THE UNIVERSITY OF ALBERTA

STABILITY REGIONS OF A REGULATED SYNCHRONOUS MACHINE

BY

(C) IVAN BARTKO

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

FALL 1973

ACKNOWLEDGEMENT

The author wishes to gratefully acknowledge the encouragement and valuable discussions relating to the work in this thesis provided by Dr. D. H. Kelly. Thanks are also extended to Mrs. Erna Bell for her excellent typing of the manuscript.

ABSTRACT

The small signal dynamic stability of power systems has been a subject of interest for some twenty years. It continues to grow in importance as the control requirements of the generating stations become more sophisticated and demanding. In this thesis, the small signal performance of a regulated synchronous machine connected to an infinite but is described by a set of differential equations of the form (x).

(A) (x). The transformation of the system into Schwarz form is used and the stability conditions for the system under study are established. The closed stability regions are obtained as the result of this study and the effects of various system parameters on stability regions are studied.

· 名前 字。

TABLE OF CONTENTS

1.	INTRODUCTION	Page
· n	1.1 Background	
	1.2 Objective of Thesis	3
2.	MATHEMATICAL MODEL	
	2.1 Description of the System	5
	2.2 The Control System Equations	8
	2.3 Tie-Line Voltage Equations	9
	2.4 Machine Equations	10
1)	•
3.	COMPLITIONS FOR STABILITY	١
-	3.1 Derivation of necessary and sufficient Conditions for Stability	15
	3.2 Multimachine Systems	27
	3.3 Outline of the Method by Yu and Vongauriya	28
		•
4.	MODELLING OF THE SYSTEM	•
	4.1 System Parameters	. 31
	4.2 Initial Conditions of Synchronous Machine	32
	4.3 Coefficients for the Characteristic Polymial	34
5,	RESULTS	
* 1	5.1 Stability Regions	39
4	5.2 Effact of Different Power Factor	. 40
rý.		

• TABLE OF CONTENTS (cont'd)

	•	*	
		•	P
5.3	Effect of Different Damping Coefficients	a.	
5.4	Stabilizer Time Constant Effects on the		
	Stability Region	č	
5.5	xciter Time Constant Effect on the	<u>;</u> .,	
5	tability Region		
5,6 - 0	ne-Time Constant Governor Effect on the	٠ .	
S	tability Region	1	
5.7 1	wo-Time Constant Governor Effect on the		
, S	tability Region	•	,
CONCLU	SIONS AND SUGGESTIONS FOR FURTHER RESEARC	าม	
,	'	·**	
6,1 S	ummary and Conclusions	,	
6.2 S	uggestions for Further Research		5
_			
REFERE	ICES .	r .	
MILLER	TOES		6
APPEND:	TY T		
m fann.	· A · A	•	6
APPEND	TY TY		
PLEMD.			6
		• •	!
			. •

LIST OF FIGURES

igure		Page
,	•	
1.	System Configuration	6
2.	The Steady-State Phasor Diagram	7
3a.	Effect of different Power Factor on Stability Region	44
3b.	Effect of different Power Factor on Stability Region	45
3c.	Effect of different Power Factor on Stability Region	46
4.	Effect of different Damping Coefficients on Stability Region	48
5.	Stabilizer Time Constant Effects on Stability Region	50
6.	Exciter Time Constant Effect on Stability Region	52
7.	One-Time Constant Governor Effect on Stability Region	54
8,	Two-Time Constant Governor Effect	36

INTRODUCTION

1.1 Background

Electrical power systems, considered from the point of view of their electro-mechanical operation, are very complicated. Power system engineers have devoted much thought and effort to stability studies since about 1925. The tendency of a power system or its component parts to develop forces to maintain systemonism and equilibrium is known as stability. In general, stability studies are classified by whether they involve steady-state or transient conditions. Dynamic stability is the term associated with the small signal performance and is applied to operations above the ordinary steady-state limits. It can be realized by the use of automatic control devices such as volvage and speed regulators. The small signal dynamic stability of electric power systems has been a subject of major theoretical and practical interest for some twenty years. It continues to grow in importance as the control requirements of the power plants become more sophisticated and demanding.

Power system stability studies as usually conducted, with all of their assumptions and approximations, are far from an exact science.

Possibly some of the approximations can be justified because of the power system conditions analyzed. However, they will almost never correspond to the actual conditions existing on the system when the actual disturbance occurs. Also, it is virtually impossible to know how the actual power system loads wary with frequency and voltage

magnitude. It is certain that all the loads do not act as fixed impedances. It is equally certain that they do not remain as constant current loads. Possibly, sufficient information will never be available on loads to represent them, and even if the information were available, it might be too complex to represent them accurately in a practical digital study. Usually it will not be possible to represent all of the generating plants connected to an interconnected system. This results in further approximation since there seems to be no exact simple equivalent that represents the generating plants. Further, the representation of individual generating plants also introduces errors because the machine impedances are not really constants. It appears that this can result in a paradoxical situation where the system will be calculated to be transiently stable and also calculated to be unstable under steady-state. Most analytical treatments [9, 10] of stability problems have been restricted to one or two generating sets because of the computational difficulties involved in applying the older methods. However, the techniques of modern control theory have partly removed this difficulty, subject to the requirement that the system be described by a set of differential equations in the statespace form

[x] = [A] [x] (2)

Laughton [8] has proposed a method of obtaining the [A] matrix of a multi-machine power system by using matrix elimination techniques to extract [A] from the complete algebraic and differential equations of the whole system. The paper by Undrill [7] describes a method of building up the [A] matrix of the multi-machine power system from the

3

submatrices describing individual elements of the synchronous system. The matrix building approach offers significant savings in computer storage in comparison with the matrix elimination approach of Laughton [8]. The transient response of a dynamical system for small perturbations about an equilibrium (operating point) is completely described by a set of such equations. In addition, using the digital computer it is possible to decrease the time necessary for computation of stability analyses in this form.

In this thesis, the dynamic system which consists of a regulated synchronous machine connected to an infinite bus is taken for the purpose of the study. The system is expressed in the vector-matrix form (1) and the characteristic polynomial is obtained. The transformation into Schwarz form is performed and the necessary and sufficient conditions for stability established. Using these conditions, the stability regions are obtained and the change of these regions with variation of system parameters is observed.

1.2 Objective of Thesis

The stability study of the individual unit can be carried out and the nacessary and sufficient conditions for agability established, assuming the rest of the system as an infinite bugi. These can be used to find the stable regions for the system under study.

Liapung, a criteria for scability and eigenvalue methods presented in the lightature [13, 144 give satisfactory results for smaller systems but because too cumberspace for large systems. It became reasonable therefore to look for conditions which could simplify the matrix

representation of a system, i.e. minimize the computational effort.

Consequently, the following objectives can be formulated.

- 1. To find the necessary and sufficient conditions for stability
- 2. To find the stability regions for the given system
- 3. To look for the possibility of extending the procedures employed in 1. and 2. to multi-machine systems.
- Generally, the necessary and sufficient conditions for stability should yield the closed stability regions which should be of particular interest since no paper has been published so far on this subject.

MATHEMATICÂL MODEL

2.1 Description of the System

The dynamic system taken for the purpose of this study consists of a regulated synchronous machine connected to an infinite bus. The system is generally considered to be non-linear and can be expressed in the vector-matrix form as follows:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \tag{2}$$

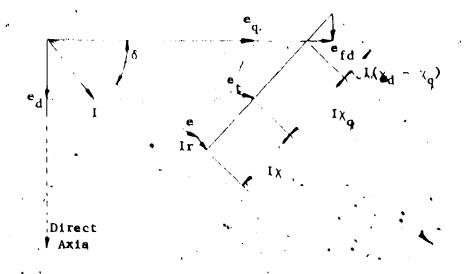
The individual generating unit connected to an infinite bus has been investigated by Yu and Vongsuriya in [3] and by Kasturi and Doraraju in [4] in the configuration as shown in Fig. 1. The system under study consists of the synchronous machine, the voltage regulator, the speed governor and the tie-line. In addition, the machine with its control equipment is connected to an infinite bus. The steady-state phasor diagram for the gratem under study is shown in Fig. 2, where

- armature voltage in d axis
- e / armature voltage in q axis
- armature terminal voltage
 - Infinite bus-bar voltage
- field winding applied voltage
- load male
 - Fig-line resistance between generator and infinite bus
 - tie-line reactance between generator and infinite bus

Pigure 1

•

6



Quadrature Ax1s

Figure 2

X_A - synchronous reactance in d axis

x - synchronous reactance in q axis

I - the phase current

The mathematical equations describing the state of the model at any instant consists of

- A. The control system equations
- B. Power transfer equations relating the mechanical input and electrical output power.
- C. Machine equations

In writing the equations governing the system under consideration, the following assumptions are considered:

- Each stator winding is distributed to produce a sinuscidal magnetomotive force wave along the air gap
- Stator slots produce negligible variations in the rotor inductances
- 3. The armature resistance of the synchronous machine is neglected
- 4. Damping due to damper bars has been neglected
- 5. Transformer voltages in Park's equations have been neglected compared to speed voltages
- 6. Saturation in the machine is neglected
- 7. The regulator is assumed to have no dead zone or limits

The above assumptions are usual in power system studies and they are the same as those in [3] and [4].

