated by the substitution of LP with LES, whose solution process

is very efficient with optimized LU decomposition approach. Superiority over com-

161

Chapter 6. Conclusions and Future Works 162

mercial software Lingo 11.0 is established with case studies.

• Branch-and-Cut Benders Decomposition for SCTEP

The BCBD algorithm is developed with the integration of BD into the B&C frame-

work, where the original MILP master problem of BD is relaxed into LP, resulting in

lower complexity and shorter execution time. In addition, four acceleration strate-

gies have been employed to enhance the performance, including two-phase method,

multi-cut strategy, valid inequality, and optimal preconditioning. Better performance

of BCBD over commercial software ILOG-Cplex 12.5.1 is validated with numerical

experiments.

• Fast Decoupled Method and Direct Linear Solver for ACPF with GPU

GPU implementation of FD for the solution of ACPF with direct linear solver is car-

ried out with both Matlab and CUDA. Implementation platforms (CPU and GPU),

linear equations solution strategies (LU decomposition and left division), data stor-

age formats (dense and sparse), and fill-in reduction algorithms (RCM and AMD)

are compared and discussed, indicating that sparse LU decomposition with AMD

running on GPU is promising for practical application.

• Compensation Method for RTCA with GPU

Instead of the FD method, CM is determined for the solution of RTCA. Detailed

GPU implementation schemes are elaborated, including various strategies and prin-

ciples for data structure definition, kernel function design, and memory manage-

ment. Comprehensive comparisons with open-source package Matpower and state-

of-the-art parallel computing methods are provided, where the advantage of parallel

CM with GPU is revealed.

• Robust Optimization Frameworks for SCUC

In order to reveal the capability of different methods on the solution of SCUC, both

explicit and implicit decomposition frameworks are investigated, as well as their

inner feedback strategies, such as BD and CCG algorithm. In addition, sensitivity

analysis, multi-cut strategy, and parallel implementation are analyzed and discussed.

Results indicate that 1) the introduction of Benders cuts may even drag the solution

efficiency of CCG; 2) the parallel implementation of explicit method is proportionate

with the implicit method; 3) the decomposition framework is superior over commer-

cial solver for this kind of problem.

Chapter 6. Conclusions and Future Works 163

• Primal-Dual Interior Point Method for RTOPF with GPU on Batched Mode

To improve the solution efficiency and accuracy of RTOPF, a three-stage framework

for parallel processing is employed. In Stage 1, uncertainties from renewable gener-

ators and demand loads are characterized with scenarios. Large numbers of RTOPFs

corresponding to each scenario are formulated and addressed in Stage 2 with PDIPM,

where the linear systems are regulated into the same sparsity pattern and then tack-

led in a batched style with GPU. Results from Stage 2 are utilized in Stage 3 to per-

form a hot-start RTOPF, where the forecasting error can be minimized. The superior-

ity of batched GPU solution is validated by comparisons with regular GPU, parallel

CPU, and sequential CPU implementations.

• Direct Approach and Graph Theory for DNRC

Due to mixed-integer and non-linear properties, DNRC problem has been widely

addressed with meta-heuristic algorithms. In order to accelerate the solution pro-

cess, two essential components of meta-heuristic algorithms are investigated: solu-

tion representation and fitness evaluation. Instead of the popular binary and integer

numbers, decimal encoding is employed. An efficient decoding process is proposed

and validated. In addition, acceleration on the DA is also developed based on the

adjacency matrix and path matrix from graph theory. Results indicate that the pro-

posals significantly improve the solution efficiency without the loss of accuracy.

• PSO and GPU for RTVVO

The full AC RTVVO is formulated based on PSO framework and DA power flow

method, where all components, such as DG and OLTC transformer, are formulated

and integrated into the iterative DA process. Since both PSO and DA are suitable for

parallel implementation, the GPU is introduced for acceleration in order to achieve

the possibility for real-time application. Schemes on the design of data structure

and thread organization pattern are developed to achieve coalesced access within

each warp of threads. Based on the results from solution efficiency comparison be-

tween CPU and GPU parallel programs, the promise of the proposed implementa-

tion scheme for practical application is established.

6.2 Directions for Future Work

The following topics are proposed for future work:

• The DC and disjunctive model are utilized for TEP and SCTEP, respectively. Al-

Chapter 6. Conclusions and Future Works 164

though they are sufficient for long-term planning, more practical but complicated

AC model is demanded for short-term planning.

• In realistic power systems, the generation and transmission sectors are highly in-

terrelated. Therefore, SCTEP can be performed with the association of generation

expansion planning.

• The full potential of Matlab has not been explored with GPU for ACPF since there is

no sparse LU decomposition solver available. It is believed that an advanced solver

will be provided shortly, and the ACPF can be efficiently addressed with GPU and

Matlab.

• RTCA is employed to recognize the possible outages of power system, providing in-

structions for post-contingency corrective transmission switching. Therefore, further

utilization and analysis of RTCA results can be fulfilled to achieve higher reliability

standards.

• Proposed methods for RTVVO can be expanded to include more details in network

or generator modeling. It is also possible to change the number of processor nodes

or GPUs which are running in parallel.

• It is possible to implement other parallel processing based techniques to investigate

higher speed-ups. It is predicted that if a method accelerates the CPU-based pro-

gram, it would also accelerate the GPU-based model if that approach is efficiently

implemented on the GPU.

• The application of the proposed method is not limited to the power system analy-

sis, so future research can also be done to develop GPU-based algorithms for other

optimization problems, such as operations research.

• The majority of investigated problems are static, in the future, extensions will be put

on more practical concerns, such as dynamics and uncertainties of power systems.

Bibliography

[1] United States Department of Energy, “Simple diagram of electricity grids in

North America,” [Online]. Available:, https://commons.wikimedia.org/wiki/File:

Electricity grid simple- North America.svg.

