Immune activation in patients with admission blood pressure above 185/110 mm Hg in acute ischemic stroke

by

Yusra Batool

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Medicine University of Alberta

© Yusra Batool, 2021

Abstract

Background: An admission blood pressure over 185/110 mm Hg is associated with increased risk of recombinant tissue plasminogen activator (r-tPA)-related hemorrhagic transformation (HT). Stroke guidelines recommend blood pressure (BP) above 185/110 mm Hg be lowered before r-tPA treatment. How high blood pressure increases blood brain barrier disruption and risk of HT remains poorly understood. We evaluated peripheral leukocyte activation in stroke patients in relation to elevated admission blood pressure and potential contribution to blood brain barrier disruption. To study whether differences in immune response between patients in both groups existed past admission, we also analyzed differential gene expression for these groups at 5 hours and 24 hours after stroke onset.

Methods: Blood samples from acute ischemic stroke patients were collected within 3 hours (prior to treatment with thrombolytic), 5 hours and 24 hours of stroke onset. Patients were grouped by admission BP above 185/110 mm Hg (n=19) and BP below 185/110 mm Hg (n=47). Total blood RNA was assessed by whole genome microarray and differential gene expression for admission, 5 hour and 24-hour time points was analyzed by ANCOVA. Functional analysis of identified genes was performed. Correlation analysis was conducted to identify genes associated with systolic blood pressure (SBP).

Results: Strokes with admission BP above 185/110 mm Hg had 226 genes differentially expressed at admission (within 3 hours of stroke onset) as compared to strokes with BP below 185/110 mm Hg (p < 0.05, fold change $\ge |1.2|$). In the higher BP group, SBP remained significantly elevated at 5-hours (p < 0.05) and non-significantly elevated at 24 hours, whereas in

the lower BP group, SBP stabilized at 5 hours. Therefore, we also evaluated differential gene expression between the higher and lower BP group at 5 hours and 24 hours post-stroke. At 5 hours, 923 genes were differentially expressed between the higher and lower BP groups and at 24 hours, 422 genes were differentially expressed by admission blood pressure (p < 0.05, fold change \geq |1.2|). Key genes associated with BP above 185/110 mm Hg included *EDN3* (Endothelin-3), *MMP21* (Matrix metallopeptidase 21), *MMP-25* (matrix metallopeptidase 25), *MMP-28* (matrix metallopeptidase 28), *TLR4* (toll-like receptor 4), *AREG* (amphiregulin), CAV-*I* (caveolin 1) and *CCR2* (Chemokine receptor 2). Key pathways were associated with adaptive immunity, IL-17 and T_H17 signalling, TLR signalling and nitric oxide signalling. 99 genes linearly correlated with systolic blood pressure including *CCR2* (r = -0.32, P = 0.0009), and *AREG* (r = 0.286, P = 0.024,) (r > |0.2|, p < 0.05).

Conclusions: A blood pressure greater than 185/110 mm Hg is associated with differential immune activation in patients with acute ischemic stroke which persists for at least the first 24 hours after stroke. These differences may contribute to blood brain barrier disruption and risk of HT in acute stroke patients with very high admission blood pressure. Whether modulating immune activation could reduce blood brain barrier disruption and risk of HT requires further study.

Preface

This research was conducted at the University of Alberta under the supervision and guidance of Dr. Glen Jickling, Dr. Brad Kerr and Dr. Ian Winship. Ethics approval for this study was received by the University of Alberta Research Ethics Board (Pro00066577). The enrollment of study participants and gathering of blood samples were done as part of the CLEAR Stroke Trial by the CLEAR Trial Investigators. The designing and running of microarray experiments were conducted at the Department of Neurology, University of California Davis, Sacramento, USA by members of the Frank Sharp lab including, Dr. Bradley P Ander, Dr. Boryana Stamova, Dr. Glen Jickling and Dr. Frank R Sharp. I contributed to this project by conducting the literature review, analysing gene expression data, conceptualizing, and investigating how gene expression changes at later time points, preparing figures and tables, and writing the manuscript for chapter 2. In all steps of the process, I received support from my supervisor, Dr. Glen Jickling and committee members Dr Brad Kerr and Ian Winship. I also received support in conducting statistical analysis from Dr. Karen Buro of the Department of Mathematics and Statistics of MacEwan University. This work received funding support from CIHR.

Acknowledgments

I would like to acknowledge the support of my supervisor, Dr. Glen Jickling who provided much support in refining the topic, conducting the research and data-analysis and in writing drafts of the work. I would also like to thank my committee members, Drs. Brad Kerr and Ian Winship for their support throughout my degree. I would also like to acknowledge my graduate coordinator, Nadia Jahroudi for her sound advice, consistent support, and encouragement. Lastly, I would like to acknowledge Lisa Purdy for always being available to talk and support me through my graduate journey.

Table of Contents

Chapter 1: Literature Review	1
General Introduction	1
Acute Ischemic Stroke	2
Pathophysiology of ischemic stroke	2
Immune response to stroke	3
Blood brain barrier disruption	4
Hemorrhagic Transformation of acute ischemic stroke	5
Treatment with tissue plasminogen activator and risk of HT	6
Hypertension and the immune system	6
Hypertension Background	7
Defining hypertension	7
Regulation of blood pressure and the pathogenesis of hypertension	8
Regulation of blood pressure	8
Pathogenesis of hypertension	9
Hypertension and immune system	11
Immune system activation in hypertension	11
Target Organ Damage in hypertension	
Blood brain barrier damage in hypertension	
Role of inflammation in blood brain barrier damage in hypertension	14
Role of hypertension in immune response to stroke	15
Blood Pressure and the treatment of Acute Ischemic Stroke	16
Blood Pressure in acute ischemic stroke	17
Natural history of blood pressure in acute ischemic stroke	17
Factors associated with the acute hypertensive response	
Reasons for blood pressure rise during acute stroke	
Treatment of blood pressure in stroke	
Guidelines for treatment of hypertension in acute stroke	
Relationship of blood pressure to risk of hemorrhagic transformation	
Justification for guidelines and association of blood pressure to risk of HT	

Mechanisms for why high BP is related to risk of HT post-tPA	
Thesis objectives	
Chapter 2: Immune Activation in Patients with Acute Ischemic Stroke and Admis	ssion Blood
Pressure Greater Than 185/110 mm Hg	
Introduction	27
Methods	
Study participants	
Blood pressure measurements	
Sample processing and microarray	
Analysis of microarray data	
Statistical Analysis	
Results	
Patient characteristics	
Differential gene expression at admission	
Differential gene expression at 5 hours	
Differential gene expression at 24 hours	
Discussion	
General discussion of findings	
Genes and pathways identified	
Significance and Limitations	
Figures and tables	
Conclusions	53
References	55
Appendix	68

List of Tables

Table 1. Characteristics of acute ischemic stroke patients with admission blood pressure below
185/110 mm Hg and above 185/110 mm Hg 47
Table 2. Characteristics of patients included in the 5-hour genomic analysis
Table 3. Characteristics of patients included in the 24-hour genomic analysis
Table S1. Differentially expressed genes in strokes with admission $BP > 185/110 \text{ mm Hg}$ and
BP < 185/110 mm Hg at admission
Table S2 . Pathways associated with differentially expressed genes at admission
Table S3. Differentially expressed genes that correlated with SBP at admission
Table S4. Differentially expressed genes in strokes with admission $BP > 185/110 \text{ mm Hg}$ and
BP < 185/110 mm Hg at 5 hours
Table S5.Selected Pathways associated with differentially expressed genes at 5 hours
Table S6. Differentially expressed genes that correlated with SBP at 5 hours 170

List of Figures

Figure 1. Pattern of differential gene expression by admission blood pressures within 3 hours
after stroke onset
Figure 2. Pattern of differential gene expression by admission blood pressures at 5 hours after
stroke onset
Figure 3. Pattern of differential gene expression by admission blood pressures at 24 hours after
stroke onset

Chapter 1: Literature Review

General Introduction

Stroke is one of the main causes of disability and mortality globally, with rates expected to increase with an aging global population [1]. Around 71% of strokes are ischemic strokes of the brain, spinal cord or retina [2]. One of the main treatments for acute ischemic stroke is thrombolysis using recombinant tissue plasminogen activator (r-tPA) [3]. However, considerable risk is involved in administering r-tPA due to a severe bleeding complication called hemorrhagic transformation (HT) [4]. Thrombolytic-related hemorrhagic transformation is bleeding into the brain and is associated with outcomes such as death and major disability [4]. While major trials of r-tPA treatment and current treatment guidelines for acute ischemic stroke have been designed to carefully select patients to reduce risk of HT, around 6.1% of patients still hemorrhaged during the NINDs r-tPA trial [5, 6]. Better understanding of what causes bleeding in these patients may ultimately reduce risks of stroke treatment and make more patients eligible for treatment who are otherwise left untreated during acute stroke due to high risk of HT.

Hemorrhagic transformation (HT) is related to breakdown of the blood brain barrier (BBB) [7]. Immune response to stroke can worsen BBB breakdown, thereby increasing risk of HT [4]. One of the main modifiable risk factors for HT is high blood pressure during the acute phase of ischemic stroke [4]. High blood pressure and a history of hypertension (HTN) are also associated with activation of the immune system [8]. It is likely that patients with very high BP at the onset of acute stroke may also have an immune profile that may be linked to greater damage to the BBB and therefore, increased risk of bleeding.

The aim of this chapter is to review the literature on blood pressure in acute ischemic stroke and its link to immune activation and hemorrhagic transformation. In chapter 2, I answer the following question: How is high blood pressure during the acute stage of ischemic stroke related to immune response to stroke, thereby increasing risk of BBB disruption? Here, I begin by providing a brief introduction to ischemic stroke including pathophysiology and immune response. I then discuss the link between hypertension and the immune system. Finally, I discuss

how blood pressure is increased during acute stroke, its treatment and link to hemorrhagic transformation.

For this thesis, the most relevant threshold of blood-pressure cut-off is BP above 185/110 mm Hg before treatment as that is the blood pressure mentioned in the guidelines for r-tPA treatment of stroke [6]. However, much of the literature on hypertension has traditionally defined hypertension as blood-pressure above 140/90 mm Hg [9]. Furthermore, the threshold for separating normotension from hypertension has changed over the decades, with Pickering mentioning 8 different cut-offs for defining hypertension in 1986 and AHA recently lowering the threshold for stage 1 hypertension to BP above 130/80 mm Hg [10, 11]. I have included a brief section on definition of hypertension, further discussing this.

Acute Ischemic Stroke

Pathophysiology of ischemic stroke

The main causes of ischemic strokes are thrombosis of cerebral blood vessels, embolism from the heart (cardioembolism) or from a different artery, and cerebral small vessel disease [12]. Thrombosis of cerebral blood vessels occurs because of atherosclerosis [2, 3]. Cardio embolism occur because of atrial fibrillation, valve disease or thrombi from the left ventricle [3]. Artery-to-artery embolism arise from atherosclerotic plaques or the carotid, vertebral or intracranial vessels [3]. Stenosis of extracranial and intracranial vessels may also result in reduced blood flow to the brain, causing watershed ischemia [3]. Cerebral small vessel disease affects the small penetrating arteries of the brain and is responsible for lacunar strokes, leukoaraiosis (white matter hyperintensities), cerebral microbleeds and intracerebral hemorrhage [2]. Accordingly, ischemic stroke is classified into subtypes based on etiology, namely, large artery atherosclerosis (occlusion due to embolism from the heart), small-vessel occlusion (also called lacunar), stroke of known etiology (due to rare causes of stroke) and cryptogenic stroke (where the cause is unknown) [13]. The main risk factors for stroke include hypertension, atrial fibrillation, diabetes, smoking, hyperlipidemia and carotid stenosis [3].

Ischemic strokes involve a reduction in cerebral blood flow and blood pressure in an area of the brain [14]. Loss or reduction of cerebral perfusion compromises the brain's metabolism, leading to loss of electrical activity and resulting in neurological deficits [14]. This process is time dependent and within a few hours of ischemia the tissue dies if not reperfused [14]. The tissue with at this marginal perfusion is termed the ischemic penumbra [14, 15]. Damage to brain tissue depends on the magnitude of reduction in blood flow as well as the time for which flow is impaired [14, 15]. With time, the size of the penumbra decreases as cells begin to die [14]. The cellular plasma membrane fails leading to cytotoxic edema and protein and DNA degradation [14, 16]. Neurons depolarize and release glutamate [14, 16]. Glutamate binds to receptors on post-synaptic cells leading to phospholipase activation, arachidonic acid production, nitric oxide (NO) production, protein misfolding, activation of proteases, lipases and endonucleases, and membrane damage [14, 16]. Astrocytes become activated and produce trophic factors which increases their glucose uptake, further exacerbating ischemia [2]. In oligodendrocytes, excitotoxicity leads to demyelination, Wallerian degeneration and white matter loss [2]. Free radicals are produced, causing mitochondrial injury, DNA damage and fragmentation, activation of pro-apoptotic proteins and further production of reactive oxygen species (ROS) [14]. DNA fragmentation and damage result in cell death through apoptosis and necrosis [14].

Immune response to stroke

Cell damage during ischemia and production of reactive oxygen species activate the immune system [16]. There is a localized immune response within the brain wherein microglia, mast cells, perivascular macrophages, astrocytes, and endothelial cells are activated [16, 17]. This immune activation results in the production of proinflammatory cytokines, chemokines and reactive oxygen species which activate immune cells in the periphery leading to infiltration of peripheral immune cells into the brain [16, 17]. Inflammatory genes are upregulated in peripheral leukocytes (mostly likely neutrophils and monocytes) of patients with acute ischemic stroke as early as 3 hours after the onset of stroke [18]. Brain lesions from ischemic stroke patients show accumulation of granulocytes, T cells, peripheral monocyte-derived macrophages, and proliferation of microglia [19]. Within the brain, peripheral immune cells contribute to post-stroke inflammation and repair and both innate and adaptive immunity is involved in this response [16, 17]. In mice, monocytes contribute to the dominant immune response in acute

stroke [20, 21]. Whereas in humans, polymorphonuclear leukocytes (PMNLs) and mononuclear cells seem to be the most dominant cell types to respond [18]. Post-stroke inflammation may be involved in further damage to the brain and breakdown of the BBB. CCR2 -/- mice show reduced monocyte infiltration into the brain after ischemic stroke which is associated with smaller infarct sizes, reduced leakiness of the BBB, and reduced edema formation [22]. At the same time, the immune system also plays a protective role in post-stroke repair [23]. In fact, depletion of inflammatory CCR2^{hi} CX3CR1^{lo} monocytes too early after ischemic stroke may disrupt post-stroke repair because these cells adopt an anti-inflammatory macrophage phenotype later on [23]. The immune system has been explored as a potential target for post-stroke therapies to limit damage to the brain and to promote repair [24]. Using mass cytometry of peripheral blood leukocytes, a technique which combines flow cytometry with mass spectrometry, and elastic net regularized regression modelling, Tsai et. al, showed that the peripheral immune response to stroke can be divided into three main phases [25]. These stages peak at 2 days, 5 days, and 90 days after stroke [25]. They also compared features of immune cells including frequencies and activity of cellular proteins and transcription factors involved in cell signalling between these peak timepoints, and at 365 days after stroke [25]. The main feature of the acute phase which peaks at 2 days is response by innate immune cells [25]. There is increased signalling in transcription factors related to sterile inflammation including STAT3 in monocytes, myeloid-derived suppressor cells (MDSCs) and dendritic cells, and STAT1 in neutrophils [25]. This regulation is in comparison to the immune response at 1 year rather than to pre-stroke immune response in the periphery [25]. The main feature of the intermediate phase which peaks at 5 days is increased CREB signalling in adaptive immune cells including T_{regs} and TH1 cells [25]. The late phase, between 90 days - 1 year, involves a combination of innate and adaptive immune responses [25].

Blood brain barrier disruption

Immune activation and subsequent production of matrix metalloproteinases (MMPs) and ROS result in disruption of the blood-brain-barrier (BBB) [16, 26]. BBB disruption allows infiltration of peripheral cells into brain parenchyma [26]. The blood brain barrier is a barrier that separates the CNS from peripheral blood [27]. It is formed by a tight layer of endothelial cells embedded in basal lamina [27]. These endothelial cells are surrounded by astrocytic end-feet, pericytes,

vascular smooth muscle cells, neurons, and microglia, which is altogether referred to as the neurovascular unit (NVU) [28, 29]. The BBB strictly controls transport of substances and cells from the blood to the brain and vice-versa [30]. This has a protective function, guarding the brain against pathogens and other harmful materials [28]. Breakdown of the blood-brain barrier is associated with cerebral edema, which is linked to worse outcomes after stroke [28].

Hemorrhagic Transformation of acute ischemic stroke

Hemorrhagic transformation (HT) is bleeding into the brain after ischemic stroke because of BBB breakdown [4, 7]. Disruption of the BBB after ischemia allows blood to enter into brain [7]. As previously discussed, production of ROS, MMPs and inflammatory response to brain can disrupt the BBB by breaking down basal lamina and decreasing expression of tight junctions (TJ) [7]. The role of immune response to stroke in disruption of the BBB and increased risk of HT has been previously reviewed [4, 31]. According to ECASS criteria, HT can be classified into two main types based on computed tomography (CT) imaging: Hemorrhagic infraction (HI) (petechial infraction without space occupying effect) and parenchymal hematoma (PH) hemorrhage with mass effect [32]. These two types are further divided into HI1 (small petechial HI) and HI2 (confluent petechial HI) and PH1 (less than or equal to 30% of infarct, mild mass effect) and PH2 (more than 30% of infract, marked mass effect or clot remote from infarcted area) [32]. HT can also be classified as symptomatic or asymptomatic HT [4]. Symptomatic HT can be defined as bleeding accompanied by NIHSS increase of \geq 4 points within 36 hrs of stroke onset or death [4]. There are also other definitions that have been used in studies for defining HT [33]. The main definitions include ECASS-II, SITS-SICH, and NINDS trial and differ slightly [5, 33]. Hemorrhagic transformation is related to adverse outcomes after stroke [32]. PH2 is associated with clinical deterioration (increase of at least 4 points on NIHSS at 24 hrs after baseline) and death at 3 months, after adjusting for age and baseline NIHSS [32]. However, HI within the first 36 hours of stroke has also been associated with improvement [32]. This is likely because some bleeding can be a sign of early recanalization and restoration of blood flow to the brain [32]. The main risk-factors for HT include use of aspirin or aspirin and clopidogrel; severity of stroke; elevated blood glucose; age; weight; time to treatment; elevated blood pressure and history of hypertension [34]. The greater the number of risk factors in a patient, the

greater the overall risk of HT [34]. Out of all these factors, elevated blood pressure can be managed with the use of anti-hypertensive medications.

Treatment with tissue plasminogen activator and risk of HT

While some hemorrhage after stroke may be a normal consequence of reperfusion, r-tPA treatment greatly increases the risk of bleeding [7, 33]. Recombinant tissue plasminogen activator (r-tPA) is the main thrombolytic used to treat acute ischemic strokes [33]. tPA works by cleaving plasminogen into plasmin, which then breaks down fibrin in blood clots [33]. HT is one of the main complications of treatment with r-tPA, and the "most feared" [33]. Stroke guidelines include several factors that need to be considered when selecting patients who are eligible for r-tPA treatment, the most important of which is time to treatment [6]. According to current guidelines, patients need to be within 4.5 hours of symptom onset to be treated with r-tPA [6]. In some cases, patients can be selected to receive r-tPA beyond 4.5 hours after onset based on brain imaging, NIHSS and size of infarct lesion [6]. Other factors that are related to bleeding risk and need to be considered include platelet count, INR ratio, numbers and presence of cerebral microbleeds and use of the anticoagulant within the last 24-48 hours [6].

There are several mechanisms through which treatment with r-tPA increases risk of HT after stroke. The main mechanisms are thought to be disruption of the blood coagulation cascade and reduced fibrinogen levels which impacts blood clotting [33]. However, r-tPA may also lead to HT by increasing disruption of the blood brain barrier through possible effects on peripheral neutrophils and T cells [35].

Hypertension and the immune system

The immune system is involved in the pathogenesis of hypertension [8, 36, 37]. I begin this section by providing a brief introduction to hypertension as a disease, including the definition and pathogenesis of hypertension. I then describe the link between hypertension and immune system activation. I also discuss how the blood brain barrier is damaged in hypertension and the role of inflammation in BBB damage. Lastly, I discuss how pre-existing inflammation due to hypertension might contribute to the immune response in ischemic stroke.

Hypertension Background

Defining hypertension

Defining hypertension is complicated. This is mainly because blood pressure is a continuous, quantitative variable and no biological threshold is apparent in frequency distributions of blood pressure where a dividing line between hypertension and normotension can be drawn [10]. Any attempts to create a cut-off are subjective [10, 38]. Furthermore, the relationship between high blood pressure and its adverse effects is also linear and quantitative, with risks of cardiovascular events increasing after BP > 115 mm Hg systolic [10, 38, 39]. The main reason for defining hypertension is to establish a target blood pressure at which treatment should start because the risks of having untreated hypertension at that BP exceed the costs of its treatment[10, 40-42]. Pickering further proposed the idea that the treatment threshold of BP may be different for everyone, based on that person's individual risks of having elevated blood pressure [41].

This complexity in defining hypertension is evident in the differing criteria for levels of hypertension in the American, European, and Canadian guidelines. In 2017, American Heart Association (AHA) changed their guidelines to define **normal** clinic BP as $\leq 120/80$ mm Hg; Elevated BP as SBP between 120-129 mm Hg and diastolic BP \leq 80 mm Hg; Stage 1 hypertension as SBP between 130-139 mm Hg and DBP between 80-89 mm Hg; Stage 2 hypertension as SBP \geq 140/90 mm Hg; and hypertensive crisis as SBP \geq 180 and/or DBP \geq 120 mm Hg [11]. These guidelines were based on evidence linking increasing blood-pressure to risk of cardiovascular disease including stroke and are meant to guide decisions about the prevention and treatment of hypertension in untreated patients [11]. The guidelines for defining hypertension when ambulatory and home BP monitoring is used are different. This may be because in most patients, ambulatory and home BP readings are lower than clinic BP readings [11, 41]. The AHA guidelines also present a guide for BP conversion from office readings to self-monitored readings [11]. For home BP monitoring, normal BP is below 120/80 mm Hg; Elevated BP is SBP between 120-129 mm Hg and diastolic BP \leq 80 mm Hg; Stage 1 hypertension is 130/80 mm Hg; Stage 2 hypertension is 135/85 mm Hg [11]. For ambulatory BP monitoring, a 24-hr BP below 115/75 mm Hg is considered normal; SBP between 115-124 mm Hg and DBP under 75 mm Hg is considered elevated; Stage 1 hypertension is $BP \ge 125/75$ mm Hg; and stage 2 hypertension is BP \geq 130/80 mm Hg [11]. The 2018 European guidelines have a different classification for defining blood pressure thresholds. Optimal blood pressure is defined as BP \leq 120/80 mm Hg; Normal BP is defined as SBP between 120-129 mm Hg and/or DBP between 80-84 mm Hg; High normal BP is defined as SBP between 130-139 mm Hg and/or DBP between 85-89 mm Hg; Grade I hypertension is defined as SBP between 140-159 mm Hg and/or DBP between 90-99 mm Hg; Grade 2 hypertension is defined as SBP between 160-179 mm Hg and/or DBP between 100-109 mm Hg; Grade 3 hypertension is defined as $SBP \ge 180$ mm Hg and/or DBP \geq 110 mm Hg; Isolated systolic hypertension is defined as SBP \geq 140 mm Hg and $DBP \le 90 \text{ mm}$ Hg [43]. Hypertension Canada's most recent 2020 guidelines classify office BP readings of SBP between 130-139 mm Hg and DBP between 85-89 mm Hg as highnormal; $BP \ge 140/90$ mm Hg is considered high [42]. Where ambulatory BP monitoring is used, an awake BP \geq 135/85 mm Hg, and a 24-hr BP \geq 130/80 mm Hg is considered high [42]. For home BP monitoring, $BP \ge 135/85$ mm Hg is considered high [42]. In patients with diabetes, the cut off is lower, with an office BP \geq 130/80 mm Hg being classified as high [42]. The Canadian hypertension guidelines classify severe BP increase with acute ischemic stroke as a hypertensive emergency and recommend immediate treatment [42]. For treatment of blood pressure in acute ischemic stroke beyond the first 72 hours, HC guidelines recommend BP be lowered to below 140/90 mm Hg [42].

This issue of producing cut off points for blood pressure is also echoed in the debate around which thresholds blood pressure should be lowered to. Further details of these discussions are provided in the section on treatment of blood pressure in stroke.

Regulation of blood pressure and the pathogenesis of hypertension

Regulation of blood pressure

Systolic blood pressure (SBP) is the blood pressure applied to the walls of the arteries during systole, whereas diastolic blood pressure (DBP) is the pressure of blood on the walls of the arteries during diastole [44]. Blood flow refers to how much blood is moving past a given point in a unit period of time [45]. Since both blood pressure and blood flow change during the cardiac cycle as the heart pumps blood, other helpful ways of referring to blood pressure and blood flow are mean arterial pressure (MAP) and cardiac output (CO) [45]. Mean arterial pressure (MAP) is "the pressure in a single cardiac cycle divided by the duration of the cycle", which in humans is

around 95 mm Hg [45]. The "mean total blood flow in the circulation" is the cardiac output (CO) of the heart, expressed as litres/min, and is a function of heart rate and stroke volume [45]. Stroke volume is the amount of blood pumped in a single heartbeat [46]. Thereby, blood pressure is the product of total cardiac output and peripheral vascular resistance [9, 46].

Since blood pressure is the product of cardiac output and vascular resistance, and cardiac output is the product of heart rate and stroke volume, any factor that affects heart rate, stroke volume, or peripheral vascular resistance affects blood pressure [36, 37, 47]. Thereby, the main organs involved in regulation of blood pressure include the heart, blood-vessels, kidneys, and brain [36, 44, 47]. In the short term, blood pressure is regulated by neuro-hormonal reflex arcs involving the sympathetic and parasympathetic nervous systems [47]. Within the brain, the major blood pressure control centres involve the medulla and hypothalamus, however the cerebral cortex can also be involved in regulating BP in response to stress [47]. Activation of the sympathetic nervous system results in release of epinephrine and norepinephrine which act on the heart and blood vessels to regulate BP [47]. Over the long term, from hours to days, blood pressure is regulated by vasoactive substances that affect blood vessels and non-vasoactive substances that control extracellular fluid volume by controlling salt-water balance in the kidneys [47]. The main systems that control salt-water balance include the renin-angiotensin-aldosterone system (RAAS), the autonomic nervous system, anti-diuretic hormone arginine vasopressin (AVP) secreted by the pituitary gland and production of atrial natriuretic peptide (ANP) by cardiomyocytes [47]. In hypertension, the immune system is also involved in the regulation of blood pressure by impacting the organs involved in blood pressure control [36, 48]. However, in the absence of hypertension, it is unclear whether or how immune cells might be involved in the normal regulation of blood pressure.

Pathogenesis of hypertension

Hypertension is classified into two main types: essential hypertension with no known cause and secondary hypertension when the cause of high BP is known [10, 46]. Approximately 90% of patients with hypertension have essential hypertension [46]. The Page Mosaic model has pointed out that hypertension is likely a result of imbalance of complex interactions between multiple pathways and organ systems involved in the regulation of blood pressure including the nervous,

cardiovascular, endocrine, and renal systems [49, 50]. These systems are impacted by lifestyle, genetic, environmental, humoral, anatomical etc. factors which are involved in hypertension [51]. Within patients with essential hypertension, there is likely variability in causes of elevated blood pressure, so high blood pressure is a result of "discrete hypertensive syndromes" rather than one specific condition [52]. There is also variability within patients in the trajectory of BP rise over their lifetimes, which might represent differences in underlying pathology and presence of risk factors [10]. Similarly, there are differences in pathology between essential hypertension and malignant hypertension [10, 52]. SBP is also known to increase with age, whereas DBP rises till 50-60 and there is a sex interaction with BP in males being higher – however, male sex and age while associated with higher BP are not believed to be causal factors for hypertension [9, 52]. Some of the major pathological processes that result in hypertension include increased activation of the sympathetic nervous system and RAAS, endothelial dysfunction, salt-sensitivity, oxidative stress, genetic susceptibility, and involvement of the immune system [44, 46].

Using the Page Mosaic model, DG Harrison pointed out the roles of oxidative stress and inflammation in the pathogenesis of hypertension [51]. Inflammation and oxidative stress are often linked, with oxidative stress leading to an inflammatory response in organs [51]. Inflammation is related to each of the eight facets of the Page Mosaic model [51]. These include: Polymorphisms of genes like IL-23, TNFα and IL-6; hemodynamics affecting immune cell adhesion and chemotaxis; endothelial damage and neoantigen production; humoral and endocrine signals activating immune cells; neuroinflammation affecting CNS control of sympathetic outflow; activation of T cells and macrophages due to diet and stress; inflammation of organs involved in BP regulation; and involvement of inflammation in vascular hypertrophy [51]. To study the effects of thymus-dependent cells on early hypertension and chronic hypertension, Svendsen looked at blood pressure elevations in DOCA-salt-treated animals with and without a thymus in both the early and late stages of hypertension (21, 57 and 78 days after DOCA-salt treatment) [53]. They compared blood pressure elevations between athymic (nude mice lacking a thymus), thymus grafted mice (nude mice which received a thymus transplant from NMRI mice) and thymic mice [53]. The study showed that in the early stages after salt challenge, blood pressure increased in all mice strains [53]. However, in the later stages, blood

pressure elevation was not maintained in athymic mice as compared to thymus grafted and thymic mice [53]. Transplantation of the thymus in nude mice returned their ability to maintain a high blood pressure in the chronic stage [53]. Taken together, these results showed a causal relationship between thymus-dependent immune cells and maintenance of high blood pressure in chronic hypertension [53]. The blood vessels in kidneys of most hypertensive mice at this stage also showed infiltration of "round" cells, most likely monocytes, lymphocytes, granulocytes and plasma cells [53]. This was absent in the kidneys of most nude mice [53].

Hypertension and immune system

Immune system activation in hypertension

The main cell types involved in an inflammatory response to hypertension include cytotoxic T cells, T helper cells, $\gamma\delta T$ cells, B cells, dendritic cells, monocytes and macrophages [36]. These cells are thought to promote inflammation and target organ damage in hypertension [36]. However, immune cells like Treg cells, iNKT cells, Choline acetyltransferase- expressing CD4+ T cells and myeloid deprived suppressor cells are thought to have a protective role in suppressing hypertension [36]. Angiotensin-II induces production of ROS in dendric cells (DCs) [54]. Oxidative stress due to increased ROS produces isoketals (also called isolevuglandins) which react with proteins and modify them [54]. Modified proteins activate DCs which secrete IL-1B, IL-6, and IL-23 and activate CD8⁺ T cells [54]. These T cells then secrete IL-17, TNFα, and IFN- γ , and damage kidneys and blood vessels [54]. Isolevuglandins also affect monocytes in a similar fashion [54]. DCs and monocytes with isolevuglandins have also been found in humans with hypertension [54]. Monocytes also accumulate in blood vessel walls of animals with hypertension and the CCR2 receptor may be involved in monocyte trafficking [55]. Using a CCR2 antagonist decreases monocyte infiltration and reduces blood pressure [55]. T cells are also involved in the production of IL-17 because of Ang-II infusion in animal models [56]. IL-17 KO mice show elevation in blood pressure initially, but hypertension is not sustained [56]. This study also found increase in IL-17 levels in patients with diabetes and hypertension, regardless of anti-hypertensive medication use [56]. Overall, it is possible that different aspects of the inflammatory response are involved in different effects of hypertension on target organ damage [36]. It is also likely that as hypertension progresses, damage caused by inflammation may further impact blood pressure regulation and exacerbate hypertension [36, 37]. What remains to

be seen is the timeframe of how and when this immune response starts in hypertension and whether different immune mediators might be involved causing or maintaining hypertension over time [36]. In humans, levels of inflammatory cytokines TNF α , IL-1 β and IL-10 have been found to be elevated in resistant hypertension, relating hypertension to increased immune activation [57].

Target Organ Damage in hypertension

In animal models, hypertension-associated immune activation plays a role in endothelial dysfunction; compromised vasodilation; vascular hypertrophy and remodelling; vascular fibrosis and collagen deposition; oxidative injury; arterial rarefaction; and matrix metalloproteinase (MMP) production [37, 58, 59]. In blood vessels, hypertension is known to cause rarefaction (loss of vessels) and remodeling (narrowing of vessel lumen) – which causes an increase in peripheral vascular resistance and possibly reduced blood flow [29]. In the brain, hypertension-associated vessel remodeling and endothelial dysfunction cause shifting of the autoregulatory curve to higher blood pressures [58]. This makes the brain more susceptible to the effects of ischemia as autoregulation is more likely to fail at lower blood pressures leaving cerebral blood flow dependent on blood pressure [58]. Hypertension also impacts the blood-brain barrier and the neurovascular unit by affecting endothelial cells, pericytes, astrocytes and microglia [60-62]. It is also likely that many hypertensive-related changes to cerebral circulation go unnoticed till significant damage to blood vessels results in more severe pathology and symptoms [63]. Hypertension is also a risk factor for dementia, along with diseases of cerebral blood vessels like cerebral small vessel disease [59].

Blood brain barrier damage in hypertension

In hypertension, inflammation, endothelial dysfunction, vascular remodelling, reactive oxygen species and production of MMPs increase disruption of the blood brain barrier (BBB) [58, 64, 65]. Below, I summarize some of the mechanisms by which hypertension increases blood-brain-barrier disruption. In the next section, I focus on the role of inflammation in hypertension in damaging the blood brain barrier. Of importance is that much of the literature summarized is from animal studies and our knowledge of mechanisms of how hypertension and resulting inflammation impact the BBB in humans is less clear [64].

Studies in animal models have shown that the BBB permeability is increased in spontaneously hypertensive rats and stroke prone spontaneously hypertensive rats, particularly around the hypothalamus [66]. There may be two mechanisms for this increased permeability: Increased transcellular transport through endothelial cells and paracellular transport between subsequent endothelial cells [66]. Whereas Ueno et al. only found evidence of increased vascular permeability through increased trans-endothelial transport, Lippoldt et al. found no differences in vascular permeability in young rats [66, 67]. Lippoldt also did not observe differences in vessel wall morphology in young WKY, SHR or SHRSP [67]. However, they did observe differences in distribution of TJs in brain endothelial cells as well as differences in endothelial cell polarity in SHRSP, which might lead to increased barrier permeability as the animals aged [67]. Even an acute hypertensive response and elevation in BP increases BBB permeability and downregulation of claudins mRNA in endothelial cells [68]. In this study, the acute hypertensive response referred to elevations of blood pressure of about 35% for at least 8 days [68]. The same study also found decreased activity of superoxide dismutase (SOD), pointing towards high oxidative stress in brains of hypertensive rats [68]. Similarly, another mouse model of transverse aortic coarctation in which blood pressure is acutely increased in one brain hemisphere, leading to hyperperfusion of brain tissue, showed a breakdown of the blood-brain-barrier, oxidative stress and inflammation [69]. Specifically, they found increase in mRNA levels of IL-1ß and TNF α in brain tissue [69]. ROS can react with NO reducing NO bioavailability and producing peroxynitrite [70]. In vitro BBB models show that peroxynitire accumulation can further damage the blood brain barrier increasing permeability across the barrier, whereas peroxynitrite catalysts which remove peroxynitrite can reduce this damage [70]. There are also direct effects of Angiotensin-II on blood brain barrier permeability [71]. Angiotensin binds to Angiotensin-II Type I (AT₁) receptor on endothelial cells to increase BBB permeability as determined by in vitro BBB models [71]. Cerebral microvascular endothelial cells of rats with Ang-II associated hypertension also show decreases in mRNA levels of tight junction proteins like Claudin-5 and Zona-Occludens 1 [72]. When AT1 receptor blocker losartan is administered, these TJ mRNA levels increase to normal [72].

Role of inflammation in blood brain barrier damage in hypertension

An undamaged BBB is thought to be important for blocking the entry of peripheral Ang-II and inflammatory immune cells into brain [64]. In hypertension, Ang-II binds to endothelial cells to disrupt the BBB [71]. A study with fluorescently labelled Ang-II showed that Ang-II from the circulation co-localised with neurons and microglia in the brains of hypertensive animals with disrupted blood brain barriers [61]. Indeed, microglial activation has been found in the brains of hypertensive animals whereby treatment with minocycline reduced blood pressure and mRNA levels of IL-1B, IL-6 and TNFa in these animals [73]. Furthermore, minocycline treatment increased levels of IL-10 which has found been to be helpful in reducing blood pressure [73]. Ablation of activated microglia using diphtheria toxin in hypertensive animals also reduced blood pressure [74]. Furthermore, adoptive transfer of activated microglia to the brains of normotensive mice resulted in elevated blood pressure [74]. These studies suggest that inflammation in the brain may not only be a result of hypertension but may also be involved in maintaining or exacerbating high blood pressure. In addition to microglia, perivascular macrophages (PVM) are also involved in BBB disruption in hypertensive animals through production of free radicals [72]. Depletion of these macrophages using chlodronate reduces BBB permeability in hypertensive animals [72]. While PVMs also express AT1 receptor, this increase in BBB permeability is likely the result of an interaction between the effects of Ang-II on the endothelium and on PVMs [72].

Of note is that production of cytokines and oxidative stress by activated microglia and PVMs may contribute to further damage of the BBB [27]. Inflammatory cytokines like IL-1 β and TNF α increase expression of adhesion protein ICAM-1 in human brain microvascular endothelial cells [75]. IL-1 β also acts on endothelial cells to increase mRNA levels of proinflammatory cytokines like IL-1 β , IL-6, IL-8 and TNF α [75]. Finally, IL-1 β and TNF α also induce secretion of MMP-2 from endothelial cells [75]. In *in vitro* BBB models, IL-1 β also increased BBB permeability and increased migration of monocytes and T cells across the BBB [75]. Therefore, these cytokines may be involved in signalling and entry of peripheral immune cells into the brain through a disrupted BBB.

Peripheral leukocytes are also involved in BBB damage in hypertension. Peripheral leukocytes in hypertensive animals have increased expression of Mac-1 which is important in cell adhesion and infiltration into the vessel wall [76]. This expression is reduced by treatment of these animals with AT₁ receptor antagonist [76]. A study of chimeric SHR with bone marrow from non-hypertensive WKY animals showed decrease in blood pressure in SHR with BM transplant [77]. On the other hand, chimeric WKY rats with BM from SHR showed an increase in activated microglia and elevation of blood pressure, suggesting that peripheral immune cells are involved in neuroinflammation in hypertensive animals [77]. Bone marrow mononucleolar cells from hypertensive animals also showed increased mRNA production of proinflammatory markers like CCL2, INF ∂ , IL-1 β , TLR4 and TNF α [77]. T_H17 cells and IL-17 have also been found in brains of hypertensive rats [78].

Role of hypertension in immune response to stroke

Given the destructive effects of hypertension on cerebral vasculature, it is possible that patients with pre-existing vascular damage due to hypertension "get a double hit when they experience a stroke" [63]. Similarly, given that hypertension is linked to immune activation and neuroinflammation, it is possible that the immune system is "doubly activated" or responds more strongly after stroke in hypertensive patients. In patients with acute ischemic stroke, high SBP has been associated with increased levels of serum C-reactive protein [79].Considering that most patients with acute ischemic strokes are hypertensive, studies of inflammatory response to stroke likely do capture aspects of immune response to a hypertensive brain [63]. However, very little is known about the specific contribution of hypertension-related-inflammation to immunity after stroke, particularly in humans.

One factor that complicates studies of immune response to hypertension in stroke is the presence of an acute hypertensive response in patients. Most patients with acute ischemic strokes are admitted with high blood pressure which spontaneously declines over the next few days[80-83]. A rise in blood pressure within 24 hrs of stroke onset that is above the patient's normal blood pressure levels has been termed an acute hypertensive response (AHR) and may be different from previous hypertension [84]. Acute hypertensive responses are not specific to stroke but are found in other diseases like traumatic brain injury as well [85]. Presence of chronic hypertension is a risk factor for the acute hypertensive response, however up to 20% of stroke patients with AHR may have no history of HTN [84-86].

While most studies of inflammation in hypertension are focused on chronic hypertension, the acute hypertensive response may have a different immune profile than that of chronic hypertension. Poulet et al., found that an acute hypertensive response also leads to generation of superoxide, production of pro-inflammatory cytokines and increased permeability of the blood brain barrier [69]. However, this response was not studied in animals with stroke. By inducing an acute hypertensive response in mice with chronic hypertension, Wakisaka et. al, showed that acute rise in BP could induce intracerebral hemorrhage (ICH) [87]. Occurrence of ICH was related to increase in oxidative stress and MMP activity [87]. While this study did not look at ischemic strokes, it suggests that an acute BP rise in an animal with chronic hypertension can damage the BBB and inflammation might be involved [87]. Rodriguez-Yanez et al., studied immune response as determined by blood levels of IL-6, TNFα, ICAM-1, VCAM-1 and MMP-9 in acute ischemic stroke patients with new onset or chronic hypertension [86]. Patients with newonset hypertension (no prior recorded history of hypertension before ischemic stroke) showed increased levels of all inflammatory mediators as compared to chronically hypertensive patients [86]. This study was done within 24 hours of stroke onset. They also found that increased numbers of genes correlated with SBP in new-onset hypertensives as compared to patients with chronic hypertension [86]. However, determining an accurate history of hypertension is complicated because not all hypertensive patients are diagnosed.

