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Abstract 

Background 

The modulation of resistance artery diameter is crucial for the regulation of tissue perfusion 

and systemic blood pressure. This is a multi-factorial process which necessitates the integrated 

activity of vascular endothelial and smooth muscle cells. A wide variety of endothelial and smooth 

muscle ion channels are involved in the coordination of the electrical and chemical signals 

governing the contractile state of vascular smooth muscle cells. Smooth muscle contraction is 

dependent upon an increase in the intracellular concentration of Ca2+ via Ca2+ release from the 

sarcoplasmic reticulum and/or Ca2+ influx from the extracellular space. This increase in Ca2+ can 

be evoked by any of a large range of stimuli, including intravascular pressure. Pressure-evoked 

vasoconstriction is the basis of the myogenic response, a phenomenon whereby arteries respond 

to an increase in pressure by contracting to decrease diameter and maintain constant flow. The 

transient receptor potential melastatin 4 (TRPM4) channel has emerged as a crucial mediator of 

pressure-evoked vasoconstriction. Most research into its function has involved the 

pharmacological TRPM4 inhibitor 9-phenanthrol, though recent studies have questioned its 

selectivity. 

Meanwhile, the endothelium regulates the contractile state of smooth muscle cells through 

two interrelated Ca2+-dependent mechanisms: by the release of diffusible chemical mediators such 

as nitric oxide (NO), and by electrical coupling with smooth muscle cells via myoendothelial gap 

junctions (MEGJs). Gap junctions (GJs) are low resistance channels composed of connexins (Cxs) 

which allow the passage of ions and small molecules from the cytosol of one cell to another. An 

increase in intracellular Ca2+ causes increased opening of Ca2+-activated K+ (KCa) channels, 

hyperpolarizing the endothelial cell. This hyperpolarization is conducted along the endothelium 
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by interendothelial GJs and to smooth muscle cells by MEGJs. The hyperpolarization of smooth 

muscle cells inhibits opening of voltage-operated Ca2+ channels, thereby limiting contraction. 

Endothelial cells express three Cx subtypes: Cx37, Cx40 and Cx43. Of these, Cx40 has been 

suggested to be necessary for endothelium-dependent vasodilation. A novel Cx40 knockout (KO) 

rat has only recently been developed, and the cardiovascular function of this rat has yet to be 

characterized. 

Thus, my over-arching goal is to investigate the functional roles of smooth muscle TRPM4 

and endothelial Cx40 by addressing three hypotheses: 

1) TRPM4 plays a role in both myogenic and agonist-induced vasoconstriction in resistance 

arteries. 

2) The Cx40 KO rat will demonstrate impaired endothelial modulation of arterial diameter 

versus wild-type (WT). 

3) The introduction of a mild hypercaloric diet will impair endothelial modulation of arterial 

diameter to a greater extent in the Cx40 KO rat than in WT rats. 

To test these hypotheses, I have addressed three corresponding aims: 

1) To investigate the effects of the small-molecule TRPM4 inhibitor 9-phenanthrol on the 

development of myogenic and agonist-induced vascular tone in isolated resistance arteries. 

2) To characterize arterial function in the Cx40 KO rat model with exploratory functional 

assays. 

3) To investigate the extent to which a hypercaloric diet produces endothelial dysfunction 

within the Cx40 KO rat model. 

Methods 
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 To investigate these aims, I have used a combination of functional and biochemical 

techniques to investigate the role of TRPM4 in vasoconstriction and characterize the 

cardiovascular function of the Cx40 KO rat. 

Results 

 Firstly, my data show that pharmacological inhibition of TRPM4 with 9-phenanthrol 

inhibits agonist-, nerve- and pressure-evoked vasoconstriction in rat mesenteric arteries. The 

additional presence of the intermediate-conductance KCa (IKCa) inhibitors NS6180 and TRAM-34 

has no effect on the inhibition of vasoconstriction by 9-phenanthrol, therefore this action of 9-

phenanthrol is not mediated by IKCa. Next, my data show that the Cx40 KO rat exhibits pronounced 

hypertension and heart enlargement. This is accompanied by a large-magnitude increase in nerve-

evoked vasoconstriction in the perfused mesenteric vascular bed. A large component of this effect 

is endothelium-independent, demonstrating that the ablation of Cx40 affects vascular smooth 

muscle function. Finally, applying the metabolic stress of a mild high fat diet (HFD) causes further 

increases in nerve-evoked vasoconstriction in the perfused mesenteric vascular bed, with the 

largest effect in WT rats. 

Conclusion 

 To conclude, I have shown that 9-phenanthrol does not produce its effect by activating IKCa 

and demonstrated that TRPM4 is a necessary mediator of agonist-, nerve- and pressure-evoked 

vasoconstriction. I have also demonstrated that Cx40 has a crucial physiological role in vascular 

function and the maintenance of normal systemic BP. The onset of endothelial dysfunction as 

modelled by a mild HFD appears to share an overlapping mechanism with the Cx40 KO-induced 

increase in vasoconstriction. These results illustrate crucial physiological roles for TRPM4 and 

Cx40 in the modulation of resistance artery diameter.  
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Chapter 1: Introduction and background 

1.1 Introduction 

1.1.1 Impact of cardiovascular disease 

The World Health Organization reports that cardiovascular disease (CVD) is the leading 

cause of death worldwide, responsible for an estimated 17.9 million deaths (32% of all global 

deaths) in 2019, of which 15.2 million are due to heart attack and stroke2. Metabolic disease and 

diabesity are major risk factors of CVD3,4. In the United States, an estimated 8.5-12% of the adult 

population have type 2 diabetes mellitus (T2DM)3,5, and over 50% of T2DM-related deaths are 

attributable to CVD3. Despite the efficacy of lifestyle interventions6, the prevalence of T2DM in 

both adults and youth continues to increase2,3,5, underscoring the need for the identification of new 

drug targets and the development of novel pharmacological therapies for CVD, especially within 

the context of metabolic disease and diabesity. 

1.1.2 Blood vessel structure 

In the body, blood vessels (i.e. arteries, veins and capillaries) are responsible for tissue 

perfusion, thereby facilitating gas exchange, nutrient distribution and waste removal by the blood. 

Arteries and veins are composed of three tissue layers: the tunica externa, tunica media, and tunica 

intima (Figure 1.1). The tunica externa, or adventitia, is the outermost layer which consists 

primarily of elastin and collagen aligned longitudinally along the vessel, but also includes 

fibroblasts, mast cells, macrophages, and perivascular nerves with surrounding Schwann cells7-9. 

The middle layer is the tunica media, comprising vascular smooth muscle cells (VSMCs) and an 

internal elastic lamina, which is a fenestrated sheet of elastin bordering the lumenal side of the 

media7-9. Finally, the tunica intima consists of the endothelium, which is a single layer of squamous 

endothelial cells (ECs), and an 80-nm thick basal lamina separating the endothelium from the 
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media. Additionally, in large, elastic vessels such as the aorta, a subendothelial space containing 

fibrous collagen and elastin is present between the basal lamina and the media7,8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Structure of the arterial wall. Diagram illustrating the three tissue layers of the 

arterial wall: the tunica externa or adventitia, the tunica media, and the tunica externa (from 

Blausen Medical, 2014)10. 

 

1.1.3 Blood vessel function 

Resistance arteries, which comprise precapillary arteries and arterioles with diameters of 

20 to 500 μm7,11,12, account for over 80% of haemodynamic resistance in the body9. They are a 

primary regulator of systemic blood pressure and tissue perfusion due to their ability to rapidly 

change diameter in response to chemical and mechanical stimuli9,13,14. Depending upon the 

arteriolar diameter, the media of resistance arteries ranges from 1 cell layer in 20-50 μm arterioles 

to approximately 6 cell layers of VSMCs in 500 μm arteries, with little intercellular space between 
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VSMCs7,8. The endothelium plays a crucial role in the regulation of smooth muscle contraction by 

two predominant mechanisms: firstly by the release of diffusible vasoconstrictors (e.g. endothelin-

1, thromboxane A2) and vasodilators (e.g. nitric oxide (NO), prostacyclin (PGI2), 

epoxyeicosatrienoic acids (EETs)), and secondly by electrical coupling between ECs and VSMCs 

via myoendothelial gap junctions (MEGJs)13-17. By regulating the contractile state of VSMCs, the 

endothelium controls arterial diameter, which determines vascular resistance and subsequently 

blood flow and blood pressure. In addition to modulating blood flow, the endothelium produces 

factors which influence inflammation18, platelet function19, and angiogenesis20-23. Although the 

endothelium was once considered to be no more than a physical barrier between the blood and the 

vessel wall, it is now considered an endocrine organ due to its integral role in these regulatory 

pathways24. 

Most forms of CVD, including atherosclerosis, hypertension and T2DM, begin with the 

development of endothelial dysfunction25-32, whereby the endothelium’s ability to regulate blood 

vessel diameter is impaired. Thus, there is growing interest in the development of therapies to 

prevent or reverse endothelial dysfunction in order to treat the etiology of CVD more directly. This 

approach requires a greater understanding of endothelial function and the identification of putative 

drug targets. 

1.2 Relationship between arterial resistance and blood flow 

Flow, in any fluid system, is driven by a pressure gradient33. Within a cylindrical tube, such 

as a blood vessel, this difference in pressure is calculated by the Hagen-Poiseuille equation: 

∆𝑃 =
8𝜇𝐿𝑄

𝜋𝑟4
 

where 𝜇 is the dynamic viscosity of the fluid (in Pa·s), 𝐿 is the length of the tube (in m), 𝑄 is the 

volumetric flow rate (in m3·s-1), 𝑟 is the tube radius (in m), and the pressures at 𝑥 = 0 and 𝑥 = 𝐿 
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are 𝑃 = 𝑃 and 𝑃 = 𝑃 + ∆𝑃, respectively33-35. The relationship between pressure, flow rate, and 

fluidic resistance is analogous to the relationship between voltage (𝑉), current (𝐼), and electrical 

resistance (𝑅), respectively, described by Ohm’s law (𝑉 = 𝐼𝑅)34. Thus, substituting Ohm’s law 

into the Hagen-Poiseuille equation yields a formula to determine fluid resistance in a tube: 

𝑅 =
8𝜇𝐿

𝜋𝑟4
 

This equation demonstrates that fluid resistance is inversely proportional to the tube radius raised 

to the fourth power (i.e. 𝑅 ∝ 𝑟−4). In the context of resistance arteries, this means that relatively 

small changes in the lumenal diameter result in much larger changes in vascular resistance. This 

is the guiding principle by which the contractile state of VSMCs is a major determinant of systemic 

blood pressure. 

1.3 Mechanisms of contraction in vascular smooth muscle cells 

The membrane potential of VSMCs determines their contractile state by regulating the 

activity of a wide variety of ion channels. This in turn controls the entry and release of calcium 

ions (Ca2+) into the cytoplasm, thereby regulating smooth muscle contraction. This section will 

provide detail into this multi-factorial process. 

1.3.1 Ca2+-dependent contraction 

 Muscle tissues in vertebrates comprise three categories: skeletal, cardiac, and smooth 

muscle36,37. Each type of muscle is composed of myocytes which are phenotypically distinct from 

the other categories; however, all muscle contraction requires both ATP and an increase in the 

intracellular concentration of calcium ([Ca2+]i)
38,39. ATP hydrolysis fuels the sliding of myosin 

filaments, or thick filaments, along corresponding actin filaments, or thin filaments, in order to 

contract the myocyte.  
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Skeletal and cardiac muscle are together known as striated muscle due to the organization 

of actin and myosin filaments into a repeating functional unit called a sarcomere36,37. The 

sarcomere is a bipolar40,41 arrangement of actin and myosin filaments, bounded between two 

structural Z-disks composed mostly of α-actinin42. The thin filament primarily consists of 

polymerized actin monomers, regulated by associated proteins tropomyosin and troponins T, I and 

C37. Tropomyosin is a long molecule composed of two α-helical chains twisted together to form a 

“coiled coil,” helically wrapped around the actin filament41. Tropomyosin covers the myosin 

binding site on actin when the cell is in a relaxed state; the binding of Ca2+ to troponin C elicits a 

conformational change in tropomyosin, exposing the myosin binding sites36,37,41. Myosin filaments 

are composed of muscle-myosin II, a hexameric protein comprising two heavy chains; two 

essential light chains, 17 kDa each (ELC or LC17); and two regulatory light chains, 20 kDa each 

(RLC or LC20)
36,43. The S1 fragment of the heavy chain is called the myosin head, and contains a 

nucleotide-binding site and an actin-binding site36,44. Once the myosin binding sites on actin are 

exposed, ATP binds to the nucleotide-binding site on the myosin head to be hydrolysed, causing 

a conformational change which cocks the myosin head to allow cross-bridge formation with the 

actin molecule39. The release of Pi produces the power stroke of the filaments sliding past one 

another, and the cycle is complete with the release of ADP, which causes the myosin head to return 

to an uncocked position. This process is called cross-bridge cycling, and is the underlying 

mechanism of contraction or shortening in all myocytes (reviewed by Sweeney and Holzbaur, 

2018)45. 

Like striated muscle cells, smooth muscle cells contain actin and myosin filaments which 

require both ATP and an increase in [Ca2+]i for contraction; however, the cellular machinery of 

contraction is organized very differently. Most prominently, smooth muscle cells do not contain 
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sarcomeres36,37,40,41,46-49. Smooth muscle actin and myosin have been demonstrated to be 

morphologically and functionally similar to striated muscle actin and myosin, thus it is accepted 

that cross-bridge cycling is the process responsible for smooth muscle shortening40,50,51. However, 

the ultrastructure of actin and myosin filaments in smooth muscle cells is not clearly defined40,48, 

in large part due to the fact that striated muscle sarcomeres are clearly visible via electron 

micrograph, whereas myosin is undetectable in native smooth muscle cells by electron 

micrograph41,52. The current model of the functional unit of contraction in smooth muscle is a side-

polar filament model (Figure 1.2a)40, wherein cross-bridges have the same polarity along one side 

of the myosin thick filament, and the opposite polarity along the other side. Actin thin filaments 

are bound at one end by cytoplasmic or membrane-associated dense bodies composed mostly of 

α-actinin, analogous to Z-disks in striated muscle (Figure 1.2b)40,49,53-56. Dense bodies have also 

been demonstrated to bind the cytoskeletal intermediate filaments desmin and vimentin36,49,55,57-59, 

creating a structural network which allows the cell to support passive tension, or basal tone47. 

Additionally, it has been demonstrated that unlike in striated muscle, smooth muscle myosin 

filaments undergo polymerization and depolymerization to regulate contractility and to adapt to 

large changes in cell length (reviewed by Wang et al., 2021)44. 
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Figure 1.2: Organization of contractile filaments in smooth muscle cells. a) Schematic diagram 

of the side-polar filament model of the smooth muscle contractile unit. The double arrows indicate 

the direction of actin sliding relative to myosin. b) Diagram illustrating the arrangement of 

contractile units within the smooth muscle cell at rest and during contraction (adapted from Seow, 

2019 and Sweeney and Hammers, 2018)36,40. 

 

Smooth muscle also differs from striated muscle in the mechanisms by which actomyosin 

interactions are regulated. In striated muscle, a Ca2+-dependent conformational change in the thin 

filament initiates cross-bridge formation, whereas in smooth muscle, cross-bridge formation is 

initiated by a Ca2+-dependent conformational change in the thick filament60. Upon the influx of 

Ca2+ from either the extracellular space or intracellular stores (See §1.3.2)61, four Ca2+ ions bind 

to one calmodulin (CaM) molecule to form a Ca2+/CaM complex62, which subsequently binds to 

myosin light chain kinase (MLCK)63. MLCK contains an auto-inhibitory domain which is 

ordinarily bound to its catalytic site54; the binding of Ca2+/CaM to MLCK elicits a dissociation of 

the auto-inhibitory domain from the catalytic site, thereby activating MLCK64-67. Subsequently, 

MLCK phosphorylates residues Ser19 and, at relatively high concentrations of MLCK, Thr18 on 

b) 

a) 
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both RLCs of myosin II68-70. The phosphorylation of Ser19 induces a conformational change in 

the myosin head, facilitating actomyosin cross-bridge formation and increasing the actin-activated 

Mg2+-ATPase activity of myosin II43,45,54,71. The hydrolysis of ATP then drives cross-bridge 

cycling in the same manner as occurs in striated muscle (Figure 1.3). Due to the action of Ca2+ 

ATPase pumps at the sarcoplasmic/endoplasmic reticulum (SERCA) and plasma membrane 

(PMCA) to remove Ca2+ from the cytosol, [Ca2+]i decreases following contraction37,56,72. This 

initiates relaxation by causing the dissociation of Ca2+ from CaM, which inactivates MLCK54,62,65. 

The myosin RLCs may then be dephosphorylated by protein phosphatases 1 (PP1) and 2A (PP2A), 

together known as myosin light chain phosphatases (MLCP)73. Dephosphorylation of Ser19 

returns myosin II to its inactive conformation, disrupting the actomyosin cross-bridge and 

precipitating relaxation54,56,67,74. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Mechanism of smooth muscle contraction. Schematic diagram illustrating the 

pathway of Ca2+-dependent contraction in smooth muscle cells. An increase in [Ca2+]i leads to 

the activation of MLCK by Ca2+/CaM. MLCK then phosphorylates myosin RLC, enhancing its 

Mg2+-ATPase activity and initiating crossbridge cycling (adapted from Lodish et al., 2000)75.  
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Smooth muscle contraction and relaxation are modulated by secondary Ca2+-dependent 

pathways as well. The two most influential of these modulators are the actin-binding proteins and 

Ca2+-dependent kinases. Firstly, instead of troponin found in skeletal muscle thin filaments, 

smooth muscle cells express the functionally analogous actin-binding proteins caldesmon (CaD) 

and calponin (CaP) which bind both actin and tropomyosin46,76-80. CaD has been demonstrated to 

directly inhibit actomyosin Mg2+-ATPase activity in a tropomyosin-dependent manner, and 

competitively inhibits myosin S1-ATP binding to actin71,81-85. Upon [Ca2+]i increase, Ca2+/CaM 

binds to CaD, dissociating it from actin and allowing cross-bridge formation86,87. CaD is also 

reversibly phosphorylated by kinases including protein kinase C (PKC), mitogen-activated protein 

kinase (MAPK) and Ca2+/CaM-dependent protein kinase II (CaMKII), causing its dissociation 

from actin and decreasing its inhibition of actomyosin Mg2+-ATPase activity46,88-91. CaP has also 

been shown to inhibit actomyosin Mg2+-ATPase activity; however, unlike CaD, its effect is not 

dependent upon tropomyosin92. It has been demonstrated that the regulation of actin by CaD and 

CaP in smooth muscle is structurally distinct from the regulation of actin by troponin in striated 

muscle85,93. Furthermore, it is generally accepted that smooth muscle cells do not express 

troponin36,54,94,95. However, recent evidence in the primary literature suggests that certain troponin 

isoforms may be expressed in some VSMCs96,97, perhaps due to the demand for a quicker onset of 

contraction in vessels such as the renal afferent arteriole relative to the rest of the vasculature97.  

Secondly, there are two main Ca2+-dependent kinases which regulate smooth muscle 

contraction: PKC and CaMKII54,71,98,99. Smooth muscle cells express the Ca2+-dependent classical 

PKC isoforms α and β, which also require diacylglycerol (DAG) for activation54,100-102. In response 

to an increase in both [Ca2+]i and DAG, such as through agonism at the α1-adrenergic receptor (See 

§1.3.2), PKCα and β are activated and move to phosphorylate a small protein called PKC-
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potentiated PP1 inhibitory protein of 17 kDa (CPI-17) at Thr3898,103,104. This activates CPI-17, 

which is a competitive false substrate at MLCP. Thus, by occupying MLCP, CPI-17 prolongs 

contraction since MLCP can no longer dephosphorylate the myosin RLC. While PKC is activated 

by Ca2+ ions, CaMKII is activated by the binding of Ca2+/CaM. Smooth muscle cells express two 

of four existing CaMKII isoforms: δ and γ (cf. α and β isoforms are restricted to neurons)98,99. 

CaMKII contains an auto-inhibitory domain which occupies its active site; Ca2+/CaM binding 

causes CaMKII to autophosphorylate at Thr287, dissociating the auto-inhibitory domain from the 

active site. This active form is retained even after the removal of Ca2+/CaM, and is therefore 

implicated in Ca2+ sensitization (See §1.3.3)98,105. When activated, CaMKII phosphorylates a wide 

range of downstream targets, including key contractile proteins such as MLCK, myosin RLC, CaD, 

SERCA, L-type Ca2+ channels, IP3 and ryanodine receptors, and canonical transient receptor 

potential (TRPC) channels98,99,106. Despite the fact that CaMKII inhibits MLCK by 

phosphorylation107, the sum of its actions produce a net pro-contractile effect108,109. 

1.3.2 Ca2+ homeostasis in vascular smooth muscle cells 

In order to initiate smooth muscle cell contraction, there are two sources from which Ca2+ 

ions may enter the cytoplasm: intracellular stores and the extracellular space (reviewed by Ghosh 

et al., 2017)61. The resting [Ca2+]i of vascular smooth muscle is maintained at approximately 100 

nM, three and four orders of magnitude lower than the Ca2+ concentrations within the sarcoplasmic 

reticulum and the extracellular space, at 200 µM and 2 mM, respectively110,111. This relatively 

extreme concentration gradient is maintained by the constitutive action of SERCA, PMCA, and 

the Na+/Ca2+ exchanger (NCX) to remove Ca2+ ions from the cytosol37,110,112. Due to the relatively 

low diffusion coefficient of Ca2+ ions113,114, Ca2+ signalling in VSMCs, as in other cell types, is 

compartmentalized71,110,115. This refers to the spatial and temporal organization of cellular 
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functions into signalling microdomains, whereby associated proteins of a particular pathway are 

localized to the same region or structure of a cell in order to optimize the efficiency and efficacy 

of second messenger signalling110. Ca2+ is a ubiquitous second messenger in all cell types; thus, 

compartmentalization in VSMCs allows for the activation of specific pathways via localized, 

subcellular increases in [Ca2+] without necessarily increasing the global [Ca2+]i
110,114. VSMCs 

exhibit several types of local Ca2+ signals which can be categorized according to their distinct 

spatiotemporal patterns and mechanisms by which they are generated (reviewed by Amberg and 

Navedo, 2013)115. These local Ca2+ signals contribute both directly and indirectly to changes in 

[Ca2+]i of the VSMC, thereby influencing vascular tone and subsequently controlling systemic 

blood flow and pressure71,115. 

1.3.2.1 Release of Ca2+ from intracellular stores: Within VSMCs, there are two main 

organelles which serve as Ca2+ stores: the sarcoplasmic reticulum (SR) and mitochondria61,110,116-

118. The SR is a specialized endoplasmic reticulum found in myocytes, and it is the primary 

intracellular Ca2+ store associated with the initiation of contraction in VSMCs112,119-122. The resting 

[Ca2+] inside the SR is approximately three orders of magnitude greater than the resting cytosolic 

[Ca2+]i
110,111

.  While up to 90% of the volume of smooth muscle cells is occupied by myofilaments, 

intermediate filaments and dense bodies, the SR occupies approximately 2-7% of the cell volume 

depending on the tissue112,118,122,123. It was hypothesized and demonstrated that smooth muscle 

subtypes with larger SR volumes (e.g. VSMCs from large elastic arteries such as the aorta) 

continue to contract after prolonged exposure to Ca2+-free media, whereas subtypes with smaller 

SR volumes (e.g. visceral smooth muscle; VSMCs from resistance arteries) experience 

significantly less contraction after exposure to Ca2+-free media124-126. Thus, it was believed that 

SR volume correlates with the relative contribution of Ca2+ release, as opposed to Ca2+ influx, to 
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smooth muscle contraction118,124. However, the correlation between SR volume and contraction 

time in Ca2+-free media fell out of favour due to reports of low SR volumes in phasic smooth 

muscles, such as the vas deferens and taenia coli, which maintain phasic contractions in Ca2+-free 

media112,126-128. Subsequently, confocal imaging using fluorescent probes of free Ca2+ and of SR 

proteins such as SERCA and ryanodine receptors have elucidated the ultrastructure of the SR as a 

network of interconnected tubules, sacs and cisternae continuous with the nucleus112,119,129-133. SR 

is both concentrated around the nucleus and distributed peripherally. Currently the functional and 

compositional differences between central and peripheral SR are not clear; however, it has been 

demonstrated that phasic SMCs have predominantly peripheral SR relative to non-phasic 

SMCs112,131,132. 

Mitochondria are the second notable intracellular Ca2+ store; however, there is no evidence 

to suggest that Ca2+ release from the mitochondria is linked to smooth muscle 

contraction110,115,116,122. The role of mitochondria in smooth muscle Ca2+ homeostasis is not fully 

understood; the current model suggests that due to their higher capacity for Ca2+ uptake than 

release, with release being saturable134, mitochondria act as a buffer for cytosolic [Ca2+]i
135. 

Mitochondria are likely minimally loaded with Ca2+ under physiological conditions, but remove 

Ca2+ from the cytosol during “Ca2+ overload” events of pathologically high [Ca2+]i (≥ 5 µM; 50 

times the resting concentration)135-137. For the purposes of this thesis, I will focus on the role of the 

SR in VSMC Ca2+ handling rather than the mitochondria, due to the latter’s lack of direct 

involvement in VSMC contraction. 

IP3Rs: Free Ca2+ may be released from the SR into the cytoplasm via activation of two 

ligand-gated Ca2+-channels: the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), and the 

ryanodine receptor (RyR)138,139. The first of these, the IP3R, is a homo- or heterotetramer in which 
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each subunit contains a cytosolic N-terminal domain, six hydrophobic transmembrane (TM) 

domains with a central pore domain between TM5 and TM6, and finally a cytosolic C-terminal 

domain140. The N-terminus contains the IP3 binding site as well as a suppressor domain that 

inhibits IP3 binding, a regulatory domain comprising Ca2+ and ATP binding sites, and a coupling 

domain which facilitates direct interaction between the IP3R and TRPC channels61,140,141. Three 

isoforms of the IP3R have been identified: IP3R1, IP3R2 and IP3R3; these isoforms are derived 

from three separate genes sharing approximately 60-70% sequence identity, and differ in their 

affinity for IP3 binding as well as their relative expression in different tissues61,140-148. IP3Rs are 

ubiquitously expressed, and have been found localized to the SR of myocytes and ER of many 

other cell types141. All three isoforms have been shown to be expressed by VSMCs, with IP3R1 

being the primary form expressed in both large conduit arteries and small resistance arteries149-151.  

IP3 is a second messenger which is produced through the hydrolysis of the membrane 

phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and DAG by phospholipase C 

(PLC; reviewed by Kadamur and Ross, 2013)152. Gq/11 protein-coupled receptors activate PLC, 

thereby increasing the production of IP3. Endogenous agonists such as noradrenaline (NA), 

acetylcholine (ACh), angiotensin II, endothelin-1 (ET-1), and serotonin (5-hydroxytryptamine, or 

5-HT) increase IP3 production, and subsequently increase IP3R activity by binding to Gq/11-coupled 

receptors on smooth muscle such as the α1 adrenergic receptor, the M3 muscarinic receptor, the 

angiotensin II receptor (AT), the ET-1 receptor A (ETA), and the 5-HT2A receptor, 

respectively61,117,139,153,154.  

The binding of IP3 to its N-terminal binding site causes a conformational change in the 

subunit, allowing the binding of obligate factors ATP and Ca2+ to their respective binding sites to 

stabilize the open conformation of the channel155,156. The channel stoichiometry is such that four 
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IP3 molecules, one to each subunit, are necessary for channel activation157. The stoichiometry of 

ATP and Ca2+ are currently unclear; however, there is evidence to suggest that only two ATP 

molecules may be required for pore opening158. The Ca2+-gating of the IP3R1 channel is biphasic, 

wherein a high nanomolar Ca2+ concentration is optimal for channel activation, but a micromolar 

concentration is inhibitory159-163. It has been suggested that this mechanism may contribute to 

autoregulation of Ca2+ signalling; however, many other extrinsic factors including channel density 

and spatial arrangement of channels may contribute to this regulation as well141. 

RyRs: The second channel responsible for Ca2+ release from the SR is the RyR, which is 

the largest known ion channel, at over 2 MDa164. RyRs are a family of Ca2+ channels localized to 

the SR membrane which are structurally homologous with IP3Rs165, and the two channels share 

many similarities. Like the IP3R, the RyR is a homotetramer in which each subunit contains 6 TM 

domains, a pore domain between TM5 and TM6, and cytosolic N- and C-termini166,167. Another 

similarity is that the RyR, like the IP3R, occurs in three known mammalian isoforms (RyR1, RyR2 

and RyR3) encoded by three separate genes168-172. Transcription and translation of all three 

subtypes have been demonstrated in VSMCs; however, RyR2 is the predominant form expressed 

by VSMCs in resistance arteries including mesenteric and cerebral arteries173-175. RyRs are 

activated by the binding of Ca2+ and ATP, and cryo-EM studies have revealed that the Ca2+-

coordinating residues of its binding site are conserved between the IP3Rs and RyRs176. 

Additionally, multiple Ca2+ binding sites in each subunit allow the RyR to be activated by either 

cytosolic Ca2+ at the canonical A-site, or by a sufficiently high [Ca2+] within the SR to occupy the 

lower affinity, lumenal-facing L-site177,178. Ca2+ binding at an inhibitory site, the I1-site, stabilizes 

a closed conformation of the RyR at millimolar [Ca2+]i
177,179. Together with the A-site’s Ka of 
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approximately 1-5 µM, the RyR exhibits a bell-shaped activation curve to increasing [Ca2+]i, 

similar to the IP3R
177.  

In addition to Ca2+ and ATP, RyRs are modulated by interactions with a large number of 

other factors and agents, including inhibition by Mg2+, activation by caffeine and diamide 

insecticides, and concentration-dependent activation/inhibition by both Ca2+/CaM and unbound 

CaM (apoCaM)164,177,180,181. The RyR is named for its interaction with the plant alkaloid ryanodine, 

which binds with high affinity and selectivity to the open conformation of the channel. Single-

channel recordings have demonstrated that, when applied at nanomolar concentrations, ryanodine 

stabilizes the open conformation of the channel, in what is suspected to be a positive allosteric 

mechanism182,183. When applied at micromolar concentrations, ryanodine binds to a low-affinity 

site in order to stabilize a subconductance state of the channel with an open probability (Po) of ~1, 

but approximately half of its maximal conductance; and finally at millimolar concentrations 

ryanodine binds to the central pore and blocks the channel184-186. 

1.3.2.2 Ca2+ signals mediated by release from intracellular stores: As described earlier, 

the compartmentalization of Ca2+ signalling within VSMCs allows Ca2+ release and influx events 

to fulfill different functions based upon their localization and spatiotemporal pattern. Ca2+ signals 

may be mediated by Ca2+ release from the SR as in Ca2+ sparks, Ca2+ puffs, and Ca2+ waves; or 

they may be mediated by Ca2+ influx as in junctional Ca2+ transients and Ca2+ sparklets61,115,187. 

This variety of mechanistically distinct Ca2+ signals allows for nuanced modulation of the 

contractile state of VSMCs. This section will discuss Ca2+ sparks, Ca2+ puffs, and Ca2+ waves. 

Ca2+ sparks: Ca2+ sparks (reviewed by Cheng and Lederer, 2008)188 are discrete, local, and 

transient Ca2+ release events from the SR through clusters of RyRs61,71,187. In contrast to the tight 

lattice-patterned organization of RyRs in striated muscle cells188,189, immunofluorescence and 
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electron microscopy studies have demonstrated that in SMCs, RyRs are clustered into calcium 

release units (CRUs) with variable density and no apparent geometry, and that the distribution of 

RyRs matches the helical distribution of SR cisternae112,190,191. Therefore, phasic smooth muscle 

cells with primarily peripheral SR exhibit peripheral distribution of RyRs, whereas tonic smooth 

muscle cells, such as VSMCs in resistance arteries, exhibit both perinuclear and peripheral 

distribution of RyRs190,191. RyR2, the primary isoform in VSMCs, is predominantly located in 

peripheral SR, which has been shown to be as close as 18 nm to the inner side of the plasma 

membrane190,192,193. Due to the low spatial reach of Ca2+ sparks (approximately 10-15 µm2)194,195, 

they have little direct impact on global [Ca2+]i; however, this localization of RyRs near the plasma 

membrane allows them to functionally couple with plasmalemmal ion channels such as big-

conductance Ca2+-activated potassium (BKCa) channels and Ca2+-activated chloride (ClCa) 

channels in order to regulate global [Ca2+]i indirectly (Figure 1.4)71,112,115. Activation of BKCa 

channels by Ca2+ sparks precipitates an efflux of K+ ions known as a spontaneous transient outward 

current (STOC), which contributes to hyperpolarization of the SMC, and thus vasorelaxation in 

resistance arteries195,196. The coupling of Ca2+ sparks to STOCs in VSMCs was first described by 

Nelson et al. in 1995196, wherein they demonstrated that Ca2+ release from the SR through RyRs 

counterintuitively elicited vasorelaxation of rat cerebral resistance arteries. In contrast, however, 

VSMCs in other vascular beds (e.g. portal vein197,198, pulmonary artery199) exhibit spatial coupling 

between RyRs and ClCa channels, whereby Ca2+ sparks activate ClCa channels and allow efflux of 

Cl- ions115,188,200,201. Unlike the hyperpolarizing K+ efflux that occurs in STOCs, Cl- efflux creates 

a depolarizing current, called a spontaneous transient inward current (STIC), which indirectly 

amplifies vasoconstrictor stimuli71,201-204. In VSMCs expressing both BKCa and ClCa channels, 

spontaneous transient outward then inward currents (STOICs) elicited by Ca2+ sparks have been 
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recorded, the physiological purpose of which is suspected to be a finer modulation of membrane 

potential and cell excitability205. 

 

 

 

 

 

 

 

 

 

Figure 1.4: Activation of BKCa channels by Ca2+ sparks. Activation of RyRs (orange) in the SR 

membrane allows local release of Ca2+ from the SR in a Ca2+ spark. The resultant increase in local 

[Ca2+]i activates colocalized BKCa channels (green) to induce a hyperpolarizing outward current 

of K+. Hyperpolarization of the membrane potential decreases the activity of L-type Ca2+ channels 

(red) and inhibits contraction. The activity of SERCA (grey) maintains SR Ca2+ levels (adapted 

from Jaggar et al., 2000)206. 

 

Ca2+ puffs: Analogous to Ca2+ sparks, Ca2+ puffs are discrete, local Ca2+ transients from 

the SR mediated by CRUs of IP3Rs rather than RyRs61,112,207-209. Ca2+ puffs are not as well-

characterized as Ca2+ sparks, and have not been directly recorded or visualized in VSMCs to date, 

despite the confirmed expression and localization of all three IP3R isoforms at the SR in 

VSMCs61,112,115. Gq/11PCR agonist-evoked, ryanodine-insensitive Ca2+ puffs have only been 

directly recorded in two smooth muscle types: ureteric210,211 and colonic212,213 smooth muscle. 

Nevertheless, indirect evidence suggests that Ca2+ puffs may modulate the contractile state of 

VSMCs via spatial coupling with plasmalemmal ion channels in a similar manner to Ca2+ sparks. 

In rat cerebral artery smooth muscle, pressure-induced Na+ influx through the melastatin transient 
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receptor potential (TRPM) channel TRPM4, a Ca2+-dependent Na+ channel, was shown to be 

insensitive to ryanodine, but reduced by both the SERCA inhibitor cyclopiazonic acid, and the 

IP3R blocker xestospongin C214,215. The lack of direct evidence for Ca2+ puffs in VSMCs may be 

due to complicating factors such as IP3R localization or distribution versus other types of SMCs61. 

Moreover, Ca2+ released from the SR in a puff may activate neighbouring IP3Rs in a process 

termed Ca2+-induced Ca2+ release (CICR)150,216-218. Once Ca2+ puff activity reaches the threshold 

at which CICR occurs, a global, propagating increase in [Ca2+]i called a Ca2+ wave is 

initiated208,219,220. It is possible that this threshold is lower in VSMCs than phasic SMCs, making 

isolated Ca2+ puffs difficult to record without initiating global Ca2+ waves. 

Ca2+ waves: Ca2+ waves are regenerative, cyclical elevations in global [Ca2+]i which are 

initiated by local Ca2+ release from the SR via IP3Rs and/or RyRs, and are subsequently propagated 

by CICR61,221,222. A Ca2+ wave is propagated when Ca2+ released from the SR activates successive 

adjacent CRUs of IP3Rs and RyRs, creating a wave front which travels the entire length of the 

cell188,223. In electrophysiological recordings, these waves appear as asynchronous oscillations in 

global [Ca2+]i
221,224-226. Within the current model, the oscillations of Ca2+ waves reflect the biphasic 

activation of IP3Rs and RyRs at lower [Ca2+] and inactivation at higher [Ca2+]222. However, 

counter-evidence indicates that Ca2+ occupation of the IP3R Ca2+-inhibitory site is not necessary 

for channel inactivation, and that obligatory intrinsic inactivation of the channel may be sufficient 

for terminating Ca2+ release217. Ca2+ waves are abolished in the presence of SERCA inhibitors, but 

insensitive to VOCC inhibitors, suggesting that Ca2+ waves are maintained by a cycle of Ca2+ 

release from and reuptake into the SR, and are not dependent upon extracellular Ca2+ 

entry224,225,227,228. Moreover, it has been demonstrated that simultaneous Ca2+ waves propagating 
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in opposite directions will “collide”, terminating both waves due to the depletion of Ca2+ from the 

SR on either side of the collision223.  

In VSMCs, Ca2+ waves may arise spontaneously150,229, be evoked by Gq/11PCR agonists 

such as UTP and NA221,225,230-232, or be evoked by electrical field stimulation of perivascular 

nerves226. Although they were originally thought to be mediated only by IP3Rs, Ca2+ waves have 

since been shown to arise from activation of either or both IP3Rs and RyRs221,222,231. The relative 

contribution of IP3Rs and RyRs varies depending on the tissue and the nature of the stimulus61,222. 

For example, Heppner et al. (2002) demonstrated in VSMCs from rat cerebral arteries that Ca2+ 

waves may be evoked by the application of caffeine (which activates RyRs but not IP3Rs) and are 

abolished by ryanodine, but are insensitive to the IP3R blockers xestospongin C and 2-

aminoethoxydiphenyl borate (2-APB)233. Meanwhile, both IP3Rs and RyRs were found to 

contribute significantly to Ca2+ waves in portal vein VSMCs216,231. 