2.2 A. The Control System Equations

Assuming a conventional voltage regulator and speed governor, the control symmeth can be written in a form which is commonly used in aimilar analyses [3, 4]:

$$g(s) = \frac{\Delta e_{fd}}{\Delta e_{f}} = \frac{-\mu_{f} (1 + T_{g})}{1 + (T_{g} + T_{g})s + T_{g}T_{g}s^{2}}$$
(3)

$$f'(a) = \frac{\Delta T_1}{\Delta(a\dot{\theta})} = \frac{1}{(1+T_1a)(1+T_2a)}$$
 (4)

where

- Δ small change around initial operating point
- Laplace transform variable
- 6 Tuetantaneous augular position of rotor

T₁ - mechanical power input to rotor

 $\mu_{e}^{i} = (\chi_{afd}/r_{f})\mu_{e}$ - overall regulator gain

T - stabilizer time constant

T - exciter time constant

 $\mu_{\rm s} = 1 + \mu_{\rm e_k} \mu_{\rm st}$ - overall stabilizer gain

μ_m - governor gain

T, T, T governor time constants

μ - exciter gain

μ_{st} - stabilizer gain

μ = μ μ_{ar}μ_{ar}μ_r - regulator gain

μ_r ~ convertor gain

r - field winding resistance

X afd "X akd "X akq - mutual reactances between stator and rotor

2.3 B. Tie-Line Voltage Equations

The tie-line voltage equations derived from the steady-state phasor diagram shown in Fig. 2 of the system shown in Fig. 1 have as follows:

$$\mathbf{e}_{\mathbf{t}}^{2} = \mathbf{e}_{\mathbf{d}}^{2} + \mathbf{e}_{\mathbf{q}}^{2}$$

$$I^2 = I_d^2 + I_q^2$$

(5)

Considering a constant frequency for the infinite bue, the instantan-

respectively are

$$\theta = \theta_0 + \delta$$
 $\theta = 1 \theta_0 + \delta = \omega_0 + \delta$ (velocity)

$$s^2\theta = s^2\omega$$
 (acceleration)

In these equations $8\theta_0 = \omega_0$ is the synchronous speed and ω is the undamped natural frequency. The system of equations (5) and the following system of machine equations can be obtained from [11], where also more detailed information can be found.

2,4 C. Machine Equations

Park's synchronous machine equations [11, 12] are used for the purpose of this study. The synchronous machine equations are as follows:

$$e_q = G(s) e_{fd} - \chi_d(s) i_d$$

$$G(s) = \frac{\chi_{afd}}{r_{f}(1+T_{do}'s)}$$

$$e_d - \chi_q i_q$$

(6)

where (

ψd, ψq, ψkd, ψkq

- armature flux linkages in d and q axes, and damper flux linkages in d and q axes, respectively

Xffd, Xkkd, Xkkq

- rotor self reactances

1d, 1q, 1kd, 1kq

- armature and damper currents in d and q

Tido .

- direct axis transient open-circuit time constant

T'd

- direct axis transient short-circuit time

Further notation will be introduced here to complete the nomenclature of symbols used in the Following text:

- F. expeture winding resistance in d. or q sais
- Tale electrical torque
- P real power output of machine

Q - reactive power output of machine

H - inertia constant

M - moment of inertia

D - damping coefficient of machine

ω - undamped natural frequency

In this study the stability of the power system due to small disturbancies will be examined. The following nine equations are the usual equations for the similar stability studies obtained by linearizing the operational equations (3), (4), (5) and (6) about an operating point.

$$\Delta e_{to} = \frac{e_{do}}{e_{to}} \Delta e_{do}^{\dagger} + \frac{e_{qo}}{e_{to}} \Delta e_{qo}$$

$$\Delta e_{do} = -\psi_q s \Delta \delta + \chi_q \Delta i_{qo}$$

$$\Delta e_{qo} = A e_{fdo}$$

$$\Delta T_A = f'(s) s \Delta \delta$$

The quantities e_{do} , e_{qo} , e_{to} ,

$$\begin{bmatrix}
1 & 0 & -r & \chi & -v_0 \cos \delta_0 \\
0 & 1 & -\chi & -r & v_0 \sin \delta_0 \\
1 & 0 & 0 & -\chi_2 & \psi_{qo} & \Delta i_d \\
-h(s)v_{do} & -h(s)v_{qo}^i + 1 & \chi_{d(s)} & 0 & -\psi_{do} & \Delta i_2 \\
i_{do} & i_{qo} & v_{do} & v_{qo} & \omega J(s) & \Delta \delta
\end{bmatrix}$$
(8)

where

$$J(s) = Ms^{2} + s \left(D - \frac{T_{ele}}{\omega_{o}}\right) - f(s)$$

A characteristic equation of the form

can be obtained from the characteristic determinant of (8). Linearization of the system equations and the derivation of the characteristic equation is shown in more detail in [3] and [4].

CHAPTER III

CONDITIONS FOR STABILITY

3.1 Derivation of necessary and sufficient Conditions for Stability
The theorems given by Ogeta [1] will be stated. This theorem gives
the answers to the problem of deriving necessary and sufficient
conditions for stability of a linear dynamic system and will be employed later to derive these conditions for the system und investigation.

Theorem 8 - 9; [1] p. 466;

Consider the linear time-invariant system

 $\hat{y}_{\bullet} = W_{\bullet}$ (11)

where

and b₁, b₂, b₃ b_n are real quantities. The origin of che

 $b_1 > 0, b_2 > 0, b_3 > 0$ $b_n > 0.$

W is called the Schwarz matrix)

The above theorem gives directly the necessary and sufficient conditions for stability for the linear time-invariant system (11). The dynamic system under study is described by (1) and is of the form k = Ax. If we can find the similarity transformation and transform the system under study into the form given by (11), the whole problem of stability can be solved and necessary and sufficient conditions for stability established. In [2] we can find the confirmation of this assumption, since on the page 100 is stated as follows:

"once the matrix A has been transformed into Schwarz form, the stability problem is solved immediately; the necessary and sufficient conditions for asymptotic stability being that all b s are positive (1 = 1, 2, 3, n)." Another theorem from [1] will be introduced and the similarity transformation given by this theorem will be employed later.

Theorem 8 - 11, [1] B. 467:

If a real constant matrix C

, ,	_			** **
		1	* * * * * * * * * *	0
	0	? .0		. 0
Ç ➡			- ,	
	. 0	0		1
1014	7	n-1		

is similar to the Schwarz matrix W

that is

$$C = T^{-1}WT \tag{13}$$

(T:non-singular), then the number of eigenvalues of C which have negative real parts is equal to the number of positive terms in the sequence

$$b_1, b_1, b_2, b_1, b_2, b_3, \dots, b_1, b_2, b_3, \dots, b_n$$

provided that none of the bis is zero.

Using this theorem, the following relationship will be used in order to transform the C matrix into the W matrix:

$$W = TCT^{-1} \tag{14}$$

where '

- W 18 Schwarz matrix
- C Companion matrix associated with characteristic polynomial
- T Transformation matrix
- Tolerse of the Transformation matrix

Generally speaking, every non-derogatory matrix A can be converted to the companion form and to the Schwarz form if the particular transformation matrix and its inverse can be found.

The characteristic equation of the system under study (10) can be few titten in the following form:

$$p^7 + \frac{a_1}{a_0}p^6 + \frac{a_2}{a_0}p^5 + \frac{a_3}{a_0}p^4 + \frac{a_4}{a_0}p^3 + \frac{a_5}{a_0}p^2 + \frac{a_6}{a_0}p + \frac{a_7}{a_0} = 0$$
 (15)

To outline further investigation at this point the following must be done in order to establish the necessary and sufficient conditions for the dynamic system:

- 1. Find the companion matrix C of the system
- 2. Find the transformation matrix T and its inverse
- 3. Perform the matrix multiplication and obtain the Schwarz form
- 4. Establish the necessary and sufficient conditions for stability for the system under study

Using [1] and [2], the companion matricessociated with the characteristic polynomial given by (15) was found to be as follows:

To obtain the transformation matrix T, two different methods can be followed. One is due to S. G. Loo and is shown in detail in [2]. The other method which seems to be more practical for the purpose of this study is that given by C. F. Chen and H. Chu and shown in [5]. These two authors also give the method for constructing the inverse of the transformation matrix [6] and this will be employed later in the text.