Blood Pressure and the treatment of Acute Ischemic Stroke

Hypertension is a main risk factor for stroke whereby a decrease in diastolic blood pressure by 10 mm Hg reduces the risk of stroke by 56% [88]. There is also a continuous positive association between increased SBP and risk of stroke [88]. The prevalence of hypertension in modern societies is also high and so is the lifetime risk of developing hypertension - 90% of people who are normotensive at 55 will be hypertensive after this age [88]. There is interest in researching and treating hypertension in stroke because hypertension is the main modifiable risk factor for stroke [88]. In the acute stage of stroke however, there are still controversies in whether and how hypertension should be treated [89]. High blood pressure during stroke is thought to be

protective by helping to perfuse an ischemic brain [90]. Therefore, there is fear of worsening ischemia by lowering blood pressure [90]. However, high pressure during acute stroke is also associated with worse outcomes [89]. Most importantly, high blood pressure in acute stroke is associated with increased risk of bleeding after r-tPA therapy [91]. Blood pressure lowering is recommended when there is malignant hypertension (BP above 220/120 mm Hg) or when the patient is eligible for r-tPA therapy [3, 6].

In this section, I first discuss the natural history of BP during the acute phase of stroke and mechanisms for why BP rises. I then discuss the treatment of blood pressure in stroke including current guidelines for treatment, justification for guidelines and studies linking high blood pressure during acute stroke to risk of hemorrhagic transformation.

Blood Pressure in acute ischemic stroke

Natural history of blood pressure in acute ischemic stroke

Most patients with stroke present to the hospital with very high blood pressure and this blood pressure declines spontaneously over the first few minutes, hours, and days [80-83]. Approximately 84% of stroke patients have BP over 150/90 mm Hg over the first 24 hours of stroke admission [83]. Approximately 69% of patients with acute stroke have very high admission blood pressure (SBP>170 mm Hg or DBP > 100 mm Hg) as compared to age and sex matched patients admitted to the emergency department for various conditions [81]. Prevalence of severely elevated blood pressure with SBP > 185 mm Hg has also been reported [92]. A study of acute blood pressure after stroke in 563,704 US adults, found that 13% of patients (N=74,586) came in with "severely elevated SBP" between 185-219 mm Hg, whereas 0.1% of patients (N=791) presented with SBP > 220 mm Hg [92]. Though some of these values could be attributable to higher levels of hypertension in stroke patients vs. controls, a 2016 study of prehospital blood pressures between strokes and stroke-mimics reported similar findings that prehospital mean SBP is higher in stroke patients than in stroke mimics [80, 81]. All studies have reported similar findings for diastolic BPs [80-83].

This transient rise in BP after stroke is different from hypertension and has been termed an **acute hypertensive response (AHR)** to stroke [81, 84]. An acute hypertensive response is defined as

"BP above 140/90 mm Hg on two readings taken at least 5 minutes apart, within 24 hours of stroke symptom onset" [84]. The definition of AHR is a practical one useful for understanding the prevalence of the response, but may not be helpful when understanding underlying mechanisms [84]. There is variability between patients in blood pressure decline after stroke which is used to distinguish types of AHR [82, 84]. There is a positive correlation between admission blood pressures and extent of blood pressure decline, with patients with the highest admission BPs showing the most decline over the first four days, likely due to regression towards the mean [81, 82]. Based on patterns of blood pressure decline, Qureshi categorized the acute hypertensive response into four types: "blood pressure declines spontaneously; no decline or increase in BP, regardless of medication; modest decline with medication (between 10-15%); intense decline with medication (greater than 20%)" [84].

There are a few aspects to consider in these studies of natural history of blood pressure in stroke: timing of blood pressure measurement; effect of masked hypertension or white coat effect; and effect of hypertension and anti-hypertensive medications. If BP declines spontaneously, then the timing since stroke onset at which patients are admitted to hospital and when their BP is taken is thereby important [93]. The closest time to onset of stroke for which blood pressure data has been reported has been 19 ± 13 min [82]. So far, there is lack of human data about how blood pressure changes at the very onset of stroke. However, a study of normotensive rats showed that blood pressure increases within minutes of middle cerebral artery occlusion [94]. A similar acute hypertensive response is seen in dogs and rabbits, though it doesn't occur in each animal and the degree of blood pressure rise seems to vary [49, 95]. In all the above human studies, blood pressure was also measured either in the hospital, or by ambulance personnel. As such, it is difficult to estimate any effects of masked hypertensive medications is discussed in the section below.

Factors associated with the acute hypertensive response

Patients with previous hypertension have higher admission blood pressures than patients with no previous diagnosis of hypertension [96, 97]. This association holds for all subtypes of ischemic strokes and when 24-hr BP monitoring is used in hospital [81, 83, 96, 97]. However, accurately

determining a previous history of hypertension can be complicated [98]. In some studies, a history of hypertension is determined using previous diagnosis of HTN; by talking to the patient's doctor, family members or the patients and use of anti-hypertensive medications [82]. Vemmos et al., used blood pressure values up to a month after stroke to estimate possible history of hypertension at stroke onset [97]. Many people with hypertension are not aware that they have hypertension [99]. The numbers of patients who are unaware of their hypertension range from approximately 35% within the United States and approximately 45% globally [99]. Furthermore, even if they are diagnosed and treated, compliance with medication may be poor [99-101]. Since hypertension is a risk factor for stroke, the proportion of patients who do not adhere to medication may be higher in patients with AIS [99]. Third, even after taking medication their BP may be uncontrolled [97, 100, 101].

Previous use of anti-hypertensive medication may also be related to BP in acute stroke [83]. Wallace and Levy studied the natural history of BP decline in patients with diagnosed HTN with and without previous anti-hypertensive medications, and patients with no previous diagnosis of hypertension [83]. In patients with a previous history of hypertension, who were not taking anti-hypertensive medication prior to stroke, blood pressure declined even without medications during the first week. [83]. Surprisingly, patients with a previous history of HTN, who were using anti-hypertensive medications had higher admission BPs (mean 214/118 mm Hg) than people with prior history and without anti-hypertensive therapy (mean 181/95 mm Hg) [83]. The decline in blood pressure was sharper in hypertensive patients on medications and at day 10, their average SBP was still higher (mean 162/97 mm Hg) than SBP in patients with a history of HTN plus no prior anti-hypertensive medication use (mean 181/95 mm Hg) [83]. It is important to note that is study was published in 1981 so patients were not treated with reperfusion therapy for ischemic strokes [83]. It is possible that patients with higher blood pressures may have been more likely to be prescribed anti-hypertensive medications, explaining the results of this study.

Other important factors are sex, age, type of stroke and comorbid conditions. When distinguishing by sex, women were more likely to have had a previous diagnosis of hypertension (as determined by treatment for hypertension) (58.2% vs. 43.0%, p<0.001, N=843) [96]. These results are not surprising because even outside an acute stroke setting, women in general have

higher awareness, treatment, and control of hypertension [99]. The SBP on admission was significantly higher in women than in men [96]. Age is also correlated with higher admission blood pressure [96]. However, when considering subgroup analysis by type of stroke, age was negatively associated with 24-hr DBP after stroke in lacunar stroke and strokes of undetermined cause [97]. SBP rise is positively associated with age [9]. However, DBP increases with age up to 60 years after which DBP declines with increasing age [9]. The factors associated with 24 hr blood pressure after stroke also differ by type of stroke. In general, patients with ICH and lacunar strokes have the highest BPs during acute stroke [80, 82, 96]. No significant difference in mean blood pressures were found in patients with reference to cardiac failure and diabetes, though patients with diabetes were more likely to have a previous history of hypertension treatment [96]. Vemmos et al., however found that histories of coronary artery disease and heart failure were negatively associated with SBP in patients may have lower functioning of the left ventricle and lowered cardiac output [97].

Reasons for blood pressure rise during acute stroke

There may be several reasons why patients may have an acute BP rise after stroke, and most of them are still not well understood [84, 98, 102]. It is likely that there are several factors at play at the same time, and it may be difficult to distinguish individual effects due to any one cause. Some factors that might contribute include stress from being hospitalized, pain, vomiting [98]. Additional factors that have been discussed in relation to this response include the effect of plasma catecholamines that are released after stroke; having a full bladder; the brain's response to hypoxia; uncontrolled blood pressure from pre-existing hypertension; Cushing's reflex; size of infarct; location of the infarct being in a part of brain that regulates BP or the autonomic nervous system; some other effect of stroke because BP drops after recanalization; NO release after stroke; and post-stroke infections resulting in release of catecholamines and pro-inflammatory cytokines [84, 96, 102].

Treatment of blood pressure in stroke *Guidelines for treatment of hypertension in acute stroke* Lowering admission blood pressure below 185/110 mm Hg Guidelines for the treatment of ischemic stroke recommend blood pressure be lowered below 185/110 mm Hg before treatment with r-tPA [6]. The blood pressure threshold of 185/110 mm Hg is based on pilot studies and the NINDS 1995 trial of r-tPA for thrombolysis in acute ischemic stroke [5, 103, 104]. The NINDS trial in 1995 tested the effectiveness of r-tPA vs. placebo in acute stroke [5]. While the NINDS trial showed success, 6.4% of patients treated with r-tPA had symptomatic intracerebral hemorrhage (sICH) while 0.6 % of patients given placebo showed sICH [5].

Maintenance of blood pressure after r-tPA treatment

The guidelines also recommend that blood pressure be maintained below 180/105 mm Hg for the first 24 hours after r-tPA treatment [6]. In the NINDS r-tPA trial, one of the rationales given for a higher incidence of bleeding in patients treated with r-tPA was that high blood pressure after treatment is also associated with risks of bleeding [5]. Therefore, BP was lowered below 180/105 within the first 24 hours after r-tPA treatment [6]. A post-hoc analysis of blood pressure treatment in the NINDS r-tPA trial showed that there was an association between needing BP to be lowered below 180/105 mm Hg post-r-tPA with worse outcomes at 3 months[6]. However, a causative relationship between high BP after r-tPA treatment and worse outcomes cannot be drawn from this analysis and the exact reasons for this association were unclear [6]. A further study showed that blood pressure variability within the first 24 hours, and particularly within the first 6 hours after r-tPA treatment is also associated with risk of HT [105]. These studies show that while high admission blood pressure is an important risk factor for HT, the profile of blood pressure over the first 24 hours after r-tPA treatment must also be considered. While not specific to HT, other studies have shown that the trajectory of BP in the first 24 hours of admission may be associated with outcomes after stroke [106-108]. It remains to be seen whether blood pressure trajectories are associated with HT after treatment with r-tPA. In any case, the research on BP trajectories shows that there is variability between patients in BP trajectories, which might require different management after stroke [107]. Whether these trajectories are associated with different immune profiles after stroke may also be an area of further interest [107].

Relationship of blood pressure to risk of hemorrhagic transformation

Justification for guidelines and association of blood pressure to risk of HT

Prior to being used as a thrombolytic in acute stroke, r-tPA had been used as treatment for heart attack and there was a warning that treatment with r-tPA may be linked to cerebral hemorrhage in patients with blood pressures above 180/110 mm Hg [109]. In the initial NIH pilot study for the NINDS trial, patients were treated with r-tPA (alteplase) within 90 minutes of stroke onset and blood pressures above systolic 200 mm Hg and diastolic 120 mm Hg were lowered before treatment [103]. However, after systemic hemorrhaging in two patients, those with MAP above 133 mm Hg were excluded from the study [103]. The same blood pressure threshold (MAP of 133-135 mm Hg) was used in the second NIH pilot study of r-tPA, in which treatment time was extended from 90 to 180 mins and in further r-tPA trials (BP>185/110 mm Hg) [5, 104, 110, 111]. In the pilot studies, diastolic BP > 100 mm Hg was associated with risk of HT [112]. There were also pilot studies of r-tPA (duteplase) conducted by the TPA Acute Stroke Study Group (ASSG) in which time to treatment was up to 8 hrs after symptom onset; patients with pretreatment BP > 200/120 mm Hg, or those with a history of malignant hypertension were excluded [112, 113]. This study found that 30.8% of patients had HT (HI and PH) and 9.6% of these patients had clinical deterioration (N=104) [113]. The only factor that was significantly different between patients who suffered HT and those who didn't was time to treatment with patients with HT having received later treatment on average [113]. This study did not find any relationship between admission BP and rates of HT [113]. However, other studies have found an association between admission (or pre-tPA) blood pressures and risks of HT and are described below.

In an analysis of 31 627 patients from the Safe Implementation of Treatments in Stroke– International Stroke Thrombolysis Register (SIRS-ISTR), systolic blood pressure and history of hypertension were found to be risk factors for symptomatic intracerebral hemorrhage (sICH) [34]. The register contained information on patients with AIS who were treated with IV-tPA in 699 centres and 34 countries, majority of them in Europe [34]. They defined sICH as PH2 plus an increase of at least 4 NIHSS points or death, seen between 22-36 hrs post r-tPA [34]. They also compared results using their definition to results using the ECASS-II and NINDS definitions of sICH [34]. They found that 1.8% of patients had sICH using the SITS-MOST definition, whereas 5.1% and 7.4% of patients had sICH according to the ECASS-II and NINDS criteria [34]. Using the risk factors associated with sICH, they presented a scoring scale to predict the risk of sICH in individual patients [34]. In their final scoring scale, SBP over 146 mm Hg (OR 1.6, 95% CI (1.3-2.0) and history of hypertension were included as independent risk factors for sICH [34]. While this analysis found that odds of sICH increased about a SBP of 146 mm Hg, the exact blood pressure at which risk of HT increases is still unknown [6]. Similarly, another pos-hoc analysis of the SITS-ISTR showed that in adult patients below 50, baseline SBP on admission was associated with sICH [114].

Evidence for lowering blood pressure below 185/110 mm Hg before r-tPA treatment also comes from analysis of protocol violations [91]. An analysis of 534 patients with BP over 185/110 mm Hg who were treated with r-tPA showed that hypertension and protocol violations were associated with risk of sICH [91]. The pre-treatment BP was also significantly higher in patients with sICH as compared to patients without sICH [91]. Pre-treatment with SBP was also associated with risk of sICH [91].

There are a few factors that need to be considered when studying rates of HT in different studies. Firstly, there are differences in definitions of HT in different studies, leading to differences in rates of hemorrhages reported and making direct comparisons between studies difficult [33]. The main definitions used have been ECASS-II, SITS-SICH, and NINDS trial [5, 33]. There are also problems in defining HT based on symptomatic vs. asymptomatic bleeding [32]. In some cases, there may be clinical deterioration and HI, but clinical deterioration may not be related specifically to petechial hemorrhage and may be due to other effects of stroke [32]. It also possible that symptoms of HT may be missed within the early stages after thrombolysis (24-36 hrs) if HT occurs in an area of brain that is already infracted [33]. Another inconsistency among various definitions and studies of HT is that of timing after r-TPA treatment or symptom onset at which a CT scan is completed to determine the presence of bleeding [33]. Studies that do not assess for HT beyond 24 hours might underreport rates of HT. In the ECASS-II definition, a timeline of 36 hours is provided to assess for bleeding [32].

Mechanisms for why high BP is related to risk of HT post-tPA

Several mechanisms may be used to explain the link between high blood pressure and r-tPA related HT. Generally, patients with high post-stroke blood pressures have histories of hypertension, which is associated with target organ damage to the brain and to the blood brain barrier [66, 96, 97]. It is also possible that BBB damage due to loss of cerebral autoregulation during stroke and resulting cerebral hyper perfusion may be involved [115].

Within patients with high blood pressure, there may also be variability in the underlying reason for BBB related damage and therefore HT, based on the duration of hypertension and the type of hypertension (for example, malignant vs. benign hypertension). In malignant hypertension, a sharper rise in blood pressure is seen over time, there is target organ damage to brain, blood vessels and kidneys, and blood pressures are extremely high (Above 179/109 mm Hg) [10, 116, 117]. Hypertensive crises, though not completely understood, even without the context of acute stroke are associated with BBB damage and possible upregulation of proinflammatory immune responses [117]. In contrast, in patients with benign hypertension, the increase in blood pressure with age is much less severe and there is less underlying target organ damage [10]. There may also be variability in the acute hypertensive response itself. Interestingly, in rabbits, three main types of blood pressure responses are seen after MCAo: a sharp rise in BP that lasts a few seconds followed by a sharp decline and hypotension; a rise in blood pressure that lasts for minutes; and finally, no change in blood pressure [95]. The third group had less incidence of HT, which is not surprising given that this study found an association between AHR and HT [95]. To date, there are no studies associating types of hypertensions with BP rise in acute stroke, mostly because of the complexity involved in understanding the mechanism of essential hypertension in each patient and in understanding the mechanisms of the acute hypertensive response.

Furthermore, given that gene expression in peripheral leukocytes can be used to predict risk of HT in acute ischemic stroke, it is likely that hypertension-related activation of peripheral leukocytes also plays a part in HT risk [31, 118]. Inflammatory mediators secreted in hypertension including IL-6, TNF, MCP-1, ROS, MMP-2 and MMP-9 are also associated with greater disruption of the blood brain barrier and risk of HT [31]. However, the exact link

between immune response to stroke and very high blood pressure above 185/110 mm Hg in the setting of acute stroke is still unknown.

Thesis objectives

The purpose of this thesis was to study immune activation in acute ischemic stroke patients with admission BP > 185/110 mm Hg. Specifically, we wanted to understand whether very high blood pressure in acute ischemic stroke is related to increased activation of the immune system. We also wanted to identify genes and pathways that may be related to increased BBB damage in patients with hypertension and stroke. To do this, we examined microarray gene expression in patients with acute ischemic stroke with admission BP above and below 185/110 mm Hg. We separated patients into two groups: higher BP group (admission BP > 185/110 mm Hg) and lower BP group (admission BP < 185/110 mm Hg) and analyzed differential gene expression between both groups using ANCOVA. We also noticed that at 5 hours, SBP remained significantly elevated in patients in the higher admission BP group whereas blood pressure stabilized in the lower admission BP group. Therefore, we also analyzed differential gene expression for these groups at 5 hours and 24 hours after stroke onset. The study is presented in chapter 2.

Chapter 2: Immune Activation in Patients with Acute Ischemic Stroke and Admission Blood Pressure Greater Than 185/110 mm Hg

Introduction

Approximately 84% of patients who present to hospital after ischemic stroke have elevated blood pressure which declines spontaneously [80-83]. A high blood pressure after stroke is both protective and associated with worse outcomes [89]. High blood pressure is thought to be helpful in perfusing the ischemic brain and thereby reducing damage [90]. Alternatively, high blood pressures in acute stroke can increase risk of recombinant tissue plasminogen activator (rtPA)-related hemorrhagic transformation (HT) [34, 91, 112, 114]. HT is an unfavourable consequence of treatment with r-tPA and is associated with death and poor stroke outcomes [119]. While management of blood pressure in acute stroke is an area of ongoing research and debate, guidelines recommend that BP be lowered below 185/110 mm Hg before treatment with r-tPA [6]. This is mainly to reduce risk of r-tPA related hemorrhagic transformation [120]. Exactly how acute hypertension during stroke onset increases risk of r-tPA-related HT is not well understood. Improved understanding of how high blood pressure increases the risk of hemorrhagic transformation to guide personalized treatment decisions for hypertension in acute ischemic stroke [107].

Disruption of the blood brain barrier (BBB) is thought to be one of the main mechanisms involved in HT [4]. Loss of cerebral autoregulation and resulting hyper-perfusion which damages the BBB have been suggested as a mechanism of BP-related HT [115]. High blood pressure is also associated with immune activation which contributes to endothelial dysfunction, compromised vasodilation, vascular remodelling, vascular fibrosis and collagen deposition, oxidative injury, arterial rarefaction, and matrix metalloproteinase (MMP) production [37, 58]. All these inflammatory processes can promote disruption of the blood brain barrier in HT [31, 58]. In patients with strokes however, the relationship of high admission-BP to immune activation and subsequent BBB damage is not clear. In patients with resistant hypertension, inflammatory cytokines TNF- α , IL-1 β and IL-10 are elevated [57]. In patients with acute ischemic stroke, high systolic blood pressure is associated with an increase in serum C-reactive protein [79]. Such immune activation could contribute to the increased risk of r-tPA-related hemorrhagic transformation associated with a BP above 185/110 mm Hg.

In this study we sought to evaluate whether acute ischemic stroke patients with an admission BP above 185/110 mm Hg have differences in their peripheral immune system that could contribute to blood brain barrier disruption and risk of r-tPA-related hemorrhagic transformation. We analyzed gene expression in peripheral blood leukocytes of patients presenting to hospital with acute ischemic stroke within 3 hours of stroke onset. Gene expression in peripheral blood of stroke patients has previously been shown to differentiate strokes with and without HT [118]. We divided patients into two groups: those with admission blood pressures above 185/110 mm Hg and those with admission blood pressures below 185/110 mm Hg. We then analyzed differential gene expression in both groups and performed pathway analysis to identify pathways related to BBB disruption. We hypothesized that in patients with admission BP >185/110 mm Hg, there would be greater overall activation of the immune system, specifically in pathways involved in BBB disruption.

Acute stroke guidelines present a blood pressure threshold of 185/110 mm Hg in relation to management of blood pressure before r-tPA treatment [6]. After r-tPA treatment, guidelines recommend maintaining BP below 180/105 mm Hg for the first 24 hours after stroke [6]. However, we also analyzed differences in gene expression between the higher and lower BP groups using a cut-off of 185/110 mm Hg at 5 hours and 24 hours after stroke. The rationale for looking at differences in gene expression for the higher and lower group past rt-PA treatment were two-fold. In a previous study, Tang et al., showed that gene expression in peripheral leukocytes of patients with stroke vs. healthy controls changes over time [18]. By analyzing gene expression at admission, 5 hours, and 24 hours after stroke onset, they found that genes related to immune response begin to be regulated at admission [18]. However, most genes were not significantly differentially regulated till at least the 5 hour and 24-hour periods post-stroke [18]. We also noticed that at 5 hrs, SBP remained significantly increased in strokes in the higher BP group, regardless of BP medication use to comply with guidelines. Whereas, in the lower group BP stabilised from 5 hours onwards. At 24 hrs, there was no significant difference in BP between groups (though BP was elevated by 10 mm Hg in the higher group).

Methods

Study participants

Blood samples were collected from patients enrolled in the CLEAR trial of acute ischemic stroke (NCT00250991 at Clinical-Trials.gov). Detailed methods of the trial were previously reported [121]. The CLEAR trial was a multicentre randomized trial which assessed the safety of eptifibatide in combination with recombinant tissue-plasminogen activator (rt-PA) for thrombolysis within 3 hours of ischemic stroke onset. Eptifibatide is an antagonist of the glycoprotein IIb/IIIa receptor on platelets and prevents platelet aggregation [122]. It is used along with thrombolytics in the treatment of acute coronary syndrome to increase thrombolysis [121]. Eptifibatide in combination with low-dose r-tPA vs. standard dose r-tPA was used in the CLEAR trial to assess whether a combination of Eptifibatide and r-tPA could increase recanalization [121]. Ethics permission for the trial was obtained from institutional review boards at each study site and written informed consent was obtained from study participants. Patients were included if they had a diagnosis of acute ischemic stroke; National Institutes of Health Stroke Scale (NIHSS) >5; age between 18-80 years; time from symptom onset to treatment less than 3 hours; Glucose > 50 and < 400 mg/dL; INR <1.4; and platelet count >100,000/mm³ [121]. In addition to other factors, patients were excluded if they had a history of intracerebral hemorrhage; evidence of hemorrhage on imaging; and blood pressure at the time of treatment above 185/110 mm Hg, or requiring aggressive treatment to lower blood pressure below this cut-off [121].

For genomic analyses, blood was collected from patients at admission, 5-hour and 24-hour time points after symptom onset. For the admission analysis, 67 CLEAR trial participants for whom admission blood samples prior to treatment with thrombolytic were available were selected. These patients were further divided into two groups based on admission blood pressure taken before treatment with r-tPA. There were 48 patients in the group with admission BP below 185/110 mm Hg (termed lower BP group) and 19 patients in the group with admission BP above 185/110 mm Hg (termed higher BP group). During microarray analysis, significant variation due to possible technical artifacts was found in 3 samples, which were excluded from further analysis. Therefore, the final number of patients analyzed in the lower BP group was 45. As not

all patients had genomic data available for all three time points, the number of patients whose genomic data were available for the 5-hour time points and 24-hour time points were 66 each. Of the 66 patients for whom 5-hour genomic data were available, two were excluded due to possible technical artifacts, bringing the total number of patients whose data was analyzed to 64. Patients in the 5-hours sample and the 24-hour sample were similarly divided into two groups by admission BP below 185/110 mm Hg (termed lower BP group) and admission BP above 185/110 mm Hg (termed higher BP group).

Patients with leukemia or lymphoma, blood dyscrasia, HIV, Hep C, active infection or on immunosuppressive therapy were excluded because of impact on leukocyte RNA. Hemorrhagic transformation was classified using the ECASS criteria as HI1, HI2, PH-1 and PH-2 [32]. In this study we reported on rates of HI-2, PH-1 and PH-2 because they are associated with worse outcomes [4]. Symptomatic HT was classified as an increase in NIHSS of \geq 4 points within 36 hours of stroke onset.

Blood pressure measurements

In the CLEAR trial, blood pressures were measured at admission, 3 hours (pre-treatment), 5 hours (post-treatment), and 24 hours post-stroke. Most important for genomic analysis is that blood was drawn at admission (between 2-3 hrs of stroke onset) and before treatment with thrombolytic to account for effects of medication [18]. In this study we analyzed admission, 5-hour and 24-hour blood pressures to correspond with the timing of blood draw. The 3-hour blood pressure was lower in the higher BP group to comply with guidelines before r-tPA treatment (data not shown).

Sample processing and microarray

Methods for processing of whole blood, RNA isolation and microarray for these samples have been described previously [18, 118, 123]. Briefly, blood samples were collected into PAXgene tubes (PreAnalytiX, Hilden, Germany) and stored at -80°C. PAXgene tubes protect RNA from degradation and reduce post-collection gene induction. The majority of RNA in a PAXgene tube is from circulating leukocytes including neutrophils, monocytes, B-cells, T-cells and immature platelets. Technical variation was controlled for in the experiment by processing all samples in the same laboratory by one individual. Total RNA was isolated according to manufacturer's protocols (PAXgene blood RNA kit; PreAnalytiX, Hilden, Germany). RNA concentration was measured using Nano-Drop (Thermo Fisher Scientific, Waltham, MA) and quality analyzed by Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). All samples had an A_{260}/A_{280} ratio ≥ 2.0 and 28S/18S RNA ratio ≥ 1.8 . cDNA transcription, amplification and labelling were done using NuGEN's Ovation Whole Blood Solution (NuGEN Technologies, San Carlos, CA). Labelled cDNA from each sample was hybridized to the Affymetrix Human U133 Plus 2.0 GeneChips (Affymetrix, Santa Clara, CA). A Fluidics Station 450 was used to wash and process arrays, which were then scanned on a GeneChip Scanner 3000.

Analysis of microarray data

Microarray probe intensity values (CEL files) were preprocessed using Robust Multi-Chip Average (RMA) and log₂ transformation [124]. Quality assessment of microarray data included: assessment of poly-A controls to monitor target labelling; assessment of hybridization controls to monitor sample hybridization efficiency; assessment of 3'/5' ratios of internal control genes (βactin and GAPDH) to check for RNA quality and double stranded cDNA synthesis; and visualization of normalized probe intensities using histograms and box and whiskers plots. Principal component analysis (PCA) was performed to visualize the data and assess for presence of batch effects. Analysis of microarray data was done using Partek Genomics Suite 6.4 (Partek Inc., St. Louis, MO).

Statistical Analysis

Differences in patient characteristics between the high and low BP groups were assessed by ttest, Chi-square, Wilcoxon's rank-sum or Fisher's exact tests as appropriate (R version 3.2.4, Vienna, Austria). A P value < 0.05 was considered statistically significant. Univariate analysis and a review of previous literature were used to identify possible confounding variables and factors that were different between strokes with an admission BP >185/110 mm Hg and strokes with an admission BP <185/110 mm Hg. Differential gene expression between the lower and higher blood pressure groups was assessed using Analysis of Covariance (ANCOVA). Blood pressure groups, age, sex and batch were included in the ANCOVA model. Benjamini-Hochberg false discovery rate (FDR) correction for multiple comparisons was performed to identify genes that were significantly differentially expressed. However, the statistical criteria may have been too stringent for our dataset when comparing patients with high blood pressure and strokes to patients with higher blood pressure and strokes. Therefore, to capture biologically relevant information, probe-sets with a P value <0.05 and fold-change $\geq |1.2|$ were considered significantly differentially expressed. Three separate ANCOVAs were done for the admission, 5hours and 24-hours samples to compare changes at each stage between the higher and lower BP groups. This does not provide information on genes that are significantly regulated between higher and lower BP groups over time but allows for a preliminary comparison between higher and lower BP groups at different time points.

PCA was performed using the probe sets that were found to be differentially expressed between the two groups to summarize and visualize expression patterns. Pathway analysis was performed using Ingenuity Pathway Analysis software with over-representation assessed by Fisher's exact test (IPA, Ingenuity Systems®, www.ingenuity.com). Pearson's correlation was performed to identify probe sets that correlated with systolic blood pressure (SBP). A P value < 0.05 and r > |0.2| were considered statistically significant after FDR correction did not show significantly correlated genes. Continuous variables are presented as mean ± standard deviation (SD) and ordinal variables as median ± interquartile range (IQR).

Results

Patient characteristics

A total of 66 r-tPA eligible patients with acute ischemic stroke were studied. The mean age was 67 ± 13 years and 29 (44%) were female. The mean admission SBP was 158.42 ± 29.7 mm Hg. The mean DBP on admission was 84 ± 13 mm Hg. 45 (68%) of patients had a history of hypertension. All samples were collected within 3 hours of stroke onset. Blood pressure and genomic data was analyzed for patients at admission, 5-hours and 24-hours post stroke. Data was analyzed for 64 patients at admission and 5-hours, and for 66 patients at 24-hours. The same 19 patients were included in the higher SBP group at all time points.

At the admission timepoint, genomic analysis was performed for 64 patients. There were 19 patients with admission BP above 185/110 mm Hg (higher BP group) and 45 with BP below

185/110 mm Hg (lower BP group) (Table 1). The mean SBP in the higher group was 192.3 \pm 27.7 mm Hg. The mean DBP was 96.1 \pm 15.4 mm Hg. In the lower group, mean SBP was 143.4 \pm 17.9 mm Hg and mean DBP was 80.5 \pm 14.8 mm Hg. History of hypertension in the higher SBP group was higher (78.9%) as compared to the lower SBP group (62.2%), but this trend was not statistically significant (p > 0.05). No significant differences were present between groups for age, sex, NIHSS, etiology of stroke, randomization to r-tPA or tPA plus eptifibatide, baseline white blood cell and red blood cell count, or in history of hypertension, diabetes, and hyperlipidemia.

At the 5-hours timepoint, analysis was performed for 64 patients with 19 patients in the higher BP group and 45 patients in the lower BP group (table 2). The 5-hour SBP for patients in the higher group dropped to 161 ± 37.4 mm Hg but was still significantly higher than SBP for patients in the lower group (139.7 ± 23.5 mm Hg) (p < 0.05). The DBP for patients in the higher group also dropped to 76 ± 17.1 mm Hg but was not significantly different from DBP in the lower BP group (74.3 ± 16.6 mm Hg) (p > 0.05). No other significant differences were present between the higher and lower BP group.

At the 24-hour timepoint, genomic data was analyzed for 47 patients with 19 patients in the higher SBP group (table 3). At this time point, the mean SBP in the higher group dropped further to 150.93 ± 20.2 mm Hg. While still elevated, this was not significantly different from the SBP in the lower BP group (138.43 ± 23.9 mm Hg). The DBP for the higher group at this time point was 70.7 ± 18.5 mm Hg and was also not significantly different from the DBP in the lower BP group (71.87 ± 15.3 mm Hg) (p > 0.05).

Out of the 47 patients studied, 11 developed HT. Using the ECASS-II definition, 3 patients had PH-1, 3 patients had PH-2 and 5 patients had HI-2. Of these patients, 3 developed sICH. 9 out of the 11 patients had a history of HTN. The mean age was 78.7 ± 10.7 years. 4 were female (36%). The median NIHSS score at baseline was 13 (8.5, 15). 4 patients with HT were in the higher BP group (Mean SBP: 184 ± 5.6 , Mean DBP 103.3 ± 13.5), whereas 7 were in the lower BP group (Mean SBP: 146.5 ± 24.2 , Mean DBP: 73 ± 15.5). All patients who developed sICH were in the higher admission BP group and had histories of HTN.

Differential gene expression at admission

There were 226 differentially expressed genes between the higher and lower blood pressure groups (p < 0.05, fold change $\ge |1.2|$) (Gene list shown in supplementary table 1). A principal components analysis plot displaying the separation of the 226 genes between strokes with higher and lower BP is shown in figure 1. Of the 226 genes, 116 genes (51.3%) were increased in the higher blood pressure group including *EDN3* (Endothelin-3), *CYTL1* (Cytokine-like 1) and *MMP21* (Matrix metallopeptidase 21). 110 genes were decreased in the higher blood pressure group including *CAV-1* (caveolin 1) and *CCR2* (Chemokine receptor 2).

Pathway analysis of the 226 genes revealed over-representation of canonical pathways associated with adaptive immunity (B cell development, T helper cell differentiation, T_H1 pathways, T_H1 and T_H2 activation pathways, T_H2 pathway, CD28 signalling in T helper cells), dendritic cell maturation, neuroinflammation signalling pathway, caveolar mediated endocytosis signalling, IL-17 signalling, IL-22 signalling, NO signalling, sirtuin signalling and leukocyte extravasation signalling (pathway list shown in supplementary table 2).

To evaluate the relationship between lower systolic blood pressure and the 226 genes that were found to be different between higher and lower groups, a correlation analysis was performed (Supplementary Table 3). A significant relationship between SBP and 75 genes was found including *CCR2*, *CYTL1*, *HRH1* (Histamine Receptor H1), *KLKB1* (kallikrein B1) and *CLDN10* (claudin 10) (r>|0.2|, p<0.05). *CCR2* was negatively correlated with SBP whereas *CYTL1*, *HRH1*, *KLKB1* and *CLDN10* were positively associated with SBP.

Differential gene expression at 5 hours

At 5 hours, 923 genes were differentially expressed between the higher and lower blood pressure groups (p < 0.05, fold change $\ge |1.2|$) (Gene list shown in supplementary table 4). The PCA plot of these 923 genes is shown in figure 2. As compared to the PCA plot of differential expression at admission (figure 1), this plot showed greater overlap between gene expression in the higher and lower BP groups. Based on expression of these 923 genes, patients in the higher group were clustered together while patients in the lower BP group showed greater spread.

635 (68.8%) genes were increased in strokes with higher blood pressure including: *IL1A* (interleukin 1 alpha), *MMP25* (matrix metallopeptidase 25), *MMP28* (matrix metallopeptidase 28), *TLR4* (toll-like receptor 4), *TLR8* (toll-like receptor 8), *CYTL1* (cytokine like 1), *CLDN10* (claudin 10) and *CD46* (CD46 molecule, complement regulatory protein). 288 genes were decreased including: *IL27RA* (interleukin 27 receptor, alpha), *TLR7* (toll-like receptor 7), and *CCR3* chemokine (C-C motif) receptor 3.

Pathway analysis of these differentially expressed genes showed the following canonical pathways were over-represented: iNOS signalling, leucocyte extravasation, IL-1 signalling, IL-22 signalling, NFkB, TLR signalling, B cell receptor signalling, HMGB1 signalling, IL-6 signalling, TGF-B signalling, T_H17 activation and dendritic cell maturation. Pathway list is shown in supplementary table S5.

Out of the 923 genes that were differentially expressed, 20 were correlated with SBP (r > |0.2|, p <0.05) (supplementary table S6). *CCR3* (Chemokine C-C motif receptor 3) (P = 0.0024, r -0.438) and *P2RY2* (purinergic receptor P2Y, G-protein coupled, 2) (p= 0.011, r – 0.32) were negatively associated with increasing SBP. *AREG* (amphiregulin) was positively associated with increasing SBP (p= 0.024, r 0.286). (r > |0.2|, p<0.05).

Differential gene expression at 24 hours

422 genes were differentially expressed between the higher and lower blood pressure groups at 24 hours (p <0.05, fold change \geq |1.2|) (Gene list shown in supplementary table 7). A PCA plot of these differentially expressed genes showed no apparent difference between strokes with higher admission BP as compared to strokes with lower admission BP (figure 3). Of the 422 genes, 175 genes (41.5%) were increased in the higher blood pressure group including *TLR5* (toll-like receptor 5) and *IL1R1* (interleukin 1 receptor, type I). 247 genes were decreased in the higher blood pressure group including: *ANGPT1* (angiopoietin 1), *TNFSF11* (tumor necrosis factor (ligand) superfamily, member 11) and *CXCL6* (chemokine (C-X-C motif) ligand 6). Pathway analysis of the 422 genes revealed over-representation of the following canonical pathways: T_H1 Pathway, IL-23 Signaling Pathway, HMGB1 Signaling, Dendritic Cell Maturation, Neuroinflammation Signaling Pathway, TLR signalling, T_H17 signalling and angiopoietin signalling (selected pathway list shown in supplementary table 8). At the 24-hour time point, correlation of differentially expressed genes with SBP showed only 4 genes associated with SBP ($r \ge |0.2|$, p < 0.05). 2 genes were uncharacterized. The other two were *ANGPT1* (angiopoietin 1) (p= 0.013, r 0.33) and *GP5* (glycoprotein V (platelet)) (p=0.0079, r - 0.35).

Discussion

General discussion of findings

Ischemic stroke remains a leading cause of adult disability and mortality. Increasing access to reperfusion therapy by reducing the risk of r-tPA related HT could improve stroke outcomes. An admission blood pressure >185/110 mm Hg is associated with increased risk of HT. In the present study we found acute stroke patients with a BP >185/110 mm Hg at admission have 226 genes expressed differentially in circulating blood cells compared to patients with BP <185/110 mm Hg. These genes are differentially expressed very early on in stroke as blood was drawn at admission, within 3 hours of stroke onset. We also found that at 5 hours, 932 genes were differentially expressed and at 24 hours, 422 genes were differentially expressed when comparing groups by admission BP. Our statistical methods do not allow us to identify differentially expressed genes and pathways that change over time. However, they do suggest changes in immune response by admission blood pressure at 5 hour and 24 hours respectively.

At 5 and 24 hours, differences in gene expression were found between the higher and lower BP groups despite blood pressure control to comply with guidelines. The exact mechanisms for why genes are differentially expressed by admission BP at 5 hours and 24 hours and their contribution to BBB disruption are unclear and need further study. Some possible reasons are discussed below.

First, we found that in the higher admission BP group, SBP remained significantly elevated at 5hours so some of this increase in differentially expressed genes may be explained by elevated blood pressure in the higher SBP group at 5 hours. However, only 20 differentially expressed genes at this time point significantly correlated with SBP so it is possible that there may be other underlying factors impacting differential immune response by admission BP. It is also possible that less differentially expressed genes correlated with BP at this time because BP had been lowered.

Secondly, we did not specifically study the influence of blood pressure variability or elevations above 180/105 mm Hg after treatment with r-tPA on immune response. BP variability, especially within the first 6 hours of ischemia is also linked to increased rates of HT [105]. We did notice that at 5-hours, BP increased above 180/105 mm Hg in 2 patients, and both had sICH. However, in our study, it was not possible to study immune activation between patients with BP > 180/105 mm Hg and under 180/105 mm Hg after r-tPA treatment because we only had two patients in that group at 5-hours. Blood pressure elevations above 185/105 mm Hg within the first 24 hours after r-tPA treatment have not been found to be significantly related to risk of sICH [125]. When blood pressure elevations do occur, they are more likely to be in patients with higher mean admission blood pressures (Mean admission SBP = 160 mm Hg) [125]. It is possible that after treatment with r-tPA, these factors might influence immune response by blood pressure in addition to the effects of raised SBP.

It also takes time for genes to be regulated in acute stroke and for changes to become apparent [18]. It is possible that the higher numbers of differentially expressed genes at 5-hours present some aspect of the earlier immune response to BP at admission. By studying gene expression at this later time point, we may be able to get more information about immune response at admission that may be pre-disposing to HT. On the PCA plot of differentially expressed genes at 5-hours, we did see clustering together of patients in the higher admission BP group, even though there was no apparent separation of these patients from the lower BP group. These data seem to suggest that differences in the immune systems of patients with admission BP >185/110 mm Hg and BP < 185/110 mm Hg may become apparent in the later stages even after blood pressure has been lowered. Indeed, Angiotensin-II induced damage to the BBB and activation of microglia in hypertension is not always coupled with elevated blood pressure [61, 126]. An animal study using hydralazine (vasodilator) vs. losartan (AT₁ receptor antagonist) to lower blood pressure showed that hydralazine, while lowering blood pressure did not result in less damage to the BBB, whereas losartan did [61]. Angiotensin-II also has direct proinflammatory

effects on leukocytes including monocytes, dendritic cells and T-cells by binding to the AT₁ receptor [127]. Ang-II is involved in TLR4 signalling and the secretion of IL-17 by T cells [127]. Interestingly, IL-17 and T_H17 pathways were found in our gene lists at each of the three time points studied and *TLR4* expression was increased in the higher BP group at 5-hours. It is also possible that inflammation can occur before a rise in blood pressure is seen, so an inflammatory response might precede an acute hypertensive response to stroke [86]. The relationship between Ang-II induced inflammation in acute stroke regardless of blood pressure needs further study.