Ca2+ waves have been shown to elicit contraction in VSMCs and subsequently 

vasoconstriction in whole arteries150,229,231,234, which is proposed to occur by two mechanisms: 1) 

the Ca2+ wave directly elevates global [Ca2+]i, thereby increasing MLCK activity and initiating 

cross-bridge cycling, and 2) the Ca2+ wave interacts with plasmalemmal Ca2+-activated ion 

channels, such as ClCa and TRPM4 channels, in order to depolarize the cell and leading to further 

Ca2+ entry through VOCCs in a positive feedback mechanism235. It has been demonstrated that 

Ca2+ waves may underlie specific vasoconstrictive behaviours including the initiation of pressure-

induced myogenic tone229,236, and the initiation of vasomotion in response to tissue 

hypoperfusion227,237-239. 

1.3.2.3 Ca2+ influx pathways: In addition to Ca2+ release from the SR, extracellular Ca2+ 

entry through plasmalemmal Ca2+-permeable channels is a major source of cytoplasmic Ca2+ for 
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the initiation of smooth muscle contraction61,115. This involves a wide variety of ion channels, such 

as voltage-operated Ca2+ channels (VOCCs or CaV channels); transient receptor potential (TRP) 

channels; and ligand-gated Ca2+-permeable channels including the P2X family of purinergic 

receptors, and Orai channels61,115,117,187. 

VOCCs: The VOCC family of Ca2+ channels are arguably the most crucial driver of cellular 

Ca2+ dynamics in most cell types, and they are required for normal excitation-contraction coupling 

in all myocytes, including VSMCs187,240. Two main subtypes of VOCCs are expressed by VSMCs: 

L-type (LTCC or CaV1) and T-type (TTCC or CaV3) Ca2+
 channels, wherein the “L” and “T” stand 

for “long-lasting” and “transient”, respectively. Ca2+ currents through LTCCs and TTCCs are 

distinguishable from one another by several physiological and pharmacological features. The Ca2+ 

current through LTCCs is typified by a high voltage of activation, high unitary conductance, slow 

voltage-dependent inactivation, and a well-characterized blockade by selective antagonists 

including dihydropyridines (e.g. nifedipine), phenylalkylamines, and benzothiazepines240,241. In 

contrast, the Ca2+ current through TTCCs has a more hyperpolarized voltage of activation, low 

unitary conductance, rapid inactivation, and was initially found to be insensitive to classical LTCC 

inhibitors240,242,243. 

LTCCs are heteromultimeric channels containing a pore-forming α1 subunit regulated by 

accessory subunits β, α2δ, and γ (Figure 1.5). The α1 subunit contains four repeated domains (I-

IV), each with six transmembrane segments (S1-S6), surrounded by cytosolic N- and C-

termini187,240,244. This single subunit functions similarly to a homotetrameric ion channel, whereby 

a membrane-associated P loop linking S5 and S6 in each domain forms the central pore and 

selectivity filter of the channel245,246. The S4 segment of each domain contains four or five 

positively-charged arginine and lysine residues which act as a voltage sensor; membrane 
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depolarization reverses the surrounding electrical field, forcing the S4 segments outward to open 

the central pore247-250. Four subtypes of LTCCs have been identified, each containing distinct α1 

subunits encoded by separate genes sharing approximately 70% sequence homology: these are 

CaV1.1, 1.2, 1.3, and 1.4, containing α1S, α1C, α1D, and α1F, respectively244,251. Of these subtypes, 

cardiomyocytes and VSMCs primarily express CaV1.2 channels244,252. 

 

 

 

 

 

 

 

 

 

Figure 1.5: Membrane topology of VOCCs. Schematic diagram illustrating the pore-forming α1 

subunit and the accessory subunits β, α2δ, and γ. The α1 subunit assembles similarly to a 

homotetrameric ion channel, except that the ‘monomers’ are four domains of the same subunit. 

Each domain contains a P loop between TM segments S5 and S6 (green) which form the central 

pore of the channel. The S4 segment of each domain (yellow) forms the channel’s voltage sensor 

(from Catterall, 2011)240. 

 

The three auxiliary subunits regulate the channel’s voltage-dependence and gating, as well 

as facilitate interactions between VOCCs and other proteins240,253. The β subunit has no 

transmembrane segments and binds α1 at the cytoplasmic loop between domains I and II254. This 

subunit is responsible for increasing channel expression by activating nuclear transcription factors, 

as well as hyperpolarizing the voltage of activation and increasing the Po of the channel253,255. The 

α2δ subunit is composed of one gene product which is post-translationally proteolysed into two 
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subunits, α2 and δ, then joined by a single disulfide bond256. The δ portion is bound to the 

extracellular side of the plasma membrane via a glycophosphatidylinositol membrane 

anchor240,256,257, while the α2 portion has emerged as a putative pharmacological target for allosteric 

blockade of the channel258,259. Finally, the γ subunit is an integral protein with four transmembrane 

segments which mediates interactions with AMPA channels260. To date, four subtypes of the β 

subunit, four subtypes of the α2δ subunit, and eight subtypes of the γ subunit have been identified, 

which in combination confer a wide range of gating and regulatory properties to VOCCs256. 

Furthermore, both the α1 and auxiliary subunits of VOCCs experience a wide range of alternative 

splicing that is often tissue-specific240,255,256. Splicing of exons 1, 9, and 33 yields a VSMC-specific 

isoform of α1C which experiences decreased plasmalemmal insertion, and a voltage-dependence 

of activation that is shifted by approximately -15 mV versus cardiac α1C
261-264. Vascular CaV1.2 is 

activated by membrane depolarization above approximately -40 mV265,266. 

The activation of CaV1.2 channels in response to membrane depolarization in VSMCs is 

necessary for maintaining the tonic constriction of resistance arteries, thereby regulating systemic 

blood pressure. For example, mice with a tamoxifen-inducible smooth muscle knockout of CaV1.2 

exhibited a reduced mean arterial pressure (MAP), and pressure-induced myogenic tone was 

abolished in isolated resistance arteries267. Meanwhile, hypertension is associated with the 

upregulation of CaV1.2 channels268,269. Evidence in cell culture and animal models illustrates a 

positive feedback loop whereby membrane depolarization both acutely activates LTCCs and 

chronically upregulates their expression, leading to increased capacity for Ca2+ influx and 

contributing to prolonged depolarization270-272. Interestingly, the relative expression of LTCCs to 

TTCCs decreases along the vascular tree, to the point where CaV1.2 mRNA was undetectable in 
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arterioles less than 40 µm in diameter273-275. This suggests an increased role of TTCCs over LTCCs 

in regulating Ca2+ handling in the microvasculature versus in large, elastic vessels275,276. 

Three subtypes of TTCCs have been identified: CaV3.1, 3.2, and 3.3, composed of the pore-

forming subunits α1G, α1H, and α1I, respectively244,256. TTCCs are characterized by a more 

hyperpolarized voltage of activation and faster rate of voltage-dependent inactivation relative to 

other Ca2+ channels, and are thus well-suited to the generation of rhythmic action potentials240,244. 

Unlike LTCCs, TTCCs function as monomers and do not require the association of auxiliary β, 

α2δ, or γ subunits277,278; however, these auxiliary subunits likely modulate TTCCs by other 

mechanisms. β and α2δ subunits have been shown to upregulate functional CaV3 expression at the 

plasma membrane, but it is unclear whether any direct mechanisms of modulation take place279-

281. To date there is contradictory evidence for and against the modulation of the 

electrophysiological and gating properties of CaV3 by β, α2δ, and γ subunits278,281-285. 

VSMCs in rodents have been shown to express CaV3.1 and 3.2, whereas human VSMCs 

favor expression of CaV3.2 and 3.3 and only minimally express CaV3.1286,287. The physiological 

roles of these channels appear to vary, with CaV3.1 contributing to myogenic constriction287,288, 

and CaV3.2 apparently opposing myogenic constriction due to localization near RyRs and 

interaction with BKCa channels289,290. It is likely that TTCCs are a major contributor to Ca2+ influx 

in VSMCs, but distinguishing between LTCC and TTCC currents has been notoriously difficult 

due to the low selectivity of pharmacological VOCC blockers such as mibefradil286. 

Dihydropyridines, which inhibit LTCCs at nanomolar concentrations, were subsequently found to 

additionally inhibit TTCCs at micromolar concentrations291-293. Novel compounds derived from 

3,3’-diindolylmethane are currently under investigation as putative selective TTCC blockers294. 
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TRP channels: TRP channels are a superfamily of cation channels with 28 mammalian 

isoforms from separate genes divided into six subfamilies: canonical (TRPC1-7), vanilloid 

(TRPV1-6), melastatin (TRPM1-8), ankyrin (TRPA1), mucolipin (TRPML1-3), and polycystic 

(TRPP1-3)295,296. Each of these genes encodes a TRP subunit containing six TM helices (S1-S6) 

bounded by cytoplasmic N- and C-termini (Figure 1.6)295. Of the 28 isoforms, 27 are expressed 

in humans: TRPC2 is expressed in rodents but is only present as a pseudogene in humans297. 

Similarly to voltage-operated ion channels, TRP subunits form functional channels as homo- or 

heterotetramers, with a pore loop between S5 and S6 which creates the central pore and selectivity 

filter298,299. All TRP channels are Ca2+-permeable except for TRPM4 and TRPM5, which are 

activated by Ca2+, but are only permeable to monovalent cations295. Despite their structural 

similarity to voltage-operated channels, TRP channels do not contain a classical voltage-sensing 

domain in S4. Instead, they are sensitive to a wide range of other stimuli including temperature, 

pressure, mechanical stretch, shear stress, oxidative stress, and changes to the surrounding 

phospholipid environment, as well as modulation by endogenous and exogenous ligands and 

phosphorylation by protein kinases (reviewed by Yue et al., 2015)300. Due to a lack of conserved 

basic residues in S4, it was initially believed that TRP channels were voltage-insensitive; however, 

it has since been demonstrated that several isoforms (including TRPV1, TRPV3, TRPM4, TRPM5, 

and TRPM8) are weakly voltage-dependent301-306. Although TRP channels were first discovered 

decades ago307, crystal structures of assembled tetrameric TRP channels remained unsolved until 

only recently299,308-310, and the voltage-sensing residues have not yet been elucidated. However, in 

TRPV and TRPM channels, a conserved sequence of six basic amino acids in the C-terminal region 

called the “TRP box” may be necessary for voltage-dependent gating, as well as subunit 

assembly295,311-313.  
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Figure 1.6: Membrane topology of TRP channels. Schematic diagrams of the generalized 

structures of four TRP subfamilies: TRPC, TRPV, TRPM, and TRPA channels. All TRP channels 

contain six TM domains with a P loop between S5 and S6. Subfamilies are distinguishable by 

features of their N- and C-terminal domains which determine the functional properties of the 

channel (from Earley and Brayden, 2015)295. 

 

VSMCs express a wide range of TRP channels, including members of the TRPC, TRPV, 

TRPM, TRPA and TRPP subfamilies300,314. This section will highlight the TRP isoforms which, 

to date, have been found to be the most influential in modulating the contractile state of VSMCs. 

Firstly, from the TRPC subfamily, VSMCs have been shown to express all isoforms except 

TRPC2300,315,316. TRPC channels are non-selective cation channels with a slight preference for Ca2+ 

permeability, with selectivity ratio 𝑃Ca2+ 𝑃Na+⁄  ranging from approximately 1 to 5 depending on 

the isoform316. TRPC isoforms share complex relationships of heteromultimerization; for example, 

TRPC1 forms heterotetramers with TRPC4 and TRPC5317,318, but also with isoforms outside of its 
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subfamily, such as TRPV4319. This feature has made it difficult to isolate the functions of 

individual TRPC isoforms. The main role of TRPC channels is facilitating receptor-operated Ca2+ 

entry (ROCE), whereby the activation of Gq/11PCRs results in the cleavage of PIP2 by PLC into 

IP3 and DAG; the latter of which directly binds TRPC3/C6/C7 at S6 to cause channel opening and 

cation influx320-323. TRPC1/C4/C5 channel activation also depends upon Gq/11PCR activation, but 

this is not due to direct activation by DAG and instead appears to be mediated by IP3R 

activation300,324,325. Furthermore, the C-terminus of TRPC channels contains a CaM and IP3R-

binding (CIRB) domain326; the current model suggests that IP3 induces direct physical coupling of 

IP3R1 and TRPC3, leading to cation influx in VSMCs and vasoconstriction that is independent of 

IP3R-mediated Ca2+ release from the SR327-329. Additionally, TRPC channels were once thought to 

mediate store-operated Ca2+ entry (SOCE), whereby depletion of Ca2+ from the SR elicits 

extracellular Ca2+ influx in order to replenish SR Ca2+. This role of TRPC channels remains 

controversial295,314; there is a body of evidence which contraindicates the involvement of TRPC in 

SOCE, such as the finding that a TRPC3 KO and a TRPC1/C4/C6 triple-KO had no effect on 

SOCE in mouse Purkinje neurons330. Also noteworthy is the activation of TRPC6 by mechanical 

stimuli, putatively suggesting the involvement of TRPC6 in pressure-induced myogenic 

vasoconstriction331,332. 

TRPV channels are also crucial modulators of the contractile state of VSMCs. Of the six 

mammalian TRPV isoforms, VSMCs express TRPV1-4295,333,334, but the most well-characterized 

of these is TRPV4187. TRPV4 channels have a higher preference for Ca2+ conduction (𝑃Ca2+ 𝑃Na+⁄  

of 6-10) and a higher unitary conductance than TRPC channels, and are activated by a variety of 

stimuli including Gq/11PCR signalling, arachidonic acid, and epoxyeicosatrienoic acids 

(EETs)187,295,335. In VSMCs, activation of TRPV4 facilitates vasodilation and negative feedback 
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inhibition of vasoconstrictor stimuli336,337. This occurs when activation of the angiotensin II type 

1 receptor (AT1R), a GqPCR, increases production of DAG, which in turn activates PKC. PKC 

then phosphorylates TRPV4, increasing its Po; Ca2+ influx through TRPV4 activates colocalized 

RyRs, causing a Ca2+ spark (see §1.3.2.2) that results in the activation of hyperpolarizing BKCa 

channels295,336,337. However, TRPV4 activity likely precipitates different effects in the contexts of 

different microdomains within VSMCs, as evidenced by a recent study wherein an inducible, 

SMC-specific TRPV4 KO counterintuitively lowered systemic blood pressure in mice338. 

The expression of most TRPM isoforms has been detected in VSMCs333,339, but TRPM4 

and TRPM8 appear to have the greatest influence on vascular function314,339,340. As mentioned 

earlier, TRPM4 is Ca2+-activated and weakly voltage-dependent, but not Ca2+-permeable. Instead, 

TRPM4 activation allows an influx of Na+ which depolarizes the cell membrane potential and 

activates LTCCs, which then elicit whole-cell depolarization and smooth muscle contraction314,341. 

The [Ca2+]i necessary for TRPM4 activation is extremely high, at approximately 10-100 µM (cf. 

VSMC resting [Ca2+]i of 100 nM); however, this is solved by Ca2+ compartmentalization whereby 

TRPM4 channels are colocalized with IP3Rs and activated by discrete Ca2+ puffs214,215. This 

mechanism appears to underlie the development of pressure-induced myogenic tone in a process 

that is co-dependent upon TRPC6 and PLCγ1 activation342. TRPM8 exhibits higher levels of 

expression in VSMCs than TRPM4, but its contribution to whole-vessel function in vivo is less 

clearly understood333,339. TRPM8 is mildly selective for Ca2+ conductance, activated by cold 

temperatures and agonists such as menthol and icilin, and notably expressed at both the 

plasmalemmal and SR membranes339,343. Using wire myography, Johnson et al. (2009)344 found 

that TRPM8 activation elicited vasodilation in precontracted arteries, but elicited vasoconstriction 

in resting arteries. However, Melanaphy et al. (2016)345 later demonstrated that experimental 
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concentrations of menthol and icilin used to induce TRPM8 currents also act off-target to inhibit 

LTCCs. They propose that LTCC inhibition may be responsible for the vasodilatory effects that 

had previously been attributed to TRPM8 activation which were observed in many studies343,345-

347. Despite this, studies of TRPM8 function which avoid the use of non-selective agonists are still 

inconclusive whether TRPM8 activation precipitates vasoconstriction348 or vasodilation349, 

suggesting that its role is likely context-dependent. 

Purinergic receptors: Purinergic (P) receptors constitute another important family of 

receptors contributing to Ca2+ influx in VSMCs. The P2 superfamily of purinergic receptors 

comprises the ionotropic P2X receptors, which are non-selective cation channels activated by 

ATP; and the metabotropic P2Y receptors, which are GPCRs activated by several purine and 

pyrimidine nucleotides (reviewed by Ralevic and Dunn, 2015)350. VSMCs express many P2Y 

subtypes, including several vasoconstrictive subtypes such as P2Y1, P2Y2, P2Y4 and P2Y6 that are 

Gq/11-coupled351,352. These receptors can indirectly promote Ca2+ influx and subsequent 

vasoconstriction by increasing production of DAG and IP3 by PLC, thereby contributing to both 

TRP channel activation and Ca2+ release from the SR353.  

In contrast, the P2X family mediate ATP-induced Ca2+ influx directly354. There are seven 

isoforms of P2X subunits (P2X1-P2X7) produced by separate genes; each contains two TM 

domains linked by an extracellular loop350,355. P2X channels assemble as either homo- or 

heterotrimers, containing a central pore formed by TM2 of each subunit, and three ATP binding 

sites in the extracellular domain of the channel355,356. Resistance artery VSMCs predominantly 

express P2X1 homomers and P2X1/P2X4 heteromers, with additional evidence for lesser 

expression of P2X5 and P2X7 subunits depending on the vascular bed357-362. Heteromerization 

yields P2X receptors with different kinetic and functional properties, allowing them to fulfill a 
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wider range of tissue-specific roles354. For example, P2X1 homomers are fast activating and 

desensitizing, whereas P2X4 homomers are slow activating and desensitizing; accordingly, 

P2X1/P2X4 heteromers exhibit the slow kinetics of the P2X4 channel with the pharmacological 

profile of the P2X1 channel363,364. In VSMCs, activation of P2X channels by ATP raises [Ca2+]i by 

two routes of Ca2+ influx: direct influx via P2X, and activation of LTCCs in response to the P2X-

induced membrane depolarization365. Ca2+ entry through these channels elicits CICR from the SR 

through IP3Rs to elicit vasoconstriction366. Sukhanova et al. (2013) found that in guinea pig 

mesenteric artery VSMCs, the ATP-induced increase in [Ca2+]i was approximately 11% due to 

direct Ca2+ entry through P2X, 8% due to direct Ca2+ entry through LTCCs, 25% due to P2X-

induced CICR, and 56% due to LTCC-induced CICR365. Perivascular sympathetic nerves which 

innervate resistance arteries co-store and co-release NA and ATP367,368, and P2X channels have 

been found to be localized in clusters at sympathetic varicosities369, underscoring a prominent role 

for P2X in VSMCs as a mediator of nerve-evoked vasoconstriction and autoregulation of blood 

flow370,371. In resistance arteries, the effects of ATP at P2X channels and NA at α-adrenoceptors 

have been found to be synergistic rather than simply additive372,373. 

Orai channels: The most recently discovered family of ion channels responsible for 

mediating Ca2+ influx in VSMCs are the Orai channels (which is not an acronym, but rather a name 

derived from the Horae of Greek mythology). Their discovery was preceded by the 

characterization of an inward Ca2+ current elicited by depletion of intracellular Ca2+ stores, termed 

the Ca2+-release-activated Ca2+ (CRAC) current (ICRAC)374. The pore-forming protein responsible 

for mediating ICRAC was discovered over a decade later in 2006 as the plasmalemmal channel 

subunit Orai1375-377. The Orai subunit is a 4-TM protein with cytoplasmic N- and C-termini378-380. 

Three isoforms of the Orai subunit (Orai1-3) are encoded by three separate genes and form 
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hexameric, highly selective CRAC channels with heteromerization that does not appear to be 

preferential for any particular combination or order of subunits380-383. Expression of both mRNA 

and protein of all three Orai subtypes has been detected in VSMCs384,385, although Orai1 is much 

more well-studied than Orai2 or Orai3. CRAC channels, along with stromal interaction molecules 

(STIM) 1 and 2, are the most prominent mediators of SOCE386-388. STIM is a single TM protein 

ubiquitously expressed in many cell types that is inserted in the ER or SR membrane389-391. The 

ER-lumenal N-terminus contains two EF-hand domains and a sterile α-motif (SAM) domain which 

together compose the Ca2+ sensor of STIM392,393. Upon depletion of Ca2+ from the ER, apoSTIM 

undergoes oligomerization, forming a cluster of STIM proteins which translocates to nearby 

plasmalemma-ER junctions to facilitate its direct interaction with Orai394-396. STIM allosterically 

stabilizes the open conformation of CRAC channels by a mechanism that is yet to be fully 

elucidated; interaction at a STIM binding site on the C-terminus of Orai is known to be necessary, 

but an additional binding site on the N-terminus may be involved as well (reviewed by Yeung et 

al., 2020)378.  

Under physiological conditions, STIM1 appears to be a more prominent mediator of SOCE 

events than STIM2, whereas STIM2 is suspected to have a larger role in maintenance of basal Ca2+ 

levels due to its higher sensitivity to changes in [Ca2+]ER
388,397,398. Interestingly, STIM2 has been 

shown to be upregulated in VSMCs under pathophysiological conditions such as pulmonary 

arterial hyptertension385,399. This is consistent with evidence demonstrating that SOCE is absent in 

quiescent VSMCs but active in VSMCs undergoing proliferation and migration such as occurs in 

vascular remodeling386,400. Thus, the physiological relevance of SOCE to VSMC contractility is 

controversial, and the prevailing view suggests that SOCE has a greater role in VSMC proliferation 

and vascular remodeling than in regulating VSMC contractility327,386,399-404. Nevertheless, recent 
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evidence in SMC-specific STIM1 KO mice demonstrates that the absence of STIM1 significantly 

impairs both myogenic tone and PE-induced vasoconstriction in isolated segments of aorta as well 

as cerebral and mesenteric arteries without altering VOCC function388,405. 

In addition to CRAC channels, Orai subunits can form arachidonic acid-regulated Ca2+ 

(ARC) channels which are store-independent406. Unlike hexameric CRAC channels, ARC 

channels are a pentameric formation containing three Orai1 subunits and two Orai3 subunits407,408. 

Little is known about the extent to which these channels contribute to VSMC contractility; 

however, evidence indicates that they are present in rat aortic VSMCs and mediate a leukotriene 

C4-induced Ca2+ current that is Orai1/3- and STIM1-dependent409,410. 

1.3.2.4 Ca2+ signals mediated by influx from the extracellular space: As described 

previously, two main varieties of Ca2+ signals are mediated by Ca2+ influx pathways rather than 

Ca2+ release from the SR: these are junctional Ca2+ transients and Ca2+ sparklets. 

Junctional Ca2+ transients: Sympathetic perivascular nerves are responsible for the 

simultaneous release of three vasoconstrictive co-transmitters at sympathetic varicosities: NA, 

ATP, and neuropeptide Y (NPY)411-413. Postjunctionally, NA acts at metabotropic α1-

adrenoceptors to increase production of IP3 and produce Ca2+ waves (See §1.3.2.2)234,414, and NPY 

acts at metabotropic Y1 and Y5 receptors to modulate the frequency of NA-evoked Ca2+ 

waves415,416. In contrast, ATP acts at ionotropic P2X receptors to elicit short-lived, non-

propagating Ca2+ influx events called junctional Ca2+ transients (JCaTs)417,418. JCaTs are 

distinguishable from the adrenergic response by pharmacological tools, as they are abolished by 

the P2X antagonist suramin and insensitive to the α1 antagonist prazosin417. Additionally, a P2X1 

KO mouse model has demonstrated that P2X1 receptors are necessary for the observation of JCaTs 

in isolated mesenteric arteries evoked by either electrical field stimulation or the P2X agonist α,β-
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methylene-ATP419. JCaTs have a larger spread and longer t1/2 than RyR-mediated Ca2+ sparks417, 

and are capable of initiating vasoconstriction418,419. 

Ca2+ sparklets: The term “Ca2+ sparklet” refers to local increases in [Ca2+]i caused by Ca2+ 

influx through individual or small clusters of plasmalemmal Ca2+-permeable ion channels, the two 

most prominent being LTCCs and TRPV4 channels71,115. Despite their similar names, Ca2+ 

sparklets are unrelated to RyR-mediated Ca2+ sparks.  

Whereas whole-cell depolarization of VSMCs leads to extensive opening of LTCCs to 

cause a global increase in [Ca2+]i and precipitate vasoconstriction267,420,421, LTCC sparklets are 

constitutive, and their frequency and amplitude are modulated by local changes in membrane 

potential (Figure 1.7)422,423. Additionally, LTCC sparklet activity is bimodal, depending upon 

recruitment of PKCα to LTCCs by a signalling complex formed by a plasmalemmal scaffolding 

protein named A-kinase anchoring protein 5 (AKAP5)422,424,425. As one of over 50 known AKAP 

members, AKAP5 is a family comprising three orthologs: bovine AKAP75, rodent AKAP150 and 

human AKAP79 (reviewed by Guo et al., 2015)426. Without the binding of the AKAP5 complex, 

LTCC sparklets display a low-activity state characterized by stochastic, single-channel openings 

with low amplitude and short duration423-425. Conversely, both AKAP5 and PKCα are necessary 

for a high-activity state of persistent LTCC sparklets, as demonstrated by Navedo et al. (2008) in 

VSMCs from AKAP150 KO mice424. The AKAP5 complex also binds PKA and protein 

phosphatase-2B, also called calcineurin (CaN)71,427. PKA canonically phosphorylates two 

residues, Ser1700 and Ser1928, in the C-terminus of the CaV1.2 α1C subunit in order to modulate 

channel activity427-430. The mechanism by which PKCα increases LTCC sparklets has not been 

directly shown; however, biochemical evidence shows that PKC is capable of phosphorylating 

Ser1928431, and ex vivo evidence shows a correlation between enhanced PKC activity and high 
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levels of α1C phosphorylation in aortic VSMCs from a mouse model of coronary spastic angina432. 

In the latter study, administration of the LTCC-blocker diltiazem decreased both PKC activity and 

α1C phosphorylation without affecting PKA activity. Furthermore, AKAP5-bound CaN opposes 

the effects of PKC and PKA on CaV1.2 by dephosphorylating α1C at Ser1928, but not 

Ser1700430,433. Taken together, these data suggest that PKCα may increase LTCC sparklets by 

phosphorylation at Ser1928, although it is unclear whether or not the mechanism is direct. 

TRPV4 sparklets are also regulated by the AKAP5 signalling complex (Figure 1.7)336,434. 

The phosphorylation of TRPV4 by both PKC and PKA at several specific residues elicits an 

increase in channel activity and flux435. In contrast to vasoconstrictive LTCC sparklets, TRPV4 

sparklets mediate vasodilation due to the colocalization of TRPV4 channels near RyRs and BKCa 

channels as discussed earlier (§1.3.2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Compartmentalization of Ca2+ signalling in vascular smooth muscle. Schematic 

diagram illustrating the relationships of Ca2+ release and influx events in VSMCs. LTCC and 

TRPV4 sparklets are regulated by the AKAP5 signalling complex. Due to colocalization, TRPV4 

sparklets can result in RyR-mediated Ca2+ sparks, subsequently activating BKCa and 

hyperpolarizing the cell membrane potential (from Brozovich et al., 2016)71. 
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1.3.3 Ca2+ sensitization of the contractile apparatus in vascular smooth muscle cells 

Over three decades ago, the observation was made in SMCs that GPCR agonists produce 

a greater ratio of contractile force to Ca2+
 influx than that produced by depolarization induced by 

high extracellular [K+]436-438. This discrepancy is due to Ca2+ sensitization, a process wherein 

contractile agonists at metabotropic receptors precipitate downstream effects which increase 

contractile force without further increasing [Ca2+]i
37,98.  

The main mechanism underlying Ca2+ sensitization is the inhibition of MLCP439-441, which 

leads to increased phosphorylation of myosin RLC and prolongation of cross-bridge cycling (see 

§1.3.1). Two main pathways contribute to MLCP inhibition: the DAG-PLC-PKC pathway and the 

RhoA pathway (Figure 1.8)37. Firstly, agonism at Gq/11PCRs such as α1-adrenoceptors activates 

PLCβ, causing an increase in production of DAG, which subsequently activates classical PKC 

isoforms α and β, as well as Ca2+-independent novel PKC isoforms δ and ε102,442. As described 

earlier (§1.3.1), PKC activates CPI-17 by phosphorylating it at Thr38; CPI-17 then binds MLCP 

as a false substrate, inhibiting its ability to dephosphorylate myosin RLC103,104.  

The RhoA pathway is activated by agonism at G12/13PCRs; the Gα12/13 subunit couples to a 

range of receptors including the α1-adrenoceptor, AT1, P2Y, 5-HT2C, ETA, and sphingosine-1-

phosphate receptors, among others443-446. Rho (from Ras homolog) proteins are a subfamily within 

the Ras (from rat sarcoma virus) superfamily of ubiquitously expressed small GTPases447. The α-

subunits of G12/13PCRs directly activate Rho guanine nucleotide-exchange factors (RhoGEFs)448-

451, which in turn catalyze the conversion of inactive, GDP-bound RhoA into active, GTP-bound 

RhoA452. RhoA-GTP then binds to Rho kinase (ROCK1 and 2), which activates ROCK by 

dissociating its autoinhibitory C-terminal domain from its catalytic N-terminal domain453. Finally, 

ROCK phosphorylates the myosin phosphatase target subunit (MYPT1) of MLCP at Thr696 and 
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Thr853103,454. In particular, the phosphorylated Thr696 site on MYPT1 autoinhibits the catalytic 

subunit of MLCP to impair its phosphatase activity455, thereby prolonging phosphorylation of 

myosin RLC. In addition to phosphorylating MYPT1, ROCK feeds into the DAG-PLC-PKC 

pathway by phosphorylating CPI-17 in the same manner as PKC, albeit to a lesser extent than 

PKC440,456-458. The relative contributions of the DAG-PLC-PKC pathway and the RhoA pathway 

to VSMC Ca2+ sensitization vary along the vasculature: α1A-adrenoceptors and the DAG-PLC-

PKC pathway predominate in resistance arteries, whereas α1D-adrenoceptors and the RhoA 

pathway predominate in large, elastic arteries459,460. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Ca2+ sensitization pathways. Schematic diagram illustrating the DAG-PLC-PKC and 

RhoA pathways of Ca2+ sensitization in VSMCs. The DAG-PLC-PKC pathway is more active in 

resistance arteries (R), and the RhoA pathway is more active in elastic arteries (E). Both of these 

GPCR-mediated pathways lead to inhibition of MLCP activity, prolonging phosphorylation of the 

myosin RLC without further increase in [Ca2+]i (from Murtada and Humphrey, 2018)460. 
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Although more controversial than the well-established model of GPCR-mediated Ca2+ 

sensitization, there are also believed to be mechanisms of depolarization-mediated Ca2+ 

sensitization which were initially overlooked461. CaMKII is activated by KCl-induced Ca2+ influx, 

and retains its activity after the removal of Ca2+/CaM105. Additionally, CaMKII interacts with the 

canonical Ca2+-sensitization pathways; Sakurada et al. (2003) found in rabbit VSMCs that 

pharmacological inhibition of CaMKII reduced Rho activation and impaired KCl-induced 

contraction, but not ionomycin-induced contraction462. CaMKII is also proposed to activate 

extracellular-regulated kinases (ERKs)108 which in turn activate MLCK and increase myosin RLC 

phosphorylation463. 

Ca2+ sensitization is necessary for the development of myogenic tone in isolated arteries ex 

vivo464-466, and correspondingly is a crucial component in the maintenance of vascular tone under 

physiological conditions467,468. In excess, however, Ca2+ sensitization contributes to the 

pathophysiology of hypertension103,465. Many animal models of hypertension have demonstrated 

an associated increase in VSMC Ca2+ sensitization due to increased activity and/or expression of 

PKC, CPI-17, RhoA and ROCK. These models include spontaneously hypertensive rats 

(SHRs)467,469,470, salt hypertension470, chronic artery occlusion471,472, hypercaloric challenge-

induced prediabetes473, and many others (reviewed by Yang and Hori, 2021)439. 

1.3.4 Myogenic reactivity 

First described in 1902 by Bayliss474, myogenic reactivity, or the myogenic response, is a 

property of small resistance arteries whereby they constrict in response to increases in transmural 

pressure and dilate in response to decreases in transmural pressure475. The most prominent 

purposes of this mechanism are firstly to establish basal vascular tone, and secondly to maintain a 

constant blood flow despite changes in blood pressure476. In response to increases in blood 
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pressure, resistance arteries are able to increase resistance to prevent a spike in blood flow which 

could damage downstream arterioles and capillaries476. The myogenic response follows a well-

characterized biphasic pattern (Figure 1.9) and has been recorded in a wide variety of vascular 

beds475,477-482. Moreover, the role of myogenic reactivity in pathophysiological states is 

controversial: some studies suggest that vascular dysfunction in disease states such as hypertension 

and diabetes mellitus may be associated with an increase in myogenic tone483-487, though this is 

contradicted by other results wherein myogenic reactivity was unaffected or decreased488-490. 

 

 

 

 

 

 

 

 

Figure 1.9: Pressure-diameter relationship in the myogenic response in arterioles. 

Generalized graph illustrating the pressure-diameter relationship observed in arterioles in the 

presence (active) and absence (passive) of Ca2+ in the organ bath media. Myogenically active 

arteries will passively dilate under low intralumenal pressure, and will gradually constrict as 

intralumenal pressure increases. In the absence of Ca2+ or presence of VOCC inhibitors, arterial 

diameter increases as pressure increases (from Davis and Hill, 1999)475. 

 

The underlying mechanisms responsible for myogenic reactivity are still unclear. 

Currently, the “wall tension hypothesis” first put forward in 1981 by Burrows and Johnson 

suggests that pressure-induced increases in smooth muscle tension cause depolarization in 

VSMCs, leading to Ca2+ influx through VOCCs and precipitating vasoconstriction475,491. This is 

corroborated by findings that the development of myogenic tone is accompanied by VSMC 
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depolarization, and is impaired by small-molecule VOCC blockers479,492-494. The mechanism by 

which smooth muscle tension results in a depolarization of membrane potential has not been 

elucidated, but is hypothesized to be mediated by an unidentified mechanosensor in the VSMC 

plasmalemma476. Several candidates have been proposed, including integrins, GPCRs, and stretch-

activated ion channels such as certain TRP channels (reviewed by El-Yazbi and Abd-Elrahman, 

2017; and Davis et al., 2023)465,495. Although most recent evidence suggests that TRP channels 

themselves are not mechanosensitive338,496-498, it is clear that many TRP channels are crucial 

mediators of mechanically-induced cation entry in VSMCs314,499. In particular, TRPM4 has 

emerged as a crucial component in the development of myogenic tone. For example, in rat cerebral, 

mesenteric, and skeletal muscle arteries, application of the TRPM4 inhibitor 9-phenanthrol was 

shown to eliminate pressure-induced depolarization of VSMCs and abolish the myogenic 

response500,501. Suppression of TRPM4 expression using an antisense oligodeoxynucleotide has 

also been demonstrated to inhibit myogenic tone by 70-85% in rat cerebral arteries502. 

Furthermore, single-channel recordings indicate that TRPM4 is activated by stretch in cerebral 

artery myocytes, albeit likely through an indirect mechanism, as it was found to be dependent upon 

SR Ca2+ release503. TRPM4 activity has also been suggested to couple with mechanosensitive P2Y4 

and P2Y6 receptors504. Lastly, a recent study supports both the role of TRPM4 and the view that 

myogenic reactivity is increased in vascular dysfunction: Gong et al. (2019) found that TRPM4 

was upregulated in rat cerebral arteries after induced subarachnoid hemorrhage, increasing 

myogenic tone and reducing cerebral blood flow505. 

1.4 Endothelium-dependent modulation of resistance artery diameter 

Prior to the 1970s, the vascular endothelium was thought to only function as a physical 

barrier separating VSMCs from the blood24. However, in 1980, Furchgott and Zawadzki published 
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a seminal paper demonstrating that removing the endothelium, either mechanically or using 

collagenase, eliminated ACh-induced vasodilation in isolated segments of rabbit aorta506. This 

finding provided the first example of endothelium-dependent vasodilation and led to the discovery 

of NO as a crucial vasodilator produced by ECs507,508. Thus opened a new field of research into 

the functional role of the vascular endothelium in health and disease. Decades later, the 

endothelium is now understood as an endocrine organ which regulates VSMC contractility both 

by electrical coupling through MEGJs and by secreting diffusible vasodilators and 

vasoconstrictors24. Both of these mechanisms are obligately initiated by an increase in the [Ca2+]i 

of ECs509. 

1.4.1 Ca2+ signalling in endothelial cells 

Just as in VSMCs, ECs depend upon compartmentalized Ca2+ signalling for mediating 

cellular functions; these include the modulation of not only vascular diameter509,510, but also 

endothelial permeability511,512, inflammation513, platelet function514 and angiogenesis515. Again 

similarly to VSMCs, there are two sources from which free Ca2+ can enter the cytoplasm of ECs 

to cause an increase in [Ca2+]i: intracellular stores (i.e. the ER and mitochondria), and the 

extracellular space. However, unlike VSMCs, endothelial cells do not express voltage-operated 

Ca2+, Na+ or K+ channels, making them nonexcitable cells516. Thus, endothelial Ca2+ signalling is 

typically initiated by GPCR agonism and TRP channel activation rather than changes in membrane 

potential509,517. While increases in [Ca2+]i in VSMCs precipitate depolarization of membrane 

potential and activation of the contractile apparatus, increases in [Ca2+]i in ECs are associated with 

hyperpolarization of membrane potential due to the activation of small- and intermediate-

conductance Ca2+ activated K+ channels (KCa2.1-3 or SKCa, and KCa3.1 or IKCa, respectively; see 

§1.4.3), producing a net vasodilatory effect516,517. 