Using the material [5], the transformation matrix T was found to be as follows:

	\vee				, i			
	_ 1	0	, 0	0	0	0	c	
	. 0	1	0	0	۵	0	0	,
•	C			: N		• •		1
	C ₆₂ C ₆₁	Q	1	0	0	0	. 0	
,	,	C ₅₀	4		.			•
T =	0	C ₅₂ C ₅₁	•	1	0	0.	0	•
9	C, 3		C ₄₂				ا ا	
	C ₄₁	0.	<u>c</u> +1	0		0	0	
		C ₃₃		C ₃₂				•
	0	C ₃₁		*C31			. 0	
	- C		C ₂₃		Ç22			
	C ₂ 1		C21		Ç ₂₁			. M

As mentioned in the preceding text, 6 gives the material for obtaining the inverse of the transformation matrix T; and it was found to be of the following form:

	$-\frac{c_{62}}{c_{61}}$	70 F 9	0	0	0 0	0	0 0 0 0
	О.	$-\frac{c_{52}}{c_{51}}$, ,	1	0	0	0
T ⁻¹ =	$\begin{bmatrix} \frac{C_{62}}{C_{61}} & 1 \\ \frac{C_{43}}{C_{41}} & \frac{C_{42}}{C_{41}} \end{bmatrix}$	0	- C ₄₂	0		0	0
	o	$\begin{bmatrix} \frac{C_{52}}{C_{51}} & 1 \\ \frac{C_{33}}{C_{31}} & \frac{C_{32}}{C_{31}} \end{bmatrix}$		$\frac{c_{32}}{c_{31}}$	0		0
	$ \begin{array}{c cccc} C_{62} & 1 & 0 \\ C_{43} & C_{42} & 1 \\ \hline C_{41} & C_{41} & 1 \\ \hline C_{24} & C_{23} & C_{22} \\ \hline C_{6} & C_{6} & C_{6} \end{array} $	0	C ₄₂ C ₃₁ C ₂₁ C ₂₁		See	0	1 (18)

where C_{1j} (i,j = 1, 2, 3 n) are the same elements of the Routh array for a given characteristic polynomial as before. Further we have to construct the Routh array in order to evaluate the transformation matrix and its inverse. In [1] we can find the method for constructing such an array and it was found to be as follows:

λ7	1	a ₂ /a ₀	a ₄ /a ₀	a ₆ / a ₀
λ6 .	a ₁ /a ₀ .	• ₃ /• _o	a ₅ /a ₀	a ₇ /a ₀
λS	b	b ₂	b ₃	0
λ4	c ₁	c ₂	c ₃	0 ø
λ³	a ₁	d ₂	0	0
λ ²	•1	• ₂	0	. 0
λ	f 1 .	0	0 .	0
λο	s 1	0	. , o ∠)0
•				-

The coefficients for our seven-degree polynomial a_0 , a_1 , a_2 a_7 are known and we have to express all the elements of this array in terms of these coefficients. In other words, we want to know b_1 , b_2 , b_3 , c_1 , c_2 , c_3 , d_1 , d_2 , e_1 , e_2 , f_1 and g_1 in terms of e_1 s (1 = 1, 2, 3 n). The following relationships hold.

$$b_{1} - a_{1}a_{2}$$

$$b_{2} - a_{3}a_{4} - a_{2}a_{2}/a_{4}a_{3}$$

$$b_{3} - a_{5}a_{6} - a_{4}a_{7}/a_{0}a_{5}$$

$$c_{1} - (a_{1}a_{2} - a_{0}a_{3}) a_{3}^{2} - (a_{3}a_{4} - a_{2}a_{5}) a_{1}^{2}/(a_{1}a_{2} - a_{0}a_{3}) a_{0}a_{3}$$

$$c_{2} - (a_{3}a_{4} - a_{2}a_{3}) a_{5}^{2} - (a_{5}a_{6} - a_{4}a_{7}) a_{3}^{2}/(a_{3}a_{4} - a_{2}a_{5}) a_{0}a_{5}$$

$$c_{3} - a_{7}/a_{0}$$

$$d_{1} - c_{1}b_{2} - b_{1}c_{2}/c_{1}$$

$$d_{2} - c_{2}b_{3} - b_{2}c_{3}/c_{2}$$

$$e_{1} - d_{1}c_{2} - c_{1}d_{2}/d_{1}$$

$$e_{2} - a_{7}/a_{0}$$

$$f_{1} - e_{1}d_{2} - d_{1}e_{2}/e_{1}$$

$$g_{1} - a_{7}/a_{0}$$

$$(19)$$

These relationships allow the expression of all the elements of the Routh array in terms of quefficients of the characteristic polynomial. Now substituting the following values from the Routh array into T and T^{F1} matrices in order to get them to the suitable form for matrix multiplication (14):

$$C_{22}/C_{21} = a_3/a_1 \qquad C_{23}/C_{21} = a_5/a_1$$

$$C_{24}/C_{21} = a_7/a_1 \qquad C_{32}/C_{31} = b_2/b_1$$

$$C_{33}/C_{31} = b_3/b_1 \qquad C_{42}/C_{41} = c_2/c_1$$

$$C_{43}/C_{41} = c_3/c_1 \qquad C_{52}/C_{51} = d_2/d_1$$

$$C_{62}/C_{61} = e_2/e_1 \qquad (20)$$

Substituting equations given by (20) into (17), the matrix T is

	1	0	0	0	0	0 ,	0
	0	1	0	0	0	0	0
	e ₂	0	1	0	0	0	0
T -	o	$\frac{d_2}{d_1}$	0	1	0	o .	0
	c ₁	0 .	c ₂	0	1	0	0
	O	b ₃	0	$\frac{\mathbf{b}_2}{\mathbf{b}_1}$	0	1	0
	# ₇	0	#5 #1	0	**************************************	0	1

(21)

Similarly, substitute the elements of the Routh array (20) into (18). To make the notation simpler, let

$$M = \begin{bmatrix} \frac{C_{42}}{C_{41}} & 1 \\ \frac{C_{23}}{C_{21}} & \frac{C_{22}}{C_{21}} \end{bmatrix} = \frac{c_{2}a_{3} - a_{5}c_{1}/c_{1}a_{1}}{c_{2}a_{3}}$$

$$N = \begin{bmatrix} \frac{C_{62}}{C_{61}} & 1 & 0 \\ \frac{C_{43}}{C_{41}} & \frac{C_{42}}{C_{41}} & 1 \\ \frac{C_{24}}{C_{21}} & \frac{C_{23}}{C_{21}} & \frac{C_{22}}{C_{21}} \end{bmatrix} = a_3(c_2e_2 - c_3e_1) + c_1(a_7e_1 - a_5e_2)/a_1c_1e_1$$

	1	0	. 0	0	· 0	0	0
	o ·	1	0	0	0	0	0
	- e ₂	0	i .	0	0	0	0
T ⁻¹ =	0	$-\frac{d_2}{d_1}$	0	1	0	0	0
	κ.	0	- c2	0	1	0	0
	. 0	L	. 0	- b ₂	0	1	0
	- N	0	M	, 0	- a ₁ ,	. 0	1 (22)

Now matrices T and T^{-1} are a suitable form for matrix multiplication and obtaining the Schwarz form (14) gives the relationship for transformation into Schwarz form and in this equation T is given by (21), T^{-1} by (22) and C by (16). After multiplication, the Schwarz matrix

	0	Ó	0	0	-	1 - 2	- 1
	Q	0	0	*0	$\frac{b_2^2}{b_1^2} - \frac{a_3}{a_1}$	٥, ٥	1
	O	Q	0	$\frac{c_2}{c_1} - \frac{b_2}{b_1}$	0	1	0
W	0	0	$\frac{d_2}{c_1} - \frac{c_2}{c_1}$	O	1	0	0
· 	0	$\frac{\mathbf{e_2}}{\mathbf{e_1}} - \frac{\mathbf{d_2}}{\mathbf{d_1}}$	0	1	0	0	- 0
	- e 2	0	1	0	, 0	0	0
	0	1	0	,0	0	0	ó]
18					-		

When the system is transformed into the form given by (11), the necessary and sufficient conditions for asymptotic stability can be established. Theorem 8-9 introduced earlier in the text and given in [1] can now be applied in order to obtain the stability conditions for the dynamic system under study. It is stated in the above mentioned theorem that the necessary and sufficient conditions for asymptotic stability are that all bis are positive (1 - 1, 2, 3n). If this is applied to the Schwarz matrix given by (23), the following seven conditions for stability can be found.

