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' ABSTRACT * . T

The small gignal dynamic stability of gower systema
has been a subject of interest for some twenty years.

It ?cont4nues to grow in importance as the control LI \.
N ¢
' ' . e . ’ LY

requiremeqte of the generating stations become more .
sophisticéted and dem‘andinﬁ. In this Ehesis, the . \ '_
‘small 53’11111 pqrforfnanqe ((‘ a reg\'xlated synchronoua C
ma?m-ne/connected to an infinite buf'ls deacribgd by ¢

3

4 get of differential equations oﬁ the form (x) = . \
A) (x). 'i‘he txanafotmation of the ayste: 1ntoﬁv |
Schwarz £9rm is 'used and thevmzability' conditions for
the aystqm undef st.yu_d-y are ;sfabiihhed " The cio;sed . _ -\/ ‘ )

~  atabilicy regions are gbtained as the'tesult of this S

-
»

-

. atudy aqgi thq ;ffectn of various, ;mem parmte:s cn

! T . '
'

T gt;bility ngiom are’ ltudieq. PO ‘ o
. ; o . " ' K . -\'
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/- CHAPTER I |
\ ‘.
INTRODUCTION

,11  Background

Electrical power systems, cenaidered from the point of view‘ of their

«
A

electro-mechanical operation, are very fomplicet'ed. 'Power system
engineeta have devoted much fhbught and effort to stabilit& sFudiee
since about 1925 The t:endem:).v of a power system or its compon'ent
pa?ts to develop forces‘to maincain ex’Chronism and equilibrium is

known as stability, In general, stability studies are,clas’gifled by

_whether they involve steady-;etate or t_r&néient canditions. Dynamic N

./ . ) " .
stability is the term associated with -the small signal performance
and is applied to opefations above ‘the ordinary bteady—state limits.‘/

P
1t can be realized by the use of automatie control devices auch as '

 vélvage and speed regulators. The small signal dynhmic stabili;y of

electric power syateme has been a subject of major theoratical and

h
pracC1cal interest for some twehty years. I: coptinues to srav1§;

mare qopﬂiatieated and demadding. ’ e T

"y .

"POwer syatqm scqbility e:udiek up usuany condl;eted, wich alJ. of their

: js3eqsumptiona and qpproximet;ons, are far from an ‘exact scienee.

,roeeibly some cm, the. q;pggxiutiom ceh e ‘Justified bec@me of t;he :‘

',pmx mmm condmm cgmyzea. uovhcx, they wm Alﬂglﬁ ngvex:

4t 3 . Q

g
: co:rslponﬁ o t—be u:tuel emium exim:;ng qn :hg eyq;qm when thq
"fﬂﬁtv&l ‘%ﬂmtbmm ecmm; r mqg 1t 1; mlttuauy *:L!pow.&ple m kmw

. . . * : . »,“
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magnttude. It is certain that all the loaﬂs do not act as fixed = |

.'impeaénces:' It is equally certain that/;hqy,do not remain as'umstaml:‘U
current loadé. Po‘ssibly, sufffcﬁnt )1nformatior.\ 'will.n.evex: he av§1l_
. able on loads to represent them, and even 1f the information were
. a;:ailable, it might be ‘too complex to repre‘&en: thém aécura:ely in é\m
| practical digital study. Usually 1t will n;t be possible to represénﬁ.
'\' all~ ‘of the generating plants conneeted to an 1ntercomected syscem. o
. Thia results in further approxl;ation since there seems to be no. exaét
simple equivalent that represents thl generating plants. Furgher, 'he
i representagion of individual generating plants aleo introduces errorqg
becauge qhe'machinp ImPedances are pot really constants, It appeaIS'
that thiq can resulc in a paradoxical situation wﬁete th9 system will
be calculaugd to be tranaiently stable and algo calculated to be un> o

:r N
. stable under steady—state. Most, analycleal treatments [9 10] of "

‘ st;abilit:y ;&oblems have been regtricted to one or two generating sets v

beeause of thﬁ cbnpqugional dlfficultlea 1nvolved in applying the

e

older me:hoda. Hawevgr, the techniquea of mpdem control t:heor? have

pa‘rtly removed ttﬂ,s difficultyp ﬂubject to thq requirement thac Chq

syscem g; described by a set of difterentiak equ@t&qn: in che atacen.‘- L
lpqﬁ,ﬁgqm - ) "‘ . “ C ‘ - '. . " . o r(’pi&\ . .‘,‘ .w e oo “ ""' \'g fo“ R
' g [Xlwu%a [A] [xl A f‘(vl‘,) N
Vo :

f g

Laugh:on [8] has pxopoged a memc‘a oﬁ gbcninms ;he [A] mtﬂx of'a’.




. 0

(I s : ‘v
\, /, N Ca “

vsubmatrices describing individual elements of the synchronous system..
L d ]\

The matrix building approach ofi.is signifigdnt savings 1n computer
storage in comparisoq with, the matrix elimination approach of

Laughton [8]. The tranaieny response of a dynamical ' pySCem f01 small

.

perturbations about an eqyilibrium (operating point) is completely
described by -a set of sgch equetions., In addition, using the digital
' gomputer_it 1s-possib§e to decrease the time necessery for computation

of stability analyses id this form. - & \D
: S , o ' . . .~
In this thesis,'che dynamic system which consists of -a regulated
o o : ’ b
sypchronous maj;}ne connected-to &n infintte bug is taken for the .

{

purpose of the/atudy. The exstem is expressed in the vector-matrix
.

form (1) andiéhe characteristic polynqmial is obtained The trans~

% formation to 8chwar; foiur;L perforned and the ‘necessary and suffi—
cient ceyﬁitiona for stability epapbliahed Using theal c0ndig10na,

" the, a:’ ility rdgions are. obcaiqed and the change of.theee regions

"

» with ariat:ion of syqt;em pammetétxs ig obse:ved.

* lr . ( '
. Vot : o W

!
~ . t Y !

»
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‘representation of a system, i.e. migimize the ooﬁputatlonal effort

"Consequently, the following objeﬁﬁives can be formulated

1. To’find the'necessary-and'suffieient conditions for stability

2. To find the . stabili regions for the giv n system
. S{ %

3

3. To 1ook for the possibility of extending the procedures employed

in 1. and 2 to multi—machine 8y ems.

Ggnerally, the heoessary and sufficl&ﬂt

4

should yield the cloqed stability regions which should be of parti-

a

cular interest since no paper has been published so far on this sub-
A f . BN *

ject. o ' ) o '

s \ - ¢ [] ‘

W

1
f

conditions for stability -
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o MATHEMATICAL MoDEL" T .
- ) J . ) !