40 

 

 1.4.1.1 Release of Ca2+ from intracellular stores: The visualization of intracellular Ca2+ 

dynamics proved to be more difficult in vascular ECs than in VSMCs due to the relative 

inaccessibility of the intimal layer. Thus, the first characterization of Ca2+ release events from the 

ER of ECs was published relatively recently by Ledoux et al. in 2008518. These Ca2+ release events 

were termed Ca2+ pulsars, which are similar to, but spatiotemporally distinct from, both Ca2+ 

sparks and Ca2+ puffs in VSMCs518,519. Ca2+ pulsars are constitutively active, spatially fixed Ca2+ 

release events from the ER through IP3Rs, which were found to be localized to myoendothelial 

projections (MEPs)518. They are unresponsive to RyR modulators ryanodine518,519 and caffeine520, 

but decreased by IP3R and PLC inhibitors518. Moreover, pulsar frequency is increased in response 

to Gq/11PCR agonist-evoked increases in IP3, such as by ACh at M3 receptors518 and ATP at P2Y1 

receptors521. Pulsars may be propagated by CICR to elicit a global increase in [Ca2+]i as either 

synchronous or asynchronous Ca2+ waves, which are increased in both number and frequency by 

Gq/11PCR agonists518,522. Even without propagation, the localization of Ca2+ pulsars to MEPs 

allows for coupling with IKCa channels to facilitate the development of endothelium-dependent 

hyperpolarization and subsequent vasodilation (see §1.4.3)518,523. Due to the lack of evidence for 

expression of functional RyRs in resistance artery ECs, Ca2+ pulsars are thought to be the 

predominant mechanism of Ca2+ release from the ER523. 

 While the ER accounts for approximately 75% of the Ca2+ storage capacity of ECs, 

mitochondria are responsible for the remaining 25%524. It is generally accepted that mitochondria 

in ECs cooperate with the ER and act as a buffer to prevent an overload of cytosolic Ca2+, just as 

they do in VSMCs525. Interestingly, mitochondria have been shown localized to the base of 

MEPs526, where their uptake of free Ca2+ may limit high [Ca2+]-induced inhibition of IP3Rs (based 

upon evidence in colonic SMCs)213,527. Some studies suggest that mitochondria exhibit a 
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mechanism of CICR via the permeability transition pore524,528, but there is no evidence that this 

mitochondrial Ca2+ release contributes to EC membrane potential hyperpolarization or 

vasodilation. Conversely, recent evidence suggests that the main role mitochondria serve in 

endothelial Ca2+ signalling is as producers of ATP rather than as a source of Ca2+ release. ATP is 

an obligate factor in the activation of IP3Rs, and thus decreases in ATP production result in 

decreased Ca2+ release from the ER529. Furthermore, mitochondria have recently been implicated 

in shear stress-induced Ca2+ influx in ECs. It has been demonstrated that shear stress evokes an 

increase in ATP production by mitochondria, subsequently activating P2X4 and P2Y2 purinergic 

receptors to allow Ca2+ influx530,531. The mechanism by which mitochondria respond to mechanical 

stress remains unclear, but may involve the shear stress-evoked internalization of plasmalemmal 

cholesterol532. 

 1.4.1.2 Ca2+ influx pathways: TRP channel-mediated Ca2+ sparklets (as described in 

§1.3.2.4) are the predominant Ca2+ influx signal in ECs. The most well-characterized of these is 

the TRPV4 sparklet (reviewed by Chen and Sonkusare, 2020)499. TRPV4 is a cation channel which 

is activated by IP3
533-536, shear stress537,538, and changes in intracellular osmotic pressure539; 

however, it is thought not to be a direct mechanosensor, but an important mediator in 

mechanosensitive pathways338,496. TRPV4 sparklets in ECs have been implicated in both NO 

production and KCa activation leading to endothelium-dependent vasodilation434,536-538,540,541. 

Unlike Ca2+ pulsars, which occur mainly at MEPs, TRPV4 sparklets are approximately evenly 

distributed between MEPs (39%), ends of cells (31%), and non-domain-associated locations 

(30%)540. ECs also express AKAP5, which is highly localized to MEPs434,536,540. Thus, MEP-

associated TRPV4 channels are associated with the AKAP5 complex, which facilitates the 

activation of TRPV4 by AKAP5-bound PKC434. Muscarinic receptor stimulation selectively 
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activates MEP-associated TRPV4 channels in a PKC- and AKAP5-dependent manner. Like Ca2+ 

pulsars, the localization of TRPV4 channels in MEPs allows TRPV4 sparklets to couple with IKCa 

channels in order to hyperpolarize the EC and contribute to vasodilation434,523,540,542. Non-MEP-

associated TRPV4 channels contribute to endothelium-dependent vasodilation as well, but through 

the activation of eNOS rather than KCa channels543. In order to be visualized, endothelial TRPV4 

sparklets had to be isolated from Ca2+ pulsars by inhibiting SERCA and/or PLC540. However, when 

the ER is not depleted of Ca2+, activation of TRPV4 may produce an increase in global [Ca2+]i, 

suggesting cooperation between TRPV4 sparklets and IP3R pulsars540,542.  

Some counter-evidence contradicts TRPV4 sparklets as a significant contributor to 

endothelium-dependent vasodilation: Pankey et al. (2014) found that in vivo administration of the 

TRPV4 antagonist GSK-219387 did not affect ACh-induced vasodilation in rats544. Hong et al. 

(2018) showed in mice that a global TRPV4 KO did not alter resting systemic blood pressure vs 

control536. However, the TRPV4 KO mice did exhibit a significantly greater increase in blood 

pressure than control mice in response to intraperitoneal phenylephrine, suggesting that TRPV4 

sparklets may facilitate negative feedback inhibition of vasoconstriction rather than directly 

evoking vasodilation. 

 Several other TRP channels also contribute to Ca2+ influx and dynamics in ECs. 

Pharmacological inhibition and knockout of TRPC3 channels both attenuate endothelium-

dependent hyperpolarization and vasodilation545-548. Moreover, evidence indicates that TRPC3 is 

involved in mediating shear stress-induced vasodilation. For example, in vivo administration of a 

TRPC3 antisense oligonucleotide in rats produced a modest but statistically significant decrease 

in flow-induced vasodilation545. However, there is limited evidence in support of or against TRPC3 

itself being a mechanosensor. Overexpression of TRPC3 in the ND-C hybrid neuronal cell line 
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produced a mechanically-evoked current, but this was not reproducible in other cell lines549. Two 

other TRP channels, TRPV3550 and TRPA1551, may facilitate Ca2+ entry events similar to TRPV4 

sparklets and have been shown contribute to endothelium-dependent vasodilation in cerebral 

arteries. 

1.4.2 Endothelium-derived NO 

As stated earlier, increases in [Ca2+]i in ECs are associated with vasodilation. This is due 

to the action of Ca2+ at several key effectors, which in most cases is mediated by Ca2+/CaM rather 

than free Ca2+ ions509. One of two main effectors responsible for endothelium-dependent 

vasodilation is endothelial nitric oxide synthase (eNOS or NOS3), an oxidoreductase which 

catalyzes the conversion of L-arginine and O2 into citrulline and NO552-556. eNOS is one of three 

mammalian isoforms of nitric oxide synthase (NOS) encoded by three separate genes, along with 

neuronal NOS (nNOS or NOS1) and inducible NOS (iNOS or NOS2)552,553,557. eNOS and nNOS 

are constitutively expressed in vascular ECs and neurons respectively, while iNOS expression is 

an immune function evoked by bacterial lipopolysaccharides and cytokines552,557. The induction 

of iNOS primarily occurs in macrophages, but has been shown to occur in many other cell types 

as well558. 

All three NOS isoforms catalyze the same reaction, requiring L-arginine as the substrate; 

molecular oxygen and reduced nicotinamide-adenine-dinucleotide phosphate (NADPH) as co-

substrates; and flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R)-

5,6,7,8-tetrahydro-L-biopterin (BH4) as cofactors552,553,556,559. The active form of NOS is a 

homodimer in which each NOS monomer requires activation by a Ca2+/CaM group553. The NOS 

monomer comprises an N-terminal oxygenase domain which binds Fe3+-protoporphyrin IX 

(heme), BH4, and L-arginine; and a C-terminal reductase domain which binds FAD, FMN, and 
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NADPH560-562. The Ca2+/CaM binding site is located in the linker region between the two domains. 

Additionally, the dimer interface in the NOS complex contains a zinc ion, tetrahedrally coordinated 

by a CXXXXC motif in the oxygenase domain of each NOS monomer563. The role of this zinc 

center is structural rather than catalytic, stabilizing both the dimerization of NOS and the structural 

integrity of the BH4 binding site563,564. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Schematic diagram of eNOS electron transfer states. Diagrams of the eNOS 

electron transfer pathway. Ca2+/CaM binds to the linker region in each eNOS monomer (input 

state). NADPH donates an electron to FAD and FAD then donates the electron to FMN 

(calmodulin-docked state). FMN reduces the ferric heme of the opposite eNOS monomer (output 

state). This allows O2 to bind to heme to initiated NO synthesis (from Smith et al., 2013)565. 

 

The biosynthesis of NO by NOS is preceded by a series of electron transfers. An electron 

is first donated by NADPH to FAD and subsequently transferred to FMN552,556. Next, the electron 

is transferred from the FMN in the reductase domain to the heme in the oxygenase domain of the 

opposite monomer (Figure 1.10)552,565,566. The binding of Ca2+/CaM to NOS inhibits suppression 
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of the electron transfer between the flavins, and is necessary for the cross-subunit transfer from 

FMN to heme556,565-570. The reduction of heme facilitates O2 binding at the heme, allowing NO 

biosynthesis to begin571. The oxidation of L-arginine occurs in two steps, with N-hydroxy-L-

arginine (NOHA) as an intermediate before citrulline and NO are produced556,572. The role of BH4 

was originally thought to be only structural, but it was later discovered that BH4 donates a second 

electron to the heme-dioxy species to prevent it from splitting into superoxide anion (O2
-) and 

ferric heme in a process called uncoupling573. 

Several proteins aside from CaM are also involved in modulating NOS function, including 

caveolin-1 (Cav-1)574. Caveolin is an integral membrane protein localized to caveolae, which are 

very small (50-100 nm diameter) invaginations in the plasmalemma of most cell types575,576. Of 

three mammalian subtypes (Cav-1, -2, and -3), ECs express Cav-1577. In ECs, most eNOS is 

targeted to caveolae due to co- and post-translational fatty acid acylation of residues in the 

oxygenase domain574,578,579. This proximity allows Cav-1 to bind to eNOS at a site in its heme-

containing hydrophobic pocket, thereby inhibiting eNOS activity and NO release580-583. By this 

mechanism, most eNOS in resting ECs is inactive; however, in response to an increase in [Ca2+]i, 

Ca2+/CaM binding to eNOS displaces Cav-1 and activates eNOS584. This process is aided by the 

binding of a chaperone protein, heat shock protein 90 (HSP90), at a site proximal to the Cav-1 

binding site to allosterically enhance Ca2+/CaM association584,585.  

In addition to these regulatory mechanisms, eNOS may also be phosphorylated by a 

number of kinases in response to shear stress552,586. Phosphorylation of Ser1177 by PKA, Akt 

(PKB), CaMKII, and AMP-activated protein kinase (AMPK) enhances eNOS activity, whereas 

phosphorylation of Thr495 by PKC reduces eNOS activity552,587. Several other phosphorylation 
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sites contribute to eNOS regulation, including Tyr81, Ser114, Ser615, Ser633, and Tyr657 

(reviewed by Fleming, 2010)588. 

NO is a messenger molecule that is crucial to numerous biological processes throughout 

the body, including the regulation of vascular tone, neurotransmission, gene transcription and 

translation, gastrointestinal physiology, genitourinary function, and immune function (reviewed 

by Moncada and Higgs, 1993; and Kapil et al., 2020)589,590. NO exists in three redox states: 

nitrosonium cation (NO+), uncharged free radical (NO•), and nitroxyl anion (NO- or HNO)591. It is 

assumed that the biological effects of NO are primarily mediated by the radical NO•13,591; however, 

NO- has emerged as a significant contributor to smooth muscle relaxation as well592,593. The neutral 

charge of NO• means that it has a low dipole moment, allowing it to cross plasma membranes by 

simple diffusion594-597. In the vascular context, this means that once NO is synthesized by eNOS, 

it can diffuse in a paracrine manner from ECs into VSMCs where it acts as a potent vasodilator13. 

The primary mechanism by which NO precipitates smooth muscle relaxation is its activation of 

the hemoprotein soluble guanylyl cyclase (sGC)598,599. sGC is responsible for converting 

guanosine-5’-triphosphate (GTP) into cyclic guanosine-3’,5’-monophosphate (cGMP)598. NO 

binds to the heme moiety of sGC to induce an allosteric conformational change in its catalytic 

domain that increases the activity of sGC over 100-fold vs its basal activity599-602. The increase in 

cGMP production leads to the activation of cGMP-dependent protein kinase (protein kinase G, or 

PKG), which phosphorylates a number of downstream targets to precipitate vasodilation13,599. For 

example, PKG phosphorylation increases the Po of BKCa channels, leading to VSMC 

hyperpolarization and reduced Ca2+ entry through VOCCs603-605. PKG also phosphorylates PLC in 

order to reduce production of IP3
606; it phosphorylates RhoA to decrease phosphorylation of 

MLC607; it phosphorylates the IP3R-associated cGMP-kinase substrate (IRAG) to inhibit Ca2+ 
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release from the SR through IP3Rs608; and it phosphorylates MYPT1 of MLCP at Ser962, Ser695 

and Ser852 to promote Ca2+ desensitization609. The phosphorylation of all of these targets, and still 

many others, by PKG produces a multi-faceted vasodilatory effect (reviewed by Schlossmann and 

Desch, 2011)608. 

NO•, though unstable, is less reactive than many other free radicals such as HO•594,610; this 

property means that it is able to diffuse to remote targets with less chance of being inactivated. 

However, the greatest limiting factor on the bioavailability of NO is its reaction with other free 

radicals, particularly reactive oxygen species (ROS) such as O2
-552,590. NO and O2

- undergo an 

irreversible diffusion-limited reaction to form peroxynitrite (ONOO-) at a rate approximately six 

times faster than O2
- is rescued by superoxide dismutase (SOD)611-615. Pathophysiological states 

such as elevated glucose in diabetes increase O2
- production by mitochondria, leading in turn to 

increased ONOO- formation13. ONOO- is a highly reactive oxidizer which can oxidize BH4, 

disrupting eNOS dimer formation and uncoupling eNOS13,616-618. Uncoupled eNOS produces O2
- 

instead of NO, leading to a positive feedback mechanism that exacerbates conditions of oxidative 

stress587. Another factor that was thought to limit the bioavailability of NO is the abundance of 

hemoproteins in the blood; conversely, studies from Kleschyov et al. (2023) and DeMartino et al. 

(2023) show that NO bound to hemoproteins such as hemoglobin and myoglobin is still able to 

activate sGC619-621. 

The identification of NO as the “endothelium-derived relaxing factor” was initially 

controversial508,594. However, the use of false substrate NOS inhibitors such as L-NG-nitro arginine 

(L-NOARG) and NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) elucidated the role 

of NO in regulating arterial diameter622,623. Furthermore, deletion of eNOS from ECs in mice 

eliminates flow-induced vasodilation and precipitates hypertension624,625. Interestingly, deletion of 
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eNOS from erythrocytes does not affect flow-induced vasodilation but still produces hypertension, 

though the contribution of erythrocyte eNOS to NO signalling is as yet poorly understood624.  

1.4.3 Endothelium-dependent hyperpolarization 

In addition to the chemical pathway of NO synthesis, endothelium-dependent 

hyperpolarization (EDH) is a concomitant electrical pathway responsible for endothelium-

dependent vasodilation in the vasculature626. EDH was originally isolated and identified as a 

vasodilatory hyperpolarization of VSMCs that was insensitive to NOS inhibitors and 

cyclooxygenase (COX) inhibitors, and was shown to occur without an increase in cGMP or cAMP 

in VSMCs627-631. This vasodilatory response was initially thought to be facilitated by an 

unidentified chemical mediator, named endothelium-dependent hyperpolarizing factor (EDHF) in 

a wide body of literature. However, the current model entails that this response is due to the direct 

electrical coupling of ECs to VSMCs via MEGJs626,632,633. 

EDH depends upon the activity of SKCa and IKCa channels in ECs517,634. Ca2+-activated K+ 

(KCa) channels are a family of K+ channels that includes three subfamilies which have been 

discussed separately in previous sections of this chapter (reviewed by Orfali and Albanyan, 

2023)635. The subfamilies are named for their single-channel conductance levels: small-

conductance KCa (SKCa or KCa2.1-3) channels (~4-14 pS), intermediate-conductance KCa (IKCa or 

KCa3.1) channels (~32-39 pS), and large-conductance KCa (BKCa or KCa1.1) channels (~200-300 

pS)635-638. BKCa channels are tetramers composed of four 7TM α subunits that are activated by 

depolarization or by binding Ca2+ ions directly, and are expressed in VSMCs but not in ECs635,639-

642. In contrast, SKCa and IKCa channels are tetramers of four 6TM α subunits that are activated by 

Ca2+/CaM instead of free Ca2+ ions635,643. Under physiological conditions, SKCa and IKCa channels 

are only expressed in ECs, and not in VSMCs635,640,641,644.  
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The SKCa subfamily comprises three isoforms (KCa2.1-3 or SK1-3) encoded by three 

separate genes (KCNN1-3, respectively)645. In ECs, KCa2.3 is the predominantly expressed 

isoform, while expression of KCa2.1 and KCa2.2 is negligible644,646,647. Thus, throughout this thesis, 

the use of the term “SKCa” will refer specifically to KCa2.3 channels. ECs also highly express IKCa 

(KCa3.1 or SK4) which is the only member of its subfamily, encoded by the gene KCNN4641,645,647. 

The α subunit of SKCa and IKCa channels possesses cytoplasmic N- and C-termini and contains a 

pore domain between TM helices S5 and S6 (Figure 1.11) 635,641. CaM is believed to be 

constitutively bound to a domain in the C-terminus648,649, conferring the channel with Ca2+ 

sensitivity at EC50s ranging from 95 to 300 nM636,648,650. It has been shown that SKCa channels do 

not assemble with fourfold symmetry like most other homotetramers; instead, two α subunits and 

two CaMs form an antiparallel dimer arrangement, and the whole channel assembles as a “dimer 

of dimers” with twofold symmetry (Figure 1.12)651,652. This arrangement blocks the C-lobe of 

CaM, so that even at high [Ca2+]i, only the N-lobe of CaM is exposed and available to bind two 

Ca2+ ions651. Some evidence suggests that the Ca2+ sensitivity of these channels may be modulated 

by phosphorylation and dephosphorylation of SKCa-bound CaM at Thr80 by colocalized casein 

kinase 2 (CK2); however, this has only been demonstrated in non-vascular tissues653,654. Unlike 

BKCa channels, SKCa and IKCa channels are voltage-insensitive since their S4 domain contains 

only two positively charged residues compared to six in voltage-operated potassium (KV) channels 

or five in LTCCs247,638,650,655. 
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Figure 1.11: Membrane topology of SKCa/IKCa channels. Each α subunit of the SKCa or IKCa 

channel contains six TM domains, with a P loop between S5 and S6. ApoCaM is constitutively 

bound to the C-terminus (from Ledoux et al., 2006)641. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Twofold symmetry of SKCa/IKCa channels. a) Antiparallel arrangement of two 

CaM molecules (blue, N-lobe; and red, C-lobe) and two SK proteins (grey; sequence from R396 

to Q487 of SK2). The N-lobe of each CaM is occupied by Ca2+ ions (orange spheres) as in the 

open conformation of the channel. b) Schematic illustration of the “dimer of dimers” model versus 

a canonical homotetramer. Dark green triangles represent SKCa α subunits; blue circles represent 

the central pore (from Halling et al., 2014)651.  

a) b) 
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EDH begins in ECs, where an agonist- or shear stress-induced increase in [Ca2+]i activates 

SKCa and IKCa channels517,523,634. The binding of Ca2+ to channel-bound CaM increases the Po of 

SKCa and IKCa channels636,648,651, allowing an efflux of K+ ions that hyperpolarizes the EC644,647,656-

659. The change in membrane potential is then able to spread via the movement of ions from the 

EC to adjacent VSMCs through MEGJs, causing the VSMC to become hyperpolarized as 

well656,660-663. In the VSMC, hyperpolarization decreases the Po of VOCCs, reducing Ca2+ entry 

and thereby inducing relaxation of the smooth muscle633,657,664,665. Additionally, it has been shown 

that K+ efflux from ECs through SKCa and IKCa leads to a localized increase in [K+] near MEPs, 

which in turn may activate inwardly rectifying K+ (KIR) channels and/or Na+/K+-ATPases on 

VSMCs and/or ECs, depending on the tissue661,666-669. This pathway serves to amplify the initial 

KCa-induced hyperpolarization517. 

EDH provides a higher relative contribution to vasodilation than NOS in smaller arteries 

such as resistance arteries and arterioles, whereas the NOS pathway is more prominent in large 

elastic arteries631,670,671. This makes EDH a particularly crucial regulator of local tissue perfusion. 

Despite the varying degrees of its contribution, SKCa- and IKCa-mediated EDH and its subsequent 

spread to VSMCs have been recorded in a wide range of vascular tissue, including rat aorta659, 

mesenteric artery663,672,673, and hepatic artery657; guinea pig carotid artery656; porcine coronary 

artery644; canine mesenteric artery647; human umbilical vein endothelial cells (HUVECs)674; and 

still many others. The investigation and isolation of SKCa- and IKCa-mediated EDH in these studies 

was aided by the well-developed pharmacology of SKCa and IKCa channels. The classical inhibitors 

of SKCa and IKCa channels are the venom-derived peptides apamin (from bee venom) and 

charybdotoxin (from scorpion venom), respectively675. Apamin blocks SKCa with high selectivity; 

it has the highest affinity for SK2 (IC50 ≈ 0.03-0.2 nM), followed by SK3 (IC50 ≈ 0.6-4 nM) and 
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finally SK1 (IC50 ≈ 0.7-12 nM)655,675. It was initially thought that apamin blocks SKCa by binding 

to two residues in opposite sides of the pore676, and that the differences in selectivity between SK1, 

2 and 3 are due to apamin’s interaction with a third residue in the outer vestibule of the pore677. 

Evidence that apamin interacts with the extracellular S3-S4 loop of SKCa has led some to believe 

that apamin’s action is allosteric instead678,679. However, the mechanism is still unclear, as the 

crystal structure of SKCa has not yet been solved680. While apamin is still widely used 

experimentally680, charybdotoxin was found to block BKCa and KV1.3 in addition to IKCa, so it has 

been replaced by more selective small molecule blockers of IKCa
675. These include 1-[(2-

chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; IC50 ≈ 20 nM)681,682 and 4-[[3-

(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one (NS6180; IC50 ≈ 9-14 

nM)683,684, which block the central pore from the cytoplasmic side of the selectivity filter685. 

Selective small-molecule activators of SKCa and IKCa have also been developed, such as N-

cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA) and 

naphtho[1,2-d]thiazol-2-ylamine (SKA-31), respectively. These molecules are positive allosteric 

modulators which bind at the interface between the α subunit and CaM and increase the apparent 

Ca2+-sensitivity of the channel686-689. 

SKCa and IKCa share many structural and functional similarities, but have distinct roles in 

regulating vascular tone based on their disparate localization within the EC14,672,690. SKCa channels 

are localized in caveolae on the lumenal surface of ECs, especially near interendothelial gap 

junctions (see §1.5.1)672,690-692. In caveolae, SKCa channels are colocalized with TRP channels such 

as TRPV4 and TRPC1693,694. Shear stress activates TRP channels, and the resultant local increase 

in [Ca2+]i activates SKCa, leading to endothelium-dependent vasodilation691,695. In particular, 

Brähler et al. (2009) demonstrated using pressure myography in isolated carotid arteries from mice 
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deficient in either or both SKCa and IKCa channels that the loss of SKCa, but not IKCa, impaired 

shear-stress induced vasodilation691. In contrast to SKCa, endothelial IKCa channels are localized to 

MEPs690,696-698. In addition to contributing to endothelium-dependent vasodilation, this unique 

position allows IKCa channels to mediate a negative feedback response termed myoendothelial 

feedback546. The activation of α1-adrenoceptors on VSMCs increases the production of IP3 by 

PLC; IP3 is then able to diffuse through MEGJs into adjacent ECs699. Here, IP3 activates both 

TRPC3 channels on the plasma membrane546 and IP3Rs on sections of the ER localized to MEPs518, 

leading to Ca2+ influx and release in an event called a “Ca2+ wavelet”14,698 that is characteristically 

distinct from a Ca2+ pulsar. The wavelet creates a local [Ca2+]i increase in the MEP that activates 

IKCa, subsequently producing EDH which spreads back to the VSMCs to limit the initial 

vasoconstrictor stimulus14,546,698,700. Regardless of their discrete, specialized roles, SKCa and IKCa 

are both capable of hyperpolarizing ECs. Activation of either channel precipitates vasodilation, 

and both channels must be blocked in order to fully inhibit EDH687,701-703. The physiological 

importance of endothelial KCa channels is underscored by evidence that suppression or knockout 

of SKCa and/or IKCa impairs ACh-induced vasodilation and produces systemic hypertension in 

mice691,704,705. 

1.4.4 Crosstalk between NO synthesis and EDH 

  For many years, the two Ca2+-induced mechanisms of endothelium-dependent 

vasodilation, NO synthesis and EDH, were considered to be parallel, but ultimately separate. 

Conversely, over the past decade, evidence has emerged that NO and EDH are heavily 

interconnected, and might be more correctly framed as two facets of a single pathway (Figure 

1.13). For example, our lab has previously demonstrated in isolated basilar arteries from rats that 

EDH-mediated myoendothelial feedback depends upon NO synthesis, which was impaired in the 
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presence of IKCa and TRPC3 inhibitors546. This is congruent with a study from Biwer et al. (2016) 

showing that a population of eNOS is localized to MEPs and is activated by PKC in response to 

IP3 entry from smooth muscle706. Moreover, Brähler et al. (2009) found that genetic ablation of 

endothelial SKCa impaired NO-mediated dilation to ACh in mouse cremaster arterioles691. It has 

also been shown that SKCa and IKCa blockers eliminate ATP- and histamine-induced NO 

production in HUVECs674. One mechanism which likely contributes to this effect involves the 

production of ROS. NADPH oxidase (NOX) is a constitutively active enzyme complex found in 

the plasmalemma of ECs, and is the primary producer of O2
- in the vasculature707-709. It has been 

reported that NOX is activated by membrane depolarization in endothelial cells710; increased 

production of O2
- decreases NO bioavailability by scavenging NO and forming ONOO- which 

uncouples eNOS599,615. Thus, SKCa- and IKCa-mediated hyperpolarization leads to a decrease in 

O2
- production, thereby increasing the bioavailability of NO615. Our lab has previously shown 

using pressure myography coupled with dihydroethidium (DHE) visualization of O2
- that SKCa and 

IKCa activators decrease O2
- production in isolated mesenteric arteries from rats711. 

In the opposite direction, another body of literature demonstrates that NOS inhibitors 

impair EDH, suggesting that endothelial-derived NO may provide a necessary contribution to 

EDH712-715. Taken together, these findings suggest that EDH and NO are interrelated pathways 

wherein EDH enhances the bioavailability of NO, and NO may in turn enhance KCa activity 

(reviewed by Alaaeddine et al., 2019)716. 
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Figure 1.13: Schematic diagram of EDH and NO synthesis pathways of endothelium-

dependent vasodilation. Ca2+ influx through non-selective cation channels (NSCCs) such as TRP 

channels leads to activation of SKCa, IKCa, and eNOS. Opening of KCa channels hyperpolarizes the 

endothelial cell membrane potential, and this hyperpolarization spreads to adjacent VSMCs via 

MEGJs to inhibit contraction. Activation of eNOS leads to the synthesis of diffusible NO which 

also inhibits contraction. 

 

1.5 Endothelial cell junctions 

The endothelium exhibits structural and functional heterogeneity throughout the 

vasculature (reviewed by Aird, 2007)717,718. The ultrastructure of the endothelium may be either 

continuous or discontinuous; continuous endothelium may be further categorised as fenestrated or 

nonfenestrated718,719. Nonfenestrated continuous endothelium is the most common ultrastructure 
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throughout the body, found in arteries, veins and capillaries of the brain, skin, lungs, heart, and 

skeletal muscle, as well as resistance arteries such as the mesenteric vascular bed24,719,720. It is 

characterized by the presence of tight junctions between endothelial cells, and a continuous basal 

lamina. Fenestrated continuous endothelium is marked by transcellular pores (approximately 50-

70 nm diameter) occupied by a glycoprotein diaphragm, and is observed in locations requiring 

increased transport or filtration, such as glomeruli, endocrine glands, and gastrointestinal 

mucosa24,717,721-723. Finally, discontinuous endothelium contains larger pores (approximately 100-

200 nm diameter) with no diaphragm, as well as gaps in the basal lamina24,717,721. It is found in 

sinusoidal vascular beds in the liver, bone marrow and spleen724. 

The ultrastructure of the endothelium is determined by the quantity and nature of 

intercellular junctions between ECs718,721,725. Interendothelial junctions belong to several 

categories, namely adherens junctions (AJs), tight junctions (TJs) and gap junctions (GJs)725. All 

of these junctions depend upon the extracellular interaction of transmembrane proteins with those 

of adjacent cells717,725. Endothelial AJs have the widest intermembrane distance of the three 

junctions, providing mechanical adhesion between cells726. AJs are composed primarily of 

vascular endothelial cadherin (VE-cadherin) that is anchored on the intracellular side to the actin 

cytoskeleton and/or vimentin filaments725,727. Endothelial TJs bridge a smaller intermembrane 

distance than AJs, and serve two main functions: a “fence” function preventing the mixing of 

apical and basolateral membrane proteins, and a “gate” function controlling the paracellular 

passage of water, ions and solutes726,728. They contain members of several protein families, 

including claudins, occludins, junctional adhesion molecules (JAMs) and endothelial cell-selective 

adhesion molecules (ESAMs)725,729. Both AJs and TJs play important roles in the modulation of 
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endothelial permeability, leukocyte extravasation and angiogenesis which has been reviewed 

elsewhere725,727,730; however, this thesis will instead focus on the role of endothelial GJs. 

1.5.1 Endothelial gap junctions 

The coordination of vasodilatory function in the endothelium, particularly in EDH and 

myoendothelial feedback, is dependent upon intercellular communication through GJs (reviewed 

by Pogoda et al., 2019)731. GJs are intercellular channels linking the cytosol of two adjacent cells, 

either in homocellular couplings (e.g. EC-EC) or heterocellular couplings (e.g. EC-VSMC at 

MEGJs)732. These channels comprise two hemichannels called connexons, each belonging to the 

plasmalemma one of the coupled cells (Figure 1.14). Connexons are hexamers composed of 

connexins (Cxs), a family of 4TM proteins with 21 members expressed in humans733. Four Cx 

subtypes are expressed in the vasculature: ECs express Cx37, Cx40, and to a lesser extent Cx43, 

whereas VSMCs express Cx43 and Cx45734-740. Connexons may be either homomers comprising 

units of a single Cx subtype, or heteromers comprising more than one Cx subtype741-743. Notably, 

the two main EC connexins, Cx40 and Cx37, have not been demonstrated to form heteromers 

together, but have each been shown to readily heteromerize with Cx43731,743-745. Two connexons 

forming a functional channel may either contain the same Cx composition (homotypic) or distinct 

Cx compositions (heterotypic)741. This leads to a wealth of possible combinations for intercellular 

channels with varying unitary conductances742,743, which can be homomeric-homotypic, 

homomeric-heterotypic, heteromeric-homotypic, or heteromeric-heterotypic732. The formation of 

intramolecular disulfide bonds in the extracellular loops of each Cx creates a β-sheet formation 

necessary for intercellular docking of connexons746-749. The pore-to-pore docking of connexons is 

a tight interaction involving the staggering and interdigitation of Cx extracellular loops so as to 

prevent leakage between the cytosol and the extracellular space747,750,751. In order to facilitate 
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docking and formation of GJ channels, connexons localize in clusters called plaques, each 

containing up to 2000 individuals and occupying an area of diameter 0.5-2 µm752,753. The half-

lives of GJ channels are much shorter than most integral membrane proteins, ranging from 1.5-5 

hours depending on the Cx subtypes and the tissue752,754-757. The central pore of the channel creates 

an electrical continuity between cells which facilitates the spread of membrane potential, while 

also being large enough to facilitate the passage of polar small molecules (<1 kDa)758,759. This 

includes the diffusion of vasoactive molecules such as Ca2+ ions, IP3, cAMP, cGMP, ATP, NAD+, 

and prostaglandins, as well as linear oligopeptides and microRNAs760,761.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Membrane topology of connexins. Connexins contain four TM domains with 

cytosolic N- and C-termini. Connexins assemble into hexameric connexons (or hemichannels) 

which may be homomeric or heteromeric. Connexons of one cell dock with connexons of an 

adjacent cell to form gap junction channels which may be homotypic or heterotypic (adapted 

from Schmidt et al., 2016)732.  
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1.5.2 Role of Cx40 

In ECs, gap junctions are responsible for the longitudinal conduction of hyperpolarization 

up- or downstream from the focal site of a vasodilatory stimulus (reviewed by Welsh et al., 

2018)762. The conducted vasomotor response is a crucial mechanism whereby a vasodilatory 

stimulus in a small artery can spread up the vascular tree (i.e. opposite to blood flow) in order to 

increase tissue perfusion to match energetic demand762,763. Cx40 has been shown to be a crucial 

mediator of this response. For example, Figueroa et al. (2008) demonstrated using mouse germline 

knockout models that Cx40, but not Cx37, is necessary for the upstream conduction of ACh-

induced endothelium-dependent vasodilation in cremaster arteries764. The authors also found that 

neither deletion of Cx40 nor Cx37 affected conduction of dilation to pinacidil, which opens ATP-

sensitive K+ (KATP) channels on VSMCs. These findings were expounded upon by Jobs et al. 

(2012), who used mice with a point mutation yielding non-functional Cx40; they demonstrated 

that functional Cx40 is necessary for the conduction of ACh- or bradykinin-induced vasodilation 

in cremaster arterioles765. Cx40 is also implicated in other forms of haemodynamic control: studies 

in Cx40 knockout mice have observed elevated systemic blood pressure, impaired magnitude of 

endothelium-dependent vasodilation, and decreased eNOS expression in vessels such as the aorta 

and renal artery661,766,767. However, the myogenic response was preserved in the renal afferent 

arteriole of Cx40 knockout mice768. Interestingly, some evidence also suggests that the conducted 

vasomotor response allows for hyperpolarized membrane potentials to be amplified as they are 

conducted (Figure 1.15)662. In mouse cremaster arterioles, Rodenwaldt et al. (2007) observed that 

conducted vasoconstrictor responses decay exponentially with distance along the vessel, whereas  

conducted dilations decay with distance much less than modelling predicts769,770. A prominent 

candidate for this mechanism is smooth muscle KIR channels667, but endothelial IKCa channels may 
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be involved as well, despite being voltage-insensitive771. Evidence has also emerged associating 

disease states of endothelial dysfunction, such as T2DM, with decreased expression of Cx40 in the 

cardiovascular system772. Taken together, these observations indicate that Cx40 is a major 

contributor to endothelium-dependent vasodilation, and subsequently the regulation of arterial 

diameter and systemic blood pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: Schematic diagram of conduction of membrane potential along the vessel wall 

via gap junctions. Local stimulation of M3 receptors by ACh leads to the activation of SKCa and 

IKCa channels, hyperpolarizing the endothelial cell. The hyperpolarization is amplified as it spreads 

to adjacent ECs through interendothelial GJs, though the underlying mechanism is unclear (from 

Schmidt et al., 2016)732. 

 

Conversely, knockout of Cx37 in mice produces phenotypic changes outside of the 

cardiovascular system, including female infertility and disrupted lymphatic valve development, 

but does not produce obvious vascular dysfunction773-777. The main vascular effects reported to 

date in Cx37 knockout mice are enhanced angiogenesis, and partial resistance to angiotensin II-
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induced hypertension764,778,779. Meens et al. (2015) also showed that L-NAME significantly 

enhanced phenylephrine-induced contraction of isolated aorta segments from wild-type mice, but 

this was reversed in Cx37 knockout mice, suggesting a putative role for Cx37 in basal NO 

release780. Where Cx37 or Cx40 knockout animals are viable, the deletion of both Cx37 and Cx40 

in mice results in perinatal death773. However, despite the crucial role of Cx37 in other systems, 

Cx40 appears to be a larger contributor to intercellular coordination in the vascular endothelium 

and modulation of arterial diameter. 

Until recently, only mouse models of Cx knockouts have been available. This has restricted 

most physiological assays to the use of large elastic arteries such as the aorta, rather than resistance 

arteries, due to the physical limitations of fine dissection in techniques such as wire and pressure 

myography. Our research group received a novel strain of Cx40 knockout rats as a gift from 

collaborator Dr. William Cupples; this has allowed me to perform experiments assessing the 

functional physiological role of Cx40 in the modulation of resistance artery diameter, which was 

not possible in mouse models. 

1.6 Myocardial ischemia/reperfusion injury 

Ischemic heart disease is the most prevalent form of CVD worldwide, causing 

approximately 8.9 million deaths (16% of total global mortality) in 2019 according to the World 

Health Organization781. Ischemic heart disease occurs as a result of full or partial occlusion of one 

or more coronary arteries in conditions such as atherosclerosis or thrombosis. This creates a period 

of acute myocardial ischemia, during which the myocardium receives insufficient oxygen resulting 

in necrotic death of cardiomyocytes782. Current preventative therapies for ischemic heart disease 

focus on reducing the occurrence of acute myocardial ischemic attacks by treating the associated 

risk factors: T2DM, obesity, atherosclerosis and hypertension783-785. Once an ischemic attack 
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occurs, primary myocardial reperfusion via pharmacological or mechanical means remains the 

gold standard treatment786. Paradoxically, reperfusion following the ischemic attack also induces 

myocardial damage and contributes to subsequent heart failure in a phenomenon called 

ischemia/reperfusion injury787-789. Reperfusion of the ischemic myocardium produces a state of 

oxidative stress790 which results in greater tissue injury than ischemia alone by mechanisms 

including the reduced bioavailability of NO, intracellular and mitochondrial Ca2+ overload, the 

recruitment of neutrophils and the induction of inflammation (reviewed by Yellon and Hausenloy, 

2007)787. Animal models have shown that the damage caused by reperfusion accounts for up to 

50% of the final size of a myocardial infarct caused by an ischemic attack787. 

