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Abstract

This thesis develops three major essays on the topic of horizon-dependence

for optimal portfolio. The first essay contributes extensively to the newest

concept of forward utilities. In this essay, we describe explicitly three classes

of forward utilities–that we call HARA forward utilities–as well as their cor-

responding optimal portfolios. The stochastic tool behind our analysis lies in

the concept of Minimal Hellinger Martingale densities (called MHM densities

hereafter), introduced and developed recently by Choulli and his collaborators.

The obtained results for HARA forward utilities by using MHM densities are

derived under assumptions on the market model. The relaxation of some of

these assumptions leads to introduce the new concept of Minimal Hellinger

Deflator in order to characterize HARA forward utilities. The second essay

addresses the problem of finding horizon-unbiased optimal portfolio from the

perspective of contract theory. In fact, we consider an agent with classical

exponential utility and describe–as explicit as possible–the payoff process for

which there exists a horizon-unbiased optimal hedging portfolio. The last es-

say focuses on the financial problem that we call optimal sale problem. This

problem consists of an agent who is investing in stocks and possesses a non-

tradable asset that she aims to sell. The goal of this investor is to find the

optimal portfolio–from her investment in stock market–and optimal time to

liquidate all her assets (tradable or not).
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Chapter 1

Introduction

This chapter constitutes a general introduction of the thesis. Herein, I will

introduce the reader to the birth of the area of mathematical finance in Section

1.A. Afterwards, I will address the topics of optimal portfolio and random

horizon in Section 1.B. These two topics are the core financial topics that

the thesis deals with. For the convenience of the reader, I will conclude this

chapter by a summary of the thesis in Section 1.C.

1.A Historical Facts for Mathematical Finance

and Modern Finance

Mathematical Finance and Modern Finance were born in 1900, when Louis

Bachelier –a French mathematician– defended his PhD thesis at Sorbonne

University (Paris). In his thesis, Bachelier simultaneously elaborated the

first building blocks for Mathematical Finance and Modern Finance and for

Continuous-time stochastic processes by discovering the Brownian motion five

years before Albert Einstein. Unfortunately, this foundational and revolu-

tionary work was forgotten for more than fifty years. It is in mid-fifties that

Paul Samuleson who translated and highlighted the tremendous importance of

Bachelier’s work. Then, many foundational and important works were derived

afterwards, such as the historical works of the Nobel Prize winners Black-
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Scholes (see [7]), Robert Merton (see [58]), Harry Markowitz (see [55]),...,

etcetera. For more details about the evolution and the birth of Mathematical

Finance and Modern Finance, we refer the reader to [3] and [20].

1.B Optimal Portfolio and Random Horizon

The optimal portfolio problem is an old and important problem in Finance

and Economics. The seminal and foundational works on optimal portfolios

are the works of the two Nobel Prize winners Markowitz and Robert Merton.

In Markowitz analysis (see [55]), the author addressed the optimal portfolio

by using the variance as a measure for the risk, while in Merton’s works, the

author used the utility of the agent to deal with the risk and address the issue

of optimal portfolio. In Mathematical Finance, both Markowitz’ and Merton’s

works have been extended to the most general market models and in many

directions due to the rich theories of martingale and convex analysis. For the

topic on mean-variance portfolio optimization, we refer the readers to [10], [32],

[71] (and the references therein), while for the case of utility maximization,

see [46], [48], [45], [70] (and the references therein).

All these highly interesting works consider either infinite horizon or a finite

horizon that is a constant real time fixed at the beginning. This assumption

excludes the situation where the agent may suddenly liquidate all her assets

due to the occurrence of a random event for instance. Another case of random

horizon is the one where the agent looks for the optimal portfolio and optimal

time to liquidate all her assets (tradable or not).

Besides the optimal portfolio problem à la Merton (or utility maximiza-

tion), this thesis deals with the issue of random exit time, or random time-

horizon. As a basic terminology in finance, a time-horizon is a time interval

during which an investment lasts. When an investment is created or selected,

the time-horizon could be fixed constant, such as the fixed income financial

products of bonds, the insurance contracts for retirement plan and the financial

derivatives of European options,..., etcetera. However, there are also plenty of
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economic and financial problems where the time-horizon needs (or even has)

to be variable and/or random. When incorporated into the market model, a

random time-horizon would have a pronounced effect on investment/portfolio

selection, hedging and/or pricing problems. This fact was observed and conjec-

tured since early twentieth century by Irving Fisher. In [30], Fisher discussed

“General Income Risks” and wrote

“ Even when there is no risk (humanly speaking) in the loan itself,

the rate realized on it is affected by risk in other connections. The

uncertainty of life itself casts a shadow on every business transac-

tion into which time enters. Uncertainty of human life increases

the rate of preference for present over future income for many peo-

ple, although for those with loved dependents it may decrease impa-

tience. Consequently, the rate of interest, even on the safest loans,

will, in general, be raised by the existence of such life risks. The

sailor or soldier who looks forward to a short or precarious exis-

tence will be less likely to make permanent investments, or, if he

should make them, is less likely to pay a high price for them. Only

a low price, that is, a high rate of interest, will induce him to invest

for long ahead”.

This Fisher’s conjecture was established by Yaari in [73] for the discrete-

time market models. Around that time, there were an increase interest in

investigating the effect of the Fisherian random time-horizon (a time-horizon

that is related to the death of a life) by many economists. Among these, we

cite Champernowne, Hakansson, Levhari, Mirman and Yaari (see [9], [33], [51],

[73], and the references therein). For this type of random horizon, researchers

appeal to life insurance and actuarial sciences to deal with the risk intrinsic

to this horizon. While in economics and empirical studies researchers have

been actively discussing this issue of variable horizon, the mathematical struc-

ture/foundation that drives this impact of the horizon on market models was

left open—up to our knowledge—and only recently the literature starts grow-
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ing with the works of Choulli–Schweizer and Larsen–Hang, see [14] and [50]

for details. Furthermore, during the recent decade, this horizon-dependence

problem has been addressed in a different perspective. One of these problems

constitutes one of the main Leitmotif-goal of this thesis, to which we refer as

“optimal sale problem”, and can be described as follows. Consider an agent

with utility function U , who possesses an asset (tradeable or not) that we

model by a stochastic process, (Pt)t≥0. The aim of this agent is to find the

optimal portfolio and the optimal time to liquid all her assets. This can be

translated, mathematically, to

max
τ∈T , θ∈Θ

E
[
U(W θ

τ − Pτ )
]
.

Here T is the set of stopping times, Θ is the set of all admissible portfolios,

and W θ is the wealth process associated to the portfolio θ ∈ Θ. This problem

was considered also by Henderson and Hobson in the real option context, see

[36] for details. By considering this problem, the authors contributed to the

birth of a new concept called Forward Utilities.

These forward utilities/performances were fathered and baptized (with

their current name) by Musiela and Zariphopoulou in a series of papers start-

ing with the multiperiod incomplete binomial model in [62]. Then, the concept

was extended to diffusion models in [61]. For motivations behind this concept,

those authors wrote in [60]:

“ Firstly, fixing the trading horizon makes the valuation of claims

of arbitrary maturities impossible....”

“ Secondly, the fact that, from one hand, the utility is exogenously

chosen far ahead in the future, and on the other, it is used to make

investment decisions for today, does not appear very natural. Be-

sides, the optimal expected utility is generated backwards in time

while the market moves in the opposite direction (forward), an ap-

parently not very intuitive situation.”

4



For more economic motivations on forward utilities, we refer the reader to the

numerous papers of Musiela and Zariphopoulou on this topic (see [59], [61],

[62] and [63] for details). Therein, the authors also introduce applications of

forward utilities on indifference pricing and optimal asset allocation. Around

the birth time of these forward utilities, Choulli and Stricker introduced and

constructed in [16] and [17] a class of optimal martingale measures that pos-

sesses the feature of being robust with respect to the variation of the horizon.

The authors also linked these optimal martingale measures to optimal port-

folios that are horizon-independent for a simple example of utilities. At the

same time, and independently, Henderson and Hobson proposed the concept

of horizon-unbiased as the solution to the optimal sale problem. These three

independent groups of researcher contributed then to the birth of the forward

utilities in a way or another. For more details about this fact, we refer the

reader to [75].

1.C Summary of the Thesis

The thesis contains seven other chapters besides the current one, and is orga-

nized as follows. The next chapter (Chapter 2) will recall some stochastic tools

(martingale theory and stochastic calculus) that will be very useful through

out the thesis. I give a short review on some important results on Minimal En-

tropy Hellinger martingale densities in Section 2.D.1 and on Minimal Hellinger

Martingale densities of order q in Section 2.D.2. My original contribution in

Chapter 2 lies in extending this theory to include the case where one faces

a change of measure. The main and original contributions of the thesis are

detailed in chapters 3–8.

Chapters 3, 4 and 5 describe as explicit as possible the HARA (log-type,

power-type and exponential-type) forward utilities under mild assumptions on

the market model. Furthermore, their optimal portfolio is described via point-

wise equations in IRd. The analysis uses the powerful tool of semimartingale
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characteristics and the interesting concept of minimal Hellinger densities. For

the needs in following chapters, we list some important definitions and the-

orems on stochastic processes and utility functions. In these chapters, the

explicit parametrization or characterization is achieved for the most general

semimartingale model that satisfies some mild assumptions. Illustrations of

the main results on different practical market models (such as discrete-time

markets, discrete market models, volatility models, and market driven by Lévy

processes) are also detailed.

In Chapter 6, one of the assumptions imposed on the market model in pre-

vious chapters (mainly Chapters 3 and 4) is relaxed. This leads naturally to

the birth of the concept of Minimal Hellinger Deflator. This concept extends

in more general context the previous concept defined by Dr. Choulli and his

collaborators in [16], [17] and [18]. We prove the existence of this minimal

deflator and establish the duality between the obtained deflator and HARA

forward utilities. This gives a new characterization for HARA forward util-

ities in more complex market models with much less technical assumptions

(without any technical assumptions for many practical market models). The

analysis used for this study involves stochastic optimization, convex analysis

and martingale theory.

Chapter 7 addresses the horizon-unbiased hedging problem for exponential

utilities. We find out the necessary and sufficient conditions on the payoff

process such that the optimal portfolio–that hedges this payoff dynamically

in time–exists and does not depend on the horizon. Meanwhile, this optimal

portfolio is again described explicitly. Herein, we consider the usual exponen-

tial utility.

Chapter 8 focuses on the optimal sale problem where the agent with exponen-

tial utility is looking for the optimal portfolio and the optimal time to liquidate

her assets (tradable or not). The optimal pair constituted by the optimal in-
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vestment timing and the optimal portfolio is described as explicit as possible

using the previous results on forward utilities for the case of general semi-

martingales. When the market model is Markovian, this optimal sale problem

is investigated using the variational inequalities and Hamilton-Jacob-Bellman

(HJB hereafter) equations. We proved that the value function is the unique

viscosity of the HJB equation written in the form of variational inequalities.
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Chapter 2

Elements from Stochastics and

Martingale Theory

In this chapter, we will review some fundamental concepts and properties on

stochastic processes and utility functions. We will start with the stochastic

basis and some useful σ-fields. Then, we will put emphasis individually on

four topics in the following sections: semimartingale and its characteristics in

Section 1.A, local martingale and its Jacod decomposition in Section 1.B, util-

ity functions in Section 1.C and Hellinger process of local martingale densities

in 1.D. For more details on these topics, we refer the reader to [39], [66], [26]

and [34].

Consider a filtered probability space denoted by (Ω,F ,F = (Ft)0≤t≤T , P ),

called stochastic basis. Here, Ω is the sample space and F is the filtration,

which is right continuous and complete (i.e. satisfies the usual conditions).

For each t ∈ [0, T ], the σ-field (or σ-algebra), Ft, represents the aggregate

public information up to time t. P is the real-world probability measure and

we further denote by Pa (respectively Pe) the set of all probability measures

that are absolutely continuous with respect to (respectively equivalent to) P .

T represents a fixed horizon for investments.

Definition: A process X is called càdlàg, or RCLL, if all its paths are right-

continuous and admit left-hand limits.
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On the product space Ω × [0, T ], we define two σ-fields: The optional

σ-field denoted by O and the predictable σ-field denoted by P . Moreover, on

the set Ω × [0, T ] × IRd, we consider the extended σ-field P̃ = P ⊗ B(IRd)

(resp. Õ = O ⊗ B(IRd)), where B(IRd) is the Borel σ-field for IRd.

Definition: The optional (respectively predictable) σ-field is the σ-field O
(respectively P) on Ω × IR+ that is generated by all adapted and RCLL

processes (respectively continuous processes).

In the sequel, a process X that is O (respectively P)-measurable is called

optional (respectively predictable) and frequently it will be denoted by X ∈ O
(respectively X ∈ P).

Definition: A random variable τ : Ω → [0,+∞] is a stopping time if the

event {τ ≤ t} ∈ Ft, for every t ∈ [0,+∞[.

The set of all stopping time, τ , such that t ≤ τ ≤ T , P -a.e., will be denoted

by Tt,T . For simplicity, when t = 0, we write this set as TT .

For any process X and stopping time τ , we denote by Xτ the stopped process

of X at τ , given by

Xτ
t =

{
Xt, when t ≤ τ ;

Xτ , otherwise.

Definition: Let τ be a stopping time. Then, the σ-field Fτ is defined by

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, for all t ≥ 0.}

One way to interpret σ-field Fτ is to compare it with the σ-field Ft at fixed

time t: Fτ represents the aggregate information up to τ .

