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Abstract

The present study investigates the processing and production of four-word 

sequences such as I don’t really know, at the age of, and I think it’s the. Specifically, we 

investigate the influence of families of probabilistic measures such as unigram, bigram, 

trigram, and quadgram frequency of occurrence, logarithmic (log) probability of 

occurrence, and mutual information. Log probability of occurrence emerged as the 

predominant predictor family in the onset latency analysis, suggesting that recognition is 

mainly underpinned by competition between a target N-gram and its family members. In 

contrast, the amount of experience one has with an N-gram (frequency of occurrence) 

surfaced as the most prominent predictor in production. Further, probabilistic measures tied 

to trigrams surfaced as the best predictors in the onset latency analysis, while the measures 

tied to unigrams were most predictive of production durations. finally, the interactions 

between probabilistic measures tied to unigrams, bigrams, trigrams, and quadgrams suggest 

that N-grams of different lengths are processed in parallel in both recognition and 

production.

Keywords: Multi-word sequences; N-grams; Speech processing; Speech production; 

Mixed-effects regression; Frequency of occurrence; Logit; Log probability of occurrence; 

Mutual information.
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Three families of probabilistic measures have been investigated in speech 

production, namely, frequency of occurrence, logarithmic (log) probability of occurrence, 

and mutual information (e.g., 2001; Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Ellis 

& Simpson-Vlach, 2009; Gregory, Raymond, Bell, Fosler-Lussier, & Jurafsky, 1999). 

Frequency of occurrence is a widely used lexical measure that indexes the amount of 

experience one has with a given linguistic unit (Taft, 1979). While frequency measures a 

unit’s prevalence relative to a complete set of units, probability of occurrence reflects the 

probability that a given unit will occur given one or more previously observed units. 

Related to these measures, mutual information indexes how strongly units depend on one 

another and how likely they will co-occur, whether frequent or not.

No study, as far as we know, has pitted frequency, probability, and mutual 

information against each other to determine which, if any, is a better predictor of four-word 

sequence production onset latencies and production durations. This is probably due to the 

fact that these measures are almost always highly correlated. When two or more correlated 

variables are present in a model, the true predictive power of either of them cannot be 

properly assessed (see section Reducing Collinearity). As a consequence, the majority of 

studies have investigates only one or two of these predictor types. The present study takes a 

first step at investigating interactions between these three variable families and how they 

affect laboratory recorded speech from lexical retrieval to production proper. 

Ellis and Simpson-Vlach (2009), for instance, considered mutual information as 

well as frequency of occurrence, but they did not include conditional probability, nor did 
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they account for the collinearity between frequency of occurrence and mutual information. 

Indeed, because they have not accounted for the collinearity between these variables, it is 

possible that mutual information could be substituted by frequency of occurrence in their 

analysis without changing the results. Such a state of affairs occurred in the analysis of 

word duration carried out by Gregory et al. (1999), where mutual information and bigram 

reverse conditional probability were inter-changeable.1 Although we cannot determine the 

amount of collinearity between frequency and mutual information in the study by Ellis and 

Simpson-Vlach (2009), we would expect it to be very high given that in our data, 

collinearity between trigram and quadgram frequencies and mutual information values is 

relatively high (κ = 29, see below for discussion). 

Bell et al. (2009) excluded mutual information from their analysis to circumvent 

problems tied to collinearity. Nevertheless, they left unchecked the potential problem of 

collinearity between word frequency (their prior probability) and conditional probabilities, 

which may also have been very high. In our data, the frequency of the second word of a 

sequence, FreqB, has a (high) correlation of 0.72 with the frequency of the first bigram, 

FreqAB.2 Given that, for example, FreqAB is part of the equation used to compute word 

B’s backward conditional probability (i.e., FreqAB / FreqA, which has a correlation of 0.70 

with FreqB and 0.55 with FreqAB), as a result the estimation of the amount of variability 

explained by this latter variable independently of others will be inaccurate. One study that 

pitted N-gram frequencies, probabilities, and mutual information against each other is 

Gregory et al. (1999). They investigated the effects of target word frequency, bigram and 



THE RECOGNITION AND PRODUCTION OF QUADGRAMS       5

trigram frequency, probability of occurrence, and bigram mutual information on /t/ and /d/ 

deletions and flapping as well as word duration. Although they acknowledge that 

collinearity between these measures is problematic, they did not address this problem. 

Interactions between (N-gram) probabilistic measures are very seldom taken into 

consideration, although they have something to say about the cognitive processes 

underlying language use. Baayen, Kuperman, and Bertram (2010) investigated interactions 

between frequency measures using data from word naming, visual lexical decision, and 

eye-tracking studies. They found second-order interactions between compound frequency, 

modifier frequency, and modifier family size, suggesting that multiple sources of linguistic 

information are processed in parallel (Baayen et al., 2010). Given their results, we expect to 

find similar interactions between probabilistic measures tied to unigrams, bigrams, 

trigrams, and quadgrams. At the level of the quadgram, interactions between quadgram and 

smaller N-gram probabilistic information would be similar to the results found by Baayen 

et al. (2010) for compound frequency and modifier frequency. We use an orthographic 

speech production task to investigate the following research questions: (1) Whether the 

frequency of occurrence, log probability of occurrence, and mutual information of 

unigrams, bigrams, trigrams, and quadgrams (N-grams) affect onset latencies and 

production durations in laboratory recorded speech; (2) Which one of these N-grams and 

probabilistic measures are better predictors of (a) onset latencies and (b) production 

durations; and (3) Whether there are any second-order (linear) interactions between these 

probabilistic measures. We hypothesize that we will find shorter voice onset latencies and 
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sequence durations for N-grams that are more predictable and higher frequency as well as 

second-order interactions between probabilistic variables tied to N-grams of different 

lengths.