Atrial cardiomyocytes are one of the few locations outside of the vascular endothelium 

where Cx40 expression is well-established791. During early embryonic development, Cx40 is 

broadly expressed in the heart, but by the time of birth through to adulthood, expression is 

restricted to atrial cardiomyocytes and cells of the conduction system including the bundle of His, 

bundle branches and Purkinje fibers792,793. In fact, Cx40 has been demonstrated to participate in 

embryonic cardiac morphogenesis, as Cx40 knockout mice were found to have greater incidence 

of septal defects and other cardiac malformations794. Due to this localization pattern, Cx40 is an 

important mediator of intercellular conduction of electrical signals in the heart. It follows that 

somatic mutations in the Cx40-encoding gene GJA5 which reduce conduction of the assembled 

GJ channel have been linked to idiopathic atrial fibrillation and arrhythmias in human 

patients795,796. Gemel et al. (2014) found in cultured cells that several Cx40 mutants associated 

with atrial fibrillation undergo more rapid proteasomal degradation than wild-type Cx40, thereby 

reducing their cell-surface expression797. Furthermore, Zhang et al. (2017) found that mRNA 
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expression of Cx40 in atrial cardiomyocytes is significantly decreased in atrial fibrillation patients 

versus controls with rheumatic heart disease798. 

Thus, Cx40 is understood to serve a crucial role in the myocardial conduction system, but 

it is unclear whether or not Cx40-mediated conduction has a role in cardiac ischemia/reperfusion 

injury. Evidence suggests that the absence of Cx40 is associated with increased oxidative stress799, 

making it reasonable to hypothesize that the physiological role of Cx40 may be protective in 

ischemia/reperfusion. Unfortunately, current data is limited as this question has not been widely 

investigated. Nevertheless, Morel et al. (2014) demonstrated that EC-specific Cx40 knockout mice 

incur a greater area of cardiac infarction than wild-type mice in response to in vivo 

ischemia/reperfusion800. However, this difference was not observed in response to ex vivo 

ischemia/reperfusion in the Langendorff isolated heart perfusion. The authors further demonstrate 

that this discrepancy is due to greater neutrophil infiltration in the myocardium of the EC-specific 

Cx40 knockout mouse. Together, these data suggest that Cx40 may serve a protective role in 

ischemia/reperfusion injury; however, further research is necessary. 

1.7 Hypothesis and aims 

 The coordinated action of ECs and VSMCs is crucial for the modulation of resistance artery 

diameter, and subsequently the control of systemic BP. This coordination depends upon electrical 

signalling through a wide range of ion channels. In particular, TRPM4 in VSMCs is reputed to be 

necessary for myogenic vasoconstriction, and Cx40-containing GJ channels in ECs have been put 

forward as a major contributor to endothelium-dependent vasodilation. Thus, through this thesis I 

investigate these roles by addressing three hypotheses: 

1) TRPM4 plays a role in both myogenic and agonist-induced vasoconstriction in resistance 

arteries. 
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2) The Cx40 knockout rat will demonstrate impaired endothelial modulation of arterial 

diameter versus wild-type. 

3) The introduction of a mild hypercaloric diet will impair endothelial modulation of arterial 

diameter to a greater extent in the Cx40 knockout rat than in wild-type rats. 

To test these hypotheses, I have addressed three corresponding aims: 

1) To investigate the effects of the small-molecule TRPM4 inhibitor 9-phenanthrol on the 

development of myogenic and agonist-induced vascular tone in isolated resistance arteries. 

2) To characterize arterial function in the Cx40 knockout rat model with exploratory 

functional assays. 

3) To investigate the extent to which a hypercaloric diet produces endothelial dysfunction 

within the Cx40 knockout rat model.  
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Chapter 2: Materials and methods 

2.1 Ethics approval 

 All animal care and experimental procedures were approved by the Animal Care and Use 

Committee (ACUC HS1; AUP 312) of the Faculty of Medicine and Dentistry at the University of 

Alberta, and performed in accordance with Canadian Council on Animal Care guidelines, and the 

principles and regulations as described by Grundy, 20151. 

2.2 Animal care and use 

 Two separate rat strains are used in this research; the experiments described in Chapter 3 

use Sprague-Dawley rats, whereas the experiments described in Chapters 4 and 5 use Cx40+/+ 

(wild-type or WT), Cx40+/- (heterozygous or HET), and Cx40-/- (knock-out or KO) rats bred from 

the WKY-Gja5em1Mcwi mutant strain. 

 Male (250-300 g) and female (175-225 g) Sprague-Dawley rats were obtained from 

Charles River Laboratories (Montréal, Canada). 

The WKY-Gja5em1Mcwi strain was developed by Drs. Melinda Dwinell and Aron Geurts at 

the Medical College of Wisconsin801 under a R24 Resource grant (R24 HL114474) awarded by 

the National Heart, Lung, and Blood Institute (NHLBI) on behalf of the National Institutes of 

Health (NIH). This strain is based on a Wistar-Kyoto (WKY) background and was produced by 

injecting a CRISPR plasmid targeting the sequence CGATGACCGTAGAGTGCTTG on the Gja5 

gene coding for Cx40 (NCBI GenBank Accession #NM_019280)802 into WKY embryos. The 

plasmid introduces a 1-bp substitution into exon 1 (c.25G>T)803 resulting in a premature stop 

codon in place of Glu9804,805. Our research group received WKY-Gja5em1Mcwi rats as a gift from 

collaborator Dr. William Cupples at Simon Fraser University.  
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The colony was bred and maintained in conjunction with University of Alberta Health 

Sciences Laboratory Animal Services (HSLAS). Initial breeding pairs comprised WKY-

Gja5em1Mcwi rats and WKY stock rats; in subsequent generations breeding pairs comprised HET × 

HET crossings yielding offspring with a genotype distribution of approximately 25% WT, 50% 

HET, and 25% KO. Ear notch samples were collected by HSLAS staff. Genotyping was completed 

using polymerase chain reaction (PCR) and direct sequencing as described in §2.6. Rats were age-

matched at 6 months of age (± 1 month) when euthanized for tissue collection. 

All rats were housed by HSLAS in an enriched environment maintained on a 12:12 h light–

dark cycle at ∼23°C with fresh tap water and standard or hypercaloric chow (§2.11) available ad 

libitum. Blood glucose (§2.8) and body weight were measured immediately prior to euthanasia. 

Rats used for Langendorff heart perfusion (§2.10) were euthanized by i.p. injection of 

pentobarbital followed by decapitation; otherwise rats were euthanized by inhalation of isoflurane 

followed by decapitation. The gut, heart, brain and kidneys were excised post-mortem and placed 

in ice-cold Krebs buffer containing (mM): NaCl (119.0), NaHCO3 (25.0), KCl (4.7), MgSO4·7H2O 

(1.2), KH2PO4 (1.18), glucose (11), and CaCl2 (2.5). Organs and isolated arteries were flash-frozen 

in liquid nitrogen for use in RT-qPCR (§2.7). For experiments requiring a nominally Ca2+-free 

solution, CaCl2 was omitted from the above composition. 

2.3 Perfused mesenteric vascular bed 

 The mesenteric vascular bed was perfused by the superior mesenteric artery and electrically 

stimulated as described previously806. For this procedure, the mesenteric vascular bed was 

separated from the intestine, and the superior mesenteric artery was isolated from surrounding 

adipose and connective tissue before being cannulated with a blunted hypodermic needle (20 G). 

The needle was secured with 3-0 surgical silk (Ethicon; Livingston, UK) and flushed with Krebs 
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buffer to remove blood. In experiments using endothelium-denuded vascular beds, the 

endothelium was removed by flushing the bed with 0.5% Triton X-100 (Fisher Scientific; Fair 

Lawn, USA) in water for 15-30 seconds followed by rapid washout with Krebs buffer. The 

mesentery was placed on a wire mesh and secured in a water jacket maintained at an internal 

temperature of 37°C. Next, the mesentery was perfused with heated (37°C) and gassed (95% O2 / 

5% CO2) Krebs buffer by a Minipuls 2 peristaltic pump (Gilson; Villiers-le-Bel, France) at a 

constant flow rate of 5 mL·min-1. Changes in perfusion pressure were recorded via an in-line 

pressure transducer through a PowerLab 2/20 data acquisition system using Chart 5.0 software 

(ADInstruments; Colorado, USA).  

Endothelium-denuded tissues were assessed for endothelial function using the α1-

adrenoceptor agonist methoxamine (MOX; 1 µM) to induce vasoconstriction, followed by the 

endothelium-dependent vasodilator acetylcholine (ACh; 1 µM). Tissues in which ACh caused ≤ 

30% reversal of constriction by MOX were considered to be denuded. If ACh failed to evoke a 

vasodilatory response, endothelium-independent vasodilation was induced by administration of 

non-selective β-adrenoceptor agonist isoproterenol (10 µM) in order to confirm smooth muscle 

function. 

2.3.1 Electric field stimulation of perivascular nerves 

 Electrodes were attached to the hypodermic needle and the wire mesh to facilitate electrical 

field stimulation of the mesentery using a Grass SD9 Stimulator (Grass Medical Instruments; 

Quincy, USA). Tissues were equilibrated for 20 minutes before applying a single stimulation (30 

Hz; 90 V; 1 ms pulse width; 30 s duration) to determine the viability of the preparation. After 

another 10 minutes, viable tissues were subjected to stimulations of increasing frequency ranging 

from 1 to 40 Hz (90 V; 1 ms pulse width; 30 s duration) every 10 minutes in order to construct a 
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frequency-response curve807-809. In order to assess their effects on nerve-evoked vasoconstriction, 

pharmacological agents were added to the Krebs buffer and allowed to perfuse through the 

preparation for 20 minutes before constructing a second or third frequency-response curve. 

2.4 Wire myography 

 Isolated second and third order mesenteric arteries were cleaned of surrounding adipose 

and connective tissue, cut into approximately 2 mm-long segments, and mounted between two 

gold-plated tungsten wires (25 µm diameter; Goodfellow Cambridge Ltd.; Huntingdon, UK) in a 

Malvany-Halpern myograph (Model 610M; Danish Myo Technology; Aarhus, Denmark) as 

described previously700,806. Changes in isometric tension were recorded via a PowerLab 4/25 using 

Chart 5.0 or 8.0 software (ADInstruments). Artery segments were maintained in a 7 mL bath of 

heated (37°C) and gassed (95% O2 / 5% CO2) Krebs buffer (pH 7.4) and were held at a pre-

determined optimal resting tension of 5 mN for 20 minutes. 5 mN was determined from active 

length-tension curves to be the resting tension at which the α1-adrenoceptor agonist phenylephrine 

(PE; 10 µM) elicited 75% of its maximal response. After this equilibration period, endothelial 

function was assessed as % relaxation to ACh (3 µM) after pre-stimulation with PE (3 µM). 

Arteries in which ACh elicited ≥ 90% reversal of PE-induced tone were considered to have a 

functional, intact endothelium and were used to construct concentration-response curves; 

otherwise, arteries were discarded. 

2.4.1 Concentration-response curves 

 Cumulative concentration-response curves (CRCs) to vasodilatory and vasoconstrictive 

agents were constructed in the presence and absence of SKCa inhibitor apamin (50 nM), IKCa 

inhibitor TRAM-34 (1 μM), eNOS inhibitor L-NAME (100 μM), and/or TRPM4 inhibitor 9-

phenanthrol (10 μM). These pharmacological pre-treatments were allowed to equilibrate in the 
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myograph chamber for 20 minutes before CRCs were constructed. Cumulative CRCs to 

vasodilatory agents were constructed following pre-stimulation of artery segments with either PE 

(3 µM), 5-HT (3 µM) or the TXA2 mimetic U46619 (3 µM) and results were expressed as % 

reversal of agonist-induced tone. Cumulative CRCs to vasoconstrictive agents were constructed 

without pre-stimulation and results were expressed as a % of maximal response. 

2.5 Pressure myography 

 Leak-free 2-4 mm-long segments of fourth to sixth order mesenteric artery were cleaned 

of surrounding adipose and connective tissue, mounted between two glass cannulae in an 

arteriograph chamber (Model CH-1-LIN; Living Systems Instrumentation; Burlington, USA). The 

glass cannulae were pulled from borosilicate glass capillary tubes (1.2 mm outer diameter and 0.69 

mm inner diameter; Sutter Instrument Company; Novato, USA) using a P-87 Flaming/Brown 

micropipette puller (Sutter Instrument Company). Artery segments were secured on the cannulae 

by nylon monofilament sutures (30 µm diameter; Living Systems Instrumentation) and maintained 

in a 7 mL bath of heated (37°C) and gassed (20.96% O2 / 4.94% CO2 / balance N2) Krebs buffer 

(pH 7.4). The arteriograph chamber was placed on the stage of a Nikon Eclipse TE300 inverted 

microscope (Nikon Instruments Inc.; Melville, USA) and vessels were visualized using a CCD 

video camera module (Model XC-73CE; Sony; Atsugi, Japan) and an automated video dimension 

analyzer (Model VDA-10; Living Systems Instrumentation) in order to measure the internal 

diameter of the vessel in real time. Transmural pressure (i.e. intralumenal pressure relative to 

atmospheric pressure) was recorded via an in-line pressure transducer and maintained by a pressure 

servo controller with a peristaltic pump (Model PS-200; Living Systems Instrumentation) 

connected to the inflow cannula. In all experiments, the outflow cannula was closed and vessels 

were pressurized with no lumenal flow. The pressure servo was set in automatic mode, wherein a 
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stable pressure value indicated that no leaks were present in the system. Pressure and internal 

diameter measurements were recorded via a PowerLab 4/20 using Chart 5.0 software 

(ADInstruments). 

2.5.1 Myogenic responses to increases in intralumenal pressure 

 Arteries were held at an intralumenal pressure of 80 mmHg for a period of 45 minutes to 

allow for the spontaneous development of myogenic tone. Arteries which failed to exhibit a 

sustained decrease in diameter ≥ 50 µm within this period were considered not myogenically 

reactive and were discarded. 80 mmHg was chosen as the intralumenal pressure for equilibration 

because it approximates the mean arterial blood pressure of a rat in vivo810-812. 

 Following equilibration, intralumenal pressure was decreased to 20 mmHg and a pressure 

ramp was constructed under control conditions by increasing the pressure from 20 mmHg to 120 

mmHg in stepwise increments of 20 mmHg. Each step was held for a minimum of 3 minutes, 

holding longer if required for the vessel diameter to plateau. The pressure was returned to 20 

mmHg at the end of the pressure ramp. Pharmacological agents were added to the bath and allowed 

to equilibrate for 20 minutes before second and third pressure ramps were constructed. At the end 

of each experiment, the Krebs in the bath was replaced with Ca2+-free Krebs (§2.2) and a final 

pressure ramp was constructed to reveal the passive diameter of the vessel at each pressure step. 

Myogenic reactivity is reported as the difference between passive and active diameters as a 

percentage of maximum passive diameter: 

% myogenic tone =  
passive diameter − active diameter

passive diameter
∙ 100% 

2.6 Genotyping 

 The genotype of individual rats bred from the WKY-Gja5em1Mcwi strain was determined 

prior to their experimental use, through the following procedure. 
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2.6.1 DNA extraction 

 Ear notch samples collected by HSLAS staff were placed in an alkaline lysis reagent (pH 

~12) containing (mM): NaOH (25), and Na2-EDTA·2H2O (0.2). Samples were heated at 95°C for 

one hour, after which an equal volume of neutralization buffer (pH ~5) was added, containing 

(mM): Tris-HCl (40). Samples were then cooled to 4°C and DNA concentrations were measured 

using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific; Waltham, USA). 

2.6.2 Polymerase chain reaction 

 PCR was performed for each sample at a 25 μL reaction volume in an ICycler thermocycler 

(Bio-Rad; Hercules, USA). Each reaction contained: 12.5 μL 2×Taq FroggaMix (FroggaBio; 

Concord, Canada), 6.5 μL PCR grade water (FroggaBio), 0.5 μM Gja5 forward primer (Integrated 

DNA Technologies; Coralville, USA), 0.5 μM Gja5 reverse primer (Integrated DNA 

Technologies) and 1 μL extracted DNA from sample. PCR cycling conditions were: 94℃ for 15 

minutes; 30 cycles of 94℃ for 1 minute, 68℃ for 30 seconds, and 72°C for 1 minute; 72°C for 10 

minutes; and 4°C hold. 

2.6.3 Gel electrophoresis 

 In order to confirm that PCR yielded the desired product, PCR reactions were run by 

electrophoresis on a 1.5% agarose gel containing ethidium bromide and visualized under 

ultraviolet light. 

2.6.4 PCR product extraction 

 The PCR product was purified using a PCR cleanup kit (Truin Science; Edmonton, 

Canada) according to the manufacturer’s protocol. The final DNA concentration of the purified 

product was measured using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) 

as described in §2.6.1. 
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2.6.5 DNA sequencing and analysis 

 Samples were prepared for sequencing as 10 µL aliquots containing approximately 10-15 

ng·µL-1 DNA from the purified PCR product and 0.25 µM Gja5 forward primer (Integrated DNA 

Technologies). Sequencing reactions were performed in a 3730 Genetic Analyzer (Applied 

Biosystems; Foster City, USA) at the University of Alberta’s Molecular Biology Services Unit 

(MBSU) by MBSU staff. Data files were analysed in SnapGene Viewer Version 6.2.2 (Dotmatics; 

Boston, USA). At coding position 25, samples found to have a guanine base were considered WT; 

samples found to have a thymine base were considered KO; and samples in which both guanine 

and thymine bases were detected were considered HET. 

2.6.6 Primers for PCR and sequencing 

 Gja5 forward and reverse primers were manufactured by Integrated DNA Technologies 

(Coralville, USA) and contained the sequences 5’-TGGATCAGTGGTCCAGAGCATGATG-3’, 

and 5’-GCGTGGCCCATGTACACCAGAGAT-3’, respectively. 

2.7 Quantitative reverse-transcription PCR (RT-qPCR) 

 Expression levels of mRNA coding for TRPC6, TRPM4 and IKCa in mesenteric arteries 

from male Sprague-Dawley rats and Cx37, Cx40 and Cx43 in mesenteric arteries from male and 

female Cx40 WT, HET and KO rats were measured using real-time RT-qPCR. Results represent 

arteries from n different rats, with each measurement performed in triplicate. 

2.7.1 RNA extraction and cDNA synthesis 

 Isolated second- and third-order mesenteric arteries were stored at -80°C until extraction. 

Arteries were placed in QIAzol Lysis Reagent (QIAGEN Cat. No. 79306) and homogenized using 

a TissueLyser II (QIAGEN). 100 µL chloroform (Sigma-Aldrich; St. Louis, USA) was added to 

each sample. Total RNA was extracted from homogenates using the RNeasy® Micro Kit (QIAGEN 
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Cat. No. 74004) according to the manufacturer’s protocol. RNA concentration was measured using 

a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). For each sample, 250 ng of 

extracted RNA was used to synthesize cDNA using the QuantiTect Reverse Transcription Kit 

(QIAGEN Cat. No. 205313) according to the manufacturer’s protocol. cDNA samples were diluted 

1:5 in nuclease-free water and stored at -20°C. 

2.7.2 Sample preparation and RT-qPCR 

 RT-qPCR experiments were performed using SYBR green reagents. Reactions were 

performed in a total volume of 10 µL containing: 5 µL SYBR Green PCR Master Mix (Applied 

Biosystems; Thermo Fisher Scientific), 2 µL nuclease-free water, 0.5 µL forward primer, 0.5 µL 

reverse primer and 2 µL cDNA sample. Primers used are listed in Tables 2.1 and 2.2. Reactions 

were carried out in a 7500 Fast & 7500 Real-Time PCR System (Applied Biosystems). 

Primers for RT-qPCR (TRP and IKCa Expression) 

Species-Gene 

(Product) 
Sequence Manufacturer 

Rat-Trpc6 (TRPC6) 
F 5’-GCGGCAGACAGTTCTTCGTGAG-3’ 

Integrated DNA 

Technologies 
R 5’-CTTCTAGCATCTTCCGCACCACTG-3’ 

Rat-Trpm4 (TRPM4) 
F 5’-TGCGCGCCGAGATGTAT-3’ 

Integrated DNA 

Technologies 
R 5’-AAAGAAGCAGGTCGCTCCAG-3’ 

Rat-Kcnn4 (IKCa) 
F 5’-ATGCTGCTACGTCTCTAC-3’ 

Integrated DNA 

Technologies 
R 5’-GAATCGGACTTGGTTGAG-3’ 

Rat-Actb (β-actin) 
F 5’-CACCATTGGCAATGAGCGGTTC-3’ 

Integrated DNA 

Technologies 
R 5’-AGGTCTTTGCGGATGTCCACGT-3’ 

Table 2.1: Forward and reverse primers used for the amplification of Trpc6, Trpm4, Kcnn4 and 

Actb in RT-qPCR. 
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Primers for RT-qPCR (Connexin Expression) 

Species-Gene 

(Product) 
Sequence Manufacturer 

Rat-Gja4 (Cx37) 
F 5’-GGTGGCAGAGGACGGTCGTCT-3’ 

Integrated DNA 

Technologies 
R 5’-CCATGGTCCAGCCGTAGAGA-3’ 

Rat-Gja5 (Cx40) 
F 5’-GGAAAGAGGTGAACGGGAAG-3’ 

Integrated DNA 

Technologies 
R 5’-GGGCCTCGAGACATAACAGTT-3’ 

Rat-Gja1 (Cx43) 
F 5’-TCTGCCTTTCGCTGTAACACT-3’ 

Integrated DNA 

Technologies 
R 5’-GGGCACAGACACGAATATGAT-3’ 

Rat-Actb (β-actin) 
F 5’-AGATTACTGCCCTGGCTCCT-3’ 

Integrated DNA 

Technologies 
R 5’-ACTCCTGCTTGCTGATCCAC-3’ 

Table 2.2: Forward and reverse primers used for the amplification of Gja4, Gja5, Gja1 and Actb 

in RT-qPCR. 

 

 mRNA expression of each gene was compared to the expression of reference gene Actb. 

Threshold cycle (Ct) values were obtained for each gene; ΔCt is the difference between Ct values 

obtained for the gene of interest and Actb, i.e. ∆Ct = Ct (gene) − Ct (𝐴𝑐𝑡𝑏). Fold-difference is 

expressed as 2−∆Ct. 

2.8 Blood glucose measurement 

 Random (i.e. non-fasting) blood glucose concentration was measured immediately prior to 

euthanasia. Blood sample was collected by lateral tail vein prick and glucose concentration was 

measured using a OneTouch Ultra 2 glucometer (LifeScan Europe; Zug, Switzerland). 

2.9 Tail-cuff plethysmography 

 Systolic blood pressure (BP) of male and female Cx40 rats was measured non-invasively 

by tail-cuff plethysmography using a CODA high-throughput system (Kent Scientific; Torington, 

USA)813-816. CODA relies upon volume-pressure recording (VPR) to determine BP indirectly by 
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measuring changes in tail blood volume814. Rats were placed on a warming platform maintained 

at 37°C and lightly sedated (1.25% isoflurane in oxygen; 1 L·min-1 via nose-cone). An 

appropriately sized occlusion tail-cuff and VPR sensor were fitted onto the tail. After an 

equilibration period of 5 minutes to isoflurane, the CODA system automatically took 20 BP 

measurements with a 15 second cuff deflation time and 5 seconds between cycles. The first 10 

cycles were conducted for the purpose of acclimatization and equilibration, but were not used for 

data. Systolic BP measurements were taken exclusively from the final 10 cycles. The integrity of 

systolic BP measurements was determined based upon the successful measurement of diastolic BP 

and heart rate (HR) during the same cycle. Cycles during which no meaningful diastolic BP or 

heart rate data could be recorded were discarded. Systolic BP values reported for each rat represent 

the mean systolic BP value of successful cycles. 

2.10 Langendorff heart perfusion 

 Male and female Cx40 rats were anaesthetized (>100 mg·kg-1 pentobarbital sodium by 

intraperitoneal injection) and decapitated (§2.2). Hearts were rapidly excised and placed briefly 

into ice-cold Krebs buffer. Hearts were then cannulated via the ascending aorta, secured with 3-0 

surgical silk (Ethicon), and perfused in Langendorff mode817 with heated (37°C) and gassed (95% 

O2 / 5% CO2) Krebs buffer by a MHRE200 peristaltic pump (Watson-Marlow; Falmouth, UK) at 

a constant flow rate of 13 mL·min-1. A water-filled latex balloon connected to a pressure transducer 

was inserted into the left ventricle through an incision in the left atrium. The volume of the balloon 

was adjusted to achieve a baseline left ventricular end-diastolic pressure (LVEDP) of 18-20 

mmHg. Left ventricular pressure and HR were recorded via a PowerLab 2/26 data acquisition 

system using LabChart 8 software (ADInstruments). Left ventricular developed pressure (LVDP) 

was calculated as the difference between left ventricular systolic pressure (LVSP) and LVEDP. 
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HR was automatically calculated in LabChart 8 (ADInstruments) from the wavelength of the 

cardiac cycle. LVDP, LVEDP and HR were retrieved from the continuous trace at 5 minute 

intervals for data analysis. 

2.10.1 Ischemia/reperfusion protocol 

 Hearts were perfused under normoxic conditions for 30 minutes to establish baseline 

pressure and HR. After equilibration, global no-flow ischemia was induced by clamping the aortic 

inflow line and switching off the pump. The heart was immersed in Krebs buffer in a water-

jacketed organ bath maintained at 37°C without gassing. Ischemia was maintained for 15 minutes, 

followed by a 45 minute period of aerobic reperfusion wherein the pump was restarted and the 

clamp reopened. 

2.11 Mild hypercaloric challenge via high-fat diet 

The mildly hypercaloric high-fat diet (HFD) used in this research is based upon a 

formulation by our collaborator Dr. Ahmed El-Yazbi at Alalamein International 

University473,818,819. Their HC rat chow was prepared in-house using 8604 Teklad Rodent Diet 

(Envigo; Madison, USA) as a base, to which they added food grade fructose and hydrogenated 

vegetable oil, and replaced sodium and potassium by adding NaCl and KCl. The composition of 

the final product was determined via bomb calorimetry and was found to comprise by weight 

18.1% fat, 15.8% protein, and 46.1% carbohydrates. In calorie content this was 38.7% kcal from 

fat, 15.6% kcal from protein and 45.7% kcal from carbohydrates, with a total caloric density of 

4.035 kcal·g-1. 

 Based upon this diet formulation from the El-Yazbi research group, an analogous custom 

diet, TD.210490, was formulated in consultation with Dr. Derek Martin, RD, a laboratory animal 

nutritionist at Envigo. Teklad custom diet TD.210490 contains (g·kg-1): 8604 Teklad Rodent Diet 



77 

 

(643.85), fructose (200.0), Crisco® hydrogenated vegetable shortening (150.0), NaCl (1.05), KCl 

(3.5), US Rodent Mineral Mix 99115 (0.89), and US Rodent Vitamin Mix 99114 (0.71). The diet 

contains by weight 17.9% fat, 15.8% protein, and 46.4% carbohydrates. The diet offers 4.1 kcal·g-

1 in metabolizable energy820,821, distributed as follows: 39.3% kcal from fat, 15.4% kcal from 

protein, and 45.3% kcal from digestible carbohydrates. The chow was mixed, pelleted and 

irradiated to order by Envigo. Throughout this thesis, the term HFD will refer to Teklad custom 

diet TD.210490.  

The term “control diet” will refer to one of two standard rodent diets: 5L0D PicoLab® 

Laboratory Rodent Diet (LabDiet; Richmond, USA) was used until March 2023, after which a 

similar diet, 5053 PicoLab® Rodent Diet 20 (LabDiet), was used instead due to low availability of 

5L0D. 5L0D offers 2.91 kcal·g-1 in metabolizable energy and contains by weight (calorie content): 

5.0% fat (13.4% kcal), 25.0% protein (29.8% kcal) and 47.5% digestible carbohydrates (56.7% 

kcal). 5053 offers 3.03 kcal·g-1 in metabolizable energy and contains by weight (calorie content): 

5.0% fat (13.1% kcal), 21.0% protein (24.5% kcal) and 53.4% digestible carbohydrates (62.3% 

kcal). Detailed nutritional information for the 5L0D, 5053, and TD.210490 diets may be found in 

Appendix A (Table A.1). 

 Male and female Cx40 rats were divided into two groups: 1) rats fed with control chow for 

6 months and 2) rats fed with control chow for 3 months followed by HFD chow for 3 months 

before euthanasia and experimental use (§2.2). 

2.12 Drugs and chemicals 

 Salts such as those used in the preparation Krebs buffer were purchased from Fisher 

Scientific or from Sigma-Aldrich. All other chemicals and their mechanisms of action, solvents, 
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and manufacturers may be found in Table 2.3 below. Experimental concentrations were derived 

from accepted literature values. 

Name 
Mechanism of 

Action 
Solvent 

Experimental 

Concentration 
Manufacturer 

Acetylcholine (ACh)  
Muscarinic 

agonist822-824 
Water 1 nM to 10 μM Sigma-Aldrich 

Apamin 
SKCa channel 

inhibitor825 
Water  50 nM Tocris 

Isoproterenol (ISO) 
β-adrenoceptor 

agonist826-829 
Water 10 μM Sigma-Aldrich 

NG-nitro-L-arginine 

methyl ester 

hydrochloride 

 (L-NAME) 

NOS 

inhibitor622,830,831 
Water 100 μM Sigma-Aldrich 

Methoxamine (MOX) 
α1-adrenoceptor 

agonist832,833 
Water 1 μM Sigma-Aldrich 

Nifedipine 

LTCC266,834-836 

and TTCC291-293 

inhibitor 

DMSO 1 μM to 10 μM Sigma-Aldrich 

4-[[3-

(Trifluoromethyl)phenyl]

methyl]-2H-1,4-

benzothiazin-3(4H)-one  

(NS6180) 

IKCa channel 

inhibitor684 
DMSO 1 μM Tocris 

9-Phenanthrol 
TRPM4 channel 

inhibitor837,838 
DMSO 1 μM to 20 μM Sigma-Aldrich 

Phenylephrine (PE) 
α1-adrenoceptor 

agonist833,839-842 
Water 1 nM to 100 μM Sigma-Aldrich 

Prazosin 
α1-adrenoceptor 

antagonist842-844 
Water  0.1 μM to 1 µM Tocris 

 1-[(2-

Chlorophenyl)diphenylme

thyl]-1H-pyrazole 

 (TRAM-34) 

IKCa channel 

inhibitor681,682 
DMSO 1 μM 

Cayman 

Chemical 

(5Z)-7-[(1R,4S,5S,6R)-6-

[(1E,3S)-3-Hydroxy-1-

octen-1-yl]-2-

oxabicyclo[2.2.1]hept-5-

yl]-5-heptenoic acid 

(U46619) 

TXA2 receptor 

agonist845 
DMSO 1 nM to 100 μM 

Cayman 

Chemical 

Table 2.3: Drugs used in the experiments described in this thesis. For each of these drugs, control 

experiments were carried out using appropriate concentrations of DMSO. 
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2.13 Statistical analysis 

 All statistical analyses were performed using GraphPad Prism 9.5.1 (GraphPad Software; 

La Jolla, USA). Data are reported as mean ± SEM (n) where n is the number of animals used. 

Unless otherwise indicated, responses in the absence and presence of drugs were obtained from 

the same tissues. Normalized agonist CRCs were fitted to a sigmoidal curve with a variable slope 

using a four parameter logistic equation. Data from repeated measures (i.e. having two independent 

variables) were analysed using two-way ANOVA followed by either a Tukey’s multiple 

comparison post-hoc test for three or more experimental groups (e.g. comparing between 

genotypes), or Šídák method post-hoc test for two experimental groups (e.g. comparing between 

CD and HFD). Data with one independent variable (e.g. body weight, blood glucose, BP, etc.) 

were analysed using one-way ANOVA followed by either a Tukey’s multiple comparison post-

hoc test for three or more experimental groups, or a Šídák’s multiple comparison post-hoc test for 

two experimental groups. P<0.05 was considered to be statically significant. 
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Chapter 3: TRPM4 blockade impairs myogenic, agonist-induced, and nerve-evoked 

vasoconstriction independent of IKCa 

 

3.1 Introduction 

As discussed in §1.3.4, myogenic reactivity is a crucial vascular mechanism underlying the 

autoregulation of blood flow in response to changes in blood pressure474-476. The myogenic 

response is initiated when an increase in transmural pressure in resistance arteries causes 

membrane depolarization in VSMCs, leading to increased [Ca2+]i through VOCC activation, and 

subsequently causing activation of MLCK, crossbridge cycling, and vasoconstriction. The 

mechanism responsible for linking increased transmural pressure to a depolarization of smooth 

muscle membrane potential is believed to be an as-yet unidentified mechanosensor on smooth 

muscle cells465. Several candidates for this linking mechanism have emerged, including 

integrins846, GPCRs847, and TRP channels such as TRPM4 and TRPC6341,342. Recent studies 

suggest that TRP channels themselves are not direct mechanosensors338,342,496-498; however, several 

TRP channels have been shown to be necessary for mechanically-induced cation entry in 

VSMCs314,499. It has recently been shown in rat cerebral arteries that TRPM4 activity depends 

upon the activation of PLC342 downstream from Gq/11PCRs such as the AT1R, which may be 

directly mechanosensitive848-850. 

A large portion of the literature investigating the role of TRPM4 in the myogenic response 

has relied upon use of the small-molecule TRPM4 inhibitor, 9-phenanthrol214,215,500,501,504,505,851. 

For example, in rat cerebral, mesenteric, and skeletal muscle arteries, application of 9-phenanthrol 

was shown to eliminate pressure-induced depolarization of VSMCs and abolish the myogenic 

response500,501. In cerebral parenchymal arterioles from rats, 9-phenanthrol was found to partially 

inhibit vasoconstriction evoked by the selective P2Y4 and P2Y6 receptor agonists, UTPγS and 

UDP, respectively504. P2Y receptors are Gq/11PCRs, thus the suggestion that P2Y activity is 
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coupled to TRPM4 activity is consistent with the finding that PLC is necessary for TRPM4-

mediated myogenic constriction342. 9-phenanthrol has also been used to examine the role of 

TRPM4 in cardiovascular functions other than myogenic tone; for instance, Hurley et al. (2023) 

demonstrate that TRPM4 is abundantly expressed in rat Purkinje fibres, and that the application of 

9-phenanthrol to Langendorff perfused rat hearts reduces the frequency of ectopic arrhythmias852. 

Most recently, 9-phenanthrol has also been investigated for therapeutic use in vivo. Administration 

of 9-phenanthrol (70 µg·kg-1) was shown to attenuate cerebral edema in a rat model of induced 

traumatic brain injury853. The authors attribute this effect to the inhibition of Na+ influx in 

neurovascular ECs and SMCs, and reduced expression and activity of matrix metalloproteinase-9 

(MMP-9) which is able to degrade the blood brain barrier. 

Since its action as a TRPM4 inhibitor was discovered in 2008837, the pharmacological 

properties of 9-phenanthrol have been thoroughly investigated (reviewed by Guinamard et al., 

2014)838. 9-phenanthrol inhibits TRPM4 with an IC50 of approximately 17 µM, but does not affect 

its closest relative, TRPM5837. It has also shown no inhibitory effect on several other TRP channels 

including TRPC3, TRPC6 and TRPM7500,854. Thus, 9-phenanthrol was believed to be quite 

selective for TRPM4. However, recent studies propose that 9-phenanthrol may have off-target 

actions as an inhibitor of KIR channels855, an inhibitor of transmembrane protein 16A (TMEM16A; 

a ClCa channel)856, and an activator of IKCa channels857. These findings have raised doubts about 

the usefulness of 9-phenanthrol as a pharmacological tool for investigating the role of TRPM4. 

The action of 9-phenanthrol at KIR is controversial: Veress et al. (2018) reported that transient 

outward, rapid delayed rectifier, and inward rectifier K+ currents were suppressed by 9-phenanthrol 

at 10 and 30 µM in canine ventricular myocytes855. However, this is contradicted by previous 

studies describing no effect of 9-phenanthrol on global K+ currents in rat cerebral artery VSMCs 
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or mouse ventricular cardiomyocytes at concentrations under 100 µM500,858. Currently, no 

evidence contradicts the findings that 9-phenanthrol activates IKCa and inhibits TMEM16A, so it 

is unclear whether these mechanisms contribute to 9-phenanthrol’s inhibition of myogenic 

reactivity. Thus, I have tested the hypothesis that 9-phenanthrol’s primary mechanism of action is 

TRPM4 inhibition rather than IKCa activation. 

3.2 Methods 

A full description of methods is provided in Chapter 2. As stated in §2.2, experiments in 

this chapter use male (250-300 g) and female (175-225 g) Sprague-Dawley rats. 

3.3 Results 

3.3.1 TRPM4 mRNA is highly expressed in rat mesenteric arteries 

mRNA encoding two TRP channels, TRPC6 and TRPM4, as well as IKCa channels, was 

measured in isolated mesenteric arteries from male Sprague-Dawley rats using quantitative 

reverse-transcription PCR (RT-qPCR; Figure 3.1). mRNA expression of Trpc6, Trpm4 and Kcnn4 

was compared to the expression of Actb (reference gene encoding β-actin). Fold-difference is 

expressed as 2−∆Ct, where ∆Ct = Ct (gene) − Ct (𝐴𝑐𝑡𝑏). TRPM4 and IKCa mRNA were both 

detected. Relative expression of TRPM4 is significantly greater than relative expression of TRPC6 

(P<0.05). 

3.3.2 Characterization of nerve-evoked vasoconstriction in the rat perfused mesenteric 

vascular bed 

 

 Nerve-evoked vasoconstriction in the rat perfused mesenteric vascular bed was 

characterized using tissue from male Sprague-Dawley rats. Pressure responses were shown to be 

frequency-dependent and time-independent (P>0.05, Figure 3.2a). Pressure responses were 

abolished in the presence of the α1-adrenoceptor antagonist prazosin (0.1 µM), indicating that 

electric stimulus-evoked vasoconstriction in the perfused mesenteric bed is attributable to the 
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action of NA at α1-adrenoceptors on VSMCs (P<0.05, Figure 3.2b). This experiment was 

performed in order to demonstrate that pressure responses to electrical stimulation were mediated 

by neurotransmitter release from perivascular nerves rather than direct electrical stimulation of 

vascular smooth muscle. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: mRNA encoding TRPM4 is expressed at higher levels than TRPC6 or IKCa in rat 

mesenteric arteries. RT-qPCR results showing expression of mRNA coding for TRPC6, TRPM4 

and IKCa relative to β-actin in mesenteric arteries from male Sprague-Dawley rats. Data are 

presented as mean ± SEM (n = 4). * denotes P<0.05 between mRNA products; one-way ANOVA. 

