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Abstract

Non-linear equations of equilibrium arc derived using the theory of elastic cables.
Weierstrass necessary conditions for stability of the equilibrium configuration are
discussed and it is proved that they are also sufficient for global stability of cables.
The theory is then applied to a general cable network.A method called Dynamic
Relaxation (DR) is used to solve the nonlinear equations of equilibrium and some
examples are presented which are analyzed by this method. The theory of elasto-plastic
cables is then discussed and it is proved that the standard DR method is not applicable
to elasto-plastic cables without further modification. An incremental technique is then
discussed which is applicable to this class of cables and some examples arc presented
based on this method.
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INTRODUCTION

The study of cable networks has long interested the structural engineering
community because of their high strength, iow weight and low cost. In recent years cable
nets have been widely used in suspension structures and tension roofs. Examples of these
include the German pavilion at XXPO 67, the Diplomatic Quarters Club in Riyadh, the
Hong Kong aviary, and the CFAN (Christ For All Nations mission) transportable tent.
Reference [1] provides some examples of cable structures. The above mentioned features
have created a great deal of interest in the static analysis of cable nets. The problem that
arises in this analysis is the non-linear behaviour of the structure which consists of two
parts : geometrical non-linearity due to large deformations and material non-linearity,

Steigmann [2] has shown that a configuration of a dead-loaded elastic cable
network minimizes the potential energy absolutely if and only if the network is in
equilibrium, the cable forces are non-negative and the cable stretches belong to domains
of convexity of the cable strain energy functions. In these conditions, the equilibrated
network is globally stable and that’s the configuration we are looking for in the analysis.

Several techniques have been developed and used 1o solve the non-linear cquations
of equilibrium or to find the absolute minimum of the potential cnergy and the

corresponding configuration. These methods are classified into three principal groups {5}

(1) Iterative methods
(= Tncremental techniques

(3) Minimization and relaxation methods

The first two groups make use of the overall or tangent stiffness matrix. In the third
group, however, a vector formulation of the problem is employed which reduces the data
storage requirements for calculations.

The most widely used iterative method for the study of geometrically non-lincar
_ roblems is the Newton-Raphson method. In this method, however, problems arise when

the stiffness matrix becomes positive semi-definite or indefinite [81.

1
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Incremental techniques may be necessary for structures subject to both material
and geometric non-linearity with path dependent behaviour. In this technique, loading and
prescribed displacements are considered functions of a time-like variable. The time
domain is then divided into small increments and at the beginning and end of each
increment, the structure is equilibrated byv solving a set of linear equations.

Minimization techniques formulate the problem as an optimization problem and
find the absolute minimum of the potential energy. Several minimization methods applied
to cable networks are reviewed in [8].

One of the methods widely applied to cable networks, and to non-linear problems
in general, is Dynamic Relaxation which uses a vector formulation of the problem. In
this method, the solution is found as the steady state part of the response of the dynamic
problem formed by adding virtual mass and damping to the structure. A review of the
method and its application to cable networks can be found in [3] to [7].

In the current work we report on the static analysis of cabie networks. We
consider cables as discrete elements in the structure. Furthermore, we make the following

assumptions :

(1) There are no distributed loads (including gravity) along the cable.
(2) Loads and prescribed displacements are applied at the cable Jjoints (nodes).
(3) Joints are considered frictionless and pinned.

(4) Bending stiffness is negligible.

[Later in this work, we will show that based on the above assumptions, cables will remain
straight between joints throughout the analysis.

This report is organized in three chapters. Chapter 1 deals with the formulation
of the problem based on the above assumptions. In chapter 2, the Dynamic Relaxation
method is formulated tc solve the non-linear equilibrium equations for both linear and
non-linear elastic materials.In chapter 3, first the theory of elasto-plastic cables is
developed and then it is shown by a counter example that the conventional DR method

without further modification, does not work for elasto-plastic cables because of path

o)
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dependency in the solution. An incremental technique is developed and applied to elasto-
plastic cables. Reference [12] shows that DR can be used for elasto-plastic cables if it's
applied in each increment of the incremental technique. Chapters 2 and 3 contain
graphical results for some interesting cable networks.



CHAPTER 1 : FORMULATION OF THE PROBLEM

In this chapter we discuss the theory of elastic cables. The equilibrium
configuration is then found based on the minimization of the potential energy of the cable
and we derive the neéessary and sufficient conditions for stability of the equilibrium
configuration. The theory is then expanded for a general cable net.

Elasti 1

We consider a cable with initial unstretched length L that undergoes a deformation

in three dimensional space (Figure 1.1)

Initial Configuration

S S Deformed Configuration

\_(—%’E(S\)

Figure 1.1 : A single cable undergoing a general deformation



In this diagram :

& (i=1,2,3) are the orthonormal vectors of the basis of the fixed frame of
reference
$ is the initial arc length that varies in the domain of [0,L]
s(S) is the deformed arc length
X(S) is the position vector of a point on the initial configuration of the cable with
respect to the fixed frame
X(s)=2(s(S))=x(S) is the position vector of a point on the deformed configuration
with respect to the fixed frame

The unit tangent to the cable in the initial configuration is defined by

(1.1

Similarly in the deformed configuration, the unit tangent to the cable is

_dx(s)
- ds

(1.2)

1(s)

The deformation gradient is defined by

dx(S) _dx(s) _dR(s) ds

o5 (1.3)
dS dS ds dS

or

dx(S)

(1.4)

o
w
1l
'>’

where



_ds _ dx(S) 1.5
M55l o5 (1-3)

is the stretch of the cable. Note that in the unstretched configuration A(S)=1.
From now on, we use the (') symbol to denote differentiation with respect to initial arc
length S.

Now let us assume the existence of a strain energy per unit initial cable length of
the form W(x'(S)). It is reasonable to further assume that W is insensitive to rigid
motions of the cable defined by

x-»0x+C (1.6)
where Q is a rotation tensor and C is a translation vector and both are constant. So
W((Qx+C)')=W(Qx') =W(x") 1.7

for all rotations. This is satisfied if and only if W is a function of x’(S) through its

magnitude X\, i.e.