1.
$$a_1/a_0 > 0$$

$$2. \quad \mathbf{a}_2/\mathbf{a}_0 \quad > \quad \mathbf{a}_3/\mathbf{a}_1$$

$$3. \quad a_3/a_1 \quad > \quad b_2/b_1$$

4.
$$b_2/b_1 > c_2/c_1$$

5.
$$c_2/c_1 \rightarrow d_2/d_1$$

6.
$$d_2/d_1 > e_2/e_1$$

7.
$$\mathbf{e}_2/\mathbf{e}_1 > 0$$

The set of inequalities given by (24) forms the necessary and sufficient conditions for asymptotic stability for the dynamic system given by (15). It was mentioned previously that all constants involved in these conditions can be expressed in terms of coefficients of the characteristic polynomial, namely in terms of a. a. a.

For the time being they may be left in the form given by (24) because this seems to be the simplest form in which to express the stability conditions for our case. Speaking generally, the stability conditions given by (24) must be satisfied simultaneously for some operating point and only then is it possible to assume that the dynamic system is stable at that particular operating point. Choosing some systems of coordinates, it will be possible to find stability regions in that plane if it is checked for stability at every point in that particular plane. In other words, for some point in the chosen plane to be stable the conditions given by (24) must be satisfied simultaneously.

3.2 Multimachine Systems

In the preceding text a single-machine system connected to an infinite bus has been taken for analysis. However, with the state variable approach given by [7] and [8], the study can be extended to multimachine systems. Speaking generally, the A matrix must be obtained for the considered system and the characteristic equation of the system established. Then the companion matrix of the investigated system must be found and using the transformation (14) the Schwarz form obtained. Theorem 8-9 can be applied again and the necessary and sufficient conditions for asymptotic stability of a dynamic system established.

The method of enelysis used in this study is quite general. To obtain the scability regions, the same technique can be used in multimachine systems as was used in the single-machine case.

Dynamic stability analysis of a large interconnected power system is extremely time-consuming and laborious and may even exceed the storage capacity of modern fast computers because of high order of the A matrix. Hence methods have been developed to obtain simplified models of the systems based on the speed of response of the variables or the nodes. One of such methods is given by Kappurajulu and Elangovan [15] and gives the reduced model of dynamic systems. It seems reasonable, therefore, to consider the possibility of reducing the system with more than three machines to some simplified form in order to simplify the stability calculations.

. 3.3 Outline of the Method by Yu and Vongsuriya

The steady-state stability limits of a regulated synchronous machine connected to an infinite bus were investigated by Y. N. Yu and K. Vongsuriya in [3]. The open stability regions were obtained as a result of this study and the method of the approach used in [3] will be outlined briefly in the following text. The system under investigation in this paper is that shown in Fig. 1 and the stability of the system due to small load disturbance is studied. Generally, the Routh-Hurwitz criterion and D-partition method are used in this steady-state stability study. The characteristic equation of the investigated system (10) is obtained and it can be written in such a form that the voltage regulator gain μ_{i}^{*} and the stabilizer gain μ_{i}^{*} can be separated from the remainder of the equation.

To find the stability boundary on a μ ' - μ ' plane, let

$$p = j\omega$$
 (b)

which corresponds to the imaginary axis on the complex fuquency plane. Separating P, Q and R in (a) into real and imaginary parts,

$$P(j\omega) = P_1(\omega) + jP_2(\omega)$$

$$Q(j\omega) = Q_1(\omega) + jQ_2(\omega)$$

$$R(j\omega) = R_1(\omega) + jR_2(\omega)$$
(c)

the following can be obtained:

$$\mu_{s}^{i} P_{1}(\omega) - \mu_{e}^{i} Q_{1}(\omega) + R_{1}(\omega) = 0,$$

$$\mu_{s}^{i} P_{2}(\omega) - \mu_{e}^{i} Q_{2}(\omega) + R_{2}(\omega) = 0,$$
(d)

Hence

$$\mu_{\mathbf{a}}^{\mathsf{T}} = \frac{1}{\Delta} \quad \begin{bmatrix} -R_{1}(\omega) & Q_{1}(\omega) \\ -R_{2}(\omega) & Q_{2}(\omega) \end{bmatrix}$$

$$-\mu_{e}^{1} = \frac{1}{\Delta} \qquad \begin{bmatrix} P_{1}(\omega) & -R_{1}(\omega) \\ P_{2}(\omega) & -R_{2}(\omega) \end{bmatrix}$$

where

For a non-trivial solution to exist, Δ must be non-zero. Theoretically, the complete stability boundary on the $\mu_s^* - \mu_s^*$ plane can be determined by varying ω from zero to infinity. Practically, only a variation of ω from zero to 0.02 is necessary to obtain all the useful information. A point test on stability by the Routh-Hurwitz criterion is necessary to determine which side of the boundary is stable.

The effects of the saliency and the short-circuit ratio of the synchronous machine and that of the tie-line resistance and reactance on the stability of the system were investigated in this paper.

CHAPTER IV

MODELLING OF THE SYSTEM

4.1 System Parameters

For the purpose of the study, the system will be introduced here with all the necessary machine data, regulator data and governor data.

The system and its constants are the same as those used in [4]. The following constants are expressed in p.u. values and time in seconds.

Machine data:

$$P = 1.0$$
 $M = .0337$

with

 $H = 5.3$ $T_{do}^{i} = 6.0$ $T_{d}^{i} = 1.13$
 $\chi_{d} = 2.0$ $\chi_{q} = 1.7$ $r = .0223$
 $\chi = 0.18$ $e_{t} = 1.0$

Regulator settings:

Governor settings:

$$T_1 = T_2 = 1.0$$
 $\mu_m = 10.0$

As stated earlier, a graphical display of the stable regions of the system investigation is desired. For this purpose a Cartesian system, such that its X and Y coordinates correspond to μ_1 and μ_2 which are the overall stabiliser and overall regulator sain

respectively, is used. These two parameters are controllable and were used in the similar study given by [3] to display the stability limits of a regulated synchronous machine.

4.2 Initial Conditions of Synchronous Machine

The initial values i_{do} , i_{qo} , v_{do} , v_{qo} , v_{do} , v_{qo} , v_{do} , v_{o} and v_{o} of a salient pole machine are found by the following expressions.

In the steady-state, Park's equations become

In these equations vdo, vqq ido, iqo, vo, o and vfdo are unknown, while vto, P and Q are given. During the analyses in this thesis, P and Q will change but vto will be kept constant (vto = 1.0 = constant). The unknowns will be calculated from the following

relationships derived from the Park's equations for the steady-state.

$$v_0 = \sqrt{(v_{do} - r \cdot 1_{do} + x \cdot 1_{qo})^2 + ((v_{qo} - x \cdot 1_{do} - r \cdot 1_{qo})^2}$$

Further and more detailed information on deriving the initial conditions of a synchronous machine dan be found in [3] and [4]. The initial conditions of the synchronous machine are calculated for all different power factors used in this study. These values are used

4.3 Coefficients for the Characteristic Polynomial

The stability conditions were established in terms of the coefficients of the characteristic polynomial (24) of the dynamic system. The set of equations for calculating these coefficients is given here. From the characteristic equation (10) the coefficients of the polynomial are

a - T MB

A, - T, B, + T, M B,

 $a_2 = T_a B_5 + T_c M B_1 + T_d B_4 - \mu_a^t A_1 M T_1 T_2 T_a$

 $A_{2}^{a} = T_{d} B_{3} + T_{b} M B_{1} + T_{c} B_{1} + T_{d} B_{5} + \mu_{m} B_{1} T_{R} T_{m} - \mu^{a} (M A_{c} T_{b} + B_{c} T_{c} T_{c} T_{c})$

$$a_5 = T_b B_5 + T_c B_3 + \mu_m \{B_1 + B_2 (T_E + T_B \mu_B^*) - \mu_B^* A_1 T_B\} - \mu_B^* (M A_1 + A_5 T_E + B_6 T_F) + B_4$$

$$A_6 = T_b B_3 + \mu_m (B_2 - \mu_e A_1) - \mu_e (A_5 T_F + B_6) + B_5$$

$$A_7 \stackrel{B}{\longrightarrow} B_3 \stackrel{\mu_1}{\longrightarrow} A_5 \tag{28}$$

In the above set of equations, constants B_1 , B_2 B_6 , T_1 , T_8 , T_8 , T_7 , T_8