Definition: We denote by V+ (respectively V) the set of all real-valued pro-

cesses X that are RCLL, adapted, with X0 = 0, and whose each path

t → Xt(ω) is non-decreasing (respectively has a finite variation over the

interval [0, T ]).
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For any X ∈ V , we denote by V ar(X) the variation process of X, which is

clearly non-decreasing. Therefore, its terminal variable, V ar(X)T , exists. We

denote by A the set of all A ∈ V that have integrable variation, that is,

A := {A ∈ V : E(V ar(A)T ) < +∞.}

Also, we put A+ := A ∩ V+, which represents the set of all A ∈ V+ that are

integrable, that is,

E(AT ) < +∞.

Moreover, we denote by L(A) the set of all predictable processes, H, satisfying

∫ T

0

|Hs|dV ar(A)s < +∞, P − a.s. (2.1)

For any H ∈ L(A), we denote the resulting integral of H with respect to A

by H · A, which is an element of V . More details on this integration and the

set L(A) (especially for the case of multi-dimension) can be found in [39] (see

page 206).

Throughout this thesis, if C is a class of processes, we denote by C0 the

set of processes X with X0 = 0 and by Cloc the set of processes X such that

there exists a sequence of stopping times, (Tn)n≥1, increasing stationarily to

T (i.e., P (Tn = T ) → 1 as n → ∞) and the stopped process XTn belongs to

C. This sequence of stopping times are called a localizing sequence for X. We

put C0,loc = C0 ∩ Cloc.
Remark that by following this notation, we can write the set of locally in-

tegrable increasing processes by A+
loc and the set of processes with locally

integrable variation by Aloc.
The following lemma is borrowed from [23] (see Lemma A1.1). It provides

a technique to construct an almost surely convergent sequence via a convex

combination.

Lemma 2.1: Let (fn) be a sequence of [0,+∞[ valued measurable functions.

There is a sequence gn ∈ conv(fn, fn+1, ...) such that (gn) converges almost

10



surely to a [0,+∞] valued function g, and the following properties hold:

(1) If conv(fn, n ≥ 1) is bounded in L0, then g is finite almost surely,

(2) If there are c > 0 and δ > 0 such that for all n

P (fn > c) > δ,

then P (g > 0) > 0.

Remark that the notation L0 used in this lemma is the abbreviation of the

space L0(Ω,F , P ), which represents the set of all F -measurable and real-valued

random variables.

2.A Semimartingales and Its Characteristics

The use of semimartingale characteristics in mathematical finance can be

traced back to Yuri Kabanov in [31] and [40]. The latest work on its ap-

plications can be found in [15], [11], [16], [18]...,etcetera.

We start this section with the most fundamental concepts in mathematical

finance: martingale, submartingale and supermartingale.

Definition: A martingale (respectively, submartingale, supermartingale) is an

adapted and RCLL process X, such that Xt is integrable for any t ∈ [0, T ],

and that for s ≤ t:

Xs = E(Xt|Fs), (respectively, Xs ≤ E(Xt|Fs), Xs ≥ E(Xt|Fs)).

The set of martingales under the probability Q is denoted by M(Q) whereas

the set of all local martingales is denoted byMloc(Q). Especially when Q = P ,

we write them as M and Mloc for short. Furthermore, we denote by M2 the

set of all square-integrable martingales, which is given by

M2 := {X ∈M : sup
t∈[0,T ]

E(X2
t ) < +∞.}
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And, the set of locally square-integrable martingales is denoted byM2
loc. Fur-

thermore, we denote by L2
loc(X) the set of all predictable processes H satis-

fying H2 · [X,X] ∈ A+
loc such that the integration H · X is well defined and

H ·X ∈M2
loc. More details on this integration can be found in [39] (see page

204).

The following theorem is well-known and useful when manipulating martin-

gales (respectively submartingales and supermartingales) on stopping times.

Theorem 2.1: (Optional Sampling Theorem) Let X = (Xt,Ft)t∈[0,T ] be a

martingale (respectively submartingale). Let τ1 and τ2 be two stopping times

such that τ1 ≤ τ2, P -a.s. Then, the following hold:

(i) If X is a martingale, then

Xτ1 = E(Xτ2|Fτ1).

(ii) If X is a submartingale, then

Xτ1 ≤ E(Xτ2|Fτ1).

The compensators of the increasing processes are frequently used in this

thesis and defined in the following.

Definition: Let X ∈ A+
loc (resp. Aloc). Then the compensator, or dual pre-

dictable projection of X, denoted by Xp, is a predictable process that be-

longs to A+
loc (resp. Aloc) such that X −Xp is a local martingale.

Remark that if the process X is predictable with finite variation, then Xp = X.

Semimartingale is the central concept in this section and even in the whole

thesis. Its definition will be given in the following.

Definition: A semimartingale is a process X of the form X = X0 + M + A

where X0 is finite-valued and F0-measurable, M is a local martingale and

A has finite variation (i.e. A ∈ V).
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Remark that the decomposition of semimartingale in above definition is not

unique. However, a subclass of semimartingales, called special semimartingale,

admits a unique decomposition. Its definition is given in the following.

Definition: A special semimartingale is a semimartingale X which admits

a decomposition X = X0 + M + A, where A ∈ V ∩ P and M is a local

martingale.

For any d-dimensional semimartingale S, the random measure µ associated to

its jumps is defined by

µ(dt, dx) =
∑

I{∆Ss 6=0}δ(s, ∆Ss)(dt, dx),

where δa is the Dirac measure at point a. For any B[0, T ] ⊗ B(IRd) ⊗ F -

measurable and non-negative functional W , W = (W (t, x, ω), x ∈ IRd, t ∈
[0, T ], ω ∈ Ω), we denote by W ? µ the following non-decreasing process given

by

(W ? µ)t :=
∑

0<s≤t

I{∆Ss 6=0}W (s,∆Ss), 0 ≤ t ≤ T. (2.2)

Furthermore, for every P̃-measurable functional K satisfying |K|?µ ∈ A+
loc,

there exists a random measure, called the compensator of µ and denoted by ν

such that |K|?ν ∈ A+
loc and K ?ν is the compensator of K ?µ (or equivalently,

K ? µ−K ? ν is a local martingale).

Also, for any measurable functional W on Ω × [0, T ] × IRd, we associate the

process

Ŵt(ω) :=

∫
IRd

W (ω, t, x)ν(ω, {t} × dx),

if
∫

IRd
|W (ω, t, x)|ν(ω, {t} × dx) < +∞ and Ŵt(ω) := +∞, otherwise.

Consider the set, G1
loc(µ), given by

G1
loc(µ) :=

W ∈ P̃ :

[∑
0<s≤·

(Ws(∆Ss)I{∆Ss 6=0} − Ŵs)
2

]1/2

∈ A+
loc

 . (2.3)

Then, for any functional W ∈ G1
loc(µ), the integral of W with respect to (µ−ν),
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denotedW?(µ−ν), is well-defined and is purely discontinuous local martingale.

These formulations lead to the following decomposition of semimartingale S,

called “the canonical representation” (see Theorem 2.34, Section II.2 of [39]),

namely,

S = S0 + Sc + h(x) ? (µ− ν) + (x− h(x)) ? µ+B, (2.4)

where Sc is the continuous local martingale part of S and h(x) is the truncation

function which is usually given by h(x) = xI{|x|≤1} ∈ G1
loc(µ). For the matrix

C with entries Cij := 〈Sc,i, Sc,j〉, the triple (B, C, ν) is called predictable

characteristics of S. Furthermore, we can find a version of the characteristics

triplet satisfying

B = b · A, C = c · A and ν(ω, dt, dx) = dAt(ω)Ft(ω, dx). (2.5)

Here A is an increasing and predictable process , b and c are predictable

processes (A is continuous if and only if S is quasi-left continuous), Ft(ω, dx)

is a predictable kernel, bt(ω) is a vector in IRd, and ct(ω) is a symmetric d× d-

matrix, for all (ω, t) ∈ Ω × [0, T ]. In the sequel we will often drop ω and t

and write, for instance, F (dx) as a shorthand for Ft(ω, dx).

The characteristics B, C, and ν, satisfy

• Ft(ω, {0}) = 0;

•
∫

(|x|2∧1)Ft(ω, dx) ≤ 1;

• ∆Bt =

∫
h(x)ν({t}, dx);

• c = 0 on {∆A 6= 0}.

The measure ν({t}, dx) will appear from time to time in this thesis, we write

it in a compact way as νt(dx). As well, we denote the quantity

at := νt(IR
d) = ∆AtFt(IR

d) ≤ 1

which will be commonly used within semimartingale framework.
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For any Õ-measurable functional, g, we define

MP
µ (g) := E(g ? µT ) = E

(∫ T

0

∫
IRd

g(s, x)µ(ds, dx)

)
.

Furthermore, we define MP
µ (g | P̃) to be the unique P̃-measurable functional,

when it exists, such that for any bounded W ∈ P̃ ,

MP
µ (Wg) := E

(∫ T

0

∫
IRd

W (s, x)g(s, x)µ(ds, dx)
)

= MP
µ

(
WMP

µ (g | P̃)
)
.

The integration with respect to semimartingales is another main topic in

this section. We formulate it in two cases. First of all, for any locally bounded

and predictable process H and semimartingale X, the following integration is

well defined:

Yt :=

∫ t

0

HudXu = H ·Xt,

which is also a semimartingale. More properties on this integration can be

found in related reference books, particularly in [39] (see page 46 for more

details). As an extension of above integration, the class of integrands can

be enlarged to some non-locally bounded processes. Precisely, we say that a

predictable process H is integrable with respect to a semimartingale X if there

exists a decomposition of X, given by

X = X0 +M + A, M ∈M2
loc, A ∈ V .

such that H ∈ L2
loc(M) ∩ L(A). In this case we define the integral of H with

respect to X as

H ·X := H ·M +H · A,

and denote by L(X) the set of all predictable processes that are X-integrable.

Finally in this section, we focus on an important class of semimartingales

that are locally bounded. They have the following properties.

Proposition 2.1: Suppose that S is locally bounded with the following decom-
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position

S = S0 + Sc + z ? (µ− ν) + b · A.

Let θ be an S-integrable process, and α ∈ (0,+∞). Then the following

assertions hold.

(i) The process

Xθ := θ · S −
∑

θT∆SI{|θT∆S|>α}, (2.6)

is a locally bounded semi-martingale.

(ii) If we denote

ξθ := θT b−
∫

(θT z)I{|θT z|>α}F (dz),

then |ξθ|·A ∈ A+
loc.

(iii) The process

Xθ − ξθ · A, (2.7)

is a local martingale.

Proof. The proof of assertion (i) is classic, and can be found in [26] or [39].

Now, we will focus on proving simultaneously the remaining assertions.

Since S is locally bounded, then it is clear that θI{|θ|≤n} · S and I{|θ|≤n} · Xθ

are locally bounded semimartingales. Therefore,
∑
θT∆SI{|θT∆S|>α, |θ|≤n} is a

locally bounded process with finite variation, and its compensator is given by

V θ,n := (θT z)I{|θT z|>α, |θ|≤n} ? ν.

It is obvious that the two processes

θT I{|θ|≤n} · S − θT bI{|θ|≤n} · A, and
∑

θT∆SI{|θT∆S|>α, |θ|≤n} − V θ,n

are local martingales. Since X̃θ —the compensator of Xθ— exists and is a

locally integrable process, then–due to V ar
(
I{|θ|≤n} · X̃θ

)
= |ξθ|I{|θ|≤n} ·A–we
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derive

V ar
(
X̃θ
)

= lim
n→+∞

I{|θ|≤n} · V ar
(
X̃θ
)

= lim
n→+∞

V ar
(
I{|θ|≤n} · X̃θ

)
= |ξθ|·A.

This proves both assertions (ii) and (iii).

2.B Local Martingales and Jacod Decomposi-

tion

In this section, we will focus on local martingales and their Jacod decomposi-

tion. Additionally, the concept of σ-martingale is also introduced.

Definition: Let X be a RCLL semimartingale, and Q be a probability mea-

sure.

(i) X is called a σ-martingale under Q if there exists a bounded and positive

predictable process φ such that φ ·X is a Q-local martingale. The set of all

σ-martingales under Q will be denoted by Mσ(Q).

(ii) X is said to be locally integrable if there exists a sequence of stopping

times (Tn)n≥1, that increases stationarily to T , such that

E

[
sup

0≤t≤Tn
|Xt|

]
< +∞, ∀ n ≥ 1.

For the following representation theorem, we refer to [37] (Theorem 3.75,

page 103) and to [39] (Lemma 4.24, page 185) and recent result in [15]. Con-

sider a set H1
loc(µ), given by

H1
loc(µ) :=

{
g : Ω× [0,+∞)× IRd → IR, g ∈ Õ, MP

µ (g | P̃) = 0,

and
√
g2 ? µ ∈ A+

loc.
}

Then, the Jacod decomposition of a local martingale is given by:

Theorem 2.2: (Jacod Decomposition) Let N ∈ M0,loc. Then, there exist
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a predictable and Sc-integrable process β, N ′ ∈M0,loc with [N ′, S] = 0, func-

tionals f ∈ P̃ and g ∈ H1
loc(µ) such that

(∑t
s=0 f(s,∆Ss)

2I{∆Ss 6=0}

)1/2

∈
A+
loc and

N = β ·Sc+W ?(µ−ν)+g?µ+N ′, W = f+
f̂

1− a
I{a<1} ∈ G1

loc(µ). (2.8)

Here f̂t =
∫
ft(x)νt(dx) and f has a version such that {a = 1} ⊂ {f̂ = 0}.

Moreover

∆Nt =
(
ft(∆St) + gt(∆St)

)
I{∆St 6=0} −

f̂t
1− at

I{∆St=0} + ∆N ′t . (2.9)

And if ∆N > −1, f can be selected to satisfy f + 1 > 0.

In the sequel, we shall call (β, f, g,N ′), the Jacod components/parameters of

N (under P , with respect to S).

2.C Utility Functions

The development of utility functions in economics and finance has its intrin-

sic reasons. Undoubtedly, all agents in market aim to maximize their wealth.

