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ABSTRACT

The telecommunication industry has experienced considerable improvement and changes
during the past years. Many standards and protocols have been introduced and implemented.
This revolution in Radio Access Networks (RAN) is known as GSM, UMTS, LTE, 5G, and
now B5G networks. Satisfying the user demands and keeping the level of QoS and QoE
within the acceptable range have always been challenges for internet service providers and
telecommunication operators. The researchers and studies are ongoing to address these
massive requests and users' tendency to achieve reliable, low latency, and high throughput
services.

Software Define Networking (SDN), Network Virtualization Function (NVF),
Self-Organizing Networks (SON), and increasing capacity solutions (mmWave
communication, Massive MIMO, Network Slicing, Beamforming, and RAN Evolutions) are
the main proposed and implemented solutions during the past decade in 5G networks.
However, whenever we talk about the data, we will see the brilliant role of machine learning.

In this study, we have researched and implemented machine-learning algorithms in new
evolutions of RAN. We can mention RAN evolution as Distributed-RAN, Cloud-RAN,
Virtual-RAN, and now Open-RAN. Open RAN is a novel method of setting up and running
wireless networks Using standardized, interoperable hardware and software components.
Instead of being dependent on the proprietary technology of a single vendor, an open RAN
architecture separates the radio access network into interchangeable, functional components.

The proposed scenario uses supervised-learning algorithms to make predation (classification)
of services and slices in Open-RAN 5G networks. This AI/ML scenario is implemented in the
RIC (Radio Intelligent Controller) block of O-RAN, and we have evaluated and compared the
performance of five different supervised-learning algorithms. A novel method based on
hyperparameters tuning and K-fold cross-validating is proposed for Random Forest
Algorithm. This technique will improve the classified results compared to the introduced
baselines. The algorithms' training phase utilizes the KPI and KQI data of a 5G network.
Moreover, simulation results prove that considering both KPI and KQI will improve the
results compared to only KPI scenarios.
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1 Chapter 1) Telecommunication background and History

1-1) From GSM to LTE

Figure 1 depicts a brief chronological history of cellular radio systems from the 1970s, when
they were originally developed (1G, the first generation), until the 2020s (i.e., 5G, the fifth
generation).

Figure 1: Evolution of cellular networks [1]

It shows that cellular mobile systems have undergone several major evolutionary phases.
The first commercial analogue mobile communication systems were introduced with a
modest penetration in the 1950s and 1960s. 1981 saw the commercial deployment of 1G
mobile cellular standards, such as C-Netz in Germany and South Africa, Nordic Mobile
Telephone (NMT), and Total Access Communications System in the United Kingdom (TACS).
The Advanced Mobile Phone System was (AMPS) launched in the Americas. Analogue
standards are also known as the 1G standards. They use analogue technology and typically

8



combine frequency-modulated radio waves with a digital signalling stream. In 1982, the
European Conference of Postal and Telecommunications Administrations decided to create a
Pan-European 2G mobile communications system. This was the point from which the Global
System for Mobile Communications (GSM) was born, the international standard for 2G.
Digital transmission and switching technology were critical to the introduction of 2G. Digital
communication enabled significant improvements in voice quality and network capacity. It
provided growth through supplementary services and advanced apps such as the Short
Message Service (SMS) to store and forward textual information [1].

GSM's primary purpose created to allow international roaming through Europe. GSM uses a
hybrid TDMA/FDMA instead of 1G systems based on FDMA. Other digital 2G systems
were also developed parallelly to GSM and compete with one another. Other 2G standards
include:

1. TIA/EIA-136, known to be the North American TDMA standard (NA-TDMA),
2. TIA/EIA IS-95A, known as CDMAOne
3. Personal Digital Cellular, used only in Japan.

The 2.5G evolution of 2G introduced packet-switched services to complement voice and
circuit-switched information. General Packet Radio Service and TIA/EIA-951 were
extensions of GSM, TIA/EIA IS–95A and other 2.5G standards. The General Packet Radio
Service (GPRS) was improved by Enhanced Data rates for Global Evolution (EDGE), which
emerged quickly from GSM (EGPRS). This was mainly due to the addition of higher-order
modulation and coding. GSM/EDGE continues to evolve. The latest 3GPP standard supports
greater bandwidths and carrier aggregation [1].

Industrial players began discussing and preparing the next generation of wireless standards
shortly after 2G was operational. Parallel to this, the International Telecommunications
Union Radio Communications (ITU-R) developed requirements for systems that would be
eligible for the International Mobile Telecommunications 2000 classification (IMT-2000). The
European Telecommunications Standards Institute adopted CDMA in two versions -
Wideband Code Division Multiple Access (WCDMA) and Time Division CDMA(TD-CDMA), as
a Universal Mobile Telecommunication System. UMTS was the most important 3G mobile
communication system [1].

It was also one of the first cellular systems to be qualified for IMT 2000. Six radio interfaces
have been qualified to meet IMT-2000 requirements, including three technologies based on
CDMA, a version of GSM/EDGE known as UWC-1362, and two technologies based on
OFDMA. New specifications were created within the 3rd Generation Partnership Project
(3GPP). They have illustrated in Figure 1 as 3.5G. Two Radio Access Networks (RAN) and an
evolution to the Core Network use this evolution [1].

1-2) History of RAN

The evolution steps of CDMA 2000 within 3GPP2 were the basis for the first RAN approach.
They consisted of 1xEV DV, and 1xEV DO. High-Speed Packet Access was the second RAN
approach. High-Speed Downlink Packet Access (HSDPA) and High-Speed Uplink Packet
Access (HSUPA), which were included in 3GPP Release 5, were combined to become HSPA.
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Each initially increased the packet data rate to 14.6 Mbps downlink and 5.76 Mbps uplink.
However, they quickly evolved to handle higher data speeds with the introduction of MIMO.
HSPA is backwards-compatible with WCDMA because it was built on WCDMA. CDMA 1xEV
-DO was first deployed in 2003. HSPA and CDMA 1xEV -DV was introduced in 2006. The 3GPP
standards adhere to the principle of adding new features and maintaining backward
compatibility. HSPA+ is an evolution of HSPA that supports carrier aggregation to achieve
higher peak data rates while not affecting existing terminals [1].

The commercially acceptable 4G evolution is Long Term Evolution (LTE). It consists of a new
air interface based upon Orthogonal Frequency Division Multiple Access (OFDMA) and a
new architecture and Core Network, the System Architecture Evolution/Evolved Packet Core.
LTE is not compatible with UMTS. It was created in anticipation of higher spectrum block
allocations for UMTS at the World Radio Conference (WRC) in 2007. The standard can also
be used with component frequency carriers, which are highly flexible in their arrangement
and support carriers from 1.4 MHz to 20 MHz.

The LTE standard provided significant capacity improvements and was intended to move
cellular networks away from circuit-switched functionality. LTE evolution resulted in
significant cost savings over previous generations. 3GPP approved the first LTE specifications
at the end of 2007. They are now known as LTE Release 8. LTE Release 8 has a peak data rate
of 326 Mbps, higher spectral efficiency, and significantly shorter latency (down 20ms)
compared to previous systems. The ITUR was simultaneously developing IMT-Advanced
requirements, a successor to IMT-2000 and the nominal definition of the fourth generation
[1].
LTE Release 8 was not compliant with IMT-Advanced requirements and was initially
considered a precursor for 4G technology. This statement was later relaxed, and LTE is now
accepted as 4G. 3GPP LTE release 10 and IEEE 802.26 m (deployed under WiMAX) were the
first air interfaces to meet IMT-Advanced requirements. WiMAX is an approved 4G
technology but has struggled to gain widespread acceptance. LTE will replace it. LTE Release
10 introduced several technical features such as higher-order MIMO, carrier aggregation and
improved throughput. Carrier aggregation of up to 100 MHz increases peak data rates to a
maximum of 3 Gbps downlink and 1.5 Gbps uplink. Performance improvement can also be
achieved by higher-order MIMO configurations, up to 8x8 downlink and 4x4 uplink. 3GPP
standardization for LTE (i.e. Release 11 to Release 13 and the subsequent release are
continuing and will be continued [1].

Several features were added to enable offloading the backhaul and core network. In LTE
Releases 12, 13 and 14, new solutions (known as LTE-M (NB-IoT), were introduced to
support massive Machine Types Communication devices like sensors and actuators. These
solutions resulted in improved coverage, battery life and lower cost. Release 13 targets
excessive broadband data rates by using carrier aggregation of up to 32 carriers. Mid-2015
saw a cellular global mobile market of 7.49 billion subscribers (10). The dominant Radio
Access Network (RAN), the GSM/EDGE, included EGPRS data connectivity and was in use.
GSM, which has a global market share exceeding 57% (correspondingly to 4.26 billion
subscribers), is well above peak use and in decline. However, 3G subscribers, including HSPA,
have increased to 1.94 billion since 2010, 26% of the total market share. According to the
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Ericsson Mobility Report, WCDMA/HSPA subscriptions will reach their peak in 2020 and then
start to fall after that.

LTE, the dominant 4G standard, has attracted approximately 910 million subscribers (or 12
per cent of the total market) as of 2015. It is predicted to have a staggering 4.1 billion
subscriptions by 2022 [11]. This progress makes it the most popular mobile technology.
Figure 2 shows the main features of 3GPP standards currently on the market. It highlights
the trend toward widespread use of spectrum and higher bandwidths [1].

Figure 2: Main characteristics of 3GPP/ETSI standards [1]
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2 Chapter 2) Global System Mobile, GSM (2G) and GPRS

2-1) Concept of GSM development

Ericsson began the basic technology development for GSM in the Nordic countries during
the 1980s. Afterwards, it was transferred to a working group of standardization body Group
Special Mobile (GSM), within the Conference Europeans des Posts et Telecommunications
standard committees. The GSM system has undergone extensive modifications since the
standardization process of GSM900. This was to meet the increasing demands of mobile
operators participating in standardization bodies. The European Telecommunications
Standards Institute's Special Mobile Group (SMG) was responsible for most further
standardization. Since then, the 3rd Generation Partnership Project (3GPP) has taken over
[2].

The GSM standard had one primary objective: to create a digital system that could be
mass-produced at a low cost. GSM-Global System Mobile was required to provide equal or
better speech quality and spectrum efficiency than existing analogue mobile systems. The
system will be called GSM-Global System Mobile and should offer ISDN services. The fixed
side, called GSM-specific services, includes:

● Global roaming (initially Pan-European).
● Authentication (fraud control)
● Ciphering (speech and data, signalling)
● Privacy of user (ciphered subscriber numbers on-air-interface

GSM was accepted worldwide by the end of 1990. GSM is still a significant source of revenue
for mobile operators, even though its share in modern mobile networks is declining.

2-2) GSM Architecture

Figure 3 shows the components of the GSM network. It can be divided into three
subnetworks or subsystems, the radio access network (RAN), the core network and the
management network. In terms of subsystems, these are also known as the Base-Station
Subsystem, the Network Switching Subsystem and the Operation Support Subsystem.
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Figure 3. GSM architecture [2]
These are the abbreviations of the components shown in Figure 3.

MS: Mobile Station (Cell phone, User)
BS: Base Station (Site in GSM, NodeB in 3G, and eNodeB LTE)
BSC: Base Station Controller
MSC: Mobile Switching Center
GMSC: Gateway MSC
HLR: Home Location Register
VLR: Visited Place Register
AuC: Authentication Centre
EIR: Equipment Identification Register
PSTN: Public Switching Telephone Network

Mobile Station: User Equipment is a terminal that uses GSM to communicate over the air
with a base station. This is called the Base Transceiver Station in GSM. The BS transceiver can
be installed at an outdoor or indoor location, along with additional infrastructures such as
antennas, power supply, and transmission equipment to connect to a Base Station Controller
(BSC) [2].

● A radio cell is a logical object that is related to BS. It is a set of traffic and control
channels. One BSC can control multiple BSs.

● The BSC manages radio resources on in-base stations. It is responsible for channel
allocation and call setup and manages handovers.

● BSC and base stations are connected via fixed lines or point-to-point radio links. This part
of the infrastructure is called Mobile Backhaul.

● The radio access network (RAN) comprises the BSs, BSCs, and mobile backhaul. The BS
and BSC do different tasks to support communications over the air interface. Table 1
shows the task distribution among nodes.

Table 1: Functionalities of the base station and controller [2]

Main Functions BS BSC

Management of radio channels ✔
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Mapping of upper layers to radio channels ✔

Channel coding and rate adaptation ✔

Authentication ✔

Encryption ✔ ✔

Frequency hopping ✔

Uplink signal measurement ✔

Traffic measurement ✔

Paging ✔ ✔

Handover management ✔

Location update ✔

The RAN is linked to the Core network, which consists of a Mobile Switching Center (MSC), a
Home Location Register (HLR), and other logical network nodes, such as Gateway MSC
(GMSC), Equipment Identity Register (EIR), and Authentication Center (AuC). The MSC
carries out all switching tasks, including path search, data forwarding, and service feature
processing. The MSC and an ISDN switch vary primarily in that the MSC also needs to
consider user mobility. The MSC must offer extra features for user location registration and
connection handover management when a user switches between cells. There may be
multiple MSCs in a cellular network, and each is in charge of a specific Location Area (LA).

A dedicated Gateway MSC (GMSC) manages calls that come from or end in the fixed
network. The Interworking Function (IWF) performs the interworking of a mobile network
and a fixed network (such as PSTN or ISDN). The cellular network's protocols must be
translated into those of the corresponding fixed network. The MSC can implement GMSC or
IWF as a standalone node or software feature with a few hardware interfaces.

The current position of a mobile user is kept in the Home Location Register (HLR) and Visited
Location Register (VLR). The VLR is often a logical node that is implemented in MSC. User
profiles are kept in HLR and VLR databases and are necessary for charging, billing, and other
administrative tasks. The provisioning of new subscribers is done in the HLR database, which
serves as a root database. Given how crucial the HLR database is to operator revenue, it
frequently has a backup standby node that is geographically dispersed. Two additional
databases carry out security-related tasks: Keys for authentication and encryption are stored
in the Authentication Centre (AuC), while equipment data is registered in the Equipment
Identity Register (EIR).

The network management is located in OMC1. The management of subscribers, terminals,
charging information, network configuration, operation, performance monitoring, and
network maintenance are all OMC activities. The hierarchical relationship between the
network components, MSC, BSC, and BS are summarized in Figure 4. MSC is associated with
a Location Area (LA), which is comprised of several BSCs and linked radio cell base stations. A
BSC is assigned to each cell group, and both are connected by mobile backhaul [2].

1 Operation and Maintenance Centre
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There is at least one BSC for each LA; however distinct LAs may have different cells in the
same BSC. The network operator determines how precisely the network region is divided
among LAs, BSCs, and MSCs. The base station periodically broadcasts the Location Area
Identity, or LAI, of each location area over a control channel. The mobile station records the
most recent LAI while keeping an eye on the broadcast. The broadcasted LAI changes as the
MS moves to a different LA.

The Public Switched Telephone Network (PSTN) is divided into islands by the Public Land
Mobile Networks (PLMN) operated by various providers (PSTN). The call request is sent to
the interface between the PSTN and the PLMN when the PSTN places a call to a mobile
terminal that is part of a PLMN. The operator's Gateway Mobile Switching Center is the
interface (GMSC). The Home Location Register (HLR) database contains information on each
subscriber, part of the PLMN [2].

Figure 4: GSM system hierarchy [2]

2-3) GPRS/EDGE

The GSM Packet Radio Service, also known as GPRS, introduces the idea of allowing many
users to utilize the cell's pool of accessible channels. The core subject is as follows:

● "Bundling" of timeslots is the practice of assigning multiple PTCH timeslots on a single
carrier frequency to a single user. Timeslots may be bundled on both the uplink and the
downlink; timeslots may be bundled.

● In contrast to circuit switch traffic, such as voice, a timeslot is not kept for one user;
instead, a timeslot may be shared by many users according to their priority or on a
round-robin basis.

The GPRS system was implemented as a GSM overlay with two new network nodes, SGSN
and GGSN, as well as additional interfaces and functionalities in the base-station controller,
BSC, Figure 5, to support the new idea of packet service. The enhanced Data rate for GSM
Evolution is what EDGE stands for. With no adverse effects on other system components or
nodes, it is a further development of GPRS that offers the option of a higher system data rate
employing extended modulation methods at the air interface. EGPRS is the common acronym
for GRS and EDGE working together [2].
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Figure 5: GPRS/EDGE Topology [2]

3 Chapter 3) Third Generation Network (3G), UMTS

3-1) Concept of 3G development

According to the European approach to 3G standardization, the third generation (3G) of
mobile network technology (after GSM/EDGE) initially appeared in 1999 under the name of
the UMTS2. UMTS and GSM are made backwards compatible by the 3GPP specification.
Additionally, the GSM and UMTS networks can communicate with one another. Figure 6
depicts the general network architecture of the UMTS system, which is comparable to that
of GSM [2].

Figure 6: UMTS Architecture [2]

We can name the terminology used in 3G networks as follows:

● UE (User Equipment): It refers to the mobile terminal for the 3G system. Most terminals
are dual-mode, multiband devices that can communicate over 2G and 3G networks.

2 Universal Mobile Telecommunication System
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● RAN (Radio Access Network): It stands for the 2G and 3G radio access components of
the network.

● UTRAN (Universal Terrestrial Radio Access Network): It is the name of the radio access
for WCDMA UMTS.

● RNC (Radio Network Controller): It is the base-station controller in UMTS.

GSM and UMTS switching systems may be interchangeable. However, UMTS includes
several new protocols in the lower layers of the UTRAN and the Core Network (CN) that
need specific GSM hardware, software, and interfaces for communication. The critical
distinction between UMTS and GSM is that UMTS separates the radio network from the
transport network, the access network from the core network, and the user plane from the
control plane. Because the radio and network subsystems are separated, various RTAs (Radio
Access Technologies) can be employed with the network subsystem. The GSM Core
Network (CN) structure is comprised of two user-dependent domains that depend on traffic:

● circuit-switched traffic in the CS domain
● packet-switched traffic in the PS domain
The Home Location Register (HLR) and the Authentication Centre (AuC) or the Equipment
Identity Register (EIR) are used by both traffic-dependent domains for subscriber
administration, mobile station roaming and identification, and managing various services. As
a result, the HLR contains subscriber data for GSM, GPRS, and UMTS. Both the GSM and the
UMTS access networks are handled by two domains simultaneously, handling their
respective traffic types.

The CS domain handles all circuit-switched traffic for the GSM and UMTS access networks,
and the PS domain handles all packet-switched traffic for both access networks. The UMTS
has a modular design that divides the protocol stack from the relevant network nodes to
facilitate information flow, connectivity, and mobility functionalities. As shown in Figure 7,
these modules define UMTS in a different domain structure that consists of an Access
Stratum (UE and UTRAN) and a Non-Access Stratum that includes the USIM (Universal
Subscriber Identity Module) [2].

Figure 7: Modular functionality split in the UMTS [2]

According to this definition, the Access Stratum (AS) is a functional layer supporting the
protocol stack between the mobile and radio access network. In contrast, the Non-Access
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Stratum (NAS) is a functional layer in the UMTS protocol stack between the core network
and user equipment at the application layer. NAS allows for transparent radio network
communication between mobile and core network nodes (such as MSC and SGSN). A few of
the features that NAS supports are as follows:

● Identity management
● Mobility Management
● Establishing, continuing, and ending communication sessions
● Call Control

The 3GPP TS 24.301 defines the NAS protocol stack. The 2G Mobile Station is replaced by
the User Equipment (UE) in the UMTS (MS). The UE features a modular design made up of
numerous components, as seen in Figure 8:

● The radio interface in the UE is terminated by the mobile termination (MT) module.
● A terminal adapter module terminates application-specific protocols.
● USIM is a user subscription module that provides access to the subscribed network.

