l*l National Library Bibliothégue nationaile

of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily depenc st upon the
guality of the original thesis subritted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indstinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of thiz: microform is governed
by the Canadian Copyright Act, R.S.C. 13970, ¢. C-30, and
subsequent amendments.

NL-339 (1.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

Sl man%ue des pages, veuillez communiquer avec
F'universite qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser 4
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si Funiversité nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canadi

UNIVERSITY OF ALBERTA

COLLISION-FREE MOTION PLANNING
AND APPLICATION TO THE PUMA 560 MANIPULATOR
by e

A

{
YUGUANG (EUGENE) CAO (;

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

FALL, 1990

B+H

National Library

Biblicthéque nationale
of Canada

du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
KtA ON4

The author has granted an irrevocable non-
exclusive ficence aflowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.” o

The authior retains ownership of the copyright
in his/her thesis. Neither “ie thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisfher per-
mission. '

L'auteur a accordé une licence imévocable et
non exclusive permettant 4 la Bibllothaque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour metire des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve fa propriété du droit d'auteur .

“qui protége sa thése: Nila thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISEN ©-315-65009-5

UNIVERSITY OF ALBERTA

RELEASF FORM

NAME OF AUTHOR: YUGUANG (EUGENE) CAO
TITLE OF THESIS: COLLISION-FREE MOTION PLANNING AND

APPLICATION TC THE PUMA 560 MANIPULATCR

DEGREE: @aASTER OF SCIENCE
YEAR THIS DEGREE GRANTED: FALL, 1990

FERMISSION IS HNREBY GRANTED TO 1. 2 UNIVERSITY OF ALBERTA LIBRARY
TO REPRODUCE SINGLE COPIES OF THIS THESIS AND TO LEND OR SELL SUCH
COPIES FOR PRIVATE, SCHOLARLY OR SCIENTIFIC RESEARCH PURPOSES ONLY.

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE
THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE

REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

-

7

-

, \ g
(SIGNED) [/{/j@ - KM

PERMANENT ADDRESS:

14713-46TH AVENUE
EDMONTON, ALBERTA, TEH SM6
CANADA

DATE: (i)c 5 1930

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

THE UNDERSIGNED CERTIFY THAT THEY HAVE READ, AND RECOMMEND
TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH FOR ACCEPTANCE,
A THESIS |
ENTITLED COLLISION-FREE MOTION PLANNING AND APPLICATION TO THE
PUMA 560 MANIPULATOP
SUBMITTED BY YUGUANG (EUGEME) CAO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

=

SUPERVISOR: DR. V.G. GOURISHANKAR

mé@‘@%
s R ¢

COMMITTEE MEMBER: DR. R.E. RINK

HMASTER OF SCIENCE.

DATE: (T &éev 3 | 1990

This thesis is dedicated
to my parents Prof. Jinzhou Cao and Prof. Jiajin Zhu,
to my wife Ziping (Jill),
to my brother Dr. Yuming Cao and my sister Yuhong,
to Zhenmin and little Alex, and
to Mr. and Mrs. H. McCombs,

for reasons that they know best.

ABSTRACT

Automatic moticn planning of industrial robots in the presence of
obstacles is considered to be a difficult task. Many approaches have
been proposed in the literature while the basic algorithms may be
independent of any particular manipulator, their application however
s dependent on the particular kind of manipulator. For this reason,
there is still no general purpose path planning technique available
today to cover a variety of manipulators. Most of the motion planning
algorithms are very complicated and difficult to implement 1in
practical applications, and the process of searching for optimal
collision-free paths is often t ime—-consuming.

In this thesis, a new path planning algorithm for collision
avoidance in a two-dimensional workspace is proposed. It uses the
configuration-space (C-space) concept to shrink the moving object (the
robot gripper) to a reference point on the object and enlarge all
workspace obstacles to the shape of the object to compensate for this.
These C-space obstacles are then enclosed by rectangular hulls, which
simplifies the descriptions of both the obstacles and the free space
and reduces computational effort required. Then a local search ls
performed, using Bellman’s principle of optimality, in a reduced space
defined by the local start and goal points. Such a search requires
very little time to find a local minimum-distance path.

This algorithm has been implemented on a PUMA 580 manipulator.
Collision-free paths are generated off-line on a supervisory computer

and uploaded to the PUMA’s Unimate controller.

ACKNOWLEDGEMENTS

The author would like to express his deep and sincere gratitude
to his supervisor, Professor V. G. Gourishankar, for his guidance in
formatting the objective of this work, and for his perspective and
generous support throughout this research project. His enormous
patience, understanding and personal advice have most greatly
encouraged the authoi* in this and other endeavors.

The author also wishes to thank Dic. R. W. Toogood who was the
author's previous supervisor of another project, and Professor R. E.
Rink, for their invaluable assistance and direction as part of the
author’s supervisory committee.

In addition to the above individuals, the author is heavily in-
deuted to Dr. Joel King for his genulne interest and suggestions, for
the countless hours he spent in helping the author in so many ways.
Dr. King’s help is gratefully acknowledged. Thanks to other research-
ers and graduate students, in particular, Frank Niscak, Philip Pang,
Louis Brassard and Lee Kruszewski for their suggestions and help.

The financial support the author received from the Department of
Electrical Engineering, University of Alberta, and from the author’s
friends Mr. & Mrs. H. McCombs is also most gratefully acknowledged.
This research would have never been possible without such support.

Finally, the encouragement from the author’s parents in China,
the forbearance and the sacrifices of the author’s wife during the
entire period of this research cannot go without mention. The author

owes them a debt of gratitude that would never be repaid in full.

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION. ..ottt ittt ettt et e eae el 1
1.1. BACKCROUND AND MOTIVATION.............ccvvenunnn.. 1

1.2. CBJECTIVE OF THIS PROJECT AND ORGANIZATION OF THE

8212153 £ 3

2. COLLISION-FREE MOTION PLANNING..........oovuuunrnnnnnnn. 6
2.1. DEFINITION OF COLLISION-FREE MOTION PLANNING....... 6

2.2. CONFIGURATION SFACE (C-space) APPROACH............. 8

2.3. FREE SPACE DECOMPOSITION (FSD) APPROACH............ 13

2.4. HIERARCHICAL. ORTHOGONAL SPACE (HOS) APPROACH....... 14

2.5. OCTREE FREE SPACE (OFS) APPROACH................... 19

2.6. GENERALIZED VORONOI DIAGRAMS (GVD)................. 23

2.7. ALTERNATE PATH METHOD (APM)..............ccvve.... 27

2.8. DISCUSSION AND SUMMARY.ovuviuvnnnnnnnnn. 30

3. COLLISION-FREE MOTION PLANNING CRITERIA................... 33
3.1. INTRODUCTION. ...iiititeetnnenineernanneernnnnsnns 33

3.2. OVERVIEV OF THE OPTIMAL PATH PLANNING PROBLEM...... 33
3.2.1. NEAR MINIMUM-TIME MOTION PLANNING........... 35

3.2.1.1. AVERAGED DYNAMICS METHOD FOR

DYNAMICS LINEARIZATION............... 35
3.2.1.2. MINIMUM-TIME CONTROL................. 37
3.2.1.3. NEAR MINIMUM TIME CONTROL............ 39

4. SEARCHING FOR MINIMUM DISTANCE PATHS-A NEW ALGORITHM...... 46
4.1. INTRODUCTION. iiiiiirt it iieioeneanrnnennennnns 45

4.2. SEARCHING FOR AN OPTIMAL PATH IN CARTESIAN SPACE
USING BELLMAN’S PRINCIPLE OF OPTIMALITY............ 48
4.2.1. MODELING OF OBJECTS USING PRIMITIVE SHAPES.. 48
4.2.2. BUILDING A SEARCH GRAPH..................... 51

4.2.3. SEARCHING FOR A MINIMUM DISTANCE PATH

WITH HEURISTICS.iiitiiiieninnnnnnnnns 57

4.2.3.1. THE REDUCED SEARCH SPACE Q(COv) AND

VALID OBSTACLES COv AND THEIR VALID
VERTICES VERTv............. e 57

4.2.3.2. THE DEFINITIONS OF mids, midg, midi
AND mid2..........iiiiinieneninnannn, 61
4.2.3.3. DESCRIPTION OF THE STARCH ALGORITHM.. 63
4.3. DISCUSSION AND SUMMARY........civieevrnvnnnnnnnnnns 67

5. COLLISION-FREE PATH: APPLICATION OF THE ALGORITHM TO
THE PUMA S60 MANIPULATOR.c0vtiveneneennenrennnrnennn. 73
5.1. INTRODUCTION.ovviiiiinenneonnnoneneennnnennens 73
5.2. BRIEF DESCRIPTION OF THE PUMA 560 ROBOT, ITS

WORKSFACE AND VAL II...itiuierinnenennnnnnnn 75

5.3. COMMUNICATION BETWEEN THE SUPERVISOR COMPUTER

5.3.1. DIRECT CONTROL OF THE PUMA FROM THE SUN..... 83
5.3.2. COMMUNICATING FROM A C-APPLICATION PROGRAM

USING C-VAL II........iiivvinnncronnnenn co.. 84

5.4 FINDING A SAFE PATH FOR THE PUMA 560 AMONG

S.4.1. AVOIDING THE LOWER AND UPPER BOUNDS OF
THE PUMA WORKSPACE............oovveunnnnnn.. 85

5.4.2. DESCRIPTION OF THE FIND-PATH ALGORITHM

FOR THE PUMA 5B0.................00uunnn. .. 88

S.5. EXAMPLES AND RESULTS.ovoitimnnnn s, 97

S.6. EVALUATION AND DISCUSSION..........ouuvuunurnnnn... 89

6. CONCLUSIONS AND SUGGESTIONS.cvvoneinununnnnnnnn.. 116

6.1. SPEEDING UP THE COMMUNICATION BETHELH THE PUMA

AND THE SUN.ttt 118
REFERENCES. i e e 121
APPENDICES.\ttt s e e e 131

1. DIRECT CONTROL OF THE PUMA FROM THE SUN.............. 131
2. C LIKE FUNCTIONS OF VAL II (C-VAL II)................ 132

LIST OF TABLES

TABLE 4.1. THE MINIMUM-DISTANCE PATH SEARCHING ALGORITHM..... 68
TABLE S.1. THE MOTION PLANNING ALGORITHM FOR THE PUMA 560.... 91
TABLE 5.2. THE SUBROUTINE FOR GENERATING THE OPTIMAL PATH.... 92
TABLE 5.3. THE SUBROUTINE FOR EXECUTING THE PUMA MOTIONS..... 96
TABLE A4.1. EXAMPLE OF THE INPUT DATAFILE................... 138
TABLE AS.1. A SAMPLE AUTO-START PROGRAM STORED IN THE

VAL IT MEMORY........ciiiiiiiiiiiiiieeienennnnnn. 141

FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

LIST OF FIGURES

. A GENERALIZED CONE DEFINED BY SEVEN PARAMETERS

L, b1, br, s1, sr, mAND ¢, m<O.........c0uuu... 15
. TWO-DIMENSIONAL GRID WORKSPACE................... 17
. OCTREE CELLS AND THEIR VALUES.............c...... 21
A GVD GRAPH OF THREE OBSTACLES................... 25

. DIFFERENCES BETWEEN A V-GRAPH AND A GVD

GRAPH OF THE SAME SET OF THREE OBSTACLES

IN THE SAME WORKSPACE.vvviinninnine e, 25
THE ALTERNATE PATH PROPOSED IN {21).............. 28
THE ALTERNATE PATH TO AVOID THE PUMA TRUNK....... 31
. ENCLOSING OBSTACLES BY RECTANGULAR HULLS......... 47
(A) ORIGINAL WORKSPACE OBSTACLES................. 52

(B) TRANSFORMED WORKSPACE WITH C-SPACE OBSTACLES. 53

. A SEARCH GRAPH WITH CONNECTION LINES MARKED WITH

"*" THAT ARE TO BE ELIMINATED FROM THE GRAPH..... 54

. OBSTACLE SIDE C-D IS A CONNECTION LINE........... 56

. A SEARCH GRAPH WITH COST VALUES ON ALL

VALID VERTICES.......0iivitrneneerennnnnenannanas 58

. DEFINITIONS OF mids, midg, midi and midz......... 62

FIGURE
FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

ul

8. A CASE WHEN ONLY midi and mide EXIST............. 62
9. path-1' WITH MODIFIED MID-SECTION BY path-1'*!... 65
1. THE PUMA 560 MANIPULATOR AND ITS WORLD

COORDINATE SYSTEM X~Y-Z. . e e o veeeeranenennnennn. 74
2. THE WORKSPACE OF THE PUMA 560 DEFINED BY THE

UPPER BOUND ENVELOPE Rmax AND LOWER BOUND

ENVELOPE RBER. vt et evneeeesene e eeeeeneeenenins 79
3. THE PUMA 560 CONTROLLER AND ITS SUPERVISOR

COMPUTER. .« .« et ettt ettt e et e e e e eie e 81
4. FINDING AN ALTERNATE PATH FOR AVOIDING THE

PUMA’S LOWER BOUND ENVELOPE Raln................. 87
5. COLLISION-FREE PATHS GENERATED IN DIFFERENT

SITUATIONS. ..\ \vvveeereeeeeeeeennnnn. e 103
6. DIFFERENT COLLISION-FREE PATHS GENERATED IN

THE SAME ENVIRONMENT BUT DIFFERENT START AND

GOAL POINTS.0'verenenennns TR 106
7. A COLLISION-FREE PATH GENERATED IN A VERY

CLUTTERED ENVIRONMENT.e'ovveuenenenenannnns. 108
8. A COLLISION-FREE PATH GENERATED IN A LESS

CLUTTERED ENVIRONMENT WHEN THE ONLY THING

TO AVOID IS THE PUMA TRUNK.......oovenenenennnn.. 109
9. EXAMPLES OF AVOIDING THE LOWER BOUND

ENVELOPE RBIR v vvovvvneenenensnneneneannnaennn, 110
.10. EXAMPLES OF CASES WHEN mids AND midg ARE

REQUIRED TO HELP THE ROBOT FIND A SAFE PATH..... 112

.11. A COMPARISON WITH THE OFS APPROACH.............. 114

CHAPTER 1. INTRODUCTION

1.1. Background And Motivation

Planning collision-free motions for robotic manipulators in an
environment filled with obstacles has been a difficult and interesting
research subject since late 70s. The objective of motion planning is
to construct algorithms that can transform a high-level goal, such as
the specification of a mechanical assembly for a robot manipulator or
a target location for an outdoor mgbile robot, into sequences of
low-level commands to the control computer to accomplish the goal.
During the past ten years or so, many motion planning approaches have
been proposed in numerous academic papers and research reports. The
problem of collision-free motion planning was, probably, first
discussed fully and generally in a series of five articles in 1983 and
1984 under the title of "The Piano Movers' Problem" (see [66]). The
catchy title was chosen to suggest the difficulty of the underlying
problem, namely, the navigation of some irregularly shaped three
dimensional objects such as pianos and motion of robots among
obstacles; These papers led to one approach to robot collision
avoidance [12]. Since the work environment of the robot is precisely
known, either exact algorithmic bounds can be found for computing a
path in this environment, or it could be decided that such a path does
not exist. However the algorithms arising out of this approach were
all impractical to implement in terms of the amount of computing time
required [16]. Nevertheless, there have been steady improvements and

significant simplification of motion planning algorithms for special

cases of the problem since this initial "Piano Movers series of
papers. Yap has written a short history in [84] of the motion planning
problemvup to 1987.

A survey [43] has recently shown that collision-free motion
planning is still and will continue to be one of the most actlve
research areas in the field of robotics. This is due to the fact that
automatic collision-free path planning of robot movement, operated in
a manufacturing environment has become very important in order to
avold the tedious teaching-by-doing (or showing) procedure and to
increase productivity. Citing arc welding as an example, the
development of practical motion planning algorithms for robot motion
for MIG or TIG welding along complicated three-dimensional paths could
speed up the operation significantly.

General robotic systems can be divided into two categories:
industrial robots (or robot arms) and mobile robots. The first
category consists of stationary robots with articulated multilinks
that are used for moving objects, handling materials and assembling
parts. There are several types of collisions in these applications.
For instance, the robot may have to come into physical contact with
the object to be moved before the desired force and movement can be
applied. When the robot makes the contact, a collision is deemed to
have occurred. Therefore, the normal operation of a general-purpose
robot may involve a series of such collisions. Another type of
collision occurs when the end-effector of a robot travels from its
initial location and orientation to the specified goal location and
orientation, and encounters obstacles in the work space of the robot.

Collisions between some part of the robot and the obstacles may occur

before the desired task can be completed. A third type of collision
occurs when two or more industrial robots work together in the same
work environment to handle complicated and dexterous tasks that only
one robot cannot do. In such a case, collision may occur between the
robots and obstacles in the common workspace that they share. A severe
collision may physically cause damage to a robotic system and its
environment. Therefore such a collision should be avoided. It is these
types of collislons that a motion planning technique is designed to
avoid. Another category of robotic systems consists of autonomous or
guided mobile vehicles, called mobile robots, which usually traverse
in two dimensions. These robots often encounter obstacles and motion
planning is also very important. In this thesis we consider collision
free path planning for stationary robots.

Collision-free motion planning 1is also known as, collision
avoidance, find-path problem, collision-free path planning, or simply,
path planning or motion planning [84]. These names will be used

interchangeably throughout this thesis.

1.2. Objective Of This Project And Organization Of The Thesis

As mentioned earlier, collision-free motion planning is one of
the most important and active research topics in robotics. A great
deal of research work has been done in the past decade and continues
today. Hundreds of papers have been written, though most of them only
deal with problems in two dimensional space, such as mobile robots
[(33] [39] [40] [41] [54] [73] [75] [85S] (88], two or three link planar
manipulators [13] [24] [62] [74] [76] [80), and Cartesian robots (the

work space may be three dimensional but only translation is involved)

{21] [32] [49]. Some 3-D applications consider only non-cluttered
situations, with only one or very few obstacles in the workspace. Many
of the existing approaches give only simulation results and do not
show how they can be implemented practically on a real industrial
robot. Motion planning algorithms for manipulators made up of revolute
Joints are particularly scarce. Another difficulty is that the
application of automatic collision-free path planning algorithms are
manipulator-specific. A general-purpose task-level programming
technique to cover a variety of robots does not exist now and may
still be many years away. Fast collision detection techniques remain
difficult to find. Other issues, such as modeling solid shapes and
planning optimal collision free paths, are also under development by
robotlics researchers in many labs and institutions.

In this thesls, collision-free motion planning in Cartesian space
of multilink manipulators, such as the PUMA 560 which has six degrees
of freedom, will be investigated. This is different from the other
more common approaches that deal with joint space path planning, as
the problem is fairly easy to handle for a two or three link planar
manipulator since the inverse kinematics transformation from Cartesian
space configuration to Jjoint space configuration is straight forward.
The project will be limited to considering the two dimensional case,
since 3-D path planning for multilink robots is a 1little bit too
complex and lengthy for an M.Sc. level project. However, extension to
3-D path planning is also discussed in this thesis.

In Chapter 2, some of the most well-known collision-free motion
planning techniques in the literature are reviewed and their

advantages, shortcomings, and limitations in practical applications

are mentioned. Chapter 3 reviews two major motion planning criteria
considered in almost all approaches, (viz.) near-minimum traveling
time and shortest traveling distance. Chapter 4 introduces a new
collision-free motion planning and path searching algorithm. This
algorithm will find the shortest collision-free path in a
two-dimensional environment for a circular hand that is shrunk to a
point among grown obstacles enclosed by rectangular hulls. This
algorithm will reduce significantly the computation of the grown
obstacles and the path searching time without wasting much free space.
It may be extended directly to applications of three-dimensional
motlion plarning for mobile robots using the articulated cylinder
concept [73] to represent the free space, and Cartesian type of robots
using an alternative strategy introduced in [49]. In such a case, the
3-D robot $and can be modeled as a sphere [21] [73] and the obstacles
can be modeled as tetragonal prisms. Chapter 5 shows the application
of this algorithm to a PUMA 560 manipulator in two-dimensional space.
The vertical z coordinate is kept constant at a specific value.
Chapter 5 also includes the communication between the supervisor
computer (SUN 3/160) and VAL II controller. Next, comparisons of the
new approach with others are made. The major method compared is the
octree-space approach introduced in [32]. In the last chapter of this
thesis are some conclusions and suggestions for further research based

on the experience gained in the present research proJject.

CHAPTER 2. COLLISION-FREE MOTION PLANNING

2.1. Definition Of Collision-Free Motion Planning

The task of programming robots for collision-free motion plaaning
is widely recognized as a difficult activity, even in the case of the
simplest applications, such as a "pick-and-place" operation among
obstacles. This is mainly because [8] that: (a) the find-path problem
is not decomposable and (b) it is difficult to plan collision-free
motions that 1involve three-dimensional space rotations. Canny has
written a very comprehensive Ph.D thesis {11] to show the complexity
of robot motion planning, for which be received the ACM Doctoral
Dissertation Award of 1987. The definition of the collision-free
motion-planning problem, in the simplest form, is to find an optimal
path from a specified starting robot configuration to a specified goal
configuration that avoids collisions with a known set of stationary
obstacles in the workspace of the robot. In other words, given a
moving object, such as the robot end-effector or gripper, with an
initial position (location and orientation), a desired goal position,
and a set of obstacles located in the work space, the problem is to
find a continuous path or a piecewise linear path for the object from
the initial position to the goal position which avoids collisions with
all obstacles along the way. Typically, the obstacles and the moving
object are modeled using convex polygons (polyhedra) or the union of
polygons (polyhedra). In general, the motion planning problem involves
two aspects: characterizing the constraints and searching for a

solution which satisfies these constraints. This problem [S1] is very

much different from, and more difficult to handle than, the collision
detection problem, 1.e. detecting if a known configuration of the
robot or if the robot path would cause a collision. Motion planning is
also different from real-time (on-line) obstacle avoidance, 1.e.
modifying a known robot path constantly so that it will avoid
unforeseen obstacles real-time.