W (X' (S))=w(]x’ (S)|)=w(r) (1.8)
Now we define
EA%Y
= 1.9
L ax’gi (1.9

where x’; (i=1,2,3) are components of x’(S) on the fixed rectangular basis {¢} and
repeated index (i) implies summation and from now on, the summation rule is applied
on any repeated index. Later this quantity will be interpreted as force in the cable. From

(1.8) and (1.9) we can write

LW _dw(h) ax
' axi’ dN  jx/

1.10)

But we have



Al=x'.x"=x.
Taking the derivative of both sides with respect to x’; we get

A

__=x"xi’ 1=1,2,3
ax,/
Hence
adw(d)_,
t.=\"! ,
1 dx xl
{0 H i=1,2,3
where
dw(A)
f(\N)=
\) 3N

is the force in the cable. From (1.4) and (1.13) we can write

1(S) =M X! () =f(N)]

(1.1

(1.12)

(1.13)

(1.14)

(1.15)

The above expression states that {(S) is the force exerted by part (S,L] on the [0,S] part

of the cable.

Now consider a cable under distributed dead load with density a( S) per unit initial

cable length and point loads F, and F, corresponding to $=0 and S=L respectively

(Figure 1.2)

The total potential energy of the cable E[x] for the configuration defined by x(S)

is the sum of strain energy and the potential energy of external leading. That is

Elx]=[,"(W-2.x)dS-[E, .x(L)+E,.x(0)]

(1.16)

We would like to minimize E[x] to get the equilibrium configuration. To do this,

we give the current configuration of the cable defined by x(S) a small perturbation



a(sS)

Fo Ey

S=0 S=L
B

Figure 1.2 A single cable under distributed dead load
x(S)—~>x(8)+eu(S) (1.17)

where |&] < <1 and u(S) satisfies the kinematic boundary conditions but is arbitrary
clsewhere. Defining F(e) =E[x+¢u] and writing the Taylor expansion of F(g) about e=0

we get

F(&)=F(0)+¢

dF lczsz 2 1 18
Toleo® 3" i RICH! (1.18)

Moreover, we expand the strain encrgy W for the perturbed configuration in

terms of ¢

2
Iw +_,]'.a"'ui’ui’ oW _ +0(&?)
ax/'e=0 2 T ax/ax; teno

=W(x')+eu’ .t+ 2% . C(x )0’ +o(e?)

W{(x+ew)')=W(x')+eu/
(1.15)

where the tensor C is defined as



cex)=( 2V | ye®e-CT(x) (1.20)

ax,/ dx; te-0"7 T
From (1.10), (1.12) and (1.14) this can be written as

c=EEMgran 1500 a-181) (1.21)

where [ is the unit tensor. Now, the potential energy for the perturbed configuration can
be written as

F(g)= IOL[W(y)—g.E]dS ~[E,.x(L)+F_.x(0)]
+8{IOL(!'E/—g'g)ds_[EL'g(L)*EO-H(O)]} (1.22)

+—;-e” [, w.coxrwdso(e)

If configuration x is a minimizer of the potential energy we must have

dF

Toliwo™® (1.23)
or
[, (tu'-2.0)dS-[F, .u(L)+F, .u(0)]=0 (1.24)
Integrating by parts, we can rewrite this as
(L) -E, 1-u(L) - [(0) +E).u(0) - [ "(¢ +a).uds=0  (1.25)

This should be true for all u(S) that satisfy the kinematic boundary conditions. From the

fundamental lemma of variational calculus, this can be true only if



t'+a=0
1(0)=-F, (1.26)
t(L)=F,

Now, if there is no distributed load (3 = Q) we conclude that {' =0Q. This means
that { is constant along the cable and from (1.15) we can say that the cable is a straight
line.

Anothcr necessary condition for x to be a minimizer of E is that

d’F
de?le

=I “u.C(x)v/ dS =0 (1.27)
-0 ]

Again this should be true for any u that satisfies the kinematic boundary conditions. This
leads us to the well known Weierstrass Necessary Conditions [2,9] which are discussed

next.

1.2 Weierstrass necessary conditions

We consider a kinematically admissible configuration of the cable x"(S) that is
equal to x(S) everywhere in the domain of SE[0,L]} except in an interval S, <S<S;. In
one dimension, it looks like a bump (Figure 1.3).

We define x*/3) as

U(S)=x(S)+(S-S)b s,<S<s,
©=1 ¢()=x(5)+(S,-$)(SZ oy s,<ss<5,  (1.29)
- S;-8,

x(S) eisewhere

where b is an arbitrary constant vector. Note that x°(S) is continucus over S € [O,L].

Let us define

10



xX*(3)

—f————
4

/
/,

b~ ———

|
:
| .
| I
] ]
: :
: |

0 S 3, L

9.
)

(o
W

Figure 1.3 Comparison of x°(S) and x(S) over SE[0,L]

where

Thus from (1.28) we can write

Q(S)=5(S)—l—‘f5(s -S,)b

In order for x(S) to be a minimizer of E we require

E[x"}= E[x]

11

(1.29)

(1.30)

(1.31)

(1.32)




or from (1.16)

[ IWGET) - WIS - [ Pa.(x7 -x)dS} 20 (1.33)

Note that brundary terms cancel here. In the limit / —+ 0, x” — x everywhere and we only
need to consider

I-‘I:’[W(l")-W(.&')]dS >0 (1.34)

which can be written as

1 1

"'0 8, 0 s;
W(x'-——b)dS-- | "W(x/)dS=0 (1.35
7, o W s [ W) (139

ﬁj W (x’ +b)dS +
I s,

Now we let / - O which implies that /;,/, - 0 and use the mean value theorem to get

W D)+ (1-OW( - ) -W(x) 20  vse[o,L] (1.36)

Dividing by 6, using Taylor expansion of the second term on the left hand side and
letting 6 —~ 0 we get the Weierstrass condition

W' +b)-W(x)-b.t(x')=0  vb,VSE[O,L] (1.37)
To interpret the Weierstrass condition, we write (1.37) as

W) -WEH)=t(x).(v-x') Vv (1.38)

Now we define p=|v| and from (1.8) and (1.15) we can write

w(p)-w(A) = fA) L.y -\) (1.39)

To get a necessary condition for this we write

v=(v.D1+(1-1®)yv (1.40)

12



which is basically expressing v as the sum of its component along | and its projection
on the plane perpendicular to 1. Since (1.39) must hold for all v. it must hold in
particular for the following choices

{(!-l®l)z¢9 .

v.l=XA
Thus u=|v| >v.1=A and (1.39) can be written as
w(p)-w(A)=0 Y ou>A (1.42)
Writing Taylor expansion of w(u)-w(A) and letting u—>\ we get
f)=0 v SE[0,L] (1.43)

So, to be stable, the cable must be under tension.