The USIM differs from a GSM SIM in that it may be downloaded, accessed through an air
interface, and updated by the network. A GSM SIM has much less capacity than a USIM, a
Universal Integrated Circuit Card (UICC). It can store Java applications and profiles with
user management and user rights [2].

Figure 8: Modular architecture of UE [2]

3-2) WCDMA Concept

Wideband Code Division Multiple Access (WCDMA), with types FDD (Frequency Division
Duplex) and Time-Division Duplex (TDD), were chosen by the European Telecommunications
Institute (ETSI) in 1998, is the primary radio technology used in the UMTS. The spread
spectrum is the primary technology for WCDMA, just like it is for 2G CDMA (IS-95). Spread
spectrum techniques are used differently in 3G WCDMA than in IS-95, with various control
and signalling channels that enhance call control and link performance management. The
following fundamental ideas are applied in the WCDMA system [2]:
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● Channelization (Spreading) and Scrambling
● Channel Coding
● Power Control
● Handover

A spread spectrum technique called channelization is used in WCDMA to transmit a radio
signal over a frequency range far more extensive than the message bandwidth. To spread
the signal spectrum in WCDMA, each information symbol is filled with pseudo-noise, such as
a spreading sequence of "0" and "1" (chips), at a rate that is substantially higher than the
symbol rate. Despite the variable symbol rate, the constant chip rate of 3.84 Mcps results in
a variable amount per symbol. The information is transmitted in time slots mapped to radio
frames. The WCDMA air-interface time arrangement is shown in Figure 9. The spreading
coder generates 3.84 Mega chips per second (Mcps). This chip stream is divided into
one-hundred 10ms radio frames, and each radio frame contains 15 slots leaving 2560 chips
per time slot and 38400 chips per radio frame (or 3.84 Mega Chips per second: 3.84 Mcps).

Figure 9: WCDMA timing [2]

3-2) UMTS Network Architecture and Interfaces

In the Radio Access Network, WCDMA adds two new nodes called Radio Network
Controller (RNC) and NodeB (NB), as shown in Figure 10. These two nodes carry out
functions comparable to the BSC and BTS in the GSM. Several new interfaces are defined
between new network nodes in 3G WCDMA networks [2]:

● Iub Interface: In the radio access network, a NodeB and RNC are logically connected by
the Iub interfaces. One or more NodeBs are connected to the RNC. It also enables the
RNC and NodeB to negotiate radio resources and transmit uplink and downlink frames.

● Iur interface: It is designed to permit soft handover (HO) between RNCs within the same
UTRAN.

A logical interface linking the radio access network and the core network is the Iu interface.
The radio access and core network are separated from the system by the open interface, Iu.
The core network handles switching, routing, and service control. 
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Implementation of the interface satisfies the 3GPP interface requirements. It has two
significant examples of categories that differ:

● Iu-CS: This link is between the core network's circuit-switched domain and RAN. The
interface is where an RNC, MSC Server, and MGW communicate. Additionally, it carries
the RNC-transparent direct connection between the MSC and user equipment.

● Iu-PS: This link is between the packet-switched domain in the core network and RAN.
An RNC and an SGSN communicate with one another through the interface.
Additionally, it carries the RNC-transparent direct communication between the user
equipment and the SGSN [2].

The main functions of the Iu interface are:

● Establishment, keeping, and releasing RAB3s.
● Handling RNC relocations as well as intra- and inter-system handovers.
● Reporting issues that do not pertain to a specific user's equipment
● Dividing up each UE at the protocol level to manage user-specific signalling.
 
The other interfaces in the operator network are deployed in practical networks for network
administration and value-added services.

3-2-1) The NodeB in 3G RAN Networks

The primary function of the NodeB is to process the air-interface physical layer (channel
coding and interleaving, rate adaptation, spreading, etc.). It is also responsible for Radio
Resource Management (RRM) operations such as closed-loop power control [2].

3-2-2) Roles of RNC in 3G RAN network

The RNC is responsible for the following:

• CAC4: The current traffic load for each cell must be determined by the RNC. CAC feature
uses this data to determine whether the interference level is tolerable and, if necessary, to
reject the call.
• RRM5: The RNC manages all associated cells' radio resources. Calculating interference and
usage levels and priority control are part of this.
• Radio bearer Setup and release: The establishment of a logical data connection is what the
radio bearer setup is all about; it makes no distinction between PS and CS data transmission
across the radio bearer.
• Code Allocation: The RNC can assign different portions of the code tree to different mobile
stations.
• Power Control: The target control values are defined in the RNC; however, each NodeB
performs the quick power control.
• Packet scheduling: The same resource is shared by several mobile stations. The RNC
periodically assigns transmission capacity to each MS while considering negotiated QoS.

5 Radio Recourse Management

4 Call Admission Control

3 Radio Access Bearers
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• Hanover management. The RNC selects a handover, performs signalling with the new cell,
and notifies the MS about the new channel based on the measurements provided by NodeB
and MS.
• Encryption of CS services. The mobile terminated call is encrypted in RNC before
transmitting over Iub (air) interface.

Three logical RNC types are established in the 3G network regarding the connection
between NodeB and RNC to provide soft handover. The first stop is the Iub interface toward
NodeB with a Controlling RNC (CRNC). All load and congestion control of connected cells are
handled by the CRNC, which also handles admission control and code distribution for new
radio connections. The Serving and Drift RNC idea is shown in Figure 10 [2].

Figure 10: Logical role of the RNC for one UE UTRAN connection [2]
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4 Chapter 4) 4G-Long Term Evolution (LTE) Systems

4-1) Introduction to LTE

Widespread acceptance of the 3G/HSPA system led to tremendous growth in the usage of
mobile data. That was also stimulated by the availability of affordable mobile devices and
flat data pricing by the operators. Mobile internet access extended from laptop usage to
smartphones, thus facilitating development in mobile network performance towards very
high instant peak data rates and very low latencies. The considerable growth in mobile users
and the traffic to be carried by mobile networks demands a significant increase in system
capacity that, in turn, instigates a new technological solution to network design. When high
capacity and high performance at flat pricing are offered to the end customer, then cost per
bit becomes a critical issue for the service provider [2].

These three key drivers, capacity, user experience and lower cost per bit, have led to the
specification of a Long-Term Evolution (LTE) of UTRAN. In contrast, mobile system core
specification is defined as a System Architecture Evolution (SAE), also called Enhanced
Packet Core (EPC). LTE, together with EPC forms the Evolved Packet System (EPS). To satisfy
capacity demands, a different portion of the radio spectrum was released for LTE in the 2.6
GHz to 700 MHz range. New radio technology deployed in LTE delivers high spectrum
efficiency and capacity per site, reducing CAPEX and OPEX for service providers. A significant
reduction in cost per bit is ensured with flat IP-based LTE network architecture, cost-efficient
high bandwidth backhaul and transport network. The 3GPP has set performance targets for
an LTE of peak data rates >100 Mbps in DL and >50 Mbps in UL with a latency of less than 5
ms on the air interface per link. The spectral efficiency of LTE can exceed the one of UMTS
Release 6 by a factor of 3–4 in DL and a factor of 2–3 in UL. The access scheme in LTE is
OFDMA in the downlink and SC-FDMA in the uplink. OFDM allows for improved interference
control, advanced scheduling techniques and ease of implementation of MIMO to improve
spectrum efficiency [2].

Further, OFDM enables scaling of user bandwidth dynamically from meagre bit rates
required; for example, for control up to very high instantaneous peak data rates above 100
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Mbps in the downlink and 50 Mbps in the uplink. With scalable RF bandwidth, OFDM allows
for scaling the operator bandwidth from 1.4 or 3 MHz in re-farming scenarios up to 20 MHz
for very high capacities. OFDM technology can be used in both FDD and TDD multiple-access
schemes so that both LTE-FDD and LTE-TDD systems are standardized, thus allowing
flexibility in implementation [2].

4-2) Architecture of Evolved Packet System

EPS (Evolved Packet System) is known as Evolved UTRAN (E-UTRAN), Evolved Packet Core
(EPC), and connectivity to older 3GPP access and non-3GPP access systems. The EPS for the
3GPP access system is depicted in Figure 11 and was created as an extension of the 2G and
3G architecture. In comparison to GPRS/UMTS, the EPS architecture features fewer network
elements on the data channel, supports RAN capability in a single node, and separates the
control and user-plane network elements (MME and Serving Gateway). These are the new
network components [2]:

·       
● Mobility Management Entity (MME):
It is the control plane (C-plane) functional element in EPC and as a terminating point for
Non-Access Stratum (NAS) signalling, MME controls and saves UE context, creates temporary
identities, and assigns them to UEs authenticate the user, regulates mobility and bearers,
and manage UE context.

● Serving Gateway (S-GW):  
It is the user plane (U-plane) gateway to the E-UTRAN. S-GW acts as an anchor point for both
intra-3GPP mobility and inter-eNB handover (i.e. inter-3GPP access mobility between LTE
and 2G or 3G). For UEs in the ECM-IDLE state, it is also in charge of packet forwarding,
routing, and buffering downlink data.

● Packet Data Network Gateway (P-GW):
The operator's IMS6 or any other PDN is accessed through this U-plane gateway, which is
known as the Packet Data Network. P-GW is in charge of allocating the user's IP address,
supporting charging and enforcing rules.

● E-UTRAN:
It is the radio access part of the LTE Network. The legacy network elements interfacing with
LTE are as follows:

● Gateway GPRS Support Node (GGSN):
It is in charge of terminating the Gi interface toward the PDN for legacy 2G/3G access
networks. LTE interfaces this node only as a part of P-GW functionality and from the
perspective of inter-system mobility management.

● Serving GPRS Support Node (SGSN):

6 IP Multimedia Subsystem
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It is in charge of transmitting packets between the Core Network and the 2G/3G RAN. LTE
interfaces the SGSN only in case of inter-system mobility management.

● Home Subscriber Server (HSS):
It is the IMS Core Network entity in charge of managing user profiles and performing the
authentication and authorization of users. The user profiles managed by HSS; consist of
subscription and security information as well as details on the user's physical location. While
IMS is not a mandatory network element, the HSS is a necessary node for the operation of
the LTE system.

● Policy Charging and Rules Function (PCRF):
It is responsible for brokering QoS Policy and Charging Policy on a per-flow basis.

Figure 11: EPS architecture for 3GPP accesses [2]

4-3) EUTRAN Interfaces

eNodeB (eNB) is the only node type in E-UTRAN, which gives UE the air interface. The X2
interface allows eNBs to communicate with one another, while the S1 interface allows them
to communicate with MMEs and S-GWs. Multiple MMEs and S-GWs can connect to a single
eNB. This feature, known as S1-flex, offers flexibility and reliability. Figure 12 shows the eNB
connection. The eNB handles radio transmission to and reception from UE. The RNC node
does not exist in the LTE network, as shown in Figure 12. Instead, the eNB handles RNC
functionalities. This contains scheduling user data, radio bearer control, management of the
radio resources (including admission control), and control of the signalling through the air
interface [3].

However, because e-UTRAN lacks an anchor point and capability, the X2 interface will only
link eNodeBs with nearby cells. The X2 supports relocation capabilities with packet
forwarding rather than drift-like RNC functionality. The S1 interface is used to link the eNB to
the core network. The Iu-PS interface in the 3G system and the S1 interface are relatively
comparable. The IP-based S1 and Iu-PS user planes are transport tunnels independent of the
content of the sent packets. The EPC or the eNB puts the end user's IP packets into the S1 IP
tunnel.
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Figure 12: E-UTRAN and EPS with S1-flex interface [3]

4-4) LTE-Advanced

International Mobile Telecommunications-Advanced refers to this idea as it relates to the
overall network system (IMT-Advanced). With the first release of 3GPP Release 10, the
organization began to create the LTE-Advanced (LTE-A) radio network standard. The criteria
for radio networks from IMT-Advanced include [3]:

● support for up to 100 MHz bandwidth
● peak data speeds up to 1 Gbps for nomadic (low mobility scenario) and 100 Mbps for the

high mobility case
● increased spectral efficiency in various environments

Another 3GPP requirement is backward compatibility with 3GPP Release 8 LTE.
It includes support for inter-RAT mobility between LTE-A and LTE, GSM/EDGE, HSPA, and
cdma2000. Additionally, the LTE-A must allow flexible spectrum allocation. LTE-A should
allow asymmetric bandwidth allocation for FDD downlink/uplink and non-contiguous
spectrum allocation due to variations in the spectrum available in different use cases and
scenarios. The following are the system performance targets for 3GPP Release 10 (LTE-A) [2]:

● cost-efficient data rates of 3 Gbps for downlink and 1.5 Gbps for uplink;
● spectral efficiency up to 30 bps/Hz; (Spectral efficacy is defined as the rate divided into

the system bandwidth)
● higher capacity with an increased number of simultaneously active clients;
● improved performance at some weaker covered locations, same as cell edges.

The main new functionalities introduced in LTE-Advanced are:

● Carrier Aggregation (CA),
● Enhanced MIMO,
● Support for Relay Nodes (RN)
● Coordinated multipoint transmission and reception (CoMP).
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5 Chapter 5) 5G Development

5-1) Introduction to 5G

A few years after 2020, 5G, or the Fifth Generation of mobile communication technology, is
expected to hit the market. An increasingly networked human society's demands are one of
the main reasons for the advent of the new generation of technologies. The Internet of
Things (IoT) sector, Machine-to-Machine (M2M) communications, cloud computing, and
many other technologies are predicted to grow exponentially in connection and traffic
density. So, 5G technology will be required to take network performance to the next level.
Additionally, 5G will need to solve the present LTE and LTE-Advanced (LTE-A) limit in terms of
latency, capacity, and reliability. Some of the specifications for 5G networks that are
frequently mentioned in the most recent research are [4]:

• Address the growth required in coverage and capacity;
• Address the growth in traffic;
• Provide better Quality of Service (QoS) and Quality of Experience (QoE);
• Support the coexistence of different Radio Access Networks (RAN) technologies;
• Support a wide range of applications;
• Provide peak data rates higher than 10 Gbps and a cell edge data rate higher than 100
Mbps;
• Support radio latency lower than 1ms;
• Support ultra-high reliability;
• Provide improved security and privacy;
• Provide more flexibility and intelligence in the network;
• Reduction of Capital and Operational Expenditures (CAPEX and OPEX);
• Provide higher network energy efficiency.
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The 5G research and studies performed by the Next Generation Mobile Network Alliance
(NGMN) describe a multi-faceted 5G system which can support multiple combinations of
reliability, latency, throughput, positioning and availability. This is achievable by introducing
new technologies in access and the core parts of the network. According to ITU-R studies,
the major usage scenarios for the new 5G system can be largely classified into five categories
[2]:

1- Enhanced Mobile Broadband (EMBB):
Mobile Broadband addresses the human-centric use cases for access to multimedia content,
services and data. In these use cases, we need to provide users with more throughput, and a
huge amount of payload is downloaded an uploaded in this category. This usage scenario
covers a range of cases, including wide-area coverage and hotspot, which have different
requirements.

2- Ultra-reliable and low-latency critical communications (URLLC):
In this category; throughput, latency, and availability requirements for this use in the case
are very strict. This could include communications from and to interactive games, sports,
drones, robotics, and emergency communications. Examples of machine forms of
communication include wireless control of industrial manufacturing or production
processes, remote medical surgery, distribution automation in a smart grid, transportation
safety, and others.

3- Machine Type Communications (MTC):
Massive and critical MTC can be distinguished from one another. Massive MTC is defined as
the transmission of non-delay-sensitive data by a very large number of connected devices,
usually at a very low rate. Devices must be reasonably priced and have a long battery
life.  Applications like traffic safety/control, critical infrastructure control, and wireless
communication for industrial processes are all examples of critical MTC. These applications
need wireless communication with extremely high levels of availability and reliability as well
as very low latency. Wide instantaneous bandwidth is essential to meet capacity and latency
requirements, even though the average amount of data transferred to and from devices may
not be very much. A later study by 3GPP added two other 5G use cases:

4- Network Slicing:
Network operation that is enhanced with network slicing, routing, migration and
interworking and energy saving.

5- Enhancement of Vehicle-to-Everything:
for example, autonomous driving, safety and non-safety aspects associated with vehicles.

5-2) 5G Architecture

5G technology has been designed for high throughput and low latency applications. Massive
connections are a few examples of burst data traffic patterns and models. 5G is intended to
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offer various services (e.g., IP data traffic, non-IP data traffic, short data bursts and high
throughput data transmissions). Different PDU session types, such as IPv4, IPv6, IPv4v6,
Ethernet, and Unstructured, are supported in 5G networks [4].

The primary features of 5G are the introduction of a new radio interface and New Radio
(NR), which provides the adaptability required to handle diverse types of services. The 5G
Access Network's ability to connect to both LTE and 5G Core Network is another important
aspect of 5G. This is referred to as the NSA architecture, whereas the SA architecture refers
to a 5G AN (Access Network) connected to a 5G CN (Core Network). The 5G System delivers
a wide range of features on the Core Network side, including enhanced Network Slicing,
mobile edge computing, and network capability exposure. These ideas are all presented
below:

Figure 13: The NSA Architecture [4]

The NSA architecture, where the 5G Access Network couples to the 4G Core Network, is
considered an initial solution toward "full 5G" implementation. The LTE eNB and the 5G NR
base station (en-gNB) connect via the X2 interface in the NSA design. As mentioned earlier,
the X2 interface was developed to link two eNBs. In Release 15, linking an eNB and en- gNB
is also supported to offer NSA. Figure 14 below is an illustration of the SA architecture.

Figure 14: The SA Architecture [4]

The SA architecture can be seen as the "full 5G deployment", not needing any part of a 4G
network to operate. The NR base station (gNB) connects via the Xn interface, and the Access
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Network (called the "NG-RAN for SA architecture") connects to the 5GC7 network using the
NG8 interface.

5-2) Operational Requirements for 5G Network

In addition to many new services, the 5G system will support most of the existing EPS9. The
existing EPS may be accessed using the new 5G access technologies even where the EPS
specifications might indicate E-UTRA(N) only. The following exceptions will apply [4]:

● CS voice service continuity and/or fallback to GERAN10 or UTRAN,
● Handover between NG-RAN11 and GERAN,
● Handover between NG-RAN and UTRAN,
● Access to a 5G core network via GERAN or UTRAN.

The 5G system will support mobility procedures between a 5G core network and EPC with
minimum impact on the user experience (QoS, QoE).

5-3) 5G Device Requirements

The network will be able to configure the access technology and transport protocol of 5G
terminals to a high degree over the air. This ability will eliminate terminal-type dependence
while enabling effective logical division (slicing) for various services. Depending on QoS
requirements, radio parameters and conditions, 5G UE can dynamically select particular
profiles. The 5G UE must handle several frequency bands and various transmission
techniques (TDD, FDD, and mixed). The 5G device will be able to aggregate data flows from
several technologies and carriers while maintaining concurrent Multi-RAT (multiband)
connectivity. These standards significantly improve the 5G devices' resources, signal
processing, signalling, and power efficiency [2].

5-4) 5G Capabilities

The following items are regarded as essential 5G characteristics. The values listed below are
IMT-2020 research and study goals and may be expanded upon or changed in future ITU
recommendations.

● The peak data rate for 5G Enhanced Mobile Broadband is predicted to exceed 10 Gbps in
both indoor and dense outdoor locations.