The workspace, Q, of a robotic manipulator is defined as the set
of all three dimensional points that can be reached by a reference
point located on the robotic end-effector without violating the
physical constraints of the manipulator. The reference coordinate
systen is called the world frame and is usually located at the base of
the robot. In motion planning, Q is often described by swept volumes
[6], cellular arrays [72], octree cells [53], configuration space
models [49], hierarchical orthogonal subspaces [82}, Voronot regions
(11] [38], and analytic surface equations. If there are obstacles in
the workspace, then the end-effector can only traverse in a subspace
that is not occupied by any obstacles. This subspace (see Figure 2.1.)
Is called the free space, fQree, of the manipuiator. The description
of Qfree may be the same as or different from that of Q. The
techniques of configuration space [48], generalized Voronoi diagram
based space [11] [75], generalized cone-shaped space (also called
decomposed free space) (7], constrained space [56], artificial
(potential) field space [40], and octree free space [19] [31] [32] are
also used to describe free space. The find-path problem is actually
the search of a reasonably optimal collision-free path in the free
space using graph searching algorithms and heuristics under certain

criteria.

workspace Q

///%7

Figure 2.1. The workspace Q2 and the freespace Qfree.

2.2. Configuration Space (C-space) Approach

Configuration space (C-space) approach was one of the earliest
and most well-known techniques of collision-free motion planning.
Configuration space concepts have been a central focus in path
planning research for many years. Many of the later developed
algorithms are based on this concept [S] [9] [10] (19] [23] [25] [26]
{351 (SO} (87]. It is a complete method that is ready to be implemented
for further applications. C-space approach was first introduced by
Udupa in 1977 in his Ph.D dissertation (76]). Udupa formulated thg
obstacle avoidance problem for a planar 2-link arm in terms of an
obstacle transformation which allows shrinking the moving arm by some
amount and growing the obstacles by some corresponding amount. He used

only rough approximations to the actual C-space obstacles and did not

explicitly show how to represent constraints on more than three
degrees of freedom.

Lozano-Pérez then furthered Udupa's 1idea in 1981 {[48). The
configuration of a moving object A is any set of rarameters that will
give a complete specification of the position of every point on the
object. Configuration space is then the space of all configurations of
the moving object. The set of Jjoint angles of a robot manipulator
constitute a configuration. Therefore, the robot Joint space can form
a conflguration space, whereas the Cartesian parameters of a robot's
end—ef‘fector' do not usually constitute a configuration because of the
non-uniqueness of the inverse kinematics. C-space can be defined (55]
as the set of Joint configurations (61,62,...,6n) that do not violate
Joint limitations, ©. If B is an obstacle in the work space] of a
manipulator, then obs(B) is defined as the set of all configurations
which will cause collisions of B with any part of the manipulator. We
call obs(B) the configuration space transform of the obstacle &, (also
called C-space obstacle). If Bi, B2, ..., Ba is a completi: list of
obstacles in 2, then ffree = 8 - obs(B1) - obs(B2) -...-~ obs(Ba) is
the free space portion of the configuration space. We arc to determine
those parts of the Qfree which a reference point {:wsueily a reference
vertex, rv, € 4) of the moving object can accumy *chout colliding
with any obstacles. A path is then found for the e through firree.

Another way to specify the configuration of a rigid solid
polyhedron in R® is to define its location and orientation by a single

six-dimensional vector

V=I[xyzoat] (2-1)

where x, y, 2z, are the coordinate values of a selected point of the
polyhedron in R’ and o, a, t, are the coordinate values of the
object’s Euler angles ([64]. The configuration of a k-dimensional
polyhedral object A can be regarded as a point xeRd, where d=k+kC2; k
parameters are required to specify the location of rv, in R* and kCZ
are required to specify tlie orientation of A. The d-dimensional space
of configurations of A is denoted C—spaceA. A in configuration x is

(A)x. The C-spa.ceA obstacle due to B, denoted COA(B) is given as:
COA(B) = {x € C‘-spaceAl (A)dx nB=o2}, (2-2)

which means that if x € COA(B) then (4)x intersects B.

In general, a d-dimensional configuration space can be used to
model any system for which the position of every point on the
object(s) can be specified with d parameters. Lozano-Pérez designed a
method [SO] using the properties of convex polygons and polyhedra [2]
and the set sum operations to map the obstacles in 0 into its
configuration space. These C-space obstacles represent those
configurations of the moving object that would cause collisions. Qfree
is then defined to be the complement of the C-space obstacles.

Conceptually, we can view Lozano-Pérez's configuration space as
shrinking the moving object, a convex polygon or polyhedron, to a
point while at the same time expanding the obstacles to the shape of
the moving object. Thus, Qfree in Q can be easily identified.
Lozano-Pérez then used the visibility graph (V-graph) to represent all
the safe paths that can be searched. The V-graph connects those
vertices of obstacles together with the start and goal points that can

see" each other, 1l.e. those vertices that can be connected by a

10

straight line that does not 1intersect any of the obstacles as
illustrated in Figure 2.2. V-graph is a convenient representation of
the safe regions because it defines one-dimensional subsets of the
configuration space that can be searched using a traditional
graph~search method, such as A algorithm, to find the shortest path.
More details about V-graph searching technique can be found in [48].

The V-graph method always generates a path very close to
obstacles which may lead to certain danger of collisions as pointed
out in [36] ([73]. Also, this approach is computationally expensive,
because obtaining C-space obstacles and then mapping them into a
configuration space is a very time-consuming process. Each time start
and goal points are changed, the V-graph has to be recomputed. The
order of computation complexity is 0(nZ) [81], where n is the number
of vertices. Fortunately it turns out that not all of the n vertices
have to be necessarily included in the V-graph. In [86] an algorithm
aimed at reducing n by using only "necessary" obstacles in a
subvisibility graph is given in order to speed up the cofaputation.

A 2-D C-space obstacle COXY(B) can be computed in time O(u+v),
when the moving object A is a u-sided convex polygon and the obstacle
B is a v-sided convex polygon. For 3-D convex polyhedra 4, B ¢ IRS,
each with O(n) vertices, COXY*(B) can be computed in time O(nzlogn)
[S0]. A new method has been recently introduced in (5} for rapid
computation of C-space obstacles using the set union property:

Coa(Br U B2) = coa(B1) U coa(Bz) (2-3)

if there are two obstacles, B1 and B2, and

k
coa(D) = U con(B); D=UnB (2-4)

11

Goal

N

Start

Figure 2.2. The visibility graph of three obstacles.

12

if there are k obstacles in the manipulator workspace. It suggests
that by doing so, the collision avoidance problem is reduced to
navigating a point in C-space within the set -COA(D). A so-called
point translation property is used to solve the transformation problem
from Q to C-space. A summary of the newly proposed methods for
searching the V-graph efficiently can be found in [87].

Lozano-Pérez’s C-space approach works well when the moving object
is not allowed to rotate and can be easily applied to motion planning
of Cartesian robots. If a three-dimensional solid is allowed to
rotate, a complicated slice projection method [48] has to be used to
approximate the high-dimensional C-space obstacles. The computation of
C-space would be even more difficult if the manipulator has revolute
Joints. However, in many pick-and-place operations, we can ignore the
rotational degrees of freedom because the rotational resolution is not
really required [21]. For instance, in érder to simplify the problem
the orientation of the gripper can be kept constant throughout the

entire pick-and-place operation.

2.3. Free Space Decomposition (FSD) Approach

Instead of determining the corners (veftices) of objects that are
visible to each other, Brooks [7] proposed an algorithm that isolates
free areas in the form of overlapping union of generallized cones that
are descriptions of swept volumes of Qfree in two dimensions. This
makes it easier to capture the essential effects of translating and
rotating a body through Qfree, which has an advantage over the C-space
method. A freeway path is formed between every pair of obstacle sides

which face one another. This also includes the sides of the workspace

13

boundary. Each freeway is characterized by a straight spine which runs
along its middle and by its width which varies over the range t ¢ [0,
L] and is parameterized along the spine. A freeway is a generalized
cone with length L. The maximum radii of this cone away from the spine
are b1 and br for the left and right sides of the spine at the big
end. The minimal radii are s1 and sr at the small end of the cone.
Figure 2.3. shows the seven parameters (L, bi, br, si, sr, m, and c)
which completely specify the shape and size of the generalized cone.
At any point along the spine, the width defines a range of the
orlenfations of a moving object (which is enclosed by a bounding
rectangle aligned with the spine of a concerned cone) for which there
is no collision. This leads to the ability to find paths that require
rotation maneuvering.

Collision-free path planning is much simpler in twoc dimensions
than in three. For this reason, Brooks [8] suggests looking at 2-D
cuts of the work space at a number of 3-D elevations. Brooks’ approach
works well except that it cannot find possible paths in extremely
cluttered situations as there are insufficient generalized cones to
provide a rich choice of paths. Because this approach plans motions
along the axes of free generalized cones, optimality is therefore
lost. This approach also suffers from being computationally expensive,
because the generation of 2-D generalized cones needs a computing time

complexity of O(ns), where n is the number of edges to be traversed.

2.4. Hierarchical Orthogonal Space (HOS) Approach

Searching for a collision-free path in a 3-D space can be quite

14

- " Ya M= tanax

'igure 2.3. A generalized cone defined by seven parameters

L, b1, br, s1, sr, m, and c, m<0.

15

difficult and time consuming. Some of the existing approaches [8] [82]
[83] avoid the pitfalls of trying to extend a 2-D algorithm to 3-D by
reducing the 3-D problem into one or more problems in 2-D and solving
these 2-D problems using their 2-D algorithms. Similar to Brooks’
method of searching 2-D freeway paths at a number of different levels,
Wong and Fu [82] introduced a method that applies a variation of the
visibility graph method [48] to three orthogonal 2-D projections of
the 3-D workspace. These three orthogonal projections are the x-y,
x-z, and y-z subspaces. This approach adopted the pseudo obstacles
concept from [49] to expand the obstacles in the workspace and to
shrink the object to be m ved to a reference point on the object.
Instead of connecting the vertices of the grown obstacles to form the
visibility graph, the workspace is divided up in a two-dimensional
grid. This grid pattern provides evenly-spaced nodes in each of the
three orthogonal 2-D projections (see Figure 2.4). All the nodes of
each projection, Including those within grown obstacles, are Jjoined to
form three visibility graphs; one for each projection. Nodes which are
within an obstacle in one projection may be outside in another
projection, so they must still be considered in the three-dimensional
find-path search.

Breadth~-first algorithm is used in this approach to search for
the nodes in each of the three visibility graphs. Beginning from the
start and goal positions to connect to their nearest 2-D nodes which
are called the start and goal nodes, a tree with its children of all
2-D nodes is built. A 2-D node can only be included in the tree once.
Different hierarchical 1level p wuses different x-y coordinate.

Collision-free path searcﬁing based on the breadth-first algorithm is

16

8 4
? ¢
H 3

s 30

4
> i
v 2 (

L 3 /

3 ;T
2 H :
‘K\\ ///’ +H Goal
. HE e
Aarx)
0 0
Peg 0 1 [}
Pes o 1] 3 . 'Y s 1 s

Primitive path segment

Figure 2.4. Two-dimensional grid workipace. 0:2~D nodes

introduced at level p=2. X:2-D nodes introduced at level p=3.

17

actually done by connecting the so called primitive path segments. At
each step of the search, the results from the three projections are
compared. If the primitive path segment is collision-free in any of
the three projections then it is collision-free in the
three-dimensional model and the search may proceed from that node.
Otherwise that primitive path segment is eliminated from the graph and
alternate primitive path segments are tested. The search is continued
until the goal position is reached. The information from the three
orthogonal graphs is combined to give the complete collision-free path
in three dimensions.

HOS approach may reduce the amount of path planning time quite
significantly compared with the C-space approach, but it cannot
generate an optimal (shortest) path. However, it could be argued that
the time saved in traveling the shortest Euclidean distance path may
not be Jjustified by the long period of time required in planning the
path, and so far there has been no efficient algorithms for finding
optimal paths among 3-D obstacles. As pointed out in [49], the most
important heuristic for a space representation is to avoid excess
details on parts of the space that do not affect the operation, which
makes this approach particularly useful fbr planning gross transfer
motions of a moving obJect. Another drawback of HOS is that it is also
difficult in practice to use three orthogonal cameras in a cluttered
environment to get the three 2-D projections. The occluding effect may
be so severe that much of the information will be lost in one or more
of the orthogonal subspaces. It is also not clear how HOS can deal
with rotations of the moving object and it will be very difficult to

implement it to plan motions for manipulators with revolute joints.

18

2.5. Octree Free Space (OFS) Approach

Octrees (or quadtrees in 2-D cases) have a number of properties
and have led to many applications, including cartography, computer
graphics, computer vision, robotics , computer alded design, etc....
It is mostly useful in image processing and pattern recognition [53]
[65]; Recently, it has been introduced as a means for fast 2-D and 3-D
collision-free motion planning [18] [31! [32] [62] (88]. It relies on
the representation of the free space by an octree. An octree [53] is a
recursive decomposition of a cubic space into subcubic spaces.
Initially, the whole space is represented by a single node in the
tree, called the root node. If the cubic volume is homogeneous
(completely filled by an objJect or completely empty), then the root is
not decomposed at all, and serves as the complete description of the
space. Otherwise, it is split into eight equal subcubes (octants),
which become the children of the root. Each octant can be recursively
divided into octants leading to a tree structure of order elght. Each
node of the tree is labeled according to its position with respect to
the solid it represents: exterior (EMPTY), interior (FULL), or
recursively decomposed (MIXED). This process is continued until all
the nodes are homogeneous, or a solution has been found, or it is
determined that no solution can be found, or all MIXED cells are
smaller than some prespecified size, i.e. until some resolution limit
i1s reached. Because of their regularity, octrees are likely to provide
the simplest and fastest algorithms among purely enumerative schemes
of motion planning.

Based on the configuration space method in [49], Faverjon [19]

19

proposed a hierarchical description of the free space for the first
three links of a manipulator by means of an octree. This provides a
rough approximation for planning gross motions of the manipulator,
which is believed to be sufficlient for most applications. Faverjon did
not describe clearly how the fine motion of the hand should be
performed. The obstacles are also grown to the size of COa(B) as
discussed In Section 2.2. As shown in Figure 2.5, a cell of the octree
is either free (01), occupied (11) or partially occupied (10) by
obstacles. This hierarchical structure of the octree provides the
basis for a very efficient search for a collision-free path. However,
this algorithm is inherently exponential in the number of degrees of
freedom of the robot, which makes it impossible to deal with high
dimensional cases, such as robots with many links or redundant robots
that are used to perform difficult tasks. Also, Faverjon pointed out
in [20] that this method uses a conservative approximation of the free
space in the discretized configuration space and hence cannot produce
motions in very cluttered environment.

Herman [32] proposed an interesting hybrid path planning
technique that uses both hill-climbing and A algorithms in searching
for a collision-free path in a 3-D octree space which represents the
workspace of a Cartesian manipulator. The path searching algorithm
works as follows. Beginning at the start point, hill-climbing search
is performed. The hill-climbing search uses a cost function whose
value at any point (or node) in the free space is proportional to the
Euclidean distance from the point to the goal, and whose value at any
point inside or on the surface of an obstacle is infinite. This will

always allow the robot to move to a neighboring point whose cost is

20

Figure 2.5. Octree cells and their values.

21

the minimum over other neighboring points. Hill-climbing only rec.:i 33
information local to each robot position and therefore it is we»y “ast
in deciding the direction in which the robot shwuld proceed. Howev:r,
it suffers from a vital problem: the robot can easily get stuck at a
local minimum, that is, a point that has a lower ne¢st than any of its
neighbors. Once a local minimum is reached, Au search is invoked,
beginning at the point where hill climbing got s uck. A‘ performs a
global search through the entire graph representation of the octree
space. Portions of many different paths may therefore be explored
before a solution path is finally found. Hence, A' is computationally
a more expensive search than hill-climbing. The heuristic value (h) of
A' search in Herman’'s approach is the Euclidean distance from a point
to the goal point. After A' has got the robot out of the 1local
minimum, hill climbing !s invoked again because the robot cannot
return to the position where the local minimum occurred.

Although Herman’s approach was only a proposal and has not been
implemented in a practical operation; it should work well for mobile
and Carteslian robots. However, it is difficult to apply it to
manipulators with revolute joints, such as the PUMA robot which has a
spherical workspace instead of a cubic octree workspace. Just as in
the case of the HOS approach we have discussed earlier, this algorithm
also cannot find a minimum cost path from the start to the goal peint
because hill-climbing may often lead the robot away from such a
shortest path. It is also difficult to determine a resolution limit of
the decomposition of the octree space so that the search for safe
paths does not have to be infinite, and that the so called fast, 3-D,

collision-free motion planning technique is always superior to others.

22

2.6. Generalized Voronoi Diagrams (GVD)

The Voronoi diagram has proved to be a useful tool in a variety
of contexts in computational geometry. Besides the many uses mentioned
in [46] of the Generalized Voronoi Diagram (GVD), it can also be used
to represent free space [11] [38] [54] [59] [60] [73] [75]. The
Voronoi diagram is often described as a strong deformation retract of
free space so that free space can be continuously deformed onto the
diagram. This diagram is complete for path planning, i.e. searching
the original space for paths can be reduced to a search on the
diagram. The Voronoi diagram has dimension one less than the original
space which we use to describe the workspace of a manipulator.
Reducing the dimension of the set to be searched usually reduces the
time complexity of the search. Also the diagram leads to robust paths,
i.e. paths that are maximally clear of obstacles (although this will
lose the optimality of the path).

A generalized Voronoi diagram is defined to be the locus or the
set of points which are equidistant from two or more obstacle
boundaries including the workspace boundary. In other words, it is the
locus of maximally distant points from the obstacles. The first
proposed use of the GVD for motion planning appeared in a Ph.D thesis
in 1879 by P.F. Rowat, who used it as a heuristic for motion planning
in a digitized robotic workspace [84]. It was then used by Canny [11]
for motion planning among a set of obstacles in configuration space
called C-Voronoi diagram, and by Takahashi [75] for planning a
rectangular mobile object in a 2-D planar workspace with polygonal

obstacles.

23

In [75], a GVD representation of free space is first constructed
in order to reduce the search space for finding a collision-free path
for the rectangular object. To conduct an efficient search, the GVD is
converted to an equivalent graph of nodes and arcs. Figure 2.6 is an
example of a GVD graph where the small circles represent nodes, and
the lines connecting them represent arcs. In the GVD graph there are
three types of nodes: (1) junction node, is a node where three or more
arcs of the GVD intersect. (2) terminal node, is a dead end of a GVD
arc. Since the workspace itself can be regarded as a hole inside of a
large' obstacle, the vertices of a rectangular workspace are also
terminal nodes. (3) pseudo-node, is a source node or goal node. Source
and goal nodes are actually artificial nodes that are inserted in the
graph near the source and goal positions of the moving object,
respectively. Source and goal nodes represent all entry and exit
points at which the moving object gets onto and off the GVD graph.

The arcs of the GVD graph are the sum of lines connecting pairs
of nodes. Each of the arcs consists of a sequence of piecewise linear
segments between via points which have characterized parameters (x, y,
R) where (x, y) represent the coordinates of the via point and R is
the radius of the GVD at the via point.

As a convenient way of representing free space, GVD has its
similarity with the V-graph method. They all define one-dimensional
subsets of the configuration space that can be easily searched. Figure
2.7 1illustrates the differences between the GVD and V-graph
representations of free space of the same set of obstacles. Once the

GVD of the free workspace is obtain:d, the shortest path on the GVD

24

having an adequate radius can be found using graph theory techniques
(27]. The motion heuristics will depend upon the size and shape of the
moving object and the environment of a specific motion planning case.
Takahashi restricted his attention to the case when his mobile object
is a rectangle or can be enclosed by a rectangular hull. Like the FSD
approach, GVD technique can also handle rotations of the moving
object. The final motion is smoother than the FSD method in the sense
that it follows parabolic curves, stays far away (sometimes too far
away) from the obstacles when possible, and rotates as it translates,
not Just at isolated points in the workspace. Furtiermore, unlike the
FSD method, the GVD technique can be applied to difficult motion
planning problems which have cluttered workspaces, although generating
the GVD graph seems quite time consuming (O(n®) [75]). As in the FSD
method traveling along the straight spine that is in the middle of the
generalized cones, GVD method can never find th: shortest
collision-free path.

Canny [11] has implemented an algorithm for constructing the
simplified Voronoi diagram for a 2-D configuration space. An arbitrary
moving polygon is allowed to rotate as well as translate amidst

polygonal obstacles in such a C-space.

