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Abstract
The non-Gaussian  statistics in an Erbium  Doped  Fiber  Amplificr
(EDFA) preamplificd digital lightwave transmission  system  have
been  theeretically  studied and  experimentally  verified. The
probability density functions (PDFs) of logical ones and logical zceros
arc theoretically shown to be the Non-Central and Central Chi-Square
distributions respectively  when  the thermal and shot noises  arc
neglected.  The Steepest Descent Method can be used to find the
approximated PDFEs of logical ones and logical zeros with less than 16
of crror when the post-detection Gaussian noises (the thermal and
shot noises) are  included. The difference  between the more
commonly used Gaussian approximation to the PDEFs and the non-
Gaussian PDEs is more apparent when the EDFA small signal gain is
large and the recciver clectrical bandwidth is sufficiently wide.  The
Gausstan  approximations to the distributions of logical zeros and
logical ones can be used to predict receiver sensitivity of EDFA
prcamplificd digital systems within 0.3 dB  of the sensitivity
predicted using the non-Gaussian PDEs. However in predicting the
optimum thresholds for the receiver decision circuit. the Gaussian
approximation is less accurate than the non-Gaussian theory.  An
cxperimental  method  has been  devised 1o measure the noise
distributions of logical ones and logical zeros.  The measured PDFs (it
well the shapes of the theoretical non-Gaussian PDFs.  The optimum
thresholds have also been experimentally measured and the results

agree morce with the non-Gaussian theory.
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1. Introduction

The conventional way of compensating the losses in an optical digital
communication system utilizes electrical regenerative repeaters.  The
losses could be due to fiber losses in a long haul system, splitting or
coupling losses, etc. The regeneration process includes opucal to
clectrical conversion, electrical amplification, retiming, pulse shaping,
and electrical to optical conversion.  Although the signal can be
successfully regenerated, the process is complicated from a system
point of view. However, with the advent of optical amplifiers, direct
amplification of the signal in the optical Jomain is made possible.
The optical amplifiers not only reduce the amount of components
needed in the system. They can alsc provide high signal gain in a
much wider bandwidth than the electrical repeater. When the
optical amplifiers arc used in conjunction with the dispersion shifted
fiber in the 1.55 pum region, the necessity of the regencration process

is virtually climinated.

1.1. Optically Preamplified Digital Transmission System
One of the many applications of optical amplifiers is to use them as
preamplifiers in an optical digital transmission system. An optical
amplifier acting like a preamplifier is placed in front of the receiver
as shown in Fig. 1.1.1. The optical bandpass filter (BPF) is used to
filter out part of the amplified spontancous emission (ASE) from the
optical prcamplifier.

Fiber Optical Optical
Preamplifier
Filter
Slgnal >,
Transmitter — Receiver

Fig. 1.1.1. Optically preamplified system.

The advantage of doing this is that the sensitivity of the receciver,
which is defined as the optical power (received power) required to
achieve a certain bit error rate (BER), can be significantly improved.
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This is because now the optical amplifier is treated as part of the
recceiver.  The definition of the reccived power is changed from the
power at the photodetector to the power at the input of the optical
amplifier.  As an example, for the 10 Gb/s direct detection system in
[1], when the optical amplifier is a semiconductor optical amplifier
(SOA), the scnsitivity at a BER of 102is improved by more than 11
dB.  When the optical amplifier is an Erbium Doped Fiber Amplifier
(EDFA), the improvement is as much as 17 dB. It is because of this
great improvement in sensitivity, there has been an increase in
interest in the performance of such a system in terms of the
sensitivity, the BER and the noise [2, 3, 4. 5].

The transmitter in Fig. I.1.]1 may contain a laser which can be
directly modulated for low bit rate applications.  Alternatively it may
contain a laser source and an external modulator such as the Mach-
Zchnder (MZ) for high bit rate applications. The receiver will contain
a photodiode such as a PIN diode or an avalanche photodiode (APD)
for direct detection. or a local optical oscillator (LOO) and a
photodiode for coherent detection.  The photodiode is followed by
clectrical filters and amplificrs. and a digital decision circuit.  Direct
detection without using the optical amplifier has poorer sensitivity
performance than  coherent detection. However when an optical
amplifier is used. the sensitivity is improved significantly. Therefore
the high sensitivity offered by coherent detection becomes  less
attractive.  The case of implementation of direct detection also
provides it with an advantage over coherent detection. Nevertheless
the optical amplifier can still be used in conjunction with a coherent
recceiver to suppress beat noise [6].  The beat noise will be discussed
in the next section.  The digital signal can be modulated by using
amplitude shift keying (ASK). frequency shift keying (FSK). or phase
shift keying (PSK). Each modulation scheme has its advantages and
disadvantages in terms of system performance and implementation.
The optical amplifier can be a SOA or an EDFA. The SOA can provide
wider optical bandwidth than the EDFA but it has lower gain than the
EDFA and is usually polarization sensitive. However the compact size
of the SOA is a very attractive feature.
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There could be many different combinations of the various
modulation formats, SOAs and EDFAs. coherent and direct detection.
Extensive research is still underway to investigate the potential
application. the advantages and disadvantages of cach combination.
The discussions in the following sections will be focused on the EDFA
preamplified, directly detected, optical digital transmission systen.

1.2. Noises in the Optically Preamplified Digital System
The EDFAs are low noise optical amplifiers with typical noisc figures
of about 5 to 7 dB (3 dB for an ideal optical amplifier).  Using the
EDFA preamplifier is not completely without disadvantages.  Without
the EDFA preamplifier, the thermal noise and the shot noise are the
two dominant noise rsources in digital receivers with the thermal
noise being dominant provided the signal power is not very large.
However when an EDFA preamplificr is inserted into the optical
digital transmission system, the ASE originating from the EDFA
generates two additional beat noises in the receiver. The beat noises
result from the electric field mixing due to the squarc-law detection
characteristic of the PIN diode. This ficld mixing cffect can be seen
from equations (1.2.1) and (1.2.2):

L) = K|E, (1) + 6., (0) (1.2.1)

where /,;(1) is the detected photocurrent. K is a proportionality
Consiant. l:f_v(t) is the optically filtered bandpass signal eclectric field
which s complex, é‘s.,,(t) is the optically filicred bandpass ASE electric
ficld which is complex and random. At a fixed instant of time. (1.2.1)
can be expanded as:

)
<

Ly =KIE[ +2KRe(E,é),}+ Ko

o (1.2.2)

The first term in (1.2.2) is the signal. The second term is the signal-
spontaneous (sig-sp) beat noise which is the dominant noisc for the
logical one because of the presence of large signal power. The third
term is spontaneous-spontaneous (sp-sp) beat noise which is the



dominant noise for the logical zero provided the ASE power is
sufficiently high and the signal power level is low during the logical
/Cro. The thermal noise and the shot noise are  relatively

insignificant now compared with the beat noises [7].

1.3. The Distributions of the Noises

The probability density functions (PDFs) of the thermal noise and
shot noisc in the recciver can be well approximated by a Gaussian
distribution.  However the beat noises in the logical one and the
logical zero huve been theoretically shown to be non-Gaussian [7. 8.
9. 10].  The source of the non-Gaussian distributions comes from the
distribution of the sp-sp beat noise which has a non-Gaussian shape.
The distribution of the sig-sp beat noise however assumes a Gaussian
shape [8].  Thc Gaussian and the non-Gaussian PDFs of logical ones

and logical zeros are sketched in Fig. 1.3.1.

. Gaussian PDFs
— Non-Gaussian PDFs

Logical one

Cross point of non-Gaussian PDFs

7
=~

S i
TN Cross point of Gaussian PDFs
Logical zero
f -
Sampling instant Time

Fig. 1.3.1. 1lustration of Gaussian and Non-Gaussian PDFs.

The Gaussian PDFs are symmetrical about the peaks whercas the
non-Gaussian PDFs are not.  The cross point of the extreme tails or
the optimum threshold of the Gaussian PDFs is different from that of
the non-Gaussian PDFs.  Although the optimum thresholds of the two
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distributions arc very different. it is surprising to know that using
the Gaussian approximation to the distributions of logical zeros and
iogical ones is sufficient to predict the sensitivity of the receiver with
only about 0.3 dB discrepancy [9]. Morcover the Gaussian
distribution 1s very easy to handle computationally and hence it is
very lempting to just use the Gaussian approximation in all the
analyses of system performance as in [I1]. However the Gaussian
approximation is less accurate in predicting the optimum threshold
that should be used in the decision circuit [10]. It is for this reason
that an cxact thecorectical model is preferable.

1.4. Objectives and Accomplishment

The first objective of this project is to understand the theories that
formulate the non-Gaussian distributions. These theories were
developed by Marcuse [7, 8], and by Humblet and Azizoglu [10].
They belong to a general class of theory that deals with the square-
law detection of signal and noise, and it has already been considered
in the years of 40's to 60's [12, 13, 14]. However optical amplifiers
were not yect available and the theory was not used in the field of
fiber optic communications with optical amplifiers. The performance
of the EDFA preamplified optical digital system will be analyzed by
making use of thesc theories.  Other authors have donc similar
analysis to the system [9, I5] but only the theorics proposed by
Marcuse, Humblet and Azizoglu give rises to closed form solutions.
The sccond objective is to cxperimentally verify the non-Gaussian
distributions since there i1s no practical cvidence that the statistics
arc non-Gaussian.

The non-Gaussian theory has been used to study the system
performance and it has been found that the Gaussian theory provides
satisfactory results in predicting the sensitivity of the system.
However in the analyses that requirc knowledge of the optimum
decision threshold, the Gaussian theory is less accurate and the non-
Gaussian theory must be used. A simple method has also becen
devised and used to demonstrate experimentally that the
distributions of logical ones and logical zeros in an EDFA
preamplified, directly detected system are indeed non-Gaussian. The



experimentally measured PDFs have been compared with the non-
Gaussian theoretical PDFs.  Good agreement has been found between
the theoretical and experimental results.

1.5. Organization of Thesis

This thesis is divided into 7 chapters and 4 appendices. Chapter 1
gave a bricf introduction to the EDFA preamplifiecd digital
transmission system studied.  Chapters 2 and 3 provide discussions
on the theoretical study of the noise distributions in the system.
Some simulation results that are obtained from using the theories are
presented and discussed in chapter 4. The experimental method and
sctup for mecasuring the noise distributions are described in chapter
5. Expecrimental results are also presented and discussed in chapter
5. The performance of the OC-192 system (10 Gbh/s digital fiber optic
system) using EDFA preamplifier is evaluated and shown in chapter
6.  Chapter 7 gives the conclusions of this thesis work and possible
future works.  The detailed derivations of the theories can be found
in Appendices A to €. The Matlab simulation programs are included
in Appendix D.
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2. Non-Gaussian Noise Theory-Part 1

The origin of the non-Gaussian noise distribution will be discussed in
this chapter. The non-Gaussian PDFs for logical ones and logical zeros
will be presented.  Some crucial derivation steps will be shown and
discussed. The detailed derivations can be found in Appendices Al
to A5. The ideas of the derivations are based on the work of
Marcuse [7], and Humblet and Azizoglu {10]. The mathematics used
in analyzing the statistics assumes that the statistics of the signal and
noisc are at least wide-sensc stationary in time, and homogeneous in
spacc.  Stationary means that the statistics arc invariant with time
and homogencous means that the statistics arc independent of
position in space. These assumptions greatly simplify the
mathematics and give risc to the closed forms of the PDFs. This part
of the theoretical study does not include the thermal and the shot
noises. Thesc two noises will be included in the second part of the
theoretical study in chapter 3 where the Steepest Descent Method
will be used. Intersymbol interference (ISI) will be ignored in all the
following analyses as the degree of ISI varies from eclectrical filter to
electrical filter.

2.1. The Origin of the Non-Gaussizn Distribution

The non-Gaussian shape of the PDF of the sp-sp beat noise originates
from the squarc-law dectection characteristic of the PIN diode. The
detected photocurrent is directly proportional to the optical power as

given by:
1, (1) =RP,, (1) (2.1.1)
where 9N is responsivity of the PIN diode given by [16]:

n('ffq . neff}\‘
W 1.24

R= (2.1.2)

where ¢, = fA has been used, ¢,=3x10% m/s (speced of light in free
space) is assumed, T is the quantum efficiency of the PIN diode,

g=1.6x109 C is the electron charge, h=6.6262x10-34 J-s is the
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Planck's constant. f is the frequency of photon. A is the photon
wavelength in pm. Equation (2.1.2) shows that the responsivity is
lincarly proportional to the wavelength.  However in practice. the
icgion over which the responsivity increases with the wavelength is
limited as sketched in Fig. 2.1.1.

f Theory

:;. ~+— Practice
= .

2]

c

o4

Q

[42]

o

o

Wavelength (um)
Fig. 2.1.1. Responsivity of PIN diode.

The responsivity is a weak function of the wavelength in a narrow
range of wavelengths.  Such is the case when a narrow-band eptical
BPE (bandwidth on the order of nanometer) is placed in front of the
PIN diode. The wavelength A in (2.1.2) can then be replaced by the

centre wavelength A of the signal.

t
The optical power is proportional to the magnitude squared of the
total filtered clectric field given by:

12

Kix .
P (1) = % E()+e, )

where equation (1.2.1) has been used. The ASE spectrum at the
output of the EDFA is very broad relative to the bandwidth of the
optical BPF.  Therefore the optically filtered bandpass ASE electric
field ¢.,(f) can be modeled as a zero-mean white noise Gaussian

process [9]. This mecans the optical power and the photocurrent in



(2.1.1) and (2.1.3) arc also random. Thc Gaussian process of the ASE
clectric ficld mecans that negative values are possible for the ASE
clectric field. However the optical power in (2.1.3) must be positive,
wiich means the photocurrent must be positive. It is then clear that
the distribution of the photocurrent cannot assume a Gaussian shape.
Equation (2.1.1) can be expanded by using (2.1.3) to give the
expression of the photocurrent as shown in equation (1.2.2). Using
(1.2.2), it can be seen that within one bit time interval, the signal
clectric ficld is not random or its randomness is negligible compared

with the ASE clectric field. Therefore the sig-sp beat noise retains

the Gaussian distribution of é_vp which means negative values arc

possible [8]. The sp-sp beat noise term, however, will assume a
distribution which is the square of the Gaussian so that only positive
values arc allowed. At first glance, the Gaussian distribution of sig-
sp beat noise seems to contradict the non-negative photocurrent.

However note that only when (A{V, is small compared to E, is the

distribution of the photocurrent dominated by the Gaussian shape of

the sig-sp beat noise. When éw is large, the distribution is

. . . . ~ ~ 2 . N
dominated by the distribution of ley, 1. In other words, the tails of
. . . . . . . . - ~ 2
the final distribution are dominated by the distribution of leg, I and
this justifies that the photocurrent is positive. For digital

transmission, in the case of a logical zero, E; is small and hence the

~

distribution of logical zeros is non-Gaussian. For logical ones, E is
large so that only in the extreme tails of thc PDF would we find a
non-Gaussian distribution.  The noise current generated by thermal
noisc can be added to (2.1.1) so that during a logical zero, the
Gaussian distribution of the thermal noise could be competing with

the distribution of lé, 1> if the sp-sp beat noisc power is not

sufficiently large. In order for the sp-sp beat noisc to dominate over
the thermal noise, the small signal gain of the EDFA should be
increased since the sp-sp beat noise is proportional to the square of
the EDFA small signal gain [11].



2.2. The Theoretical Model of the System

The theoretical system being analyzed is an optical digital system
cmploying an EDFA as optical prcamplifier. The ASE is polarized in
the same spatial state as the signal by using a polarizer. An ideal
optical bandpass filter is used to reduce the amount of ASE power at

the receiver.  The block diagram of the system is shown in Fig 2.2.1.

Signal Ideal % Square-Law
Polarizer|—#= Ogt['jcsl »ZX Detector

] / OTdt—b-[DECISION

Fig. 2.2.1. Theoretical mode! of systen.

The signal at the EDFA input is assumed to be ASK modulated. The
EDFA has a small signal power gain of G. The output of the EDFA
contains the amplified signal and the ASE.  The optical BPF is
assumed o be ideal with bandwidth B,. The photodiode is modeled
as a square-law detector. After square-law  detection, the signal
becomes an on-off keyed (OOK) signal as the ootical carrier is
removed.  The clectrical low-pass filter is modeled as an integrate-
and-dump filter which will be discussed in section 2.3, The decision
circuit is used to decode the noise corrupted OOK signal based on the

amplitudes of the pulses received.

2.3. The Integrate-and-Dump Filter
The impulse response of the integrate-and-dump filter is given by:

i (1) = [ 8(1)dr (2.3.1)
=] 0<t €T (2.3.2)
=0 otherwise (2.3.3)
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where 7T is the time at which the output of the filter is reset to zero.
The impulse response is just a rectangular pulse with duration 7 and
centered at time r=7/2. The frequency response of the filter can be
casily obtained by applying the Fourier transform to the impulse
response in (2.3.2) and (2.3.3) [17]):

Hin (f) = Tsine(fT)exp(~ jufT s (2.3.4)

The magnitude responsc IHim(f)| is normalized with respect to T and

is plotted in Fig. 2.3.1.a. The phase responsc is normalized with
respect to T and is shown in Fig. 2.3.1.b.

0 — : ,

-5} ]
~10} —
g 15| ~
25t :

-2 -1 0 1
Normalized Frequency (x 1/T)

N

Fig. 2.3.1.a. Magsnitude response of integrate-and-dump filter.
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Fig. 2.3.1.b.  Phasc response of integrate-and-dump filter.

The one-sided 3-dB clectrical bandwidth of the integrate-and-dump
filter can be calculated approximately as 1/27. The choice of the
integrate-and-dump is purcly for mathematical convenience in the
derivations of the PDFs which will be shown in the following sections.
The use of the integrate-and-dump filter has been criticized to be
impractical in a high bit rate transmission system [9]. However {rom
section 2.1, we have learned that the non-Gaussian shape of the PDFs
originates from the square-law detection characteristic of  the
photodiode.  The characteristics of the clectrical filter have very little
to do with the shape of the PDFs. The filter has an effect on the way
the noise power is accumulated and the amount of noise power
accumulated determines the variance of the PDFs but not the shape
of the PDFs. For ecxample, with a wide-band filter, more noisc is
accumulated and hence the PDFs are broadened. However the shapes
of the PDFs remain the same; they could be ecither Gaussian or non-
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Gaussian.  The work of Lee and Shim [9] has adopted a complicated
approach in their analysis in which a more realistic electrical filter
has been used. The PDFs are expressed in a more complicaied way
and are non-Gaussian. However the sensitivity analysis by Lce and
Shim [9] turns out to be very close to the result obtained by the
approach that will be adopted here, in which the integrate-and-
dump filter will be used.

2.4. Bandpass Representation of Signal and Noise

Having learned the origin of the non-Gaussian distributions and
cstablished the theoretical model, we are now ready to consider the
representation of the signal and noise in the optical field domain.
The complex bandpass signal electric field at the output of the EDFA
can be written as [I8]:

E, (1) =(Ey (1) + jEo (1)) exp(j2nf,1) (2.4.1)

where the subscripts 7 and Q signify the in-phase and the quadrature
components of the signal, f. is the optical carrier frequency.
Similarly the complex ASE clectric field can be expressed as:

e ()= (e (1 + jeyo (1)) exp(j2nf,1). (2.4.2)

The optical carrier is removed after the signal and noise are detected
by the photodiode. Therefore the exponential terms in (2.4.1) and
(2.4.2) will be ignored in the following analysis.

2.5. Fourier Series Representation of Signal and Noise

It is known that il a function is at least piece-wisc continuous in an
interval [a,b], and if there exists a set of orthogonal functions in
[@,b], then the function can be approximated as a weighted sum of
the orthogonal functions [19]. In a time interval [0,T], where T is
assumed to be the duration of a single level pulse, both the signal
and ASE clectric fields are at least piece-wise continuous functions.
The interpretation of the pulse is not important for the analysis. It
could represent a logical one or a logical zero, two logical ones or two
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logical zeros, half of a logical onc or a logical zero, and so on. The
complex cxponcnlial functions exp(jw,t). where ®,=2nn/T and
n=0,21,42,---, arc known to be orthogonal in [0.7]. Therefore the
in-phasc and quadrature components in (2.4.1) and (2.4.2) can be
expanded as Fourier series in [0,7T]:

E ()= Y E, exp(jo,!) 0<i<T (2.5.1)
'I:——(-]

E,(n= YE, expljo,)  0st<T (2.5.2)
n=—co

e = ¢ expljm, 1) O0<¢<T (2.5.3)
==

Copo(1y= D ¢ expljm,1) O0<i<T (2.5.4)
H=—es

where K, Eyo. oy ¢y are the expansion coetficients given by:

Enl - Enlr + /Enlz (2.5.5)

E”Q = E”QI. + _/'E”Qi (2.5.6)

Copt = Cypy + /( nli (2.5.7)

(.n(_) - ('n(_)r + j('n(_){' : (2.5.8)

The cocefficients ¢,y Cupi Cpor and ¢, are assumed to be independent

Gaussian random variables with zero mean and the same variance
el . .

c-/2. Using (2.5.1) to (2.5.8) in (2.4.1) and (2.4.2). we have:

(=)

E.v(t) = Z[(Enlr - EnQi) + j(EnIi + E,,Q,.)]exp(j(x),,r) (2.5.9)

H=—co
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o0

e = X (eunr = ugr) +i{cn + Cupr)explio, . (25.10)

Nn=—oo

After the optical BPF, the infinite sums in (2.5.9) and (2.5.9) nced to
be replaced by finite sums. Since the summation or the subtraction
of two independent Gaussian random variables will also result in a
Gaussian random variable [18], (2.5.9) and (2.5.10) can be written as:

M
~ 2
E.(t)= Y E, exp(jw,t) (filtered signal) (2.5.11)
n:-/gl-
M
(= Yc,exp(jo,1)  (fillered ASE)  (2.5.12)
n=-M

o]

-

where E,=E,, +JE, :(En,r - E”Qi)+j(E,,,i + E,,Q,_) (2.5.13)

or E, =|E,|exp(je,) (2.5.14)
-1 E;

8, =tan '[—ﬂj (2.5.15)
Em

Cp =Cpy + jC,',, = (Cnlr - CnQi) + j(cnli + CnQr) (2.5.16)

where ¢,, and ¢;, are identically distributed, independent, zero-mcan
Gaussian random variables with variance ¢°. The summations in
(2.5.11) and (2.5.12) are over (M +1) components. The parameter M
is assumed to be a positive even integer for mathematical
convenience.

Filtering causes the signal to spread in time. If the optical filter
bandwidth is much larger than the signal spectrum, the effect will be
insignificant.  Similarly filtering will bandlimit the ASE. Since the
ASE spectrum is much wider than the optical filter bandwidth, this
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might cause significant correlation of the noises in adjacent time
slots. I the correlation is significant, cequation (2.5.12) will ne longer
hold in just onc time slot [0.7].  Marcuse has numerically shown that
for both the sig-sp beat and sp-sp beat noises. the correlation s
negligible provided that M >1. In a practical system. M will also be
much greater than one. Therefore it can be assumed that the noise
in onc time slot is uncorrelated with noises in other time slots.

2.6. The Dimensionality of Finite Energy Signals

The dimensionality of the space (the number of discrete frequency
components) of bascband finite cnergy  signals  with  one-sided
bandwidth B and time spread about 7 is approximately 2B7+1 [10.
20]. The filtered signal and ASE in cquations (2.5.11) and (2.5.12)
have M +1 frequency components spaced at 1/7 and bandwidth B,

which is the bandwidth of the optical BPEF (in Hz). Therefore we

have:

QBT +1=BT+1=M+1 (2.6.1)

or B, =—.

2 (2()2)

M
1

Since the 3-dB one-sided clectrical bandwidth of the integrate-and-

dump filter is 1727, we have:

,
B, 207#:;1’1(2[)’(,): MB,,, (2.0.3)
I)
or M=o (2.6.4)
[('[1’('

Hence M is the ratio of the optical bandwidth B, to the two-siled
clectrical bandwidth B

elec- Now that the physical meaning of the
parameter M has been identified.  We can relax the assumption that
M is an cven integer, which has been used in section 2.5 for

mathematical convenience. We now trecat M as the ratio of the
optical bandwidth to the two-sided eclectrical bandwidth. The
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derivation of (2.6.4) has used the bandwidth of the integrate-and-
dump filter. If the time T represents onc bit time interval of a non-
return-zero (NRZ) signal, the 3-dB one-sided clectrical bandwidth of
the integrate-and-dump filter will be half of the bit rate which is the
Nyquist rate and is the minimum bandwidth required to decode the
NRZ signal. However T could also represent two consecutive logical
ones (or logical zeros), or half of a logical one (or logical zero).
Therefore it is not meaningful to relate the time T to the bit rate.
The meaning of the electrical bandwidth can then be relaxed. It does
not have to represent the Nyquist rate. In the simulations that will
be shown in chapter 4, the two-sided clectrical bandwidth B,/ is
specified in order to calculate the parameter M. The value of T is not
needed. For example, if B./..=20 GHz, then the filter can pass NRZ
signals from low bit rates up to 20 Gb/s. Therefore the actual bit
rate i1s not important. The 20 GHz bandwidth only determines how
much noisc power is accumulated. The time 7 acts like a dummy
parameter in the derivation. Also the PDFs that will be derived
represent the noise distributions at one instant in time and hence
how the time T is interpreted is not important to this work.

2.7. The wmagnitude spectra of signal and ASE

Equations (2.5.11) and (2.5.12) show that the signal and noise in a
time interval [0,7] contain discrete frequency components spaced at
1/T. The magnitude spectra of the signal and noise in a time interval
[0.7] are shown in Fig. 2.7.1.(a-b).
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Baseband Signal Magnitude Spectrum
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Fie  2.7.1.a. The bascband magnitude spectrum of signal in a time

interval [0.7].

Baseband ASE Magnitude Spectrum
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Fig. 2.7.1.b. The baschand magnitude spectrum of ASE in a time

interval [0,7].

it the optical bandwidth is much greater than the signal spectrum in

and ]EM,,Z for

the time interval [0,7], the expansion coefficients [Ei”

the signal will approach zero.
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2.8. The Moment Generating Functions and The PDFs

The photocurrent in (2.1.1) is a random process because it is tlime-
dependent.  The advantage of using the integratc-and-dump filter is
now clear. At the output of the filter, the current is the time average
of the photocurrent and is time-independent. It is a random variable
instead of a process and is given by:

17
_\,z_T-jO 1,,(1)dt . (2.8.1)

Now that the random variable has been identified. calculating its PDF
is straightforward. Before performing the integration in (2.8.1), it is

advantagecous to make slight modifications to the summations in
(2.5.15) and (2.5.16). We shall let the coefficient E, cqual zero such

that only M components instcad of (M +1) components will enter the
calculations. The purpose of doing this will be clear in scction 2.11.
In addition, the summation symbol will be replaced hyz and that it
is understood the summation is over M components. The detailed
calculations for the moment generating functions (MGFEs), which are
the Laplace transforms of the PDFs, the PDFs arc shown in Appendix
Al.

The MGF and the PDF of logical ones can be calculated to be:

- 2
Fi(s)= S eXp 1@15—‘} (MGF) (2.8.2)
(I1+20°Ks) 1+20°Ks
2
exp(_fZlEnl +y . B
~ \ 26%K y 2 1}_\:1\’21}3'1'&
.fl (y)— ) ) IM—I 2
20°K KZ|E11| o'k

(PDF) (2.8.3)

and the MGF and the PDF for logical zeros are:
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1
F”(S):(l A (MGHE) (2.8.4)
+ 207 Ks)

| \,111—1
f()(.\")z( P(—

v
- ex —— | (PDF) (2.8.5)
202K)YM (M - 1)! 2 J
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The PDFs in (2.8.3) and (2.8.5) are recognized as the Non-Central and
Central Chi-Squarce distributions that have been derived in [7]. The
expressions ol the PDFs involve paramecters such as G° and K which
arc not physically measurable and hence it is difficult to evaluate the
PDFs by using (2.8.3) and (2.8.5). However it will be shown in
section 2.10 that the PDFs can be expressed in terms of physical
paramcters that are measurable.

2.9. The Means and Variances of the PDFs

The detailed calculations of the means and variances can be found in
Appendix Al. The means of logical zeros ¥, and logical ones ¥, are

given by:

At =(26° KM (7¢10) (2.9.1)

~

E,. (one) (2.9.2)

¥ =026 K)M+KY

The corresponding variances are given by
(5(2) = MG K)* (ZC¢T0) (2.9.3)
9 2,00 ., , 2
G; =MQ26 K)" +226"K)KY [E,[).  (one) (2.9.4)

It will be shown in section 2.10 that the means and varianccs can

also bc cexpressed in measurable physical parameters.



2.10. Expressing PDFs in Physical Parameters

2.10.1. The autocorrelation furction
The mean of the photocurrent v is given by the temporal and
statistical mean of the time-dependent photocurrent I,(1):

17
<y>=< ?L) 1,,(0)dt > (2.10.1.1)
_Ller / y 5 5
=2y < T >di (2.10.1.2)

where cquation (2.8.1) has been used. The symbol <-> represents
the expectation operator.  For a logical zero, assuming there is no
signal present, the time-dependent photocurrent is given by:

[, (1) =RP,. (1) (2.10.1.3)
= KE,, (NE, (1) (2.10.1.4)
= KA, (1) (2.10.1.5)

where K is a proportionality constant, Fz_s.l,(t):/i (t)explj2nf 1 + jO(1)]

sp
is the complex bandpass representation of the optically filtered
random ASE clectric field, /i_‘,,,(t) is the random clectric field envelope
and is a rcal function, f. is the frequency of the light carrier, 6(1) is
the random phasec.

The random electric field envelope A_\./,(r) can be modeled as a
random process and sincc the statistical process has been assumed to
be at least wide-sense stationary, the autocorrelation function of the

envelope A_s.p(t) is given by [17]:

R(t)=< A, (N4, +7)> (2.10.1.6)

21



where T i1s an arbitrary time constant.  When T=0. we have:
~
R(0) =< A;,,(z)>. (2.10.1.7)

2.10.2. The power spectral density of ASE
The autocorrelation function is also the inverse Fourier transform of
the power spectral density PSD_ (f) (in V2/m2/Hz) of the random

clectric ficld envelope AV,({): ’

R(Ty=[" PSD,,(f)exp(j2nft)df (2.10.2.1)
and RO)=]" PSD,,,( f)df (2.10.2.2)
where  fel0.B,] since /i\.,,(l) is the baseband envelope of  the
optically filtered ASE clectric field 1;"./,(1). The quantity in (2.10.2.2)

is related to the ASE power P, In watts as:

K ok
P.o==RO=[" 2psp_(frdf (2.10.2.3)
R L' " i

where the proportionality constant A and the responsivity R have
units of Am/V2I and A/W respectively.  These two constants serve
to convert the unit of the power spectral density to W/Hz.  The ASE
power can also oc caleulated using the one-sided bandpass power
speetral density  BPPSD,(f) given by [21]:

BPPSD  (f)=m,N

i . (G = Dhf (2.10.2.4)

sp

where the polarization state parameter m, is equal to one if the
polarizer is used. and is cqual to two when the polarizer is omitted.
The polarizer is essentially a spatial filter which can be used to filter
out the ASE clectric ficld component that is orthogonal to the signal
clectric field.  The parameter Ny, is the spontancous emission [actor
of the EDFA. The EDFA small signal gain is denoted by G, h is the
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Planck's constant and [ is the photon frequency.  Within a narrow
range of wavelengths, such as the case when a narrow-band optical
filter is placed at the output of the EDFA. the spontancous emission
factor and the EDFA small signal gain arc weak functions of the
wavelength (or frequency). The bandpass power spectral density in
(2.10.2.4) is then linearly proportional to the f{requency with
felf.=B,/2,f.+B,/2].  Using (2.10.2.4). the ASE power in

(2.10.2.3) can bec calculated as [11]:

Pae = [0 2N, (G = Dhfdf (2.10.2.5)
=m Ny, (G-Dhf.B,. (2.10.2.6)

Using (2.10.1.5), (2.10.1.7) and (2.10.2.3) in (2.10.1.2). the mecan of a

logical zero can be expressed as:

o

(2.10.2.7)

where the ASE power P, is given by (2.10.2.6). Equating (2.9.1) and
(2.10.2.7), the mean of v for logical zeros is:

Fy = (267 K)M =< v >,=RP,, (2.10.2.8)
2 SRP(I\‘('
so that 20°K = —=-. (2.10.2.9)
M

Equation (2.10.2.9) can be used to rewrite the cquations of the PDFs
and the new cquations will be shown in section 2.10.4.