Data contributed by Ran Wei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Electric stimulus-evoked vasoconstriction in the rat perfused mesenteric vascular 

bed is frequency-dependent, time-independent, and is mediated by α1-adrenoceptors. 

Frequency-response relationships constructed using endothelium-intact mesenteric beds from 

male Sprague-Dawley rats perfused at a constant flow rate a) in time controls (n = 5) and b) in the 

absence and presence of prazosin (0.1 µM; n = 5). Data are presented as mean ± SEM. * denotes 

P<0.05 from control; two-way ANOVA. Data contributed by Paul Kerr, Stephanie Lunn and 

Michael Chen. 

a) b) 
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3.3.3 9-Phenanthrol limits nerve-evoked vasoconstriction in a dose-dependent manner 

without acting at IKCa channels 

 

Increases in perfusion pressure were measured in response to electrical stimulations over a 

range of frequencies from 1-40 Hz in the absence and presence of 9-phenanthrol at two different 

concentrations (5 µM, 10 µM; Figure 3.3). In the presence of 5 µM 9-phenanthrol, pressure 

responses to the 15, 20, 30 and 40 Hz stimulations were significantly lower than control (P<0.05). 

Upon increasing the concentration of 9-phenanthrol to 10 µM, the responses decreased further, 

with significance from control at 15, 20, 30 and 40 Hz, and significance from 5 µM 9-phenanthrol 

at 20, 30 and 40 Hz (P<0.05). These results demonstrate that 9-phenanthrol limits nerve-evoked 

vasoconstriction in a dose-dependent manner. 

Experimental concentrations of 9-phenanthrol vary from approximately 1 to 100 µM 

throughout the literature; however, many researchers have used 10 µM as it approximates the IC50 

of 9-phenanthrol at TRPM4501,504,837,855,856,858,859. Thus, from this point onward, 9-phenanthrol was 

applied at 10 µM when used in single concentrations. Using the perfused mesenteric vascular bed, 

I next assessed whether activation of IKCa contributes to 9-phenanthrol’s limitation of nerve-

evoked vasoconstriction (Figure 3.4). Frequency-response curves were constructed in the absence 

of drugs, in the presence of 9-phenanthrol (10 µM), and in the presence of 9-phenanthrol and the 

IKCa blocker NS6180 (1 µM). Control responses were significantly higher than those in the 

presence of 9-phenanthrol with and without NS6180 (P<0.05). Meanwhile, pressure responses 

were nearly identical between treatment with 9-phenanthrol alone and treatment with 9-

phenanthrol + NS6180 (P>0.05). Thus, blocking IKCa channels has no effect on the action of 9-

phenanthrol in this preparation, suggesting that 9-phenanthrol’s inhibition of constriction is not 

due to putative off-target activation of IKCa. 
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Figure 3.3: 9-Phenanthrol produces concentration-dependent inhibition of nerve-evoked 

vasoconstriction. Frequency-response relationships constructed using perfused mesenteric 

vascular beds from male Sprague-Dawley rats in the absence and presence of 9-phenanthrol (5 µM 

or 10 µM). Data are presented as mean ± SEM (n = 12). * denotes P<0.05 from control and # 

denotes P<0.05 from 5 µM 9-phenanthrol; two-way ANOVA. Data contributed by Nicholas 

Fialka and Michal Shaposhnikov. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Inhibition of nerve-evoked vasoconstriction by 9-phenanthrol is not mediated by 

IKCa. Frequency-response relationships constructed using perfused mesenteric vascular beds from 

male Sprague-Dawley rats in the absence and presence of 9-phenanthrol (10 µM) and NS6180 (1 

µM). Data are presented as mean ± SEM (n = 5). * denotes P<0.05 from control; two-way 

ANOVA. 
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A discrepancy exists between Figures 3.3 and 3.4: in Figure 3.3, 10 µM 9-phenanthrol 

induces a 58% reduction in the response at 30 Hz versus control, whereas in Figure 3.4, 10 µM 9-

phenanthrol induces only a 38% reduction in the response at 30 Hz versus control. The cause for 

this is unclear; a possible explanation is that the sets of experiments were performed in different 

months, as seasonal changes in vascular function have been reported in the literature860-862. 

3.3.4 Characterization of pressure-evoked vasoconstriction in isolated mesenteric arteries 

using pressure myography 

 

Pressure myography without lumenal flow was characterized using isolated segments of 

fourth- to sixth-order mesenteric arteries from male Sprague-Dawley rats. Pressure-diameter 

relationships were constructed by measuring internal diameter of artery segments in response to 

ramps of intralumenal pressure from 20-120 mmHg in 20 mmHg increments. Myogenic reactivity 

was time-independent and not affected by a vehicle control of dimethyl sulfoxide (DMSO; Figure 

3.5a and b). Under control conditions, arteries maintained their diameter across the range of 

pressures; replacing the bath of the myograph chamber with Ca2+-free Krebs buffer revealed the 

passive diameter of the vessel at each pressure step. At an intralumenal pressure of 80 mmHg, 

mean diameters in successive time controls were 225.3 ± 19.3 µm (n = 6), 226.2 ± 18.4 µm (n = 

6) and 202.4 ± 18.1 µm (n = 5; Figure 3.5a; P>0.05). Many of the pharmacological reagents in 

this research are dissolved in DMSO, thus a vehicle control was performed (Figure 3.5b). At the 

80 mmHg pressure step, the mean arterial diameters before and after the addition of 20 µL of 

DMSO to the 7 mL myograph chamber (0.28 vol%) were 241.2 ± 18.9 µm (n = 4) and 220.5 ± 

24.2 µm (n = 4; P>0.05), respectively. Next, myogenic reactivity was shown to be endothelium-

independent, as the pressure-diameter relationships constructed in endothelium-intact and 

endothelium-denuded arteries were very similar (Figure 3.6). No significant differences were 

observed in the active and passive diameters between endothelium-intact and -denuded arteries; 



87 

 

for example, at the 80 mmHg pressure step, the mean diameters of endothelium-intact and -

denuded arteries were 230.4 ± 13.4 µm (n = 11) and 233.5 ± 10.7 µm (n = 6; P>0.05; Student’s t-

test), respectively. The passive diameters in Ca2+-free Krebs buffer were 322.9 ± 12.7 µm (n = 11) 

and 310.7 ± 8.0 µm (n = 6; P>0.05; Student’s t-test), respectively. 

3.3.5 9-Phenanthrol abolishes myogenic tone without acting at IKCa channels 

 

Segments of fourth- to sixth-order mesenteric arteries were isolated from male Sprague-

Dawley rats and mounted on glass canulae in a pressure myograph. Pressure-diameter relationships 

were constructed by measuring the internal diameter of the artery in response to ramps of 

intralumenal pressure from 20-120 mmHg in 20 mmHg increments. Pressure ramps were 

performed in the absence and presence of 9-phenanthrol (10 µM), NS6180 (1 µM), and TRAM-

34 (1 µM), and the passive diameter of the vessel was revealed by performing a pressure ramp in 

the absence of extracellular Ca2+ (Figure 3.7). Under control conditions, arteries demonstrated 

pressure-evoked vasoconstriction, wherein the active diameter was significantly lower than the 

passive diameter (Ca2+-free) at intralumenal pressures of 60 mmHg and greater (P<0.05, Figure 

3.7a). The addition of 9-phenanthrol abolished pressure-evoked vasoconstriction, with no 

significant differences from passive diameter at any pressure step (P>0.05). Subjecting vessels to 

either NS6180 (Figure 3.7b) or TRAM-34 (Figure 3.7c) in addition to 9-phenanthrol did not 

reverse the effect of 9-phenanthrol on pressure-evoked vasoconstriction. These data demonstrate 

that 9-phenanthrol abolishes myogenic vasoconstriction through an IKCa-independent mechanism. 
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Figure 3.5: Myogenic reactivity of isolated rat mesenteric arteries is time-independent and 

is not affected by DMSO. Isolated third- and fourth-order mesenteric arteries from male Sprague-

Dawley rats were mounted in a pressure myograph and used to construct pressure-diameter 

relationships. Diameter was measured over pressure ramps from 20-120 mmHg in 20 mmHg 

increments. Mean internal diameters in response to stepwise increases in intravascular pressure a) 

in time controls (n = 5-6) and b) before and after the addition of DMSO (0.28 vol%; n = 4). Data 

are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA. Data 

contributed by Ran Wei. 

a) 

b) 
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Figure 3.6: Myogenic reactivity of isolated rat mesenteric arteries is endothelium-

independent. Isolated third- and fourth-order endothelium-intact and -denuded mesenteric arteries 

from male Sprague-Dawley rats were mounted in a pressure myograph and used to construct 

pressure-diameter relationships. Mean internal diameters in response to stepwise increases in 

intravascular pressure in a) endothelium-intact (n = 11) and b) endothelium-denuded (n = 6) 

arteries in the absence and presence of Ca2+. Data are presented as mean ± SEM. * denotes P<0.05 

from control; two-way ANOVA. Data contributed by Ran Wei. 

  

b) 

a) 
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Figure 3.7: 9-Phenanthrol abolishes pressure-evoked vasoconstriction in isolated mesenteric 

arteries without acting at IKCa. Pressure myography was used to construct pressure-diameter 

relationships in isolated fourth- to sixth-order mesenteric arteries from male Sprague-Dawley rats. 

Pressure ramps were performed in the absence and presence of a) 9-phenanthrol (10 µM; n = 5), 

b) 9-phenanthrol + NS6180 (1 µM; n = 7), and c) 9-phenanthrol + TRAM-34 (1 µM; n = 5). Data 

are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA.  

a) 

b) c) 
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3.3.6 9-Phenanthrol induces vasodilation without acting at IKCa channels 

Segments of second- and third-order mesenteric arteries were isolated from male Sprague-

Dawley rats and mounted in a wire myograph to measure isometric tension. Arteries were pre-

constricted with either PE (3 µM) or 5-HT (3 µM) before cumulative concentration-response 

curves to 9-phenanthrol were constructed from 10 nM to 100 µM in half-log concentrations, in the 

presence and absence of NS6180 (1 µM; Figure 3.8). Upon pre-constriction with PE, vessels 

relaxed to 9-phenanthrol in a sigmoidal, concentration-dependent manner with a logEC50 of -6.31 

± 0.09 M (n = 6; Figure 3.8a). The addition of NS6180 produced no significant difference from 

control (P>0.05). In vessels pre-constricted with 5-HT, 9-phenanthrol produced sigmoidal, 

concentration-dependent relaxation with a logEC50 of -7.11 ± 0.09 M (n = 5; Figure 3.8b). Again, 

the addition of NS6180 produced no significant difference from control (P>0.05). However, the 

control 9-phenanthrol curve after pre-constriction to PE was significantly right-shifted versus the 

control 9-phenanthrol curve after pre-constriction to 5-HT (P<0.05; two-way ANOVA). Taken 

together, these results suggest that 9-phenanthrol-induced vasorelaxation is not mediated by IKCa 

activation. However, the nature of the vasoconstrictor stimulus does significantly impact the 

logEC50 of 9-phenanthrol in isolated mesenteric arteries (P<0.05; Student’s t-test). 
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Figure 3.8: 9-Phenanthrol produces concentration-dependent relaxation of isolated 

mesenteric arteries. Wire myography was used to construct cumulative concentration-response 

curves to 9-phenanthrol in the absence and presence of NS6180 (1 µM) using isolated second- and 

third-order mesenteric arteries from male Sprague-Dawley rats. 9-Phenanthrol was applied after 

pre-constriction to a) PE (3 µM; n = 6) or b) 5-HT (3 µM; n = 5). Data are presented as mean ± 

SEM. P>0.05; two-way ANOVA. Data contributed by Alexia Maheux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: 9-Phenanthrol inhibits PE-induced vasoconstriction of isolated mesenteric 

arteries without affecting EDH or NO synthesis. Wire myography was used to construct 

cumulative concentration-response curves to PE in the absence and presence of 9-phenanthrol (10 

µM), apamin (50 nM), TRAM-34 (1 µM), and L-NAME (100 µM) using isolated second- and 

third-order mesenteric arteries from a) male (n = 11-16) and b) female (n = 6-7) Sprague-Dawley 

rats. Curves are unpaired and responses are expressed as magnitude of contraction (mN). Data are 

presented as mean ± SEM. P<0.05; two-way ANOVA. Significance between pairs of treatments 

at specific concentrations of PE were determined using Tukey’s multiple comparisons, but omitted 

from graphs for clarity. Data contributed by Sufyan Malik and Caleb McInroy. 

a) b) Pre-Constriction to PE Pre-Constriction to 5-HT 

a) b) 
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3.3.7 9-Phenanthrol limits phenylephrine-induced vasoconstriction 

 

Second- and third-order mesenteric arteries from male and female Sprague-Dawley rats 

were mounted in a wire myograph and used to construct cumulative concentration-response curves 

to PE from 1 nM to 100 µM in half-log concentrations, in the absence and presence of 9-

phenanthrol (10 µM), apamin (50 nM), TRAM-34 (1 µM), and L-NAME (100 µM; Figure 3.9). 

For this figure only, responses have not been normalized to maximum constrictions and are instead 

expressed as magnitude of constriction in mN. In both males (Figure 3.9a) and females (Figure 

3.9b), there was overall significance of the drug treatment (P<0.05); however, individual points of 

significance between groups using Tukey’s multiple comparisons are omitted for clarity. In males, 

all three drug treatments were significantly different from control: administration of apamin + 

TRAM-34 + L-NAME caused significantly greater constriction than control, demonstrating that 

EDH and NO synthesis limit vasoconstriction to PE under control conditions. Conversely, 

administration of 9-phenanthrol alone or 9-phenanthrol + apamin + TRAM-34 + L-NAME caused 

significantly lower constriction than control (P<0.05). The only pair of treatments with no 

significant differences were 9-phenanthrol alone and 9-phenanthrol + apamin + TRAM-34 + L-

NAME (P>0.05). These results suggest that 9-phenanthrol limits PE-induced vasoconstriction, and 

that EDH and NO synthesis do not meaningfully contribute to 9-phenanthrol’s effect. These results 

were mostly duplicated in arteries from female rats, as either 9-phenanthrol alone or 9-phenanthrol 

+ apamin + TRAM-34 + L-NAME caused significantly lower constriction than control (P<0.05). 

Additionally, there was again no significant difference between constriction in the presence of 9-

phenanthrol alone or 9-phenanthrol + apamin + TRAM-34 + L-NAME (P>0.05), corroborating 

the idea that 9-phenanthrol does not act by enhancing EDH or NO synthesis.  In contrast to the 

males, however, administration of apamin + TRAM-34 + L-NAME caused no increase from 
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control (P>0.05), suggesting a lower constitutive contribution of EDH and NO in females than in 

males. 

I further investigated the mechanism of 9-phenanthrol’s effect on PE-induced 

vasoconstriction by using mesenteric arteries from male Sprague-Dawley rats to construct 

cumulative concentration-response curves to PE in the absence and presence of 9-phenanthrol (10 

µM), NS6180 (1 µM), and nifedipine (0.3 µM; Figure 3.10a). Like in the previous experiment 

(Figure 3.9a), administration of 9-phenanthrol alone reduced contraction to PE by approximately 

50% versus control at the highest concentrations of PE (P<0.05). Furthermore, administration of 

either NS6180 or nifedipine in addition to 9-phenanthrol did not reverse its effect. Applying 

NS6180 on top of 9-phenanthrol did not cause a significant difference in contraction versus 9-

phenanthrol alone (P>0.05), showing that 9-phenanthrol’s effect is not due to off-target activation 

of IKCa. The addition of nifedipine on top of 9-phenanthrol also did not cause a significant 

difference in contraction from 9-phenanthrol alone (P>0.05). Thus, once TRPM4 is blocked, 

blocking LTCCs produces no further inhibition of PE-induced contraction. This suggests that 

TRPM4 may be wholly responsible for the SMC depolarization which activates LTCCs. The 

actions of nifedipine alone were also assessed in mesenteric arteries from male rats: PE curves 

were constructed in the absence and presence of  nifedipine (0.3 µM; Figure 3.10b). Contraction 

in the presence of nifedipine alone was significantly reduced from control at PE concentrations ≥ 

1 µM (P<0.05). Therefore, inhibition of LTCCs significantly limited PE-induced contraction. Of 

particular note is the fact that nifedipine alone reduced maximum vasoconstriction to 67.5 ± 5.8% 

of control maximum (n = 5; Figure 3.10b), and 9-phenanthrol alone reduced maximum 

vasoconstriction to 41.2 ± 16.7% of control maximum (n = 6; Figure 3.10a). Although these data 

sets cannot be directly compared, as they were performed in arteries from two separate groups of 
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male Sprague-Dawley rats, 9-phenanthrol appears to cause a greater inhibition of constriction than 

nifedipine. Together, these data suggest that blocking TRPM4 with 9-phenanthrol abolishes 

depolarization-dependent contraction, whereas blocking LTCCs with nifedipine only partially 

blocks depolarization-dependent contraction. Thus, there appears to be a component of 

depolarization-dependent Ca2+-entry which is not mediated by LTCCs. 

 

 

 

 

 

 

 

 

Figure 3.10: 9-Phenanthrol inhibits depolarization-dependent contraction to PE in an IKCa-

independent manner. Isolated second- and third-order mesenteric arteries from male Sprague-

Dawley rats were mounted in a wire myograph and used to construct cumulative concentration-

response curves to PE a) in the absence and presence of 9-phenanthrol (10 µM), NS6180 (1 µM), 

and nifedipine (0.3 µM; n = 5-6). Concentration-response curves to PE were also performed b) in 

the absence and presence of nifedipine (0.3 µM; n = 5). * denotes P<0.05 from control; two-way 

ANOVA. Data are presented as mean ± SEM. 

 

3.4 Discussion 

TRPM4 channels serve a crucial role in vasoconstriction by coupling IP3-induced Ca2+ 

release from the SR to depolarization and contraction of VSMCs214,215. The putative selective 

TRPM4 blocker, 9-phenanthrol, has been used since its discovery in 2008 as a pharmacological 

tool for investigating the physiological function of TRPM4, and is still used for this purpose to 

date501,837,851-853. The data presented in this chapter support the hypothesis that 9-phenanthrol is 

a) b) 
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selective for TRPM4 and demonstrate that TRPM4 is a major contributor to agonist- and pressure-

evoked vasoconstriction in rat mesenteric resistance arteries. 

Although the canonical mechanism of action of 9-phenanthrol is blockade of TRPM4, 

several studies have raised doubts about the selectivity of the drug. In particular, four recent studies 

propose problems with 9-phenanthrol as an experimental tool: Veress et al. (2018) suggest that it 

inhibits KIR channels855, Arullampalam et al. (2021) suggest that it activates murine TRPM4 when 

applied intracellularly863, Burris et al. (2015) suggest that it inhibits the ClCa channel 

TMEM16A856, and Garland et al. (2015) suggest that it activates IKCa channels857. The action of 

9-phenanthrol at KIR is contradicted by other studies describing no effect of 9-phenanthrol on 

global K+ currents at concentrations under 100 µM500,858. Additionally, the study from 

Arullampalam et al. shows that 9-phenanthrol activates murine TRPM4, but not human TRPM4, 

when applied intracellularly863. Therefore, this property is species-dependent, and the authors did 

not examine 9-phenanthrol’s effect on rat TRPM4. This result must be taken into consideration, 

but ultimately is not directly relevant to the present study. However, no evidence has emerged in 

contradiction of 9-phenanthrol’s putative inhibition of TMEM16A or activation of IKCa. 

Unfortunately, the quaternary structures of TRPM4, IKCa, and TMEM16A in the presence of 

exogenous ligands have not been solved, thus the precise binding sites of respective modulators 

such as 9-phenanthrol, SKA-31, TMEM16A blocker 2-(4-chloro-2-methylphenoxy)-N-[(2-

methoxyphenyl)methylideneamino]acetamide (Ani9)864-866, and TMEM16A activator 3,4,5-

trimethoxy-N-(2-methoxyethyl)-N-(4-phenyl-2-thiazolyl)benzamide (Eact)
856,866-868 have not been 

fully elucidated. The binding of 9-phenanthrol to these channels cannot yet be predicted by 

modelling, therefore the interpretation of functional results is crucial. Throughout this section, I 
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will address how these two potential off-target mechanisms of 9-phenanthrol’s action (i.e. 

inhibition of TMEM16A and activation of IKCa) affect the interpretation of my results. 

In second- and third-order mesenteric arteries, whole-artery expression of TRPM4 

channels was found by RT-qPCR to be significantly greater than expression of either TRPC6 or 

IKCa channels. This is consistent with previous reports of TRPM4 expression in both 

VSMCs333,341,501,503,869 and ECs302,870-872. In addition to TRPM4 and IKCa, I chose to investigate 

TRPC6 expression due to reports that TRPC6 is a crucial mediator of mechanotransduction 

pathways, including myogenic vasoconstriction, despite not being a mechanosensor 

itself331,496,549,873. Studies have shown that knocking down either TRPC6 or TRPM4 reduces 

myogenic tone by 80-90% in rat cerebral arteries332,341, suggesting either synergistic or serial 

activation of the channels342. More recently, Nemeth et al. (2020) demonstrated that myogenic 

tone was abolished in isolated middle cerebral arteries from a global, germline TRPC6 KO 

mouse874. It is important to note that all the available studies examining the role of TRPC6 in the 

myogenic response use cerebral arteries due to the difficulty of recording myogenic 

vasoconstriction in mesenteric arteries, as I will discuss later in this section. My data show that, in 

contrast to cerebral arteries, TRPC6 mRNA expression is negligible in mesenteric arteries. 

Therefore TRPC6 is not a significant contributor to pressure-evoked vasoconstriction in these 

arteries. 

Throughout the following chapters, I will only use TRAM-34 for pharmacological 

inhibition of IKCa channels, but within this chapter I have used both TRAM-34 and NS6180. 

NS6180 was developed more recently than TRAM-34, and was originally thought to block IKCa 

with higher selectivity than TRAM-34683. Further study has revealed that NS6180 blocks IKCa with 

similar selectivity to TRAM-34, likely at the same binding site682,684,685. Individual experiments 



98 

 

use either TRAM-34 or NS6180, and some experiments were replicated once with each inhibitor 

in order to assess both. I saw no difference in functional results between experiments using NS6180 

and those using TRAM-34. My research, as well as the relevant literature, suggests that TRAM-

34 and NS6180 can be used interchangeably314,683. 

 

 

 

 

 

 

 

Figure 3.11: Schematic diagram of voltage-dependent vasoconstriction in a vascular smooth 

muscle cell. In response to Gq/11PCR agonists such as NA, PE, or 5-HT, IP3 production is 

increased, leading to Ca2+ release from the SR. Increased [Ca2+]i activates TRPM4 and 

TMEM16A, leading to Na+ influx and Cl- efflux, respectively. These both cause depolarization of 

the membrane potential, activating VOCCs and initiating contraction. In addition to increased IP3 

production, the increase in DAG production activates PKC, which increases membrane 

translocation of TRPM4 to further increase contraction340,875. 9-Phenanthrol has been characterized 

as a TRPM4 blocker, and has recently been identified as a putative TMEM16A blocker (adapted 

from Earley et al., 2013)340. 

 

 I further examined the effect of 9-phenanthrol using the perfused rat mesenteric bed. This 

technique was characterized using prazosin to demonstrate that electric stimulus-evoked increases 

in perfusion pressure are mediated by the release of NA from perivascular nerves. Activation of 

α1-adrenoceptors on VSMCs by NA produces vasoconstriction with voltage-independent and -

dependent components. α1-Adrenoceptors are Gq/11PCRs, which means that their activation causes 

a PLC-mediated increase in DAG and IP3 and subsequent Ca2+ release from the SR via IP3Rs; this 

is the voltage-independent component of vasoconstriction234,414. Activation of α1-adrenoceptors 
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also causes depolarization of VSMCs, leading to the activation of VOCCs and enhanced influx of 

Ca2+; this is the voltage-dependent component of vasoconstriction267,492,876. The proximal 

localization of plasmalemmal TRPM4 channels and SR membrane-bound IP3Rs at SR-

plasmalemmal junction points214 allows TRPM4 to depolarize the cell in response to Ca2+ release 

from the SR215,500, connecting the voltage-independent and voltage-dependent components of 

vasoconstriction (Figure 3.11). When applied in the perfused mesenteric bed, 9-phenanthrol 

produced a dose-dependent reduction in nerve-evoked vasoconstriction. Moreover, the effect of 9-

phenanthrol was not affected by blocking IKCa with NS6180. These data clearly illustrate that 9-

phenanthrol does not activate IKCa channels in the perfused mesenteric bed. Thus, 9-phenanthrol’s 

inhibition of nerve-evoked vasoconstriction is attributable to blockade of TRPM4 and/or blockade 

of TMEM16A. 

As discussed earlier, TRPM4 has been implicated as a crucial mediator of myogenic 

vasoconstriction. Using pressure myography, I found that 9-phenanthrol abolished myogenic 

vasoconstriction in isolated rat mesenteric arteries. Blockade of IKCa by either NS6180 or TRAM-

34 caused no change and did not reverse the effect of 9-phenanthrol. This finding is consistent 

with previous studies in rat mesenteric, skeletal, and cerebral arteries wherein 9-phenanthrol 

abolished myogenic tone500,501. Moreover, it was previously found that knocking down expression 

of TRPM4 using an antisense oligodeoxynucleotide reduced myogenic constriction of rat cerebral 

arteries by 70-85%502. The authors showed that TRPM4 expression was reduced, but still present, 

in the rats receiving the antisense oligodeoxynucleotide, although expression was not quantified. 

The discrepancy between the studies, where 9-phenanthrol abolishes myogenic tone but TRPM4 

knockdown leaves 15-30% myogenic tone is most likely due to the remaining expression level of 

TRPM4 after administering the antisense oligodeoxynucleotide. 
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Using wire myography, I found that 9-phenanthrol significantly inhibits the development 

of PE-induced tone in isolated mesenteric arteries. Seeing as PE is an agonist at α1-adrenoceptors, 

these results are consistent with the reduction of nerve-evoked vasoconstriction observed in the 

perfused mesenteric bed. Inhibiting SKCa, IKCa and eNOS with the well-characterized, selective 

inhibitors apamin, TRAM-34 and L-NAME, respectively, caused no significant difference in the 

response to 9-phenanthrol. These data further bolster the position that 9-phenanthrol is not 

producing its effects by activating IKCa. 9-Phenanthrol appears to inhibit PE-evoked depolarization 

of VSMCs without enhancing endothelium-dependent vasodilation. I also found that 9-

phenanthrol produces concentration-dependent vasodilation in isolated mesenteric arteries. 

Interestingly, when arteries were pre-constricted with 3 µM PE, the EC50 of 9-phenanthrol was 

490 nM (logEC50 = -6.31 ± 0.09 M; n = 6), whereas when arteries were pre-constricted with 3 µM 

5-HT, the EC50 of 9-phenanthrol was relatively left-shifted at 78 nM (logEC50 = -7.11 ± 0.09 M; 

n = 5). In vascular smooth muscle, 5-HT produces vasoconstriction by activating Gq/11-coupled 5-

HT2A and 5-HT1B/1D receptors153,314,877,878, which initiates the same second messenger pathway as 

PE-induced vasoconstriction mediated by α1-adrenoceptors. It was unexpected that two agonists 

activating the same pathway would produce an order of magnitude difference in the EC50 of 9-

phenanthrol. This suggests that the relative contribution of voltage-independent and -dependent 

vasoconstriction varies depending on the vasoconstrictor stimulus. Sung et al. (2013) reported that 

nifedipine (1 µM) inhibited 5-HT-induced vasoconstriction by over 70%879; in the present study I 

observed that nifedipine (0.3 µM) inhibited PE-induced vasoconstriction by approximately 30%. 

These results cannot be directly compared due to the difference in nifedipine concentration used, 

but they indicate that voltage-dependent contraction may be a larger component of 5-HT-induced 

vasoconstriction than of PE-induced vasoconstriction. This hypothesis would need to be confirmed 
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in a future investigation, but if found to be true, it would be consistent with the left-shift I observed 

in the EC50 of 9-phenanthrol in vessels pre-constricted to 5-HT versus PE. 

Finally, using wire myography I also observed that 9-phenanthrol abolishes the 

depolarization-dependent component of PE-induced contraction in the VSMC. 9-Phenanthrol 

alone reduced PE-induced vasoconstriction by approximately 50%, and this did not significantly 

change in the presence of either NS6180 or nifedipine. The former demonstrates again that 9-

phenanthrol’s inhibition of contraction is not mediated by IKCa activation, whereas the latter 

demonstrates that blocking LTCCs with nifedipine produces no additional effect in the presence 

of 9-phenanthrol. This means that 9-phenanthrol abolishes the voltage-dependent component of 

PE-induced vasoconstriction. These data are congruent with whole-cell patch clamp recordings 

from Gonzales et al. (2010) showing that 9-phenanthrol hyperpolarizes VSMCs from rat cerebral 

arteries500. The same study also demonstrated that 9-phenanthrol does not directly inhibit VOCCs. 

Cerebral artery VSMCs were used for whole-cell patch clamping, and voltage-dependent Ca2+ 

currents (ICa) were elicited by clamping the voltage at -70 mV and stepping up to +30 mV. The 

authors found that ICa was identical in the absence and presence of 9-phenanthrol (30 µM). Taken 

with my finding that nifedipine produces no effect on top of 9-phenanthrol, this indicates that 9-

phenanthrol abolishes PE-induced depolarization upstream of LTCCs. However, as I am 

comparing my results in mesenteric arteries with those from cerebral arteries, this requires further 

investigation in mesenteric arteries. Patch clamp recordings in mesenteric artery VSMCs would 

confirm whether or not Gq/11PCR agonist-induced depolarization is abolished by 9-phenanthrol. 

In these wire myograph experiments I also observed that 9-phenanthrol alone inhibited PE-

induced vasoconstriction to a greater extent than nifedipine alone. Thus, it appears LTCCs are not 

the only contributor to voltage-dependent vasoconstriction in rat mesenteric arteries. The most 
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obvious candidate for this mechanism is TTCCs, which are expressed alongside LTCCs in human 

and rodent resistance arteries273,275,286,287. Nifedipine is a selective blocker of LTCCs, but can 

inhibit TTCCs at higher concentrations291-293. The IC50 values for nifedipine at LTCCs and TTCCs 

have been reported as 0.14-300 nM and 1.2 µM, respectively292,834. In these experiments, I have 

applied nifedipine at a concentration of 0.3 µM as it is a literature-accepted concentration for the 

inhibition of LTCCs while minimizing effect on TTCCs266,834,835. Thus, I would expect that TTCCs 

would not be inhibited in the presence of nifedipine, but would be inactive in the presence of 9-

phenanthrol due to the abolishment of depolarization. This could be the mechanism underlying the 

difference between PE-evoked constriction with nifedipine and with 9-phenanthrol. To investigate 

this mechanism in future, I would propose using mibefradil or 3,3’-diindolylmethane 

derivatives286,294 as pharmacological tools to inhibit TTCCs and assess their contribution to PE-

evoked vasoconstriction. 

My data clearly establish that 9-phenanthrol’s inhibition of vasoconstriction is not 

mediated by IKCa activation, in opposition to the findings of Garland et al. (2015)857. They 

observed that blockade of IKCa by TRAM-34 reversed the effects of 9-phenanthrol, whereas I 

observed that neither TRAM-34 nor NS6180 altered the effects of 9-phenanthrol. Garland et al. 

conclude that there is no evidence for a functional role of TRPM4 in mesenteric arteries. I propose 

this may be due in part to their use of non-myogenically active mesenteric arteries. Historically, 

there is a very limited body of literature investigating myogenic pressure-evoked vasoconstriction 

in mesenteric arteries. Instead, most ex vivo studies of myogenic reactivity use other resistance 

arteries, including cerebral202,332,466,490,492,494,500,880-883, skeletal muscle501,811,883,884, and renal 

arteries477,883,885. Several older studies report that mesenteric arteries display little to no 

spontaneous development of myogenic tone886,887, or that they only develop pressure-evoked 
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vasoconstriction in the presence of α1-adrenceptor agonists such as PE888,889. However, more recent 

studies have found that it is possible for isolated mesenteric arteries to display myogenic tone in 

the pressure myograph229,289,849,885,890,891. I and others in our lab have found that tissue handling 

may have a large impact on the development of myogenic tone in mesenteric arteries in vitro. 

Mesenteric vessels often require long equilibration periods (≥ 45 minutes) held at intralumenal 

pressures of 60-80 mmHg before spontaneously developing myogenic tone in the pressure 

myograph225,289,700,849. Additionally, Sun et al. (1992) demonstrated that myogenic reactivity 

increases as vessel diameter decreases down the vascular tree of the mesenteric bed892. First-order 

mesenteric arteries exhibited no myogenic tone, whereas second-, third-, and fourth-order 

mesenteric arteries exhibited myogenic tone of increasing magnitudes, with fourth-order arteries 

showing the largest pressure-induced decrease in diameter. Therefore, studying the myogenic 

response in mesenteric arteries necessitates using the smallest diameter arteries one is able to 

dissect without damaging: preferably fourth-order or smaller. Given the evidence that mediating 

myogenic reactivity may be the most prominent role of vascular TRPM4465, the use of non-

myogenically active mesenteric arteries by Earley et al. (2015)857 provides little insight into the 

functional role of TRPM4 in mesenteric arteries. Furthermore, animal experiments suggest that 

mesenteric arteries exhibit myogenic reactivity in vivo to autoregulate blood flow491,893,894. This 

casts doubt upon the physiological relevance of using myogenically inactive vessels. Conversely, 

my data suggest a pronounced role for TRPM4 in voltage-dependent vasoconstriction in 

mesenteric resistance arteries. 

Although my data show that 9-phenanthrol does not activate IKCa, its putative effect as an 

inhibitor of TMEM16A as suggested by Burris et al. (2015) cannot be ruled out856. TMEM16A is 

expressed in VSMCs, including those from mesenteric arteries864,895-898. In response to an increase 
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in [Ca2+]i, TMEM16A allows efflux of Cl- ions from the cell, thereby causing depolarization202. 

This means that blockade of TMEM16A and blockade of TRPM4 both produce inhibition of 

depolarization. Since both channels contribute to the voltage-dependent component of Gq/11PCR-

induced vasoconstriction by depolarizing the VSMC202, the putative effect of 9-phenanthrol at 

TMEM16A would be disguised by its canonical effect at TRPM4. Notably, Heinze et al. (2014) 

reported that TMEM16A expression decreases down the vascular tree, with some expression in 

large mesenteric arteries, but very little expression in small mesenteric arteries898. Based upon this 

finding, I would hypothesize that TMEM16A is not a major contributor to voltage-dependent 

vasoconstriction in my experiments, regardless of whether or not 9-phenanthrol acts at the channel. 

Nevertheless, further experiments are required in order to assess both the contribution of 

TMEM16A to agonist-, nerve- and pressure-evoked vasoconstriction in mesenteric arteries, and 

9-phenanthrol’s putative inhibition of TMEM16A. The functional contribution of TMEM16A 

inhibition to 9-phenanthrol’s effect would be more difficult to parse than the functional 

contribution of IKCa activation, but could potentially be investigated by incubating arteries with a 

TMEM16A activator such as Eact before administering 9-phenanthrol. 

In summary, these data demonstrate that TRPM4 is a crucial mediator of agonist-, nerve- 

and pressure-evoked vasoconstriction in rat mesenteric resistance arteries. Applied with 9-

phenanthrol, IKCa blockers NS6180 and TRAM-34 produced no effect, supporting the hypothesis 

that 9-phenanthrol does not activate IKCa. Additionally, nifedipine did not alter the effect of 9-

phenanthrol, indicating that 9-phenanthrol abolishes agonist-evoked depolarization in VSMCs. If 

9-phenanthrol is selective for TRPM4, this suggests that TRPM4 may be the sole mediator of 

depolarization in mesenteric artery smooth muscle. Conversely, it is possible that the effect of 9-

phenanthrol is in part due to inhibition of TMEM16A. Further investigation is necessary to 
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determine whether TMEM16A has a functional role in smooth muscle depolarization in these 

arteries. 
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Chapter 4: Characterization of cardiovascular function in a novel Cx40 knockout rat 

4.1 Introduction 

Interendothelial and myoendothelial GJs are essential for the coordination of endothelium-

dependent vasodilation (see §1.5). GJ channels (reviewed by Pogoda et al., 2019)731 are composed 

of two hemichannels or connexons, one from each of the coupled cells. Each connexon is made of 

six connexins, which are a large family of 4TM proteins containing cytoplasmic N- and C-termini. 

GJ channels create continuity in the cytosol of adjacent cells, allowing for the conduction of 

membrane potential with unitary conductances that vary depending on the Cx subtypes present. 

Additionally, GJ channels have relatively large pore diameters, and generally allow the passage of 

many vasoactive small molecules including Ca2+, IP3, cAMP, cGMP, ATP, NAD+, and 

prostaglandins758-760. 

Cx subtypes vary in the length of their C-terminal domain, and are named according to 

their molecular weights. Four Cx subtypes are expressed in the cardiovascular system: ECs express 

Cx37, Cx40, and to a lesser extent Cx43, whereas VSMCs express Cx43 and Cx45731,735,762. 

Throughout the literature, the detection of endothelial Cx37 and/or Cx40 at interendothelial GJs 

and/or MEGJs varies depending on the species and the tissue (reviewed by Welsh et al., 2018)762. 

In small resistance arteries from rats and humans, Cx37 and Cx40 have been demonstrated to 

localize in ECs both at lateral cell borders and in MEPs, indicating their presence in 

interendothelial and myoendothelial GJs, respectively690,697,740,762,899-904. Concurrently, electron 

microscopy studies have demonstrated that the number of MEPs connecting the endothelium to 

the media increases as vessel diameter decreases down the vascular tree671,735. This is consistent 

with functional evidence demonstrating that the relative contribution of EDH versus NO 
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production to endothelium-dependent vasodilation also increases as vessel diameter 

decreases631,670. 