2.1 Description of the System y !

[y

» The dynamic syatém' t:aken fo'r tbe purpose of'this study consisﬂs of a‘:’
agulated synchrgnouq machine coxmected to an 1nf1nite bus. The v

c [ -
ystem is general ly considered to be non—lineat and can be expreased
in the .vecgor-matr‘ix form as ,follows: ‘ .. . ‘
A . ) . '
S L x= (W) . W@

[ A + ’e

o . , .. ‘
[ - [y . \
The individual generating ﬁnit connected to ag. infinlté "bus has«been
» s ‘
: mvescigated by ¥u and Vongsiriya in [3] ana by Kastqm and Doraraju
. S -
. 1.11 [4] 1in the configuration as shown in Fig! 1. ' The system under .
. <’ ~

st.udy copeist:s of the \synch'rox\qpa machine, the voltage regulator, nhe

speed govarnor and :he t;tf line. In Qﬁditi}on, }hé‘ machine with its
Ut
gontrﬂl equipmgnt 18 c:?tmec:gd Vg an ;lnfin!t:e &T The' steady-snate
TR S v .
phgsor diagram fqr thet A qt,e.m,g;i\der,a't»dy 1s shown in Fig. 2, where

‘ . ‘ i {
'R s [ AV, 1 . , \

“
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e : . '
q' .} .
e e C e wmae mean ’," - . . " — ‘
}6 : p // \\efd / Quadrature d\
4 ~ - .
/ e / f“ I”(‘d (q) Ax1is
d ~ ‘ . '
I , ) Ix
\ ‘e // / 9
L . Ir\ -
| .
! - N Ix
. s .
[ . .
Direct N ' ) Lo .
N ' Axiq . ’ . ,. . c‘ \ a
" Figure 2 g
\ L] ‘ ‘
X4 ~ synchronous reactance in d axias
: e
xq ~ aynchronoua reactance in q axis

4
]

the phase current

The mathematical equations deacribing the atate of the model at any

*

instant consists of

A. The control ayatem equations
L . 4

B.- Power transfer nqustioﬁa relating the mechanical input spd
" alectrical ouﬁlu; powe ‘ ' , .

C. Machine agqustions _ , '

o . o ’ -

In writing chn"oquqtiann«;ovatnin; chq'nyntou under consideration,

[

the following assusptions are considered:

. a “
.




- hf-

-
1. Each stator winding 1s distributed to produce a sinuscidal

‘h magnetomotive force wave along the afir gap
Il 2. Stator slots produce negligible variations in the rotor
L]
inductances

3. The armature resistance of the synchronous machine 1s neglected

» "

4. Damping 9ue to damper bars has been neglected
5. Transformer voltages in Park's equations have been neglected
\
compared to ape;d voltages .
6. SatJration in the machine 1s neglected

7. The regulAtor 1s sssumed to have no dead zone or limits

The above assumptions are usual in powar system studies -and they are

»~
the same ag choaelin [3) and [4]. “
; ) R
)ﬂ 2.2 A. The Control System Equations
. Asauming a conventional voltage regulator and speed govemmor, the
. control aypih can be written in a form which 1s commonly used 1in \,
aimilar analyses [3, 4]: ' -
fe. -~ ut (14 T8)
DT . i e
. . t 1+ ‘(’1‘, + ‘;/‘.Lf‘)a + T‘T"u
Loar L ' o
t -’ - .
e SR 1 S X S ¢ o “)
o v .
( - , | ,
vhere oo ‘ ‘ . , o

Y - -nll chmp nmmd initial mmt:ln; point A
v - Luplm t:mtom uttnbh o e e

e ' - msmtmou magular pnui:im of rotor

Al .

- T . [

~



8 -~ angular velocity

T1 -~ machanical power input to rotor
Ha ™ (xafd{rf)“e ~ overall regulator gain
Ts ~ atabilizer time conatant '

A

Te ~ exciter time conttant

By o= 1+u ~ overall stabilizer gain

‘kuat

W, ~ 8ovemor gain .
’

T15T ~ governor time constants
* 2

Hex ~ exciter gain ) - ¢
Mge ~ atabi'.‘liaer gain

He ™ HexMsthr ) - regulator gain

Mo ~ 'convertor gain AR

re - field winding zesistance )

x.nfd'xakd'x akq -~ mutual réactances betw’ee‘ﬁ stator and rotor

a

‘ 2.3 B, Tie-Line Voltage Equations

‘ ~ . /
l" The tie-line voltage equations derived from the ateadz—ntnte phasor

diagram shown in Fig. 2 ofl the syatem shown in Fig. 1 bare as follows:

e sind + r 1 Xiq

dn

— . ecomS +ri 4+ Xi - ‘ :
K q , q q - .

: 2 2
t 'd+‘q

1k 422 e e

»
»
£ ]

»
E
3

q MR
L ) . ' '

" .
)
. "
- . .

Commun; s cqn;tm: fmqmcy for :M mmm bus, the ugmm-

'Y

© sous m;ulm' mmm:. nlmuy md scoaleracion ot the mbm w '

'
. . (4 : * . .
. P - . i . ) : . .
o i . L i B .
4 : S K . . 5 T g

“w'
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10
respectively are

06 = 0 +6

o
86 = 360 + 86 = W, + 8é (velocity)
826 -,szw o, (acceleration)

In these efuations eeo,- W, is the synchronous speed and w 1s the
undamped natural frequency. The system of equations (5) and the

foliowins system of machine ‘equations can bé obtained from (11], where

. also more detailed information can be found. . y

A . ' ..

2,4 C, Machine Equations

Park's synchropous machine equafighs (11, 12] are used for the,purpose

-

of thia study. The synchronous machine equations are -as follewst:

L]

Xafd
Xffd

Ve




ha 11

e = G(s) egy - X4(8)1,

e - . .
d Xq g | (6)
1 %
4 m 1]
yhera 0
‘ ‘ !
Yar Yq* Ykar Yiq - armature flux linkages in d- and q axes, °
. L)
and damper flux linkages in d- and ¢ axes,
M respectively . N
' . ) - B
Xegq? x}kd’ xkkq Mn rotor self reactances ‘ )
L4 1q’ Lar 1kq - arma‘)u,re and damper‘lcurxﬁn:n‘ in d\“ and q
' ' ' axea .
Tt!lo ~ direct axis transient open-circuit time
o constant
T} ' - direct axis tranaient short-citcuit: tima !
: b
\camt‘mc S '

-« A
i
-

N [
\

rurthcr notstion will be 1ntroducad here to co-phtq the nomnclntm:e. :

of -ynbolq uqu in the ‘!guwm; text: - : S
S R T
: ture mm; Fesiatance 1n - or 4 u&n A

K

n!hﬁgrth.l:o m\ o . | ‘ ':‘.",
Tare i | o

P n!% pmr enepm: ot mm

.
AR o . Cu

4



D ~ damping coefficient of machine

]

. o ) ‘ L -’,' S . » s
“o¥arg " taottadtigeiegat Hotlgat Aqatlad” Tage B0 o
R ST ol our, o S R LR '7A’;,: b w;.

. ar

12

\ .
Q - reactive power output of machine
H - inertia constant
\
) \ \
M - moment of inertia .

w ~ undamped natural frequency

‘In this study the stability of the powef system due to small distur-
N S

A
a

bancies will be examined, The "following nihe equations are the usual

equacions for the similar stability studies obtained by linearizing

‘the operational equationg (3), (4), (5) and ( about an operating
o \
point. : | .
/ I .
e e
do —9°
be, = — fpe_ 2 Ae
to e do €0 .40
P X .
- 0 ' (i
fe, *3:§f/’+ xq Aiqo . L.
. ) o ‘ ' ‘
T L ' .
Aeqoi-' ‘aAd ~ wd(é) a4t G{8) Aefdo ; N
‘Aqfdbg .g(g;:peto : o . ‘ \
(R N ! '“ .
o, = £'(s) 8A8 I S
. ' ‘ ! . . ' . ‘L : . ‘ . |
Aag, = e cosbAd + x4 1«!9",?@1&: C SRR -
. . ‘ l _ . ' . ‘.
4 ) ' . - ¢ .o " e k : .
B0qo 71 aIRSAEH Eh dagt XAgo o e

..