To get another necessary condition, take v=pul. So (1.39) can be written as
w(p)=w(r)=f(N)(u-N) Y ou (1.44)

which means that X should be a point of convexity of the strain energy function w(A) of
the cable.

We note that if (1.43) and (1.44) are satisfied, the eigenvalues of the tensor C
defined in (1.21) become non-negative and C is a positive semi-definite tensor and
(1.27) is satisfied. We show that conditions (1.43) and (1.44) are also sufficient for

(1.39). We suppose that these two conditions are satisfied. For any v we have

p=lv]=v.l (1.45)

Thus

p-N=v.1-X\ (1.46)

Then from (1.43) we can write

13



) (=N = (M) (¥.1-N) (1.47)

and therefore from (1.44)

W) -wA) = f(A)(v.1-)) : (1.48)
which is identical to (1.39). So, conditions (1.44) and (1.45) are also sufficient for
(1.39). Therefore, if (1.26), (1.43) and (1.44) are satisfied, the cable is equilibrated and

globally stable. To satisfy (1.43) automatically during the equilibrium analysis of the

elastic cable we define the force in the cable as

f={f(X) A>1 (1.49)
0 A=l

This guarantees that cable would never be under compression.

1.3 Expansion of theory to a general cable net

We consider a network consisting of n cables, each of unstretched length L, ;
J=1,...,n. These cables are connected at / unconstrained nodes located at the unknown
positions y, ; k=1,....,/ in the deformed configuration of the network. The set of all
unconstrained nodes is denoted by K. We let m nodes, belonging to the set H, be fixed
at prescribed positions gz, ; h=1,...,m. At each of the unconstrained nodes, a dead load
& , k&K is applied. We introduce the following sets [2,11]

I*={j:S,;=0 at node kEK}
[E*={j:Sj=Lj at node k€EK}
I"={j:Sj=O at node h& H}
E"={j:S,=L, at node hEH}

(1.50)

The deformed configuration of the j* cable is described by the vector-valued
position function x;(S;) where S; is the arc length along the j* cable in its unstretched state
varying in the domain of [0,L]. We define x%= x;(0) and x"=x,(L)). These are subjected

14



to the following compatibility constraints

x'=y, ,j€I*
(1.51)
L _ 3 k
x'=y ,J€EE
and
x’=z , jEI*
{ yoe (1.52)
L_ -l h
x-=z ,J€E

We suppose the j® cable is subjected to a distributed dead load with deasity a;. The total
potential energy of the net is then expressed by

n i
E=E jofﬂ,(w_gj.ij)ds_zgk.yk (153)
i=1 k=1

We would like to minimize E to get the equilibrium configu ation. We follow the same
procedure we did for a single cable in section 1.1 and apply some perturbations that

satisfy (1.52) but we apply (1.51) by minimizing the unconstrained functional

B =E-T (Y F.(xf-y)+ ¥ Froixt-y,») (1.54)

ke jept

where F and F' are Lagrange multipliers.
Following the procedure we used for a single cable, the conditions of equilibrium
are found to be (see [2])

Fo=-t®  jEI* (1.55)
)

and the equilibrium equations at the nodes are

15



Y E+Y Fl=q k€K (1.56)
jerr ? ojem
Again if 3,=0, from (1.55) we see that 15=0; j=1,...,n and the cables remain straight
throughout the analysis. Using (1.55), the nodal equilibrium equations (1.56) can be
written as
-y U+Y tt=gq k€K (1.57)
i€’ jeps !’ -
“als expression gives us 3 X1 nonlinear equations that must be solved for unknown
position vectors y,; k=1,...,n.
It can be concluded that if the Weierstrass necessary (and sufficient) conditions
are satisfied for each cable in the net, the potential energy for each cable and therefore

for the whole network is minimized and the equilibrium configuration is stable (see [2D]).

Surnmary

In this chapter, we developed the theory of elastic cables and derived the
necessary and sufficient conditions for equilibrium of a single cable by minimizing the
potential energy. We expanded the theory for a general cable network and derived the

nonlinear equations of equilibrium.

16



CHAPTER 2 : DYNAMIC RELAXATION

In dealing with iterative solvers that use the tangent stiffness matrix directly, c.g.
Newton-Raphson, problems ::is¢ when some cables become slack and the tangent
stiffness matrix becomes singular or ill-conditioned and we get wrong results. So we need
a method that is stable and works well even under the situation that some cables are
slack. In this chapter we introduce the DR method which is a stable method and doesn't
make use of tangent stiffness matrix directly in calculations. We then apply it to the
problem at hand. Some examples of cable nets are analyzed and their results are
presented.

2,1 Theory of DR

We consider a linear system of equations K x =F for which a solution x =K'F is
sought. Now we transform the original equations into equations of motion by introducing

virtual mass and damping at the unknowns

Mx+Cx+Kx=F @.1)

where M and C are virtual mass and damping diagonal matrices and as is shown later,
are found so that the number of iterati »ns required for convergence is minimized. Here
dots indicate differentiation with respe ¢ to time. The response for this motion is the sum
of homogeneous part (transient response) and particular part (steady state response). 'f
the transient part dies out, we are left with the particular solution x*=K-'F which is what
we want.

We intend to solve (2.1), for fixed F, in increments of time. For the n® increment

this equation can be written as
Mx®*+Cx*+K x"=F (2.2)

Using the finite difference technique with the central difference scheme we can

write
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2.3

‘l n-'l
£ 2=(ImleydM-1oy 3" T (Bokxm)
h— 2 h— 2 2.5)
’l
x*'=x"+hx ?