The role of GJ channels in vascular function was first investigated using classical GJ 

inhibitors such as heptanol, carbenoxolone and 18α/β-glycyrrhetinic acid905-907. These are non-

selective agents which uncouple GJ channels via mechanisms of action that have not been fully 

elucidated. It is unclear whether these agents directly block hemichannels; however, they have 

been shown to be reversible allosteric modulators that reduce both the GJ pore diameter and 

spacing between channels908-911. Heptanol in particular is reported to uncouple GJs in a mechanism 

dependent upon its insertion into the plasmalemma where it reduces membrane fluidity; hence, 

pre-loading the plasmalemma of rat cardiomyocytes with a cholesterol analogue reverses the effect 

of heptanol910. Although they are still used, these agents cannot distinguish the roles of individual 

Cxs, and they have been shown to exhibit non-junctional effects on ion currents, [Ca2+]i, and 

mitochondrial membrane potential906,912. 

More recently, two major experimental tools have facilitated investigation of the roles of 

specific Cx subtypes in vascular function: inhibitory Cx-mimetic peptides, and mouse knockout 

models. Cx-mimetic peptides are short peptides with sequence homology to the extracellular or 

intracellular domains of specific Cxs (reviewed by King et al., 2021)913. These peptides include 

Gap21, Gap26 and Gap27, which were originally designed against Cx32 and Cx43 for the purpose 

of producing anti-Cx antibodies, which were found to be ineffective GJ blockers914,915. However, 

the peptides themselves were subsequently shown to inhibit GJ-mediated intercellular 

communication913,916,917. Peptides selective for other Cxs were developed by altering the amino 

acid sequences of Gap26 and Gap27; this produced peptides including 37,40Gap26, 40Gap27 and 

37,43Gap27, targeted to Cx37, Cx40 and Cx43913,918. 40Gap27 inhibits Cx40 GJs without affecting 
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Cx37 or Cx43918,919; however, the mechanism of action is still unclear, though several hypotheses 

exist. There is no current evidence that Gap26/27 causes disassembly of docked GJ channels917, 

thus leaving two main models: 1) Gap26/27 may bind to the extracellular loops of hemichannels 

in order to prevent conduction and docking, resulting in decreased channel formation due to the 

high turnover of GJs, or 2) Gap26/27 may alter channel gating by allosterically decreasing the 

opening of hemichannels, even in the fully assembled GJ channel916,917. Evidence of the 

reversibility of this blockade in cultured ECs supports the latter model over the former920. 

Regardless, the selectivity of these peptides has been called into question, due to the high 

concentrations (≥ 100 µM) and long incubation times (≥ 1 h) required for maximal blockade of 

GJs901,903,917,921-925, suggesting off-target effects. To this end, Wang et al. (2012) demonstrated that 

at a concentration of 1 mM, there is no difference between blockade of hemichannels by the active 

Gap26/27 and a control peptide with a scrambled sequence926. 

Mouse germline knockouts of both Cx37 and Cx40 have been developed, although the 

Cx37 knockout mouse is less well-studied. The phenotypic changes in the Cx37 knockout mouse 

are largely non-vascular, including polyuria and polydipsia due to an associated decrease in renal 

expression of aquaporin 2777, and female infertility due to abnormal oocyte development774,927,928. 

In these mice, blood vessel development and systemic blood pressure are unaffected776,779,929. 

Conversely, Cx40 knockout mice exhibit impaired endothelial modulation of vascular diameter. 

Knockout of Cx40, but not Cx37, impairs upstream conduction of ACh- or bradykinin-induced 

endothelium-dependent vasodilation in cremaster arteries764,765. Moreover, Brasen et al. (2018) 

found that vasodilation due to EDH was impaired in isolated renal arteries from Cx40 knockout 

mice661. The Cx40 knockout mouse exhibits several other phenotypic changes in cardiovascular 
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function, including elevated systemic blood pressure, cardiac hypertrophy, and decreased eNOS 

expression in vessels such as the aorta and renal artery661,766,767. 

Until recently, only mouse models of Cx knockouts have been available. Due to their small 

size, physiological assays in mouse blood vessels are restricted to the use of large elastic arteries 

such as the aorta, rather than resistance arteries. In contrast, resistance arteries from rats such as 

mesenteric and cerebral arteries are easily accessible and large enough for fine dissection in 

physiological techniques such as wire and pressure myography. Our research group received a 

novel strain of Cx40 knockout rats as a gift from collaborator Dr. William Cupples; this has 

allowed me to perform functional experiments assessing the physiological role of Cx40 in the 

modulation of resistance artery diameter, which was not previously possible in mouse models. 

Thus, I have tested the hypothesis that the Cx40 knockout rat will demonstrate impaired 

endothelial modulation of arterial diameter relative to the wild-type rat. 

4.2 Methods 

A full description of methods is provided in Chapter 2. As stated in §2.2, experiments in 

this chapter use Cx40+/+ (wild-type or WT), Cx40+/- (heterozygous or HET), and Cx40-/- (knock-

out or KO) rats bred from the WKY-Gja5em1Mcwi mutant strain. 

4.3 Results 

4.3.1 Cx40 KO does not upregulate relative mRNA expression of Cx37 and Cx43 

 I have characterized the expression profile of endothelial Cxs in WT, HET and KO rats 

bred from the WKY-Gja5em1Mcwi mutant strain by measuring the relative levels of mRNA coding 

for Cx37, Cx40 and Cx43 by RT-qPCR in isolated second- and third-order mesenteric arteries 

from male and female rats (Figure 4.1a and b, respectively). Within each sex, no significant 

differences in relative levels of mRNA expression were observed between genotypes (P>0.05). 
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This was also true of Cx40, which is appropriate for this KO model: the WKY-Gja5em1Mcwi mutant 

possesses a point mutation introducing a premature stop codon in exon 1 of the Cx40-coding gene 

Gja5. This method does not affect transcription of Cx40, but abolishes translation of Cx40. These 

results therefore do not confirm the absence of Cx40, but instead confirm that mRNA expression 

of Cx37 and Cx43 is not upregulated by a compensatory mechanism. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Relative mRNA expression of endothelial Cx subtypes is not altered across 

genotypes. Expression levels of mRNA coding for Cx37, Cx40 and Cx43 were determined using 

RT-qPCR and compared to mRNA of the reference gene Actb, coding for β-actin. mRNA was 

extracted from isolated second- and third-order mesenteric arteries from a) male (n = 4-5) and b) 

female (n = 4) WT, HET and KO rats. Arteries were taken from n different rats and measured in 

triplicate. Relative mRNA expression is expressed as 2−∆Ct, where ∆Ct = Ct (gene) – Ct (Actb). 

P>0.05; two-way ANOVA. 

 

4.3.2 Genetic ablation of Cx40 produces hypertension and heart enlargement 

 In order to characterize the cardiovascular system of the Cx40 KO rat model, I first assessed 

gross phenotypic changes in the metabolic and hemodynamic properties of 6-month-old male and 

female WT, HET and KO rats. Within each sex, no significant differences in body weight were 

observed between genotypes (P>0.05, Figure 4.2a). Random blood glucose was also unaffected 

by genotype (P>0.05, Figure 4.2b). Next, systemic BP was measured by tail cuff 

plethysmography. Both male and female KO rats exhibited an increase in systolic BP that was 

a) b) 
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statistically significant from both WT and HET rats within each sex (P<0.05, Figure 4.2c). In 

males, the mean systolic BP of KO rats (154.2 ± 3.5 mmHg; n = 6) was approximately 40 mmHg 

greater than that of either WT rats (112.8 ± 5.2 mmHg; n = 6) or HET rats (116.7 ± 7.8 mmHg; n 

= 6). This difference was also observed in females, wherein mean systolic BPs of WT, HET and 

KO rats were 106.3 ± 4.7 mmHg (n = 6), 118.7 ± 6.3 mmHg (n = 7) and 148.8 ± 6.4 mmHg (n = 

6), respectively. No differences were observed in heart rate between genotypes (P>0.05; data not 

shown). Finally, wet weights of kidneys and hearts were measured upon excision and expressed 

relative to body weight (Figure 4.2d and e). Within each sex, no significant difference was 

observed in relative kidney weight between genotypes (P>0.05), but KO rats of both sexes showed 

a significant increase in relative heart weight versus WT and HET rats (P<0.05). 

  a) 

b) 
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Figure 4.2: Genetic ablation of Cx40 causes increased systolic blood pressure and heart mass 

in male and female rats. Gross metabolic and hemodynamic characteristics of male and female 

WT, HET, and KO rats were measured at six months of age, including a) body weight (n = 12-

25), b) random blood glucose (n = 7-18), c) systolic blood pressure (n = 6-7), d) left and right 

kidney weight (n = 11-22), and e) heart weight (n = 11-22). Data are presented as mean ± SEM. * 

denotes P<0.05 from WT and # denotes P<0.05 from HET; one-way ANOVA. Tail cuff 

plethysmography performed by Jad Julian-Rachid.  

c) 

d) 

e) 
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4.3.3 Genetic ablation of Cx40 enhances nerve-evoked vasoconstriction in the rat perfused 

mesenteric vascular bed 

 

 In order to characterize the effect of Cx40 ablation on the physiological function of 

resistance arteries, I recorded responses in perfusion pressure to nerve-evoked vasoconstriction in 

the perfused mesenteric vascular beds of male and female WT, HET and KO rats. Frequency-

response relationships from 1 to 40 Hz were constructed in the absence and presence of the SKCa 

inhibitor apamin (50 nM), the IKCa inhibitor TRAM-34 (1 µM) and the eNOS inhibitor L-NAME 

(100 µM). Treatments with apamin + TRAM-34, as well as apamin + TRAM-34 + L-NAME 

produced statistically significant increases in nerve-evoked vasoconstriction versus control in all 

genotype-sex groups (P<0.05, Figures 4.3 and 4.4). Within each genotype-sex group, treatment 

with apamin + TRAM-34 increased pressure responses to 30 and 40 Hz stimulations by 

approximately 150% versus control. This suggests that the contribution of EDH to inhibition of 

vasoconstriction is unaffected in the absence of Cx40. The further increase in pressure responses 

in the presence of apamin + TRAM-34 + L-NAME suggests that the NO pathway is unaffected as 

well. Comparing the same data across genotypes (Figure 4.5) shows that mesenteric beds from 

male and female KO rats exhibit a statistically significant two-fold increase in pressure response 

to 15, 20, 30 and 40 Hz electrical stimulations versus WT and HET (P<0.05, Figure 4.5a and d). 

With the addition of apamin + TRAM-34, the KO again exhibits a two-fold larger response than 

WT at 30 and 40 Hz (P<0.05, Figure 4.5b and e). The addition of all three inhibitors still produces 

two-fold increases in the KO response at lower frequencies (e.g. 15 Hz), but the difference shrinks 

to approximately 1.25-fold at 30 and 40 Hz (P<0.05, Figure 4.5c and f). This could suggest an 

impaired, but still significant, contribution of NO production to inhibition of vasoconstriction in 

the absence of Cx40. 
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Figure 4.3: Representative traces of nerve-evoked vasoconstriction in the rat perfused mesenteric vascular bed. Frequency-

response relationships constructed in endothelium-intact mesenteric vascular beds from a) male and b) female WT, HET and KO rats. 

The first relationship is in the absence of inhibitors; the second relationship is in the presence of apamin (50 nM) and TRAM-34 (1 µM); 

the third relationship is in the presence of apamin, TRAM-34 and L-NAME (100 µM). 

b) 

a) 
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Figure 4.4: EDH and NO synthesis are significant contributors to inhibition of nerve-evoked vasoconstriction in perfused 

mesenteric vascular beds from Cx40 WT, HET and KO rats. Frequency-response relationships constructed in the absence and 

presence of apamin (50 nM), TRAM-34 (1 µM) and L-NAME (100 µM) using endothelium-intact mesenteric vascular beds from male 

a) WT (n = 6), b) HET (n = 6), and c) KO (n = 7) rats, and female d) WT (n = 6), e) HET (n = 6), and f) KO (n = 6) rats. Data are 

presented as mean ± SEM. * denotes P<0.05 from control and # denotes P<0.05 from Apamin + TRAM-34; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 4.5: Genetic ablation of Cx40 enhances nerve-evoked vasoconstriction in the rat perfused mesenteric vascular bed.  

Unpaired frequency-response relationships of perfused mesenteric vascular beds from male (a, b, and c) and female (d, e, and f) WT (n 

= 6), HET (n = 6) and KO (n = 6-7) rats compared across genotypes within each drug treatment. Beds were perfused in the absence of 

drugs (a and d), in the presence of apamin (50 nM) and TRAM-34 (1 µM; b and e), or in the presence of apamin, TRAM-34 and L-

NAME (100 µM; c and f). Data are presented as mean ± SEM. * denotes P<0.05 from WT and # denotes P<0.05 from HET; two-way 

ANOVA.

a) b) 

d) e) 

c) 

f) 
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The role of the endothelium in nerve-evoked vasoconstriction was investigated by 

perfusing endothelium-denuded mesenteric beds from each genotype-sex group. Within each 

group, the addition of apamin + TRAM-34 + L-NAME had no effect on stimulus-evoked responses 

(P>0.05, Figure 4.6), indicating that the potentiation of nerve-evoked vasoconstriction by these 

inhibitors (Figures 4.4 and 4.5) was due to their actions at EC targets rather than neuronal or SMC 

targets. Interestingly, when compared across genotypes, nerve-evoked vasoconstriction in the 

endothelium-denuded beds from male and female KO rats produced significantly higher responses 

than those in endothelium-denuded beds from WT and HET rats (P<0.05, Figure 4.7). This 

comparison is shown in the absence of inhibitors, but responses in KO beds remained significantly 

higher than WT and HET in the presence of apamin + TRAM-34 or apamin + TRAM-34 + L-

NAME (data not shown). At the 30 and 40 Hz stimulations, endothelium-intact mesenteric beds 

from male KO rats exhibited approximately 200% higher pressure responses than male WT rats 

(Figure 4.5a); in endothelium-denuded beds, the male KO responses at 30 and 40 Hz were only 

140% higher than those in male WT rats. (Figure 4.7a). In females, endothelium-intact beds from 

KO rats produced responses approximately 200% higher than WT rats to 30 and 40 Hz stimulations 

(Figure 4.5d), whereas endothelium-denuded beds from KO rats produced responses 250% higher 

than WT rats to 30 and 40 Hz stimulations (Figure 4.7b). These results suggest that the increased 

nerve-evoked vasoconstriction observed in the Cx40 KO is at least partially due to endothelium-

independent mechanisms, which could involve changes in smooth muscle function. 
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Figure 4.6: Removal of endothelium abolishes the effects of apamin, TRAM-34 and L-NAME but not the effect of Cx40 ablation 

in the rat perfused mesenteric vascular bed. Frequency-response relationships constructed in the absence and presence of apamin (50 

nM), TRAM-34 (1 µM) and L-NAME (100 µM) using endothelium-denuded mesenteric vascular beds from male a) WT (n = 6), b) 

HET (n = 6), and c) KO (n = 6) rats, and female d) WT (n = 6), e) HET (n = 6), and f) KO (n = 6) rats. Data are presented as mean ± 

SEM. P>0.05; two-way ANOVA.

a) b) 

d) e) 

c) 

f) 
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Figure 4.7: Perfused mesenteric vascular beds from Cx40 KO rats maintain a significant 

increase in nerve-evoked pressure responses versus WT and HET rats upon removal of 

endothelium. Unpaired frequency-response relationships of endothelium-denuded perfused 

mesenteric vascular beds from a) male and b) female WT (n = 6), HET (n = 6) and KO (n = 6) rats 

compared across genotypes in the absence of pharmacological inhibitors. Data are presented as 

mean ± SEM. * denotes P<0.05 from WT and # denotes P<0.05 from HET; two-way ANOVA. 

 

These data have also been analysed comparing the responses between the endothelium-

intact and -denuded beds within each genotype-sex group (Figure 4.8). In this analysis, a notable 

sex-difference arises, wherein removing the endothelium produces significantly higher responses 

in beds from male rats (P<0.05, Figure 4.8a, b and c), while no difference is produced in beds 

from female rats (P>0.05, Figure 4.8d, e and f). The mechanism underlying this sex-difference is 

unclear but may involve differential production and secretion of endothelium-derived factors in 

males and females with higher relative production of vasodilatory factors versus vasoconstrictive 

factors in males than in females. 

a) b) 
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Figure 4.8: Removal of endothelium in the perfused mesenteric vascular bed enhances pressure responses in beds from males 

but not from females. Unpaired frequency-response relationships of endothelium-intact and -denuded perfused mesenteric vascular 

beds in the absence of pharmacological inhibitors. Male a) WT (n = 6), b) HET (n = 6), and c) KO (n = 6-7) rats; * denotes P<0.05 from 

endothelium-intact; two-way ANOVA. Female d) WT (n = 6), e) HET (n = 6), and f) KO (n = 6) rats; P>0.05; two-way ANOVA. Data 

are presented as mean ± SEM.

a) b) 

d) e) 

c) 

f) 
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4.3.4 Genetic ablation of Cx40 does not affect myogenic reactivity in isolated mesenteric 

arteries 

 

 Pressure myography was used to examine the role of Cx40 in the development of myogenic 

tone in isolated fourth- to sixth-order mesenteric arteries. Representative traces of internal diameter 

in response to changes in intralumenal pressure have been provided (Figure 4.9). Arteries from 

male and female WT, HET and KO rats all exhibited myogenic constriction, whereby the active 

diameter in the presence of Ca2+ was significantly lower than the passive diameter in the absence 

of Ca2+ (P<0.05, Figure 4.10). Some genotype-sex groups (i.e. male WT, female WT and female 

KO; Figure 4.10a, d and f, respectively) exhibited potentiation of myogenic vasoconstriction in 

the presence of apamin + TRAM-34 + L-NAME. The observation that inhibiting SKCa, IKCa and 

eNOS, respectively, enhances myogenic vasoconstriction was in contrast to the lack of effect of 

endothelial removal on myogenic vasoconstriction (§3.3.5). This discrepancy has been previously 

observed in other animal models by our lab and others930-932, and has prompted the hypothesis that 

endothelial removal produces no net effect due to the endothelial release of both vasodilatory and 

vasoconstrictive factors. However, when compared across genotypes, no significant differences in 

the development of myogenic tone were observed between arteries from WT, HET and KO rats in 

either males or females in the absence or presence of apamin, TRAM-34 and L-NAME (P>0.05, 

Figure 4.11). In order to compare uncoupled results across genotypes, these data are expressed as 

% myogenic tone (see §2.5), which is a standard reporting practice in the literature. These results 

suggest that Cx40 does not play a significant role in the myogenic response in rat mesenteric 

arteries. 
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Figure 4.9: Representative trace of pressure-diameter relationships in an isolated mesenteric 

artery from a male WT rat. Pressure-diameter relationships constructed using pressure 

myography in an endothelium-intact segment of mesenteric artery from a male WT rat in the 

absence and presence of apamin (50 nM), TRAM-34 (1 µM), L-NAME (100 µM) and Ca2+.  
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Figure 4.10: Pressure-evoked vasoconstriction occurs in isolated mesenteric arteries from Cx40 WT, HET and KO rats. Pressure 

myography was used to construct pressure-diameter relationships in the absence and presence of apamin (50 nM), TRAM-34 (1 µM) 

and L-NAME (100 µM) using isolated fourth- to sixth-order mesenteric arteries from male a) WT (n = 6), b) HET (n = 6), and c) KO 

(n = 6) rats, and female d) WT (n = 6), e) HET (n = 8), and f) KO (n = 6) rats. Data are presented as mean ± SEM. * denotes P<0.05 

from control; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 4.11: Myogenic response of isolated rat mesenteric arteries is not affected by genetic ablation of Cx40. Unpaired pressure-

tone relationships of isolated fourth- to sixth-order mesenteric arteries from male (a, b, and c) and female (d, e, and f) WT (n = 6), HET 

(n = 6-8) and KO (n = 6) rats compared across genotypes within each drug treatment. Artery segments were mounted in a pressure 

myograph and subjected to stepwise pressure ramps in the absence of drugs (a and d), in the presence of apamin (50 nM) and TRAM-

34 (1 µM; b and e), or in the presence of apamin, TRAM-34 and L-NAME (100 µM; c and f). Responses are expressed as % myogenic 

tone, which is the percentage difference in active diameter versus passive diameter at each pressure step. Data are presented as mean ± 

SEM. P>0.05; two-way ANOVA.

a) b) 

d) e) 

c) 

f) 
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4.3.5 Genetic ablation of Cx40 enhances PE-induced vasoconstriction without affecting ACh-

induced vasodilation in isolated rat mesenteric arteries 

 

 To investigate the role of Cx40 in endothelium-dependent vasodilation to ACh, isolated 

second and third order mesenteric arteries from male and female WT, HET and KO rats were 

assessed using wire myography. Vessel segments were pre-constricted with PE (3 µM) before 

cumulative concentration-response curves to ACh were constructed in the presence and absence 

of apamin (50 nM), TRAM-34 (1 µM) and L-NAME (100 µM). The log of the EC50 values for 

ACh in each treatment group were calculated (Table 4.1). All genotype-sex groups exhibited the 

lowest logEC50 in the absence of inhibitors, and experienced similar increases in logEC50 with the 

addition of EDH inhibitors apamin + TRAM-34, or the addition of eNOS inhibitor L-NAME. The 

presence of all three inhibitors caused a statistically significant increase in logEC50 in all genotype-

sex groups (P<0.05; two-way ANOVA). Representative traces for control concentration-response 

curves to ACh in each genotype-sex group are provided (Figure 4.12). 

logEC50 (M) of ACh in isolated mesenteric arteries in the wire myograph 

Group Control 
Apamin + 

TRAM-34 
L-NAME 

Apamin + 

TRAM-34 + L-

NAME 

Male  

WT -7.7 ± 0.1 -7.1 ± 0.1* -7.3 ± 0.3 -7.0 ± 0.1* 

HET -7.4 ± 0.1 -7.2 ± 0.2 -7.4 ± 0.2 -6.7 ± 0.2* 

KO -8.1 ± 0.1 -7.5 ± 0.1 -7.4 ± 0.1 -6.6 ± 0.1* 

Female  

WT -7.7 ± 0.1 -7.2 ± 0.1* -7.3 ± 0.1 -6.6 ± 0.1* 

HET -7.4 ± 0.1 -7.2 ± 0.1 -7.2 ± 0.1 -6.7 ± 0.1* 

KO -7.9 ± 0.2 -7.4 ± 0.1 -7.3 ± 0.2* -6.4 ± 0.2* 

Table 4.1: logEC50 (M) values of ACh-induced vasodilation in isolated second- and third-

order mesenteric arteries from male and female WT, HET, and KO rats using wire 

myography. Data are represented as mean ± SEM (n = 4-7). Within each sex, overall effect of 

genotype was not significant (P>0.05) but overall effect of drug treatment was significant 

(P<0.05). * denotes P<0.05 from the respective control within each group; two-way ANOVA. 

Data contributed by Alexia Maheux, Brandon Truong and Sufyan Malik.  
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Figure 4.12: Representative traces of concentration-response curves to ACh in isolated 

mesenteric arteries from male and female WT, HET and KO rats. Concentration-response 

curves constructed using wire myography in endothelium-intact segments of second- and third-

order mesenteric artery from male and female a) WT, b) HET and c) KO rats in the absence of 

drugs.  

Female KO 

Female HET 

Female WT Male WT 

Male HET 

Male KO 

a) 

b) 

c) 
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Isolated mesenteric arteries from all genotype-sex groups except for male HETs displayed 

statistically significant inhibition of ACh-induced vasodilation in the presence of apamin + 

TRAM-34 + L-NAME (P<0.05, Figures 4.13 and 4.14). Together with the logEC50 values in 

Table 4.1 which were unaffected by genotype (P>0.05), these data suggest that ablation of Cx40 

does not affect the contribution of either EDH or NO synthesis to ACh-evoked vasodilation. The 

significant increase in nerve-evoked vasoconstriction in KO versus WT rats observed in the 

perfused mesenteric bed (see §4.3.3) suggests that vasoconstriction may be enhanced in the 

absence of Cx40. Thus, agonist-induced tone was measured in mesenteric artery segments and 

compared between the genotypes within each sex (Figure 4.15). Cumulative concentration-

response curves were constructed using the α1-adrenoceptor agonist PE and the TP agonist 

U46619. In both males and females, no differences were observed in the magnitude of PE-induced 

tone over a range of concentrations from 1 nM to 100 µM (P>0.05, Figure 4.15a). Conversely, in 

both sexes there was an overall statistical significance between the curves to U46619 (P<0.05, 

Figure 4.15b). Multiple comparisons reveal that the male KO exhibited impaired vasoconstriction 

versus WT at U46619 concentrations of 0.3 and 1 µM, whereas the female KO and HET exhibited 

impaired vasoconstriction versus WT at U46619 concentrations of 100 µM, and ≥0.3µM, 

respectively. The finding that knocking out Cx40 impaired U46610-induced vasoconstriction is in 

direct contrast with the observation of enhanced U46619-evoked vasoconstriction in isolated aortic 

rings from Cx40 KO mice in the literature766. Moreover, the lack of effect of Cx40 KO on PE-

induced vasoconstriction is incongruous with the enhancement of nerve-evoked vasoconstriction 

observed in the perfused mesenteric vascular bed (Figure 4.5). The mechanisms underlying these 

discrepancies are unclear and may involve experimental differences between wire myography and 

tissue perfusion, such as the absence and presence of shear stress, respectively.  
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Figure 4.13: EDH and NO pathways both contribute to ACh-induced vasodilation in isolated 

mesenteric arteries from male WT, HET and KO rats. Wire myography was used to construct 

cumulative concentration-response curves to ACh in the absence and presence of apamin (50 nM), 

TRAM-34 (1 µM) and L-NAME (100 µM) using isolated second- and third-order mesenteric 

arteries from male a) WT (n = 4-6), b) HET (n = 4-5), and c) KO (n = 3-4) rats. Data are presented 

as mean ± SEM. P<0.05 was considered a significant difference between drug treatment data sets; 

two-way ANOVA. Data contributed by Alexia Maheux, Brandon Truong and Sufyan Malik.

b) 

Male HET 

a) 

c) 

Male WT 

Male KO 
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Figure 4.14: EDH and NO pathways both contribute to ACh-induced vasodilation in isolated 

mesenteric arteries from female WT, HET and KO rats. Wire myography was used to construct 

cumulative concentration-response curves to ACh in the absence and presence of apamin (50 nM), 

TRAM-34 (1 µM) and L-NAME (100 µM) using isolated second- and third-order mesenteric 

arteries from female a) WT (n = 4-7), b) HET (n = 4-6), and c) KO (n = 4) rats. Data are presented 

as mean ± SEM. P<0.05 was considered a significant difference between drug treatment data sets; 

two-way ANOVA. Data contributed by Alexia Maheux, Brandon Truong and Sufyan Malik.

b) 

Female HET 

a) 

c) 

Female WT 

Female KO 
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Figure 4.15: U46619-induced, but not PE-induced tone is impaired in isolated mesenteric 

arteries from male KO and female HET and KO rats. The isolated second- and third-order 

mesenteric arteries from male and female WT, HET and KO rats (n = 4-7) were mounted in a wire 

myograph and used to construct cumulative concentration-response curves to a) PE and b) U46619 

(1 nM to 100 µM). Data are presented as mean ± SEM. * denotes P<0.05 from WT and # denotes 

P<0.05 from HET; two-way ANOVA. Data contributed by Sufyan Malik and Caleb McInroy. 

 

4.3.6 Genetic ablation of Cx40 impairs post-ischemic functional recovery in the Langendorff-

perfused rat heart 

 

 The putative cardioprotective role of Cx40 in ischemia/reperfusion injury was investigated 

using the Langendorff isolated heart perfusion. Hearts from male and female WT, HET and KO 

rats were perfused for a 30 minute equilibration period before the induction of global no-flow 

ischemia. Ischemia was maintained for 15 minutes followed by a 45 minute period of aerobic 

a) 

b) 



131 

 

reperfusion. LVDP was calculated as the difference between systolic and end-diastolic pressure, 

and two-way ANOVA was performed separately for pre- and post-ischemia (i.e. differences in 

LVDP between genotypes were assessed using two-way ANOVA for all pre-ischemic timepoints, 

then differences in LVDP between genotypes were assessed using a second two-way ANOVA for 

all post-ischemic timepoints). In both males and females, the overall effect of genotype was found 

to be statistically significant by two-way ANOVA (P<0.05, Figure 4.16). Multiple comparisons 

revealed no specific timepoints at which the LVDP of the male KO heart was significantly 

impaired versus WT or HET (Figure 4.16a), but the LVDP of the female KO heart was 

significantly impaired versus WT at t = 70 min, 85 min and 90 min (P<0.05, Figure 4.16b). This 

finding may be attributable to the increased heart mass observed in male and female KO rats 

(Figure 4.2e) but further investigation is required in order to establish a causal relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Post-ischemic functional recovery is impaired in Langendorff-perfused hearts 

from male and female KO rats. Hearts were excised from a) male WT (n = 7), HET (n = 23) and 

KO (n = 5) and b) female WT (n = 15), HET (n = 24) and KO (n = 11) rats and perfused in 

Langendorff mode. Global no-flow ischemia was induced at the 30 min. timepoint and flow was 

reinstated at the 45 min. timepoint. Data are presented as mean ± SEM. * denotes P<0.05 from 

WT and # denotes P<0.05 from HET; two-way ANOVA. Data contributed by Caleb McInroy. 

 

a) b) 
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4.4 Discussion 

The data presented in this chapter demonstrate that the genetic ablation of Cx40 in rats 

produces a distinct and pathological vascular phenotype. This is consistent with the patterns of Cx 

expression established in the literature. Of the three Cx subtypes expressed by ECs (i.e. Cx37, 

Cx40 and Cx43), Cx37 and Cx40 are mostly restricted to the cardiovascular system. Conversely, 

Cx43 is the most ubiquitously expressed Cx subtype in mammals, expressed by a wide variety of 

cell types throughout the body933,934. Cx43 is the earliest GJ protein to be transcribed in mammalian 

embryonic development935-937, and it follows that a global KO of Cx43 results in neonatal 

lethality938,939. The other two endothelial Cxs, Cx37 and Cx40, each have corresponding viable 

KO animal models, but phenotypic evidence in the Cx37 KO mouse indicates that Cx37 likely has 

a larger role in the control of vasculogenesis than the control of resistance artery 

diameter764,775,776,778. Cx40 KO mice, on the other hand, show elevated systemic blood pressure, 

impaired EDH in isolated arteries and impaired conduction of endothelium-dependent 

vasodilation, as discussed previously (§4.1). Under physiological conditions, Cx40 is expressed in 

few tissues outside of the vascular endothelium. It is well established that Cx40 is expressed by 

vascular ECs and by atrial cardiomyocytes762,796,940. Evidence exists to support the expression of 

Cx40 in cortical and spinal neurons; however, this has only been observed in early stages of 

neuronal development941-944 or after the induction of traumatic brain injury945-947. Neuronal Cx40 

expression ceases in later stages of cell differentiation, and is not detectable during normal post-

natal development or adulthood942,948. A few studies report Cx40 expression in other cell types 

such as intestinal smooth muscle949,950, but most reports of Cx40 expression in other organs were 

found upon closer inspection to be restricted to the vascular endothelium within those organs951-
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954. Taken together, these findings suggest that any changes observed in the Cx40 KO rat versus 

the WT are attributable to altered vascular function. 

The WKY-Gja5em1Mcwi mutant strain used in this research was produced by introducing a 

1-bp substitution into exon 1 (c.25G>T)803, resulting in a premature stop codon in place of 

Glu9804,805. Using this method to induce a KO does not alter transcription, but makes translation 

of the functional 356 aa peptide impossible. Thus, the detection of mRNA coding for Cx40 was 

expected in arteries from all three genotypes, including the KO rats. This was supported by my 

results: using RT-qPCR, I observed no significant differences in relative expression levels of 

mRNA coding for Cx37, Cx40 or Cx43 between the three genotypes. Although this does not 

confirm the absence of Cx40, it illustrates that the other endothelial Cxs are not subject to 

compensatory upregulation in the HET or KO rats. In 2023 the Cupples laboratory, from whom 

we received the WKY-Gja5em1Mcwi strain, demonstrated the absence of Cx40 from ECs in the renal 

cortex using immunohistochemical staining955. Replicating this experiment in isolated mesenteric 

resistance arteries is necessary to confirm the absence of functional Cx40 in the EC plasma 

membrane and is a future direction for this research. Similarly, protein expression levels of Cx40 

and the other vascular Cxs should be measured using Western blotting. 

I observed two major changes in the hemodynamic phenotype of the Cx40 KO rat: an 

increase in systolic blood pressure of approximately 40 mmHg in both males and females, and an 

increased in the relative weight of the heart. These observations are consistent with reports from 

Cx40 KO mice, which also experience elevated systemic blood pressure and enlargement of the 

heart767. Measuring the wet weight of an organ and normalizing it to body weight is a literature-

accepted method for measuring tissue growth which is still used to date767,897,956-958. However, this 

method cannot distinguish between hypertrophic and hyperplastic growth. Novielli-Kuntz et al. 
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(2019) found by weighing hearts that Cx40 KO mice exhibit an increase in heart weight relative 

to WT controls; the authors then used agglutinin staining to measure cardiomyocyte cross-

sectional area in left atria and ventricles767. They demonstrate that the Cx40 KO mouse exhibits 

hypertrophic growth of both atrial and ventricular myocytes. This is notable due to the fact that in 

adult mammals, Cx40 is expressed in atrial cardiomyocytes but not ventricular 

cardiomyocytes793,959,960. These results suggest that cardiac hypertrophy is not likely a direct 

consequence of the absence of Cx40 in the cardiomyocytes, and is more likely an indirect result 

of changes in vascular function. Visualising the cross-sectional area of the atrial and ventricular 

cardiomyocytes, as well as measuring the thickness of the left ventricular wall must be performed 

in the Cx40 rat to confirm that the heart enlargement in the present study is due to hypertrophy. 

However, the observation of cardiac hypertrophy in the Cx40 KO mouse indicates that this is a 

reasonable prediction. 

Under normal circumstances, Cx40 has been detected in both interendothelial and 

myoendothelial GJs762; therefore, the absence of Cx40 was expected to impact both the conducted 

vasomotor response and EDH, respectively731,961. The techniques used in this research cannot 

measure the vascular conducted response, so the research in this chapter instead focuses on the 

effect of the KO on EDH and the implications for overall vascular function. In order to determine 

whether endothelium-dependent vasodilation is impaired in the absence of Cx40, I assessed the 

function of resistance arteries using the perfused mesenteric vascular bed, and pressure and wire 

myography in isolated mesenteric arteries. Due to the evidence that ablation of Cx40 may impair 

EDH661, I used the selective SKCa and IKCa blockers apamin and TRAM-34, respectively, in order 

to reveal the relative contribution of EDH to vasodilation in arteries from WT, HET and KO rats. 

Despite the fact that NO has been shown to easily diffuse through plasma membranes, there is 
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some evidence from Cx40 KO mice indicating that the NO pathway of vasodilation may also be 

affected by the ablation of Cx40. For example, the Cx40 KO mouse showed decreased expression 

of eNOS in aortic ECs766. Moreover, Figueroa et al. (2013) reported that Cx expression was 

necessary for the entry of extracellular NO into HeLa cells, rather than diffusion alone962. Thus, I 

also assessed the contribution of NO production to vasodilation in arteries from WT, HET and KO 

rats using the eNOS inhibitor L-NAME. 

Using the perfused mesenteric bed, I measured responses in perfusion pressure to electrical 

field stimulation of perivascular nerves. In the absence of any pharmacological tools, beds from 

KO rats exhibited significantly higher nerve-evoked vasoconstriction (approximately 200%) than 

those from either WT or HET rats. I expected that if EDH is impaired in the absence of Cx40, 

inhibiting EDH with apamin and TRAM-34 should increase nerve-evoked vasoconstriction in the 

WT but have no effect in the KO. In opposition to this prediction, I observed that the addition of 

apamin and TRAM-34 produced a proportionate increase in nerve-evoked vasoconstriction in all 

six genotype-sex groups. This key result demonstrates that in mesenteric resistance arteries, EDH 

is at least partially independent of Cx40. The addition of the eNOS inhibitor L-NAME on top of 

apamin and TRAM-34 produced a further increase in nerve-evoked pressure responses in all six 

genotype-sex groups, demonstrating that the NO pathway is also independent of Cx40. Thus, EDH 

and NO production both contribute to the limitation of nerve-evoked vasoconstriction regardless 

of whether or not Cx40 is present. The lack of effect on EDH may be explained by some reports 

that Cx40 is less abundant than Cx37 in MEGJs697,963; it is possible that only Cx37 may be 

necessary for MEGJ function. 

I next investigated the role of the endothelium in nerve-evoked vasoconstriction by 

removing the endothelial cell layer of the mesenteric bed using 0.5% Triton X-100. The effects of 
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apamin, TRAM-34 and L-NAME were abolished in the endothelium-denuded beds, which 

confirms that the endothelium was properly removed. Notably, removal of the endothelium did 

not reverse the enhancement of nerve-evoked responses in beds from KO rats. Endothelium-

denuded mesenteric beds from male KO rats produced pressure responses 140% higher than those 

from male WT rats, while endothelium-denuded mesenteric beds from female KO rats produced 

responses 250% higher than those from female WT rats. These data indicate that the enhancement 

of vasoconstriction in mesenteric beds from KO rats was at least partially due to an endothelium-

independent mechanism. This means that, despite the fact that Cx40 is not expressed by VSMCs, 

the genetic ablation of Cx40 must cause a change in smooth muscle function. 

I also investigated the effect of knocking out Cx40 on myogenic reactivity, which is a 

crucial aspect of physiological vascular function. Myogenic tone is well-understood to be an 

endothelium-independent function of vascular smooth muscle700,880,884; however, the results from 

the perfused mesenteric bed indicate that vessels from Cx40 KO rats counterintuitively display an  

endothelium-independent increase in nerve-evoked vasoconstriction. This lead me to predict that 

isolated mesenteric arteries would display a similar increase in pressure-evoked vasoconstriction. 