Experiment

Participants

This experiment examines the productions and response latencies from 17 young 

adult undergraduate students who are native speakers of English (7 males and 10 females). 

All participants were recruited from the University of Alberta community and were paid for 

their participation. 

Material 

The most frequent quadgrams from the Phrases in English website (Fletcher, 2008), 

which incorporates data from the BYU-BNC (Davies, 2004) version of the The British 

National Corpus. This amounted to 112 four-word sequences ranging in frequency from 

117 to 12 per million words. We then randomly selected 320 quadgrams again from the 

Phrases in English website; quadgrams frequencies ranged from 11 to 0.3 per million 

words. Overall, our stimulus list comprised 432 four-word sequences, with frequencies 

approximating a normal distributed. We subsequently extracted frequency counts for each 

item of our stimulus list from the The Corpus of Contemporary American English (COCA: 

Davies, 2008). Contractions such as don’t, you’ve, and wasn’t were treated as one word.
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Procedure Participants were seated in an Industrial Acoustics Corporation sound 

attenuated booth with a computer monitor placed on the outside of a window facing the 

participant. Each four-word string was preceded by a fixation cross (font: Arial; size: 36; 

position: center) for 500 ms followed by 20 ms transition between the fixation and the 

appearance of the target string. Participants were then visually presented with one of the 

432 four-word sequences (font: Arial; size: 36; position: center) for 1500 ms and asked to 

produce the sequence as quickly as possible after it appeared on the screen. Sequences were 

randomized and presented with an interstmulus interval of 1000 ms. Participants were 

given the opportunity to take two short breaks during the experiment, though many opted to 

continue without a break. Two microphones were situated in close proximity to the 

speaker’s mouth. The first one was used as a voice key for the elicitation of response 

(onset) latencies, that is, the time from the appearance of a sequence on the screen to the 

time a participant began to produce it. The second microphone recorded the speech of each 

speaker for later analysis of sequence duration and notation of production errors.

Analyzing the Data – Preliminary Considerations

Before moving on to the main analyses, we discuss the problem of reducing 

collinearity, iteratively fitting linear mixed-effects models, and interpreting these results.

Reducing Collinearity

One assumption of regression is that the predictor variables are mutually 

independent. This ensures that a one unit increase in variable X has effect W on the 
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dependent variable when other predictor variables are kept constant. If, for instance, 

variable X is highly correlated with variable Z, one will be unable to ascertain whether 

effect W is attributable to X or Z given that a one unit increase in X will forcibly be 

accompanied by a similar increase/decrease in Z. In addition to making the interpretation of 

the estimates of the regression coefficients difficult, it can inflate the standard deviations of 

these estimates, thus decreasing statistical power (Glantz & Slinker, 1990), hinder the 

process of selecting truly important variables (Harrell, 2001, pp. 64–65), and render certain 

mathematical operations impossible or unstable (Kline, 2005, pp. 56–57). A number of 

measures are available to determine whether predictors are collinear: (1) squared multiple 

correlation, Rsmc, between each variable and all the rest, where a Rsmc greater than 0.90 

suggests collinearity (Kline, 2005, p. 57); (2) tolerance, 1 − Rsmc, indicating the proportion 

of total standardized variance that is unique, where a tolerance value below 0.10 indicates 

collinearity; (3) variance inflation factor (VIF), 1/(1 − Rsmc), which is the ratio of the total 

standardized variance to unique variance, where a VIF greater than 10 indicates that a 

predictor is redundant; (4) pairwise Spearman correlations, where a correlation of 0.30 

indicates collinearity between two predictors and a correlation of 0.90 indicates that the two 

variables are redundant (Kline, 2005, p. 56); (5) condition number, κ (Belsley, Kuh, & 

Welsch, 1980), which gives an overall index of the amount of collinearity within a set of 

predictors. A condition number between 1 and 10 indicates that there is no collinearity 

while κ > 10 indicates collinearity, which is considered high above 30 (Belsley et al., 1980; 

Baayen, 2008).3
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We will prefer the κ index given that “indexes such as VIF are not very informative 

as some variables are algebraically connected to each other”, which is the case here, and 

“summarizing collinear variables using a summary score is more powerful and stable than 

arbitrary selection of one variable in a group of collinear variables” (Harrell, 2001, p. 65). 

In the present study we find massive collinearity between predictors (κ = 

5.332e+16) and the assumption of independence is patently broken. By way of example, 

the correlation between FreqB and FreqAB is 0.72, meaning that when FreqB increases 

from 1 to 2, FreqAB will also increase from 1 to (roughly) 2. Thus it would not be possible 

to keep FreqB constant and vary FreqAB to determine the independent (partial) effect of 

this latter variable on onset latencies and sequence durations. 

The simplest way to reduce collinearity is to center our variables (Cronbach, 1987). 

Doing so reduces κ to 1.813e+16, that is, by a factor of 2.9, which remains too high.4 

Further steps that can be taken include eliminating variables (Kline, 2005). This option, 

however, runs counter to the goals of the paper. Yet another option is to combine highly 

correlated predictors into a composite variable (Harrell, 2001; Kline, 2005; Baayen, 2008). 

For instance, we could perform a principal components analysis (PCA) on our set of 

predictor variables to create, for instance, five new non-collinear composite variables. 