● The following data rates for user experience are anticipated:
At least 10 Mbps for everywhere
100 Mbps for wide-area coverage
1 Gbps for indoor coverage

11 New Generation-Radio Access Network

10 GSM EDGE Radio Access Network

9 Evolve Packet System

8 New Generation

7 5G Core
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● The spectrum efficiency is anticipated to be three times higher than LTE-A For improved
eMBB applications. For an indoor scenario and small cell, 5G is anticipated to support a
10 Mbps/m2 area traffic capacity.

● The energy consumption for the 5G RAN should not be greater than LTE networks
deployed today while delivering enhanced capabilities.

● Over-the-air latency is to be reduced to 1 ms to support services with very low-latency
requirements.

● 5G is also expected to enable high mobility up to 500 km/h with acceptable QoS.

● 5G is expected to support a connection density of up to massive MTC scenarios.100𝑘𝑚2
5-5) 5G Spectrum Allocation

The NB-IoT will likely be deployed in frequency bands below 2 GHz, providing high capacity
and in-depth coverage for many connected devices. Different 5G scenarios, such as
increased mobile broadband, ultra-reliable and low-latency communications, and massive
machine-type communications, would require different spectrum bandwidths. Considering a
wideband contiguous spectrum allocation over 6 GHz would be necessary for those
applications requiring bandwidth from several hundred MHz up to 1 GHz. Various frequency
bands and bandwidths are essential for 5G services; for instance, MTC services may utilize
relatively narrow bandwidth, while eMBB requires very wide bandwidths for high-capacity
usage cases.

An overall solution for 5G will include a spectrum below 6GHz as well as the spectrum at the
higher frequencies in the range of 6–100 GHz. By around 2020, most mobile
communications will be equipped with LTE. Therefore, an evolution of LTE to 5G has to
support dual connectivity between the LTE operating below 6 GHz and New Radio (NR)
technology operating in the range above 6 GHz. The schematic spectrum allocation for
further evolution of LTE and 5G New radio is illustrated in Figure 15. In [26], we can find the
findings of a study on the radio propagation environment of IMT in bands between 6 GHz
and 100 GHz. The research discusses solutions based on MIMO and beamforming with
several antenna elements to address the frequency-dependent propagation loss and offers
performance simulation results for a variety of deployment scenarios [2].

Figure 15: Planned frequency spectrum allocation for 5G [2]

5-6) 5G Technology Components
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Here, I have mentioned the headlines of 5G technology components:

● Technologies to enhance the radio interface
Advanced Modulation and Coding
Non-Orthogonal Multiple Access (NOMA)
Active Antenna System (AAS)
3D beamforming and Multi-user MIMO (MU-MIMO)
Massive MIMO
Full-Duplex mode
Self-Backhauling

● Technologies to enhance Network Architectures
Self-Organized Network (SON)
Software-Defined Networking (SDN)
Network Slicing
Cloud RAN and Virtual RAN
Open RAN

● Technologies to support a wide range of emerging services
● Technologies to enhance user experience
● Technologies to improve network energy efficiency
● Terminal technologies
● Technologies to enhance privacy and security.

The whole spectrum of 5G technology enhancements is out of this project's scope. We
briefly reviewed a few technological developments related to the radio part. However, we
will dive deep into the RAN part (Cloud RAN and Open RAN) and the use of machine learning
in this 5G development. However, before starting that, it is essential to look into 5G open
issues and challenges before addressing the topic of 5G-RAN.

5-7) Challenges and Open Issues in 5G

Here, we have presented 5G technical issues, including mmWave communication, D2D
communication, backhaul transmission, technology maturity, and security concerns [5].

5-7-1) mmWave Communication

Application:
An important part of the 5G mobile network is to provide eMBB services such as VR, AR and
ultra-high definition video (UHDV). It can support the requirements of high growth of mobile
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traffic demand and reduce the bottleneck effects of wireless bandwidth; it is a key problem
of 5G networks.

Drawback:
Blockage of electromagnetic signals and designing integrated circuits are the challenges of
mmWave communications. These waves in the 60 GHz band are sensible to blockage by
barriers (e.g., humans and furniture), E.g. penalizing 20-30 dB due to blocking by a person).

5-7-2) D2D communications

Application:
In the evolution to 5G, traditional performance indicators, such as network capacity and
spectral efficiency, must be continually improved. A wider variety of communication modes
and applications must be provided with enhanced user experience. Device-to-device (D2D)
technology has drawn widespread attention in the industry for its potential to improve
system performance, enhance user experience, and expand cellular applications. With
cellular-based D2D communication, also called proximity service (ProSe), user data can be
directly transmitted between terminals without routing via eNBs and core networks. D2D
communication structure differs from a traditional cellular network (Figure 16).

D2D communication helps increase spectral efficiency, enhance user experience, and expand
communication applications. Applications of 5G D2D include local service, emergency
communication, and IoT enhancement. A typical application of D2D-based IoT enhancement
is vehicle-to-vehicle (V2V) communication in the Internet of Vehicles (IoV). When running at
high speeds, a vehicle can warn nearby vehicles in D2D mode before it changes lanes or
slows down. D2D can also be applied in other potential scenarios, such as multiuser MIMO
enhancement, cooperative relaying, and virtual MIMO. D2D can also help to solve problems
in new wireless communication scenarios and support indoor positioning in 5G networks at
a low cost [5].

Figure 16: D2D Communication [6]

Drawback:
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There are two main issues for D2D communications in the 5G era. The first one is controlling
and limiting interference among D2D devices and microcell users because there is no
operator control as a central body for direct communications, interference management,
and resource allocation. Another issue is security and privacy in D2D communication
because of routing users’ data through other users’ devices [18].

5-7-3) Backhaul

Application:
To meet the anticipated capacity of the 5G network, vendors and players need to develop
new technologies in telecommunications [19-20]. The backhaul network is responsible for
transmitting this volume of traffic. Backhaul (backhaul network or backbone or transport), in
cellular networks, is defined as a network that connects the access network (e.g. eNB) to the
core network and is composed of fibre, copper, microwaves and sometimes satellite [21].

Drawback:
Utilizing backhaul networks for small cells to support high data rates and low latency is a
significant challenge for operators due to the need for adequate fibre networks in many
different areas. These backhaul networks are necessary for transferring the heavy traffic of
the high-dense cells with capacity constraints such as delay and delay. There is no one
unique solution to address 5g backhaul requirements. Future 5G backhaul can be designed
by utilizing existing transmission networks such as xPON and new technologies such as
mmWave. In this regard, authors in [22] have suggested that technology adoption, such as
SDNs can help in the evolution of 5G backhaul to facilitate backhaul management in a
heterogeneous environment.

5-7-4) Technology maturity

Currently, operators have started 5G service with eMBB cases, and other service types, e.g.
URLLC is only available for a while due to a lack of technology maturity. Despite the
presenting architecture and some implementation, however, a maturity level to propose
different services is
required for used technologies in the 5G era. Because the growth of 5G requires the
development of enablers such as SDN, orchestration and NFV and RAN technologies.
Maturity in technology requires concentration on a specific one and avoiding fragmentation
in technology [24]. For example, each vendor works individually instead of focusing on a
specific one, such as NFV. This could delay the maturity of the NFV implementation and
therefore limit us in providing. Today, Cloud RAN and Open RAN are promising solutions for
technology maturity in 5G to make no dependence on particular hardware and vendor
equipment [5].

5-7-5) Security challenges
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The 5G network leverages cutting-edge technologies, including virtualization,
software-defined networking (SDN), and network function virtualization (NFV) to provide
services and use cases. On the other side, service security can only be offered if the network
architecture is secure. Traditional networks include components that are isolated from one
another, whereas 5G networks have virtualized services and shared infrastructure resources.

In this setting, many virtual network slices are formed, requiring various levels of protection.
In addition, security heterogeneity in 5G networks is a novel issue that needs to be
considered. ITU service framework states that 5G supports numerous services with varied
requirements, such as mMTC, URLLC, and eMBB. Different levels of security are required for
each of them. IoT services, for instance, require minimal security, but URLLC services, such
as industrial services, demand more effective protection. A multi-level architecture security
framework is required in 5G networks to support policies, threats detection, and threat
mitigation on a dynamic basis [5].

5-8) Overview of 5G-Radio Access Network (NG-RAN)

Figure 17 below, has been extracted from TS 38.40 and shows the overall architecture of the
Access Network in the 5G scenario:
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Figure 17: Overall NG-RAN architecture [7]

The NG-RAN consists of gNBs connected to the 5GC through the NG interface. This
connection is similar to the LTE's S1 interface. As briefly mentioned in section 5-1, the gNB
(5G Node B) can be connected to another gNB through the Xn interface, based on (and very
similar to) the LTE's X2 interface. The gNB may be further split into a gNB-Central Unit
(gNB-CU) and one or more gNB- Distributed Unit(s) (gNB-DU), linked by the F1 interface.
The gNB performs the following tasks [7]:

● Functions for Radio Resource Management: Radio Bearer Control, Radio Admission
Control, Connection Mobility Control, and Dynamic allocation of resources to UEs.

● IP header compression, encryption and integrity protection of data.
● Selection of an AMF at UE attachment when no routing to an AMF can be determined

from the information provided by the UE.
● Routing of User Plane data towards UPF(s).
● Routing of Control Plane information towards AMF.
● Connection setup and release.
● Scheduling and transmission of paging messages.
● Scheduling and transmission of system broadcast information
● Measurement and measurement reporting configuration for mobility and scheduling.
● Transport level packet marking in the uplink.
● Session Management.
● Support of Network Slicing.
● QoS Flow management and mapping to data radio bearers.
● Support of UEs in RRC_INACTIVE state.
● The distribution function for NAS messages.
● Radio access network sharing.
● Dual Connectivity.
● Tight interworking between NR and E-UTRA.

5-9) NG-RAN Interfaces
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Understanding the control and user plane concepts is best before introducing the 5G
interfaces. Since the functions of interfaces depend on this classification, for instance, NG-C
is in charge of managing control plane operations between G-NG and 5GC. In contrast, Xn-U
manages user plane operations between two G-NBs [2].

5-9-1) The NG and S1 Interfaces

Before introducing 5G-RAN interfaces, one must know about two 5GC components
connected to 5G-RAN.

● Access and Mobility Management Function (AMF): It is one of the control plane network
functions of the 5G core network (5GC) with the following main functions:

Registration Management
Reachability Management
Connection Management
Mobility Management

● User Plane Function (UPF): It is the function that does all of the work to connect the
actual data coming over the Radio Area Network (RAN) to the Internet.

The NG interface connects the 5GC to the NG-RAN. Figure 18 shows the logical
segmentation of the NG interface. From the NG perspective, the 5GC access point is either
the control plane AMF logical node or the user plane UPF logical node, whereas the NG-RAN
access point, is an NG-RAN node, either an ng-eNB or a gNB. Accordingly, depending on the
5GC access point the NG-RAN node is linked to, NG interfaces are defined at the boundary:
NG-C towards an AMF and NG-U towards a UPF [2].

Figure 18: NG interface architecture [2]

The NG-RAN may thus have several NG access points towards the 5GC. The NG interface
has the following features [2]:
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● It is open;
● It is a point-to-point logical interface between an NG-RAN node and a 5GC node, and it

is feasible in the absence of a direct physical connection between the NG-RAN and 5GC;
● It supports control plane and user-plane separation;
● It separates Radio Network Layer and Transport Network Layer;
● It is decoupled with the possible NG-RAN deployment variants.

There may be multiple NG-C logical interfaces towards the 5GC from any one NG-RAN node.
The selection of the NG-C interface is then determined by the NAS Node Selection. There
may be multiple NG-U logical interfaces towards the 5GC from any one NG-RAN node. The
selection of the NG-U interface is done within the 5GC and signalled to the NG-RAN Node by
the AMF. The NG interface support:

● Protocols for setting up, managing, and releasing the NG-RAN portion of PDU sessions;
● The methods for performing intra-RAT and inter-RAT handovers;
● The protocol-level isolation of each UE for user-specific signalling management;
● The exchange of NAS signalling messages between the UE and the AMF;
● The mechanisms for packet data stream resource reservations.

The gNB/eNB and the User-Plane Function define the NG user-plane interface (NG-U) (UPF).
The user-plane PDUs are carried between the gNB/eNB and the UPF using GTP-U, which is
built on top of UDP/IP at the transport network layer. The gNB/eNB and the AMF are
described as the NG control plane interface (NG-C). Figure 18 demonstrates the control
plane protocol stack of the NG interface.  IP transport is the foundation of the transport
network layer. To reliably carry signalling messages, SCTP is introduced to IP. The NG-AP
stands for the application layer signalling protocol (NG Application Protocol). Application
layer messages are guaranteed to arrive thanks to the SCTP layer. IP layer point-to-point
communication is used in transit to signalling PDUs [2].

Figure 19: NG interface protocol stack [4]
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5-9-2) The Xn and X2 Interfaces

The Xn User-plane (Xn-U) interface is specified between two gNBs connected to 5GC,
between a gNB and an ng-eNB connecting to 5GC, and between two ng-eNBs connecting to
5GC. Figure 20a depicts the user-plane protocol stack on the Xn interface. The user-plane
PDUs are transmitted by GTP-U on top of UDP/IP at the transport network layer, which is
based on IP transport. Data forwarding and flow control are performed through
connectionless, non-guaranteed delivery of user-plane PDUs delivered by Xn-U [2].

Figure 20b depicts the Xn interface's control plane protocol stack. On top of IP, SCTP is used
to construct the transport network layer. Xn-AP is the name of the application layer
signalling protocol (Xn Application Protocol). Application layer messages are guaranteed to
arrive thanks to the SCTP layer. The signalling PDUs are delivered using point-to-point
transmission at the transport IP layer. The UE mobility for connected modes between nodes
in the NG-RAN is managed through the Xn-C interface [2].

The Xn-C may perform the following tasks:
● Interface management and error handling (e.g. setup, reset, removal, configuration

update).
● Connected mode mobility management (handover procedures, sequence number status

transfer, UE context retrieval).
● Support of RAN paging.
● Dual connectivity functions (secondary node addition, reconfiguration, modification, and

release).

The user-plane Xn-U supports:
● Context transfer from old serving NG-RAN node to new serving NG-RAN node.
● Control of user-plane tunnels between the old serving NG-RAN node and the new serving

NG-RAN node.

When gNB connects to the eNB that is still connected to the EPC, the legacy X2 interface will
be used for signalling related to UEs connected to the EPC while the new Xn interface will be
used for UEs connected to the 5GC.
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Figure 20: Xn protocol stack: (a) user plane and (b) control plane [4]
5-9-3) The F1 Interface

The F1 interface is specified for the case where the en-gNB is further subdivided into gNB-CU
and gNB-DU logical nodes. In this case, the gNB-CU hosts the RRC and PDCP protocols, while
the gNB-DU hosts the RLC, MAC and PHY functions. The F1AP protocol provides the
following functions [2]:

● System information management function
● RRC message transfer function
● Paging function
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6 Chapter 6) Cloud RAN

6-1) Cloud RAN Introduction

Data traffic and mobile subscriptions have increased dramatically over the past few years.
According to one study, there are now 6.2 billion potential mobile customers worldwide by
the end of 2023, versus 4.4 billion in 2013 and 5.4 billion in 2017. Other contributing factors
are [8]:

● The introduction of smart devices with improved capabilities
● A variety of user-friendly applications, and
● An acceleration in deploying 4G and 5G cellular systems globally.

Mobile devices will become even more common thanks to the projected introduction of 5G
systems and more data-intensive applications like virtual reality and augmented reality
technology. As depicted in Figure 21, the prediction indicates that the total monthly
worldwide mobile data traffic will increase from the current level of 13.8 ExaBytes12 (EB) in
2017 to 110 EB by the end of 2023 at a compound annual growth rate (CAGR) of 42% [8].

12 1 EB = 1024 PB = 1048576 TB
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Figure 21. A forecast of global mobile data traffic in EB per month up to 2023 [9]

It will not be straightforward for network operators to support such a large amount of
mobile data traffic in the coming years. In short, mobile networks must add more capacity to
keep up with demand. There are some practices to improve the capacity as follows [8]:

● Adding more cells to the network.
● Implementing heterogeneous networks (HeNets) introducing small cells.
● Beamforming (BF)
● Deployment of relays and repeaters
● Adopting distributed antenna systems (DAS)
● Cognitive Radio (CR)
● Multi-user MIMO and Massive MIMO

The main problems with these increasing capacity technologies are inter-cell interference,
complex network operation and maintenance, greater energy consumption, and decreased
operator profit margin due to increased CAPEX and OPEX. As I t was mentioned in the 5G
chapter, 5G networks will need to support an enormous number of connected devices, high
data rates, improved energy efficiency (EE), robust reliability, nearly 'anytime anywhere'
connectivity, low latency, and increased capacity [10]. Current technologies cannot satisfy
such fundamental needs. Therefore, sectors and researchers must make certain basic
adjustments in future networks of both technologies.

Cellular networks based on C-RAN (Cloud-RAN; it can also stand for Centralized-RAN), a
leading candidate for future 5G cellular systems, have the potential to satisfy the objectives
above. It is a paradigm-shifting evolutionary concept that IBM introduced in [8], and it
proposes completely different cellular network architecture and operations from the ones
used in traditional cellular networks. Baseband units (BBUs) from every base station (BS) in a
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RAN are pooled together and virtualized in C-RAN before being distributed across the BSs
[8].

6-2) C-RAN Architecture

The architecture of the C-RAN is provided in this part, along with detailed explanations of its
essential elements and functional split options. It should be noted that the PHY layer and
several upper layer features are all located in the BS inside traditional RANs, resulting in a
high cost for network deployment, updating, and maintenance. Contrary to typical RANs, the
baseband unit of the C-RAN simplifies the performance of BS by shifting a substantial
portion of its operations to the cloud server (BBU). As a result, it is practical and economical
to deploy more remote radio heads (RRHs), which are APs. Future wireless communication
systems are anticipated to be designed and deployed on a new network architecture
paradigm [11].

6-3) C-RAN Components

Figure 22 shows the architecture of C-RAN. The RRHs and BBUs are separated
geographically, and the BBUs are located on a cloud server. In addition, a front-haul link
connects BBU and RRH, while a back-haul link connects BBU and the core network. Next, we
will see that when BBUs are centralized in a BBU pool, we refer to it as Option 1 in C-RAN
architecture [11].

BBU: The BBU is enabled by cloud computing, which achieves flexible spectrum
management and advanced network coordination. A considerable portion of the baseband
signal processing for the entire network can also be handled by BBU, which manages the
signalling to RRHs. The joint signal processing across a larger coverage area can be carried
out at the BBU side in a centralized manner, as opposed to a standard BS, which has the
potential to reduce interference and enhance performance. BBU carries out several tasks in
the cloud, including modulation, coding, Fast Fourier Transform, and choosing an
appropriate frequency or channel.

RRH: RRH mainly handles the radio frequency function and some basic signal processing.
Even in hot spot zones, the implementation of RRH can offer seamless connection.
Furthermore, RRHs placed close together can provide better coverage and higher data rates.
Antenna-equipped RRHs forward baseband signals from users to the cloud for processing
and send radio signals from the BBU cloud to users in the downlink. RF amplification,
up/down conversion, filtering, digital processing, A/D and D/A conversion, and interface
adaptability are among the primary responsibilities of RRHs. Since most signal processing
tasks are now carried out in the cloud, RRHs can be kept relatively simple in large-scale
applications while still being cost-effective.