However, their expectation over wealth can not be unlimited because of the

tradeoff between return and risk. A rule of thumb can explain it: “ Higher

return is typically accompanied by higher risk”. Therefore, the value of a po-

tential investment is affected by investor’ preference or tolerance towards risks.

For different investors, such tolerance is typically different. In mathematical

finance, such preference is measured by a utility and is described by a math-

ematical function equipped with some basic properties: strictly increasing,

strictly concave and twice differentiable.

Definition: A (deterministic) utility is a function U(x), x ∈ dom(U), that is

strictly increasing, strictly concave and twice differentiable.

In particular, a family of utilities called HARA (hyperbolic absolute risk aver-
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sion) utilities is extensively developed and widely used in finance and eco-

nomics (see [1], [57], [65] and the reference therein). Its definition is given as

follows.

Definition: A utility U(x) is a member of HARA utilities if its absolute risk

aversion A(x) := −U ′′(x)
U ′(x)

is a hyperbolic function.

It is easy to check that the power utility, xp/p, exponential utility −e−x and

logarithm utility log(x) are all HARA utilities.

Forward utility is one of the main topics in current thesis. These utili-

ties have the basic properties of conventional deterministic utility functions.

Furthermore, it is endowed with more features to deal with more complicated

problems. In this section, these features will be exhibited one by one as we

review its definition and some related concepts. First of all, we recall an ex-

tension of the notion of deterministic utility functions. This extension is called

random field utility and appears in [75].

Definition: We call a random field utility, any B([0, T ]) ⊗ B(dom(U)) ⊗ F -

measurable functional, U(t, x, ω), such that, for any fixed x, the process

U(t, x, ω) is a RCLL adapted process, and for any fixed (t, ω) the function

x 7→ U(t, x, ω) is a utility.

Clearly from above definition, random field utilities are functionals of t and ω.

This is actually a feature of random field utilities, which reflects the variation

of investors’ preference over time and scenarios. Another important concept

associated with forward utilities is the set of admissible portfolios or admissible

portfolios. The following definition is written in general form but will appear

in different specific forms in following chapters.

Definition: For a random field utility, U(t, x, ω), any probability measure Q,

any semimartingale X, and x ∈ IR such that U(t, x, ω) < +∞ we denote by

Aadm(x,X,Q) :=
{
π ∈ L(X) sup

τ∈TT
EQ

[
U
(
τ, x+ (π ·X)τ

)−]
< +∞

}
,

(2.10)
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the set of admissible portfolios for the model (x,X,Q, U). Here TT is the

set of stopping time, τ , such that τ ≤ T . When X = S and Q = P , we

simply write Aadm(x) and, furthermore, when x = 1, we write it as Aadm.

The forward utilities are built up on the basis of random field utilities. But it

has nicer properties, which make them powerful tools for dealing with financial

models under random horizon.

Definition: Consider a RCLL semimartingale, X, and a probability measure,

Q. Then, we call a forward (dynamic) utility for (X,Q), any random field

utility, U(t, ω, x), fulfilling the following self-generating property:

a) The function U(0, x) is a deterministic utility function.

b) There exists an admissible portfolio π∗ (i.e. π∗ ∈ Aadm(x,X,Q)) such

that

U
(
s, x+ (π∗ ·X)s

)
= EQ

[
U
(
t, x+ (π∗ ·X)t

)
|Fs
]
, ∀ T ≥ t ≥ s ≥ 0.

c) For any admissible portfolio π, for any T ≥ t ≥ s, we have

U
(
s, x+ (π ·X)s

)
≥ EQ

[
U
(
t, x+ (π ·X)t

)
|Fs
]
.

When X = S and Q = P , we simply call U a forward dynamic utility.

Definition: For any π ∈ L(S) and any x > 0 satisfying

x+ π · S > 0, and x+ (π · S)− > 0, (2.11)

we associate it with the portfolio rate that we denote by π̃x, and is given by

π̃x :=
(
x+ (π · S)−

)−1

π. (2.12)

Lemma 2.2: For any π ∈ L(S) and any initial capital x > 0 satisfying (2.11),

its portfolio rate π̃x satisfies:

(i) π̃x is S-integrable and E(π̃x · S) > 0.
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(ii) There is one-to-one correspondence between the portfolio π and its port-

folio rate π̃x via (2.12) and

π = xE−(π̃x · S)π̃x. (2.13)

Proof. The proof of this lemma is obvious and will be skipped.

For any portfolio π ∈ Aadm(x), the associated wealth process is Xπ = x+π ·S
and the portfolio rate is θt = πt/X

π
t−, 0 ≤ t ≤ T such that the wealth process

can also be rewritten as Xθ := xE(θ · S). In the same spirit as Aadm(x,X,Q),

Aadm(x, S, P ) and Aadm, we denote the set of portfolio rates by Θ(x,X,Q),

Θ(x, S, P ) and Θ, respectively. Remark that in many places of this thesis, we

shall use portfolio rate θ instead of π for convenience.

In the forthcoming analysis, both the stopping rule and the change of

probability measures play crucial roles. Thus, the following lemma states how

robust of the forward property under these two operations.

Lemma 2.3: Let U := U(t, ω, x) be a random field utility and S be a semi-

martingale. Then the following hold.

(i) If U is a forward utility for (S, P ), then for any stopping time τ ∈ TT ,

the functional

U(t, ω, x) := U(t ∧ τ(ω), ω, x), (2.14)

is a forward dynamic utility for (Sτ , P ).

(ii) Consider a probability measure Q that is absolutely continuous with re-

spect to P with the density process denoted by Z. Then, the random field

utility

UQ(t, ω, x) := U(t, ω, x)Zt(ω), (2.15)

is a forward dynamic utility for (S, P ) if and only if U is forward dynamic

utility for (S,Q).

Proof. The proof of this lemma is straightforward and will be omitted.
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2.D Hellinger Process of Local Martingale Den-

sity

The concept of Hellinger process was introduced for the first time by Kabanov,

Y. M., Liptser, R. S. and Shiryaev, A. N. in [41] (See also in the following

papers, [42], [43]). Afterwards, it is further developed by Jacod, J., Choulli,

T. and Stricker, C. in [39], [16], [17] and [18].

In this section, the classical concept and properties on Minimal entropy-

Hellinger Martingale density (called MEH hereafter) and Minimal Hellinger

Martingale density of order q (called MHM of order q hereafter) will be re-

viewed quickly in the beginning. Afterwards, we will introduce the generalized

version of these concepts and properties under change of measure, which is the

main purpose of this section. This section prepares the ground for Chapters

3, 4 and 5 when we will focus on characterizing forward utilities.

2.D.1 Minimal Entropy-Hellinger Martingale Densities

When focusing on the exponential utility, we consider the σ-martingale mea-

sures with finite entropy. The set of these measures is given by

Me
f (S) =

{
Q ∈ Pe | S ∈Mσ(Q), and E

[
dQ

dP
log
(dQ
dP

)]
< +∞

}
. (2.16)

Very frequently, throughout this section and Chapter 5, we will work with

densities instead of probabilities. For this, we will use the following set

Zeloc(S) := {Z ∈Mloc(P ) |Z > 0, Z log(Z) is locally integrable, ZS ∈Mσ(P )}.
(2.17)

The following function will be used from time to time,

f1(x) :=

{
(x+ 1) log(x+ 1)− x, if x > −1;

+∞, otherwise.
(2.18)
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Throughout this section and Chapter 5, the main assumption on S is∫
{|x|>1}

|x|eλT xF (dx) < +∞, P ⊗ A− a.s., for all λ ∈ IRd. (2.19)

The next proposition will provide a necessary and sufficient characterization

on σ-martingale density, which is expressed by Jacod parameters.

Proposition 2.2: Let Z = E(N) be a positive local martingale and (β, f, g,N ′)

be the Jacod components of N . Then Z is a σ-martingale density for (S, P )

if and only if the following hold:

(i) We have∫
|x(1 + f(x))− h(x)|F (dx) < +∞, P ⊗ A− a.e.

(ii) and

b · A+ cβ · A+ (x− h(x) + xf(x)) ? ν = 0. (2.20)

Furthermore, if Z is a σ-martingale density for (S, P ), then the following

holds: ∫
x(1 + f(x))F (dx)∆A = 0, P − a.s. (2.21)

Proof. Thanks to Ito’s formula, we deduce that ZS is a σ-martingale if and

only if S + [S,N ] is a σ-martingale. The last statement is equivalent to say

that there exists a bounded and predictable positive process φ such that

φ · (S + [S,N ]) is a local martingale. (2.22)

Due to Theorem 2.2 (precisely the representation of ∆N given by (2.9)) and

the representation of S given by (2.4), we derive that

S+[S,N ] = S0 +Sc+h(x)?(µ−ν)+cβ ·A+b·A+[x−h(x)+x(f(x)+g(x))]?µ
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Therefore, (2.22) holds if and only if the following two conditions hold:

φ[x− h(x) + x(f(x) + g(x))] ? µ is locally integrable (2.23)

φb · A+ φcβ · A+ φ(x− h(x) + xf(x)) ? ν = 0. (2.24)

Since φ is predictable, positive and bounded, it is easy to deduce that (2.24)

is equivalent to (ii). While, (2.23) is equivalent to

∫ T

0

φt

∫
[x− h(x) + xf(x)]Ft(dx)dAt < +∞, P − a.s.

which holds if and only if (i) is true.

Furthermore, by taking jumps on both sides of (2.24) and using ∆Ab =∫
xF (dx)∆A, ∆Ac = 0 (see the properties of predictable characteristics of

S in Section 2.A for details), we have (2.21) immediately. This ends the proof

of this proposition.

The following definitions on entropy-Hellinger process can be found in [16] and

[17], to which we refer the readers for more details about the entropy-Hellinger

process of a probability measure (which is also called Leibler-Kullback pro-

cess).

Definition: (i) Let N ∈ M0, loc(P ) such that 1 + ∆N ≥ 0. Then, if the

non-decreasing adapted process

V
(E)
t (N) :=

1

2
〈N c〉t +

∑
0<s≤t

[
(1 + ∆Ns) log(1 + ∆Ns)−∆Ns

]
(2.25)

is locally integrable (i.e. V E(N) ∈ A+
loc(P )), then its compensator (with

respect to the probability P ) is called the entropy-Hellinger process of N ,

and is denoted by hE(N,P ).

(ii) Let Q ∈ Pa with density Z = E(N). Then, we define the entropy-

Hellinger process of Q with respect to P by

hEt (Q,P ) := hEt (Z, P ) := hEt (N,P ), 0 ≤ t ≤ T.

24



The expression of entropy-Hellinger process for a positive σ-martingale and its

jump will be shown explicitly in the next lemma.

Lemma 2.4: Consider a positive σ-martingale density Z = E (N) satisfying

N = λ · Sc +W ? (µ− ν),

Wt(x) = (eλ
T
t x − 1)

(
1− at +

∫
eλ

T
t xν({t}, dx)

)−1

.

(2.26)

Then, we have

hE(Z, P ) =
λT cλ

2
· A+

1

γ
f1

(
eλ

T x − 1
)
? ν −

∑(
log (γ)− 1 +

1

γ

)
(2.27)

=
λT cλ

2
· A+ f1(

1

γ
eλ

T x − 1) ? ν +
∑

(1− a)f1(γ−1 − 1) (2.28)

and

∆hE(Z, P ) = − log (γ) , (2.29)

where γt = 1− at +
∫
eλ

T
t xν({t}, dx)..

Proof. Notice that hE(Z, P ) is the compensator of V E(N), where

V E (N) =
1

2
〈N c〉+

∑
[(1 + ∆N) log (1 + ∆N)−∆N ] . (2.30)

Then, from (2.26), we derive

1 + ∆Nt =
eλ

T
t ∆St

γt
I{∆St 6=0} +

1

γt
I{∆St=0}.

After simplification, this leads to

∑
[(1 + ∆N) log (1 + ∆N)−∆N ] =

[
eλ
T x

γ
log
(
eλ
T x

γ

)
− eλ

T x

γ
+ 1
]
? µ

+
∑[

1
γ

log
(

1
γ

)
− 1

γ
+ 1
]
I{∆S=0}.
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Then, by plugging this equation in (2.30) and compensating, we obtain

hE (Z, P ) =
1

2
λT cλ · A+

∑(
1

γ
log

(
1

γ

)
− 1

γ
+ 1

)
(1− a) + Σ1, (2.31)

where

Σ1 =
[
eλ
T x

γ
log
(
eλ
T x

γ

)
− eλ

T x

γ
+ 1
]
? ν =

(
eλ
T x

γ
log
(

1
γ

)
+ λT x

γ
eλ

T x − eλ
T x

γ
+ 1
)
? ν

=
∑[

1
γ

log
(

1
γ

)∫
eλ

T xF (dx)∆A+
(

1− 1
γ

)
a

]
+ 1

γ

(
λTxeλ

T x − eλT x + 1
)
? ν.

Hence, after simplification, (2.27) follows.

By taking the jumps in both sides of (2.27), we get

∆hE (Z, P ) =
1

γ

(
a−

∫
eλ

T xF (dx)∆A

)
− γ log (γ)− γ + 1

γ

=
−γ + 1

γ
− γ log (γ)− γ + 1

γ
= − log (γ) .

Note that in this equality, we used that
∫
xeλ

T xν({t}, dx) = 0. This follows

from the fact that Z is a σ-martingale density (see (2.21)). This completes

the proof.