Genes and pathways identified

Some selected genes identified in our study included *EDN3* (Endothelin-3), *MMP21* (Matrix metallopeptidase 21), *MMP-25* (matrix metallopeptidase 25), *MMP-28* (matrix metallopeptidase 28), *TLR4* (toll-like receptor 4), *AREG* (amphiregulin), CAV-1 (caveolin 1) and *CCR2* (Chemokine receptor 2). *EDN3*, *MMP21*, *MMP-25*, *MMP-28*, *TLR4*, and *AREG* were increased in the very high blood pressure group. *CCR2* and *CAV-1* were decreased in the higher BP group. We also found regulation of pathways associated with adaptive immunity, IL-17, T_H17, dendritic cells, TLR signalling and NO oxide signalling. These genes and their associated pathways provide preliminary insight into potential immune mechanisms that may contribute to increased risk of blood brain barrier disruption and HT in patients with very high admission blood pressure. The biological roles of selected genes and possible relationship to BBB disruption is discussed below.

Endothelin-3 (ET-3) was increased in the higher BP group. Endothelins are vasoconstrictors produced by endothelial cells and can also act on vascular endothelin receptors to increase cyclo-oxygenase, cytochrome p-450 and nitric oxide synthase [128]. Most of the research on endothelins has been conducted on endothelin-1 (ET-1) and little is known about the role of endothelin-3 in stroke or hemorrhagic transformation. However, endothelin-3 binds to one of the receptors for endothelin-1, the ET_B receptor [128]. Endothelin-1 binding to ET_B receptor has vasodilatory effects. Endothelin-1 secreted by endothelial cells is thought to induce autocrine signalling in endothelial cells, resulting in production of vasoactive substances like NO [128]. During inflammation, immune cells can also secrete vasoactive substances like histamine and bradykinin that increase blood flow to the site of damage [129]. It is possible that endothelin-3

upregulation by immune cells may be involved in a similar response and may modulate endothelial dependent vasoconstriction and relaxation. T cells, B cells, monocytes and neutrophils also express both ET_A and ET_B receptors and treatment with ET-1 results in production of inflammatory cytokines by CD+ T cells- an effect that is blocked by ET receptor antagonists of for both ET_A and ET_B receptors [130]. After ischemia, the endothelin system (involving ET-1, ET-2, ET-3 and receptors ET_A and ET _B) is involved in proinflammatory signalling and increased BBB permeability [131]. While details on the role of ET-3 in acute ischemic stroke remain unclear, an increase may contribute to cerebral endothelial dysfunction and permeability in the higher blood pressure group.

Matrix metallopeptidase 21 (*MMP-21*) is a member of the MMP family that is expressed in human leukocytes including monocytes, B cells and T cells [132, 133]. MMPs have catalytic function such as gelatinase (MMP-2, MMP-9), collagenase, matrilysin, or stromelysin activity [132, 134]. For MMP-21 the catalytic activity appears to be novel, with yet to be identified substrate [132, 134]. *MMP-25* mRNA is increased in monocytes treated with IFN γ , IL-1 and TNF α and MMP-25 may be involved in the innate immune response [135, 136] Little is known about the exact roles of MMP-21, MMP-25 and MMP-28 in stroke; however, they could be markers of increased immune activation and could play a role in leukocyte extravasation into brain parenchyma.

Toll-like receptor 4 (*TLR4*) was increased in patients with high blood pressure. TLR4 signalling is involved in chronic inflammation in hypertension [137]. TLR4 can be activated in hypertension by DAMPs like angiotensin, CRP, uric acid and heat shock proteins and results in activation of the inflammasome, IL-1 β and IL-18 signalling [8]. In our study, IL-1 signalling pathways were also over-represented at 5-hours when *TLR4* was upregulated. Blockage or knock out of TLR4 in some animal models results in lowered blood pressure and resistance to developing Ang-II infused hypertension [48]. The role of TLR4 has also been well characterized in stroke and HT. After stroke, mice lacking functional TLR4 signalling have smaller infarct sizes, better outcomes, and lower production of proinflammatory INF β and MMP-9 [138]. *In vitro* cell cultures have shown that DAMP (HMGB1) binding to TLR4 on astrocytes and neurons is involved in production of MMP-9 by these cells [139]. It is possible that DAMPs have a similar effect on peripheral leukocytes after stroke. Interestingly, we also observed pathways associated with HMGB1 signalling in our study. When considering HT, mice with functional TLR4 showed an increase in HT rates and severity after later reperfusion as compared to mice without TLR4 [140]. This showed that TLR4 is involved in injury to brain that results in HT [140].

We also found increased expression of *amphiregulin (AREG)* in our gene list. Amphiregulin belongs to the family of epidermal growth factor (EGF)-like molecules and is produced by a variety of innate and adaptive immune cells in humans including basophils, eosinophils, mast cells, neutrophils, group 2 innate lymphoid cells (ILC2s), dendritic cells and CD4 + T cells [141]. Amphiregulin interacts with the epidermal growth factor receptor (EFGR) and is involved in several immune functions including type 2 inflammation, tissue repair, fibrosis, and suppression of inflammation by T_{regs} [141]. In animal models, amphiregulin is also produced by classically activated M1 macrophages after challenge with LPS and TLR4 blockage prevents production of amphiregulin, IL-1β, TNFα and IL-6 [142]. In a previous study of genes associated with HT in acute stroke, AREG was differentially expressed between patients with HT and without HT with expression of amphiregulin being higher in strokes with HT [118]. AREG was also one of the genes that could predict patients at increased risk of HT [118]. In cancer cells, amphiregulin increases MMP-9 expression and a similar mechanism may be involved in increased risk of HT [118, 143]. Amphiregulin is also shown to increase production of VEGF which is involved in increased angiogenesis [144]. While angiogenesis is thought to be an important part of tissue repair after injury, angiogenesis and vessel remodelling very early after stroke may increase risk of HT by increasing BBB permeability [4]. Increased production of VEGF early after stroke is involved in increasing risk of HT and inhibition of VEGF-signalling using anti-VEGF antibodies reduced MMP-9 activity and HT in animal models [145]. Amphiregulin is also produced by T_{reg} cells after tissue injury where it activates local TGF- β , suppresses inflammation and increases differentiation of pericytes into myofibroblasts resulting in secretion of extra cellular matrix proteins to restore barrier function [146]. In hypertension, binding of IgG antibodies to Fcy receptors on macrophages in blood vessel walls results in production of TGF-ß which increases vascular remodelling and fibrosis [36]. TGF-ß secretion by monocyte derived macrophages in animal models after stroke is thought to helpful in post-stroke

repair and decreases risk of HT after stroke related injury to the brain [23, 147]. Tregs have also been shown to accumulate in brains of mice after ischemic stroke where they produce amphiregulin [148]. Amphiregulin production by Tregs downregulates the IL-6-STAT3 signalling pathway in astrocytes which suppresses neuroinflammation [148]. These changes are mainly seen in the chronic stage of inflammation after stroke, however considering hypertension results in chronic neuroinflammation and disruption of the BBB in stroke, it may be possible that immune response to stroke in a hypertensive brain may involve an early upregulation of T_{reg} cells and amphiregulin production [64]. Treg cells are also important in hypertension where Treg cell numbers are decreased in the spontaneously hypertensive rat and modulation of T_{reg} numbers by IL-10 lowers blood pressure [36]. Treg cells are thought to modulate blood pressure through antiinflammatory effects, but whether production of amphiregulin is also involved in T_{reg} modulation of blood pressure would be an interesting area of further research [36]. These studies point towards harmful as well as protective roles of amphiregulin secretion. Therefore, the secretion of amphiregulin by different immune cell subtypes, timing of secretion, and the exact mechanisms of how increased amphiregulin is related to increased risk of HT and hypertension need to be elucidated.

We found that *CCR2* expression as decreased in the higher BP group. In monocytes, *CCR2* mRNA expression can decrease because of activation by LPS, IL1 and TNF α which might explain the possible decrease in the higher BP group [149]. A study of monocytes and T cells in MS showed that cells uptake CCL2 (possibly via receptor mediated endocytosis) and decrease expression of CCR2 as they migrate across the BBB [150]. It is possible that a similar response was seen in our study. However further comparison with controls and validation is needed to understand how levels of CCR2 may be changing.

Cav-1 was decreased in the higher blood pressure group. Caveolin-1 (Cav-1) is a component of caveolae, which are invaginations in the plasma membrane of cells and organelles [151]. Caveolae have functions involved in endocytosis, transcytosis, calcium and eNOS signalling, mechanosensation and invasion of pathogens into cells [152, 153].Most studies of caveolin-1 have focussed on its role in endothelial cells because mice lacking Cav-1 show endothelial defects [154]. In endothelial cells, a decrease in Cav-1 results in impaired nitric oxide production

through its direct effects on endothelial nitric oxide synthase (eNOS) [155]. Mice with disrupted caveolin-1 show increased MMP activity and blood brain barrier permeability after ischemia-reperfusion [156]. A study of serum caveolin-1 levels in acute ischemic stroke patients showed that Cav-1 levels were significantly decreased in patients with HI-2 and sHT as compared to other acute stroke patients [157]. However, there was no significant difference in serum Cav-1 levels between HI-2 and sHT levels when compared with non-stroke controls [157]. In immune cells, the exact functions of caveolin-1 may depend on the type of immune cell, activation state of the cell and possibly the species being studied [158]. The role of caveolin-1 in peripheral leukocytes in stroke is not known and because caveolin-1 is involved in many signalling pathways, the exact role is difficult to predict. A decrease of Cav-1 in acute ischemic stroke may influence several of these functions and requires further study in specific immune cell subtypes.

Significance and Limitations

Guidelines recommend that blood pressure be maintained below 180/105 mm Hg during the first 24 hours after stroke to reduce risk of HT [6]. However, the target blood pressure threshold to reduce risk of HT is unknown [6]. The ENCHANTED trial evaluated blood pressure lowering after thrombolysis to either SBP < 180 mm Hg over 72 hours (guideline recommended) or intensive BP lowering of SBP <130-140 mm Hg over 1 hour [159]. The results indicated that intensive blood pressure lowering decreases risk of HT, but there was no difference in outcomes between both groups to change guidelines [159]. The investigators suggested that underlying mechanisms related to blood pressure reduction and outcomes in ischemic stroke be investigated [159]. In our study several genes correlated with systolic pressure. These genes may identify potential targets that BP reduction benefits. Furthermore, we found that there were still differences in immune system activation between patients with admission BP > 185/110 mm Hgand below when guideline recommended BP management was used after thrombolysis. It is possible that this difference in immune response that persisted between patients with guideline recommended BP lowering is reduced when BP is lowered to 130-140 mm Hg. As such, some of the differentially expressed genes and pathways identified in our study may help to explain the immune mechanisms behind why blood pressure lowering to 130-140 mm Hg reduces risk of HT. With further analysis, differences in genetics and immune response by BP in these genes and pathways may be used to select patients who may benefit most from BP

lowering. This would help move the modulation of BP in acute stroke towards a personalized medicine approach in patients whereby BP is only reduced in patients who benefit most from BP reduction as shown by their individualized risk of HT. In any case, our study provides preliminary evidence that differences in blood pressure response to acute stroke are linked to underlying biology which can be further studied to increase understanding of the acute hypertensive response to stroke. Greater knowledge of the acute hypertensive response to stroke may help in achieving better understanding of how blood pressure should be managed. Further studies are needed to assess the relationship of blood pressure reduction to immune activation in acute ischemic stroke.

Recently, Kim et al., also reported that patients can be divided into 5 BP groups based on the trajectory of SBP within the first 24 hours of stroke [108]. Patients in the persistently high SBP trajectory had the highest blood pressures on admission (mean SBP 192.4±1.9 mm Hg) which remained elevated during the first 24-hours after stroke (mean SBP 177.7 ± 1.1 at 6 hrs, 173 ± 1.4 at 24 hrs) [108]. Patients in the "rapidly stabilized" BP trajectory had lower mean admission blood pressures (mean SBP 182.1±1.9) which settled at 140 mm Hg at 24 hours [108]. While they did not look at HT as an outcome specifically, the highest BP trajectory was associated with the worst outcomes [108]. In our study, we found that blood pressure was still significantly elevated at 5 hours in the higher BP group and at 24 hours the blood pressure was elevated but not significantly. In this study, we did not evaluate whether differences in gene expression are significant over time so we cannot draw conclusions about how expression of particular genes is changing over time. Plus, we did not have measurements of blood pressure in patients in the higher and lower group beyond admission, 3 hour, 5 hours, and 24 hours so it is difficult to determine trajectory over time. We also had very small sample sizes to be able to evaluate trajectory differences. However, there may be a possibility that many patients with admission BP > 185/110 mm Hg fall within the BP trajectory of patients whose blood pressure remains elevated. It may be possible that these patients may have higher immune activation within the first 24 hours of acute ischemic stroke, predisposing to HT. Further studies of differences in immune response between patients with distinct BP trajectories after stroke may help to understand the underlying mechanisms behind why some patients fall into distinct trajectory groups. Whether genomics at admission can be used to predict which patients fall in the higher

blood pressure trajectories and how that is related to risk of HT is another interesting area for further study.

Patients with acute ischemic stroke with admission BP>185/110 mm Hg were found to have an activation of the immune system that may predispose to r-tPA related HT. In addition, we showed that differences in immune response by admission BP > 185/110 mm Hg may be seen for hours afterwards, even when admission blood pressure has been lowered, though the underlying mechanisms need further study. Strengths are early acquisition of blood sample (mean 1.5 hours of stroke onset) prior to r-tPA administration and whole genome evaluation of immune system. However, this is a preliminary study providing initial insight to peripheral immune activation in patients with very high blood pressure in stroke. When adjusting for multiple corrections using the Benjamini-Hochberg false discovery rate (FDR), we did not find any genes significantly differentially expressed between the higher BP group and the lower BP group. Similarly, we did not find any genes significantly correlated with SBP after FDR correction. Therefore, there is high chance of type I error in our results. A reason for these findings may be that our study is comparing gene expression between patients with stroke and prior histories of hypertension in both groups. Genetically, these groups are very similar. While many of the genes identified are biologically plausible, further study in larger cohorts is required.

A blood pressure cut-off of 185/110 mm Hg was used because of its importance in clinical practice and stroke guidelines. There were patients in both groups that had admission SBPs very close to the cut-off threshold of 185/110 mm Hg. While clinically important, the underlying biology may not be precisely related to this pressure threshold, thus further study in a range of blood pressures ranges in acute stroke are needed. We also had high numbers of patients with hypertension in both groups, so as compared to controls, it is hard to draw conclusions about regulation of pathways. It is possible that our data might show a gene downregulated between our BP groups, but as compared to a stroke patient without hypertension, or a patient with hypertension but without acute stroke, that gene might be highly upregulated. The patients in our study were also candidates for r-tPA and patients whose blood pressure could not be lowered below 185/110 mm Hg were not included. We therefore might miss meaningful information

about the complete picture of immune system activation in relation to very high post-stroke blood pressures.

Gene expression data for patients at 5-hours and 24-hours likely reflects the impact of antihypertensive medications, thrombolytic, and eptifibatide. Some commonly used antihypertensive medications in the management of blood pressure in acute stroke are labetalol and propranolol, both of which are B-receptor antagonists [89]. Mononuclear leukocytes have receptors for catecholamines which are blocked by propranolol, so beta blockers affect immune response [160, 161]. How beta blocker use affects immune response in acute stroke in humans needs further study. Use of anti-hypertensive and r-tPA is nonetheless representative of treatment in the clinical setting. Patients were also treated with eptifibatide, which is not routinely used in practice. Two main ways in which treatment with eptifibatide might impact our results is by anti-platelet effects on the immune system and by increasing risk of bleeding. Platelets secrete cytokines and growth factors that can activate other cells in the immune system and so there is a possibility that using an anti-platelet drug might have anti-inflammatory effects by inhibiting interactions between platelets and leukocytes [162]. In patients with unstable angina undergoing treatment with coronary angioplasty, treatment with eptifibatide did not significantly decrease the numbers of CD45+/HLA-DR+ cells as compared to controls without eptifibatide treatment [162]. CD4/CD8 ratios were also not different between these groups (changes in CD4/CD8 ratios are markers of immune function and immune senescence) [162, 163]. Finally, levels of CRP were also similar between the two groups [162]. This study did not assess for differences in other immune cells so an interaction between eptifibatide use and effects on other immune cells may still be possible. A common side-effect of treatment with eptifibatide is immune thrombocytopenia (reduced numbers of platelets) and hypotension is one of the symptoms of thrombocytopenia [164]. The incidence of thrombocytopenia in patients treated with eptifibatide may be lower than 0.6% [164]. One of the mechanisms suggested for thrombocytopenia is immune-related damage to platelets as the immune system recognizes eptifibatide bound to the GP IIb/IIIa receptor as an antigen and mounts an immune response [164]. Healthy subjects may have such antibodies to eptifibatide but there are also conflicting reports that suggest patients do not show an immune response to eptifibatide as a drug, as shown by a lack of anti-eptifibatide antibodies in sera of treated patients [164, 165]. The low percentage of people who show this

response may be the reason for discrepancy between studies. In our cohort, there was no significant difference in the numbers of patients treated with r-tPA or combination therapy between the higher and lower BP groups. More importantly, subjects in our study showed differences in immune response between the three timepoints despite any immune-suppressive effects of eptifibatide. Eptifibatide use may also increase rates of ICH [121]. However, in the CLEAR trial the dose of eptifibatide used was less than half that used in standard practice and patients with combination treatment had one sICH whereas those treated with r-tPA alone had two sICH (P = 0.17) [121]. Asymptomatic HT showed similarly lower rates in the combination group as compared to treatment group. Regardless, further study in only r-tPA-treated cohorts is needed.

In conclusion, a high admission BP above 185/110 mm Hg is associated with differential immune activation which persists for at least the first 24 hours after stroke. These differences may contribute to blood brain barrier disruption and risk of HT in acute stroke patients with very high admission BP. Whether immune-related genes could be used to select patients at greater risk of HT for BP lowering and whether modulating immune activation could reduce blood brain barrier disruption and risk of HT requires further study.

Figures and tables

Table 1. Characteristics of acute ischemic stroke patients with admission blood pressure below185/110 mm Hg and above 185/110 mm Hg

Variables	Admission BP <	Admission BP >	Davalua
	185/110 mm Hg	185/110 mm Hg	P value
Number of patients, n	45	19	N/A
Age, years (SD)	65.2 (13.8)	70.2 (10.2)	0.11
Male, n (%)	26 (57.7%)	14 (73.6%)	0.27
History of hypertension, n (%)	28 (62.2%)	15 (78.9%)	0.25
Systolic BP on admission, mm Hg (SD)	143.4 (17.9)	192.3 (27.7)	3.8 x 10 ⁻¹³
Diastolic BP on admission, mm Hg (SD)	80.5 (14.8)	96.1 (15.4)	0.00033
Hemorrhagic transformation, n (%)	7 (15%)	4 (21%)	0.72
Diabetes history, n (%)	8 (17.7%)	4 (21%)	0.73
Admission glucose, mg/dL (SD)	123.5 (31.2)	122.8 (37.7)	0.94
Hyperlipidemia, n (%)	12 (26.7%)	2 (10.5%)	0.20
Atrial Fibrillation, n (%)	10 (22.3%)	2 (10.5%)	0.48
NIHSS Baseline (IQR)	13 (9, 17)	12 (6, 16.5)	0.79
Cause Large Vessel, n (%)	7 (15.6%)	3 (15.8%)	0.99
Cause Cardioembolic, n (%)	18 (40%)	8 (42%)	0.99
Cause Cryptogenic, n (%)	17 (37.8%)	7 (36.8%)	0.99
Cause Other, n (%)	3 (6.7%)	1 (5.3%)	0.99
Treatment with r-tPA only, n (%)	10 (22.2%)	6 (31.6%)	0.49
Treatment with r-tPA + eptifibatide, n (%)	33 (73.3%)	13 (68.4%)	0.49
Platelet baseline, 10 ³ /mcL (SD)	254.6 (79.0)	242.7 (72.7)	0.57
WBC baseline, 10 ³ /mcL (SD)	8.2 (2.3)	8.7 (2.7)	0.45
RBC baseline, 10 ³ /mcL (SD)	4.5 (0.59)	4.7 (0.62)	0.44

BP: Blood pressure; SD: Standard Deviation; IQR: Interquartile Range; NIHSS: National Institutes of Health Stroke Scale; WBC: White Blood Cell; RBC: Red Blood Cell

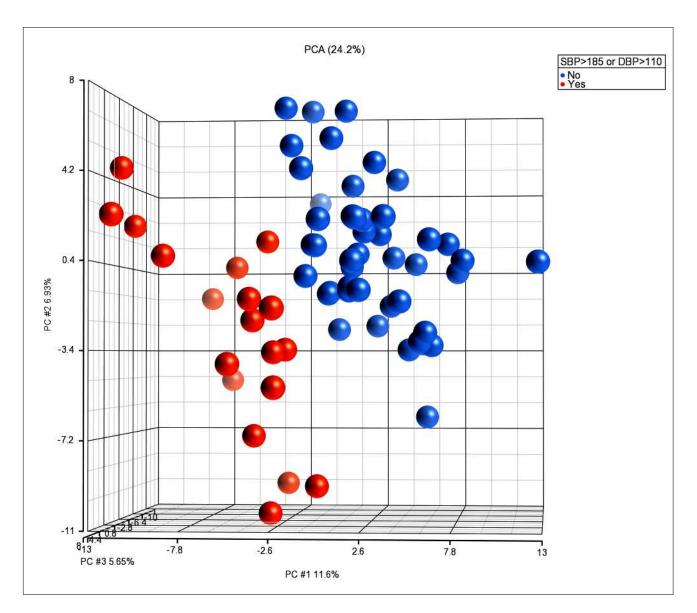
Table 2. Characteristics of	patients included in the	5-hour genomic analysis

Variables	Admission BP <	Admission BP >	P value
	185/110 mm Hg	185/110 mm Hg	
Number of patients, n	45	19	N/A
Age, years (SD)	65.8 (13.4)	70.2 (10.2)	0.16
Male, n (%)	22 (48%)	14 (73%)	0.07
History of hypertension, n (%)	28 (62.2%)	15 (78.9%)	0.31
Systolic BP on admission, mm Hg (SD)	143.9 (17.4)	192.3 (27.7)	2.60x10 ⁻⁷
Diastolic BP on admission, mm Hg (SD)	79 (14.6)	96.1 (15.4)	8.5x10 ⁻⁵
Systolic BP at 5-hours, mm Hg (SD)	139.7 (23.5)	161 (37.4)	0.03
Diastolic BP at 5-hours, mm Hg (SD)	74.3 (16.6)	76 (17.1)	0.7
Hemorrhagic transformation, n (%)	5 (11.1%)	4 (21%)	0.30
Diabetes history, n (%)	9 (20%)	4 (21%)	0.92
Admission glucose, mg/dL (SD)	123.8 (29.9)	122.8 (37.7)	0.91
Hyperlipidemia, n (%)	11 (24.4%)	2 (10.5%)	0.21
Atrial Fibrillation, n (%)	9 (20%)	2 (10.5%)	0.36
NIHSS Baseline (IQR)	13 (10, 17)	12 (6, 16.5)	0.62
Cause Large Vessel, n (%)	7 (15.5%)	3 (15.8%)	0.99
Cause Cardioembolic, n (%)	18 (40%)	8 (42%)	0.99
Cause Cryptogenic, n (%)	18 (40%)	7 (36.8%)	0.99
Cause Other, n (%)	2 (4%)	1 (5.3%)	0.99
Treatment with r-tPA only, n (%)	10 (22.2%)	6 (31.6%)	0.43
Treatment with r-tPA + eptifibatide, n (%)	35 (77.7%)	13 (68.4%)	0.43
Platelet baseline, 10 ³ /mcL (SD)	262.4 (80)	242.7 (72.7)	0.36
WBC baseline, 10 ³ /mcL (SD)	8.2 (2.3)	8.7 (2.7)	0.46
RBC baseline, 10 ³ /mcL (SD)	4.6 (0.6)	4.7 (0.62)	0.38

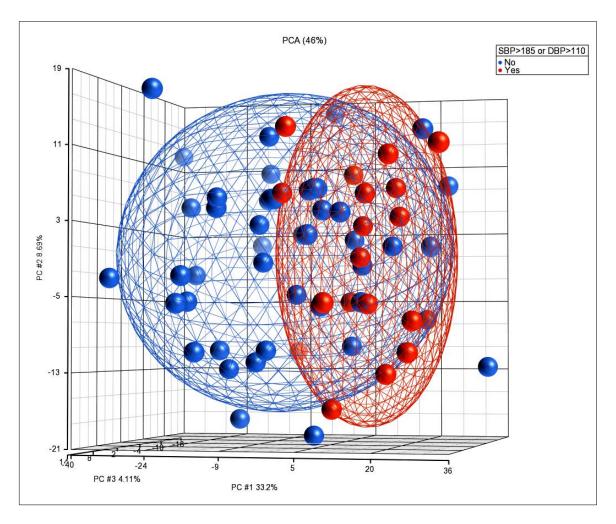
BP: Blood pressure; SD: Standard Deviation; IQR: Interquartile Range; NIHSS: National Institutes of Health Stroke Scale; WBC: White Blood Cell; RBC: Red Blood Cell

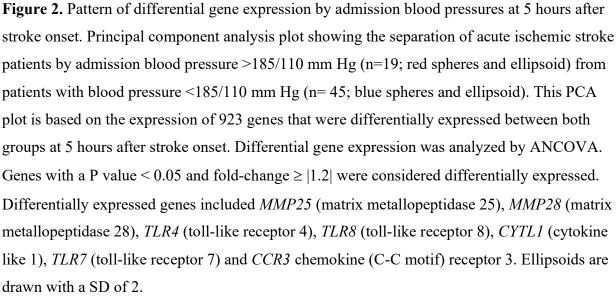
Variables	Admission BP <	Admission BP >	P value
	185/110 mm Hg	185/110 mm Hg	
Number of patients, n	47	19	N/A
Age, years (SD)	65.5 (13.7)	70.2 (10.2)	0.18
Male, n (%)	23 (49%)	14 (73%)	0.07
History of hypertension, n (%)	29 (61.7%)	15 (78.9%)	0.25
Systolic BP on admission, mm Hg (SD)	144.7 (16.8)	192.3 (27.7)	3.62x10 ⁻⁷
Diastolic BP on admission, mm Hg (SD)	79 (15.1)	96.1 (15.4)	0.00013
Systolic BP at 24 hours, mm Hg (SD)	138.43 (23.9)	150.93 (20.2)	0.07
Diastolic BP at 24 hours, mm Hg (SD)	71.87 (15.3)	70.7 (18.5)	0.80
Hemorrhagic transformation, n (%)	6 (12.8%)	4 (21%)	0.40
Diabetes history, n (%)	10 (21.3%)	4 (21%)	0.98
Admission glucose, mg/dL (SD)	125.5 (30.0)	122.8 (37.7)	0.76
Hyperlipidemia, n (%)	11 (23.4%)	2 (10.5%)	0.23
Atrial Fibrillation, n (%)	9 (19.1%)	2 (10.5%)	0.86
NIHSS Baseline (IQR)	7.5 (9.5, 17)	12 (6, 16.5)	0.67
Cause Large Vessel, n (%)	7 (14.8%)	3 (15.8%)	0.97
Cause Cardioembolic, n (%)	18 (38%)	8 (42%)	0.97
Cause Cryptogenic, n (%)	18 (38%)	7 (36.8%)	0.97
Cause Other, n (%)	4 (8.5%)	1 (5.3%)	0.97
Treatment with r-tPA only, n (%)	9 (19.1%)	6 (31.6%)	0.28
Treatment with r-tPA + eptifibatide, n (%)	38 (80.9%)	13 (68.4%)	0.28
Platelet baseline, 10 ³ /mcL (SD)	260.4 (79.6)	242.7 (72.7)	0.40
WBC baseline, 10 ³ /mcL (SD)	8.4 (2.8)	8.7 (2.7)	0.61

4.5 (0.6)


Table 3. Characteristics of patients included in the 24-hour genomic analysis

BP: Blood pressure; SD: Standard Deviation; IQR: Interquartile Range; NIHSS: National Institutes of Health Stroke Scale; WBC: White Blood Cell; RBC: Red Blood Cell


RBC baseline, 10³/mcL (SD)


0.29

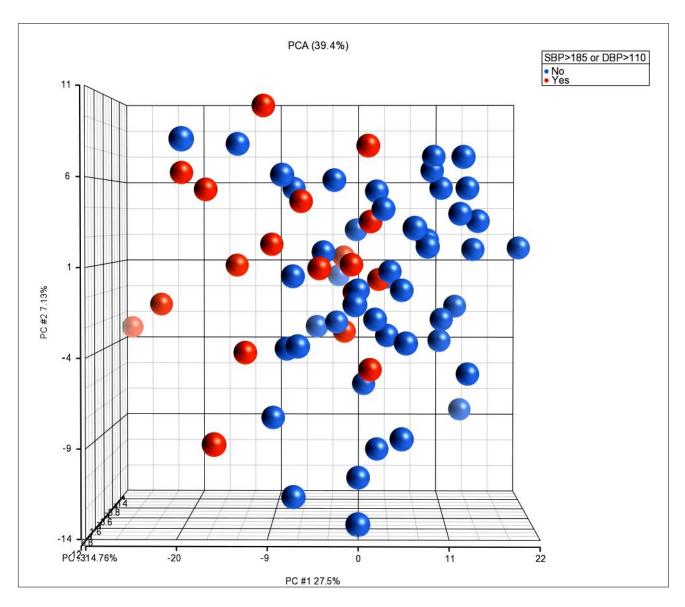

4.7 (0.62)

Figure 1. Pattern of differential gene expression by admission blood pressures within 3 hours after stroke onset. Principal component analysis plot showing the separation of acute ischemic stroke patients by admission blood pressure >185/110 mm Hg (n=19; red spheres) from patients with blood pressure <185/110 mm Hg (n= 45; blue spheres) based on the 226 differentially expressed genes within 3 hours after stroke onset. Differential gene expression was analyzed by ANCOVA. Genes with a P value < 0.05 and fold-change $\ge |1.2|$ were considered differentially expressed. Differentially expressed genes included *EDN3* (Endothelin-3), *MMP21* (Matrix metallopeptidase 21), *CAV-1* (caveolin 1) and *CCR2* (Chemokine receptor 2).

Figure 3. Pattern of differential gene expression by admission blood pressures at 24 hours after stroke onset. Principal component analysis plot showing the separation of acute ischemic stroke patients by admission blood pressure >185/110 mm Hg (n=19; red spheres) from patients with blood pressure <185/110 mm Hg (n= 47; blue spheres). This PCA plot is based on the expression of 422 genes that were differentially expressed between both groups at 24 hours after stroke onset. Differential gene expression was analyzed by ANCOVA. Genes with a P value < 0.05 and fold-change $\ge |1.2|$ were considered differentially expressed. Differentially expressed genes included *TLR5* (toll-like receptor 5) and *ANGPT1* (angiopoietin 1).

Conclusions

Using gene expression in peripheral leukocytes, we showed that there are differences in immune response by admission blood pressure in patients with BP > 185/110 mm Hg and BP < 185/110 mm Hg. By analyzing differential gene expression by admission blood pressure at several time points, we were able to show that there are differences in gene expression in patients who come in with admission BP > 185/110 mm Hg and under that are seen even after blood pressure has been lowered. The exact reasons and mechanisms for why these differences persist need further study of blood pressure course in patients with admission BP > 185/110 mm Hg and a greater understanding of immune activation related to the acute hypertensive response after stroke. While this is a preliminary study and findings need to be validated, the pathways and genes identified could be studied further to identify mechanisms of BBB injury related to hypertension in acute stroke.

Hemorrhagic transformation is a major complication of stroke treatment with r-tPA and a key reason that blood pressure needs to be lowered in acute stroke despite risks of hypoperfusing the brain [6]. Blood pressure is an easily modifiable factor which can ameliorate some of the risks associated with HT. However, there are many issues that remain in the treatment of blood pressure in acute ischemic stroke. Firstly, blood pressure is a quantitative variable making it difficult to mark an arbitrary cut-off point at which risks of hypoperfusing the brain are greater than the risks of bleeding after treatment. Secondly, the response of blood pressure to stroke is complicated and poorly understood. While efforts have been made to characterize the acute hypertensive response to stroke, there are still many points that are unclear. The mechanisms of acute hypertensive response seem to be many [84], and thus far, it has been impossible to characterize the underlying mechanisms in each patient. Furthermore, the presence of an acute hypertensive response to stroke at the moment of stroke and outside of a white-coat-hypertension or stress-inducing-hospital-setting have not been studied. As with animal studies [49, 95], it is possible that not all patients show this response so acute BP elevations that are seen are due to pre-existing hypertension. Attempts have been made to delineate an acute hypertensive response to stroke from pre-existing hypertension [86], but there are issues with that as well. In many patients, especially younger patients, hypertension may not have been diagnosed before their first stroke. There may be differential effects of anti-hypertensive medications and some patients may have controlled vs. uncontrolled hypertension, despite taking medications.

Trajectory studies [108], while not perfect, have been a way to move forward in identifying subgroups of patients that show differential blood pressure responses after stroke. By studying differential responses in patients by blood pressure after r-tPA treatment, it may be possible to begin to understand aspects of the acute hypertensive response in further detail. An intriguing possibility is that by analyzing differences in patient characteristics between different trajectories, we may be able to identify underlying mechanisms that separate patients with an acute hypertensive response from those who do not show this response. Genetic studies can aid in this as well. Using immune profiles, genetic studies may be able to delineate between patients with an acute hypertensive response vs. those with BP elevation due to chronic hypertension as well as their association with BBB disruption. By doing this, we may be able to further refine patients who are at most risk of bleeding post-r-tPA and would benefit from blood pressure reduction vs. patients who can tolerate elevated blood pressure.

References

- Collaborators, G.N., Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 2019. 18(5): p. 459-480.
- 2. Campbell, B.C.V., et al., *Ischaemic stroke*. Nat Rev Dis Primers, 2019. 5(1): p. 70.
- Smith, W.S., S.C. Johnston, and C.J. Hemphill III, *Cerebrovascular Diseases*, in *Harrison's principles of internal medicine*, D.L. Kasper, et al., Editors. 2015, McGraw Hill Education: New York :.
- 4. Jickling, G.C., et al., *Hemorrhagic transformation after ischemic stroke in animals and humans*. J Cereb Blood Flow Metab, 2014. **34**(2): p. 185-99.
- Group, N.I.o.N.D.a.S.r.-P.S.S., *Tissue plasminogen activator for acute ischemic stroke*. N Engl J Med, 1995. 333(24): p. 1581-7.
- Powers, W.J., et al., Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2019. 50(12): p. e344-e418.
- Khatri, R., et al., *Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke.* Neurology, 2012. **79**(13 Suppl 1): p. S52-7.
- Rodriguez-Iturbe, B., H. Pons, and R.J. Johnson, *Role of the Immune System in Hypertension*. Physiol Rev, 2017. 97(3): p. 1127-1164.
- Cruickshank, J.M., What is high blood pressure?, in Essential Hypertension. 2013, PMPH USA, Ltd: Shelton, Conn.
- Pickering, G., *Hypertension. Definitions, natural histories and consequences*. Am J Med, 1972. 52(5): p. 570-83.
- Whelton, P.K., et al., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 2018. 71(6): p. 1269-1324.

- 12. Testai, F.D., *What caused this transient or persisting ischemic event?*, in *Warlow's Stroke*, G.J. Hankey, et al., Editors. 2019, John Wiley and Sons Ltd. p. 267-344.
- Adams, H.P., et al., *Classification of subtype of acute ischemic stroke*. *Definitions for use in a multicenter clinical trial*. *TOAST*. *Trial of Org 10172 in Acute Stroke Treatment*. Stroke, 1993. 24(1): p. 35-41.
- 14. Berge, E. and P. Sandercock, *Specific treatment of acute ischemic stroke*, in *Warlow's Stroke*, G.J. Hankey, et al., Editors. 2019, John Wiley & Sons Ltd. p. 587-656.
- Astrup, J., B.K. Siesjö, and L. Symon, *Thresholds in cerebral ischemia the ischemic penumbra*. Stroke, 1981. 12(6): p. 723-5.
- 16. Iadecola, C. and J. Anrather, *The immunology of stroke: from mechanisms to translation*. Nat Med, 2011. **17**(7): p. 796-808.
- 17. Chamorro, Á., et al., *The immunology of acute stroke*. Nat Rev Neurol, 2012. 8(7): p. 401-10.
- Tang, Y., et al., *Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study.* J Cereb Blood Flow Metab, 2006.
 26(8): p. 1089-102.
- 19. Zrzavy, T., et al., *Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts*. Brain Pathol, 2018. **28**(6): p. 791-805.
- 20. Hammond, M.D., et al., CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci, 2014.
 34(11): p. 3901-9.
- Garcia-Bonilla, L., et al., Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J Neuroinflammation, 2016. 13(1): p. 285.
- 22. Dimitrijevic, O.B., et al., *Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice.* Stroke, 2007. **38**(4): p. 1345-53.
- Gliem, M., M. Schwaninger, and S. Jander, *Protective features of peripheral monocytes/macrophages in stroke*. Biochim Biophys Acta, 2016. 1862(3): p. 329-38.
- 24. Fu, Y., et al., *Immune interventions in stroke*. Nat Rev Neurol, 2015. **11**(9): p. 524-35.
- 25. Tsai, A.S., et al., *A year-long immune profile of the systemic response in acute stroke survivors*. Brain, 2019. **142**(4): p. 978-991.

- 26. Prinz, M. and J. Priller, *The role of peripheral immune cells in the CNS in steady state and disease*. Nature Neuroscience, 2017. **20**(2): p. 136-144.
- 27. Obermeier, B., R. Daneman, and R.M. Ransohoff, *Development, maintenance and disruption of the blood-brain barrier*. Nat Med, 2013. **19**(12): p. 1584-96.
- Sweeney, M.D., et al., *Blood-Brain Barrier: From Physiology to Disease and Back.* Physiol Rev, 2019. 99(1): p. 21-78.
- 29. Pires, P.W. and A.M. Dorrance, *The effects of hypertension on cerebral artery structure and function, and cerebral blood flow.* 2016: Springer International Publishing. 99-134.
- Langen, U.H., S. Ayloo, and C. Gu, *Development and Cell Biology of the Blood-Brain* Barrier. Annu Rev Cell Dev Biol, 2019. 35: p. 591-613.
- Spronk, E., et al., *Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation*. Front Neurol, 2021. 12: p. 661955.
- 32. Fiorelli, M., et al., *Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort.* Stroke, 1999. **30**(11): p. 2280-4.
- 33. Yaghi, S., A. Eisenberger, and J.Z. Willey, Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. JAMA Neurol, 2014. 71(9): p. 1181-5.
- Mazya, M., et al., Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke, 2012. 43(6): p. 1524-31.
- 35. Shi, K., et al., *tPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke*. Circ Res, 2021. **128**(1): p. 62-75.
- 36. Drummond, G.R., et al., *Immune mechanisms of hypertension*. Nat Rev Immunol, 2019.
 19(8): p. 517-532.
- Harrison, D.G. and K.E. Bernstein, 7 Inflammation and Immunity in Hypertension, in Hypertension: A Companion to Braunwald's Heart Disease (Third Edition), G.L. Bakris and M.J. Sorrentino, Editors. 2018, Elsevier. p. 60-69.
- 38. Gabb, G., *What is hypertension?* Aust Prescr, 2020. **43**(4): p. 108-109.

- Lewington, S., et al., Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002. 360(9349): p. 1903-13.
- 40. Pickering, T.G., *What is hypertension?* The Lancet, 1999. **354**(9178): p. 593.
- 41. Pickering, T.G., *Blood pressure measurement and detection of hypertension*. Lancet, 1994. **344**(8914): p. 31-5.
- 42. Rabi, D.M., et al., *Hypertension Canada's 2020 Comprehensive Guidelines for the Prevention, Diagnosis, Risk Assessment, and Treatment of Hypertension in Adults and Children.* Can J Cardiol, 2020. **36**(5): p. 596-624.
- 43. Williams, B., et al., 2018 ESC/ESH Guidelines for the management of arterial *hypertension*. Eur Heart J, 2018. **39**(33): p. 3021-3104.
- 44. Oparil, S., et al., *Hypertension*. Nat Rev Dis Primers, 2018. 4: p. 18014.
- Boulpaep, E.L., Organization of the Cardiovascular System, in Medical physiology, W.F.
 Boron and E.L. Boulpaep, Editors. 2017, Elsevier Inc.: Philadelphia, PA. p. 410-428.
- Hall, M.E. and J.E. Hall, *Pathogenesis of Hypertension*, in *Hypertension: A Companion* to Braunwald's Heart Disease (Third Edition), G.L. Bakris and M.J. Sorrentino, Editors. 2018, Elsevier. p. 33-51.
- Boulpaep, E.L., *Regulation of Arterial Pressure and Cardiac Output*, in *Medical physiology*, W.F. Boron and E.L. Boulpaep, Editors. 2017, Elsevier Inc.: Philadelphia, PA. p. 533-555.
- 48. Nunes, K.P., et al., *Toll-Like Receptor 4 and Blood Pressure: Lessons From Animal Studies*. Front Physiol, 2019. **10**: p. 655.
- 49. PAGE, I.H., *PATHOGENESIS OF ARTERIAL HYPERTENSION*. Journal of the American Medical Association, 1949. **140**(5): p. 451-458.
- Page, I.H., *The mosaic theory of arterial hypertension--its interpretation*. Perspect Biol Med, 1967. 10(3): p. 325-33.
- 51. Harrison, D.G., *The mosaic theory revisited: common molecular mechanisms coordinating diverse organ and cellular events in hypertension*. J Am Soc Hypertens, 2013. 7(1): p. 68-74.
- 52. Lerman, L.O., et al., *Animal Models of Hypertension: A Scientific Statement From the American Heart Association*. Hypertension, 2019. **73**(6): p. e87-e120.