Fronthaul link: The communication channels between BBUs and RRHs are provided via
fronthaul. This fronthaul connectivity can be implemented using various technologies,
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including optical fibre communication, wireless communication, or even millimetre wave
(mmWave) communication. [9]. High transmission capacity can be supported via optical
fibre communication fronthaul, but at a high cost and with limited deployment flexibility.
While wireless fronthaul using 5 GHz to 40 GHz carrier frequencies is more affordable and
flexible. However, it comes with decreased capacity and other limitations. Depending on the
application scenarios, the fronthaul links may use wired or wireless media and are often
capacity-limited. For practical system designs inside the two-hop C-RAN architecture, the
fronthaul restrictions should be properly considered.

Figure 22: C-RAN Architecture (Option 1) [11]

In addition, the BBUs are further divided into DU and CU in a second variant of the
centralized RAN architecture. As CU moves closer to the core network in this instance, a new
interface known as mid-haul is created (Figure 23). It is important to note that the C-RAN
architecture has many noteworthy benefits. For instance, C-RAN can offer more bandwidth
by combining heterogeneous spectrum resources, expanding the user base served. The
BBU's centralized management also helps lower its operating and capital costs. Cooperative
processing and advanced MIMO techniques can potentially increase the gains of many RRHs.
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Figure 23: C-RAN with BBU Split [12]

6-4) C-RAN Functional Split

Option 1: The concentration of baseband signal processing in the C-RAN design results in
high cooperative processing gains, which increases the flexibility of network coordination.
However, there are trade-offs among the split option, fronthaul capacity and signal
processing complexities. Three ideas for a functional split between BBU and RRH are shown,
along with a short discussion of the trade-offs. Figure 24(a) illustrates the first option, which
is suggested for the initial C-RAN architecture. The majority of PHY layer functions have been
shifted to BBU. Almost all PHY layer functionalities are moved to BBU [11].

Meanwhile, RRH acts as a simple relay with RF, ADC/DAC and digital front-end. In this option,
BBU and RRH are connected by the standard public radio interface (CPRI). This centralized
PHY architecture may achieve the highest cooperative processing gain. However, forwarding
I/Q samples via fronthaul links requires very high transmission bandwidth.

Option 2: The second approach is depicted in Figure 24(b), where some PHY layer processing
is kept reserved at RRH, and some baseband processing is partially centralized. This
functional split results in considerable cooperative processing improvements while reducing
the fronthaul's transmission bandwidth. However, implementing cooperative processing
becomes complicated due to the distributed deployment of PHY functionalities. This
architecture aims to balance fronthaul capacity and signal processing complexity.

Option 3: Figure 24(c) demonstrates the third option, where all PHY layer functions are
transferred to the RRH. This architecture requires the minimum fronthaul bandwidth by
limiting the fronthaul link's transmission capacity to the maximum medium access control
(MAC) layer throughput requirement compared to the previous two options. The price paid
for this reduction is the increased scheduling delay in the fronthaul link, which may degrade
system performance and network throughput. At the same time, the benefit of this
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architecture is the saving of power consumption at BBU and higher flexibility to support
radio resource allocation towards users.

In conclusion, separating baseband signal processing into BBU and RRH enables the C-RAN
several choices for deploying with various fronthaul capacity restrictions. However, it is
easier to implement the cost-effective deployment of C-RANs with adequate PHY layer signal
processing [11].

Figure 24: Functional split between BBU and RRH in C-RAN [11]

6-5) C-RAN Advantages and Drawbacks

Traditional BSs are split up into two components in C-RAN: distributed RRHs and pooled
BBUs. The pool is placed at a single, cloud-based location with several BBUs. To meet the
dynamic user demand having spatial variation, it is possible to share the radio resources of
many BBUs. The amount of BBUs can be adjusted over time thanks to the cloud's ability for
reconfiguration, which also controls the RRHs. The cloud performs baseband processing as a
virtual base station using general-purpose CPUs. In the cloud, signal processing resources
are dynamically assigned based on demand. Several operations are carried out, including
modulation, coding, Fast Fourier Transform, and channel or frequency selection. On the
other hand, RRHs with antennas forward baseband signals from users to the cloud for
processing while transmitting radio signals from the BBU cloud to users in the downlink [8].
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The main functions of RRH are Radio frequency (RF) amplification, up/down conversion,
filtering, digital processing, analogue-to-digital conversion, digital-to-analogue conversion,
and interface adaptability. Since most signal processing tasks are now being performed in
the cloud, RRHs can be kept relatively simple in large-scale applications while still being
cost-effective. Fronthaul, the third element, offers communication channels between BBUs
and RRHs. These fronthaul links can be implemented using various technologies, including
optical fibre communication, conventional wireless technology, and even millimetre wave
(mmWave) communication.

Optical fibre communication can be utilized for high transmission capacity via fronthaul, but
at a high cost and with limited deployment flexibility. While wireless fronthaul using 5 GHz to
40 GHz carrier frequencies is more affordable and flexible, it comes at the expense of
decreased capacity and other limitations [8].

6-5-1) C-RAN Advantages

C-RAN has some significant advantages over the existing counterpart, as summarized below
[8]:

• Reduced CAPEX and OPEX: Macrocell BS (MBS) deployment and commissioning are costly
and time-consuming. In contrast, deploying and running RRHs for C-RAN requires less
money, time, and space. Additionally, C-RAN can enable more efficient equipment sharing,
resulting in lower CAPEX. According to a quantitative estimate published, C-RANs might
lower CAPEX by up to 15% per kilometre. Additionally, C-RAN9 aggregates processing
resources into a small number of massive clouds, leaving more specific functions in RRHs,
which can reduce OPEX and administrative costs significantly.

• Improved EE: A C-RAN requires fewer BBUs than a traditional RAN, which results in lower
power usage. Additionally, as RRHs are naturally cooled by air hanging on building walls or
masts, air conditioning for radio modules in C-RANs can be reduced by about 90%.
Moreover, C-RANs enable UEs and MBSs to offload their energy-intensive calculations that
require much data to a nearby cloud, saving energy. According to a study done by ZTE,
C-RAN can save up to 80% more energy than regular RAN.

• Improved spectral efficiency (SE): C-RAN can help cellular networks' SE. Implementing
coordinated and cooperative transmission/reception techniques is much simpler and more
effective, resulting in higher SE [12].

 • Reduced latency: C-RAN can lower latency when carrying out various tasks. For instance,
since handovers can be completed inside a cloud rather than between BSs, the time required
to do a handover will be less. It is also possible to reduce the handover failure rate.
Additionally, C-RAN allows for a reduction in the overall volume of signalling data delivered
to the core network, which in turn reduces latency.

• Facilitate the switching of BBUs: By dynamically distributing processing capacity and
moving tasks in the BBU pool, power consumption and load congestion can be decreased
because all processing operations are implemented in a remote cloud. As a result, many
BBUs can be placed in low-power sleep mode or even turned off to save energy.
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 • Improved interference management: C C-RAN can facilitate sharing channel status
information (CSI), traffic information, and control information for mobile services among
participating BSs. As a result, multi-point cooperation will be more efficient, and more
streams can be multiplexed on the same channel with significantly less mutual interference.
Link quality and throughput will both considerably increase as interference declines.

• Ease of maintenance and expansion: The centralized architecture of C-RAN makes it
naturally scalable, which makes updating and maintaining cellular networks easier. As an
illustration, a network operator needs to split the cell for increased capacity or add new RRHs
connecting to the cloud to cover more service areas. Additionally, C-RAN makes it easier to
install virtual resources in the cloud as needed.

 • Adaptability to non-uniform traffic: There is a significant amount of tempo-spatial
variability in traffic in contemporary cellular networks. However, because BSs are designed
for peak usage, processing power is lost while the system is not in use. Based on the
instantaneous traffic demand, resources to the BSs can be distributed optimally, improving
the overall resource utilization rate. In C-RAN, baseband processing of numerous BSs is
performed in the centralized BBU pool.

•Wireless technology coexistence: C-RAN and its centralized BBU design can support
multiple wireless standards, effectively managed and utilized based on the user demands,
leveraging a fully heterogeneous wireless system.

• Spectral efficiency improvement and reduction in inter-channel interferences: 
Multiple cells can collaboratively and dynamically exchange resources through the
centralized BBU (i.e. RRUs). As a result, the resources can be effectively used to meet
service demand. The coordinated scheduling and processing will help to reduce inter-channel
interference.

 • Throughput improvement: C-RAN can facilitate dense RRU deployment schemes in
areas that require high throughput services.

 • Business Model Transformation: The C-RAN concept will generate more business
models, such as the BBU pool resource rental system, cellular system as a service, as well as
more freemium services.

6-5-2) C-RAN Drawbacks

Here we can find some of the main drawbacks in the deployment of cloud RAN [8]:

• Need for high fronthaul capacity: C-RAN architecture brings a significant overhead on the
optical fronthaul links between RRHs and the cloud, which can be as high as 50 times
compared to the backhaul requirements. Fronthaul link between BBUs and RRUs is required
to have high bandwidth capability with low delay and cost requirements. The fully
centralized approach is the most adopted structure in C-RAN, which require a considerable
communication overhead on fronthaul link. As a result, the high bandwidth requirement is
required at the fronthaul, which cannot be met by wireless communication. Optical fibre
communication systems can give the high bandwidth required to solve such a problem.

47



However, optical fibres usually come with the problem of very high cost, which most cellular
providers might not afford. Hence, a compromised solution between delay, bandwidth and
cost must be considered in such systems before they come to reality.

• BBU Cooperation: BBUs in the same pool must cooperate to support sharing users’ data,
scheduling and channel feedback collection. Such cooperation is not defined and introduces a
challenge in dealing with user privacy, high bandwidth and low latency communication
between such BBUs.

• Cell clustering: Optimal clustering of the cells and BBU pool assignability with minimal
overhead and maximum gain is still challenging. One BBU pool should achieve the
maximum number of send and receive channels while minimizing the fronthaul delay and
overhead. In addition, one BBU should support multiple distributed geographical locations,
such as offices in different states, to consolidate them into one BBU. Therefore, such
clustering and BBU assignment are still challenging to resolve in C-RAN systems.

•Virtualization Technique: Another issue with C-RAN is the distributed processing and
resource sharing that virtualization approaches encourage between several BBUs. It must be
real-time and dynamic for processing to support changing cell loads. Additionally, the
specifications for the clouds on which BBUs will be deployed will differ from those for IT
clouds already in use. As a result, cloud infrastructure needs to be modified to satisfy these
needs. Thus, virtualization is yet another significant issue impacting the actual adoption of
C-RAN at this time.

• Security: Protecting user privacy and trusted third parties from intrusion is a significant
concern for C-RAN. Due to its transmission and self-deploying characteristics, C-RAN will
face more severe security risks and trust issues than conventional wireless networks, such as
the primary user emulation attack (PUEA) and spectrum sensing data falsification (SSDF)
assault. Furthermore, resource sharing amongst BBUs makes it possible to violate user
privacy and access data presumed to be private, especially in such a distributed design.
Additionally, parties in C-RANs, including BBUs and RRUs, are taken for granted. Such
presumptions might not be true, particularly given the vast user base of these platforms. Such
a sizable, virtualized system is vulnerable to misbehaviour and threats from hacked users.
Consequently, classic cellular systems also have vulnerabilities. C-RAN would pose a new
security challenge that had not been considered or less complicated. As a result of the BBUs
of numerous BSs being bundled together in the cloud, C-RAN also carries a significant
single-point failure risk; in other words, if the cloud fails, the entire network will be
inoperable [8].

• Latency and Jitter between cloud and RRHs: There is a potential to increase latency in
some cases due to centralized signal processing.

• Complex BS operations: There is the risk of complexity in the BS operation due to
centralizing a more significant number of BBUs in a unique pool in C-RAN architecture.
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6-6) C-RAN Challenges and Open Issues

In this section, we mention some of the open issues and challenges of C-RAN deployment
[13]:

Edge Cache in C-RANs: Several technical challenges must be overcome when applying edge
cache to C-RANs. The edge cache approach is the first. In particular, care should be taken in
selecting the frequency of data updates. Although it uses more fronthaul resources, the
high-frequency update improves the QoE for UEs, whereas the low-frequency update does
the opposite. The edge cache technique is easier to implement when there is sufficient
information on data popularity, which is the primary aspect that should be considered for
the edge cache.

Data fetching strategy is the second problem. The data requested by UEs can now be found
in nearby edge devices thanks to the involvement of edge cache in C-RANs. An effective data
fetching strategy should be created to help determine where to retrieve the data and the
appropriate route if the data requested by a UE still needs to be cached in these devices. The
RRH association strategy is the final issue. For small cell networks, base station association
techniques have been developed that take edge cache into account. However, these
methods are created for the scenario in which a single UE can only be connected to a single
base station. While in C-RANs, a single UE is frequently supplied concurrently by several
RRHs. Therefore, an advanced RRH association technique that considers edge cache should
be used.

Big Data Mining in C-RANs: Big data in the context of mobile networks encompasses
subscriber level, cell level, core network level, and other level data. It can help the network
become more proactive. It is possible to use big data technology to extract intriguing
patterns or knowledge to improve the self-organizing capabilities in C-RANs due to the rapid
development of big data mining techniques and the powerful computing capability of the
BBU pool. For instance, by analyzing past content request data, it is possible to predict user
preferences for watching movies, enabling edge devices to store videos. However, there are
still a few technical difficulties with C-RAN's massive data mining. For instance, the fronthaul
will be heavily taxed for transmitting the substantial amount of data acquired by edge
devices. Additionally, computing sparse, ambiguous, and incomplete data is a significant
challenge that calls for advanced data mining methods.

Social-Aware D2D in C-RANs: D2D communication, which underlies cellular systems, has
been the subject of extensive investigation due to its superiority in enhancing SE13 and
EE14. To fully take advantage of D2D, it is essential to handle a variety of difficulties, including
peer identification, mode selection, resource allocation, and interference control. Recently,
some works have used social network features like social community and social connection
to address these issues. As a result, the social-aware D2D is proposed.

14 Energy Efficiency

13 Spectral Efficiency
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A significant amount of data capacity can be offloaded from fronthaul links for the C-RAN
using social-aware D2D, easing fronthaul restrictions and reducing transmission latency.
Social-aware D2D can typically be implemented with and without BS support in a cellular
network. Since RRHs are typically installed to provide high capacity in specific zones, the
socially aware D2D with a BS requires the BS to send control signalling, which is challenging
to implement in C-RANs. Therefore, in C-RANs, the socially aware D2D without a BS is
favoured. Additionally, choosing between C-RAN mode and D2D mode is crucial to achieving
excellent QoS. Additionally, when D2D communication uses the licenced band, there may be
significant interference between D2D users and RRH users and possible mutual interference
between D2D users. Therefore, it is essential to consider how to stop those interferences.

CR15 in C-RANs: The spectrum resource is getting scarce because of the constantly rising
capacity needs. On the other hand, a significant portion of the given spectrum is only
partially utilized because of sporadic usage. Utilizing cognitive radio (CR) technology, which
enables secondary users to share the spectrum with authorized users in an under or overlay
fashion, is a viable way to address the issue of spectrum shortage.

While a centralized BBU pool can increase SE for C-RANs, CR is suggested to raise the
spectrum utilization rate further. RRHs can interact with the radio environment and locate
temporally unused spectrum assigned to C-RANs thanks to their cognitive capability. The
operating bandwidth of RRHs can be significantly increased when combined with the CA
method, increasing data rates. While the difficulties primarily stem from the complexity and
expense of implementation. For instance, the complexity of the transceiver is relatively large
to achieve the spectrum sensing function.

Additionally, secondary users typically need to detect the radio spectrum to find the vacant
spectrum continuously. As a result, their transceivers must always be in the active state,
which results in them using almost the same amount of power as the transmit state. Future
research into the structure of CR usage in C-RANs is necessary to simplify implementation
and boost EE.

SDN with C-RANs: SDN decouples the control and data planes to make a centralized
controller and network programmability. Many advantages can be attained by implementing
SDN for C-RANs. The software-defined fronthaul suggested can provide a flexible mapping
between BBUs and RRHs for optimizing the network to traffic volume and user mobility. In
particular, to implement DAS16, reduce handoffs, and provide diversification benefits, many
RRHs are logically mapped to a BBU for a specific region with high mobility users. Two
controllers are defined: infrastructure manager and service manager, comparable to the SDN
in wired networks.

● Infrastructure manager: It is responsible for pooling hardware resources and offering
them as service slices to the service manager

● Service manager: It consumes service slices according to the requirement of a BBU
virtual instance.

16 Distributed Antenna Systems

15 Cognitive Radio
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By doing this, the BBU pool's hardware resources may be used more effectively, lowering the
price of additional hardware. For the implementation of SDN to C-RANs, there are still
specific fresh issues that need to be handled [13]:

1. If a single central controller controls the entire C-RAN, this controller's failure could
cause the entire C-RAN to crash.

2. As the placement significantly affects processing latency and other network
performance metrics, the controller placement should be improved, particularly in
situations with several controllers and the large-scale C-RAN.

3. Operators must deal with scalability concerns in C-RANs due to the SDN controller's
service capability limitations.

Physical Layer Security in C-RANs: Wireless channels are broadcasting by nature, making
the network open to numerous emerging assaults like an attack from eavesdroppers. Physical
layer security, which takes advantage of the physical properties of wireless channels to
achieve perfect secrecy against eavesdropping in an information-theoretic sense, has become
an attractive topic recently in this context. This is because encryption frequently requires
significant computational resources and communication overheads. It has been suggested that
opportunistic relaying can lower the cognitive communications system's secrecy outage floor.
Relay-security-reliability selection's trade-off significantly outperforms the standard straight
transmission. The C-RAN, one of the anticipated future wireless networks, ought to
guarantee communication security. RRHs can be utilized to boost security performance to
address this issue. A UE is often supplied by a cluster of RRHs in the downlink C-RANs, and
some RRHs can act as jammers to create artificial noise to obstruct eavesdroppers. The
choice of jammers from the available RRHs is one of the difficulties that could be faced [13].
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7 Chapter 7) Moving from Cloud RAN to Virtual and Open RAN

7-1) V-RAN Concept

V-RAN separates the software from the hardware by virtualizing Network Functions and
utilizing Software Defined Everything (SDx). Virtualization technologies like NFV or
containers are used to deploy CU and DU over an x86 server. This is comparable to running
software functions. Therefore, the only distinction between V-RAN and C-RAN is that
V-RAN employs Network Functions on the server platform, while C-RAN generally uses
proprietary hardware. In reality, V-RAN is a variety of C-RAN [14].

Many RRHs can be connected to a single BBU using the V-RAN technique (usually fibre
optics) using high-speed fronthaul. In contrast to a conventional base station (BS), where the
RRH and BBU are paired together, it isolates the two, enhancing network resource sharing.
Additionally, V-RAN can improve the wireless system's flexibility and scalability while
addressing several issues with legacy wireless systems, including interference and power
consumption. Networks can also become programmable, flexible, cost-effective, and
centrally managed thanks to V-RAN. Additionally, it makes it simpler to transition to newer
wireless technology generations while still maintaining existing technologies through
software and component separation

Because of V-RAN HW/SW decoupling flexibility, we can achieve scalability. As a result,
hardware costs and application agility may reduce. In addition, applications may be
upgraded or replaced entirely (which is not more manageable with traditional hardware).
Figure 25 presents the general design of a V-RAN network for option 1 (BBU pool) and
option 2 (BBU split into CU and DU units).
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Figure 25: V-RAN architecture [14]

7-2) V-RAN: Evolution of C-RAN

7-2-1) V-RAN Benefits

Virtualization techniques facilitate the construction of conceptually separated instances over

abstracted physical hardware, which may be shared dynamically, efficiently, and flexibly. The

fields of cloud computing and data storage have constantly been using virtualization. For the

actual deployments of the C-RAN idea, network virtualization represents a novel evolution

of virtualization. In contrast to C-RAN, the V-RAN design supports flexible control, low cost,

efficient resource consumption, and varied applications. It can also address many

fundamental problems associated with RAN deployment in the cloud [14].