2.7. Alternate Path Method (APM)

There are many motion planning algorithms that can be easily
applied to Cartesian robots and mobile robots, such as some of the
ones we have reviewed in previous sections. The problem here is
simpler than dealing with a manipulator which has revolute Joints

because the joint space of the whole manipulator corresponds to the

27

configuration space for motion of the end-effector alone and no
transformation between Cartesian and joint space is needed.

Fletcher Iimplemented another method for planning a Cartesian
manipulator [21] in an M.Sc. project. His algorithm is mainly designed
Tor a gantry type of robot moving in a lightly cluttered environment;
only one obstacle is shown in his example. The robot gripper is
enclosed by a grown sphere, which makes motion planning easier since
the rotations of the hand can be ignored and the only consideration
left is the hand’'s transfer movements among obstacles. To simplify the
problem further, all the obstacles are also modeled by enclosing
spheres. The algorithm works as follows.

First, the hand moving in a straight line from start to goal is
considered as a swept-out cylinder with hemisphere ends (because the
hand is modeled as a sphere). Then, the collision detection is simply
a test for intersection between a cylinder and a sphere for each
obstacle. This is similar to other pseudo obstacle concepts [48] [82],
that is, the obstacle spheres are grown by the radius of the hand
sphere and shrink the hand to a point. Thus, the swept volume (i.e.
the hemisphere-ended cylinder) is now reduced to a straight line. If
this line intersects any of the grown sphér'es, a potentia’ collision

has been detected and an alternative path must be propose: 'he next

thing 1s to determine an alternative collision-free path i . in
Figure 2.8. Two subpaths, Ps2Pm and PmoPg, form the new <all - v “pee
path. Fletcher showed that the two important midpoints B th

obstacle, Pa and P?, can be calculated as:

. AP (P1-Ps)
Y P

Pi = APT AP] + Ps, where AP=Pg-Ps \'=

28

New ri r
enve? Ppe

Alternate pat
ope (coliision’free)
Pm
- ~ subp
— ~ o a
T ouopat? p0 ~Jh Goal
— - S i -~

Ps e==

Start

Gri
envgfgge

Region of
Inferoes

ersection Obstacle |

Figure 2.8. The alternate path proposed in [21].

29

and

Pn=rqg+ri +f {2-8)

where rg and ri are the radii of the hand and the ith obstacle, and f
is a parameter to be determined to ensure the clearance of the hand
from the obstacle. This algorithm 1is fairly simple and easy to
implement, but it is not suitable to be used for planning motions in a
constrained space which has larger grown obstacles than the grown
sphere of the hand. In such a case, we would suggest a better
alternate path that consists of the two tangent line segments and the
arc between the two tangents of the grown obstacles (dashed line in
Figure 2.9), which is what we have used in our algorithm to avoid the
lower bound of the PUMA envelope, namely, the trunk of the PUMA robot.
This alternate path is always shorter and smoother than the one

introduced by Fletcher, and requires very little computation time.

2.8. Discussions And Summary

We have discussed some of the most popular collision-free motion
planning algorithms. It can be easily understood that motion planning
in a three-dimensional environment for manipulators with revolute
Joints is a very difficult task. Most of the approaches we have
discussed are complete and ready to be implemented mainly on Cartesian
(gantry) and/or moblile robots. There is still no general algorithm
that will solve the find-path problem efficiently in a three-
dimensional space. The collision-free motion planning algorithms which
we have seen are different from manipulator to manipulator. The use of

a particular approach depends entirely on the specific application and

30

Arc section

New z]lternate path
used in our algorithm

Tangent
po gts

Grip

Region of
envefg;e

intergection

Figure 2.9. The alternate path we propose to avoid the
PUMA trunk. It is always shorter and smoother than

the one introduced in [21].

31

the environment. Lozano-Pérez’s configuration space approach is
well-known and has been adopted by many recently developed motion
planning algorithms. Shrinking the robot end-effector to a common
point is a general practice for simplifying the problem and allow less
computational effort. Searching in a V-graph can often lead to the
most optimal path although it is quite time consuming. Octrees and
Voronol diagrams are good substitutes of the C-space description of
the robot free space. The search time for a collision-free path is
often less than that of the C-space but the path may never be optimal
(shortest Euclidean distance).

There are many other less significant approaches in this research
subject. They are artificial potential field approach by Khatib ([40]
and Warren [80], tube concept approach by Suh and Bishop [74],
intersecting convex ;hapes by Singh and Wagh {71], sequential search
strategy by Gupta [28], free space characterization approach by
Hasegawa [30), rectilinear visibility partitioning method by Jun and
Shin [37], constrained space method by Muck [56]1, and so on. They are
not as well-known simply because they are new and have not been tried
by industrial robots for motion planning purposes. A detailed
literature review of algorithmic motion planning in robotics can be

found in {67] and [84].

32

CHAPTER 3. COLLISION-FREE MOTION PLANNING CRITERIA

3.1. Introduction

There are numerous optimization problems in robot motion
planning. Most of them consider the following performance criteria:
path plannihg time, travelling time, power consumption, distance to
travel, square of velocity, Jjerk (rate of change of acceleration) of
the desired trajectory, and joint torques. Path planning time depends
heavily on the motion planning algorithm and the complexity of the
robot work environment. The square of velocity is proporticnal to the
kinetic energy. The jerk of the desired trajectory which is the third
derivative of position was found recently [45] to adversely affect the
efficiency of the control algorithms and therefore it should be
minimized. Minimizing the Joint torques and Jerk will produce a
smoothing effect favorable for the Jjoint motors and helps to avoid
excitation of elastic vibrations in the robot systenm.

There have been very few attempts to optimize the robot Jjoint
torques when collision-free motion planning is the major concern. This
is due to the highly nonlinear nature of the manipulator’'s dynamics
and the difficulty in modeling the dynamics precisely. Maximum speed
and acceleration of a manipulator's arm vary with its position,

payload, the control algorithm and the robot configuration.

3.2. Overview Of The Optimal Path Planning Problem
Time used for both planning a path and travelling along a

specified collision-free path represents the productivity of a

33

manipulator. Determining the path planning time is usually considered
as an algorithmic problem in the off-line programming part of motion
planning. It depends on the efficiency of the selected path planning
technique. However, in the case of travelling time of a robot, it is
the on-line path tracking or the robot Jjoint torque control and
switching algorithm which is often built into the robot controller
that determines the performance of the manipulator. Very little work
has been done in terms of a complete minimum travelling time solution
to the motion planning problem that will also avoid collisions between
the mﬁnipulator and obstacles in the workspace. Some work has been
done on near minimum-time or global optimal time or suboptimal time
control for motion planning [13] ([18] [68]. To achieve time optimal
control of the robot, utilization of the maximum Jjoint torques is
inevitably important. In most cases, time optimal control problem is
the same as the problem of achieving the optimal travelling time,
which may not always yleld the shortest distance solution.

For most nonlinear systems, the well-known Taylor expansion or
some other techniques can be used to linearize the system dynamics.
However, this is very difficult in the case of an n-joint robot since
there are 2n coupled state equations that are non-linear coupled
functions of the positions, velocities and payloads. In order to cope
with the nonlinearity and joint couplings in the manipvlator dynamics,
the model parameters of the manipulator are updated at each sampling
interval on the basis of feedback information of positions and
velocities. Then the averaged dynamics [42] concept 1s used in the
design of an optimal controller. Since the switching curves are

derived for the current interval and then updated at the next sampling

34

interval with feedback of position and velocity, the approximation
error at a sampling instant |is implicitly compensated, and the
averaging process can effectively handle the nonlinearity and Joint
couplings in the manipulator dynamics. This technique is both simple
and fast. Therefore it can be very useful for collision-free motion
planning and even real-time implementations. Next we shall investigate
two important optimal motion planning problems: 1) near minimum-time

problem (18] [42], and 2) shortest distance problem [27] (58] (e8].

3.2.1 Near Minimum-Time Motion Planning

Planning a near minimum-time motion involves the f'ollowing
considerations [18]: First, the robot end-effector is required to move
from an initial to a goal position in minimum travelling time. Second,
there are obstacles in the workspace with given geometrical
configurations and 1locations. Third, there are control torque

constraints for each joint, -UinsUis+Uim, where i is the ith Joint.

3.2.1.1. Averaged Dynamics Method For Dynamics Linearization
For a simple n joint manipulator, the Lagrange-Euler method ([64]

can be used to describe its dynamics.
U= D(g)g + H(g,q) + G(g) + F (3-1)

where g, é, q are nx] vectors whose ith elements are the ith Joint
variable qi, Joint velocity &1, and Jjoint acceleration &1.
respectively. U is an nx! torque vector whose ith element is the
generalized control torque for Jjoint i, Ui. D(g) is an nxn symmetric

inertial matrix. H(g,q) is an nxI coriolis and centrifugal torque

35

vector. G(g) is an nxl gravitational torque vector. F is an nxl static
friction vector which is often ignored for noncompliant motion, i.e.,
free-space motion without the end-effector in contact with any object
or no force control on the end-effector.

If we disregard the friction terms, equation (3-1) can be

rearranged into n equations as

a1 = S{@U + &1(g,q,U) for i=1, 2, ..., n (3-2)
where
n

n
¢i(g) = Dii(g), &€(g,q,U) = ¥ Dij Uy - ¥ Di}(Hy + Gy) (3-3)
1=1, J#1 j=1

and DT}(g) is the (i, j)th element of D"l(g). £1(+) represents the
coupling effects from other Jjoints, coriolis, centrifugal, and
gravitational torques. Both {1 and &1 are nonlinear functions of the
manipulator position, velocity, and input torque.

For the case when {1 and &1 are time-~invariant, the averaged
dynamics method [42] can be used to average the behavior of
manipulator dynamics by assuming both &1 and €1 to be constant over
one sampling interval, and modifying them at each update time to
include the preceding nonlinear dependence on gq, é_. and U. This update
is continuous if we know the present and final state information. The

result is the following set of uncoupled simpler equations:
@ =310+ & for joint i, i=1,2,...,n. (3-3)

Ci and £ are calculated as follows. (1) compute &i(t) and &i1(t) at
time t using equations (3-3) with the current states qi(t) and qi(t),
and the previous input, Ui(t-At), where At is the sampling interval

and t 1s the current time for Jjoint i. (2) compute &Zi(tr) and €i(ts)

36

using the same method as before but using the final target states.
Note that the final state of the manipulator is often known and
therefore {i(tr) and €1(tr) can be determined a priori. (3) compute i

and £1 by the arithmetic average of these values at time t

T = Slthecilte) g - SElatt0

(3-5)

3.2.1.2. Minimum-Time Control (With No Obstacles)

We will first ignore the obstacles in the workspace and apply the
averaged dynamics method to our problem to linearize the dynamics of
the manipulator. Each Jjoint of the manipulator is driven by an
electric motor or by a hydraulic motor, and naturally there exist
certain limits to the magnitudes of driving forces or torques, 1i.e.

-Utm s Ut s +Uinm , i=1,2, ..., n (3-6)
Subject to (3-4) and (3-6), we can compute the input torque Ul which
moves the system from the initial state to the final target state in
minimum time for joint i.

Equation (3-4) can be represented by state variables using a

[X11] |'Aqa 1
2n-dimensional state vector Xi= X =l . as [28]:
21 qi

X1 = X, (3-7)

Xa1 = Tl + & (3-8)
Solving (3-7) and (3-8), we get

X1 = (G + Et%/2 + X21(0)t + X11(0) (3-9)

X2t = (SiU1 + E1)t + X21(0), (3-10)

Then the ith joint trajectories can be computed as

x3:1 - %81(0)
2(51U1 + &)

X11 - X11(0) = (3-11)

37

To achieve minimum-time control, the maximum Joint torques at each
direction should be applied, i.e., U:=+Uln, or Ui=-Utn. The switching

curves can then be determined as follows [i8]:

1 2

-1 Xu = — [.] for Ui=+Uin (3-12)
2 + CiUim + €1
1 2

¥ Xu = [. } for Ui=-Uia (3-13)
2 - &iUim + &1

In the state plane of (X1, X21), 7- is equivalent to X21=<0, 7+ is

equivalent to X21=0. Thus, the minimum-time bang-bang contrecl law is

ol = {:Um if X21 s 0 (3-14)
Ulm if X21 2 0
And the resulting trajectory for the ith joint is
2
X11 = x%;_— Xaa(o_)_ + X11(0), if Ui=+Uinm (3-15)
2(+Z1Uim + &)
i = X8t - X0 X11(0), iIf Ui=-Utm (3-16)

2(-CiUim + &)
where X11(0) is the initial Joint position and X21(0) is the initial
Joint velocity for Jjoint i.
Finally, the minimum execution time t:r for the ith Jjoint to
transfer the manipulator from the initial state Xi{0) to the final
state Xi(f) (assuming the final state is the origin of the state

plane, viz. X1(£)=0 or q:(f)=0 and qi(f)=0) may be determined as [18]:

tir= (3-17)

. [[17(-C1U1a+E1)-1/(Z1U1n+&1) 1C"=X21 (0)/(-T1U1m+E1), 1If X2120
[1/(T1U1a+E1)-1/(-T1U1a+E1) JC*-X21 (0)/(E1Uim+E1), if X210

where

"= - d12X11(0) =351 (0)/(~TsUras 1) 1 (EFUFa-ED) /281 Ut |,

38

C*= - d12%11(0)-%31(0)/ (T1U1w+E1) | (BE-E7URm) /21Ut |,

and the initial state is

,—Xu(o) 1 rQl(O) 1

KO = worto) = qilo)

3.2.1.3. Near Minimum Time Control (With Obstacles)

Now let’s introduce obstacles into the manipulator workspace. If
the positions (locations and orientations) of the obstacles are known
(usually in Cartesian space), they can be transformed into Joint space

using the inverse kinematics formulation [22] as

Obs(x,y,z)

< Obs(q1,q92,...,qn). (3-18)

If Obs(g) represents the set of Joint variables which belong to the
obstacles, then Obs(g) may be considered as geometric constraints of
the manipulator, i.e. Obs(g) is the inadmissible region in the state
space. The seiution for obs(g) is usually not unique for manipulators
with more than two Jjoints, therefore, obs(g) should include all
solutions for a given obs(x,y,z).

In real applications, to achieve minimum-time control over the
entire work space is next to impossible if the manipulator has
geometric constraints. However, if we can apply the maximum Joint
torque throughout the whole collision-free path, it may be reasonable
to consider the shortest distance path (minimum norm) to be a so
called near nminimum-time trajectory. This near minimum-time
collision-free path consists of some straight line segments in the
Joint space that avoid all the inadmissible regions obs(g). The

minimum-time control law introduced above can be used for each segment

and it applies the maximum Jjoint torque (3-14) with appropriate sign
of switching wnich can be determined from equation (3-12) and (3-13).

Suppose trmax is the maximum execution time for all the Jjoints,
tr = max(tif, ter,..., tnf), (3-19)
max

where tir is the execution time for the ith joint as described in
equation (3-17), then the minimum-time for all joints to finish their
motions from its initial state X(0) to the final state X(f) at the
same instant can be taken as tfmx. The trajectory for eaqh Joint will
have the same shape [18] in the state plane as described in (3-15) and
(3-16) with the same execution time trnax . The resulting trajectory
of the manipulator in the Jjoint space is then a straight line.

Summarizing the above, the determination of the near minimum-time
collision-free control algorithm involves the following steps [181]:

(a) Solve the inverse kinematics problem (3-18) to determine the
inadmissible regions obs(q). This can be done off-line. Find also the
initial and final joint configurations, g(0) and g(f).

(b) Find (off-line) the near minimum-time collision-free path in
the Joint space that consists of straight line segments which avoid

all obstacles defined by obs(g). This trajectory is the same as
(minimum-time trajectory in joint space) - obs(q).

If the manipulator travels through n-1 intermediate points gk, for
k=1,2,...,n~1 in order to avold obs(g), then the collision-free path
has n straight line segments. For the kth line segment, the initial
and final Joint configurations are g(k-1), and gk.

(¢) For each gx, use the average dynamics method in Section

3.2.1.1 to compute &1 and &, for the ith Jjoint using equation (3-5),

40

starting from the first line segment, k=1.

(d) Compute (on-line) tir for the ith Joint using (3-17), and
trmax using (3-19). Assume tj¢ of Joint j be tt“x

{e) Find (on-line) Ui for the ith Joint, where i # j, by solving
equation (3-17) which makes tir=tfmax, and +U;=-an and :"U;=-Ujm.

(f) Determine (on-line) the switching curves and optimal input
torques tU' (we are only to determine the sign of the input) from
(3-12), (3-13) and (3-14), and by setting +U)=—Uja and -Uj=-Ujn.

(g) Repeat (on-line) steps ¢ through f until gx-g se, a
predefined final Jjoint position error, then set k=k+l until k=n, and
go'to step c.

In gen=ral this algorithm gives a practical way for time optimal
control since it uses the manipulator’s full capability (application
of the maximum torque). The problem is that it uses a bang-bang
control law which makes it impossible to control the intermediate
error and it will not work well if there are several obstacles and a
more accurate tracking Is required. Another disadvantage of this
method is that it camnot handle cluttered situations for manipulators
with more than two degrees of freedom when the inverse kinematics
solutions are not unique and the inadmissible regions of obs(g) would
make it impossible to find a collision-free path of reasonably “near"
minimum travelling time from start to gual positions.

3.2.2 Shortest Distance Motion Planning

Planning a collision-free motion of a manipulator is a lot easier

if we do not have to take into account its dynamics or we need not

control its Joint torqueé. Most of the well known motion planning

41

methods, such as the ones we discussed in Chapter 2, do not consider
the time profile of the joint input torques. The only motion planning
criterion for selecting optimal paths is the minimization of total
Euclidean distance travelled in either Cartesian space or Jjoint space
regardless of the behavior of the manipulator’s dynamics. If the
motion planning is in two dimensional space, the minimum-distance path
can be found fairly easily using one of the well-known graph searching
method [27] (58] [68]. However, if it is in a higher dimensional
space, general solutions of finding a minimum-distance path in the
presence of obstacles have not been found. Many efforts have been made
to find a reasonably short collision~free path instead of the
minimum-distance path [9] [19] [49] ([83]. In other words, once the
description of the free space is obtained by some specific technique,
such as C-space, octree space, decomposed free space, orthogonal
projection space, etc., find-path protlem would then be reduced to a
shortest-path search problem between two nodes in a graph or in a tree
as have been introduced in many AI books and papers.
The shortest path problem can be stated as follows:
Given a graph G = {X, U] which is defined [27] as a set X whose
elements are called nodes (or vertices) and a set U whose
elements u € U are ordered pairs of vertices called arcs (or
edges), we associate with each arc u € U a number 1(u) € R called
the length of the arc (R ié the set of real numbers). We say that
G has a value I(u). The shortest path between two nodes i and j
is deflned as a path u(i,j) from i to j whose total Euclidean

length is a minimum, i.e.

42

I{p) =min(§ 1u))
u € u,s)

This problem has its importance, because 1(u) may equally well be
considered as being a cost of transportation along u, or the effort
involved in u, or the time required to path through u, and so on.

Almost all graph searching strategies can be modeled by the
following process [57]:

(1) A start node is associated with the initial state description
of the manipulator. (2) The successors of a node are calculated using
the operators that are applicable to tﬁe state description associated
with the node. Let I' be a special operator that calculates all of the
successors of a node. We shall call the process of applying I' to a
node expanding a node. (3) Pointers are set up from each successor
back to its parent node. These pointers indicate a path back to the
start node when a goal node is finally found. (4) The successor nodes
are checked to see if they are goal nodes. (i.e., the assoclated state
descriptions are checked to see if they describe goal states.) If a
goal node has not yet been found, the process of expanding nodes (and
setting up pointers) continues. When a goal node is found, the
pointers are traced back to the start to produce a solution path. The
state-description operators associated with the arcs of this path are
then assembled into a solution sequence.

The steps listed above merely describe the major elements of the
search process in a manner similar to the description provided by the
flow chart of a nondeterministic program. A complete specification of
a search process must describe the order in which the nodes are to be

expanded. If we expand the nodes in the order in which they are

43

generated, we have what 1Is called a breadth-first process. If we
expand the most recently generated nodes first, we have what is called
a deptiu-first process. Breadth-first and depth-first methods are
actual’ blind-search procedures since the order in which nodes are
expanded is unaffected by the location of the goal. The hierarchical
orthogonal space approach uses breadth-first search algorithm.

If we can predict the cost ﬁ(n) from any node n to the goal node,
it would be mere efficient to use this inferred (or heuristic)
knowledge to search for a minimum-distance path. Hill-climbing and A'
algorithms are often used in searching a graph. The cost from any
location of the manipulator n to the goal can be inferred using the

following formula:

Z(n} = |x coordinate value of goal-x coordinate value of point nj+

|y coordinate value of goal-y coordinate value of point nl|

Faverjon [18] used A algorithm to search the graph of neighbors
of his octree in Joint space. Herman’s [32] octree space searching
strategy uses both hill-climbing and A. algorithms. Lozano-Perez (48]
{49] [50] used A' algorithm to search for the solution path from his
V-graph formed by connecting all the C-space obstacle vertices. Brooks
[71 [8] [8] also used A" method to search a collision-free path along
his generalized cones which describe the free space in two dimensions.

There are many other algerithms for solving the shortest path
problem in a graph. Gondran {27] has given a very good summary of the
algorithms by Moore (1957), Dijkstra (1959), Bellman (1958) (1962),
Ford (1956) (1962), and Karp (1977).