Theorem 2.3: Suppose that Zeloc(S) 6= ∅ and that (2.19) holds. If Z̃ ∈ Zeloc(S)

is the MEH σ-martingale density, then, there exists H̃ ∈ L(S) such that

log(Z̃) = H̃ · S + hE(Z̃, P ). (2.32)

Proof. Notice that the assumptions of Theorem 3.3 in [17] are fulfilled. Hence,

a direct application of this theorem implies

Z̃ = E(Ñ), Ñ := β̃ · Sc + W̃ ? (µ− ν),

W̃t(x) := (γ̃t)
−1
(
eβ̃

T
t x − 1

)
, γ̃t := 1− at +

∫
eβ̃

T
t xν({t}, dx).
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Thus,

log(Z̃) = Ñ − 1
2
〈Ñ〉+

∑
[log(1 + ∆Ñ)−∆Ñ ]

= β̃ · Sc + W̃ ? (µ− ν)− 1
2
β̃T cβ̃ · A+

∑
[log( e

β̃T x

γ̃
)− eβ̃

T x

γ̃
+ 1]I{∆S 6=0}

+
∑

[log( 1
γ̃
)− 1

γ̃
+ 1]I{∆S=0}

= β̃ · Sc + W̃ ? (µ− ν)− 1
2
β̃T cβ̃ · A+

∑
[−γ̃ log(γ̃)+γ̃−1

γ̃
] + γ̃β̃T x−eβ̃T x+1

γ̃
? µ.

Remark that

1

γ̃
(γ̃β̃Tx− eβ̃T x + 1) ? µ = β̃T (x− h(x)) ? µ+

1

γ̃
(γ̃β̃Th(x)− eβ̃T x + 1) ? (µ− ν)+

+γ̃−1(γ̃β̃Th(x)− eβ̃T x + 1) ? ν,

since the functional γ̃−1(γ̃β̃Th(x)− eβ̃T x + 1) is (µ−ν)-integrable which is due

to the (µ− ν)−integrability of γ̃−1(eβ̃
T x − 1) = W (x) and the boundedness of

h(x). Therefore, we get

log(Z̃) = β̃ · Sc + β̃Th(x) ? (µ− ν) + β̃T (x− h(x)) ? µ+

+γ̃−1(γ̃β̃Th(x)− eβ̃T x + 1) ? ν − 1
2
β̃T cβ̃ · A+

∑
γ̃−1(−γ̃ log(γ̃) + γ̃ − 1).

Equivalently, we deduce that

log(Z̃) = β̃ ·S+
1

2
β̃T cβ̃ ·A+

β̃Txeβ̃
T x − eβ̃T x + 1

γ̃
?ν+

∑
γ̃−1(−γ̃ log(γ̃)+γ̃−1),

(2.33)

due to

β̃ · S = β̃ · Sc + β̃T b · A+ β̃Th(x) ? (µ− ν) + β̃T (x− h(x)) ? µ.

Therefore, a direct application of Lemma 2.4 for λ = β̃, (2.32) follows imme-
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diately. This ends the proof of the theorem.

Next, we will give the variation of this entropy-Hellinger concept towards the

change of probability measures.

Definition: (i) Let Q be a probability measure and Y be a Q-local martingale

such that 1 + ∆Y ≥ 0. Then, if the RCLL nondecreasing process

V E(Y ) =
1

2
〈Y c〉+

∑
[(1 + ∆Y ) log(1 + ∆Y )−∆Y ] , (2.34)

is Q-locally integrable (i.e. V E(Y ) ∈ A+
loc(Q)), then its Q-compensator is

called the entropy-Hellinger process of Y (or equivalently of E(Y )) with

respect to Q, and is denoted by hE(Y,Q) (respectively hE(E(Y ), Q)).

(ii) Let N ∈ M0, loc(P ) such that 1 + ∆N > 0 and Y is a semimartingale

such that Y E(N) is a P -local martingale and 1 + ∆Y ≥ 0. Then, if the

process

1

2
〈Y c〉+

∑
(1 + ∆N)

[
(1 + ∆Y ) log(1 + ∆Y )−∆Y + 1

]
, (2.35)

is P -locally integrable, then its P -compensator is called the entropy-Hellinger

process of E(Y ) with respect to E(N), and is denoted by hE (E(Y ), E(N)).

Remark that the first definition above in (i) is a natural extension in proba-

bility as well as in mathematical finance areas, due to the popular and useful

technique of change of probability measures. The second definition in (ii),

which we will use throughout the thesis, extends (i) to the case when the

uniform integrability of the nonnegative local martingale E(N) may not hold.

The relationship between the two definitions is obvious. Indeed, let (Tn)n≥1

be a sequence of of stopping times that increases stationarily to T such that

E(N)Tn is a true martingale. Then, by putting Qn := ETn(N) · P , we obtain

hEt∧Tn(E(Y ), E(N)) = hEt (E(Y Tn), Qn), 0 ≤ t ≤ T.
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What we actually need in current thesis is the MEH local martingale den-

sity under change of probability measure. In the remaining part of this section,

we focus on describing the MEH σ-martingale density when we change prob-

ability. This case can be derived easily from the more general case where one

works with respect to a positive local martingale density, Z, that may not be

uniformly integrable. First, we generalize the characterization of the MEH

σ-martingale density for the case when S may not be bounded nor quasi-left

continuous. For the case of bounded and quasi-left continuous S, a more

elaborate result is given in [16].

In what follows, we denote by Z a positive local martingale given by

Z := E(N), N := β ·Sc+W?(µ−ν)+g?µ+N, Wt(x) := ft(x)+
f̂t

1− at
I{at<1},

(2.36)

where
(
β, f, g,N

)
are the Jacod components of N . Here, we define:

Zeloc(S,Z) := {Z | Z > 0, ZZ ∈ Zeloc(S)}, (2.37)

where Zeloc(S) is given by (2.17).

Theorem 2.4: Consider Z defined in (2.36) and suppose that

Zeloc(S,Z) 6= ∅, and

∫
{|x|>1}

eλ
T x(1 + f(x))F (dx) < +∞, ∀ λ ∈ IRd.

Then, the minimization problem

min
Z∈Zeloc(S,Z)

hE(Z,Z), (2.38)

admits a solution Z̃ = E(Ñ) given by

Ñ = β̃ · Sc,Z + W̃ ? (µ− νZ), W̃t(x) =
eβ̃

T
t x − 1

1− aZt +
∫
eβ̃

T
t yνZ({t}, dy)

,
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where β̃ is the root of

0 = bZ + cλ+

∫
(eλ

T xx− h(x))FZ(dx). (2.39)

Here Sc,Z, bZ, aZ, νZ and FZ are given by

Sc,Z := Sc−cβ·A, bZ := b+cβ−
∫
f(x)h(x)F (dx), aZt := νZ({t}, IRd\{0})

and νZ(dt, dx) := FZ
t (dx)dAt, FZ

t (dx) := (1 + ft(x))Ft(dx).

Proof. Consider a sequence of stopping times, (Tn)n≥1, stationarily increasing

to T (i.e., P (Tn = T ) → 1 as n → ∞) such that ZTn is a true martingale,

for a fixed but arbitrary n we denote Q := ZTn · P . Remark that all the

equations in the theorem are robust with stopping. Then due to Lemma

2.5, it is enough to prove that the theorem is valid on [0, Tn]. Then, we

obtain that νQ(dt, dx) = (1 + ft(x))I{t≤Tn}ν(dt, dx), Zeloc(S,Q) 6= ∅ and that∫
{|x|>1} e

λT xFQ(dx) < +∞ for λ ∈ IRd.

Therefore, the assumptions of Theorem 3.3 in [17] are fulfilled. Hence a

direct application of this theorem for STn and under the measure Q = ZTn ·P ,

we deduce that the problem defined in (2.38) admits a solution Z̃Q = E
(
ÑQ
)

,

where ÑQ is given, on [0, Tn], by

ÑQ = β̃ · Sc,Q + W̃ ? (µ− νQ), W̃t(x) =
eβ̃

T
t x − 1

1− aQt +
∫
eβ̃

T
t yνQ({t}, dy)

.

Herein Sc,Q is the continuous local martingale part of S under Q and νQ is

the Q-compensator measure of µ, and aQt = νQ
(
{t}, IRd \ {0}

)
. Moreover, β̃

is given by the equation

0 = bQ + cλ+

∫ (
eλ

T xx− h(x)
)
FQ(dx)

=
[
bZ + cλ+

∫
(eλ

T xx− h(x))FZ(dx)
]
I[0,Tn].

(2.40)
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It is then clear that ÑQ coincides with Ñ of the theorem and that the equation

(2.40) is exactly the equation (2.39) of the theorem. This ends the proof of

theorem.

Theorem 2.5: Let Z be a positive local martingale and Z̃ ∈ Zeloc(S,Z). If the

assumptions of Theorem 2.4 are fulfilled, and Z̃ is the MEH local martingale

density with respect to Z, then

log(Z̃) = β̃ · S + hE(Z̃, Z). (2.41)

Proof. The proof of this theorem follows the same arguments as in the proofs

of Theorems 2.3 and 2.4.

2.D.2 Minimal Hellinger Martingale Density of Order

q

Consider the following function fq(x) and the set D, which will be used fre-

quently in this section and Chapter 3 and 4:

fq(x) :=


(1+x)q−1−qx

q(q−1)
, if x > −1 and q /∈ {0, 1};

x− log(1 + x), if x > −1 and q = 0;

+∞, otherwise.

(2.42)

D :=
{
θ ∈ IRd : 1 + θTx > 0, F − a.e.

}
. (2.43)

Also, considering the following set of local martingale densities

Zeq,loc(S) := {Z = E(N) > 0 |N ∈Mloc(P ), ZS ∈Mloc(P ), fq(∆N) ∈ L1
loc}.

(2.44)

Now, we introduce the central concept in this chapter on Hellinger processes

of order q.

Definition: (i) Let N ∈ M0, loc(P ) such that 1 + ∆N ≥ 0 and q 6= 1. Then,
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if the non-decreasing adapted process

V
(q)
t (N) :=

1

2
〈N c〉t +

∑
0<s≤t

fq(∆Ns), 0 ≤ t ≤ T, (2.45)

is locally integrable (i.e. V (q)(N) ∈ A+
loc(P )), then its compensator (with

respect to the probability P ) is called the Hellinger process of order q (q 6= 0)

of the local martingale N , and is denoted by h(q)(N,P ).

(ii) Let Q ∈ Pa with density Z = E(N). Then, we define the entropy-

Hellinger process of Q with respect to P by

h
(q)
t (Q,P ) := h

(q)
t (Z, P ) := h

(q)
t (N,P ), 0 ≤ t ≤ T.

From time to time, we need to stop the local martingale densities. The fol-

lowing lemma will help us a lot when we go back from “local” to “global”.

Lemma 2.5: Let (Tn)n≥0 (T0 = 0) be a sequence of stopping times that in-

creases stationarily to T . Suppose that for each n, STn admits the MHM

density of order q, denoted by Z̃(n). Then, S admits the MHM density of

order q, Z̃, given by

Z̃ := E(Ñ) and Ñ :=
∑
n≥1

I]Tn−1,Tn]
1

Z̃
(n)
−
· Z̃(n).

The next proposition provides an important characterization of the local mar-

tingale density, given by (2.47). Furthermore, the representation of Hellinger

processes of local martingale densities and the associated jumps are given in

assertions (2), (3) and (3′). Remark that we consider the process S in the

general framework as a semimartingale. However, when we apply them in our

main results in Chapter 3 and 4, we are only interested with the case that S

is locally bounded.

Proposition 2.3: Let p ∈ (−∞, 1), q = p
p−1

, and Z = E(N) be a positive
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martingale density given by

N = β · Sc +W ? (µ− ν), (2.46)

where Wt(x) = kt(x) +
k̂t

1− at
I{at<1} and k̂t :=

∫
kt(x)ν({t}, dx).

Here β ∈ L(S) and

(∑
0<t≤·

kt(∆St)
2I{∆St 6=0}

)1/2

∈ A+
loc. Then, the following

hold:

(1) The process |x(k(x) + 1)− h(x)|?ν has a finite variation (h is the trun-

cation function such as h(x) = xI{|x|≤1}) and Z (or equivalently (β, k))

satisfies

b · A+ cβ · A+ [x(k(x) + 1)− h(x)] ? ν = 0 (2.47)

(2) The Hellinger process of order q for Z is given by

h(q)(Z, P ) =
1

2
βT cβ · A+ fq(k) ? ν +

∑
(1− a)fq

(
− k̂

1− a

)
, (2.48)

where fq is a function defined in (2.42).

(3) Let q 6= 0 and suppose that there exists λ̃ ∈ L(S) such that 1 + λ̃Tx > 0,

F (dx)⊗ dA⊗ P (dω)-a.e., and

kt(z) = γ̃−1
t

(
1 + λ̃Tt z

)1/(q−1)

−1, γ̃t := 1−at+
∫

(1+λ̃Tt y)1/(q−1)ν({t}, dy).

(2.49)

Then, the Hellinger process of order q and its jumps are given by

h(q)(Z̃, P ) =
λ̃T cλ̃

2(q − 1)2
· A + fq (k) ? ν +

∑
(1− a)fq

(
1

γ̃
− 1

)
(2.50)

and ∆h(q)(Z̃, P ) =
γ̃1−q − 1

q(q − 1)
. (2.51)

(3′) Suppose that there exists λ̃ ∈ L(S) such that 1+ λ̃Tx > 0, F (dx)⊗dA⊗
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P (dω)-a.e., and

kt(x) = (1 + λ̃Tt x)−1 − 1. (2.52)

Then, the Hellinger process of order zero, h(0)(Z, P ), and its jump process,

∆h(0)(Z, P ) are given by

h(0)(Z, P ) =
1

2
λ̃T cλ̃ · A+ f0

(
(1 + λ̃Ty)−1 − 1

)
? ν (2.53)

and ∆h(0)(Z, P ) =

∫
log(1 + λ̃Tx)νt(dx). (2.54)

Proof. The proof of the assertions (1) and (2) follow from Lemma 2.4 and

Proposition 3.5 respectively in [18].

It is obvious that (2.50) follows from (2.47) using (2.49).