The Virtual RAN, or V-RAN, strategy encourages the separation of hardware and software

operations. Massive machine access, mission criticality, tactile internet, and other future

services can all be made possible by the V-HW/SW RAN's decoupling, flexibility, scalability,

and inherent centralized nature. Based on the underlying traffic conditions, V-RAN uses the

wireless radio and BBU resources to be shared by several RRHs. This encourages increased

energy efficiency and lowers running the wireless system's operational and investment

expenses. Additionally, it promotes innovations and helps new companies enter the market

more affordably [14].

7-2-2) Virtualization Technologies

Virtualization and cloud infrastructure have already been thoroughly researched and
developed for IT applications. The V-RAN concept, however, places entirely new demands on
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the cloud infrastructure. For instance, two essential virtualization technologies that can be
used in V-RAN are container-based virtualization and hypervisor-based virtualization. Both
technologies use various virtualization, orchestration, and resource scaling techniques.
Numerous virtualization frameworks, including VMware, OpenStack, Kubernetes, Docker,
Hyper-V, etc., serve as examples of these principles. Most current ICT installations use the
OpenStack (virtualization based on hypervisors) or Docker (virtualization based on
container-based technology) frameworks. Several initiatives have recently aimed to develop
and integrate multi-functional orchestration engines, such as OMF, OSM, etc., into the
V-RAN environment. However, their current applicability could be more extensive and far
from commercial deployments due to instability, resource consumption or limited scope of
features [14].

7-3) Virtual RAN Towards Open RAN

The V-RAN is growing from the concept of C-RAN towards the concept of Open-RAN
(O-RAN), focusing on two essential pillars: openness and intelligence, to address the most
pressing issues. Open interfaces are essential to help smaller suppliers and operators quickly
roll out new services and allow operators to customize the network based on their own needs.
Additionally, openness makes multivendor V-RAN deployments possible, creating a more
vibrant and competitive market. Furthermore, while maintaining backward compatibility with
legacy systems, open-source software and hardware designs can speed up and improve
innovation and commercial implementation [15].
Future wireless systems such as 5G and beyond 5G will also become significantly more
complex due to network densification and more successful and demanding applications. As a
result, mobile network manufacturers and operators should be self-organizing. They ought to
be able to take advantage of cutting-edge innovations like machine learning (ML) and
artificial intelligence (AI) to automate network operations and cut expenses. The telco sector
has acknowledged the initiatives to provide an open virtualized RAN as the first significant
evolutionary step towards the 5G standard. The relationship and development of the C-RAN
concept and its offshoots, V-RAN and O-RAN, are shown in Figure 26.
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Figure 26: RAN evolution from D-RAN to O-RAN [14, 15]

The number of research and development activities that focus on the O- RAN concept is
constantly increasing under the umbrella of the O-RAN alliance that provides the necessary
framework for O-RAN commercial development and deployment. Three significant concepts
form the foundation of the O-RAN initiative:

● Set the industry standard for open, interoperable interfaces, RAN virtualization, and RAN
intelligence powered by big data.

● Specify APIs and interfaces, pushing standards to accept them where necessary and, when
necessary, investigating open source.

● Increase the use of commercial silicon and commonly available hardware while reducing
the use of proprietary hardware.

RAN Virtualization, Open Interfaces, White Box Hardware, and Open Source Software are a
few cutting-edge technologies that the O-RAN effort heavily utilizes. Three technologies are
upon these fundamental ideas. Their main traits are as follows [14]:

• Software Defined, AI-Enabled RAN Intelligent Controller: The O-RAN architecture
seeks to further the SDN idea of separating the control plane (CP) from the user plane (UP) in
RANs by promoting embedded intelligence. This strategy extends the CP/UP divide and
further improves the standard RRM functions with embedded intelligence by adding a RAN
Intelligent Controller (RIC). Decoupling offers the potential for increased UP standardization,
which is its principal advantage. As a result, the UP may use simple scaling and affordable
solutions. The second benefit provides increased efficiency and improved radio resource
management, which is the ability to use more advanced control functionality.
 
Then, advanced ML/AI technologies will be used with analytics and data-driven
methodologies to implement these control functionalities. O-RAN aspires to be the industry
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leader in creating RICs with AI capabilities. The O-RAN project creates specifications and
software reference designs, promotes operator proofs-of-concept and aids in operator field
tests. The O-RAN AI-enabled RIC support even the most complicated networks. These
networks are expected to have the inherent capability to provide a practical, optimized device
and radio resource management through closed-loop control [15].

• RAN Virtualization: RAN virtualization is one of the fundamental tenets of the O-RAN
architecture. The primary goal of O-RAN is to provide Network Function Virtualization
Infrastructure/Virtualized Infrastructure Manager (NFVI/VIM) specifications to improve
virtualization platforms in support of various splits throughout the protocol stack (i.e.
network slicing). For instance, a low layer split within the PHY, a high layer split between
PDCP and RLC, etc. To develop essential solutions like programmable hardware
accelerators, real-time processing, and lightweight virtualization technologies, the O-RAN
initiative also focuses on evaluating the advantages and effectiveness of pertinent
open-source virtualization communities (such as OPNFV, ONAP, Akraino, M-Cord,
OpenStack, etc.).

• Open Interfaces: The O-RAN architecture is built on critical interfaces between multiple
decoupled RAN components. Improved 3GPP interfaces for effective multi-vendor
interoperability are among them. O-RAN also proposes an open interface between the RIC
and V-RAN and an open fronthaul interface between the BBUs and RRHs.

 • White Box Hardware: O-RAN's reference designs call for high-performance, spectral,
and energy-efficient white-box base station hardware to fully benefit from the economies of
scale of an open computing platform strategy. The O-RAN reference systems contain specific
hardware and software architecture plans, support a decoupled approach, and make it easy to
create and deploy BBUs and RRHs.

 • Open Source Software: Most of the O-RAN architecture's parts, including the RIC,
protocol stack, virtualization platform, and others, are already available as open-source
solutions and will continue to be so through organizations like the Linux Foundation, OMF,
and others. In addition, to implement the 3GPP interface standards, the O-RAN open-source
software framework anticipates providing the reference design for the upcoming RIC-based
RRM.

8 Chapter 8) Open RAN

8-1) O-RAN Concept
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According to the preceding sections, next-generation wireless systems based on a variety of
heterogeneous technologies and frequency bands are increasing the complexity of cellular
networks. Massive MIMO, communications using millimetre waves and sub-terahertz
communications, network-based sensing, network slicing, and machine learning (ML)-based
digital signal processing are a few recent developments. The network's operators will
encounter increasing capital and operational costs. This happened due to continuously
improving and maintaining the infrastructure to keep up with new technological
advancements and client demands [16].

Solutions enabling the Radio Access Network are needed to manage and optimize these new
network infrastructures (RAN). This exposes data and analytics, as well as data-driven
automation, closed-loop control, and optimization [17–19]. However, the current methods
for cellular networking are far from flexible. These days, RAN components are
all-encompassing monolithic systems that implement every layer of the cellular protocol
stack. A small group of vendors offers them, and the operators classify them as "black
boxes." Using black-box solutions exclusively has led to the following:

● The RAN's low compatibility, with hardware whose operations cannot be adjusted to
serve a variety of installations and traffic profiles

● Limited network node coordination prevents cooperative optimization and management
of RAN components.

● Vendor lock-in, with limited options for operators to deploy and interface RAN
equipment from multiple vendors.

Real-time adaptation for optimal spectrum uses and optimized radio resource management
is challenging under these conditions [20]. To get beyond these restrictions, the Open RAN
has been recognized as the new paradigm for future RAN in many recent research and
standardization initiatives. To connect RAN nodes, the O-RAN Alliance is standardizing a
virtualization platform for the RAN and expanding the definition of 3GPP and eCPRI
interfaces [21]. The design, implementation, and functionality of the upcoming generations
of cellular networks will be fundamentally altered by the Open RAN paradigm and, more
specifically, O-RAN networks. They will enable, among other things, transformative
applications of ML for optimization and control of the RAN [20].

8-2) Open RAN Key Architectural Principles

The Open RAN vision is based on years of research on open and programmable networks. In
the past 15 years, these concepts have driven the Software-defined Networking (SDN)
revolution in wired networks, and more recently, they have begun to spread to wireless
networks. A standardized fronthaul interface, for instance, has been proposed by the
operator-led xRAN Forum, and open, standardized interfaces for integrating external
controllers in the RAN have also been proposed [20].

In parallel, as previously mentioned, the Cloud RAN (C-RAN) architecture has emerged as a

method for centralizing the majority of the RAN's baseband processing in virtualized cloud

data centres that are linked to remote radio units through high-speed fronthaul interfaces.

By utilizing centralized data and control routes, C-RAN enabled more advanced signal
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processing and load balancing techniques while lowering costs by multiplexing computer

resources. With the overarching objective of establishing an architecture and a set of

interfaces to actualize an Open RAN, these two initiatives came together in 2018 to form the

ORAN Alliance [22]. Overall, four guiding principles for the Open RAN architecture can be

identified. These include virtualization, open interfaces, intelligent, data-driven control via

RICs, and disaggregation.

8-2-1) Disaggregation

The O-RAN reference architecture's primary characteristics and functional modules include
the following (Figure 27):

● RIC non-Real Time (non-RT) layer
● RIC non-Real Time (near-RT) layer
● Multi-RAT Centralized Unit (CU) protocol stack and platform,
● A Central Unit (CU), a Distributed Unit (DU), and a Radio Unit (RU) make the gNB (called

O-CU, O-DU, and O-RU in O-RAN

The Control Plane (CP) and the User Plane (UP) are the following two logical divisions of the
CU (UP). This logical separation enables the deployment of various capabilities among
hardware platforms and network locations [16].

Figure 27: NG-RAN architecture with a CU-DU split deployment [16]
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The functional disaggregation paradigm provided by 3GPP for the NR is effectively adopted
and extended by RAN disaggregation, as shown in Figure 28. It divides base stations into
several functional pieces (gNBs).

Figure 28: Evolution of the traditional black-box base station architecture (left) toward a

virtualized gNB with a functional split [16]

CUs and DUs can be virtualized on white box servers at the edge (with hardware acceleration
for some physical layer functionalities). At the same time, the RUs are generally
implemented on Field Programmable Gate Arrays (FPGAs) and Application-specific
Integrated Circuits (ASICs) boards and deployed close to RF antennas.

The O-RAN Alliance has evaluated the different RU/DU split options proposed by the 3GPP,
with a specific interest in alternatives for physical layer split across the RU and the DU. The
7.2x split creates a balance between the RU's simplicity and the data speeds and latency
needed at the RU and DU interface. The RU is cheap and straightforward to deploy in split
7.2x17 because it executes FFT and cyclic prefix addition and removal operations. The
remaining functions of the physical layer and those of the Medium Access Control (MAC)
and Radio Link Control (RLC) levels are then handled by the DU.

The operations of these three layers are generally tightly synchronized, as the MAC layer
generates Transport Blocks (TBs) for the physical layer using data buffered at the RLC layer.
The higher layers of the 3GPP stack are implemented by the CU units (CP and UP). It
encompasses the Radio Resource Control (RRC) layer for controlling the connection's life
cycle; the Service Data Adaptation Protocol (SDAP) for controlling the QoS of traffic flows;
and the Packet Data Convergence Protocol (PDCP) for managing packet duplication,
reordering, and encryption for the air interface [16].

8-2-2) RAN Intelligent Controllers and Closed-Loop Control

The RICs, which introduce programmable elements that can conduct optimization
procedures with closed-loop control and coordinate the RAN, represent the second
breakthrough. The O-RAN vision includes two logical controllers with a centralized, abstract

17 Split 7.2x Minimize impact on transport bandwidth while maximizing virtualization in gNB CU and gNB DU.
Enable simple, low-cost RRU designs for wide adoption. Eliminate performance loss compared to integrated
solutions with ideal fronthaul.
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network view. The two RICs use AI and ML algorithms to process this data and develop
control rules and actions to be taken on the RAN [16].

This presents data-driven, closed-loop control that may automatically optimize various
processes, such as network and RAN slicing, load balancing, handovers, and scheduling
strategies. The O-RAN Alliance has developed specifications for a near-real-time RIC that
functions on a time scale between 10ms and 1s, drives control loops with RAN nodes, and a
non-real-time RIC that integrates with the network orchestrator and operates on a time
scale longer than 1s. (for real-time RIC, this time scale is less than 10ms). The disaggregated
O-RAN infrastructure's closed-loop control and the evaluated real-time enhancements for
future work are shown in an overview in Figure 29.

Figure 29: Closed-loop control enabled by the O-RAN architecture, and possible extensions, adapted
from. The control loops are represented by the dashed arrows over the architectural diagram [16].

Non-real-time RIC and Control Loop. The non-real-time RIC (non-RT RIC) is a
component of the SMO18, as illustrated in Figure 30, and complements the near-RT RIC for
intelligent RAN operation on a time scale more prominent than 1 second. It provides
value-added services to support and facilitate RAN optimization and operations, including
policy guidance, enrichment information, configuration management, and data analytics,
through the execution of third-party applications or rApps.

The non-RT RIC manages ML models for the near-RT RIC and provides guidance and
enrichment information using the non-real-time control loop. Additionally, the non-RT RIC
has the potential to affect SMO operations, giving it indirect control over all O-RAN
architectural components connected to the SMO. As a result, it can apply policies and make
decisions impacting thousands of devices. As depicted in Figure 29, this introduces
scalability difficulties that must be resolved by effective process and software design

Near-real-time RIC and Control Loop. The near-real-time RIC (Near-RT RIC) is deployed
at the network's edge and operates control loops with a periodicity between 10ms and 1s.
Figures 29 and 30 show that the near-RT RIC communicates with older O-RAN-compliant
LTE evolving Node Bases and DUs and CUs in the RAN (eNBs). Since the near-RT RIC

18 Service Management and Orchestration
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connects to several RAN nodes, the near-RT closed-loop control can impact the quality of
service for hundreds or thousands of pieces of user equipment (UE).

The near-RT RIC contains many apps that support custom logic, or "xApps," and the services
necessary to support their execution. A microservice known as a "xApp" can be used to
manage radio resources through defined interfaces and service models. It receives
information from the RAN (such as user, cell, or slice KPMs, as depicted in Figure 29),
calculates any necessary control actions, and then sends the results back. The near-RT RIC
has the following to support xApps [16]:

● A database that serves as a shared data layer for xApps and contains data on the RAN
(such as a list of linked RAN nodes, users, etc.);

● Messaging infrastructure enabling the subscription of RAN parts to xApps across all
platform components;

● Terminations for open interfaces and Application Programming Interfaces (APIs),
● Conflict resolution mechanisms to orchestrate control of the same RAN function by

multiple xApps.

Figure 30: O-RAN architecture, with components and interfaces from O-RAN and 3GPP.
O-RAN interfaces are drawn as solid lines, 3GPP ones as dashed lines [16]

Real-Time Control Loops. Figure 29 also shows loops that manage radio resources at the
level of RAN nodes in the real-time domain, i.e., below 10ms, or even below 1ms, for device
management and optimization. Real-time control commonly uses scheduling, beam
management, and feedback-less physical layer parameter detection (e.g., modulation and
coding scheme, interference recognition). Although these loops are separate from the
present O-RAN design and only have a small scale in terms of the number of devices they
may optimize, we cannot observe a variety of machine-learning methods in these control
loops.
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8-2-3) Virtualization

The third principle of the O-RAN architecture is the introduction of additional components
for the management and optimization of the network infrastructure and operations,
spanning from edge systems to virtualization platforms. In [21], it is stated that the O-RAN
architecture depicted in Figure 30 may be implemented on the hybrid cloud computing
platform, O-Cloud. The O-Cloud is specifically a collection of computing assets and
virtualization technology that are consolidated in a single or several physical data centres.
This platform specializes in the virtualization paradigm for O-RAN by combining physical
nodes, software components (such as the operating system, virtual machine hypervisors,
etc.), management and orchestration features, and software components. It permits:

• Decoupling between hardware and software components;
• Standardization of the hardware capabilities for the O-RAN infrastructure;
• Sharing of the hardware among different tenants,
• Automated deployment and instantiation of RAN functionalities.

The O-RAN Alliance Working Group (WG) 6 is also creating common APIs for dedicated
hardware-based logical processors and the O-RAN software infrastructure, such as channel
coding, decoding, and Forward Error Correction, under the name Acceleration Abstraction
Layers (AALs) (FEC). These efforts also translate into faster, virtualized RAN implementations
on commercial hardware that can serve 3GPP NR use cases, such as flows for Ultra-Reliable
and Low Latency Communications (URLLC) (e.g., the NVIDIA Aerial platform, NEC Nuberu
[23], and [24] from Intel). In addition, WG 7 is defining the requirements for white box
hardware to implement an item of equipment that complies with O-RAN, such as indoor
picocells, outdoor microcells, and macrocells (all operating at sub-6 GHz and mmWaves),
integrated access and backhaul nodes, and fronthaul gateways.

These cover architectural components from Figure 28, such as the RAN nodes (CU, DU, and
RU) and fronthaul interface enablers. The specifications define the hardware properties of
the nodes (such as accelerators, computation, and connection) and the functional
parameters relevant to the scenarios of interest (such as frequency bands, bandwidth,
inter-site distance, and MIMO configurations). It is anticipated that the virtualization of the
O-RAN computer parts and the RAN components will result in power consumption
reductions and optimization for the RAN. With virtualization, it is simple and dynamic to
scale up or down the computing resources needed to satisfy user requirements, restricting
the power consumption to the necessary network functions. In this way, the base stations
and RF components—which often account for most of the power consumption in cellular
networks—can also benefit from more precise and dynamic sleep cycles thanks to the
closed-loop control capabilities discussed above and the virtualization in the RAN.

8-2-4) Open RAN Interfaces

Lastly, the O-RAN Alliance has unveiled technical standards that outline open interfaces
connecting various O-RAN architecture components. Figure 30 lists the 3GPP specifications'
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intra-RAN interfaces and the new, open interfaces that O-RAN defines. However, the O-RAN
Open Fronthaul between the DU and the RU performs the gNB disaggregated architecture,
which is only partially enabled by the latter. The O-RAN interfaces assist in overcoming the
old RAN black box approach by exposing data analytics and telemetry to the RICs and
enabling various control and automation operations. Without O-RAN, Radio resource
management and virtual/physical network function optimization would be closed and rigid
without O-RAN. It means that operators would have a different level of access to the
hardware in their RAN, or it would be carried out using a specialized, fragmented method
[16].