For the DR method, we assume that damping matrix C is proportional to mass matrix
M. That is

C=cM 2.6)

where ¢ is a constant for each increment to be found later. Substituting (2.6) into (2.5)

we get

1 1
X 2 =(_2—Lh)£ 7+_2h__M F-Kx
2+ch 2+ch 2.7
‘_l
_&n'l':én'*hi 3
The initial conditions for DR are of the form 3]

)
x>0 2.8)
x°=0

Using (2.4) and the second of (2.8) gives
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.y .9

z’=§w<£-xs°) (2.10)

(x7=2M (E-Kx%) for n=0
1 1
422 2-ch =3 2h . ., . ., Q.11
X >ion X +2+chM (E-Kx"®) for n=0
1
(x**1=x"+h% ? for all n
The DR algorithm then can be written as the following steps [3]
(@) choose v (v=ch) and M ; n=0 ; x° given ; x°=0
() r"=F-Kx®
(c) if r*=0 stop, otherwise continue
(d) if n=0 then
1
-’z___h -1
7= MTr @2.12)
otherwise
“’7_2—V).(°'vz+ 2h M_lrn

n+
(e) x**'=x"+hx ?

(f) n=n+1; go to (b)

We are seeking the values of ¢, h and M that make the iterations stable and

minimize the number of iterations. To do this, we define
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2+y
_2-v
) B 2 2.13)
A=M"K
'b=M"F
Then from (2.7) we get
5n'l =E.+B(5.'—£-~l)"aé£-*ab. (2. 14)

To study the convergence of iterations, we define the error in the n® iteration as

€*=x"-x"° (2.15)

Substituting (2.15) in (2.14) gives
gn*l=§n+ﬂ(§n_§n—l)_aégn (2.16)

We define A as the rate of decay of error vector (note that this is different from stretch

defined in chapter 1), i.e.

=he® 2.17)
Substituting this into (2.16) we get
N -(1+8-a X A+8=0 (2.18)

where A, is any eigenvalue of A. This is a quadratic equation in A and its roots give the
values of the error decay rate A. Let us consider different possible cases :
- For (1+8-a\,)? <48, the roots are a complex conjugate pair withanorm | A |

equal to
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1
N (2.19)

- For (1+B8-a)A)?=48, the roots are equal and real and we have the same
expression for | A | as in (2.19).

- For (1+8-aX,)?*>48 the roots are real and distinct and the norm of the larger
root is given by

1
M =[50 B-an =gt asp-angfesanyes | @20)

Figure 2.1 shows that for a given value of A\,h?, the minimum | A | is obtained

when the roots of (2.18) are equal.

real root

complex root

equal roots

0 2.0 40
ch

Figure 2.1: Relation between | A | and ch

Now let us examine the relation between | A | and A, h? when the roots of (2.18) arc

equal. This relation is expressed as
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2‘1/AAh2(4-AAh2) (2.21)

IA]=
2+ h2(4-\,h?)

which is symmetric about A h*=2. If we consider the case when kAhi>4, it can be seen
from (2.21) that | A | >1 which causes instability problems. Since we know that
eigenvalues of A are positive, we choose the parameter h such that A, h? and A,.h?
be symmetric about A h*=2 where A,,. and A,_,, are the minimum and maximum
eigenvalues of A respectively. This assures us that A,.,.h’<4 and the iterations are

stable. So, for optimum value of h we have

- 4
PN A

Amax ““Amin

(h?) (2.22)

Using this with (2.19) and (2.13) we get

() e=(ch), = YN i - Masma (2.23)

A umin M Amax

For convenience, we assume that N,;, < < Aam,. If that’s not the case, we just need

more iterations for convergence. By this assumption, (2.22) and (2.23) become

0= 2.24)

Amax

and

Ou~2 oo (2.25)

An upper bound for the eigenvalues of A may be determined from Gershgorin
bound theorem [3,4], which states that




M amaa] <maxy" A, (2.26)
L |

From (2.13) and knowing that M is diagonal we can write

T 1Al ==X 1K) @27
] nJ

where m; is the i® diagonal term of M. So from (2.27), (2.26) and (2.24) we can write

1
m.>_"h? K. 2.28
> IS 1k @29

Using Rayleigh’s Quotient to find an estimate of Aumin along with (2.25) we get

c =2 &)Kx® (2.29)
) (x")"Mx"

where c, gives the optimum value for ¢ in (2.6) for n® iteration.

The discussion we made sofar about DR is also applicable to nonlinear sets of

equations. Consider the following set of nonlinear equations

P(x)=F (2.30)

where P(x) is the left hand side of equations vector nonlinear in x and F is the known

right hand side vector. We define the incremental tangent stiffness matrix K" as

dP.
Kj=—1 i,j=1,...,number of unknowns (2.3
dax.”

3

and use it to calculate elements of matrix M from (2.28). We also define the diagonal
matrix 'K® [3] with elements
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_-Px*")+P(x")
i

'K @2.32)

hx; 2
and use this matrix instead of K in (2.29).
Usually we pick a value of h=1.0 for calculations but to make sure that the vaive given
by (2.26) is an upper bound for eigenvalues of A, we use a value of h° > h to determine
M from (2.28). Finally, the adaptive DR algorithm for nonlinear set of equations is

expressed in the following steps

(a) x° given, x°=0,n=0,choose h (usually 1)
(b) determine M using (2.28) and (2.31) with h* >h instead of h
(©) r*=F-P(x")

(d) if r*=Q stop,otherwise continue

1
x7=2hMIp n=0
(e) 1 g . (2.33)
&n.7= Vnin 7+ 2h M"I" n#O
2+p 2+p,

() x"'=x"+hx 2

(g) n=n~+1
(h) v,=c h using (2.29) and (2.32)

(1) go to (b)

2.2 Application to cable nets problem

We recall from chapter 1 that equations of equilibrium (1.57) are nonlinear in
terms of the components of the unknown position vector y, k€ K. We can treat the left
hand side of (1.57) as a vector of nonlinear expressions similar to P(x) and its right hand
side as a known vector F in our discussion in section 2.1. We use the DR adaptive

algorithm (2.33) to solve these nonlinear equations. In the next section, We will apply

DR to a number of cable nets and discuss the results.