[2] NREL Solar Radiation Research Laboratory, “Daily plots and raw data

files (January 1, 2015 to November 30, 2017),” [Online], available:

http://midcdmz.nrel.gov/srrl bms/.

[3] U.S.-Canada Power System Outage Task Force, “Final report on the august 14, 2003

blackout in the United States and Canada: causes and recommendations,” Tech.

Rep., Apr. 2004.

[4] J. F. Benders, “Partitioning procedures for solving mixed-variables programming

problems,” Numer. Math., vol. 4, no. 1, pp. 238–252, 1962.

[5] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization. Princeton Uni-

versity Press, 2009.

[6] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas, “On compu-

tational issues of market-based optimal power flow,” IEEE Trans. Power Syst., vol. 22,

no. 3, pp. 1185–1193, Aug. 2007.

[7] T. Cui, “Power system probabilistic and security analysis using commodity high

performance computing systems,” Ph.D. dissertation, Carnegie Mellon University,

2013.

[8] NVIDIA, “CUDA C programming guide 8.0,” Santa Clara, USA, 2017.

[9] L. L. Garver, “Transmission network estimation using linear programming,” IEEE

Trans. Power Appar. Syst., vol. PAS-89, no. 7, pp. 1688–1697, Sept. 1970.

[10] A. Moreira, A. Street, and J. M. Arroyo, “An adjustable robust optimization approach

for contingency-constrained transmission expansion planning,” IEEE Trans. Power

Syst., vol. 30, no. 4, pp. 2013–2022, Jul. 2015.

[11] E. A. M. Cesea, T. Capuder, and P. Mancarella, “Flexible distributed multienergy

generation system expansion planning under uncertainty,” IEEE Trans. Smart Grid,

vol. 7, no. 1, pp. 348–357, Jan. 2016.

165

Bibliography 166

[12] A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power generation, operation, and control,

3rd ed. New York, NY, USA: John Wiley & Sons, 2013.

[13] I. de J. Silva, M. J. Rider, R. Romero, A. V. Garcia, and C. A. Murari, “Transmission

network expansion planning with security constraints,” IEE Proc. - Gener. Transm.

Distrib., vol. 152, no. 6, pp. 828–836, Nov. 2005.

[14] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S. Oren, “Co-

optimization of generation unit commitment and transmission switching with N-1

reliability,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1052–1063, May 2010.

[15] G. Latorre, R. D. Cruz, J. M. Areiza, and A. Villegas, “Classification of publications

and models on transmission expansion planning,” IEEE Trans. Power Syst., vol. 18,

no. 2, pp. 938–946, May. 2003.

[16] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Comprehensive review

of generation and transmission expansion planning,” IET Gen., Transm., Distrib.,

vol. 7, no. 9, pp. 955–964, Sept. 2013.

[17] R. Romero, A. Monticelli, A. Garcia, and S. Haffner, “Test systems and mathematical

models for transmission network expansion planning,” Proc. Inst. Elect. Eng., Gen.,

Transm., Distrib., vol. 149, no. 1, pp. 27–36, Jan. 2002.

[18] X. Li, P. Balasubramanian, M. Sahraei-Ardakani, M. Abdi-Khorsand, K. W. Hed-

man, and R. Podmore, “Real-time contingency analysis with corrective transmission

switching,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2604–2617, Jul. 2017.

[19] J. Zhu, Optimization of power system operation, 2nd ed. New York, NY, USA: John

Wiley & Sons, 2015.

[20] Q. Wang, J. P. Watson, and Y. Guan, “Two-stage robust optimization for N − k

contingency-constrained unit commitment,” IEEE Trans. Power Syst., vol. 28, no. 3,

pp. 2366–2375, Aug. 2013.

[21] J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc. Franc.

Electr., vol. 3, no. 8, pp. 431–447, Aug. 1962.

[22] E. Mohagheghi, A. Gabash, and P. Li, “Real-time optimal power flow under wind

energy penetration - part I: Approach,” in Proc. IEEE Int. Conf. Environ. Electr. Eng.,

Florence, Italy, Jun. 2016, pp. 1–6.

[23] ——, “Real-time optimal power flow under wind energy penetration - part II: Im-

plementation,” in Proc. IEEE Int. Conf. Environ. Electr. Eng., Florence, Italy, Jun. 2016,

pp. 1–6.

Bibliography 167

[24] J. C. Lpez, M. Lavorato, J. F. Franco, and M. J. Rider, “Robust optimisation applied

to the reconfiguration of distribution systems with reliability constraints,” IET Gener.

Transm. Distrib., vol. 10, no. 4, pp. 917–927, Mar. 2016.

[25] M. Arun and P. Aravindhababu, “A new reconfiguration scheme for voltage stability

enhancement of radial distribution systems,” Energy Convers. Manage., vol. 50, no. 9,

pp. 2148–2151, Sept. 2009.

[26] J. M. Harris, J. L. Hirst, and M. J. Mossinghoff, Combinatorics and graph theory. New

York, NY, USA: Springer, 2008.

[27] V. Roberge, M. Tarbouchi, and F. A. Okou, “Distribution system optimization on

graphics processing unit,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1689–1699, Jul.

2017.

[28] H. Ahmadi, J. R. Mart, and H. W. Dommel, “A framework for Volt-VAR optimization

in distribution systems,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1473–1483, May

2015.

[29] W. Zheng, W. Wu, B. Zhang, and Y. Wang, “Robust reactive power optimisation and

voltage control method for active distribution networks via dual time-scale coordi-

nation,” IET Gener. Transm. Distrib., vol. 11, no. 6, pp. 1461–1471, May 2017.

[30] A. T. Saric and A. M. Stankovic, “A robust algorithm for Volt/Var control,” in Proc.