It is crucial to standardize these interfaces to break the vendor lock-in in the RAN. For
example, this will allow a near-RT RIC from one vendor to communicate with base stations
from a different vendor or enable the interoperability of CUs, DUs, and RUs from various
manufacturers. Additionally, this encourages innovation, market competition, and quick
updates and makes it simpler to build and implement new software components in the RAN
ecosystem [20]. The E2 interface, one of the O-RAN-specific interfaces, links the RAN nodes
and the near-RT RIC. Through the streaming of telemetry from the RAN and the feedback
with control from the near-RT RIC, E2 makes it possible for the near-real-time loops to
function, as depicted in Figure 29.
The near-RT RIC is linked to the non-RT RIC Through the A1 interface, enabling the
deployment of policy, guidance, and intelligent models in the near-RT RIC and a
nonreal-time control loop. The O1 interface, which connects to every other RAN component
for management and orchestration of network activities, is also terminated by the non-RT
RIC. Finally, through the O2 interface, the non-RT RIC and SMO connect to the O-RAN
O-Cloud through the O-RAN fronthaul interface, which links DUs and RUs. The O-RAN
Alliance has also defined a set of standardized tests to promote interoperability across
different interface implementations, with an initial focus on the fronthaul interface and E2.
The O-RAN architecture described in Figure 30 can be deployed by selecting different
network locations (cloud, edge, cell sites) for different equipment with multiple
configurations [16].

8-3) AI/ML Workflows in Open RAN

The AI/ML workflow is being standardized by O-RAN WG2 (Working Group 2), with its
specifications described in [22]. However, only some procedures, features and functionalities
have been finalized, with some left for further studies. This workflow is composed of six
main steps [16]:

● Data Collection and Processing
● Data Training
● Data Validation and Publishing
● Deployment
● AI/ML Execution and Inference
● Continuous Operations

 In the following, we will outline the steps involved in the AI/ML lifecycle within O-RAN
systems for explanation and clarity. We use the scenario where a network operator wants to
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create, train, and deploy a xApp that manages RAN slicing policies by modifying them
almost instantly in response to traffic demand and network strain. In the following chapter,
we will approach and implement this service classification issue in the 5G network, using
various machine learning methods to arrive at a good prediction. Each base station in this
chapter's example hosts three slices: An Enhanced Mobile Broadband (eMBB) slice for
high-throughput traffic (like file transfers and video streaming) and a Massive Machine-Type
Communications (mMTC) slice for traffic from things like tiny sensors and Internet of
Things (IoT) devices. The URLLC slice is for ultralow latency services. The eMBB slice is
for high-throughput traffic (like file transfers and video streaming). By allocating the
available PRBs to each slice to satisfy each slice's various performance needs, the xApp
controls RAN slicing policies.

8-3-1) Data Collection and Processing

Data is first gathered across the O1, A1, and E2 interfaces and then stored in sizable datasets

(such as data lakes or centralized repositories) from which it may be requested. The O-RAN

specifications consider a preliminary data pre-processing (or preparation) step because

different AI/ML solutions may use different KPI types. These KPIs were gathered over

different periods and with different granularity. For example, we can mention throughput,

latency, Modulation and Coding Scheme (MCS), Channel Quality Information (CQI), delay

and jitter. In this step, data is shaped and formatted to match the input size of the particular

AI/ML model under consideration for training and online inference.

Data and performance metrics related to the xApp regulating RAN slicing policies are

collected over the O1 interface in this step (i.e., training phase). This step is done to create a

training dataset used in the following step. For instance, the data collected must show how

many PRBs are required to transmit the data requested by each user of the three slices, as

well as throughput (eMBB), number of transmitted packets (mMTC), and latency (URLLC)

measurements. This is necessary so that the xApp can adjust RAN slicing policies for the

various slices according to the current data demand and required minimum performance

levels. Data processing can use well-known ML techniques like normalization, scaling, and

autoencoders [16].

8-3-2) Data Training

The O-RAN specifications do not allow the deployment of any untrained data-driven
solution. All the AI/ML models are required to be trained offline to ensure the reliability of
the intelligence and avoid inaccurate predictions, classifications and actions that might result
in outages or inefficiencies in the network. Online training is still supported by O-RAN as
long as it is only used to enhance and update a previously trained model offline. Therefore,
this does not rule it out. For instance, the operator can train several Deep Reinforcement
Learning (DRL) agents and decision trees, experiment with various combinations of input
formats (such as the precise subset of KPIs and their quantity), and examine various designs
(e.g., depth and width of a DRL agent, number of neurons, among others). This process aims
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to train many ML algorithms and determine which ones are best suited to complete a given
task.

8-3-3) Data Validation and Publishing

Models go through a validation step after they are trained to ensure that they are reliable,
robust, and capable of handling classification, prediction, or control tasks. (The situation
covered in the following chapter involves a classification problem.) The models are published
and kept in an AI/ML catalogue on the SMO/non-RT RIC if the validation is successful and
they are determined to be ready for deployment. Otherwise, until the validation tests are
successful, they must go through extra re-design and retraining steps.

After training is complete, the various AI algorithms are evaluated against various validation
datasets, including data that has never been seen before, to determine which models are
the most successful at controlling RAN slicing strategies. For instance, a typical validation
test looks at the performance of several AI solutions under various traffic patterns and
demands, user numbers and distribution, bandwidth availability, and operational
frequencies. The operator can leverage the AI solution that is most appropriate for a
particular deployment. Using this procedure to identify AI solutions, we can provide side
information on the ideal network conditions (such as network load, mobility pattern, and
deployment size) under which the specific AI solution delivers the best performance [16].

8-3-4) Deployment

Models kept in the AI/ML catalogue can be downloaded, deployed, and executed using
either the image-based or the file-based deployment method. The model is deployed over
the O1 interface in both scenarios, and the node that runs the model is referred to as the
inference host. In the image-based deployment, the AI/ML model runs as a containerized
image inside an O-RAN application (such as xApps and rApps), which is installed at the
O-RAN nodes and used to make an online inference. These nodes are currently restricted to
RICs, and further research will be done on AI execution at CUs and DUs [16].

The file-based deployment considers the scenario in which the AI/ML model is downloaded
as a standalone file that runs in an inference environment—outside the ORAN application
domain and transmits the model's inference output to one or more O-RAN applications. As
an illustration, the operator will choose the pre-trained AI-based RAN slicing models in our
scenario from the AI/ML catalogue and deploy them as xApps that will be run in the near-RT
RIC [16].

8-3-5) AI/ML Execution and Inference

After being placed on the inference host, models are provided with data to carry out various
online inference tasks. These involve managing and controlling operations, determining
policies at both RICs (sent across the A1 and E2 interfaces), and performing classification and
prediction tasks (over the O1 and E2 interfaces, respectively). The xApp is fed with KPIs (such
as requested PRBs, latency, and throughput measurements) collected over the E2 interface
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and computes control actions that are used to pilot the DU and assign the available PRBs to
the different slices in near-RT. This is done by executing the operations after the xApp has
been deployed on the near-RT-RIC [16].

8-3-6) Continuous Operations

Monitoring and analyzing the intelligence deployed across the network is a crucial part of
the AI/ML workflow. It is essential to confirm that the inference outputs of AI/ML models
are reliable and correct and do not adversely impact the network's performance. Models
that perform poorly in the real world can be improved and retrained through continuous
operations. Example: In our scenario, the operator can continuously check the RAN slicing
xApp's performance and, if any anomalies or inefficiencies are found, can choose to retrain
the AI/ML model built within the xApp using new data gathered through the O1 and E2
interfaces [16].

66



9 Chapter 9) Machine Learning Algorithms

9-1) Introduction

The science (art) of programming computers to learn from data is known as
machine learning. Our spam filter, for instance, is a machine learning programme
that can be taught to identify spam based on examples of spam emails (such as
those reported by users) and examples of regular (sometimes known as "ham")
emails. The training set refers to the examples the system utilizes to learn. The term
"training instance" refers to each training example (or sample). The job T in this
situation is to mark new emails as spam. Experience E is the training data, and the
performance measure P needs to be determined; one option is to utilize the
percentage of successfully classified emails. Accuracy is a specific performance
metric that is frequently employed in classification jobs. Figure 31 shows a
machine-learning approach [25].

Figure 31: Machine Learning Approach [25]

Machine Learning is great for [25]:

● Simplifying the code and performing better for issues where current solutions require a
lot of manual tweaking or lengthy lists of rules.

● Complex issues for which traditional methods offer no viable solutions can be solved
using the best machine-learning techniques.

● Adapting to new data in fluctuating environments.
● Gaining knowledge about complicated issues and vast amounts of data.

9-2) Types of Machine Learning Algorithms
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Machine learning algorithms are classified based on the amount and type of supervision that
algorithm gets during training. There are four categories based on this criterion [25]:

● Supervised Learning
● Unsupervised Learning
● Semi-supervised Learning
● Reinforcement Learning

Because in this project, we will use supervised learning algorithms in 5G classification, we
focus on this algorithm in the rest of this chapter.

9-2-1) Supervised Learning Algorithms

Machine Learning systems can be classified according to the amount and type of supervision
they get during training. There are four major categories: supervised learning, unsupervised
learning, semi-supervised learning, and Reinforcement Learning [25].

In supervised learning, the training data we feed the algorithm includes the desired
solutions, called labels (Figure 32).

Figure 32: A labelled training set for supervised learning (e.g., spam classification) [25]

We have two typical kinds of supervised learning:

● Classification algorithms
● Regression Algorithms
 

● Classification Algorithm: An excellent example is the spam filter, which must learn
how to categorize new emails after being taught several instances of emails along
with their classification (spam or ham). (Label: Ham or Spam)

● Regression Algorithm: It predicts a target numeric value, such as the price of a car
and the benefit of selling a particular product. The algorithm performs this prediction
given a set of features (mileage, age, brand, etc.) called predictors. This sort of task is
called regression. To train the system, we need to give it many examples of cars,
including their predictors (mileage, age, brand) and labels (prices).

 
So, we can introduce marching learning terminology as follows:
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Attribute: Data type (Mileage)
Feature (Predictor): An attribute with its value (For example, Mileage: 15000)
Label: Output (Car price or Spam/Ham)

Here it has mentioned some well-known types of supervised learning algorithms:

● K-Nearest Neighbors
● Linear Regression
● Logistic Regression
● Support Vector Machines (SVMs)
● Decision Trees and Random Forests
● Neural Networks

9-3) Main Challenges of Machine Learning

In short, since our main task is to select a learning algorithm and train it on some data, the
two things that can go wrong are “bad algorithm” and “bad data.”. Therefore, this section
will review some of the main challenges in data and machine learning [25].

9-3-1) Bad Data

We can mention bad data for the training step in machine learning into four categories [25]:

● Insufficient Quantity of Training Data
● Non-representative Training Data
● Poor-Quality Data
● Irrelevant Features

● Insufficient Quantity of Training Data:
Most machine learning algorithms require a large amount of data to operate correctly. We
usually need thousands of instances, even for elementary issues. Millions of examples may be
required for complicated problems like voice or image recognition (unless you can reuse
parts of an existing model).
 
● Non-representative Training Data
Our training data must accurately reflect the new cases we wish to generalize to achieve good
generalization. Whether we employ model-based learning or instance-based learning, this is
true.
 
● Poor-Quality Data
Our system is less likely to function effectively if our training data contains many errors,
outliers, and noise (for instance, due to low-quality measurements). Outliers are those data
points significantly different from the rest of the dataset. They are often abnormal
observations that skew the data distribution and arise due to inconsistent data entry or
erroneous observations (Figure 33)
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Figure 33: Outliers

It will be more difficult for the system to identify the underlying patterns. Spending time
cleaning the training data is frequently well worth the effort. Most data scientists devote a
sizable portion of their time to doing just that. For instance:

• If some instances are apparent outliers, it can be helpful to ignore them or try to correct
the mistakes personally.
• If a few instances lack one or more features (for example, 5% of our clients failed to
provide their age), we must determine whether to discard the attribute entirely, account for
the missing values, train one model with the feature and another without it, etc.

● Irrelevant Features
Our system can only learn if the training data has an appropriate balance of valuable and
irrelevant features. Finding a solid set of features to train on is essential to the success of a
machine learning project. This procedure, known as feature engineering and includes the
following:

• Feature selection: choosing from among already-existing features which ones will be most
valuable for training.
• Feature extraction: combining the already-existing features to create a more beneficial
one.

9-3-2) Bad Algorithm

We can mention bad algorithms for training step in machine learning into two categories
[25]:

● Over-fitting the Training Data
● Under-fitting the Training Data

● Over-fitting the Training Data
Over-fitting occurs when the model could be more complex in comparison to the volume
and granularity of the training data. There are a variety of potential remedies, including the
following:

• Choose a model with fewer parameters to reduce the number of attributes in the training
data
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• Increase the size of training data.
• Decrease the noise of training data noise (e.g., fix data errors and remove outliers)
• Regularization: Regularization constrains a model to make it more straightforward and less
prone to overfitting.

A hyperparameter can regulate how much regularisation is used during learning. This
parameter must be established before training and remains constant during the training. The
learning algorithm itself does not impact it. We will not face overfitting for large values of
hyperparameters, but it will be less likely to find a good solution. In the proposed machine
learning algorithm in the next chapter, we will deal with setting hyperparameters before
starting the data training.

● Under-fitting the Training Data
The reverse of overfitting is under-fitting, which happens when the model is too
straightforward to understand the underlying structure of the data. For instance, a linear life
satisfaction model is prone to under-fitting since reality is inevitably more complex than the
model, leading to unreliable forecasts even on training data.

● Under-fitting solutions:
Choosing a more robust model with more variables.
Enhancing the learning algorithm's features (feature engineering);
Reducing the constraints on the model (e.g., reducing the regularization hyperparameter)

9-4) Testing and Validating of Data

Like any machine learning algorithm, we must divide our data into two sets (training and
testing). In the next chapter, we will use hyperparameter tuning and cross-validation for data
mining. These concepts will be described in more detail in this part before the
implementation phase [25].

A model can only be tested on new cases to determine how effectively it generalizes to new
situations. Putting a model into production and keeping an eye on how it does is one
method to achieve that. This is effective, but there are better ideas than this if the model is
good. The training and testing sets should be separated into two sets as a preferable
alternative. These titles suggest that the training set is used to train the model while the test
set is used to evaluate it. By assessing the model on the test set, we may estimate the
generalization error (also known as out-of-sample error). This value informs us how well the
model functions in hypothetical situations. It indicates that the model is overfitting the
training set if the generalization error is significant while the training error is low (i.e., the
model makes a few mistakes on the training set). Typically, 80% of the data are used for
training, and the remaining 20% are kept for testing.

9-5) Hyperparameter Tuning and Model Selection

Using a test set, we can quickly evaluate a model. However, how would we choose between
linear and polynomial models? One choice is to teach both and assess their generalization
errors using the test set. The linear model generalizes more effectively, but we still want to
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use regularisation to prevent overfitting. How do we determine the regularisation
hyperparameter's value precisely? One possibility is to use 100 distinct values for this
hyperparameter to train 100 different models. Assuming we discover the optimal
hyperparameter value that results in a model with the slightest generalization error, let us
say it is 5%. We put this model into operation, but it could perform better and generate 15%
more mistakes than anticipated. What happened just now? The issue is that we modified the
model and hyperparameters to build the best model for that specific. Despite many
assessments of the generalization error on the test set, this modification was done. This
indicates that the model's performance with new data is unlikely to be as good [25].

Holdout validation is a popular approach to solving this issue. We withhold a portion of the
training data to compare various candidate models and choose the best one. The validation
set is called the development set or the dev set. The reduced training set (i.e., the whole
training set minus the validation set) is used to train multiple models with different
hyperparameters, and the model that performs the best on the validation set is chosen. The
best model is trained on the entire training set (including the validation set) following this
holdout validation approach, which yields the final model. We assess this final model on the
test set to determine the generalization error. In most cases, this solution is very effective.
The model evaluations, however, will be imprecise if the validation set is larger; we can
choose a suboptimal model.

The remaining training set will be considerably less than the entire training set if the
validation set, on the other hand, is extensive. Why does this matter? Comparing candidate
models learned on a significantly smaller training set is not optimal because the final model
will be trained on the entire training set. It would be comparable to picking the fastest
sprinter to run a marathon. Repeated cross-validation utilizing multiple small validation sets
can help overcome this issue. After being trained on the remaining data, each model is
evaluated once for each validation set. We obtain a far more precise assessment of a
model's performance by averaging all of its evaluations. However, there is a drawback: the
training time is multiplied by the number of validations sets [12].

9-6) Cross-Validation

Cross-validation is a crucial tool for data scientists. It helps create machine learning models
that are more accurate and evaluate how well they perform on a different test dataset.
Cross-validation is a common technique for evaluating the predictive abilities (or skills) of
various models and selecting the best one since it is simple to comprehend and put into
practice. It helps when limited data is available and is an excellent approach to seeing how a
predictive model performs in real-world situations [26].

In cross-validation (CV), a specific sample from a dataset on which the model hasn't been
trained is set aside. Later, this sample is used to test the model and assess it. This technique
prevents overfitting in models, mainly when data is lacking. It is frequently employed when
the model's aim is prediction and is also known as rotation estimation or out-of-sample
testing. Another application of cross-validation is to adjust a machine-learning model's
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hyperparameters. This process is known as randomized grid search cross-validation. We will
use a method in the following chapter on the suggested machine learning algorithms.

Types of cross-validation

Cross-validation methods can be broadly classified into exhaustive and non-exhaustive
methods. Exhaustive cross-validation methods aim to examine every possible option to split
the initial data sample into a training and a testing set, as the name suggests. Non-exhaustive
approaches, on the other hand, only compute some possible ways to divide the original data
into training and assessment sets. The five most popular cross-validation methods are listed
below. Since we will use the K-fold cross-validation approach in the next chapter, it is
described here in more detail [26].

1. Holdout method
2. K-fold cross-validation
3. Stratified k-fold cross-validation
4. Leave-p-out cross-validation
5. Leave-one-out cross-validation

K-fold cross-validation

The holdout approach has been improved with the k-fold cross-validation method. Because
the model's score is independent of how the training and testing datasets are chosen, it is
more stable. The holdout method is applied k times to each dataset split in this
non-exhaustive cross-validation strategy. For example, if K is two, there will be two
equal-sized subgroups. In the initial iteration, the model is trained on one subsample and
validated on the other. The model is evaluated on the additional subset and trained on the
subset that served as its initial validation. This technique is referred to as 2-fold
cross-validation.

Similarly, the method is known as the K-fold cross-validation method and requires K subsets
and K iterations. Moreover, K's value is chosen at random. Typically, K is set to be equal to
10. The same is advised if we need help deciding on a value. The initial step in the K-fold
cross-validation technique is randomly dividing the original dataset into K folds or subsets.
The model is trained on each iteration's K-1 subsets of the total dataset. The model is then
tested on the Kth subset to see how well it performs [12].

This process is repeated until the k-folds have served as the evaluation set. The
cross-validation accuracy is the result of averaging the findings from each iteration. As a
performance statistic, cross-validation accuracy is used to evaluate the effectiveness of
various models. Since every data point from the original dataset will present in both the
training and testing sets, the K-fold cross-validation technique typically results in less biased
models. This approach is ideal when we only have a small amount of data. Nevertheless,
since the algorithm must be done K times from scratch, this procedure could take some time.
Additionally, it takes K-1 times as much computing as the holdout technique [12].
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10 Chapter 10) Implementation of Proposed ML Algorithm in O-RAN

10-1) 5G network slicing and service classification

There are situations in 5G with such divergent requirements where it is necessary to use the
same network functions (NFs) but in various placements to meet requirements like those for
latency, for example. There are also instances where certain NFs are required for one use
case but not another. This might be accomplished through network slicing using a single
physical infrastructure, allowing the functionality to be placed where and when needed
based on the use case and application. As a result, this idea enables the customization of a
dedicated virtual network to meet a particular demand [28].