2.10.3. The EDFA small signal gain
The EDFA small signal gain can be calculated by using the
transcendental equation [22]:

i:%} (2.10.3.1)

G=0G, exp[(

RYets
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where G, is the EDFA small signal gain, P, is the soturation power,

and F, . is the average signal power at the input of the EDFA and is

given by (assuming logical zeros and logical ones are cquiprobable):

l
o — (P - \ 2 2
‘,imn' - " (Iinl + Pin()’ (2.10.3.2)
where B, and P, arc the average powers during a logical one and a

logical zero respectively and are related through the extinction ratio

d:

D 8P
By = O

ml-

(2.10.3.3)

The average signal power is used in (2.10.3.1) instead of the
individual signal powers for logical ones and logical zeros because the
EDEFA cannot respond to fast varving powers [23]. The definition of
the extinction ratio used here is the average power of a logical zero
divided by the average power of a logical one.  The transcendental
cquation in (2.10.3.1) can be solved numerically using methods such

as the Newton Raphson method (24,



2.10.4. The new expressions for the PDFs
The term in (2.8.2) that sums the expansion cocfficients of the signal
clectric field can be recognized as the photocurrent gencrated by the
signal. Therefore it can be rewritten as:

KY|E,|” =%P,, (2.10.4.1)

where R is the responsivity of the photodiode and P, is the

sig
average signal power in the time interval [0,7] for logical ones. The
detailed proof of (2.10.4.1) can bc found in Appendix A2. The means
and variances can then be expressed by using (2.10.2.9) and
(2.10.4.1) as:

¥y =RP,,, (2.10.4.2)
Vi =R(Py + Pg,) (2.10.4.3)
RP.)?
o = e ) (2.10.4.9)
M
)
RP._H)* 2NR°P _P..
0_12 =( a.\(') + ase .\I‘L,' (2]()45)

M M

The variance 0(2) of logical zcros represents the sp-sp beat noise
whereas the second term in cquation {2.10.4.5) represents the Sig-sp
beat noise. The PDFs can be cxpressed as:

ay M yM- YM
) ) expl — (2.10.4.6)
f() ( ) LQ‘RP(L\‘C } (M - 1)' p[ cﬁpa.\'e ]
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vl My +Re,) p 2M YRR,
%RP, Lo

Sig ase

[ M
./1())“(9{1) J

ase

(2.10.4.7)

Now cquations (2.10.4.6) and (2.10.4.7) can be used to evaluate the
PDFs by properly choosing the values of the physical parameters
such as the EDFA small signal gain, ctc.

2.11. Comparison of Beat Noises with Olsson’s Expressions
The sig-sp and sp-sp beat noises derived by Olsson. ignoring losses.

arc given by [I1}:

B,
Ny =411, — (2.11.1)
‘ g
» B.(2B,-B,)
N =] ) (2.11.2)

sp-sp sp R
, B()

Using cquation (2.6.4) and [ =RP,. [ =RP the variances in

ase®

cquations (2.10.4.4) and (2.10.4.5) can be rewritten as:

> B

2 2 Betee
B,
B 20.1,B,,.

o 0 Joo sSTap «

oy =1~ L= (2.11.4)
B(' B(’
Since B, =2B,, the sig-sp noise terms in equations (2.11.1) and

(2.11.4) are identical. The sp-sp beat noise terms are slightly
different.  The difference can be examined by forming the ratio of

the sp-sp noise terms:
i I
Oy B B;

ratio = = Jdlec < (2.11.5)
B() B(' (»280 - Bt' )

sp=sp
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ratio = = . (2.11.0)
B,.. l
| — Selec o T

4B, aM

This ratio is plotted against M in Fig. 2.11.1.

1.35

131

1.25¢

1.05¢

Fig. 2.11.1. The ratio of the sp-sp beat noise terms versus M.

It can be seen that the valuc of G(q', is within 5% agreement of
Olsson’s when M 2>5.  Since the dominant noise term is sig-sp beat
noise, the slight difference in sp-sp beat noise will not affect the
accuracy of the analysis. Note that if we use (M+1) components
instead of M components in the derivation of the PDFs in section 2.8,
the parameter M in (2.10.4.4) to (2.10.4.7) has to be replaced by
(M +1). The choice of using M components is just to show that the

PDFs derived do match the previous noise theory in [11]. In the
analysis of system performance, the value of M is at least ten.
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Therefore  whether using M or (M +1) will not make significant

difference.

2.12. The Probability of Error and the Bit Error Rate

The crror duc to noise for a logical one occurs when a logical one is
transmitted and the decision is a logical zero. This error probability
is given by the arca of the PDF for logical ones in the interval
0<y<1,. where [, is the decision threshold. which does not have to
be optimum in the following analysis. This arca or the error
probability for a logical one can be calculated by integrating the PDF
over that interval:

Iy .
Pl = J) " fiody (2.12.1)
=1~ le fi(v)dy (2.12.2)
=1=0y(a.b) (2.12.3)

where (g (a.h) is called the generalized Q-funcuion for M >1 and is
called the Marcuni-Q function for M =1 {25, 26]. The prool of
(2.12.3) can be found in Appendix A3, This function is analogous to
the Q-function assoctated with Gaussian statistics.  The arguments

a.b are given by:

a2MP,

a= - (2.12.4)
VP
2Ml

h= (2.12.5)
\‘ 9\1)(1.\‘('

The integral representation of the generalized Q-function is given by:

M-l 2,2
o (1 X" +as
QM(a,l))zjh \(;) exp ——l—é—L Iy, (ax)dx (2.12.6)
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where x 1s a dummy variable. If M is an intcger. this function can
be cxpressed as [25]:

AM-1
Oy (a.b) =0 a, b)+exp[——2——] [k(ab) (2.12.7)

where when b>a:

; k
O(a, b)-uxp(——tLJZ(ﬁ) I, (ab) (2.12.8)
2 k=0 b
and when a2b:
2 2\ o k
Q(a,b):l—exp(—“ ;b ]Z(-b-) Ii (ab). (2.12.9)
k=1h

The infinite summation term does not have a closed form and
therefore it is mnecessary to truncate the series in order to calculate
the probability of error.  Dcnoting the truncated generalized Q-
function as QM(a,b) and replacing e by a finite integer L, the

absolute truncation error can be expressed as:
Err(L) =10, (a,b) - QM (a,b) (2.12.10)

where for a=2b, using equation (2.12.9) in cquation (2.12.7), wec
have:

. 2 2\ L k
Q/tf((z,[)):l-exp[‘a ;b ]Z(f)’) I, (ab) (2.12.11)
a

k=M

and for b>a, using equation (2.12.8) in cquation (2.12.7), we have:
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5

2 at+bh*) L ofa)
Opla,b)y=exp| ———— | Y | = | I, (ab) (

2 AN

P

1o
]
to

where the property [1_y,(x)=14,(x) (M is an intecger) has been used.

The absolute truncation error has an upper bound given by:

2 2 L AR
Err(L) <exp _aithn (_lz) 1,+,(ab)(l+ nab (2.12.13)
2 a ‘ \ 2
for (¢ =bh), and
av + h? j(a L [ "Ttabw
Err(L) < exp| ———-— —) I, J(ab) |+ —— (2.12.14)
p( > g T ST

for (b>ua).

The derivation for the upper bound can be found in Appendix A4
The probability of crror for a logical zero is determined by:

P‘,(I‘,):-[l’/ o)y (2.12.15;

which has a closed form cexpression:

1,M ]

oMY CXP(— RP
M NP,
P (I )___ d ase
0 (/ 2 (9{1) j

r=(Q)

(2.12.160
r!

use

The derivation of (2.12.16) can be found in Appendix A3.  The
average bit ecrror rate is given by the expectation of P, and P

BER =< Fy(1,)+ B(1;)>. (2.12.17)
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If logical ones and logical zeros arc cquiprobable. then the bit error

ratc is given by:

o |
BER = Z[Py(I)+ Pi(1,)]. (2.12.18)

~.13. Gaussian Approximation
Gaussian statistics are widely used in the field of communications.
The formulation of Gaussian statistics is relatively simple because it
is suificient to characterize the PDFs and the cumulative distribution
functions (CDFs) by using the mean and the variance. For logical
oncs, the Gaussian PDF is given by:

Using ecquations (2.10.4.3) and (2.10.4.5) for the mean and variance.
the PDF can be cxpressed as:

1 { = R(Py 1y, )]2 l

fau(\’) RS = , exps —
R [_ . 2 o) 2 -~ R o R
2n [(:){P )*+291-P(,}.(,/1.5K] [ [(mpw )T+ 2% /(,\(_/_\_,Q][

s i

(2.13.2)
Stnilarly, for logical zeros, using ecquations (2.10.4.2) and (2.10.4.4),
the PDF is given by:

! (y=7y)°
Joe (V) =——=—==1Xp ——‘———q—“J (2.13.3)
F 1‘/57130(2) 206
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= — ! CX[)J—L\'—————ﬂ];l (2.13.4)

2n > > 2
(R RP
\ M |

3
dase M [ ase

The probability of errors can be expressed as:

(1,7
P(,,Q</,/)=QL"—Gi (2.13.5)
()
Irl - \DI[)H\{
= RP (2.13.6)
M
v~
Pi,(l(/)-_-Q(ll* ————— < (2.13.7)
‘ s
|/
Q! NP, + Pi-1, oy
= : 3 — (2.13.8)
I ;(9\1)”_“, V2R, i
\ ‘ M

where Q) is the Q-function.  When the extinction ratio is non-zero.

cquation (2.13.8) can be used for logical one with smaller Py,

2.14. Modification of Equations When Polarizer is Omitted
The dertvations in the previous section assume the ASE is polarized
spatially in the same state as the signal.  Only minor modificaiion to
the equations iy needed to accommodate the case when the polarizer
is omitted. The proof of this can be found in Appendix AS.

Without o po rizer. M has to be replaced by 2M.  Also the
polarization state paramcter m, has to changed from one to two. In
general. the parameter M should be replaced by m,M in order to

account for the effect of the polarizer. When the polarizer is omitted
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(m,=2). both M and P

(2.10.4.5), it can be scen that the sp-sp beat noise is doubled but the

ase Are doubled.  From equations (2.10.4.4) and
sig-sp  beat noise remains the same. Removing  the polarizer
introduces additional ASE clectric field which is spatially orthogonal
to the signal electric field. The signal cannot beat with this additional
ASE clectric field and hence the sig-sp beat noisc remains the same.
The sp-sp beat noise however is doubled since the additional ASE
clectric field components beat among themselves.

2.15. The Optimum Threshold
Whe- the threshold in cquation (2.12.18) is set at its optimum value,

the BER of the system is at its minimum. The optimum threshold is
obtained by differentiating the BER with respect to /, and sctting the

derivative to zero:

IBER 1 9
o, 201,

Using cquations (2.12.1) and (2.12.15). the optimum threshold ! gt 1

determined from the condition:

.f()(l(/npl):.fl(l(/,,/”)- (2]52)

Equation (2.15.2) can be solved numerically using methods such as
the Bisection method [24].  For Gaussian distributions. the optimum
threshold can be approximated by:

_0yV G

Ji =
lopteauss
o Gy + 0

(2.15.3)

where y, and ¥ arc the means of logical zeros and logical ones given
by (2.10.4.2) and (2.10.4.3), 0, and O, are the standard deviations of

logical zcros and logical ones given by the square root of (2.10.4.4)
and (2.10.4.5).
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2.16. The Coupling and Insertion Losses
In a real system, there arc usually losses caused by the insertion of
components such as isolators. optical filters. ctc.  Denoting the input
coupling loss of the EDFA as [;,, the output coupling loss as U, and
the additional loss between the output of the EDFA and the
photodiode as L, the signal and ASE power detected by the
photodiode arc calculated as:

P "'l'uulLP

ase ase

\u,' “m(’p‘nm’ (2.16.2)

where P, i1s the average power of a logical one or a logical zero at the
input of the EDFA before input coupling loss.  Thercfore in order to
simulate a real system. the powers Py, and P, i the previous

cquations must be replaced by P, and P, respectively.

2.17. Comparison of Gaussian and Chi-Square PDFs

The PDFs for logical zeros and logical ones are shown in Fig. 2.17.1.(a-
d). A polarizer is used for Fig. 2.17.1.(a-b) and therefore m,=1. For
Fig. 2.17.1.(c-d). the parameter m =2 because the polarizer is omitted.
The values of the other parameters used are 0=0. P,,;=-36 dBm.
Pingv=-39 dBm. P,,,=30 mW, ¢ ,=30 dB, B,,..=20 GHz. B,=1.4x1.3 nm
(the factor 1.4 is for calculating the noise cquivalent bandwidth of
the optical BPEF), M=11 for the case of using polarizer and M=22 for
no polarizer, Nyp,=2. R=1 A/W. The losses are neglected.  Nooo (0
optical filter hdndwndlh B, should be in hertz instecad of nanomvcrer.
However for convenience, the value of B, will be given in nanometer.
In the actual calculations, the following conversion is applied to I3, to
change its tnit to hertz:

B,,(Hz):;—‘z’lf(,(nm) (2.17.1)
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=3x10% m/s is the speed of light in vacuum. A_. is the

where ¢,
For cxample, at A_.=1550 nm. |

wavelength of the light carrier.

of B, corresponds to about 125 GHz.

nm

10°
-— Chi-Square

%’100 - Gaussian
C
(0]
Q
2
E
3
°10°
o

1070~ ' \

0 1 2

time averaged current (A) x 107

Fig. 2.17.1.a. PDFs of logical zeros with polarizer.
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Fig. 2.17.1.b. PDFs of logical ones with polarizer.
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Fig. 2.17.1.c. PDFs of logical zeros without polarizer.
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Fig. 2.17.1.d. PDFs of logical one. without polarizer.

As it can be scen, the Gaussian distribution is very different from the
Chi-Squarce distribution.  Onc of the tails of the Gaussian distribution
extends to the negative side of the time averaged current axis. The
tails of the Chi-Squarc arc confined in the positive range of the time
averaged current. The negative tail of the Gaussian distribution
violates  the conditien that the photocurrent must be  positive.
However the impact of this is significant only under certain
circumstances. It we are only interested in  the sensitivity
performance of the system, the Gaussian approximation will only
give slightly different results from the Chi-Square distribution.  Fig.
2.17.2.(a-b) illustratc the crossing points or the optimum thresholds
of the Gaussian and the Chi-Square PDFs. The received power has
been increased to Pj,.=-35 dBm whereas the values of the other
parameters arc the same as the ones used for generating Fig.
2.17.1.(a-d).
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Frg. 2.17.2.a. Crossing points of PDEFs with polarizer.

The mean values of the logical ones and logical zeros in Fig. 2.17.2.a
arc 6.82x10% A and 5.70x10°% A respectively. The optimum
thresholds of the Gaussian and Chi-Square PDIEs are 1.7x10-4 A and

2.5x10-4 A respectively,
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Fig. 2.17.2.b.  Crossing points of PDFs without polarizer.

The mean values of the logical ones and logical zeros in Fig. 2.17.2.b
arc 7.39x10-% A and 1.15x10-4 A respectively. The optimum
thresholds of the Gaussian and Chi-Square PDFs are 2.6x10-+ A and
3.3x10-% A respectively.

It can be scen from Fig. 2.17.2.(a-b) that the optimum thresholds
predicted by Gaussian PDFs are very different from the ones
predicted by the  Chi-Square PDFs.  Therefore in the analyses that
involve the knowledge of the optimum threshold, using Gaussian
approximation will not provide results that arc adequately accurate.
The different system performance analyses will be shown and

discussed in chapter 4.

2.18. On The Computation of Functions

in the calculation of the probability of crrors and the optimum
threshold using the equations presented in this chapter, it is
necessary to calculate the modified Bessel function of the first kind

I,(z) with many different orders A and arguments ;. The
computing speed for [, (z) is very slow and the function can
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sometimes return values which are too large for the computer 1o
handle accurately because the argument is o large.  However. the
argument is not large cnough and thercfore the large argument
approximation for the Bessel function cannot be used.  In addition.
there arc also decaying exponential functions involved in  the
calculation, this function can sometimes return values which are too
small to be handle accurately. These two functions limit the speed of
compuiation and the range of values of parameter that can be used
in the analysis because of accuracy.

In chapter 3. @ method called the Steepest Descent Method will be
introduced.  This method will be used to approximate the inverse
Laplace transform of the MGFs. It will be shown that this
approximation is very accurate in chapter 3. In addition. no Bessel
functions appear in the final cquations and hence the computational
speed is very fast. There is also no restriction on ine values of
parameters in the analysis.  Morcover, it can be used to generate a
wide varicty of graphs in a short period of time. This method will be
used to gencrate PDEFs which will be compared with the ones

-

generated by the Chi-Square distribution in chapter 3.
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3. Non-Gaussian Noise Theory-Part II

The previous analysis has excluded the post-detection Gaussian
noiscs such as thermal noise and shot noise. These post-detection
noises will be significant if the optical filter bandwidth is sufficiently
narrow or if the EDFA small signai gain is smaller than a certain
value. In this chapter, a more complete MGF which includes the
thermal and shot noises will be derived. The non-Gaussian PDFs for
logical zeros and logical ones will be obtained by using the Steepest
Descent Method (or the Saddle Point Method). The Steepest Descent
Method will be briefly introduced in this chapter. More information

about this mcthod can be fourr- . 28].  The derivations of the
PDFs and the crror protabilitic - " on [8].

3.1. The MGF of Gaussizn

The MGF of the Gaussian i'UF . adom var'able v, with zero mean

and variance O, is given by the hilateral Iaplace transform of the

PDF:

] oo ,,\’ 4
<exp(=sy,) >= —=—r J_mexp b ) U AU (3.1.1)
210, 20,

By completing the square n the cxponential term and using the
Gauss integral for complex argument from Appendix C, the MGF can

be cxpressed as:

F (s)=<exp(—=sv,)>=ex &92 (
F Y - p ‘s.\g) - - p 2 * .

|78
-—

.2)

3.2. The Variances of Thermal and Shot Noises

The distributions of the thermal and shot noises can be well
approximated by the Gaussian PDF. The two sided PSDs for the
thermal and shot noises arc given by:
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2kT, . ,
= (thermal noise) (3.2.1)

R(’(/

PSD

P SD\'I: = (/1

Y
3
~—

o (shot noise) (3.

where & is the Boltzmann's constant, T4 is the absolute temperature,
R.q i1s the cquivalent noisc resistance of the receiver, ¢ is the electron
charge and [/, is the photocurrent.  The variances are given by the
noisc powers:

2KT
9 — .
=B, (3.2.3)
th R elec
c
2 .
G.\'ll = (II/.'/I [))’,/(,IA (ﬁ.....—l')
where By is the two-sided eclectrical bandwidth.  Because of the

presence of ASE. [, is a random variable. This means the PDF of
shot noise is a conditional PDF and depends on the random variable
Ipn. The MGE of the shot noise cannot be simply multiplied by the
MGFEs of the thermal. sig-sp beat and sp-sp beat noises.  However.,
since shot noise is not a dominant noise term. in order to simplify the
analysis, the current [, can be replaced by its mean value given by:
>=]

<l =N P+ P (3.2.5)

nh

where the signal power P, may or may not vanish for logical zeros.
fon \”\ - e

The vartance for shot noise can then be written as:

5
6.\‘/1 = quhB

('/('('

= gN( Pie * Pye ) Bojee

and the shot noise PDF becomes an unconditional one.



3.3. The Overall MGF

Since the thermal noise is independent of the signal and the beat
noises, its MGF can be multiplied by the MGF from (2.8.2). The PDF
of the shot noise has been made unconditional and hence its MGF can
also be multiplied by the MGFs of the beat noises and the thermal
noise. The MGFs of the thermal and the shot noises can be obtained
by substituting (3.2.3) and (3.2.6) in (3.1.2). Multiplying the MGFs of
the thermal and the shot noise by (2.8.2). the overall MGF can be
expressed as:

~skS|E,[* 2 2
F(s) = | exp( s Zl n‘ Jexp[%’—”—.v“jcxp(g}*'.s’].

(1+206°Ks)M 1+26°%Ks 2

-

(3.3.1)

The PDF for logical ones is obtained from the inverse Laplace
transform of F(s). In order to simplify the expression. the following

substitutions arc made:
2 ~
A=KY|E,|” =%P, (3.3.2)

RP

M

2 2
— Gth + O-xh_
2

¢ (3.3.4)
where equations (2.10.2.9) and (2.10.4.1) have been used. Using

(3.3.2) to (3.3.4) in (3.3.1) and taking the inversc Laplace transform,
the PDF for logical ones is then given by [29]:



ex ( 0 ) Xp(Cs™ yexplvs)ds
Xp| ———— |exp(Cs™)explvs)dy
P I+ Bs I '

O+ joo 1

fi(») !
V)=
o 20 i (14 Bs)y M

(3.3.5)

where O is a constant so chosen that the contour of the integral in
cquation (3.3.5) lies to the right of the poles of the integrand.  For
cxample, the integrand in cquation (3.3.5) has a pole at s=-1/5.
therefore it is necessary to choose 0.>=1/B. Notice that if C is set
to zero, the analysis will be applying the Steepest Descent Method 1o
the MGF of the Chi-Square distribution.  Rewriting the first term in
the integrand of (3.3.5) as:

I

(]—-—B—”—:cxp[~/1/lln(l+1h)] (3.3.06)
+ Bs)

and making a change of variable w=1+ Bs. the PDF can be cxpressed

as:
: | paBusje | =Au—=1 Clu—1)" viu—1
./](-\v): ' JH s+ ex| Al ,+( u ’ ) +3(1t )——A\llnu}(/u
2mjB ooy Bu B B |
(3.3.7)
_ I b4 P I3 / N -y
_._2;/5 HBU‘_]{“L)\pI (1) du (3.3.8)
where
—A(u -1 Clu—1)° (-1
Fly=—2W=D G D7 YD e, 3309
Bu B- B

The integral in cquation (3.3.7) does not have a closed form

expression.  However a very good approximation can be made by
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using the Method of Sicepest Descent and the PDF can be expressed
in closed form.  Section 3.4 will give a briel introduction to this

method and scction 3.5 will apply this mcthod to find the PDFE.

3.4. The Steepest Descent Method

The materials in this section arc mostly taken from [28]. This
method can be found in many other physics textbooks such as [271.
The Steepest Descent Method was devised by P. Dcebye for evaluating
the integrals of the form:

J(f;):_[(,] explzf(t)]dr (3.4.1)

2

when |z
functions in some region containing the contour C,. The argument z

is very large. In cquation (3.4.1). f{r) are analytic

can be real or complex. In the following analysis. the argument :
will be assumed to be real. or equivalently its phase exp] rarg(z)] is
absorbed into f(7). The method is based on the o servation that the
major contribution to the integral from the integrand comes from the
regions along C; where Re{f(r)} is largest or has a maximum.
However, in thesc regions there would usually ¢ very  laige
oscillations and consequently important cancellations of the values of
the integral due (o the factor expl{jIm{f(1)}]. Thesc oscillations
would make the cvaluation of the integral very difficult. The idea of
Debye is to deform the path C) in such o way that on a part C, of C,.

the following conditions are satisfied:

ta) Along T, Im{f (1)} is constant.
(b) (', goes through a point 7, where:

df (1)
(I”

= (). (3.4.2)

=1,

(¢} Tihe path C, is so chosen that at =1, Re{[(r)} goes through a
relative rmaximum, and C, is called the path of steepest descent.
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The condition (a) will guarantee that there are no oscillations along
.. Condition (a) and the fact that C, goes through the point 7,
determine  the  cquation  of  the path €, along  which
Im{f(r)}=Im{f(r,)}. The condition (c) ecnsures that the integrand
has a peak at r=1, so that the main contribution t¢ the integral will
come from an cnvironment of the point .
3.4.1. The paths of constant Im{ (1)}
We can expand the function f(1) at 1=t as Tavlor series:
f(f ]/ Sl /( 1)
Flry= )+t -1, )~——~» R I ——*j—-I” +e 0340100
\.J[ l ‘ ({’—

Using (3.4.2) i 2 4.0 1y and observing that in the neighborhood of
[, the terms igner than the second order can he ignored. the
function becomes:

. : I vd” f(1

[y fu, ) +--(1—1,) =g (3.4.1.2)

: . 5 3

- di

where the scecond derivative of the function is assumed to be non-
zero. Let

1~1, = Frexpl jo) t3.4.1.3)

R

[ d-f(1) :
and 1l = Rexpjo) (3.4.1.4)

2 odem .
where the magnitude R and the angle © are consiaats, the magnitude
roand the angle ¢ are variables. then using (3.4.1.3) and (3.4.1.4) in
(3.4.1.2). we have:

. . R . .
Re{f(r)— fr )= r Reos(2@+9) (3.4.1.5)
D .

and Im{f(r)=fU )} =r Rsin(2¢Q+¢). (3.4.1.6)

EN
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In order to find the path of constant Im{f(s)}, we nced to enforce the
condition Im{ f(#)}=1Im{f(r,)}. then from (3.4.1.6)., we have:

sin(2e+¢)=0 (3.4.1.7)

or 20+ 0 =nmn (n=0.1,2,3; (3.4.1.8)
9 n

=——=+-—-T. 3.4.1.9

or ¢ 55 ( )

Substituting cquation (3.4.1.9) into equation (3.4.1.3), we have:

{ 0 n JJ
I—1,=rex -——+—-T (3.4.1.10
p[’( 272 )
where r=r(,+rexp(—jg) when n=0 (3.4.1.11)
t=tu+rexp(—j9+—T£J when n=1 (3.4.1.12)
2 2
1=t1,—rex _;® h =2
=1, p 12 when n= (3.4.1.13)
r=t()—;'exp(—j9+-7£) when n=3. (3.4.71.14)
2 2
Combiniag equations (3.4.1.11) and (3.4.1.13), we have:
t=t1, trex _j® 3
=1, £ rexp 12 : (3.4.1.15)

Siimilarly, from equations (3.4.1.12) and (3.3.1.14), we have:

7 '¢ n) )
=t *Trexp|l—j=—+—|. 3.4.1.16
JET p( i+ ( )

N
g



Since the angic ¢ is a constant, the cquations (3.4.1.15) and (3.4.1.16)
define two straight lines that passing through the point 7, and along
which Im{f(#)} is constant and equal to Im{f(r,)}. Similarly it can be
shown that there are two lines that pass through ¢, and along which
Re{f(¢)} is constant by enforcing the condition Re{f(r)}=Re{f(r,)}.

The lines are dectermined by the condition obtained from (3.4.1.5):

cos(2¢+¢)=0 (3.4.1.17)

and the equations of the lines are given by:

¢ ’Iﬂ
r=1,xrex (—-—‘-'4.—' (3.4.1.18)
[ (¢ 3n
=t +rex -tz S
t l,,_ICXp‘j( 2+4 . (3.4.1.19)

The lines in  equations (3.4.1.18) and (3.3.1.9) divide any
ncighborhood of ¢, into four sectors where alternatively:

Ref{ f(1)}> Re{f(1)) (3.4.1.200
for cos(2@+¢)>0 in (3.4.1.5), and
Re{f(1)} < Re{f(1,)) (3.4.1.21)

for cos(Zo+d)< 0 in (3.4.1.5).

The shape of Re{/f(r)} in the ncighborhood of ¢, wili then be
governed by cquations (3.4.1.20) and (3.4.1.21). Since between two
zeros of the cosine function therc is alwavs one zero of the sine
function, there is in euch of the four sectors, one and cnly one line of
constant Im{f(t)}. The constant Im{f(r)} lines are given by (3.4.1.15)

and (3.4.1.16).
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3.4.2. The path of steepest descent
The directional derivative of the function f(r) along any path in the

complex plane is given by:

o _ V(Re{f}+jIm{f)-[ =V(Re{f})-T +,jVIm{fH-I. (3.4.2.1)

ol

and the modulus of the derivative in (3.4.2.1) is given by:

. ]
{Q[' = {[V(Rc{.f})-f]“ +[V(Im{f})-7]2}2 (3.4.2.

D
o

al

where dl is an element of arc length and [ is the unit vector along

the path, V() is the gradient operator. Since at a given point ¢, the
modulus of the derivative in (3.4.2.2) has a certain constant value. so
V(Re{f})-i is the largest (either positive or negative) when
V(Im{f})izo which is satisfied if Im{f} is constant along the path.
This means along a path of constant Im{f}. the risec and fall of Re{ 1}
is the fastest. Fig. 3.4.2.1 shows the paths of constant Im{f(7)}. 12
and 34.

4 Re{f(t)}
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Along path 12, Re{f(1)} rcaches a maximum at 7, and Re{f(1)}

decreases rapidly as we move away from 7 Simce Imf{ f(r)} is also

"
constant along path 12, according to the conditions stated in section
3.4, the path 12 is the path of steepest descent C,.  Along path 34,

Re{f(1)} rcaches o minimum at 1 Therefore Re{f(r)} is neither a

[

maximuiin  nor 2 minimum 4! f The environment in the

0"

ncighborhood of 1, forms the shape of a saddle and hence the point
1, is called a saddle point and the method is also called the Saddle

Point Mecthod.
3.4.3. The evaluation of J(z)
The integral in cquation (3.4.1) can be cvaluated along the part C, of

the contour C; where Debye’s conditions are satisfied. Let
fly=f,)=w(1) (3.4.3.1)

where  wi(r) is assumed to be a real function along C, because
Im{f ()} =TIm{[f(z,)} along C,. The negative sign appears in front of
w2 (1) because C, 1s a path of steepest descent and Re{ (1)} should
decrease rapidly as the point r moves away from ¢ Therefore the

(r

function J(z) in (3.4.1) can be approximated as:

Jor=explzfr,)] jcxpl—:n'z(: Yt (3.4.3.2)
h

)

As 1 moves along C . w(r) moves along the real axis since it has been

assumed to be a real function, therefore the integral in (3.4.3.2) can
be written as:

J(Z)=explzf, )l_[';’c,\'pl——:w2 (1) I—;{—[dw (3.4.3.3)
¢ aw

where «, b are arbitrary rcal constants.  The dominant contribution

to the integral in (3.4.3.3) comes from the regions along C

, Where

w(r) is small and hence exp[—:wz(y)l is large. Therefore negligible

error will be made if the integral in (3.4.3.3) is replaced by an
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integral from —ee (o eo. By comparing (3.4.1.2) and (3.4.3.1). it can

be seen that:

5 I S
~‘1’“(1):—7—(_t~r,,)"_/ (r,) (3.4.3.4)

|22
or f—1 = / )

(3.4.3.5)

Differentiating equation (3.4.3.5) with respect to w. we have:

a_ | =2 (3.4.3.0)
dw \ (1)

Substituting ¢ uation (3.4.3.6) into equation (3.4.3.3;, we have:

)

_ oo 5
j(:)5expl;/(t”)!d;r_mexp(—:n") ’ dw (3.4.3.7)

Ve

r

[ o "
=explaf ()], |——| exp(—mw)dw (3.4.3.8)
PSSOl 3 Lo
(57 0,)], 2 27
= explaf (1,)] |—— [2m — (3.4.3.9)
P \/ ()N 2:
=explzf(t,)] [7_27-7.—‘{‘— (3.4.3.10)
< 0 Z[,,(’,,) T

where the Gauss integral [30]:

X

2 R
jf;exp(;”_’z J{lw = 2my? (3.4.3.11)

has been used to obtained (3.4.3.9).
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3.5. The Inverse Laplace Transform of the Overall MGF

The Steepest Descent Method can be applied 1o find 0 very good
approximation to the inverse Laplace transform in (3.3.8) which is
also the PDF of logical ones f,(y). Th: form of the integral in
equation (3.4.1) is slightly different from the one in equation (3.3.8).
The variable v is cmbedded in the function F(u) given by (3.3.9).