GV o PR R i o L ) e :
- R O SR Y R N L b i

R ST TS o " ey o
» ‘Me? 56 + De 0 T R A
T Syt : : i S ; W o e
s 2 N e "
‘N\w . ‘x * 1 i ' '& [*3 !‘L,-’
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The quantities €40’ bqo’ o ,06 etc. repreaent the steady~atate

values at the particular operating point. Eliminating Ti’ ele and

e, 1n the preceding equations, five homogeneous equations are

obtained, which can be put into the matrix form ae follows:

( \1 0 ' -r X —-vocosco A Qd . g
ﬁ' ( i B ‘47 .
0 1 - X - T v ain% A1 e
o o/ - g
< !
1 0 0 "xz q}qo‘s' A 1d - 2
, \ L
Pl . & ‘ ke
. ~h(s)vao —h(a)va°+1 Xd(s) 0 ~¥gp S A1,
‘ 1 i v v wI(8) A 6
| Tdo q0 / “do qo v 44 )
(8)
) 5 » -
! B N . "
where . ' . ‘ .

‘ h(e) ' 4 'g(gi G(s)

‘ . ‘, A 2 T‘le - . ' "' k . .". .
A Ma'p t 8 (D = - 1(a) y . (9) v ‘
| ‘ | ¢

L | 0 .
-.4,," L ' : Loy ’ o . ) : . . o
{ bi A ch!mc:ortuic Qq:mion of th“c (om . o .

an +.1954-qu5+5;9"+A,‘p’&qgghrgﬁp 4»..,\;0 (10) .
'VV“* "‘j'l' : . N ‘ ""‘,-“ ‘ v '
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“ <an be obtained from the charﬁfteristic determinant of (8). Linear-
1

ization of the system equations and the derivation of the character-

9 |

istic equation is shown in more detail in [3] and [4].
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CHAPTER IX Il
L . ’ "
!

|

3.1 Derivation of necessary and s{xfficient,' Conditions for Stability

Y : \ CONDITIONS FOR STABILITY

The theorems given by Ogta [1] will be stated. This theorem giv{as
the answers to the problem“ef deriving necessary and sufficient
conditions for gtability of a linear dynamic ,syste.m and will be em-

Ployed lgter to derive these conditions for the system und‘investi~

gation. g . _ ]
a3 : o,
Theorem 8 ~ 9; [i] p. 466§ . ‘ /
Consider the linear tipe=Anvariant system
. ‘ - ’ ? 2
\ o .

| - EATI Y | - (1b)

N , . i ! .
where ‘ ‘
0 S I 0

1' L BN ] 0 ~O O
W'-‘ . ] L3 - . + .
o : P Vol
L 3 .
Q 0 O 0 g.,,.“ab§.~0 l » et
R L R R S P
i . ‘ ‘4 \."" 5 d

. o :
F?!tgn 1& umwcimlly ;cubla if and @1? if ‘*3’

1‘* RS . . % * R T
- . M ‘ ok AT I o ]
- - R




e C 16 / *
l ‘ .o - ( v
bl >0’ b2 >‘0’ ba'/> Q.‘ :--.-....- bn>0. i)

A . o

® 1is called the Schwarz matrix)

-~ -

"

» . * ' ~
y) The above theorem gives directly the necessary and sufficient conlﬂ
ditions for staﬁility for the linear time-invariant éystem (11). 'The =
dynamic system under study ie described by (1) and 18 of the form

it t .
. k = Ax. If we can find the similarity transformation and transform
. )

“
-

the system under study into the form given by (11), the.whole problem
‘ of stability can be solved and necessary and sufficient conditions
for stability eé;qh%ished. In {2] we‘can find the confirmation of

» this assumption, since on the page 100 is stated as follows:

"once the matrix A has béén,transfofﬁgd into Schwarz form, the é?

: o B
stability problem is solved jmmediately; the necessary and sufficient

A conditions fo:uasymptptic stability being that a1l b;s . are positive

(1=1,2,3 ...oeyp n)," Another theorem from [1] will be introduced’

- and the gimilarity transformation given by this theorem will be em-

r gt
ployed later, . -

" Theorem 8 ~ 11, [1]
?QJ’, . If'a real const

nt matrix ¢ . ! L “%i' ‘“,
‘\.?’i"‘."n “ A Q ‘ "1 o .,QQQQ‘!QQ#V 0 : o ‘ E o

."J.

"4?;‘-1,,"‘-'q§{’n‘§nv'§9g '
v B '!‘g * o
2. BRI
L reraveane

!




J
"

",‘-’;." t:n }'h@ compqg:tﬂn fcm end t;q :he schwqrg.

| A 17
- ; ~ ‘ .
that is
C =T lur . (13)
(T: non—singu‘l r) then the number of eigenvalues of c which have o
negative re,&l parts 1s equal to the number of gpositive terms in the
* o “ t

sequence /1 -

W | : S | :
bl,,b By b b2b3, e, bibyby wun b i ‘

.gi‘ovidec/i:‘ithat llion‘e'of the bis is zero. 5 p ) _

U‘sing tf\,is theorem, the fo]‘owing relationship will be used 1in order

¢ \
; to t:raqgform phe C matrix 1q}to the W matrix: ) '
7 . "'}\ . o »
! Co l"l o " / - - .
: kiifﬂ‘. : W= Tcr} SN ¢ U))
) ' " ! "l, \ ! ' ' .
K ’ \A NW ' R [ 4 ] 4
[ » o ,«‘" 4 .
i where ¢ “;.";‘"\y} B R o , ) . , .
b '-"‘&\'\3:’”- - . .
i W 5' mvi? Schvarz matrix = . L R
i .: {= Fpmpan on macrix aasociated with characteriatic
\g o <{ : Pﬁwom%al S . ;
¥ o . . ' . ! ) N » "
.& T ":i";"‘ '1' .a,nsmmuoq mat.:ix S ‘ S | oy
. 3 n"' '\u [ R s A “ :.‘15 <
\ ! ’hg Tranafomcipp nat;r:l.x L ;o
Ve r i S . . L N R " . \""
‘;ng, evary nog¢8§r¢gatc;x g*egfg can bq convgrigd LT
B \'l

thm ﬁs ch: pancicular:Ti. fgf?{};;j

y

'_.; f

tag o foumds .

Y e .

.a_tjntomt;;'_ n}"‘ﬂ#:‘u gmliica invam
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‘ ”Q ' ‘ ' .
a a a a Ac a a ‘ '
1 2 3 Yy 5 - 6
7 — 6 5 4 3 2
+ ; 4+ — + — 4 — _ + — —_ .
P a P -a P a P a P * a + a P * a_ 0 (15)

b o] (] .0 o 0 . () o

-

i To outline further 1nvestigation at this point'the following must be

done in order to astablish'tha necessary and sufficient conditions
for the dynamic system: A L A ‘

‘ y = P
2 \ . ’ o
1. Find the companion matrix C of the system L .

rmation matrix T and 1ts inverse

.

2. Find the tran
3. Pérform.the;m trix‘multiplibation and oBtain_the Schwarz form

4. Establish the necessary and sufficiqnf conditions for stability

t
3
'

. for the system under study Lo

. ¢ ' 2

" Using . [1] and [2], the kompanion matr*sso"c:lated with the character-

"istic polynomial given by .(15) was found to be as followss

. ‘ . v . St




'To obtain the transformation matrix T,

[ \ .o ‘ ! B \ % . ¥

two diffcrent methods can be

followeq. One 1s due to S,. G, Loo and is shown in décaii in [2]f
The other method which seems to be more practical for the .purpode of
thic\study is that given by C. F. Chen and H. //gu and shown in [5].
These’two authors also give the method for constructing the inverse

of the transformation matrix [6] and this will be employed later in )

the textgy ' : .o
.