IEEE/PES Power Syst. Conf. Expo., Seattle, WA, USA, Mar. 2009, pp. 1–8.

[31] A. Mohapatra, P. R. Bijwe, and B. K. Panigrahi, “An efficient hybrid approach for

Volt/Var control in distribution systems,” IEEE Trans. Power Delivery, vol. 29, no. 4,

pp. 1780–1788, Aug. 2014.

[32] A. Borghetti, “Using mixed integer programming for the volt/var optimization in

distribution feeders,” Electr. Power Syst. Res., vol. 98, pp. 39–50, May 2013.

[33] S. Rahimi, K. Zhu, S. Massucco, and F. Silvestro, “Stochastic Volt-Var optimization

function for planning of MV distribution networks,” in Proc. IEEE Power Energy Soc.

Gen. Meeting, 2015, pp. 1–5.

[34] X. Fang, F. Li, Y. Wei, R. Azim, and Y. Xu, “Reactive power planning under high pen-

etration of wind energy using benders decomposition,” IET Gener. Transm. Distrib.,

vol. 9, no. 14, pp. 1835–1844, Oct. 2015.

[35] Z. Wang, J. Wang, B. Chen, M. M. Begovic, and Y. He, “MPC-based voltage/var

optimization for distribution circuits with distributed generators and exponential

load models,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2412–2420, Sept. 2014.

Bibliography 168

[36] Y. Malachi and S. Singer, “A genetic algorithm for the corrective control of voltage

and reactive power,” IEEE Trans. Power Syst., vol. 21, no. 1, pp. 295–300, Feb. 2006.

[37] A. Ulinuha, M. A. S. Masoum, and S. Islam, “Hybrid genetic-fuzzy algorithm for

volt/var/total harmonic distortion control of distribution systems with high pene-

tration of non-linear loads,” IET Gener. Transm. Distrib., vol. 5, no. 4, pp. 425–439,

Apr. 2011.

[38] Y. Fukuyama, “Parallel particle swarm optimization for reactive power and voltage

control verifying dependability,” in Proc. IEEE Congr. Evol. Comput., Sendai, Japan,

May 2015, pp. 304–310.

[39] T. Niknam, B. B. Firouzi, and A. Ostadi, “A new fuzzy adaptive particle swarm opti-

mization for daily volt/var control in distribution networks considering distributed

generators,” Applied Energy, vol. 87, no. 6, pp. 1919–1928, Jun. 2010.

[40] D. Chaudhary, W. Sun, Q. Zhou, and A. Golshani, “Chance-constrained real-time

volt/var optimization using simulated annealing,” in Proc. IEEE Power Energy Soc.

Gen. Meeting, Denver, CO, USA, Jul. 2015, pp. 1–5.

[41] M. Manbachi, A. Sadu, H. Farhangi, A. Monti, A. Palizban, F. Ponci, and S. Arzan-

pour, “Real-time co-simulation platform for smart grid volt-var optimization using

IEC 61850,” IEEE Trans. on Ind. Inf., vol. 12, no. 4, pp. 1392–1402, Aug. 2016.

[42] A. Zakariazadeh, H. Modaghegh, and S. Jadid, “Real time volt/var control using

advance metering infrastructure system in FAHAM project,” in roc. Int. Conf. Exhi.

Electr. Distrib., Stockholm, Sweden, Jun. 2013, pp. 1–4.

[43] M. Manbachi, A. Sadu, H. Farhangi, A. Monti, A. Palizban, F. Ponci, and S. Arzan-

pour, “Real-time co-simulated platform for novel volt-var optimization of smart dis-

tribution network using AMI data,” in Proc. IEEE Int. Conf. Smart Energy Grid Eng.,

Oshawa, Canada, Aug. 2015, pp. 1–7.

[44] H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A mixed-integer linear program-

ming approach for multi-stage security-constrained transmission expansion plan-

ning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, May 2012.

[45] S. H. M. Hashimoto, R. Romero, and J. R. S. Mantovani, “Efficient linear program-

ming algorithm for the transmission network expansion planning problem,” IEE

Proc. Gener., Transm. Distrib., vol. 150, no. 5, pp. 536–542, Sept. 2003.

[46] R. Romero, R. A. Gallego, and A. Monticelli, “Transmission system expansion plan-

ning by simulated annealing,” IEEE Trans. Power Syst., vol. 11, no. 1, pp. 364–369,

Feb. 1996.

Bibliography 169

[47] R. Romero, E. N. Asada, E. Carreno, and C. Rocha, “Constructive heuristic algo-

rithm in branch-and-bound structure applied to transmission network expansion

planning,” IET Gener. Transm. Distrib., vol. 1, no. 2, pp. 318–323, Mar. 2007.

[48] P. Murugan, “Modified particle swarm optimisation with a novel initialisation for

finding optimal solution to the transmission expansion planning problem,” IET

Gener., Transm., Distrib., vol. 6, no. 11, pp. 1132–1142, Nov. 2012.

[49] P. Gavela, J. L. Rueda, A. Vargas, and I. Erlich, “Performance comparison of heuristic

optimization methods for optimal dynamic transmission expansion planning,” Int.

Trans. Electr. Energy Syst., vol. 24, no. 10, pp. 1450–1472, Aug. 2014.

[50] G.-R. Kamyab, M. Fotuhi-Firuzabad, and M. Rashidinejad, “A PSO based approach

for multi-stage transmission expansion planning in electricity markets,” Int. J. Electr.

Power Energy Syst., vol. 54, pp. 91–100, Jan. 2014.

[51] H. Shayeghi, M. Mahdavi, and A. Bagheri, “An improved DPSO with mutation

based on similarity algorithm for optimization of transmission lines loading,” En-

ergy Convers. Manage., vol. 51, no. 12, pp. 2715–2723, Dec. 2010.