However, this was not observed. Within each sex, Cx40 genotype had no significant effect on 

myogenic reactivity. Comparing this finding with previous literature in the Cx40 KO mouse is 

difficult, as only two research groups have investigated myogenic tone in the KO mouse768,964. 

Jacobsen and Sorensen (2015) observed that myogenic reactivity was somewhat enhanced in 

perfused renal afferent arterioles from KO mice768. They suggest that arteries from KO mice 

develop myogenic tone at lower pressures than those from WT mice; however, they state that the 

baseline diameter of WT arteries was significantly larger than the baseline diameter of KO arteries, 

and did not present the normalized myogenic tone to account for this. Conversely, Chaston et al. 
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(2013) found using pressure myography in isolated mesenteric arteries that vessels from Cx40 KO 

mice exhibited significantly less myogenic tone than those from WT mice964. Using the current rat 

model, my observation of no significant effect in either direction lands between the previous two 

studies in mice. 

Both vasoconstriction and endothelium-dependent vasodilation were further assessed using 

wire myography of isolated mesenteric arteries. Previous reports from Cx40 KO mice show 

impaired ACh-evoked vasorelaxation in isolated segments of aorta766 and renal artery661, as well 

as enhanced vasoconstriction elicited by the thromboxane A2 (TP) receptor agonist U46619766. In 

contrast, mesenteric arteries from the current rat model exhibited no effect of Cx40 genotype upon 

either ACh-evoked vasorelaxation, or PE-evoked vasoconstriction. Using apamin, TRAM-34 and 

L-NAME to inhibit SKCa, IKCa and eNOS, respectively, revealed that the relative contributions of 

EDH and NO production to vasorelaxation were unaffected by the ablation of Cx40. Interestingly, 

U46619-evoked vasoconstriction was impaired, rather than enhanced, in vessels from male KO 

rats versus vessels from male WT rats, and in vessels from female KO and HET rats versus vessels 

from female WT rats. 

I also investigated the role of Cx40 in ischemia/reperfusion injury using the Langendorff 

heart perfusion. The expression of Cx40 in atrial cardiomyocytes is well documented792,793, and 

has been shown in mouse models to be cardioprotective. Morel et al. (2014) found that an EC-

specific deletion of Cx40 in mice produced greater infarct size and greater leukocyte infiltration 

after ischemia/reperfusion in Langendorff-perfused hearts800. Deletion of Cx40 also exacerbates 

ischemia/reperfusion injury in the vasculature: Fang et al. (2013) induced hindlimb ischemia by 

ligating the femoral artery and found that tissue perfusion and survival were compromised and 

leukocyte infiltration were increased in the Cx40 KO mouse965. My results align with the literature 
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and support a cardioprotective role of Cx40 in ischemia/reperfusion injury. I observed a 

statistically significant impairment of post-ischemic LVDP in hearts from KO rats. It is possible 

that this result is a consequence of the heart enlargement observed in the KO rats. However, using 

the Langendorff heart perfusion, it is impossible to determine whether the enlarged heart causes 

impaired recovery from ischemia, or whether they are concurrent but independent phenomena. 

Nevertheless, I suspect that the former is more likely, due the fact that Cx40 is not expressed in 

ventricular cardiomyocytes in adult mammals792,793. 

Considering all these data, the most prominent positive results in the Cx40 KO rat are a 

~40 mmHg increase in systemic BP, an increase in relative mass of the heart, and an increase in 

nerve-evoked vasoconstriction that was at least partially endothelium-independent. These findings 

illustrate a crucial physiological role of Cx40, and lay out a clear path for future research: 

investigating the underlying change to smooth muscle function in the absence of Cx40. The 

previous literature in Cx40 KO mice provide some clues to which mechanisms may be responsible 

for the altered smooth muscle phenotype. 

The most prominent factor which may explain these deleterious effects is the dysfunction 

of juxtaglomerular cells in the absence of Cx40. Also called renin-producing cells, juxtaglomerular 

cells are a specialized type of renal vascular cell found in the wall of the renal afferent arteriole at 

the entrance to the glomerulus966,967. These cells are responsible for the synthesis of renin, a 

protease enzyme central to the control of systemic BP and fluid-electrolyte homeostasis as part of 

the renin-angiotensin-aldosterone system (RAAS)968,969. Renin hydrolyzes angiotensinogen to 

convert it into angiotensin I, which is further converted by angiotensin-converting enzyme (ACE) 

into angiotensin II. Angiotensin II precipitates vasoconstriction directly by acting at the AT1R, a 

Gq/11PCR, on VSMCs thereby increasing systemic BP970. Juxtaglomerular cells are 
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mechanosensitive, and regulate renin release by sensing and responding to changes in perfusion 

pressure (reviewed by Yamaguchi et al., 2023)967. High perfusion pressure increases shear stress-

induced Ca2+ entry, which in turn suppresses renin secretion; whereas low perfusion pressure, 

especially in conditions such as hypotension, dehydration, or hemorrhaging, stimulates renin 

secretion in order to rescue systemic BP967,968,971,972. Crucially, juxtaglomerular cells are also one 

of the only cell types other than ECs to express Cx40973-976. Cx40 is the main Cx subtype expressed 

by juxtaglomerular cells975,976, and is necessary for their electrical and structural coupling to both 

ECs and VSMCs977,978. Wagner et al. (2010) found in the Cx40 KO mouse that in the absence of 

Cx40 the juxtaglomerular cells are displaced from the afferent arteriole wall, both abolishing their 

ability to directly sense intraarterial pressure and inhibiting the pressure-mediated negative 

regulation of renin synthesis and secretion usually exerted by adjacent ECs978. Thus, the absence 

of pressure-induced Ca2+ entry into juxtaglomerular cells results in the disinhibition of renin 

synthesis and secretion, leading to hyperreninemia and hypertension967,978,979. This is now 

considered to be the mechanism underlying the hypertension observed in the Cx40 mouse979, based 

on several key pieces of evidence. Wagner et al. (2010) generated mice with either EC-specific or 

juxtaglomerular cell-specific deletion of Cx40, and observed that the juxtaglomerular cell-specific 

deletion of Cx40 produced hypertension, whereas the EC-specific deletion did not978. The 

hypertension of Cx40 KO mice was also found to be insensitive to dietary salt intake, but was fully 

reversed by administering RAAS inhibitors such as the ACE-inhibitor ramipril or the AT1R 

antagonist candesartan974. Additionally, Cx40 and AT1R double KO mice were found to be 

normotensive980.  

The RAAS mechanism of hypertension has not yet been investigated in the Cx40 KO rat 

used in the present study. However, studies have confirmed that Cx40 is highly expressed in 
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juxtaglomerular cells in WKY rats981,982, upon which the WKY-Gja5em1Mcwi strain is based. Thus, 

it is logical to hypothesize that the same disruption of the juxtaglomerular apparatus underlies the 

hypertension observed in this study. Future research should involve measuring plasma renin levels 

in all six genotype-sex groups, as well as immunohistochemical staining to determine whether the 

juxtaglomerular cells are ectopically localized as occurs in the Cx40 KO mouse978. Another useful 

experiment would be the administration of a non-selective GJ inhibitor such as carbenoxolone or 

18α/β-glycyrrhetinic acid in the perfused mesenteric vascular bed. If the GJ inhibitor mimicked 

the results from the KO rat in the WT rat, this would demonstrate that the absence of Cx40 is 

directly responsible for the increase in nerve-evoked vasoconstriction; otherwise, this would 

demonstrate that the chronic, systemic consequences of knocking out Cx40 are responsible. 

Hyperreninemia also serves as a putative explanation for the impairment of U46619-

evoked vasoconstriction observed in arteries from KO rats using wire myography. Angiotensin II 

has been shown to stimulate the production of thromboxane A2 from arachidonic acid by COX-

1/2 and thromboxane synthase983,984. Furthermore, the action of thromboxane A2 at TP has also 

been established as a necessary contributor to angiotensin II-dependent hypertension985,986. TP, 

like many other GPCRs, has been shown to undergo agonist-induced desensitization and 

internalization987-990. The impairment of TP agonist-induced vasoconstriction in the Cx40 rat 

warrants investigation of cell surface TP expression and total TP content in mesenteric arteries, as 

well as the measurement of plasma eicosanoids. 

The increase in plasma levels of angiotensin II cannot directly explain the enhancement of 

vasoconstriction in the perfused mesenteric vascular bed. The mesenteric bed is flushed to remove 

blood then perfused with Krebs buffer, meaning that no renin or angiotensin II is present in the 

system. Therefore, the endothelium-independent increase in nerve-evoked vasoconstriction in 
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beds from KO rats must be due to a change in VSMC function. This could either be a direct effect 

of knocking out Cx40, or it could be an effect of chronic hyperreninemia. The latter of these 

options is corroborated by evidence that several animal models of systemic hypertension are 

accompanied by an increase in expression and/or activity of LTCCs in VSMCs270,271,991-995. In 

particular, Pesic et al. (2004) demonstrated a causal relationship between intramural pressure and 

VSMC expression of LTCCs270. The authors banded rat aortae between the origins of the left and 

right renal arteries in order to elevate BP in the right renal artery without altering BP in the left. 

Western blot analyses detected a 3.25-fold increase in expression of α1C (the pore-forming subunit 

of CaV1.2) in right renal arteries versus left renal arteries. They further demonstrated that isolated 

renal arteries from control rats displayed an increase in α1C expression after being cultured in a 

depolarizing high [K+] medium. The two-kidney one-clip model used by Pesic et al. has been 

shown elsewhere to increase renin secretion in the affected kidney996. Meanwhile, another group 

found that rats infused with angiotensin II for 28 days displayed increased LTCC activity in 

isolated cerebral arteries, but showed no change in channel expression993. Taken together, these 

studies indicate that increased expression and/or activity of LTCCs in VSMCs could potentially 

occur in the Cx40 KO rat, and would align with the results I obtained in the perfused mesenteric 

vascular bed. Future experiments should assess whether α1C expression is increased at both the 

mRNA and protein level, and whether ICa in VSMCs is increased using electrophysiological 

recording. Nevertheless, this line of investigation would be insufficient to explain all of my results. 

As a counterexample, I observed no effect of the Cx40 KO on myogenic tone in isolated mesenteric 

arteries; if LTCCs are upregulated in VSMCs in the Cx40 KO rat, then I would expect to have 

seen an enhancement of myogenic tone based upon the positive correlation between LTCC 

expression and myogenic vasoconstriction demonstrated in the literature995,997,998. 
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Impairment of the conducted vasomotor response may also contribute to enhanced 

vasoconstriction in the perfused bed. Interendothelial GJs are mostly composed of 

Cx40697,739,900,963. It has been proposed that the conducted vasomotor response not only allows for 

the control of arterial diameter upstream from a stimulus, but also allows active membrane 

processes to amplify the hyperpolarization as it is conducted. Studies have found that 

hyperpolarization conducted along the vascular EC layer decays at a slower rate than would be 

expected of passive conduction662,770. It is possible that interendothelial conduction contributes to 

the limitation of nerve-evoked vasoconstriction in the perfused mesenteric vascular bed, and that 

the absence of Cx40 impairs this amplification of hyperpolarization. This could account for the 

finding that enhanced vasoconstriction occurs not only in the endothelium-denuded bed, but in the 

endothelium-intact bed as well. In order to investigate this in future experiments, I would measure 

the conducted vasomotor response in isolated resistance arteries using pressure myography 

combined with a pneumatic ejector as described in the literature765,999-1002. Based on the literature, 

I hypothesize that arteries from the KO rat would show impaired conduction of endothelium-

dependent vasodilation (such as to ACh or bradykinin) but would not show any change in 

conduction of endothelium-independent vasodilation (such as to pinacidil or adenosine)764,765,1003. 

Another putative explanation which would align with my results is the disruption of 

mechanotransduction in the absence of Cx40. In the present study, enhanced vasoconstriction was 

only observed in the perfused mesenteric vascular bed, and not in the pressure or wire myograph. 

This discrepancy was particularly surprising, since both nerve- and PE-evoked vasoconstriction 

are mediated by α1-adrenoceptor agonism. The most obvious difference between these assays is 

that the perfused mesenteric vascular bed is the only one to incorporate shear stress, which is a 

physiologically relevant vasodilatory stimulus691,695. As I have discussed previously, 
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mechanosensation in the vasculature is not fully understood, and is thought to be the sum of 

functions of many different protein structures including the extracellular matrix, integrins, 

cytoskeleton proteins, and mechanosensitive ion channels (reviewed by Davis et al., 2023)495. It is 

unclear if Cx40 is directly involved in mechanosensation, but studies have demonstrated that Cx40 

is at least indirectly linked to mechanosensation1004. I have previously discussed that Cx40 is 

necessary for the detection of BP by juxtaglomerular cells; however, Cxs have been associated 

with mechanosensation elsewhere in the vasculature as well. Shear stress is a regulator of Cx 

expression and distribution in ECs, and has been shown to alter both mRNA and protein expression 

of Cx40, albeit with contradictory results. Shear stress has been shown to upregulate Cx40 in 

cultured human aortic ECs1005 and HUVECs1006, but has also been shown to downregulate Cx40 

in cultured rat aortic ECs1007. In human coronary artery ECs co-cultured with SMCs, low shear 

stress (5 dyn/cm2) downregulated Cx40 versus no-flow controls, but higher shear stress (12 

dyn/cm2) maintained the same expression level of Cx40 versus no-flow1008. Moreover, knockdown 

of Cx40 with siRNA causes a morphological change to ECs and they become elongated in shape, 

which may affect their function1005. These data do not create a clear illustration of Cx40’s role in 

mechanotransduction, but nevertheless suggest that Cx40 expression and mechanotransduction are 

closely related. Mechanotransduction is not only a property of vascular ECs and juxtaglomerular 

cells, but of VSMCs as well495, which could account for the endothelium-independent component 

of the response I observed in the perfused mesenteric vascular bed. In order to investigate the role 

of Cx40 in mechanotransduction, I propose using electrophysiological recording of EC and VSMC 

membrane potential in endothelium-intact and -denuded isolated mesenteric arteries from WT, 

HET and KO rats in the presence and absence of shear stress (as described previously546,700). If 

any differences in shear stress-induced VM were observed, I would then measure mRNA and 
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protein levels of the most prominent proteins involved in mechanotransduction including Piezo1, 

TRPV4, TRPC6 and TRPM4495 to determine whether ablation of Cx40 affects expression of these 

channels. 

The other major difference between nerve- and PE-evoked vasoconstriction is that nerve-

evoked vasoconstriction is not solely mediated by α1-adrenoceptor agonism. In addition to 

releasing NA, sympathetic nerves co-release ATP and NPY, which act as vasoconstrictors at P2X 

and Y receptors, respectively367,368. The only evidence of Cx40’s involvement in this process 

suggests that Cx40 may be required for α1-adrenoceptor signalling in the kidney, and that 

pharmacological inhibition of Cx40 attenuates PE-evoked vasoconstriction in the glomerulus1009. 

This is opposite to what I observed, wherein knocking out Cx40 greatly enhanced nerve-evoked 

vasoconstriction and had no effect on PE-evoked vasoconstriction. 

In summary, the data presented in this chapter support the hypothesis that the Cx40 KO rat 

experiences impaired endothelial modulation of resistance artery diameter in addition to the large 

endothelium-independent component of the observed effects. Cx40 is necessary in the 

maintenance of normal cardiovascular function, as rats lacking Cx40 experience pronounced 

hypertension and enlargement of the heart. Additionally, nerve-evoked vasoconstriction is greatly 

enhanced in the absence of Cx40, indicating that Cx40 is an important contributor to the 

physiological control of resistance artery diameter and therefore tissue blood flow and arterial BP.  
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Chapter 5: Genetic ablation of Cx40 decreases the magnitude of vascular dysfunction 

incurred in mild hypercaloric challenge 

 

5.1 Introduction 

CVD is the global leading cause of death, and is a prevalent comorbidity of metabolic 

disease states such as T2DM (see §1.1.1). The data presented in Chapter 4 demonstrate that Cx40 

serves a crucial physiological role in cardiovascular function, particularly in the maintenance of 

systemic blood pressure and the limitation of vasoconstriction in resistance arteries. Within this 

chapter, I will investigate the role of Cx40 in cardiovascular pathophysiology and the development 

of CVD. 

T2DM is characterized by hyperglycemia and hyperinsulinemia, both of which increase 

NOX expression and activity in ECs31. This in turn increases oxidative stress within ECs, leading 

to the uncoupling of eNOS, decreased bioavailability of NO, and ultimately impaired endothelium-

dependent vasodilation16,31. The inability of the endothelium to perform its physiological role in 

the maintenance of vascular tone is called endothelial dysfunction. Endothelial dysfunction is 

accepted to be an early factor driving the development of atherosclerotic CVD, occurring before 

the development of the diagnostic features of T2DM473,1010-1013. 

The phenotypic changes in endothelial dysfunction also include changes in GJ expression 

and activity. Over the past two decades, many studies have established that vascular gap junctional 

communication is altered in disease states including diabetes mellitus, hypertension, and 

atherosclerosis (reviewed by Brisset et al., 2009; and Leybaert et al., 2017)917,1014. However, the 

nature of these changes varies depending upon the disease or disease model, and the type and 

location of affected arteries. One of the first studies to examine pathophysiological changes in 

connexin function used a rat model of renovascular hypertension981. The left renal artery of the rat 

was clipped to induce renin-dependent hypertension; in response, the authors found increased 
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mRNA and protein expression of Cx40 in both kidneys, particularly in the juxtaglomerular cells 

and endothelium of the afferent arteriole. Similarly, a later study by Zhang et al. (2005) found in 

mice that streptozotocin (STZ)-induced diabetes (analogous to T1DM) was accompanied by an 

increase in Cx37 expression in the glomerulus and an increase in Cx40 expression in the renal 

afferent arteriole975. 

Conversely, outside of the renal vasculature, CVD is mostly characterized by 

downregulation of endothelial Cx40 and Cx37 rather than upregulation. One of the earliest studies 

concerning connexin regulation in diabetes observed that cultured rat microvascular ECs subjected 

to hyperglycemia exhibited downregulation in Cx43, but no change in expression of Cx37 or 

Cx401015. However, animal studies using in vivo models such as STZ-induced diabetes soon 

followed, with most reporting that Cx40 and/or Cx37 are downregulated in CVD1016-1018. Makino 

et al. (2008) found that STZ-induced diabetes in mice was accompanied by decreased protein 

expression of both Cx37 and Cx40 in coronary artery ECs1017. The authors also found that 

inhibition of Cx40 by 40Gap27 (300 µM) abolished endothelium-dependent relaxation to ACh in 

diabetic vessels, but a much larger concentration (600 µM) was necessary to see partial inhibition 

in control vessels. These data demonstrate that a decrease in the population and possibly activity 

of Cx40 contributes to endothelial dysfunction in diabetes. The same research group later 

demonstrated that increased O-linked N-acetylglucosamine protein modification of Cx40 may 

underlie its downregulation in diabetes1018. Furthermore, evidence shows that conduction of 

vasoconstrictor responses has been shown to be impaired in cremaster arterioles from STZ-induced 

diabetic mice versus control mice1019. 

Cx37 and Cx40 are also downregulated in models of T2DM. Young et al. (2008) showed 

that the Zucker obese rat experienced a significant decrease in mRNA and protein levels of Cx37 
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and Cx40, but not Cx43, in mesenteric arteries1020. In 2016, Takahashi et al. reported that high-fat 

diet (HFD)-fed mice were more susceptible to the induction of atrial arrhythmia, and 

simultaneously showed that Cx40 expression was greatly decreased in atrial cardiomyocytes1021. 

HFD has also been found to cause downregulation of atrial Cx40 and Cx43 in rats772. Most 

recently, in 2021 Si et al. reported that Cx40 protein expression in coronary artery ECs is 

significantly decreased in mice receiving single-dose STZ followed by HFD799. The authors also 

found that T2DM was associated with decreased expression of human antigen R (HuR), an RNA-

binding protein responsible for regulating the expression and stability of mRNAs of many genes, 

including Gja5, which encodes Cx40799,1022. Correspondingly, they observed lower levels of Gja5 

mRNA binding to HuR, and suggest that the decrease in HuR expression is likely to underlie the 

decrease in Cx40 expression observed in T2DM. 

Alterations in connexin expression have also been implicated in the etiologies of other 

forms of CVD917,1014,1023,1024. In a mouse model of atherosclerosis, endothelial cells covering 

atherosclerotic plaques were found to stop expressing Cx37 and Cx40 in favour of upregulated 

Cx431025. A high cholesterol diet-induced model of hyperlipidemia in mice has also shown to 

decrease expression of Cx37 and Cx40 in aortic ECs, with the notable finding that treatment with 

simvastatin rescues expression of Cx37 but not Cx401026. In a similar manner, induction of 

generalized inflammation by i.p. injection of lipopolysaccharide greatly reduced Cx37 and Cx40 

expression in aortic endothelium of mice1027. Oral L-NAME-induced hypertension was also found 

to reduce aortic endothelial connexin expression in rats; however, only Cx37 and Cx43, but not 

Cx40, were reduced1028. Even aging, which itself increases the risk of CVD, has been found to be 

associated with decreased expression of all three endothelial connexins in the rat aorta1029. 
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In addition to pathophysiological changes in connexin expression, there is some evidence 

for changes in connexin activity via posttranslational modification762,917. The conductance of 

Cx40-containing hemichannels is increased by PKA-mediated phosphorylation at the C-terminus 

of Cx401030-1032. Low levels of ROS activate PKA, whereas high levels of ROS, as are 

characteristic of many disease states, have been shown to decrease PKA activity1031,1033. Thus, high 

ROS production leads to decreased phosphorylation of Cx40, thereby increasing the resistance of 

interendothelial coupling762. This link has been demonstrated in the contexts of 

ischemia/reperfusion injury and sepsis, wherein elevated ROS production leads to a decrease in 

Cx40 conductance1031,1034-1036. 

From the literature, it is clear that alterations in endothelial Cx40 correlate with endothelial 

dysfunction in CVD. In most arteries, CVD is associated with a decrease in Cx40 expression and 

activity, which bolsters the case for a cardioprotective role of Cx40. However, it is unclear whether 

the downregulation of Cx40 is a contributor to CVD, or simply a consequence of CVD. I aim to 

elucidate the role of Cx40 in the onset of T2DM by using a mildly hypercaloric HFD model 

analogous to prediabetes in humans. The diet used in this research is based on a formulation by 

our collaborator Dr. Ahmed El-Yazbi for the purpose of studying the onset of endothelial 

dysfunction before the establishment of T2DM or obesity473,818,819. In this chapter, I apply the mild 

hypercaloric challenge as a stressor to the novel Cx40 KO rat. I hypothesize that the Cx40 KO rat 

is more susceptible to endothelial dysfunction than the WT rat, and will therefore incur a greater 

magnitude of arterial functional impairment when subjected to a mild hypercaloric challenge. 

5.2 Methods 



149 

 

A full description of methods is provided in Chapter 2. As stated in §2.2, experiments in 

this chapter use Cx40+/+ (wild-type or WT), Cx40+/- (heterozygous or HET), and Cx40-/- (knock-

out or KO) rats bred from the WKY-Gja5em1Mcwi mutant strain. 

5.3 Results 

5.3.1 Hypercaloric challenge does not affect Cx40 KO-induced hypertension or heart 

enlargement  

 

In order to investigate the cardiovascular impact of mild hypercaloric challenge in the Cx40 

KO rat model, male and female WT, HET and KO rats were fed with HFD from 3 months of age 

until euthanasia at 6 months of age. I first assessed gross phenotypic changes in the metabolic and 

hemodynamic properties of the rats (Figure 5.1). As in the control diet (CD)-fed rats from the 

previous chapter (§4.3.2), no significant differences in body weight were observed between 

genotypes in male rats (P>0.05, Figure 5.1a). However, HFD-fed female HET rats were 

significant 

  

a) 

b) 
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Figure 5.1: HFD does not alter Cx40 KO-induced increase in systolic blood pressure and 

heart mass. Gross metabolic and hemodynamic characteristics of HFD-fed male and female WT, 

HET, and KO rats were measured at six months of age after 12 weeks of HFD feeding, including 

a) body weight (n = 9-17), b) random blood glucose (n = 6-8), c) systolic blood pressure (n = 5-

8), d) left and right kidney weight (n = 9-16), and e) heart weight (n = 9-16). Data are presented 

as mean ± SEM. * denotes P<0.05 from WT and # denotes P<0.05 from HET; one-way ANOVA. 

Tail cuff plethysmography performed by Jad Julian-Rachid.  

c) 

d) 

e) 
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significantly smaller than HFD-fed female WT rats with a mean difference of 12.8 ± 3.9 g (n = 9-

14). Within each sex, random blood glucose was unaffected by genotype (P>0.05, Figure 5.1b). 

The increase in systemic BP observed in the CD-fed KO rats was also preserved in the HFD-fed 

rats. HFD-fed KO rats exhibited a statistically significant increase in systolic BP versus HFD-fed 

WT and HET rats within each sex (P<0.05, Figure 5.1c). In males and females, the mean systolic 

BP of HFD-fed KO rats (148.8 ± 6.4 mmHg, n = 6 and 146.3 ± 10.8 mmHg, n = 6, respectively) 

was approximately 35 mmHg greater than that of either HFD-fed WT rats (113.1 ± 4.1 mmHg, n 

= 8 and 114.8 ± 7.2 mmHg, n = 5, respectively) or HET rats (111.9 ± 7.6 mmHg, n = 7 and 110.2 

± 4.1 mmHg, n = 7, respectively). No differences were observed in heart rate between genotypes 

(P>0.05; data not shown). Finally, wet weights of kidneys and hearts were measured upon excision 

and expressed relative to body weight (and e). Like the CD-fed rats, no significant difference was 

observed in relative kidney weight between genotypes of HFD-fed rats (P>0.05, Figure 5.1d). 

Hearts from HFD-fed KO rats of both sexes were enlarged versus those from HFD-fed WTs 

(P<0.05), but were not significantly larger than those from HFD-fed HETs (P>0.05, Figure 5.1e). 

 Next, I have compared these biometric data from the HFD-fed rats (Figure 5.2) to the 

corresponding data from the CD-fed rats (§4.3.2). HFD-fed male WT, HET and KO rats 

experienced no significant change in body weight versus CD-fed controls. In contrast, HFD-fed 

female WT and KO rats both experienced a statistically significant increase in body weight versus 

controls (+12.8 ± 3.0 g, n = 14-21 and +9.7 ± 3.1 g, n = 12-20, respectively; P<0.05) whereas 

HFD-fed HETs did not (P>0.05, Figure 5.2a). The HFD did not affect random blood glucose in 

most genotype-sex groups (P>0.05), except for male KO rats and female HET rats, which 

experienced significant increases versus control (P<0.05, Figure 5.2b). Next, I observed that HFD 

had no significant effect on systolic BP in any of the genotype-sex groups (P>0.05, Figure 5.2c). 
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Although I have shown that the HFD-fed male KO still experienced significant heart enlargement 

versus the HFD-fed male WT, comparing across the diets shows a significantly greater heart 

weight in the CD-fed male KO than in the HFD-fed male KO (P<0.05, Figure 5.2d). Finally, HFD 

was found to have no effect on kidney weight in the male rats (P>0.05, Figure 5.2e). Surprisingly, 

in all genotypes, HFD-fed female rats had significantly smaller relative kidney weight than CD-

fed female rats (P<0.05). Additionally, this effect was still present when accounting for changes 

in body weight by comparing the absolute weight of the kidneys (Figure B1, Appendix B). 

  

a) 

b) 
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Figure 5.2: Comparisons of phenotypic changes between control and HFD-fed rats. Gross 

metabolic and hemodynamic characteristics of control and HFD-fed male and female WT, HET, 

and KO rats were compared on the basis of diet within each genotype-sex group. a) body weight 

(n = 9-25), b) random blood glucose (n = 6-18), c) systolic blood pressure (n = 5-8), d) mean 

kidney weight (n = 9-22), and e) heart weight (n = 9-22). Data are presented as mean ± SEM. * 

denotes P<0.05 from control diet; two-way ANOVA with Šídák’s multiple comparison tests. Tail 

cuff plethysmography performed by Jad Julian-Rachid.   

c) 

d) 

e) 
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5.3.2 Hypercaloric challenge enhances nerve-evoked vasoconstriction but does not impair 

EDH or NO production 

 

Next I aimed to characterize the effect of hypercaloric challenge on the physiological 

function of resistance arteries in the Cx40 KO rat model. Using the same methods and experimental 

parameters as in the CD-fed rats (§4.3.3), I recorded responses in perfusion pressure to nerve-

evoked vasoconstriction in the perfused mesenteric vascular beds of HFD-fed male and female 

WT, HET and KO rats. Frequency-response relationships from 1 to 40 Hz were constructed in the 

absence and presence of the SKCa inhibitor apamin (50 nM), the IKCa inhibitor TRAM-34 (1 µM) 

and the eNOS inhibitor L-NAME (100 µM). The administration of apamin + TRAM-34 and 

apamin + TRAM-34 + L-NAME produced statistically significant increases in nerve-evoked 

vasoconstriction in all genotype-sex groups (P<0.05, Figure 5.3). Similarly to the CD-fed rats, 

treatment with apamin + TRAM-34 produced an increase in pressure responses only at the highest 

frequencies (20-40 Hz). This increase was proportionally larger in WT beds than in KO beds: at 

30 Hz, apamin + TRAM-34 caused a 165% increase in the HFD-fed WT response, but only a 

130% increase in the HFD-fed KO response. In females, these increases were 160% and 150%, 

respectively. This may indicate that HFD reduces the contribution of EDH to inhibition of 

vasoconstriction is in the absence of Cx40. Administering apamin + TRAM-34 + L-NAME 

produces increases in nerve-evoked vasoconstriction at frequencies as low as 10 Hz, with a 

disproportionately high increase in the HFD-fed KO beds from both sexes. At higher frequencies 

of stimulation, the responses in the presence of all three inhibitors reach a tissue maximum in each 

genotype-sex group and become indistinguishable from the responses in the presence of apamin + 

TRAM-34, particularly in the HFD-fed KO beds. 

Comparing across genotypes (Figure 5.4) reveals that mesenteric beds from HFD-fed male 

and female KO rats exhibit a statistically significant increase in pressure responses versus HFD-
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fed WT and HET beginning at 15 Hz stimulations in the males and 20 Hz in the females (P<0.05, 

Figure 5.4a and d). In the CD-fed rats, this increase was approximately 200%, but is noticeably 

smaller in the HFD-fed rats (~165% in males and ~135% in females). The increased pressure 

responses in the HFD-fed KO beds versus the HFD-fed WT and HET beds are maintained after 

the addition of apamin + TRAM-34 or apamin + TRAM-34 + L-NAME (P<0.05, Figure 5.4b, c, 

e and f). Notably, in the presence of all three inhibitors, the HFD-fed male KO displays a left-

shifted frequency response curve versus HFD-fed male WT and HET, but no longer displays an 

increase in the maximum response. At 30 Hz, the KO is no longer significant versus the WT, and 

at 40 Hz, the KO is not significant versus either the WT or HET (P>0.05, Figure 5.4c). A similar 

phenomenon occurs in the female beds, where the frequency-response curve in the HFD-fed KO 

is left-shifted but does not display an increased maximum response versus the HFD-fed WT 

(Figure 5.4f). 

Finally, in order to directly assess the effect of the hypercaloric challenge, the data in beds 

from HFD-fed rats have been compared with the corresponding data in beds from CD-fed rats 

(Figures 5.5, 5.6 and 5.7). In beds from male rats, HFD had no significant effect on nerve-evoked 

vasoconstriction in HET rats (P>0.05, Figure 5.6a, b and c) but increased responses in WT and 

KO rats (P<0.05, Figures 5.5a, b and c and 5.7a, b and c). In beds from female rats, divisions 

based upon genotype were less clear, but notably reveal no significant differences in the presence 

of apamin + TRAM-34 + L-NAME (P>0.05, Figures 5.5f, 5.6f and 5.7f). This indicates that in 

beds from female rats, HFD had no effect on the combined contribution of EDH and NO 

production. 
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Figure 5.3: HFD does not impair contribution of EDH and NO synthesis to inhibition of nerve-evoked vasoconstriction in 

perfused mesenteric vascular beds from Cx40 WT, HET and KO rats. Frequency-response relationships constructed in the absence 

and presence of apamin (50 nM), TRAM-34 (1 µM) and L-NAME (100 µM) using endothelium-intact mesenteric vascular beds from 

HFD-fed male a) WT (n = 6), b) HET (n = 9), and c) KO (n = 7) rats, and female d) WT (n = 7), e) HET (n = 6), and f) KO (n = 6) rats. 

Data are presented as mean ± SEM. * denotes P<0.05 from control and # denotes P<0.05 from Apamin + TRAM-34; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 5.4: Genetic ablation of Cx40 enhances nerve-evoked vasoconstriction in the perfused mesenteric vascular bed from 

HFD-fed rats.  Unpaired frequency-response relationships of perfused mesenteric vascular beds from HFD-fed male (a, b, and c) and 

female (d, e, and f) WT (n = 6-7), HET (n = 6-9) and KO (n = 6-7) rats compared across genotypes within each drug treatment. Beds 

were perfused in the absence of drugs (a and d), in the presence of apamin (50 nM) and TRAM-34 (1 µM; b and e), or in the presence 

of apamin, TRAM-34 and L-NAME (100 µM; c and f). Data are presented as mean ± SEM. * denotes P<0.05 from WT and # denotes 

P<0.05 from HET; two-way ANOVA.

a) b) 

d) e) 

c) 

f) 
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Figure 5.5: HFD significantly enhances nerve-evoked vasoconstriction in perfused mesenteric vascular beds from Cx40 WT rats. 

Unpaired frequency-response relationships of perfused mesenteric vascular beds from control and HFD-fed male (n = 6; a, b, and c) 

and female (n = 6-7; d, e, and f) WT rats in the absence and presence of apamin (50 nM), TRAM-34 (1 µM) and L-NAME (100 µM). 

Data are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 5.6: HFD significantly enhances nerve-evoked vasoconstriction in perfused mesenteric vascular beds from female, but 

not male Cx40 HET rats. Unpaired frequency-response relationships of perfused mesenteric vascular beds from control and HFD-fed 

male (n = 6-9; a, b, and c) and female (n = 6; d, e, and f) HET rats in the absence and presence of apamin (50 nM), TRAM-34 (1 µM) 

and L-NAME (100 µM). Data are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 5.7: HFD significantly enhances nerve-evoked vasoconstriction in perfused mesenteric vascular beds from Cx40 KO rats. 

Unpaired frequency-response relationships of perfused mesenteric vascular beds from control and HFD-fed male (n = 7; a, b, and c) 

and female (n = 6; d, e, and f) KO rats in the absence and presence of apamin (50 nM), TRAM-34 (1 µM) and L-NAME (100 µM). Data 

are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA.  

a) b) 

d) e) 

c) 

f) 
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5.3.3 Mild hypercaloric challenge does not affect myogenic reactivity in isolated mesenteric 

arteries 

 

 Pressure myography was used to examine the effect of HFD on the development of 

myogenic tone in fourth- to sixth-order mesenteric arteries isolated from Cx40 WT, HET and KO 

rats. Arteries from HFD-fed male and female WT, HET and KO rats all exhibited myogenic 

constriction that was statistically significant from their passive diameter in the absence of Ca2+ 

(P<0.05, Figure 5.8). In order to examine the effect of the hypercaloric challenge, these data were 

expressed as % myogenic tone (see §2.5) and compared to myogenic tone data in arteries from 

CD-fed rats. In the absence of apamin, TRAM-34 or L-NAME, HFD had no effect on myogenic 

tone in any of the genotype-sex groups (P>0.05, Figure 5.9). For the sake of clarity, data in the 

presence of apamin + TRAM-34 or apamin + TRAM-34 + L-NAME have not been included, but 

HFD was still found to have no significant effect in the presence of these treatments (P>0.05, data 

not shown). These results suggest that the myogenic response is not affected during early metabolic 

strain and development of endothelial dysfunction. 
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Figure 5.8: Pressure-evoked vasoconstriction occurs in isolated mesenteric arteries from HFD-fed Cx40 WT, HET and KO rats. 

Pressure myography was used to construct pressure-diameter relationships in the absence and presence of apamin (50 nM), TRAM-34 

(1 µM) and L-NAME (100 µM) using isolated fourth- to sixth-order mesenteric arteries from male a) WT (n = 7), b) HET (n = 8), and 

c) KO (n = 6) rats, and female d) WT (n = 7), e) HET (n = 6), and f) KO (n = 6) rats. Data are presented as mean ± SEM. * denotes 

P<0.05 from control; two-way ANOVA. 

a) b) 

d) e) 

c) 

f) 
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Figure 5.9: Myogenic response of isolated rat mesenteric arteries is not affected by HFD. Unpaired pressure-tone relationships of 

isolated fourth- to sixth-order mesenteric arteries from male a) WT (n = 6-7), b) HET (n = 6-8), and c) KO (n = 6) rats, and female d) 

WT (n = 6-7), e) HET (n = 6-8), and f) KO (n = 6) rats in the absence of drugs compared across diet within each genotype. Responses 

are expressed as % myogenic tone, which is the percentage difference in active diameter versus passive diameter at each pressure step. 