Reducing dimensionality in such a manner, however, also runs counter to the goals of the 

paper. The last option involves residualization. In essence, residualization is a method to 

statistically control for the influence of, for example, variables V2 , V3 , . . . , Vn on variable 

V1. Residualization creates a new variable by taking the residuals of a linear model where 
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the dependent variable is the to-be-residualized predictor and the independent variables are 

the collinear predictors. Let us consider, for example, the creation of the variable 

FreqABresidualized , which is illustrated in figure 1 with the help of a Venn diagram. 

[figure 1 about here.] 

The light grey circles represent FreqA and FreqB and the dark grey one is FreqAB. 

The degree of correlation between these variables is depicted by the amount of overlap 

between the circles. The linear regression FreqAB as a function of FreqA + FreqB removes 

the portions of FreqA and FreqB that overlap with FreqAB and the new variable 

FreqABresidualized is the portion of the dark grey circle that does not overlap with any 

predictor.5 For each N-gram measure, we created a new residualized variable where the 

independent variables in the linear model were the lexical measures of every sub-chunk 

contained within the N-gram. Note that we performed this procedure only within variable 

families (i.e., frequencies, log probabilities, and mutual information) and that single-word 

frequencies were not residualized. Table 1 shows the correlations between the mean 

centered variables and the residualized ones. Note that in general, the correlations decrease 

as the length of the N-gram increases. This is to be expected given that more is “taken out 

of” longer N-gram probabilistic measures. Compare the linear model used to residualize 

FreqAB mentioned above to the one used to residualize quadgram frequency of occurrence: 

FreqABCD as a function of FreqA + FreqB + FreqC + FreqAB + FreqBC + FreqCD + 
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FreqABC + FreqBCD.

[Table 1 about here.] 

Although the condition number has now decreased to 6.34e+15 (a 2.9 fold decrease 

on top of the previous one), it is still too high, thus we will be unable to include all these 

predictors in one single model. A workaround is to first back-fit one model for each 

predictor family (i.e., one for frequencies, one for log probabilities, and one for mutual 

information), then take, for each model, the predictors that survived the back-fitting process 

and conjoin them in a fourth model, which will also be back-fitted. Such an approach is 

acceptable given that centered-residualized predictors within each family have low 

collinearity (Frequency: κraw = 60.97, κcentered = 10.05, κresidualized = 2.24; Logit: κraw = 13.85, 

κcentered = 8.99, κresidualized = 2.23; Mutual information: κraw = 35.93, κcentered = 13, κresidualized = 

2.24).

Iterative Model fitting

The general iterative model fitting procedure used in this paper is as follows: (1) 

fitting of an initial linear mixed-effects regression model; (2) Removal of data points with 

undue influence on the regression (outliers); (3) Re-fitting of the model to the trimmed 

data; and (4) Back-fitting of the model. 

We start by fitting an initial linear mixed-effects regression model (LMER) to the 
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un-trimmed data with by-subject and by-item random intercepts in R version 2.10.1 (R 

Development Core Team, 2009) using the lmer function from package lme4 (Bates, 

Maechler, & Bolker, 2011).6 Then, outliers 2.5 standard deviations above and below the 

model residuals mean are removed (de Vaann, Schreuder, & Baayen, 2007; Baayen, 2008). 

After re-fitting the model to the trimmed data, it is back-fitted using the following 

process (implemented as function fitLMER.fnc in package LMERConvenienceFunctions; 

Tremblay, 2011): (1) first, highest-order interaction terms are considered. (a) The model 

term with the lowest t-value below 2 is identified. (b) A new model without this term is 

fitted. (c) The more complex and simpler models are compared by way of a log-likelihood 

ratio test (LLRT; Pinheiro & Bates, 2000, p. 83–87). If the result of the LLRT indicates that 

the term under consideration does not increase model fit (i.e., p > 0.05), it is removed; 

otherwise it is kept. (d) The process moves on to the next model term with the smallest t-

value below 2 and steps (a)–(c) are repeated. (2) Once all highest-order interaction terms 

have been evaluated, the process moves down to the second highest order interactions and 

step (1) is repeated with the following addition: If a term would be removed from the 

model, but it is part of a high-order interaction, it is kept in the model (i.e., the marginality 

principle; Venables, 1998). Once all terms of the interaction level have been evaluated, the 

process moves down to the next lower-order level until main effects have been evaluated. 

(3) The random effects structure is forward-fitted. (a) For each fixed effect that survived the 

backward fitting process, a new (more complex) model is fitted that includes by-subject 

random slopes for that fixed-effect. (b) The more complex and simpler models are 
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compared by way of LLRT. If the test is significant, the random effects term is kept; 

otherwise it is dropped. (4) The model is subsequently back-fitted once more. This is done 

given that the inclusion of certain random effects sometimes renders certain fixed effects 

non-significant. (5) finally, for each continuous predictor that survived the back-fitting 

process, values 2.5 standard deviations above and below the predictor mean are removed 

and the model is back-fitted again. This final step is an effort to diminish the potential 

undue influence of extreme predictor values on the regression model. The fact that the 

estimated coefficient of a predictor is no longer significant after the removal of its extreme 

values would indicate that the effect associated with it was driven by those extreme values 

(it is thus dropped from the model).