Uding.the'material [5], the transformation mgcrix T was found to be

é; follows: IS . ,

v ’ C
r N ' o J
1 0 0 0 0 0 C
| 0 0 0 0 0. L
C "‘Q * !
1= o 1 0 0 0 0
61
' "(“ )




‘where 011/1,1 ~1, 2,3 .&...n/ are the ?lemonta of the Routh array

* for the given characteristic polynomial. The poaitions of the Routh

array clements are indicated as matrix double.uuhnoript notationa.

I
& .\ N
¢ As ment {oned {n the preceding text, 6 glv@a;ﬁhe materfal for ob-

A . '
taining the inverse of the transformation matrfx 7; and it was found

A
to be of the followihg form: k
» | | ."/ ' 4
f R ; 1
n) . “)‘0‘ }y ":!.;: R )0 I»-‘,,i‘ \ '{{9 0 0 0 '
' "w" ' Ty N |
0, "1 4(’0 .yt 0 0 o
\ ) y*, B A '
‘. s J\l‘ R ; '
. C . .
- Ei-?— 0 1 0,.0 "0 04
b ] Ql \("/ . :
. I"l
Cs? ~ !
0 . - — 0 1 0 0 0
C
51
c ‘ l
62 |
C C e !
61 0 _ ch? 0 } 0 0 |
i Cya C"2 LY ) ”
T.‘l -~ |C‘Ol "01 J". '
L .
ng | . |
L C,, 1 . C l
| 0 i Lo 1 o
Cua Coo | L 20y - Gy
| 33 Ma2) s k‘,,«qt;,A“’ ‘
C.. L. \\J’%n“
31 Tan ) ) e
™~
N ot .
C » 3
-c-f'-i 1 0 ‘
e
1€q C
hTChS cnz 1 0 1 i
Tl Tl .
[y 41 -
.4\;:&:0‘ fﬁ. ‘ 1
f 1% Cn Caf (18) -
A . . L !

L . LRI L} + . &t
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where C1 (1,0 =~1,2, 3 ...... n) are the samé elements of the

b
Routh array for a given characteriatic polynomial as before. Further
we have to construct the Routh array in order to evaluate the trans—

formation matrix and 1ts inverse. In (1) we can find the method for

constructing such an array and it was found to be as followsa:

A7 1 nzlaQ ‘Q/‘o ls/l
A a/a, 13/10 a /a a,/a |
| A3 b, b, by 0 .
A" N <, cy 2
A3 d d, ) 0 0
A2 . . o - 0
- »

Yoo g 0 0 L\\\o
) . !
The coafficienta for our nyvnn—dn;r.d lynokial & , 8, &, .... A,
are knnun'-pd wa have to cxp;néc all the alements of this array 4n
terms ot‘thoo. coefficients. In other words, we want to know bx, bz.
, ‘ .
LTI g0, S0 41’ fz* ®1r 8y, ’1 and g, in cerms of a4 (4= 1:

2, 3 . e... n). The following relationships hold. -

¢ ’

- ¢
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2 -
8,85) a,*/(aja, ~ a.a,) ana,

- 2 -
a,8;) a,%/(a;a, ~ a,a;) a a

dl - e, b, ~‘blc2/cl

I PR ' eby = byey/c, ' -
e - dyc, - cldzldl
°2- - n{/ao
fl - ea)d, -~ dl‘z/el
g; - q-,/AQ ?i | | (19)

»

?ﬂ:-n relationshipa aliow the expression of all the elempnts of the L
Routh arxay in terms of g¢osfficients of the characteristic polynomial.
qu‘aubscttutin; the tol;&&in; vglunn'fro- the Réuah array into T and
T¥! matrices in ordsr to get them to the suitable form for matrix

7 ' :
|, multdplication (14)¢



Cp2/Cyy = By/a Cpq/Cyy = a5/a,

c2“/c21'- a,/a, Cqp/Cqy = /0, h
Cy3/Cyy = ba/by Cy2/Cyy = /¢

Cya/Cyy = &5/ §52/Csy = dz/d}

Cs2/Cey = e2/e1l (20)

Substituting equations given by (20) into (17), the matrix T is

r -
1 0 0 0 0 0 0
0 1 0 0 0 0 0
@2
=2 0 1 0 0 0 0
1,
.dz
T ™ 0 7 0 1 0 0 0
1
. aQ [+ o
-Zi 0, -c-?- 0 1 0 0
1 1
b N Y
0 .52 0 ‘-s?-‘- 0 2 0
1 ‘ 1 '
&y . By ’ LY - R
0 1 ‘ 1 é'llp‘ ‘.(213
- s . ‘r\\“ .
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.
Similarly, substitute the elements of the Routh array (20) into (18).

To make the notation simpler, let

\ [Cez
o 1
61
K= - e c ~ ¢c.e /e(‘.
(:“3 c"2 272 KD R U |
~CL1 Cy) * -
[ s,
T 1
51 .
L= , = db, -~ b.d,/d b
C,, Cyy 272 351717
Cs) Cay |
[ Cyp ‘ )
—_— 1
41 ;
M= 'm o c,a, -~ agc,fc.a
' C23. C22 273 2T
C21 Ca1 |
[ C
62
.. ! ¢
61 '
N = Cka cuz 1 [~ a,(ce,~ce)tc(ae~ae Y/a c. e
T BERRE I I I LA D A e b T R R
‘01." LY - ‘
Cau Caa Co2
[ G Gy Gy
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! 0 0 0 "0 0 0]
0 1 0 0 0 0 0
e2 ‘e
- 2= 0 1 0 0 0 0
1 -
T 1 - 0 -7 0 1 0 0 0
1
%2
K 0 -t 0 1 0 0
[}
1
b,
0 L 0 e 0 1 0
1
' 33 .
~ N 0 M 0 -2 0 1| )
a0 (22)

i
Now matrices T and T ! are a suitable form for matrix multiplication
and obtaining the Schwarz form (14) gives the relationship for trans-

formafaon into Schwarz form and in this equacion T 1a given by (21),

77} by (22) and C by (16). After multiplication, the Schwarz matrix

is
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When tﬁa system is transformed into the form given by (11),

necessary and aufficient conditions for asymptotic stability can be
established. Theorem 8-9 introduced earlier iq‘ihe text and given

in (1] can now be applied in order to obtain the stpbility conditions
for the dynamic hystem under study. , It is staﬁed in the above

ment {oned theorem that the necessary and sufficient conditions for
asympfotic stability are that all b}!s .are positive (1 » 1, 2, 3

i
cdeaaat ). If‘this is applied to the Schwarz matrix given by (23),

‘e

the following seven conditions for stability can be found.

0_‘ oa- /nl i , ‘

N

»
(]

. N
~
. o
Y

3 ada 2 by/b ‘ 3

5. e, > 8,04 : </
6( d2/dl' 2 azlel .

.. . . ' “,- | . ’ 'v‘.‘. ‘
7. eyle; > 0 N S (28) o

1

' Thea set of maquautiu gim by (24) forma chmmcqmry dnd

a&:mmz conditicns. for qnympcouc ngpbsluty tor t:hg mm«: i
.

“syatem gim by azn. ;t: was mc;omd pmvimnly t:hqt g%l cmacmm

R 2

mmlm ‘{n these cmditiom can, hg qxptnmi An fomp at mtﬂniantq'
gf t:hc k:g.uc;sr&qcic pqlsynm;l. 1y in tcm* of 2, ‘h‘v 'z“ ..g,.