Since γ̃ 6= 0, then, by taking the jumps ion both sides of (2.48), and using

(2.49), we obtain∫
y
(

1 + λ̃Tt y
)p−1

ν({t}, dy) = 0, p− 1 =
1

q − 1
.

Hence, (2.51) is derived from taking jumps in both sides of (2.50), inserting

the above equation in the resulting equality, and using the expression of γ̃ of

(2.49) afterwards.

Assertion (3′) corresponds to the case of p = 0. Remark that in this case, the

quantity γ̃ given in (2.49) is 1. Then, a similar calculation as (2.50) and (2.51)

leads to (2.53) and (2.54). This ends the proof of the proposition.
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Consider the following assumption

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e.,

(2.55)

lim
n→+∞

∫
Kp(λ

T
nx)F (dx) =

{
+∞, on Γ;∫
Kp(λ

Tx)F (dx), on Γc.

where Kp(y) := |y||(1 + y)p−1 − 1| and Γ := {F (IRd) > 0 and λ /∈ int(D)}.

What follows below is very useful proposition which is slightly different formu-

lation of Corollary 4.7 in [18]. Indeed, in the following proposition we explicitly

provide the integrand in the stochastic integral with respect to S.

Proposition 2.4: Suppose that (2.55) holds. Let Z̃ ∈ Zeq,loc(S) be the minimal

Hellinger martingale density of order q. Then, the following hold.

(1) There exists λ̃ ∈ L(S) such that 1 + λ̃T z > 0 F (dz)⊗ dA⊗ P (dω)-a.e.

and

Z̃ := E(Ñ), Ñ :=
λ̃

q − 1
·Sc+W̃?(µ−ν), W̃t(x) =

1

γ̃t

((
1 + λ̃Tt x

) 1
q−1 − 1

)
,

where

γ̃t := 1− at +

∫
(1 + λ̃Tt y)1/(q−1)ν({t}, dy).

(2) Furthermore, Z̃ satisfies

Z̃q−1 = E
(

(γ̃1−qλ̃) · S + q(q − 1)h(q)(Z̃, P )
)
,

= E
(
λ̃ · S

)
E
(
q(q − 1)h(q)(Z̃, P )

) (2.56)

Corollary 2.5.1: Suppose (2.55) holds for p = 0. Let Z̃ ∈ Ze0,loc(S) be the

minimal Hellinger martingale density of order 0. Then, Then, the following

hold.
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(1) There exists λ̃ ∈ L(S) such that 1 + λ̃T z > 0 F (dz) ⊗ dA ⊗ P (dω)-a.e.

and Z̃ satisfies

Z̃ := E(Ñ), Ñ := −λ̃ · Sc + W̃ ? (µ− ν), W̃t(x) =
(

1 + λ̃Tt x
)−1

− 1.

(2) Furthermore, Z̃ satisfies

Z̃−1 = E
(
λ̃ · S

)
. (2.57)

This section extents the MHM density concept to the case where one is

facing a local change of probability. Through out this section, consider a

positive local martingale, Z, given by

Z := E(N), N := β·Sc+W?(µ−ν)+g?µ+N, Wt(x) := ft(x)−1+
f̂t − at
1− at

I{at<1}.

(2.58)

Here
(
β, f, g,N

)
are the Jacod components of N . Through out this section,

we will frequently use the set of martingale density with respect to the density

Z defined by

Zeq,loc(S,Z) :=
{
Z | Z > 0, ZZ ∈ Zeq,loc(S)

}
, (2.59)

where Zeq,loc(S) is given by (2.44). Then, the minimal Hellinger martingale

density of order q with respect to Z is given by the following.

Next, we will give the variation of this Hellinger concept towards the change

of probability measures.

Definition: (i) Let Q be a probability measure and Y be a Q-local martingale

such that 1 + ∆Y ≥ 0. Then, if the RCLL nondecreasing process

V (q)(Y ) =
1

2
〈Y c〉+

∑
fq(∆Y ), (2.60)

is Q-locally integrable (i.e. V (q)(Y ) ∈ A+
loc(Q)), then its Q-compensator is

called the Hellinger process of order q of the local martingale Y (or equiva-
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lently of E(Y )) with respect to Q, and is denoted by h(q)(Y,Q) (respectively

h(q)(E(Y ), Q)).

(ii) Let N ∈ M0, loc(P ) such that 1 + ∆N > 0 and Y is a semimartingale

such that Y E(N) is a P -local martingale and 1 + ∆Y ≥ 0. Then, if the

process
1

2
〈Y c〉+

∑
(1 + ∆N)fq(∆Y ), (2.61)

is P -locally integrable, then its P -compensator is called the Hellinger process

of order q of the local martingale E(Y ) with respect to E(N), and is denoted

by h(q) (E(Y ), E(N)).

Consider the following assumption.

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e.,

(2.62)

lim
n→+∞

∫
Kp(λ

T
nx)f(x)F (dx) =

{
+∞, on Γ;∫
Kp(λ

Tx)f(x)F (dx), on Γc.

where Kp(y) := |y||(1 + y)p−1 − 1| and Γ := {F (IRd) > 0 and λ /∈ int(D)}.

Theorem 2.6: Let D be the set defined in (2.43), 1 6= p ∈ IR, and q = p
p−1

.

Suppose that (2.62) holds, Zeq,loc(S) 6= ∅, int(D) 6= ∅, and for any λ ∈ int(D)

P ⊗ A− a.e.,∫
{|x|>1}

|x|(1 + λTx)p−1FZ(dx) :=

∫
{|x|>1}

|x|f(x)(1 + λTx)p−1F (dx) < +∞.

(2.63)

Then, the minimization problem

min
Z∈Zeq,loc(S,Z)

h(q)(Z,Z), (2.64)
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admits a solution Z̃ = E(Ñ) given by

Ñ :=
1

q − 1
β̃·Sc,Z+W̃ ?(µ−νZ), W̃t(x) := (γ̃Z)−1

(
(1+β̃Tt x)p−1−1

)
, (2.65)

where γ̃Z := 1− aZt +

∫
(1 + β̃Tt y)p−1yνZ({t}, dy), and β̃ is the root of

0 = bZ + (p− 1)cλ+

∫ [
(1 + λTx)p−1x− h(x)

]
FZ(dx). (2.66)

Here Sc,Z, bZ, aZ, νZ and FZ are given by

Sc,Z := Sc − cβ · A, aZt := νZ({t}, IRd),

bZ := b+ cβ +

∫
(f(x)− 1)h(x)F (dx),

νZ(dt, dx) := FZ
t (dx)dAt, FZ

t (dx) := ft(x)Ft(dx).

(2.67)

Proof. Consider a sequence of stopping times, (Tn)n≥1, that increases station-

arily to T (i.e., P (Tn = T )→ 1 as n→∞) such that ZTn is a true martingale,

and denote Q := ZTn · P (for n fixed but arbitrary). Remark that all the

equations in the theorem are robust with respect to (stable under) stopping,

and due to Lemma 2.5, it is enough to prove the theorem on [0, Tn]. If, we

put

νQ(dt, dx) = ft(x)I{t≤Tn}ν(dt, dx) =: FQ
t (dx)dAt,

then it is clear from the assumption of the theorem that Zeq,loc(STn , Q) 6= ∅ and

that
∫
{|x|>1}(1 + λTx)p−1|x|FQ(dx) < +∞ for λ ∈ IRd. Hence, the assumption

of Theorem 4.3 in [18] are fulfilled for the model (STn , Q = ZTn · P ). Thus,

a direct application of this theorem leads to the existence of the minimal

Hellinger martingale density of order q for (STn , Q), that we will denote by

Z̃Q = E
(
ÑQ
)

, and is given, on [0, Tn], by

ÑQ :=
1

q − 1
β̃·Sc,Q+W̃?(µ−νQ), W̃t(x) =

(1 + β̃Tt x)p−1 − 1

1− aQt +
∫

(1 + β̃Tt y)p−1νQ({t}, dy)
.
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Herein (Sc,Q, bQ, aQ, νQ, FQ) coincides with (Sc,Z , bZ , aZ , νZ , FZ) (defined in

(2.67)) on [0, Tn]. Moreover, β̃ is given by the equation

0 = bQ + (p− 1)cλ+

∫ (
(1 + λTx)p−1x− h(x)

)
FQ(dx)

=
[
bZ + (p− 1)cλ+

∫ (
(1 + λTx)p−1x− h(x)

)
FZ(dx)

]
I[0,Tn].

Therefore, it is obvious that the above equation coincides with (2.66). This

ends the proof.

Proposition 2.5: Let p ∈ (−∞, 1) and q be the conjugate number. Consider

a positive local martingale, Z, and Z̃ ∈ Zeq,loc(S,Z). If the assumptions of

Theorem 2.6 are fulfilled, and Z̃ denotes the minimal Hellinger martingale

density of order q with respect to Z, given by (2.65), then

Z̃q−1 = E
(
H̃Z · S + q(q − 1)h(q)(Z̃, Z)

)
= E

(
β̃ · S

)
E
(
q(q − 1)h(q)(Z̃, Z).

) (2.68)

Here H̃Z := (γZ)1−qβ̃, β̃ is root of (2.66), and γZ satisfies

γZt := 1− aZt +

∫
(1 + β̃Ty)p−1νZ({t}, dy) =

(
1 + q(q − 1)∆h(q)(Z̃, Z)

)p−1

,

(2.69)

while aZ and νZ are given by (2.67).

Proof. The proof of this proposition follows the same arguments as in the proof

of Proposition 2.4 after stopping and under a suitable change of probability.
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Chapter 3

Log-Type Forward Utilities

This chapter focuses on our first class of forward utilities that we will param-

eterize/characterize fully. This class of forward utilities will be called log-type

forward utilities and is defined in the following.

Definition: LetX be a RCLL semimartingale andQ be a probability measure.

Then, we call log-type forward utility for (X,Q), any forward dynamic utility

for (X,Q), U0(t, x, ω), given by

U0(t, ω, x) = D1(t, ω) +D0(t, ω) log(x), x ∈ (0,+∞). (3.1)

Here D0(t) and D1(t) are two stochastic processes.

The first contribution of this chapter lies in characterizing the two processes

D0 and D1 of (3.1) such that U0 is a forward utility. While, the second contri-

bution deals with the explicit description of the optimal portfolio for U0. These

two important contributions will be first elaborated for the general semimartin-

gale framework in Section 3.A and, afterwards, illustrated on many particular

examples for different market models in Section 3.B, 3.C, 3.D and 3.E.
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3.A The Semimartingale Framework

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where the

filtration is complete and right continuous. Here, T represents a fixed horizon

for investments. In this setup, we consider a d-dimensional locally bounded

semimartingale S = (St)0≤t≤T which represents the discounted price processes

of d risky assets. Our goal in this section is to describe the processes D0 and

D1 in (3.1) such that U0(t, x, ω) is a forward utility.

First, we recall the predictable characteristics of S, (B := b · A, C := c · A,

ν(dt, dx) := Ft(dx)dAt), that are defined in (2.5) such that S can be repre-

sented as

S = S0 + Sc + x ? (µ− ν) + b · A. (3.2)

Throughout the analysis, the set D and the function Φ0 (that are dependent

on (ω, t)) defined below will play important roles. The set D is given by

D :=
{
θ ∈ IRd : 1 + θTx > 0, F − a.e.

}
. (3.3)

The function Φ0 takes values in (−∞,+∞] and is given by

Φ0(λ) := −bTλ+
1

2
λT cλ+

∫
f0(λTx)F (dx), ∀ λ ∈ IRd, (3.4)

where, the function f0 is defined by

f0(x) :=

{
x− log(1 + x), if x > −1;

+∞, otherwise.
(3.5)

The set of admissible portfolios for U0 (see (3.1)) is denoted by Aadm(x, U0, P )

(or simply Aadm(x)), which is already defined in (2.10) that I recall below

Aadm(x) :=
{
π ∈ L(S)| 1+π ·S ≥ 0 and sup

τ∈TT
EU0

(
τ, x+(π ·S)τ

)−
< +∞

}
.

(3.6)
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Remark: Since U0(t, ω, x) is a random field utility, for any fixed x > 0, the

functional U0(t, ω, x) is adapted and RCLL. As a result, by taking x = 1

and x = e, we deduce that the processes D0 and D1 are adapted and RCLL

processes. Furthermore, D0(ω, t) > 0, for all (ω, t) ∈ Ω × [0, T ], due to the

strict increasingness of x 7→ U0(t, ω, x).

The characterization of U0 in the full generality will be achieved after two

steps. In the first step, we assume that the process D0 is constant and equal

to 1, that is,

U0(t, ω, x) := log(x) +D1(t, ω), x > 0. (3.7)

Here, we suppose that D1 satisfies the condition

sup
τ∈TT

E (|D1(τ)|) < +∞. (3.8)

The second step will relax this assumption and work towards the general result.

For the first step, our main assumption on the model is intimately related to

the random measure F . Below, we state this assumption:

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e.,

(3.9)

lim
n→+∞

∫
K0(λTnx)F (dx) =

+∞, on Γ;∫
K0(λTx)F (dx), on Γc.

where K0(y) :=
|y|2

1 + y
and

Γ := {(ω, t) ∈ Ω× [0, T ] : F (IRd) > 0 and λ /∈ int(D)}.

Theorem 3.1: Consider the functional U0 given in (3.7). Suppose that S is

locally bounded and the assumption (3.8) and (3.9) hold. Then, the following

two assertions are equivalent.

42



(i) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(ii) The following properties hold:

(ii.1) The optimal portfolio rate θ̂ belongs to int(D) and is a root of

b− cλ−
∫

λTx

1 + λTx
xF (dx) = 0, (3.10)

(ii.2) The MHM density of order zero exists, denoted by Z̃, and there exists

a local martingale M such that

D1(t) = D1(0) +Mt − h(0)
t (Z̃, P ), 0 ≤ t ≤ T. (3.11)

(ii.3) The process N̂ := D1 − log(Z̃) is a martingale.