However the previous discussions can be neralized such that the

ge
Steepest Descent Method can be applied to (3.3.8).  The integrand in
(3.3.8) has a pole located at w=9. The contour of integration in

cquation (3.3.8) is a straight line o shown in Fig. 3.5.1.

4 Im{u} Contour
Pole i C2

4 >

0 1+Bau Re{u}

Fig. 3.5.1. The contour of integration.

3.5.1. The saddle peint
The saddle point i, is given by one of the roots of:

Filu)y=0 (3.5.1.1

according to cquation (3.4.2). assuming there is at least one saddle
point.  The saddle point must lic or the contour €5 in Fig. 3.5.1 with
1

Refu, b =u, =1+ Bo.. Differentiating  cquation  (3.3.9), rearranging

terms and substituting in cquation (3.5.1.1). we have:

B ) °AB
1(3+(—'\——— ju“ - Mij 11~A):(). (3.5.1.2)
2C 2C 2C

Let w=u, + juy. the real part of cquation (3.5.1.2) is given by:

‘N
o



", — = () (3.5.1.3)
2C 2C

2 (B S > AB
ll,‘).b = 3uu7 + (:}E — ])(u; —u?) - MB

| he

and the imaginary part is:

2
[31{3+(£—1)(2L{,)—MB —-ll,?':llll-':o. (3.5.1.4)
2C 2C

L

The imaginary part implies that:

i, =0 (3.5.1.5)

< <

2 a2 (Y MB’
or zl,f:311;4—(2—1)(211,.)—1——. (3.5.1.06)
2C 2C

If cquation (3.5.1.5) is truc. the saddle point is real and is given by
the positive real root of:

uf+(———l)u,2.—MB u,.—ABz(). (3.5.1.7)
2C 2C

The saddle point is positive because the contour of integration lies in
the right .and planc (1+Bo.>0) as it can be secen from Fig. 3.5.1. If
equation (3.5.1.6) is true, the saddle point may be complex and could
be obtained from solving ecquations (3.5.1.3) and (3.5.1.4). There
may be several saddle paints on the complex planc that will satisfy
cguation (3.5.1.2). However, it will be shown in the following
sections that only one will enter the calculation.
3.5.2. The path of steepest descent

In order to find the path of steepest descent and the location of the
saddle point, we need to expand the function F(u) at the saddle
point 1, using Taylor series expansion:

,
(u—u,)

F(u)=F(u,)+(u—u,)F'(u,)+ i F’u,)+---. (3.5.2.1)



[gnoring the terms with order higher than the second order term and
assuming  that  F”(u,)# 0. and since [(u,)=0 from (3.5.1.1). we

have:

(“ - “() )‘- [':”

Flu)= F(u,)+ (e, ). (3.5.2.2)

Since the contour of integration is a straight line. the real part of an
arbitrary point « on the contour C, in Fig. 3.5.1 is cqual to the real
part of the saddle point w,. Therefore we have:

0"
t—u, = j(Im{u}—u,) (3.5.2.3)

where ¢ 1s the imaginary part of the saddle point and

“

(u—u,,)::—(lm{u}—u,-) (3.5.2.4)

>
7

which is a real and ncgative quantity.  Since along a path of steepest
descent €. the condition Im{Fun}=1m{F(u,)} is satisfied. we shall

let
FFao=Fag, ) —w (3.5.2.5)

where v is a real function. Using the fact that the quantity in
(3.5.2.4) 1s real and negative. and comsaring (3.5.2.2) with (3.5.2.5).
it implies that F”(u,) is real and positive.  The second derivative of
the function F(u) is given by differen © ing equation (3.3.9) with

respect 1o twice:

Because of the inverse cubic function in the first term of (3.5.2.6). il
is obvious that F”(u,) is real if and only if u, is real. Now it has

been shown that w, is rcal, the saddle point will be given by the real
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positive root of equation (3.5.1.7). 1t also foiiows that the function
Fu) is real at the saddie point.  Using equations (3.4.1.15) and
(3.4.1.16). the contours along which Im{F o)} =Im{F(u,)} are the two

straight lines given by:

(N REE=S

u=1u +rcxp(—j ) (3.5.2.7)

o —

and

W
(K]

.8)

uzzg,irexp[j(——%+§ﬂ (3.1

where r is the magnitude of (u—u,) and ¢ is the phase of F'(u,,)
according to (3.4.1.3) and (3.4.1.4). Since F”(u,) is positive and real,

its phase is given by:

O0=2nm n=0.x1+2.... (3.5.2.9

Then cquation (3.5.2.7) is just the real axis and cquation (3.5.2.8)

represents the contour C, shown in Fig. 3.5.1. he saddle point is
located at the interscction of these two lines 12 and 34 as shown in

Fig. 3.5.2.1.

4 Imfu}

Saddle Point

Fig. 3.5.2.1. Saddle point and constant Im{F (1)} paths.

The path of steepest descent will be the part C, of one of the paths

12 or 34, and C, can be determined by analyzing the behavior of the
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rcal part of the function F(u) along cach of the paths.  Using
cquation (3.3.9) and substituting w=u, + ju,. the real part is obtained

ds:

Al (u, =D, + 107 ' N
Re{F(u)}=—— (e, = D, + 14 +—C,—[(u,. R D iy
B B~

2, 2
", +u;

\ f 2 2
+-'§(u,.—ll)—Mln\,’u,‘.+u[. (3.5.2.10)

Along path 34 in Fig. 3.5.2.1. 1, =0. the first and sccond derivatives
of Re{F(u)} with respect to 1, are given by:

JdRe{F ()} Al 2C v M . -
e e B T D (3.5.2.11)
i, Bu b B u,

O Re{F)) 241 M 20 _

s = s o (2SO
du; B  u B
Since 1, >0 at the ~eddle point. this implies that:
SRAFGOL (3.5.2.13)

- hl
du;

and that Re{F )} is a minimum at the saddle point along the path
34, Thercfore the path 12 in Fig. 3.5.2.1 must be such that Re{F(u))
goes through o maximum at the saddle point. It can then be
concluded that the path of steepest descent € is the part of the path
12 that goes through the saddle point and  contains  some
neighborhood of the saddle point.  An example of the saddle point
(marked by the cross), the path of steepest descent (the straight line)
and the surface plot of Re{F(u)} is shown in Fig. 3.5.2.2.



Surface Plot of Re{F(u)}
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Fig. 3.5.2.2. Surface plot of Re{F(u)}, the path of steepest descent
and the location of the saddle point.

The valuce of the saddle point in this example is u, =2.9567 + jO. The
surface above the contour plot is of the shape of a saddle as
predicted.  Note that there is a pole at u=0 which is originally at
s=—1/B before the change of variable u=1+ Bs. The pole in Fig.
3.5.2.2 has been suppressed so that the graph can be obtained.
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3.5.3. The closed form expression of PDFs

Using (3.5.2.5) in (3.5.2.2) and recarranging the terms. we have:

2w <
u—u, = |— (3.5.3.1)
V()
du | =2 _
and — = (3.5.3.2)
dw  \F"(u,)
Using (3.5.2.5) and (3.5.3.2) in (3.3.8). we have:
: expl Flu,)] ¢ du 3
./I(_\'):-—B—[—_—JJ. cxp(—wz)———dn' (3.5.3.3)
2njB - dw
explfu,)] ¢ ) o .
:——p[—--_~’~—]r exXpl—=w=) —————dw (3.5.3.4)
2y \F7(u,,)
expl F(u R <4<
_ ¢xpl ‘ o) T\ (3.5.3.5)
2B\ F(u,)
xpl ()
- el (I (3.5.3.0)
B 2k (u,)
where the Gauss integral in (3.4.3.11) has been use ' o obtan

(3.5.3.5). At cach value of v, the saddle point u, can e found trom
cquation (3.5.1.7).  Equation (3.5.3.6) can aiso represent the PHE of
logical zeros by reducing the signal power Py,.  Theretore it iv oniy
necessary to change the constants A and C in (3.3.2) wnd (3.3.4) in
order for (3.5.3.6) to represent the PDF of logical zeros. The signal
power Py, may or may not vanish for a logical zcro depending on the
extinction ratio specificd. The means of logical zeros and logical ones
arc given by (2.10.4.2) and (2.10.4.3) respectively.  The variances of
logical zeros and logical ones are given by adding (3.2.3) and (3.2.6)
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to (2.10.4.4) and (2.10.4.5). The optuimum threshold can be chizined
by using (3.5.3.6). (3.5.2.6) and (3.3.9) in (2.15.2) which can be

solved numerically.

3.6. The Accuracy of the Stecepest Descent IMethod

The Steepest Deszent Method is very accurate and the ciror is within
1% 25 reported by Marcuse [8]. To test the accuracy, we can compare
the PDFs generated by the Steepest Descent Method and the Chi-
Squrare cquations presented in chapter 2.  The comparisons of the
P?DFs of logical zeros and logical oncs are shown in Fig. 3.6.1.a. S,
3.6.7 b shows the relaiive error (in percentage) in the Steej st
Pescent Method. which is calculated by taking the ratio of the values
of the PDFs. The values of the parameters used .re =0, Pini=-36
dBm, Pjy,=-39 dBm. Py, =30 mW, G,=30 dB. 8,;,.=20 GHz. B,=1.4x1.3
nm (the facter 1.4 is for calculating the nouise equivalent bandwidth
of the optical BPF). m;=1, M=11, Ny,=2, R=1 A/W, T;=0 K. Th ‘'isses
arc neglected.

—- Chi-Square
O Steepest Descent

—
o

, }
0.5 1
time averaged current (&)10—3

Fig. 3.6.1.a. Comparison of PDFs evaluated by Chi-Square
distributions and Steepest Descent Method.
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Fig. 3.6.1.b.  Relo e error in Steepest Descent Method.

As it can be seen. the difference between the TDFs of logicai zeres
and the ddifference between the PDEs of logical ones are verv small
within the range of interest.  Therefore the stecpest Descent Method
is indeed very accurate.  The results that are chuined by using the
Steepest Descent Method  will oe called  'non: “raussian' in the

following sections.

3.7. The Conversion of Current to Voltage

In a practical situation or experiment. the photocurrent sometimes is
too small to be mcasured accurately because of the limitation of the
resolution that can be provided by the cquipment.  The photocurrent
however can be converted to voltage by using electrical ampliriers.
After amplification, the veltage is much ecasier to meoasure and the
influence of the resolution on accuracy can be minimized. In this
section.  the  random  variable v, which is the time averaged
photocurrent, will be converted to a voltuge random variable.  The
advantage of doing this is that the theoretical PDFs can be ised to
compare with the experimental PDi's.  The conversion procedurs s

very simple.  We can simply add an additional block into the receiver
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of the theoretical model snewn in Fig. 2.2.1. The new receiver is

shown in Fig. 3.7.1.

N Square-Law
Z Detector
iyl RinG
—=J, dt ;=1 Rinlelec DECISION

L—

Fig. 3.7.1. Receiver with cuirent to voltage ¢ ersion block.

The function of the block K, o s 10 per oo cusess o vollage
conversion and jrovide clectrical amptificatio : - hoooutput of this
block the random variable is voltage instead of curreat.  The new
cquations of the PDFs can be casily obiained by muitipl;ing the
cquations (3.7 "y aad 75.3.3) by R, G, suice e constants A and B
have units of ar~prre A, The equadion {3.3.4) has to he mu..ipiicd by
(RinGore0 )2 since the constant C has unit of A2, The time averaged
current v in (3.2 9) also needs ' be multiplied by R, . There is
also a thermal nciie factor Foas<ociated with the gain block <hown in
Fig. 3.7.1.  The input resista.~c R;, is related to the thermal noise

cquivaient resistance R,y as:

A :J’—, (3.7.1)

Therefore the thernal noise in £3.2.3) should He modified as:

KT F
G}, :v—R‘ . (3.7.2)

i

The input resistance will be assumed to be 50 Q in the following

analyses,
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3.8. The Impact of Vaiues of Parameters on PDFs

The non-Gaussian and the Gaussion PLFs wae different in shape  as
shown earlier in Fig. . 17.1.(a-d). However the difference is not
often noticcable in (b range of interest (c.g., "7 =10 1o 10-12) or

the range in which cxperimental data can b token. heretore it
is important to fin. -ut under what cenditions that the difference is
large cnough to ! experimentally mcasurable. As discussed in

section 2.1, the only dominant nroise in the system that has a non-
Gaussian distribution is the sp-sp beat noise.  Therefore in order to
make the non-Gaussian  distribution more apparent. the sp-sp  beat
10ise power must be increased. We can examine the different ways
of increasing  the sp-sp beat noise pewer by rewriting  equation
(2.1.4.4) using cquations (2.6.4) and (2.10.2.6). and replacing M by

mM o (from section 2 14 of chapter 2) as:

~

Gipoyp = WM [N (G = DI B, B

pesp T o (3.8
Eorocomparisoin we can also ase -2.6.4) and (2.10.2.6), and replace M
by m M oto rewrite (2.10.4.5) as:

e . < 2RIN

Vi

(O =Dhf NGB, B, (3.8.2)

where £+, has been replaced by G Py, The power Py, is the received
power and it can represeat a logical one or a logical zero depending
on its power level.  As it can be seen from (3.8.1). the sp-sp beat
noise power is directly proportional to the optical filter bandwidth B,
and the two-sided clectrical bandwidth B,,... In addition. the noise
power is proportional the square of the EDFA small signal gain since
(;>>1. Therefore we can vary the values of the parameters B,,. Bolee
and G in order to see the difference of the Gaussian and non-Gaussian
PDFs. The PDEs of logical ones and iogical zeros are plotted as
functions of voltage random variable in Fig. 3.8.1.(a-b) by using twe
valies of Bejee (1 and 20 GHz) are used. The values of other

parameters used are 0=0, P;,1=-33 dBm. P;,.=-36 dBm. P,,=30
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mW, G,=30 dB. B,=1.4x1.3 nm (the factor 1.4 is for calculating the
noise cquivalent bandwidth of the optical BPF). m,=1. M=11 (for
Bere. 220 GHz) and 227 for (B...=1 GH7) . Np=2, R=1 A/W, R;,=50 Q.
Coree=20 dB, T;=298 K. F=5. The losses are neglected.

10° - : : —-
10° \\\\Bele&:jC;GHz — Non-Gaussian
= , YN - Gaussian
&
-5 /
8 10 i /
= /
g0
0 /
S |
o ! \
107} '
'Belec=1GHz
10—20,_ L M=227
-Q.CA 0 0.05 0.1 0.15

Voltage (V)
Fig. 3.8.1.a. PDFs of logical zeros with B..=. 20 CHyz,
As 1t can be scen from Fig. 3.8.1.a, the difference between the

the non-Gaussian distributions are small within  the
However when B, is increased (o

Gaussian  and
range of interest for B,..=1 GHz.
20 GHz, the difference is quite significant and measurable.  For
cxample, ai PDF=10-10] the voltage difference is about SO mV.
Similar situation is also observed for the PDEs of logical ones.
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Frg. 350 b Plibs of Togical ones vith 2., =1 20 (iHz.

The mean values of the PDEFs do not increase with By, as it can bhe
seen iom equations (2.10.42y and © 10430 Only the variances of
the PLRES ncrease with 8,5, Whe, the variances are incrcased. the
PDEs are broadened.  However the PDE of the sp sr beat noise cannot
extend o the negative voltage tegion.  Therefore the way that the
non-Gaussian PDF is broadened is different iroin the one o1 the
Gausstan PDI. The differences of the tails of the Gaussian and non-
Gaussian PDFs are then more apparent. Note that in Fig. 3.8.1.a, the

non-Gaussian PDF extends slightly into the negative voltage region.
This 1s the result of including the thermal and shot noise in the
analysis.

The PDFEs of logical ones and logicai zeros are also plotted in Fig.
3.8.2.(a-b) by wusing two calues of B, (1 and 3 nm). The values of
otiier  parameters  used are 0=0, P, 1=-33 dBm. P;,,.=-36 dBm.
Pe=30 mW,_ (G ,=30 dB. B...=20 GHz, m=1. M=6 (for B,=1 nm) and 18
(for B,=3 nm). N,,=2, R=l A/W. R;,=50 Q.G .. =20 dB. 7;=298 K.
F'=5. The losses ore neglected. The choieo of the value of B..=20

GHz is based on the results ehtained from Fig. 2.8.i.(a-b).
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Iig. 3.8 2.a. PDFs of legical zeros with 8,=1. 3 nm.
The nd the vartances of the PDES are both  directly
P opcC. : to the optical bandwidth B, as it can be seen from
cquations (2.6.4), (2.10.2.6) and (2.10.4.2) t (2.10.4.3). When B, is

increased. the PDFs are breadened and its peak is also shifted to the
more  positive voltage side. However when 8,.,,..=20 GHz. the
variation of B, from ! nm to 3 nm does not generate any more

significant difference between the Gaussian and non-Gaussian PDFEs.
For the PDFs of iogical ones, similar observation can alse be made.
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Fig. 3.8.2.b. PDFEs of logical ones with B,=1. 3 nm.

In Fig. 3.8.3.(a-b) two vatues of € 20 and 30 dB) wre used to plot
the PDI's of logical zeros and sl ones. The values of other
parameters used are d=0, P> dBm. F,,,.=-36 dBm. P,.,.=30
mW. B...=20 GHz, B,=1.4x1.3 nm (the factor 1.4 is for calculating the
noise cquivalent bandwidth of the opticel BPEF), m,=1. M=11, Nop=2.
R=1 A/ R,=500 QU Gupee=20 dB. T,=298 K. I'=5. The losses are
neglected. The choice of B,=1.4x1.3 nm is based on the actual value

of the bandwidth of the optical BPf that is used in the laboratory.
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F:g. 3.8.3.a. PDFs of logical zeros with G,=20, 30 dB.

According to equations (2.6.4), (2.10.2.6) and (2.10.4.2) 1o (2.10.4.5),
and the fect that the signal power for a logical onc at the photediode
Psiy 1s the product of the EDFA small signal gain G and the input
powv. for the legical one at the EDFA input P;,;, the mean va. ies of
the PDFs arc directly proportional to the EDFA small signal gain. The
variances however are proportional to the square of the EDFA small
signal gain. Wiien the gain is increased, the peaks of the PDFs are
shifted to the more positive voltage side and the PDFs are also
broadened.  Since the variances are proportional to the square of the
gain, the broadening effect of the PDFs occurs faster than the shifting
of the pcaks. The difference between the Gaussian and non-Gaussian
PDFs arc more apparent when the EDFA small signal gain is

sufficiently large.
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Fig. 3.8.3.b. PDFs of logical ones with G,,=20. 30 dB.

From the above results, it can be seen that the non-Gaussian PDFEs are

cxperimentally observable or measurs ¢ when EREFA small
signal gain 1s sufficiently large and . . clectrice” bandwidth is

sufficiently wide.  Since the effect of v o tical filter bandwidth is

not as great as (7, and B ... 1ts value is not important.

3.9. The Probability of Error and the Bit %Yrro. Rate

The probabilities of crrors for logical ones and logical zeros cor oo
approximately derived by making use of the Taylor series expansion.
The probability of crror for logical ones can be derived as:

.
explGiu -1 ,
P = PGy ‘“)|l' (assuming  Glu, ) <0) (3.9.1)

l \/;27‘[[3 L(;ll(l((“ )J B
_ ‘ 24 2C M
where Gl(u):I"(u)Jriln(» T+ — 5 ) (3.9.2)
2 1w B 1
and
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(2ABu = Mui~u” +2C1u° )

—_—

i

JA( - Ne — 3IAL 4 MB>
Gyl = =—| =, ,))-E~(l—u)+/t/l(1 ”) (3184 MBu)
S 3~

(3.9.3)

where the constants A, B. C are given by (3.3.2), (3.3.3) and (3.3.4).
The function Fi(u) is given by (3.3.9). The variable g1 1s the saddle
point at the decision threshold 1, for logical ones. In the system
performarce analyses in chapter 4, the decision threshold will be
converted 1o percentage decision threshoid and hence it does nof
matter whether the decision threshold is current or voitage.  Note
that the value of Gj(u, ) in (3.9.1) must be negative.

The probability of error for logical zeros can be derived as:

p. = SXPLGy (1)} [ 1= expl =G 14y ey 1| Coa)
' Vank | Gy (1)) J |

wvhere u,, is the saddle point at decisicn threshold coo e Jogical
zeros.  The value of u,, is not necessarity equal to the veiv. o ERE
because the signal powers (hence the constants A and . 5 are
different for logical zeros and logical ones. The function G(x) and
Gy(u) are alse given by (3.9.2) and (3.9.3) cxcept with different
values of A and C.  ‘rhe detailed derivations for the prob-ubilities
errors of logical zeros and logical ones, and the accuracy of the Tay.or
series approximation are shown in Appendix B.
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4. Simulation of System Performance

The performance of an EDFA  preamplified digital transmission
system can be cvaluated based on the BER. the sensitivity and the
optimum threshold. etc. It has been shown in chapter 3 that the
non-Gaussian PDFs deviate the most from the Gaussian PDFs when
the EDFA small signal gain is sufficiently large and the electrical
bandwidth is sufficiently wide. We would expect that under these
conditions,  the system performance predicted by the non-Gaussian
thecory is significantly different from the one predicted by the
Gaussian theory.  However this is only true in certain analyses as it

will be shown in tie following sections.

4.1. The BER as a Function of the Received Power

A common  way of assessing the performance of a particular
communications system is to swudy the relation of the BER and the
received signal  power. For the case of an EDIA  preamplified
transmussion system. the received power is the average signal power
at the input of the EDEFA. When the received newer is increased. the
BER is decreased because of the opening of the data ¢ve in the
receiver.  The shot aoise and the sig-sp beat noise are both stgnal
dependent noises with the sig-sp beat noise ccing the dominant one.
The sig-sp beat noise power is directly proportional to the optical
signal power as it can be seen from equation (3.8.2,  However the
clectrical signal powe: is proportional to the square of “he optical
signal power.  Thercfore the electrical signal-to-noise ratio (SNR) can
be improved by increasing the optical signal power, Although the
sig-sp beat noise is a signal dependent noise. it will not cause a BER
floor.

The BER is plotted as a function of the received power in Fig. 4.1.1.(a-
b).  The descriptions of the parameters use! and their vaolues are
listed in Table 4.1.1. The values of some of the paramcters are Kept
constant throughout the following analyses.  Some parameters will be
used as variables and tlir vaines are not shown in the table. Their

values will be specified oefore cach the following graphs.
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Symbol Description Valuc Unit
h Planck's constant 6.6262x10-3 J-5
Boltzmann's constant 1.38x10-23 J/K
q electron charge 1.6022x10-1Y s
Co frer space light speed 3x108 m/s
A, light carrier wavelength 1.55x10-9 m
T temperature 2938 <
F noise figure of clectrical 7 dB
amplifier
R;, input resistance of 50 O
clectrical amplifier ]
St csponsivity  of photodiode ] A/W
Par EDFA saturation power. 3G mWw
Min ! EDFA input coupling loss () dB
Hout | EDFA output coupling loss 0 dB
L loss between EDFA and 0 dB
_photodiode
ny pol:  zation parameter variable -
) caunction  ratio variable dB
Np spontancous c¢mission ariable -
factor
G, EDFA small signal gain variable dB
P EDFA input power for variable dBm
! logical ones
average EDFA input power variable dBm
_ # (received power?
Borec two-stded electrical variable GHz.
bandwidth
B, optical BPF bandwidih variable nm
M ratio of optical to clectricai variable -

bandwidths

Table 4.1.1.
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The values of the universal constants such as the Planck's constant.
the Boltzmann's constant ete. are taken from [16].  As indicated in
Table 4.1.1. the losses in the system will be neglected

For Fig. 4.1.1.(a-b). the values of the perameters used are 8=-20 dB.
G ;=30 dB, B..c=1 GHz (for Fig. 4.1.1.a) and 20 GHz (for Fig. 4.1.1.h),
B,=1.4x1.3 nm (the factor 1.4 is for calculating the noise cquivalent
bandwidth of the optical BPF), m,=1 (with polerizer) and 2 (without

polarizer). M=11 (for 8,,=20 GHz) and 220 (for B,..=1 GHz). Np=2.
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Received Fower (dBm)

Fig. 4.1.1.a. BER versus Received Power with B =1 GHz.

The sensitivity at BER=10Y is about -44.7 dBm for m=1. When the
polarizer is not used or m =2, the sensitiviiy 1s degraded by about |
dB. The degradation is duc to the increase in sp-sp beat noise power.
This additional noise power comes from the self-field-mixing effect
of the ASE clectric field component which is spatially orthogaonal 1o
the signal clectric ficld.  The sig-sp beat noise remains unchanged
because of this spatial orthogonality.  The Jifference between  the
Gaussian and the norn-Gaussian curves are small since the two-sided

clectrical bandwidth is not sufficiently large. Therefore we would
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expect that the differei ¢ will be more apparent when the electrical

bandwidth is increased.
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g, 41 Eb. BER versus Received Power with B .=20 GHz.

In Fig. 4.1.1.be B =20 GHz 1s used and the sensitivity for BER=10-Y is
about -35.2 dBm for m,=1. A penalty of about 0.5 dB is observed
when the polarizer is not used.  The penalty is smaller than the one
in Fig. 4.1.1.a because the signal power is larger and hence the sig-sp
beat noise 1s more dominant.  The effect of the increased sp-sp noise
power when m =2 is less significant.  The difference between the
Gaussian and the non-Gaussiar theories is indeed more apparent. It
can be seen that the Gaussian theory overestimates the BER relative
to the non-Gaussian theory. However the maximum difference in the
BER is only about half a decade and in the received power is only
about 0.2 to 0.3 dB. This result agrees quite well with the result
obtained by Lee and Shim [9]. In practice, this difference is too small
to be measurable.

Now that we have learned the Gaussian theory can be used to predict
the BER versus received power curves with smali amount of error,
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we can use it together with the non-Gaussian theory to study the
cffect of the parameter M on the curves.  Since M is the ratio of the
optical bandwidth to the two-sided clectrical bandwidth, there are
two ways of changing its value. The first one is to keep the optical
bandwidth constant and vary the clectrical bandwidth. The seccond
onc is to keep the clectrical bandwidth constant and vary the optical
bandwidth.  The BER versus received power using B,..=1 GHz
(M=220), Bepee=10 GHz (M=22), B,,=20 GHz (M=11), arc plotied in
Fig. 4.1.2.a.  The values of the parameters used arec 0:-20 dB, G,=30
dB. B,=1.4x1.3 nm, m=1 (with polarizer), Nyp=2.

107°
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— Non-Gaussiai
-10 | '

10

BER
/-

107"t M=220 M=22
107 - : :
-50 —45 ~40 ~35 -30

Received Power (dBm)
Fig. 4.1.2.a. BER versus Received Power with B, =1, 10, 20 GHz.

When the clectrical bandwidth is increased from 1 GHz to 10 GHz, we
observe a sensitivity penalty of about 7 dB which is due to the
increase of all the noises. However when the bandwidth is further
increased from 10 to 20 GHz, the penalty is only about 2 to 3 dB. The
rclation between the signal power required to achicve a certain BER
and the electrical bandwidth is not linear. This can be seen from the
argument of the Q-function in equation (2.13.8). This non-linearity is
in part due to the sig-sp beat noise term. When the clectrical
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bandwidth is increascd, the optical signal power has o be increased
tn order to achieve the same BER. However increasing the signal also
increases the sia-sp beat noise pewer.  This non-lincar hehavior will
be shown later when we plot the sensitivity wversus the electrical
bandwidth.

Fig. 4.1.2.b shows the plot of BER versus received power with B,=1. 2,
4 nm. The valucs of the parameters used are 0=-20 dB. (;,=30 dB,
Belee=20 GHz, m=1 (with polarizer). Ny,=1.
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Fig. 4.1.2.b.  BER versus Received Power with B,=1. 2. 4 nm.

The penalty  of the sensitivity  at BER=10-Y when the optical
bandwidth 1s increased from | to 2 nm i1s about 0.7 dB.  When the
optical bandwidth is increased from 2 to 4 nm. the penalty is about
(0.5 dB. In this casc when the optical bandwidth is increased. only
the sp-sp beat noise is increased. The sig-sp beat noise. the thermal
noise and the shot noise are independent of the optical bandwidth.
The sp-sp beat noise is increcased by two and four times br ~use the
optical bandwidth is increased by two and four times. However in
Fig. 4.1.2.a, the clectrical bandwidth is increased by ten and twenty
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times and so are the noises.  Therefore the penaltics in Fig, 4.1.2.b
arc less than the ones in Fig, 4.1.2.4.

In order to show the relative significance of cach of the noise terms
in the receiver, the ncise power is plotted as a function of received
power in Fig. 4.1.3. The values of the paramecters used are 8=-20 dB.
G,=30 dB, B.,=20 GHz, B,=1.4x1.3 nm, m,=1 (with polarizer)., N,=2.
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Fig. 4.1.3. Noise Power versus Received Power.

Clearly the dominant noise source for logical ones is the signal
dependent sig-sp beat noisc. When the received power is increased.
the power of the sig-sp beat noise is also increcased. The sccond
dominant noise for both logical zeros and logical ones is the Sp-sp
beat noise which is signal independent. If the extinction ratio is poor
or large enough, the sig-sp beat noise might be the dominant noisc
for logical zeros. The thermal noise will be significant if the EDFA
small signal gain is not sufficiently large. The shot noise for logical
zeros is negligible. However the shot noise for logical ones could be
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important if the EDFA small signal gain is small and the signal power
is large.

4.2. The Sensitivity of the System

The sensiuvity of the EDFA  preamplified system  is the received
power required to achicve a certain BER.  In the following analyses.
the senstuvities for BER=10- and 10-14 will be considered.  The
sensitivity is  plotted as  fuactions of the two-sided electrical
bandwidth and the optical filter bandwidth in  Fig. 4.2.1.(a-h)
respectively.  The values of the parameters used are 0=-20 dB. ¢,=30
dB. Bee=20 GHz (for Fig. 4.2.1.b). B,=1.4x1.3 nm (for Fig. $+.2.1.a).

m,=1 (with polarizer), N,,=2
SB2 e e
-34 = 1/3 - .
BER=1e-14 .~ _i 7 Non-Gaussian
—=-36 = __~~_ . .~ Gaussian
C% / = ]
G = |
538 / g
g // BER=1e-y ;
0 4 ‘
o !
[}
n i
5 10 15 20

2-Sided Electrical Bandwidth Belec (GHz)

Fig. 4.2.1.a.  Sensitivity versus Electrical Bandwidth.

77



1

w

—
}

-32 _ - ==+ |~ Non-Gaussian
- / _ .
€ BER:J% | - Gaussian
m - = 4
T -33 - !
z e iy
2 s == |
g -34} -
Q -
” =~ BER-1e-9
Ve - —
-35 _//
7
-36 : A —
0 2 4 6 8

Optical Filter Bandwidth Bo (nm)
Fig. 4.2.1.b.  Sensitivity versus Optical Bandwidth.