L “. 1 . PUEL . . cr

] / s . i ,".A s n PN “', ek B
. A [N [ . "y P e AT A

. P

' PR ‘ : ) o/ 3 . f
. » Y RO i i 4 . : i : . . P by

LA



For the”“time being they may be left in the form given by (24) because
this seems to be the simplest form in which‘to express the stability

conditions for our case. Speaking generally, the stability conditions

‘given by (24) must be satisfied simultaneously for some operating

poiﬁi ;nd only then is it possible Eoﬂassume that the dy?amic system
is stable at thag fgrticular operating point. Choosing some systems
of goordinates. it will,be poésib}e to find stability regions in that
plane 1? it 1s checked fof stability at every point in that particular
plane,. in other words, for some point 1n the chosen plane to be
atabie the conditions given by (24) must be satisfied simultaneously.

~

3.2 Multimachine Sys;ggs

In ;ha:preceding text a single-machine system conﬁecﬁed to an infinite
bus*has“been taken for analysis. However, with the state vgriablel
Approach gi&en by‘[7] and (8], the study can be extended to muled~
macﬁine systems, Séeaking generally, the A matrix must be obtained
for the Eonsldegéd‘ayptem Qnd the charactexristic equation of the
gyatem established. Then the companion matrix of the investigated
ancdﬁ Rugt b- found §nd using the c:nnaformat§qn (15) the Schwarz
form obcqincd. fhcoren 6-9 can be nyplicd»qgain‘and the necessqr§
and sufficient conditions for naymptogie atahiiity of a dynamicsyatem

[ - [y

ea:ablinhed. o . '," oo

Tha mgthqd of nn-lysiu qged in chia qtndy 18 quite general. To obtain

;f/:hn ;sgbilxcy xn;ion-, the bnnc :eehn&qua can-be naqd in nmltinachina

LR

,k'15¢9'! 9! j l!n ﬂqnd in thc o:nglea-aehinq ‘;;1.4 , V‘w' , '

L2

.
S, Y B P - ' Lo y o sk\.?‘\‘
e . . B ot : V

i: .

s
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L Y 3

Dynamic stability analysis of a large interconnected power gystem is
extremely time-consuming and laborious and may even exceed the
storage capacity of modern fast computers because of high order of
the A matrix. Hence methods have been developed to obtain ;implified
models of the systems based'QP the speed of response éf the Variablés
or the nohea, One of such methods is given by Kappurajulu and
Elangovan [15] and gives the reduced model of dyﬁam;c systems. It
seems reasonable, therefore, to consider the possibility of reducing
: .

the system with more than three machines to. some simplified form 1n

order to simplify the stability calculations.

. 3.3 ofitline of the Method by Yu and Vongsuriya

£ .
The steady-state stability limits of a regulated synchronous machine

connected to an infinite bus were investigated by Y. N. Yu and

. _
K. Vongsuriya in [3].q The open,staﬁility;f;giona were obtained as a

)

’ result of this study and the method of the approach used in [3] will-

be outlin@dlbriefly in the following text, The system under investi-
getion 1in this paper is that shown in Fig. l and the scability of the
syateéddue tQo small load diacurbance 1e studied. Genepnlly, the
ROu;h-ﬂurwitz criteriog agd D—parcicion me:hod are used 1n'thiss
steady-atane;-tability study.. The characteristic equacion of tha
1nveacigated qutem (10) 13 obtaingd and it cen ba written 1n such e
torm that cht:voltgge regulgtot gain p' und :he stabilizer ggiq h

5 o be ;qpqr-tgd fron the rgmninder qf the gqu;tion. A

Wy PRz M) * x«p)_ -0 @

o
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To find the stability boundary on a Me " #! plane, leﬁ

N ' .‘ p = jm (b)

which corresponds to theé imaginary axis on the complex’ f'&uency

plane. Separating P, Q and R in (a) pato real and .4maginary parts,

PUW = Pi(w) + 1P,(w)
QUIw) = Q) + 10,(w)

-
R(Jw) = Ry(w) + IR, (w) (e) : \

the foliowing can be obtained:

by By~ uy Q@) 4 R = 0

! Pz(“’) - n Q,(w) + R2(w) - 0 . (d)
Hence "
pl‘-.l [ = Ry Ql(”)]
"4 ~ Ry Qylw)
' ' . P ' ) R
- -%. ) l(w) Rl(‘“) . A\
. ‘ .,
where. , : o , TR
. ' \, ! v
' BN ) (w) )
v e l ‘ X -J o
) AT A0
: ) : \



/ ¢ .

-~

Foy a non-trivial solution to exist, 4 must be non-zero. Theoreti-
cally, the compléte stability‘Qoundary on the .u; - p; plane can b;
determined by varying w from zero to infinity. Practically, only

a4 variation of w from zero to 0.02 is neceséary to obtain all the
useful information. A point tes£ on stabili:y by the Routh-Hurwitz
eriterion 1a necessafy to deterﬁine which side of the boundary 1s
steble, S o

The effects of the saliency and the shoftHCIrcuit ratio of the
BYnchronous machine and that of the tie-line resistance and reactance

4

on the stability of the system were investigated in this paper.
~ § ‘ ‘

Y



L e ' CHAPTER IV
i .
' MODELLING OF THE SYSTEM

4{1 System Parameters

W

For the purpoﬁe of the study, the systém will be introduced here with

all the necessary machine daéa, regulator data and governor data.

The system and its constants are the same as those used in [4]. The
following cons'tants are expreased.in p-u. valueé and time in seconds.
:. N : '
N
Machine data: o *
‘ P = 1.0 ° M = .0337
'with
. ‘ ‘ . I ' " ' \
o “mt : L - ‘
B 5.3 Tdo - 6.0 Td | 1.13
Xg = 2'0, o xq‘. =~ 1.7 ~ . r = ,0223 ; v \,L rv)
x =018 e, = 1.0 X |
Regulator se:tingﬁa-~ . , T ‘ A .
, Ty ™ 112 T, = 2.5
e . : . e ..
Co Governor Sett,‘&l,nga :
N e 10 W 10.0 o '
\ ' o ,E‘l :‘. Tz -~ 100 “m 109 | S

- O e AT .
»'»;;'q; lhﬁngGgrxggg;?n;grephgcgé d;gglqy_pf,;hg ac; ;p :egiqna of thq




32

\

respectively, is used, These two parameters are .controllable an
\

were used in the similar ‘iudy given by (3] to display the stabil!ty
1imits of a regulated synchronous machine.

’ T

4.2 Initial'Cbng%gioné of Synchronous Machine

i

. The initial values 1 » Y5 and 60

do’ "qo’ Vdo® o' Ydo? W Vedo

of a salient pole machine are found by the following expressione.

In the stead -state, Park's equations become

Va0 ‘
q = xdido ' |
\ Lo d
v F " Vdao'do qoiqo . ‘;7 - .
q - qqido doiqo .
\ ' [}
> - : S
Va0 Biés ¥ 1do X 1do - '
& ' ) , jj,..{ ,
. ' ' ; ! 3
. . ul . " !
‘ Yqo " .VOQQBG 'fl X 14, * r41qo »
. \ R 2 ﬁ; 2 - ‘ L . ' ) i ) , : ’
v s v.2 4 v 2 . : CL ,
a -.» ‘ [ ' vcp ". .- Vdo ' " + vqo - b * ' . * ’ “ )
R 4 In thdlg equltiqnn vdo’ v Q* do q°,4vq. § lnd vfdo are H“‘: wf

Q m ;&m. » ung l:hq nq:lygn m &hu

m; 1’:

. ORI 1 o o
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relationships derived from the Park's equations for the steady-state.

P Yt:o‘

1 - — .

qo Y (pv )2 2 2

A (P Xq) + (VCO + Xq Q) .
A
vao - xq 1q0 ‘
! S B -
Yoo 7 " Veo T Vdo ‘
l | ) -
- [l 2
" Q + xg 1do

1d - —

o v

/ qo -

‘ # . RF ¢ '
Vedo = (Voo -~ xy1,) ——

fdo | qo d do’ xad o .