Interpreting the Results

A linear (mixed-effects) regression model allows one to determine linear 

relationships between two or more predictors. Mixed-effects models can be expressed, in 

simple mathematical terms, as

y = Var1 β1 + Var2 β2 + · · · + Varn βn + b + ε,

where y is the observed data, Var1 , Var2 , . . . , Varn are predictor variables, β1, β2, . . . , βn 

are coefficients weighing these variables, b represents variability tied to subjects and/or 

items (i.e., random effects), and  ε is the residual error. In other words, the observed data is 
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equal to the weighted sum of the covariates, plus subject and/or item variability, plus 

random error. If there is no collinearity between predictors, then the beta coefficients give, 

for the average unknown subject and item, an indication of the expected change in y given 

a one unit increase in a predictor with all others held constant. For instance, βFreqABCD would 

be equal to -2.5 if an increase of 1 in quadgram frequency would be associated with a 2.5 

millisecond decrease in onset latency while keeping all other N-gram frequencies constant. 

In sum, we believe that the model resulting from the process described above is the 

one that is, of the set of possible statistical models, (1) the most well-formed in terms of 

meeting the underlying regression assumptions; (2) the most parsimonious in that it is the 

model with as few parameters as possible; and (3) the most stable and generalizable given 

that (a) spurious effects driven by unduly influential extreme values are dealt with both at 

the data- and predictor-level, and (b) by-subject and by-item variability with regards to the 

intercepts and slopes is taken into account.

Data Analysis

The raw data contained 7344 data points (17 participants x 432 items four-word 

sequences). One data point corresponds to one onset latency and one sequence duration 

value (in milliseconds). Before we analyzed the data, we excluded five items with a 

frequency of 0 in coca (85 data points or 1.2%) as well as one participant who had a 

substantial amount of missing data and production errors (39 data points or 0.5%). In some 

cases, a response was not triggered either because the participant was too far away from the 
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microphone or spoke too softly; these data points were also excluded (869 data points or 

11.8%). finally, productions of each sequence were analyzed using Praat (Boersma & 

Weenink, 2010). Research assistants noted errors and measured the sequence duration. 

Several types of production errors and notes were indicated for each sequence: Deleted 

segments (a few of the → a few o the), missing words (few of the), incorrect word choice (a 

few and the), and repetitions (a a few of the). Deleted segments were not considered errors 

but rather natural occurrences of speech production and were expected for higher frequency 

sequences; they were thus retained while all other instances were excluded from the main 

analysis below (1258 data points or 17.1%). Overall, 2251 data points were removed 

(30.7% of the data).

Dependent and Independent Variables

Two dependent variables were analyzed: “onset latency” and “sequence duration” 

reflecting recognition and production respectively. We also considered a number of 

independent variables, which are briefly described below. A log transform (natural log) was 

used for dependent and numerically independent variables to normalize their distribution. 

Frequency of Occurrence (Freq). Frequency of occurrence is a widely used lexical 

measure that indexes the amount of experience a speaker has with, for instance, a given 

word, in the number of times it occurs within a set of words such as the lexicon (e.g., the 

quadgram at the age of has a frequency of 9.2 per million words, which is relatively 

frequent). We considered in our analyses single word frequencies (FreqA, FreqB, FreqC, 
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FreqD), bigram frequencies (FreqAB, FreqBC, FreqCD), trigram frequencies (FreqABC, 

FreqBCD), and quadgram frequency (FreqABCD), where the capital letters A, B, C, and D 

stand for single-word positions within a four-word sequence. We standardized our 

frequency measures to per-million words; there were approximately 385 million words in 

coca at the time frequency counts were extracted.

Log Probability of Occurrence (Logit). Logits, or log probability of occurrences 

(Tremblay, 2009; Tremblay & Baayen, 2010), provide an index of the probability of a word 

occurring given a certain context (e.g., the occurring given at or of occurring given the 

sequence at the end ). As such, logits are related to forward conditional probabilities 

(Gregory et al., 1999), predictability (Frisson, Rayner, & Pickering, 2005), and cloze 

probability (e.g. Wlotko & Federmeier, 2007). In this study, we considered bigram, trigram 

and quadgram logits. They were calculated by taking the log of the frequency of a sequence 

(e.g., the end) divided by the summed frequency of all the possible sequences that share the 

same “context” (e.g., the beginning, the sea, the man, ...) minus the frequency of the 

sequence plus 1 (to back away from dividing by 0). For example, LogitABCD was 

calculated as log((FreqABCD/(FreqABC − FreqABCD)) + 1).

Logit can also be construed as indexing how frequent a particular item is relative to 

the other members of its “family”. For example, the quadgram at the age of has a logit of 

3.4, which indicates that it is much more frequent than the remaining 44 family members, 

which have a summed frequency of 0.3 per million words (the second and third most 
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frequent members, at the age when and at the age where, each have a frequency of 0.08 and 

a logit of -1.4).7 If, for instance, the target sequence for production is at the age of (logit of 

3.4), as was the case in one of our trials, one could imagine that the rate of activation will 

be quicker for this sequence than for its competitors (i.e., the other members of the family 

at the age ), which may lead to a faster production onset. If, however, the target were at the 

age when (logit of -1.4), it is conceivable that higher frequency competitors such as at the 

age of would reach activation threshold more quickly and may have to be inhibited, 

potentially resulting is in a slower sequence production onset.

Mutual Information (Mi). Mutual information is a commonly used measure that 

indexes how strongly words are associated to one another and how likely they are to co-

occur (e.g., Gregory et al., 1999; Pluymaekers, Ernestus, & Baayen, 2005; Ellis & 

Simpson-Vlach, 2009). The higher the mutual information score, the greater the 

coherence/dependence between the words. This measure has the advantage of 

distinguishing low-frequency words that commonly occur together from sequences of high-

frequency words that are unrelated. Mutual information scores were calculated by taking 

the log of the probability of occurrence of a sequence divided by the product of the 

frequencies of the single-words that compose the sequence. For example, the mutual 

information score of the whole sequence, MiABCD, as log(P(ABCD) / (P (A) x P (B) x P  

(C) x P (D))).