The curves in Fig. 4.2.1.(a-b) show the non-lincar relation between
the sensitivity and the electrical and optical bandwidth.  This non-
lincarity has been observed carlier in Fig. 4.1.2.(a-b). Note that the
BER=10-4 curve is above the BER=10-Y curve because it requires
more power (o achieve the lower BER.

It is also worthwhile to investigate the sensitivity penalty due to the
increcase in cxtinction ratio and the spontancous cmission factor of
thc EDFA. The secnsitivity is plotted as functions of the extinction
ratio and the spontancous emission factor in Fig. 4.2.2.(a-b)
respectively.  The values of the parameters used are 6=-20 dB (for
Fig. 4.2.2.b), G,=30 dB, B./«=20 GHz, B,=1.4x1.3 nm, m,=1 (with
polarizer), Ny,=2 (for Fig. 4.2.2.a).
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From Fig. 4.2.2.a, it can be scen that the sensitivity degrades with the
extinction ratio because the mean level of logical zeros is raised and
the sig-sp beat noise for logical zeros is also increased.  When the
extinction ratio is increased from 0.0 to 0.1. which is 10 dB
increment, the penalty is about 2 dB. Note that the Gaussian and the
non-Gaussian curves deviate the most from cach other at zero
extinction ratio.  This is beeavse the sig-sp beat noise for logical zeros
vanishes and the sp-sp beat noise. which has a non-Gaussian PDF.
dominates. However this difference is still insignificant. The
Gaussian theory can sull be used with small errors.

Fig. 4.2.2.b shows the relation between the sensitivity and the
spontancous cmission factor.  The expression for sp-sp beat noise in
(3.8.1) shows that the sp-sp beat noise power is proportional to the
square of the spontancous emission factor. Therefore if the
spontancous emission factor is doubled. the noise power s
quadrupled. The expression for the sig-sp beat noise in (3.8.2) shows
that the sig-sp noise power is lincarly proportional to the
spontancous ecmission factor. Thercfore when the spontancous
cmission factor is doubled, the sig-sp beat noisc is doubled. It is

79



clear then the sensitivity of the receiver will be very sensitive to the
value of the spontancous emission factor.  From Fig. 4.2.2.b. it can be
scen that the penalty is about 3 dB when the value of the
spontancous cmission factor is incrcased from onc to two. The value
of the spontancous emission factor varies from EDFA to EDFA
depending on the design. The ideal theoretical value is one at which
the best receiver sensitivity can be obtained.

-31 . . -
32} : =]

-33¢t BER:1e—14/ | —Non—Qaussian
/’ _ _ —- Gaussian

Sensitivity (dBm)

-38}
-39 ' : '
1 1.5 2 2.5 3
Spontaneous Emission Factor Nsp
Fig. 4.2.2.b. Sensitivity versus Spontancous Emission Factor.

4.2.1. The EDFA gain dependence of beat noises

When the EDFA small signal gain is much greater than one. the Sp-sp
and the sig-sp beat noises are both proportional to the squarc of the
gain as it can be seen from ecquations (3.8.1) and (3.8.2). This gain
dependence of the beat noises limits the performance of the system.
The sensitivity is plotted as a function of the EDFA small signal gain
in Fig. 4.2.1.1. The values of the parameters used arc 0=-20 dB,
Be1ec=20 GHz, B,=1.4x1.3 nm, m,=1 (with polarizer), Ngp=2.

It can be seen from Fig. 4.2.1.1 that the sensitivity is improved
drastically when the EDFA small signal gain is increased from 10 to
20 dB. This is because in the 10 to 20 dB range, the gain is not
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sufficiently large for the beat noises to dominate.  The thermal noise
is the dominant noise.  Since the thermal noise is independent of the
signal or the gain, when the small signal gain is increased. the signal
power at the photodiode is increased.  The electrical SNR is increased
and hence the BER is reduced.  [If the BER is kept constant (c.g.,
BER=10-% as shown in Fig. 4.2.1.1). we would need less received
power 1o achicve the same BER and hence the sensitivity is
improved.  When ihe small signal gain is greater than 20 dB. the beat
noises beccome dominant. The improvement of the sensitivity
becomes less. When the small signal gain is greater than 25 dB. the

sensitivity is essentially independent of the gain.
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Fig. .2.1.1. Sensitivity versus EDFA Small Signal Gain.
This gain dependence and/or independence (when EDFA smail signal

gain is greater than 25 dB) of the sensitivity can be readily scen by
forming the clectrical SNR:

2
(9{[)\12)
SNR = 5 T 5 5 (4.2.1.1)
Gsp—.\'p + G.Vig—.\'/l TGO + 0y,
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Using (3.2.3). (3.2.0). (3.8.1), (3.8.2) in (4.2.1.1). approximating (G-1)

by G. substituting Piy=GPi. and after rearranging terms. we have:
MP;
SNR = ’” .o (4.2.1.2)

PN (G;h +G;/1)/W
HZ,(N hf(-B,,) +2N hf B()Pin T 9{2-(“’5

5 P
The SNR in (4.2.1.2) applies to both logical ones and logical zeros
except with different P;,. Note that when the small signal gain is
sufficiently large, the third term in the denominator of (4.2.1.2) is
small and the SNR is independent of the gain.  Therefore the
sensitivity reaches a floor as shown in Fig. 4.2.1.1. Note also the term
in numerator of (4.2.1.2) is proportional to the squarc of P;, whereas
the denominator is only linearly proportional to P;,. Theretore as Py,
increases, the SNR increases and the BER is reduced. There is no BER
floor as shown earlier in Fig. 4.1.1.(a-b) and Fig. 4.1.2.(a-b) cven
though the sig-sp beat noise is signal dependent.  The sig-sp beat
noisc only depends on the optical signal but not the eclectrical signal.

4.3. The Impacts of Values of Parameters on BER

This scction investigates the effect of the parameters such as the
extinction ratio, the EDFA small signal gain, the electrical and the
opticai bandwidth on the BER. The BER is plotted as a function of the
extinction ratio in Fig. 4.3.1. The values of the paramecters used are
Pi=-32 dBm, Piy4=-35 dBm, G,=30 dB, B,;,.=20 GHz, B,=1.4x1.3 nm.
m=1 (with polarizer), M=11, Ngp=2.
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Fig. 4.3.1. BER versus Extinction Ratio.

As 1t can be seen from Fig. 4.3.1. the BER increases with the
cxtinction  ratio. This is because when the extinction ratio s
increased, the mean level of logical zeros is raised and the sig-sp beat
noise for logical zeros is increased.  These two effects cause the
closure of the data eyve and hence the BER increases.  Note that the
maximum difference between the Gaussian and the non-Gaussian
curves occur again at zero extinction ratio.  However the difference in
terms of the BER is less than a decade.

The BER is also plotted as a function of the EDFA small signal gain in
Fig. 4.3.2. The values of the parameters used are 0=-20 dB. Py, =-32
dBm, P, =-35 dBm. B.;..=20 GHz. B,=1.4x1.3 nm. m,=1 (with
polarizer), M=11. N,,=2.
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ig. 4.3.2. BER versus EDFA Small Signal Gain.
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It can be scen from Fig. 4.3.2 that a BER floor occurs when the EDFA
small signal gain is greater than 25 dB. This again can be explained
by the EDFA small signal gain dependence of the beat noises. When
the gain 1s sufficiently large, the clectrical SNR is almost independent
of the gain as shown in equation (4.2.1.2). The argument of the Q-
function in equation (2.13.8) has the form of the square root of the
electrical SNR. Since the electrical SNR is independent of the gain
when the gain is large, the Q-function is also independent of the gain
and hence the BER is a constant at large EDFA small signal gain. This
error floor can be reduced by increasing the received power as it can
be clearly seen from equation (4.2.1.2). Note that the difference
between the Gaussian and the non-Gaussian curves at BER=10-Y in
terms of the EDFA small signal gain is about 2.5 dB. However the
maximum difference in BER is less than half a decade.

Fig. 4.3.3 and 4.3.4 show the plots of the BER as a function of the
parameter M. The electrical bandwidth is varied in Fig. 4.3.3 and the
optical bandwidth is kept constant at B,=1.4x1.3 nm. In Fig. 4.3.4,
the optical bandwidth is varied and the electrical bandwidth is kept
constant at B,;..=20 GHz. For both Fig. 4.3.3 and 4.3.4, the values of
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the parameters used are 0=-20 dB. G ,=30 dB. F;,=-32 dBm.

Pipav=-35 dBm. m=1 (with polarizer)., N,,=2.

-6

10 N

— Non-Gaussian
- (aussian

BER

10 - .
5 10 15 20 25

M (Bo/Belec)
Fig. 4.3.3. BER versus M (by varving B.,.).

In Fig. 4.3.3. the improvement in BER when M increases is due to the
reduction of the electrical bandwidth which reduces all the noises in
the receiver.  In Fig. 4.3.4. the degradation of the BER when M
increases 18 due to the increase of the sp-sp beat noise which is

dircctly proportional to the optical bandwidth.
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Fig. 4.3.4. BER versus M (by varying B,).

4.4. The BER as a Function of the Decision Threshold
We have scen in the previous sections that the Gaussian theory is a
very good approximation to the non-Gaussian theory in the analyses
that involve the BER and the sensitivity of the system. It has also
been shown earlicr in chapter 3 that when the electrical bandwidth
and the EDFA small signal gain are sufficiently large, the PDFs
predicted by the non-Gaussian theory is very different from thosc
predicted by the Gaussian theory. The impact of the non-Gaussian
distributions on the sysiem shows up not in the sensitivity related
analyses but in the optimum threshold analyses.
The BER is plotted as a function of the percentage threshold in Fig.
4.4.1.(a-b) at different received power levels. The percentage
threshold is given by:

Iy = o

%threshold=_———_—x100% (4.4.1)
Y=Yy
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where /4 is the decision threshold. ¥, and ¥, are the mean values of
the logical ones and logical zeros given by cquations (2.10.4.2) and
(2.10.4.3) respectively.  In Fig. d.4.1.a. the clectrical bandwidth is
Beree=1 GHz whercas B.,.=20 GHz i1s used for Fig. 4.4.1.b. The values
of the parameters used are B,=1.4x1.3 nm. m,=1 (with polarizer),
N.vp=2-
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tig. 4.4.1.a. BER versus Percentage Threshold., B,y..=1 GHz.

It can be scen from Fig. 4.4.1.a that the difference between the
Gaussian and the non-Gaussian curves are small for B,...=! GHz.
However when the clectrical bandwidth is increased to B,;..=20 GHz
as shown in Fig. 4.4.1.b. the percentage optimum threshold (the
minimum point on the curve) predicted by the Gaussian theory is
significantly different from that predicted by the non-Gaussian
thcory.  When BER=i0% (or received power is about -35 dBm), the
difference in the optimum threshold 1s more than ten percent. In a
rcal system, the peak-to-peak voltage amplitude of the data at the
input of the decision circuit is typically from 500 mVpp to I Vpp.
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The ten percent difference will correspond to 50 to 100 mV
difference in actual voltage.  Moreover if the optimum threshold
predicted by the Gaussian theory is used in the real system, a
penalty of about 2 dB will result. For example, from Fig. 4.4.1.b,
when the received power is -35 dBm, we would cxpect to obtain a
BER of 10-°. However if we used the Gaussian optimum threshold,
the actual achievable BER is only about 10-6. In order to achieve
BER=10-%, the received power has to be increased by about 2 dB.

10°
107 |
107 1 -— a=-38dBm
10-6 | — b=-37dBm
E:J 107 | — ¢=-36dBm
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10 ¢ \ : :
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107'° - : -
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Fig. 4.4.1.b. BER versus Percentage Threshold, Be1ee=20 GHz.
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4.4.1. The loci of the percentage optimum threshold
The minimum points in Fig. 4.4.1.(a-h) can be traced out to form loci
which can be plotted as functions of the received power as shown in
Fig. 4.4.1.1 and 4.4.1.2.

50 — T
o
g |- T |
@ 407 T~ _ 1 |— Non-Gaussian
< T~ - Gaussian
;E, 30} { |- - Difference
£
5
> 20
(@]
4]
c
8 10}
&) -
O - j 1 i
48 -46 ~44 -42

Received Power (dBm)

Fig. 4.4.1.1.  Percentage Optimum Threshold versus Received Power.
Boee=1 GHz.

As it can be scen from Fig. 4.4.1.1, when the electrical bandwidth is
B.iee=1 GHz, the maximum difterence between the Gaussian and the
non-Gaussian curves within the practically observable BER range
(BER grecater than 10-'¢) is only about five percent. At large
clectrical bandwidth (B ,;,.=20 GHz) however. the maximum
difference is almost fifteen percent as it can be seen from Fig. 4.4.1.2.
Note that the Gaussian curve varies by about cight percent in the
percentage optimum threshold when the received power is increased
from -38 to -33 dBm. However the non-Gaussian curve varies by
less than three percent. In other words, the actual percentage
optimum threshold stays fairly constant when the power is changed.
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Fig. 4.4.1.2.  Percentage Optimum Threshold versus Received Power,
B1ec=20 GHz.

4.5. The Impacts of Values of Parameters on Threshold
We have seen that when the eclectrical bandwidth is wide enough, the
impact of the non-Gaussian distributions on the optimum threshold is
quitc significant. It is therefore worthwhile to investigate the
impacts of the values of the other parameters on the optimum
threshold.  Fig. 4.5.1 shows the plot of the percentage optimum
threshold versus the extinction ratio. The values of the parameters
used are G,=30 dB, P;,;=-32 dBm, P;,,,=-35 dBm, B,;..=20 GHz,
B,=1.4x1.3 nm, m,=1 (with polarizer), M=11, Ngp=2.
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Fig. 4.5.1. Percentage Optimum Threshold versus Extinction Ratio.

It can be seen from Fig. 4.5.1 that when the extinction ratio is
increcased, the difference between the Gaussian and the non-Gaussian
curves decreases. However the impact of the extinction ratio seems
to be small because the difference is only decrecased by about two
percent when the extinction ratio is varied from 0 to 0.1.

Fig. 4.5.2 shows the plot of the percentage optimum threshold as a
function of the EDFA small signal gain. The values of the parameters
used are 0=-20 dB. P;,;=-32 dBm. P;,.=-35 dBm. B,..=20 GHz,
B,=1.4x1.3 nm, m=1 (with polarizer). M=11, NA\,,=2. The shapes of the
Gaussian and the non-Gaussian curves bear similarities to the curves
in Fig. 4.3.2 and Fig. 4.2.1.1. Note that when the EDFA small signal
gain is small. the Gaussian curve merges quickly with the non-
Gaussian curve. This is becausc at small EDFA gain, the thermal noise
is the dominant noise. When the gain is increased, the beat noisecs
become dominant and the percentage optimum threshold is almost

independent of the gain.
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Fig. 4.5.2.  Percentage Optimum Threshold versus EDFA Small Signal
Gain.

The percentage optimum threshold is also plotted as a function of the
parameter M in Fig. 4.5.3 and 4.54. The two-sided electrical
bandwidth B, is varied in Fig. 4.5.3 and the optical bandwidth B, is
held constant. The opiical bandwidth B, is varied in Fig. 4.5.4 and
the electrical bandwidth is held constant. The wvalues of the
parameters used are ©6=-20 dB, G,=30 dB, P;,;=-32 dBm (for Fig.
4.5.4), Piyuv=-35 dBm (for Fig. 4.5.4), B.,.=20 GHz (for Fig. 4.54),
B,=1.4x1.3 nm (for Fig. 4.5.3), m,=1 (with polarizer), Ny,=2. For Fig.
4.5.3, in order to see the effect of varying of B, on the percem:ge
optimum threshold, the BER is held constant at 109 and the received
power is varied at each value of M such that BER=10-Y can be
achieved.
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Fig. 4.5.3.  Percentage Optimum Threshold versus M (varying B, ..).

The two-sided clectrical bandwidth in Fig. 4.5.3 is varied from 1 (M
large) to 20 (M small) GHz. When the electrical bandwidth is
reduced, the difference between the Gaussian and the non-Gaussian
curves becomes small.  When the two-sided electrical bandwidth is
increased to 20 GHz, the difference in percentage optimum threshold
is as much as 10 % because the PDFs of logical ones and zeros are
more non-Gaussian as shown carlier in chapter 3.

The optical bandwidth in Fig. 4.5.4 is varied from 0.7 to 3.4 nm. The
optical bandwidth can affect both the mean values and the variances
of logical ones and logical zeros as shown carlier in chapter 3. The
difference is the largest when the optical bandwidth is small. Both
Fig. 4.5.3 and Fig. 4.5.4 show that the percentage optimum threshold
predicted by the non-Gaussian theory differs the most from that
predicted by the Gaussian theory when the ratio of optical
bandwidth to electrical bandwidth is small.
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4.6. Implications of Simulation Results

If we are only interested in the BER versus received power curves or
the sensitivity of the system, the Gaussian theory is sufficient to
provide valuable information. However in searching for the
optimum threshold for an EDFA prear  'ified digital transmission
system with high EDFA small signal gain, wide electrical bandwidth
and narrow optical bandwidth, the non-Gaussian thecory must be
used. In analyzing low bit rate system such as the OC-12 syster, the
Gaussian theory can be used in all the analyses of the system
performance. For high bit rate system such as the OC-192 system,
the non-Gaussian theory must be used if optimum threshold analysis
is required. Furthermore the simulations show that the difference in
the percentage optimum threshold is measurable in a practical
system if the following ccnditions are met:

a.) small extinction ratio,

b.) large EDFA small signal gain,

c.) wide electrical bandwidth,

d.) narrow optical bandwidth.

94



5. Experimental Non-Gaussian PDFs

The non-Gaussian noise distributions of the binary digits in an EDFA
precamplified lightwave system have been cxperimentally measured
for the first time. The experimental setup, methods and results arc
presented and discussed in this chapter.

5.1. Experimental Setup and Methods

We have theoretically shown that the PDFs of logical ones and logical
zeros in an EDFA preamplified optical transmission system are non-
Gaussian. The non-Gaussian PDFs differ most from the Gaussian PDFs
when the EDFA small signal gain is sufficiently large and the
clectrical bandwidth is sufficiently wide. The theoretical analysis
has ignored ISI.  Therefore it is necessary that the experimental
mecthod can eliminate the effect of ISI. [t is also preferable that the
method can separate the logical one from the logical zero such that
thc PDFs of logical ones and logical zeros can be measured
independently.  The experimental setup contains an optical source.
an EDFA preamplifier and a direct detection receiver. The detailed
experimental setup is shown in Fig. 5.1.1.(a-c). Fig. 5.1.1.a shows the

optical signal source arrangement for the experiment.

Optical
o Isolator To EDFAs
Laser —
1550nm VOA Polarization |-—— 3
Rotater

Fig. 5.1.1.a. The optical signal sourcc for PDF experiment.

The light source is a Fujitsu DFB laser operating at 1550 nm. An
optical isolator with about 2.3 dB insertion loss is used to protect the
laser from reflected light.  The outpu: luser power is controlled by a
variable optical attenuator (VOA). The polarization rotator is
optional and its use is discussed later. Notice that the laser light is
not modulated. The constant power from the laser can represent
either logical ones or logical zeros depending on the power level. One
advantage of using the unmodulated, constant laser power 1s that the
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problem of ISI can be completely eliminated. The laser power is
very stable. The fluctuation does not exceed +0.02 dBm. This
stability is one of requirements for the PDFs to be measurable. Fig.
5.1.1.b shows the setup for the EDFA preamplifier.

Optical Optical Optical

Isolator Isolator Isolator
>} BPF|—EDF BPF A >}-{BPF
1 2 3
ToPIN D'Odé Polarization

Splitter

Fig. 5.1.1.b. The cascaded EDFAs for PDF experiment.

The EDFAs shown in Fig. 5.1.1.b are built by TRLabs. The Erbium
Doped Fibers (EDFs) in the EDFAs have been partially cut for the
purpose other studies and hence each EDFA can only provide a small
signal gain of 10 to 15 dB at 1550 nm. However for the purpose of
the PDF measurement, the optical preamplifier must provide small
signal gain greater than 25 dB. In order to compensate for the low
gain of each EDFA, the EDFAs can be cascaded. An optical isolator
and an optical BPF are placed between two EDFAs. The isolator is to
prevent the backscattering of the signal and the backward
propagating ASE. The optical BPF is used to filter out part of the ASE
such that the following EDFA will not be significantly saturated. The
cptical BPF at the output of the last EDFA is used to filter out part of
the ASE. When two of the EDFAs are cascaded, we find that the net
small signal gain is only about 23 dB and this is not enough for the
beat noises to dominate. Therefore it is necessary to cascade three of
the EDFAs in order to provide sufficient gain. When threc of the
EDFAs are cascaded, the net small signal gain is on the order of 32 dB
which is about the value of the small signal gain that an EDFA
preamplifier should have and the three cascaded EDFAs act as one
single EDFA preamplifier. The ontical BPFs 1, 2 and 3 have full-
width-half-maximum (FWHM) bandwidths of 1.7, 1.3 and 1.3 nm
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respectively.  The noise cquivaient bandwidihs of the optical BPFs
can bc approximately obtained by multiplying the FWHM
bandwidths by a factor of 1.4. The polarization splitter is optional.
It is used to filter out the ASE electric field component which is
spatially orthogonal to the signal electric field. It is used in
conjunction with the polarization rotator in Fig. 5.1.1.a such that the
PDFs for m,=1 can be measured. It can be seen from equation
(2.10.2.6) that the ASE power is independent of time. Practically the
ASE power does vary with time, which may be due to the inadequate
stabilization of the pump laser. However the variation is also small
and this means the PDF of the sp-sp beat noise is experimentally
measurable. Fig. 5.1.1.c shows the receiver for the experiment.

PIN Diode

DC Block

—_0

Attenuator BERT

Fig. 5.1.1.c. The receiver for PDF experiment.

The signal and noise generated at the PIN diode are too small to be
measurable at that point in the system. Therefore two ac-coupled
miciowave ampiifiers were used in the receiver to amplify the signal
and noise. The PIN diode is a BT&D PIN diode which has a
responsivity of about 0.6 A/W at low frequencies. The frequency
response of the BT&D PIN diode has been previously characterized in
[31]. The single-sided noise cquivalent bandwidth of the PIN diode
is estimated to be about 6.5 GHz. The bit error rate tester (BERT)
contains a Hewlett Packard (HP) 70322A synthesized signal
generator, a HP 70841A pattern generator and a HP 70842A error
detector. The detailed setup of the BERT is shown in Fig. 5.1.2.
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From electrical
amplifier output
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Error Detector
HP 70842A

T Clock
Cluck | Synthesized Signal
ﬁaott%réginerator ~4——— Generator
' HP 70322A

Fig. 5.1.2. The setup of the BERT.

Since the laser power is not modulated, there are no binary digits
and the clock recovery circuit is not needed. Therefore the clock
output from the pattern generator can be connected directly to the
error detector. The clock frequency determines the sampling rate.

We now use the above setup fo describe the experimental procedure
for measuring the PDFs of noises. When the EDFAs and the laser
(with constant power) are turned on, the beat noises are generated
at the PIN diode due to the mixing of the signal and ASE electric
fields. The mean value or the dc component of the photocurrent
generated by the total optical power is blocked by the capacitor (the
dc block) such that only the ac components (the noises) are passed to
the microwave amplifiers. The noises are then amplificd and arc
sampled by the error detector. Fig. 5.1.3 illustrates how the PDF of
the noise is measured. The noise in Fig. 5.1.3 rides on a dc voltage
level and a voltage threshold is applied for detecting the noise. The
dc voltage level and the voltage threshold will be discussed later.
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PDF of noise \

________ Voltage Threshold
of Error Detector

dc Voltage
/ Termination
of BERT

"

Noise
Fig. 5.1.3. The threshold detection of noise.

In Fig. 5.1.3, the voltage threshold is set above the dc voltage level.
The shaded area in Fig. 5.1.3 rcpresents the probability of the noisc
voltage exceeding the voltage threshold. If we are detecting all
logical zeros, this probability will represent the probability of error
for logical zeros. When we vary the voltage threshold, the shaded
arca will be different and it represents a new probability of error for
logical zeros. The crror probabilities P, for logical zeros at the
voltage threshold levels V can be used to determine the upper part
of the PDF (the part that is above the dc voltage level) by using the
following rclation:

PDan—P‘isléfi (5.1.1)
ov| lav
where P, = [ PDFdV. (5.1.2)

Similarly when the voltage threshold is set below the dc voltage
level, we can usc the error probabilities of logical ones in equation
(5.1.1) to determine the lower part of the PDF. The integration limits
in (5.1.2) will be from —oo to V.

Before we describe how the PDFs can be measured by using the
built-in decision circuit of the error detector, we will first describe
the settings of the error detector. The dc voltage termination of the
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crror detector, which is the dc level that the incoming ac-coupled
signal or noise rides on, is set at a certain level. For examplie, the
termination could be -2 V or 0 V, which are the two dc voltage levels
available from the BERT. The error detector is then set to detect
either all logical ones or all logical zeros (depending on which side of
the PDF we want to measure) by editing and selecting a user pattern.
For example, the user selected pattern could be eight consecutive
logical ones (or other length). This 8-bit long pattern is repeated
such that the error detector is detecting all logical ones. If a logical
zero is detected, then an error is made. The voltage threshold of the
crror detec or is set to manual mode. Therefore it could be adjusted
to detect the noise as shown in Fig. 5.1.3. When the error detector is
detecting all logical zeros, the shaded area in Fig. 5.1.3 represents the
probability of error for logical zeros. This probability of error
corresponds to the error rate reading from the error detector.

We now describe how the error rate readings and hence the PDFs are
obtained. The voltage threshold is first set far above the de voltage
level. The error rate reading is on the order of 10-1! since it is very
unlikely that the noise voltage would exceed the threshold voltage
level.  Ideally if there is no noise, the error rate would be zerc no
matter where the threshold is set (except possibly at the dc voltage
level). However, because of the presence of noise, errors would be
made and captured by the error detector at the sampling or the
dccision time.  Once the threshold is set, the gating function is
enut 'ed to start the error counting. The accumulated error count
ratio (the error rate), which is the ratio of total errors to total
samples, is rcecorded together with the voltage threshold reading.
The threshold is then gradually decreased towards the dc¢ voltage
level at steps of 10 or 20 mV depending on what resolution is
neceded. The minimum resolution, which is the minimum voltage
step, available from the BERT is 10 mV. After cach threshold
adjustment, the gating function is re-started such that a new error
count can begin at the new threshold. As the threshold deccreases
towards the dc voltage level, the error rate begins to increase since it
is more likely that the noise voltage would exceed the threshold
voltage. When the threshold passes the dc voltage level, the error
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detector 1s set to detect all logical ones by editing and selecting the
user pattern.  We are then measuring the other side of the PDF. The
threshold is further reduced until 10-1! error rate is reached again.
Since it Is very time consuming to observe the errors when the error
rate is on the order of 10-!!, a total of more than 20 errors observed
is used as the criteria for recording the 10-!! error rate. This
method works very well because the noise process seems to be quite
stationary. The error count ratio at cach threshold level only drifts
slightly. The experimental results will be shown in section 5.2.

5.2. Experimental Results

There are three cxperiments that have been done. Two of the
cxperiments arc performed to the measure the PDFs. The third one
is to measure the optimum threshold. In one of the PDF
mecasurement.  microwave amplifiers with single-sided 3-dB
bandwidths smaller than the noise equivalent bandwidth of the
BT&D PIN diode (scc section 5.1) were used. The second experiment
for PDF mecasurement used microwave amplifiers with single-sided
3-dB bandwidth larger than the noise equivalent bandwidth of the
PIN diode. For cach PDF experiment, different laser powers were
used to show how the PDFs evolve. In addition. the polarization
splitter was used with thc polarization rotator to mecasure the PDFs
for m,/=1. The clock frequency of the BERT was set to its maximum
rate 3 GHz. The error detector termination was set to -2 V such that
the noise was riding at this dc voltage level (the error detector
actually had about 20 mV internal offset so that the exact voltage
should be -1.98 V). The reason of doing this was to prevent any
distortion to the PDF since the maximum and minimum input
voltages of the error detector were 1 V and -4 V respectively.  The
voltage -2 'V was almost in between these two voltages.

The Mini-Circuits microwave amplifiers which have the same single-
sided 3-dB bandwidth of 4.2 GHz and gain of about 30 to 31 dB are
used in the first measurement. The attenuator was chosen to be 20
dB and it set the net cascaded gain at about 40 to 42 dB. The noise
figure of the amplifiers was about 8§ dB. The net cascaded small
signal gain of the EDFAs was set to about 33 dB and the laser was
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turned off. The polarization splitter was removed (m,=2). The total
ASE power at the PIN diode was about -9 dBm. The measurement
was repeated with the laser turned on. The VOA was adjusted such
that the input powers into the cascaded EDFAs were -40.6 dBm and
-37.6 dBm, and the total powers at the PIN diode were about -5 dBm
and -3 dBm. The receiver thermal noisc was also measured by
removing the 20 dB attenuator (such that the noise was measurable)
and using the same technique described in section 5.1. The PDFs
corresponding to the cases of no laser power (ASE only), thermal
noise only, and -40.6 dBm and -37.6 dBm laser powers are shown in
Fig. 5.2.1.
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Fig. 5.2.1. Experimental PDFs of thermal and beat noises, G=33 dB,
Mini-Circuits amplifiers.

It can be seen that the thermal noise PDF is symmetrical about the
peak. However the beat noise PDFs are asymmetrical about the peak
which means they are non-Gaussian. For purpose of comparison, the
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cxperiment was repeated for the cases with reduced EDFA  small
signal gain and with polarization splitter.

From ecquation (3.8.1) and (3.8.2). it can be scen that the sig-sp beat
noise will be morec dominant than the sp-sp beat noise when the
received power 1is increased. This mecans that the PDF will be more
symmetrical about the peak. In order to investigate this, we
increased thc received power and reduced the EDFA small signal gain
concurrently to protect the PIN diode from excess power. Since both
the sig-sp and sp-sp beat ncises are proportional to the square of the
EDFA small signal gain, reducing the small signal gain will not change
the relative powers of the beat noises. The net small signal gain of
the EDFAs was reduced to about 29.5 dB. The total ASE power was
about -12.2 dBm. The laser powers used were zero (no laser, ASE
only), -40.6 dBm, -37.9 dBm and -33.1 dBm. and the total powers at
the PIN diode were -12.2 dBm. -8.4 dBm. -6.5 dBm and -3 dBm
respectively.  The PDFs are shown in Fig. 5.2.2.
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Fig. 5.2.2. Experimental PDFs of beat noises at different laser powers,
G=29.5 dB, Mini-Circuits amplifiers.
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We would expect that the PDFs at high laser powers (such as the case
when the reccived power is -33.1 dBm) to be more symmetrical
about the peaks. However the measurement docs not show
significant difference in terms of the symmetry within the range of
observation.

The polarization splitter was then inserted (m,=I) in the system to
remove the ASE electric field component which is spatially
orthogonal to the signal. The net small signal gain of the EDFAs was
about 32.4 dB and the total ASE power was about -13.5 dBm. The
laser powers used were zero (ASE only), -40.6 dBm and -36.3 dBm.
The corresponding total powers at the PIN diode were -13.5 dBm,
-7.5 dBm and -3.5 dBm respectively. The mecasured PDFs are shown
in Fig. 5.2.3.
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Fig. 5.2.3. Experimental PDFs of beat noises with polarizer, G=32.4
dB, m,=1, Mini-Circuits amplifiers.
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In this case, the net small signal gain of the EDFAs is about the same
as the onc used for Fig. 5.2.1. However the ASE power is much less
than the one in Fig. 5.2.1. The sig-sp beat noise is more dominant at
“igh laser powers. However there is no significant impact {rom
inserting the polarization splitter on the asymmetry of the PDFs.