The proof of this theorem is long and requires some technical lemmas and

propositions. In the following, we will start by stating and proving these

intermediate results that are also interesting in themselves while the proof of

Theorem 3.1 will be provided after them.

Lemma 3.1: Suppose S is locally bounded. Then, we have

0 ∈ int(D) ⊆ D1,

where D1 := {λ ∈ D : ∃ δ > 0, 1 + λTx ≥ δ, F − a.e.}. (3.12)

Proof. For any λ0 ∈ int(D), there exists ε > 0 such that for any λ satisfying

|λ0 − λ|≤ ε, we have 1 + λTx > 0, F − a.e.
Now, we put λ := λ0/a, where

a =
1

1 + ε/|λ0|
∈ (0, 1).

It is easy to check that |λ− λ0|≤ ε and

1 + λT0 x = 1 + aλTx = a(1 + λTx) + (1− a) ≥ 1− a > 0, F − a.e..

Hence, λ0 ∈ D1. To prove 0 ∈ int(D), we follow the localizing procedure and–
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without loss of generality–assume that S is bounded, i.e. |S|≤ K. Then, there

exists ε := 1
2K

such that

∀ λ ∈ B(0, ε), 1 + λTx ≥ 1−K 1

2K
= 1/2 > 0.

Therefore, the neighborhood B(0, ε) ⊆ D and thus 0 ∈ int(D). This completes

the proof of this lemma.

Lemma 3.2: Suppose S is locally bounded, then for any λ ∈ IRd and δ > 0,

we have ∫
{λT x≥δ−1}

f0(λTx)F (dx) < +∞ P ⊗ A− a.e. (3.13)

Proof. Thanks to Taylor’s expansion of f0, we have

f0(λTx) =
(λTx)2

2
(1 + rλTx)−2, for 0 < r < 1.

For δ > 0 such that λTx ≥ δ − 1, we put δ := δ ∧ 1 and obtain

1 + rλTx ≥ 1 + r(δ − 1) ≥ δ ∧ 1 = δ. (3.14)

Therefore, we obtain that∫
{λT x≥δ−1}

f0(λTx)F (dx) ≤ 1

2
δ
−2|λ|2

∫
|x|2F (dx). (3.15)

Since S is locally bounded, it is easy to see that [S, S] ∈ A+
loc. As a result, we

have x2 ? νT < +∞, P -a.s., (terminal value of the compensator of
∑
|∆S|2)

and hence ∫
|x|2F (dx) < +∞, P ⊗ A− a.e.

By combining this with (3.15), (3.13) follows immediately. This completes the

proof of this lemma.

Lemma 3.3: Suppose S is locally bounded. Then, the following two assertions

hold, P ⊗ A-a.e.
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(i) For any λ ∈ int(D), ∫
|x| |λ

Tx|
1 + λTx

F (dx) < +∞. (3.16)

(ii) Φ0(λ) is differentiable on int(D) and for any λ0 ∈ int(D),

Φ′0(λ0) = b− cλ0 −
∫
x

λT0 x

1 + λT0 x
F (dx).

Proof. (i) For any λ ∈ int(D), due to Lemma 3.1, there exists δ ∈ (0, 1) such

that 1 + λTx ≥ δ > 0 F − a.e. Thus,∫
{λT x≥δ−1}

|x| |λ
Tx|

1 + λTx
F (dx) ≤ |λ|

δ

∫
|x|2F (dx)

which is finite since [S, S] ∈ A+
loc.

(ii) Let λ0 ∈ int(D). Then, for any y ∈ IRd, thanks to Lemmas 3.1 and 3.2,

there exists ε0 > 0 such that for any 0 ≤ ε ≤ ε0, λ0 + εy ∈ dom(Φ0).

Due to Taylor’s expansion of the function g0(λTx) := λTx− log(1 + λTx), we

deduce the existence of r ∈ (0, 1) such that

kε(x) :=
g0(λT0 x+ εyTx)− g0(λT0 x)

ε
= yTx

λT0 x+ rεyTx

1 + λT0 x+ rεyTx
.

Meanwhile, notice that (|kε(x)|)ε is bounded from above by

k(x) := |y||x|max

(
|λT0 x|

1 + λT0 x
,
|λT0 x+ ε0y

Tx|
1 + λT0 x+ ε0yTx

)
.

Thanks to Lemma 3.3–(i), k(x) is integrable since λ0, λ0 + ε0y ∈ int(D) ⊆
dom(Φ0). It allows us to apply Dominated Convergence Theorem to (|kε(x)|)ε,
which leads to

lim
ε→0

Φ0(λ0 + εy)− Φ0(λ0)

ε
= yTΦ∗, (3.17)
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where Φ∗ is given by

Φ∗ := b− cλ0 −
∫
x

λT0 x

1 + λT0 x
F (dx).

It is clear from (3.17) that yTΦ∗ is the directional derivative of −Φ0 at λ0,

which is linear in y. Thus, due to Theorem 25.2 in [68], Φ0 is differentiable on

int(D). This completes the proof.

Lemma 3.4: Suppose S is locally bounded. Then, the interior of the effective

domain of Φ0 coincides with int(D), that is,

int(dom(Φ0)) = int(D), P ⊗ A− a.e.

Proof. For any λ0 ∈ int(dom(Φ0)), there exists a neighborhood B(λ0, ε), such

that B(λ0, ε) ⊆ dom(Φ0). Let δ = ε/2 and λ ∈ B(λ0, ε/2) such that

λ± δei ∈ B(λ0, ε).

Due to the convexity of the function f0(x), we have

δ|x| |λ
Tx|

1 + λTx
≤

d∑
i=1

[
f0(λTx+ δeTi x) + f0(λTx− δeTi x)

]
,

where ei is the vector of IRd whose ith component equals one, and the others

are null. Therefore, we have

δ

∫
|x| |λ

Tx|
1 + λTx

F (dx) < +∞, P ⊗ A− a.e.

It implies that 1+λTx > 0, F−a.e., from which we clearly deduce that λ ∈ D.

Therefore, λ0 ∈ int(D).

On the other hand, for any λ0 ∈ int(D), there exists a neighborhood B(λ0, ε) ⊆
int(D). Then, due to Lemmas 3.1 and 3.2, we have B(λ0, ε) ⊆ dom(Φ0).

Hence, λ0 ∈ int(dom(Φ0)). This completes the proof of this lemma.
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Proposition 3.1: Suppose S is locally bounded and assumption (3.9) holds.

If Φ0(λ) attains its minimum at λ̃, then λ̃ ∈ int(D). Furthermore,

Φ′0(λ̃) = b− cλ̃−
∫

λ̃Tx

1 + λ̃Tx
xF (dx) = 0. (3.18)

Proof. Suppose that the minimum of Φ0(λ) is attained at λ̃. Then, it is easy

to deduce that λ̃ ∈ D. For any r ∈ (0, 1), we put λ := (1−r)λ̃, which is convex

combination of 0 and λ̃, that belongs to int(D). Since λ̃ is the minimum of

Φ0(λ) over D, we have

Φ0(λ̃) ≤ Φ0(λ), P ⊗ A− a.e. (3.19)

On the other hand, due to the convexity of f0, we have

f0(λ̃Tx)− f0(λ
T
x)

r
≥ f0(λ̃Tx).

Since f0(λ̃Tx) is integrable, the above inequality allows us to apply Fatou’s

Lemma ,and get

−λ̃TG(λ̃) ≤ lim
r→0

Φ0(λ̃)− Φ0(λ)

r
≤ 0, P ⊗ A− a.e.,

Here

G(λ) := b− cλ−
∫

λTx

1 + λTx
xF (dx).

After rearranging the terms, it is clear to see that

0 ≤
∫
|λ̃Tx|2

1 + λ̃Tx
F (dx) ≤ λ̃T b− λ̃T cλ̃ < +∞. (3.20)

For some λ0 ∈ int(D), it is easy to check that the convex combination

λ̃n := (1− 1

n
)λ̃+

1

n
λ0 ∈ int(D) and λ̃n → λ̃.
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Suppose that λ̃ /∈ int(D) and put

ln(x) :=
|λ̃Tnx|2

1 + λ̃Tnx
l(x) := max

{
|λ̃Tx|2

1 + λ̃Tx
,
|λT0 x|2

1 + λT0 x

}
.

It is easy to see that the function k(y) := y2

1+y
, y > −1, is positive and convex.

Thus, we have ln(x) ≤ l(x). Meanwhile, l(x) is integrable due to (3.20) and

Lemma 3.3–(i). This allows us to apply Dominated Convergence Theorem to

ln(x), i.e. ∫
|λ̃Tx|2

1 + λ̃Tx
F (dx) = lim

n→+∞

∫
|λ̃Tnx|2

1 + λ̃Tnx
F (dx),

which is +∞ due to assumption (3.9). This is a contradiction with (3.20).

Thus, we can conclude λ̃ ∈ int(D). Meanwhile, due to Lemma 3.3–(ii), Φ0

is differentiable at λ̃. Therefore, we have (3.18) by recalling Lemma 3.3–(ii).

This ends the proof.

Lemma 3.5: Let θ̂ ∈ L(S) and suppose that

(
(1 + θ̂T z)−1 − 1 + log(1 + θ̂T z)

)
?µ ∈ A+

loc, and

∫
θ̂Tx

1 + θ̂Tx
ν({t}, dx) = 0.

(3.21)

Then, the functional W , given by

Wt(z) := (1 + θ̂T z)−1 − 1

belongs to G1
loc(µ) and the process Z̃, given by

Z̃ = E
(
Ñ
)
, Ñ = −θ̂ · Sc +W ? (µ− ν) (3.22)

is a well-defined local martingale.

Proof. We need to show that every component in this construction is well-

defined. For θ̂ ∈ L(S) and S being locally bounded, thanks to Proposition

2.1, we have θ̂ ∈ L(Sc). Thus, the integral −θ̂ ·Sc is a well-defined continuous

local martingale. For the purely discontinuous part, we need to prove W is
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(µ− ν)-integrable, i.e.

(∑
(Wt(∆S)I{∆St 6=0} − Ŵt)

2
)1/2

∈ A+
loc.

Due to

∫
θ̂Tx

1 + θ̂Tx
ν({t}, dx) = 0 assumed in (3.21), we deduce that

Ŵt =

∫
Wt(x)ν({t}, dx) = −

∫
θ̂Tx

1 + θ̂Tx
ν({t}, dx) = 0.

Hence, W ∈ G1
loc(µ) if and only if

(∑
(Wt(∆S)I{∆St 6=0})

2
)1/2

∈ A+
loc.

Since θ̂ · S is a RCLL semimartingale, then, for any α ∈ (0, 1), the non-

decreasing process I{|θ̂T∆S|≤α} · [θ̂ ·S, θ̂ ·S] is locally bounded1 and, hence, it is

locally integrable. Then, due to the inequalities

∑((
1 + θ̂T∆S

)−1

− 1

)2

I{|θ̂T∆S|≤α} �
1

(1− α)2

∑
(θ̂T∆S)2I{|θ̂T∆S|≤α}

� 1

(1− α)2
I{|θ̂T∆S|≤α} · [θ̂ · S, θ̂ · S],

we deduce that
∑

((1 + θ̂T∆S)−1 − 1)2I{|θ̂T∆S|≤α} is locally integrable.

Put A = (1− α) log(1− α) + α ∈ (0, 1) and remark that

|(1 + θ̂T∆S)−1 − 1|I{|θ̂T∆S|>α} ≤

I{|θ̂T∆S|>α}, θ̂∆S ≥ 0;(
AK(θ̂T∆S)− 1

)
I{|θ̂T∆S|>α}, θ̂∆S < 0.

where K(y) := (1 + y)−1 − 1 + log(1 + y). Then, we derive that

∑
|(1 + θ̂T∆S)−1 − 1|I{|θ̂T∆S|>α} � 2I{|θ̂T x|>α} ? µ+ A|K(θ̂Tx)|I{|θ̂T x|>α} ? µ.

1Fact: any semimartingale with bounded jumps is locally bounded.
The process [θ̂ ·S, θ̂ ·S] is non-decreasing and has finite variation with bounded jumps, hence,
it is locally bounded.
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Hence, due to (3.21),
∑
|(1 + θ̂T∆S)−1 − 1|I{|θ̂T∆S|>α} is locally integrable. 2

Finally, using the inequality

(∑
((1 + θ̂T∆S)−1 − 1)2I{|θ̂T∆S|>α}

)1/2

�
∑
|(1 + θ̂T∆S)−1 − 1|I|{θ̂T∆S|>α},

we obtain the local integrability of
(∑

((1 + θ̂T∆S)−1 − 1)2
)1/2

.

This ends the proof of the (µ− ν)-integrability of W , and hence W ? (µ− ν) is

a local martingale and the process Z̃ constructed in (3.22) is well defined.

Proof of Theorem 3.1:

The proof of this theorem will be carried out in four steps, where the impli-

cation of (i) ⇒ (ii) will be given in Step 1–3, while Step 4 will focus on the

proof of (ii)⇒ (i).

Step 1: Suppose (i) holds. Due to assumption (3.12), θ = 0 is admissible. We

deduce that D(t) is a supermartingale, which can be written in the form of

D(t) = D(0) +Mt + aDt , where M is a local martingale and aD is predictable

with finite variation. By Ito’s formula, we get for any admissible portfolio rate

θ,

Xθ := log(E(θ · S)) = θ · S − 1

2
θT cθ · A+

(
log(1 + θT z)− θT z

)
? µ.