[52] M. C. Da Rocha and J. T. Saraiva, “A discrete evolutionary PSO based approach to

the multiyear transmission expansion planning problem considering demand uncer-

tainties,” Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 427–442, Feb. 2013.

[53] S. P. Torres, C. A. Castro, and M. J. Rider, “Transmission expansion planning by using

DC and AC models and particle swarm optimization,” Swarm Intell. Electr. Electron.

Eng., pp. 260–284, 2012.

[54] E. Karimi and A. Ebrahimi, “Inclusion of blackouts risk in probabilistic transmis-

sion expansion planning by a multi-objective framework,” IEEE Trans. Power Syst.,

vol. 30, no. 5, pp. 2810–2817, Sep. 2015.

[55] S. Binato, M. V. F. Pereira, and S. Granville, “A new Benders decomposition ap-

proach to solve power transmission network design problems,” IEEE Trans. Power

Syst., vol. 16, no. 2, pp. 235–240, May 2001.

[56] S. Asadamongkol and B. Eua-arporn, “Application of Benders decomposition to

transmission expansion planning with N-1 security constraints,” IEEJ Trans. Electr.

Electron. Eng., vol. 6, no. 2, pp. 127–133, Mar. 2011.

[57] S. Lumbreras and A. Ramos, “Transmission expansion planning using an efficient

version of Benders’ decomposition. a case study,” in Proc. IEEE PowerTech, Grenoble,

France, Jun. 2013, pp. 1–7.

Bibliography 170

[58] M. Jenabi, S. M. T. Fatemi Ghomi, S. A. Torabi, and S. H. Hosseinian, “Accelera-

tion strategies of Benders decomposition for the security constraints power system

expansion planning,” Ann. Oper. Res., vol. 235, no. 1, pp. 337–369, Dec. 2015.

[59] O. Alizadeh-Mousavi and M. Zima-Bočkarjova, “Efficient Benders cuts for transmis-

sion expansion planning,” Elect. Power Syst. Res., vol. 131, pp. 275–284, Feb. 2016.

[60] H. D. Sherali and B. J. Lunday, “On generating maximal nondominated Benders

cuts,” Ann. Oper. Res., vol. 210, no. 1, pp. 57–72, Apr. 2013.

[61] X. Wang, Y. Song, and M. Irving, Modern power systems analysis. New York, NY,

USA: Springer, 2008.

[62] C. Thompson, K. McIntyre, S. Nuthalapati, A. Garcia, and E. A. Villanueva, “Real-

time contingency analysis methods to mitigate congestion in the ERCOT region,” in

Proc. IEEE Power Energy Soc. Gen. Meeting,, Calgary, AB, Canada, Jul. 2009, pp. 1–7.

[63] Y. Chen, Z. Huang, and M. Rice, “Evaluation of counter-based dynamic load bal-

ancing schemes for massive contingency analysis on over 10,000 cores,” in Proc. SC

Comp.: High Perform. Comput. Networking Storage Anal., Nov. 2012, pp. 341–346.

[64] A. Mittal, J. Hazra, N. Jain, V. Goyal, D. P. Seetharam, and Y. Sabharwal, “Real time

contingency analysis for power grids,” in Proc. Euro-Par 2011 Parallel Processing, Bor-

deaux, France, Sept. 2011, pp. 303–315.

[65] Z. Huang, Y. Chen, and J. Nieplocha, “Massive contingency analysis with high per-

formance computing,” in Proc. IEEE Power Energy Soc. Gen. Meeting,, Calgary, AB,

Canada, Jul. 2009, pp. 1–8.

[66] F. Garcia, N. D. R. Sarma, V. Kanduri, G. Nissankala, K. Gopinath, J. Polusani,

T. Mortensen, and I. Flores, “ERCOT control center experience in using real-time

contingency analysis in the new nodal market,” in Proc. IEEE Power Energy Soc. Gen.

Meeting,, San Diego, CA, USA, Jul. 2012, pp. 1–8.

[67] X. Yang, C. Liu, and J. Wang, “Large-scale branch contingency analysis through mas-

ter/slave parallel computing,” J. Mod. Power Syst. Clean Energy, vol. 1, no. 2, pp.

159–166, Sept. 2013.

[68] T. Cui, R. Yang, G. Hug, and F. Franchetti, “Accelerated AC contingency calculation

on commodity multi-core SIMD CPUs,” in Proc. IEEE Power Energy Soc. Gen. Meet-

ing,, MD, USA, Jul. 2014, pp. 1–5.

[69] A. Gopal, D. Niebur, and S. Venkatasubramanian, “DC power flow based contin-

gency analysis using graphics processing units,” in Proc. IEEE Power Tech., Lausanne,

Switzerland, Jul. 2007, pp. 731–736.

Bibliography 171

[70] X. Li and F. Li, “GPU-based power flow analysis with chebyshev preconditioner and

conjugate gradient method,” Electr. Power Syst. Res., vol. 116, pp. 87–93, Nov. 2014.

[71] G. Zhou, X. Zhang, Y. Lang, R. Bo, Y. Jia, J. Lin, and Y. Feng, “A novel GPU-

accelerated strategy for contingency screening of static security analysis,” Int. J.

Electr. Power Energy Syst., vol. 83, pp. 33 – 39, 2016.

[72] C. Guo, B. Jiang, H. Yuan, Z. Yang, L. Wang, and S. Ren, “Performance comparisons

of parallel power flow solvers on GPU system,” in Proc. IEEE 18th Int. Conf. Embedded

Real-Time Comput. Syst. Appl. (RTCSA), Seoul, Korea, Aug. 2012, pp. 232–239.

[73] V. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics processing

units for concurrent evaluation of many networks,” IEEE Trans. Smart Grid, vol. PP,

no. 99, pp. 1–10, Nov. 2015.