2.3 Ex les

In this section, some examples of cable nets under dead loading or prescribed
displacements, which have been analyzed by DR, are discussed. The material used for
cable nets is rubber. The reason is that rubBer cables can have very large deformation
which makes it easy to have a clear picture of deformation of the net and to distinguish
between initial and deformed configurations. A useful constitutive relation for rubber is
the constitutive relat.on for the neo-Hookian material which is

fO)=GA -\ (2.34)

where G is the shear modulus and A is the cross section of the cable. The values used
in the following examples are G=0.35 MPa and A=4 mm?. As it is seen, here the
material non-linearity is added to the geometrical non-linearity. In the tables that are
presented in this chapter and next one, stress is defined as the force in the cable divided

by the cross sectional area and strain is defined by A-1.

Example 2.1

Figure 2.2 shows a 1313 square mesh. Cables are of equal stretched length of
1.05 m and initial tension of 5 N. A dead load F=100 N is applied normal to the plane
of mesh at the central load. The edges of the mesh are fixed. Figure 2.3 shows the
deformed configuration. As it is expected, the node under the loading has relatively large

deformation.

Example 2.2

This example and next one deal with prescribed deformations of some nodes and
show the path independency of the solution. ‘
Figure 2.4 shows a spider net which consists of circumferential and radial set of

cables. The outer boundary is fixed and the inner boundary is a rigid frame. We give the

25



o dgpia Ar« —tsas -Ara s -ATH -«rﬁ A _bipas  skpi

TURTX IR TR RET TR YA TN ey el ekt et

Figure 2.2 : Initial configuration for example 2.1

Figure 2.3 : Deformed configuration for example 2.1
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rigid frame the following rigid motions separately

(@) Pull the rigid frame out of the plane of the net by some amount.

(b) Twist the rigid frame in the plane of the net by 45° counter clockwise

(c) deformations (a) + (b)

(d) deformations (b) + ()
Figures 2.5 and 2.6 show the outcome of motions (@) and (b) respectively. Figure 2.7
shows the result of motion (c) which comes out to be identical to the result of motion (d)

as is expected.

Table 2.1 compares the stress and strain in some cables for cases (c) and (d)
which shows the path independency of the solution.

Cable deformation (c) deformation (d)
No.
(fig.2.4) Stress(MPa) Strain Stress(MPa) Strain
1 3.3100143 8.46834 3.3100145 8.46834
2 0.72085085 1.25605 0.72085083 1.25605
3 1.83139713 4.26859 1.83139743 4.26859
4 0.74748005 1.32125 0.74748008 1.32125

Table 2.1 : Comparison of stress and strain in some cables for deformations (¢) and

(d) of example 2.2
The values in the table correspond to an error tolerance of 10 for r* in algorithm (2 333,
Example 2.3

Figure 2.8 shows a 21 X21 square mesh. Cables are of equal stretched length of
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Figure 2.4 : Initial configuration of the spider net of example 2.2

————————— Initial configuration

—————— Deformed canfiguration

Figure 2.5 : Deformed and undeformed configurations under deformation (@) of
example 2.2




- X

Figure 2.7 : Deformed configuration under deformation (¢} or (d) of example 2.2




2 m and initial tension of 5§ N. We consider the following displacements of the edges
(a) Map all edges to semicircles out of the plane of the net and perpendicular to it.
(b) Map edges AB and CD te semicircles out of the plane of net and perpendicular
to it.

(c) Deformation (b) + map edges BC and DA to semicircles out of the plane of the

net and perpendicular to it.
Figures 2.9 and 2.10 show the result of motions (b) and (a) respectively. If we
apply motion (c) we end up with the same configuration as in motion (a). Table 2.2
shows stress and strain in some cables for motions (a) and (c). Again in this case we see

the path independency of the solution.

Cable No. deformation (a) deformation (c)

(Fig. 2.8) Stress (MPa) Strain Stress (MPa) | Strain
1 1.21039 2.53814 1.21038 2.53812
2 1.2701936 2.70209 1.2701924 2.70209
3 1.326458 2.85710 1.326456 2.85709
4 1.501511 3.34305 1.501514 3.34306

‘able 2.2 : Comparison of stress and strain in some cables for deformations (a) and

(c) of example 2.3

Table 2.3 shows the number of iterations required for convergence for examples 2.1 to
2.3.

Summary

In this chapter we developed the DR theory for nonlinear set of equations and
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Figure 2.8 : Initial configuration of the square mesh of example 2.3
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Figure 2.9 : Deformed configuration under deformation (b) of example 2.3
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—————— Initial configuration
Deformed configuration
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Figure 2.10 : Initial configuration of the square mesh and the deformed configuration
under deformation (a) or (c) of example 2.3

Example # of unknowns | # of
iterations
2.1 363 862
2.2 120 300
2.3 1083 2699

Table 2.3 : Required number of iterations for convergence for examples 2.1 to 2.3

applied this technique to the problem of cable nets. Some networks were analyzed using
this method and they showed the path independency of the solution for elastic cable nets

as expected.



CHAPTER 3 : ELASTO-PLASTIC CABLES

In this chapter we develop the theory for elasto-plastic cables. We then show that
DR fails to handle the equilibrium problem of elasto-plastic cables by itself. Finally we
introduce the incremental technique and apply it to this class of cables. A number of
examples analyzed by this method are also presented.