Hence, for any admissible portfolio rate θ (respectively, the optimal portfolio

rate θ̂ ),

U(t, xEt(θ · S)) = U(t, xE(θ · S)) = D(0) + log(x) +Mt +Xθ
t + aDt (3.23)

2For the process
∑
I{|θ̂T ∆S|>α} = I{|θ̂T x|>α} ? µ, it is non-decreasing, and note a fact

that, it is right continuous and , hence, the number of jump is finite (RCLL process (θ̃ · S)
has finite number of lower bounded jump and countable total jumps ), which implies it is
real valued and has finite variation. Moreover, its jump is bounded and, hence, it is locally
bounded. When −1 < x < −α, we choose A such that f(x) < 0, where

f(x) := A(log(1 + x) +
1

1 + x
− 1)− 1− (

1

1 + x
− 1).

Note that the function g(x) := (1+x) log(1+x)−x is decreasing on (−1,−α) and g(0) = 0.
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is a supermartingale (respectively, a local martingale) if and only if the process

Xθ + aD is a local supermartingale (respectively, is a local martingale). It

implies that

| log(1 + θT z)− θT z| ? µ ∈ A+
loc, (3.24)

and the process

aD − Φ0(θ) · A is non-increasing (respectively, is null), (3.25)

where Φ0(θ) is given in (3.4). From (3.25), it is clear that when θ = θ̂,

aD = Φ0

(
θ̂
)
· A, (3.26)

that is, the optimal portfolio rate θ̂ will minimize the functional Φ0(θ).

Recalling the assumption (3.9) and Proposition 3.1, we can conclude that

θ̂ ∈ int(D) and it is a root of equation (3.10). This completes this proof of

(ii.1).

Step 2: By inserting the equation (3.10) to the right hand side of (3.26)(recall

the integrability (3.24)), we have,

− aD =
1

2
θ̂T cθ̂ · A+

∫ (
1

1 + θ̂T z
− 1 + log(1 + θ̂T z)

)
F (dz) · A (3.27)

From (3.27), we deduce that the process
(

(1 + θ̂T z)−1 − 1 + log(1 + θ̂T z)
)
? µ

is locally integrable. Meanwhile, by taking jumps in (3.10), we deduce that

∫
θ̂Tx

1 + θ̂Tx
ν({t}, dx) = 0.

This fulfills the condition of Lemma 3.5, where we have proved that Z̃, given

in (3.22), is well defined. Moreover, it is a local martingale density due to

(3.10) and Proposition 2.2.

It remains to prove the optimality of Z̃. Thanks to Proposition 3.2 in [17] (see

also Proposition 4.2 in [16] for the case of quasi-left continuity), it is enough
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to consider a positive martingale density Z = E(N) of the form

N = β·Sc+Y ?(µ−ν), Yt(x) = kt(x)+
k̂t

1− at
I{at<1}, k̂t :=

∫
kt(x)ν({t}, dx),

where β ∈ L(S) and
(∑

kt(∆St)
2I{∆St 6=0}

)1/2 ∈ A+
loc. Then, due to the con-

vexity of zT cz and f0(z) := z − log(1 + z), we obtain on {∆A = 0},

dh(0)(Z, P )

dA
− dh(0)(Z̃, P )

dA
(3.28)

=

∫ [
f0(k(x))− f0

(
(1 + θ̂Tx)−1 − 1

)]
F (dx) +

1

2
(βT cβ − θ̂T cθ̂)

≥ θ̂T c(β − θ̂) +

∫
θ̂Tx

(
k(x) + 1− (1 + θ̂Tx)−1

)
F (dx) = 0. (3.29)

The equality (3.29) is derived from a combination of (3.10) for Z̃ and a similar

equation for Z based on (2.47) that

b · A+ cβ · A+ x(k(x) + 1) ? ν = 0.

On the other hand, due to (2.53) and (2.54) in Proposition 2.3 and the con-

vexity of f0(z), we get

∆h
(0)
t (Z, P )−∆h

(0)
t (Z̃, P )

=

∫ [
f0(kt(x))− f0

(
(1 + θ̂Tt x)−1 − 1

)]
νt(dx) + (1− at)f0

( −k̂t
1− at

)
(3.30)

≥
∫ (

kt(x) + 1− (1 + θ̂Tt x)−1
)
θ̂Tt xνt(dx) = 0. (3.31)

Indeed, the equation (3.30) comes from Proposition 2.3, while the equation

(3.31) follows from (3.10) for Z̃ on the set {∆A 6= 0} and a similar equation

from (2.47) for Z that ∫
x(1 + kt(x))νt(dx) = 0.
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Thus, by combining (3.29) and (3.31), we deduce that Z̃ is the MHM density

of order 0.

Step 3: In the step, we will characterize aD and then conclude (3.11). Fur-

thermore, the proof of (ii.3) is given in the end.

By considering (3.27), on the set {∆A = 0}, we have

−I{∆A=0} · aD = I{∆A=0}

[
1

2
θ̃T cθ̃ +

∫
f0

(
(1 + θ̃Ty)−1 − 1

)]
· A

= I{∆A=0} · h(0)(Z̃, P ) (3.32)

where the Hellinger process h(0)(Z̃, P ) are given in Proposition 2.3. On the

set {∆A 6= 0}, (3.10) implies∫
x

1 + θ̂Tx
νt(dx) = 0. (3.33)

With the help of (3.33), we take jump on both sides of (3.27) and use Propo-

sition 2.3, we derive

−∆aD =

∫
log(1 + θ̂T z)νt(dz) = ∆h(0)(Z̃, P ). (3.34)

Therefore, following (3.32) and (3.34), we can conclude immediately (3.11).

Finally, due to the forward property of U0, U0(t, E(θ̂ · S)) is a martingale. We

combine this fact with the result in Corollary 2.5.1 and derive

N̂ := D1 − log(Z̃) = U0(t, E(θ̂ · S)).

Therefore, (ii.3) holds immediately.

Step 4: Now, we suppose (ii) holds. For the particular portfolio rate θ̂, we

apply the result in Proposition 2.4,

U0

(
·, xE

(
θ̂ · S

))
= log(x)− log

(
Z̃
)

+D1 (3.35)

which is a martingale from assertion (ii.3). Meanwhile, for any admissible
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portfolio rate θ, we have

U0 (·, xE (θ · S)) = U0

(
·, xE

(
θ̂ · S

))
+ log

(
E(θ · S)

E(θ̂ · S)

)

By applying Jensen’s inequality, we have

E

[
log

(
Et(θ · S)

Et(θ̂ · S)

)
|Fs

]
≤ log

[
E

(
Et(θ · S)

Et(θ̂ · S)
|Fs

)]
. (3.36)

Thanks to Corollary 2.5.1, we have Z̃ = E−1(θ̂ · S) and hence

log

[
E

(
Et(θ · S)

Et(θ̂ · S)
|Fs

)]
= log

[
E(Z̃tEt(θ · S)|Fs)

]
. (3.37)

It is easy to see that Z̃E(θ · S) is a positive local martingale hence a super-

martingale. As a result,

log
[
E(Z̃tEt(θ · S)|Fs)

]
≤ log

(
Z̃sEs(θ · S)

)
= log

(
Es(θ · S)

Es(θ̂ · S)

)

Therefore, log
(
E(θ · S)/E(θ̂ · S)

)
is a supermartingale, and U0 (·, xE (θ · S)) is

a supermartingale too. This completes the proof.

Now, we are ready to characterize the log-type forward utility, U0, given by

(3.1), for the most general case without any assumption on D0 and D1. This

will be achieved in two steps. First, an equivalent statement on the forward

property of U0 is established in Theorem 3.2. Then, in Theorem 3.3, we focus

on this equivalent statement and give a full characterization of D0 and D1.

Theorem 3.2: Suppose that the processes D0 and D1 of (3.1) satisfy

sup
τ∈TT

E (|D0(τ)|+|D1(τ)|) < +∞. (3.38)

Then the following two assertions are equivalent:
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(i) U0(t, x) is a forward utility.

(ii) (D0(t))t≥0 is a positive martingale, (D1(t))t≥0 is a supermartingale and

the functional UQ
0 , given by

UQ
0 (t, x) := log(x) +

D1(t)

D0(t)
(3.39)

is a forward utility for the model (S,Q), where Q := D0(T )
D0(0)

· P .

Proof. Suppose that (i) holds. Then, under the assumption (3.38), the null

portfolio rate is admissible, and hence U0(t, x) = D1(t) + D0(t) log(x) is a

supermartingale for any x > 0. By considering the cases of x = 1 and x 6= 1,

we conclude that the process D1 is a supermartingale and the process D0 is a

special semimartingale.

The Doob-Meyer decomposition of D0 and D1 are

D1 = D1(0) +MD1 + AD1 , D0 = D0(0) +MD0 + AD0 ,

where MD1 and MD0 are local martingales, and, AD1 and AD0 are predictable

processes with finite variation such that

MD1
0 = AD1

0 = MD0
0 = AD0

0 = 0.

By inserting the above decompositions into the expression of U0, we get for

any x > 0

U0(t, x) = D1(0)+D0(0) log(x)+MD1
t +MD0

t log(x)+AD0
t log(x)+AD1

t . (3.40)

Since U0(t, x) is a supermartingale, the predictable part of U0(t, x) is non-

increasing and hence

AD0 log(x) + AD1 ≤ 0, ∀ x > 0. (3.41)

The inequality in (3.41) holds only if AD0 = 0 and AD1 ≤ 0 P -a.s. Therefore,
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the process D0 is a local martingale. To prove that D0 is a true martingale, we

note that for any x > 0, there exists a portfolio rate π̂x (we explicitly denote

its dependence on x) such that (U0(t, x+ θ̂x · St))t∈[0,T ] is a martingale. Thus,

π̂x is the solution of the following maximization problem for any τ ∈ TT

max
π∈Aadm(x)

E(U0(τ, x+ π · Sτ )) = E (U0(τ, x+ π̂x · Sτ )) = U0(0, x). (3.42)

Meanwhile, we notice the equality

max
π∈Aadm(x)

E
(
D0(τ) log(1 +

π

x
· Sτ )

)
= max

π∈Aadm(1)
E (D0(τ) log(1 + π · Sτ )) .

(3.43)

A combination of (3.42) and (3.43) leads to

E(D0(τ) log(x))−D0(0) log(x)

= −E
(
D0(τ) log(1 +

π̂x
x
· Sτ )

)
+ E (D0(τ) log(1 + π̂1 · Sτ ))

= 0.

Since x can be taken arbitrarily, it is easy to derive that

E(D0(τ)) = D0(0), ∀ τ ∈ TT .

Hence, we conclude that the process D0 is a true martingale.

Now, an application of Lemma 2.3-(ii) can complete the proof of (ii). Further-

more, (ii)⇒(i) follows again from this lemma. This completes the proof of this

theorem.

In Theorem 3.2, the process D0 is characterized as a positive martingale.

Thus, we can write it in the form of stochastic exponential, given by

D0 = D0(0)E(N),

where N is a local martingale and we let (β, f, g,N
′
) be the Jacod components

56



of N . We consider the following assumption:

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e.,

(3.44)

lim
n→+∞

∫
K0(λTnx)(1 + f(x))F (dx) =

+∞, on Γ;∫
K0(λTx)(1 + f(x))F (dx), on Γc.

where K0(y) :=
|y|2

1 + y
and Γ := {F (IRd) > 0 and λ /∈ int(D)}.

Now, thanks to Theorem 3.1, the full description of D0 and D1 can be

derived via working on the equivalent statement on the forward property of

UQ
0 , given by Theorem 3.2–(ii).

Theorem 3.3: Let D0 be a positive martingale (put Q = D0(T )
D0(0)

· P ) and D1

be a supermartingale. Suppose that S is locally bounded and the assumption

(3.44) holds. Then the following two assertions are equivalent.

(1) The functional UQ
0 given by (3.39) is a forward utility with the optimal

portfolio rate θ̂.

(2) The following properties hold:

(2.a) The MHM density of order zero with respect to Q exists, denoted by

Z̃Q, and there exists a Q-local martingale MQ such that

D1(t) = D0(t)

(
D1(0)

D0(0)
+MQ

t − h
(0)
t (Z̃Q, Q)

)
, 0 ≤ t ≤ T. (3.45)

(2.b) The optimal portfolio rate θ̂ is a root for

bQ − cλ+

∫ (
1

1 + λTx
− 1

)
xFQ(dx) = 0, (3.46)

where bQ, FQ(dx) are the predictable characteristics of S under Q.

(2.c) The process N̂ := D1 −D0 log(Z̃Q) is a martingale.

57



Proof. (1)⇒ (2). Suppose that (1) holds, that is, the functional UQ(t, ω, x) :=

log(x) + D1(t)
D0(t)

is a forward utility for (S,Q) with the optimal portfolio rate θ̂

and the process D1/D0 is a Q-supermartingale. Hence, we can apply Theorem

3.1 directly on the model (S,Q, UQ
0 ) under the assumption (3.44). It states

that there exists the MHM density of order 0, denoted by Z̃Q, such that

D1/D0 can be characterized as (3.45). Furthermore, the optimal portfolio rate

θ̂ is a root of the equation (3.46).

It remains to prove (2.c). Due to Proposition 2.5, we have

N̂ := D1 +D0 log(E(θ̂ · S)) = −D0 log(x) + U(t, xEt(θ̂ · S)).

Hence, N̂ is a true martingale, and we complete the proof of (1)⇒ (2).