[74] D. Chen, H. Jiang, Y. Li, and D. Xu, “A two-layered parallel static security assessment

for large-scale grids based on GPU,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1396–

1405, May 2017.

[75] G. Zhou, Y. Feng, R. Bo, L. Chien, X. Zhang, Y. Lang, Y. Jia, and Z. Chen, “GPU-

accelerated batch-ACPF solution for N-1 static security analysis,” IEEE Trans. Smart

Grid, vol. 8, no. 3, pp. 1406–1416, May 2017.

[76] J. Singh and I. Aruni, “Accelerating power flow studies on graphics processing unit,”

in Proc. Annu. IEEE India Conf., Kolkata, India, Dec. 2010, pp. 1–5.

[77] M. Marin, D. Defour, and F. Milano, “Asynchronous power flow on graphic process-

ing units,” in Proc. Euro. Int. Conf. Parallel Distrib. Network Process., St. Petersburg,

Russia, Mar. 2017, pp. 255–261.

[78] X. Li, F. Li, H. Yuan, H. Cui, and Q. Hu, “GPU-based fast decoupled power flow with

preconditioned iterative solver and inexact newton method,” IEEE Trans. Power Syst.,

vol. 32, no. 4, pp. 2695–2703, Jul. 2017.

[79] T. A. Davis, Direct methods for sparse linear systems. Philadelphia, PA, USA: SIAM,

2006.

[80] O. Alsac, B. Stott, and W. F. Tinney, “Sparsity-oriented compensation methods for

modified network solutions,” IEEE Trans. Power Appar. Syst., vol. PAS-102, no. 5, pp.

1050–1060, May 1983.

[81] W. Yuan and Q. Zhai, “Power-based transmission constrained unit commitment for-

mulation with energy-based reserve,” IET Gener. Transm. Distrib., vol. 11, no. 2, pp.

409–418, Jan. 2017.

Bibliography 172

[82] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adaptive robust opti-

mization for the security constrained unit commitment problem,” IEEE Trans. Power

Syst., vol. 28, no. 1, pp. 52–63, Feb. 2013.

[83] P. Xiong and P. Jirutitijaroen, “A stochastic optimization formulation of unit commit-

ment with reliability constraints,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2200–2208,

Dec. 2013.

[84] A. Street, F. Oliveira, and J. M. Arroyo, “Contingency-constrained unit commitment

with n − k security criterion: a robust optimization approach,” IEEE Trans. Power

Syst., vol. 26, no. 3, pp. 1581–1590, Aug. 2011.

[85] A. Street, A. Moreira, and J. M. Arroyo, “Energy and reserve scheduling under a joint

generation and transmission security criterion: An adjustable robust optimization

approach,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 3–14, Jan. 2014.

[86] N. G. Cobos, J. M. Arroyo, and A. Street, “Least-cost reserve offer deliverability in

day-ahead generation scheduling under wind uncertainty and generation and net-

work outages,” IEEE Trans. Smart Grid, vol. PP, no. 99, pp. 1–14, 2016.

[87] J. P. Ruiz, J. Wang, C. Liu, and G. Sun, “Outer-approximation method for security

constrained unit commitment,” IET Gener. Transm. Distrib., vol. 7, no. 11, pp. 1210–

1218, Nov. 2013.

[88] H. Ye, J. Wang, and Z. Li, “MIP reformulation for max-min problems in two-stage

robust SCUC,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1237–1247, Mar. 2017.

[89] R. A. Jabr, “Tight polyhedral approximation for mixed-integer linear programming

unit commitment formulations,” IET Gener. Transm. Distrib., vol. 6, no. 11, pp. 1104–

1111, Nov. 2012.

[90] S. Xia, X. Luo, K. W. Chan, M. Zhou, and G. Li, “Probabilistic transient stability con-

strained optimal power flow for power systems with multiple correlated uncertain

wind generations,” IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 1133–1144, Jul. 2016.

[91] D. Ke, C. Y. Chung, and Y. Sun, “A novel probabilistic optimal power flow model

with uncertain wind power generation described by customized gaussian mixture

model,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 200–212, Jan. 2016.

[92] Z. S. Zhang, Y. Z. Sun, D. W. Gao, J. Lin, and L. Cheng, “A versatile probability

distribution model for wind power forecast errors and its application in economic

dispatch,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3114–3125, Aug. 2013.

[93] S. S. Reddy and P. Bijwe, “Day-ahead and real time optimal power flow considering

renewable energy resources,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 400–408,

Nov. 2016.

Bibliography 173

[94] R. J. Bessa, V. Miranda, A. Botterud, J. Wang, and E. M. Constantinescu, “Time adap-

tive conditional kernel density estimation for wind power forecasting,” IEEE Trans.

Sustain. Energy, vol. 3, no. 4, pp. 660–669, Oct. 2012.

[95] A. Webberley and D. W. Gao, “Study of artificial neural network based short term

load forecasting,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Vancouver, BC,

Canada, Jul. 2013, pp. 1–4.

[96] J. R. Andrade and R. J. Bessa, “Improving renewable energy forecasting with a grid

of numerical weather predictions,” IEEE Trans. Sustain. Energy, vol. PP, no. 99, pp.

1–10, Apr. 2017.

[97] L. Gan and S. H. Low, “An online gradient algorithm for optimal power flow on

radial networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 625–638, Mar. 2016.

[98] S. S. Reddy and J. A. Momoh, “Realistic and transparent optimum scheduling strat-

egy for hybrid power system,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3114–3125,

Nov. 2015.

[99] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Trans.

Smart Grid, vol. PP, no. 99, pp. 1–11, May 2017.