Other Independent Variables. The remaining independent variables we considered 
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in our analyses are listed and briefly described in Table 2.

[Table 2 about here.]

The Onset Latency and Production Duration Models

Each model was fitted as outlined in section Iterative Model fitting above. Each one 

of the initial six models included single word frequencies (FreqA, FreqB, FreqC, and 

FreqD) as well as Lengthresidualized, NumSyll, Manner, PhraseABCD, Trial, and PrevTrialPC1 

in addition to the lexical variables of one of the three predictor families. The models 

included every possible two-way interaction as well as by-subject and by-item random 

intercepts. We then took the terms that survived the back-fitting process and conjoined 

them into a fourth model, which was also back-fitted using the same process. Note that 

each one of the eight models was initially fitted to the un-trimmed data. Outliers were 

subsequently removed, which represented in each case approximately 2% of the data. 

Regarding the onset latency analysis more specifically, the surviving predictors had 

a high degree of collinearity (κ = 31). Much of the collinearity was due to a few highly 

correlated pairs of variables having a correlation greater than 0.65, namely FreqAB and 

LogitAB, FreqBC and LogitBC, LogitABC and MiABC, LogitBCD and MiBCD, as well 

as FreqABCD and LogitABCD. This meant that these variables had similar predictive 

power in the model. We thus conjoined these variable pairs by performing a principal 

components analysis on each pair and taking the first principal component, which 
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accounted for more than 95% of the within-pair variability (Baayen, 2008). The old 

variables were then replaced by the new ones PC[FreqAB / LogitAB], PC[FreqBC / 

LogitBC], PC[LogitABC / MiABC], PC[LogitBCD / MiBCD], and PC[FreqABCD / 

LogitABCD]. Collinearity between predictors was now low (κ = 2.7). We once more back-

fitted the new model, which resulted in a few predictors and interactions being removed. 

Turning to the sequence duration analysis, collinearity between predictors was 

acceptable (κ = 10.5). Nonetheless, two variable pairs had a high correlation (R > 0.70), 

namely FreqABC and LogitABC as well as FreqCD and LogitCD. These two pairs were 

conjoined by way of principal components analysis into the new variables PC[FreqAB / 

LogitAB] and PC[FreqCD / LogitCD]; collinearity between predictors was now lower (κ = 

6.1). We back-fitted the model once more. finally, we removed, for each surviving 

predictor, items with extreme values. A total of 334 items remained in the onset latency 

analysis and 298 in the sequence duration analysis. Model criticism plots indicated that the 

residuals were approximately normally distributed with a constant variance, and that no 

data point unduly influenced the regressions. Probability values (i.e., p-values) and 95% 

confidence intervals were calculated by way of Markov Chain Monte Carlo simulation 

(MCMC) using the pvals.fnc function from package languageR (Baayen, 2011).

Results and Discussion

The result of our analysis are summarized in Tables 3, 4, 5, and 6 and visually in 

figures 2 and 3. Each figure contains several panels, which show the effects of significant 
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predictors on onset latencies (figure 2) and sequence durations (figure 3). The grey lines at 

the bottom of the continuous main effect panels, right above the x -axis, represent the 

distribution of a predictor. In panels depicting interactions between two continuous 

variables, the distribution is represented by the grey lines drawn between the solid black 

line and the lightest broken grey line, which effectively shades this area of the plot. Take, 

for example, panel I of figure 2, which graphs the PC[FreqABCD / LogitABCD] X FreqB 

interaction. The solid black line shows the effect of PC[FreqABCD / LogitABCD] on onset 

latencies when the frequency of the second word of a sequence (FreqB) is set at its first 

quantile (i.e., at its lowest) and the dashed grey lines represent the effect of 

PC[FreqABCD / LogitABCD] when FreqB is set to one of the remaining quantiles (i.e., 

25th, 50th, 75th, and 100th).

Onset Latency

Unigram frequencies as well as trigram logits and mutual information values were 

the predominant variables affecting onset latencies. Logits and mutual information values 

are interchangeable at the level of the trigram, as shown by the presence of the two 

variables PC[LogitABC / MiABC] and PC[LogitBCD / MiBCD] created from both 

variables families. That is, a model including LogitABC and LogitBCD would have 

approximately the same predictive power as one including MiABC and MiBCD instead. 

The presence of the variables PC[FreqAB / LogitAB] and PC[FreqABCD / LogitABCD] in 

the final model indicates that, at the bigram and quadgram level, frequencies and logits are 
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also interchangeable but have a smaller effect on onset latencies than trigrams. 

Interestingly, the frequency of occurrence of the second word of a sequence, FreqB, 

interacted with probabilistic variables tied to bigrams (PC[FreqAB/LogitAB]), trigrams 

(PC[LogitBCD/MiBCD]), and quadgrams (PC[FreqABD/LogitABCD]). Why is it that 

FreqB, and not FreqA, FreqC, or FreqD interacting with so many variables? 

[Table 3 about here.] 

[Table 4 about here.] 

[figure 2 about here.] 