The find-path algorithm which we will preserit in Chapter 4 also

44

ignores the dynamics of a manipulator. Our searching strategy uses the
well-known Bellman’'s principle of optimality [1] which is widely used
in dynamic programming fo:- solving optimal control problems for
nonl’ ear, time-varying systems. Bellman's method is a type of
b. "ai." -first search process [58,p35]}. We only use Bellman's principle
to search an optimal path locally, i.e., to sesarch a minimum~distance
path between each pair of local start and local goal points. We also
enhance this technique by the use of heuristics speciflc to our

problem in searching for an optimal path giobally.

3.3. Summary

In this chapter we examined two important optimal control
strategies in robot motion planning: near minimum travelling time and
shortest Euclidean distance. Minimum-time control of a manipulator
requires the control of Jjoint torques. When collision-avoidance is
added to the minimum-time control problem, it is only possible to get
a near minimum-time control solution assuming &1 and €1 in (3-2) to be
time invariant and the robot motion to be non-compliant. The algorithm
which we have discussed may be of some use only for simple and less
cluttered environment, but may not work in complex situations. In most
of the well known motion planning strategies, the robot dynamics are
usually ignored. Thus we can use a graph (or tree) searching technique
to solve a shortest path planning problem either in two-dimensional
Cartesian space or joint variable space. Breadth-first, depth-first,
hill-climbing and A' algorithms are often used in searching such an
optimal path. One thing we should note is that the shortest path is

not necessarily the minimum-time path for multi-joint manipulators.

45

CHAPTER 4. SEARCHING FOR MINIMUM DISTANCE PATHS - A NEW ALGORITHM

4.1. Iniroduction

Jt was stated in Chapter 3 that sgarchirg for the shortest path
without considering the dynamics of a manipulator is a practical way
for solving the find-path problem. In this chapter we will propose a
new algorithm for this case. This algorithm has been implemented on a
PUMA type robot tc find a collision-free path with minimum Euclidean
distance criterion in a two-dimensional Cartesian workspace. The
detalils of implementation are described in Chapter 5. Obstacles are
modeled as or enclosed by rectangular hulls all witﬁ the same
orientation (Figure 4.1.), which will reduce significantly the path
searching time without wasting much free space. This is different from
other approaches where the contour of the obstacles are followed. The
C~space [49] (or pseudo [83]) obstacle idea is used to shrink the
moving object (the robot gripper) to a reference point on the object
and grow or enlarge the obstacles to the shape of the object. We use
Bellman's principle of optimality to search for a graph similar to the
V-graph in [48]. We also introduce the concept of reduced space
defined first by the global start and goal points. The search is from
the outmost pair of obstacles within the reduced space, and it is
continued from the outermost pair of obstacles within an updated new
reduced space of the local start and goal points as determined by the
previous pair of obstacles. This search process goes on inwards until
no more obstacles are found. Such a procedure turns out to be simpler

and faster than a blind search of the entire workspace of the robot.

46

f

Figure 4.1. Enclosing obstacles by rectangular hulls.

47

4.2. Searching For An Optimal Path In Cariesian Space Using Bellman's
Principle Of Optimality

An important part of off-line motion planning is the generation
of a safe path. In order to search for an optimal collision-free path,
we need to perform the following operations: modeling the moving
object and obstacles to simplify the description of the robot
environment, building a sea.fch (free) space in a graph, and finally
searching for a safe path in the graph efficiently. Since the initial
and final configurations of the robot hand and obstacles are often
glven in Cartesian space, all of the above should be done in Cartesian
space to reduce the complexity of our problem. In order to achieve
this, the manipulator should be able to handle its own kinematics
computations, which is possible for almost all industrial robots.
Motion planning in joint space is simple if the robot has only two or
three links and the inverse kinematics has only unique solutions, but
the task can be very difficult if more degrees of freedom have to be
considered. Also the mapping of the robot and obstacle configurations

from Cartesian space to joint space could be time consuming.

4.2.1. Modeling Of Objects Using Primitive Shapes

Interference detection 1is a means of detecting potential
collisions of an object with others. In the case of planning motions
for a manipulator, preventing potential collision means that a
non-zero distance is maintained between the links of the manipulator
and the obstacles. Usually we choose from a set of simple shapes

called the primitive shapes to model solid objects such as the robot

48

hand and the obstacles in the vorkspace. Primitive shapes include
points, lines, rectangles, squares, circles, spheres, {right) prisms,
tetragonal prisms, ellipsoids, cones, cylinders, cylspheres, parallel-
epipeds, cuboids, etc. Because they are simple to compute, bullding a
free space representation will require less time. This approach can
reduce significantly the computation time for collision dete: * an.

A common way to approximate the irregularly shaped robot hand is
to use a sphere or hemisphere. Thus we can easily npply the C-space or
pseudo obstacle idea in [49] [83] by shrinking the robot hand to a
common point which is the :enter of the sphere. In a two-dimensional
case, the sphere is a circle, and the common poirt is the center of
the circle. The obstacles are grown by the radius of the circle.

In a general case, C-space obstacles often have different
orientations from the ones we have shown in Figure 4.1. If 4 is the
moving object (in our case, the robot hand) with fixed orientation and
B is the set of obstacles, A and B are both n-sided convex polygons,
then C-space obstacles COAY(B) in (x,y) coordinate of R° can be proved

to be the following set difference [50]
COiY(B) = B o (A)o (4-1)

using the set properties:

Ao B=1{a+blae4i be B
AeB={a-blaea beB
e A ={-a]a e 4}

(A)o is the initial configuration of the moving object A. The

supporting lines, m(A,u) and n(B,u), have the property [2, p37 & psSOl],

498

n(AeB,u) n (AeB) = (n(A,u) n *" @ (w(B,u) n B) (4-2)

where u 1s the outward arbitrary unii normal of 4 =nd B. All «f A, B
and A®B are enclosed by half spaces bounded by w=is, , a(B,u) and
n(AeB,u) respectively. n(4,u) n A is ‘h2 set of boundary points o 4
on the supporting line =n(A,u), similarly n(B,u) n B is the set of
boundary points of B on n(B,u). mn(A4eB,u) n (AeB) is that of AeB on
n(AeB,u). If A is a u-gon convex and B is a v-gon convex, the C-space
obstacle COX’(B) requires O(u+v) computation time [50].

From the above we can see that reducing the number of sides of a
polygonal object will reduce the computation time for translating the
object to a C-space obstacle. Since there are usually many obstacles
in the robot workspace, this can save a lot of path planning time in a
general sense. In real applications, obstacles are modeled as simply
as possible. [21] used spheres (or circles in 2-D case) to approximate
obstacles. Spheres (or circles) may not model long and thin tetragonal
prisms (or rectangle)} obstacles properly and may waste a lot of free
space. Enclosing all the obstacles by rectangular hulls as shown in
Figure 4.1, makes it very convenient to build the V-graph and to
search an optimal path in the graph without losing much free space.’
Most obstacles, compared with the robot workspace, are much smaller.
Therefore losing some free space in order to simplify the find-path
problem and hence speed up the computation is better than an accurate
description of all the obstacles in the configuration space. This
supports the idea that modeling our obstacles with rectangles or

rectangular hulls will suffice.

If we use a circle to approximate the robot hand and then shrink

50

it to a reference point which is the center of the circle, C-space
obstacles, COXY(B), (see Figure 4.2.) can be easily computed by
enlarging each side of the rectangle by 2r. That is for the ith

C-space obstacle, COX”(Bi), we have
Xet = X1 + 2r and Ye1 = Y1 + 2r (4-3)

where Xi and Yi are the widths of the ith obstacle in (X, Y)
coordinate and r is the radius of the circle. If k is the number of

obstacles in the workspace, then

k
co(B) = U co¥(m) (4-4)
i=1

Another advantage of using a circle ro model the moving object is that
rotations of the object are effectively decoupled from translational

movements and as a result the motion planning problem is simplified.

4.2.2. Building A Search Graph

The way we build our free-space search graph that represents all
safe paths is similar to the visibility graph (V-graph) method. That
is, we connect those vertices of all obstacles that can "see" each
other. This is same as connecting those vertices by a straight line,
(called connection line,) that does not penetrate into any of the
obstacles.

However, our search graph differs from the V-graph in that it
eliminates the connection lines to a vertex that is between two other
vertices with connection lines on the same obstacle, because the
length of one side of a triangle is always less than the sum of the
length of the other two sides. As shown in Figure 4.3., connection

lines marked with “** are to be eliminated from the search graph. In

51

////

|- Xi >

////

ol |

7

//////

OOOOOOOOO

YYYYY

Goal

Start

order to do an optimal search in this graph, it is essential that the
computer program keeps track of the traveling direction from the start
point to the goal point. The direction is either NE-SW/SW-NE-ward or
SE-NW/NW-SE-ward, where NE, SW, SE, and NW denote northeast,
southwest, southeast and northwest directions respectively.

If the traveling direction is NE-SW-ward or SW-NE-ward, then it
has a slope greater than zero and therefore all of the southeast and
northwest vertices of all obstacles will be identiified as valid
vertices, denoted as VERTv+, that may be connected by straight lines
if they can "see" each other. If the traveling direction is SE-NW-ward
or NW-SE-ward, then it has a slope less than zero and therefore all of
the southeast and northwest vertices will be identified as valid
vertices, denoted as VERTv-, that may be connected. Valid vertices,

VERTv, may either be VERTv+ or VERTv- but cannot be both, l.e.

VERTv = VERTvs, if slope of start-goal =z 0

(4-5)
VERTv

VERTv-, if slope of start-goal < 0O

A small value (f=0.00001 in our program) will be automatically added
to Xs of the start point (Xs,Ys) to avoid 90 degree slopes that cause
numerical computation problems. The four sides of each obstacle are
also qualified as the candidates of connection lines. Figure 4.4.
shows such an example where

VERTv = VERTv+ = { a, d }
but the connection line is c-d. This will be determined by heuristics

in our algorithm.

55

obstacle goal
start

Figure 4.4. Obstacle side c-d is a connecticn line.

S6

4.2.3. Searching For A Minimum Distance Path With Heuristics
The next step in the procedure is to find an optimal path, given
a search graph. We will use the well-known Bellman's principle of
optimality [1] which is wused in dynamic programming for solving
optimal control problenms.
Bellman’s principle of optimality is as follows:
An opt:wal policy has the property that no matter what
the previous decisions have been, the remaining
decisions must const.tute an optimal policy with regard
to the state resulting from those previous decisions.
This means that in order to find the optimal path, we must work
backward, i.e., the search should begin from the goal point to the
start point. The locations of start and goal points, and all obstacles
and their sizes are supposed to be knowr. before we start our path
planning process. Thus the cost which is the Euclidean distance
between each valid vertex, (VERTv)j, and the goal can be calculated,
and it is marked on the vertex (Figure 4.5). The minimum-distance path

is then found as the dashed line using the principle of optimality.

4.2.3.1. The Reduced Search Space 0(COv) And Valid Obstacles COv And
Their Valid Vertices VERTv

It often happens that some of the obstacles in the workspace, 1,
are not in the space enclosed by the global start point, start? and
global goal point, goal? as shown in Figure 4.6. In such cases,
building a search graph and performing an optimal path search in the

graph can be done in this reduced space (denoted as Q°(CO) where CO

57

"S8073J43A pIleA [[e Uo sanfea 31S00 Y3TM ydedd yodeas y °‘G°'y 2In814

N

%
_

L
28 T T—— I
\ 0'e
ov
S9E (+'8)

1'¢

S8

workspace Q

0
® goal

0]
Zl
A reduced

apace QO(CO)

(]
start &

Figure 4.6. Robot workspace and the reduced space.

59

stands for C-space obstacles, and a°(co) ¢ 2), thus increasing the
efficlency of our path planning algorithm. Note that all the obstacles
outside of 2°(C0) are ignored.

To simplify the problem further, we build the search graph and
perform the optimal path search only among the outermost pair of
obstacles within R°(C0) defined by start®and goal® points. Obstacle A
and B in Figure 4.6 form ths ou‘ermost palr of obstacles in a°(co).
They will be labelled COV=COY(SIUCOV(G) as the first pair of valid
cbstacles. The optimal path found among cov in 0°(Co) is labelled
path-l1 as the first level local optimal path.

In the general case for the ith level of the search space we have

cov'=cov t(s)uvcovte), veodl(syen'(cot), cobtt(eren’ (cob),
Cov(SINCOY(G)=o, i=0,1,2,...
and

1+1

n
accov) = U a'ccoly, cov*t, (4-6)

i=1 1

Q
8
[

5 e

where n is the last layer of search in the worst case determined by
the complexity of the robot work enviropment, i=0 defines the subspace

QO(CO) enclosed by global start and goal points, startoand goalo. i>0

i+1

is the ith layer inward from start®and goal? and COv "(S) is the valid

obstacle with vaiid vertices VERT&”(S) closest to start’ in Q‘(CO%)

1+1

and COV 11

(G) 1s the valid obstacle with VERTY''(G) closest to goal’,
and they do not overlap. Also note

1+1

VERTY A A

= VERTV'*(S) v VERTY''(G), VERTY''(S) e cot*l(s), (a-7)

141

VERTV''(G) e cot*l(q).

60

ie1

where VERTv''(S) and VERT¥''(G) can be determined by (4-5). start!,

goal', VERTY''(S) and VERTY'}(G) are actually the nodes that form the

search graph in a'(cod). 1t is very efficient to find an optimal path
in such a simplified search graph using Bellman’'s principle for at

most only six nodes exist in the graph.

4.2.3.2. The Definitions Of mids, midg, midi, And mid2
Before we continue our discussion on the optimal path searching

algorithm, some additional information of determining the next search

t+1

space (COa"“) should be given if more obstacles are found within a

1

space enclosed by midi*' and mid}*! in ﬂl(COvlr), where i=0, 1, 2,

Figure 4.7. illustrates the definitions of points midi'®, mial*!,

midi'', and mid%*! in search space ' (CoV). They are
midl*! e VERTY''(S), amidd*! e vERTY*'(@), (4-8)

{ VERTV:'(S), if midl*! e VERTIt\(s)
f+1
mid, €

(4-9)
VERTv'(S), if midi*! e VERTI\(s)
it VERTv:'(G), if midd*' e VERTIIl(G)
mid € {o1 " 1e1 (4-10)
VERTvs'(G), if mid*"! e VERTI(G)

1

In most cases, mids* is the invalid vertex on CO-‘:”(S) closest to

startl. and mida.g‘.H is the invalid vertex on COvir”(G) closest to goal‘.

Figure 4.8. shows a simpler case when only midi*? and mid*! exist in

f+1

Q' (o). There are also cases when only mids'', midl*! and midh*'?

exist, and when only mid};”. midi*? and mid*! exist 1in n‘(co»’,).

1+1

mids a1

» midg

us build 0'**(COV*!) and the search graph assoclated with it, which

. midi”. and mid‘.‘eﬂ are important parameters. They help

will be seen in our algor{thm later,

61

i+1 1+1
mid2 midg
1
[
nl (CO\‘/) goal
I 1+1
g |etis cov (G
start ! 1e1 §
L_._ 141 ——.ﬂi’.’.—--..v-..., U J

mids

Figure 4.7. Definitions of mids, midg, midi, and mida.

: l. - /. qcall
Q" (COv) mid2

i+l
co**! (s) co” (G

1+1
mnidl

1
start

Figure 4.8. A case when only midi and midz exist.

62

4.2.3.3. Description Of The Search Algorithm

There are four cases that the search algorithm should consider:
(1) no obstacle in QO(CO), (2) only one obstacle in QO(CO). (3) two
obstacles in QO(CO). and (4) more than two obstacles in QO(CO). l.e.,
Q' (COV) for i>0 will be bullt and searched.

If there is no obstacle within QO(CO). then a straight line can
be simply connected from start® to goalo to become the optimal path,
path. No computations will be required for building a search graph in
1 and therefore no searching is necessary. This is the advantage of
using the ldea of the reduced search space QO(CO), although there may
be many obstacles outside of Q°(C0O) but inside the workspace Q.

If it is found that there is only one obstacle within QO(CO).
then the problem becomes very simple. This obstacle becomes CO). All
that finding the minimum distance path would require is a simple

comparison between the lengths of two paths:

goalc- one element of VERTY on C03|2 + (4-11)
fone element of VERTY on CcO} - startola

and
lgoa1®~ another element of VERTY on cotja +

Janother element of VERTY on CO¥ - start®jz

where |-z is the 2-norm (Euclidean norm) in R°. The smaller one is
therefore the optimal path, path.

Once we have calculated n°(co), co?,, and mtth-l.1 we shall move
inward from start® and goalo to the next search space Q'(co¥) if more

obstacles are found within 91(003) which 15 enclosed by midl and mid}

63

on CO%, in order to find the next local optimal path, path-12. The
searching procedure s exactly the same as before. In general, local
start point, start‘, and local goal point, goal’. when i>0, will have
to be determined by heuristics. The rules are:
(1) start' may be mids € VERTV(S) or midi € VERTY(S) if mid}
does not exists.
(2) goal' may be midy € VERTY(G) or mid: e VERTY(G) if mid}
does not exists.

Each time a local path path-1'‘!

is generated, it replaces the portion
betweén midl and mid: of the previous local path, path-l‘. Therefore
the global path, path, is actually the sum of all the modified local
paths. Each path-li contains a mid-section altered by path-li’{
Figure 4.9. illustrates an example of p»ath-ll with modified section
between midi' and mide' by path-ll*{

Now we can summarize a general algorithm of finding local optimal
path path—ll'lin the ith (1>0) reduced search space QlCO$) as follows:

(1) Determine start' and gbal’ using the above rule when more

obstacles are found.

(2) midl and mid% form a new reduced search space ' (co¥).

(3) Within this new search space find COY‘!.
(4) Find VERTY'! for all coi'l.

(5) Build the search graph in f'(cod) by connecting VERTY*!
and start' and g’oalx using connection lines as we have
discussed in Section 4.2.2..

(6) Search for a local optimal path, path-1'*', in the search
graph, starting from goa.ll to start' using Bellman’s

principle of optimality.

64

optimal path

i-1

midé” mjdé’i midé1 /goal

._fgoal)= == .
th-1
path-1'*1 | -~ - pe
+1 ’003*1 (G) 1
midl ,' - col(c)
- -
P
Cov(S) -1~ path-1!
- e
- - 1+1
-~ Cov " (S)
""—;1-1 midl
start (start’)

Figure 4.9. path-ll with modified mid-section by path-l"t

65

(7) If no obstacle is found within 2'(COV), then connect
start' and goall using a straight line to form path-l“i.

(8) If there is only one obstacle in § °COv), then use (4-11)
to find path-1'*!.

*!1 to substitute the mid-section of path-l1

(8) Use path-1'
between start' and goall.

The above process continues until no more obstacles are found within

the last and smallest search space. Now we have the global optimal

path, path, which is composed of all the local paths, path-l‘. This

gl.;al path may not necessarily be, in all cases, the globally

in to substitute the

mir imum-distance path because using path-l
mi.. -portion of path-ll between start' and goal’ is Jjust a secure way
of :.s01ding obstacles within Q'(COY). The example in Figure 4.9. shows

such « case. Ideally, the global minimum-distance path should be:
start'™? — midl — midl*! — migd"?! — midg'! — goal'™?
instead of the one found using our algorithm, i.e.,

start'’™! — midl — midi*! —_ mici%"1 - mic.'é’1 —> midd —>

—> goal'™?

However, since all the local paths, path-l’. are optimal, connecting
them together would give a very satisfactory collision-free
sub-minimum distance path which is almost the same as the ideal
minimum-distance path that will take a lot longer time to compute if
we use a global search technique, such as the A. algorithnm.

Table 4.1. lists a brief description of our algorithm. It has
been implemented using the C programming language.

As we can see, the éollision—free path is actually composed ¢f

66

some connected line segmwents each of which contains many position
points of the manipulator end-effector in Cartesian space. Those
points should be separated evenly so that the hand movement can be
smooth throughout the motion. This also allows us to use
Joint-interpolated-motion mode for all Joint motors. Joint
interpolation makes the manipulator travel from one position point to
the other along a small arc instead of a straight line even 1in
Cartesian space. It make full use of the manipulator workspace
envelope and therefore result in a bigger free space for manipulators
made of revolute Joints such as the PUMA 580 robot. For Cartesian
manipulators, this 1s not the case, as there are only transfer

movements in the motion and joint interpolations are not needed.

4.3. Discussion And Summery

We have presented in this chapter a new algorithm for solving the
find-path problem in a two-dimensional environment. Potential
collision is prevented by maintaining a non-zero distance between the
links of the manipulator and the obstacles. In order to do this, an
interference detection technique is used. The design is based on a
scheme for representing solid objects, i.e. the robot 1links and the
obstacles in the work space. The swept volume representing the robot
path 1s also taken into consideration.

An important feature of our algorithm is the simple method of
approximating the description of C-space obstacles by rectangular
hulls enclosing the workspace obstacles. Such an approximation wastes
some valuable free space of the manipulator. However, this is better

than using circles as in [21]) which results in loss of more free space

67

in most cases. It also avolds the difficult task of building a sea.bch
graph (such as the V-graph) among circular objects. Moreover, our free
space loss 1s more than compensated by the saving in the amount of
computation needed for an accurate description of all the obstacles in
the configuration space by some other methods. As stated in [83], the
most important thing for a space representation is to avoid excess
detalls and time spent on parts of the space that do not affect the
operation. It is not necessary to maintain a perfectly detailed model
everywhere in the workspace.