5.3. Comparison of Meastred PDFs with Theories

We have chosen a few of the measured PDFs to be compared with
the theoretical PDFs. The simulation parameters are summarized in
Table 5.3.1.

Symbol Description Simulation Experimental
Valuc Value
A operating wavelength o, 1550 nm 1550 = 1 nm
lascr
B, optical bandwidth 1.4x1.3 nm |1.4x1.3 * 0.1 nm
Bete two-sided electrical 7 GHz 7 GHz
bandwidth (estimated)
R, input resistance of 50 Q 50 £2Q
clectrical amplifier
Gelec net gain of electrical | 39.5-40.7 dB 41 + 1 dB
amplificrs (for Figs. (for Figs. 5.3.1.b
5.3.1.b to to 5.3.2.bh)
5.3.2.h) 50dB £ 1 dB
49.5 dB (for | (for Fig. 5.3.1.a)
Fig. 5.3.1.a)
T} temperature 298 K 298 + 1K
F noise figure of eclectrical § dB 8 dB
amplificr
R 1>sponsivity of PIN 0.6 A/W 0.6 £ 0.1 A/W
i diode
Table 5.3.1. Simulation and experimental paramcters for PDF

mcasurcments using Mini-Circuits amplifiers.

The values of the simulation parameters in Table 5.3.1 are chosen to
best fit the cxperimental data. For the purpose of shape comparison,
the gain of the clectrical amplifier is slightly varied in calculating the
theoretical PDFs. The values of the clectrical gain used are
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reasonably close to the practical values. The discrepancies may duc
to experimental crrors and the fact that the frequency dependent
clectrical gain is not included in the theoretical analyses.  The
discrepancies  in  the other parameters may result from the
component tolerance (such as the input resistance of the electrical
amplifier), and the limitation of measurement accuracy (such as the
responsivity).

The shapes of the theoretical PDFs are in good agreement with the
measured PDFs as it will be shown in Fig. 5.3.1 and Fig. 5.3.2. The
two-sided eclectrical noise equivalent bandwidth is chosen to be 7
GHz becausce the single-sided bandwidth of the BERT is on the order
of 3 GHz. The bandlimiting effect of the BERT will be shown in
section 5.6.  The PDF for the case of net small signal gain of EDFAs
(=324 dB and ASE=-13.5 dBm was remcasured with the 20 dB
attenuator between the two microwave amplifiers replaced by 10 dB
such that the net clectrical gain was about 50 + 1 dB. This was donc
to increasc the resolution of the PDF. The electrical gain used in the
simulation for this case (G=32.4 dB, ASE=-13.5 dBm) was 49.5 dB.
The measured ASE power and total power at the PIN diode were
used in the cquations in chapter 3 to evaluate the theoretical PDFs.
The measured PDFs, the non-Gaussian theoretical PDFs and the
Gaussian approximated PDFs are plotted in Fig. 5.3.1 to Fig. 5.3.2.
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As it can be scen, the measured PDFs agree quite well with the non-
Gaussian thcory especially for the cases of ASE only. As the input
laser power 1is increased, the differences between the non-Gaussian
PDFs and the Gaussian PDFs within the range of observation become
small to the point where any differences arc negligible.

5.4. Measurement of PDFs with 10 GHz Electrical Amplifiers
In this experiment, two microwave amplifiers with single-sided 3-dB
bandwidth of 10 GHz or wider are used such that the receiver
clectrical bandwidth is incrcased. The beat noises are bandlimited
by the BT&D PIN diode which has a single-sided noise cquivalent
bandwidth of about 6.5 GHz. The experimental setup is shown in Fig.
5.4.1.

PIN Diode
DC Block o
attenuator Decision — BERT
Circuit
Fiz. 5.4.1.  Receiver for measuring PDFs with 10 GHz microwave

amplifiers.

The recciver structure is basically the same as the one shown in Fig.
S.1.1.c except that a decision circuit is placed between the second
amplifier and the BERT. The first amplifier is a SHF microwave
amplifier which has a single-sided 3-dB bandwidth of about 15 GHz
and gain of about 23 dB. The attenuator in Fig. 5.4.1 was set to 10
dB when the distribution of sp-sp beat noise was being measured
and 20 dB for mecasuring the distribution of sig-sp plus sp-sp beat
noisc. The second amplifier is a Veritech microwave amplifier which
has a single-sided 3-dB bandwidth of about 10 GHz and gain of about
34 dB. The noise figure of the amplifiers is about 7 dB. The decision
circuit can function up to 10 Gb/s. The purpose of using the decision
circuit will be discussed in section 5.5. The BERT can function up to 3
Gb/s.
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5.5. The Function of the Decision Circuit

The probability of error P, in equations (5.1.1) and (5.1.2) can be
measured by using the BERT. However, because of the bandlimiting
cffect of the 3 Gb/s BERT, it cannot be directly connected to the
output of the second electrical amplifier. If we were to use a BERT
immediately after the second amplifier, the BERT would have to be
functional for 10 Gb/s so that high frequency components of noise
would not be attenuated. However, it is expensive to acquire a 10
Gb/s BERT. A simple solution to this has been obtained through two
observations. First the noise process in the system is quite
stationary which means the PDF can be measured by using any
sampling rate (clock frequency). Second a digital decision circuit that
functions up to 10 Gb/s will have minimal bandlimiting effect on the
10 GHz noise. Therefore the PDFs of the beat noises which are
bandlimited by the PIN diode can be measured by placing a 10 Gb/s
decision circuit in front of a low bit rate BERT (e.g., a 3 Gb/s BERT) as
shown in Fig. 5.4.1.

The dccision circuit can be modeled as a comparator followed by a
digital flip flop as shown in Fig. 5.5.1.

Decision Circuit

Input
Comparator Flip Flop Output
Threshold
A
Clock

Fig. 5.5.1. Block diagram of the decision circuit.
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Since the decision circuit is designed for decoding 10 Gb/s NRZ digital
signal, it can preserve the high frequency noise components. The
sampling rate is determined by the frequency of the clock applied to
the flip flop. A faster clock will sample faster and hence is
advantageous for measuring tails of PDF because it can save time. A
slower clock will give the same results except that it is time
consuming. The method for measuring the PDFs is the same as the
onc described in section 5.1. The only difference is that we are
varying the voltage threshold applied to the decision circuit but not
the threshold of the BERT. The input of the decision circuit was dc
biased at -1 V and the noise rode on this level. The detection of the
beat noises is similar to the diagram shown in Fig. 5.1.3 except the dc
level is replaced by -1 V. The output of the decision circuit was a
series of logical ones and logicai zeros pulses which were triggered
by the noise. The pulse amplitude was about 400 mVYpp and the dc
level was -200 mV as shown in Fig. 5.5.2.a. The width of the pulse
was determined by the sampling clock frequency. For example. the
clock frequency used in Fig. 5.5.2.a was 3 GHz and hence the pulse
width was about 336 ps.  The built-in decision circuit of the BERT
was uscd to detect the pulses triggered by the noise. The threshold
of the BERT was sct to -200 mV (middle of pulses) and the sampling
time was sct at the center of the pulses. The BERT was set to detect
cither all logical ones or all logical zeros. For example. when the
threshold applicd to the decision circuit was above -1 V. the BERT
should be set to detect all logical zeros. Ideally if there was no noise.
the output of the decision circuit would be at the logical zero level
and the error rate would bc zero as no pulses were triggered by
noisc.  On the other hand if there was noise, pulses would be
generated at the decision circuit output.  Therefore errors would be
madec and captured by the BERT. Fig. 5.5.2.a and 5.5.2.b show the
output of the decision circuit when the error rates were about 4x]10-!
and 1x10-3 and the BERT was detecting all logical ones.
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As it can be scen from Fig. 5.5.2.b, the output of the decision circuit
was most of the time at the logical one level.  Occasionally. pulses at

logical zeros level would be triggered by the noise and hence cerrors

were  made.

5.6. Results On PDFs Using 10 GHz Electrical Amplifiers
The first measurement was done with the net small signal gain of the
EDFAs sct to about 32 dB and the laser was turned off. The total ASE
power at the PIN diode was about -10.7 dBm. The attenuator was
chosen to be 10 dB so that the net clectrical gain was about 47 + |
dB. The BERT was set to run at the maximum clock frequency 3 GHz.
The measured PDF is shown in Fig. 5.6.1 and is compared with the
non-Gaussian thcory and the Gaussian thecory. The simulation and
cxperimental values of the parameters used are shown in Table
5.6.1. For the theoretical PDFs. the two-sided electrical bandwidths
for thc beat and shot noises are 13 GHz because of the bandlimiting
cffect of the PIN diode (see scction 5.1).  Since the thermal noise is
not a dominant noise, the two-sided clectrical bandwidth for the
thermal noisc 1s chosen to be 20 GHz.  The measurement  was
repeated with a polarizer inserted. The ASE power at the PIN was
-14 dBm and the result i1s shown in Fig. 5.6.2.
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Symbol Description Simulation Experimental
Value Value
A, operating wavelength of 1550 nm 1550 £ 1 nm
laser
B, optical bandwidth 1.4x1.3 nm [1.4x1.3 % 0.1 nm
B,cth two-sided noise 20 GHz > 20 GHz
equivalent electrical
bandwidth for thermal
noise
Bejec two-sided noise 13 GHz I3 + 1 GHz
equivalent electrical
bandwidth for beat and
shot noises
R, input resistance of 50 Q 50 £2 Q
electrical amplifier
Gelee net gain of electrical 44-45.5 dB 47 + | dB
amplifiers (for Figs. (for Figs. 5.6.1 to
5.6.1 to 5.6.2) 5.6.2)
34.8-36 dB 37 £ 1 dB (for
(for Figs. Figs. 5.6.4 to
5.6.4 to 5.6.7) 5.6.7)
T} temperature 298 K 298 + 1 K
F noise figure of electrical 7 dB 7 dB
amplifier
R responsivity of PIN 0.6 A/W 0.6 + 0.1 A/W
diode
Table 5.6.1. Simulation and experimental parameters for

measurements using SHF and Veritech amplifiers.
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As it can be seen from Fig. 5.6.1 and 5 6.2, the shapes of the
mecasured PDFs agree very well with the non-Gaussian theory. In
order to show that the mecasurement is independent of sampling
ratc, we measure the sp-sp beat noise PDF (for m,=2 and P,,=-10.7
dBm) using a 1 GHz clock. We also measured the PDF by removing
the decision circuit and using the BERT directly to show that the
decision circuit does preserve the high frequency components of the
noise. The results arc shown in Fig. 5.6.3. It can be secen that the
PDF obtained from using the I GHz clock is recasonably close to the

onc using 3 GHz clock.
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Fig. 5.6.3. Comparison of cxperimental PDFs obtained from using
different clock frequency and from using the BERT dircctly.

In addition thc PDF obtained from using the BERT dircctly is much
narrower than the ones obtained from using the decision circuit. The
narrowing of the PDF is due to the loss of noise power caused by
bandlimiting effect of the BERT on high frequency components of

noise.



The laser was then turned on in order to measure the distribution of
sig-sp plus sp-sp bcat noises. The attenuator was changed to 20 dB
such that the overall gain was about 37 dB (34.8 to 36 dB was used
for the theoretical PDFs). The VOA was adjusted such that the signal
power at the input of the EDFAs was -39.7 dBm. The ASE power and
the total power at the PIN were -10.8 and -6.0 dBm respectively.
The net small signal gain of EDFAs can then be calculated to be about
32 dB.  The measurement was also repeated with the polarizer
inserted.  The input power to the EDFAs, the ASE power and the total
power at the PIN were -32.3, -14.3 and -6.0 dBm respectively. The
net small signal gain of EDFAs is about 25.6 dB. The total power at
the PIN is the samec as the previous case but the input power to the
EDFAs is higher because of the loss due to polarization misalignment
between the signal electric field and the axis of the polarization
splitter.  However since only the signal power at the PIN diode is
important, we can compensate the loss by increasing the signal
power at the input of the EDFAs.  The measured PDFs are shown in
Fig. 5.6.4 and 5.6.5.
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Fig. 5.6.4. Comparison of PDY¥s, m =2, P;,=-39.7 dBm.
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Fig. 5.6.5. Comparison of PDFs, m,=1, P;,=-32.3 dBm.

The last measurement was done with a laser power level which
could represent a logical one. The input power, the ASE power and
the total power were -35, -10.5 and -2.5 dBm respectively. The net
small signal gain of EDFAs was about 31.8 dB. For the case with the
nolarizer inserted, the input power, the ASE power and the total
power were -30.3 dBm, -13.8 and -2.4 dBm respectively, and the net
small signal gain of EDFAs was about 27.5 dB. High input power is
needed again because of loss duc to polarization misalignment. The
results arc snown in Fig. 5.6.6 and 5.6.7.
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As it can be seen from Fig. 5.6.6 and 5.6.7, at high laser power, it is
difficult to distinguish the Gaussian PDF from the non-Gaussian PDF.

5.7. The Percentage Optimum Threshold Measurement

It has been shown in chapter 4 that the percentage optimum
threshold predicted by the non-Gaussian FDFs is very different from
the one predicted by the Gaussian PDFs when the electrical
bandwidth is sufficiently wide and the EDFA small signal gain is
sufficiently high. In order to experimentally verify the optimum
threshold, the DFB laser in Fig. 5.1.1.a was directly modulated with
digital pulses as shown in Fig. 5.7.1. The EDFAs and the recciver are
the same as the ones in Fig. 5.1.1.b and Fig. 5.4.1 respectively.

Pattern
Generator

4 Optical
DFB I Isolator To EDFAs

Laser

Polarization |
1550nm%§ VOA Rotator | | >

Fig. 5.7.1. Direct modulation of 1550 nm DFB laser.
The output light power versus drive current transfer characteristic

of the DFB laser has been measured by varying the dc bias current
and is shown in Fig. 5.7.2.
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The threshold current is about 1S mA at which the output power is
about -7.8 dBm. The laser current driver can provide a maximum
current of about 58.9 mA at which the output power is about 6 dBm.
The clectrical input port of the laser has an input imped:nce of 50 Q.
The bias current is set to 35 mA. The input data irom the pattern
generator has a peak-to-peak amplitude of 2 Vpp which corresponds
to 40 mApp. Therefore the logical zero is at 15 mA or -7.8 dBm. The
logical one is at 55 mA or 5.7 dBm. The extinction ratio is then about
-13.5 dB. The single-sided 3-dB modulation bandwidth of the laser
is about I GHz. In order to minimize ISl and obtain a ncarly perfect
square wave, the simple pattern 10101010 ... at 100 Mb/s is used.
The square wave acts like a 'noise carrier’.  Since there is minimum
ISI, the BER is mainly due to the noise riding the square wave. The
optimum threshold will be the crossing point of the tails of the PDFs
of logical ones and logical zeros. The waveforms of the pulses used
to drive the laser, the waveform of the received pulses and the
received pulses with noise are shown in Fig. 5.7.3.(a-d).
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Waveform of received pulses.
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5.8. Experimental Results on Percentage Optimum Threshold
The first measurement was done with the net small signal gain of the
EDFAs set to about 32 dB and the polarization splitter was removed
(m,=2). The measured optimum threshold was in terms of voltage
and was converted to percentage optimum threshold by using the
mean values of the logical ones and logical zeros. The mean values of
logical ones and logical zeros were measured by using the digital
sampling oscilloscope (HP 54120B) and the four-channel tester
(54123A). The histogram function on the digital sampling
oscilloscope was used to collect the voltage samples of the noise
corrupted logical ones and logical zeros and hence determine the
mean values. The measured BER is plotted against the received
power and the experimental curve is compared with the theoretical
curves as shown in Fig. 5.8.1.a. The simulation parameters used for
the theoretical curves are shown Table 5.8.1. The input resistance
and the gain of the electrical amplifiers arc not important in this
experiment since the decision thresholds are converted (o percentage
threshold.  Therefore they are omitted from Table 5.8.1. The
measured net small signal gains of EDFAs are used for calculating the
theoretical curves that are shown in the following figures. The
measured net small signal gain of EDFAs and the measured ASE
power are used to calculate the spontancous emission factor Ngp of
the three cascaded EDFAs using equation (2.10.2.6) (recall that the
three cascaded EDFAs are treated as a single EDFA preamplificr).
The value of the spontaneous emission factor is about 1.3 and is also
used in calculating the theoretical curves.
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Symbol Description Simulation Experimental
Value Value
A, operating wavelength of| 1550 nm 1550 £ 1 nm
laser
B, optical bandwidth 1.4x1.3 nm [1.4x1.3 £ 0.1 nm
Botoctn two-sided noise 20 GHz~. > 20 GHz
cquivalent electrical
bandwidth for thermal
noisc
9 extinction ratio -13.5 dB -13.5 £ 0.1 dB
G, EDFA small signal gain 32 dB (for 32 + 1 dB (for
Figs. 5.8.1.(a- | Figs. 5.8.1.(a-c))
C)) 31 = | dB (for
31 dB (for Figs. 5.8.2.(a-c))
Figs. 5.8.2.(a-
c))
Bt two-sided noise 13 GHz 13 + 1 GHz
cquivalent electrical
bandwidth for beat and
shot noiscs
Ny spontancous emission 1.3 1.3 + 0.1
tactor of EDFFA
R, input resistance of 50 Q 50 £2 Q
clectrical amplifiers
Ty lemperature 298 K 298 + 1 K
¥ noise figure of eclectrical 7 dB 7 dB
amplificr
R responsivity of PIN 0.6 A/W 0.6 £ 0.1 A/W
diode

Table 5.8.1.

measurements using SHE and Veritech amplifiers.
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Fig. 5.8.1.a. BER versus Received Power, G=32 dB, m=2.

It can be seen from Fig. 5.8.1.a that the ecxperimental curve agrees
well with the theoretical curves. However from Fig. 5.8.1.(b-c), it can
be seen that the experimental percentage optimum thresholds agree
more with the non-Gaussian theory than the Gaussian theory. The
Gaussian theory predicts a much lower percentage optimum
threshold and a much faster decrcase in the percentage optimum
threshold than the non-Gaussian theory. The experimental
percentage optimum thresholds carry about * 1% errois. However
the errors are small compared with the separation between the non-
Gaussian and the Gaussian curves which is ranged from about 6 to 9
%.
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For the purpose of comparison. the measurement is repeated with
the poi. -ation splitter inserted.  The BER versus received power
curves, the BER  versus percentage threshold curves, and the
percentage optimum threshold versus reccived power curves are

shown n Fig. 5.8.2.(a-c) respectively.
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Fig. 5.8.2.a. BER versus Received Power, G=31 dB. m,=1.

From Fig. 5.8.2.(b-c). it can be seen that the experimental percentage
optimum thresholds again agree more with the non-Gaussian theory
than the Gaussian theory.  The percentage optimum thresholds are
iower than the ones shown in Fig. 5.8.1.c. This is because the sp-sp
beat noise, which is the dominant noise for the logical zeros. is

reduced when the polarization splitter is used.
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6. The OC-192 System

In this chapter, the performance of an OC-192 system will be studied
and cvaluated. The following measurcments were done at division
one of Bell Northern Research (BNR) where an OC-192 transmission
system was designed and set up. The OC-192 system is a digital
lightwave system which transmits data at a bit ratc of approximately
10 Gb/s. Because of this high bit rate, the receiver has been
designed with single-sided bandwidth of about 10 GHz. The
investigations include using EDFAs as optical preamplifiers and using
81 km of fiber in the system.

In chapter 5, we have already looked at the non-Gaussian PDFs and
the impact of the non-Gaussian PDFs on percentage optimum
thresholds for an EDFA preamplified digital system with a wide-band
receiver. We have also compared the results with the Gaussian and
non-Gaussian theories and have found rcasonably good agreements.
However the ISI has been neglected in the theoretical analyses and
in the earlier experiments. 1In a real system such as the OC-192
system, the ISI will play an important role in the system
performance. When long fibers are used in the OC-192 system, fiber
dispersion is also an important issuc that has to be taken into
account.  Therefore this chapter is devoted to the cxperimental
studies of these cffects.

For the purpose of comparison, three different setups of the OC-192
system were studied. The first setup is a simple back to back system
in which no EDFAs or fibers were used. The second sctup has an
EDFA preamplifier inserted such that the impact of the EDFA can be
studied. The third setup has an EDFA preamplifier and 81 km of
fibers inserted such that the impact of long fibers can be studied.
The bit rate used for the following measurements was at the exact
OC-192 bit rate of 9.953280 Gb/s. The length of the pseudo random
bit sequence (PRBS) used was 223-1 for all thc mecasurements. The
three setups of the OC-192 system are described in sections 6.1 and
6.2. Some characteristics of an EDFA preamplifier are shown in
section 6.3. The sensitivity, the constant BER contours, and the
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optimum thresholds of the OC-192 gystem will be presented and
discussed in scction 6.4,

6.1. Back to Back OC-192 System

In order to investigate the impact of inserting EDFA, optical BPF and
long fibers on the OC-192 system, the measurcment was done first
with a back to back system with O km of fiber and no EDFA. The
block diagram of the transmitter of the OC-192 system is shown in
Fig. 6.1.1.

Pattern

Generator—}

M-Z VOA Tg PIN/Preamp

1557 nm
Laser

Fig. 6,11, Transmitter block diagram of OC-192 system.

The data amplitude was set at I Vpp.  The data was amplified by an
clectrical  amplificr with adjustable gain. The Mach-Zchnder
modulator (MZ) is a LiINbO3 device with a switching voltage Vm= 3.3
V. It is an external modulator designed for high bit ratec modulation
and transmission.  The laser has a center wavelength of 1557 nm.
The laser power and the MZ bias voltage were adjusted to give an
optimal optical cye at the output of the MZ device. The achievable
extinction ratio was between 15 and 17 dB. Fig. 6.1.2.a shows an
optical cye diagram with an extinction ratio of about 15 dB. The eye
is called an optical eye because the voltage amplitude of the eye is
lincarly proportional to the optical power. Fig. 6.1.2.b shows the
histograms of logical ones and logical zeros of the optical eye. The
eyc diagrams in Fig. 6.1.2.(a-b) were obtained by using a HP
Lightwave Converter with bandwidth greater than 20 GHz and a HP
digital sampling oscilloscope.
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The receiver of the OC-192 system is shown in Fig. 6.1.3. [t contains
a PIN/prcamp module followed by a dc block and an clectrical post-
amplifier. The PIN diode has a responsivity of 0.8 A/W. The preamp
is a transimpedance amplifier which has a single-sided 3-dB
bandwidth of about 10 GHz and a gain of about 20 dB. The post-
amplifier is a SHF 90P microwave amplifier which has a gain of 23
dB and a single-sided 3-dB bandwidth greater than 10 GHz (10 KHz
to >10 GHz). The 3 dB microwave attenuator was used for reflection
protection. The power splitter has a bandwidth from 0 to 26.5 GHz.
After the power splitter, the data was amplified again to compensate
the loss duc to power splitting. The amplifier in the data path was
another SHF 90P amplifier which has a single-sided 3-dB bandwidih
of 15 GHz (10 KHz to 15 GHz). The detailed clock recovery hblock
diagram 1s shown in Fig. 6.1.4. An adjustable delay box was uscd to
control the phase relation between the recovered clock and the data.
The delay box could provide a delay resolution of 0.5 ps.

ZN PIN Power
DC Block Splitter
Post-amp 3dBLawt — [Decoder Error
] i Detector
Clock Adjustable]

Recovery - Delay

ctgs 6.1.3. Receiver block diagram of OC-192 system.

The clock recovery circuit was used to recover the clock at the OC-
192 bit rate from the received non-return-zero (NRZ) polar signal.
Because of the dc block. the signaling scheme was changed from on-
off kcying (OOK) to polar signaling. The NRZ polar signal was first
amplified with a gain adjustable Vertteck amplifier with a 3-dB
single-sided bandwidth of about 10 GHz. The spectrum of the NRZ
polar signal (and the NRZ OOK signal) does not contain clock tones
which can be used for clock extraction.  Therefore a frequency
doubler (FD), which was a nonlinear device, was used to generate the
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clock tones. A narrow-band filter centered at the OC-192 bit rate
was used to extract the clock tonc at the OC-192 bit rate in the
spectrum of the signal at the output of the FD. The extracted clock
was further amplified by a limiting amplifier which has a bandwidth
from 7 to 12.4 GHz.

NRZ
Signal Aol Frequency Filter Limiting Clock
—t Amplitier — Doubler | em. | Ampleler ——

Fig. 6.1.4. Block diagram of clock recovery circuit.

An cye diagram, which corresponds to a BER of 4x10-9, at the input
of the decoder is shown in Fig. 6.1.5. The dominant noise in this case
is the thermal noise. Since the thermal noise is signal independent,
the logical ones and logical zeros carry the same amount of noisc and
the data eye looks symmetrical. It will be shown in section 6.2 that
this will not be the case if an EDFA is inserted as an optical
preamplifier.
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Fig. 6.1.5. A data eyc at the input of decoder.
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6.2. Back to Back OC-192 System With EDFA and Optical BPF
The mcasurement was repeated with an EDFA and an optical BPF
inserted. The EDFA was used as an optical prcamplifier which could
significantly improve the sensitivity (in terms of the received optical
power) of the recciver. The optical BPF was used to filter out part of
the ASE gencrated by the EDFA. The block diagram of the system is
shown in Fig. 6.2.1.

Pattern
Generaior

Amp

Laser /N ———am| M-Z jam| VOA ~ BPA———s=— To PIN/Preamp

Fig. 6.2.1. Block diagram o1 back to back OC-192 system with EDFA
and optical BPF.

Note that long optical fibers can be placed between the MZ and the
EDFA for the study of impact of long fibers. Two different EDFAs
were used to do the measurement.  The first one was an EDFA with
Tektronix packaging (which will be called Tek EDFA). The Tek EDFA
has built-in isolator to prevent reflection.  The second one is a
northern telecom EDFA (nt EDFA).  For the case when the nt EDFA
was uscd, the optical BPF was omitted.  Some of the characteristics of
the Tek EDFA arc shown and discussed in section 6.3. Eye diagrams
(when the Tek EDFA was used) corresponding to BERs of 10-¢ and
10-9 at the input of the decoder are shown in Fig. 6.2.2 and Fig. 6.2.3
respectively.  As it can be seen, the logical ones are noisier than the
logical zeros because the dominant noise in the logical ones is the sig-
sp bcat noise which is signal dependent. The sp-sp beat noise is the
dominant noise in the logical zeros.
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Fig. 6.2.2.a. Data eye diagram a1 the input of decoder (BER=10-9).

3S 78956 he : 5877936 The TSR TS50 The

Ch. | =« B85.37 mUolts/div Offset = 0.000 Volts
Timebase = 28.¢ ps/div Delay = 35.0930 ns
Delta Windo= 0.00000 =

Window 1 = 35.1892 ns Window 2 = 35.1882 ns

Fig. €.2.2.b. Histograms of the data eye (BER=10-6).
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Fig. 6.2.3.a. Data cyc diagram at the input of decoder (BER=10-Y).

Ch. 1 = 94,86 mUolte/div Offset = 0.000 Volt:s
Timebase = 20.0 ps/div lelay = 35.0930 n=
Delia Windeo= 2.20000 =

Window | = 35,1892 ns Window 2 = 35.1€92 ns

Fig. 6.2.3.b. Histograms of the data eye (BER=10-9).
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Two interesting points can be observed ‘rom these eye diagrams.
First for the logical zeros, double histograms are observed. However
no observable double histograms appear for the logical ones. The
effect is not observable from the optical eye in Fig. 6.1.2.b cither.
The two distinct histograms are possibly developed when the signal
is electrically amplified. In other words, the double histograms may
be caused by the responses of the electrical amplifiers. One is due to
long logical ones and logical zeros and the other one is caused by
other patterns as illustrated in Fig. 6.2.4. Long strings of logical ones
and logical zeros have much longer time to settle down than the
others and hence they can reach steady state levels. The other
patterns have a shorter time to settle down and therefore they are
not able to reach the steady state levels. Another possible
explanation is that the double traces might have already existed in
the optical domain perhaps due to the response of the MZ. However
the separation of the two traces might be too small to be seen in Fig.
6.1.2.b because they arc buried in the thermal noise of the HP
Lightwave Converter. Increasing the optical signal power, which
raises the logical zeros above the thermal ncise level, might reveal
the double histograms effect.

Long logical ones and logical zeros

A
|

A\

N\ /

Other patterns
Fig. 6.2.4. Double traces in the data eye.

The second observation is that when the received optical power was
increased, the double histograms in the logical zeros started to
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separate further apart. A possible explanation to this is that the
transfer function of the electrical post-amplifier is not very linear in
the dynamic rcgion. The effect of the nonlincarity of the transfer
function is illustrated in Fig. 6.2.5.

Output

Output Data Eye

l
ot

Linear ——————
£ A0

Non-linear
input Data Eye

Fig. 6.2.5. Nonlinear transfer function of amplifier.

The slope of the transfer function in the dynamic region represents
the gain of the amplifier. If the dynamic region is not linear, the
logical ones and logical zeros will experience different gains. For the
case shown in Fig 6.2.5, the gain for the logical zeros is greater than
the gain for the «uical ones. Therefore the patterning effect for the
logical zcros is amplified and relatively the patterning effect for the
logical ones is suppressed. The diagram in Fig. 6.2.5 has becn
simplified for illustration purpose. In reality the gain spectrum of
the amplifier is not flat and therefore different frequency
components will experience different gains and hence different
transfer functions.
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6.3. Characteristics of the Tek EDFA

The Tek EDFA has a knob for adjusting *he gain and o small display
screen showing a number that is related to the gain.  The relation
between this EDFA number and the small signal gain has becen
investigated. The EDFA small signal gain was mecasured with the
input signal power set at about -36.3 dBm. The results are shown in
Fig. 6.3.1.

32~

gao:

£ 28
(.')25_:_
2245%/
5225 —]
Ezof //
5 151/
516!/

14 l L T i L4 T ¥ T T 14 T T T T L 4 L) T ] L) 1 T

20 25 30 35 40 45
EDFA number

EDFA Smail Signal Gain
@ Net EDFA Cmall Signal Gain

Fig. 6.3.1.  Relation between EDFA small signal gain and EDFA

number,.

t'0r example, when the displayed EDFA number is 30, it corresponds
to ED¥A 2ain of about 28 dB or net gain of about 26 dB (as the optical
BPF has an insertion loss of about 2 dB).

The gain compression characteristics of the Tek EDFA are shown in
Fig. ¢.3.2. The mecasurement was taken with the EDFA number set at
about 30. The EDFA gain is plotted against the input and output
signal powers.
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Fig. 6.3.2.b. EDFA gan as a function of output signal power.

The 3 dB gain compression point in terms of the output power
(before the optical BPF) is about 2 dBm (or about -24 dBm in terms
of the input power).



The measured Ngp of the EDFA is plotted as a function of EDFA small

signal gain as shown in Fig. 6.3.3.
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Fig. 0.3.3. Ng,as fus tion of EDFA small signal gain.
The Nyp is calculaied from the cquation (2.10.2.6):

P.
Ny, = ax (6.3.1)
o om(G=-Dhf.B,

’ . : o s Al » . Te . PR
where P = Pyimeaureay + Filterloss, Filterloss is about 2 dB. and

B,=1.4-B, is assumed to be the noisc equivalent bandwidth of thc
optical BPF.  The full-width-half-maximum (FWHM) bandwidth B, of

he optical BPF is about 1.3 nm. Since there is no optical polarizer,
m, =2. The frequency f. is given by:

1 =%’- (6.3.2)

¢

where ¢, =3x10* m/s 15 ihe speed of light in vacuum, A_.=1557 nm

is the laser operating wavelength. In ecquation (6.3.1), h is the
Planck’s constaut and G is the EDFA small signal gain.
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The sensitivity of the receiver as a function of the EDFA small signal
gain (interpolated or cxtrapolated from Fig. 6.3.1) was also mcasured
and is shown in Fig. 6.3.4. The sensitivity is defined as the optical
power required at the input of the EDFA in order to achieve a BER of
10-9.
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Fig. 6.3.4.  Scnsitivity of receiver as function of EDFA small signal

Note that the experimental curve in Fig. 6.3.4 resembles the
theoretical curves shown in Fig. 4.2.1.1 of chapter 4. When the EDFA
small signal gain is below 20 dB. the sensitivity can be improved
rapidly by increasing the EDFA small signal gain. The dominant noise
in the region where the EDFA small signal gain is less than 20 dB is
the thermal noise of the receiver circuit.  When the gain is above 20
dB, increasing the gain can no longer improve the sensitivity
drastically because the sig-sp and the sp-sp beat noiscs become the
dominant noise terms. The floor of the curve in Fig. 6.3.4 is caused
by the EDFA small signal gain dependence of the beat noises as
discussed carlier in section 4.2.1 of chapter 4.