The second word of a sequence appeared, more often than not, in the center of the 

screen, roughly where the fixation cross had appeared immediately before. A χ2 test 

between the second and third words, where 50000 replications were used in a Monte Carlo 

simulation, revealed that word B appeared in the center of the screen significantly more 

often than word C did (second word, B: 141/334, third word, C: 95/334, χ2 = 8.99, 

simulated p = 0.004).8 Given that the participants’ attention was primarily focused at the 

very position where the second word of a sequence appeared, it is not surprising that its 

frequency played a major role in lexical access and production onset, interacting with other 

lexical variables. The third word of a sequence also appeared at roughly the same position 

the fixation cross had previously been presented, albeit to a lesser extent, and it is quite 

possible that the frequency of the third word also affected onset latencies in these cases. 
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However, its effect may not have emerged in our analyses given the relative rarity with 

which it occurred. It is also possible that the frequency of word B affected onset latencies 

rather than word C because there were more content words in the second position than in 

the third. Indeed, content words are known to be fixated more than twice as often as non-

content words (Rayner, 1998, p. 375, and references cited therein). In eleven cases, both 

words B and C were content words (e.g., the same way as, to take account of, a large 

number of) and in 108 sequences these two words were non-content words (e.g., and I don’t 

like, that’s what you want, it would have been). In 100 sequences, word B was a content 

word followed by a non-content one (e.g., the first of these, I think it’s very, a result of the), 

and in 115 sequences word B was a non-content word followed by a content word (e.g., I  

don’t like that, it doesn’t matter what, it is difficult to). A χ2 test indicates that there is an 

equal number of content words in the second and third positions of a sequence (χ2 = 1.05, 

simulated p = 0.34 based on 50000 replications) meaning that it is unlikely that this affected 

the responses. The level of lexical activation of the second word of a sequence may thus 

have benefited from having been the first portion of the sequence to impinge on a 

participant’s visual system. Consequently, activation of word B would have begun to 

increase as a function of its frequency before any of the other portions of the carrier 

sequence. Although the increase of WordB’s level of activation as a function of FreqB was 

beneficial for the first bigram (PC[FreqAB / LogitAB] became more facilitatory as FreqB 

increased), competition was engaged between word B and the second trigram, BCD, as as 

well as the whole sequence, ABCD: The higher the level of activation of these two units (as 
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indexed by their predictor values), the more time it took to resolve the competition resulting 

in longer production onsets.

Given the high correlation between the frequency and grammatical category of a 

word (function words are higher frequency than content words), we might expect that 

FreqB can be replaced by the categorical variable WordTypeB with levels “content word” 

and “function word”.9 Nevertheless, none of the interactions with PC[FreqAB / LogitAB], 

PC[LogitBCD / MiBCD], and PC[LogitBCD / MiBCD] nor the main effect of WordTypeB 

reached significance. We also considered the addition of the three-way interactions 

WordTypeB X FreqB X PC[FreqAB / LogitAB], WordTypeB X FreqB X PC[LogitBCD / 

MiBCD], and WordTypeB X FreqB X PC[LogitBCD / MiBCD], as well as lower-order 

interactions to the model. While the three interactions involving FreqB remained 

significant, the only significant effect involving WordTypeB was a FreqB X WordTypeB 

interaction (F(1, 4860) = 4.1, p = 0.04; MCMC β = −0.01, t = −2.0, MCMC p = 0.03, 95% 

confidence interval = −0.02 to −0.0006). Which shows an inhibitory effect of FreqB on 

onset latencies was greater for content words than function words. 

Production Duration

The results from the production duration analysis (summarized in Tables 5 and 6 

and figure 3) were quite different from the ones found in the onset latency analysis. There 

were many more main effects and interactions in the former analysis, where unigram 
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frequencies made up the largest proportion of the effects. Unigram frequencies did not 

interact with other probabilistic measures tied to larger N-grams. The number of trigram 

and quadgram probabilistic effects was also considerable, albeit to a lesser degree. finally, 

frequencies of occurrence appear to have been the most important of the three variable 

families, which were, in a few instances, interchangeable with logits. 

[Table 5 about here.] 

[Table 6 about here.] 

[figure 3 about here.]

General Discussion

In this paper we set out to determine whether frequency of occurrence, log 

probability of occurrence, and mutual information of N-grams separately affect onset 

latencies and production durations in laboratory recorded speech. The results of the two 

analyses reported here indicate that these different measures indeed have a separate effect, 

albeit they do so differently. 

We also endeavored to determine which family of probabilistic measures better 

predicts onset latencies and production durations. The percentage of deviance explained by 

frequencies of occurrence, log probabilities of occurrence, and mutual information values 

in each of the onset latency and production duration analyses is provided in Table 7.
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[Table 7 about here.]

These values were obtained by summing the deviance explained for each model 

term in which a probabilistic measure was involved. Note that unigram frequencies were 

included in the calculation of the value for the frequency of occurrence family. In the onset 

latency analysis, log probabilities of occurrence were the most important variable family 

(0.93%), closely followed by mutual information values (0.85%), and finally by 

frequencies of occurrence (0.21%). This suggests that the main process underlying 

recognition is one of competition between N-grams and their family members (Marslen-

Wilson, 1995) and that the degree of uniqueness of an N-gram, whether frequently 

occurring or not, is less important. This provides evidence for a secondary (potentially 

simultaneous) process possibly involving the holistic retrieval of N-grams. 