- 53. Svendsen, U.G., Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A, 1976. 84(6): p. 523-8.
- 54. Kirabo, A., et al., *DC isoketal-modified proteins activate T cells and promote hypertension*. J Clin Invest, 2014. **124**(10): p. 4642-56.
- 55. Chan, C.T., et al., *Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice*. Hypertension, 2012. **60**(5): p. 1207-12.
- 56. Madhur, M.S., et al., *Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction*. Hypertension, 2010. **55**(2): p. 500-7.
- 57. Barbaro, N.R., et al., *Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers*. Blood Press, 2015. **24**(1): p. 7-13.
- 58. Pires, P.W., et al., *The effects of hypertension on the cerebral circulation*. Am J Physiol Heart Circ Physiol, 2013. **304**(12): p. H1598-614.
- 59. Faraco, G. and C. Iadecola, *Hypertension: a harbinger of stroke and dementia*.Hypertension, 2013. 62(5): p. 810-7.
- 60. Rodríguez, V., A.D. De Kloet, and C. Sumners, *Hypertension and brain inflammation: Role of RAS-induced glial activation*. 2016: Springer International Publishing. 181-194.
- Biancardi, V.C., et al., *Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier*. Hypertension, 2014. 63(3): p. 572-9.
- 62. Hirunpattarasilp, C., D. Attwell, and F. Freitas, *The role of pericytes in brain disorders: from the periphery to the brain*. J Neurochem, 2019. **150**(6): p. 648-665.
- 63. Morrison, H.W. and J.A. Filosa, *Stroke and the neurovascular unit: glial cells, sex differences, and hypertension.* Am J Physiol Cell Physiol, 2019. **316**(3): p. C325-C339.
- 64. Katsi, V., et al., *Blood-brain barrier dysfunction: the undervalued frontier of hypertension*. J Hum Hypertens, 2020. **34**(10): p. 682-691.
- 65. Setiadi, A., et al., *The role of the blood-brain barrier in hypertension*. Exp Physiol, 2018.
 103(3): p. 337-342.
- 66. Ueno, M., et al., *Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats.* Histochem Cell Biol, 2004. **122**(2): p. 131-7.

- 67. Lippoldt, A., et al., *Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells.* Brain Res, 2000. **885**(2): p. 251-61.
- Mohammadi, M.T. and G.A. Dehghani, *Acute hypertension induces brain injury and blood-brain barrier disruption through reduction of claudins mRNA expression in rat.* Pathol Res Pract, 2014. 210(12): p. 985-90.
- 69. Poulet, R., et al., *Acute hypertension induces oxidative stress in brain tissues*. J Cereb Blood Flow Metab, 2006. **26**(2): p. 253-62.
- 70. Tan, K.H., et al., *Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage*. Neurochem Res, 2004. **29**(3): p. 579-87.
- Fleegal-DeMotta, M.A., S. Doghu, and W.A. Banks, *Angiotensin II modulates BBB* permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab, 2009. 29(3): p. 640-7.
- 72. Santisteban, M.M., et al., *Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension*. Hypertension, 2020. **76**(3): p. 795-807.
- 73. Shi, P., et al., *Brain microglial cytokines in neurogenic hypertension*. Hypertension, 2010. 56(2): p. 297-303.
- Shen, X.Z., et al., *Microglia participate in neurogenic regulation of hypertension*.Hypertension, 2015. 66(2): p. 309-16.
- 75. Labus, J., et al., Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods, 2014. 228: p. 35-45.
- 76. Takemori, K., H. Ito, and T. Suzuki, *Effects of the AT1 receptor antagonist on adhesion molecule expression in leukocytes and brain microvessels of stroke-prone spontaneously hypertensive rats.* Am J Hypertens, 2000. 13(11): p. 1233-41.
- 77. Santisteban, M.M., et al., *Involvement of bone marrow cells and neuroinflammation in hypertension*. Circ Res, 2015. **117**(2): p. 178-91.
- Wu, Q., et al., *Infiltrating T helper 17 cells in the paraventricular nucleus are pathogenic for stress-induced hypertension*. Biochem Biophys Res Commun, 2019. **515**(1): p. 169-175.

- 79. Di Napoli, M. and F. Papa, *Association between blood pressure and C-reactive protein levels in acute ischemic stroke*. Hypertension, 2003. **42**(6): p. 1117-23.
- 80. Gioia, L.C., et al., *Prehospital systolic blood pressure is higher in acute stroke compared with stroke mimics*. Neurology, 2016. **86**(23): p. 2146-53.
- 81. Britton, M., A. Carlsson, and U. de Faire, *Blood pressure course in patients with acute stroke and matched controls*. Stroke, 1986. **17**(5): p. 861-4.
- Broderick, J., et al., *Blood pressure during the first minutes of focal cerebral ischemia*.
 Ann Emerg Med, 1993. 22(9): p. 1438-43.
- Wallace, J.D. and L.L. Levy, *Blood pressure after stroke*. JAMA, 1981. 246(19): p. 2177-80.
- 84. Qureshi, A.I., *Acute hypertensive response in patients with stroke: pathophysiology and management.* Circulation, 2008. **118**(2): p. 176-87.
- 85. Silva, T.M., A.P.S. Ricardo, and M.F. Frank, *Endothelium, the Blood–Brain Barrier, and Hypertension.* 2015, Springer International Publishing: Cham. p. 155.
- 86. Rodríguez-Yáñez, M., et al., *New-onset hypertension and inflammatory response/poor outcome in acute ischemic stroke*. Neurology, 2006. **67**(11): p. 1973-8.
- 87. Wakisaka, Y., et al., *Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice*. J Cereb Blood Flow Metab, 2010. **30**(1): p. 56-69.
- Soga, Y. and D.K. Pandey, *The Link Between Hypertension and Stroke: Summary of Observational Epidemiological Studies*, in *Hypertension and Stroke: Pathophysiology and Management*, V. Aiyagari and P.B. Gorelick, Editors. 2011, Humana Press: Totowa, NJ. p. 21-39.
- 89. Bath, P.M., et al., *Blood Pressure in Acute Stroke: To Treat or Not to Treat: That Is Still the Question.* Stroke, 2018. **49**(7): p. 1784-1790.
- 90. Yatsu, F.M. and J. Zivin, *Hypertension in acute ischemic strokes*. *Not to treat*. Arch Neurol, 1985. **42**(10): p. 999-1000.
- 91. Tsivgoulis, G., et al., *Pre-tissue plasminogen activator blood pressure levels and risk of symptomatic intracerebral hemorrhage*. Stroke, 2009. **40**(11): p. 3631-4.
- 92. Qureshi, A.I., et al., *Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States.* Am J Emerg Med, 2007. **25**(1): p. 32-8.

- 93. Christensen, H., *The timing of the blood pressure measurement may affect the result in patients with acute stroke*. Hypertension, 2004. **43**(6): p. e36; author reply e36.
- 94. Thakkar, P., et al., *Hypertensive Response to Ischemic Stroke in the Normotensive Wistar Rat.* Stroke, 2019. **50**(9): p. 2522-2530.
- 95. Bowes, M.P., et al., *Acute hypertension, but not thrombolysis, increases the incidence and severity of hemorrhagic transformation following experimental stroke in rabbits.* Exp Neurol, 1996. **141**(1): p. 40-6.
- 96. Carlberg, B., K. Asplund, and E. Hägg, *Factors influencing admission blood pressure levels in patients with acute stroke*. Stroke, 1991. **22**(4): p. 527-30.
- 97. Vemmos, K.N., et al., *Factors influencing acute blood pressure values in stroke subtypes*.J Hum Hypertens, 2004. 18(4): p. 253-9.
- 98. Gąsecki, D., et al., Blood pressure in acute ischemic stroke: challenges in trial interpretation and clinical management: position of the ESH Working Group on Hypertension and the Brain. J Hypertens, 2018. **36**(6): p. 1212-1221.
- 99. Virani, S.S., et al., *Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.* Circulation, 2020. **141**(9): p. e139-e596.
- 100. Mills, K.T., et al., Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation, 2016.
 134(6): p. 441-50.
- 101. Whelton, P.K., *The elusiveness of population-wide high blood pressure control*. Annu Rev Public Health, 2015. 36: p. 109-30.
- AlSibai, A. and A.I. Qureshi, Management of Acute Hypertensive Response in Patients With Ischemic Stroke. Neurohospitalist, 2016. 6(3): p. 122-9.
- 103. Brott, T.G., et al., *Urgent therapy for stroke. Part I. Pilot study of tissue plasminogen activator administered within 90 minutes.* Stroke, 1992. **23**(5): p. 632-40.
- 104. Haley, E.C., et al., Urgent therapy for stroke. Part II. Pilot study of tissue plasminogen activator administered 91-180 minutes from onset. Stroke, 1992. 23(5): p. 641-5.
- Liu, K., et al., Systolic Blood Pressure Variability is Associated with Severe Hemorrhagic Transformation in the Early Stage After Thrombolysis. Transl Stroke Res, 2016. 7(3): p. 186-91.

- 106. Lattanzi, S., A.A. Divani, and M. Silvestrini, *Blood pressure trajectories after stroke: Do they matter*? J Clin Hypertens (Greenwich), 2021.
- Petersen, N.H., S. Kodali, and K.N. Sheth, *Towards Individualized Blood Pressure* Management After Stroke. Am J Hypertens, 2019. 32(3): p. 242-244.
- 108. Kim, B.J., et al., Trajectory Groups of 24-Hour Systolic Blood Pressure After Acute Ischemic Stroke and Recurrent Vascular Events. Stroke, 2018. 49(8): p. 1836-1842.
- 109. Gore, J.M., et al., Intracerebral hemorrhage, cerebral infarction, and subdural hematoma after acute myocardial infarction and thrombolytic therapy in the Thrombolysis in Myocardial Infarction Study. Thrombolysis in Myocardial Infarction, Phase II, pilot and clinical trial. Circulation, 1991. 83(2): p. 448-59.
- 110. Haley, E.C., et al., *Pilot randomized trial of tissue plasminogen activator in acute ischemic stroke. The TPA Bridging Study Group.* Stroke, 1993. **24**(7): p. 1000-4.
- Hacke, W., et al., Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet, 1998. 352(9136): p. 1245-51.
- 112. Levy, D.E., et al., *Factors related to intracranial hematoma formation in patients receiving tissue-type plasminogen activator for acute ischemic stroke*. Stroke, 1994.
 25(2): p. 291-7.
- del Zoppo, G.J., et al., *Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke*. Ann Neurol, 1992. **32**(1): p. 78-86.
- Toni, D., et al., Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR. Neurology, 2012. 78(12): p. 880-7.
- 115. Petersen, N.H., et al., Association of Personalized Blood Pressure Targets With Hemorrhagic Transformation and Functional Outcome After Endovascular Stroke Therapy. JAMA Neurol, 2019. 76(10): p. 1256-1258.
- 116. Domek, M., et al., *Malignant hypertension: does this still exist?* J Hum Hypertens, 2020.
 34(1): p. 1-4.
- 117. Cantone, M., et al., *Hypertensive Crisis in Acute Cerebrovascular Diseases Presenting at the Emergency Department: A Narrative Review.* Brain Sci, 2021. **11**(1).

- 118. Jickling, G.C., et al., *RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke*. Ann Neurol, 2013. **74**(2): p. 232-40.
- 119. Strbian, D., et al., *Patient outcomes from symptomatic intracerebral hemorrhage after stroke thrombolysis*. Neurology, 2011. 77(4): p. 341-8.
- 120. Demaerschalk, B.M., et al., Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2016. 47(2): p. 581-641.
- 121. Pancioli, A.M., et al., *The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial.* Stroke, 2008. **39**(12): p. 3268-76.
- O'Shea, J.C. and J.E. Tcheng, *Eptifibatide: A potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa*. Expert Opinion on Pharmacotherapy, 2002. 3(8): p. 1199-1210.
- Jickling, G.C., et al., Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol, 2010. 68(5): p. 681-92.
- 124. Irizarry, R.A., et al., *Exploration, normalization, and summaries of high density oligonucleotide array probe level data*. Biostatistics, 2003. **4**(2): p. 249-64.
- 125. Tsivgoulis, G., et al., *Blood pressure excursions in acute ischemic stroke patients treated* with intravenous thrombolysis. J Hypertens, 2021. **39**(2): p. 266-272.
- Iadecola, C. and P.B. Gorelick, *Hypertension, angiotensin, and stroke: beyond blood pressure.* Stroke, 2004. 35(2): p. 348-50.
- 127. Benigni, A., P. Cassis, and G. Remuzzi, *Angiotensin II revisited: new roles in inflammation, immunology and aging.* EMBO Mol Med, 2010. **2**(7): p. 247-57.
- 128. Davenport, A.P., et al., *Endothelin*. Pharmacol Rev, 2016. **68**(2): p. 357-418.
- Pober, J.S. and W.C. Sessa, *Inflammation and the blood microvascular system*. Cold Spring Harb Perspect Biol, 2014. 7(1): p. a016345.
- Elisa, T., et al., Endothelin Receptors Expressed by Immune Cells Are Involved in Modulation of Inflammation and in Fibrosis: Relevance to the Pathogenesis of Systemic Sclerosis. J Immunol Res, 2015. 2015: p. 147616.
- 131. Cramer, S.W., L. Li, and D. Sun, *Blood brain barrier dysfunction and the endothelin system in cerebral ischemia*. 2008: Bentham Science Publishers Ltd. 46-51.

- 132. Ahokas, K., et al., *Matrix metalloproteinase-21, the human orthologue for XMMP, is expressed during fetal development and in cancer.* Gene, 2002. **301**(1-2): p. 31-41.
- Bar-Or, A., et al., Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003. 126(Pt 12): p. 2738-49.
- 134. Marchenko, G.N., N.D. Marchenko, and A.Y. Strongin, *The structure and regulation of the human and mouse matrix metalloproteinase-21 gene and protein*. Biochem J, 2003.
 372(Pt 2): p. 503-15.
- Soria-Valles, C., et al., MMP-25 Metalloprotease Regulates Innate Immune Response through NF-κB Signaling. J Immunol, 2016. 197(1): p. 296-302.
- Huang, W.C., et al., *Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB*.
 PLoS One, 2012. 7(8): p. e42507.
- 137. McCarthy, C.G., et al., *Toll-like receptors and damage-associated molecular patterns:* novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol, 2014. 306(2): p. H184-96.
- 138. Caso, J.R., et al., *Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke*. Circulation, 2007. **115**(12): p. 1599-608.
- 139. Qiu, J., et al., *High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia.* Stroke, 2010. **41**(9): p. 2077-82.
- 140. García-Culebras, A., et al., Toll-Like Receptor 4 Mediates Hemorrhagic Transformation After Delayed Tissue Plasminogen Activator Administration in In Situ Thromboembolic Stroke. Stroke, 2017. 48(6): p. 1695-1699.
- 141. Zaiss, D.M.W., et al., *Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair.* Immunity, 2015. **42**(2): p. 216-226.
- 142. Meng, C., et al., *Amphiregulin may be a new biomarker of classically activated macrophages*. Biochem Biophys Res Commun, 2015. **466**(3): p. 393-9.
- 143. Kondapaka, S.B., R. Fridman, and K.B. Reddy, *Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells*. Int J Cancer, 1997. **70**(6): p. 722-6.

- 144. Wang, C.Q., et al., Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway. Cancer Lett, 2017. 385: p. 261-270.
- 145. Kanazawa, M., et al., *Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment*. J Cereb Blood Flow Metab, 2011. **31**(6): p. 1461-74.
- 146. Zaiss, D.M., C.M. Minutti, and J.A. Knipper, *Immune- and non-immune-mediated roles* of regulatory *T-cells during wound healing*. Immunology, 2019. **157**(3): p. 190-197.
- 147. Kanazawa, M., et al., *Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke*. Int J Mol Sci, 2017. **18**(10).
- 148. Ito, M., et al., *Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery*. Nature, 2019. **565**(7738): p. 246-250.
- 149. Sica, A., et al., *Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes.* J Exp Med, 1997. **185**(5): p. 969-74.
- 150. Mahad, D., et al., *Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis.* Brain, 2006. **129**(Pt 1): p. 212-23.
- 151. Rothberg, K.G., et al., *Caveolin, a protein component of caveolae membrane coats*. Cell, 1992. 68(4): p. 673-82.
- Parton, R.G. and K. Simons, *The multiple faces of caveolae*. Nat Rev Mol Cell Biol, 2007. 8(3): p. 185-94.
- Cheng, J.P.X. and B.J. Nichols, *Caveolae: One Function or Many*? Trends Cell Biol, 2016. 26(3): p. 177-189.
- 154. Drab, M., et al., *Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice.* Science, 2001. **293**(5539): p. 2449-52.
- 155. García-Cardeña, G., et al., Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem, 1997. 272(41): p. 25437-40.
- 156. Gu, Y., et al., Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem, 2012. 120(1): p. 147-56.

- Castellanos, M., et al., Low Levels of Caveolin-1 Predict Symptomatic Bleeding After Thrombolytic Therapy in Patients With Acute Ischemic Stroke. Stroke, 2018. 49(6): p. 1525-1527.
- 158. Harris, J., et al., *Caveolae and caveolin in immune cells: distribution and functions*. Trends Immunol, 2002. 23(3): p. 158-64.
- 159. Anderson, C.S., et al., *Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, openlabel, blinded-endpoint, phase 3 trial.* Lancet, 2019. **393**(10174): p. 877-888.
- 160. Williams, L.T., R. Snyderman, and R.J. Lefkowitz, *Identification of beta-adrenergic receptors in human lymphocytes by (-) (3H) alprenolol binding*. J Clin Invest, 1976. 57(1): p. 149-55.
- 161. Barnes, M.A., M.J. Carson, and M.G. Nair, Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine, 2015. 72(2): p. 210-9.
- 162. Finkelstein, A., et al., *Eptifibatide does not influence lymphocyte activation and CRP levels in patients with undergoing coronary angioplasty*. Int J Cardiovasc Intervent, 2004. 6(3-4): p. 107-9.
- McBride, J.A. and R. Striker, *Imbalance in the game of T cells: What can the CD4/CD8 T-cell ratio tell us about HIV and health?* PLoS Pathog, 2017. 13(11): p. e1006624.
- 164. Aster, R.H., *Immune thrombocytopenia caused by glycoprotein IIb/IIIa inhibitors*. Chest, 2005. 127(2 Suppl): p. 538-59S.
- 165. Lorenz, T.J., F. Macdonald, and M.M. Kitt, *Nonimmunogenicity of eptifibatide, a cyclic heptapeptide inhibitor of platelet glycoprotein IIb-IIIa*. Clin Ther, 1999. **21**(1): p. 128-37.

Appendix

Table S1. Differentially expressed genes in strokes with admission BP > 185/110 mm Hg andBP < 185/110 mm Hg at admission

Affymetrix	Entrez	Gene	Gene Title	P value	Fold-
Probeset ID	Gene	Symbol			Change
					(Higher
					BP vs.
					Lower
					BP)
213831_at	3117	HLA-	major	0.024262	-5.80195
		DQA1	histocompatibility	2	
			complex, class II,		
			DQ alpha 1		
209480_at	3119	HLA-	major	0.022198	-4.22447
		DQB1	histocompatibility	3	
			complex, class II,		
			DQ beta 1		
236203_at	3117	HLA-	major	0.009013	-3.64622
		DQA1	histocompatibility	89	
			complex, class II,		
			DQ alpha 1		
221491_x_at	3119 ///	HLA-	major	0.023061	-3.06758
	3123 ///	DQB1 ///	histocompatibility	3	
	3124 ///	HLA-DRB1	complex, class II,		
	3125 ///	/// HLA-	DQ beta 1 ///		
	3126 ///	DRB2 ///	major		
	3127 ///	HLA-DRB3	histocompatibility		
	3128 ///	/// HLA-	comp		
	3129 ///	DRB4 ///			

	3130 ///	HLA-DRB5			
	105369	/// HLA-			
		DRB6 ///			
		HLA-DRB7			
		/// HLA-			
		DRB8 ///			
		LOC10536			
		9230			
212999_x_at	3119 ///	HLA-	major	0.014762	-2.02447
	3120	DQB1 ///	histocompatibility	4	
		HLA-	complex, class II,		
		DQB2	DQ beta 1 ///		
			major		
			histocompatibility		
			comp		
1552908_at	148823	GCSAML	germinal center-	0.012608	-1.53146
			associated,	4	
			signaling and		
			motility-like		
1558603_at	5342	PLGLB2	plasminogen-like	0.010549	-1.50286
			B2	8	
232530_at	5337	PLD1	phospholipase D1,	0.017906	-1.4993
			phosphatidylcholin	9	
			e-specific		
1568781_at	7390	UROS	uroporphyrinogen	0.000416	-1.47914
			III synthase	52	
226646 at	10365	KLF2	Kruppel-like factor	0.028454	-1.43061
			2	6	
211654_x_at	3119	HLA-	major	0.012564	-1.42928
		DQB1	histocompatibility		
		- (

			complex, class II,		
			DQ beta 1		
1561504_s_at	340156	MYLK4	myosin light chain	0.016956	-1.41756
			kinase family	4	
			member 4		
215891_s_at	2760	GM2A	GM2 ganglioside	0.012809	-1.41271
			activator	3	
226736_at	91612	CHURC1	churchill domain	0.028747	-1.37309
			containing 1	6	
205871_at	5342 ///	PLGLB1 ///	plasminogen-like	0.033109	-1.36263
	5343	PLGLB2	B1 ///	2	
			plasminogen-like		
			B2		
229943_at	10206	TRIM13	tripartite motif	0.042339	-1.36193
			containing 13	7	
1558785_a_at	8490	RGS5	regulator of G-	0.008365	-1.33774
			protein signaling 5	85	
230780_at	730091	LINC00886	long intergenic	0.026502	-1.33203
			non-protein coding	7	
			RNA 886		
1555786_s_at	645687	LINC00520	long intergenic	0.026449	-1.32896
			non-protein coding	3	
			RNA 520		
208076_at	8360	HIST1H4D	histone cluster 1,	0.024752	-1.3173
			H4d	1	
1561699_a_at	100874	ATP11A-	ATP11A antisense	0.032231	-1.31362
	205	AS1	RNA 1	7	
1562028_at	896	CCND3	cyclin D3	0.044753	-1.30772
				3	

237210_at	4798	NFRKB	nuclear factor	0.000582	-1.30643
			related to kappaB	323	
			binding protein		
226065_at	144165	PRICKLE1	prickle homolog 1	0.006793	-1.30591
				31	
228362_s_at	441168	FAM26F	family with	0.044601	-1.30083
			sequence	8	
			similarity 26,		
			member F		
238164_at	9712	USP6NL	USP6 N-terminal	0.049284	-1.29652
			like	5	
1553214_a_at	79741	CCDC7	coiled-coil domain	0.039342	-1.28794
			containing 7	3	
226947_at	375513	GUSBP1 ///	glucuronidase,	0.002414	-1.28513
	///	GUSBP4 ///	beta pseudogene 1	83	
	728411	LINC00680	/// glucuronidase,		
	///	///	beta pseudogene 4		
	101929	LOC10192	/// long intergen		
	200 ///	9200			
	106660				
	612				
207794_at	729230	CCR2	chemokine (C-C	0.029045	-1.28494
			motif) receptor 2	4	
237032_x_at	26037	SIPA1L1	signal-induced	0.024977	-1.2838
			proliferation-	3	
			associated 1 like 1		
229391_s_at	441168	FAM26F	family with	0.046450	-1.28233
			sequence	3	
			similarity 26,		
			member F		

202269_x_at	2633	GBP1	guanylate binding	0.028260	-1.28194
			protein 1,	7	
			interferon-		
			inducible		
231577_s_at	2633	GBP1	guanylate binding	0.041482	-1.27564
			protein 1,	1	
			interferon-		
			inducible		
229390_at	441168	FAM26F	family with	0.043600	-1.27458
			sequence	3	
			similarity 26,		
			member F		
203065_s_at	857	CAV1	caveolin 1	0.035463	-1.27301
				7	
232303_at	57507	ZNF608	zinc finger protein	0.007847	-1.26365
			608	75	
215495_s_at	23034	SAMD4A	sterile alpha motif	0.007075	-1.26261
			domain containing	13	
			4A		
232196_at	150082	LCA5L	Leber congenital	0.003507	-1.2604
			amaurosis 5-like	64	
1555448_at	55745	AP5M1	adaptor-related	0.045096	-1.25036
			protein complex 5,	5	
			mu 1 subunit		
219865_at	29092	LINC00339	long intergenic	0.006612	-1.24964
			non-protein coding	53	
			RNA 339		
220328_at	80012	РНС3	polyhomeotic	0.015874	-1.24852
			homolog 3	4	
			(Drosophila)		

214077_x_at	4213	MEIS3P1	Meis homeobox 3	0.026482	-1.24698
			pseudogene 1	9	
235678_at	2760	GM2A	GM2 ganglioside	0.043917	-1.24656
			activator	6	
216213_at	4750	NEK1	NIMA-related	0.025876	-1.24597
			kinase 1	2	
204324_s_at	27333	GOLIM4	golgi integral	0.005416	-1.24557
			membrane protein	17	
			4		
239966_at	4208	MEF2C	myocyte enhancer	0.020741	-1.24403
			factor 2C		
219984_s_at	57110	HRASLS	HRAS-like	0.029301	-1.2425
			suppressor		
1554460_at	7903	ST8SIA4	ST8 alpha-N-	0.028726	-1.2425
			acetyl-neuraminide	6	
			alpha-2,8-		
			sialyltransferase 4		
220119_at	64097	EPB41L4A	erythrocyte	0.013256	-1.23765
			membrane protein		
			band 4.1 like 4A		
227556_at	29922	NME7	NME/NM23	0.032706	-1.23744
			family member 7	1	
AFFX-	6772	STAT1	signal transducer	0.035012	-1.23716
HUMISGF3A/M97935			and activator of	7	
_MA_at			transcription 1		
216717_at	55578	SUPT20H	SPT20 homolog,	0.036482	-1.23696
			SAGA complex		
			component		
1554894_a_at	84105	PCBD2	pterin-4 alpha-	0.018522	-1.2269
			carbinolamine	3	

			dehydratase/dimeri		
			zation cofactor of		
			hepatocyte nuclear		
			fa		
1553244_at	2187	FANCB	Fanconi anemia	0.034838	-1.22523
			complementation	4	
			group B		
215116_s_at	1759	DNM1	dynamin 1	0.034483	-1.22433
				7	
1561132_at	60625	DHX35	DEAH (Asp-Glu-	0.022495	-1.2237
			Ala-His) box	2	
			polypeptide 35		
210800_at	1678	TIMM8A	translocase of	0.035690	-1.22234
			inner	1	
			mitochondrial		
			membrane 8		
			homolog A (yeast)		
228855_at	283927	NUDT7	nudix hydrolase 7	0.043056	-1.22231
				4	
201243_s_at	481	ATP1B1	ATPase, Na+/K+	0.049217	-1.22127
			transporting, beta	2	
			1 polypeptide		
225655_at	29128	UHRF1	ubiquitin-like with	0.027631	-1.21995
			PHD and ring	6	
			finger domains 1		
226878_at	3111	HLA-DOA	major	0.040134	-1.21959
			histocompatibility	4	
			complex, class II,		
			DO alpha		
1555227_a_at	79694	MANEA	mannosidase,	0.029695	-1.21797
			endo-alpha		

206757_at	8654	PDE5A	phosphodiesterase	0.018972	-1.21713
			5A, cGMP-	1	
			specific		
241755_at	7385	UQCRC2	ubiquinol-	0.02756	-1.21609
			cytochrome c		
			reductase core		
			protein II		
231833_at	155435	RBM33	RNA binding	0.030476	-1.21577
			motif protein 33	3	
1557236_at	80830	APOL6	apolipoprotein L, 6	0.010619	-1.21189
				3	
1559078_at	53335	BCL11A	B-cell	0.015991	-1.20975
			CLL/lymphoma		
			11A (zinc finger		
			protein)		
1563839_at	51256	TBC1D7	TBC1 domain	0.024406	-1.20865
			family, member 7	5	
AFFX-	6772	STAT1	signal transducer	0.018417	-1.2075
HUMISGF3A/M97935			and activator of		
_5_at			transcription 1		
1568840_at	25879	DCAF13	DDB1 and CUL4	0.002550	-1.20692
			associated factor	24	
			13		
242507_at	100874	UBXN7-	UBXN7 antisense	0.029556	-1.20555
	034	AS1	RNA 1	8	
213624_at	10924	SMPDL3A	sphingomyelin	0.041594	-1.20525
			phosphodiesterase,	8	
			acid-like 3A		
1569142_at	10206	TRIM13	tripartite motif	0.020868	-1.20491
			containing 13	9	

1558557_at	57020	C16orf62	chromosome 16	0.045771	-1.20401
			open reading	2	
			frame 62		
1568126_at	302	ANXA2	annexin A2	0.049979	-1.2022
				3	
1555396_s_at	340602	CXorf67	chromosome X	0.012999	1.20382
			open reading	8	
			frame 67		
213272_s_at	57146	TMEM159	transmembrane	0.005999	1.20526
			protein 159	65	
243686_at	158038	LINGO2	leucine rich repeat	0.014171	1.20565
			and Ig domain	4	
			containing 2		
213035_at	23243	ANKRD28	ankyrin repeat	0.033661	1.20658
			domain 28	1	
203069_at	9900	SV2A	synaptic vesicle	0.017037	1.20697
			glycoprotein 2A	8	
239517_at	3694 ///	ITGB6 ///	integrin beta 6 ///	0.003563	1.20753
	100505	LOC10050	uncharacterized	36	
	984	5984	LOC100505984		
243476_at	4763	NF1	neurofibromin 1	0.026768	1.20839
1560830_a_at	147646	C19orf84	chromosome 19	0.047582	1.21061
			open reading	2	
			frame 84		
220003_at	55282	LRRC36	leucine rich repeat	0.044668	1.21122
			containing 36	6	
230954_at	140688	NOL4L	nucleolar protein	0.019967	1.21221
			4-like	2	

219693_at	56895	AGPAT4	1-acylglycerol-3-	0.045649	1.21234
			phosphate O-	4	
			acyltransferase 4		
209695_at	11156	PTP4A3	protein tyrosine	0.044017	1.21241
			phosphatase type		
			IVA, member 3		
205330_at	4330	MN1	meningioma	0.037457	1.21283
			(disrupted in	9	
			balanced		
			translocation) 1		
1552835_at	163486	DENND1B	DENN/MADD	0.033338	1.21438
			domain containing		
			1B		
1552373_s_at	132321	C4orf33	chromosome 4	0.033956	1.21538
			open reading	4	
			frame 33		
214099_s_at	9659 ///	LOC10099	phosphodiesterase	0.008124	1.21557
	100996	6724 ///	4D interacting	96	
	724	PDE4DIP	protein-like ///		
			phosphodiesterase		
			4D interacting prot		
1569519_at	25832	LOC10099	notch homolog 2	0.027934	1.2168
	///	6763 ///	N-terminal-like	1	
	55672	LOC10272	protein ///		
	///	4250 ///	neuroblastoma		
	149013	NBPF1 ///	breakpoint family		
	///	NBPF10 ///	member 1 //		
	200030	NBPF11 ///			
	///	NBPF12 ///			
	400818	NBPF14 ///			
	///	NBPF19 ///			

	728841	NBPF26 ///			
	///	NBPF8 ///			
	100132	NBPF9			
	406 ///				
	100996				
	763				
214763_at	26027	ACOT11	acyl-CoA	0.006529	1.21795
			thioesterase 11	45	
64900_at	79583	TMEM231	transmembrane	0.037949	1.21797
			protein 231	7	
237281_at	158798	AKAP14	A kinase (PRKA)	0.029430	1.22012
			anchor protein 14	9	
230725_at	84250	SLF1	SMC5-SMC6	0.016495	1.22018
			complex	2	
			localization factor		
			1		
1568706_s_at	10677	AVIL	advillin	0.026392	1.22062
				9	
210069_at	1375 ///	CHKB-	CHKB-CPT1B	0.033650	1.22107
	386593	CPT1B ///	readthrough	5	
		CPT1B	(NMD candidate)		
			/// carnitine		
			palmitoyltransferas		
			e 1B (muscle)		
232662_x_at	84293	FAM213A	family with	0.020598	1.22138
			sequence		
			similarity 213,		
			member A		
223652_at	57412	AS3MT	arsenite	0.011937	1.2216
			methyltransferase	6	

1561890_at	170371	C10orf128	chromosome 10	0.005825	1.22169
			open reading	59	
			frame 128		
221887_s_at	25861	DFNB31	deafness,	0.032239	1.2227
			autosomal	2	
			recessive 31		
208190_s_at	51599	LSR	lipolysis	0.026603	1.22354
			stimulated	5	
			lipoprotein		
			receptor		
242060_x_at	51131	PHF11	PHD finger protein	0.022021	1.22412
			11	4	
205579_at	3269	HRH1	histamine receptor	0.044898	1.22497
			H1	2	
239417_x_at	347744	C6orf52	chromosome 6	0.031178	1.22539
			open reading	5	
			frame 52		
1552592_at	118856	MMP21	matrix	0.006729	1.22741
			metallopeptidase	24	
			21		
1558688_at	441461	STX17-	STX17 antisense	0.006363	1.22901
		AS1	RNA 1	88	
229080_at	136227	COL26A1	collagen, type	0.006345	1.22994
			XXVI, alpha 1	8	
228101_at	320 ///	APBA1 ///	amyloid beta (A4)	0.014994	1.23067
	101929	LOC10192	precursor protein-	5	
	802	9802	binding, family A,		
			member 1 ///		
			uncharacterized		
			LOC		

215039_at	339524	LINC01140	long intergenic	0.043284	1.23102
			non-protein coding	3	
			RNA 1140		
211673_s_at	4337	MOCS1	molybdenum	0.000572	1.23255
			cofactor synthesis	564	
			1		
236534_at	149428	BNIPL	BCL2/adenovirus	0.019957	1.23336
			E1B 19kD	4	
			interacting protein		
			like		
229921_at	3798	KIF5A	kinesin family	0.011751	1.23579
			member 5A	6	
1556019_at	160897	GPR180	G protein-coupled	0.007165	1.23925
			receptor 180	39	
223791_at	100132	FAM27B ///	family with	0.020497	1.24518
	948 ///	FAM27C ///	sequence		
	100133	LOC10272	similarity 27,		
	121 ///	5186 ///	member B ///		
	102725	LOC10537	family with		
	186 ///	9444	sequence		
	105379		similarity 27, me		
	444				
206541_at	3818	KLKB1	kallikrein B1	0.033547	1.24661
				3	
235498_at	127255	LRRIQ3	leucine-rich	0.039190	1.24762
			repeats and IQ	2	
			motif containing 3		
206766_at	8515	ITGA10	integrin alpha 10	0.023688	1.24872
				7	
223740_at	79992	AGPAT4-	AGPAT4 intronic	0.021348	1.24913
		IT1	transcript 1	8	

203894_at	27175	TUBG2	tubulin, gamma 2	0.001391	1.24959
				32	
209502_s_at	10458	BAIAP2	BAI1-associated	0.020200	1.25
			protein 2	4	
206753_at	8608	RDH16	retinol	0.001811	1.25063
			dehydrogenase 16	92	
			(all-trans)		
228450_at	144100	PLEKHA7	pleckstrin	0.034401	1.25229
			homology domain	3	
			containing, family		
			A member 7		
220410_s_at	157922	CAMSAP1	calmodulin	0.005944	1.25518
			regulated spectrin-	56	
			associated protein		
			1		
238254_at	342926	ZNF677	zinc finger protein	0.031663	1.25538
			677	2	
243324_x_at	3842	TNPO1	transportin 1	0.021110	1.25675
				3	
219199_at	27125	AFF4	AF4/FMR2	0.014604	1.25732
			family, member 4	5	
205088_at	10046	MAMLD1	mastermind-like	0.036125	1.26206
			domain containing	2	
			1		
214704_at	22980	TCF25	transcription factor	0.009867	1.2652
			25 (basic helix-	25	
			loop-helix)		
230250_at	5787	PTPRB	protein tyrosine	0.030742	1.26978
			phosphatase,		
			receptor type, B		

232111_at	100507	TUNAR	TCL1 upstream	0.020016	1.27179
	043		neural	5	
			differentiation-		
			associated RNA		
209693_at	23245	ASTN2	astrotactin 2	0.008557	1.27224
				85	
225450_at	154810	AMOTL1	angiomotin like 1	0.003102	1.27417
				64	
217104_at	400410	ST20	suppressor of	0.019327	1.27572
			tumorigenicity 20	8	
227099_s_at	387763	C11orf96	chromosome 11	0.018035	1.27607
			open reading	5	
			frame 96		
230636_s_at	687	KLF9	Kruppel-like factor	0.017040	1.27935
			9	3	
224904_at	55066	PDPR	pyruvate	0.002460	1.27936
			dehydrogenase	44	
			phosphatase		
			regulatory subunit		
219821_s_at	54438	GFOD1	glucose-fructose	0.001089	1.27958
			oxidoreductase	66	
			domain containing		
			1		
220591_s_at	80258	EFHC2	EF-hand domain	0.043208	1.2819
			(C-terminal)	4	
			containing 2		
227893_at	100128	LINC00476	long intergenic	0.023246	1.28257
	782		non-protein coding	3	
			RNA 476		

1561146_at	55737	VPS35	VPS35 retromer	0.011883	1.28377
			complex	8	
			component		
1557465_at	283521	LINC00282	long intergenic	0.031242	1.28723
			non-protein coding	4	
			RNA 282		
219182_at	79583	TMEM231	transmembrane	0.000544	1.28967
			protein 231	301	
237241_at	1894	ECT2	epithelial cell	0.010464	1.29357
			transforming 2	4	
209691_s_at	55715	DOK4	docking protein 4	0.033102	1.313
213060_s_at	1117	CHI3L2	chitinase 3-like 2	0.036494	1.32125
				4	
208399_s_at	1908	EDN3	endothelin 3	0.022430	1.32228
				5	
47553_at	25861	DFNB31	deafness,	0.014656	1.32452
			autosomal	1	
			recessive 31		
205328_at	9071	CLDN10	claudin 10	0.018825	1.33332
				2	
235467_s_at	3749	KCNC4	potassium channel,	0.011808	1.34508
			voltage gated	6	
			Shaw related		
			subfamily C,		
			member 4		
213174_at	23508	TTC9	tetratricopeptide	0.001679	1.34601
			repeat domain 9	47	
219837_s_at	54360	CYTL1	cytokine like 1	0.011155	1.35678
				8	

224049_at	89822	KCNK17	potassium channel,	0.031234	1.35824
			two pore domain	7	
			subfamily K,		
			member 17		
204755_x_at	3131	HLF	hepatic leukemia	0.03442	1.36377
			factor		
235099_at	152189	CMTM8	CKLF-like	0.002327	1.37176
			MARVEL	14	
			transmembrane		
			domain containing		
			8		
206171_at	140	ADORA3	adenosine A3	0.007417	1.38728
			receptor	49	
214978_s_at	8497	PPFIA4	protein tyrosine	0.021115	1.40963
			phosphatase,	1	
			receptor type, f		
			polypeptide		
			(PTPRF),		
			interacting protein		
223349_s_at	666	BOK	BCL2-related	0.024648	1.41999
			ovarian killer	8	
219758_at	79989	TTC26	tetratricopeptide	0.044749	1.42684
			repeat domain 26	2	
231223_at	64478	CSMD1	CUB and Sushi	0.005248	1.51375
			multiple domains 1	83	
232825_s_at	92126	DSEL	dermatan sulfate	0.002265	1.58876
			epimerase-like	81	
231455_at	400941	LINC00487	long intergenic	0.037985	1.61432
			non-protein coding	1	
			RNA 487		

238488_at	51194	IPO11 ///	importin 11 ///	0.006837	1.63303
	///	LRRC70	leucine rich repeat	13	
	100130		containing 70		
	733				
212805_at	158471	PRUNE2	prune homolog 2	0.035326	1.74856
			(Drosophila)	6	

Ingenuity Canonical Pathways	Molecules
B Cell Development	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
Antigen Presentation Pathway	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
T Helper Cell Differentiation	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1,STAT1
Autoimmune Thyroid Disease	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Signaling	DQB1
Allograft Rejection Signaling	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
Graft-versus-Host Disease	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Signaling	DQB1
OX40 Signaling Pathway	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
Nur77 Signaling in T	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Lymphocytes	DQB1
Calcium-induced T Lymphocyte	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Apoptosis	DQB1
Type I Diabetes Mellitus Signaling	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1,STAT1
Cdc42 Signaling	HLA-DOA,HLA-DRB1,BAIAP2,HLA-
	DQA1,HLA-DQB1
Th1 Pathway	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1,STAT1
Altered T Cell and B Cell	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Signaling in Rheumatoid Arthritis	DQB1
IL-4 Signaling	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1