6.4. Experimental Results
6.4.1. Sensitivity of OC-192 Receiver

The Tek EDFA small signal gain was set o about 28 dB throughout
the following mcasurements when it was used. The nt EDFA was used
in such a way that its output power is alway: at 0 dBm. The
sensitivity curves of the receiver are shown n Fig. 6.4.1.1. For the 0
km case without EDFA, the sensitivity (BER=109) is ahout -19.4 dBm.
When the Tek EDFA and the optical BPF are inserted. the sensitivity
is about -33.2 dBm which implies an improvement of about 13.8 dB.
When the nt EDFA is in place and no optical BPF is used, the
sensitivity is about -31.7 dBm which is :-at .5 dB worse than the
onc obtained from using the Teck EDFA and optical BPF.

1.00E-03
1.00E-04 [*—
m}
1.00E-05 [~
?;, ® 81 km with nt EDFA
1.00E-06 [— o |
o] 0 km with nt EDFA
& 1.00e-07 - ® 0 km with Tek EDFA
@ Om and BPF
1.00E-08 —0—]
o © 0 km, no EDFA
4 u
1.00E-09 -
o ™ °
1.00E-10 —L-
®
1.00E-11 0
18 -33 -28 23 -18

Receivart Power (dBm)

Fig. 6.i.1.1.  Sensttivity curves of recciver.
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With the nt EDFA in place, single mode fiber s1 km oin length was
inserted between the M7 and the EDFA.  The sensitivity curve s
plotted in Fig. 6.4.1.2 and is compared with the case when the fiber
length is O km. The sensitivity for the 81 km casc is about -31.1

dBm. It can be seen that the penalty 1s about 0.6 dB.

1.00E-04

1.00E-05 N5 —

1.00E-06 U

1.00E-07 00— ® g1 km with nt EDFA

BER

1.00E-08 u 8 0 km with nt EDFA

1 .OOE'Og D

8]

1.00E-10 &

1.0CE-11
-35 -34 -33 -32 -31 -30

Received Power (dBm)

Fig. 6.4.1.2. Sensituvity curves jor O and 87 km of fiber.
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6.4.2. Censtant BER contours of OC-192 system
In the previous analyses of the PDFs or the BER. we have only
considered the statistics at the sampling time.  In this section, we will
cxtend the analyses to look at the statistics at scveral different
instances in time across the data eye. The constant BER contours for
the cases of 0 km and no EDFA, 0 km with Tek EDFA and optical BPF.
and 81 km with nt EDFA arc shown in Fig. 6.4.2.1.(a-¢) respectively.
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-1.04 }ﬁﬂy//u\\\\ﬂl _—
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-1.08 \\ \ng/ /
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-1.12

-1.14

-1.16
70 80 90 100
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Fig. 6.4.2.1.a. Constant BER contour for 0 km, no EDFA.

For the contours in Fig. 6.4.2.1.a, the optical power at the PIN diode is
about -18.8 dBm which corresponds to a minimum achicvable BER of
ahout 10-!'!.  Since thermal noise dominates in this case, the conteurs
are fairly symmetrical about the optimum slicing level (-i.07 V)
which stays fairly constant across the eye. Using the innermost
contour (BER=2x10-Y), the opening of the eye in time is about 13 ps
ond in amplitude is about 40 mV.
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Fig. 6.4.2.1.b.  Coastant BER contour for 0 km with Tek EDFA and
optical BPL.

The contours in Fig. 6.4.2.1.b are obtained with the Tek EDFA and
optical BPE inscrted. The received power at the EDFA input was
about -32.2 dBm and the minimum achievable BER was about 9-41,
Using the innermost contour (BER=10-9). the eve opening in time is
about 10 ps and in amplitude is about 53 mV. The logical ones carry
more noise than the logical zeros because of the sig-sp beat noise.
The optimum threshold for cach contour stavs fairly constant across

the eye but it is different for cach contour.  This difference suggests

that the statistics at the time edges of the eye are different from
those close to the center of the eye.  An explanation is that there is
an increcasc in noisc variance of the logical zeros at the edges of the
cye. The ISI introduced at the edges of the eye increases the signal
Ievel of the logical zeros.  This effect not only increases the mean
value of the logical zeros but also the variance because of the sig-sp
beat noise. Morcover the veltage level of the logical ones at the
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cdges of the eye is lower than that at the center of the cye.  Hence
there is a decrease in hoth the mean and the variance of the logical
oncs at the edges of the eye. These effects then shift the optimum
threshold at the edges of the cye upward as shown in Fig. 6.4.2.1.b.
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ig. 6.4.2.1.c. Constant BER contour for 81 km with nt EDFA.

Fig. 6.4.2.1.c shows the contours measured with nt EDFA and 81 km
of single mode fibers inwcrted in front of the EDFA. The optical BPF
was omitted.  The received power was about -28 dBm which was
about 3 dB above the sensitivity. The shape of the contour
rescmbles the shape of the cye diagram shown in Fig. 6.4.2.2. The
triangular shape of the contours is caused by fiber dispersion. The
eye is neither symmetrical in time nor in amplitude. The asymmeltry
makes it difficult to scarch for the optimum decision time and
threshold.  Using the inner contour (BER=10-9), the eye opening in
time is about 17 ps and in amplitude is about 130 mV.
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Fig. 6.4.2.20 Data eye at input of decoder with nt EDFA and 81 km of
fibers.
6.4.3. Optimum Threshold versus Received Power

FFig. 6.4.3.1 shows the optimum threshold versus received power for
the cases of O km with Tek EDIFA and optical BPE, 0 km with nt EDFA
and 81 km with nt EDFA.  The optimum thresholds observed for the
case when the Tek EDFA and the optical BPE are used shows a shift
towards logrcal zeros as the signal power increases.  This is again due
to the increase in the sig-sp bheat noise in the logical ones. A similar
trend is observed for the case of v.ng nt EDFA without optical BPFE
and fibers but the optimum threshold values are less negative.  This
may be duce to the increase in the < » noise power for the logical
zeros when the optical BPEF is omitted.  For the case with 81 km of
fibers, the threshold stays almost constant.  In terms of percentage,
the percentage optimum  thresholds for the case of 0 km with Tek
EDFA and optical BPF are estimated to be about 43 to 45 % across the
range of received power.  For the cases of 0 km and 81 km with nt
EDFA, the percentage optimum thresholds are estimated to be about
50 £ 2 %.
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Fig. 6.4.3.1. Optimum threshold versus rece.vea power.

152




7. Conclusions

The non-Gaussian distributions of logical ones and logical zeros in an
EDFA preamplified optical digital transmission system  have been
theoretically formulated in chapters 2 and 3. When  the post-
detection Gaussian noises (the thermal and shot noises) are
neglected, the noise distribution for perfectly extinct logical zeros
follows the Central Chi-Square PDF.  For logical ones, the noise
distribution follows the Non-Central Chi-Squarc PDF.  When the
thermal and the shot noises arc included. the Steepest Descent
Mecthod can be used to find approximated PDFs for the logical ones
and logical zeros with less than 1% of error.  The difference between
the non-Gaussian and Gaussian PDFs becomes apparent when the
following conditions are satisfied:

I.)  good extinction ratio,

2. sufficiently large EDFA small signal gain,

3.)  sufficiently wide clectrical bandwidth,

4.y narrow optical bandwidth,

5.0 conditions 3 and 4 imply that the optical bandwidth  to

clectrical bandwidth ratio i1s smatl.

When the above conditions (especially 2 and 3) are satisfied. the
dominant noisc terms are the sp-sp beat noise for logical zeros and
sig-sp beat nose for logical ones.

The theoretical performance of the EDEFA preamplified digital system
has been analyzed by making use of the PDFs generated by the
Steepest Descent Method in chapter 4. It has been found that the
Gaussian approzimnations of the PDFs of logical zeros and logical ones
can be used to predict the recciver sensitivity performance  with
small error even when the above conditions are satisfied.  However
the Gaussian approximation is less accurate than the non-Gaussian
theorv ir predicting the optimum threshold that should be used in
the recetver decision circuit. When the above conditions are

satisfied, the percentage optimum thresholds predicted by the



Gaussian and the non-Gaussian theories differ by as much as 10%
depending on the reccived power level.

In chapter 5, a method has been devised to experimentally verify
the non-Gaussian noise distributions of logical zeros and logical ones
for the first time. The measured PDF of the ASE shows strong
asymmetry about the peak of the PDF. This asymmetry clearly
shows that the noise distribution is non-Gaussian. In addition the
shape of the measured PDF of the ASE agrees reasonably well with
the theoretical non-Gaussian shape. For the case of logical ones,
there is no distinguishable difference between the experimental PDFs
and the thcoretical PDFs within the range of observation.

There is a slight mismatch in the widths of the exp.rimental and
theoretical PDFs. This slight mismatch may due to the mathematical
assumptions that have been made for the theoretical analyses such
as using Fourier series expansion of the signal and ASE eclectric fields
in the time interval [0,7]. Moreover, the mismatch: may bec aue to the
fact that the theories do not take into account the frequency
dependent characteristics of the responsivity of the PIN diode and
the gain of the electrical amplifiers. In addition, experimental errors
are also factors for the mismatch.

The  wtimum thresholds of the PDFs of logical zcros and logical ones
have also been experimentally measured. The measured percentage
optimum thresholds agrec more with the values predicted by the
non-Gaussian theory than those by the Gaussian thcory. This verifies
the impact of the non-Gaussian distributions on the optimum
thresholds.

7.1. Future works

We have seen in chapter 6 that in a real system such as the OC-192
system, the statistics are more complicated than just the non-
Gaussian PDFs. The complication arises from the interactions of the
non-Gaussian noise distributions, the ISI, the fiber dispersion, and
possibly the patterning effect. It is preferable that the non-Gaussian
noise theory can incorporate all the additional effects such as the ISI
and the fiber dispersion. However, the analyses would require more
sophisticated mathematical techniques if we were to pursue an
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analytical solution (provided the solution exists). The ISI has been
rccently taken into account in [32]. For even more vigorous analyses.
we can also incorporate the effects of laser line-width and phase
neise [33, 34].  Alternative to analytical solutions. we could use
computer simulation to analyze the behavior of the entire system
us:ng more realistic components.  For example. we can replace the
integrate-and-dump filter by a fourth order Butterworth low pass
filter ~ We can also try to obtain a partial analytical solution and let
the computer handle the rest.

Morcover we can also look into the techniques for reducing the beat
noises in the receiver.  One method which utiliz»s coherent detection
has becen proposed by Yamashita and Okoshi [6]. In addition it is also
worthwhile to look into the possibility of combining the EDFA
prcamplificr with  other kinds of photodetector such as  the
optoclectronic mixer (OEM). There are numerous combinations of
EDFA precamplifier with photodetectors and it is possible that onc of
the many combinations would give optimal noise periormance,
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Appendix Al

Derivations of MGFs, PDFs, Means

and Variances

For simplicity the finite summation %E 1s replaced by Z
pe
Equation (1.2.1) can bhe cxpanded as:
K( Ef + E (1)é5, (1) + E76,, (1) +]e,, ()] ] (AL.1)
Using cquation. -2.5.11) and (2.5.12). we have:
'13”_8.”)‘2 = Z[E,,]2 +3 Y E.E, explj(w, — o, )] (A1.2)

HEN

IoRVITN o =Y E,c, + Y Y E, ) expl e, - m,, )] (A1.3;

H#EMm

EL (e, (1 = F e, +3 5 Epcycapl=1(0, —m, )] (Al.4)

n¥Em

HZM

2
ep =Fle,f + 3 S eucn expljlm, - w, 1. (A1.5)

The orthogonality property of the complex cexponential function in

the time interval [0.,7] is given by:

(n#m)

! / 0
[, expl£j(®, =0, ldt = {

(n=m)"

(A1.6)

Using cquations (Al1.2) to (Al.6) in cquation (2.8.1), the random

variable y is calculated as:

ERES

Aih

e DA

ni
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where the relation Z+Z" =2Re{Z} has been used.

Since v 2 0. the unilateral Laplace transtform of the PDE or the MGFE

for logical ones is given by:

Fi(s) =<exp(=sy) >= f) fivyexp(=svidy (A1.8)
where <-> 1s the expectation operator.  Using cquation (Al.7) in

(A1.8), we have:

< expl—sy) >= cxp(-—slx’Z E,,!2 )]_[ < exp[—-xK(ZiE lcos®, e, + o )j >

" n ”n
/

-<cxp[—-.s'K(—Z}E'_‘.‘s'in6 o )]>

i ntin in
(AT

Consider the ¢, term:

el K(2IE lcosd ¢ NPRURYN
< L\pl—.‘» (‘_ a|COST, ¢ - (,A”)!

I s .

jiond L. ._._.”,I LAY FUTY A e R B ! N : . —_— !.
= ~-‘~—-TJ‘#,“LI\p el ] ,,l\(_}E,“U).sH,_,( . \m)]a(,” CAT O

\ 2nG" -0

since ¢, has been assumed (o be a Gaussian random  variable.

Completing the square in equation (AT.10). we have:

26°K- E,| cos™ 8,5

=exXp 3T
| +2G6°Ks
. (1+26°Ks) 26°KS[E, [cosB, ||

TR v I v T’ AL
\ 2 - e - — .

I ,( ZGZA'TIE,,]' cos” @.,.;3 \
:_T—_' = ‘_:l..pl-— 3, d (Al]z)

VI+26°Ks "\ I+267Ks
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where the Gauss integral:

I (e (1+26°Ks) 26°Ks[E,|cos9, Y 1
5 _[_m EXpl=———F>3 | ¢m*t 2 Wy = 7
V271G 20 1+26°Ks J1+26%Ks

(A1.13)

has been used. The Gaus: integral also applies to a function with

complex coefficients. The proof of this is shown in Appendix C.
Similariy for the ¢;, term, we have:

< exp[—sK (—2|E o|sin®,c;, + (.',3, )] >

I 26°K2|E, [ sin B, 5"
= —rrm—re—— EXP| ———— 5 — - |. (Al.14)
g 1+26°Ks
..«ting equations (Al.12) and (Al.14) in cquation (A1.9), and

since there arc M identical terms, we  ave:

[ 2
I I:%J (A1.15)

Fi(s)= Cxp! 5
() (1+20%Ks)V Ik [+207°Ks

The PDIF for logical ones is obtained by inverting the MGF F(s) in
cquation (Al.15):

b o o
f,(})—_znj'fa_jml,(.s)exp(.s_\)d.s. (Al1.16)

Making a change of variable u=1+206%Ks, rearranging terms  and
using the table of Laplace transforms [35], the PDF for logical ones is

gi cn by:
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. (( K'hlEH‘z Ty A1
l"\pi i 76-K o \ ‘., /‘ - -
- \ = ¥ . \f’.‘KﬂEni
fi(y)= 7 5 La1- 5
K \KSIET) K
(AL1.17)

wherc [y, is the modified Bessel function of the first kind with
order M-1.

For logical zcros. assuming perfect extinction of signal,  we have:
o 2
KY|E, =0. (A1.18)

osing (A1.18) in (Al.15). the MGF for logical zeros is given by:

l

Fo(s)= .
0 () (1+26°Ks)V

(A1.19)

P - R4 i 1 . “ .
Making the same change of  woonle w=1+20"Ky, the PDF for logical

zeros can be casily calculated o -

: | A Vv
Jo (V)= — vl ;cxp(— = ) (A1.20)
(20-K)" (M —-1)! - 20°K.

The mean of v for logical ones 1< given by:

_ dl(s)
_\‘I :<_\'>l:——_‘\:() (/\l.:l)
ds "
=20 °K)YM+KY|E,|". (A1.22)

The variance of logical ones is given by:

~

o =<y > —(<y>) (Al

9
(]
o



where the first term of (A1.23) is:

~ - (/2[:1(.8')

<V > (A1.24)

T ls=0-
ds-

Using the results from equations (A1.24) and (A1.22) in (A1.23), the
variance of logical ones can be calculated as:

of = M(262K) +2(26°K)(KS[E, ). (A1.25)

The variance of logical zeros can be obtained by using (Al.18) in
(A1.25) as:

o) = MQ20%K)>. (A1.26)
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Appendix A2

Derivation of equati: o (2.10.4.1)

The wviwps signal power in wie time interval [0.7 is given by:
K T il Tk

Using (2.5.11) in (A2.1), we have:

8]

K r : :
P.\'i,u = 5«\—:1—,_'.” ZEN CXP(J(DHI)Z En CXp(—‘/(l),_,f)df (A2.

2

dwmd

. K e
=>EYE, WJ"I expl @, —w, )rldr.  (A2.3
h

Using the orthogonality property of the exponential function in [0.7]

or equation (Al.6), the average signal power becomes:

jr— -

P K

) = — fa
RN qt f~“n

(/\24)

Multiplying both sides by the responsivity U of the photodiode, we

have:

KYIE,[ =%P,,. (....5,

NIy

165



Appendix A3

Prepiviatios: <! probability  of ervor for logical ones
The piooabil:y of error for logical ones is given by:

RU)=1=[, findy (A3.1)
M-I
1 fw[ M j( v ] ( M(v+9“P\,L)\] (ZMV\‘J“ )
=1= 7 €Xp M- dy.
u 9{]::'1.\" mPvig mpus.'e J u\( )
(A3.2)
2MP,;,
Let a= fA3.3)
Pos
YRP.,  [3Mv [2MP.
then \/ Y= =M) g (A3.4)
R, \RR, | P
o,
‘\' 9'{1)(1.\'(‘ o .
f’) )
Let u:\/SM\ (A3.6)
" ase
RP
then y= Plaset (A3.7)
2M
RP,..
and d_\':—M"—"‘—udu. (A3.8)

When y -0, y—> oo, and when y=1,, (A3.6) becomes:

[2MI,
U=
\EY:

ase

=b. (A3.9)
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Substituting (A3.7) to (A3.9) in (A3.2). and rearranging terms,

crror probability of logical ones can be expressed as:

2 A M1
ll' \/L\l ’)A/I[)\IL' \
exp| — =1 |du
\/’)AlP\w /Pm( 2 (1\( } \ [)(l.\l J
(A3.10)
M-l ) 2
o +a” ,
=1- u(ﬂ) cxpL—ﬁ—leﬂ,",i}au)du. (A3.11)
b \a 2

The integral in (A3.11) is the ir‘cgral representation of

generalized Q-funcidon, thercefore the < or probability for logical

ones 18
Py =1-0ya.b) (A3.12)

where « and b are given by (A3.3) and (A3.9) respectively.

Derivation c¢f probability of error f{or losical zeros

The probability of error for Jogical zeros is given by:

e
(1</)~J,d Jol¥)dy (A3.13)

: M
-(_M yH [ vM
:j cxpl dv. (A3 14

T\ RP,,. ) (M=) 3\1’”\
RO, }
et Vo= - i (A3.15)
M
RO
then dv = 4 gy, (A3.16;
M

When y— oo,y —<c and when v=17,. (A3.15) becomes:
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“:9‘{[) /d:('. (1‘,\317)

ase

Using (A3.15) to (A3.17) in (AX.14). the ecrror probability can be

cxpressed as:

] = M-l
Ry(l))=——| ™" exp(—u)du. (A3.18)
otla) (M—l)!j“ P

The integral in (A3.18) can be solved by integration by parts.  After
applying integration by parts (M ~1) times, we have M similar terms

added together and the error probability for logical zeros is:

) M
M—l( I.M W" C'\pk'“t—f)
Po(I)= 3 | = | X T s /) (A5.19)
v E(')\ERP / r!

dhe .
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Appendix Ad

Derivation of error upper bound
The truncation crror is given by:

Err(l)= QM(a.l))—QM(a,l)). (Ad.1)

Consider the case when a2 b, using (2.12.7), (2.12.9) and (2.12.11) in
(Ad.1)., we have;

@ +bhT) 2 b\k
_‘_’).__] Z (—] 1, (ab) (AL.2)

at+ b7 Y by : ,
sexp| - — —) > I (ab) (since a2 h)AL.3)

G =11
| (Il - f : / I YT i
<u\p e h (.7) /,.,l((ll))(]““‘ U ‘1 (A4.4)
2 \( / ’ \ 5 2 j
where the inequality |25

= " mal

LII\((II))SI,‘H((JI)){I%-\——(;—l)] (54 S)
k=141 N =

has been used for (A4.4).

Consider the case when b >a. the tunction @y («.h) in (2.12.12) can

be rewritten  as:

+ b )

2 )

L \K M=ty gk 1
{Z(—J Ltaby+ > (4— I (ab) l(A4.())
k=1 E

k=0) ‘1

QM\u h) = L\P[——

whiere the property 1y (x)=1,,(x) (M is an integer) has been used.
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Using (2.12.7), (2.12.8" and (A4.6) in (A4.1). we have:

2 +/ 2 o k
Er;-([‘):cxp(—-a q—)—] Z (ﬁj /k((ll)) {(A4.7)
\ k=1+1

—

" R l: <
a”-+b- \a
<exp| ———— | = | DI (ab) (since h>a)yAL.8)
2 b/ T

—

SPEI RV
<exp 4T J(q) I, (ab)

Ttab
|+  — (A4.9)
Vo2

where the inequality in (A4.5) has been used.

170



Appendix A5

Equations of PDFs When Polarizer is Omitted

Without the polarizer, the filtered signal and ASE eclectric fields can
be expressed as complex spatial vectors:

E . (1)=YE, exp(jo,1)a, (A5.1)
e (1= X ¢, exp(j©,0)d, +¥.d, exp(jo, 1), (AS5.2)

where the signal is assumed to be lincarly polarized in the x-
direction and the ASE electiic field has components in both x and y-
direction.  The real and 1maginary parts of the complex expansion
cocfficients d, are assumed to be :ndependent identicaliy distributed
Gaussian random variables with zero means and the same variance

6~ which is also the variance for the real and imaginary parts of C,-

The total electric field is then given by:

E (1)+ c:.{‘.,, (1)=[X E, exp(jo,1)+Y ¢, expljo,)}d, + 3 d, exp(jm,1)d,

(AS5.3)
The time averaged photocurrent is:
K = . 2

_\y:F ()I’E.S'(t)+é.s'/)(t) dt. (AS5.4)

The intcgrand in (A5.4) can be expanded as:

e}y
Bt
e pY!

(1) +

y

2 = =% <
w(’)! =[<S(z)+é‘s.,,(t)][E“.(r)+c-5.,,(r)]. (AS.5)

Using a,-a, =0 and following the similar procedures shown in

Appendix Al, we have:

171



-

+KYld, |
({AS.6)

_‘:ﬁluﬁ ? ) A I 1 ‘
v=K Llhn| + "'Kz..' En C C(A’Sen ~ Cin Sme” )+ KZ'(.”l

The MGFE of the PDF for logical ones can also be calculated using

Appendix Al and it can be written as:

ex ~KYELS)
(1+26%Ks)M P 262K (1+26°Ks)M

(AS.7)

Fi(s) =<exp(-sy) >=

Equation (AS5.7) differs from cquration (A1.15) by an cextra term

I
(1+20°Ks)M

(A5.6}. Therefore the MGF of logical ones is:

which is the result of the term Kzid,,{* In cquation

—sKSE, I
[ (5) =<expi—sy) >= -~——~—~—{7-—.-,TI exp _,__Zﬂ_l’_'g | (AS.®)
(1+207Ks)™ [+20°Ks |

;
E,” =0 and hence the MGF is:

For logical zeros, KZ

1
1

v (A5.9)
(1+26°Ks)"M

f(s) =<exp(=sy) >=

The MGFs in (A5.8) and (AS5.9) differ from the ones in (Al.15) and
(A1.19) by the paramcter M. It is obvious that if we take the
inversc Laplace transform of (AS5.8) and (A59). the PDFs wili be
identical to the ones in (A1.17) and (A1.20) except that the
parameter M s replaced by 2M. In general when the polarizer is
omitted, all the appearances of M in the cquations of PDFs, means
and variances must be replaced by 2M.
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Appendix B

Derivations of The Probabilities of Errors

The probability of crror for logical ones is given by:
elq
Py =)0 5 ()dy (B D

where [, is the threshold current.  Using equation (3.5.3.6). the
probability of error is:
I o1y expl ()]

P, =—j‘,~—-——,p _,'ﬂ L—=dv (B.2)
13 ' \/27tl',(1(”)
where subscripts are used for denoting logical ones. By rearranging
equation (3.5.1.2), the time averaged current v can be expressed in
terms of the saddle point

A MB 2 -~
A _2C(u, -1 (B.3)
u, o, B
dv 2A MB 2C
and —— = = - —, (B.4)
du, w, ., B

From (B.3), when v=1, u,=u,(l;), and when y— —co, 1, — oo

therefore the probability of error can be expressed as:

du (B.5)

"

] Ju,,(I(/ yexpl [(u,)] dv
o \/F,"( u,) du,

From ecquations (3.5.2.6) and (B.4), we can obtain the following

relation:
dv 2A MB ?(‘
e B i (B.6)
du, \/ (uo) ll” M('; B



Using cquattons (B.6) in (B.5). we have:

[ .
I , i 24 2C Mt
Py =—— J expl Fytu,) + ln(—;+——+-——)\|du (B.7)
V2B Ptotld 2 w, B }J

Equation (B.7) can be simplifiecd by making the substitutions:

. l 2A 20 AMB
Gy(u,)=Fitu,) ln[w~ -»—--*-—-] (B.8)

u, 5 i’
and ;) =u,(1;) be the saddle point at the decision threshold 7, tor

logical ones. and w=1,. we have:

o

P, =— Cexpl Gy ) |du (B.9)
\27[[)) Hefl
o724 20 Mg
where Gy = It + - ]n( R R S (B.1O)
2 ' R

The integral in (B.9) can be evaluated using the Tavlor series
cxpansion.  Expanding G (1) as Taylor series at 1, and ignoring high

order terms. we have:
Gy = Gyl + (=1, )G (g ). (B.11)

Substituting (B.t1) into (B.9). the probability  of error can be

approximated  as:

expl Gy (i )]
V2TB

P = j“"“ expl Gy Gy e =1 ,y) du (B.12)

_explGylu,,)] -1
V2rB | Gl(uy,)

(assume  G{(uy) <0). (B.13)
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The Taylor series expansion is a very good approximation.  Fig. B.]
shows an cxample of the original function and the approximated
function.  Note that the functions piotted are actually the exponential
of the functim Gy(u) or the integrand of the integral in (B.9). The
valuc of 1w, in this example is 1.39.

107 ' , -

10° | -
/—\ - Approximated
-20

10 7 ¢ ~~__ 1 (= Original

10710

10—120

Fig. B.1. Taylor series approximation to G, ().

The original function is integrated by using numerical integration
(trapezoidal rule) and the result is compared with the one obtained
by using the approximated cquation. Denoting the cxact probability
of error for logical ones (obtained by numerical integration) as P, q
and thc approximated probability of error (obtained by Taylor scries
cxpansion) as Prapp, the absolute percentage crror can be calculated
as:

_ B ' (B.14)

lexact

%Error = |l



a funcuon of the

The  absolute  percentage  error is  plotted  as
probability of crror in Fig. B.2.
0.05 " - R R i
f
|
- |
a 0.04} f
©
S
U
o 0.03¢ 1
o
3 |
j oy i
Q) i
o /
(V] - i
3 0.02 /
= T~ / ‘
O j !
3 \\\ /
W
.
\\/'
G 30 20 0 0
1C 19 10 10

Probability of error for one P1

[P,

B.2.  Absohite percentage crror o

As i1t can be seen from Fig. B.2. the approximation is very good. the
crror starts to increase when the probability of error is large
The probability of error for logical zeros is given by
Py=] folydy. (B.i3
d

Using (3.5.3.6) and subscripts to denote logical zeros, we have:

I o exXpl Fiyf
P, = / U;p[ A (,)l (B.16)
B d \2rFy(u,)

Using (B.3) and making a change of variable, we have:
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= “‘L‘f“””dwxl?'f:”““’)](— A )dun. (B.i7)
\f]‘()(ll()) (/l(“

Using (B.6) and (B.8), and change the subscript to logical zeros, we
have:
1 ) )
Py=—— expl| G, (1) ]du (B.18)
O arB 0 0
\N21B
where w,, =u,(1;) and Gy(u) is given by the expression in cquation

(B.8) with different values of constants A and C. Using Taylor secries
cxpansion for G,(u) at iy, and integrating, we have:

_ CXP[G()(“,/())]JI = expl =Gy (10 )14 40] (B.19)
\«/2TIB |

Py = 1 "
Gy (1)

where 1y, is the saddle point at decision threshold for logical zeros.
Fig. B.3 shows the original function and the approximated function.

10%° ' _

10 | .
— - Approximated

0
10 — QOriginal

107"}
O

5
O 10'20.
&
[5) 10—30_ P2

0.1 0.2 0.3 0.4 0.5

Fig. B.3. Taylor series approximation to G (u).
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The value of wyo in Figo B.3 is 0.23.0 The absolute percentage erior is

plotted as a function of the probability of error in Fig. B.4.

2 , " -

|

o |

< |

B 1.5¢ ':

5 H

L1 B

) ;

o)) Dol

JL] il

c 1 .

o} I

O .

(] .

& |
2 |
3 l /

3 0.57 j
< /
)

ST 10 0
10 10 10 10

Probability of error for zero PO

Fig. B4 Absolute percentage error of Py,
The error for the probability of error for logical zeros is larger than

that for logical ones.  However the error in the range of interest

(Po< (-3 is less than 109 which is still tolerable.
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Appendix C

Derivation of the Value of Gauss Integral
Argument

Consider a Gauss integral with complex argument s:

oo (v+ (st)2
j_oo exp| — —————262 'y

F, . . -
where ©° is a constant and y is the variable. Let

y_+02S
V20

.

_ y+0° Re{s)+ jo’ Im{s)
\/QG

so that (Cl) can be written as:

.G Im{s}

oo+j_——v~—— 2
«/50_[ s €XP(—=27)dz.
TR

Now consider the integral:
2
jc,exp(—z )dz

where C is a closed contour as shown in Fig. CI.
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A m{z)

jolm{s}) Contour C
J2 rd
—atf
Cq Co
2 o — -
-R R Re{z)

Fig. CI Closed contour of (C5).