TN
Yoo ~ T Vdo '
[ " ‘ ! \ N

L4 Vv i
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‘ '
later in the process of establishing the coefficients of the

| 4

characteriatic polynomial, that {ia, they are used for the computation

of the following constants: Al’ AQ, feanae e Aa, Ag. Resulta are

tabulated in Appendix I. \

4.3 . Coefficlents for the Charncter}‘fic Polynomial
The stabilfcy cond;tiona were established in terms of the coefficients
of the chara;teriutic polynomial (24) of the dynamic aystep. The
set of equations for calculating these coefficients 1s given here,

From the qparicteriatic equation (10) the coefficients of the poly-

nomial are

a, - T‘ M Bl .
[
." "
. . »

oy " T.B«*Tdﬁnxv ‘ v

", =~ T.”s*frc"”x*.'rq”«"‘i“x,’”x T, Ty i p’b

G TgBy AT MB 4T B 4T, By 4y BTy T, -
" : | RS
> cmug (MAST, ¢+ B, T, T, T)

»

T
P

ﬂ.ﬂ;ﬁ- T, Bt 'rc"f""+ Tg By + uy (B, (Tp + T, ul) R T,) -
. \ b

“uy (BA T+ AT T, T, 4B Tp) + M B,

1 ¢

. " .
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8527 Ty By + T Byt (B + B (Tg + T, u) ~ g A T} -

~ u; (M Al + AS TE + B6 TF) + B“

A

% = Ty Byt (B, - uy A - uy (Ag Tp + Bg) + By

In the above set of equations, constants Bl' B2 ....... - Bg, Tl' T

L]

TE' TF’ T., Tb. Tc. Td and A, Ay cavnnans Ag, A, are fintroduced.
The equations specifying the above constants and the set of equations
(28) are in agreement with (3] and ([4]. .

To calculate the copstants B By venieias B, the following

l.

ialntlon-hip- can bhe uased:

* ' i \ \
- : \
B, A, Xq Ta + AN Tda ; )
!
lz - A Xqg t A; ’
{

B T PR
R ' T

By = A xg Tyt AT 4B, (D--2% 4, x

- T
PBy m (A EATY xg b A AT 4D, ® -~
. J‘

T . . .



where '

and for calculatioh of Ta’ Tb' T, Td.‘T and TF the following nset

c E

of relationships can be used:

-

Tn - T1

T - Tl T2 + Te Ts + (Tl + T2) (Te + Ta “é)
T - Tl TZ(TQ + Ta p;) + (Tl + T2) Te T‘

Ty = T, T, +T, T, +T T
S
T, =~ T, +T,+T,

\

The laat spet of equations is for calculation of Al' Az Ae' Ag.

The following equationa are used to calculate these constsats.

A, » - w [vd"' rxq - vqa (r? 4 5(3(*‘? qu)]

Ay = v Ixtxl

' 24 42
Ay = e [t fxwfql.

' . * v
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- - : 2 2
A wqo [~ vy {vd X + Yoo T + 1qo (rf + x)1 +

2 2
+ Vqé (vdo q x t 1d0 (r tﬂiyll]

-

' )
A; = v siné [vdo 1qorx vqé {vdo(x + xq)+ r (qu + idoxq)}l +

+ vocoado vdéxq

"

— ' -—
(vdo + iqox) vqo { Vdo® + X(qu + ido)}]

A =~ ¢ (v

6 qo0 ' qo 1do X+ 1,0

qo

, - \ ! - -
A, v, sindo 1qo (x + xq) + vocoado (vqo 1d°xq 1qor)

- | , ‘ 2 2
Ag Vi Vao (Xt xq) + vqorA+ 1o {(x% + x°) + qu) +

- v - s 2 2
+ 4, r xq] +~¢q [~ vaor * Vqo X 1556° 1 X )]

‘-

Ay = WbainGé\[vdo (x + xq) +v, rt AT xq] +

qof

+ v écoaé [~ w of +‘v§° X+ 140 qu] . ’ 1)

\\
\
The equationa for' the conputntlbn of initial conditiocns for syn-
chronous machine *rn 1n:rodncgd earlier (27) and similarly the

equations for the c qputation of all conntcntl (31, 30, 29) nanenaary

co,ovaluntn the. coefficients of the charnccgtintic

-1

" l'
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particular study on this\piane. A digital computer program
(Appendix II) 1s used to ch;ck as many points as required to
establishqrtability regions. This program checks individual points
on a gr*d.

In eummary, the following steps must be taken in order to obtain the

- [\

stability regions for the dynamic syatem under ipvestigation.

LY

1. Calculate«* initial conditions of synchronous maghine ’

2, Calculatelconltanta T, T

a b TC, Td', T and TF

E

-~

3. Calculate con?tanta Al' AZ castaanaan Aa, Ag o
4. Calculate caogstanta Bi» By, By B, Bg aéd Be

5. Establish thq coefficients for the characteristic polynomial

oo
of the system, namely N EEEETRRE a8

6. Check for'atab111ty an prml plane for as man} pointslaa 1s

required,
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CHAPTER V

RESULTS"

"5.1 Stability Regions

"

"In this study the effects of the following parameters on the stability

reéibn of the system under study will be examined. '

1. Changes. in power factor

2. Changes in damping coefficient
3. Stabilizer time constant effect '}
4.‘ Exciter time constant effect

5. Effect of a one~time constant governor

6. Effect of a two-time constant governer

These studies are introduced in the following text and all the con-

. Q) .
cluaions drawn later in the ‘text are based on these studiea.

ot

-
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5.2 Effect of Different.Power Factor on Stability Region

. ¥ .
In this study, the real power output of the machinegis kept constant

n
i

(P = 1.0 p.u.) in all investigated cases. The ' react ive power output

of the machine is varied and the following distiqyt values of Q are

used. t

‘The system data used here aré those introduced earliex and given by
(25). All constants are in p.u. values and time is in seconds.

Using the set of equations (27), the initial conditions of phe syn-
chronous machine were calculated for all different values of Q and
i

are shown in Appendix I in tabulated form.. g . K

. .o . , ¥ - [
For each different value of Q different valued of constants TA, Tb’

T

T -‘.;qulq Au" A9 md Bl’ Bz u‘.“g.‘a.!l!l Be

TCI Td) E’ FP Ali A2

and alao the coefficienta of the characceristif polynoﬁial a»a u 

baabaaaa hn have td calculated, since the 1n1t131_cond1£10na qfd ‘

-

the synchronous machine vary with different values of Q.
Y"‘

Example for P = 1.0 and Q= .6 | g
° " . .4’&“ . ,’!\w
To calculate T a’ Tb‘ ] d’ TE' TF} the sqt of equations (30) 1s used
and. she valfﬁa are ﬁound to be :a»' ;
. RS
, 7 ' K ’t;_,‘ .
: ‘ ltﬂ .-‘ 2;6 o ‘ . [ ,

- 312025;4;l S "

Te p;,b,QA f 5'“;

F . . it
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[

6.72 + 2,5 Hy

The next step {is to,calcuiéte constgnts Al’ A2 faaaaaaa Ae, Ag.

The set of relationships given by (31) will serve this purpose and

the constants are

- .239 Ag = 4755
'Az -  1.88 Ay = -~ .9244
| A, = .339 Ag = -~ .783
A, = - .126 Ay = 1.058 ¢
Ag = - .263

To calculate the cqnstants By, By vvaiiae.. By the set of eqhationa

givep by .(29) 1s used and the constents are

B, = 6.33 B, = 15.667

1 ] L)
- ‘Bz - 4.‘1 ‘ . B5 - 21‘397
N ) 'Ba = "‘ n79 ' o Bs‘ - V,ISW"‘ .