 Table S2. Pathways associated with differentially expressed genes at admission

Th1 and Th2 Activation Pathway	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1,STAT1
iCOS-iCOSL Signaling in T	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Helper Cells	DQB1
T Cell Exhaustion Signaling	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Pathway	DQB1,STAT1
Dendritic Cell Maturation	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1,STAT1
Role of NFAT in Regulation of the	HLA-DOA,HLA-DRB1,HLA-
Immune Response	DQA1,MEF2C,HLA-DQB1
CD28 Signaling in T Helper Cells	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
Caveolar-mediated Endocytosis	CAV1,ITGA10,ITGB6
Signaling	
Tyrosine Biosynthesis IV	PCBD2
Th2 Pathway	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
Arsenate Detoxification I	AS3MT
(Glutaredoxin)	
Phenylalanine Degradation I	PCBD2
(Aerobic)	
Tetrapyrrole Biosynthesis II	UROS
PKCθ Signaling in T Lymphocytes	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
	DQB1
tRNA Splicing	SMPDL3A,PDE5A
Heme Biosynthesis II	UROS
Virus Entry via Endocytic	DNM1,CAV1,ITGB6
Pathways	
Phospholipases	PLD1,HRASLS

Neuroinflammation Signaling	HLA-DOA,HLA-DRB1,HLA-DQA1,HLA-
Pathway	DQB1,STAT1
Cardiac β-adrenergic Signaling	SMPDL3A,AKAP14,PDE5A
Chondroitin Sulfate Degradation	GM2A
(Metazoa)	
Choline Biosynthesis III	PLD1
cAMP-mediated signaling	SMPDL3A,AKAP14,ADORA3,PDE5A
Dermatan Sulfate Degradation	GM2A
(Metazoa)	
RAN Signaling	TNPO1
MSP-RON Signaling Pathway	KLKB1,CCR2
Mitochondrial L-carnitine Shuttle	CPT1B
Pathway	
Role of BRCA1 in DNA Damage	FANCB,STAT1
Response	
Cardiomyocyte Differentiation via	MEF2C
BMP Receptors	
GADD45 Signaling	CCND3
Granulocyte Adhesion and	CLDN10,MMP21,HRH1
Diapedesis	
IL-7 Signaling Pathway	CCND3,STAT1
Agranulocyte Adhesion and	CLDN10,MMP21,HRH1
Diapedesis	
Pyrimidine Deoxyribonucleotides	NME7
De Novo Biosynthesis I	
Macropinocytosis Signaling	USP6NL,ITGB6
IL-22 Signaling	STAT1
Role of JAK1, JAK2 and TYK2 in	STAT1
Interferon Signaling	

Role of JAK family kinases in IL-	STAT1
6-type Cytokine Signaling	
CDP-diacylglycerol Biosynthesis I	AGPAT4
Apelin Liver Signaling Pathway	EDN3
Phosphatidylglycerol Biosynthesis	AGPAT4
II (Non-plastidic)	
PDGF Signaling	CAV1,STAT1
G-Protein Coupled Receptor	SMPDL3A,HRH1,ADORA3,PDE5A
Signaling	
Antioxidant Action of Vitamin C	PLD1,HRASLS
Protein Kinase A Signaling	SMPDL3A,AKAP14,PTPRB,PDE5A,PTP4A1
DNA Methylation and	HIST1H4D
Transcriptional Repression	
Signaling	
Retinoate Biosynthesis I	RDH16
Nitric Oxide Signaling in the	CAV1,PDE5A
Cardiovascular System	
Role of JAK2 in Hormone-like	STAT1
Cytokine Signaling	
p38 MAPK Signaling	MEF2C,STAT1
Coagulation System	KLKB1
RhoA Signaling	BAIAP2,PLD1
Interferon Signaling	STAT1
Paxillin Signaling	ITGA10,ITGB6
Gai Signaling	CAV1,ADORA3
Atherosclerosis Signaling	CCR2,HRASLS
Pancreatic Adenocarcinoma	STAT1,PLD1
Signaling	
Inhibition of Matrix	MMP21
Metalloproteases	

Integrin Signaling	CAV1,ITGA10,ITGB6
Rac Signaling	BAIAP2,PLD1
Apelin Endothelial Signaling	MEF2C,KLF2
Pathway	
BAG2 Signaling Pathway	ANXA2
Role of PKR in Interferon	STAT1
Induction and Antiviral Response	
Intrinsic Prothrombin Activation	KLKB1
Pathway	
Dermatan Sulfate Biosynthesis	DSEL
(Late Stages)	
Pyrimidine Ribonucleotides	NME7
Interconversion	
Oncostatin M Signaling	STAT1
Pyrimidine Ribonucleotides De	NME7
Novo Biosynthesis	
Triacylglycerol Biosynthesis	AGPAT4
Phagosome Maturation	HLA-DRB1,TUBG2
iNOS Signaling	STAT1
Role of Oct4 in Mammalian	РНС3
Embryonic Stem Cell Pluripotency	
IL-9 Signaling	STAT1
Gustation Pathway	SMPDL3A,PDE5A
Transcriptional Regulatory	HIST1H4D
Network in Embryonic Stem Cells	
Dermatan Sulfate Biosynthesis	DSEL
SPINK1 Pancreatic Cancer	KLKB1
Pathway	
Mitochondrial Dysfunction	CPT1B,UQCRC2
PCP pathway	PRICKLE1

Relaxin Signaling	SMPDL3A,PDE5A
Sirtuin Signaling Pathway	TIMM8A,CPT1B,UQCRC2
Activation of IRF by Cytosolic	STAT1
Pattern Recognition Receptors	
Gaq Signaling	HRH1,PLD1
Eicosanoid Signaling	HRASLS
Remodeling of Epithelial	DNM1
Adherens Junctions	
Cell Cycle: G1/S Checkpoint	CCND3
Regulation	
PPARα/RXRα Activation	CPT1B,MEF2C
CNTF Signaling	STAT1
ERK5 Signaling	MEF2C
Actin Nucleation by ARP-WASP	BAIAP2
Complex	
EGF Signaling	STAT1
Hepatic Fibrosis / Hepatic Stellate	STAT1,COL26A1
Cell Activation	
Thrombopoietin Signaling	STAT1
Role of MAPK Signaling in the	HRASLS
Pathogenesis of Influenza	
Communication between Innate	HLA-DRB1
and Adaptive Immune Cells	
Role of JAK1 and JAK3 in yc	STAT1
Cytokine Signaling	
Endothelin-1 Signaling	PLD1,HRASLS
Cyclins and Cell Cycle Regulation	CCND3
GM-CSF Signaling	STAT1
Osteoarthritis Pathway	ANXA2,MEF2C

Crosstalk between Dendritic Cells	HLA-DRB1
and Natural Killer Cells	
Leukocyte Extravasation Signaling	CLDN10,MMP21
Clathrin-mediated Endocytosis	DNM1,ITGB6
Signaling	
Growth Hormone Signaling	STAT1
GDNF Family Ligand-Receptor	DOK4
Interactions	
Regulation of Actin-based Motility	BAIAP2
by Rho	
IL-8 Signaling	CCND3,PLD1
Factors Promoting Cardiogenesis	MEF2C
in Vertebrates	
FLT3 Signaling in Hematopoietic	STAT1
Progenitor Cells	
IL-3 Signaling	STAT1
Fcy Receptor-mediated	PLD1
Phagocytosis in Macrophages and	
Monocytes	
Prolactin Signaling	STAT1
JAK/Stat Signaling	STAT1
GABA Receptor Signaling	DNM1
Salvage Pathways of Pyrimidine	NME7
Ribonucleotides	
Bladder Cancer Signaling	MMP21
HER-2 Signaling in Breast Cancer	ITGB6
Oxidative Phosphorylation	UQCRC2
NER Pathway	HIST1H4D
TR/RXR Activation	KLF9
Phospholipase C Signaling	MEF2C,PLD1

UVA-Induced MAPK Signaling	STAT1
Cholecystokinin/Gastrin-mediated	MEF2C
Signaling	
IL-15 Production	STAT1

Probeset	Entrez	Gene Symbol	Gene Title	r	Р
ID	Gene				value(correlati
					on)
237210_at	4798	NFRKB	nuclear factor related	-	0.00047656
			to kappaB binding	0.42424	
			protein		
226947_at	375513	GUSBP1 ///	glucuronidase, beta	-	0.00480989
	///	GUSBP4 ///	pseudogene 1 ///	0.34819	
	728411	LINC00680	glucuronidase, beta	8	
	///	///	pseudogene 4 /// long		
	1019292	LOC1019292	intergen		
	00 ///	00			
	1066606				
	12				
213624_at	10924	SMPDL3A	sphingomyelin	-	0.00678175
			phosphodiesterase,	0.33517	
			acid-like 3A	8	
216213_at	4750	NEK1	NIMA-related kinase	-	0.00867131
			1	0.32552	
				1	
207794_at	729230	CCR2	chemokine (C-C	-	0.00905507
			motif) receptor 2	0.32378	
				8	
226878_at	3111	HLA-DOA	major	-	0.0108864
			histocompatibility	0.31630	
			complex, class II, DO	7	
			alpha		

Table S3. Differentially expressed genes that correlated with SBP at admission

211654_x_a	3119	HLA-DQB1	major	-	0.0109484
t			histocompatibility	0.31607	
			complex, class II, DQ	3	
			beta 1		
212999_x_a	3119 ///	HLA-DQB1	major	-	0.0120731
t	3120	/// HLA-	histocompatibility	0.31202	
		DQB2	complex, class II, DQ	4	
			beta 1 /// major		
			histocompatibility		
			comp		
1559078_at	53335	BCL11A	B-cell	-	0.0138831
			CLL/lymphoma 11A	0.30614	
			(zinc finger protein)	5	
1568126_at	302	ANXA2	annexin A2	-	0.0150842
				0.30259	
				8	
232530_at	5337	PLD1	phospholipase D1,	-	0.0151735
			phosphatidylcholine-	0.30234	
			specific	5	
236203_at	3117	HLA-DQA1	major	-	0.0152343
			histocompatibility	0.30217	
			complex, class II, DQ	3	
			alpha 1		
232303_at	57507	ZNF608	zinc finger protein	-	0.0152748
			608	0.30205	
				8	
226065_at	144165	PRICKLE1	prickle homolog 1	-	0.0180148
				0.29486	
				9	

1561132_at	60625	DHX35	DEAH (Asp-Glu-	-	0.01977
			Ala-His) box	0.29074	
			polypeptide 35	2	
215891_s_a	2760	GM2A	GM2 ganglioside	-	0.0224689
t			activator	0.28496	
				6	
213831_at	3117	HLA-DQA1	major	-	0.0270513
			histocompatibility	0.27638	
			complex, class II, DQ	7	
			alpha 1		
204324_s_a	27333	GOLIM4	golgi integral	-	0.0276892
t			membrane protein 4	0.27529	
				2	
1554894_a_	84105	PCBD2	pterin-4 alpha-	-	0.029831
at			carbinolamine	0.27176	
			dehydratase/dimerizat	4	
			ion cofactor of		
			hepatocyte nuclear fa		
209480_at	3119	HLA-DQB1	major	-	0.0298319
			histocompatibility	0.27176	
			complex, class II, DQ	3	
			beta 1		
1555227_a_	79694	MANEA	mannosidase, endo-	-	0.0308983
at			alpha	0.27008	
				5	
229943_at	10206	TRIM13	tripartite motif	-	0.0343732
			containing 13	0.26493	
				4	
228362_s_a	441168	FAM26F	family with sequence	-	0.0410668
t			similarity 26, member	0.25612	
			F	8	

242507_at	1010000	UBXN7-AS1	UBXN7 antisense	-	0.0424385
	00		RNA 1	0.25447	
				3	
201243_s_a	481	ATP1B1	ATPase, Na+/K+	-	0.0471602
t			transporting, beta 1	0.24909	
			polypeptide	1	
219837_s_a	54360	CYTL1	cytokine like 1	0.24663	0.0494542
t				5	
231223_at	64478	CSMD1	CUB and Sushi	0.24879	0.0474301
			multiple domains 1	7	
206753_at	8608	RDH16	retinol dehydrogenase	0.25367	0.0431151
			16 (all-trans)	2	
217104_at	400410	ST20	suppressor of	0.25453	0.0423868
			tumorigenicity 20	4	
210069_at	1375 ///	СНКВ-	CHKB-CPT1B	0.25841	0.0392334
	386593	CPT1B ///	readthrough (NMD	4	
		CPT1B	candidate) ///		
			carnitine		
			palmitoyltransferase		
			1B (muscle)		
1555396_s_	340602	CXorf67	chromosome X open	0.26137	0.0369584
at			reading frame 67	7	
232825_s_a	92126	DSEL	dermatan sulfate	0.26229	0.0362732
t			epimerase-like	9	
223740_at	79992	AGPAT4-IT1	AGPAT4 intronic	0.26361	0.0353114
			transcript 1	8	
223349_s_a	666	BOK	BCL2-related ovarian	0.26968	0.0311556
t			killer	7	

243686_at	158038	LINGO2	leucine rich repeat	0.27365	0.0286694
			and Ig domain		
			containing 2		
238254_at	342926	ZNF677	zinc finger protein	0.28098	0.024508
			677	2	
203894_at	27175	TUBG2	tubulin, gamma 2	0.28111	0.0244362
				7	
213035_at	23243	ANKRD28	ankyrin repeat	0.28416	0.0228685
			domain 28	2	
1561890_at	170371	C10orf128	chromosome 10 open	0.28677	0.0215921
			reading frame 128	5	
205579_at	3269	HRH1	histamine receptor	0.29327	0.0186762
			H1	5	
236534_at	149428	BNIPL	BCL2/adenovirus	0.29606	0.017533
			E1B 19kD interacting	2	
			protein like		
1560830_a_	147646	C19orf84	chromosome 19 open	0.29805	0.0167531
at			reading frame 84	4	
220591_s_a	80258	EFHC2	EF-hand domain (C-	0.29913	0.0163417
t			terminal) containing	7	
			2		
1568706_s_	10677	AVIL	advillin	0.30777	0.0133588
at				6	
1557465_at	283521	LINC00282	long intergenic non-	0.31388	0.0115455
			protein coding RNA	1	
			282		
206541_at	3818	KLKB1	kallikrein B1	0.33792	0.00631494
				6	
242060_x_a	51131	PHF11	PHD finger protein	0.34701	0.00496545
t			11	4	

223652_at	57412	AS3MT	arsenite	0.34947	0.00464713
			methyltransferase	4	
211673_s_a	4337	MOCS1	molybdenum cofactor	0.37065	0.0025697
t			synthesis 1	8	
205328_at	9071	CLDN10	claudin 10	0.40573	0.00088031
				6	
1558688_at	441461	STX17-AS1	STX17 antisense	0.44349	0.00024218
			RNA 1	6	

Table S4. Differentially expressed genes in strokes with admission BP > 185/110 mm Hg andBP < 185/110 mm Hg at 5 hours

Probeset	Entrez	Gene	Gene Title	P value	Fold-
ID	Gene	Symbol			Change
					(Highe
					r vs.
					Lower
					BP)
221491_x_a	3119 ///	HLA-DQB1	major histocompatibility	0.02420	-
t	3123 ///	/// HLA-	complex, class II, DQ beta 1	3	3.06695
	3124 ///	DRB1 ///	/// major histocompatibility		
	3125 ///	HLA-DRB2	comp		
	3126 ///	/// HLA-			
	3127 ///	DRB3 ///			
	3128 ///	HLA-DRB4			
	3129 ///	/// HLA-			
	3130 ///	DRB5 ///			
	105369	HLA-DRB6			
		/// HLA-			
		DRB7 ///			
		HLA-DRB8			
		///			
		LOC1053692			
		30			
236203_at	3117	HLA-DQA1	major histocompatibility	0.03076	-
			complex, class II, DQ alpha 1	7	2.93776
204141_at	7280	TUBB2A	tubulin, beta 2A class IIa	0.02744	-
				1	2.12958
231982_at	284422	SMIM24	small integral membrane	0.02283	-
			protein 24	4	1.76856

1552410_at	165530	CLEC4F	C-type lectin domain family 4,	0.02006	-1.707
			member F	4	
210395_x_a	4635	MYL4	myosin light chain 4	0.00949	-
t				5	1.68071
210088_x_a	4635	MYL4	myosin light chain 4	0.01263	-
t				9	1.65946
216054_x_a	4635	MYL4	myosin light chain 4	0.01258	-1.6575
t				1	
239853_at	147700	KLC3	kinesin light chain 3	0.03236	-
				9	1.60127
217274_x_a	4635	MYL4	myosin light chain 4	0.01351	-
t				4	1.58696
202007_at	4811	NID1	nidogen 1	0.01182	-
				3	1.57445
235428_at	1005073	MINCR	MYC-induced long noncoding	0.00064	-
	16		RNA		1.56844
214273_x_a	8131	NPRL3	NPR3-like, GATOR1	0.03779	-
t			complex subunit	5	1.55543
203289_s_a	8131	NPRL3	NPR3-like, GATOR1	0.04879	-
t			complex subunit	5	1.53957
216549_s_a	55633	TBC1D22B	TBC1 domain family, member	0.02906	-
t			22B	4	1.50241
209807_s_a	4784	NFIX	nuclear factor I/X (CCAAT-	0.04955	-
t			binding transcription factor)	1	1.48372
224822_at	10395	DLC1	DLC1 Rho GTPase activating	0.03176	-1.4689
			protein	8	
223062_s_a	29968	PSAT1	phosphoserine	0.02041	-
t			aminotransferase 1	7	1.46298
223963_s_a	10644	IGF2BP2	insulin-like growth factor 2	0.04788	-
t			mRNA binding protein 2	1	1.44664

201250_s_a	6513	SLC2A1	solute carrier family 2	0.04113	-
t			(facilitated glucose	5	1.44398
			transporter), member 1		
206710_s_a	23136	EPB41L3	erythrocyte membrane protein	0.00385	-
t			band 4.1-like 3	8	1.43585
215621_s_a	3495	IGHD	immunoglobulin heavy	0.03357	-1.435
t			constant delta	3	
240744_at	93979	CPA5	carboxypeptidase A5	0.03289	-
				4	1.43212
234440_at	28516	TRDV3	T cell receptor delta variable 3	0.04864	-
				1	1.42908
1568781_at	7390	UROS	uroporphyrinogen III synthase	0.00222	-
				8	1.42805
213674_x_a	3495	IGHD	immunoglobulin heavy	0.01871	-
t			constant delta	5	1.42627
1552582_at	150000	ABCC13	ATP binding cassette	0.04258	-
			subfamily C member 13,	5	1.41645
			pseudogene		
222830_at	29841	GRHL1	grainyhead-like transcription	0.04564	-
			factor 1	2	1.41563
231798_at	9241	NOG	noggin	0.02816	-
				6	1.40765
235276_at	94240	EPSTI1	epithelial stromal interaction 1	0.02389	-
			(breast)	7	1.40014
229552_at	8739 ///	HRK ///	harakiri, BCL2 interacting	0.01199	-
	283454	LOC283454	protein /// uncharacterized	5	1.39558
			LOC283454		
1558719_s_	84268	RPAIN	RPA interacting protein	0.00252	-1.3894
at				9	

220146_at	51284	TLR7	toll-like receptor 7	0.00941	-
				7	1.38904
226122_at	57480	PLEKHG1	pleckstrin homology domain	0.02623	-
			containing, family G (with	1	1.38658
			RhoGef domain) member 1		
211654_x_a	3119	HLA-DQB1	major histocompatibility	0.02565	-
t			complex, class II, DQ beta 1	1	1.38481
243928_s_a	10257	ABCC4	ATP binding cassette	0.04343	-1.3798
t			subfamily C member 4	3	
231157_at	158135	TTLL11	tubulin tyrosine ligase-like	0.00152	-1.3694
			family member 11	5	
234973_at	92745	SLC38A5	solute carrier family 38,	0.02554	-
			member 5	6	1.36677
235175_at	115361	GBP4	guanylate binding protein 4	0.02622	-
				7	1.36032
208304_at	1232	CCR3	chemokine (C-C motif)	0.04581	-
			receptor 3	1	1.35966
225942_at	57486	NLN	neurolysin (metallopeptidase	0.00678	-
			M3 family)	1	1.35902
201123_s_a	1984	EIF5A	eukaryotic translation	0.02493	-
t			initiation factor 5A	1	1.35874
201929_s_a	8502	PKP4	plakophilin 4	0.01103	-
t				9	1.35792
235678_at	2760	GM2A	GM2 ganglioside activator	0.01089	-
					1.35227
218967_s_a	9317	PTER	phosphotriesterase related	0.02939	-1.3519
t				2	
220484_at	55283	MCOLN3	mucolipin 3	0.04841	-
				8	1.34979

216510_x_a	3493 ///	IGHA1 ///	immunoglobulin heavy	0.03718	-
t	3500 ///	IGHG1 ///	constant alpha 1 ///	3	1.34969
	3507 ///	IGHM ///	immunoglobulin heavy		
	28396 ///	IGHV3-23 ///	constant gamma 1 (G1m ma		
	28442 ///	IGHV4-31 ///			
	50802 ///	IGK ///			
	152098	ZCWPW2			
1557910_at	3326	HSP90AB1	heat shock protein 90kDa	0.00043	-
			alpha (cytosolic), class B		1.34318
			member 1		
228855_at	283927	NUDT7	nudix hydrolase 7	0.00432	-
				4	1.34208
230877_at	3495	IGHD	immunoglobulin heavy	0.0414	-
			constant delta		1.33922
227084_at	1837	DTNA	dystrobrevin, alpha	0.00496	-
				5	1.33675
226069_at	144165	PRICKLE1	prickle homolog 1	0.03715	-
				6	1.32562
201015_s_a	3728	JUP	junction plakoglobin	0.02416	-1.3206
t				7	
226065_at	144165	PRICKLE1	prickle homolog 1	0.00776	-1.32
				4	
229994_at	4774	NFIA	nuclear factor I/A	0.01622	-
				1	1.31566
235122_at	59269	HIVEP3	human immunodeficiency	0.02723	-
			virus type I enhancer binding	4	1.31381
			protein 3		
221590_s_a	4329	ALDH6A1	aldehyde dehydrogenase 6	0.02119	-
t			family, member A1	5	1.31237

202947_s_a	2995	GYPC	glycophorin C (Gerbich blood	0.03438	-
t			group)	1	1.31235
243_g_at	4134	MAP4	microtubule associated protein	0.00395	-
			4	5	1.31153
209374_s_a	3507	IGHM	immunoglobulin heavy	0.01588	-1.3097
t			constant mu	4	
207090_x_a	22835	ZFP30	ZFP30 zinc finger protein	0.03965	-
t				9	1.30683
216213_at	4750	NEK1	NIMA-related kinase 1	0.00595	-
				3	1.30614
212290_at	6541	SLC7A1	solute carrier family 7	0.02170	-
			(cationic amino acid	8	1.30478
			transporter, y+ system),		
			member 1		
217963_s_a	27018	NGFRAP1	nerve growth factor receptor	0.02524	-
t			(TNFRSF16) associated	6	1.30256
			protein 1		
202068_s_a	3949	LDLR	low density lipoprotein	0.01761	-1.3
t			receptor	6	
227898_s_a	286128	ZFP41	ZFP41 zinc finger protein	0.00538	-
t				7	1.29819
200672_x_a	6711	SPTBN1	spectrin, beta, non-	0.00117	-
t			erythrocytic 1	6	1.29538
204038_s_a	1902	LPAR1	lysophosphatidic acid receptor	0.03050	-
t			1	2	1.29527
226767_s_a	81889	FAHD1	fumarylacetoacetate hydrolase	0.03553	-
t			domain containing 1		1.29463
222451_s_a	51114	ZDHHC9	zinc finger, DHHC-type	0.00023	-
t			containing 9	1	1.29302

209218_at	6713	SQLE	squalene epoxidase	0.01506	-
				2	1.29266
1553508_at	259283	MDS2	myelodysplastic syndrome 2	0.02570	-
			translocation associated	4	1.29186
227173_s_a	60468	BACH2	BTB and CNC homology 1,	0.00316	-
t			basic leucine zipper	7	1.28991
			transcription factor 2		
228121_at	7042 ///	TGFB2 ///	transforming growth factor	0.02434	-
	1036111	TGFB2-OT1	beta 2 /// TGFB2 overlapping	8	1.28921
	57		transcript 1		
200671_s_a	6711	SPTBN1	spectrin, beta, non-	0.00492	-
t			erythrocytic 1	9	1.28618
209349_at	10111	RAD50	RAD50 homolog, double	0.00951	-
			strand break repair protein	2	1.28475
1562681_at	338651	KRTAP5-	KRTAP5-1/KRTAP5-2	0.01031	-1.2847
		AS1	antisense RNA 1	6	
38521_at	933	CD22	CD22 molecule	0.02695	-
				6	1.28313
206873_at	765	CA6	carbonic anhydrase VI	0.04020	-
				9	1.28311
204918_s_a	4300	MLLT3	myeloid/lymphoid or mixed-	0.02652	-
t			lineage leukemia; translocated	8	1.28268
			to, 3		
1554930_a_	2530	FUT8	fucosyltransferase 8 (alpha	0.01433	-
at			(1,6) fucosyltransferase)	4	1.28265
220022_at	55713	ZNF334	zinc finger protein 334	0.00921	-
				7	1.28243
230489_at	921	CD5	CD5 molecule	0.01693	-
				1	1.28129

221802_s_a	57698	SHTN1	shootin 1	0.04762	-
t				5	1.28028
203852_s_a	6606 ///	SMN1 ///	survival of motor neuron 1,	0.02448	-
t	6607	SMN2	telomeric /// survival of motor	2	1.27846
			neuron 2, centromeric		
229558_at	400506	KNOP1	lysine-rich nucleolar protein 1	0.00637	-1.2779
				1	
214359_s_a	3326	HSP90AB1	heat shock protein 90kDa	0.00164	-
t			alpha (cytosolic), class B	2	1.27759
			member 1		
1561367_a_	1005066	LINC00540	long intergenic non-protein	0.02034	-1.2764
at	22		coding RNA 540		
213914_s_a	6711	SPTBN1	spectrin, beta, non-	0.00236	-1.2761
t			erythrocytic 1	6	
204581_at	933	CD22	CD22 molecule	0.03087	-
				7	1.27373
227853_at	196463	PLBD2	phospholipase B domain	0.03093	-
			containing 2	8	1.27045
205249_at	1959	EGR2	early growth response 2	0.02495	-
				4	1.26922
219205_at	63826	SRR	serine racemase	0.03335	-1.2691
				4	
200688_at	23450	SF3B3	splicing factor 3b subunit 3	0.00100	-1.2673
				3	
205895_s_a	9221	NOLC1	nucleolar and coiled-body	0.00066	-
t			phosphoprotein 1	5	1.26725
229000_at	58492	ZNF77	zinc finger protein 77	0.02317	-
				4	1.26671
226947_at	375513	GUSBP1 ///	glucuronidase, beta	0.02397	-
	///	GUSBP4 ///	pseudogene 1 ///	3	1.26562

	728411	LINC00680	glucuronidase, beta		
	///	///	pseudogene 4 /// long intergen		
	1019292	LOC1019292			
	00 ///	00			
	1066606				
	12				
233436_at	27085	MTBP	MDM2 binding protein	0.01920	-
				1	1.26553
1568801_at	81556	VWA9	von Willebrand factor A	0.01127	-
			domain containing 9	1	1.26508
206206_at	4064	CD180	CD180 molecule	0.02662	-
				1	1.26493
206150_at	939	CD27	CD27 molecule	0.02165	-
				2	1.26485
204407_at	8458	TTF2	transcription termination	0.04883	-
			factor, RNA polymerase II	3	1.26367
227744_s_a	3184	HNRNPD	heterogeneous nuclear	0.0139	-
t			ribonucleoprotein D		1.26311
211501_s_a	8662	EIF3B	eukaryotic translation	0.02137	-
t			initiation factor 3, subunit B	9	1.26305
208624_s_a	1981	EIF4G1	eukaryotic translation	0.00952	-
t			initiation factor 4 gamma, 1	8	1.26233
216607_s_a	1595 ///	CYP51A1 ///	cytochrome P450, family 51,	0.02563	-
t	401387	LRRD1	subfamily A, polypeptide 1 ///	1	1.26101
			leucine-rich repeats and dea		
218430_s_a	64864	RFX7	regulatory factor X, 7	0.02280	-
t				7	1.26079
1566472_s_	54884	RETSAT	retinol saturase (all-trans-	0.00419	-
at			retinol 13,14-reductase)	7	1.25948

227935_s_a	84333	PCGF5	polycomb group ring finger 5	0.03796	-
t				3	1.25902
228298_at	91523	PCED1B	PC-esterase domain	0.01126	-
			containing 1B	3	1.25892
211776_s_a	23136	EPB41L3	erythrocyte membrane protein	0.03187	-
t			band 4.1-like 3	4	1.25824
203147_s_a	9830	TRIM14	tripartite motif containing 14	0.00909	-
t				5	1.25824
242702_at	166785	MMAA	methylmalonic aciduria	0.04090	-
			(cobalamin deficiency) cblA	8	1.25808
			type		
213428_s_a	1291	COL6A1	collagen, type VI, alpha 1	0.04647	-
t				2	1.25725
213324_at	6714	SRC	SRC proto-oncogene, non-	0.04847	-
			receptor tyrosine kinase	7	1.25598
202759_s_a	11217 ///	AKAP2 ///	A kinase (PRKA) anchor	0.03647	-
t	445815	PALM2-	protein 2 /// PALM2-AKAP2		1.25585
		AKAP2	readthrough		
216542_x_a	3493 ///	IGHA1 ///	immunoglobulin heavy	0.03522	-
t	3500 ///	IGHG1 ///	constant alpha 1 ///	2	1.25499
	3507 ///	IGHM ///	immunoglobulin heavy		
	28445	IGHV3-20	constant gamma 1 (G1m ma		
212992_at	113146	AHNAK2	AHNAK nucleoprotein 2	0.01291	-
				2	1.25496
219592_at	79648	MCPH1	microcephalin 1	0.00432	-
				5	1.25256
203684_s_a	596	BCL2	B-cell CLL/lymphoma 2	0.03304	-
t				2	1.25236
201561_s_a	22883	CLSTN1	calsyntenin 1	0.00305	-
t				8	1.25204

229757_at	92345	NAF1	nuclear assembly factor 1	0.01027	-
			ribonucleoprotein	1	1.25179
225802_at	116447	TOP1MT	topoisomerase (DNA) I,	0.02814	-
			mitochondrial	3	1.25114
213746_s_a	2316	FLNA	filamin A, alpha	0.01965	-
t				3	1.24992
222134_at	8528	DDO	D-aspartate oxidase	0.04716	-
				5	1.24985
203099_s_a	9425	CDYL	chromodomain protein, Y-like	0.02343	-
t				3	1.24972
226694_at	11217 ///	AKAP2 ///	A kinase (PRKA) anchor	0.02372	-
	445815	PALM2-	protein 2 /// PALM2-AKAP2	7	1.24826
		AKAP2	readthrough		
217230_at	7430	EZR	ezrin	0.02216	-
				9	1.24759
223961_s_a	1154	CISH	cytokine inducible SH2-	0.00731	-1.2471
t			containing protein		
202470_s_a	11052	CPSF6	cleavage and polyadenylation	0.04915	-
t			specific factor 6		1.24701
213237_at	400506	KNOP1	lysine-rich nucleolar protein 1	0.00302	-
					1.24648
208625_s_a	1981	EIF4G1	eukaryotic translation	0.00672	-
t			initiation factor 4 gamma, 1		1.24635
209723_at	5272	SERPINB9	serpin peptidase inhibitor,	0.00177	-
			clade B (ovalbumin), member	1	1.24627
			9		
200835_s_a	4134	MAP4	microtubule associated protein	0.01958	-
t			4		1.24441
201000_at	16	AARS	alanyl-tRNA synthetase	0.00464	-1.244
				6	

225715_at	57521	RPTOR	regulatory associated protein	0.00274	-
			of MTOR, complex 1	2	1.24385
232753_at	23567	ZNF346	zinc finger protein 346	0.01955	-
				7	1.24309
227808_at	29103	DNAJC15	DnaJ (Hsp40) homolog,	0.02476	-
			subfamily C, member 15	7	1.24291
202915_s_a	9917	FAM20B	family with sequence	0.03474	-1.2427
t			similarity 20, member B	2	
217610_at	441273	SPDYE2	speedy/RINGO cell cycle	0.01469	-
			regulator family member E2	9	1.24166
228065_at	283149	BCL9L	B-cell CLL/lymphoma 9-like	0.00749	-
					1.24071
212504_at	22982	DIP2C	disco-interacting protein 2	0.03174	-
			homolog C	5	1.24003
226000_at	55917	CTTNBP2NL	CTTNBP2 N-terminal like	0.02911	-
				6	1.23961
234902_s_a	55659	ZNF416	zinc finger protein 416	0.01055	-
t				9	1.23944
210510_s_a	8829	NRP1	neuropilin 1	0.02203	-
t				9	1.23934
221648_s_a	79814	AGMAT	agmatinase	0.03798	-
t				9	1.23888
223377_x_a	1154	CISH	cytokine inducible SH2-	0.01473	-
t			containing protein	6	1.23789
217902_s_a	8924	HERC2	HECT and RLD domain	0.01620	-
t			containing E3 ubiquitin	4	1.23786
			protein ligase 2		
201927_s_a	8502	PKP4	plakophilin 4	0.01405	-1.2375
t				7	

216961_s_a	84268	RPAIN	RPA interacting protein	0.00572	-
t				1	1.23725
209501_at	1039 ///	CDR2 ///	cerebellar degeneration related	0.01418	-
	1010603	LOC1010603	protein 2 /// cerebellar	8	1.23579
	99	99	degeneration-related protein 2		
229252_at	285973	ATG9B	autophagy related 9B	0.04963	-
				8	1.23569
200064_at	3326	HSP90AB1	heat shock protein 90kDa	0.00164	-
			alpha (cytosolic), class B	9	1.23538
			member 1		
221588_x_a	4329	ALDH6A1	aldehyde dehydrogenase 6	0.03719	-1.2352
t			family, member A1	1	
230566_at	150291	MORC2-AS1	MORC2 antisense RNA 1	0.01836	-
				4	1.23464
206980_s_a	2323	FLT3LG	fms-related tyrosine kinase 3	0.03375	-
t			ligand		1.23456
217234_s_a	7430	EZR	ezrin	0.02509	-
t				1	1.23452
221223_x_a	1154	CISH	cytokine inducible SH2-	0.01203	-
t			containing protein	5	1.23438
217933_s_a	51056	LAP3	leucine aminopeptidase 3	0.02094	-
t				4	1.23421
219865_at	29092	LINC00339	long intergenic non-protein	0.00906	-
			coding RNA 339	1	1.23278
222276_at	55798	METTL2B	methyltransferase like 2B	0.03780	-
				4	1.23257
203119_at	79080	CCDC86	coiled-coil domain containing	0.00588	-
			86	6	1.23248
208621_s_a	7430	EZR	ezrin	0.02683	-
t				5	1.23243

224632_at	54865	GPATCH4	G-patch domain containing 4	0.03572	-1.2322
				6	
201027_s_a	9669	EIF5B	eukaryotic translation	0.00139	-
t			initiation factor 5B	6	1.23218
222482_at	23648	SSBP3	single stranded DNA binding	0.03689	-
			protein 3	8	1.23125
211358_s_a	25792	CIZ1	CDKN1A interacting zinc	0.03941	-
t			finger protein 1	7	1.22999
201326_at	908	CCT6A	chaperonin containing TCP1,	0.00158	-
			subunit 6A (zeta 1)		1.22935
212996_s_a	9875	URB1	URB1 ribosome biogenesis 1	0.02281	-
t			homolog (S. cerevisiae)		1.22925
201797_s_a	7407	VARS	valyl-tRNA synthetase	0.00907	-
t				8	1.22917
35626_at	6448	SGSH	N-sulfoglucosamine	0.01020	-
			sulfohydrolase	2	1.22859
202188_at	9688	NUP93	nucleoporin 93kDa	0.00256	-
				6	1.22834
223384_s_a	89122	TRIM4	tripartite motif containing 4	0.00496	-
t				5	1.22816
205264_at	10849	CD3EAP	CD3e molecule, epsilon	0.00171	-
			associated protein	4	1.22772
202474_s_a	3054	HCFC1	host cell factor C1	0.00654	-
t				4	1.22761
226938_at	26094	DCAF4	DDB1 and CUL4 associated	0.00433	-
			factor 4	3	1.22736
57715_at	51063	CALHM2	calcium homeostasis	0.02398	-
			modulator 2	1	1.22735
219528_s_a	64919	BCL11B	B-cell CLL/lymphoma 11B	0.04135	-
t			(zinc finger protein)	6	1.22669

1555741_at	56246	MRAP	melanocortin 2 receptor	0.01033	-
			accessory protein	3	1.22655
230546_at	22846	VASH1	vasohibin 1	0.02873	-
				6	1.22557
204977_at	1662	DDX10	DEAD (Asp-Glu-Ala-Asp)	0.04181	-
			box polypeptide 10	9	1.22505
1563245_at	1008740	CLYBL-AS2	CLYBL antisense RNA 2	0.00257	-
	63			8	1.22459
208627_s_a	4904	YBX1	Y box binding protein 1	0.01136	-
t				1	1.22421
205120_s_a	6443	SGCB	sarcoglycan beta	0.02020	-
t				2	1.22409
215811_at	6622	SNCA	synuclein alpha	0.02558	-
				8	1.22331
233341_s_a	84172	POLR1B	polymerase (RNA) I	0.02770	-1.2232
t			polypeptide B	6	
205926_at	9466	IL27RA	interleukin 27 receptor, alpha	0.00560	-
				6	1.22303
208897_s_a	8886	DDX18	DEAD (Asp-Glu-Ala-Asp)	0.00441	-1.223
t			box polypeptide 18	7	
208744_x_a	10808	HSPH1	heat shock 105kDa/110kDa	0.03709	-
t			protein 1	8	1.22295
212520_s_a	6597	SMARCA4	SWI/SNF related, matrix	0.02204	-
t			associated, actin dependent		1.22274
			regulator of chromatin,		
			subfamily a		
227153_at	83943	IMMP2L	inner mitochondrial membrane	0.01521	-1.2217
			peptidase subunit 2	7	
231892_at	84904	ARHGEF39	Rho guanine nucleotide	0.01917	-
			exchange factor 39	8	1.22111

1567628_at	972	CD74	CD74 molecule, major	0.02012	-
			histocompatibility complex,	8	1.22051
			class II invariant chain		
200702_s_a	57062	DDX24	DEAD (Asp-Glu-Ala-Asp)	0.00740	-
t			box helicase 24	2	1.22044
221744_at	10238	DCAF7	DDB1 and CUL4 associated	0.01180	-
			factor 7	1	1.22013
1567627_at	972	CD74	CD74 molecule, major	0.01828	-
			histocompatibility complex,	7	1.22006
			class II invariant chain		
218897_at	80775	TMEM177	transmembrane protein 177	0.04868	-
				2	1.21993
208079_s_a	6790	AURKA	aurora kinase A	0.01052	-
t				6	1.21932
1555347_at	23042	PDXDC1	pyridoxal-dependent	0.03815	-
			decarboxylase domain		1.21893
			containing 1		
218949_s_a	55278	QRSL1	glutaminyl-tRNA synthase	0.00867	-1.2187
t			(glutamine-hydrolyzing)-like	2	
			1		
205718_at	3695	ITGB7	integrin beta 7	0.04967	-
				6	1.21759
212295_s_a	6541	SLC7A1	solute carrier family 7	0.01884	-
t			(cationic amino acid	7	1.21734
			transporter, y+ system),		
			member 1		
219204_s_a	63826	SRR	serine racemase	0.00873	-
t				6	1.21718
211300_s_a	7157	TP53	tumor protein p53	0.01773	-
t				4	1.21681

215093_at	50814	NSDHL	NAD(P) dependent steroid	0.01188	-
			dehydrogenase-like	1	1.21678
1554415_at	27097	TAF5L	TAF5-like RNA polymerase	0.00298	-1.216
			II, p300/CBP-associated factor	7	
			(PCAF)-associated factor,		
			65kDa		
213750_at	26156	RSL1D1	ribosomal L1 domain	0.00717	-
			containing 1	5	1.21502
212815_at	10973	ASCC3	activating signal cointegrator	0.04866	-
			1 complex subunit 3	1	1.21477
206277_at	5029	P2RY2	purinergic receptor P2Y, G-	0.04889	-
			protein coupled, 2	4	1.21477
237215_s_a	7037	TFRC	transferrin receptor	0.04635	-
t					1.21393
208758_at	471	ATIC	5-aminoimidazole-4-	0.00843	-
			carboxamide ribonucleotide	2	1.21388
			formyltransferase/IMP		
			cyclohydrolase		
222416_at	5832	ALDH18A1	aldehyde dehydrogenase 18	0.02906	-
			family, member A1	9	1.21367
234987_at	25939	SAMHD1	SAM domain and HD domain	0.00289	-
			1	3	1.21337
210657_s_a	5414	SEPTIN4	septin 4	0.03386	-1.2133
t				4	
204917_s_a	4300	MLLT3	myeloid/lymphoid or mixed-	0.04614	-
t			lineage leukemia; translocated	7	1.21289
			to, 3		
223950_s_a	84256	FLYWCH1	FLYWCH-type zinc finger 1	0.03011	-1.2125
t				9	