[100] E. Mohagheghi, A. Gabash, and P. Li, “A framework for real-time optimal power

flow under wind energy penetration,” Energies, vol. 10, no. 4, Apr. 2017.

[101] N. Gupta, A. Swarnkar, and K. R. Niazi, “A modified branch-exchange heuristic

algorithm for large-scale distribution networks reconfiguration,” in Proc. IEEE Power

Energy Soc. Gen. Meeting, San Diego, CA, USA, Jul. 2012, pp. 1–7.

[102] Q. Peng and S. H. Low, “Optimal branch exchange for feeder reconfiguration in dis-

tribution networks,” in Proc. IEEE Conf. Decis. Control, Florence, Italy, Dec. 2013, pp.

2960–2965.

[103] E. Miguez, J. Cidras, E. Diaz-Dorado, and J. L. Garcia-Dornelas, “An improved

branch-exchange algorithm for large-scale distribution network planning,” IEEE

Trans. Power Syst., vol. 17, no. 4, pp. 931–936, Nov. 2002.

[104] D. Shirmohammadi and H. W. Hong, “Reconfiguration of electric distribution net-

works for resistive line losses reduction,” IEEE Trans. Power Delivery, vol. 4, no. 2, pp.

1492–1498, Apr. 1989.

[105] J.-Y. Fan, L. Zhang, and J. D. McDonald, “Distribution network reconfiguration: sin-

gle loop optimization,” IEEE Trans. Power Syst., vol. 11, no. 3, pp. 1643–1647, Aug.

1996.

Bibliography 174

[106] F. Ding and K. A. Loparo, “A simple heuristic method for smart distribution system

reconfiguration,” in Proc. IEEE Energytech, Cleveland, OH, USA, May 2012, pp. 1–6.

[107] Y. Ju, W. Wu, B. Zhang, and H. Sun, “Loop-analysis-based continuation power flow

algorithm for distribution networks,” IET Gener. Transm. Distrib., vol. 8, no. 7, pp.

1284–1292, Jul. 2014.

[108] B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia, and N. HadjSaid, “Radial

network reconfiguration using genetic algorithm based on the Matroid theory,” IEEE

Trans. Power Syst., vol. 23, no. 1, pp. 186–195, Feb. 2008.

[109] R. D. Zimmerman and H.-D. Chiang, “Fast decoupled power flow for unbalanced

radial distribution systems,” IEEE Trans. Power Syst., vol. 10, no. 4, pp. 2045–2052,

Nov. 1995.

[110] W.-M. Lin and J.-H. Teng, “Three-phase distribution network fast-decoupled power

flow solutions,” Int. J. Electr. Power Energy Syst., vol. 22, no. 5, pp. 375–380, Jun. 2000.

[111] P. Aravindhababu and R. Ashokkumar, “A fast decoupled power flow for distribu-

tion systems,” Electr. Power Compon. Syst., vol. 36, no. 9, pp. 932–940, Aug. 2008.

[112] M. R. Irving and M. J. H. Sterling, “Efficient Newton-Raphson algorithm for load-

flow calculation in transmission and distribution networks,” IEE Proc. Gener. Transm.

Distrib., vol. 134, no. 5, pp. 325–330, Sept. 1987.

[113] P. A. N. Garcia, J. L. R. Pereira, S. Carneiro, V. M. da Costa, and N. Martins, “Three-

phase power flow calculations using the current injection method,” IEEE Trans.

Power Syst., vol. 15, no. 2, pp. 508–514, May 2000.

[114] H. Yang, F. Wen, and L. Wang, “Newton-Raphson on power flow algorithm and

Broyden method in the distribution system,” in Proc. IEEE Int. Power Energy Conf.,

Johor Bahru, Malaysia, Dec. 2008, pp. 1613–1618.

[115] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A compensation-

based power flow method for weakly meshed distribution and transmission net-

works,” IEEE Trans. Power Syst., vol. 3, no. 2, pp. 753–762, May 1988.

[116] G. W. Chang, S. Y. Chu, and H. L. Wang, “An improved backward/forward sweep

load flow algorithm for radial distribution systems,” IEEE Trans. Power Syst., vol. 22,

no. 2, pp. 882–884, May 2007.

[117] T. Alinjak, I. Pavi, and M. Stojkov, “Improvement of backward/forward sweep

power flow method by using modified breadth-first search strategy,” IET Gener.

Transm. Distrib., vol. 11, no. 1, pp. 102–109, Jan. 2017.

Bibliography 175

[118] A. B. Eltantawy and M. M. A. Salama, “A novel zooming algorithm for distribution

load flow analysis for smart grid,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1704–1711,

Jul. 2014.

[119] J.-H. Teng, “A direct approach for distribution system load flow solutions,” IEEE

Trans. Power Delivery, vol. 18, no. 3, pp. 882–887, Jul. 2003.

[120] A. Alsaadi and B. Gholami, “An effective approach for distribution system power

flow solution,” Int. J. Electr. Electron. Eng., vol. 3, no. 1, pp. 1–5, 2009.

[121] R. Chandra, Parallel programming in OpenMP. San Francisco, CA, USA: Morgan

kaufmann, 2001.

[122] S. Dehghan, N. Amjady, and A. J. Conejo, “Reliability-constrained robust power sys-

tem expansion planning,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2383–2392, May

2016.

[123] D. Oertel and R. Ravi, “Complexity of transmission network expansion planning,”

Energy Syst., vol. 5, no. 1, pp. 179–207, Mar. 2014.

[124] S. Haffner, A. Monticelli, A. Garcia, J. Mantovani, and R. Romero, “Branch and

bound algorithm for transmission system expansion planning using a transporta-

tion model,” IEE Proc. - Gener. Transm. Distrib., vol. 147, no. 3, pp. 149–156, May 2000.

[125] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf.

Neural Netw., vol. 4, Perth, WA, Australia, Nov. 1995, pp. 1942–1948.