“
+

| w1t;h t:hg-g conetantn ehe cueffic:le.ma of the chqraccarigtig poly-

S nqnin; for nhs clynmic nyntqn can be gdcmted. The set of equqtims ‘

(33) !!111 lﬁi’vl thio pnrpols, xivtng co!ff{cienc“”af the chbmc!:eripcic“ :

~.‘ ‘ ,}a,.
TN

Pﬂlﬂmn as tollmm‘ | SO e

‘* N : toas ' . |‘ 1-
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a = 45,299 + 532 p;
a, = 166.479 + 40,232 My - .0201 ML -
4 . )

. a, = 414.11 + 132,359 u; ~ 1.523 Me

a = 358.61 + 302.427 ML - 2.918 MY

a, = 186.874 + 152.042 Mo~ 7.055 wy \
ag = 59.932'- 1.975 my - 1797wy

: N ’
8, = .263 uy - .79 R, ‘

- As was mentioned earlier, it is convenient to leave these coefficients
;n tems of ML and ML (the overall stasilizer and regulator gain,’
respectively) in order to draw the stability regions oa this parti—,
cular plané. When the coefficients are in this form, the program for
digital computer shown in Appendix 11 Shn be used. This program em-

ploya the qonditiona for stability dirgctly in th; form given hy (24)
and derived in the text previously. Thds program checks for scnbilicy
for aa'man}‘pointb ;ni‘p' uy plane as geéuired and specified
in the program, ~ All pointy’ on u' 4y plane which satisfy the
-.ntabili:y conditions congtinute the etnble rngion o chis 1§ne.
Using :m tufgmuqn g!.van by di;itn;l qoﬂpucer, results can be dis~ -
Jplayﬁd n‘nphlcnilly as 1n l’ig. 38, In t;hin fignm thcp ntable mgim

”

i af :hn rs;uln«l mehroma mhme at P u 1. 0 md Q -~ .6 Peu

"; connqctcd to - 1nf1n1tg bus 1a nhaun All pointg which liq tnlide

.A5‘= ‘\,

!
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the triangular region sat{sfy the stability conditions (24) and the
points outside this region are unstable, 1.e, éhey do not satisfy the

conditions for asymptotic stability. T

" Using this figure for a chosen value of the overall stabilizer(lin,

it 1s possible to find the maximum allowable voltage regulator gain;
the minimum allowable voltage regulator gain shows fairly constant
value for all possible Qettings,of LW

Using the same procedure, the gtability régions for all other power
factors can be established (ak 233 0; ~.3). All necessary constants
and the coefficients of the characteristic polynomial were calculated
and the stability regions eétablished. The results are graphically
shown in Fig. 3b and 3c, where the éffect of different power factor
on stability region ofldynaﬁic power system can be seen.‘

It can be seen 1in the abave mentioned flgures that the minimum ,

+ allowable voltage regulator gain is constant in all investigated cases,

Both the maximum voltage regulator and stabilizer gains decrease their

’

values and xeach certain minimum and then again increase their values’
8s the system goes from lagging pover factor (positive Q) towards

leading power factors,

0
‘
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5.3 Effect of Different DampingLCoefficients on Stability Region nt

In this study the real and reactive power output of the synchronous

"
v *

machine is constant during the investigetion at '
(
P o= 1.0 Q = .6

The damping coefficient D 4s varied and the effect of different

mo

'damping coefficients on stability Tegion studied. During the study

'these three distinct values for damping coefficientvare asauned: e

.

D = 'l; 1-5; 2 fa.u. t . ‘ v\,
[ ‘ N ;l
All other data introduced by (25) are kept constant during the investi~

- 'Y ,

getion. f4~* ' ' - PO ‘ ,
The reaults of th1$ study are graphically shown in Fig. 4, where th@

effect of different damping doeffiqients on stability region of the
dynamiq systgm under investigation can be *eeen. S L
e r
From Fig. 4 ie can be seen than the lerger Qamping coefficient has a
'y .

B

fqvourable \effecg .on voltage regulatbé,md ptaMlizer&in ae.t;.ting's. s
i A { ' .;., Y !

As it is emecced the st:eb;llit:y reg;pn 18, 1arger for 1gr&,§l§mpm8{ .
f \)‘ i . ‘_ ‘ ‘n' "

'Mt'dllowa 1arger’m4xinum allowable 83iﬂ3-~ ﬁe

coefficienq an

ahowb t:hat there 15 a v!ry disunctive ghange in 5kszt:hrmm:lumm

allowqp,‘l,e (vqltage \regulatpxsanﬁstabil’tf?er) gain aectings 1f tlie K

. !
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5.4 Stubllizer Time Constant Effects on the Stabilfty Reglon

N
The real and reactive power output of the machine {s constant at the

following values:

P o~ 1.0 Q = 0

a

The atab{lizer time conatant is varied during the {nveastigation and
!

the effect of this variation on atability region of the dynamic syatem
e

~

{s atudied. During thia h(udy three distinct values of the stabilizer

time conatant are used:
»

T = 1.%; 2.5; 3.5 ésecondn)

All other data used in this study are those introduced by (25) and
they are kept constant during this investigation.
The results were processed graphically and they are shown in Fig. 5.
In thin‘figure the ptabilizer time conatant effect on the ataéiiity
rqgidn of the dynamic syatem under investigation can be seen,

: A
From Fig. 5 1t can be mseen thng the minimum allowable voltaga r@gﬁla~
tor-gain 1a.conat¢nt in all inveatigated cases. In fhe high He
ragion. a larger stabilizer time constant Allowa\n smallear voltage

ragulator gain at the low My Pertion. The maximum allowable

ntnb;lmsqr gain has the same value in all inveatigated cases.

.

e
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S.SI.ﬁ!giter Time Constant Effect on the Stability Region

In this study the real and reactive power output of the machine is

kept constant at ' -
P = 1.0 Q -~ 0

The exciter time constant ias varied during this lnveatfgqtlon and the
effect of this variation on stability reglon of the investigated

dynamic system is studied. The exciter time comstant 1is gi&en the

following values:

R Te - .74; 1.0; 1.5 (seconds)

»
During this investigation all additional data are supplied by (25)

and they are kept constant,

T@ﬂ regults are shown graphically in Fig. 6. 1In this figure the
exciter time constant effect on the sfability region.of the dynamic
system under study can 5& eean; : eme

In géneral, the larger éﬂa exciter time conat;ak the qfaller the
maximum allowable voltage reagulator gain. Tﬁa'hiqimum voltage regula-

tor gain showa conatant value 1n all investigated cases and so ioes,

the maximum allowable stabilizer gain.
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5.6 One-Time Constant Governor Effect on the Stability Region

As in the previouas study, the real and reactive power output of the

machine is kept constant at

\

P = 1.0 Q =~ 0

The effect of a one-time conatant govemor i{s studied here and there~
fore this constant {s varied in this study. The following three
-

values are considered:

Tl = 0; 1; 1.4 (seconds)

.

Fig. 7 shows the one~time constant governor effect on the stability
reg4on of €he dynamic system under study.