If we use a circle to model the manipulator gripber. then we
could easily apply the C-space obstacle idea in [48] so that the
gripper can be shrunk to a reference point on the gripper (which is
the center of the circle) and enlarge the obstacles to the shape of
the gripper. Then we can choose from one of the many well-known graph
building and searching techniques to find a collision-free path with
the traveling distance as its optimization criterion.

We use a method similar to the V-graph technique and add
heuristics to the building of our search graph by selecting COv(S) and
COv(G) at each search level. It simplifies the problem even further as
the graph becomes so simple that an local optimal path can be found
quickly using Bellman's principle of optimality. The global optimal
path 1s a simple connection of all the local optimal paths. It may not
necessarily be the ideal path in terms of the minimum Euclidean
distance from start to goal. However, it is very close to the ideal
path and it is especially efficient for planning collision-free
motions using V-graph method. Also as was argued in [49] that the time

saved in traveling a shortest distance path may not be justified by

68

the long period of time wasted in planning the path, which is the main
idea of our entire work up till now.

The disadvantage of the V-graph method as we have discussed 1n‘
Chapter 2 is that it always generates a path very close to the
boundaries of the C-space obstacles which may lead to certain danger
of collislions. However, this is not a problem in our case because we
use a symmetric circle for approximating the robot hand. Our program

will automatically add a small value of five to ten millimeters for

safety clearance to thks =r:: . .Ff the hand which will be therefore
transferred to the grown p=arfs; -.° 11 C-space obstacles. This ensures
all the time a safe coll.- ... " ce path for our robot.

This method can be easily applied directly to motion planning for
Cartesian and mobile robots in two dimensions. It can also be applied
to manipulators with revolute Jjoints by fixing the orientation (o, a,
t) of the gripper. Details of such an application to a PUMA S§60 will
be shown in the next chapter. The algorithm may be extended to
applications of three-dimensional motion planning for Cartesian type
of robots using an alternative strategy introduced in (49], and for
mobile robots using the articulated cylinder idea [73] to represent
the free space. In such a case, the 3-D robot hand can be modeled as a
sphere [21] [73] and the obstacles can be modeled as tetragonal prisms

so that the C-space representation can be very simple.

Table 4.1.

The Minimum-distance Path Searching Algorithm.
Assume: (1) The initial and final configurations of robot hand are

69

known as start’ = [Xs,Ys,Zs,0s, 4s,Ts]’ and
goal® = [Xq,Yq,Z5,0q,4q,To}" .
The values of Zs, Os, 4s, Ts, 29, Og, Ag, Tg are fixed
throughout the motion to Zs=Zg¢=Zf, 0s=09=0r, As=Ag=Ar, and
Ts=Tqg=T¢ for simulating a two-dimensional environment.
(2) The robot hand radius is r.
(3) Obstacle sizes and locations are known.
(4) Robot workspace is given.
All of the above are stored in a input data file, called
file, as a priori.
(5) n the worst case number of search layers depending on

the clutterness of the environment is given.

/‘llilllilﬂ!!.tI.'!!*l"ﬁti!‘*lﬁ*i-ililiiili‘.l.ilii“‘illli'i!ll!iiﬂ!-‘/

{

Read file to get starto. goalo, Q, r, and obstacle
sizes and locations. In this stage «bstacles are
transformed to C-space obstacles using (4-3); (T1-1)
Test if startc and/or goalo are outside of 1Q,
If outside Q return error message and exit;
Else continue; (T1-2)
Find the number of obstacles in 9°(cC0), ob jnum; (T1-3)
If objrum s 2 /7*if less than three obstacles are in QO(CO)*/
{
Determine CO¥ in 0°(CO) as in Section 4.2.3.1.; (T1-4)
If no COv exists in 9°(CO)
{

Connect start® and goa1° with a straight line to

70

forin path; (T1-5)
Return the number of points, k, generated for path; (T1-6)
}

Else
{

If there is only one CO} in QO(CO).

do (4-11) and (T1-6); (T1-7)
Else
{
Determine CO¥(S) and COM(G); (T1-8)

Calculate the slope of start’—goal® in order to

decide VERTv in (4-7). start®, goal®° and VERT:

form a complete set of nodes in QO(CO); (T1-9)
Put cost values (distance to goalo) on VERT%; (T1-10)
Determine mid;. midé. mid%, and mid%; (T1-11)
Connect all the nodes to build the search graph; (T1~12)

Perform an optimal path search for paih (=path-11)

in the graph using Bellman’s principle; (T1-13)
Do (T1-86); (T1-14)
}
}
Else /* if objnum > 2 in 9°(CO) */
{
Do (T1-7) (T1-8) (T1-9) (T1-10) (T1~11) and (T1-12); (T1-15)

For i =1 to n, step +1, Do:
{

Update 0'(COV) using mid! and midb; (T1-18)

71

1+1

Determine COv v

(S) and cov'(6) 1n Q'(coty;

Calculate the slope of startl——-goall in order to

1+1

v'! in (4-7). start', goal' and VERT:

decide VERTv
form a complete set of nodes in ' (cC0);

Put cost values (distance to goal') on VERTY'!;
Connect all nodes to build the ith search graph;
Perform a local optimal path search in the graph

*1 uhich

using Bellman's principle to find path-ll
substitutes the mid-section of path-1' between
start' and goall;
Store the number of points, ki, generated for
path-1'*%;
Next i;
}
Sum up the total number of path points: k = ¥ ki;
Coimect all path~1‘ to form path;
Return k;
}
If those k points are not within the robot physical reach,
send an error message and exit;
Translate those k configuration points of the robo.
hand to robot motion commands to execute the planned

collision-free motlon, using joint interpolation mode;

}

(T1-17)

(T1-18)
(T1-19)

(T1-20)

(T1-21)

(T1-22)

(T1-23)

(T1-24)
(T1-25)

(T1-26)

(T1-27)

(T1-28)

/."l.ﬂl'i.‘ﬁ"lll.lll*li END OF ALGORITHM i.ﬂllli*i&‘ll.‘.#!!‘l‘!l‘i‘ﬁ'/

72

CHAPTER S. COLLISION-FREE PATH: APPLICATION
OF THE ALGORITHM TO THE PUMA 560 MANIPULATOR

5.1. Introduction

In this chapter we will discuss some practical aspects of the
motion planning algorithm described in Chapter 4. Application of this
algorithm to a Cartesian manipulator would be quite straight forward
and it would even be possible to consider 3-D motion planning tasks.
However, we only have access to a PUMA 5860 manipulator which has six
revolute joints. Therefore special considerations have to be made for
this manipulator. Th; "% 7*n {5 a six degree of freedom industrial
robot (Figure 5.1.) “eneraiiy speaking, at any point in the interior
of the working volume of the PUMA 560 the hand (gripper) can be made
te follow an arbitrary curve in 3-D space with arbitrary
reorientation. However, even for simple motions such as a straight
line with fixed orientation, all of the first three Joints of the
manipulator are involved. For instance, the elbow moves when the hand
undergoes translational motions. The direction and magnitude of the
elbow movement is a complex function of the direction and location of
the hand motion segment. Thus, in considering a motion which enables
the hand to avoid an obstacle it is necessary to consider the
collision behavior of the elbow at a distant lacale (8]). Analysis of
Joint motions would be simpler if they considered to be uncoupled.
Unfortunately the elbow behavior cannot be generally characterized
over the range of possible hand motions in any simple way. This means

that the path planning problem cannot be decomposed by considering the

73

+Z

upper arm

X elbow

forearm

base mounting (hand)
surface

Figure 5.1. PUMA 560 manipulator and its world coordinate

system X-Y-Z (Note: Z=0 is not at the base mounting surface).

74

hand and the elbow separately.

For this reason, application of the algorithm to the PUMA robot
has to be limited to a two dimensional working environment. This is
done by restricting motions of the PUMA gripper only to the X-Y plane,
l.e. Z coordinate has a fixed value, and the orientation (0, A, T) of
the hand has also to be fixed throughout the motions among obstacles

~. entire workspace.

The PUMA robots use a control language called VAL II. VAL II has
scme limitations and is not powerful enough for certain applications
such as off-line planning of cullision-:wa & »tions. Because of this,
we use a SUN workstation (SUN 3/160) t.: -s:motely control the VAL II
system which is built into the PUMA controller. The motion planning
program is written in C language on the SUN. The generated
collision-free paths are translated to the VAL II transformation
configurations with the VAL II motion commands which are then sent to
the PUMA controller via the supervisor (RS232-C) port. This requires
an interpreter that does the communication betwezsn the SUN and the
P, which we will discuss later in this chapter. .
5.2. Brief Description Of The PUMA 560 Robot, Its Workspace And VAL II

The PUMA robot is, perhaps, one of the most popular commercial
robot in both industry and research laboratories. The first PUMA
(Programmable Universal Machine for Assembly) rotct was Introduced by
Unimation Inc. in 1978. One year later, Victor Scheinman and Bruce
Shimano of Unimation designed the first commercial robot control
language for the PUMA series robots. It is called VAL which stands for

Victor’s Assembly Language. As a general computer language VAL is

75

quite weak because it does not support floating-point numbers or
character strings, and its subroutines cannot pass arguments. A more
recent version, VAL II [70], came out in 1984. It can provide most of
these features. The version we are using is the VAL II 2.0 updated in
1986 [79]), which is part of the PUMA system and 1is stored permanently
in the controller.

The PUMA S60 (Figure 5.1.) is a 6-link manipulator with six
degrees of freedom and all rotational Joints. It has eight arm
configurations (RIGHTY and LEFTY arm, elbow ABOVE and BELOW arm, WRIST
DOWN and UP, and wrist FLIPped and NOFLIPped) for the same
erd-effector position which makes the inverse kinematics non-unique.
To teach the PUMA 560 robot end-effector (corresponding to the last
Joint) to follow a motion path, either of the two procedures can be
used. They are both slow and tedious.

(1) Use the teach pendant to direct manually the movements cf the
end-effector through each step of the task. These steps are recorded
and then stored in the controller memory.

(2) VWrite a program using the VAL II motion instructions.
Position (location and orientation) data and software programs are
entered into the controller memory through keyboard or teach pendant.

These are actually point-to-point motions. The PUMA cannot be
taught through the teach pendant to follow a continuous path as tihis
will require a large amount of memory to store the path information.
All taught points are stored in thrze forms of data structures. They
are (1) transformations (referenced to a coordinate system fixed
relative to the stationary robot base), (2) precision points

(referenced to Joint aﬁgles). and (3) compound transformations

76

(referenced to previous locations es a Cartesian coordinate system
fixed relative to the tool mounting surface). Compound transformations
are not often used. Precision points are robot deperdent and can only
be used with a robot of the same model. Therefore transformations are
probably the most convenient 1in representing locations and
orientations of the end-effector since they are determined with
respect to workspace coordinates. Robot independence is thus achieved
by defining end-effector locations in terms of a Cartesian (X-Y-2)
reference frame {ixed to the base of the robot. The orientations are
defined by threes angles called Euler angles {64] o, a, and t measured
from the world (base) and tool (end-effector) coordinate axes. The
values of these three angles are modified in the VAL II representation

by the amounts (all angles are measured in degries):

O0=o0+ 90 (5-1)
A=a-90
T=t.

Thus, a null or identity transformation of (0, 0, 0, O, 0, 0) in
[64] corresponds to a VAL II transformation:

NULL = (0, 0, O, 90, -80, 0) (5-2)
(X, Y, 2, 0, A, T) defines a complete description of a 3-D position as
we have discussed In Section 2.2. of Chapter 2. This 1is the
description that we wuse in our applications. More about the
definitions of 0, 4, and T can be found in {78, p3-25].

The PUMA 560 has a spherical workspace with the following Joint

limits [22] :

-160 = 61 = 160 (5-3)

=225 = 92 5 45

77

-45 s 63 s 225

-110 s 64 s 170

-100 = 65 = 100

-266 s @8 s 266
The end-effector home position for (@1, 62, €3, 94, 65, 88) is (O,
-90, 90, 0, 0, 0) which corresponds to a transformation at

(X, Y, 2, 0, A, T]' =

[-20.41mm, 14S.08mm, 921.13mm, 90, -80, 0]’. (5-4)
This position can be arrived by running a VAL II! command, "DO READY".
Since we are simulating a two-dimensional environment, we kesy the
robot hand at a fixed Z-coordinate value with fixed orientaticz ¢ A4,
T. For most pick-and-place tasks, the robot hand is often fac:r; :wn
towards the working table on which objects are placed. Thus, we choose
to maintain the robot hand vertically down throughout the operatior..
This corresponds to [0, 4, T]° = [0, 80, 0]’. Z value can be anything
from -921.13mm to 921.13mm. Z=0 gives the largest workspace. However
the working table is often at the same level as the robot base
mounting surface at Z=-671.83mm. If we leave some space for the
maximum height of objects (or obstacles) and select Z=-400mm with [O,
A, T1' = [0, 90, 0]’, then the PUMA 580 has a sector like workspace
with the lower bound radius Rmin=250mm and upper bound radius
Rwax=800mm, as shown in Figure 5.2. Raoin is due to the PUMA 560 trunk.

Rmsx is the maximum reach with joint-interpolated motion.

5.3. Commmication Between The Supervisory Computer And V/L II
Although VAL II is easy to learn, its instructions are clear,

concise and self-explanatory, and it can be quickly programmed by

78

‘ujwy adojaaua punoq JaMmo] pue xewy adoyaAus punoq

Jaddn ayy Aq psuiiap 09S VHNd dU3 Jo soedsiiom ay] °"z°'S sInB14g

(Ww) X
008 0G. 009 00G 00t 00f 00C 001 0 001—- 00Z- 00¢~ 00¥— 00G— 00S— 00L- O08B—
_L:_______________________.____.________:._________.__________:F__.:_________ 0

' [
[

\INAYL VIQd -

ulwy adojdsau] JamO ———— /

o
o
—

7

o
Qo
o~

~ -

a90dS 5404

00¢

00¥

o
o
n

o
Q
@

(@]
o
~

xowy 3adojaauy soddn ——

illll'lllllllll'T[(l!llllllll[lllll]llll

AN
€
-
~ 8
> ©

79

combining predefined subtasks to perform many complex operations, it
suffers from the following shortcomings:

— VAL II has only a line editor. It is quite inconvenient to
create and modify large application programs.

— VAL II has a limited library of mathematical functions. It can
not pass addresses of variables. It does not have the ability of
building and searching a graph.

— VAL II cannot accept any functions or subroutines written in
high level languages, such as PASCAL and C.

— VAL II controller has a limited memory to store large programs
and data files.

For the above reasons, we use a supervisory computer (SUN 3/160)
to do all the programming, data processing and computations. The
motion path is generated independent of VAL II and the communication
between VAL II and the SUN takes place only once, to upload the
generated path data from the SUN to VAL II. It is done through a
communication software that was developed for a VAX computer in [34]
with extensive modifications for the SUN made based on our application
requirements. This software is a package of many thousand lines of C
source code. (A similar work of communication between a VAX-11/780 and
a PUMA 560 was done in [17] for robot binary vision using a
multiprocessing controller under NRC(Canada)’s Harmony operating
system.) Figure 5.3. illustrates the PUMA/SUN system. The following is
a brief description of the communication software.

¥AL 11 permits the connection of a supervisory computer via a
RS232~C 1ine (at a speed of 9600 baud) using DDCMP communication

protocols [15]) to ensure the messages sent and received are error

80

CRT Supervisory
Computer
SUN 37160
S C application
CoVAL 11 —> programs <==2ex> | Hard
Driver Disk
(C-VAL II) S
RS232
Supervisor Port Terminal Pori
RS232-C RS232
VAL Il |User Program < . |Floppy
CMOS Memory Disk
Drive
PUMA 560 < R PUMA 560 Controller
Arm (LSI 11/73)
1/0 1/0
- Interface | |Module
or
Teach
E Pendant
0
Auxiliary
Access
(Vision)

ALTER Mode

(For Real-Time
Path Control) | >|Sensor

Figure 5.3. The PUMA 560 controller and its supervisory computer.

81

free. We should note that such a communication can be quite slow in
transferring large data files for planning complicated motions (refer
to Chapter 6 for more discussions). The pin to pin connections between

the PUMA and the SUN are as follows:

From the PUMA 560 (supervisor port) Toe the SUN (RS232 Port A)
pin § ¢ > pin 7 Signal ground
pin 6 & » pAin 3 LSI receive +
pin 7 ¢ - pin 2 LSI transmit +

The messages sent through this line are structured in three
layers:

(1) Bottom 1layer: performs the transmissio: using Digital
Equipment Corporation’s DDCMP protocol [15].

(2) Middle layer: permits the division of messages into logical
units corresponding to different operating modes such as executions of
programs or commands, loading and storing of files, etc.

(3) Top layer: permits the differentiation of the messages
corresponding to the same logical wunit. For example, we can
differentiate between the messages that ask the user for data, or give
data to the user, etc.

In this fashion the SUN can completely control the VAL II system
remotely. The communication software is now able to do the following
tasks: (1) to send VAL II commands from the SUN directly, (2) to allow
a user to write application programs on the SUN using C functions that
create the appropriate VAL II commands. We call those functions C-VAL

II commands.

82

5.3.1. Direct Control Of The PUMA From The SUN
Direct control of the PUMA from the SUN by software is briefly
described in Appendix 1. It allows VAL II commands to be sent to the
PUMA from the SUN just as if the SUN were a dumb terminal.
This software is useful since we can use SUNTOOLS to monitor VAL
IT operations and the PUMA hand positions with multiwindows. Another
use of this software js to edit VAL Il commands and data files. It is
very convenient to use a UNIX visual editor, such as "vi", to create
and modify an ASCII file on the SUN, which is a rather difficult task
"~ VAL Ii line editor. We can also download or upload flles using
sgram. For example, if we want to download a file from the VAL
siler nemory to the SUN we need simply to do the following:
Step 1: start controller (power on both the controller and
the PUMA arm),
— Step 2: CA (calibrate the PUMA),
— Step 3: ENABLE NETWORK, SUPERVISOR, DISK. NET
ENABLE REMOTE.PIN (allows result display on the SUN),
— Step 4: PSTORE or STORE SUN-filename=VAL-filename.
If we want to upload a file from the SUN to the VAL II gontroller
memory, then do Step 1—3 as before, plus
— Step 4: LOAD SUN-filename (e.g. LOAD MOTION.V2.VAL, then
MOTION.V2.VAL will be transferred and stored in the
VAL 11 controller memory).
Because do-mloading or uploading uses the RS232 serial line at
9600 baud rate, it will take a few seconds to finish the operation.
Another way to speed up this is to generate all the necessary VAL II

commands as ASCII character strings from a C program in the SUN and

83

dump them to the terminal port of the PUMA controller. This requires
no DDCMP and error checks and is much faster but not safe for tran-

sferring large data files. More on this can be found in Seciion B.1.

5.3.2. Communicating From A C-Application Program Using C-VAL II

As another way of remote control of the PUMA 560 from the SUN, C
functions (we call them C-VAL II) that are similar to VAL II commands
can be called from a library that also contains DDCMP routines for

coﬁmnnicating from a C program to the PUMA. Many user needed VAL II
commahds can also be vritten in C and appended to the library. These
C-VAL II functions are very useful for implementing motion planning
algorithms on the PUMA 560 robot by issuing VAL II commands from a C
program. Appendix 2 describes the details of this library and some of
the most useful C-VAL II functions.

There are two types of data structures used in C-VAL II. They
correspond to the “irst two of the three data types in VAL Il that we
have discussed in Section 5.2, which are:

(a) transformation (location) type of data structure as

struet location

{

char *quality="location"; (5-5)

double %, ¥y, %, o, a, t;

};
The parameters correspond to the end-effector location (X, Y, Z) and
its orientation (0, A4,) {i.e. the Euler angles in the VAL II
representation).

(b) precision point tvpe of data structure as

84

struct location

{

char *quality="ppoint"; (5-6)

double x, y, 2z, 0, 2, t;

};
The six parameters (x, y, 2z, o, a, t) in this case correspond to the
six Joint values (@1, 62, 03, 64, 65, 66).

In real applications, transformation type of data structure is

more convenient to define a position point of the gripper. Therefore
all of our generated path data are formatted in transformation

structure as shown in Appendix 4.

5.4. Finding A Safe Path For The PUMA 5680 Among Obstacles

The find-path algorithm we proposed iIn Chapter 4 can be
implemented on the PUMA 560 robot by generating the safe path
off-line, using the communication scftware to upload the path data
file to the PUMA controller and then running a small prestored VAL 1I
program to execute the motion according to the path data information
uploaded. Since the PUMA 560 has a lower bound envelope (the trunk)
which must be avoided, the algorithm in Chapter 4 will have to be
modified. This envelope is a half circle of Rmin=250mm as in Figure
5.2. In Section 2.7, We proposed a method of avoiding circular objects
that is better than the method in [21]; the detalls are discussed

below.

5.4.1. Avoiding The Lower And Upper Bounds Of The PUMA Workspace

The upper bound of the PUMA workspace is easy to avoid. In.most

85

cases, if the initial (start’) and final (goalo) positions of the PUMA
hand are within Rmax (see Figure 5.2.), all intermediate positions
(i.e. the intermediated path points generated by our program) will
also be inside Rmax. If either starto or goa1° is outside of the
envelope defined by Rmax, a safe path will not exist because the path
contains portions that are out of the PUMA’'s reach. This simple test
can be placed at the beginning of the program. An error message will
occur and the program will terminate if the test finds the norm of
starto-origin and/or goalo-origin is greater than Rmax.