Since there i1s no pole inside and on the contour C (as the integrand in
(C5) 1s analytic everywhere). the integral in (C5) is cqual to zero by
the Cauchy-Gourmat theorem [29]:

5 -
J'(‘cxp(—:‘ )dz=10. (C6)
The integral in (C6) can be written as the sum of four integrals along
the contour C:

a0 Imis} »

'I\’+_IO'W/~ ~2 . - . _2 ~ R e _:‘_ - . ‘_2 e

I/Hj““"\"‘:')’ exp(—z7)d7+ J<'1 exp(—z:7)dz + J_Rc,\p(—\. Yz + JC: exp(—z7)dz=0
V2

(C7)
where R is a constant.
Consider the last integral in (C7). it can be written as:
O Im{s}
2 S N
JC': exp(—: )(L.—JR v2oexp(=z7)dz. (C8)
Since
=z, + g (C9)
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where zp and zj are the real aad imaginary parts of z, along path C»,

the real part of 7 is equal to the constant R, hence:

dz = jdz;. (C10)

Using (C9) and (C10), the integral in (C8) can be written as:

2, (il 2
jexp(-z, )jo V2 exp(zf - j2z,z;)dz;. (C11)

Taking the modulus of (Cl11). we have:

clim{s} cIm|s}

X | clm{s)
O <exp(—z; )|} V2 exp(z] — j22,2,)dz;| Sexp(-22) V2 |exp(z? - j2z,7,)dz,

(C12)
=exp(—z,'?‘)V (C13)
:—V 5= (Cl14)

exp(R”)

where: the integral in (C12) has been replaced by V. As R—> oo,
(C14) approaches zero and hence the integral in (C8) approaches zero.
Similarly the second integral in {C7) also approaches zero as R — oo,
Therefore as R approaches infinity, (C7) becomes:

oy S IMI)

| Ve exp(=2*)dz = [~ exp(-2®)dz= [ exp(-z2)dz,  (CI5)
"°°+_]_~——_' —c0 —Cx)
V2

=Jr. (C16)

Therefore (C1) and (C4) are equal to 27o.
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Appendix D

Matlab Programs
Parameters
% The following values of parameters are common to all the programs and will not be

repeated.

%pValucs of Common Parameters

h=6.6262c-34. % Planck's constant  (J-s)
q=1.6022¢-19: % clectron charge (C)

c=3c8; Y free space light speed (m/s)
lambda=1.55¢-6: % operating wavcelength (m)
f=c/lambda; % operaling irequency (Hz)
probl=0.5; % probability of receiving a logical one
prob0=0.5; % probability of receiving a logical zero

muin=10™N0/10); % EDFA input coupling loss
muout=1070/10); % EDFA output coupling loss
_=10N0/10); % additional loss after EDFA

Program 1
% This program calculates and plots the PDFs of the logical ones and logical zeros in an
% EDFA preamplificd optical digital transmission system. The calculation neglects the
% thermal and the shot noises. The equations for the PDFs of logical ones and logical
0 zeros arc the Central and Non-central Chi-Square distributions respectively. The
% random variable is the time averaged photocurrent. Note that for non-zero extinction
Ge ratio, the Non-Central Chi-Square distribution can he used for the logical zeros.
clear, clg

dclta=0; % cxtinction ratio (ratio of powers of logical ones 1o logical zeros)
Pinlb=107(-32/10)%1¢-3; Yc input power for logical ones to EDFA before loss (W)
PinOb=declta*Pinlb; G input power for logical zeros to EDFA betore loss (W)
Pinavb=prob!#Pin1b+prob(i*PinOb: % average input power to EDFA before loss (W)
PinavdBmb=10*log 1 O(Pinavb/le-3): 9 average input power before loss (dBm)
Pint=muin*Pinlb: % input power for logical ones to EDFA after loss (W)
PinO=dclta*Pinl; % input power for logical zeros to EDFA after loss (W)
Pinav=prob 1 *Pin | +prob0*Pin0: Y average input power to EDFA after loss (W)
PinavdBm=10*log [(Pinav/1e-3); % average input power after loss (dBm)
Psat=30c-3; Cc EDFA saturation power (W)

Go=10730/10); % EDFA small signal power gain

% Use Newton Raphson Method to solve for the EDFA gain

G=Go; e starting point

g=G-Go*exp((1-G)*Pinav/Psat): % function to be solved
gp=1+(Go*Pmnav/Psat)*exp(( 1-G)y*Pinav/Psat); e first derivative of g(G)
eps=le-10; S error limit
while abs(g)>eps
G=G-g/gp:
g=G-Go*exp((1-G)*Pinav/Psat); 9% 2(Q)
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat): % g'(G)

end

Belec=20e9; % clectrical bandwidth (2-sided) (Hz)
Bopt=(c/lambdar2)*(1.4%1.3¢-9); % optical bandwidth (Hz)
M=round(Bopt/Belec); % ratio of filter bandwidths

mt=1; % polarization state parameter (1,2=w/,w/o polarizer)
M=mt*M; 9 correction to M

Nsp=2; % spontaneous emission factor of EDFA
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eff=0.8; % detector quantum etficiency

R=eff*q/(h*f); G responsivity of PIN diode  (A/W)
Pase=L*muout*mt*Nsp*(G-1)*h*f*Bopt. ~ % ASIE power (W)

G Probability density functions of the time averaged photocurrent

npdi=30; % number of points in PDIF curves minus one

% For logical zeros - Centrai Chi-Square distribution

stimo=0.1e-4; % starting point of time average curient (A)
endimo=3c¢-4; % cnd point of time averaged curreni (A)
stepimo=(endimo-stimo)/npdf; % step of time averaged current (A)
imo=stimo:stepimo:cndimo:; % time averaged current for logical zeros (A)
fac=gamma(M); % calculate (M-1)!
pdfchiO=(M/(R*Pase))*"M*(imo.NM- 1 }/fac). *exp(-(imo*MW(R*Fasc)):
meanchi0=R*Pase; % mean of PDF (A)
varchiO=(R*Pase)*2/M; % variance of PDF (A”2)

% For non-perfectly extinct logical zeros only

% Non-central Chi-Square

PsigO=L*muout*G*Pin0; % output signai power of EDFA after loss (W)
P%imo=stimo:stepimo:endimo; % time averaged current for logical zeros (A)
o <

Joargbessel0=2*M*sqrt(imo*R*Psig0)/(R*Pase);% argument of modificd Bessel functions
JopdfchiOa=(M/(R*Pase))*(imo/(R*Psig0)).A(M-1)/2). #exp(-
M*(imo+R*Psig0)/(R*Pasc));

JepdfchiO=pdfchiOa.*besseli(M-1,argbessel0):

JomeanchiO=R *(Pasc+Psig0). Y mean of PDF (A)
JovarchiO=(2*RA2*Pasc*Psig0+(R*Pasc)?2)/M: ¥ variance of PDEF - (A”2)

% For logical ones - Non-central Chi-Square distribution

Psigi=L*muout*G*Pinl; % output signal power of EDIFA (W)

stiml=2c-4; % starting point of time averaged current (A)

endiml=7e-4; % cnd point of time averaged current (A)
stepiml=(endim1-stim1)/npdf; % step of time averaged current (A)
iml=stim]:stepimi:endiml; % time averaged current for logical ones (A)

argbessel |=2*M*sqrt(im 1 *R*Psig //(R*Pasc); % argument of modificd Bessel tunctions
pdfchila=(M/(R*Pase))*(im I/(R*Psig1)).A(M-1)/2). *exp(-M*(im [ +R*Psig | (R *Pase)):
pdfchil=pdfchila.*besscli(M-1,argbessell);

meanchi |=R*(Pasce+Psigl); % mean of PDF (A)
varchi1=(2*RA2*Pasc*Psig | +(R*Pasc)?2)/M; T variance ol PDIF (A”2)

% Gaussian approximation
% PDF for logical zeros

stimog=0.1e-4; % starting point of time average current (A)
endimog=1.9¢-4; % end point of time averzyged current (A)
stepimog=(endimog-stimog)/npdf; % step of time averaged current (A)
imog=stimog:stepimog:cndimog; % time averaged current for logicul zeros (A)
Imo=R*(Pase+Psig0); % mean current (A)
varo=(2*RA2*Pasc*Psig0+(R*Pasc)*2)/M.; 0 variance of current (A”2)

peaussO=(1/sqri(2*pi*varo))*exp(-(imog-Imo).A2/(2*varo)),
% PDF for logical oncs

stimlg=le-4; % starting point of time averaged current (A)
endimlg=7e-4; % end point of time averaged current (A)
stepimlg=(endimlg-stimlg)/npdf; % step of time averaged current (A)
imlg=stimlg:stepimlg:endimlg; % time averaged current for logical ones (A)
Im1=R*(Pase+Psigl); % mean current (A)
varl=(2*RA2*Pasc*Psig I +(R*Pasc)*2)/M; % variance of current (A”2)

pgauss 1=(1/sqrt(2*pi*varl))*exp(-(imlg-Im1).22/(2*varl));
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Program 2
% This program calculates the PDFs of the logical ones ana jogical zeros inan EDEFA
Ye preamplified optical digital transmission system. The calculation uses the equations
Ge dertved from the Steepest Descent Method which can incorporate the thermal and the
% shot noises. The logical zeros does not need to be perfectly extinet. The random
Jo variable will be the voltage after the electrical amplifiers.
clear, clg

delta=0; % extinction ratio

Pin1b=10"(-33/10)*1¢-3; % input power for logical ones to EDFA before loss (W)
PinOb=dclta*Pinlb; % input power for logical zeros to EDFA before loss (W)
Pinavb=prob1*Pin1b+prob0*Pin0b; % average input power to EDFA before loss (W)
PinavdBmb=10*log 1 0(Pinavb/le-3); Y average input power before loss — (dBm)
Pinl=muin*Pinlb; % input power for logical ones to EDFA aiter loss (W)
PinQ=declta*Pinl; % input power for logical zeros to EDFA after loss (W)
Pinav=prob 1 *Pin1+prob0*Pin0; % average input power to EDFA after loss (W)
PinavdBm=10*logl10(Pinav/le-3); % average input porver (dBm)

Psat=30c-3; % EDFA saturation power (W)

Go=10730/10): % EDFA small signal power gain

% Use Newton Raphson Meihod to solve for the EDFA gain

G=Go; % starting point
g=G-Go*exp((1-G)*Pinav/Psat); % function to be solved
gp=1+Go*Pinav/Psat)*exp(( 1-Gy*Pinav/Psat); G first derivative of ¢(G)
cps=le-10; T crror limit

while abs(g)>cps
G=G-g/gp:

g=G-GoFexp((1-G)*Pinav/Psat); Yo gty
gp=I+(Go*Pinav/Psat)*exp((1-Gy*Pinav/Psat). og'(Gy
end
Belee=20cY; G clectrical bundwidth (2-sided) (Hz)
Bopt=(¢/lambdar2)#(1.4%1.3¢-9); % optical bandwidth  (Hz)
M=round(Bopt/Belec). Y ratio of filter bandwidths
mt=1; % polarization state parameter (1.2=w/,.w/o0 polarizer)
M=mt*M; Y cor-ection to M
Rin=50); e input resistance of electrical amplifier (Ohm)
Te net voltage gain of clectrical amplifiers
GainelecO=10°20/20); % for logical zeros
Gainelec I=10720/20); % for iogical ones
Tk=273+25; % temperature (Kelvin)
F=10%(7/10); % noise figure of electrical amplifier
varthermal=(2*k*Tk*F/Rin)*Belec: % variance of thermal noise  (A2)
Nsp=2; % spontancous emission factor of EDFA
eff=0.8; % detector quantum efficiency
R=eff*q/(h*{): % responsivity of PIN diode (A/W)
Pase=L*muout*mt*Nsp*(G-1)*h*f*Bopt; % ASE power (W)
% Theoretical PDFs Using Steepest Descent Method With Voltage Random Variable
npdf=50; % number of points in PDF minus one
% For logical zeros
PsigO=L*muout*G*Pin0; % output signal power of EDFA (W)
varshot0=q*R*(Pase+Psigh)*Belec; % variance of shot noise for logical zeros ~ (AN2)
stimpd{0=-20c-6; % starting point of time averaged current (Aj
endimpdf0=300c-0; % end point of time averaged current (A)

stvmpdf0=stimpd{0*Rin*Gainelec0; % convert to voltage
endvmpdfO=cndimpd{0*Rin*GainelecO;
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stepvmpd{O=(ecndvmpdf0-stvmpdfO)/npdf;, % step of voltage (V)
A=R*Psig0*Rin*GainelecO;
B=(R*Pasc)*Rin*GainelecO/M;
C=((varthermal+varshot0)*(Rin*Gainelec0)72)/2;
Fpl=l; % coefficients for the polynomial F'(u)=0
Fp3=-M*B"2/(2*C),
Fp4=-A*B/(2*C);
for vmO=stvmpdf0:stepvmpdi0:endvmpdf0

Fp2=B*vmO0/(2*C)-1;

Fp=[Fp! Fp2 Fp3 Fp4];

rootFp=roots(Fp); % solve for the roots of F'(u)=0
u=rootFp(find(rootFp>0)); % take positive root
Fdp=(2*A/B)/ur3+M/ur2+2*C/B"2; % second derivative of F(u)

Fu=-A*(u-1)/(B*u)+(C/B*2)*(u-1)"2+(vm0/B)*(u-1)-M*log(u);
pdfO((vmO-stvmpdf0)/stepvmpdfO+1)=exp(Fu)/(B*sqrt(2*pi*Fdp));
end
VmO=R*(Pase+Psig0)*Rin*GainelecO; % mean of PDF V)
% variance of PDF (VA2)
var0=(Rin*Gainelec0)"2*((R*Pase)2/M+2*R"2*Pase*Psig0/M+varthermal+varshot0);
vmO=stvmpdfO:stepvmpdf0:endvmpdfO;
% For logical ones

Psigl=L*muout*G*Pin1; % output signal power of EDFA (W)
varshot1=g*R*(Pase+Psigl)*Belec; % variance of shot noise for logical oncs (AN2)
stimpdf1=120e-6; % starting point of time average current (A)
endimpdf1=1300e-6; % end point of time average current  (A)
stvmpdf1=stimpdf1*Rin*Gainelec1; % convert to voltage

endvmpdfl=cndimpdf1*Rin*Gainelecl;
stepvmpdfl=(endvmpdfl-stvmpdf1)/npdf; % step of voltage (V)
A=R*Psig | *Rin*Gainelecl;
B=(R*Pase)*Rin*Gainelec1/M;
C=((varthermal+varshot1)*(Rin*Gainelec1)*2)/2;
Fpl=1; % coefficients for the polynomial F'(u)=0)
Fp3=-M*B"2/(2*C);
Fp4=-A*B/(2*C);
for vm1=stvmpdf!:stepvmpdf1l:endvmpdf]

Fp2=B*vm1/(2*C)-1;

Fp=[Fp!l Fp2 Fp3 Fp4];

rootFp=roots(Fp); % solve for the roots of F'(u)=0
u=rootFp(find(rootFp>0)); % take positive root
Fdp=(2*A/B)/u3+M/ur2+2*C/B"2; % second derivative of F(u)

Fu=-A*(u-1)/(B*u)+(C/B*2)*(u-1)"2+(vm1/B)*(u-1)-M*log(u);
pdf1((vml-stvmpdf1)/stepvinpdf1+1)=exp(Fu)/(B*sqrt(2*pi*Fdp));

end

Vml=R*(Pase+Psigl)*Rin*Gainelecl; % mean of PDF V)

% variance of PDF (VA2)

var i=(Rin*Gainelec1)"2*((R*Pase)"2/M+2*R/"2*Pase*Psig I /M+varthermal+varshot 1 );

vm1=stvmpdf1:stepvmpdf1:endvimpdfl;

% Gaussian approximation

% For logical zeros

stvmg0=5*stvmpdf0; % start point (V)
endvmgO=endvmpdf0/1.4; % end point (V)
stepvmg0=(endvmg0-stving0)/npdf; % step (V)
vmg0O=stvmg0:stepvmg0:endvmg0;

Vmg0=R*(Pase+Psig0)*Rin*GainelecO; % mean of PDF V)
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% variance of PDF (VA2)
vargO=(Rin*GainclecO) 2*((2*¥RA2#Pasc* Psig+(R*Pasc ) 2)/M+varthermal+varshot0);
pdfgaussO=(1/sqri(2*pi*varg0))*exp(-(vimg0-Vmg0).A2/(2#varg0)):

% For logical ones

stvmgl=-0.5*stvmpdf1; T start point (V)
cndvmgl=endvmpd{1/1.1; % cnd point (V)
stepvimg l=(endvmgl-stvmgl)/npdf; 9 step (V)

vmgl=stvmgl:stcpvmgl:endvimgl;
Vmg|=R*(Pase+Psigl)*Rin*Gainelecl;
varg l=(Rin*Gainelec1)"2*¥((2*R 2 *Pasc*Psig | +(R*Pase)*2)/M+varthermal+varshot 1 );
pdfgauss1=(1/sqri(2*pi*vargl))*exp(-(vmg1-Vmg1).A2/(2*vargl));

Program 3
%0 This program uscs the Taylor series expansion approximation to calculate the probability
% of error and BER as a function of received power.

clear, clg

delta=107(-20/10); % extinction ratio

Belec=20c9; % clectrical bandwidth (2-sided) (Hz)
Bopt=(c/lambda®2)*(1.4*1.3¢-9); % optical bandwidth (Hz)

M=round(Bopt/Belcc); % ratio of filter bandwidths

mt=2; % polarization state parameter (1,2=w/,w/o polarizer)
M=mt*M; % correction to M

Rin=50; % input resistance of clectrical amplifier (Ohm)
Tk=273+25; % temperature (Kelvin)

F=10N7/10); % noise figure of electrical amplifier
varthermal=(2*k*Tk*F/Rin)*Belec; % variance of thermal noise  (A”2)

Psat=30c-3; % LEDFA saturation power (W)

Go=10730/10): J0 EDFA small signal power gain

Nsp=2; % spontaneous emission factor

eff=0.8; % detector quantum efficiency

R=c{*q/(h*f); % responsivity of PIN diode (A/W)

stPin1dBm=-33; % starting point of input power to EDFA for logical ones  (dBm)
endPinldBm=-30: % end point of input power  (dBm)

nBER=10; % number of points in the BER curve minus one
stcPinldBm=(endPin1dBm-stPin1dBm)/nBER; % step of input power (dBm)

for PinldBm=stPinidBm:stePinldBm:endPin1dBm
index=(PinldBm-stPinldBm)/stePin1dBm+1;
Pinl=muin*10"(Pin1dBm/10)*1e-3: % input power to EDFA for logical ones (W)

PinO=delta*Pinl; % input power to EDFA for logical zeros (W)
Pinav=prob 1 *Pin1+prob0*Pin0; % average input power to EDFA (W)
PinavdBm=10*log10(Pinav/le-3); % average input power (dBm)

% Use Newton Raphson Method to solve for the EDFA gain

G=Go; % starting point

g=G-Go*exp((1-G)*Pinav/Psat); % function to be solved
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat), % first derivative of g(G)

eps=le-10; G error limit
while abs(g)>cps
G=G-g/gp;

g=G-Go*exp((1-G)*Pinav/Psat); % g(G)
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat); % g'(G)
end
Psigl=L*muout*G*Pinl, % input power to detector for logical ones (W)
Psig0=L*muout*G*Pin0; % input power to detector for logical zeros (W)
Pase=L*muout*mt*Nsp*(G-1)*h*f*Bopt; % ASE power to detector (W)
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varshotO=q*R*(Pasc+Psig0)*Belec; % variance of shot noise (AN2)

varshot 1=q*R*(Pase+Psigl)*Belec: % variance of shot noise (AN2)
o Solve for the optimum threshold using Bisection Method
Id1=R*(Psig0+Pasce); e 1d1 and 1d2 traps the root Idopt
1d2=R*(Psigl+Pase);

eps=1lc-20; % maximum absolute error
[0=1d2-1d1; % interval contains the root

N=round(log10(10/cps)/log10(2)-1); % number of itcrations
AO=R*Psig0;

BO=(R*Pase)/M;

CO=(varthermal+varshot0)/2;

FOpl=1, % cocftficients for the polynomial Fi(u)=0
FOp3=-M*B0"2/(2*CQ);

FOp4=-A0*B0/(2*C0);

A1=R*Psigl;

B 1=(R*Pase)/M;

Cl=(varthermal+varshot1)/2;

Flpl=l; % cocfficients for the pelynomial F'(u)=0
Flp3=-M*B1/2/(2*Cl);

Flp4=-A1*B1/(2*Cl);

for n=1:N

M*log(u0);

M*log(ul);

F(u)
M*log(u0);

M*log(ul);

1d0=(1d1+1d2)/2;

FOp2=B0*1d0/(2+C0)-1;

FOp=[FOp1 FOp2 FOp3 FOp4]:

rootFOp=roots(FOp); % solve for the roots of F'(u)=0
uO=rootFOp({ind(rootF0p>0)); % the saddle point
FOdp=(2*A0/B0)/u0*3+M/u0”2+2*CO/B0A2; % second derivative of F(u)
Fu0=-A0*(u0-1)/(BO*u0)+(CO/B0"2)*(u0-1)A2+(1d0/B0O)*(u0-1)-

Fip2=B1*1d0/(2*C1)-1;

Fip=[Flpl Fl1p2 Flp3 Fip4]:

rootF1p=roots(Flp);

ul=rootFIp(find(rootF1p>0));

Fldp=(2*A1/B1)/ul"3+M/ul 2+42*C1/B1/2;
Ful=-AT*(ul-1)/(B1*ul)+(CH/B1A2)*(ul- 1) "2+(1d0/B1y#(ul-1)-

% Find the intersection of the PDFs at 1d0
F1d0=1-(sqrt(FOdp)/exp(Fu0))*(exp(Ful )/sqru(F 1 dp))*(prob 1/prob0);
FOp2=B0*1d1/(2*C0)-1;

FOp=[FOp1 FOp2 FOp3 Fop4],

rootFOp=roots(FOp); % solve for the roots of F'(u)=0
uO=rootFOp(find(rootFOp>0)); % take positive root
FOdp=(2* A0/B0)/u0"3+M/u0”2+2*C0/BOM2; 9% second derivative of

Fu0=-A0*(u0-1)/(BO*u0)+(CO/B0OA2)*(u0-1)2+(Id 1/BO)*(u0- 1 )-

Flp2=B1*1d1/(2*C1)-1i;

Flp=[Flpl Flp2 Fip3 Flp4];

rootF1p=roots(F1p);

ul=rootFlp(find(rootF1p>0));
Fldp=(2*A1/B1)/ul*3+M/ul*2+2*C1/B1/2;
Ful=-Al*(ul-1)/(B1*ul)+(C1/B1/2)*(ul-1)"2+(1d 1/B 1 )*(ul-1)-

% Find the intersection of the PDFs at Id|
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FldI=1-(sqri(FOdp)yexpFuOn#explub/sqricE Tdp)#(prob Hprohiy:
if FIdT*FIdO<0
Id2=Idu;

clse
Id1=1d0:
end
end
9 Store the optimum threshold
Id=Idt;

Idopt(index)=Id1;

% Probability of crror for logical zeros

FOp2=B0O*1d/(2*C0)-1;

FOp=[FOp1 FOp2 FOp3 FOp4]:

rootFOp=roots(FOp);

uO=rootFOp(find(rootFOp>0));

90 Fu0=-A0*(u0-1)/(BO*u0)+(CO/BOA2)*(u0- 1" 2+(1d/BO)*(u0-1)-M*log(u0);
FuO=-A0*(u0-1)"2/(BO*u0"2)-(CO/BOA2)*(u0- A2+ M*(u0- 1)/u0-M*#log(u0):
Gu0=Fu0+0.5*log(2* A0/u0*3+M*B0/u02+2+C0O/B0):
GuOpI=(2*A0/BO)*((1-u0)/u0”3):

GuOp2=(2*C0O/B0O”2)*(1-u0);

GuOp3=M*((1-u0)/u0”2),

GuOpd=-(3* A0+M*B0O*u0)/(2* A0*uO+M*BO~u0" 242 CO*uON/BO):
GuOp=GuOp 1 +GuOp2+GuOp3+GuOp4; “ Gltu)

PO(index)=exp(GuOy*( 1-exp(-GuOp*uO)/(sqrt 2% pi* BOi*GuOp):

7 Probability of error for logical ones

Flp2=B1*1d/(2*C1)-1I:

Fip={FIpl FIp2 Fip3 Fipd]

rootl-lp=roots(FIp):

ul=rootl Ip(find(rootkF1p>0)).

GFul=-AT#ul-D/AB1*ul)+(CU/BIM2 ul-DA2+(1d/B H#Ful-D-M*logu )
Ful=-AT#(ul-DA2/(B1#ul "2)-(C/BIM2)*ul- D 2+M*ul-/ul-M*#logiul ):
Gul=Ful+0.5%log(2*A1/u1"3+M*B1/ul 242#C1/B 1)
Gulpl=2*A/BL*((1-ul)/uir3):

Gulp2=(2*CHl/BI*2)*(1-ul):

Gulp3=M#((1-ul)/ulr2),

Gulpd=-C3*AI+M*B#ul)/(2*AT¥ul+M*B1#ul " 24 2C1Hul ~M/B 1)
Gulp=Gulpl+Gulp2+Gulp3+Gulpi; “e Gllu)
Pl{index)=exp(Gul)/(sqrt(2¥pi*B H*(-Gulp)):

% Gaussian approximation

Imo=R*(PsigO+Pasce); “c mean current for logical zeros (A)
Y variance of current for logical zeros (AN2)
varo=(2*RA2#Pase*Psig0+(R *Pase)2 2 )/ M+varthermal+varshotO;
Im1=R*(Psigl+Pase); % mean current for logical ones {A)
% variance of current for logical ones (AN2)

varI=(2¥RA2*¥Pasc*Psig [ +(R*Pase)*2)/M+varthermal+varshot 1 ;

% Solving for the optimum threshold of Gaussian PDFs

A=varl-varo;

B=2*(Im!*varo-Imo*varl);

C=var*Imo” 2-varo*Im172-varl *varo*log(prob0"2#varl/(prob 1A 2%varo))
ldg=roots([A B C]):

Idgauss=1dg(find(Idg>0));

Joldgauss=(Im 1 *varo+Imo*varl)/(varo+varl ) % approximated equation
ldoptg(index)=Idgauss;

% For logical zeros
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argerfcO=(Idgauss-Imo)/sqrt(2*varo);
POg(index)=0.5*erfc(argerfc0);
% For logical ones
argerfcl=(Iml-Idgauss)/sqri(2#varl);
Plg(index)=0.5*crfc(argerfcl);
% Noises
varshO(index)=varshot0;
varshl(index)=varshot];
varth(index)=varthermal;
varspsp(index)=(R*Pase)*2/M;
varsigspO(index)=2*RA2*Psig0*Pase/M;
varsigspl(index)=2*R 2*Psig1*Pase/M:
% Calculate percentage threshold
Idoptper(index)=(Id-Imo)./(Im1-Imo);
Idoptgper(index)=(Idgauss-Imo)/(Im!-Imo);
end
% Determine the BER
BER=prob0*P0O+prob1+*P1;
BERg=probO*POg+probl *Plg;
Program 4
% This program uses the Taylor series expansion approximation to calculate the probability
% of error and the BER as a function of the percentage threshold.
clear, clg
delta=10"(-20/10); % extinction ratio
% Input power to EDFA for logical ones before loss (dBm)
PinldBmvec=[-35 -34 -33 -32 -31 -30];
Pin1=10."(Pin1dBmvec/10)*le-3; % input power to EDFA for logical ones (W)
PinO=delta*Pin|; % input power to EDFA for logical zeros (W)
Pinav=prob0*Pin0+prob1*Pinl; % average input power to EDFA before loss (W)
PinavdBm=10*log10(Pinav/le-3); % average input power to EDFA before loss (dBm)
for PinldBmindex=1:length(Pin1dBmvec);
Pin1dBm=Pinl1dBmvec(Pin1dBmindex);
Pinl=muin*10~(Pin1dBm/10)*1e-3; % input power to EDFA for logical ones (W)

PinO=delta*Pinl; % input power to EDFA for logical zeros (W)
Pinav=prob[*Pinl+prob0*Pin0; % average input power to EDFA after loss (W)
Psat=30e-3; % EDFA saturation power (W)
Go=107(30/10); % EDFA small signal power gain

% Use Newton Raphson Method to solve for the EDFA gain

G=Go; % starting point

g=G-Go*exp((1-G)*Pinav/Psat); % function to be solved
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat); % first derivative of g(G)
eps=le-10; % error limit
while abs(g)>eps
G=G-g/gp;
g=G-Go*exp((1-G)*Pinav/Psat); % g(G)
gp=1+(Go*Pinav/Psat)*exp({1-G)*Pinav/Psat); % g'(G)

end

Belec=20e9; % electrical bandwidth (2-sided) (Hz)
Bopt=(c/lambda’*2)*(1.4*1.3¢-9); % optical bandwidth (Hz)

M=round(Bopt/Belec); % ratio of filter bandwidths

mt=1; % polarization state parameter (1,2=w/,w/o polarizer)
M=mt*M; % correction to M

Rin=50; % input resistance of electrical amplifier (Ohm)
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Tk=273+25; % temperature (Kelvin)

F=107(7/10); % noise figir-¢ of electrical amplifier
varthermal=(2*k*Tk*F/Rin)*Belec; % variance of thermal noise  (A"2)
Nsp=2; % spontancous emission factor

cff=0.8; % detector quantum efficiency

R=cfl*g/(h*f); % responsivity of PIN diode (A/W)
Pase=L*muout*mt*Nsp*(G-1)*h*f*Bopt; % ASE power (W)

% Solve for the optimum threshold

Psig0=L*muout*G*Pin0;

varshot0=q*R*(Pasc+Psig0)*Belec; % variance of shot noise for logical zeros (A22)

Psigl=L*muout*G*Pinl;

varshot1=q*R*(Pasc+Psigl)*Belec; % variance of shot noise for logical ones (A22)

Id1=R*(Pase+Psig0);

Id2=R*(Psigi+Pasc);

cps=le-20; % maximum absolute crror

10=1d2-1d1;

N=round(log10(1G/cps)/log10(2)-1);

AO0=R*Psig0;

BO=(R*Pasc)/M,

CO=(varthermal+varshot0)/2;

FOpl=1I; % coefficients for the polynomial F'ou)=0

FOp3=-M*B0"2/(2*C0);

FOp4=-A0*B0/(2*C0);

A1=R*Psigl;

B1=(R*Pase)/M:

Cl=(varthermal+varshot1)/2;

Flpl=l;

Flp3=-M*B172/(2*C1l);