To calculate the constants B_1 , B_2 B_6 the following relationships can be used:

$$B_3 - A_7 \chi_d + A_9$$

$$B_{a}$$
 - $A_{b} \times_{d} T_{d} + A_{b} T_{do} + B_{1} (D - \frac{T_{ac}}{\omega}) + B_{2} M$

$$B_5 = (A_6 + A_7 T_d^1) \times_d + A_8 + A_9 T_{do}^1 + B_2 (D - \frac{T_{do}}{\omega})$$

$$B_6 = A_1 \left(D - \frac{T_{00}}{M}\right) + A_6$$

where

Teo
$$\frac{1}{q}$$
 $\frac{1}{q}$ $\frac{1}{q}$ $\frac{1}{q}$ $\frac{1}{q}$

and for calculation of T_a , T_b , T_c , T_d , T_E and T_F the following set of relationships can be used:

The last set of equations is for calculation of $A_1, A_2, \dots, A_8, A_9$. The following equations are used to calculate these constants.

$$A_1 = -\omega \left[v_{do}^{\dagger} r \chi_q - v_{qo}^{\dagger} (r^2 + \chi^2 + \chi \chi_q) \right]$$

$$A_3 = \omega \left[\pi^2 + \chi^2 + \chi \chi_q \right]$$

$$A_{4} = \psi_{qo} \left[-v_{do}^{i} \left(v_{do} \times + v_{qo} \times + i_{qo} \left(r^{2} + \chi^{2} \right) \right) + v_{qo}^{i} \left(v_{do} \times - v_{qo} \times + i_{do} \left(r^{2} + \chi^{2} \right) \right) \right]$$

$$+ v_{qo}^{i} \left(v_{do} \times - v_{qo} \times + i_{do} \left(r^{2} + \chi^{2} \right) \right) \right]$$

$$A_{5} = v_{o} \sin \delta_{o} \left[v_{do}^{i} i_{qo} r \chi_{q} - v_{qo}^{i} \left(v_{do} (\chi + \chi_{q}) + r \left(v_{qo} + i_{do} \chi_{q} \right) \right) \right] + v_{o}^{cos} \delta_{o} v_{do}^{i} \chi_{q} \left(v_{do} + i_{qo} \chi \right) - v_{qo}^{i} \left(-v_{do} x + \chi (v_{qo} + i_{do}) \right) \right]$$

$$A_{6} = \psi_{qo} \left(v_{qo} - i_{do} \times + i_{qo} \times r \right)$$

$$A_{7} = v_{o} \sin \delta_{o} i_{qo} \left(\chi + \chi_{q} \right) + v_{o}^{i} \cos \delta_{o} \left(v_{qo} - i_{do} \chi_{q} - i_{qo} r \right)$$

$$A_{8} = \psi_{do} v_{do} \left(\chi + \chi_{q} \right) + v_{qo} r + i_{qo} \left((r^{2} + \chi^{2}) + \chi \chi_{q} \right) + v_{qo} r + i_{do} r \chi_{q} \right] + v_{o}^{i} \sin \delta_{o} \left[v_{do} \left(\chi + \chi_{q} \right) + v_{qo} r + i_{do} r \chi_{q} \right] + v_{o}^{i} \cos \delta_{o} \left[-v_{do} r + v_{qo} \chi + i_{do} \chi_{q} \right] + v_{o}^{i} \cos \delta_{o} \left[-v_{do} r + v_{qo} \chi + i_{do} \chi_{q} \right]$$

$$(31)$$

The equations for the computation of initial conditions for synchronous machine were introduced earlier (27) and similarly the equations for the computation of all constants (31, 30, 29) necessary to evaluate the coefficients of the characteristic polynomial a₁, a₂, a₃, ..., a_n, a_n,

As was mentioned before, it is convenient to leave these coefficients in terms of μ_{i} and μ_{i} (overall stabilizer and regulator gain respectively) and then to draw the stability regions for the

particular study on this plane. A digital computer program

(Appendix II) is used to check as many points as required to establish stability regions. This program checks individual points on a grid.

In summary, the following steps must be taken in order to obtain the stability regions for the dynamic system under investigation.

- 1. Calculate initial conditions of synchronous machine
- 2. Calculate constants Ta, Tb, Tc, Td, TE and TF
- 3. Calculate constants $A_1, A_2, \dots, A_8, A_9$
- 4. Calculate constants B_1 , B_2 , B_3 , B_4 , B_5 and B_6
- 5. Establish the coefficients for the characteristic polynomial of the system, namely a , a a n
- 6. Check for stability on $\mu_{\mathbf{S}}^{*}\mu_{\mathbf{S}}^{*}$ plane for as many points as is required.

CHAPTER V

RESULTS:

5.1 Stability Regions

In this study the effects of the following parameters on the stability region of the system under study will be examined.

- 1. Changes in power factor
- 2. Changes in damping coefficient
- 3. Stabilizer time constant effect
- 4. Exciter time constant effect
- 5. Effect of a one-time constant governor
- 6. Effect of a two-time constant governer

These studies are introduced in the following text and all the con- $Q_{\rm D}$ clusions drawn later in the text are based on these studies.

5.2 Effect of Different Power Factor on Stability Region

In this study, the real power output of the machine is kept constant (P = 1.0 p.u.) in all investigated cases. The reactive power output of the machine is varied and the following distinct values of Q are used.

$$Q = .6; .3; 0; -.3$$

The system data used here are those introduced earlier and given by (25). All constants are in p.u. values and time is in seconds.

Using the set of equations (27), the initial conditions of the synchronous machine were calculated for all different values of Q and are shown in Appendix I in tabulated form.

Example for P = 1.0 and Q = .6

To calculate T, T, T, T, T, T, the set of equations (30) is used and the values are found to be

T_a = 2.8

T_b = 3.12 + 2.5 µ_a

$$T_{d} = 6.72 + 2.5 \mu_{g}$$
 $T_{E} = 6$
 $T_{F} = 4.5$

The next step is to calculate constants A_1 , A_2 A_8 , A_9 . The set of relationships given by (31) will serve this purpose and the constants are

$$A_1 = .239$$
 $A_6 = .4755$
 $A_2 = 1.88$ $A_7 = -.9244$
 $A_3 = .339$ $A_8 = -.783$
 $A_4 = -.126$ $A_9 = 1.058$
 $A_5 = -.263$

To calculate the constants B_1 , B_2 B_6 the set of equations given by (29) is used and the constants are

$$B_1 = 6.33$$
 $B_4 = 15.667$ $B_2 = 4.1$ $B_5 = 21.397$ $B_6 = .590$

With these constants the coefficients of the characteristic polynomial for the dynamic system can be calculated. The set of equations
(28) will serve this purpose, giving coefficients of the characteristic
polynomial as follows:

$$a_0 = .597$$
 $a_1 = 45.299 + .532 \mu_8^1$
 $a_2 = 166.479 + 40.232 \mu_8^1 - .0201 \mu_8^1$
 $a_3 = 414.11 + 132.359 \mu_8^1 - 1.523 \mu_8^1$
 $a_4 = 358.61 + 302.427 \mu_8^1 - 2.918 \mu_8^1$
 $a_5 = 186.874 + 152.042 \mu_8^1 - 7.055 \mu_8^1$
 $a_6 = 59.932 - 1.975 \mu_8^1 - 1.797 \mu_8^1$
 $a_7 = .263 \mu_8^1 - .79$