Using the notation in Chapter 4 for the lower bound envelope
le};, a subroutine will be called in our program each time an Q(CO\lr)
is constructed and a search is required between start’ and goal‘ to
compute an alternate path as shown in Figure 2.9 if it finds that an
intermediate point of the local optimal path p.ath-l1 is within Rmin.
The computation is fairly simple and takes little time.

Figure 5.4 illustrates a circle and its two tangent lines passing
through the two points (xs,ys) and (xg,yg). We wish to find the two
tangent points (xec1,yc1) and (xec2,yc2) so that a path consists of

(xs, ys) -—HLQ-) (Xc1, ye1) 2re {xc2, ye2) _l_!_n_e_) (xg, yg) (5-7)

can be found.
Let (a,b) be the center of the circle, r be the radius, and I1 L&

the tangent line segment from (xs,ys) to (Xci,yc1). Thus we have:

2 (5-8)

circle: (xc1-a)? + (yc1-b)2 =r
[Xci—a

11: yer = - vo1-b

](Xcl—Xs) +ys (5-9)

Xc1 can then be solved from

86

arc
portion

(Xe1, Ye1)
11

(Xcz, Yec2)

(Xs, Ys)
(Xg» YQ)

Figure 5.4. Finding an alternate path for avoiding

the PUMA’s lower—bound envelope Rain.

87

AX1 +BXe1 +C=0 (5-10)

where

(Xs-a)2 + (ys-b)z (5-11)

>
1]

to
]

2(a-xs) (r°-a°+axs) - 2a(ys-b)2
C = axs(2rl+axs-2a°) + (r2~a2)[(ra—aa)-(ys—b)z].
and yct can be found from

ra-(xcx-a)(Xs-a)
ys-b

Yyel = + b, (56-12)

Similarly, xc2 and ye2 of l2 can be solved by substituting xs and ys
with xg and yg in (5-8), (5-9), (5-10), (5-11) and (5-12).
In the case of the PUMA 560, we can set a=0 and b=0, then (5-11)

and (5-12) can be simplified as

A= xs® + ysz (5-13)
B = -2xsr’
C-= rz(ra-ysa)
and
t‘a-XcIXS
Yel = T— (5-14)

The arc portion is computed as follows

a1 = atan2(yc1,Xc1) (5-15)
az = atan2{yec2, xe2)
Ax = (a2 - a1)/Parc

where Parc is the number of points used to describe the arc. If we
define a location structure as the transformation type in (5-1),
struct loc {double x, y, 2z, o, a, t;}; (5-16)

then those points can be stored in an array of "struct loc pointl]” by

88

the following
for i=1 to Parc, step +1, do: (5-17)
{
ar = a1 + Ax;
point[il.x = r*cos(a1);
pointlil.y = r*sin(a1);
point[i}.z = -400;
point{i}.o = O;
point{il.a = 90;
point[i].t = O;
NEXT 1i;
}
This alternate path will substitute the unsafe portion of path-ll
between startl and goal‘. It can also be used to substitute the

+1

modified mid-section path--ll of path--l1 (refer to Figure 4.9.) if

1+1 1

any portion of path-l between start”1 and goal“ is found to be

within the envelope defined by Rmin.

5.4.2. Description Of The Find-Path Algorithm For The PUMA 560

The technique of planning collision-free motions for the PUMA S60
is a combination of (1) the search algorithm discussed in Chapter 4
that generates an optimal path in a reduced search graph among
obstacles enclosed by rectangular hulls, (2) the alternate path
algorithm for avoiding the PUMA lower bound envelope, (T che
uploading of the path data to the PUMA controller using C-VAL II
commands via the supervisor port, and (4) the execution of the motions

by calling a small VAL II routine stored in the PUMA’s CMOS memory.

89

An application program called "av" performs the above operations.
A header file "multi.h" that contains all the definitions is included
in the same directory as "av". Before running the program, an input
file must be written first by the programmer. This file contailns
information of the locations of all obstacles, the initial and final
positiors of the PUMA hand, and the resolution of the path (namely,
the number of evenly separated position points required to approximate
the path). The format of an input file is given in Appendix 4. Higher
resolution means more position points generated and gives a more
accurate approximation of the path but takes a longer time to be
uploaded from the SUN to the PUMA. Usually we choose the resolution as
50mm between every two points. This program can find a collision~free
path among up to nine obstacles iIn the PUMA workspace. It has been
compiled using a GCC (a better compiler than CC) on the SUN 3/160
computer (it has also been compiled on IBM-PCs). In most cases, each
run takes less than one second to generate an optimal collision-free
path. To ensure that the path Iis really safe, we also include an
option of displaying the path and the envircnment on a SUNTOOL window
using a2 2-D SunCGI graphics program. This will show the path on the
screen before uploading the path data to the PUMA and executing the
motion.

Table 5.1.— Table 5.3. coritaln a brief description of the
complete algorithm. It is a modified version of Table 4.1. for the
PUMA 560 applications. A 1list of all the routines with some
explanations, and the "makefile" for compilation on the SUN 3/160 are

given in the Appendix 3.

[0

Assume:

Table 5.1.

The Motion Planning Algorithm for the PUMA 560.

(1) The initial and final configurations of the PUMA 560 hand
are known as start’ = [Xs,Ys,Zs, Os, As, Ts]’ and

[x°o an z@u 09- AQ'TQI' .

g'oaliD
The values of Zs, Os, As, Ts, Zg, Og, A9, Tg are fixed
throughout the motion to Zs=Zg=-400mm, Os=0g=0, As=A4g=90, and
Ts=Tg=0 1n order to simulate a two-dimensional environment.
(2) The robot hand in our example has a small radius of r=Smm.
(3) Obstacle sizes and locations are known and the maximum
number of obstacles is nine.
All of the above are stored in a input data file, called
"input".
(4) Robot workspace is given as in Figure 5.2. with Rmin=250mm
and Reax=800mm.
(5) n the worst case number of searcn layers depending on
the clutterness of the environment is given.

{6) TRUE = 1.

/'l‘ﬁ'!l'l".lC!I.l‘.ﬂl"‘!!ll....G...!ﬂ'llll.l."‘.!""II‘!!I.I!.'I/

void main()

{

Read "input" to get starto. goalo, Q, r, and obstacle

sizes and locations. In this stage obstacles are

transformed to C-space bbstacles using (4-3); (T2-1)

91

Test :f start’ and/or goa1° are outside of Q, (T2-2)

If outslde return error message and exit;

Else continue;

While (TRUE)

{

Enter a character (g,e,l,r,d,p,q);

case 'g’: k=generate_path(); /* see Table 5.2. */
case 'e’: execute_motion(); /* see Table 5.3. */
case '1’: list_all(k); /*® list all generated path points */
case 'r’ =read_pathfile();/* read a stored optimal path */
case 'd’: display_input(); /* display input data file */
case 'p’': plot_path(); /*plot the generated path on screen®/
case 'q’: exit(); /* quit the program %/
}

}

/!!l..‘.!!"l!"l.ll.i!iﬂ. END OF MAIN() .'!.ﬁ.'l‘l.‘.ﬂ".‘!.ﬂ'.llﬁ.l/

/'lllli.!!...ll.l"'.ﬂ‘l‘ END OF ALGORITEM '..III..’.QI!.I'.Q..'l"l'/

92

Table 5.2.

The Subroutine for Generating the Optimal Path.

s i'i'\‘-'"i!Ql.'i.llll.-..!...l...'l.ﬁl‘.l'l."ﬂl"3..".‘!"‘..!.!!Oli/

int generate_path() /*generate the optimal path*/
{

Find the number of obstacles in 0°(C0), ob jnum;

(T2-3)

If objnum s 2 /*if less than three obstacles are in 0°(co)*/

{
Determine CO¢ in Q°(CO) as in Section 4.2.3.1.;
If no CO¥ exists in 0°(C0)
{
Connect start® and goa1° with a straight line to
form path;
Test if any part of path is within Rain;
If (TRUE)
Find the alternate path to avold the lower
bound envelope of the PUMA as we discussed
in Section 5.4.1.;
Return the number of points, k, generated for path,
and store those points in an output file, "output®,
in the transformation format as (5-16);
}

Else

a3

(T2-4)

(T2-5)

{T2-5a)

(T2-5b)

(T2-6)

Else

If there is only one COv in 2°(C0)

Else

{

Do (4-11) to find path; (T2-7)

Test if any part of path is within Rain; (T2-7a)
If (TRUE) do (T2-5b); {T2-7b)

Do (T2-6); (T2-7c¢)

}

{

Determine COV(S) and CO¥(G); (12~8)

Calculate the slope of starto-—goalo in oréer to

decide VERTY in (4-7). start®, goal® and VERT}

form a complete set of nodes in n°(00); (T2-9)
Put cost values (distance to goalo) on VERT%; (T2-10)
Determine mids, midg, midi, and mid}; (T2-11)
Connect all the nodes to build the search graph; (T2-12)

Perform an optimal path search for path (=path-11)

in the graph using Bellman’'s principle; ({T2-13)
Do (T2-5a) and if (TRUE) do (T2-5b); (T2-13a)
Do (T2-8); (T2-14)
}

/* if objnum > 2 in R°(CO) */

fa (T2-7) (T2-8) (T2-9) (T2-10) (T2-11) and (F2-12); (T2-15)

For i = 1 to n, step +1, Do:

{

94

Update ' (CO¥) using midl and mid}; (T2-16)
Determine COY*'(S) and coY*!(G) in a'(cod); (T2-17)

Calculate the slope of startl-—gbal’ in order to

1+1 1+1

decide VERTY'! in (4-7). start', goal' and VERTv

form a complete set of nodes in ﬂ‘(CO); (T2-18)
Put cost values (distance to gval‘) on VERTY'!; (1T2-19)
Connect all nodes to bulld the ith search graph; (T2-20)

Perform a local optimal path search in the graph
using Bellman’s principle to find path-1'*? which

substitutes the mid-section cof path—.ll between

start! and goali; (T2-21)
Test if any part of path-1'*' is within Ruin; (T2-21a)
I: (TRUE) do (T2-5b); (T2-21b)

Store the number of points, ki, generated for

path-1'*1; (T2-22)
Next i; (T2-23)
}

Sum up the total number of path points: k = ¥ ki; (T2-24)

If those k points are not within tue robot physical reach Rmax,

send an error message and exit; (T2-24a)
Connect all path-1' to form path; (T2-25)
Do (T2-6); (T2-26)

}
}

/.I#QI..".D..'..’I"‘ END OF GENERATE PATH() ARG BREBREREERBRERRTRBE.

95

Table S.3.

The Subroutine for Executing The PUMA Motions.

Assume: (1) A collision-free path has been generated and stored in a

file called "output" in transformation format.
(2) The auto-start program in Tabie AS.1 has been executed.
(3) Path data will be transferred to "moved[]" in VAL memory.
(4) A small VAL II program called "motion" is stored in the VAL
I1 memory. It will move the PUMA in joint interpolation mode to
follow the collision-free path that has been transferred to
“moved[]":

. PROGRAM motion

FOR INDEX=0 to LLAST(move4{]) ;LLAST indicates the last

MOVE move4[INDEX] ;i location variable

.END

/l-.!"lll’ill.l.'!l!lli'..lii!"l'l.l'il‘.l!l‘i.!"'l“l.lil"l..I.lﬂ/

void execute_motion()

{

Declare all location points as transformation type
as in (5-5); (T2-27)
Start_supervisor() to initialize the communication; (T2-28)

Read the number of location points of the generated

path in file "output", k; (T2-29)
Move the PUMA arm to its home position as in (5-4); (T2-30)
Delete the contents of all variables in "moved{]". (T2-31)

96

Upload the k pcints from "output" in the SUN to
"move4[]" in the VAL II memory. (T2-32)
Execute the VAL II program "motion" once. (T2-33)

When "motion" is done, display the final hand

configuration to verify if it is the desired goal. (72-34)
Move PUMA back to home position for safety purpose. £T2-35)
Abort_supervisor() to terminate DDCMP communication. (T2~-386)

}

/ﬁ*l!l'l..‘ll!ll*!!' END OF EXECUTE MOTION() lil*il*‘*‘ﬁl!i‘*i**l!'ii/

5.5. Examples and Results

In this section we present some experimental results of our
find-path algorithm. Before we do this, a brief summary of the
procedure 1s given.

First use "suntools" option to open a suntool window. Place up to
nine obstacles in the PUMA workspace and enclose each one with an
appropriate rectangular hull as in Figure 4.1. Decide the start and
goal positions of the PUMA hand. Next simply type

"av input"
where "input" must be written in the format as in Appendix 4. Then a

menu will appear as follows:

EX XTSRRI RSS2 222222 22222 2 22 2222ttt sl

'd’ == display input data file

o
!}
il

execute collision~-free motion

g’ == generate path (location points)

97

-

—

-
1]
[}

list all location points

plot the generated path on screen
q’ == quit the program
r’ == read an already generated path file

L2 2

Enter your choice now (d,e,g,1,p,q,r):
1223322223232 22222222 2222322232312 X223 2 XYL L))

Answer ’'g’ for generate, and in less than one second the optimal
collision-free path will be generated and stored in an output file
“path.rec". A message will tell the programmer if the path is within
the PUMA’s physical reach. If it is a safe path the same menu will
appear again. This time answer '1’ to list all the points (locations
and orientations) of the path. Then answer 'p’ for plot, which
displays the path and the PUMA environment on the suntool window. To
interrupt the display type the carriage return key which brings us
back to the menu again. Now turn on the PUMA controller power and
execute the auto-start program in Table A5.1., then answer 'e’ to
execute the motlon. C-VAL II commands in Table 5.3. will start the
communication and upload the path location points to VAL II. If no CRC
errors are found, the VAL II program "motion" will be in operation to
move the PUMA in joint-interpolated fashion for all joint motors.

The following cases were tried on the PUMA 560. The results are
all satisfactory, i.e. they are safe and reasonably optimal.
Case 1: A particular obstacle configuration is chosen and different
start and goal points are tried. The sizes of the obstacles (not their
locations) are changed and the experiments are repeated.

Figure 5.5. (a) shows the optimal collision-free path ameng nine

obstacles. Flgure 5.5. (b) has the same obstacles and start position

98

as (a) but a different goal position. The resulting path is different
from Figure 5.5. (a). Figure 5.5. (c) has the same start and goal as
(a) but some of the obstacles have bigger sizes than that in (a) which
makes the environment more cluttered. The resulting path is of course
different from that of (a).

Figure 5.6. (a) and (b) show the different paths for another set

of the same obstacles but different start and goal points.

Case 2: In a very cluttered environment (Figure 5.7.).

Case 3: In a less cluttered environment when the only thing to avoid
is the PUMA trunk, i.e. the lower bound envelope Rmin (Figure 5.8.).
Note in Figure 5.8., all obstacles are outside the reduced space
2°(c0) as defined in Section 4.2.3.1. of Chapter 4. Therefore no
searching computation is needed except the computation for avoiding
Rmin.

Case 4: Avoiding both obstacles and Rmin.

In order to demonstrate clearly how the lower bound envelope is
avolded, we can increase Rmin from 250mm to 390mm. Examples of
avoiding Rein are shown in Figure 5.8.

Case 5: Avoiding obstacles with the help of mids and/or midg

mid-points (Figure 5.10.). This has been discussed in Section 4.2.3.2.

5.6. Evaluation And Discussion

In this section we discuss and compare the differences between
our approach and some other approaches that we have examined in
Chapter 2.

The approach we propose here is similar to Lozano-Pérez’s C-~space

a9

approach [48] [49] [50] in that both methods shrink the moving object
to a reference point on the object and enlarge the obstacles to the
shape of the object, and they both search for a collision-free path in
a visibility graph. However, our approach Is simpler because all
workspace obstacles are enclosed by rectangular hulls which have the
same orientation. This reduces the computation of C-space obstacles
significantly without losing much free space. Another difference is
that our V-graph is bulilt in a reduced space 01(00-3) with heuristics.
Each search of the optimal path is local to its reduced space among at
most six nodes in the simplified search graph, which speeds up the
searching process.

In Section 2.7. we compared our method of avoiding a circular
object with Fletcher’s method in [21]). It is easy to see that our
alternate path is shorter and smoother (see Figure 2.8. and Figure
2.9.), and it takes very little time to compute the path as described
in Section 5.4.1. This advantage is quite significant when the
circular object 1is larger than the moving object, namely the robot
hand.

Direct comparisons with many of the existing motion planning
algorithms are not éo straight forward because many of them only work
in their own specific circumstances. However, we were able to compare
our algorithm with the Octree Free Space (OFS) approach proposed by
Herman in [32]. We have discussed Herman's algorithm in Section 2.5.
which is designed for Cartesian robots. The biggest disadvantage of
OFS is that it cannot find an optimal path. Also at a local minimum,
that is, a point which has a lower cost (shorter Euclidean distance to

the goal) than any of its neighboring points, hill climbing method

100

fails and A' algorithm will have to be invoked to perform an expensive
global search through the graph. It is also difficult to evaluate the
efficiency of Herman's approach since he did not mention how to
determine a resolution limit of the decomposition of the octree space
so that the search for a collision-free path does not have to be
infinite. Figure 5.11.(a) and (b) show the paths obtained by the OFS
method and our algorithm. Both have the same start and goal positions.
It is easily seen that the path in Figure 5.11.(b) which is created by
our algorithm demonstrates a better quality than that in Figure
5.11.(a) which is created by OFS. As can be seen from Figure 5.11. (a),
A' search was invoked three times to help hill climbing get out of the
local minimums, which means that global search was performed three
times through the entire graph. Whereas in our case, only three local
searches were required starting from the outmost pair A-and-B to
C-and-D and last to E-and-F, which are much more efficient than OFS.

Our algorithm is very simple and requires little computation time
(always less than a second to generate a path on the SUN 3/160 with an
MC68881 floating-point coprocessor). We have implemented our algorithm
using the C language, which makes the application program quite long
(about five thousand lines of source code). The advantage of using C
is its flexibility which allows us to link our program with the C-VAL
II library which can remotely control the PUMA motions from the SUN
supervisory computer.

Because our algorithm is based on Lozano-Pérez’s C-space concept
and V-graph search strategy, it should work Just as well as his
algorithm when the obstacles are two-dimensional, that is, C-space

obstacles are COA(B1)=COS(B1). Our V-graph search technique in the

101

reduced space n‘(co&) can be extended directly to deal with
three-dimensional C-space obstacles for Cartesian type of
manipulators, i.e., COA(Bi1)=COAY*(B1). However, it will suffer from
the same drawbacks as Lozano-Pérez's algorithm when the obstacles are
three-dimensional. These are (1) shortest paths do not usually
traverse along the vertices of cv&”(al). which means the paths found
are not in general optimal paths, (2) there may not exist a safe path
via the vertices COXY*(Bi) at all within the entire workspace f}, which
often happens when those vertices are inaccessible. Although other
types of collision-free paths (via edges of COXY*(Bi) for example)
within Q may exist, V-graph search algorithm will not find them. In
(49] au alternate and complete searching strategy for finding safe
suboptimal paths for a Cartesian robot is proposed, which may be

applicable to our algorithm.

102

‘() wodJ a9[0e}SqO JUIISFITP ®©
sey (o) ‘(e) woly Teod JUSILIITP SeY (q) :suorjlenyis

JuUaJaIJIp Ul pojestauald syjed 9a13-UOISTITO) °S°S 3In8i4

(®)
(ww) X
008 00L 009 O00S 00Ot 00OE 00Z 00i 0 00L- OON 00¢— 00¥— 00G— 009— 0O0L—- 008-—
____________L____:._.___F:_:_:_.__...___..__:. __.._.___.____.__._._.____.__. 0
\ ' -
\ ' L
—
MZD&E VINQd \ - 001
ulwy 9dojpAUT JIMOT ~——=> -
- 002
- 00¢
- 00%
- 006
10 do — -
uiod |jowndo _H_ ||OOm
- 002
xowy adopaul Jaddp ——— K
L 008

103

(panuijuc)) °S°'S InBig

(q)
(ww) x
008 00/ 009 00S 00y 00¢ 00Z 001 0 00l—- 00Z— 00€— 0O0O¥— 00S— 009— 00L- 008-
_h.____:__L__._:___.___L_..__L._.____.______.... __._____.__._:F__:__.____:._ 0
. 1 L
MZD&& <2Dm ~ [Foot

uliwy adoigAaul Jamol ————° [~

xDwy adojdaul saddn o

104

(penutjuo]y) °'G'S dIn3T4

()

(ww) X

008 00Z O00¢ 005 OQF O00¢ 002 00f O O00l- 00Z— Q0C— OO¥— 00G— oow 00L— 008—

boaga by ea oo a bea e beav s bev o b el o eelaresbsprsbvoeebtaraataraald

L L]

fov gy tess 0

T T
_]
'

MZDmrw VROd /

uley 9dojaAU] JBMOT ——~—°)

xowy adojaauy soddn ——

o Q
(o] o
N -

Q
Q
M

o o
Q o
©o Tp)

o
o
~

LALJILILIN LU UL A Y O O
(@]
Q
<

I
Q
o
«©

(ww) A

105

‘sjutod Teold pue jJels JUSBISIJTP INQ JUSLUCITAUS adwes aYj)
ut pajesausad syjed 9913-UOISTI[OD JUBIDFIIQ °9's amByy

(®)

AEEV X
008 00L 009 O00S OO0ty 00¢ 002 001 0 O00!l— 00Z—- 00¢— 00¥— 005~ 39— 00ZL— 008-—

(NS ESIENEEE NNV NN NEN IR SN N RN NN RN RN NN RE RN T T N E I Y 0
[}

1
!