Flpd=-A1*B1/(2*Cl);

for n=1:N
1dO=(1d 1+1d2)/2;
FOp2=B0*1d0/(2#C0)-1;
FOp=[FOp! FOp2 FOp3 FOp4]:
rootFOp=roots(FOp): % solve for the roots of F'(u)=0
uO=rootFOp(find(rootFOp>0)); Cc take positive root
FOdp=(2* A0/B0)/u0"3+M/u0*2+2#CO/BO"2:; ¢e second derivative of Flu)
Fu0=-A0*(u0- 1)/(BO*u0)+(C0/B0"2)*(u0- ) A2+(Id0/BO)*(u0- 1 )-M*log(u0):
F1p2=B1*1d0/(2*C1)-1:
Flp=[Flp! Fip2 Flp3 Fip4].
rootFlp=roots(Flp);
ul=rootF1p(find(rootF1p>0));
Fldp=(2*A1/B1)/ul*3+M/ul”2+2*C1/B172;
Ful=-Al*(ul-1)/(BI*ul)+(C1/B172)*(ul-D"2+(Id0/B1)*(ul-1)-M*log(ul);
F1d0=1-(sqrt(FOdp)/exp(Fu0))*(exp(Ful)/sqrt(F 1dp))*(prob1/prob0);
FOp2=B0*1d 1/(2*C0)-1,
FOp=[FOp| FOp2 FOp3 FOp4};
rootFOp=roots(FOp); % solve for the roots of F'(u)=0
uO=rootFOp(find(rootF0p>0)); % take positive root
rOdp=(2*A0/B0)/u0*3+M/u0*2+2*C0/BOA2; % second derivative of F(u)
Fu0=-A0*(u0-1)/(BO*u0)+(C0/B02)*(u0-1)"2+(1d 1/B0)*(u0-1)-M*log(u0):
Fip2=BI1*Id1/(2*Cl)-1;
Flp=[Flp! Flp2 Fip3 Flp4};
rootFlp=roots(F1p):
ul=rootF1p(find(rootF [p>0));
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Fldp=2*Al/B1)ul*3+M/ul"2+2*C1/B1™2;
Ful=-Al*(ul-D/AB*ul)+(C1/B1/2)*(u!-1)"2+{Id1/B1)*(ul-1)-M*log(ul);
Fid1=1-(sqrt(FOdp)/exp(Fu0))*(exp(ful V/sqri(F1dp))*(prob 1/prob0):

if FId1*FId0<0

1d2=Id0;
clse
1d1=1d0;
end
end
Idopt=Id1;
% Probability of error of the mean currents into the decision circuit
nPe=30; % number of points in Pe curve minus one (even integer)
dev=0.05: % deviation from Idopt
stepld=dev*Idopt; % step size of threshold current (A)

stld=Idopt-(nPe/2)*stepld; % starting point of threshold current (A)
endid=Idopt+(nPe/2)*stepld; % end point of threshold current (A)
% Determine the range of current to plot
Id=stld;
[PO,GuOp]=POP1(A0,B0,C0,FOp1,FOp3,F0p4,1d,M.0);
while PO>1
stld=stld+stepld;
Id=stld;
[P0,GuOp]=POF1{A0,B0,C0,FOp1,FOp3,FOp4,1d,M,0);
end
Id=endld;
[P1,Gulp]=POPI(A1,B1,C1,Flpl,FI1p3.Flp4,Id,M,1);
while Gulp>01PI>1
endld=endId-stepld;
Id=endlId;
[P1,Gulp]=POPI(A1,B1,CI1,Fipl,Fip3,Fip4,IdM,1);
end
% Probability of error
nPe=20; % number of points in Pe curve minus one (even integer)
stepld 1=(1dopt-stld)/(nPe/2): % step size of threshold current (A)
Id1=stld:stepld:Idopt-stepldl;
stepld2=(endld-Idopt)/(nPe/2); % step size of threshold current (A)
Id2=Idopt:stepld2:endld;
Idvec=[Id1 1d2}];
col=PinldBmindex;
Idmat(:,col)=Idvec’;
Imo=R*(Pase+Psig0); % mean current for logical zeros (A)
Im1=R*(Pase+Psigl); % mean current for logical ones (A)
Idmatper(:,col)=((Idvec-Imo)/(Im1-Imo))';
for Idindex=1:length(Idvec)
Id=Idvec(Idindex);
% Probability of error for logical zeros
[POvec(Idindex),GuOp]=POP1(A0,B0,C0,FOp1,F0p3,F0Op4,Id,M,0);
% Probability of error for logical ones
[P1vec(ldindex),GulP]=POP1(A1,B1,C1,Fipl,Fip3,Flp4,1d,M,1);
end
POmat(:,col)=POvec’;
Plmat(:,col)=Plvec’;
% Gaussian approXimation
% Solve for optimum Id of Gaussian
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Imo=R*(Pase+Psig0); % mean current for logical zeros (A)
varo=(2*RA2#Pase *Psig0+(R *Puse)" 2 )/ M-rvarthermal+varshotO: % variance for logical
zeros  (AN2)

ImI=R*(Pasc+Psigl); L« mean current for logical ones (A)
varl=(2*RA2*Pase*Psig [+(R*Pase) 2/ M+varthermal+varshot 1, % variance for logical
oncs  (AM2)

A=varl-varo;

B=2*(Iml*varo-Imo*varl);

C=varl*Imo”2-varo*Im1A2-var 1 #varo*log(prob0*2#var1/(prob142*varo));

Idg=roots([A B C]);

Idoptg=Idg(find(Idg>0));

nPe=20; % number of points in Pe curve minus one (even integer)
devg=0.05; % deviation from idopt

stepldg=devg*Idoptg: % step size of threshold current (A)
stidg=Idoptg-(nPc/2)*stepldg; % starting point of threshold current (A)

endldg=Idoptg+(nPe/2)*stepldg; % cnd point of threshold current (A)

while stldg<0
stldg=stldg+stepldg;
endldg=cndldg-stepldg:

end

Idg=stldg:stepldg:endldg; ¢ threshold current for Gaussian (A)

Idmatg(:,col)=Idg",

% Calculate percentage optimum threshold

[dperg=(ldg-Imo)/(ImI-Imo);

Idmatperg(:,col)=Idperg"

% For logical zcros

argerfcO=(Idg-Imo)/sqri(2#varo):

POg(:.col)=(0.5%crfc(argertc0))':

% For logical ones

argerfc l=(Im1-Idg)/sqrt(2#varl):

Plg(:.col)=(0.5%crfc(argerfc

end

% Determine the BER

BER=probQ*POmat+prob! *Plmaut;

BERg=prob0*P0Og+probl1#Plg:

% Form the locus

for col=1:length(PinldBmvec);
BERIdper=[BER(:.col) Idmatper(:.col}]:
BERmin(col)=min(BER(:,col));
Idminper(col)=Idmatper(find(BER(:.col)==BERmin(col)),col):
BERIdperg=[BERg(:,col) Idmatperg(:,col)]:
BERming(col)=min(BERg(:,col));
Idmingper(col)=Idmatperg(find(BERg(: ,col)==BERming(col)).col);

end

Program 5
% This sub-routine program calculates the probability of error n<ing the Steepest descent
% Method and the Taylor series expansion.

function[P,Gup]=POP1(A ,B,C.Fpl,Fp3,Fp4.1d M,status)
Fp2=B*1d/(2*C)-1;

Fp=[Fpl Fp2 Fp3 Fp4];

rootFp=roouis(Fp);

u=rootFp(find(rootFp>0));



JoFu=-A*(u-1)/(B*u)+(C/B"2)*(u-1)"2+(1d/B)*(u-1)-M*log(u):
Fu=-A*(u-1)22/(B*u”2)-(C/BA2)*(u-1)"2+M*(u-1 yYu-M#log(u).
Gu=Fu+0.5*%log(2*A/ur3+M*B/ur2+2*C/B);
GupI=(2*A/B)*((1-u)/u”3):
Gup2=(2*C/B*2)*(1-u);
Gup3=M*((1-u)/ur2);
Gup4=-(3*A+M*B*u)/(2* A*u+M*B*ur2+2*C*u”4/B):
Gup=Gup1+Gup2+Gup3+Gup4;
if status==

P=exp(Gu)*(1-exp(-Gup*u))/(sqrt(2#pi*B)*Gup); % PO
else

P=exp(Gu)/(sqrt(2*pi*B)*(-Gup)); %PI
end

Program 6

% This program calculates the sensitivity versus EDFA small signal gain curve. The
% sensitivity can also be calculated as a function of the parameters such us the extinction
% ratio, the spontaneous emission factor etc. by simply modifying this program and
% varying the values of the parameters.

clear, clg

delta=107(-20/10); % extinction ratio

Belec=20¢9; % clectrical bandwidth (2-sided) (Hz)
Bopt=(c/lambda”2)*(1.4*1.3¢-9); % optical bandwidth (Hz)
M=round(Bopt/Belcc); % ratio of filter bandwidths

mt=1; % polarization state parameter (1,2=w/,w/o polarizer)
M=mt*M; % correction to M

Nsp=2; % spontancous emission factor

BERgoall=1le-9; % BER needed
BERgoal2=1lc-14; % BER nceded
epsBERI=le-15; % tolerable errors
epsBER2=1¢-20;
Gop=10.A([10 15 20 25 30 35}/10); % EDFA small signal gain Go
stgo=1; % starting point of Go
endgo=length(Gop); % end point
stepgo=1; % step
for go=stgo:stepgo:endgo
Go=Gop{go);
PinldBmb=-50; % initial guess of input power to EDFA for logical ones (dBm)
Pin1b=10*(Pin1dBmb/10)*1e-3; % input power to EDFA for logical ones (W)
PinOb=delta*Pinlb; 9% input signal power to EDFA for logical zeros (W)
Pinavb=prob1*Pin1b+prob0*Pin0b; % initial average input power to EDFA (W)
PinavdBmb=10*log10(Pinavb/le-3); % Pinav in dBm
BER=BERchi(Bopt,Belec,mt,Nsp,Go,Pin1b,delta,prob1,prob0)
BERg=BERgauss(Bopt,Belec,mt,Nsp,Go,Pin1b,delta,prob!,prob0)
absdiffI=BER-BERgoall; % compare with the BER needed
absdiffl1g=BERg-BERgoall;
while abs(absdiffl)>epsBER1
delPinavdBmb=(1/2)*log 10(BER/BERgoal );
PinavdBmb=PinavdBmb-+delPinavdBmb;
Pinavb=10"(PinavdBmb/10)*]e-3;
Pinlb=Pinavb/(prob0*delta+probl);
PinOb=delta*Pin1ib;
BER=BERchi(Bopt,Belec,mt,Nsp,Go,Pin1b,delta,prob1,prob0)
absdiffI=BER-BERgoall;
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end
senl(go)=PinavdBmb
while abs(absdift1g)>cpsBER]
delPinavdBmgb=(1/2)*log I(BERg/BERgoal I ):
PinavdBmb=PinavdBmb+delPinavdBmgb:
Pinavb=10*(PinavdBmb/10)*e-3;
Pinb=Pinavb/(probO*deita+probl);
PinOb=delta*Pin1b;
BER g=BERgauss(Bopt,Belec,mt,Nsp,Go.Pinlb.delta,prob . prob0)
absdiff1g=BERg-BERgoall;
end
senlg(go)=PinavdBmb
absdiff2=BER-BERgoal2;
absdiff2g=BERg-BERgoal2;
while abs(absdiff2)>epsBER2
delPinavdBmb=(1/4)*log 10(BER/BERgoal2);
PinavdBmb=PinavdBmb+dc]PinavdBmb:
Pinavb=107(PinavdBmb/10)* le-3;
Pin1b=Pinavb/(probO*delta+probl);
PinOb=delta*Pinlb;
BER=BERchi(Bopt,Belec.mt.Nsp,Go.PinTh.delta,probl . prob0)
absdiff2=BER-BERgoal2;
end
sen2(go)=PinavdBmb
while abs(absdiff2g)>cpsBER2
delPinavdBmgb=(1/4)*log l0(BERg/BERgoal2):
PinavdBmb=PinavdBmb+delPinavdBmgb:
Pinavb=10~(PinavdBmb/10)*1e-3:
PinIb=Pinavb/(probO*delta+probl);
PinOb=dclta*Pinlb;
BERg=BERgauss(Bopt.Belec.mt.Nsp.Go.Pinlb.delta.prob.probt)
absdiff2g=BERg-BERgoal2:
end
sen2g(go)=PinavdBmb
end
GodB=10*log10(Gop);
Program 7
% This program uses the Taylor series expansion approximation to calculate the probability
%0 of error and the BER as a function of the EDFA small signal gain. The BER can also be
% calculated as a function of the parameters such as the extinction ratio, the spontaneous
% emission factor ctc. by simply modifying this program and varying the values of the
% parameters.
clear, clg
delta=107(-20/10); Je extinction ratio
PinldBm=-32; % input power to EDFA for logical ones (dBm)
% EDFA small signal gain (dB)
Govec=[20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35];
for Goindex=1:length(Govec);
Pinlb=10~(Pin1dBm/10)*e-3; 0 input power to EDFA for logical ones (W)
PinOb=delta*Pinlb; % input power to EDFA for logical zeros (W)
Pinavb=prob0*PinOb+prob| *Pinb;
PinavdBmb=10*log10(Pinavb/le-3);
Pinl=muin*10~(Pin1dBnm/10)*le-3: % input power to EDFA tor logical ones (W)
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PinO=delta*Pin|; % input power to EDFA for logical zeros (W)
Pinav=prob1*Pinl+prob0*Pin0; % average input power . EDFA (W)

Go=10MGovec(Goindex)/10); % EDFA small signal power gain
Psat=30c¢-3; % EDFA saturation power (W)
% Use Newton Raphson Method to solve for the EDFA gain

G=Go; % starting point

£=G-Go*exp((1-G)*Pinav/Psat); % function to be solved
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat); % first derivative of g(G)
eps=le-10; % error limit
while abs(g)>eps
G=G-g/gp;
g=G-Go*exp((1-G)*Pinav/Psat); % g(G)
gp=1+(Go*Pinav/Psat)*exp((1-G)*Pinav/Psat); % g'(G)

end

Belec=20¢e9; % electrical bandwic:h (2-sided) (Hz)
Bopt=(c/lambda”2)*(1.4%1.3e-9); % optical bandwidth (Hz)
M=round(Bopt/Belec); % ratio of filter bandwidths

mt=1; % polarization state parameter (1,2=w/,w/o polarizer)
M=mt*M; % corrcction to M

Rin=50; % input resistance of electrical amplifier (Ohm)
Tk=273+25; % temperature (Kelvin)

F=10/7(7/10); % noise figure of electrical amplificr
varthermal=(2*k*Tk*F/Rin)*Belec; % variance of thermal noisc (A2)

Nsp=2; % spontaneous emission factor

cff=0.8; % dciector quantum efficiency

R=eff*q/(h*f); % responsivity of PIN diode (A/W)
Pase=L*muout*mt*Nsp*(G-1)*h*f*Bopt; % ASE power (W)

% Solve for the optimum threshold

Psig0=L*muout*G*Pin0;

varshotO=q*R*(Pase+Psig0)*Belec; % variance of shot noise for logical zeros (AN2)
Psigl=L*muout*G*Pin];

varshot1=q*R*(Pase+Psig1)*Belec; % variance of shot noise for logical ones (A"2)
Id1=R*(Pasc+Psig0);

Id2=R*(Psig1+Pase);

eps=le-20; % maximum absolute error
10=1d2-1d1;

N=round(log10(10/eps)/log10(2)-1);

AO0=R*Psig0;

BO=(R*Pase)/M;
CO=(varthermal+varshot0)/2;
FOpl=1; % coefficients for the polynomial F'(u)=0
FOp3=-M*B0"2/(2*C0);
FOp4=-A0*B0/(2*C0);
A1=R*Psigl;
B1=(R*Pase)/M,
Cl=(varthermal+varshot1)/2;
Flpl=I;
Flp3=-M*B142/(2*C1);
Flp4=-A1*B1/(2*Cl);
for n=1:N
Id0=(1d1+1d2)/2;
FOp2=B0*1d0/(2*C0)-1;
FOp=[FOp1 FOp2 FOp3 FOp4],
rootFOp=roots(FOp); % solve for the roots of F'(u)=0
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u0=rootFGp(tind(ruotFOp>0)); % take pos.tive root
FOdp=(2*A0/BO)/u0*3+M/u0"2+2+#C0O/B0OA2; 7~ second derivative of Fu)
FuO=-A0*(u0-1)/(BO*u0)+(CO/B0OA2)*(u0-1)*2+(1d0/B0O)*(u0- 1 )-M*log(u0):
Fip2=B1*1d0/(2*C1)-1;
Flp=[Fipl Flp2 Flp3 Flp4};
rootF 1 p=roots(Flp);
ul=rootF1p(find(rootF1p>0));
Fidp=(2*A1/B)/ul"3+M/ul*2+2*C1/B 172,
Ful=-Al*(ul-1)/(BI*ul)+(C1/B172)*(ul-1)"2+(1d0/B [ )*(ul-1)-M*log{ul );
FIdO=1-(sqrt(FOdp)/exp(Fu0))*(exp(Ful)/sqrt(F1dp))*(prob1/prob0);
FOp2=B0*1d 1/(2*CO0)-1;
FOp=[FOp!1 FOp2 FOp3 FOp];
rootFOp=roots(FOp); % solve for the roots of F'(u)=0
u0=rootFOp(find(rootFOp>0)); % take positive root
FOdp=(2*A0/B0)/u0"3+M/u0"2+4+2*C0O/B0A2; % second derivative of F(u)
FuO=-A0*(u0-1)/(BO*u0)+(CO/BO"2)*(u0- 1) 2+(1d 1/BOY*(u0-1)-M*log(u0):
Fip2=B1*Id1/(2*Cl)-1;
Flp={Fipl Fip2 Flp3 Flp4];
rootF1p=roots(F1p);
ul=rootF Ip(find(rootF1p>0));
Fldp=(2*A1/B1)/ul"3+M/ul"2+2#C1/B 172,
Ful=-AT*(ul-D/AB#ul)+(C1/B1*2)*(ul-1)"2+(1d1/B1)*(ul-1)-M*log(ul):
Fid1=1-(sqri(FOdp)/exp(Fu0))*(exp(Fu )/sqrt(F1dp))*(prob 1/prob0):
if FId1#F1d0<0
1d2=1d0:
clse
1d 1=1d0):.

end

end

Idopt=IdI;

% Probability of error of the mean currents into the decision circuit

nPe=30; % number of points in Pe curve minus one (even integer)
dev=0.05; % deviation from Idopt
stepld=dev*Idopt; Y step size of threshold current (A)

stld=Idopt-(nPe/2)*stepld; % starting point of threshold current (A)
endld=Idopt+(nPe/2)*stepld: % end point of threshold current (A)
% Determine the range of current to plot
Id=stld;
(PO,Gu0Op])=POP1(A0,B0,CO,FOpi.FOp3.FOp4.1d M.0):
while PO>1
stid=stld+stepld;
Id=stld;
{PO,Gu0p]=POP1(A0,B0,CO,FOp1,FOp3.FOp4.1d.M.0):
end
Id=endld;
{P1,Gulp}=POP1(A1,BI,CL.FIpl,Flp3 Flp4IdM,l);
while Gulp>0 1 P1>1
endld=endld-stepld;
Id=endld;
(P1,Gulp]=POPI(A1,BI,C1,Flpl,Flp3 Fip4,ld,M,1);

end

% Probability of error

nPe=20; % number of points in Pe curve minus one (even integer)
stepld I=(Idopt-std)/(nPe/2); % step size of threshold current (A)
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Id1=stld:stepld 1:1dopt-stepld!;

stepld2=(endId-Idopt)/(nPc/2); Ge step size of threshold current (A)
Id2=Idopt:stepld2:cendld;

Idvec=[1d1 1d2];

col=Goindex;

[dmat(:,col)=Idvec’;

imo=R*(Pase+Psig0); % mean current for logical zeros (A)
Im1=R*(Pase+Psigl); % mean current for logical ones (A)

Idmatper(:,col)=((Idvec-Imo)/(Im1-Imo))"

for Idindex=1:length(Idvec)
Id=Idvec(Idindex);
% Probability of error for logical zeros
[POvec(Idindex),GuOp]=POP1(AG.BO,CO.FOp1.1F0p3.FOp4.1d.M.0);
% Probability of crror fui logical ones
[P1vec(ldindex),GulP]=POPI(A]1.BI.CI.FIpl.FIp3.Fipd.Id.M.l)

end

POmat(:,co. =POvec"

PImat(:,col)=Plvec’;

% Gaussian approximation

% Solve for optimum Id of Gaussian

Imo=R*(Pase+Psig0); % mean current for logical zeros ()
varo=(2*R"2*Pase*Psig0+(R*Pasc)*2)/M+varthermal+varshotO): % variance  (A”2)
ImI=R*(Pase+Psigl); % mean current for logical ones (A)

varl=(2*R"2*Pase*Psig | +(R*Pasc)*2)/M+varthermal+varshotl; ¢ variance (AN2)
A=varl-varo;
B=2*(Im1*varo-Imo*varl);
C=varl*Imo”2-varo*Im1/2-varl *varo*log(probOA2#var 1/(prob 1 A2 #varon:
Idg=roots([A B C});
Idoptg=Idg(find(I1dg>0));
nPec=20; 7e number of points in Pe curve minus one (even integer)
devg=0.018; % deviation from 1dopt
stepldg=devg*Idoptg; % step size of threshold current A)
stldg=Idoptg-(nPe/2)*stepldg; % starting point of threshold current (A)
endldg=Idoptg+(nPe/2)*stepldg: % end point of threshold current (A)
while stldg<0
stldg=stldg+stepldg;
endldg=endldg-stepldg;
Clia
Idg=«tldg:stepldg:endldg; % threshold current for Gaussian (A)
Idmatg(:,col)=Idg";
% Calculate percentage optimum threshold
Idperg=(Idg-Imo)/(Im1-Imo);
Idmatperg(:,col)=Idperg’;
% For logical zeros
argerfcO=(Idg-Imo)/sqrt(2*varo);
POg(:,col)=(0.5*erfc(argerfc0))";
% For logical ones
argerfcl=(Im1-Idg)/sqrt(2*varl);
Plg(:,col)=(0.5*crfc(argerfcl))’;

end

% Determine the BER
BER=prob0*POmat+probl *P1mat;
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BERg=prob0*POg+probl *Plg;

% Form the locus

for col=1:length(Govec):
BERIdper=[BER(:col) Idmatper(:.col)]:
BERmin(co)=min(BER(:.col));
Idminper(col)=Idmatper({ind(BER(: ,coh)==BERmin(col)).coh:.
BERIdperg=[BERg(:,col) Idmatperg(:,col)
BERming(col)=min(BERg(:,col)):
Idmingper(col)=ldmatperg(find(BERg(:.col)==BERming(col).col);

end

Program 8

% This sub-routine program uscs the Taylor series expansion approximation to calculate

% the probability o1 error and the BER.
function|BER [=BERchi(Bopt,Belec.mt.Nsp,Go.Pinlb.delta.probl.prob0))

M=round(Bopt/Belec): % ratio of filter bandwidths
M=mt*M; % correction to M
Rin=50); % input resistance of electrical amplificr ({Ohm
Tk=273+25; Jc temperature (Kelvin)
F=107(7/10); ‘e noise figure of electrical amplifier
varthermal=(2*k*Tk*F/Rin)*Belec: % variance of thermal noisc  (A”2)
Psat=30c-3:; G EDFA saturation power (W)
cff=0.8; % detector quantum efficiency
R=cf*g/(h*{). % responsivity of PIN diode (A/W)
Pinl=Pinlb*muin: % input power to EDFA for logical ones after loss (W)
PinO=delha*Pinl; % input power to EDFA for logical zeros after loss (W)
Pinav=prob0#*PinO+prob1*Pinl; G average input power to EDFA after loss (W)
¢ Use Newton Raphson Method to solve for the EDFA gain
G=Go; Cc starting point
2=G-GoFexp((1-G)*Pinav/Psat): ¢ function to be solved
gp=1+Go*Pmav/Psat)*exp(( 1-G)y*Pinav/Psat): G first derivative of g(G)
eps=le-10; Ge error limit
while abs(g)>eps

G=G-g/gp:

g=G-Go*exp((1-Gy*Pinav/Psat); T g(G)

gp=1+(Go*Pinav/Psaty*exp(( -Gy Pinav/Psat); < ¢'(G)
end
Psigl=L*muout*G*Pinl; G output power of EDFA for logical ones (W)
PsigO=L*muout*G*Pin0); % output signal power of EDFA for logical zeros (W)
Pase=L*muout*mt*Nsp*(G-1)*h*{*Bopt: % ASE power (W)
% Solve for the optimum threshold using Bisection Method
varshotO=q*R*(Pasc+Psig0)*Belec: “e variance of shot noise for logical zeros
(A"2)
varshotl=q*R*(Pasc+Psig ¥ Belec: “ vartance of shot noise for logical ones
(A"2)
Id1=R*(PsigO+Pase): % 1d1 and 1d2 traps the root Idopt
[d2=R*(Psigl+Pase):
cps=le-20; % maximum absolute error
10=1d2-1d1; % interval contains the root
N=round(log10(10/eps)/log10(2)-1); G number of iterations

AO=R*Psig0;

BO=(R*Pasc)/M;

CO=(varthermal+varshot0)/2;

FOpl=1; G coetficients for the polynomial F'(u)=0
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FOp3=-M*B022/(2*C0);
FOp4=-A0*B0/(2*C0);
A1=R*Psigl;
B1=(R*Pase)/M;
Cl=(varthermal+varshot1)/2;
Flpl=1;
Flp3=-M*B122/(2*C1);
Flp4=-Al*B1/(2*Cl);
for n=1:N
1dO=(Id 1+id2)/2;
FOp2=B0*1d0/(2*C0)-1;
FOp=[FOp1 FOp2 FOp3 FOp4};
rootFOp=roots(FOp); % solve for the roots of F'(u)=0
u0=rootFOp(find(rootF0p>0)); % the saddle point
FOdp=(2* A0/B0)/u0"3+M/u0*2+2*C0/B0O2; % second derivative of F(u)
Fu0=-A0*(u0- 1)/(B0*u0)+(C0/B0"2)*(u0-1)"2+(Id0/B0)*(u0-1)-M*log(u0);
Fl1p2=B1*1d0/(2*C1)-1,
Flp=[Flpl F1p2 Flp3 Flp4];
rootF1p=roots(F1p);
ul=rootF1p(find(rootF1p>0));
Fldp=(2*A1/B1)/ul*3+M/ul*r242*C1/B172;
Ful=-A1*(ul-1)/(B1*ul)+(CI/B122)*(ul-1)"2+(Id0/B 1 )*(ul-1)-M*log(ul );
F1d0=1-(sqrt(FOdp)/exp(Fu0))*(exp(Ful)/sqri(F1dp))*(prob 1/prob0);
FOp2=B0*1d1/(2*C0)-1;
FOp=[FOp1 FOp2 FOp3 FOp4];
rootFOp=roots(FOp); % solve for the roots of F'(u)=0
uO=rootFOp(find(rootFOp>0)); % take positive root
FOdp=(2* A0/B0)/u0"3+M/u0"2+2*C0/B0"2; % sccond derivative of Fu)
Fu0=-A0*(u0-1)/(B0*u0)+(C0/B0"2)*(u0-1)"2+(1d 1/B0O)*(u0- 1 )-M*log(u0);
F1p2=B1*¥1d1/(2*Cl)-1;
Flp=[Fipl Fip2 Fip3 Flp4];
rootFIp=roots(F1p);
ul=rootFIp(find(rootF1p>0));
Fldp=(2*A1/B1)/ul*3+M/ul*2+2*C1/B12;
Ful=-AT*(ul-D)/(BI*ul)+(C1/BI"2)*(ul-1)"2+(1d1/B1)*(ul-1)-M*log(ul);
Fld1=1-(sqrt(FOdp)/cxp(Fu0))*(exp(Ful)/sqri(F1 dp))*(prob1/prob0);
if FId1*FId0<0
1d2=1d0;
else
Id1=1d0;
end
end
Id=Id1;
% Probability of error for logical zeros
FOp2=B0*1d/(2*C0)-1;
FOp=[FOp1 FOp2 FOp3 FOp4];
rootFOp=roots(FOp);
uO=rootFOp(find(rootFOp>0));
JoFu0=-A0*(u0-1)/(BO*u0)+(CO/B0"2)*(u0-1)"2+(1d/B0)*(u0-1)-M*log(u0);
Fu0=-A0*(u0-1)"2/(B0*u02)-(C0/B02)*(u0-1)*2+M*(u0-1 )/u0-M*log(u0);
Gu0=Fu0+0.5*log(2* A0/u0*3+M*B0/u0"2+2*C0/B0);
GuOp1=(2*A0/B0O)*((1-u0)/u0"3);
GuOp2=(2*C0/B0"2)*(1-u0);
GuOp3=M*((1-u0)/u0”2);
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GuOp4=-(3* A0+M*B0O*u0)/(2* A0F¥u0+M*BO*u0"2+2CO*u0/BO);
GuOp=GuOp 1+GuOp2+GuOp3+Gulp4;
PO=cxp(GuO)*(1-exp(-GuOp*u0))/(sqrt(2*pi*B0)*Gulp):
% Probability of crror for logical ones
Flp2=BI*Id/(2*C1)-1;
Flp=[Flpl Fip2 Flp3 Flp4]:
rootF 1 p=roots(F1p);
ul=rootFlp(find(rootF1p>0));
JoFul=-A1*(ul-1)/(B1*ul)+(C1/B1/2)*(ul-1)"2+(1d/B1)*(ul-1)-M*log(ul ).
Ful=-AT*(ul-H)"2/(B1*ul*2)-(C1/B1/2)*(ul-1)"2+M*(ul-1j/ul-M*log(ul ).
Gul=Ful+0.5*%log(2*A1/ul"3+M*B1/ul2+2*C1/B1);
Gulpl=2*A1/B1)*((1-ul)/ul”3),
Gulp2=(2*C1/B1/2)*(1-ul);
Gulp3=M*((1-ul)/ul*2),
Gulpd=-3*A1+M*B*ul)/2*Al*ul +M*B 1 *ui 2+2*Cl*ul 4/B1);
Gulp=Gulpl+Gulp2+Gulp3+Gulp4;
Pl=cxp(Gul)/(sqrt(2*pi*B1)*(-Gulp));
BER=prob0*PO+prob1*PI;

Program 9
% This program uses the Gaussian approximation to calculate the probability of error and
% BER.
function BERg ]=BERgauss(Bopt.Belec,mt.Nsp.Go.Pinth.delta,prob,prob0)

M=round(Bopt/Belec); % ratio of filter bandwidths

M=mt*M; % correction to M

Rin=50); G¢ input resistance of electrical amplifier (Ohm)
Tk=273+25: % temperature (Kelvin)

F=107(7/10); % noise figure of clectrical amplifier
varthermal=(2*k*Tk*F/Rin)*Belec; % variance of thermal noise  (A”2)
Psat=30c-3; % EDFA saturation power (W)

cff=0.8: % detector quantum efticiency

R=cf*q/(h*f); G responsivity of PIN diode (A/W)

Pinl=muin*Pinlb; % input power to EDFA for logical ones after foss (W)
PinO=delta*Pinl; % mput power to EDFA for logical zeros after loss (W)

Pinav=prob!*Pinl+prob0*Pin0; % average input power to EDFA after loss (W)
% Use Newton Raphson Method to solve for the EDFA gain

G=Go:; Y starting point
g=G-Go*exp((1-G)*Pinav/Psat); % function to be solved
gp=1+(Go*Pinav/Psat)*exp(( 1-G)*Pinav/Psat); G first derivative of g(G)
eps=le-10; G error limit

while abs(g)>eps
G=G-g/gp;
g=G-Go*exp((1-G)*Pinav/Psat); G 2(Q)
gp=1+(Go*Pinav/Psat)*exp(( 1-G)*Pinav/Psat); Y ¢'(Q)

end

Psig I=L*muout*G*Pinl; % output signal power of EDFA for logical ones (W)

Psig0=L*muout*G*Pin0; % output signal power of EDFA for logical zeros (W)

Pase=L*muout*mt*Nsp*(G-1)*h*{*Bopt; % ASE power (W)

varshotO=g*R*(Pase+Psig0)*Belec: e variance of shot noise for logical zeros
(A"2)

varshot1=q*R*(Pasc+Psig)*Belec; G variance of shot noise for logical ones
(A"2)

% Gaussian approximation

Imo=R*(Psig0+Pase); % mcean current for logical zeros (A)
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varo=(2*RA2*Pasc*Psig0+(R*Pase) 2 )/M+varthermal+varshot0: - %  variance-logical
7eros (AN2)

ImI=R*(Psigl+Pase): % mean current for logical ones (A)
varl=(2*RA2*Pasc*Psig [+H(R*Pase)*2)/M+varthermal+varshotl: - %  variance-logical
ones (A"2)

A=varl-varo,

B=2*(ImI*varo-Imo*varl);,

C=varl*¥Imo”2-varo*Im1/2-varl *varo*log(prob0*2*varl/(prob 1 *2*varo));

Idg=roots([A B C});

Idgauss=Idg(find(Idg>Imo));

% For logical zeros

argerfcO=(Idgauss-Imo)/sqrt(2*varo);

POg=0.5*erfc(arger{c0);

% For logical ones

argerfc1=(Iml-Idgauss)/sqri(2#varl .

Plg=0.5*erfc(argerfcl);

BERg=prob0*POg+prob1*Plg;

The End
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