1_Development of elasto-plasti bl

The basic concept in dealing with elasto-plastic cables is that the tangent modulus
E, may change during the analysis. For example, the tangent modulus in plastic range is

different from that in elastic range or in unloading. This can be defined as the following

E, for elastic range

E = { Tangent modulus, for plastic range a.n

E, for unloading and/or reloading

where E, is the elastic Young modulus. Hence we consider the equilibrium problem as
"time" dependent and this allows us to consider a "time” dependent tangent modulus. We

recall the definition of cable force t from chapter 1 (eq. (1.15)) as the following

t=f1 3.2)
Taking the time derivative of both sides we get

t=f1+fi (3.3)
The deformation gradient x'(S) is (eq.(1.4))

x'(S)=Al (3.9)

Taking the time derivative of both sides gives
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& (S)=Al+M1 3.5
where §'(S)=x'(S) is the velocity gradient. From (3.5) we can write
I=A1@-1®1)8/ (3.6)
Substituting (3.6) into (3.3) and noting that
f=E,AN=E Al.0/ 3.7

where A is the cross section of the cable, we get

it

t=[EAQ®D+N'A-1®1)] 8

(014

3.8)

where
C=E A(I®+\"'1-191) (3.9)

Now let us consider the equations of equilibrium (1.26) in thz following

incremental form

E,=-1(0) (3.10)

We take these to be the incremental equations of equilibrium and we show that they can
also be derived by minimizing the following functional associated with the potential
energy of the cable [10]

PIO’= [ (&' .CL)-4.01dS - [E, . 80) K. 5(0)] (3.11)

We follow the same minimization procedure we used in Chapter 1 by applying the
perturbation



e

o~

—>i+eV 3.12)

where epsilon is a small parameter and ¢ satisfies the kinematic boundary conditions but
otherwise is arbitrary.Substituting (3.12) into (3.11) and arranging we get

G@)=Pld+edl= | "(/.CO -8 0S-(E, GL)+E,00))

+£{ IOC CH'-a.9)dS-[F .9(L)+F, v(O)]} (3.13)
1£ZI

|<»
<>
Q.
7]

where the symmetrical property of C has been used. If & is a minimizer of P, we must
have

dG(e)
de

e=0 I (€8 -4 DS -[F, . «(L)+F . (0)]=0 (3.14)

which can be written as
- [ @ 0 -2as-{IE, -O1IWE,+1O).50)}-0 (3.19)

Applying the fundamental lemma, we get exactly the incremental cquations of
equilibrium (3.10). We now get the necessary conditions for the equilibrium of the cable
by applying the same procedure we used to get the Weierstrass conditions in Chapter 1.

Let us consider a kinematically admissible ¥(S) defined as the following over the re: ion
S € [0,L]

¥(S)=(5-S)b S,<S<S§,
- S,-S, 316
US)=1 (O =(S,-S) (2N S,<S<8, (3.16)
Ss_sz
0 elsewhere

where 0<S,<S§,<S,<L and b is an arbitrary vector. We define the paramcters
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I=S,-8,
1,=S,-S,=01
1,=S,-S,=(1-6)1

where

Sz'Sx)<l

0<9=
(s,—s,

Hence from (3.16) we can write
0
&(S)= 'm(s 'S3)b_

If §i is a minimizer of P[{i}, we must have

d?G(e)
de?

L =I ".C'dS=0
=0 (1]
which can be written as
1-'[ Is’y.gyd&[ S'Q’.QQ’dS] >0
s, S,
Substituting from (3.16) and (3.19) we can write

9 [ob.Coasv 7o
I s, (-6 ] s,

Dividing by 6/(1-8) we get

36

(3.17)
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b.Cb>0 (3.24)

for any arbitrary vector b. This is the definition of positive semi-definiteness of tensor
C which means that the eigenvalues of C should be non-negative. Hence from (3.9) we
can write

{E'ZO (3.25)
£20

These are equivalent to the Weierstrass conditions in chapter 1. These necessary
conditions are also sufficient for stability of an equilibrium configuration because they
guarantee the positive semi-definiteness of tensor C. To satisfy the second of (3.25), we
set the cable force equal to zero whenever we get a negative stress in a cable during the
analysis. So one of the necessary conditions for stability of equilibrium configuration will
be automatically satisfied.

Now we consider the case of a cable network. The incremental form of the

equations of equilibrium (1.55) and (1.56) for a cable net can be written as

E=-t©  jer (3.26)
Et@m)  jeE*
and
Z E(.)'*E EL=gk k€K (3.27)
jerr 7’ jepr

respectively. The compatibility constraints (1.51) and (1.52) can also be written in the

following incremental forms
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i°=y ,jEI*
{1 1‘* _J k (3.28)
i-=y, ,J€E

and
8°=z , jEI*
{" SRR (3.29)
g--z, , jEE*

respectively. We note that in the incremental procedure, the external loading vector g,,
k € K, the unknown position vectors Y% k € K, and the prescribed position vectors Zo»
h € H are considered as a function of time. The necessary and sufficient conditions
(3.25) still hold for each cable to make the whole network globally stable. In section 3.3
we make use of equilibrium and compatibility equations to develop the incremental

technique.

3.2 Failure of conventional DR_method for elasto-plasti les

In this section, we present a counter example that shows the standard DR doesn’t
work for elasto-plastic materials.

Let us consider a single cable under uniaxial tensile load F as shown in figure 3.1

Lo___>l

A

Figure 3.1 : A single cable under uniaxial tension

The cable has an unstretched length Ly = 1 m and a cross section A = 4 min?, The

38



material is elastic hardening with the constitutive force-stretch diagram shown in figure
3.2

f

f,=800 N

E,A=8x10°N

Figure 3.2 : Force-stretch diagram for the cable of fig. 3.1

The applied force F is 400 N. Since F<F,, the cable is in elastic range and the
displacement of the cable a the loaded end is
FL

X = =5X 10 3.30
“"EA m 3-30)

where X, is the displacement at the loaded end to maintain equilibrium.

Now let us use DR to solve this problem. We use the adaptive DR algorithm
(2.33) along with different initial values for X(0)= X°. Figures 3.3 to 3.5 show the
force-stretch curve and the path of marching DR towards the solution for these different
initial guesses X°.