VANOQYL VO [/

’
viwy 9d0IBAUT JBMO] ===

-

LR

Q
(@]
-—

\ ’

o
o
o~

o
Q
Te]

¢\m m/zﬂz mg/m

o
Q
©

(=
o
~

xowy adoaul Jsoddf ——m

llll[llll[llllllllIlllll'llllIlll—l

{
o
o
©

(W) A

106

(panutjuo)) °9°S aundT4q

(q)
(ww) X
oom 00Z 009 006G 00+ 00 002 001 0 00L- 00Z— 00£— O0¥— 00S-— 009- 00L- 008-—
_.____._F______._.___.:___.______._...._.__L._.._..~_.__._._._._____._...__.__._O
_ t
'
MZD%E VINOd 0oL

s
ulwy 3adoPAul IBMOT —— -t

00¢

00¢

oot

00s

xDwy adojaaul] Jsaddn ——

107

*3JUSUUOITAUD PaLa}nyd

AJaA ' uy pajedaudd yied 294J-UOTSTITOd YV °/°G a1ndy4

008 00/ 009 00S OOGr 00f 00CZ 0Ot O 00L- 00Z- 00€£- Q0¥— 00G— 009~ 00L—- 008-

Lot taasabaeaa o vestansalaa v tes o daveabyeaatoaeadaoersdsegstrseatonanlaarnlsgsn

(ww) X

0

T
\
1
—

uiwy adojeaulz Jamon l...ll,

xowy adojaaul s9ddn ——

VIANNYL VIO \

]
]

]llllTrlll
Q o (@]
Q o (@]
M o~ -—

o
(=)
~

/

o
o
N

o
(@]
(e}

00L

llll|llll|llll|rlll|[lfl1llll

{
o
o
[ve]

(W) A

108

yunJay VHNd 34l sy
ptoae 031 Buily)} ATuo JY} UIUM JUSUUOITAUD Pala}jnio
SSa] ' Uy pajetausld yjed 9913-UOTSTTIOO V °'8°S 9In3T4

(Ww) X

008 00L 009 00§ oov 00¢ 002 001 O O00L- 00¢— 00€— 00P~ 00S— 009— 00L- 008-—

(NN RSNl RN NN NS AR AR NN NN EERE RN NN BT RN IR T AT 0

xowy adojdaul saddn ——

T
_

t
t

o
o
—

Q
(o]
o~

o
S
A

Q
o
Q-

Q
o
(o]

Q
Q
w

o
o
~

[7l.rl|lljl['(lllIlll]flil|lll'il'lll|l|ll

T
o
[*e}

109

‘utwy adoyaaua punoq J13Mol 3Yj Buipyoae jo sayduex3i ‘6°S a1n3t4

(e)

@88 o08. 009 085 ©0eb ©BOc @8z @8t o 6et- 8e2- e0c- 60v- @0S- 68S- 08L- 8es-

eot

082

aee

asy

08s

809

0eL

110

(ponuijuoc)) ‘6°S AIn3T4

(Q)

B8 BBL B8O 8BS BBr @BOE ©BC BOT 2] 001~ 08Z2- ©8E- 08b- 08S- 0609- 088L- 0d8s-

et

eac

gee

aeb

8es

: 889
................ W.......M........w......"..W........W.....-. QQN

111

‘yyed ajes e puyj j0qod ayj diay o3 paiinbau
a1e Spruw pue spyw uayMm sased Jo safduexy 'p1°S aand1y

()

AEEV X
008 00/ 009 008 QQv 00¢ 002 00l 0O O00l— 00Z— 00— 00v— 00G— 009— 00L—- 008—

ELL._:____:._____E____:1___:____:______E____,p:_____:___L_:___.:____ 0
I}

! 1
'

" MINNYL VA

’
uviwy 8do)dAu] JBMOT] ————

\ ’

o
S
M

o
o
~+

Q
=]
n

Qo
Q
0

Qo
o
~

xowy adolsauy soddpy ———

(LIS T I A O

o
Q
©

112

(penutjuo)) 01 'S 24n814

(q)
(ww) X

008 004 009 00¢ OQOv 00¢ 00Z 001 0 00l- 00Z—- 00¢— 00v— 00G— 009- 00L- 008—
________________.FE_________._.__.__________________________.___:___f_____.__.,__ 0

t N W

1 1] |

— -
VINAYL VNN =00t

uiwy adojpAu] JBMOT ~— ==V K [

T
002
-00¢
00t

-

[

»
- 006

-
— 008

-
002

xowy adojaaul saddn —— -
008

(W) A

113

‘sayoJaess [edol 93Jyj ATUo Y3IM wyitro8re uano Aq pajersusald

yjed e (q) ‘sayodeas Yy I2dYyjl SIsSN YdIym °‘sjo 4Aq pajelauas
.

yjed e (e) :yoeoidde SJjo Y3IM uosyIedwol vy "11°G aIn314

(®)

608 00. ©83 @S eer OBOE BOZ ©01 8 801- @@2- 00e- ©0Ov- 0BS- 288- ©8BL- BO8-

. - - -
.
. tecenetaiaens R IR Sesevaactoneasfo Sessessiabereoins IR
. . . :
. : . : . : . .
.
. . ' . . . : :
B R R R T TR PR RN B R R LR R LR T R Ry S PR P I LR R R R PP RPN .
: . : . : :
: 3 . : . 4 : H
: :
. :
A R R N IR T I . csvscenseneasessefeceaveitdiiiransane etaresssePrrase N “ee
i ; : h] h . ? >
. . . . : : .
: : : : . H : :
. : . . : : : .
. . . : : .
' : > g H : 5 .
.....
T : 3 . 1T 1 1.
] :
. .
v
.
. H
veveee
. : e
:]
. . : : . .
: N s ” 7 S L T R
H H . . H .
. : . : . .
. . . . :
. . . d H .
. : . . :
cosserslrcnressatrecene s bt iaes Seresens) R I P
] : : ! d
.
: . : : :
. : . :
. . : :
q . H .
. . : :

oot

002

:1:1>

gop

20s

en9

-4

114

teanas
R

)
.
.
.

4ess e arserenns

CERTRRTF S

k]

secased

teras}ata.

Prasnerpessiy

IXER XX
. -

. -

. .

. -
P
.

EET R AT CEER TR

eersscerececcnn

sreseecharsoeae

.
.

700
600

115

-288 -100 B 160 208 300 408 SPB 608 708 880

-668 -568 -4008 -3088

-708

-808

(b)

(Continued)

Figure 5.11.

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS

We have presented in this thesis a new algorithm for
collision-free motion planning. This algorithm can find a
collision-free pazth that, in many cases, is the truly optimal path in
a two-dimensional work environment. The algorithm is based on the
well-known C-space approach and the V-graph search strategy. However,
it simplifies the C-space obstacle computations by using rectangular
hulls to enclose all workspace obstacles without losing much free
space. We also suggest the construction of a simple search graph which
has at most six valid nodes in a reduced search space. Thus a locally
optimal path in each reduced space can be found easily and efficiently
using Bellman’s principle of optimality. The global path is a simple
connection of all the local optimal paths. This algorithm has been
implemented for motion planning of a PUMA 560 manipulator. In this
application, we also introduced a method of avoiding the lower bound
envelope of the workspace of the PUMA robot.

Our algorithm can be extended directly to three-dimensional path
planning for Cartesian type of robots. The optimality of the
collision-free paths will then be lost. As far as we know, there are
still no general solutions to the find-optimal-path problem in
three-dimensional space.

The communication between a supervisory computer and the PUMA
robot is via an RS232 serial line at a speed of 9600 baud using bDCMP
protocols. DDCMP requires some error checks (such as the CRC checks)

and the message sequence formatting which may not be necessary for the

116

simple uploadings of the generated path data to the PUMA. These checks
slow down the communication slightly. An alternative way to speed up
this process is to send the VAL II commands and data directly from our
C program to the PUMA's terminal port as if they were typed from a
keyboard. This technique has the disadvantage that no checking of
errors is done but it is faster and perhaps suitable for planning and
controlling the PUMA motions in a real-time environment from a remote
supervisory computer. Details on this are discussed in Section 6.1.

So far we have only proposed an algorithm for collision-free
motion planning without considering the manipulator’s dynamics. The
optimal collision-free paths are those which have the shortest
Euclidean distance from start to goal configurations. A
minimum-distance path is often not necessarily the minimum-time path.
If we can have the control of the robot Jjoint torques, the near
minimum-time control strategy that we have discussed in Chapter 3 may
be embedded in our algorithm to plan local time-optimal motions in
Joint space from one position point to the next position point on the
collision-free path generated by our present algorithm. This will,
however, require a unique inverse kinematics solution for each joint
so that the transformation of a hand position in Cartesian space to
the Joint space could be straight forward. Traveling along a
time-minimum path will mean more computations than that of traveling
along a shortest distance path by ignoring the dynamics of the robot.
More computations will result in a longer path planning time. Whether
the time saved in traveling a time-optimal path éould be Jjustified by
the long period of time wasted in the complicated computations for

planning the path is open to some debate.

117

6.1. Speeding Up The Communication Between The PUMA And The SUN

The PUMA 560's terminal port is also an RS232. We can use this
port to connect the PUMA to the SUN 3/160. If we generate all the
necessary VAL II commands with carriage return signals as ASCII
character strings from our C program and dump them to the terminal
port, then the PUMA controller will be able to understand them Just as
if they were typed from a keyboard. Such a communication requires no
DDCMP protocols and error checks and is therefore very fast.

The RS232 port (A or B) can be treated as a (device) file. It is
“ttya" for port A or "ttyb" for port B and is stored in directory
“robo:/dev" on the SUN. VAL II commapds can be written to this file
using function "“fprintf()" in C. The following are some simple
examples.

Suppose we use serial port A of the SUN and we want to send a VAL
IT command “"CA" to the PUMA to calibrate the joint-position sensors in
the PUMA and then send another VAL II command "DO READY" to the PUMA
in order to move its hand to the home position. We could perform the
above as follows:

char *ready="DO READY", *ca="CA", cr='\r’;

FILE *port_a;

port_a = fopen("/dev/ttya", "w+"); /* Open port A */
fprintf(port_a, "%s%c", ca, cr);

fprintf(port_a, "y\r"); /* Answer YES to confirm */
fprintf(port_a, "%s%c", ready, cr);

felose(port_a);

The path data can also be sent to the PUMA in the same way. For

118

example, we use the VAL II location array variable move4[] (moved,™!
moved4{1), -+--, movedlk-1]}) to store, in transformation format, ‘b= K
position points of the collision-free path generatzd by our algorithm
A VAL II command "POINT <location variable> {= <location values>}" can
be sent to the PUMA from the C program to perforwy this. it ls like the
uploading of path data from the SUN to the PUMA vin the supervisor
port that we have done using a C-VAL II command ‘serd_%to_val()".
Suppose the position points of the collision-free path have been
generated and stored in a structure array “struct loc points[]" where
“struct loc" is defined in (5-16), then we can use the'following to
transfer those points to the PUMA:

FILE *port_a;

char *pl="POINT move4[", *p2="]=", answer([80], cr= '\r’;

int i;

port_a = fopen("/dev/ttya", "w+"); /% Open port A */

for (1=0; i<k; 1++)

fprintf(port_a, "%s%ud%sif,uf,%f,%f,%f,%f%c", p1, i,
p2, points[i].x, points{il].y, points{il.z,
points[il.o, points[il.a, pointsiil.t, cr);

Many of the VAL II commands require a response of answers from the
programmer to confirm certain things. Take "POINT" command for
example, after the values of X, Y, 2, O, A, T are assigned to a
location variable the query "CHANGE?" will appear. Usually our data
need not be changed, so we should answer "N" or simply send a carriage
return signal. Thus we can rewrlite the above loop as

for (1=0; i<k; 1++)

{

119

fprintf(port_a, "%skd%s%f,%f,%f,%f,%f, %f%", pl, 1,
p2, points{i].x, points(il.y, points(il].z,
peints(i].o, points(il.a, points{i].t, cr);

if ((fscanf(port_a, "%s", answer) > 0)
fprintf(port_a, "%c", cr);
}

Once the path data have been transferred to the PUMA we are ready to

execute the collision-free motions by running a small VAL II program

called "motion" (see Table 5.3.) that has been stored in the VAL II

memory before the execution. This is done by sending a VAL II command

"EXECUTE" namely:

fprintf(port_a, "EXECUTE motion,1, 1%c", cr);

which executes only once from step 1 of the program.

One thing we should not forget is that there might be risks for
doing such a communication without any safety checks, because it may
create fatal errors that will either confuse the PUMA controller or
crash the whole system. This may be particularly significant in a

noisy work environment that has large electric equipment.

120

(1]

(2]

[3]

(4]

(5]

(6]

(71

(8]

(9l

Bellman, R., Applied Dynamic Programming, Princeton University
Press, 1962

Benson, R. V., Euclidean Geometry and Convexity, McGraw-Hill
Book Company, 1966

Brady, M., J. M. Hollerbach, T.J. Johnson, T.Lozano-Pérez, and
M.T.Mason, Eds., Robot Motion: Planning ana Control, The MIT
Press, Cambridge, Mass., 1982

Brady, M., Robotics Science: System Development Foundation
Benchmark Series, The MIT Press, Cambridge, Mass., 1989

Branicky, M. S., and W.S. Newman, "Rapid Computation <«
Configuration Space Obstacles," IEEE Int. Conf. on Robotics
and Automation, pp.304-310, 18890

Brooks, R. A., "Symbolic reasoning among 3-D models and 2-D
images," Artificial Intelligence, Vol.17, pp.285-348, 1981

Brooks, R. A., "Solving the Find-Path Problem by Good
Representation of Free Space," IEEE Trans. on Systems, Man
and Cybernetics, Vol.SMC-13, No.13, pp.180-197, 1983

Brooks, R. A., "Planning Collision Free Motions for Pick and
Place Operations," 1st Int.Symposium on Robotics Research,
M.Brady and R.Paul, Eds., The MIT Press, Cambridge, Mass.,
pp.5-37, 1984

Brooks, R. A. and T. Lozano-Pérez, “A Subdivision Algorithm in
Configuration Space for Findpath with Rotation," IEEE Trans.

on Systems, Man and Cybernetics, Vol.15, No.2, 224-233, 1985

121

(10]

[11]

[12]

[13]

[14]

[15]

(18]

{(17]

(18]

Brost, R. C., "Computing Metric and Topological Properties of
Configurat ion-Space Obstacles," IEEE Int. Conf. on Robotics
and Automation, pp.170~-176, 1989

Canny, J. F., The Complexity of Robot Motion Planning, Ph.D.
Dissertation, The MIT Press, Cambridge, Mass., 1988

Canny, J.F.,"On the "Piano Movers'" Series by Schwartz, Sharir
and Ariel-Sheffi," in The Robotics Review 1, 0. Khatib, J.
Cralig, and T. Lozano-Pérez, Eds., The MIT Press, 33-40, 1989

Chen, Y., and M. Vidyasagar, “Optimal Trajectory Planning for
Planar n-Link Revolute Manipulators in the Presence of
Obstacles," IEEE Int. Conf. on Robotics and Automation,
pp. 202-208, 1988

Connell, 1., Modern Algebra: A Conceptive Introduction, North
Holland, New York, NY, 1982

“DDCMP Specification, Version 4.0", Digital Equipment
Corporation, March 1978

Donald, B. R., "A Search Algorithm for Motion Planning with
Six Degrees of Freedom," Artificial Intelligence, Vol.31,
pp. 295-353, 1987

Elgazzar, S., D. Green and D. O’Hara, "A Vision-Based Robot
System Using A Multiprocessing Controller," Tech. Report,
Division of Elec. Eng., NRC Canada, June 1984

Eltimsahy, A. H., and W.S. Yang, "Near Minimum-Time Control of
Robotic Manipulator with Obstacles in the Workspace," IEEE

Int. Conf. on Robotics and Automation, pp.358-363, 1988

122

(18]

(20]

{21]

[22]

(23]

(24]

(251

(26}

(271

Faverjon, B., "Obstacle Avoidance Using An Octree in the
Configuration Space of a Manipulator," IEEE Int. Conf. on
Robotics, pp.504-512, 1984

Faverjon, B., "Hierarchical Object Models for Efficient
Anti-Collision Algorithms," IEEE Int. Conf. on Robotics and
Automation, pp.333-340, 1989

Fletcher, R. W., and A. A Goldenberg, "Collision Avoidance for
Robot Manipulators: Application to CATIA/IBM 7585
Interface," J. of Robotic Systems, 5(2), pp.125-146, 1988

Fu, K. S., R. C. Gonzale and C. S. G. lee, Robotics: Control,
Sensing, Vision, and Intelligence, McGraw~Hill Book
Company, 1987

Fujimura, K., and H. Samet, "Motion Planning in a Dynamic
Domain,” IEEE Int. Conf. on Robotics and Automation,
pp. 324-330, 1990

Ge, Q. J., and J. M. McCarthy, "Equations for Boundaries of
Joint Obstacles for Planar Robots," IEEE Int. Conf. on
Robotics and Automation, pp.164-169, 1989 .

Ge, Q. J., and J. M. McCarthy, "An Algebraic Formulation of
Configuration-Space Obstacles for Spatial Robots," IEEE Int.
Conf. on Robotics and Automation, pp.1542-1547, 189S0

Glavina, B., "Solving Findpath by Combination of Goal-
Directed and Randomized Search," IEEE Int. Conf. on
Robotics and Automation, pp.1718-1723, 1980

Gondran, M., Graphs and Algorithms, John Wiley & Sons, New

York, NY, 1984

123

[28]

[29]

{30]

[31]

[32]

{33]

{34]

*[35]

[36]

Gourishankar, V. G., "Lecture Note: Optimal Control Systems, "
Dept. of Elec. Eng., Univ. of Alberta, 1986

Gupta, K. K., "Fast Collislon Avoidance for Manipulator Arnms:
A Sequential Search Strategy," IEEE Int. Conf. on Robotics
and Automation, pp.1724-~1729, 1990

Hasegawa, T., “Collislon Avoidance wusing Characterized
Description of Free Space," Proc. of '85 ICAR, pp.69-76,
Tokyo, 1985

Hayward, V., "Fast Collision Detection Scheme by Recursive
Decomposition of A Manipulator Workspace," IEEE Int. Conf.
on Robotics and Automation, pp.1044-1048, "3

Herman, M., "Fast, Three-Dimensional, collision-Free Motion
Planning," IEEE Int. Conf. on Robotics and Automation,
pp. 1056-1063, 1986

Ilari, J., and J. L. Reyna, "Some Experimental Results Using
Heuristics for Solving the Find-Path Problem in C-space,” in
IFAC Theory of Robotics, pp.337-342, Vienna, Austria, 1986

Izaguirre, A., "Implementing Remote Control of A Robot Using
the VAL II Language," Tech. Report, Univ. of Pennsylvania,
Aug. 1984

Jones, J. L., and T. Lozano-Pérez, "Planning Two-Fingered
Grasps for Pick-and Place Operations on Polyhedra," IEEE
Int. Conf. on Robotics and Automation, pp.683-688, 1990

Jun, S., and K. G. Shin, "A Probabilistic approach to
Collision-Free Robot Path Planning,” IEEE Int. Conf. on

Robotics and Automation, pp.220-225, 1988

124

(37]

[38]

[39]

[40]

[41]

[42]

(43])

*[44]

[45]

Jun, S., and K.G. Shin, "Shortest Path Planning with Dominance
Relation," IEEE Int. Conf. on Robotics and Automation,
pp. 138~-143, 1990

Kanayama, Y., "lLeast Cost Paths with Algebraic Cost
Functions: Part 1I," IEEE Int. Conf. on Robotics and
Automation, pp.75-80, 1988

Kant, K., and S. Zucker, "Planning Collision-Free Trajectories
in Time-Varying Environments: A Two-Level Hierarchy," IEEE
Int. Conf. on Robotics and Automation, pp.1644-1648, 1988

Khatib, 0., "Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots,"” The Int. J. of Robotics Research, Vol.5,
No.1, pp.90-98, 1886

Kheradpir, S., and J. S. Thorp, "Real-Time Control of Robot
Manipulators in the Presence of Obstacles," IEEE J. of
Robotics and Automation, Vol.4, No.B6, pp.687-698, 1988

Kim, B. K., and K. G. Shin, "Suboptima14Control of Industrial
Manipulators with a Weighted Minimum Time-Fuel Criterion,”
IEEE Trans. on Automatic Control, Vol-30, No.1l, pp. ‘10, 1985

Koivo, A. J., and G. A. Bekey, "Report of W. -hp on
Coordinated Multiple Robot Manipulators: Planning -val,
and Applications," IEEE J. of Robotics anz A .- : un,
Vol.4, No.1, pp.91-93, Feb. 1988

Kuan, D. T., J. C. Zamiska and R. A. Brooks, '
Decomposition of Free Space for Path Planning," IEEL
Conf. on Robotics and Automation, pp.168-173, 1985

Kyriakopoulos, K. J., "Minimum Jerk Path Generation," IEE:r

Int. Conf. on Robotics and Automation, pp.364-369, 1958

125

[46]