209153_s_a	6929	TCF3	transcription factor 3	0.02230	-1.2115
t				9	
222670_s_a	9935	MAFB	v-maf avian	0.04791	-
t			musculoaponeurotic	9	1.21133
			fibrosarcoma oncogene		
			homolog B		
224634_at	54865	GPATCH4	G-patch domain containing 4	0.01796	-
				3	1.21117
225865_x_a	51497	NELFCD	negative elongation factor	0.00131	-
t			complex member C/D	1	1.21103
207255_at	3953	LEPR	leptin receptor	0.02261	-1.211
				6	
1559856_s_	4297	KMT2A	lysine (K)-specific	0.03509	-
at			methyltransferase 2A	4	1.21068
202472_at	4351	MPI	mannose phosphate isomerase	0.01039	-
				7	1.21053
207740_s_a	23636	NUP62	nucleoporin 62kDa	0.01379	-
t				7	1.21026
221733_s_a	54865	GPATCH4	G-patch domain containing 4	0.04544	-
t					1.20996
218590_at	56652	C10orf2	chromosome 10 open reading	0.00259	-
			frame 2	3	1.20967
212811_x_a	6509	SLC1A4	solute carrier family 1	0.02261	-
t			(glutamate/neutral amino acid	3	1.20955
			transporter), member 4		
31637_s_at	7067 ///	NR1D1 ///	nuclear receptor subfamily 1,	0.04580	-
	9572	THRA	group D, member 1 /// thyroid	4	1.20942
			hormone receptor, alpha		
221730_at	1290	COL5A2	collagen, type V, alpha 2	0.03337	-
				1	1.20894

222666_s_a	10171	RCL1	RNA terminal phosphate	0.01451	-
t			cyclase-like 1	2	1.20885
200708_at	2806	GOT2	glutamic-oxaloacetic	0.00725	-
			transaminase 2, mitochondrial	8	1.20867
222613_at	57102	C12orf4	chromosome 12 open reading	0.02672	-
			frame 4	4	1.20804
223403_s_a	84172	POLR1B	polymerase (RNA) I	0.01371	-
t			polypeptide B	8	1.20726
240379_at	8502	PKP4	plakophilin 4	0.02717	-
				3	1.20722
225689_at	84892	POMGNT2	protein O-linked mannose N-	0.03333	-1.2071
			acetylglucosaminyltransferase	9	
			2 (beta 1,4-)		
225261_x_a	51497	NELFCD	negative elongation factor	0.00200	-
t			complex member C/D	1	1.20618
216863_s_a	22880	MORC2	MORC family CW-type zinc	0.00961	-
t			finger 2	7	1.20507
211953_s_a	3843	IPO5	importin 5	0.03046	-
t				4	1.20501
242049_s_a	51594	NBAS	neuroblastoma amplified	0.01334	-
t			sequence	6	1.20475
200782_at	308	ANXA5	annexin A5	0.00093	-
				6	1.20379
223533_at	84230	LRRC8C	leucine rich repeat containing	0.01838	-1.2035
			8 family, member C	4	
221571_at	7187	TRAF3	TNF receptor-associated	0.00527	-
			factor 3	8	1.20346
214095_at	6472	SHMT2	serine	0.01238	-
			hydroxymethyltransferase 2	6	1.20313
			(mitochondrial)		

223323_x_a	54822	TRPM7	transient receptor potential	0.02927	-
t			cation channel, subfamily M,	3	1.20262
			member 7		
242422_at	10146	G3BP1	GTPase activating protein	0.03819	-
			(SH3 domain) binding protein	2	1.20258
			1		
224878_at	56061	UBFD1	ubiquitin family domain	0.00616	-
			containing 1	2	1.20242
204293_at	6448	SGSH	N-sulfoglucosamine	0.01091	-
			sulfohydrolase	8	1.20241
223743_s_a	51073	MRPL4	mitochondrial ribosomal	0.02040	-1.2014
t			protein L4	6	
221652_s_a	55726	ASUN	asunder spermatogenesis	0.01907	-
t			regulator	2	1.20138
235779_at	284408	ZNF790-AS1	ZNF790 antisense RNA 1	0.03939	-
				8	1.20138
228449_at	22880	MORC2	MORC family CW-type zinc	0.02529	-
			finger 2	8	1.20104
210039_s_a	5588	PRKCQ	protein kinase C, theta	0.02974	-
t				5	1.20099
200598_s_a	7184	HSP90B1	heat shock protein 90kDa beta	0.01907	-
t			(Grp94), member 1	9	1.20043
200697_at	3098	HK1	hexokinase 1	0.04911	-
				5	1.20011
217649_at	7763	ZFAND5	zinc finger, AN1-type domain	0.02254	1.20077
			5	9	
1558747_at	23347	SMCHD1	structural maintenance of	0.02848	1.20094
			chromosomes flexible hinge	1	
			domain containing 1		

207492_at	55768	NGLY1	N-glycanase 1	0.01133	1.20127
_				4	
215082 at	60481	ELOVL5	ELOVL fatty acid elongase 5	0.02756	1.20128
_				3	
215044 s a	10254	STAM2	signal transducing adaptor	0.00970	1.20132
t			molecule (SH3 domain and	1	
			ITAM motif) 2	-	
214544 s a	8773	SNAP23	synaptosome associated	0.01233	1.20171
t	0775	51171 25	protein 23kDa	6	1.20171
-	4179	CD46	1	0.01426	1.20175
211574_s_a	41/9	CD40	CD46 molecule, complement		1.20175
t	1.6.4.62.2	C + D D 5	regulatory protein	3	1 20202
243173_at	164633	CABP7	calcium binding protein 7	0.01676	1.20203
				1	
213349_at	23023	TMCC1	transmembrane and coiled-coil	0.04343	1.20223
			domain family 1	7	
231280_at	23593	HEBP2	heme binding protein 2	0.01165	1.20226
				4	
1558965_at	51317	PHF21A	PHD finger protein 21A	0.02441	1.20233
				2	
227939_s_a	29896	TRA2A	transformer 2 alpha homolog	0.02564	1.20244
t			(Drosophila)	9	
241627_x_a	55701	ARHGEF40	Rho guanine nucleotide	0.00831	1.20262
t			exchange factor (GEF) 40	1	
205698_s_a	5608	MAP2K6	mitogen-activated protein	0.03856	1.20283
t – –			kinase kinase 6	2	
214270_s_a	22924	MAPRE3	microtubule-associated	0.01287	1.20295
			protein, RP/EB family,		
			member 3		

241809_at	55924 ///	FAM212B ///	family with sequence	0.04736	1.2031
	1019287	LOC1019287	similarity 212, member B ///	7	
	18	18	uncharacterized		
			LOC101928718		
218521_s_a	55284	UBE2W	ubiquitin-conjugating enzyme	0.01401	1.20313
t			E2W (putative)	1	
220404_at	222487	ADGRG3	adhesion G protein-coupled	0.04148	1.20335
			receptor G3	2	
236951_at	55968	NSFL1C	NSFL1 (p97) cofactor (p47)	0.04141	1.20359
				1	
1569709_at	23334	SZT2	seizure threshold 2 homolog	0.02569	1.20418
			(mouse)	4	
1553157_at	89884	LHX4	LIM homeobox 4	0.01661	1.20423
				2	
222619_at	23528	ZNF281	zinc finger protein 281	0.02735	1.20427
				7	
222692_s_a	64778	FNDC3B	fibronectin type III domain	0.01112	1.20476
t			containing 3B	9	
207286_at	9662	CEP135	centrosomal protein 135kDa	0.03675	1.20545
				2	
1555086_at	6777	STAT5B	signal transducer and activator	0.02434	1.20547
			of transcription 5B	7	
204195_s_a	5316	PKNOX1	PBX/knotted 1 homeobox 1	0.02571	1.20581
t				9	
232320_at	10228 ///	KIAA1614-	KIAA1614 antisense RNA 1	0.03856	1.20584
	1033449	AS1 /// STX6	/// syntaxin 6	2	
	28				
207890_s_a	64386	MMP25	matrix metallopeptidase 25	0.01343	1.20597
t				1	

1560910_at	285755	PPIL6	peptidylprolyl isomerase	0.02738	1.20631
			(cyclophilin)-like 6	4	
240197_at	6854	SYN2	synapsin II	0.04124	1.20689
				1	
209526_s_a	50810	HDGFRP3	hepatoma-derived growth	0.01042	1.20773
t			factor, related protein 3		
232135_at	79685	SAP30L	SAP30-like	0.00118	1.20774
				7	
232513_x_a	388799	FAM209B	family with sequence	0.01280	1.2082
t			similarity 209, member B	5	
209403_at	84218 ///	CCL3P1 ///	chemokine (C-C motif) ligand	0.00208	1.2088
	390788	LOC1010603	3 pseudogene 1 /// TBC1	9	
	///	89 ///	domain family member-like ///		
	414059	TBC1D3 ///	TBC1		
	///	TBC1D3B ///			
	414060	TBC1D3C ///			
	///	TBC1D3E ///			
	729873	TBC1D3F ///			
	///	TBC1D3G ///			
	729877	TBC1D3H ///			
	///	TBC1D3I ///			
	1010603	TBC1D3K ///			
	21 ///	TBC1D3L			
	1010603				
	5				
232126_at	27235	COQ2	coenzyme Q2 4-	0.03063	1.2088
			hydroxybenzoate	3	
			polyprenyltransferase		
242155_x_a	117584	RFFL	ring finger and FYVE-like	0.01962	1.20896
t			domain containing E3	3	
			ubiquitin protein ligase		

220615_s_a	55711	FAR2	fatty acyl-CoA reductase 2	0.02713	1.20902
t				1	
1555904_at	10129	FRY	FRY microtubule binding	0.02674	1.20912
			protein	2	
223460_at	84254	CAMKK1	calcium/calmodulin-dependent	0.03639	1.2092
			protein kinase kinase 1, alpha	3	
216316_x_a	2710 ///	GK /// GK3P	glycerol kinase /// glycerol	0.04183	1.2093
t	2713		kinase 3 pseudogene	9	
211561_x_a	1432	MAPK14	mitogen-activated protein	0.03987	1.20932
t			kinase 14	1	
211612_s_a	3597	IL13RA1	interleukin 13 receptor, alpha	0.04590	1.2095
t			1	9	
220832_at	51311	TLR8	toll-like receptor 8	0.03667	1.20964
				3	
1555105_a_	57708	MIER1	mesoderm induction early	0.01867	1.20965
at			response 1, transcriptional	2	
			regulator		
223930_at	26092	TOR1AIP1	torsin A interacting protein 1	0.04587	1.20989
				2	
235540_at	2796	GNRH1	gonadotropin releasing	0.04705	1.21061
			hormone 1	5	
243222_at	80216	ALPK1	alpha kinase 1	0.03015	1.21066
				2	
232535_at	222194	RSBN1L	round spermatid basic protein	0.01259	1.21074
			1-like		
237943_at	23023	TMCC1	transmembrane and coiled-coil	0.04882	1.21101
			domain family 1	6	
227832_at	114785	MBD6	methyl-CpG binding domain	0.00913	1.21102
			protein 6	3	

209383_at	1649	DDIT3	DNA-damage-inducible	0.01663	1.2116
			transcript 3	4	
1568666_at	440503	PLIN5	perilipin 5	0.00500	1.21162
				2	
235000_at	4026	LPP	LIM domain containing	0.01285	1.21186
			preferred translocation partner	5	
			in lipoma		
230000_at	57674	RNF213	ring finger protein 213	0.00884	1.21253
				2	
1562511_at	1130	LYST	lysosomal trafficking regulator	0.01547	1.2126
				9	
237495_at	143098	MPP7	membrane protein,	0.03715	1.21264
			palmitoylated 7	1	
1565546_at	50862	RNF141	ring finger protein 141	0.04139	1.21341
				6	
1558688_at	441461	STX17-AS1	STX17 antisense RNA 1	0.00708	1.21382
				7	
207549_x_a	4179	CD46	CD46 molecule, complement	0.00725	1.21409
t			regulatory protein	1	
235181_at	129450	TYW5	tRNA-yW synthesizing	0.04708	1.21414
			protein 5	1	
1555167_s_	10135	NAMPT	nicotinamide	0.02199	1.21429
at			phosphoribosyltransferase		
210449_x_a	1432	MAPK14	mitogen-activated protein	0.02673	1.2144
t			kinase 14	1	
1561652_at	8678	BECN1	beclin 1, autophagy related	0.00984	1.21456
				9	
204714_s_a	2153	F5	coagulation factor V	0.02425	1.2146
t			(proaccelerin, labile factor)	1	

219577_s_a	10347	ABCA7	ATP binding cassette	0.03848	1.21589
t			subfamily A member 7	8	
1564063_a_	23200	ATP11B	ATPase, class VI, type 11B	0.00686	1.21601
at				1	
215310_at	324	APC	adenomatous polyposis coli	0.01064	1.21671
				6	
1559413_at	255394	TCP11L2	t-complex 11, testis-specific-	0.03952	1.21685
			like 2		
242707_at	9439	MED23	mediator complex subunit 23	0.03861	1.21697
				1	
240233_at	1005067	NUP50-AS1	NUP50 antisense RNA 1	0.02280	1.21709
	14		(head to head)	6	
215185_at	1005061	LINC00963	long intergenic non-protein	0.01933	1.21727
	90		coding RNA 963	2	
34408_at	6253	RTN2	reticulon 2	0.03939	1.21731
				2	
230250_at	5787	PTPRB	protein tyrosine phosphatase,	0.00766	1.21749
			receptor type, B	2	
210059_s_a	5603	MAPK13	mitogen-activated protein	0.00278	1.21762
t			kinase 13	5	
212862_at	8760	CDS2	CDP-diacylglycerol synthase	0.01746	1.21763
			2	7	
236292_at	55819	RNF130	ring finger protein 130	0.03291	1.2177
				6	
1555088_x_	6777	STAT5B	signal transducer and activator	0.01511	1.21776
at			of transcription 5B		
220239_at	55975	KLHL7	kelch-like family member 7	0.02948	1.21777
				8	
223674_s_a	56882	CDC42SE1	CDC42 small effector 1	0.03024	1.21843
t				5	

1559060_a_	96459	FNIP1	folliculin interacting protein 1	0.02990	1.21876
at				6	
214846_s_a	57538	ALPK3	alpha kinase 3	0.01056	1.21881
t				5	
227893_at	1001287	LINC00476	long intergenic non-protein	0.02851	1.21925
	82		coding RNA 476	4	
242622_x_a	5728	PTEN	phosphatase and tensin	0.02079	1.21955
t			homolog	2	
230800_at	196883	ADCY4	adenylate cyclase 4	0.02822	1.21968
				9	
216129_at	10079	ATP9A	ATPase, class II, type 9A	0.03304	1.21977
				8	
224483_s_a	84804	MFSD9	major facilitator superfamily	0.01815	1.21992
t			domain containing 9		
233575_s_a	7091	TLE4	transducin-like enhancer of	0.00312	1.22
t			split 4	6	
235816_s_a	266747	RGL4	ral guanine nucleotide	0.03434	1.22056
t			dissociation stimulator-like 4	7	
228335_at	5010	CLDN11	claudin 11	0.04798	1.22065
				6	
229214_at	8417	STX7	syntaxin 7	0.02493	1.22075
				9	
222745_s_a	79768	KATNBL1	katanin p80 subunit B-like 1	0.00616	1.22092
t				7	
237338_at	374907	B3GNT8	UDP-GlcNAc:betaGal beta-	0.04467	1.22101
			1,3-N-	7	
			acetylglucosaminyltransferase		
			8		

229382_at	55924 ///	FAM212B ///	family with sequence	0.01616	1.22105
	1019287	LOC1019287	similarity 212, member B ///		
	18	18	uncharacterized		
			LOC101928718		
235156_at	254065	BRWD3	bromodomain and WD repeat	0.03073	1.22108
			domain containing 3	8	
229312_s_a	80318	GKAP1	G kinase anchoring protein 1	0.01630	1.22115
t				8	
208499_s_a	5611	DNAJC3	DnaJ (Hsp40) homolog,	0.02863	1.22116
t			subfamily C, member 3	9	
1554556_a_	23200	ATP11B	ATPase, class VI, type 11B	0.00543	1.22125
at				9	
231345_s_a	79758	DHRS12	dehydrogenase/reductase	0.01756	1.22151
t			(SDR family) member 12	6	
231099_at	23307	FKBP15	FK506 binding protein 15	0.02699	1.2219
				9	
243904_at	134957	STXBP5	syntaxin binding protein 5	0.01671	1.22271
			(tomosyn)	6	
243719_at	8859	STK19	serine/threonine kinase 19	0.00625	1.22289
				9	
213173_at	22990	PCNX	pecanex homolog	0.03736	1.22299
			(Drosophila)	5	
236534_at	149428	BNIPL	BCL2/adenovirus E1B 19kD	0.02112	1.22312
			interacting protein like	2	
229952_at	26030	PLEKHG3	pleckstrin homology domain	0.03556	1.22327
			containing, family G (with	8	
			RhoGef domain) member 3		
235723_at	54796	BNC2	basonuclin 2	0.02315	1.22328
				2	

234787_at	80179	MYO19	myosin XIX	0.02991	1.22359
				4	
209502_s_a	10458	BAIAP2	BAI1-associated protein 2	0.04996	1.22394
t				8	
237439_at	124739	USP43	ubiquitin specific peptidase 43	0.04077	1.22403
				6	
1558573_at	28985	MCTS1	malignant T-cell amplified	0.00770	1.22423
			sequence 1	7	
213844_at	3202	HOXA5	homeobox A5	0.03457	1.22434
				4	
210666_at	3423	IDS	iduronate 2-sulfatase	0.00568	1.2248
				8	
233305_at	64168	NECAB1	N-terminal EF-hand calcium	0.00096	1.22537
			binding protein 1	4	
212492_s_a	23030	KDM4B	lysine (K)-specific	0.04663	1.22606
t			demethylase 4B	1	
1554501_at	81628	TSC22D4	TSC22 domain family,	0.02315	1.22628
			member 4	1	
203389_at	3797	KIF3C	kinesin family member 3C	0.04143	1.22646
				1	
229362_at	150962	PUS10	pseudouridylate synthase 10	0.02342	1.22657
				5	
228407_at	222663	SCUBE3	signal peptide, CUB domain,	0.02425	1.22692
			EGF-like 3	3	
229398_at	22931	RAB18	RAB18, member RAS	0.00596	1.22724
			oncogene family		
203525_s_a	324	APC	adenomatous polyposis coli	0.03226	1.22726
t				3	
233072_at	84628	NTNG2	netrin G2	0.01337	1.22739
				3	

202147_s_a	3475	IFRD1	interferon-related	0.02393	1.22749
t			developmental regulator 1		
37028_at	23645	PPP1R15A	protein phosphatase 1,	0.04039	1.2281
			regulatory subunit 15A	5	
243934_at	440836	ODF3B	outer dense fiber of sperm	0.00316	1.22811
			tails 3B		
237591_at	1002875	LINC00173	long intergenic non-protein	0.04184	1.22844
	69		coding RNA 173	4	
1555177_at	5562	PRKAA1	protein kinase, AMP-	0.01466	1.22871
			activated, alpha 1 catalytic	1	
			subunit		
1558711_at	285512	FAM13A-	FAM13A antisense RNA 1	0.00303	1.22929
		AS1		1	
213559_s_a	168544	ZNF467	zinc finger protein 467	0.02548	1.22937
t				9	
215321_at	154661	RUNDC3B	RUN domain containing 3B	0.01503	1.22978
				4	
204095_s_a	8178	ELL	elongation factor RNA	0.02042	1.23026
t			polymerase II	1	
207764_s_a	10114	HIPK3	homeodomain interacting	0.03973	1.23095
t			protein kinase 3	9	
1559754_at	4050	LTB	lymphotoxin beta (TNF	0.02448	1.23103
			superfamily, member 3)	6	
228585_at	953	ENTPD1	ectonucleoside triphosphate	0.03613	1.23117
			diphosphohydrolase 1		
230562_at	1005075	MCPH1-AS1	MCPH1 antisense RNA 1	0.01264	1.23118
	30			9	
1552691_at	115761	ARL11	ADP-ribosylation factor like	0.01810	1.23131
			GTPase 11	1	

1554178_a_	285172	FAM126B	family with sequence	0.01283	1.2315
at			similarity 126, member B	7	
242280_x_a	80315	CPEB4	cytoplasmic polyadenylation	0.03362	1.23184
t			element binding protein 4	3	
203651_at	9765	ZFYVE16	zinc finger, FYVE domain	0.02391	1.23196
			containing 16	8	
206155_at	1244	ABCC2	ATP binding cassette	0.00771	1.232
			subfamily C member 2	4	
239273_s_a	79148	MMP28	matrix metallopeptidase 28	0.02855	1.23273
t				9	
234006_s_a	56063	TMEM234	transmembrane protein 234	0.00861	1.2328
t				1	
218739_at	51099	ABHD5	abhydrolase domain	0.04791	1.23292
			containing 5	8	
235829_at	1005268	САНМ	colon adenocarcinoma	0.00372	1.23373
	20		hypermethylated (non-protein	6	
			coding)		
223652_at	57412	AS3MT	arsenite methyltransferase	0.01261	1.23391
221149_at	27202	C5AR2	complement component 5a	0.02995	1.23401
			receptor 2	1	
230587_at	474171	STGC3	uncharacterized STGC3	0.02261	1.23452
				2	
205857_at	6571	SLC18A2	solute carrier family 18	0.02935	1.23465
			(vesicular monoamine	7	
			transporter), member 2		
243547_at	283876	LINC00921	long intergenic non-protein	0.00651	1.23488
			coding RNA 921	6	
1560175_at	55370	PPP4R1L	protein phosphatase 4,	0.02497	1.23506
			regulatory subunit 1-like	4	
			(pseudogene)		

229311_at	80318	GKAP1	G kinase anchoring protein 1	0.00320	1.23523
				2	
217268_at	7879	RAB7A	RAB7A, member RAS	0.00542	1.23566
			oncogene family		
229623_at	441027	TMEM150C	transmembrane protein 150C	0.00054	1.23566
				1	
226794_at	134957	STXBP5	syntaxin binding protein 5	0.04130	1.23674
			(tomosyn)	3	
205921_s_a	6533	SLC6A6	solute carrier family 6	0.03598	1.23684
t			(neurotransmitter transporter),	4	
			member 6		
228064_at	388886	LRRC75B	leucine rich repeat containing	0.03855	1.23693
			75B	6	
214987_at	2549	GAB1	GRB2-associated binding	0.00993	1.23758
			protein 1	4	
238986_at	378805	LINC-PINT	long intergenic non-protein	0.01515	1.23768
			coding RNA, p53 induced	2	
			transcript		
1556588_at	283687	ST20-AS1	ST20 antisense RNA 1	0.04793	1.23818
				3	
227004_at	6792	CDKL5	cyclin-dependent kinase-like 5	0.0364	1.23829
232322_x_a	10809	STARD10	StAR-related lipid transfer	0.04352	1.23842
t			domain containing 10	5	
215977_x_a	2710	GK	glycerol kinase	0.04355	1.23878
t				5	
204800_s_a	79758	DHRS12	dehydrogenase/reductase	0.03589	1.23897
t			(SDR family) member 12	9	
221638_s_a	8675	STX16	syntaxin 16	0.00349	1.23936
t				3	

240088_at	8654	PDE5A	phosphodiesterase 5A, cGMP-	0.01017	1.24062
			specific	6	
223863_at	80232	WDR26	WD repeat domain 26	0.04900	1.24064
				6	
1553405_a_	64478	CSMD1	CUB and Sushi multiple	0.00762	1.24097
at			domains 1	3	
213292_s_a	23161	SNX13	sorting nexin 13	0.02333	1.24101
t				9	
242210_at	7572	ZNF24	zinc finger protein 24	0.01851	1.24108
				5	
204531_s_a	672	BRCA1	breast cancer 1, early onset	0.00723	1.24154
t				4	
1560486_at	6814	STXBP3	syntaxin binding protein 3	0.01639	1.24202
				5	
241425_at	9818	NUP58	nucleoporin 58kDa	0.00262	1.24209
232873_at	7581	ZNF33A	zinc finger protein 33A	0.02531	1.24214
				6	
221979_at	1001292	TOPORS-	TOPORS antisense RNA 1	0.00238	1.24258
	50	AS1			
208868_s_a	23710	GABARAPL	GABA(A) receptor-associated	0.02022	1.24266
t		1	protein like 1	1	
214746_s_a	168544	ZNF467	zinc finger protein 467	0.01843	1.24369
t				5	
202014_at	23645	PPP1R15A	protein phosphatase 1,	0.04321	1.24446
			regulatory subunit 15A	2	
241908_at	148362	BROX	BRO1 domain and CAAX	0.03556	1.24449
			motif containing	5	
203434_s_a	4311	MME	membrane metallo-	0.02457	1.2453
t			endopeptidase	9	

240845_at	7813	EVI5	ecotropic viral integration site	0.02845	1.24635
			5		
229608_at	55924 ///	FAM212B ///	family with sequence	0.02093	1.24694
	1019287	LOC1019287	similarity 212, member B ///	5	
	18	18	uncharacterized		
			LOC101928718		
230506_at	57150 ///	LINC01590	long intergenic non-protein	0.03346	1.24767
	63914	/// SMIM8	coding RNA 1590 /// small	3	
			integral membrane protein 8		
243201_at	6173	RPL36A	ribosomal protein L36a	0.00654	1.24795
228894_at	2649	NR6A1	nuclear receptor subfamily 6,	0.02373	1.24848
			group A, member 1	6	
1563369_at	1002875	LINC00173	long intergenic non-protein	0.04326	1.24868
	69		coding RNA 173	4	
1555217_at	55284	UBE2W	ubiquitin-conjugating enzyme	0.04452	1.24899
			E2W (putative)	3	
226026_at	84925	DIRC2	disrupted in renal carcinoma 2	0.01843	1.2492
				2	
217189_s_a	9887	SMG7	SMG7 nonsense mediated	0.00658	1.25031
t			mRNA decay factor	4	
233924_s_a	54536	EXOC6	exocyst complex component 6	0.04118	1.2511
t				9	
229888_at	144608	C12orf60	chromosome 12 open reading	0.03480	1.25111
			frame 60	2	
239903_at	7162	TPBG	trophoblast glycoprotein	0.02549	1.25114
228037_at	1019296	RARA-AS1	RARA antisense RNA 1	0.02803	1.25164
	93			5	
1552798_a_	7099	TLR4	toll-like receptor 4	0.04937	1.25227
at					

229440_at	54502	RBM47	RNA binding motif protein 47	0.00685	1.25267
				1	
1555842_at	9266	CYTH2	cytohesin 2	0.01030	1.25293
				7	
226490_at	57224	NHSL1	NHS-like 1	0.00444	1.25311
				4	
208003_s_a	10725	NFAT5	nuclear factor of activated T-	0.01023	1.25329
t			cells 5, tonicity-responsive	5	
1552480_s_	5788	PTPRC	protein tyrosine phosphatase,	0.00820	1.25346
at			receptor type, C	2	
242360_at	9079	LDB2	LIM domain binding 2	0.01441	1.25356
				6	
243824_at	1033525	LINC01410	long intergenic non-protein	0.04546	1.25425
	39 ///	///	coding RNA 1410 ///	4	
	1053798	LOC1053798	uncharacterized		
	18	18	LOC105379818		
241817_at	375341	C3orf62	chromosome 3 open reading	0.01044	1.25497
			frame 62	9	
231133_at	92749	DRC1	dynein regulatory complex	0.04585	1.25522
			subunit 1	6	
227236_at	10100	TSPAN2	tetraspanin 2	0.00730	1.25524
				7	
209082_s_a	80781	COL18A1	collagen, type XVIII, alpha 1	0.02613	1.25591
t				1	
218924_s_a	1486	CTBS	chitobiase, di-N-acetyl-	0.00204	1.25594
t					
1554291_at	23074	UHRF1BP1L	UHRF1 binding protein 1-like	0.04420	1.25597
				8	
231595_at	1001298	MRVI1-AS1	MRVI1 antisense RNA 1	0.02181	1.25606
	27			4	

202695_s_a	9263	STK17A	serine/threonine kinase 17a	0.02773	1.25632
t				1	
209072_at	4155	MBP	myelin basic protein	0.02910	1.25654
				6	
205920_at	6533	SLC6A6	solute carrier family 6	0.03398	1.25692
			(neurotransmitter transporter),	5	
			member 6		
223733_s_a	55370	PPP4R1L	protein phosphatase 4,	0.01497	1.25696
t			regulatory subunit 1-like	4	
			(pseudogene)		
219403_s_a	10855	HPSE	heparanase	0.02208	1.25731
t				2	
1567443_x_	5663	PSEN1	presenilin 1	0.00159	1.25789
at				7	
216115_at	4763	NF1	neurofibromin 1	0.02237	1.25816
				7	
1564443_at	8847	DLEU2	deleted in lymphocytic	0.00883	1.25863
			leukemia 2 (non-protein	1	
			coding)		
232639_at	90288	EFCAB12	EF-hand calcium binding	0.02948	1.25899
			domain 12	8	
1554414_a_	734	OSGIN2	oxidative stress induced	0.04374	1.25913
at			growth inhibitor family		
			member 2		
236808_at	26127	FGFR1OP2	FGFR1 oncogene partner 2	0.00732	1.25922
				5	
238903_at	137886	UBXN2B	UBX domain protein 2B	0.01805	1.25952
				6	
231385_at	359787	DPPA3	developmental pluripotency	0.01004	1.25953
			associated 3	8	

238810_at	5991	RFX3	regulatory factor X, 3	0.00912	1.26005
			(influences HLA class II	9	
			expression)		
217521_at	3034	HAL	histidine ammonia-lyase	0.00236	1.26024
				3	
223995_at	56996	SLC12A9	solute carrier family 12,	0.00783	1.26041
			member 9		
219748_at	79865	TREML2	triggering receptor expressed	0.03974	1.26047
			on myeloid cells-like 2		
214319_at	10129	FRY	FRY microtubule binding	0.04701	1.26059
			protein	6	
219786_at	9633	MTL5	metallothionein-like 5, testis-	0.00402	1.26082
			specific (tesmin)	9	
208181_at	8365 ///	HIST1H4H	histone cluster 1, H4h ///	0.01610	1.26175
	1053749	///	uncharacterized	8	
	85	LOC1053749	LOC105374985		
		85			
238019_at	440503	PLIN5	perilipin 5	0.00115	1.26196
				1	
78383_at	1001292	TOPORS-	TOPORS antisense RNA 1	0.00167	1.26217
	50	AS1		2	
1563229_at	8847	DLEU2	deleted in lymphocytic	0.02263	1.26282
			leukemia 2 (non-protein	6	
			coding)		
208054_at	26091	HERC4	HECT and RLD domain	0.04228	1.26296
			containing E3 ubiquitin	3	
			protein ligase 4		
231826_at	57186	RALGAPA2	Ral GTPase activating protein,	0.04811	1.26303
			alpha subunit 2 (catalytic)	2	

232213_at	57162	PELI1	pellino E3 ubiquitin protein	0.02314	1.26305
			ligase 1	4	
220777_at	63971	KIF13A	kinesin family member 13A	0.00238	1.26347
				3	
232111_at	1005070	TUNAR	TCL1 upstream neural	0.01188	1.26451
	43		differentiation-associated	7	
			RNA		
212598_at	23001	WDFY3	WD repeat and FYVE domain	0.01995	1.2654
			containing 3	6	
239100_x_a	22990	PCNX	pecanex homolog	0.01350	1.26546
t			(Drosophila)	8	
58780_s_at	55701	ARHGEF40	Rho guanine nucleotide	0.02420	1.26732
			exchange factor (GEF) 40	8	
235699_at	161253	REM2	RAS (RAD and GEM)-like	0.00394	1.26735
			GTP binding 2	2	
204801_s_a	79758	DHRS12	dehydrogenase/reductase	0.01785	1.26741
t			(SDR family) member 12	7	
230932_at	55819	RNF130	ring finger protein 130	0.02856	1.26746
226363_at	10057	ABCC5	ATP binding cassette	0.00186	1.26786
			subfamily C member 5	7	
205403_at	7850	IL1R2	interleukin 1 receptor, type II	0.03584	1.26849
				2	
212947_at	23315	SLC9A8	solute carrier family 9,	0.00281	1.2685
			subfamily A (NHE8, cation	6	
			proton antiporter 8), member 8		
1558560_s_	8548	BLZF1	basic leucine zipper nuclear	0.01136	1.26959
at			factor 1		
233123_at	30061	SLC40A1	solute carrier family 40 (iron-	0.01362	1.27011
			regulated transporter),	4	
			member 1		

213120_at	23074	UHRF1BP1L	UHRF1 binding protein 1-like	0.02340	1.27052
				7	
220168_at	55259	CASC1	cancer susceptibility candidate	0.00992	1.27056
			1	1	
223103_at	10809	STARD10	StAR-related lipid transfer	0.03425	1.27104
			domain containing 10		
215559_at	368 ///	ABCC6 ///	ATP binding cassette	0.02146	1.27202
	1053692	LOC1053692	subfamily C member 6 ///	1	
	39	39	multidrug resistance-		
			associated protein 6		
213288_at	129642	MBOAT2	membrane bound O-	0.01002	1.27343
			acyltransferase domain	3	
			containing 2		
203223_at	9135	RABEP1	rabaptin, RAB GTPase	0.00297	1.27384
			binding effector protein 1	2	
232953_at	55251 ///	LINC00266-1	long intergenic non-protein	0.01687	1.27396
	140849	///	coding RNA 266-1 /// long	4	
	///	LINC01347	intergenic non-protein coding		
	728323	///	RNA		
	///	LOC1019270			
	731275	97 ///			
	///	LOC1027239			
	1019270	17 ///			
	97 ///	LOC1027239			
	1027239	28 ///			
	17 ///	LOC1053714			
	1027239	23 ///			
	28 /// 10	LOC1053763			
		32 ///			
		LOC1053785			
		82 ///			

		LOC1053796			
		90 ///			
		LOC728323			
		/// PCMTD2			
214161_at	734	OSGIN2	oxidative stress induced	0.04243	1.27415
_			growth inhibitor family	2	
			member 2		
209474_s_a	953	ENTPD1	ectonucleoside triphosphate	0.00794	1.27468
t – –			diphosphohydrolase 1	7	
219892_at	53346	TM6SF1	transmembrane 6 superfamily	0.00467	1.27497
			member 1		
236154_at	9444	QKI	QKI, KH domain containing,	0.02594	1.27567
			RNA binding	2	
235745_at	2081	ERN1	endoplasmic reticulum to	0.01124	1.27766
			nucleus signaling 1	9	
1554127_s_	253827	MSRB3	methionine sulfoxide	0.03640	1.27788
at			reductase B3	6	
222354_at	50848	F11R	F11 receptor	0.04927	1.27903
				2	
1565544_at	50862	RNF141	ring finger protein 141	0.01988	1.27976
				3	
232107_at	6391	SDHC	succinate dehydrogenase	0.02261	1.28047
			complex, subunit C, integral	1	
			membrane protein, 15kDa		
213805_at	51099	ABHD5	abhydrolase domain	0.02493	1.28121
			containing 5	4	
224952_at	26115	TANC2	tetratricopeptide repeat,	0.00728	1.28123
			ankyrin repeat and coiled-coil	9	
			containing 2		

1568706_s_	10677	AVIL	advillin	0.02693	1.28204
at				2	
1555993_at	776	CACNA1D	calcium channel, voltage-	0.01804	1.2824
			dependent, L type, alpha 1D	8	
			subunit		
214541_s_a	9444	QKI	QKI, KH domain containing,	0.03536	1.28292
t			RNA binding	2	
207691_x_a	953	ENTPD1	ectonucleoside triphosphate	0.00462	1.28303
t			diphosphohydrolase 1	6	
209380_s_a	10057	ABCC5	ATP binding cassette	0.00649	1.28315
t			subfamily C member 5	8	
1569374_at	375341	C3orf62	chromosome 3 open reading	0.01799	1.28391
			frame 62	2	
233063_s_a	1005081	GMDS-AS1	GMDS antisense RNA 1 (head	0.01344	1.28494
t	20		to head)	8	
238126_at	1005058	APTR	Alu-mediated CDKN1A/p21	0.00856	1.28534
	54		transcriptional regulator (non-		
			protein coding)		
223699_at	84735	CNDP1	carnosine dipeptidase 1	0.00178	1.28562
			(metallopeptidase M20	1	
			family)		
235011_at	10746	MAP3K2	mitogen-activated protein	0.03821	1.28593
			kinase kinase kinase 2	2	
205118_at	2357	FPR1	formyl peptide receptor 1	0.02459	1.28597
				1	
243033_at	5756	TWF1	twinfilin actin binding protein	0.00157	1.28625
			1	7	
1557285_at	374	AREG	amphiregulin	0.00604	1.28655
				3	

236320_at	149483	CCDC17	coiled-coil domain containing	0.01290	1.28655
			17	9	
207366_at	3787	KCNS1	potassium voltage-gated	0.01378	1.28677
			channel, modifier subfamily S,	9	
			member 1		
232087_at	256643	CXorf23	chromosome X open reading	0.04748	1.28723
			frame 23	7	
229899_s_a	441951	ZFAS1	ZNFX1 antisense RNA 1	0.00394	1.28818
t				6	
1565358_at	5914	RARA	retinoic acid receptor, alpha	0.04580	1.2882
				1	
206696_at	4935	GPR143	G protein-coupled receptor	0.00897	1.28858
			143	6	
207671_s_a	7439	BEST1	bestrophin 1	0.01583	1.28892
t				7	
211087_x_a	1432	MAPK14	mitogen-activated protein	0.00089	1.28911
t			kinase 14	8	
219334_s_a	64859	NABP1	nucleic acid binding protein 1	0.01628	1.28917
t				1	
238999_at	10677	AVIL	advillin	0.01024	1.2903
				8	
227494_at	2649	NR6A1	nuclear receptor subfamily 6,	0.00817	1.29076
			group A, member 1	9	
229520_s_a	55668	GPATCH2L	G-patch domain containing 2	0.01339	1.29103
t			like	1	
206877_at	4084	MXD1	MAX dimerization protein 1	0.02924	1.29129
				1	
1567440_at	5663	PSEN1	presenilin 1	0.00041	1.29132
237954_x_a	55701	ARHGEF40	Rho guanine nucleotide	0.00845	1.29138
t			exchange factor (GEF) 40	4	

228409_at	729359	PLIN4	perilipin 4	0.00701	1.29276
				9	
1554786_at	57091	CASS4	Cas scaffolding protein family	0.00212	1.29442
			member 4	8	
238733_at	4193	MDM2	MDM2 proto-oncogene, E3	0.01438	1.2948
			ubiquitin protein ligase	7	
240964_at	5728	PTEN	phosphatase and tensin	0.03936	1.29599
			homolog	8	
207291_at	79056	PRRG4	proline rich Gla (G-	0.03840	1.297
			carboxyglutamic acid) 4	3	
			(transmembrane)		
228250_at	96459	FNIP1	folliculin interacting protein 1	0.01253	1.29965
				1	
243066_at	80896	NPL	N-acetylneuraminate pyruvate	0.00305	1.29997
			lyase (dihydrodipicolinate	9	
			synthase)		
230913_at	9619	ABCG1	ATP binding cassette	0.02806	1.29998
			subfamily G member 1	7	
235095_at	146439	CCDC64B	coiled-coil domain containing	0.04558	1.30025
			64B		
227992_s_a	147650	SPACA6	sperm acrosome associated 6	0.00803	1.30025
t				3	
1561615_s_	6546	SLC8A1	solute carrier family 8	0.04807	1.30031
at			(sodium/calcium exchanger),	8	
			member 1		
1559739_at	56994	CHPT1	choline phosphotransferase 1	0.02556	1.30085
				2	
1554638_at	9765	ZFYVE16	zinc finger, FYVE domain	0.01111	1.30201
			containing 16	4	

1554442_at	7439	BEST1	bestrophin 1	0.00758	1.30218
				9	
209633_at	5523	PPP2R3A	protein phosphatase 2,	0.01152	1.30285
			regulatory subunit B", alpha	8	
226418_at	51290	ERGIC2	ERGIC and golgi 2	0.00588	1.30343
				2	
220034_at	11213	IRAK3	interleukin 1 receptor	0.03083	1.30373
			associated kinase 3	8	
227855_at	55701	ARHGEF40	Rho guanine nucleotide	0.03150	1.30395
			exchange factor (GEF) 40	4	
241368_at	440503	PLIN5	perilipin 5	0.00276	1.30572
				1	
214606_at	10100	TSPAN2	tetraspanin 2	0.00721	1.30593
206721_at	57821	CCDC181	coiled-coil domain containing	0.00435	1.30702
			181	3	
238660_at	23001	WDFY3	WD repeat and FYVE domain	0.00663	1.30707
			containing 3	8	
1560219_at	51130	ASB3	ankyrin repeat and SOCS box	0.01212	1.30756
			containing 3	4	
220302_at	4117	MAK	male germ cell-associated	0.01945	1.30759
			kinase	6	
236241_at	51003	MED31	mediator complex subunit 31	0.01066	1.30794
				1	
213174_at	23508	TTC9	tetratricopeptide repeat	0.00851	1.30875
			domain 9	5	
1554714_at	768211	RELL1	RELT-like 1	0.04697	1.30975
				1	
220012_at	56605	ERO1B	endoplasmic reticulum	0.00816	1.31056
			oxidoreductase beta	2	