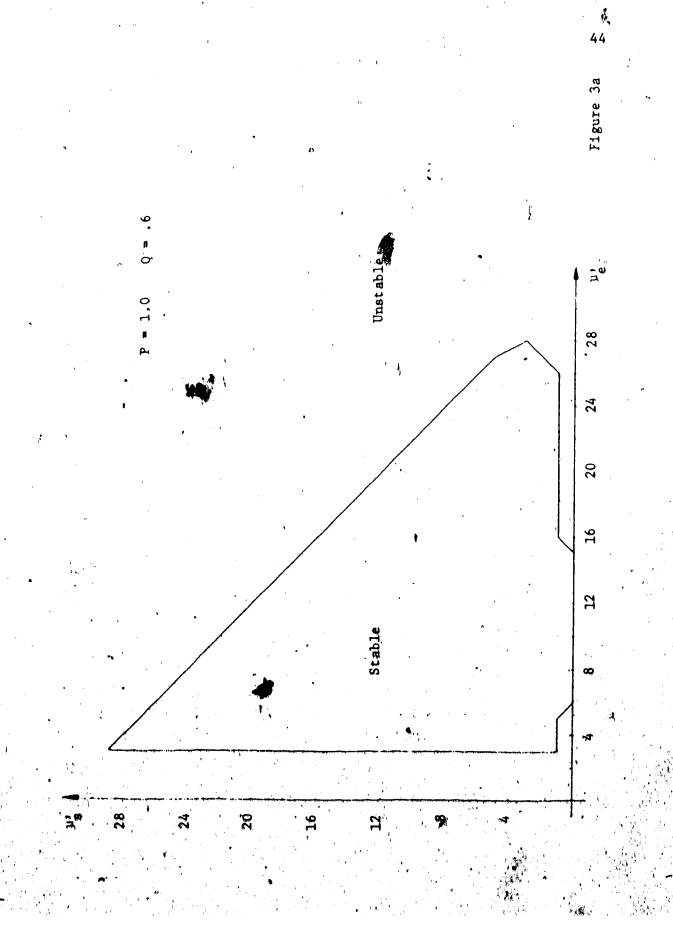
As was mentioned earlier, it is convenient to leave these coefficients in terms of μ_1 and μ_2 (the overall stabilizer and regulator gain, respectively) in order to draw the stability regions on this particular plane. When the coefficients are in this form, the program for digital computer shown in Appendix II can be used. This program employs the conditions for stability directly in the form given by (24) and derived in the text previously. This program checks for stability for as many points on μ_1 μ_1 plane as required and specified in the program. All points on μ_2 μ_1 plane which satisfy the stability conditions constitute the stable region on this plane. Using the information given by digital computer, results can be displayed graphically as in Fig. 3s. In this figure the stable region of the regulated synchronous machine at P = 1.0 and Q = .6 p.u. connected to an infinite bus is shown. All points which lie inside

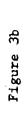
the triangular region satisfy the stability conditions (24) and the points outside this region are unstable, i.e. they do not satisfy the conditions for asymptotic stability.

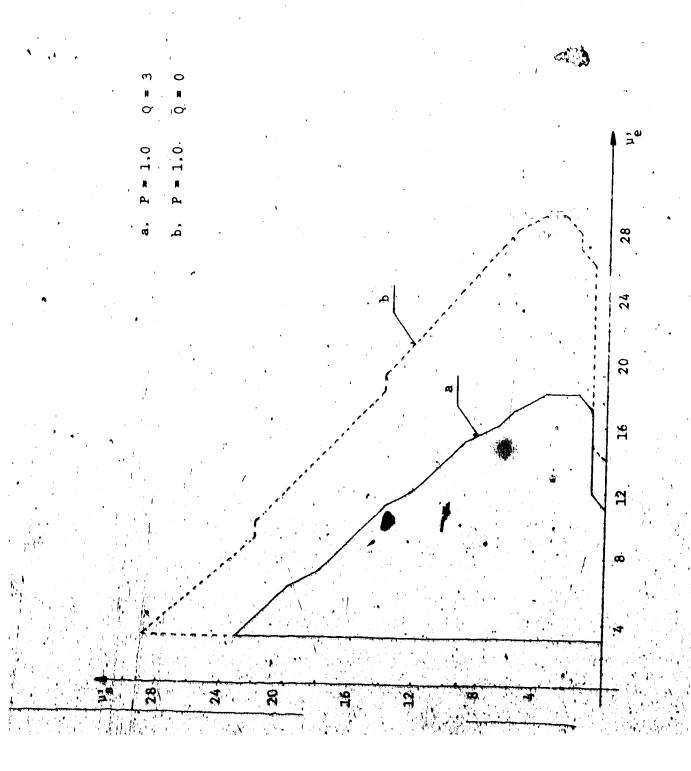
Using this figure for a chosen value of the overall stabilizer ain, it is possible to find the maximum allowable voltage regulator gain; the minimum allowable voltage regulator gain shows fairly constant value for all possible settings of μ_1^* .

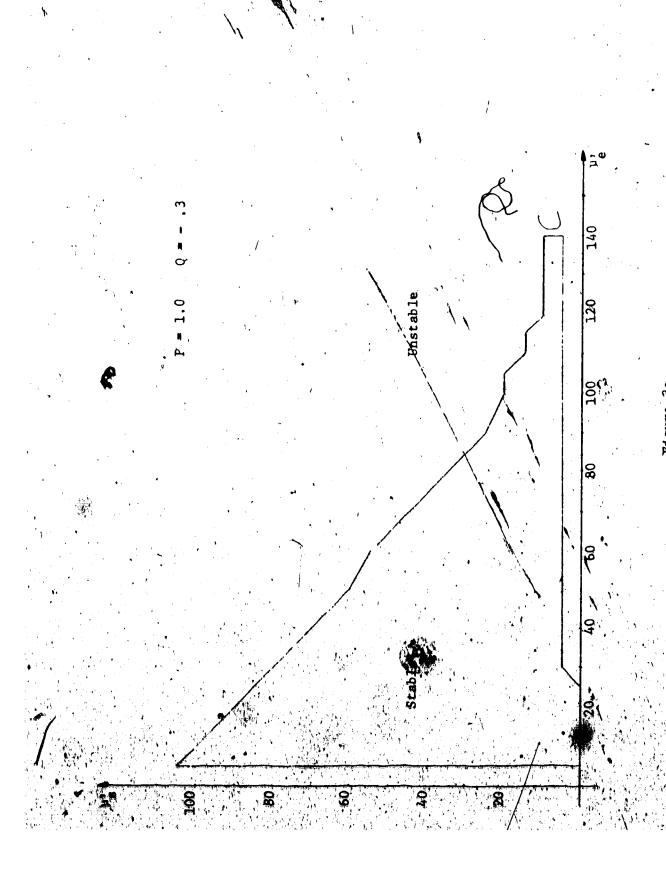
Using the same procedure, the stability regions for all other power factors can be established (0, 3; 0; -.3). All necessary constants and the coefficients of the characteristic polynomial were calculated and the stability regions established. The results are graphically shown in Fig. 3b and 3c, where the effect of different power factor on stability region of dynamic power system can be seen.

It can be seen in the above mentioned figures that the minimum allowable voltage regulator gain is constant in all investigated cases. Both the maximum voltage regulator and stabilizer gains decrease their values and reach certain minimum and then again increase their values as the system goes from lagging power factor (positive Q) towards leading power factors.









5.3 Effect of Different Damping Coefficients on Stability Region

In this study the real and reactive power output of the synchronous machine is constant during the investigation at

 $P = 1.0 \qquad Q = .6$

The damping coefficient D is varied and the effect of different damping coefficients on stability region studied. During the study these three distinct values for damping coefficient are assumed:

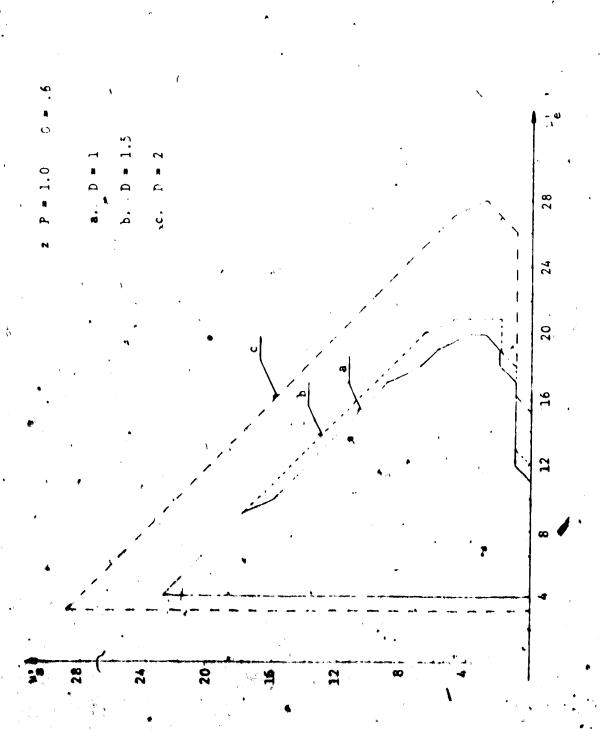
D = 11; 1.5; 2 p.u.

All other data introduced by (25) are kept constant during the investigation.

The results of this study are graphically shown in Fig. 4, where the effect of different damping coefficients on stability region of the dynamic system under investigation can be seen.

favourable effect on voltage regulator and stabilizer in settings.

As it is expected, the stability region is larger for lar damping coefficient and it dllows larger maximum allowable gains. The shows that there is a very distinctive change in both maximum allowable (voltage regulator and stabilizer) gain settings if the damping coefficient is changed.