10-2) 5G network slicing in Cloud RAN

A 5G idea called "network slicing" involves leveraging a single physical infrastructure to
support numerous logical networks through virtualization. These networks can satisfy various
demands or those that are specified for various tenants, such as MNOs who wish to offer their
services. A network slice is a logical network made up of a collection of network functions
(NFs) implemented on a shared physical infrastructure, enabling communication services for
a specific use case. These use cases could refer to a variety of applications with various
specifications, such as V2X (Vehicular-to-Anything), IoT (Internet of Things), or MBB
(Mobile Broadband). The exact use case for the same operator but for various objectives,
such as private networks or separate services of the same user type but for different operators,
could also be meant by this.
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Figure 34: Network slicing concept in Cloud-RAN [28]

Figure 34 shows an example of a single infrastructure with cloud computing platforms at
various locations along with the cell site. A core cloud is a hub that houses a lot of computing
power for an operator, generally a local data centre. Edge clouds are situated close to the
network edge to guarantee cloud computing resources at a remote location and reduce data
processing delay. As virtual network instances are made up of various functional components
to fulfil various requirements, three different slices are offered.

10-3) 5G Network Slicing in Open RAN

O-RAN could be used to realize many parts of the network, notably RAN slicing, because of
its native virtualization and embedded intelligence. However, traditionally implementing
network slicing is significantly more challenging and significantly restricted. As a result,
Network Slicing is one of the main applications for O-RAN. O-RAN alliance discussions
cover resource management inside a slice and resource optimization between slices. One of
the main issues is keeping resources used by one slice separate from those used by others.
Another subject is the proper scaling of resources to ensure SLA inside a specific slice. In
this study, we present a novel model that outperforms network slicing using machine learning
methods in the RIC block of the Open RAN [29].

A sample RAN slicing deployment of O-RAN network functions based on the selected initial
deployment option is shown in Figure 35, with some of the network functions shared between
RAN slice subnets (such as O-CU-CP, O-DU, O-RU) and some network functions dedicated
to a particular RAN slice subnet (such as O-CU-UP).
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Figure 35: Network slicing concept in Open-RAN [29]

10-4) O-RAN Slicing Use Cases

There are three essential use cases for Network Slicing in the new generation of RAN
networks, and in this section, we just mentioned the title of three important cases. AI/ML is
used in RAN Slice SLA Assurance and Resource Allocation Optimization cases [29].

● RAN Slice SLA19 Assurance
● Multi-vendor Slices
● NSSI20 Resource Allocation Optimization

10-5) Proposed 5G Network Slicer and Service Classifier

This section will address two issues (SST21) in 5G RAN networks that are crucial for
satisfying user QoS and QoE and intelligent resource allocation. This classification uses cases
in RAN Slice SLA Assurance and NSSI Resource Allocation Optimization.
 
● Service Classification

Ultra-High Definition (UHD) Video Streaming (UHD)
Immerse Experience (IE)
Smart Grid (SG)
Intelligent Transport Systems (ITS)
Voice over 5G (VO)
E-Health (EH)
Connected Vehicles (CV)
Industry Automation (IA)
Video Surveillance (VS)

 
● Network Slicing

21 Slice/Service Type

20 Network Slice Subnet Instance

19 Service Level Agreement
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eMBB
uRLLC
mMTC

 
We can provide a mapping with services and slices in 5G networks according to table 2. It is
necessary to point out a brief description of Vo5G. Since 5G networks are designed to be
standalone, i.e. work without relying on legacy networks (e.g. 4G LTE), they need to
continue offering real-time services like voice calls and messaging that legacy networks
already deliver. VoNR or Vo5G is the technology in 5G that allows them to continue offering
voice, messaging and potentially other real-time services without any dependency on legacy
networks. The delivery of voice calls and text messages is one of many use cases for 5G
networks. However, due to persisting low amounts of latency for call establishment, we put it
in the slice of uRLLC.

Table 2: 5G Service and Slice mapping

5G Service 5G Slice

Ultra-High Definition (UHD) Video Streaming (UHD) eMBB

Immerse Experience (IE) eMBB

Smart Grid (SG)
mMTC

Intelligent Transport Systems (ITS) uRLLC

Voice over 5G (VO) uRLLC

E-Health (EH) uRLLC

Connected Vehicles (CV)
mMTC

Industry Automation (IA) uRLLC

Video Surveillance (VS) uRLLC

A new approach to categorizing 5G services using ML has been developed by the Network
Machine Learning Research Group (NMLRG). [30]. Results from using their models to
categorize 5G services are presented in some publications released by the NMLRG. When
doing system classification, they concentrated on network traffic-related KPIs as the primary
considerations. The authors compared it using SL methodologies and concluded that Decision
Trees and Random Forests are the best solutions for this issue. KQIs represent a change from
conventional network-based performance parameters (KPIs) to an arbitrary quality-based
metric known as QoE that the end-user sees. KQIs were not promoted or used for a while
after they were defined [6]. Most studies on service classification have focused on KPI
requirements, and none considered the KQI parameters as elements for the classification of
5G services. When KQIs are included, the ML algorithm becomes even more complicated.
However, KQI offers a framework that can objectively reflect service performance and
quality from an E2E perspective. These indicators can be obtained through direct testing and
statistical analysis of the network [31].

Here we have simulated different supervised learning algorithms to address these two
classifying issues. The algorithms are trained using a database containing 5G RAN KPIs plus
KQIs. All learning and evaluation are done in the block of RIC of Open RAN, and the results
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can be sent to different telecommunication operators through APIs. AI/ML training models
can be deployed in Non-RT and Near-RT RICs blocks (see Figure 36). Because non-real-time
RIC, integrates with the network orchestrator and operates on a time scale longer than 1s, and
a near-real-time RIC, drives control loops with RAN nodes with a time scale between 10ms
and 1s. This timing scale is enough to have time for training and fit the machine learning
model with the dataset. Future research and proposals may investigate the use of AI/ML
models in RT RIC which we have fewer timing scales and closed-loop control times between
1ms and 10ms [31].

Figure 36: Supervised learning model training and actor locations [32]

We suggest enhancing the classification (identification) of the services while also considering
KQI characteristics and KPI. We predicted that adding KQIs to the classification of 5G/B5G
services will enhance QoS and QoE while also increasing the accuracy of SLA determination
and compliance. Service Level Objectives are the specifications for establishing SLAs in 5G
based on the services offered and the provider's infrastructure (SLOs). It is essential to
consider KPIs and KQIs because the QoS, which serves as the foundation for determining the
SLA, depends on the network, the applications, and other factors like user experience (QoE)
[7]. There are two bold improvements that we are presenting at the end. The first shows that
adding KQI to the KPI will improve accuracy and other evaluation factors, which we shall
discuss later. Second, we will provide a brand-new random and grid search technique for
hyperparameter tuning that will significantly enhance the Random Forest method for
forecasting the slices and services for the 5G network.
10-6) Proposed block diagram for intelligent 5G service and slice classification

Figure 37 shows our block-level diagram of the proposed system for classifying services in
5G networks. The planned scheme first operates offline until the predictive model has been
validated, and then it will learn to classify services effectively with few values of the error. In
the next phase, the system is implemented online by the network operators, and the predictive
model then classifies new services requested by the UEs. The proposed algorithms can be
deployed for SLA assurance and Resource Allocation in the new generation of RAN
networks (Figures 38 and 39). For a more straightforward graphical presentation, we name
the block diagram of Figure 37 ISSC (Intelligent Service and Slice Classifier).

The system's output corresponds to the requested service classification and is feedback to the
ML algorithm, making the predictive model more efficient. The proposed system can classify
services in next-generation networks. However, it is essential to clarify that this forms only
one part of a system that a network operator can use to offer services. Our system needs to
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interact to connect with the rest of the operator's system, and we must therefore consider two
options:

1. Interpreting the suggested system in the operator's language. This has the drawback of
necessitating reprogramming, which is not very practical, of the systems utilized by each
operator, including the cloud (due to future maintenance or update issues).

2. Incorporating a suitable Application Programming Interface (API) into the proposed
system to allow connection with the operator's system (accessible from a public or private
server). The required security must be offered to guarantee that this is only used in an
authorized manner.

The second option is preferable since 5G systems provide appropriate APIs to allow a trusted
third party to create, modify, delete and monitor instances of the network segments used by
the third party and to manage a set of devices or capabilities, including QoS functions.

Figure 37: Proposed block-level diagram for intelligent 5G service and slice classification
(ISSC)
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Figure 38: Use of AI/ML in SLA assurance for Open RAN systems [29]

Figure 39. Use of AI/ML in Optimized resource allocation for Open RAN systems [29]

10-7) 5G KPI and KQI datasets

The main limitation in this project and many other ML-based projects was the achievement of
a real dataset with 5G operating systems parameters. It was searched extensively for different
references and online valid repositories on the internet. The drawback is that we can rarely
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find a useful and labelled 5G dataset from telecommunication vendors dataset freely on the
internet. The reason might be the intense competition between different vendors and
operators. However, better access to the 5G and B5G databases might be found through the
Open RAN alliance. I decided to use one of the valuable datasets recently used for 5G service
classification [33]. The main idea behind our proposed algorithms comes from the
comprehensive research done in [33].

This dataset was created manually and by examining KPI and KQI parameters that were
taken from ITU standards publications and other European studies and analytical documents
created by telecom firms. The dataset was created by randomly fluctuating the threshold
values from the bibliography, resulting in different values for each KPI/KQI and each service.

The first block of the scheme shown in Figure 37 corresponds to the database we used to train
the ML algorithm to validate and verify the predictive model. The database was manually
generated using parameter values in Comma Separated Values (CSV) format that matched the
KPIs and KQIs of the chosen services. In this phase, documents from the International
Telecommunications Union (ITU), Huawei, the 5G Public-Private Partnership (5G-PPP),
NGMN, Speed, 5G America, and other suppliers were studied. These documents dealt with
standards and various project reports on 5G networks. Standard threshold values were the
chosen parameter values, which were changed at random until we got results sufficiently
close to their limiting limits. Table 3 shows the thresholds for extracted KPI/KQI parameters.

Table 3: Thresholds for the extracted KPI/KQI parameters [33]

ServiI
E2E Latency

(ms)
Jitter
(ms)

Bit
Rate

(Mbps)

Packet
Loss

Rate (%)

Peak
Data

Rate DL
(Gbps)

Peak Data
Rate UL
(Gbps)

Mobility
(km/h)

Service
Reliability

(%)

UHD Video
Streaming

Min: 4
Max: 20

5.84 10 Max: 1 20 10
Min: 0

Max: 500
Min: 95

Immersive
Experience

Min: 7
Max: 15

20 50 Max: 5 20 10
Min: 0

Max: 30
Min: 95

Smart Grid
Min: 5

Max: 50
1 1

Max:
0.0001

20 10
Min: 0
Max: 0

Min: 99.9

E-Health
Min: 1

Max: 10
10 16

Max:
0.0000000

1
0.3 0.3

Min: 0
Max: 120

Min:
99.9999

ITS
Min: 10

Max: 100
20 0.5 Max: 0.1 20 10

Min: 50
Max: 500

Min: 99.999

Vo5G
Min: 20

Max: 150
30 10 Max: 1 20 10

Min: 0
Max: 500

Min: 99.9

Connected
Vehicles

Min: 3
Max: 100

0.44 10 Max: 0.001 1 0.025
Min: 50

Max: 250
Min: 99.999

Industry
Automation

Min: 1
Max: 50

0.1 1
Max:

0.0000001
20 10

Min: 0
Max: 30

Min: 99.999

Video
Surveillanc

e

Min: 10
Max: 50

5 10 Max: 0.001 0.05 0.12
Min: 0

Max: 320
Min: 99
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The used database contains 165 rows and 14 columns. The first 13 columns include the KPI
and KQI values, while the last column matches the labels of the 5G services. The rows
represented the parameter values of the 5G services that needed to be classified. Table 4 is a
portion of the database where we can see specific KPI, KQI, and 5G service statistics. In this
project, we tackle a classification issue using various labels (5G services). We must assign a
label to separate the elements that need to be classified.

We are talking about the supervised learning scheme for the classification of 5G services
when applying ML to a set of labelled data, which uses both the characteristics of the services
and their labels to solve a classification problem. In the following section, we will give a
different block diagram and dataset that were utilized for slice classification. The 5G services
detected in the database must be labelled (represented by the variable y); the labels Y
correspond to the parameters or characteristics for the incoming services, which the variable
X. represents (see Figure 37). Before constructing the algorithm's predictive model, the data
is labelled, making it possible to determine which label (Y) corresponds to the parameters (X)
of each 5G service in the database (see Table 4).

Table 4: Fragment of ten entries of the database [33]

Ind
ex

Late
ncy
(ms)

Jitt
er
(m
s)

Bit
Rate
(Mb
ps)

Packe
t Loss
Rate
(%)

Peak
Data
Rate
DL

(Gbps)

Pea
k

Dat
a

Rat
e

UL
(Gb
ps)

Mobi
lity

(km/
h)

Reliab
ility
(%)

Service
Availab

ility
(%)

Survi
val

Time
(ms)

Experie
nced
Data
Rate
DL

(Mbps)

Experie
nced
Data
Rate
DL

(Gbps)

Experie
nced
Data
Rate
UL

(Mbps)

Experie
nced
Data
Rate
UL

(Gbps)

Interru
ption
Time
(ms)

Service

1 15 5 11 0.1 18 7 260 95 99 8 1000 1 500 0.5 1000
UHD_Vi
deo_Stre

aming

2 5 5.5 10 1 20 10 20 95 99.2 9 990 0.99 440 0.44 2000
UHD_Vi
deo_Stre

aming

3 8 10 50 3.8 15 7 15 97 99.9 10 1000 1 50 0.05 0.2
Immerse
_Experie

nce

4 40 1 0.5 1.00E
-05 18 9 0 99.92 99.999 10 5 0.005 8 0.008 0 Smart_G

rid

5 90 18 0.2 0.08 13 2 480 99.99
95

99.999
9 100 10 0.01 10 0.01 1000 ITS

6 130 5 8 0.9 14 6 400 99.94 95 100 50 0.05 25 0.025 0 Vo5G

7 10 19 32 4.7 13 5 26 95.6 99.92 8.9 900 0.9 40 0.04 0.1
Immerse
_Experie

nce

8 2 3 15 8.00E
-09 0.2 0.2 100 99.99

996 99 1 10 0.01 100 0.1 0 e_Health

9 5 0.5 10 0.000
75 0.8 0.02

4 80 99.99
92 99 1 50 0.05 25 0.025 0

Connect
ed_Vehic

les
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10-8) Proposed Machine Learning Algorithm and Predictive Model

The basis for our classification of services is that each service is represented by a set of
parameters (x) that are determined by the KPIs and KQIs that describe it. These parameters
must assign each label (y). Based on table 2, we will forecast the services, and the slice will
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then be mapped. As was already said, only one database contains all of the descriptive
information about the services that need to be classified; as a result, it must be split into two
datasets, one for training the algorithm and the other for predicting or validating its results.
Four additional variables are created when the database is split: Xtrain, Xtest, Ytrain, and
Ytest. The input values for the 5G services that were chosen to train the ML and Ytrain
algorithms with their respective output labels correspond with the training variable Xtrain
(Features). The input and output variables for the testing and validation stage of the
predictive model are represented by the other two variables, Xtest and Ytest. The training
phase involves passing training data to the ML algorithm to allow it to learn. The ML
algorithm develops a function based on the training data (Xtrain) that provides the correct
answer (Ytrain). Using Xtrain and Ytrain, the algorithm learns, and a function f(Xtrain)
= Ytrain is generated that: identifies patterns in the training data, allows the attributes of the
input data to be assigned to the target data (representing the answer to be predicted) and
generates a model that captures these patterns.
The next step is to use a machine learning method to create a function y = f(x) that can
predict the value associated with any input item x. (in the proposed system for classifying
services, these represent the KPIs and KQIs of 5G services). A set of parameters or
characteristics from the various services must be classified to train the machine learning
algorithm. Since the predictive model may now produce results for additional data after the
initial training, this training enables the assignment of new known input values (x) and new
unknown labels (y). This means that after the machine learning algorithm is trained, the
predictive model can predict or classify the required services (see Figure 37).

The result of using the Xtrain data to train the ML algorithm is a predictive model that can
classify 5G services. The Xtest data were not included in the training of the ML algorithm.
So, the predictive model cannot correctly classify services. Therefore, it is essential to
validate the ML algorithm to ensure the predictive model is successful. If the predictive
model displays overfitting, it will not be helpful because a model that repeats the labels of the
samples it has just seen would score 100 per cent, but it is unable to predict unknown labels.
To avoid this problem for the validation block of the ML algorithm, we will apply a method
based on the cross-validation technique.

If the validation results are comparable to those from the evaluation and training, we can say
that the trained model is accurate, and there is no sign of overfitting. This validation
indirectly impacts the predictive model's final evaluation. The metrics' values must match
those from the validation stage when the model is evaluated with the new Xtest data, as this
proves that the chosen algorithm is efficient. Testing the prediction model to see if it can
forecast new and future data comes after the algorithm has been trained and validated. This is
dealt with by the test block of the model, which is shown in Figure 37 as Y = f(Xtest), by
performing a prediction test with Xtest. The output Y from this block corresponds to the test
results of the predictive model with the variable Xtest and is a vector of the various 5G
services generated by the predictive model.
 
It is essential to label the 5G services located in the database (represented by variable y);
labels y relate to features or qualities for the arriving services, which are represented by
variable x. (see Figure 37). Before developing the algorithm's predictive model, the data is
labelled, making it possible to identify which label (y) corresponds to the parameters (x) of
each 5G service in the database. To evaluate the accuracy of the model's predictions, a
prediction Y can be compared with previously recorded data as the target response (Ytest).
This test can then be used to establish the predictive accuracy of future data. Consequently,
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an analysis of the Y and Ytest vectors can describe the verification or validation ability of the
model.
 
Five different supervised learning algorithms have been used. In the end, we conclude that
the Random Forest algorithm using our proposed random search and grid search for
hyperparameter tuning performs better than the other algorithms. Here is the name of the
supervised learning algorithms.

1- Decision Tree Algorithm (DT)
2- Random Forest Algorithm (RF)
3- Support Vector Machines Algorithm (SVM)
4- K-Nearest Neighbor Algorithm (KNN)
5- Multi-Layer Perceptron Algorithm22 (a Neural Network algorithm) (MLP)

10-9) Validation of the Predictive Model

It is necessary to determine whether the values obtained for Y are the expected ones. This is
required to validate the predictive model. Using metrics to measure performance can allow us
to confirm the model's effectiveness. The relationship between Ytest and Y is used to generate
the performance measures and to construct the confusion matrix shown in Table 5.

Table 5: Confusion matrix for binary classification

Confusion Matrix
Prediction (Y)

Positive Negative

Label (Ytest)
Positive True Positive (TP) False Negative (FN)

Negativ
e

False Positive (FP) True Negative (TN)

A confusion matrix is so named because it visualizes the predictive model's performance and
observes confusion in two labels. The columns of the matrix represent the number of
predictions for each label (Y) made by the predictive model, while each row represents the
current label for the test values (Ytest) as follows:

● True Positives: The number of current values classified as belonging to a particular class
for which the model´s prediction is correct.

● False Positive: These are the current values classified as belonging to an incorrect
class. The model considers them to be positive, but the prediction is wrong.
● False Negative: These values belong to a particular class but are classified differently

(incorrect prediction).
● True Negative: These are observations that do not belong to a given class and are

classified correctly.