[126] B. Fox, “The sobol quasirandom sequence,” [Online]. Available:, http://people.sc.

fsu.edu/∼jburkardt/m src/sobol/sobol.html.

[127] Y.-X. Jin, H.-Z. Cheng, J.-y. Yan, and L. Zhang, “New discrete method for particle

swarm optimization and its application in transmission network expansion plan-

ning,” Electr. Power Syst. Res., vol. 77, no. 3, pp. 227–233, Mar. 2007.

[128] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J Comput., vol. 1,

no. 2, pp. 146–160, Jun. 1972.

[129] R. Fang and D. J. Hill, “A new strategy for transmission expansion in competitive

electricity markets,” IEEE Trans. Power Syst., vol. 18, no. 1, pp. 374–380, Feb. 2003.

[130] L. Robinson, “Meta-heuristics for electric power transmission network expansion

planning problem with security restrictions,” Master’s thesis, Universidade Estad-

ual Paulista, 2015.

[131] S. Binato, “Optimal expansion of transmission networks by Benders decomposition

and cutting planes,” Ph.D. dissertation, Federal University of Rio de Janeiro, 2000.

Bibliography 176

[132] Illinois Institute of Technology, “Ieee 118-bus system data,” [Online]. Available:,

http://motor.ece.iit.edu/data/IEEE118bus data figure.xls.

[133] E. L. D. Silva, H. A. Gil, and J. M. Areiza, “Transmission network expansion planning

under an improved genetic algorithm,” IEEE Trans. Power Syst., vol. 15, no. 3, pp.

1168–1174, Aug. 2000.

[134] E. L. D. Silva, J. M. A. Ortiz, G. C. D. Oliveira, and S. Binato, “Transmission network

expansion planning under a Tabu search approach,” IEEE Trans. Power Syst., vol. 16,

no. 1, pp. 62–68, Feb. 2001.

[135] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer program-

ming,” Oper. Res. Lett., vol. 24, no. 1, pp. 37–45, Feb. 1999.

[136] M. Shahidehopour and Y. Fu, “Benders decomposition: applying benders decom-

position to power systems,” IEEE Power Energy Mag., vol. 3, no. 2, pp. 20–21, Mar.

2005.

[137] E. S. Thorsteinsson, “Branch-and-check: A hybrid framework integrating mixed in-

teger programming and constraint logic programming,” in CP 2001, ser. LNCS, vol.

2239, Berlin, Germany, 2001, pp. 16–30.

[138] J. F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers, “Benders decomposition for

simultaneous aircraft routing and crew scheduling,” Transp. Sci., vol. 35, no. 4, pp.

375–388, Nov. 2001.

[139] F. You and I. E. Grossmann, “Multicut Benders decomposition algorithm for process

supply chain planning under uncertainty,” Ann. Oper. Res., vol. 210, no. 1, pp. 191–

211, Nov. 2013.

[140] F. D. Munoz, B. F. Hobbs, and J.-P. Watson, “New bounding and decomposition ap-

proaches for MILP investment problems: Multi-area transmission and generation

planning under policy constraints,” Eur. J. Oper. Res., vol. 248, no. 3, pp. 888–898,

Feb. 2016.

[141] L. Bahiense, G. C. Oliveira, M. Pereira, and S. Granville, “A mixed integer disjunctive

model for transmission network expansion,” IEEE Trans. Power Syst., vol. 16, no. 3,

pp. 560–565, Aug. 2001.

[142] M. Rahmani, R. Romero, and M. J. Rider, “Strategies to reduce the number of vari-

ables and the combinatorial search space of the multistage transmission expansion

planning problem,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2164–2173, Aug. 2013.

[143] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-

state operations, planning, and analysis tools for power systems research and edu-

cation,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, Feb. 2011.

Bibliography 177

[144] M. Carrion and J. M. Arroyo, “A computationally efficient mixed-integer linear for-

mulation for the thermal unit commitment problem,” IEEE Trans. Power Syst., vol. 21,

no. 3, pp. 1371–1378, Aug. 2006.

[145] Y. Fu, Z. Li, and L. Wu, “Modeling and solution of the large-scale security-

constrained unit commitment,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 3524–3533,

Nov. 2013.

[146] H. Pinto, F. Magnago, S. Brignone, O. Alsac, and B. Stott, “Security constrained unit

commitment: network modeling and solution issues,” in Proc. IEEE PSCE, Atlanta,

GA, USA, Oct. 2006, pp. 1759–1766.

[147] Reliability Test System Task Force, “The IEEE reliability test system,” IEEE Trans.

Power Syst., vol. 14, no. 3, pp. 1010–1020, Aug. 1999.

[148] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,” IEEE

Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb. 2012.

[149] Y. Wang, Y. Liu, and D. S. Kirschen, “Scenario reduction with submodular optimiza-

tion,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 2479–2480, May 2017.

[150] E. Mohagheghi, A. Gabash, and P. Li, “A study of uncertain wind power in active-

reactive optimal power flow,” in Proc. Power Energy Stud. Summit, Dortmund, Ger-

many, Jan. 2016, pp. 1–6.

[151] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU

computing,” Proc. IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[152] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure, “On

the limits of GPU acceleration,” in Proc. USENIX conf. hot topics parallelism, Berkeley,

CA, USA, 2010, pp. 1–6.

[153] G. Geng, Q. Jiang, and Y. Sun, “Parallel transient stability-constrained optimal power

flow using GPU as coprocessor,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1436–1445,

May 2017.

[154] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on CUDA,”

Nvidia Corporation, Tech. Rep., 2008.

[155] D. Merrill and M. Garland, “Merge-based sparse matrix-vector multiplication

(SpMV) using the CSR storage format,” in Proc. ACM Symp. Princ. Pract. Parallel Pro-

gram., Barcelona, Spain, Mar. 2016, pp. 1–2.