On the contrary, frequencies of occurrence were by far the most important family of 

probabilistic measures affecting production (1.11%). Log probabilities of occurrence 

accounted for a minimal amount of variance (0.05%) and, surprisingly, mutual information 

values did not have any predictive power. This may indicate that in production the number 

of times one has accessed/produced a linguistic item is important. Thus, the neuromotor 

routines that instantiate a sequence’s phonetic form become more fluent with repetition 

resulting in reduction and coarticulation (Bybee, 2001, 2006, and references cited therein).  

Although N-gram probabilistic measures up to the quadgram affected onset 
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latencies and production durations, which type of N-gram was the most important? Table 8 

lists the amount of deviance explained by unigrams, bigrams, trigrams, and quadgrams.

[Table 8 about here.]

 

It is apparent from Table 8 that probabilistic information tied to trigrams was the 

most predictive of onset latencies (0.29%) closely followed by unigram frequencies 

(0.25%), which is most probably due to the fact that a participant’s focus of attention was 

more often than not initially directed to the second word of a quadgram. We are uncertain 

what the implications of this are regarding the recognition of multi-word sequences. Three-

word sequences may be the most efficient unit of processing in that they would enable the 

linguistic system to strike a balance between keeping the longest possible N-gram (in 

number of words) in short-term memory and the amount of cognitive resources needed to 

keep it there.

In contrast, probabilistic measures tied to trigrams had very little predictive power 

with regards to production durations (0.03%). Although bigram and quadgram variables 

were relatively important (0.17% and 0.12% respectively), unigram frequencies were by far 

the most predictive (0.96%). It may be that individual words are a fundamental 

organizational unit of speech production and thus frequency plays an important role during 

production.

Finally, the presence of interactions between N-gram probabilistic measures are not 
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in line with types of models of visual recognition and speech production that would assume 

that four-word sequences are (de)composed in stages either from unigrams up to quadgrams 

or the other way round. Rather, the results reported here support the idea of a dynamic 

linguistic system that uses, in parallel, multiple sources of probabilistic information at 

different supra-lexical levels of structure.

Conclusion

The results reported here illustrate how complex and dynamic the linguistic system 

is. Log probability of occurrence emerged as the predominant predictor family in the onset 

latency analysis, suggesting that recognition is mainly underpinned by a mechanism 

whereby a target N-gram competes with its family members. In contrast, the amount of 

experience one has with an N-gram (frequency) surfaced as the most important predictor 

family in the analysis of production duration. Somewhat surprisingly, the cohesiveness of 

an N-gram (mutual information) played only a minor role in recognition and none at all in 

production. Although unigrams, bigrams, trigrams, and quadgrams all affected both 

recognition and production, trigrams arose as the most important N-gram in the former 

stage, whereas unigrams were the most important one in the latter stage. finally, the finding 

that probabilistic measures tied to N-grams up to four-words long interacted with each 

other in the onset latency and production duration analyses suggests that they are processed 

in parallel in both recognition and production.
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Footnotes

  
1  “As in the case of deletion, mutual information could be replaced in the model in [their] 

Table 3 with reverse conditional bigram probability without changing the predictive 

capacity of the model”, (Gregory et al., 1999, p. 15).

  2  The capital letters A and B stand for the first and the second word of a four-word 

sequence, respectively. 

3  The condition number, κ, is equal to highest covariance of set of variables divided 

by the lowest one, where covariances are obtained by taking the diagonal of a singular 

value decomposition of that set.

  4  Mean centering reduces the covariance between a set of variables and 

concomitantly the condition number.

  5  See, e.g., Newman, Tremblay, Nichols, Neville, and Ullman (Accepted) and 

Arnon and Snider (2010) for a similar approach. Also see Allen (1997) for more details on 

residualization.

  6  LMER is a natural tool for modeling repeated measures (Wu & Zhang, 2006). 

Details about mixed-effects modeling can be found in a number of recent papers and books 

(e.g. Pinheiro & Bates, 2000; Wu & Zhang, 2006; Gelman & Hill, 2007; Baayen, 2008; 

Baayen, Davidson, & Bates, 2008).

  7  Positive log probability values indicate that the target N-gram is more frequent 

than the summed frequency of the remaining family members.
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  8  The fixation cross appeared in the middle of the second and the third word in 

98/334 cases.

  9  MFreqB function = 5322 per million; MFreqB content = 418 per million, RFreqB − W ordTypeB = 

0.63, F(1, 174) = 117.8, p < 0.0001.
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Tables

Table 1: Correlations between Mean-centered and Residualized Variables

AB BC CD ABC BCD ABCD
Frequency of Occurrence 0.55 0.63 0.48 0.49 0.48 0.34

Log Probability of Occurrence 0.47 0.57 0.65 0.59 0.58 0.37
mutual Information 0.77 0.85 0.81 0.38 0.43 0.22
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Table 2: Other independent Variables Considered in the Analyses

Trial Trial number in the experiment (from 1 to 432).

PrevTrialsPC1

Manner

Length Length of a sequence in number of letters (7 to 29 letters long).

NumSyll Length of a sequence in number of syllables (4 to 9 syllables long).

PhraseABCD

The first principal component of the reaction times (i.e., onset latency or sequence 
duration) from the three previous trials (Taylor & Lupker, 2001; Baayen, Wurm, 
& Aycock, 2007; de Vaan et al., 2007).

Whether the first phoneme of a sequence is an approximant (39 sequences), a 
fricative (126 sequences), a nasal (8 sequences), a stop (62 sequences), or a 
vowel (192 sequences). This variable is known to affect measures of voice 
latency (Baayen et al., 2007; Yap & Balota, 2009).