An example of these four states is the famous instance of diabetic cases; Suppose that the
output is: diabetic (+ve) and healthy (-ve)

· True Positives: The prediction is +ve, and the patient also has diabetes (We want it)

22 A fully connected class of feedforward artificial neural network
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· False Positive: The prediction is +ve, but patient is healthy (False alarm)
· False Negative: The prediction is -ve, but the patient has diabetes (The worst case)
· True Negative: The prediction is -ve, and the patient is healthy (We want it)

A series of metrics can be derived from the results in the confusion matrix of Table 5 and
used to evaluate the performance of the predictive model as follows:

Accuracy: This is the relationship between the number of correct predictions (TP and TN
results) made by the model and the total number of predictions. In other words, this reflects
how often the predictive model’s classification is correct. It is the most direct measure of the
quality of the classification. However, it is less appropriate when the labels of the output
variables are not balanced (unbalanced data), i.e., labels are not of similar quantities.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                                                (1)
Precision: This measures the precision with which the predictive model ranks services by
their performance due to optimistic predictions. It is the relationship between the number of
correct predictions and the total number of correctly predicted predictions.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃                                                (2)
Recall: This is the relationship between the number of correct predictions to the total number
of positive predictions. In other words, it represents the predictive model's sensitivity in
detecting positive instances.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                (3)
F1 score: This is a weighted average of recall and precision. A higher score represents a
better model. Thus, it provides a good indicator of the overall accuracy of the predictive
model, while the accuracy and recall provide information on explicit areas.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 21𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 1𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  2×𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛                                              (4)
Matthews correlation coefficient (MCC): As an alternative measure unaffected by the
unbalanced datasets issue, MCC is the only binary classification rate that generates a high
score only if the binary predictor correctly predicted the majority of positive and the majority
of negative data instances. It ranges in the interval [-1, +1], with extreme values -1 and +1
reached in case of perfect misclassification and classification, respectively. At the same time,
MCC = 0 is the expected value for the coin-tossing classifier.
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𝑀𝐶𝐶 = 𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)                                        (5)
Suppose the values of the metrics for the predictive model are satisfactory. In that case, the
offline work phase is terminated, and the model is ready to be used online by a network
operator to classify new services requested by the UEs. The entire cycle must be repeated,
beginning with the training of the ML algorithm until an acceptable success rate is seen so
that the model will generate fewer errors in the future. This is necessary if the results
obtained in terms of the metrics are different from what was anticipated. In the latter scenario,
any of the subsequent steps may be taken:
 
• Increasing the volume of training data and testing the predictive model.
• Choosing another ML algorithm.
• Making the ML algorithm used in the simulation more straightforward or complex to
achieve better precision.

 We currently have a predictive algorithm that can classify 5G services according to their
KPIs and KQIs. When this is done online, users (UEs) submit requests for new services
(shown in the lower portion of Figure 37), and the model receives a vector of the KPIs and
KQIs of those services as input. Our system uses the service's KPIs and KQIs as well as an
output tag to classify the services and feeds the information into the system database. This
strategy aims to benefit from each service requested by adding it to the database and
repeatedly retraining the ML algorithm until a new, more reliable predictive model is formed
that offers a better classification.

10-10) Implementation of ML algorithms

We perform two simulations to determine whether the inclusion of KQIs improves the
predictive service classification model. The first considers only the KPIs, while the second
also incorporates the KQIs. We first explain and define the scenario and conditions used in
the simulations. The necessary elements are the SML algorithms, a programming language, a
development platform, the 5G services to be classified, and the parameters of their KPIs and
KQIs.
 
For the validation scenario and to simulate the proposed system, we used SL algorithms:
Decision Tree, Random Forest (with five trees), Support Vector Machine (SVM) with a linear
kernel, K-Nearest Neighbors (KNN, K = 3) and Multi-Layer Perceptron Classifier (MLPC),
using the Python language, and Anaconda Navigator platform with Jupyter Notebook as IDE.
We considered nine essential 5G services to be classified (Table 2): Ultra High Definition
(UHD) video streaming, immersive experience, connected vehicles, e-health, industry
automation, video surveillance, smart grid, Intelligent Transport Systems (ITS) and Voice
over 5G (Vo5G). Based on Table 4, the selected KPI parameters were E2E latency, jitter, bit
rate, packet loss rate, peak data rate Downlink (DL), Uplink (UL), mobility and service
reliability. The KQI parameters were service availability, user experience data rate DL/UL,
survival time and interruption time.
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 In the first simulation, we worked with the KPIs. The dataset had dimensions of 165 × 9,
where the first eight columns represented the KPIs, and the last contained the labels of the
services. We divided the database into two parts, where 80% (132) of the data (Xtrain) were
used to train the algorithms created and, once trained, generated the predictive model. The
remaining 20% (Xtest) was used to test the model.

10-11) Simulation Results (KPI as training set)

The models may be prone to underfitting or overfitting, which means that while they may
perform perfectly with known training data (Xtrain), their accuracy may be poorer with new
services (Xtest). There are two ways to prevent overfitting: increasing the database's size or
reserving extra data by separating the dataset into three sections (training, validation and
testing). Because there is a need for known data from the 5G service, increasing the amount
of data is challenging. As a result, extra data were reserved, and the K-Folds cross-validation
technique was used here with K = 10, yielding the results shown in Table 6 for each
algorithm. Notably, all the variables were included in the initial dataset and stayed the same.

Table 6: Results of the accuracy in the cross-validation stage for the first simulation (KPIs)

SL Algorithms K-Folds (K = 10) Cross-Validation Results

Decision Tree 99.23

Random Forest 99.23

SVM 92.42

KNN 59.83

MLPC 86.26

The confusion matrices for each model in the first simulation, in which we took the KPIs into
account, are shown in Figure 40. The primary diagonal displays how many accurate
predictions the predictive model made. Values outside the main diagonal show the model's
incorrect predictions. The acronym used for each row of this matrix was mentioned in
sections 12-4 and repeated here for convenience.

Figure 40: Confusion matrices for the first simulation (KPIs)

CV: Connected Vehicles
IT: Intelligent Transport Systems
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IE: Immerse Experience
IA: Industry Automation
SG: Smart Grid
VS: Video Surveillance
UH: Ultra-High Definition (UHD) Video Streaming (UHD)
VO: Voice over 5G
EH: E-Health

We applied Equations (1) to (5) to the metrics obtained from the confusion matrix to
evaluate the performance of the predictive models. The results are as follows in Table 7.

Table 7: Model metric results for the first simulation (KPIs)

SL Algorithms Accuracy % Precision Macro % Recall % F1-Score % MCC %

Decision Tree 93.9 93.5 94.7 93.1 93.19

Random
Forest

93.9 94.7 94.7 93.8 93.17

SVM 97 96.3 98.4 96.9 96.6

KNN 78.8 70 79.9 71.8 76.89

MLPC 90.9 90.7 92.5 90.3 89.8

10-11-1) Proposed Random Forest Algorithm

We have used hyperparameter tuning using two random seraph methods and gird search
methods in the Random Forest algorithm to improve the metric result obtained for this
algorithm shown in Table 7. Gathering more data and feature engineering usually has the
most significant payoff in terms of time invested versus improved performance. However, it
is time to move on to model hyperparameter tuning. This optimization for the random forest
model is done in Python using Scikit-Learn23 tools.

10-11-2) Hyperparameter Tuning

Back to our description for Hyperparameter Tuning (section 11-5), the best way to think
about hyperparameters is like the settings of an algorithm that can be adjusted to optimize
performance. While model parameters are learned during training, hyperparameters must

23 Scikit-Learn is a free machine-learning library for Python. It supports supervised and unsupervised machine
learning and provides various algorithms for classification, regression, clustering, and dimensionality reduction.
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be defined before training the algorithm. Here, the number of decision trees in a random
forest algorithm and the number of features of each tree are considered by each tree when
splitting a node. (The variables and thresholds used to split each node identified during
training are known as a random forest's parameters.) Scikit-Learn offers a set of reasonable
default hyperparameters for all models (Table 8 shows these default values for the random
forest technique). However, these defaults are not always the best for a given situation. The
easiest way to find the ideal settings for hyperparameter tuning is to experiment with
various combinations and assess each model's performance because experimental data
rather than theory is used to tune these parameters.

Table 8: Random Forest Default Parameters

'bootstrap': True,

'ccp_alpha': 0.0,

'class_weight': None,

'criterion': 'entropy',

'max_depth': None,

'max_features': 'auto',

'max_leaf_nodes': None,

'max_samples': None,

'min_impurity_decrease': 0.0,

'min_impurity_split': None,

'min_samples_leaf': 1,

'min_samples_split': 2,

'min_weight_fraction_leaf': 0.0,

'n_estimators': 5,

'n_jobs': None,

'oob_score': False,

'random_state': 0,

'verbose': 0,
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'warm_start': False

10-11-3) Deployed Cross Validation

This strategy was discussed entirely in 9-6. The best way to teach cross-validation (CV) is
with an example utilizing the most popular approach, K-Fold CV. Before starting a machine
learning challenge, we divided our data into training and testing sets. We further divide our
training set into K number of folds in K-Fold CV. We then fit the model iteratively K times,
training the data on fold K-1 and evaluating fold K. (called the validation data). Here we used
K=3 for cross-validation (Figure 41).

Figure 41: 3-Fold Cross Validation
We perform many iterations of the entire K-Fold CV process for hyperparameter tuning, each
time using different model settings. We then compare all the models, select the best one,
train it on the whole training set, and evaluate it on the testing set. Each time we want to
assess a different set of hyperparameters, we have to split our training data into K fold and
train and evaluate K times. Here we modify six parameters of the random forest algorithm,
which is shown in Table 9. So, considering 3-Fold CV, we will have (6*3 = 18) training loops.

Table 9: Modified parameters for random search in Random Forest algorithm (KPIs)

'bootstrap': True,

'max_depth': None,

'max_features': 'auto',

'min_samples_leaf': 1,

'min_samples_split': 2,

'n_estimators': 5,

10-11-4) Random Search Cross-Validation in Scikit-Learn

Using Scikit-Learn’s RandomizedSearchCV method, we can define a grid of hyperparameter
ranges, and randomly sample from the grid, performing K-Fold CV with each combination of
values. We will try adjusting the following set of hyperparameters because, based on the
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mathematical theory of the Random Forest algorithm, these six parameters influence the
model’s accuracy and final prediction at the end.

n_estimators = number of trees in the forest
max_features = max number of features considered for splitting a node
max_depth = max number of levels in each decision tree
min_samples_split = min number of data points placed in a node before the node is split
min_samples_leaf = min number of data points allowed in a leaf node
bootstrap = method for sampling data points (with or without replacement).

Table 10 shows the achieved parameters after performing the random search for this
algorithm when considering KPIs as the features of the random forest algorithm.

Table10: Achieved parameters for random search in Random Forest algorithm (KPIs)

'bootstrap': True,

'max_depth': 30,

'max_features': 'sqrt',

'min_samples_leaf': 1,

'min_samples_split': 5,

'n_estimators': 400,

10-11-5) Grid Search Cross-Validation in Scikit-Learn

Random searches allowed us to narrow down the range for each hyperparameter. Now that
we know where to concentrate our search, we can explicitly specify every combination of
settings to try. We do this with GridSearchCV, a method that evaluates all combinations we
define instead of sampling randomly from a distribution. To use Grid Search, we make
another grid based on the best values provided by random search. Table 11 shows the
obtained parameters after the grid search.

Table 11. Achieved parameters for grid search in Random Forest algorithm (KPIs)

'bootstrap': True,

'max_depth': 20,

'max_features': 2,

'min_samples_leaf': 1,

'min_samples_split': 3,

'n_estimators': 100,

The results of the simulation provers that random search and grid search gain the same
result, and it shows that the optimum parameters have been tuned for this algorithm. The
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proposed algorithm gained a considerable improvement compared to the first baseline
algorithm, which is shown in Table 12 (3.1% increase in accuracy and 3.43% increase in MCC)

Table 12. Model metric results for the first simulation (KPIs) (Comparison between the
proposed algorithm and the other SL algorithms)

SL Algorithms Accuracy % Precision Macro % Recall % F1-Score % MCC %

Decision Tree 93.9 93.5 94.7 93.1 93.19

Random Forest 93.9 94.7 94.7 93.8 93.17

SVM 97 96.3 98.4 96.9 96.6

KNN 78.8 70 79.9 71.8 76.89

MLPC 90.9 90.7 92.5 90.3 89.8

Proposed Random Forest (Random
Search)

97 NA NA NA 96.6

Proposed Random Forest (Grid Search) 97 NA NA NA 96.6

10-12) Simulation Results (KPI plus KQI as training sets)

In the second simulation, we incorporated the user quality parameters (KQIs) and repeated

the procedure (with a few differences from the previous simulation). The KQI parameters

considered were service availability, user experience data rate DL/UL, survival time, and

interruption time. A database containing 165 rows was kept, with five additional columns

corresponding to the KQI parameters. We used the same functions to create and train the

ML algorithms, resulting in the same SL algorithms. Again, we used the K-Folds

cross-validation technique with K = 10 to validate the ML algorithm and obtained the results

in Table 13. Figure 2 demonstrates the confusion matrix obtained for each model in this

simulation.

Table 13: Results of the accuracy in the cross-validation stage for the first simulation
(KPIs+KQIs)

SL Algorithms K-Folds (K = 10) Cross-Validation Results

Decision Tree 97.69

Random Forest 98.52

SVM 91.59

KNN 83.35

MLPC 87.86
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Figure 42. Confusion matrices for the first simulation (KPIs+KQIs)

We obtained the performance metrics for the predictive models based on the newly
generated confusion matrices. The results are as follows in Table 14.

Table 14: Model metric results for the first simulation (KPIs+KQIs)

SL Algorithms Accuracy % Precision Macro % Recall % F1-Score % MCC %

Decision Tree 97 97.2 96.3 96.2 96.6

Random Forest 97 97.2 96.3 96.2 96.6

SVM 100 100 100 100 100

KNN 81.8 76.1 75.6 71.8 79.8

MLPC 97 97.2 96.3 96.2 96.6

From Table 14, it is possible to know that the KNN model does not apply to our problem
because it had inadequate accuracy. Furthermore, we can see that the other models
increased their metrics in this second simulation, and the best metrics obtained are Decision
Tree, Random Forest, MLPC, and SVM. To verify if the predictive model was satisfactory, we
created a function to compare the accuracy obtained in the cross-validation stage versus the
accuracy of the testing stage. We considered the model acceptable if the difference does not
exceed 5%. The result obtained for the SVM had a difference of 8.41% (100-91.59), so this
model may be overfitting. Also, this difference for MLPC is 9.14% (97-87.86). The result
differed from 0.79% (97.69-96.9) and 1.62% (98.52-96.9) in the Decision Tree and Random
Forest. This result balances the decision tree and the Random Forest algorithms' predictive
model. If the predictive model is overfitting, we choose the third option mentioned above,
for example, making a Random Forest with maximum depth. We can use both Decision Tree
and Random Forest to solve the service classification problem presented. Although in this
project, we proved random forest gains with proposed search algorithms.

10-12-1) Random Search Cross-Validation in Scikit-Learn

Table 15 shows the achieved parameters after performing the random search for this
algorithm when considering KPIs+KQIs as the features of the random forest algorithm.

Table 15: Model metric results for the first simulation (KPIs+KQIs)
(Comparison between the proposed algorithm and the other SL algorithms)

SL Algorithms Accuracy % Precision Macro % Recall % F1-Score % MCC %

Decision Tree 97 97.2 96.3 96.2 96.6

Random Forest 97 97.2 96.3 96.2 96.6

SVM 100 100 100 100 100

KNN 81.8 76.1 75.6 71.8 79.8
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MLPC 97 97.2 96.3 96.2 96.6

Proposed Random Forest
(Random Search)

100 NA NA NA 100

Table 16 shows the achieved parameters after performing the random search for this
algorithm when considering KPIs+KQIs as the features of the random forest algorithm.

Table 16. Achieved parameters for random search in Random Forest algorithm (KPIs+KQIs)

'bootstrap': True,
'max_depth': 30,
'max_features': 'sqrt',
'min_samples_leaf': 1,
'min_samples_split': 5,
'n_estimators': 400,

As it is evident in Table 16, after using random search in the random forest algorithm and
considering KPIs+KQIs as the features to train the algorithm, we could achieve 100% results
in both accuracy and MCC evaluation criteria.

10-13) Necessary time for training

The other important parameter we have considered for simulation and comparison between

algorithms is the necessary time for training each algorithm. This time is essential to know

which algorithm is suitable for use in the three control loop mechanisms of Open RAN

(Non-RT, Near-RT, and RT). This selection will be made based on the timing description in

section 10.1. For calculating the time, we have used a cut-down timer in python, and each

algorithm's fit () function has been considered for essential time for training. Table 17

demonstrates the average result for N=100 times of training for each algorithm. As

mentioned before in section 10-1, Non-Real-Time RIC (Non-RT RIC) integrates with the

network orchestrator and operates on a time scale longer than 1s, and a Near Real-Time RIC

(Near-RT RIC), drives control loops with RAN nodes with a time scale between 10ms and 1s

(RT RIC is less than 10ms). This timing scale is enough to have time for training and fit the

machine learning model with the dataset. The below result shows that the falsest algorithms

are DT and KNN, and the lowest speed is MLPC.

Table 17. Necessary time for training each algorithm

Average time for N=100 times of training
RT (t<10ms) Near-RT (10ms<t<1s) Non-RT (t>1s)

Training time with KPI (ms) Usable ORAN Blcok for RIC Training time with KPI+KQI (ms) Usable ORAN Blcok for RIC

3.39 RT 4.58 RT
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8.87 RT 10.62 Near-RT

19.37 Near-RT 5.8 RT

2.07 RT 1.32 RT

1150 Non-RT 625 Near-RT

Conclusion and Future Scope

5G service requirements include low latency, high reliability, and high throughput.
Appropriate services and slices are essential for 5G operators to address client demands and
IoT applications besides reducing the CAPEX and OPEX. During the past years, the
telecommunication industry has migrated from distributed solutions in RAN to Cloud RAN,
and Open RAN. In parallel with this evolution, machine-learning algorithms have been a
valuable tool for data scientists and researchers to improve network performance, reduce
costs, and enhance customer experience. Network optimization, predictive maintenance,
fraud detection, customer experience management, network security, and QoS optimization
are well-known use cases of machine learning in 5G networks.

In this project, we combined two new concepts of AI/ML and Open-RAN to utilize machine
learning in Open-RAN networks. The Open RAN alliance is gaining traction, with numerous
telecommunication operators, vendors, and industry organizations backing the project.
O-RAN is seen as a crucial enabler for 5G and B5G networks, which need more sophisticated
and adaptable network architectures to utilize 5G technology fully. The future classification,
regression and optimization problems are not solvable using the traditional methods. To
acquire the precise prediction, we must inevitably deal with a massive amount of KPI and
KQI data in the new networks. Here, the role of machine learning in dealing with this amount
of data will be bold and is presented as a novel solution to fix new network problems
efficiently.
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The proposed solution of network slicing in this project is a novel one which uses a
supervised-learning algorithm for 5G service and slice classification. We evaluated and
compared the result of five different algorithms based on accuracy, precision, recall,
F1-Mscoe and MCC. We realized that the Random Forest algorithm is the best solution
among the proposed algorithms. Moreover, the demonstrated training time for each algorithm
can make it a good idea to find the fastest conversion algorithm. This project will be
expandable in the future by using more complicated machine learning algorithms like
unsupervised and reinforced learning. Furthermore, we implemented this scenario in the
Non-real time and Near-real time RIC block of Open-RAN. Implementing more advanced
machine learning algorithms in Real-time RIC is an open issue and might be the subject of
future research and case studies.
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