5.4 Stubilizer Time Constant Effects on the Stability Region

The real and reactive power output of the machine is constant at the following values:

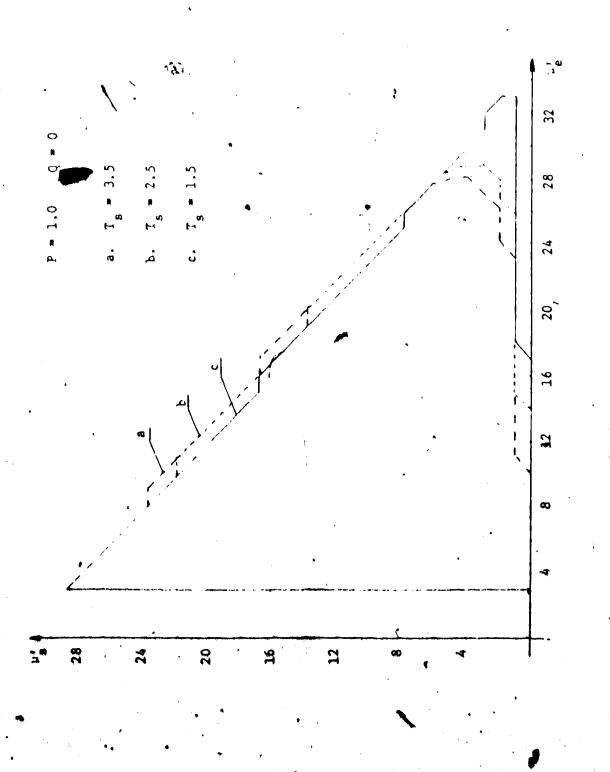
$$P = 1.0$$
 () = (

The stabilizer time constant is varied during the investigation and the effect of this variation on stability region of the dynamic system is studied. During this study three distinct values of the stabilizer time constant are used:

All other data used in this study are those introduced by (25) and they are kept constant during this investigation.

The results were processed graphically and they are shown in Fig. 5. In this figure the stabilizer time constant effect on the stability region of the dynamic system under investigation can be seen.

From Fig. 5 it can be seen that the minimum allowable voltage regulator gain is constant in all investigated cases. In the high μ_0^* region, a larger stabilizer time constant allows a smaller voltage regulator gain at the low μ_0^* portion. The maximum allowable stabilizer gain has the same value in all investigated cases.



5.54 Buciter Time Constant Effect on the Stability Region

In this study the real and reactive power output of the machine is kept constant at

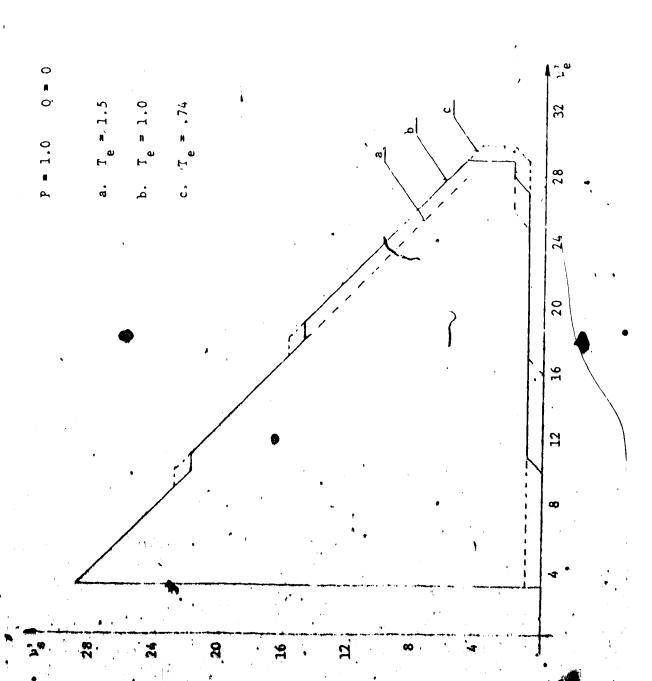
$$P = 1.0$$
 $Q = 0$

The exciter time constant is varied during this investigation and the effect of this variation on stability region of the investigated dynamic system is studied. The exciter time constant is given the following values:

During this investigation all additional data are supplied by (25) and they are kept constant.

The results are shown graphically in Fig. 6. In this figure the exciter time constant effect on the stability region of the dynamic system under study can be seen.

In general, the larger the exciter time constant the smaller the maximum allowable voltage regulator gain. The minimum voltage regulator gain shows constant value in all investigated cases and so loss, the maximum allowable stabilizer gain;



5.6 One-Time Constant Governor Effect on the Stability Region

As in the previous study, the real and reactive power output of the machine is kept constant at

P = 1.0

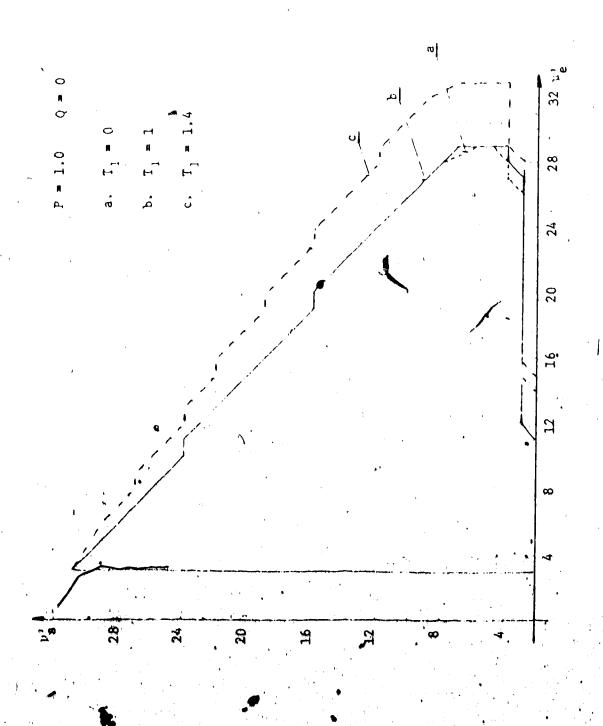
0 = 0

The effect of a one-time constant governor is studied here and therefore this constant is varied in this study. The following three values are considered:

$$T_1 = 0; 1; 1.4$$
 (seconds)

Fig. 7 shows the one-time constant governor effect on the stability region of the dynamic system under study.

From Fig. 7 it can be seen that at low μ_1 portion of the high μ_2 region, a fast-acting governor allows only a smaller voltage regulator gain than a slow-acting governor. There is no difference between cases in the low region and the maximum allowable stabilizer gain shows constant value.



5.7 Two-Time Constant Governor Effect on the Stability Region

The real and reactive power output of the machine is kept constant at

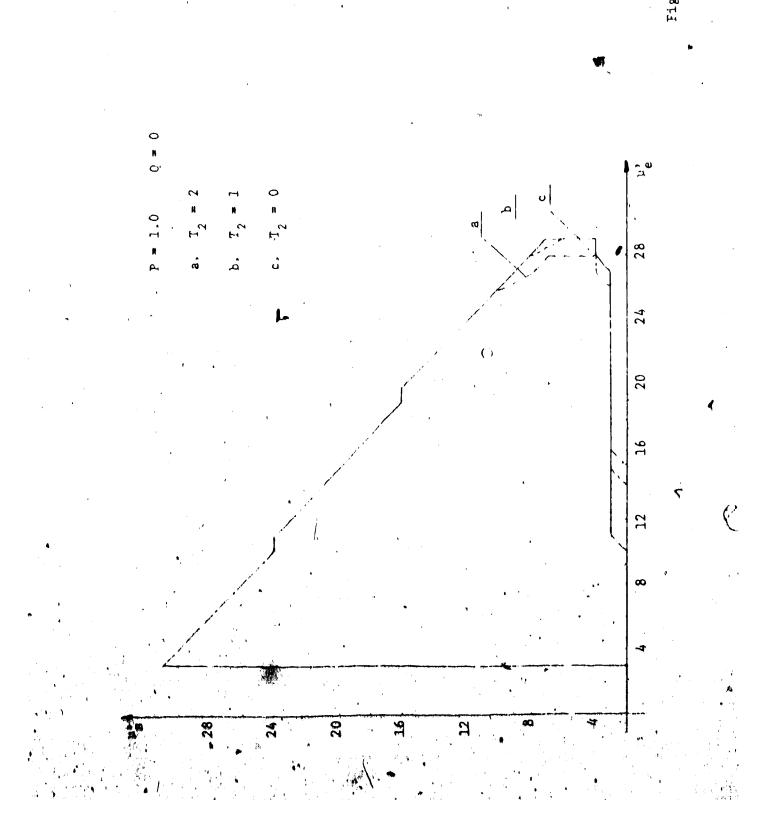
P = 1.0 0 = 0

these values:

Two-time constant governor effect is studied here and therefore this constant is varied during this study. The following three distinct values were chosen for the purpose of the study:

T₂ = 0; 1; 2 (seconds)

The results are shown in Fig. 8. This figure shows the two-time constant governor effect on the stability region for dynamic system under study. From Fig. 8 it can be seen that for a system with a two-time constant governor the effect of the values of the time constant on the voltage regulator gain settings is smaller than that of a system with a one-time constant governor. The minimum voltage regulator gain and the maximum allowable stabilizer gain is constant and there are only very small changes in the low μ_1 region.