Whether the sequence is a phrase (117 sequences) or a non-phrase (310 
sequences). Phrases can stand alone, (e.g., end of the year, I don’t really know, at 
the same time, and I have to say) but non-phrases cannot (e.g., it would be a, at 
the age of, this is not a, we’ve got to get, and I think it’s the).
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Table 3: Results of the Onset Latency Analysis – Part 1

Notes. Denominator df = 4862. LLRT stands for log-likelihood ratio test.

Variable F p df p

Trial 11 1 < 0.001 8.6 1 < 0.001 0.0011

Number of Syllables 1.8 1 0.18 4.3 1 0.04 0.0002

Manner of articulation 12.8 4 < 0.001 43.9 4 < 0.001 0.005

PhraseABCD 7.5 1 0.01 8.4 1 0.004 0.0007

FreqD 0.9 1 0.35 9.5 1 0.002 0.0001

PC[LogitABC / MiABC 20.3 1 < 0.001 20.8 1 < 0.001 0.002

FreqB X PC[FreqAB / LogitAB] 9.5 1 < 0.001 11.9 1 < 0.001 0.0009

FreqB X PC[LogitBCD / MiBCD] 8.8 1 < 0.001 9.1 1 0.003 0.0009

FreqB X PC[FreqABCD / LogitABCD] 6.6 1 0.01 10.8 1 0.005 0.0006

Num. df Χ LLRT R
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Table 4: Results of the Onset Latency Analysis – Part 2

Notes. MCMC stands for Markov Chain Monte Carlo. CI stands for confidence intervals.

Variable 95% CI t

Trial 0.0002 0.0001 to 0.0003 3.3 0.01

Number of Syllables 0.0105 0.0005 to 0.0194 2.1 0.03

Manner of articulation -- -- -- --

PhraseABCD -0.0221 -0.0104 to -0.0024 -3 < 0.001

FreqD -0.0065 -0.0105 to -0.0026 -3 < 0.001

PC[LogitABC / MiABC 0.0109 0.0062 to 0.0151 4.5 < 0.001

FreqB X PC[FreqAB / LogitAB] -0.0042 -0.0065 to -0.002 -3.4 < 0.001

FreqB X PC[LogitBCD / MiBCD] 0.0033 0.0013 to 0.0054 3 < 0.001

FreqB X PC[FreqABCD / LogitABCD] 0.0025 0.0004 to 0.0047 2.1 0.02

MCMC β MCMC p
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Table 5: Results of the Production Duration Analysis – Part 1

Notes. Denominator df = 4297. LLRT stands for log-likelihood ratio test.

Variable F p df p

Number Syllables 187.5 1 < 0.001 149.2 1 < 0.001 0.0102

Manner of articulation 5.8 4 < 0.001 18.5 4 0.001 0.0013

FreqB X PhraseABCD 7.7 1 0.01 4.9 1 0.027 0.0004

FreqC 139.2 1 < 0.001 1.5 1 0.22 0.0076

FreqD X FreqA 12.4 1 < 0.001 12.9 1 < 0.001 0.0007

FreqA X FreqBC 15.7 1 < 0.001 16.5 1 < 0.001 0.0009

PC[FreqABC / LogitABC] X PhraseABCD 10.8 1 < 0.001 16.5 1 < 0.001 0.0001

LogitBCD X PC[FreqABC / LogitABC] 4.4 1 0.04 5.1 1 0.02 0.0002

FreqABCD X Length 7.3 1 0.01 8.8 1 0.003 0.0004

FreqABCD X FreqAB 10.2 1 < 0.001 4.5 1 0.03 0.0006

LogitABCD X PC[FreqCD / LogitCD] 4.2 1 0.04 4.6 1 0.03 0.0002

Num. df Χ LLRT R
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Table 6: Results of the Production Duration Analysis – Part 2

Notes. MCMC stands for Markov Chain Monte Carlo. CI stands for confidence intervals.

Variable 95% CI t

Number Syllables 0.0929 0.0818 to 0.1035 13.3 < 0.001

Manner of articulation -- -- -- --

FreqB X PhraseABCD 0.0109 0.0026 to 0.0186 2.13 0.01

FreqC -0.0046 -0.0108 to 0.0017 -1.2 0.15

FreqD X FreqA -0.007 -0.0102 to -0.0039 -3.5 < 0.001

FreqA X FreqBC 0.0119 0.0073 to 0.0167 3.9 < 0.001

PC[FreqABC / LogitABC] X PhraseABCD 0.029 0.0182 to 0.0413 3.9 < 0.001

LogitBCD X PC[FreqABC / LogitABC] -0.0063 -0.011 to -0.0021 -2.2 < 0.001

FreqABCD X Length 0.0052 0.0023 to 0.008 2.9 < 0.001

FreqABCD X FreqAB 0.0141 0.0086 to 0.0196 4 < 0.001

LogitABCD X PC[FreqCD / LogitCD] -0.0072 -0.0131 to -0.0021 -2.1 0.01

MCMC β MCMC p
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Table 7: Percentage of Deviance Explained by Family of Probabilistic Measures

Onset Latency Production Duration

Frequency of Occurrence 0.21% 1.11%

Log Probability of Occurrence 0.93% 0.005%

Mutual Information 0.85% 0.00%
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Table 8: Percentage of Deviance Explained by N-gram

N-Gram Onset Latency Production Duration

1 0.25% 0.96%

2 0.09% 0.17%

3 0.29% 0.03%

4 0.06% 0.12%
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Figure Captions

Figure 1. Residualization of FreqAB.

Figure 2. Onset latency analysis results.

Figure 3. Production duration analysis results.
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Figures
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