[156] NVIDIA, “CUSOLVER library 8.0,” Santa Clara, CA, USA, 2017.

Bibliography 178

[157] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in MATLAB: Design and

implementation,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp. 333–356, Jan. 1992.

[158] NREL, “Measurement and instrumentation data center (MIDC),” [Online], available:

http://www.nrel.gov/midc/.

[159] MathWorks, “Run built-in functions on a GPU,” [Online], available:

https://www.mathworks.com/help/distcomp/run-built-in-functions-on-a-

gpu.html.

[160] NVIDIA, “GPU-accelerated libraries,” [Online], available:

https://developer.nvidia.com/gpu-accelerated-libraries.

[161] MISO, “MISO reliability assurance,” [Online], available:

https://www.misoenergy.org/WhatWeDo/Pages/Reliability.aspx.

[162] J. Baranowski and D. J. French, “Operational use of contingency analysis at PJM,” in

Proc. IEEE Power Energy Soc. Gen. Meeting,, San Diego, CA, USA, Jul. 2012, pp. 1–4.

[163] NVIDIA, “CUSPARSE library 8.0,” Santa Clara, CA, USA, 2017.

[164] Wikipedia, “Liebig’s law of the minimum,” [Online], available:

https://en.wikipedia.org/wiki/Liebig%27s law of the minimum.

[165] W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s method,” IEEE Trans.

Power Appar. Syst., vol. PAS-86, no. 11, pp. 1449–1460, Nov. 1967.

[166] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Trans. Power Appar. Syst., vol.

PAS-93, no. 3, pp. 859–869, May 1974.

[167] V. Roberge, “Distribution feeder reconfiguration (DFR) test cases,” [Online]. Avail-

able:, http://roberge.segfaults.net/joomla/index.php/dfr.

[168] J. H. Teng, “Modelling distributed generations in three-phase distribution load

flow,” IET Genera. Transm. Distrib., vol. 2, no. 3, pp. 330–340, May 2008.

[169] J. M. Cano, M. R. R. Mojumdar, J. G. Norniella, and G. A. Orcajo, “Phase shifting

transformer model for direct approach power flow studies,” Int. J. Electr. Power En-

ergy Syst., vol. 91, pp. 71–79, Oct. 2017.

[170] M. A. Woodbury, “Inverting modified matrices,” Memorandum Rep., vol. 42, no. 106,

p. 336, 1950.

A
Derivation of the Compensation Method

Implementation Steps

The process can be described as generating ∆θ∗ from,

∆P∗/V∗ = B′
∗∆θ∗, (A.1)

where B′
∗ = B′ +M ′

∗δb
′
∗M

′T
∗ and B′ = L′U ′.

Based on B′
∗ = B′ +M ′

∗δb
′
∗M

′T
∗ and the inverse matrix modification lemma (given in

Appendix B), the inverse of B′
∗ can be obtained as,

B′−1
∗ = B′−1 −B′−1M ′

∗c∗M
′T
∗ B′−1, (A.2)

c′∗ =
[

I + δb′∗M
′T
∗ (U ′−1(L′−1M ′

∗))
]−1

δb′∗. (A.3)

Therefore, based on (A.1) and (A.2), we have,

∆θ∗ = B′−1
∗ (∆P∗/V∗) (A.4)

=
(

B′−1 −B′−1M ′
∗c∗M

′T
∗ B′−1

)

(∆P∗/V∗) (A.5)

=
(

U ′−1L′−1 (∆P∗/V∗)−U ′−1L′−1M ′
∗c∗M

′T
∗ U ′−1L′−1 (∆P∗/V∗)

)

(A.6)

= U ′−1
(

∆θ1 −L′−1M ′
∗c∗M

′T
∗ U ′−1∆θ1

)

(A.7)

= U ′−1∆θ2. (A.8)

The transformation from (A.6) to (A.7) – (A.8) is based on the definition of (3.21) –

(3.22). Finally, the identity between (A.7) – (A.8) and (3.22) – (3.23) concludes the derivation

process. �

179

B
Proof of Inverse Matrix Modification Lemma

This lemma is utilized to derive (A.2). We start from B′−1,

B′−1 =
(

B′ +M ′
∗δb

′
∗M

′T
∗

)−1 (
B′ +M ′

∗δb
′
∗M

′T
∗

)

B′−1 (B.1)

=
(

B′ +M ′
∗δb

′
∗M

′T
∗

)−1 (
I +M ′

∗δb
′
∗M

′T
∗ B′−1

)

(B.2)

=
(

B′ +M ′
∗δb

′
∗M

′T
∗

)−1
+

(

B′ +M ′
∗δb

′
∗M

′T
∗

)−1
M ′
∗δb

′
∗M

′T
∗ B′−1 (B.3)

=
(

B′ +M ′
∗δb

′
∗M

′T
∗

)−1
+B′−1M ′

∗

(

δb′−1∗ +M ′T
∗ B′−1M ′

∗

)−1
M ′T
∗ B′−1. (B.4)

Since B′
∗ = B′ +M ′

∗δb
′
∗M

′T
∗ , we have,

B′−1
∗ = B′−1 −B′−1M ′

∗c
′
∗M

′T
∗ B′−1, (B.5)

where

c′∗ =
(

δb′−1∗ +M ′T
∗ B′−1M ′

∗

)−1
(B.6)

=
(

I + δb′∗M
′T
∗ B′−1M ′

∗

)−1
δb′∗ (B.7)

=
[

I + δb′∗M
′T
∗ (U ′−1(L′−1M ′

∗))
]−1

δb′∗. (B.8)

Thus, equations (B.5) and (B.8) are identical with (A.2) and (A.3). �

180