Data are presented as mean ± SEM. P>0.05; two-way ANOVA.

a) b) 

d) e) 

c) 

f) 
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5.3.4 HFD enhances post-ischemic functional recovery in the Langendorff-perfused rat heart 

 

 The effect of HFD on ischemia/reperfusion injury in hearts from Cx40 WT, HET and KO 

rats was investigated using the Langendorff isolated heart perfusion. Hearts from HFD-fed male 

and female WT, HET and KO rats were perfused using the same parameters as in the previous 

chapter (§4.3.6): 30 minutes pre-ischemic equilibration, 15 minutes global no-flow ischemia and 

45 minutes aerobic reperfusion. LVDP was calculated as the difference between systolic and end-

diastolic pressure, and two-way ANOVA was performed in two separate analyses; once for all pre-

ischemic timepoints and once for all post-ischemic timepoints. The overall effect of genotype was 

not statistically significant in either pre- or post-ischemia in HFD-fed male hearts, but was 

significant in both pre- and post-ischemia in females (P>0.05 and P<0.05, Figure 5.10a and b, 

respectively). In the previous chapter, the effect of genotype was found to be significant in CD-

fed males (Figure 4.16); this suggests that HFD rescues post-ischemic recovery in the male KO.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Post-ischemic functional recovery in Langendorff-perfused hearts from HFD-

fed male and female rats. Hearts were excised from HFD-fed a) male WT (n = 8), HET (n = 6) 

and KO (n = 6) and b) female WT (n = 6), HET (n = 6) and KO (n = 5) rats and perfused in 

Langendorff mode. Global no-flow ischemia was induced at the 30 min. timepoint and flow was 

reinstated at the 45 min. timepoint. Data are presented as mean ± SEM. P values represent overall 

effect of genotype; two-way ANOVA. Data contributed by Caleb McInroy. 

a) b) 
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Figure 5.11: HFD enhances post-ischemic functional recovery in Langendorff perfused rat hearts. Hearts were excised from CD- 

and HFD-fed a) male WT (n = 7-8), HET (n = 6-23) and KO (n = 5-6) and b) female WT (n = 6-15), HET (n = 6-24) and KO (n = 5-

11) rats and perfused in Langendorff mode. Global no-flow ischemia was induced at the 30 min. timepoint and flow was reinstated at 

the 45 min. timepoint. Data are presented as mean ± SEM. * denotes P<0.05 from control; two-way ANOVA. Data contributed by 

Caleb McInroy.

a) b) 

d) e) 

c) 

f) 
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Next, the data from HFD-fed rat hearts was directly compared with the data previously 

collected in CD-fed rat hearts. HFD caused significant differences in LVDP in every genotype-sex 

group: HFD significantly enhanced post-ischemic recovery in hearts from male WT, HET and KO, 

and female HET and KO rats (P<0.05, Figure 5.11a, b, c, e, and f, respectively). This effect was 

most pronounced in the female HET rats, though the reason for this is unclear and requires further 

investigation. In the female HETs, HFD produced a high-magnitude increase in post-ischemic 

LVDP of approximately 50 mmHg. 

5.4 Discussion 

The data presented in this chapter do not support the hypothesis that genetic ablation of 

Cx40 makes rats more susceptible to cardiovascular damage by a mild hypercaloric challenge. 

Contrarily, my results from functional assays suggest that the damage incurred by the KO rat is 

either the same or lesser magnitude than the damage incurred by the WT rat. These results are 

particularly significant due not only to the novelty of the WKY-Gja5em1Mcwi mutant strain, but also 

due to the mild HFD formulation. Throughout the history of rodent models of HFD-induced 

obesity, a wide range of diet formulations have been used experimentally, usually with a fat content 

between 30% and 78% of the total metabolizable energy (cf. standard laboratory rodent diets 

usually contain 10-15% kcal from fat)1037,1038. Toward the high end of this range, the clinical 

relevance becomes questionable, as diets that exceed 35% kcal from fat are considered obesogenic 

in humans1039. This has led the attention of researchers toward the more representative “Western 

diet”, which usually comprises 40-45% kcal from fat and a low protein : carbohydrate ratio1037,1040-

1042. The HFD in the current study has a fat content slightly below this range at 39.1% kcal from 

fat, and was formulated with the goal to be non-obesogenic within a 12 week time course in order 

to model prediabetes in rodents rather than obesity and T2DM818. The purpose of this research was 
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thus to examine how endothelial dysfunction develops in response to a metabolic challenge, and 

determine whether Cx40 is involved in this mechanism. 

I first assessed the impact of HFD on body weight and hemodynamic phenotype. HFD did 

not cause a significant increase in body weight or BP in any of the male rats, nor did it cause an 

increase in random blood glucose in male WTs, which is consistent with observations in male 

Sprague-Dawley rats by Dr. El-Yazbi’s group473,818. However, HFD was found to cause a 

significant increase in body weight in female WT and KO rats. This aligns with sex-differences in 

the development of obesity described in the literature: in many HFD studies, female rodents exhibit 

obesity after a shorter time course than is required to observe obesity in males1037. Additionally, 

random blood glucose was significantly increased in two genotype-sex groups: male KOs and 

female HETs. The underlying cause of this observation is unclear; however, future experiments 

should involve the measurement of fasting blood glucose, plasma insulin and serum cholesterol 

levels in order to more fully understand the hemodynamic changes produced by HFD. In most 

other metrics, the major cardiovascular changes observed in the KO versus the WT rats were 

preserved in the HFD-fed KO rats.  

Interestingly, the relative weights of the kidneys were found to be smaller in the HFD-fed 

female rats than in the CD-fed female rats. Most HFD studies in the literature show increased 

kidney weight due to renal hypertrophy1043,1044, but more recently a moderate HFD (45% kcal from 

fat) has been shown by Sánchez-Navarro et al. (2021) to decrease the relative weight of the kidneys 

in male mice1045. Nevertheless, the authors demonstrate that the absolute weight of the kidneys 

were not smaller in the HFD-fed mice, rather that an increase in body weight led to a decrease in 

the ratio of kidney weight to body weight. In the present study, the absolute weight of the kidneys 

in HFD-fed female WT and KO rats was found to be significantly smaller than those in CD-fed 
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female WT and KO rats, and no difference was found in HETs. This occurred despite the rats being 

age-matched and the HFD-fed female rats exhibiting an equal or larger body weight than their CD-

fed counterparts. Despite the evidence that HFD treatments may cause renal hypertrophy, other 

studies have instead observed tubular necrosis, shrinkage of glomeruli and a decrease in total renal 

volume in response to diets high in saturated fat1046,1047. Renal injury in obesity is well-described, 

and involves the deregulation of cytokine production in adipose tissue, leading to overproduction 

of inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis 

factor-α (TNF-α; reviewed by Castro et al., 2021)1048. Increased renal inflammation ultimately 

leads to increased glomerular permeability, fibrosis and glomerulosclerosis. This may explain why 

HFD-fed female WT and KO rats exhibited a significant increase in body weight, and were the 

only groups to exhibit decreased absolute mass of the kidneys. This constitutes a future line of 

investigation, and would require the measurement of inflammatory cytokine production in renal 

and adipose tissue, as well as markers of renal injury such as urinary levels of creatinine and 

HSP721045. 

I next assessed the function of resistance arteries in the perfused mesenteric vascular bed, 

revealing that HFD causes an increase in nerve-evoked vasoconstriction in vessels from all six 

genotype-sex groups except male HET rats. Moreover, HFD did not appear to affect the 

contribution of either EDH or NO production to the limitation of nerve-evoked vasoconstriction, 

as apamin + TRAM-34 and apamin + TRAM-34 + L-NAME produced a large, statistically 

significant increase in pressure responses in all genotype-sex groups. The only caveat being that 

in beds from HFD-fed KO rats, apamin + TRAM-34 + L-NAME did not increase the magnitude 

of the response to high-frequency stimulations versus beds from HFD-fed WT and HET rats, but 

instead left-shifted the frequency-response curve. These results do not support the hypothesis that 
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HFD causes a greater magnitude of endothelial dysfunction in the absence of Cx40; in fact, beds 

from WT rats appeared to incur the greatest impact of HFD, as they showed the greatest number 

of significantly increased responses (Figures 5.5, 5.6 and 5.7). Considering these results together, 

I propose two major underlying mechanisms which require further investigation: an increase in 

ROS production in the vasculature of the HFD-fed rat, and increased involvment of the RAAS. 

Increased metabolic demand and resultant oxidative stress such as occurs in the vasculature 

during prediabetes or T2DM is well understood to increase the production of ROS by mechanisms 

including leakage from the mitochondrial electron transport chain and the upregulation of NOX 

enzymes (reviewed by Di Marco et al., 2015)1049. Increased ROS levels in turn promote 

inflammation by mechanisms including the activation of nuclear factor κB (NF-κB) by ONOO- to 

increase transcription of pro-inflammatory cytokines1050,1051. Oxidative stress and inflammation 

are interrelated and feed into one another; recruited inflammatory immune cells increase the local 

metabolic demand and contribute to ROS production1052. Using their HFD formulation upon which 

mine was based, Dr. El-Yazbi’s group observed increased production of O2
- and several 

inflammatory mediators including transforming growth factor (TGF)-β1, IL-1β, and CD68 by 

staining and Western blots in both aortic tissue and perivascular adipose tissue (PVAT)473,818. 

Increased O2
- production increases levels of ONOO-, which in turn uncouples eNOS to produce 

more O2
- in a positive feedback loop615. ONOO- has been demonstrated to cause structural damage 

to vascular cells1053-1056 and also contributes to enhanced vasoconstriction by several mechanisms 

(Figure 5.12). Foremost of these mechanisms, ONOO- inhibits the synthesis of the vasodilator 

PGI2
1057, and inhibits NO signalling through PKG1058. In addition to these mechanisms, Dr. El-

Yazbi’s group found that enhanced PE-evoked vasoconstriction in arteries from HFD-fed rats was 

associated with an increase in expression of ROCK, thereby enhancing Ca2+ sensitization473.  
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Figure 5.12: Schematic diagram illustrating the formation of ONOO- and its role in vascular 

dysfunction. Increased production of O2
- in conditions of oxidative stress leads to the formation 

of ONOO- and decreased bioavailability of NO. ONOO- subsequently elicits deleterious effects 

including uncoupling eNOS, and enhanced vasoconstriction, platelet activity, and atherosclerosis 

(from Kerr et al., 2012)615. 

 

Taking the data from Dr. El-Yazbi’s group (Elkhatib et al. 2019)473 into consideration with 

my own, I suspect that increased ROS production is a major contributor to the HFD-induced 

increase in nerve-evoked vasoconstriction observed in the perfused mesenteric vascular bed. Our 

laboratory has previously combined DHE visualization of O2
- with pressure myography in order 

to continuously and simultaneously record O2
- and arterial diameter in real time711. In future 

experiments, I propose using this method in order to measure O2
- production in response to PE-

evoked vasoconstriction in isolated mesenteric arteries from CD- and HFD-fed rats. I hypothesize 

that both baseline and PE-evoked O2
- levels are greater in arteries from HFD-fed rats than those 

from CD-fed rats. Furthermore, if increased ROS generation is a major contributor to these 

functional results, then enhanced vasoconstriction would be expected to be partially rescued by 
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adding superoxide dismutase818 or phosphodiesterase-5-inhibitors1053. These experiments should 

be accompanied by the serological and immunohistochemical analysis for ROS and inflammatory 

markers performed by Elkhatib et al. (2019) in order to confirm that vascular inflammation occurs 

in these rats. This would also elucidate whether there is any difference in O2
- production or 

inflammation between the Cx40 genotypes, in both the CD- and HFD-fed rats. Si et al. (2021) 

recently observed that ablation of Cx40 in cultured human cardiac ECs exhibited an increase in 

O2
- versus control as measured by DHE staining, although the authors were unable to explain this 

relationship799. This finding suggests the possibility that increased ROS production contributes to 

the enhanced vasoconstriction in the CD-fed KO versus the CD-fed WT observed in the previous 

chapter (§4.3.3). 

Interrelated with the increase in ROS production, the other putative contributor to the HFD-

induced enhancement in nerve-evoked vasoconstriction involves dysregulation of the RAAS. In 

the previous chapter, I discussed the literature showing that ablation of Cx40 in mice impairs 

baroception in the renal juxtaglomerular cells, resulting in hyperreninemia (§4.4). There is 

evidence in the literature to suggest that obesity stimulates the RAAS in a similar manner. White 

adipose tissue has been shown to express angiotensinogen and ACE, and possibly renin, though 

the latter has not yet been confirmed to be expressed at the protein level1059-1064. This capacity of 

adipose tissue has been described as a “local adipose RAAS” in the literature1065,1066. Obesity has 

been shown to increase expression and secretion of adipose-derived angiotensinogen in animal 

models and human patients1060,1063. HFD-fed dogs were similarly shown to incur high plasma renin 

levels1067. Angiotensin II has also been found to exert positive feedback, acting at the AT1R to 

stimulate further production of adipose-derived angiotensinogen1059. Obesity does not only 

stimulate the local adipose RAAS, but the intrarenal RAAS as well. For example, cultured human 
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proximal tubule cells treated with saturated fatty acids showed increased expression of 

angiotensinogen, renin, and AT1R
1068. Not only does obesity cause this stimulation of RAAS, but 

RAAS activity may be necessary for diet-induced weight gain: angiotensinogen KO mice were 

found to gain less weight than WT mice in both control and HFD-fed groups1062. 

In the context of the present study, this is potentially a useful model for understanding my 

results. As previously stated, hyperreninemia has been observed in Cx40 mice, but not confirmed 

in the Cx40 KO rat. However, if this is the case, then the ablation of Cx40 and the mild hypercaloric 

HFD may share this major mechanism. This is congruent with my results, wherein I saw the largest 

effect of HFD on WT rats. In the KO rat, the RAAS is likely already hyperactive, leaving less 

capacity to be further stimulated by the hypercaloric challenge. In order to investigate this 

hypothesis, plasma renin and angiotensin II levels should be measured in CD- and HFD-fed rats 

of all genotype-sex groups.  

 Arguably the most surprising result from the present study was the observation that mild 

HFD improved recovery of LVDP after myocardial ischemia in all genotype-sex groups except 

female WT. Dietary fatty acids are the predominant oxidative substrate of mitochondria in 

cardiomyocytes, and dependence upon fatty acid oxidation increases during post-ischemic 

reperfusion1069,1070. In obesity, high plasma concentrations of fatty acids lead to an increase in fatty 

acid uptake by cardiomyocytes, and a subsequent increase in fatty acid oxidation1071. The 

accumulation of fatty acids stored as triglycerides eventually leads to oxidative stress, 

mitochondrial dysfunction on the cellular level, and cardiac dysfunction on the organ level 

(reviewed by Lopaschuk et al., 2010)1070. HFD protocols in the literature vary over a wide range 

of diet compositions and feeding timelines, and can be either obesogenic or non-obesogenic; 

consequently, the reported effects of HFD on ischemia/reperfusion injury vary greatly as well. For 
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example, Littlejohns et al. (2014) found that isolated hearts from mice fed a non-obesogenic HFD 

were significantly more susceptible to ischemia/reperfusion injury than controls, with a 

significantly greater infarct size after a 40 minute ischemic period1072. The authors’ HFD 

comprised 45% calories from fat and was administered over 22 weeks, which is a slightly higher 

fat content than the current study (cf. 39.3%), and a feeding timeline nearly twice as long. 

Contrarily, Inserte et al. (2019) found that isolated hearts from mice fed an obesogenic HFD 

incurred a significantly smaller infarct size than controls after a 20 minute ischemic period1073. 

Thus, there is a mixture of evidence for cardioprotective1073-1075 and deleterious1072,1076-1078 effects 

of HFD in animal studies. 

It has also been suggested that the relative amounts of dietary saturated and 

monounsaturated fats versus polyunsaturated fats is more influential on experimental outcomes 

than simply the total fat content of the diet1079. Detailed compositional information is often 

unreported in HFD studies and may be a crucial factor in the apparently contradictory findings in 

the literature. Regardless, my results suggest that the mild HFD model is cardioprotective. Not 

only did HFD improve post-ischemic recovery of LVDP, but the heart enlargement observed in 

male KO rats was present but significantly reduced in HFD-fed versus CD-fed rats. A putative 

mechanism for this protection may involve an HFD-induced increase in plasma levels of fatty 

acids large enough to support the heart’s metabolic demand during ischemia, but not large enough 

to precipitate heart failure. Further investigation should examine this hypothesis by shortening or 

lengthening the feeding timeline of the mild HFD; it is possible that administration of the mild 

HFD for longer than 12 weeks might produce heart failure rather than cardioprotection. Serological 

analysis of plasma fatty acids, triglycerides and cholesterol should also be performed in order to 

more completely characterized this model. 
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Taken together, the results in this chapter do not support the hypothesis that genetic 

ablation of Cx40 makes rats more vulnerable to metabolic stress in a mild HFD. Instead, these 

results suggest that the absence of Cx40 may lessen the extent of HFD-induced endothelial 

dysfunction. These data also indicate that there is likely some overlap in the mechanisms of 

vascular dysfunction produced by Cx40 ablation and HFD, particularly through hyperactivation of 

the RAAS. 
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Chapter 6: General discussion and future directions 

6.1 General discussion 

The modulation of resistance artery diameter is a multi-factorial process that is crucial for 

controlling tissue perfusion in response to changes in energetic demand, and ultimately 

maintaining systemic BP. This process is dependent upon the coordinated actions of ECs, VSMCs 

and perivascular nerves in response to chemical and mechanical stimuli. In turn, this coordination 

is mediated by chemical and electrical signalling between cells, and the crosstalk between 

chemical and electrical pathways. Thus, a large number of ion channels are involved in the 

electrical control of VSMC membrane potential, and subsequently the control of smooth muscle 

contraction. In this thesis, I have investigated the role of two of these ion channels in the 

modulation of resistance artery diameter: TRPM4 in VSMCs, and Cx40-containing GJ channels 

in ECs. 

Since the discovery of myogenic reactivity over one hundred years ago474, great research 

interest has been devoted to unraveling the mechanism by which blood vessels detect and respond 

to changes in intramural pressure465,495. A large body of evidence suggests that TRPM4 has a 

prominent role in vascular mechanosensation, regardless of whether or not it is directly 

mechanosensitive. This includes findings that suppression of TRPM4 expression inhibits the 

development of myogenic tone in rat cerebral arteries502. However, much of the evidence for the 

role of TRPM4 in pressure-evoked vasoconstriction comes from experiments conducted using the 

pharmacological TRPM4 inhibitor 9-phenanthrol500,501, which has recently come under scrutiny 

for putative off-target effects. In particular, it has been suggested 9-phenanthrol’s inhibition of 

pressure-evoked vasoconstriction may be at least partially attributable to activation of IKCa 

channels857. Thus, I examined the role of TRPM4 in vasoconstriction evoked both by intramural 
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pressure and other stimuli, and investigated 9-phenanthrol’s mechanism of action using functional 

assays. 

In Chapter 3 I first demonstrated that mRNA coding for TRPM4 is highly expressed in 

mesenteric arteries, especially compared to expression of mRNA coding for TRPC6, another 

candidate for mediating pressure-evoked Ca2+ influx in VSMCs331,332. I then showed that 9-

phenanthrol inhibits nerve-evoked vasoconstriction in a dose-dependent manner. The additional 

presence of the pharmacological IKCa inhibitor NS6180 did not affect 9-phenanthrol’s inhibition 

of nerve-evoked vasoconstriction, indicating that this effect of 9-phenanthrol is not mediated by 

IKCa activation. Using pressure myography, I demonstrated that 9-phenanthrol abolishes myogenic 

vasoconstriction. This effect was similarly unaffected by IKCa inhibitors TRAM-34 and NS6180. 

In addition to nerve- and pressure-evoked vasoconstriction, I used wire myography to show that 

9-phenanthrol produces concentration-dependent vasorelaxation after pre-constriction to either PE 

or 5-HT. This effect was again unaffected in the presence of NS6180, indicating no involvement 

of IKCa activation. Although these data do not rule out the possibility of off-target effects of 9-

phenanthrol at other channels such as TMEM16856, my findings contradict IKCa activation as a 

mechanism of action for 9-phenanthrol. 

Using wire myography, I also demonstrated that 9-phenanthrol inhibits PE-evoked 

vasoconstriction. The concentration-response relationship of PE in the presence of 9-phenanthrol 

was significantly lower than control, but not significantly different to the concentration-response 

relationship of PE in the presence of 9-phenanthrol + apamin + TRAM-34 + L-NAME. This 

demonstrated that the effect of 9-phenanthrol is not attributable to enhancement of EDH or NO 

production. Finally, I showed that 9-phenanthrol’s inhibition of PE-evoked vasoconstriction was 

not significantly altered by the addition of the LTCC-blocker nifedipine. This result suggests that 
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9-phenanthrol alone is able to abolish the depolarization-dependent component of 

vasoconstriction; thus TRPM4 is necessary for depolarization-dependent contraction in VSMCs. 

I next explored the role of the endothelial GJ protein Cx40 in the modulation of resistance 

artery diameter. In this research I used the novel Cx40 KO rat to compare cardiovascular function 

in the presence and absence of Cx40. These data, presented in Chapter 4, clearly establish a crucial 

role of Cx40 in cardiovascular physiology. I found that germline, global KO of Cx40 produces 

hypertension and heart enlargement in both male and female rats. In the perfused mesenteric 

vascular bed, Cx40 KO was shown to cause a high-magnitude increase in nerve-evoked 

vasoconstriction. The addition of apamin + TRAM-34 and apamin + TRAM-34 + L-NAME 

produced proportionate increases in nerve-evoked pressure responses in all genotypes, illustrating 

that the component mechanisms of endothelium-dependent vasodilation, EDH and NO production, 

were unaffected by the global absence of Cx40. The Cx40 KO-associated increase in nerve-evoked 

vasoconstriction was found to be partially preserved in males and fully preserved in females after 

the removal of the endothelium. This key result illustrated that genetic ablation of Cx40 not only 

affects endothelial function, but produces deleterious effects on smooth muscle function as well. 

Interestingly, I also found that in beds from male WT, HET and KO rats nerve-evoked pressure 

responses in endothelium-denuded beds were significantly higher than those in endothelium-intact 

beds, whereas in beds from female WT, HET and KO rats no difference was observed. This 

observation may be due to reported sex-based differences in eicosanoid production by ECs1080-1083, 

and differences in the EC response to sex hormones1084,1085 which become apparent after the 

removal of the endothelium. However, this is speculative and requires further research. 

I also demonstrated using pressure myography that Cx40 has no impact on the development 

of the myogenic response in isolated mesenteric arteries. Additionally, wire myography revealed 
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that the contributions of EDH and NO production to ACh-evoked vasodilation in isolated arteries 

is unaffected by the global absence of Cx40. PE-evoked vasoconstriction was also unaffected by 

the absence of Cx40. However, tone induced by the TP agonist U46619 was significantly impaired 

in isolated mesenteric arteries from male KO and female HET and KO rats. This is consistent with 

literature reports of hyperreninemia in Cx40 KO mice974,977,978,980,1086 and could be explained by 

agonist induced desensitization and internalization of TP987-990; however, this has yet to be 

investigated and is a direction for future research. Finally, I showed that isolated hearts from Cx40 

KO rats are less resistant to ischemia/reperfusion injury, which aligns with literature in the Cx40 

KO mouse800. The mechanism underlying this result is unclear and may involve cardiac 

hypertrophy767 and/or the impairment of intercellular conduction in the His bundle and Purkinje 

fibers lacking Cx40791. Regardless, these data together demonstrate that Cx40 is a necessary 

component of normal cardiovascular function. 

In order to better understand this protective role of Cx40, I applied a mild HFD to the 

current rat model in order to assess whether Cx40 is protective in the face of metabolic challenge. 

Thus, in Chapter 5 I assessed the cardiovascular effects of feeding male and female Cx40 WT, 

HET and KO rats a HFD (39.3% kcal from fat) for 12 weeks. The HFD protocol was found to be 

non-obesogenic in males, but obesogenic in female WTs and KOs. The KO-induced hypertension 

and heart enlargement observed in Chapter 4 were preserved in the HFD-fed rats. A surprising 

decrease in kidney mass was observed in female rats, and may indicate sex-linked kidney damage 

induced by the HFD. 

In the perfused mesenteric vascular bed, the effects of apamin, TRAM-34 and L-NAME 

on nerve-evoked pressure responses observed in CD-fed rats were preserved in HFD-fed rats. 

Comparing the results between CD-fed and HFD-fed rats within each genotype showed that 
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responses in HFD-fed male WT rats were significantly higher than those in CD-fed rats in the 

absence and presence of apamin + TRAM-34 or apamin + TRAM-34 + L-NAME. The same was 

observed in female WT rats, except that the addition of L-NAME produced responses in the HFD-

fed bed that were not significantly different from the CD-fed bed. This indicates that HFD may 

impair endothelial NO production in the female WT. Overall, HFD had the greatest effect of nerve-

evoked vasoconstriction in male and female WT rats, which may suggest an overlap between the 

deleterious mechanisms of Cx40 ablation and mild HFD.  

Finally, I demonstrated that mild HFD counterintuitively enhanced the tolerance of isolated 

hearts to ischemia/reperfusion injury in all genotype-sex groups except female WT. It is difficult 

to directly compare these results to findings in the literature due to the extremely variable nature 

of HFD models and Langendorff heart perfusion protocols. HFD studies in the literature differ 

greatly in nutrient composition and feeding timeline, and Langendorff protocols differ in the length 

time of the ischemia and reperfusion periods. My results align with a portion of the literature which 

describes a cardioprotective effect of increased dietary fat in the context of 

ischemia/reperfusion1073-1075. 

In conclusion, the data presented in this thesis illustrate crucial roles for both TRPM4 and 

Cx40 in the maintenance and regulation of arterial diameter and systemic blood pressure. I have 

presented several lines of evidence to support the hypothesis that these ion channels are necessary 

for the intercellular coordination of ECs and VSMCs to finely control arterial diameter in response 

to various physiological stimuli. 

6.2 Future directions 

The data presented in this thesis draw attention to several potential avenues for future 

research such as: 
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Investigating whether the functional effects of 9-phenanthrol are mediated by action at 

TMEM16A. My data in Chapter 3 contradict the putative action of 9-phenanthrol as an activator 

of IKCa, but do not rule out its putative action as a TMEM16A inhibitor. This could be investigated 

by conducting functional experiments with 9-phenanthrol in the presence of known small-

molecule TMEM16A activators (e.g. Eact) and inhibitors (e.g. Ani9)866. 

Investigating the effect of genetic ablation of Cx40 on the conducted vasomotor response. 

As Cx40 is present in interendothelial GJs, it is an important mediator of the vascular conduction 

of membrane potential. Thus, the conducted vasomotor response is expected to be impaired or 

abolished in arteries from the Cx40 KO rat. This can be examined using pressure myography 

coupled with a pneumatic pressure ejector as described in the literature765,999-1002. 

Determining the contribution of ROS production to cardiovascular changes in the CD- and 

HFD-fed Cx40 KO rat. Evidence suggests that the absence of Cx40 creates oxidative stress in 

ECs799 and this may contribute to the vascular dysfunction observed in the Cx40 KO rat. Thus, 

interendothelial GJs may have a role in preventing overproduction of O2
-. Moreover, oxidative 

stress is well-understood to underlie vascular dysfunction in T2DM1049. It would be beneficial to 

investigate whether or not the absence of Cx40 exacerbates HFD-induced oxidative stress in ECs, 

especially given evidence that T2DM is associated with a downregulation of Cx40799,1020,1021. 

 Investigating the effect of age in the CD- and HFD-fed Cx40 KO rat. The absolute and 

relative expression of endothelial Cxs has been shown to change with age1029. Therefore, 

measuring vascular function and the expression of Cx subtypes other than Cx40 in the Cx40 KO 

rat at a range of ages would provide a more complete understanding of the role of Cx40 in 

physiological and pathophysiological cardiovascular function. Additionally, manipulating the 
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timeline of the HFD protocol provide more insight into the chronology of prediabetes and the 

development of endothelial dysfunction. 
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Appendix A: Diet compositions 

Control Diet 1: PicoLab® Laboratory Rodent Diet 5L0D 

 

Macronutrients 

 
% by 

weight 

% kcal 

from 

Protein 25.0 29.829 

Carbohydrates† 47.5 56.744 

Fat 5.0 13.427 

Fiber 5.3 — 

Metabolizable 

Energy 
kcal/g 2.91 

Vitamins 

Biotin mg/kg 0.3 

Carotene mg/kg 2.3 

Choline mg/kg 2250 

Folic Acid mg/kg 7.1 

Niacin mg/kg 120 

Pantothenic Acid mg/kg 24 

Pyridoxine mg/kg 6.0 

Riboflavin mg/kg 4.7 

Thiamin mg/kg 16 

Vitamin B12 mg/kg 0.051 

Vitamin K mg/kg 1.3 

Vitamin A IU/kg 15000 

Vitamin D3 IU/kg 4600 

Vitamin E IU/kg 42 
Amino Acids 

Alanine g/kg 14.4 

Arginine g/kg 15.7 

Aspartic Acid g/kg 28.1 

Cystine g/kg 3.9 

Glutamic Acid g/kg 47.4 

Glycine g/kg 12.8 

Histidine g/kg 6.2 

Isoleucine g/kg 10.6 

Leucine g/kg 18.9 

Lysine g/kg 14.8 

Methionine g/kg 5.9 

Phenylalanine g/kg 11.1 

Proline g/kg 14.7 

Serine g/kg 11.8 

Threonine g/kg 9.7 

Tryptophan g/kg 2.8 

Tyrosine g/kg 7.7 

Valine g/kg 11.6 

Taurine g/kg 0.3 

Minerals 

Calcium g/kg 9.5 

Chlorine g/kg 6.4 

Magnesium g/kg 2.3 

Phosphorus g/kg 7.0 

Potassium g/kg 12.8 

Sodium g/kg 3.9 

Sulfur g/kg 3.6 

Chromium mg/kg 0.01 

Cobalt mg/kg 0.91 

Copper mg/kg 15 

Fluorine mg/kg 15 

Iodine mg/kg 0.99 

Iron mg/kg 240 

Manganese mg/kg 75 

Selenium mg/kg 0.41 

Zinc mg/kg 85 
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Table A.1: Chemical composition of the first control diet, PicoLab® Laboratory Rodent Diet 

5L0D. Constituent macro- and micronutrient composition of diet 5L0D, which was used as the 

control diet from the beginning of the study until March 2023. Chemical analyses were performed 

by LabDiet (Richmond, USA) and data were accessed from www.labdiet.com. †Digestible 

carbohydrates. *Values not provided by LabDiet, instead calculated from provided data. 

  

Carbohydrates 

Fructose g/kg 2.7 

Glucose g/kg 1.9 

Lactose g/kg 20.1 

Starch g/kg 210 

Sucrose g/kg 38.3 

Fatty Acids 

Total Fat g/kg 50 

   

Saturated Fat g/kg 14.8 

Monounsaturated Fat g/kg 16.2 

Polyunsaturated Fat* g/kg 14.6 

   

Saturated Fat* % of fat 32.5 

Monounsaturated Fat* % of fat 35.5 

Polyunsaturated Fat* % of fat 32.0 

   

18:2 Linoleic Acid g/kg 10.5 

18:3 Linolenic Acid g/kg 0.9 

20:4 Arachidonic Acid g/kg 0.2 

Omega-3 Fatty Acids g/kg 3.00 

Other 

Cholesterol mg/kg 209 
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Control Diet 2: PicoLab® Rodent Diet 20 5053 

 

 

 

 

 

 

Macronutrients 

 
% by 

weight 

% kcal 

from 

Protein 21.0 24.517 

Carbohydrates† 53.4 62.349 

Fat 5.0 13.134 

Fiber 4.6 — 

Metabolizable 

Energy 
kcal/g 3.03 

Vitamins 

Biotin mg/kg 0.30 

Carotene mg/kg 1.5 

Choline mg/kg 2000 

Folic Acid mg/kg 3.0 

Niacin mg/kg 85 

Pantothenic Acid mg/kg 17 

Pyridoxine mg/kg 9.6 

Riboflavin mg/kg 8.0 

Thiamin mg/kg 17 

Vitamin B12 mg/kg 0.051 

Vitamin K mg/kg 3.3 

Vitamin A IU/kg 15000 

Vitamin D3 IU/kg 2300 

Vitamin E IU/kg 99 
Amino Acids 

Alanine g/kg 11.9 

Arginine g/kg 12.9 

Aspartic Acid g/kg 21.9 

Cystine g/kg 3.6 

Glutamic Acid g/kg 41.8 

Glycine g/kg 9.7 

Histidine g/kg 5.3 

Isoleucine g/kg 8.6 

Leucine g/kg 15.7 

Lysine g/kg 11.8 

Methionine g/kg 6.2 

Phenylalanine g/kg 9.1 

Proline g/kg 13.1 

Serine g/kg 9.8 

Threonine g/kg 7.8 

Tryptophan g/kg 2.4 

Tyrosine g/kg 6.0 

Valine g/kg 9.7 

Taurine g/kg 0.3 

Minerals 

Calcium g/kg 8.1 

Chlorine g/kg 5.2 

Magnesium g/kg 2.2 

Phosphorus g/kg 6.4 

Potassium g/kg 11.0 

Sodium g/kg 3.0 

Sulfur g/kg 3.3 

Chromium mg/kg 0.01 

Cobalt mg/kg 0.71 

Copper mg/kg 14 

Fluorine mg/kg 9.3 

Iodine mg/kg 0.97 

Iron mg/kg 185 

Manganese mg/kg 84 

Selenium mg/kg 0.37 

Zinc mg/kg 89 
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Table A.2: Chemical composition of the second control diet, PicoLab® Rodent Diet 20 5053. 

Constituent macro- and micronutrient composition of diet 5053, which was used as the control diet 

from March 2023 onward. Chemical analyses were performed by LabDiet (Richmond, USA) and 

data were accessed from www.labdiet.com. †Digestible carbohydrates. *Values not provided by 

LabDiet, instead calculated from provided data. 

  

Carbohydrates 

Fructose g/kg 2.4 

Glucose g/kg 1.9 

Lactose g/kg 13.4 

Starch g/kg 282 

Sucrose g/kg 32.5 

Fatty Acids 

Total Fat g/kg 50 

   

Saturated Fat g/kg 7.8 

Monounsaturated Fat g/kg 9.6 

Polyunsaturated Fat* g/kg 28.5 

   

Saturated Fat* % of fat 17.0 

Monounsaturated Fat* % of fat 20.9 

Polyunsaturated Fat* % of fat 62.1 

   

18:2 Linoleic Acid g/kg 21.2 

18:3 Linolenic Acid g/kg 2.7 

20:4 Arachidonic Acid g/kg 0.1 

Omega-3 Fatty Acids g/kg 4.50 

Other 

Cholesterol mg/kg 142 
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HFD: Teklad custom diet TD.210490 (20% Fructose, 15% Crisco®) 

 

 

 

 

 

 

 

 

 

 

 

Macronutrients 

 
% by 

weight 

% kcal 

from 

Protein 15.8 15.4 

Carbohydrates† 46.4 45.3 

Fat 17.9 39.3 

Fiber 2.3 — 

Metabolizable 

Energy 
kcal/g 4.1 

Vitamins 

Biotin mg/kg 0.30 

Choline mg/kg 1628.4 

Folic Acid mg/kg 2.7 

Niacin mg/kg 49.6 

Pantothenic Acid mg/kg 17.1 

Riboflavin mg/kg 6.7 

Thiamin mg/kg 25.1 

Vitamin B6 mg/kg 10.9 

Vitamin B12 mg/kg 0.05 

Vitamin K mg/kg 41.6 

Vitamin A IU/kg 12802 

Vitamin D3 IU/kg 2393 

Vitamin E IU/kg 80 

Amino Acids 

Alanine g/kg 0.0 

Arginine g/kg 10.6 

Aspartic Acid g/kg 0.0 

Cystine g/kg 4.2 

Glutamic Acid g/kg 0.0 

Glycine g/kg 0.0 

Histidine g/kg 3.9 

Isoleucine g/kg 7.3 

Leucine g/kg 12.7 

Lysine g/kg 9.6 

Methionine g/kg 2.8 

Phenylalanine g/kg 7.6 

Proline g/kg 0.0 

Serine g/kg 0.0 

Threonine g/kg 6.5 

Tryptophan g/kg 2.0 

Tyrosine g/kg 6.4 

Valine g/kg 8.0 

Minerals 

Calcium g/kg 8.8 

Chlorine g/kg 5.0 

Magnesium g/kg 1.804 

Phosphorus g/kg 6.3 

Potassium g/kg 8.5 

Sodium g/kg 2.2 

Chromium mg/kg 0.31 

Copper mg/kg 21.9 

Iodine mg/kg 2.38 

Iron mg/kg 229.4 

Manganese mg/kg 83.8 

Molybdenum mg/kg 0.10 

Selenium mg/kg 0.21 

Zinc mg/kg 62.6 
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Table A.3: Chemical composition of the mild HFD, Teklad custom diet TD.210490. 

Constituent macro- and micronutrient composition of diet TD.210490, which was formulated in 

consultation with Dr. Derek Martin, RD, a laboratory animal nutritionist at Envigo (Madison, 

USA). The diet was created by using Teklad Rodent Diet 8604 as a base and adding fructose and 

Crisco®. The final composition was 643.85 g/kg of Diet 8604, 200.0 g/kg of added fructose, 150.0 

g/kg of Crisco® hydrogenated vegetable shortening and additional vitamin and mineral mixes to 

replenish diluted micronutrients. Values were provided by Dr. Martin are not experimentally 

measured but instead are calculated from data of included ingredients. †Digestible carbohydrates. 

*Values of individual carbohydrates were not provided by Envigo, as the digestible carbohydrate 

content in the base diet 8604 was calculated by subtraction. 

  

Fatty Acids 

Total Fat g/kg 179.0 

   

Saturated Fat g/kg 45.6 

Monounsaturated Fat g/kg 36.2 

Polyunsaturated Fat g/kg 92.0 

   

Saturated Fat % of fat 26.2 

Monounsaturated Fat % of fat 20.9 

Polyunsaturated Fat % of fat 52.9 

   

12:0 Lauric Acid g/kg 0.1 

14:0 Myristic Acid g/kg 0.4 

16:0 Palmitic Acid g/kg 29.2 

16:1 Palmitoleic Acid g/kg 0.5 

18:0 Stearic Acid g/kg 15.8 

18:1 Oleic Acid g/kg 35.6 

18:2 Linoleic Acid g/kg 80.2 

18:3 Linolenic Acid g/kg 10.2 

Carbohydrates 

Fructose g/kg ≥200.0* 

Glucose g/kg N/A* 

Lactose g/kg N/A* 

Starch g/kg N/A* 

Sucrose g/kg N/A* 

Other 

Cholesterol mg/kg 36.7 
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Appendix B: Absolute values of organ weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1: Weight of kidneys and hearts from control and HFD-fed WT, HET and KO rats 

before correcting for body weight. Kidneys and hearts of control and HFD-fed male and female 

WT, HET, and KO rats were weighed and compared on the basis of diet within each genotype-sex 

group. a) Mean kidney weight (n = 9-22) showed a significant effect of diet (P<0.05) but effect of 

genotype (P>0.05). b) Heart weight (n = 9-22) from male rats showed significant effects of both 

diet and genotype (P<0.05). Heart weight from female rats did not show a significant effect of diet 

(P>0.05) but showed a significant effect of genotype (P<0.05). Data are presented as mean ± SEM. 

* denotes P<0.05 from control diet; two-way ANOVA with Šídák’s multiple comparison tests. 

a) 

b) 