CHAPTER VI.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Summary and Conclusions

The dynamic system studied in this thesis consists of a regulated synchronous machine connected to an infinite bus. Using the transformation of the system into Schwarz form (14) and the necessary and sufficient conditions of a dynamic system established in this thesis (24) the closed stability regions on μ_i^i μ_i^i plane were obtained. The method presented here is fairly simple and can be used for both designing and power system operational practice. The closed stability regions obtained here should be of some interest as no paper has been published so far on this subject.

The method of approach used in this thesis is quite general and gives the opportunity to study the effect of many parameters on the stability region of a dynamic system. Six parameters were chosen for this purpose in this thesis and the studies were conducted and introduced earlier in the text. The following general results are observed in these studies.

It can be observed that the general shape of the stability region for the system under study is triangular. This is an agreement with the operational power system practice, where for practical purposes smaller values of the overall stabilizer gain and higher values of . the overall regulator gain are chosen. There seems to be a definite ensure good controllability of a power system. It can be verified by [3] or [4] where the voltage regulator data are introduced for the systems studied in those papers.

It can also be seen that in the studies presented in this thesis most of the changes in the stability regions are in the low μ_i portion of the high μ_i region. The minimum allowable voltage regulator gain shows fairly constant value in all presented studies.

Once the stability conditions for the system under study are obtained, the rest of the calculations (constants and coefficient of the characteristic polynomial) can be computerized. The study as presented here does not require special output or computer storage facilities.

Generally, all results and conclusions presented earlier are in agreement with [3]. In that study, however, open stability regions were obtained and the system under investigation in that paper had different parameters than the dynamic system in this study. Therefore, only a general comparts on of these two studies is possible.

6.2 Suggestions for Further Research

The stability study of the individual unit is presented above and necessary and sufficient conditions are established, assuming the rest of the system as an infinite bus. These conditions can be compared with conditions for stability of the system with more than one generating unit in order to find any possible variations in both stability conditions and stable regions of the system.

For practical studies more information on the variation of system parameters would be useful and more effective results can be obtained. If the limits within which a parameter varies were known, some domain of attraction could be established for the investigated system. This would be the common area for all stability regions obtained by varying the system parameters within the assumed limits. This information can be of vital importance in operational practice as well as in design of power systems.

()

REFERENCES

- 1. Katsuhiko, Ogata, "State Space Analysis of Control Systems",
 Prentice-Hall Inc., 1967.
- 2. Barret, S. and Storey, C., "Matrix Methods in Stability Theory"
 Barnes & Noble Inc., 1970.
- 3. Yu, Y. N. and Vongsuriya, K., "Steady-State Stability Limites" of a Regulated Synchronous Machine Connected to an Infinite Bus", IEEE, 1966, PAS, pp. 759 767.
- 4. Kasturi, R. and Doraraju, P., "Sensitivity Analysis of Power Systems, IEEE, 1969, PAS, pp. 1521 1527.
- 5. Chen, C. F. and Chu, H., "A Matrix for Evaluating Schwarz' form",
 IEEE, 1966, AC, pp. 303 305.
- 6. Chen, C. F. and Chu, H., "A General Proof of the Pn Matrix and
 its Inverse", IEEE, 1967, AC, pp. 458 461.
- 7. Undrill, J. M., "Dynamic Stability Calculations for an Arbitrary Number of Interconnected Synchronous Machines", IEEE, 1968, PAS, pp. \$35 843.
- 8./Laughton, M. A., "Arix Analysis of Dynamic Stability in Synchronous Multimachine Systems", IEE Proc., 1966, pp. 325 335

- 9. Concordia, D., "Steady-State Stability of Synchronous Machines as affected by Voltage-Regulator Characteristics,

 AIEE Trans., 1944, pp. 215 220.
- 10. Ewart, D. N. and DeMello, E., "A Digital Computer Program for the Automatic Determination of Dynamic Stability Limits", IEEE, 1967, PAS, pp. 867 875.
- 11. Concordia, C., "Synchronous Machines, Theory and Performance",
 New-York: Willey, 1951.
- 12. Park, R. H., "Two Reaction Theory of Synchronous Machines",

 I Generalized Method of Analysis, AIEE Trans, 1929,

 pp. 716 730.
- 13. Undrill, J. M., "Power System Stability Studies by the Method

 of Liapunov", I State Space Approach to Synchronous

 Machine Modelling, IEEE, 1967, PAS, pp. 791 801.
- 14. Undrill, J. M., "Power System Stability, Studies by the Method of Liapunov", II The Interconnection of Hydrogenerating Sets, IEEE, 1967, PAS, pp. 802 811.
- 15. Kappurajulu, A. and Elangovan, S., "Simplified Power System

 Models for Dynamic Stability Studies", IEEE, 1971,

 pp. 11 21.
- 16. Venikov, V. A., "Transient Phenomena in Electrical Power Systems"
 New-York: Pergamon Press, 1965.

APPENDIX I

The real power output of the machine is kept constant in all cases (P = 1.0 p.u.) and the reactive power output of the machine (Q) is varied, showing the following initial conditions:

•	Q . - .6.	0 - ; s. idi.		Q ~ - , 3
1 qo	. 38	V.	174	.565
v do	. 628	, 75	,8762	, 96
v qo	. 111	.659	9367	.20
i _{do} ·	, 96	.955	.482	1.16
v f do	.017×10 ⁻⁴	1.25×10 ⁻⁴	1.39x10 ⁻⁴	2.12×10 ⁻⁴
Ψ _{do}	628	75	8762	- ,96
[¥] qo	.777	.659	.482	.20
v _o	. 85	.936	.995	1,04
50	31°	59 ⁰ , 30 1	7 2[©]20 *	91010

APPENDIX II

FORTRAN IV G PROGRAM

0043

END

```
C PROGRAM TO FIND THE STABILITY REGIONS
              C OVERALL STABILIZER GAIN IS X
              C OVERALL EXCITATION GAIN IS Y
0001
                     D0 = 6 J=1, 32
0002
                     DO 7 1-1, 32
0003
                     X = (-3+1)
0004
                    Y=J
0005
                    WRITE(6,10)X,Y
              C-COEFFITIENTS OF CHARACTERISTIC POLYNOMIAL WILL FOLLOW
0006
                    A-. 594
                     B=(35,361+(.53*X))
0007
8000
                     C=(123.648+(31.36*X)-(.597*Y))
0009
                     D=(345.607+(97.667*X)-(1.218*Y))
0010
                    E=(306.133+(101.4*X)-(2.187*Y))
0011
                     F=(163,277+(135,087*X)-(6,511*Y))
0012
                    G=(53.15-(1.975*X)-(1.675*Y))
0013
                    H=(.263*Y)-.79
              C CONDITIONS FOR STABILITY WILL FOLLOW
0014
                    CONDI = (B/A)
0015
                    WRITE(6,11)CONDI
0016
                    COND2=(B*C)-(A*D)
0017
                    WRITE(6,11)COND2
0018
                    B1=((B*C-A*D)/(A*B))
0019
                    B2=((D*E-C*F)/(A*D))
                    B3-((F*G-E*H)/(A*F))
0020
0021
                    C1=((B1*(D/A))-(B2*(B/A)))/B1
0022
                    C2=((B2*(F/A))-(B3*(D/A)))/B2
0023
                    C3=(H/A)
0024
                    D1 = ((C1 * B2) - (B1 * C2)) / C1
0025
                    D2=((C2*B3)-(B2*C3))/C2
0026
                    E1 = ((D1 * ¢2) - (C1 * D2))/D1
0027
                    E2-(H/A)
                    COND 3 = ((D/B) - (B2/B1))
0028
0029
                    WRITE(6,11)COND3
0030
                    COND4 = ((B2/B1) - (C2/C1))
0031
                    WRITE(6,11)COND4
                    COND5 = ((C2/C1) - (D2/D1))
0032
0033
                    WRITE(6,11)COND5
0034
                    COND6=((D2/D1)-(E2/E1))
0035
                    WRITE(6,11)COND6
0036
                    COND7=(E2/E1)
0037
                    WRITE(6,11)COND7
0038
                 10 FORMAT (JH , 2813.4)
GO39 '
                 11 FORMAT (1H .KI4.7)
0040
                    CONTINUE
0041
                  6 CONTINUE
0042
                    STOP
```