From Fig. 7 1t can be seen that at low Wi portion of the high My
region, a fast~acting é;vernor allows only a smaller voltage regulator
gain than a élow~act1ng‘éovernor. There is no difference between’
cases 1in Ehe eow region and the maximum allowable stabilizer gain

shows constant value.
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5.7 Two-Time Constant Governor Effect on the Stability Region

The real and reactive powet output: of the machine is kept constant at

these values:

P = 1.0 | Q = 0

2 .
Two-time constant governor effect 1s studied here and therefore this

-

constant 1is varied during this study. The following three distinct

values were chosen for the purpose of the study :

(T, - 0; 1; 2 (seconds)

The resu}ts are shown in Fig. 8. ‘This figure'EhQWS the two-time

’

constant governor effect on the stability reglon for dynamic systef
under study. From Fig. 8 it can be éeen that for a system with a
twe~time gonstant, governor the effect of the valuea of the time
constant on‘the voltage regulator gain settings 1s smaller than tha;

. : ®
of a aystem with a one-time constant governor. The minimum voltage

-

- regulator gain and the maximum allowable &tabilizer gain is cog@stant

and there are only very small changes in the low Wy Teglonm,

)
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CHAPTER VI. : ' .

CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH

.

6.1 Summary and Conclusions

*

‘The dynamic system studied in this thesis consists of a regulated
synchronous machine conpected to an infinite bus. Uéing the trans-
formation of the system into Schwarz form (14) and the necessary and

sufficient conditions of a dynamic s}stem established in this thesis
f

(24) the closed stability regions on Louy plane were obtained.

The method presented here 1s fairly simple and can be used for both
designing and power system operational practice. The closed stability
regions obtained here should be of some interest as no paper has been
published so far on this subject, . ‘ |

The method of approach used in this t esis 1s quite general and givés
the opportunity to study the\qgﬁégz':2—;::>\parameteis on the stability
region of a dynamic system. ®1x parameters were chosen for this
purpese 1n this thesis and the studies were cénducted and introduced .'
earlier in' the text. The following genéral fesuICS aré gbserVQd in
these studies,

It can be observed that the general shape of'che,acability fegtod,for

the system under study 1s triangular, fTh%S'iG an .agreement with the

operational power, syatem practice, where for practical purposes

| ﬂmhlléx valuea of the ov@r&l},atnbiliibr'sain and‘highqt'vélueé‘of,

A}

the averall regulator gain are chosen, Thers seems to be a definite

.

" . , M L
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trend to stay in the lower part of the stability region in.order to

ensure good controllability of a power system. It can be verified

by [3] or [4] where the voltage regulator data are introduced for the
, .
syatems studied in those papers.

," M

/'/

lt can’also be seen that in the studies presented in this thesis most
of the changea in the stability regions are in the low My pornio; of
the high pé region. The minimum allowable voltage regulator ga(n
shows fairly constant value in all presented studies.

énce the stability conditions for the systém under study aré obtgined,
the rest of the calculations (éoéstanga and coefficien; of the
chardcteristic polynomial)vcanbe computéiized. The study as presented
here does not_require specialloutput or computer storaée facilities;
Generally, all results and conclusions presented egrlier are in | |
agreement with (3] jIn that study, however, open stabilit\ regions
were obtained an the system under investigation in that paper had
differen:'parqmgtera :an the d}n§m1¢ system’ in this study, Therefore,

only a general compar¥son of these two studies is possible.

\

. 6.2 Suggestions for Furcher Research ' | , .' (
The gtability s:udy of ‘the indivldual unit is presented abovﬁ

and, necesaaty and sufficient conditions. are eqtqblished aasuming tl
res: of the syptem as an 1nﬁ1nite bus. These condlciona can be ~com-
Parqd with condiciann for s:ability qf the gystem with more than oné’
'wgeae:auing uni: tn orﬂnr JS find gny possibla variaciona 1n boch

7\3&!&&11:y cqngggionc and atgble :agianq gf tha nyatqm, ;
L ‘ o , 'j~.vw=,lx /‘ Co

“\ . Vo v\ .‘ . o . oy L)
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’For practical studies more information on the variation of system

1d be useful and mo{g effective results can be obtained.

“parametera wou
"

lI

[ the 1imits within which a parameter varles were known some domain

l ‘I~ b

4 attraction could be established for the investigated system.This
&"'”f
wquld be the common area for all stability regions obtained by varying

.

cé .syscem parame

ﬁ fera within the assumed 1imits.This information can
Ay
!
J bL of vital 1mportance in operational practice as well as in design

e ,' _" '
o Fower systems ( ,
WY : . ﬂ

IR .
{

Wﬁ

i
‘ '}' ;"‘r\' p' '
'h‘;l‘ ‘|‘ ; !
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AYPENDIN 1

The aqal power output ot’ the machine fs kept constant fn all canes
o

)

1.0 p.u) and the reactive power output of the machine (1)

14
vatled, showing the tollowing fnittal conditions:

.5.\4»,\\
(O - w TREY! M

. LT . o (‘) ~ )
' (RN ALK :
RN . . S
) 10 Y . - ThV
{ ] IR P#ﬁ : . '\‘\ 4 Heh
Y
~ :ﬂn‘(\' r
v L0208 15 JH762 .96
do
v L7177 659 L9367 .20
K]ﬂ
1, - .96 955 482 1.16
\1(‘ .
v LO17x107%  LL2sx107Y 0 1.39x107%  2.12x107"
fdo
\ q
v - .628 - .75 - 8762 - 496
do .
177 .659 . 482 .20
qo
- . ( .
o .85 .936 .995 1.24
» ' . ) u
31° 59'30" 17°20° 91°10°
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APPENNIX 1]

FORTRAN IV G PROGRAM

0001
0002
0003
0004
0005

0006
0007
0008
0009
0010
0011
0012
0013

0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
003
0034
0033
0036
0037
038
39,
0040
0041
0042
0043

" PROGRAM TO FIND THF STARILITY REGIONS
! OVFRALL STABILIZER CAIN IS8 X
" OVERALL EXCITATION GAIN IS Y

v

DO 6 J=l, 32 .
DO 7 1=1,32 T

X (~3+1) L
Y=

WRITE(6,10)X, Y

1+COEFFITIENTS OF CHARACTERISTIC POLYNOMIAL WILL, FOLLOW

A=. 594
B=(35.3614+(.53*X))
C=(123.648+(31.36%X)~(.5974Y))
D=(345.6074(97.6672X)~(1.218%Y))
E=(306.133(101.4%X)-(2.187%¥))
F=(163.2774(135.087*X)~(6.511%Y))
G=(53.15-(1.975%X)~(1.675%Y))
H=(.263%Y)-.79

CONDITIONS FOR STABILITY WILL FOLLOW
CONDI=(B/A)
WRITE(6,11) GONDI
COND2= (BAC) ~ (A*D)
WRITE¢6,11)COND2
Bl= ((B*C~A%D) /(A*B)) .
B2=((DAE~C*F) / (A*D))
B3= ( (FAG-EMH) /(A*F)) )
Cl=((B1#(D/A))-(B2#(B/A))) /B1
C2=((B2%(F/A))~(B3#(D/A))) /B2 ’
Cil=(H/A) '
Dl=((C1#B2)~(B1*C2).)/C1
D2= ((C2%B3)~(B2%C3)) /C2
Elr((DI*ZZ)-(CI*DZ))Ibl
E2=(H/A). ¢
COND3=((D/B)-(B2/B1)) :
WRITE(6,11)COND3 _ ,
CONDA=((B2/B1)~(C2/C1)) ‘
WRITE(6,11)COND4
COND3=( (C2/C1)~(D2/D1)) 4.
WRITE(6,11) CONDS : _—
COND6=((D2/D1)~(E2/E1)) ‘ L
WRITE(6,11) COND6 .
COND7»(E2/E1) ,

10 romr(mk.%m.}) o

11 TORMAT(IH ' ,E34.0) .

7 CONTDRVE * ‘

6 CONTINUE ot
mor : .
END o | RS

. . )