As it is seen in these figures, the internal force is equal to the applied external
force for the converged value X, in all three cases. But we see that only for the first
case the converged value is correct. We know that the external load F is applied statically
and we never go into the plastic range and the values of Xoq shown in figures 3.4 and 3.5
are wrong. This example shows that when there is path dependency in the solution, DR
is sensitive to initial guesses and hence it can not be used for such a case without further

modification. Reference [12] shows that DR can be used along with the incremental
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800C N
<—— initial guess x°-0.7 mm
400N p—————————~— «<————— Converged point X q=0.5 mm
0 1

A

Figure 3.3 : Convergence value of X, for initial guess X°=0.7 mm

f
-
800N |—————
\initial guess x°=2 mm
400 N |- ————— ————— -« — Converged point Xq=125 mm
@) 1

A

Figure 3.4 : Convergence value of X, for initial guess X°=2 mm

f
800 N |[—m———m——— e
\ initiai guess x°=10 mm
A00 N |- «———— Converged point Xeq=725m
0] 1

A

Figure 3.5 : Convergence value of X, for initial guess X°=10 mm
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technique, which is discussed next, to solve problems involving elasto-plastic cables.

3.3 Incremental Technique

In this section we introduce the incremental technique based on the equilibrium
equations (3.26) and (3.27) and the compatibility constraints (3.28) and (3.29).Again for
the case of no distributed loading for the jth cable,i.e. 3, =0, from the first of (3.26) we
get

i "0 (3.3
which means that

i (3.32)

=5 =i
where_ij is a constint vector. Considering (3.9) we see that at ecach increment, the tensor

C; is constant for each cable. So from (3.8) we can write

W =r (3.33)

i i
where r; is a constant vector and since the cable is straight at each increment, this vector

can be expressed as

1
i =i (3.34)

Substituting from (3.26) into (3.27) and considering (3.8) we can write

-)_ Cu+Y Cil=q k€K (3.35)
jEI* JERT
and from (3.34) we get
a (L) 4 (0) a(lL)-a.0) .
—E_ z g____’__i;_=gh kEK (3.36)

]
JEI* ,- JERY i

This is a set of equations linear in y;. Once we’ve solved for y;’s, we can get the
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new unknown position Vectors Y, (., using (3.28) as the following

+atli (0) k€K,jEI*
L ={¥t(<ﬂ) ’ . (3.37)
(o) yt(owﬂtgj(L) k€EK,JEE*
and the prescribed nodal displacements are found using (3.29) as the following
z +atz (0) heH,jEI®
. - { T (3.38)
Thincw) zwwutzh(l.) h&eH,jEE"

where At is the small time step. It should be noted that at the beginning and end of each
time step, the cable net is in equilibrium. This procedure is continued over a time
interval T and at the end of this time interval, the structure is in its final loaded
configuration or has the prescribed displacement and is in equilibrium. The time step At
should be small enough to give the required accuracy. It should also be noted that when
the eigenvalues of C; are zero, i.e. f;=0 and/or (E,),=0 (perfectly plastic cable), from the
linear equations (3.36) we may end up with the coefficient matrix that is singular and
therefore we don’t get the correct solution for G;’s. Even for the cases with (Ey); close to
zero, we get a coefficient matrix that is ill conditioned and the results from that are not
correct. So we don’t consider such cases for the application of the incremental technique.
The method described in reference [12] however, can be used for such cases and this
could be one of the future works.

We can summarize the incremental technique in the following steps

(a) Start with the cable network initially in equilibrium

(b) Pick the time interval T (usually T=1) and the time step At. Set t=0.

(c) Express external loading and prescribed displacement as a function of
time (usually linear) over the time interval

(d) Form the linear equations (3.36) and solve for g’s.

(¢) Update the unknown position vectors y, using (3.37)

(f) Update the prescribed position vectors z, using (3.38)
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(g) update time : t=t+At
(h) if t=T then stop otherwise go to (d)
We can do this procedure for one time step and then repeat the procedure with a

decreased time step successively until there is not much difference in the results.

4 Ex les

In this section, some examples are analyzed by incremental technique and the
results are discussed. Although this technique can handle elastic cables oo, we just
present some examples with elastic hardening materials which have a constitutive force-
stretch diagram shown in figure 3.2. The first example deals with external loading case

while others involve prescribed displacements.

Example 3,1;

Figure 3.6 shows a 13x13 square mesh with fixed boundarics. All cables have
equal stretched length of 1.05 m and they are initially under the same tension of 400 N
in the elastic range. Therefore the cable net is initially in cquilibrium. An external force
Qo is applied at the central node perpendicular to the plane of net. We take the following

loading functions to use with the incremental technique (Figures 3.7 and 3.8)

Q,,=Q£Q,Sin(xt) , Q,>Q, , tE[0,I] (3.39)

The loading is large enough to bring some cables to the plastic range (For this example
Qo=1500 N and Q,=400 N). It can be seen that although at the end of time interval, the
final Joading is Q,=Q,=Q,, the results for the two loading cases are not the same
because of the path dependency of the solution. Figure 3.9 shows the deformed
configuration for both loading cases with a deformation scale of 10. As it is seen, the
results are totally different as expected. Table 3.1 provides the stress and strain in some
cables for both cases from which we see that the results are not the same. This example

shows that it is important how to express loading as a function of time. We should note
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that during the analysis, some cables may become plastic and if the value of the external
loading function decreases, those cable may be unloaded which might not be the case if
the external loading was always increasing to reach its final value. The external loading
should be applied quasi-statically to avoid this prchlem.

Cable No. Loading Q, Loading Q,

(Fig- 3.6) 1§/ ress (MPa) | Strain Stress (Mpa) | Strain
! 454.105 0.007664 | 484.367 0.006696
2 144.533 0.000723 | 139.087 0.000695
3 253.688 0.002859 | 275.471 0.002523
4 207.666 0.001616 | 223.184 0.001467

Table 3.1 : Comparison of stress and strain in some cabies for loadings Q, and Q, of

example 3.1

Example 3.2:

Figure 3.10 shows a 12x12 square mesh fixed at the boundaries. Cables have the
same stretched length of 1.05 m and initial tension of 400 N in the elastic range. We
apply the following rigid motions to the central square separately

(2) Pull the central square up and out of the net plane by one unit

(b) Twist the central square in the plane of net 45 deg. counter clockwise
(c) motions {(a) + (b)

(d) motions (b) + (a)