1569428_at	1606	DGKA	diacylglycerol kinase alpha	0.00635	1.31089
_				1	
224836_at	58476	TP53INP2	tumor protein p53 inducible	0.03422	1.31126
			nuclear protein 2	1	
219434_at	54210	TREM1	triggering receptor expressed	0.00150	1.3122
			on myeloid cells 1	8	
1557218_s_	2187	FANCB	Fanconi anemia	0.01631	1.31267
at			complementation group B		
238811_at	23200	ATP11B	ATPase, class VI, type 11B	0.00160	1.31457
				1	
205328_at	9071	CLDN10	claudin 10	0.02817	1.31492
				6	
232081_at	9619	ABCG1	ATP binding cassette	0.02651	1.31502
			subfamily G member 1	4	
219427_at	79633	FAT4	FAT atypical cadherin 4	0.00437	1.31568
				1	
1553736_at	196441	ZFC3H1	zinc finger, C3H1-type	0.04354	1.31636
			containing	4	
211412_at	23569	PADI4	peptidyl arginine deiminase,	0.03555	1.31734
			type IV	6	
209160_at	8644	AKR1C3	aldo-keto reductase family 1,	0.04020	1.3179
			member C3	4	
220326_s_a	55701	ARHGEF40	Rho guanine nucleotide	0.03022	1.318
t			exchange factor (GEF) 40	7	
239119_at	1002892	DNAJC3-	DNAJC3 antisense RNA 1	0.02826	1.31823
	74	AS1	(head to head)	7	
226002_at	2549	GAB1	GRB2-associated binding	0.00611	1.31931
			protein 1		

235050_at	154091	SLC2A12	solute carrier family 2	0.02834	1.31945
			(facilitated glucose	9	
			transporter), member 12		
207601_at	27284	SULT1B1	sulfotransferase family 1B	0.02095	1.32203
			member 1	8	
232027_at	23345	SYNE1	spectrin repeat containing,	0.0479	1.32217
			nuclear envelope 1		
214529_at	7252	TSHB	thyroid stimulating hormone,	0.02620	1.32542
			beta	1	
205513_at	6947	TCN1	transcobalamin I (vitamin B12	0.02104	1.32596
			binding protein, R binder	9	
			family)		
214618_at	8837	CFLAR	CASP8 and FADD like	0.01040	1.32682
			apoptosis regulator	3	
227429_at	283229	CRACR2B	calcium release activated	0.00219	1.32771
			channel regulator 2B	6	
209135_at	444	ASPH	aspartate beta-hydroxylase	0.04853	1.32772
				6	
1553176_at	117157	SH2D1B	SH2 domain containing 1B	0.02937	1.328
				5	
224828_at	80315	CPEB4	cytoplasmic polyadenylation	0.02172	1.32944
			element binding protein 4	9	
214985_at	2131	EXT1	exostosin glycosyltransferase	0.00331	1.33035
			1	2	
202543_s_a	2764	GMFB	glia maturation factor, beta	0.03546	1.33093
t				4	
230585_at	3772	KCNJ15	potassium channel, inwardly	0.00844	1.33205
			rectifying subfamily J,	4	
			member 15		

1560625_s_	1019285	CATIP-AS1	CATIP antisense RNA 1	0.01302	1.33235
at	13			3	
223349_s_a	666	BOK	BCL2-related ovarian killer	0.04227	1.33254
t				7	
216789_at	1037525	TMEM92-	TMEM92 antisense RNA 1	0.02680	1.33308
	89	AS1		3	
1555049_at	54084	TSPEAR	thrombospondin-type laminin	0.01359	1.33508
			G domain and EAR repeats	1	
223791_at	1001329	FAM27B ///	family with sequence	0.02173	1.33524
	48 ///	FAM27C ///	similarity 27, member B ///	7	
	1001331	LOC1027251	family with sequence		
	21 ///	86 ///	similarity 27, me		
	1027251	LOC1053794			
	86 ///	44			
	1053794				
	44				
223845_at	54621	VSIG10	V-set and immunoglobulin	0.02940	1.33616
			domain containing 10	1	
1555315_a_	4117	MAK	male germ cell-associated	0.02426	1.33654
at			kinase	5	
233134_at	9501	RPH3AL	rabphilin 3A-like (without C2	0.01259	1.33907
			domains)		
235641_at	10221	TRIB1	tribbles pseudokinase 1	0.01223	1.33994
				7	
227233_at	10100	TSPAN2	tetraspanin 2	0.01598	1.34057
				5	
225503_at	207063	DHRSX	dehydrogenase/reductase	0.00056	1.34194
			(SDR family) X-linked	3	
228758_at	604	BCL6	B-cell CLL/lymphoma 6	0.00885	1.34255
				8	

1558080_s_	5611	DNAJC3	DnaJ (Hsp40) homolog,	0.00180	1.34347
at			subfamily C, member 3	4	
220010_at	23630	KCNE5	potassium channel, voltage	0.00623	1.34381
			gated subfamily E regulatory	7	
			beta subunit 5		
238067_at	54885	TBC1D8B	TBC1 domain family, member	0.04026	1.34589
			8B (with GRAM domain)	5	
1555953_at	6573	SLC19A1	solute carrier family 19 (folate	0.00112	1.3469
			transporter), member 1	4	
213812_s_a	10645	CAMKK2	calcium/calmodulin-dependent	0.00692	1.34788
t			protein kinase kinase 2, beta	8	
219837_s_a	54360	CYTL1	cytokine like 1	0.01404	1.34935
t				3	
1554385_a_	11240	PADI2	peptidyl arginine deiminase,	0.03514	1.3535
at			type II	2	
1563975_at	55819	RNF130	ring finger protein 130	0.03404	1.35358
1564403_at	1013620	GVQW1	GVQW motif containing 1	0.00235	1.35374
	76				
205539_at	10677	AVIL	advillin	0.00798	1.35395
				4	
206004_at	7053	TGM3	transglutaminase 3	0.04975	1.35401
240017_at	400960	PCBP1-AS1	PCBP1 antisense RNA 1	0.03008	1.35517
				7	
228209_at	84320 ///	ACBD6 ///	acyl-CoA binding domain	0.00110	1.35535
	1005279	LHX4-AS1	containing 6 /// LHX4	7	
	64		antisense RNA 1		
1552773_at	338339	CLEC4D	C-type lectin domain family 4,	0.04544	1.35604
			member D	2	
241360_at	80071	CCDC15	coiled-coil domain containing	0.02527	1.35651
			15	3	

205016_at	7039	TGFA	transforming growth factor	0.00539	1.35978
			alpha	1	
1559777_at	731424	MIR3945HG	MIR3945 host gene	0.04828	1.35986
				3	
206269_at	8521	GCM1	glial cells missing homolog 1	0.02574	1.36222
			(Drosophila)	4	
236332_at	51635	DHRS7	dehydrogenase/reductase	0.00846	1.3641
			(SDR family) member 7	1	
212169_at	11328	FKBP9	FK506 binding protein 9	0.03595	1.36566
				9	
226207_at	353116	RILPL1	Rab interacting lysosomal	0.00234	1.36611
			protein-like 1	8	
243476_at	4763	NF1	neurofibromin 1	0.00086	1.36793
				4	
1553177_at	117157	SH2D1B	SH2 domain containing 1B	0.04251	1.36922
				5	
202199_s_a	6732	SRPK1	SRSF protein kinase 1	0.00536	1.36946
t				9	
202948_at	3554	IL1R1	interleukin 1 receptor, type I	0.00902	1.37104
				5	
240036_at	6397	SEC14L1	SEC14-like lipid binding 1	0.02185	1.37126
				3	
1554717_a_	5144	PDE4D	phosphodiesterase 4D, cAMP-	0.02373	1.37237
at			specific	4	
229213_at	84925	DIRC2	disrupted in renal carcinoma 2	0.02254	1.37273
				9	
208200_at	3552	IL1A	interleukin 1 alpha	0.01927	1.37495
				6	
235521_at	3200	HOXA3	homeobox A3	0.02897	1.37512
				1	

230102_at	2119	ETV5	ets variant 5	0.03216	1.37638
				5	
206546_at	10388	SYCP2	synaptonemal complex protein	0.02074	1.38047
			2	2	
1555938_x_	7431	VIM	vimentin	0.00207	1.38331
at					
241703_at	154661	RUNDC3B	RUN domain containing 3B	0.04577	1.38466
				3	
223304_at	84255	SLC37A3	solute carrier family 37,	0.01006	1.38576
			member 3	6	
217104_at	400410	ST20	suppressor of tumorigenicity	0.00165	1.39023
			20	9	
209369_at	306	ANXA3	annexin A3	0.01048	1.39028
				5	
230722_at	54796	BNC2	basonuclin 2	0.02387	1.39153
				2	
224024_at	57222	ERGIC1	endoplasmic reticulum-golgi	0.03368	1.39198
			intermediate compartment 1	3	
209691_s_a	55715	DOK4	docking protein 4	0.01514	1.39454
t				5	
205699_at	5608	MAP2K6	mitogen-activated protein	0.00265	1.39533
			kinase kinase 6	7	
242037_at	444	ASPH	aspartate beta-hydroxylase	0.03873	1.40035
				5	
232980_at	55788	LMBRD1	LMBR1 domain containing 1	0.02739	1.40291
				4	
1557796_at	55711	FAR2	fatty acyl-CoA reductase 2	0.01448	1.40349
				4	
224620_at	5594	MAPK1	mitogen-activated protein	0.00505	1.40435
			kinase 1	8	

1559469_s_	57568	SIPA1L2	signal-induced proliferation-	0.02923	1.40684
at			associated 1 like 2	6	
1553991_s_	54621	VSIG10	V-set and immunoglobulin	0.00677	1.41104
at			domain containing 10	7	
237340_at	116369	SLC26A8	solute carrier family 26 (anion	0.00528	1.4142
			exchanger), member 8	4	
211389_x_a	3813	KIR3DS1	killer cell immunoglobulin-	0.03977	1.41727
t			like receptor, three domains,		
			short cytoplasmic tail, 1		
230846_at	9495	AKAP5	A kinase (PRKA) anchor	0.02064	1.42005
			protein 5	2	
1569095_at	731424	MIR3945HG	MIR3945 host gene	0.02096	1.42126
				5	
217484_at	1378	CR1	complement component	0.00510	1.42481
			(3b/4b) receptor 1 (Knops	1	
			blood group)		
207289_at	64386	MMP25	matrix metallopeptidase 25	0.03044	1.42489
				9	
226578_s_a	1843	DUSP1	dual specificity phosphatase 1	0.02666	1.42572
t				9	
1554384_at	11240	PADI2	peptidyl arginine deiminase,	0.00991	1.42896
			type II		
228461_at	344558	SH3RF3	SH3 domain containing ring	0.04957	1.43719
			finger 3	7	
1552772_at	338339	CLEC4D	C-type lectin domain family 4,	0.02588	1.4379
			member D	9	
232514_at	55582	KIF27	kinesin family member 27	0.01239	1.44013
				3	
238478_at	54796	BNC2	basonuclin 2	0.04636	1.44088
				5	

207093_s_a	4974	OMG	oligodendrocyte myelin	0.03745	1.44367
t			glycoprotein	5	
217507_at	6556	SLC11A1	solute carrier family 11	0.01886	1.44505
			(proton-coupled divalent metal	3	
			ion transporter), member 1		
231874_at	285172	FAM126B	family with sequence	0.02851	1.45009
			similarity 126, member B		
237891_at	4193	MDM2	MDM2 proto-oncogene, E3	0.00547	1.45114
			ubiquitin protein ligase	8	
215561_s_a	3554	IL1R1	interleukin 1 receptor, type I	0.01170	1.46329
t				7	
234709_at	92291	CAPN13	calpain 13	0.00957	1.46378
				5	
207443_at	7101	NR2E1	nuclear receptor subfamily 2,	0.04092	1.46571
			group E, member 1	3	
215175_at	22990	PCNX	pecanex homolog	0.01291	1.46791
			(Drosophila)	1	
203260_at	51020	HDDC2	HD domain containing 2	0.01071	1.47229
				1	
232862_at	51099	ABHD5	abhydrolase domain	0.00939	1.48916
			containing 5	3	
238983_at	79730	NSUN7	NOP2/Sun domain family,	0.00608	1.50533
			member 7	7	
231223_at	64478	CSMD1	CUB and Sushi multiple	0.00550	1.51337
			domains 1	6	
1553972_a_	875 ///	CBS ///	cystathionine-beta-synthase ///	0.01796	1.5195
at	1027245	CBSL	cystathionine-beta-synthase	9	
	60		like		

223796_at	79937 ///	CNTNAP3 ///	contactin associated protein-	0.01846	1.53296
	643827	CNTNAP3B	like 3 /// contactin associated	5	
	///	///	protein-like 3B /// contac		
	728577	CNTNAP3P2			
	///	///			
	1002892	LOC1002892			
	79 ///	79 ///			
	1053692	LOC1053692			
	34	34			
226485_at	54621	VSIG10	V-set and immunoglobulin	0.00112	1.53546
			domain containing 10	8	
238997_at	1001308	PSORS1C3	psoriasis susceptibility 1	0.03322	1.55088
	89		candidate 3 (non-protein	4	
			coding)		
236587_at	23639	LRRC6	leucine rich repeat containing	0.01356	1.59536
			6	8	
244065_at	79937 ///	CNTNAP3 ///	contactin associated protein-	0.02717	1.61719
	728577	CNTNAP3B	like 3 /// contactin associated	8	
	///	///	protein-like 3B /// contac		
	1002892	LOC1002892			
	79	79			
220436_at	643827	CNTNAP3P2	contactin associated protein-	0.03071	1.62035
			like 3 pseudogene 2	9	
206483_at	23639	LRRC6	leucine rich repeat containing	0.01341	1.64998
			6		
206177_s_a	383	ARG1	arginase 1	0.03642	1.65901
t				7	
205239_at	374	AREG	amphiregulin	0.03400	1.75939
				9	
233126_s_a	55301	OLAH	oleoyl-ACP hydrolase	0.04724	1.76893
t				5	

212816_s_a	875 ///	CBS ///	cystathionine-beta-synthase ///	0.02245	1.78166
t	1027245	CBSL	cystathionine-beta-synthase	4	
	60		like		
222945_x_a	55301	OLAH	oleoyl-ACP hydrolase	0.04835	1.79836
t				4	
231470_at	400680	LINC00664	long intergenic non-protein	0.01720	1.90573
			coding RNA 664	9	
231581_at	400680	LINC00664	long intergenic non-protein	0.00796	1.9457
			coding RNA 664		
212806_at	158471	PRUNE2	prune homolog 2 (Drosophila)	0.00723	2.02119
				3	
212805_at	158471	PRUNE2	prune homolog 2 (Drosophila)	0.01901	2.04177
				1	

Ingenuity	Molecules
Canonical	
Pathways	
Aryl	TP53,SRC,IL1A,NFIX,MAPK1,MDM2,SMARCA4,HSP90B1,HSP90AB1,RARA,N
Hydrocarb	FIA,TGFB2,ALDH18A1,ALDH6A1
on	
Receptor	
Signaling	
B Cell	PTPRC,HLA-DRB1,HLA-DQA1,IGHM,HLA-DQB1,IGHD
Developm	
ent	
STAT3	SRC,IL1A,IL13RA1,MAPK1,IL1R1,MAPK13,BCL2,IL1R2,MAPK14,CISH,TGFA
Pathway	,TGFB2,IL27RA
Cdc42	SRC,MAPK14,HLA-DRB1,MAPK1,BAIAP2,HLA-
Signaling	DQA1,MYL4,CDC42SE1,HLA-DQB1,MAPK13,EXOC6,APC
Toll-like	MAP2K6,TLR4,IL1A,MAPK14,MAPK1,TLR8,TLR7,MAPK13,IRAK3
Receptor	
Signaling	
<i>p38</i>	IL1R2,MAP2K6,TP53,IL1A,MAPK14,DDIT3,DUSP1,TGFB2,IL1R1,MAPK13,IR
MAPK	AK3
Signaling	
B Cell	MAP2K6,PRKCQ,MAPK1,MAPK13,TCF3,BCL6,PTEN,PTPRC,NFAT5,MAPK1
Receptor	4,GAB1,CD22,IGHM,MAP3K2,IGHD
Signaling	
Parkinson'	MAPK14,MAPK1,MAPK13,SNCA
S	
Signaling	

Table S5.Selected Pathways associated with differentially expressed genes at 5 hours

Neuroinfla	NAIP,TRAF3,MAPK1,TLR8,HLA-DQA1,MAPK13,IL1R1,IRAK3,HLA-
mmation	DQB1,BCL2,TLR4,MAPK14,HLA-
Signaling	DRB1,NFAT5,GAB1,TLR7,TGFB2,CFLAR,SNCA,PSEN1
Pathway	
PPARa/R	MAP2K6,MED23,MAPK1,ADCY4,IL1R1,IL1R2,HSP90B1,MAPK14,HSP90AB1,
XRα	GK,PRKAA1,TGFB2,STAT5B,GOT2
Activation	
IL-7	MAPK14,MAPK1,GAB1,SLC2A1,IGHM,MAPK13,BCL6,STAT5B,BCL2
Signaling	
Pathway	
Nitric	HSP90B1,PRKCQ,CACNA1D,MAPK1,GAB1,HSP90AB1,PRKAA1,SLC7A1,PD
Oxide	E5A,NOS3
Signaling	
in the	
Cardiovas	
cular	
System	
Inhibition	TP53,MAPK14,MAPK1,MAPK13,NOS3
of	
Angiogene	
sis by	
TSP1	
Endoplas	HSP90B1,DDIT3,ERN1,DNAJC3
mic	
Reticulum	
Stress	
Pathway	
UVC-	TP53,SRC,MAPK14,PRKCQ,MAPK1,MAPK13
Induced	
MAPK	
Signaling	

Type I	MAP2K6,MAPK14,HLA-DRB1,MAPK1,HLA-DQA1,IL1R1,HLA-
Diabetes	DQB1,MAPK13,BCL2
Mellitus	
Signaling	
NF-кB	MAP2K6,TRAF3,IL1A,PRKCQ,TLR8,IRAK3,IL1R1,IL1R2,TLR4,GAB1,PELI1,T
Signaling	LR7,TGFA
IL-10	IL1R2,MAP2K6,IL1A,MAPK14,MAPK1,MAPK13,IL1R1
Signaling	
Protein	PADI4,PADI2
Citrullinat	
ion	
RAR	SRC,MAPK14,PRKCQ,AKR1C3,MAPK1,DUSP1,ADCY4,RARA,TGFB2,MAPK1
Activation	<i>3,STAT5B,SMARCA4,PTEN</i>
IL-22	MAPK14,MAPK1,MAPK13,STAT5B
Signaling	
HIF1α	TP53,MAPK14,MAPK1,GAB1,SLC2A1,MMP28,MDM2,MAPK13,MMP25,NOS3
Signaling	
Hypoxia	TP53,HSP90B1,HSP90AB1,UBE2W,MDM2,NOS3,PTEN
Signaling	
in the	
Cardiovas	
cular	
System	
Role of	MAPK14,MAPK1,MAPK13,STAT5B
JAK	
family	
kinases in	
IL-6-type	
Cytokine	
Signaling	
L	

PI3K/AKT	TP53,HSP90B1,MAPK1,GAB1,HSP90AB1,PPP2R3A,MDM2,NOS3,PTEN,BCL2
Signaling	
IL-1	MAP2K6,IL1A,MAPK14,MAPK1,ADCY4,MAPK13,IL1R1,IRAK3
Signaling	
B Cell	TRAF3,MAPK14,NFAT5,MAPK1,MAPK13
Activating	
Factor	
Signaling	
Role of	MAP2K6,SRC,IL1A,TRAF3,PRKCQ,MAPK1,TLR8,LTB,IL1R1,IRAK3,TCF3,AP
Macropha	C,IL1R2,TLR4,MAPK14,NFAT5,GAB1,TLR7
ges,	
Fibroblast	
s and	
Endothelia	
l Cells in	
Rheumatoi	
d Arthritis	
Dendritic	TLR4,IL1A,MAPK14,HLA-DRB1,MAPK1,GAB1,LEPR,HLA-DQA1,LTB,HLA-
Cell	DQB1,MAPK13,COL18A1
Maturatio	
п	
Superpath	ALDH18A1,NOS3,ARG1
way of	
Citrulline	
Metabolis	
т	
Communic	TLR4,IL1A,HLA-DRB1,TLR8,TLR7,IGHM,IGHD
ation	
between	
Innate and	
Adaptive	

Immune	
Cells	
AMPK	SRC,RAB1A,SLC2A1,MAPK1,RAB7A,MAPK13,NOS3,SMARCA4,MAPK14,GAB
Signaling	1,PPP2R3A,RPTOR,PRKAA1,CAMKK2
iNOS	TLR4,MAPK14,MAPK1,IRAK3,MAPK13
Signaling	
Leukocyte	F11R,SRC,CLDN10,CLDN11,MAPK14,PRKCQ,GAB1,MAPK1,MMP28,EZR,M
Extravasat	APK13,MMP25,DLC1
ion	
Signaling	
Acute	MAP2K6,GAB1,MAPK1,FLT3LG,RARA,JUP,TCF3,STAT5B
Myeloid	
Leukemia	
Signaling	
PFKFB4	MAP2K6,TP53,HK1,MAPK1,TGFB2
Signaling	
Pathway	
OX40	TRAF3,HLA-DRB1,HLA-DQA1,HLA-DQB1,BCL2
Signaling	
Pathway	
Nur77	HLA-DRB1,HLA-DQA1,HLA-DQB1,MAP3K2,BCL2
Signaling	
in T	
Lymphocyt	
es	
ErbB	MAP2K6,PRKCQ,MAPK14,MAPK1,GAB1,TGFA,MAPK13,AREG
Signaling	
Antigen	HLA-DRB1,HLA-DQA1,CD74,HLA-DQB1
Presentati	
on	
Pathway	

TREM1	TLR4,TREM1,MAPK1,TLR8,TLR7,STAT5B
Signaling	
Hepatic	IL1R2,TLR4,IL1A,PRKCQ,ADCY4,ABCC2,RARA,TGFB2,LTB,IL1R1,IRAK3
Cholestasi	
S	
Xenobiotic	MAP2K6,IL1A,PRKCQ,MAPK1,ABCC2,MAPK13,HSP90B1,MAPK14,HSP90AB
Metabolis	1,GAB1,PPP2R3A,ALDH18A1,SULT1B1,ALDH6A1,MAP3K2
т	
Signaling	
iCOS-	PTPRC,NFAT5,PRKCQ,HLA-DRB1,GAB1,HLA-DQA1,HLA-DQB1,PTEN
iCOSL	
Signaling	
in T	
Helper	
Cells	
Apelin	TGFB2,PRKAA1,NOS3
Cardiac	
Fibroblast	
Signaling	
Pathway	
Citrulline	ALDH18A1,ARG1
Biosynthes	
is	
Role of	TP53,PPP2R3A,SLC19A1,BRCA1,RAD50
СНК	
Proteins in	
Cell Cycle	
Checkpoin	
t Control	
PEDF	TP53,MAPK14,MAPK1,GAB1,CFLAR,MAPK13,BCL2
Signaling	

LPS-	MAP2K6,TLR4,MAPK14,PRKCQ,MAPK1,GAB1,MAPK13
stimulated	
MAPK	
Signaling	
Graft-	IL1A,HLA-DRB1,HLA-DQA1,HLA-DQB1
versus-	
Host	
Disease	
Signaling	
BAG2	TP53,MAPK14,MAPK1,MDM2
Signaling	
Pathway	
MIF	TP53,TLR4,MAPK1,CD74
Regulation	
of Innate	
Immunity	
PPAR	IL1R2,IL1A,HSP90B1,MAPK1,HSP90AB1,IL1R1,STAT5B
Signaling	
Th1	MAP2K6,PRKCQ,HLA-DRB1,GAB1,HLA-DQA1,HLA-DQB1,IL27RA,PSEN1
Pathway	
Glycine	SRR,SHMT2
Betaine	
Degradati	
on	
CD40	MAP2K6,TRAF3,MAPK14,MAPK1,GAB1,MAPK13
Signaling	
RANK	MAP2K6,SRC,MAPK14,MAPK1,GAB1,MAPK13,MAP3K2
Signaling	
in	
Osteoclast	
S	

Epithelial	SRC,BAIAP2,TUBB2A,TGFB2,MYL4,JUP,TCF3,APC,PTEN
Adherens	$SIC, DAIAI 2, I \cup DD2A, I \cup I D2, WIIL4, J \cup I, I \cup I J, AF \cup, F I EN$
Junction	
Signaling	
HMGB1	MAP2K6,TLR4,IL1A,MAPK14,MAPK1,GAB1,TGFB2,LTB,IL1R1,MAPK13
Signaling	
Th1 and	MAP2K6,CCR3,HLA-DRB1,PRKCQ,GAB1,HLA-DQA1,HLA-
Th2	DQB1,IL27RA,STAT5B,PSEN1
Activation	
Pathway	
Role of	MAP2K6,SRC,AKAP5,MAPK14,PRKCQ,CACNA1D,MAPK1,GAB1,ADCY4,TG
NFAT in	FB2,MAPK13,SLC8A1
Cardiac	
Hypertrop	
hy	
Role of	TLR4,IL1A,PRKCQ,MAPK1,GAB1,TLR8,TLR7,TGFB2,LTB
Pattern	
Recognitio	
n	
Receptors	
in	
Recognitio	
n of	
Bacteria	
and	
Viruses	
LPS/IL-1	IL1R2,TLR4,IL1A,ABCC2,RARA,ABCG1,ALDH18A1,IL1R1,ABCC4,ALDH6A1,
Mediated	SULTIBI
Inhibition	
of RXR	
Function	

РКСӨ	HLA-DRB1,PRKCQ,NFAT5,CACNA1D,MAPK1,GAB1,HLA-DQA1,HLA-
Signaling	DQB1,MAP3K2
in T	
Lymphocyt	
es	
Granulocy	IL1R2,CLDN10,CLDN11,IL1A,MMP28,EZR,IL1R1,MMP25,FPR1
te	
Adhesion	
and	
Diapedesi	
S	
IL-6	IL1R2,MAP2K6,IL1A,MAPK14,MAPK1,GAB1,MAPK13,IL1R1
Signaling	
IL-4	NFAT5,HLA-DRB1,GAB1,IL13RA1,HLA-DQA1,HLA-DQB1
Signaling	
Tight	CLDN10,F11R,CPSF6,CLDN11,PPP2R3A,TGFB2,MYL4,STX16,PTEN
Junction	
Signaling	
eNOS	HSP90B1,PRKCQ,LPAR1,GAB1,HSP90AB1,ADCY4,PRKAA1,SLC7A1,NOS3
Signaling	
TGF-β	MAP2K6,MAPK14,MAPK1,TGFB2,MAPK13,BCL2
Signaling	
Wnt/β-	TP53,SRC,PPP2R3A,RARA,TGFB2,TLE4,MDM2,TCF3,APC
catenin	
Signaling	
Th17	HSP90B1,NFAT5,HSP90AB1,IL1R1,IRAK3
Activation	
Pathway	
Autophagy	WDFY3,BECN1,BCL2,ATG9B

Signaling PathwayKAA1,RPTOR.NAMPT,GOT2PathwayIL-12IL-12TLR4,PRKCQ,MAPK14,MAPK1,GAB1,RAB7A,TGFB2,MAPK13Signaling and ProductioninMacrophagesChemokinSRC,CCR3,MAPK14,MAPK1,MAPK13eSignalingAgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium- induced TInduced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationSignalingin Tin T <th>Sirtuin</th> <th>TP53,POLR1B,SLC2A1,MAPK1,SDHC,BECN1,NOS3,ATG9B,GABARAPL1,PR</th>	Sirtuin	TP53,POLR1B,SLC2A1,MAPK1,SDHC,BECN1,NOS3,ATG9B,GABARAPL1,PR
IL-12TLR4,PRKCQ,MAPK14,MAPK1,GAB1,RAB7A,TGFB2,MAPK13Signaling andandProduction inMacrophagesChemokinSRC,CCR3,MAPK14,MAPK1,MAPK13eSignalingAgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2Signaling in Tint ESignaling in T	Signaling	KAA1,RPTOR,NAMPT,GOT2
Signaling and Productionin Macropha gesChemokin SRC,CCR3,MAPK14,MAPK1,MAPK13e SignalingAgranuloc Agranuloc JuieCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yte Adhesion and Diapedesi sCalcium- induced T Lymphocyt e e ApoptosisTR/RXR CD28DLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2 Activation in T	Pathway	
and and Productio and Productio and n in and Macropha and ges and ges and Chemokin SRC,CCR3,MAPK14,MAPK1,MAPK13 e and Signaling and Agranuloc CLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7 yte and Adhesion and and and Diapedesi and s and f bitappe f bitappe	IL-12	TLR4,PRKCQ,MAPK14,MAPK1,GAB1,RAB7A,TGFB2,MAPK13
Production inMacrophagesChemokinSRC,CCR3,MAPK14,MAPK1,MAPK13esignalingAgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2CD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Signaling	
n in MacrophaImage: Constraint of the second secon	and	
Macropha gesMacrophagesSRC,CCR3,MAPK14,MAPK1,MAPK13eSRC,CCR3,MAPK14,MAPK1,MAPK13eCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandSameDiapedesiSamesSameCalcium- induced THLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TSame4poptosisSameTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationSignalingin TSignalingin TSignalingin TSignaling	Productio	
gesGesChemokinSRC,CCR3,MAPK14,MAPK1,MAPK13eSignalingAgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium-induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1	n in	
ChemokinSRC,CCR3,MAPK14,MAPK1,MAPK13eSRC,CCR3,MAPK14,MAPK1,MAPK13eSignalingSignalingCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandSantarianandSantarianbiapedesiSantariansHLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TSantarianLymphocytSantarianeSantarianApoptosisLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2CD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1SignalingIn T	Macropha	
eInternational of the second seco	ges	
SignalingAgranulocAgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium-Induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Chemokin	SRC, CCR3, MAPK14, MAPK1, MAPK13
AgranulocCLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7yteAdhesionandDiapedesisCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationSignalingin T	е	
yteyteAdhesionandDiapedesisCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin Tin T	Signaling	
AdhesionAdhesionandDiapedesissCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Agranuloc	CLDN10,CLDN11,IL1A,MMP28,EZR,MYL4,IL1R1,MMP25,ITGB7
andDiapedesiscCalcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	yte	
DiapedesisCalcium-Induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Adhesion	
sImage: signaling in TsImage: sign	and	
Calcium-HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Diapedesi	
induced TLymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	S	
LymphocyteApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Calcium-	HLA-DRB1,PRKCQ,HLA-DQA1,HLA-DQB1
eApoptosisApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	induced T	
ApoptosisApoptosisTR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Lymphocyt	
TR/RXRLDLR,TSHB,AKR1C3,GAB1,SLC2A1,MDM2ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	е	
ActivationCD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	Apoptosis	
CD28PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1Signalingin T	TR/RXR	LDLR, TSHB, AKR1C3, GAB1, SLC2A1, MDM2
Signaling in T	Activation	
in T	CD28	PTPRC,HLA-DRB1,PRKCQ,NFAT5,GAB1,HLA-DQA1,HLA-DQB1
	Signaling	
	in T	
Helper	Helper	
Cells	Cells	

IL-17A	MAPK14,MAPK1,MAPK13
Signaling	
in	
Fibroblast	
S	
Hematopo	IL1A,IGHM,IGHD
iesis from	
Pluripoten	
t Stem	
Cells	
Glucocorti	MAPK1,TAF5L,MAPK13,SMARCA4,BCL2,IL1R2,HSP90B1,MAPK14,NFAT5,H
coid	SP90AB1,GAB1,DUSP1,TGFB2,PRKAA1,STAT5B
Receptor	
Signaling	
IL-15	MAPK14,MAPK1,GAB1,MAPK13,STAT5B
Signaling	
Corticotro	PRKCQ,MAPK14,CACNA1D,MAPK1,ADCY4,MAPK13,NOS3
pin	
Releasing	
Hormone	
Signaling	
T Helper	HLA-DRB1,HLA-DQA1,HLA-DQB1,BCL6
Cell	
Differentia	
tion	
CCR5	MAPK14,PRKCQ,CACNA1D,MAPK1,MAPK13
Signaling	
in	
Macropha	
ges	

Fcγ	SRC,PRKCQ,MAPK1,EZR,PTEN
Receptor-	
mediated	
Phagocyto	
sis in	
Macropha	
ges and	
Monocytes	
Lymphoto	TRAF3,MAPK1,GAB1,LTB
xin β	
Receptor	
Signaling	
NRF2-	MAP2K6,MAPK14,PRKCQ,MAPK1,GAB1,ABCC2,DNAJC3,DNAJC15,ABCC4
mediated	
Oxidative	
Stress	
Response	
<i>IL-17</i> .	MAP2K6,MAPK14,MAPK1,GAB1,MAPK13
Signaling	
VEGF .	PRKCQ,MAPK1,GAB1,NOS3,NRP1
Family	
Ligand-	
Receptor	
Interactio	
ns	
IL-9	GAB1,CISH,STAT5B
Signaling	
Acute	MAP2K6,IL1A,MAPK14,MAPK1,MAPK13,IL1R1,TCF3,NOLC1
Phase	
Response	
Signaling	

Caveolar-	SRC,FLNA,ITGB7,MAP3K2
mediated	
Endocytos	
is	
Signaling	
Antiprolife	MAPK1,TGFB2
rative Role	
of TOB in	
T Cell	
Signaling	
Fc Epsilon	MAP2K6,MAPK14,PRKCQ,MAPK1,GAB1,MAPK13
RI	
Signaling	
Phagosom	TLR4,CR1,PRKCQ,GAB1,TLR8,TLR7
е	
Formation	
Role of	AKAP5,NFAT5,PRKCQ,HLA-DRB1,MAPK1,GAB1,HLA-DQA1,HLA-DQB1
NFAT in	
Regulation	
of the	
Immune	
Response	
Antioxidan	MAPK14,MAPK1,SLC2A1,MAPK13,STAT5B
t Action of	
Vitamin C	
CD27	MAP2K6,CD27,MAP3K2
Signaling	
in	
Lymphocyt	
es	

Renin-	MAPK14,PRKCQ,MAPK1,GAB1,ADCY4,MAPK13
Angiotensi	
n	
Signaling	
VEGF	SRC,MAPK1,GAB1,NOS3,BCL2
Signaling	
Endothelin	SRC,PRKCQ,MAPK14,MAPK1,GAB1,ADCY4,MAPK13,NOS3
-1	
Signaling	
Crosstalk	TLR4,HLA-DRB1,TLR7,LTB
between	
Dendritic	
Cells and	
Natural	
Killer	
Cells	
Productio	TLR4,PRKCQ,MAPK14,MAPK1,GAB1,PPP2R3A,MAPK13,MAP3K2
n of Nitric	
Oxide and	
Reactive	
Oxygen	
Species in	
Macropha	
ges	
Gap	SRC,PRKCQ,LPAR1,MAPK1,GAB1,ADCY4,TUBB2A,MAP3K2
Junction	
Signaling	
T Cell	PTPRC,NFAT5,PRKCQ,MAPK1,GAB1
Receptor	
Signaling	

Compleme	CR1,CD46
nt System	
IL-3	PRKCQ,MAPK1,GAB1,STAT5B
Signaling	
Inhibition	MMP28,MMP25
of Matrix	
Metallopr	
oteases	
Regulation	MAP2K6,MAPK1,GAB1,TGFB2,TCF3,APC,PSEN1
of the	
Epithelial-	
Mesenchy	
mal	
Transition	
Pathway	
IL-2	MAPK1,GAB1,STAT5B
Signaling	
<i>P2Y</i>	P2RY2,PRKCQ,MAPK1,GAB1,ADCY4
Purigenic	
Receptor	
Signaling	
Pathway	
CXCR4	SRC,PRKCQ,MAPK1,GAB1,ADCY4,MYL4
Signaling	
Regulation	NFAT5,MAPK1,TGFB2
of IL-2	
Expressio	
n in	
Activated	
and	
Anergic T	

Lymphocyt	
es	
IL-15	MAP2K6,SRC,TWF1,FLT3LG
Productio	
n	
Angiopoiet	GAB1,NOS3,STAT5B
in	
Signaling	
Death	NAIP,CFLAR,BCL2
Receptor	
Signaling	
Natural	PRKCQ,GAB1,MAPK1,SH2D1B
Killer Cell	
Signaling	

 Table S6. Differentially expressed genes that correlated with SBP at 5 hours

	Entrez	Gene	Gene Title	r	Р
Probeset ID	Gene	Symbol			value(correlation)
1553157_at	89884	LHX4	LIM homeobox 4	0.250441	0.0496167
1557285_at	374	AREG	amphiregulin	0.286048	0.0242072
	5029	P2RY2	purinergic receptor P2Y, G-	-	0.0111597
206277_at			protein coupled, 2	0.320263	
	765	CA6	carbonic anhydrase VI	-	0.00735361
206873_at				0.337239	
	1232	CCR3	chemokine (C-C motif)	-	0.00239995
208304_at			receptor 3	0.378765	
	23136	EPB41L3	erythrocyte membrane	-	0.0401261
211776_s_at			protein band 4.1-like 3	0.261429	
	9887	SMG7	SMG7 nonsense mediated	0.279426	0.0278465
217189_s_at			mRNA decay factor		
	10347	ABCA7	ATP binding cassette	-	0.031909
219577_s_at			subfamily A member 7	0.272845	
	643827	CNTNAP3P2	contactin associated protein-	0.290106	0.022182
220436_at			like 3 pseudogene 2		
	51114	ZDHHC9	zinc finger, DHHC-type	-	0.0082427
222451_s_at			containing 9	0.332684	
	147650	SPACA6	sperm acrosome associated 6	-	0.0291287
227992_s_at				0.277267	
	400506	KNOP1	lysine-rich nucleolar protein	-	0.0407574
229558_at			1	0.260635	
230722_at	54796	BNC2	basonuclin 2	0.255278	0.0452344
	64478	CSMD1	CUB and Sushi multiple	0.266967	0.0359445
231223_at			domains 1		
234709_at	92291	CAPN13	calpain 13	0.301376	0.017295

		100507316	MINCR	MYC-induced long	-0.38101	0.00224943
	235428_at			noncoding RNA		
ĺ	238478_at	54796	BNC2	basonuclin 2	0.256921	0.0438206

Probeset	Entrez	Gene Symbol	Gene Title	P value	Fold-
ID	Gene				Change
					(Higher
					BP vs.
					Lower BP)
221491_x_	3119 ///	HLA-DQB1	major histocompatibility	0.0229	-3.04551
at	3123 ///	/// HLA-	complex, class II, DQ	65	
	3124 ///	DRB1 ///	beta 1 /// major		
	3125 ///	HLA-DRB2	histocompatibility comp		
	3126 ///	/// HLA-			
	3127 ///	DRB3 ///			
	3128 ///	HLA-DRB4			
	3129 ///	/// HLA-			
	3130 ///	DRB5 ///			
	105369	HLA-DRB6			
		/// HLA-			
		DRB7 ///			
		HLA-DRB8			
		///			
		LOC1053692			
		30			
236203_at	3117	HLA-DQA1	major histocompatibility	0.0359	-2.79545
			complex, class II, DQ	52	
			alpha 1		
227474_at	654433	PAX8-AS1	PAX8 antisense RNA 1	0.0482	-2.03675
				55	
204141_at	7280	TUBB2A	tubulin, beta 2A class IIa	0.0226	-1.96978
				22	

 Table S7. Differentially expressed genes 24 hours.