*[47]

[48]

[49]

[50]

*[51]

*[52]

(53]

[54]

Lee, D. T., and R.L. Drysdale, III, "Generalization of Voronoi
Diagrams in The Plane," SIAM J. of Comput., Vol.10, No.1,
pp. 73-87, 1981

Lee, D.T., and F.P. Preparata, "Euclidean Shortest Path in the
Presence of Rectilinear Barriers," Networks, Vol.14,
pp.393-410, 1984

Lozano-Pérez, T., and M. A. Wesley, "An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles, "
Communications of the ACM, Vol.22, No.10, pp.560-570, 1979

Lozano-Pérez, T., "Automatic Planning of Manipulator Transfer
Movements," IEEE Trans. on Systems, Man and Cybernetics,
Vol.SMC-11, No. 10, pp.681-698, 1981

Lozano-P4rez, T., "“Spatial Planning: A Configuration Space
Approach, .IEEE Trans. on Computers, Vol.C-32, No.2,
pp. 108-120, Feb. 1983

Lozano-Pérez, T., "A Simple Motion-Planning Algorithm for
General Robot Manipulators,” IEEE J. of Robotics and
Automation, Vol.RA-3, No.3, pp.224-238, 1987

Lozano-Pérez, T., J. L. Jones, E. Mazer, and P.A. 0O’Donnell,
"Task-Level Planning of Pick-and-Place Robot Motions,"
Computers, pp.21-29, March 1989

Meagher, D., "Geometric Modeling Using Octree Encoding,"
Computer Graphics and Image Processing, Vol.18, 129-147,1982

Meng, A. C., "Dynamic Motion Replanning for Unexpected
Obstacles," IEEE Int. Conf. on Robotics and Automation,

pp. 1848-1849, 1988

126

(851

(561

[57]

(58]

[59]

[60]

*{61]

[62]

*[63]

[64]

Meyer, W., "Path Planning and the Geometry of Joint Space
Obstacles." IEEE Int. Conf. on Robotics and Automation,
pp.215-219, 1988

Muck, K. L., “Motion Planning in Constrain Space," IEEE Int.
Conf. on Robotics and Automation, pp.633-63E, 1988

Nilsson, N. J., Problem-Solving Methods in Artificial
Intelligence, McGraw-Hill Book Company, 1871

Nilsson, N. J., Principles of Artificial Intelligence, Tioga
Publishing Co., Palo Alto, CA, 1980

0’ Dunlaing, C., M. Sharir, and C. K. Yap, "Retraction: A New
Approach to Motion-Planning," Proc. of the 15th Symposium on
the Theory of Computing, 1883

¢’Dunlaing, C., and C. K. Yap, "A Retraction Method for
Planning the Motion of a Disc," J. of Algorithms, March 1985

Ozaki, H., and A. Mohri, "Synthesis of a Minimum-time
Manipulator Trajectories with Geometric Path Constraints
using Time Scaling," Robotica, Vol.B6, pp.41-46, 1988

Paden, B., A. Mees and M. Fisher, "Path Planning Using a
Jacobian-Based freespace Generation Algorithm," IEEE Int.
Conf. on Robotics and Automation, pp.1732-1737, 1989

Papadimitriou, C. H., "An Algorithm for Shortest-Path Motion
in Three Dimensions," Information Processing Letters,
Vol.20, pp.258-263, 1985

Paul, R. P., Robot Manipulators: Mechanics, Programming, and

Control, The MIT Press, Cambridge, Mass., 1881

127

[65]

[66]

[67]

[68]

[69]

(701

[71]

(72]

[73]

Samet, H., “"Neighbor Finding Techniques for Images
Represented by Quadtrees," Computer Graphics and Image
Processing, Vol.18, pp.37~-57, 1982

Schwartz, J., J. Hopcroft and M. Sharir, Eds., Planning,
Geometry and Complexity of Robot Motion, Ablex Publishing
Corp., Norwood, NJ, 1987

Sharir, M., "Algorithmic Motion Planning 1in Robotics,"
Computers, pp.9-20, March 1989

Shihari, Y., Artificial Intelligence: Concepts, Techniques
and Applications, John Wiley & Sons, 1984

Shiller, 2., and S. Dubowsky, "Global Time Optimal Motions of
Robotic Manipulators in The Presence of Obstacles," IEEE
Int. Conf. on Robotics and Automation, pp.370-375, 1988

Shimano, B. E., C.C. Geschke and C.H. Spalding III, "VAL-II: A
New Robot Control System for Automatic Manufacturing," IEEE
Int. Conf. on Robotics and Automation, pp.278-292, 1984

Singh, J. S., and M. D. Wagh, "Robot Path Planning using
Intersecting Convex Shapes: Analysis and Simulation," JEEE
J. of Robotics and Automation, Vol.RA-3, No.2, 101-108, 1987

Srihari, S. N., "Representation of Three-Dimensional Digital
Images, " Computing Surveys, Vol.13, No.4, Dec. 1981

Suh, S., and K. G. Shin, "A Variational Dynamic Programming
Approach to Robot<Path Planning With a Distance-Safety
Criterion," IEEE J. of Robotics and Automation, Vol.4, Ne.3,

pp.334-349, 1988

128

(74]

[751

{761

*[77)

(78]

[79]

(801

{81]

[82])

Suhand, S., and A. B. Bishop, "Collision-Avoidance Trajectory
Planning Using Tube Concept: Analysis and Simulation," J. of
Robotic Systems, 5(6), pp.497-525, 1988

Takahashi, 0., and R.J. Schilling, "Motion Planning in a Plane
Using Generalized Voronoi Diagrams," IEEE Trans. on Robotics
and Automation, Vol.S5, No.2, pp.143-150, April 1989

Udupa, S.M., "Collision Detection and Avoidance in Computer
Controlled Manipulators,"” Ph.D. Dissertation, California
Inst. of Tech., Pasadena, Calif., 1977

Udupa, S. M., "Collision Detection and Avoidance in Computer
Controlled Manipulators,” Proc. 5th Int. Joint Conf.
Artificial Intelligence, MIT, 1977

"Unimate PUMA Mark II Robot: 500 Series Equipment Manual”,
Unimation Inc., Danbury, Connecticut, 1985

"Unimate Industrial Robot: VAL-II Programming Manual Version
2.0," Unimation Inc., Danbury, Connecticut, 1986

Warren, C. W., "Global Path Planning Using Artificial
Potential Fields," IEEE Int. Conf. on Robotics and
Automation, pp.316-321, 1989

Welzl, E., "Construction the Visibility Graph for n-Line
Segments 1in 0(n®) Time," Information Processing Letters,
Vol.20, pp.167-171, 1985

Wong, E. K., and K. S. Fu, "A Hierarchical-Orthogonal-Space
Approach to Collision-Free Path Planning," IEEE Int. Conf.

on Robotics ard Automation, pp.506-511, 1985

128

(B3] Wong, E. K., and K. S. Fu, "A Hierarchical Orthogonal Space
Approach to Three-Dimensional Path Planning," IEEE J. of
Robotics and Automation, Vol.RA-2, No.1, pp.42-53, 1986

{84] Yap, C. K., "Algorithmic Motion Planning," in Advances in
Robotics, wvol.1, J. T. Schwartz and C. K. Yap, Eds.,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp.95-143, 1987

[85] 2hu, D., and J. Latombe, "Constraint Reformation in a
Hierarchical Path Planner," IEEE Int. Conf. on Robotics and
Automation, pp.1918-1923, 1990

(86] Fu, L., and D. Liu, "An Efficient Algorithm for Finding a
Collision-free Path Among Polyhedral Obstacles," J. of
Robotic Systems, 7(1), pp.128-137, 1980

(87] Gewali, L. P., S. Ntafos and I. G. Tollis, "Path Planning in
the Presence of Vertical Obstacles," IEEE Trans. on Robotics
and Automation, Vol.86, No.3, pp.331-341, June 1990

[88] Noborio, H., T. Naniwa and S. Arimoto, "A Quadtree-Based
Path-Planning Algorithm for a Mobile Robot," J. of Robotic

Systems, 7(4), pp.555-574, 1930

Note: "*" indicates that the publication is not specifically referred

to in the thesis but it may be of some use for further readings.

130

APPENDICES

1. Direct Control Of The PUMA From The SUN

The program for direct control of the PUMA from the SUN 1s stored
in "robo:/usr/ee/jill/ddcmp2/super.x". "super.x" is compiled from two
C routines "super_6m.c" (contalins subroutines of communication via the
supervisor port with VAL II) and "super_6d.c" (contains subroutines of
the DDCMP protocols and CRC error checks) with a small header file
"super_4i.c" included in "“super_6d.c". After executing this program
there is a "menu" that permits the following operations:

(1) "start_DDCMP": Starts the DDCMP communication. In VAL II we
should write "enable network" in order to start the communication
using the protocol. A dot appears after this command if the
communication works correctly. If a VAL Il command "enable supervisor"
is written at the terminal, then the message "prompt_VAL II=>" will
appear on the SUN indicating that it 1s ready to send commands to VAL.

(2) ‘"start_terminal”: Is similar to ‘"start_DDCMP" with the
difference that both of the commands "enable network" and "enable
supervisor" are written in VAL II by the terminal. Thus the SUN will
work as a dumb terminal.

(3) "abort_DDCMP": Stops the DDCMP program.

(4) "short_status": Shows the actual status of the VAL II system.
Such as program running state, arm calibration, etc.

(5) "abort_status": Stop the running of "short_status".

(6) "ask_state": Writes the state of the DDCMP (number of

messages received and sent; last message received, etc.)

131

2. C Like Functions Of VAL II (C-VAL II)

C-VAL II functions are similar to the VAL Il commands. They can
be called from an archived library, “"libpuma.a", which also contains
DDCMP routines. There are already more than one hundred C-VAL II
commands that are stored in "libpuma.a". Many user needed VAL I1I
commands can also be written in C and appended to "libpuma.a". This is
a very important library that we link (in the "makefile") with our
application routines for planning collision~free motions for the PUMA
560. The following is a brief description of this library.

The messages received and sent to VAL II consist of a byte
corresponding to the logical unit, a byte corresponding to the
function code, two bytes corresponding to the function qualifier
(error function received), and the message data. There are seven
primitives functions of communication in "libpuma.a":

(1) "send_wait(char message[])": Sends a message and waits until
it is actually sent.

(2) "send_no_wait(char message(], int *error)": Puts the message
in a stack. If the number of messages is equal to or ‘larger than the
maximum number that can be stored in the stack then ®*error=-1 else
*error=0.

(3) "receive_wait(int number_msg, char *tableau_msg[])": Waits
until the number of messages received is equal to number_msg.

(4) "receive_no_wait(int number_msg, char *tableau_msg(], int
*error)": Similar to "receive_wait". The difference is that 1t does
not wait until it has received a certain number of messages. If the

number of messages received is less than number_msg then *error=-1 and

132

the messages will not be read, else ®error=0 and the messages will be
read.

(5) "number_sent(int *number_msg)": Returns in *number_msg the
number of messages sent.

(8) “number_received(int *number_msg)": Returns in *number_msg
the number of messages received.

(7) "delete_msg(int number_msg, int *error)": Deletes the number
of messages that is equal to number_msg if there are at least this
number of messages received (*error=0), else the messages will be kept
and *error=-1.

These primitives are frequently called by the many different
C-VAL II functions that are used to control thé PUMA motions.

In each C_VAL II command (or function) there are many different
parameters that pass information. Among them are two very important
orcs. These two are used in almost all C-VAL II functlons.

(a) char *quality: which indicates if the command is going to be
sent by waiting the answer (*quality="wait"), or without waiting for
an ansver (*quality="nowait"). In the latter case the messages are put
in a stack and sent sequentially, and the answers are automatically
stored in another stack and the programmer.has the responsibility to
read them. From our experience, it is always better to wait for the
answer, l.e. set *quality="wait" in each C-VYAL II function, so that
the next function can be executed properly.

(b) int *error: which indicates the error code that will be sent
out. *error=0 means successful, *error=-1 means not successful.

Of all the C-VAL II functions, two are the most important for

initlalizing and terminating communications and should be included in

133

each application program.
(1) start_supervisor(error)
int ®error;
Permits the initialization of the DDCMP communication with the VAL 11
controller so thét our C-VAL II commands can then be accepted by the
PUMA. If VAL Il has not started the communication, i.e. Step 1—3
mentioned in Section 5.3.1 of Chapter 5. have not been done, or
another person is using the supervisor port, then this function will
be blocked and the value returned in "error" is -1. A successful
communication returns an error code of O.
(2) abort_supervisor(error)
1ﬁt *error;
Terminates and released the DDCMP communication with the PUMA from a
C-VAL 11 program. If it finds the line is not occupied then an error
code of -1 will be returned. Otherwise "error" is 0 and the
termination is successful.

Most of the VAL II (and hence the C-VAL II) commands are not
quite useful to our motion planning tasks. The ones that are speclally
made for our application programs to implement the motion planning
algorithm that we have discussed in Chapter 4 on the PUMA 560 robot
are simply the following:

— start_supervisor(int *error): initializes DDCMP communication;

— ready_v(char *quality, int *error): moves the PUMA to its home

position as described in (5-4);
— deletel_v(char *data, char *quality, int *error): deletes all
location points in transformation format stored in the VAL Il

location variable name "data";

134

— send_to_val(struct location SUNpoints{], int number, char
*data): sends "number" location points (in transformation
format) generated in the SUN to the VAL II memory and stores
them in the VAL II location variable name "data"; (This
function does not exist in VAL II.)

— move_v(struct location *point, char ®quality, int "error):
moves the PUMA using Jjoint interpolation to a location point,
described by "*point”, which should be defined 1in
transformation format as in (5-5), i.e.,

point->quality="1location";

— moves_v(struct location *point, char *quality, int *error):
similar to move_v() but moves the robot in a straight line
fashion to "*point”;

— execute_v{char *prog, int loops, int step, char *quality, int
*arror): executes a VAL II program a number of times equal to
the value of "loops" beginning at a steﬁ number “step”;

. — where_v(char *quality, int ®*error): displays the location and
orientation of the PUMA hand in both transformation and
precision point formats.

—_— abort_sﬁpervisor(int *error): terminates DDCMP communication;

Before we run any of the above functions, Step 1-—3 in Section

5.3.1. must be first performed. Step 2—3 can also be included in an
auto-start program in VAL Il so that each time we start the PUMA
controller this auto-start program wiil be immediately executed. This
will ensure that the PUMA is ready to accept remote controls from the
supervisor computer, the SUN workstation. A sample auto-start program

called "auto" is given in Table AS5.1. of Appendix 5.

135

3. List Of All Path Planning Routines For The PUMA 580 And The
"makefile"

The application routines for planning the PUMA S60 motions are
stored in directory "robo:/usr/ee/jill/avoid". The following is a list
of all C routines that are compiled together to generate our
application program "av'.

int avoid_env(): avolds the lower bound of the PUMA 560 envelope
Rain and returns the number of polnts generated for avoiding Ruin.

void bubble_sort(): performs bubble sorts for rearranging valid
obstacles in the reduced space ' (COY).

double angle(), norm(), radius(): these are frequently used
routines for calculating angies, norms and radii.

void find_mid(): finds mids, midg, mid1 and midz parameters.

int genloc(): generates an optimal path and returns the total
number of points generated for the path.

int genloc2(): generates an alternate path for avoiding Rmin and
returns the number passed from avoid_env().

void genloc3(): calculates the locel start and goal points,
start' and goall for the ith search layer.

int genlocB(), genloc8(), genloc9(), genloca(), genlocb(): these
are subroutines of genloc().

int line_path(): generates a single line path when no obstacles
are found between start and goal, and returns the number of points
generated.

int line_path2(): same as line_path() but is only used when Rain

is found between start and goal points and has to be avolded.

136

int line_seg(): generates line-segments for each portion of a
local optimal path and returns the number of points gengrated for the
local path These llne-segments are connected together to form the
final suboptimal (global) path.

int line_seg2(), line_seg3(),line_seg6(),line_seg8(), line_segd(),
line_sega(): these are subroutines of line_seg().

void listall(): lists all generated position points on screen.

void listdata(): lists or displays the input data.

void main(): this is the main routine of the program.

int ne_sw(): determines all valid vertices VERTv+ for NE-SW-ward
or SW-NE-ward travellng direction, and performs a graph search among
these vertices using Bellman’'s principle of optimality.

int nw_se(): determines all valid vertices VERTv- for NW-SE-ward
or SE-NW-ward traveling direction, and performs a graph search among
these vertices using Bellman’s principle of optimality.

int obs_test(): tests if an obstacle is within the reduced space
0° defined by global start and goal points, start® and gbalo, and
returns the number of obstacles in R°.

vold one_obs_test(): tests if an obstacle is between two valid
vertices that should be connected.

void path(), pathmain(): these two routines are actually the
"execute_motion()“ in Table 5.3.

int readp(): reads an already generated path form file "path.rec"
on the hard disk, and returns the number of position points read.

void send_to_val(): uploads the generated position points 1in
transformation format to the VAL II memory.

void plotpath(): plots the generated path and the environment on

137

a suntool window using SunCGI graphics functions.

void plotmain(), rddata(), scale(), form_arr(), prt_vscle(),
prt_hscle(), get_scale(), draw_x_axis(), draw_y_axis(): these are
subroutines of plotpath().

vold rdata(): reads input data file from hard disk.

int start_goal_nonobs(), start_gozl_nonobs2,start_goal_nonobs3():
these routines are used to test if there are any obstacles between
local start and goal points, start’ and gbal‘ ({ > 0). If not then a
single line path will be generated to connect start' and goala

void start_goal_test(): tests if start and/or goal points are
outside of the PUMA workspace. If true then it sends out an error
message that no safe path exists anc terminates the program.

int slope_test(): decides the traveling direction of the path in
order to determine if VERTv=VERTv+ or VERTv=VERTv-.

vold sort_avo(), sort_avo2(): these are routines of sorting the
valid obstacles for graph searching purposes.

vold stors obs(), store_obs2(): transfer a valid obstacle
variable ¢ snoiker place also for graph searching purposes.

int testlew!{): tests if all the position points generated for the
collision-free path are within th: PUMA 560;9 physical reach.

void wfile(): writes the generated path to file “path.rec".

The above routines are stored in different C subprograms.'These
can be found in the header file "multi.h" which also contains many
definitions of variables and constants.

In order to make use of the MC68881 floating-point coprocesso;.
the "makefile" should include the option “-m68881" if it uses the GCC

compiler or "-£68881" 1if it uses the CC compiier. In the linking stage

138

of the «compilation in the “makefile", the archived library
“robo: /usr/ee/jill/1ib/libpuma.a" that contains C-VAL II functions and

DDCMP routines should also be included.

4, The Format of input and output Data File

The input data file contains information of the number of
obstacles (num), the resolution (reso) of the path (i.e. how many
points should be between every 50mm length of the path), start (Xs,Ys)
and goal (Xg,Yg) locations, obstacle indices (ind), obstacle locations
(Xobs, Yobs), obstacle heights (Hobs) and sizes (WID_Xobs,WID_Yobs).

The format of the input data file is defined as follows:

Xs Ys

Xq Yo

reso num

ind Xobs Yobs Hobs WID_Xobs WID_Yobs

Table A4.1. is an example of the input data file which results a path

shown in Figure 5.5.(a).

Table A4.1.

Example of The Input Data File

400 500

-300 700

1 8

1 310 520 0 40 40
2 =220 615 o 40 40
3 -40 550 0 40 40
4 -85 635 0 50 S0
5 85 485 0 25 45
6 245 635 0 25 45
7 115 720 0 30 40
8 35 655 0] 25 70
9 185 550 o 25 85

133

The generated path is stored in an output data file "path.rec".
It uses the transformation format defined in (5-1), that is [X, Y, 2,
0, A, T] for each point of the path. Therefore, the ith point is at
the ith line of file "path.rec" in the form:

X1 Yi 21 O1 Ay Tt
In our applications, we set Zi%-400, Oi1=0, Ai1=90 and Ti=0. Thus only

values of Xi and Yi are not constant.

S. A Sample Auto-Start Program

Before C~VAL II commands can be sent to the PUMA controller via
the supervisor port, the communication should be at a ready state by
running a small auto-start program in the VAL II memory following the
procedure below:

(a) Before turning on power to the PUMA controller, press and
hold down AUTO START pushbutton on the front panel.

(b) Turn on power. Continue holding down AUTO START pushbutton
until AUTO START indicator light on and floppy drive goes on and off.

(c) Turn on ARM power and set the controller to COMP mode from
the teach pendant.

Once the above procedure is done the PUMA will only accept
commands from the supervisor computer. Figure 5.3. shows the detalls
of our PUMA 560 and supervisor computer (SUN 3/1G60) system.

Table AS.1 is a sample auto-start program called "auto" which we

use for our applications.

140

Table AS.1.

A Sample Auto-Start Program Stored in The VAL 11 Memory.

. PROGRAM auto

MC CA ;calibrate all Jjoint-position sensors
MC DO RIGHTY ; keep righty arm configuration

MC DO ABOVE ; keep elbow above arm configuration

MC DO FLIP ; keep wrist flipped

MC DO READY ;move hand to home position as in (5-4)
MC SPEED 30 ;set PUMA to 30% of its maximum speed

MC ENABLE NETWORK, SUPERVISOR, DISK. NET, REMOTE. PIN

.END

141