Figures 3.11 and 3.12 show the plan view of the deformed configuration for
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Figure 3.6 : 13x13 square mesh under dead load of example 3.1
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Figure 3.7 : External loading Q,(t) Figure 3.8 : External loading Qu(t)
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Q=Q,=Q 4+Q Sin(xt)
Q Q=Q,=Q -Q Sin(nt)

Figure 3.9 : Deformed configurations under external loadings Q,(t) and Q,(t) (Scale
1:10)
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Figure 3.10 : 12x12 square mesh with rigid central square frame
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Figure 3.11 : 12x12 square mesh under deformation (c) of example 3.2 (Pullup +
twist of central frame)
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Figure 3.12 : 12x12 square mesh under deformation (d) of example 3.2 (twist+pullup
of central frame)
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deformations (c) and (d) respectively. As we see again, the results are totally different
because of the path dependency in the solution.

xampl

Figure 3.13 shows a 7x7 square mesh. Cables are of the same stretched length
of 2 m and initial tension of 2600 N in the plastic range. We map the boundaries to four
straight lines out of the plane of net so that the final configuration is a "Hyperbolic
Paraboloid” net which is shown in figure 3.14. Because of the symmetry in mapping the
boundaries in this example, cables along AA and BB (figure 3.13) do not deform and
remain neutral. Other cables are getting more strained in the plastic range but the strains
in the cables are not the same. Now if we remap the boundaries to those of the initial
configuration, cables are unloaded except the ones along AA and BB (figure 3.15) and
we end up with a configuration identical to the initial one but less stressed. Table 3.2
shows the stress and strain in some cables in the initial and final (boundaries are

remapped to the original ones) configurations.

Y

:;._.'4: | . | __Z
I__, X @ M\\M\l z ()

Figure 3.13 : 9x9 square mesh with edges undergoing linear deformation
perpendicular to the plane on net
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Figure 3.14 : Hyperbolic-Paraboloid net
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Figure 3.15 :Remap of the edges to the initial configuration of the example 3.3
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Cable No. Initial configuration Final configuration
(Fig. 3.13) Stress (Mpa) | Strain | Stress(MPa) | Strain
1 650.00 0.01 543.51 0.01
2 650.00 0.01 650.00 0.01
3 650.00 0.01 638.16 0.01
4 650.00 0.01 602.66 0.0t

Table 3.2 : Comparison of stress and strain in some cables for initial and final

configuration of example 3.3

Example 3.4:

In this example, we consider the spider net we had in example 2 of chapter 2 with
the same deformations considered there except the material that is elastic hardening here.
Figure 3.16 shows the initial configuration. Figures 3.17 and 3.18 show the deformed
configurations for deformations (a) and (b) respectively. As it is seen in figure 3.18, the
circumferential cables are slack. Figure 3.19 shows the deformed configurations for
deformations (c) and (d). Again the circumferential cables are slack and it seems that the
problem has been converted to a one dimensional case for the radial cables. Although the
deformed configurations for deformations (c) and (d) are identical, but the stresses and
strains are different in circumferential cables for the two deformations (Table 3.3). Again

in this example, the solution is path dependent.

Example 3.5:

We repeat here example 2.3 with the elastic hardening material. Cables are of

equal tension of 100600 N and have a stretched length of 2m and a strain of 0.5 in the
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Figure 3.16 : Spider net of example 3.4

Plastic Cables
———————— Unloaded Cables

Figure 3.17 : Spider net under deformation (a) of example 3.4 (Pullup of central
frame) -
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Plastic Cables
................. . Slack Cables

Figure 3.18 : Spider net under deformation (b) of example 3.4 (Twist of central
frame)

Plastic Cables
————————— Slack Cables

Figure 3.19 : Spider net under deformation (c) or (d) of example 3.4
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Cable No. Deformation (c) Deformation (d)

(Fig. 2.4) Stress (MPa) Strain Stress (Mpa) | Strain
1 13142.445 0.259849 | 13142.869 0.259857
2 0 0.000372 | O 0
3 13144.77025 | 0.259895 13144.7125 0.259894
4 0 0 0

Table 3.3 : Comparison of stress and strain in some cables for deformations (c) and

(d) of example 3.4

plastic range. Figure 3.20 shows the deformed model for deformation (b). If the cable
net undergoes deformation (a) or (c) the result is almost what we see in figure 3.21. But
if we take a look at the plan view of the deformed configurations for these two

deformations (Figures 3.22 and 3.23), we see that cables are in different situations for

the two deformations and once again we see the path dependency of the solution.

SQme! Y

In this chapter, we developed the theory of plastic cables and noted that conditions
of cquilibrium and global stability are the same as what we had for elastic cables in
chapter 1. The only difference was that we considered the problem as time dependent
used a different constitutive law that allowed us to use a tangent modulus E, which varied
based on the deformation that the cable was undergoing at each increment of time. We
then presented a counter example and proved that conventional DR method cannot be
used for elasto-plastic cables because of the path dependency of the solution. However
reference [12] makes use of this method along with the incremental technique for
application to elasto plastic including perfect plasticity. We then introduced the
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Figure 3.20 : 21x21 square mesh under deformation (b) of example 3.5
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Figure 3.21 : 21x21 square mesh under deformation (a) or (c) of example 3.5
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Figure 3.22 : Plan view of 21x21 square mesh under deformation (a) of example 3.5

Plastic Cables

C Unloaded Cables

Figure 3.23 : Plan view of 21x21 square mesh under deformation (c) of example 3.5
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incremental technique which is capable of handling problems involving elastic and clasto-
plastic cables with tangent modulus not close to zero. We also provided some examples
showing the path dependency of the solution and this fact that it is important how to
express the external loading and prescribed displacements as a function of time.

In the end, we summarize some characteristics of the DR method and incremental

technique

DR _method:

- Nonlinear equations of equilibrium

- Iterative

- Elastic ( linear and/or non-linear) cabies only

- Initial configuration doesn’t need to be in equilibrium

- Convergence problems may arise

- Convergence rate can be improved by changing the diagonal mass and

damping matrices

Incremental technique:

- Linear equations of equilibrium

- Incremental

- Elastic and elasto-plastic materials with non-zero tangent modulus
- Initial configuration must be in equilibrium

- Must adjust time step to get the required accuracy
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