1553214_a	79741	CCDC7	coiled-coil domain	0.0026	-1.68281
_at			containing 7	76	
224150_s_a	80321	CEP70	centrosomal protein	0.0020	-1.61809
t			70kDa	97	
1569136_at	11320	MGAT4A	mannosyl (alpha-1,3-)-	0.0037	-1.55619
			glycoprotein beta-1,4-N-	64	
			acetylglucosaminyltransfe		
			rase, isozyme A		
1560762_at	285972	LINC00996	long intergenic non-	0.0293	-1.49569
			protein coding RNA 996	42	
230756_at	257101	ZNF683	zinc finger protein 683	0.0324	-1.4693
				45	
1555241_at	401466	C8orf59	chromosome 8 open	0.0086	-1.46867
			reading frame 59	72	
234865_at	28562	TRBV25-1	T cell receptor beta	0.0207	-1.46015
			variable 25-1	35	
204404_at	6558	SLC12A2	solute carrier family 12	0.0015	-1.45429
			(sodium/potassium/chlori	22	
			de transporter), member 2		
226646_at	10365	KLF2	Kruppel-like factor 2	0.0313	-1.44197
				87	
210517_s_a	9590	AKAP12	A kinase (PRKA) anchor	0.0404	-1.43266
t			protein 12	49	
201291_s_a	7153	TOP2A	topoisomerase (DNA) II	0.0334	-1.40824
t			alpha	31	
210868_s_a	79071	ELOVL6	ELOVL fatty acid	0.0207	-1.40612
t			elongase 6	65	
203632_s_a	51704	GPRC5B	G protein-coupled	0.0297	-1.40307
t			receptor, class C, group 5,	01	
			member B		

234440_at	28516	TRDV3	T cell receptor delta	0.0457	-1.40269
			variable 3	15	
1568781_at	7390	UROS	uroporphyrinogen III	0.0064	-1.40224
			synthase	72	
206336_at	6372	CXCL6	chemokine (C-X-C motif)	0.0442	-1.38541
			ligand 6	98	
227910_at	63929	XPNPEP3	X-prolyl aminopeptidase	0.0105	-1.37807
			3, mitochondrial	94	
202988_s_a	5996	RGS1	regulator of G-protein	0.0383	-1.37795
t			signaling 1	88	
231341_at	340146	SLC35D3	solute carrier family 35,	0.0372	-1.37538
			member D3	41	
204603_at	9156	EXO1	exonuclease 1	0.0051	-1.371
				37	
204256_at	79071	ELOVL6	ELOVL fatty acid	0.0300	-1.3621
			elongase 6	2	
1553215_s_	79741	CCDC7	coiled-coil domain	0.0081	-1.36126
at			containing 7	72	
223918_at	728637	MEIKIN	meiotic kinetochore factor	0.0022	-1.35435
				85	
210643_at	8600	TNFSF11	tumor necrosis factor	0.0182	-1.35156
			(ligand) superfamily,	91	
			member 11		
1570571_at	55297	CCDC91	coiled-coil domain	0.0034	-1.35102
			containing 91	33	
235609_at	83990	BRIP1	BRCA1 interacting	0.0298	-1.348
			protein C-terminal	79	
			helicase 1		
231050_at	117245	HRASLS5	HRAS-like suppressor	0.0186	-1.33449
			family, member 5	46	

1558719_s_	84268	RPAIN	RPA interacting protein	0.0078	-1.33446
at				13	
240063_at	441046	GUSBP5	glucuronidase, beta	0.0446	-1.33418
			pseudogene 5	74	
1553810_a	57650	KIAA1524	KIAA1524	0.0044	-1.33122
_at				54	
239989_at	54875	CNTLN	centlein, centrosomal	0.0024	-1.32984
			protein	66	
207705_s_a	22981	NINL	ninein-like	0.0127	-1.3271
t				66	
1555243_x	401466	C8orf59	chromosome 8 open	0.0357	-1.3258
_at			reading frame 59	4	
226736_at	91612	CHURC1	churchill domain	0.0424	-1.32476
			containing 1	37	
229390_at	441168	FAM26F	family with sequence	0.0260	-1.3234
			similarity 26, member F	82	
203553_s_a	11183	MAP4K5	mitogen-activated protein	0.0177	-1.32101
t			kinase kinase kinase	43	
			kinase 5		
205871_at	5342 ///	PLGLB1 ///	plasminogen-like B1 ///	0.0392	-1.31431
	5343	PLGLB2	plasminogen-like B2	92	
1568627_at	57223	PPP4R3B	protein phosphatase 4,	0.0086	-1.31286
			regulatory subunit 3B	15	
238017_at	195814	SDR16C5	short chain	0.0477	-1.31188
			dehydrogenase/reductase	78	
			family 16C, member 5		
1565898_at	196074	METTL15	methyltransferase like 15	0.0137	-1.3117
				24	
222016_s_a	64288	ZSCAN31	zinc finger and SCAN	0.0127	-1.31011
t			domain containing 31	34	

236471_at	9603	NFE2L3	nuclear factor, erythroid	0.0490	-1.30823
			2-like 3	36	
235836_at	439921	MXRA7	matrix-remodelling	0.0250	-1.30821
			associated 7	53	
242003_at	157697	ERICH1	glutamate rich 1	0.0487	-1.30347
				26	
226947_at	375513 ///	GUSBP1 ///	glucuronidase, beta	0.0056	-1.30032
	728411 ///	GUSBP4 ///	pseudogene 1 ///	1	
	10192920	LINC00680	glucuronidase, beta		
	0 ///	///	pseudogene 4 /// long		
	10666061	LOC1019292	intergen		
	2	00			
227491_at	79071	ELOVL6	ELOVL fatty acid	0.0296	-1.29788
			elongase 6	52	
1568658_at	339804	C2orf74	chromosome 2 open	0.0456	-1.29617
			reading frame 74	34	
211525_s_a	2814	GP5	glycoprotein V (platelet)	0.0260	-1.29198
t				69	
1569289_at	54841	BIVM	basic, immunoglobulin-	0.0227	-1.28966
			like variable motif	15	
			containing		
240890_at	643733	LOC643733	caspase 4, apoptosis-	0.0252	-1.28907
			related cysteine peptidase	79	
			pseudogene		
1560654_at	283011	FLJ37201	tigger transposable	0.0174	-1.28854
			element derived 2	71	
			pseudogene		
206589_at	2672	GFI1	growth factor independent	0.0427	-1.28791
			1 transcription repressor	73	

228121_at	7042 ///	TGFB2 ///	transforming growth	0.0483	-1.28514
	10361115	TGFB2-OT1	factor beta 2 /// TGFB2	16	
	7		overlapping transcript 1		
236665_at	343099	CCDC18	coiled-coil domain	0.0142	-1.28464
			containing 18	06	
220459_at	114044	MCM3AP-	MCM3AP antisense RNA	0.0403	-1.2842
		AS1	1	1	
236150_at	123688	НҮКК	hydroxylysine kinase	0.0226	-1.28247
				67	
237745_at	641467	TSC22D1-	TSC22D1 antisense RNA	0.0441	-1.28234
		AS1	1	02	
227711_at	121355	GTSF1	gametocyte specific factor	0.0449	-1.2818
			1	74	
236290_at	220164	DOK6	docking protein 6	0.0030	-1.27766
				86	
204135_at	11259	FILIP1L	filamin A interacting	0.0356	-1.27669
			protein 1-like	03	
238844_s_a	4867	NPHP1	nephronophthisis 1	0.0034	-1.27648
t			(juvenile)	33	
228719_at	125150	ZSWIM7	zinc finger, SWIM-type	0.0372	-1.27564
			containing 7	82	
230521_at	84904	ARHGEF39	Rho guanine nucleotide	0.0485	-1.27303
			exchange factor 39	3	
226278_at	258010	SVIP	small VCP/p97-	0.0357	-1.26996
			interacting protein	26	
1557166_at	27250	PDCD4	programmed cell death 4	0.0489	-1.26903
			(neoplastic transformation	58	
			inhibitor)		
1566514_at	143884	CWF19L2	CWF19-like 2, cell cycle	0.0094	-1.2672
			control (S. pombe)	48	

235516_at	51091	SEPSECS	Sep (O-phosphoserine)	0.0312	-1.26605
			tRNA:Sec	99	
			(selenocysteine) tRNA		
			synthase		
221683_s_a	80184	CEP290	centrosomal protein	0.0403	-1.26548
t			290kDa	55	
1559477_s_	4211	MEIS1	Meis homeobox 1	0.0188	-1.26019
at				95	
211211_x_	4068	SH2D1A	SH2 domain containing	0.0467	-1.25917
at			1A	04	
235561_at	9352	TXNL1	thioredoxin-like 1	0.0436	-1.25915
				52	
201929_s_a	8502	PKP4	plakophilin 4	0.0382	-1.2573
t				23	
1552660_a	55322	C5orf22	chromosome 5 open	0.0240	-1.25729
_at			reading frame 22	31	
224444_s_a	84791	LINC00467	long intergenic non-	0.0444	-1.25617
t			protein coding RNA 467	56	
230351_at	283481	FGF14-AS2	FGF14 antisense RNA 2	0.0301	-1.2499
				27	
241034_at	2744	GLS	glutaminase	0.0355	-1.24956
				32	
1556493_a	23081	KDM4C	lysine (K)-specific	0.0259	-1.24634
_at			demethylase 4C	36	
213983_s_a	23244	PDS5A	PDS5 cohesin associated	0.0447	-1.24547
t			factor A	47	
229822_at	29780 ///	PARVB ///	parvin, beta /// parvin,	0.0143	-1.24083
	64098	PARVG	gamma	12	
1555142_at	150159	SLC9B1	solute carrier family 9,	0.0065	-1.24062
			subfamily B (NHA1,	96	

			cation proton antiporter		
			1), member 1		
1556361_s_	81573	ANKRD13C	ankyrin repeat domain	0.0233	-1.23936
at			13C	56	
235490_at	84314	TMEM107	transmembrane protein	0.0495	-1.23882
			107	94	
205355_at	36	ACADSB	acyl-CoA dehydrogenase,	0.0461	-1.23679
			short/branched chain	46	
235760_at	64324	NSD1	nuclear receptor binding	0.0285	-1.23505
			SET domain protein 1	44	
236208_at	4338	MOCS2	molybdenum cofactor	0.0399	-1.23165
			synthesis 2	67	
1552490_at	246269	LACE1	lactation elevated 1	0.0162	-1.23094
				28	
230847_at	56897	WRNIP1	Werner helicase	0.0447	-1.23066
			interacting protein 1	85	
207471_at	57038	RARS2	arginyl-tRNA synthetase	0.0174	-1.23038
			2, mitochondrial	83	
229676_at	55149	MTPAP	mitochondrial poly(A)	0.0135	-1.22981
			polymerase	76	
1554703_at	9639	ARHGEF10	Rho guanine nucleotide	0.0445	-1.22887
			exchange factor 10	91	
215890_at	2760	GM2A	GM2 ganglioside	0.0146	-1.22845
			activator	69	
1553391_at	254158	CXorf58	chromosome X open	0.0143	-1.2278
			reading frame 58	72	
205608_s_a	284	ANGPT1	angiopoietin 1	0.0145	-1.22755
t				14	

1555202_a	55197	RPRD1A	regulation of nuclear pre-	0.0124	-1.22576
_at			mRNA domain	19	
			containing 1A		
1553423_a	146857	SLFN13	schlafen family member	0.0317	-1.22573
_at			13	05	
226901_at	284018	C17orf58	chromosome 17 open	0.0253	-1.22539
			reading frame 58	2	
205835_s_a	64848	YTHDC2	YTH domain containing 2	0.0405	-1.22488
t				64	
227493_s_a	57456	KIAA1143	KIAA1143	0.0395	-1.2248
t				44	
228820_at	63929	XPNPEP3	X-prolyl aminopeptidase	0.0063	-1.2245
			3, mitochondrial	4	
1555284_at	57679	ALS2	ALS2, alsin Rho guanine	0.0009	-1.22416
			nucleotide exchange	27	
			factor		
223513_at	55835	CENPJ	centromere protein J	0.0187	-1.22414
				11	
228084_at	839 ///	CASP6 ///	caspase 6 ///	0.0430	-1.22342
	81579	PLA2G12A	phospholipase A2, group	46	
			XIIA		
228863_at	27253	PCDH17	protocadherin 17	0.0302	-1.22287
				01	
211727_s_a	1353	COX11	COX11 cytochrome c	0.0350	-1.22256
t			oxidase copper chaperone	09	
213392_at	124152	IQCK	IQ motif containing K	0.0323	-1.2225
				99	
203145_at	10615	SPAG5	sperm associated antigen	0.0060	-1.22224
			5	93	

203989_x_	2149	F2R	coagulation factor II	0.0362	-1.22203
at			(thrombin) receptor	58	
232444_at	387119	CEP85L	centrosomal protein	0.0492	-1.2219
			85kDa-like	51	
244546_at	54205	CYCS	cytochrome c, somatic	0.0086	-1.22156
				45	
215064_at	6309	SC5D	sterol-C5-desaturase	0.0089	-1.22128
				39	
1556616_a	54758	KLHDC4	kelch domain containing	0.0307	-1.22083
_at			4	41	
227967_at	114791	TUBGCP5	tubulin, gamma complex	0.0255	-1.22052
			associated protein 5	74	
1569021_at	5286	PIK3C2A	phosphatidylinositol-4-	0.0330	-1.22025
			phosphate 3-kinase,	69	
			catalytic subunit type 2		
			alpha		
225686_at	348235	SKA2	spindle and kinetochore	0.0460	-1.21887
			associated complex	18	
			subunit 2		
223539_s_a	8293 ///	SERF1A ///	small EDRK-rich factor	0.0173	-1.218
t	728492	SERF1B	1A (telomeric) /// small	68	
			EDRK-rich factor 1B		
			(centromeric)		
227481_at	154043	CNKSR3	CNKSR family member 3	0.0285	-1.21769
				18	
244662_at	55777	MBD5	methyl-CpG binding	0.0225	-1.2172
			domain protein 5	24	
1556613_s_	286148	DPY19L4	dpy-19-like 4 (C. elegans)	0.0172	-1.21632
at				01	

217373_x_	4193	MDM2	MDM2 proto-oncogene,	0.0231	-1.21476
at			E3 ubiquitin protein	34	
			ligase		
1554068_s_	144577	C12orf66	chromosome 12 open	0.0469	-1.21427
at			reading frame 66	5	
1554470_s_	29068	ZBTB44	zinc finger and BTB	0.0416	-1.21347
at			domain containing 44	68	
203856_at	7443	VRK1	vaccinia related kinase 1	0.0216	-1.21256
				93	
242623_x_	389362	PSMG4	proteasome (prosome,	0.0365	-1.21155
at			macropain) assembly	5	
			chaperone 4		
210671_x_	5599	MAPK8	mitogen-activated protein	0.0045	-1.21025
at			kinase 8	69	
234405_s_a	51808	PHAX	phosphorylated adaptor	0.0335	-1.21013
t			for RNA export	83	
210837_s_a	5144	PDE4D	phosphodiesterase 4D,	0.0324	-1.20618
t			cAMP-specific	78	
212241_at	81488 ///	GCOM1 ///	GRINL1A complex locus	0.0394	-1.20483
	145781	POLR2M	1 /// polymerase (RNA) II	89	
			(DNA directed)		
			polypeptide M		
228997_at	54952	TRNAU1AP	tRNA selenocysteine 1	0.0469	-1.2027
			associated protein 1	48	
209349_at	10111	RAD50	RAD50 homolog, double	0.0442	-1.20257
			strand break repair protein	39	
225511_at	51704	GPRC5B	G protein-coupled	0.0070	-1.2025
			receptor, class C, group 5,	04	
			member B		

244767_at	118924	FRA10AC1	fragile site, folic acid	0.0448	-1.20215
			type, rare, fra(10)(q23.3)	24	
			or fra(10)(q24.2)		
			candidate 1		
1553114_a	5753	PTK6	protein tyrosine kinase 6	0.0327	1.20056
_at				05	
1557729_at	2869	GRK5	G protein-coupled	0.0447	1.20111
			receptor kinase 5	76	
207085_x_	1438	CSF2RA	colony stimulating factor	0.0398	1.20188
at			2 receptor, alpha, low-	5	
			affinity (granulocyte-		
			macrophage)		
236207_at	6744	SSFA2	sperm specific antigen 2	0.0202	1.2022
				9	
215754_at	950	SCARB2	scavenger receptor class	0.0115	1.20232
			B, member 2	53	
202806_at	1627	DBN1	drebrin 1	0.0113	1.20233
				14	
215883_at	1495	CTNNA1	catenin (cadherin-	0.0213	1.2024
			associated protein), alpha	36	
			1		
225557_at	64651	CSRNP1	cysteine-serine-rich	0.0248	1.20293
			nuclear protein 1	9	
1554283_at	25819	NOCT	nocturnin	0.0242	1.20394
				41	
209071_s_a	8490	RGS5	regulator of G-protein	0.0175	1.20413
t			signaling 5	65	
227438_at	80216	ALPK1	alpha kinase 1	0.0065	1.20437
				41	

219577_s_a	10347	ABCA7	ATP binding cassette	0.0304	1.20494
t			subfamily A member 7		
217904_s_a	23621	BACE1	beta-site APP-cleaving	0.0201	1.20513
t			enzyme 1	27	
1556608_a	30844	EHD4	EH domain containing 4	0.0351	1.20517
_at				18	
243727_at	144402	CPNE8	copine VIII	0.0470	1.20587
				56	
210069_at	1375 ///	СНКВ-	CHKB-CPT1B	0.0426	1.20614
	386593	CPT1B ///	readthrough (NMD	21	
		CPT1B	candidate) /// carnitine		
			palmitoyltransferase 1B		
			(muscle)		
215185_at	10100000	LINC00963	long intergenic non-	0.0254	1.20657
	0		protein coding RNA 963	48	
230361_at	727957	MROH1	maestro heat-like repeat	0.0394	1.20663
			family member 1	37	
243323_s_a	463	ZFHX3	zinc finger homeobox 3	0.0368	1.20728
t				89	
213922_at	146057	TTBK2	tau tubulin kinase 2	0.0013	1.20747
				7	
217189_s_a	9887	SMG7	SMG7 nonsense mediated	0.0194	1.2075
t			mRNA decay factor	2	
210070_s_a	1375 ///	СНКВ-	CHKB-CPT1B	0.0371	1.20757
t	386593	CPT1B ///	readthrough (NMD	79	
		CPT1B	candidate) /// carnitine		
			palmitoyltransferase 1B		
			(muscle)		
1570328_s_	140834	LINC01620	long intergenic non-	0.0434	1.20773
at			protein coding RNA 1620	83	

216503_s_a	8028	MLLT10	myeloid/lymphoid or	0.0173	1.2079
t			mixed-lineage leukemia;	66	
			translocated to, 10		
204914_s_a	6664	SOX11	SRY box 11	0.0023	1.20811
t				56	
222462_s_a	23621	BACE1	beta-site APP-cleaving	0.0302	1.20848
t			enzyme 1	95	
206682_at	10462	CLEC10A	C-type lectin domain	0.0493	1.20869
			family 10, member A	41	
230369_at	23432	GPR161	G protein-coupled	0.0114	1.20919
			receptor 161	79	
223103_at	10809	STARD10	StAR-related lipid	0.0368	1.2092
			transfer domain	89	
			containing 10		
223846_at	64343	AZI2	5-azacytidine induced 2	0.0088	1.20943
				35	
205026_at	6777	STAT5B	signal transducer and	0.0440	1.2097
			activator of transcription	39	
			5B		
214936_at	23143	LRCH1	leucine-rich repeats and	0.0053	1.21003
			calponin homology (CH)	95	
			domain containing 1		
222988_s_a	252839	TMEM9	transmembrane protein 9	0.0018	1.21054
t				22	
239764_at	10100000	ITPR1-AS1	ITPR1 antisense RNA 1	0.0211	1.21096
	0		(head to head)	95	
215867_x_	771	CA12	carbonic anhydrase XII	0.0180	1.21152
at				43	

236492_at	5520	PPP2R2A	protein phosphatase 2,	0.0242	1.21153
			regulatory subunit B,	9	
			alpha		
232111_at	10100000	TUNAR	TCL1 upstream neural	0.0234	1.21401
	0		differentiation-associated	1	
			RNA		
235928_at	1000000	ZNF503-AS2	ZNF503 antisense RNA 2	0.0342	1.21405
	0			29	
221232_s_a	26287	ANKRD2	ankyrin repeat domain 2	0.0185	1.21406
t			(stretch responsive	98	
			muscle)		
230725_at	84250	SLF1	SMC5-SMC6 complex	0.0321	1.21545
			localization factor 1	67	
1569792_a	254013	METTL20	methyltransferase like 20	0.0231	1.21896
_at				36	
203645_s_a	9332	CD163	CD163 molecule	0.0449	1.21923
t				05	
219757_s_a	54916	TMEM260	transmembrane protein	0.0360	1.21937
t			260	51	
232148_at	8439	NSMAF	neutral sphingomyelinase	0.0472	1.2195
			activation associated	69	
			factor		
243475_at	867	CBL	Cbl proto-oncogene, E3	0.0417	1.21967
			ubiquitin protein ligase	51	
214357_at	92346	Clorf105	chromosome 1 open	0.0301	1.21967
			reading frame 105	02	
216973_s_a	3217	HOXB7	homeobox B7	0.0339	1.22133
t				13	
205424_at	9755	TBKBP1	TBK1 binding protein 1	0.0266	1.22376
				27	

207982_at	3010	HIST1H1T	histone cluster 1, H1t	0.0374	1.22755
				98	
225759_x_	79789	CLMN	calmin (calponin-like,	0.0295	1.22869
at			transmembrane)	94	
1568717_a	23307	FKBP15	FK506 binding protein 15	0.0233	1.22877
_at				51	
210757_x_	1601	DAB2	Dab, mitogen-responsive	0.0375	1.22894
at			phosphoprotein, homolog	24	
			2 (Drosophila)		
222692_s_a	64778	FNDC3B	fibronectin type III	0.0301	1.23064
t			domain containing 3B	98	
206155_at	1244	ABCC2	ATP binding cassette	0.0097	1.23216
			subfamily C member 2	31	
233490_at	51164	DCTN4	dynactin 4 (p62)	0.0092	1.23235
				8	
1570511_at	55160	ARHGEF10L	Rho guanine nucleotide	0.0087	1.23311
			exchange factor 10 like	75	
207759_s_a	27185 ///	DISC1 ///	disrupted in schizophrenia	0.0204	1.2345
t	10030345	TSNAX-	1 /// TSNAX-DISC1	89	
	3	DISC1	readthrough (NMD		
			candidate)		
202821_s_a	4026	LPP	LIM domain containing	0.0209	1.23611
t			preferred translocation	08	
			partner in lipoma		
241817_at	375341	C3orf62	chromosome 3 open	0.0105	1.23654
			reading frame 62	2	
240313_at	63948	DMRTB1	DMRT-like family B with	0.0257	1.23706
			proline-rich C-terminal, 1	98	
208536_s_a	10018	BCL2L11	BCL2-like 11 (apoptosis	0.0128	1.23726
t			facilitator)	21	

222453_at	79901	CYBRD1	cytochrome b reductase 1	0.0334	1.23823
				64	
205308_at	51101	ZC2HC1A	zinc finger, C2HC-type	0.0252	1.23833
			containing 1A	32	
220371_s_a	56996	SLC12A9	solute carrier family 12,	0.0079	1.23836
t			member 9	8	
219806_s_a	56935	SMCO4	single-pass membrane	0.0238	1.24167
t			protein with coiled-coil	15	
			domains 4		
223095_at	83742	MARVELD1	MARVEL domain	0.0058	1.24287
			containing 1	08	
210787_s_a	10645	CAMKK2	calcium/calmodulin-	0.0365	1.2434
t			dependent protein kinase	43	
			kinase 2, beta		
1553729_s_	254050	LRRC43	leucine rich repeat	0.0397	1.24357
at			containing 43	96	
213120_at	23074	UHRF1BP1L	UHRF1 binding protein	0.0362	1.24563
			1-like	07	
226490_at	57224	NHSL1	NHS-like 1	0.0027	1.24665
				91	
214400_at	3640	INSL3	insulin-like 3 (Leydig	0.0247	1.2491
			cell)	25	
1555842_at	9266	CYTH2	cytohesin 2	0.0137	1.24921
				37	
231345_s_a	79758	DHRS12	dehydrogenase/reductase	0.0137	1.24951
t			(SDR family) member 12	73	
235112_at	158405	KIAA1958	KIAA1958	0.0206	1.24964
				72	
204800_s_a	79758	DHRS12	dehydrogenase/reductase	0.0344	1.25183
t			(SDR family) member 12	89	

212448_at	23327	NEDD4L	neural precursor cell	0.0249	1.25211
			expressed,	34	
			developmentally down-		
			regulated 4-like, E3		
			ubiquitin pr		
220535_at	55138	FAM90A1	family with sequence	0.0058	1.25346
			similarity 90, member A1	61	
1558365_at	5230	PGK1	phosphoglycerate kinase	0.0212	1.25453
			1	03	
225189_s_a	65059	RAPH1	Ras association	0.0034	1.25506
t			(RalGDS/AF-6) and	92	
			pleckstrin homology		
			domains 1		
220168_at	55259	CASC1	cancer susceptibility	0.0372	1.25841
			candidate 1	91	
1555396_s_	340602	CXorf67	chromosome X open	0.0046	1.26002
at			reading frame 67	91	
1554730_at	79772	MCTP1	multiple C2 domains,	0.0188	1.26135
			transmembrane 1	93	
1570119_at	23047	PDS5B	PDS5 cohesin associated	0.0403	1.26377
			factor B	64	
210711_at	84719	LINC00260	long intergenic non-	0.0147	1.2651
			protein coding RNA 260	78	
216243_s_a	3557	IL1RN	interleukin 1 receptor	0.0391	1.26599
t			antagonist	73	
227697_at	9021	SOCS3	suppressor of cytokine	0.0376	1.26617
			signaling 3	02	
1556770_a	222235	FBXL13	F-box and leucine-rich	0.0099	1.26848
_at			repeat protein 13	36	

235019_at	1368	СРМ	carboxypeptidase M	0.0272	1.27036
				56	
202948_at	3554	IL1R1	interleukin 1 receptor,	0.0466	1.27069
			type I	75	
238834_at	91807	MYLK3	myosin light chain kinase	0.0184	1.27073
			3	83	
204437_s_a	2348	FOLR1	folate receptor 1 (adult)	0.0305	1.27115
t				9	
207823_s_a	199	AIF1	allograft inflammatory	0.0134	1.27248
t			factor 1	37	
228056_s_a	256236	NAPSB	napsin B aspartic	0.0207	1.27459
t			peptidase, pseudogene	44	
228176_at	1903	S1PR3	sphingosine-1-phosphate	0.0184	1.27563
			receptor 3	47	
221887_s_a	25861	DFNB31	deafness, autosomal	0.0223	1.27804
t			recessive 31	21	
1553991_s_	54621	VSIG10	V-set and	0.0476	1.27855
at			immunoglobulin domain	69	
			containing 10		
205141_at	283	ANG	angiogenin, ribonuclease,	0.0410	1.27885
			RNase A family, 5	84	
205539_at	10677	AVIL	advillin	0.0217	1.27963
				79	
1562648_at	55704	CCDC88A	coiled-coil domain	0.0440	1.27986
			containing 88A	06	
207323_s_a	4155	MBP	myelin basic protein	0.0151	1.28114
t				65	
228055_at	256236	NAPSB	napsin B aspartic	0.0255	1.28118
			peptidase, pseudogene		

1560625_s_	10200000	CATIP-AS1	CATIP antisense RNA 1	0.0462	1.28141
at	0			83	
202581_at	3303 ///	HSPA1A ///	heat shock 70kDa protein	0.0330	1.28822
	3304	HSPA1B	1A /// heat shock 70kDa	46	
			protein 1B		
229213_at	84925	DIRC2	disrupted in renal	0.0206	1.29056
			carcinoma 2	11	
239001_at	4257	MGST1	microsomal glutathione	0.0135	1.29181
			S-transferase 1	67	
224904_at	55066	PDPR	pyruvate dehydrogenase	0.0011	1.29258
			phosphatase regulatory	42	
			subunit		
228342_s_a	57538	ALPK3	alpha kinase 3	0.0079	1.29356
t				51	
220302_at	4117	MAK	male germ cell-associated	0.0223	1.29653
			kinase	31	
235699_at	161253	REM2	RAS (RAD and GEM)-	0.0030	1.29691
			like GTP binding 2	37	
232639_at	90288	EFCAB12	EF-hand calcium binding	0.0203	1.29817
			domain 12	61	
243934_at	440836	ODF3B	outer dense fiber of sperm	0.0041	1.29888
			tails 3B	93	
226485_at	54621	VSIG10	V-set and	0.0463	1.30043
			immunoglobulin domain	58	
			containing 10		
220037_s_a	10894	LYVE1	lymphatic vessel	0.0378	1.30167
t			endothelial hyaluronan	65	
			receptor 1		
229499_at	92291	CAPN13	calpain 13	0.0128	1.30368
				45	

1557432_at	9462	RASAL2	RAS protein activator like	0.0420	1.30644
			2	42	
209072_at	4155	MBP	myelin basic protein	0.0094	1.30767
				36	
1557465_at	283521	LINC00282	long intergenic non-	0.0419	1.30971
			protein coding RNA 282	41	
216264_s_a	3913	LAMB2	laminin, beta 2 (laminin	0.0045	1.31098
t			S)	92	
219236_at	79957	PAQR6	progestin and adipoQ	0.0362	1.31198
			receptor family member	19	
			VI		
214846_s_a	57538	ALPK3	alpha kinase 3	0.0042	1.31311
t				13	
1554833_at	55784	MCTP2	multiple C2 domains,	0.0328	1.31359
			transmembrane 2	06	
205158_at	6038	RNASE4	ribonuclease, RNase A	0.0352	1.31364
			family, 4	84	
224534_at	83999	KREMEN1	kringle containing	0.0448	1.31604
			transmembrane protein 1	48	
220137_at	54621	VSIG10	V-set and	0.0312	1.31664
			immunoglobulin domain	74	
			containing 10		
1557727_at	400960	PCBP1-AS1	PCBP1 antisense RNA 1	0.0269	1.31775
				74	
1564274_at	286223	C9orf47	chromosome 9 open	0.0266	1.31892
			reading frame 47	38	
238983_at	79730	NSUN7	NOP2/Sun domain	0.0463	1.32127
			family, member 7	79	
243476_at	4763	NF1	neurofibromin 1	0.0075	1.32138
				67	

234321_x_	57224	NHSL1	NHS-like 1	0.0008	1.3226
at				23	
229638_at	79191	IRX3	iroquois homeobox 3	0.0248	1.32642
				91	
226974_at	23327	NEDD4L	neural precursor cell	0.0054	1.32871
			expressed,	74	
			developmentally down-		
			regulated 4-like, E3		
			ubiquitin pr		
241418_at	344887	LOC344887	NmrA-like family domain	0.0176	1.33048
			containing 1 pseudogene	74	
226355_at	25886	POC1A	POC1 centriolar protein A	0.0009	1.3319
				03	
236287_at	83937	RASSF4	Ras association	0.0039	1.33591
			(RalGDS/AF-6) domain	16	
			family member 4		
238999_at	10677	AVIL	advillin	0.0056	1.3368
				56	
214618_at	8837	CFLAR	CASP8 and FADD like	0.0173	1.33938
			apoptosis regulator	4	
1554717_a	5144	PDE4D	phosphodiesterase 4D,	0.0310	1.33946
_at			cAMP-specific	72	
232898_at	1601	DAB2	Dab, mitogen-responsive	0.0074	1.3482
			phosphoprotein, homolog	36	
			2 (Drosophila)		
1568706_s_	10677	AVIL	advillin	0.0043	1.34926
at				97	
1554384_at	11240	PADI2	peptidyl arginine	0.0399	1.35297
			deiminase, type II	64	

214572_s_a	3640	INSL3	insulin-like 3 (Leydig	0.0081	1.35303
t			cell)	46	
230585_at	3772	KCNJ15	potassium channel,	0.0061	1.35648
			inwardly rectifying	53	
			subfamily J, member 15		
213812_s_a	10645	CAMKK2	calcium/calmodulin-	0.0105	1.35766
t			dependent protein kinase	07	
			kinase 2, beta		
1555315_a	4117	MAK	male germ cell-associated	0.0085	1.35798
_at			kinase	32	
233999_s_a	79989	TTC26	tetratricopeptide repeat	0.0108	1.35977
t			domain 26	38	
232953_at	55251 ///	LINC00266-1	long intergenic non-	0.0130	1.35982
	140849 ///	///	protein coding RNA 266-	55	
	728323 ///	LINC01347	1 /// long intergenic non-		
	731275 ///	///	protein coding RNA		
	10192709	LOC1019270			
	7 ///	97 ///			
	10272391	LOC1027239			
	7 ///	17 ///			
	10272392	LOC1027239			
	8 /// 10	28 ///			
		LOC1053714			
		23 ///			
		LOC1053763			
		32 ///			
		LOC1053785			
		82 ///			
		LOC1053796			
		90 ///			

		LOC728323			
		/// PCMTD2			
202023_at	1942	EFNA1	ephrin-A1	0.0094	1.36382
				47	
209502_s_a	10458	BAIAP2	BAI1-associated protein 2	0.0066	1.36455
t				44	
244734_at	64779	MTHFSD	methenyltetrahydrofolate	0.0422	1.37422
			synthetase domain	25	
			containing		
236013_at	777	CACNA1E	calcium channel, voltage-	0.0405	1.38121
			dependent, R type, alpha	67	
			1E subunit		
226266_at	9489	PGS1	phosphatidylglycerophosp	0.0139	1.38268
			hate synthase 1	34	
217104_at	400410	ST20	suppressor of	0.0047	1.38799
			tumorigenicity 20	82	
214535_s_a	9509	ADAMTS2	ADAM metallopeptidase	0.0170	1.39202
t			with thrombospondin type	58	
			1 motif 2		
216233_at	9332	CD163	CD163 molecule	0.0327	1.39612
				94	
232980_at	55788	LMBRD1	LMBR1 domain	0.0255	1.39623
			containing 1	42	
227475_at	94234	FOXQ1	forkhead box Q1	0.0473	1.39773
				04	
203476_at	7162	TPBG	trophoblast glycoprotein	0.0400	1.40137
				88	
1553405_a	64478	CSMD1	CUB and Sushi multiple	0.0002	1.40375
_at			domains 1	82	

210166_at	7100	TLR5	toll-like receptor 5	0.0095	1.40395
				91	
219059_s_a	10894	LYVE1	lymphatic vessel	0.0241	1.40962
t			endothelial hyaluronan	52	
			receptor 1		
233305_at	64168	NECAB1	N-terminal EF-hand	0.0227	1.41657
			calcium binding protein 1	39	
1559777_at	731424	MIR3945HG	MIR3945 host gene	0.0415	1.42052
				09	
227733_at	57156	TMEM63C	transmembrane protein	0.0267	1.42422
			63C	66	
206483_at	23639	LRRC6	leucine rich repeat	0.0313	1.45579
			containing 6	83	
1559650_at	1000000	JAZF1-AS1	JAZF1 antisense RNA 1	0.0310	1.46824
	0			66	
1557961_s_	1000000	C8orf88	chromosome 8 open	0.0165	1.4829
at	0		reading frame 88	58	
207010_at	2560	GABRB1	gamma-aminobutyric acid	0.0064	1.5046
			(GABA) A receptor, beta	56	
			1		
236587_at	23639	LRRC6	leucine rich repeat	0.0205	1.51206
			containing 6	34	
204787_at	11326	VSIG4	V-set and	0.0333	1.53459
			immunoglobulin domain	04	
			containing 4		
1553920_at	158401	C9orf84	chromosome 9 open	0.0324	1.55755
			reading frame 84	16	
231223_at	64478	CSMD1	CUB and Sushi multiple	0.0035	1.5845
			domains 1	29	

233504_at	158401	C9orf84	chromosome 9 open	0.0064	1.7357
			reading frame 84	45	

Table S8. Table S8. Selected Pathways associated with differentially expressed genes at 24 hours

Ingenuity	Molecules
Canonical	
Pathways	
Th1 Pathway	SOCS3,TNFSF11,HLA-DRB1,PIK3C2A,HLA-DQA1
IL-23 Signaling	SOCS3,TNFSF11,PIK3C2A,IL23A
Pathway	
PKC0 Signaling in	CACNA1E,HLA-DRB1,PIK3C2A,MAPK8,HLA-DQA1
T Lymphocytes	
HMGB1 Signaling	TNFSF11,PIK3C2A,TGFB2,MAPK8,IL1R1
Dendritic Cell	HLA-DRB1,PIK3C2A,IL1RN,MAPK8,HLA-DQA1,IL23A
Maturation	
Aryl Hydrocarbon	TRIP11,MGST1,TGFB2,MAPK8,MDM2,NFIB
Receptor Signaling	
Neuroinflammation	HLA-DRB1,TLR5,PIK3C2A,GLS,HLA-
Signaling Pathway	DQA1,TGFB2,MAPK8,GABRB1,BACE1,CFLAR,IL1R1,PLA2G12A
IL-6 Signaling	SOCS3,PIK3C2A,IL1RN,MAPK8,IL1R1
Th2 Pathway	SOCS3,HLA-DRB1,PIK3C2A,GFI1,HLA-DQA1,STAT5B
NF-κB Signaling	AZI2,TNFSF11,TLR5,PIK3C2A,IL1RN,MAPK8,IL1R1
PPARa/RXRa	CPT1B,TGFB2,MAPK8,IL1R1,STAT5B
Activation	
Altered T Cell and	TNFSF11,HLA-DRB1,TLR5,IL1RN,HLA-DQA1,IL23A
B Cell Signaling in	
Rheumatoid	
Arthritis	
IL-22 Signaling	SOCS3,MAPK8,STAT5B

Role of JAK	SOCS3,MAPK8,STAT5B
family kinases in	
IL-6-type Cytokine	
Signaling	
Th1 and Th2	SOCS3,TNFSF11,HLA-DRB1,PIK3C2A,GFI1,HLA-DQA1,STAT5B
Activation	
Pathway	
IL-10 Signaling	SOCS3,IL1RN,MAPK8,IL1R1
Parkinson's	MAPK8,CYCS
Signaling	
IL-9 Signaling	SOCS3,PIK3C2A,STAT5B
OX40 Signaling	HLA-DRB1,HLA-DQA1,MAPK8
Pathway	
Nur77 Signaling in	HLA-DRB1,HLA-DQA1,CYCS
T Lymphocytes	
Chronic Myeloid	PIK3C2A,TGFB2,MDM2,STAT5B
Leukemia	
Signaling	
Antigen	HLA-DRB1,HLA-DQA1
Presentation	
Pathway	
Autoimmune	HLA-DRB1,HLA-DQA1
Thyroid Disease	
Signaling	
Toll-like Receptor	TLR5,IL1RN,MAPK8
Signaling	
IL-2 Signaling	PIK3C2A,MAPK8,STAT5B
Th17 Activation	SOCS3,IL1R1,IL23A
Pathway	

Wnt/β-catenin	PPP2R2A,TGFB2,MDM2,KREMEN1,SOX11
Signaling	
Cdc42 Signaling	HLA-DRB1,BAIAP2,MAPK8,HLA-DQA1
Communication	HLA-DRB1,TLR5,IL1RN
between Innate and	
Adaptive Immune	
Cells	
Role of JAK1 and	SOCS3,PIK3C2A,STAT5B
JAK3 in yc	
Cytokine Signaling	
CD28 Signaling in	HLA-DRB1,PIK3C2A,MAPK8,HLA-DQA1
T Helper Cells	
IL-17A Signaling	PIK3C2A,MAPK8,CXCL6
in Airway Cells	
MIF Regulation of	MAPK8,PLA2G12A
Innate Immunity	
T Cell Exhaustion	HLA-DRB1,PIK3C2A,PPP2R2A,MAPK8,HLA-DQA1
Signaling Pathway	
GM-CSF Signaling	PIK3C2A,CSF2RA,STAT5B
Citrulline	GLS
Biosynthesis	
Growth Hormone	SOCS3,PIK3C2A,STAT5B
Signaling	
GDNF Family	PIK3C2A,DOK6,MAPK8
Ligand-Receptor	
Interactions	
Angiopoietin	PIK3C2A,ANGPT1,STAT5B
Signaling	
TNFR1 Signaling	MAPK8,CYCS

IL-12 Signaling	PIK3C2A,MAPK8,TGFB2,IL23A
and Production in	1 IKS 02/ (,10/ IK0, 10/ D2, IE25/ K
Macrophages	
Epithelial	TUBB2A,BAIAP2,CTNNA1,TGFB2
Adherens Junction	
Signaling	
Apoptosis	MAPK8,CYCS,BCL2L11
Signaling	
CD27 Signaling in	MAPK8,CYCS
Lymphocytes	
Role of Cytokines	IL1RN,IL23A
in Mediating	
Communication	
between Immune	
Cells	
PPAR Signaling	IL1RN,IL1R1,STAT5B
Tight Junction	PPP2R2A,CTNNA1,TGFB2,CNKSR3
Signaling	
Glucocorticoid	PIK3C2A,IL1RN,HSPA1A/HSPA1B,MAPK8,TGFB2,CD163,STAT5B
Receptor Signaling	
iCOS-iCOSL	HLA-DRB1,PIK3C2A,HLA-DQA1
Signaling in T	
Helper Cells	
T Helper Cell	HLA-DRB1,HLA-DQA1
Differentiation	
Remodeling of	TUBB2A,CTNNA1
Epithelial	
Adherens Junctions	
T Cell Receptor	CBL,PIK3C2A,MAPK8
Signaling	

Acute Phase	SOCS3,IL1RN,MAPK8,IL1R1
Response	
Signaling	
HIF1a Signaling	PIK3C2A,MAPK8,MDM2
Phagosome	DCTN4,HLA-DRB1,TUBB2A
Maturation	
Antiproliferative	TGFB2
Role of TOB in T	
Cell Signaling	
Cytotoxic T	CYCS
Lymphocyte-	
mediated	
Apoptosis of	
Target Cells	
NRF2-mediated	MGST1,PIK3C2A,ABCC2,MAPK8
Oxidative Stress	
Response	
TNFR2 Signaling	MAPK8
CCR5 Signaling in	CACNA1E,MAPK8
Macrophages	
IL-7 Signaling	PIK3C2A,STAT5B
Pathway	
Sirtuin Signaling	PGK1,CPT1B,GLS,HIST1H1T,BCL2L11
Pathway	
Inhibition of	MAPK8
Angiogenesis by	
TSP1	
IL-17 Signaling	PIK3C2A,MAPK8
TGF-β Signaling	TGFB2,MAPK8

Nitric Oxide	CACNA1E,PIK3C2A
Signaling in the	
Cardiovascular	
System	
Endothelin-1	PIK3C2A,MAPK8,PLA2G12A
Signaling	
Renin-Angiotensin	PIK3C2A,MAPK8
Signaling	
CCR3 Signaling in	PIK3C2A,PLA2G12A
Eosinophils	