(2) ⇒ (1). Since Z̃Q is the MHM density of order 0, we apply the result in

Lemma 2.5 and derive

UQ
0

(
·, xE

(
θ̂ · S

))
= log(x)− log

(
Z̃Q
)

+
D1

D0

= log(x) +
N̂

D0

. (3.47)

Then, due to assertion (2.c), we conclude that UQ
0

(
·, xE

(
θ̂ · S

))
is a Q-

martingale. Now, for any admissible portfolio rate θ, we have

UQ
0 (·, xE (θ · S)) = UQ

0

(
·, xE

(
θ̂ · S

))
+ log

(
E(θ · S)

E(θ̂ · S)

)

By applying Jensen’s inequality, we have

EQ

[
log

(
Et(θ · S)

Et(θ̂ · S)

)
|Fs

]
≤ log

[
EQ

(
Et(θ · S)

Et(θ̂ · S)
|Fs

)]
. (3.48)

Thanks to Proposition 2.5, Z̃Q = 1/E(θ̂ · S) and thus E(θ · S)/E(θ̂ · S) is a
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positive Q-local martingale. Hence, it is a Q-supermartingale which leads to

log

[
EQ

(
Et(θ · S)

Et(θ̂ · S)
|Fs

)]
≤ log

(
Es(θ · S)

Es(θ̂ · S)

)
. (3.49)

By (3.48) and (3.49), it is clear that log
(
E(θ · S)/E(θ̂ · S)

)
is aQ-supermartingale

and hence, UQ
0 (·, xE (θ · S)) is a Q-supermartingale as well. This completes

the proof.

Remark: The proof of (2) ⇒ (1) does not require the assumption (3.44).

Thus, the assertion (2) is the full description of the processes D0 and D1

such that U0(t, x), given by (3.1), is a forward utility.

3.B Discrete-Time Market Models

This section is devoted to illustrate the general results of Section 3.A on

Discrete-time market models. Precisely, the trading times are countably many,

say, j = 0, 1, ..., N , and the information flow of the market model is given

by F = (Fj)j=0,1,...,N . The d-dimensional stock price process is denoted by

S = (Sj)j=0,1,...,N , where Si is a d-dimensional, bounded and Fj random

variable.

In this setup, the random utility U0 in the log-type given by (3.1) becomes

U0(j, x) = D0(j) log(x) +D1(j), j = 0, 1, ..., N, ∀x > 0, (3.50)

Here, D0 = (D0(j))j=0,1,...,N and D1 = (D1(j))j=0,1,...,N are stochastic processes

satisfying

sup
0≤j≤N

E (|D0(j)|+|D1(j)|) < +∞. (3.51)

Similarly as the continuous-time case, we denote the jumps of the price pro-

cess by ∆Sj := Sj − Sj−1, j = 1, 2, ...N , and their corresponding conditional
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distribution given Fj−1 is denoted by Gj(dx), i.e.

Gj(dx) := P (∆Sj ∈ dx|Fj−1).

Then the sets Dj, j = 1, 2, ..., N , take the following form

Dj :=
{
θ ∈ IRd | 1 + θTx > 0, Gj(dx)− a.e.

}
. (3.52)

By following a similar argument as Lemma 3.1, the interior of D, int(D), can

be expressed as

int(D) =
{
θ ∈ IRd | ∃ δ > 0 s.t. 1 + θTx ≥ δ, Gj(dx)− a.e.

}
.

Associated with the log-type forward utility (3.50), we denote the set of ad-

missible portfolio rates for the jth period of time, j = 1, 2, ..., N , by Θ
(0)
j , which

is given by

Θ
(0)
j :=

{
θ ∈ L0(Fj−1)∩Dj|E

(
|D0(j) log(1 + θT∆Sj)||Fj−1

)
< +∞

}
. (3.53)

The main assumption imposed on this model is given in the following:

Assumption: For any j = 1, ..., N , θ ∈ Dj, P -a.e., and every sequence

(θn)n≥1, θn ∈ int(Dj), P -a.e., and converges to θ, we have, P − a.e.

(3.54)

lim
n→+∞

E
( |D0(j)θTn∆Sj|

1 + θTn∆Sj

∣∣∣Fj−1

)
=

+∞, on Γj;

E
(
|D0(j)θT∆Sj |

1+θT∆Sj

∣∣∣Fj−1

)
, on Γcj.

where Γj := {Gj(IR
d) > 0 and θ /∈ int(Dj)}.

The next theorem states our parametrization algorithm for log-type for-

ward utilities having the form of (3.50).

Theorem 3.4: Suppose that S is bounded and the assumptions (3.51) and
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(3.54) hold. Then, the followings are equivalent.

(i) The functional U0, given by (3.50), is a forward utility with the optimal

portfolio rate θ̂ = (θ̂j)j=1,2,...,N .

(ii) The following two properties hold:

(ii.1) D0 is a positive martingale and the process θ̂ for j = 1, 2, ..., N satisfies

θ̂j ∈ Θ
(0)
j and is a root for E

(
D0(j)

1 + θT∆Sj
∆Sj|Fj−1

)
= 0. (3.55)

(ii.2) The process D1 is a supermartingale with the predictable part AD1,

given by

AD1
j = −

j∑
k=1

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
, j = 0, 1, ..., N.3 (3.56)

Proof. Suppose that assertion (i) holds. Then, for any x ∈ (0,+∞), the func-

tional U0(j, x) is strictly concave with respect to x. Hence, D0(j) is positive

almost surely for any j = 0, 1, ..., N . Meanwhile, the processes 4

U0

(
j, x

j∏
k=1

(1 + θ̂Tk ∆Sk)

)
, j = 0, 1, ..., N, is a martingale (3.57)

and for any admissible θ = (θj)j=1,...,N (i.e. θj ∈ Θ
(0)
j ),

U0

(
j, x

j∏
k=1

(1 + θTk ∆Sk)

)
, j = 0, 1, ..., N, is a supermartingale. (3.58)

It is easy to see that the null portfolio rate θ = 0 is admissible due to (3.50)

(i.e. 0 ∈ Θ
(0)
j ). Then, a direct application of (3.58) implies that for any x > 0,

U0(j, x) = D0(j) log(x)+D1(j), j = 0, 1, ..., N, is a supermartingale. (3.59)

Due to the arbitrariness of x in (3.59), we put x = 1 and x = e respectively

3By convention, the sum of empty, when j = 0, is zero.
4By convention, the product of empty, when j = 0, is one.
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and deduce that D1 is a supermartingale and D0 is a special semimartingale

with the following Doob-Meyer decompositions

D1 = D1(0) +MD1 + AD1 , D0 = D0(0) +MD0 + AD0 ,

with MD1
0 = AD1

0 = MD0
0 = AD0

0 = 0,

where MD1 and MD0 are local martingales, and, AD1 and AD0 are predictable

with finite variation. Accordingly, the supermartingale U0 in (3.59) can be

rewritten as

U0 = D1(0) +D0(0) log(x) +MD1 +MD0 log(x) + AD0 log(x) + AD1 . (3.60)

where its predictable part is AD0 log(x) + AD1 . For any x > 0, the super-

martingale property of U0 implies that

AD0
j log(x) + AD1

j ≤ 0, ∀ x > 0, j = 1, 2, ..., N. (3.61)

It is a linear function in log(x) and holds true only if AD0
j = 0 and AD1

j ≤ 0,

P -a.s. We therefore proved that the process D0 a local martingale. Then, an

application of Theorem 2 in [38] leads to that D0 is a martingale.

To prove (ii.2), we consider a process M = (Mj)j=0,1,...,N , given by

Mj := D1(j) +

j∑
k=1

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
.

After simplification and application of the martingale property of D0, the

conditional expectation, E(Mj|Fj−1), can be calculated as follows

E(Mj | Fj−1) = E

(
D1(j) +D0(j)

j∑
k=1

log
(

(1 + θ̂Tk ∆Sk)
)
|Fj−1

)
−

D0(j − 1)

j−1∑
k=1

log(1 + θ̂Tk ∆Sk) +

j−1∑
k=1

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
.
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Remark that the process

D1(j) +D0(j)

j∑
k=1

log
(

1 + θ̂Tk ∆Sk

)
, j = 0, ..., N

is a martingale due to (3.57), thus,

E(Mj|Fj−1) = D1(j − 1) +

j−1∑
k=1

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
= Mj−1.

This proved that (Mj)j=0,1,...,N is a martingale and hence AD1 is the predictable

part of D1. This completes the statement (ii.2).

Now, it remains to prove (3.55) in order to complete the proof of (ii). Again,

due to the martingale property of D0 together with (3.57) and (3.58), we derive

E
(
D0(j) log(1 + θ̂Tj ∆Sj)|Fj−1

)
= D1(j − 1)− E(D1(j)|Fj−1), and

E
(
D0(j) log(1 + θTj ∆Sj)|Fj−1

)
≤ D1(j − 1)− E(D1(j)|Fj−1), ∀ θj ∈ Θ

(0)
j .

Then, by putting Q := D0(N)
D0(0)

· P and

Φj(y) :=

∫
log(1 + yTx)G̃j(dx), G̃j(dx) := Q(∆Sj ∈ dx|Fj−1), y ∈ Dj,

(3.62)

we obtain

Φj(θj) ≤ Φj(θ̂j), ∀ θj ∈ Θ
(0)
j , ∀ j = 1, 2, ..., N. (3.63)

Thanks to the assumption (3.54) and Proposition 3.1, we can conclude that

for any j = 1, 2, ..., N , θ̂j is a root for∫
x

1 + θTx
G̃j(dx) = E

(
D0(j)

1 + θT∆Sj
∆Sj|Fj−1

)
= 0.

This proves (3.55) and completes the proof of (i)⇒(ii).
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To prove the reverse, we suppose that assertion (ii) holds. Since the processes

M := D1 − AD1 and D0 are martingales, we obtain

E

(
D1(j) +D0(j)

j∑
k=1

log
(

(1 + θ̂Tk ∆Sk)
)
|Fj−1

)

= E

(
D1(j) +

j∑
k=0

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
|Fj−1

)

+D0(j − 1)

j−1∑
k=0

log(1 + θ̂Tk ∆Sk)−
j−1∑
k=0

E
(
D0(k) log(1 + θ̂Tk ∆Sk)|Fk−1

)
= D1(j − 1) +D0(j − 1)

j−1∑
k=0

log(1 + θ̂Tk ∆Sk).

Hence, in one hand, the process

U0

(
j, x

j∏
k=1

(1 + θ̂Tk ∆Sk)

)
, j = 0, 1, ..., N

is a martingale and we have

E
(
D0(j) log(1 + θ̂Tj ∆Sj)|Fj−1

)
= D1(j − 1)− E(D1(j)|Fj−1) (3.64)

On the other hand, for any admissible portfolio rate θ = (θj)j=1,2,...,N , due to

the concavity of the function φ(y) := D0 log(1 + y), we derive

D0(j) log(1 + θTj ∆Sj)−D0(j) log(1 + θ̂Tj ∆Sj) ≤
D0(j)

1 + θ̂Tj ∆Sj
(θj − θ̂j)T∆Sj.

By taking conditional expectation in both sides above and using (3.55), we

obtain

E
(
D0(j) log(1 + θTj ∆Sj)|Fj−1

)
≤ E

(
D0(j) log(1 + θ̂Tj ∆Sj)|Fj−1

)
. (3.65)

Then, adding D0(j − 1)

j−1∑
k=1

log(1 + θTk ∆Sk) + E(D1(j)|Fj−1) on both sides of
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(3.65) and using the martingale property of D0 together with (3.64), we have

E

(
U0

(
j, x

j∑
k=0

log(1 + θTk ∆Sk)

)
|Fj−1

)

≤ E
(
D0(j) log(1 + θ̂Tj ∆Sj) +D1(j)|Fj−1

)
+D0(j − 1)

j−1∑
k=1

log(1 + θTk ∆Sk)

= U0

(
j − 1, x

j−1∑
k=0

log(1 + θTk ∆Sk)

)
.

Clearly, U(j, x

j∑
k=0

log(1 + θTk ∆Sk)), j = 0, 1, ..., N , is a supermartingale for

any admissible θ = (θj)j=0,...,N and this completes the whole proof.

3.C Discrete Markets Models

This section will investigate two particular examples of the general discrete-

time market model. More precisely, it will contain two subsections by consid-

ering respectively two cases:

• The stock price process is binomial (i.e. branches into two values at any

time)

• The stock price process branches into n (n > 2) possible values at any

time.

We pay attention to these two examples for their common feature that they

are not relying on the assumption (3.54). The technical reason behind this

will be explained in their proofs.

3.C.1 One-Dimensional Binomial Model

In this subsection, we will consider the binomial model. Let ξj be a Fj-
measurable random variable, which has two values, ξuj and ξdj satisfying 0 <

ξdj < 1 < ξuj for any j = 1, ..., N . Then, given the price of the stock at time
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j − 1 (i.e. Sj−1), the price at time j will either go up to Sj−1ξ
u
j or go down to

Sj−1ξ
d
j . Therefore, we get

Sj = Sj−1ξj = S0

j∏
k=1

ξk.

Assume that S > 0, P -a.s., then ξj+1 =
Sj+1

Sj
. We denote a sequence of events,

(Aj)j=1,...,N

Aj := {ξj = ξuj } ∈ Fj. (3.66)

For this current binomial model, the size of the sample space, #(Ω) = 2N , is

finite.

Similarly as in the discrete-time model in the general framework discussed in

last section, we calculate the jump of S as follows

∆Sj := Sj − Sj−1 = (ξj − 1)Sj−1, j = 1, 2, ...N.

Therefore, the set Dj, j = 1, 2, ..., N , becomes

Dj :=
{
θ ∈ IR| 1 + (ξuj − 1)θSj−1 > 0 and 1 + (ξdj − 1)θSj−1 > 0.

}
.

Or, equivalently,

Dj =
]
1/(1− ξuj )Sj−1, 1/(1− ξdj )Sj−1

[
. (3.67)

Therefore, one of the features of this model lies in the fact that given Fj−1,

Dj is an open set in IR and hence

int(Dj) = Dj, P − a.e., ∀ j = 1, ..., N. (3.68)

Furthermore, due to #(Ω) < +∞, it is obvious that any real-valued random

variable is integrable and its conditional expectation is finite as well. Thus,

we conclude that the admissible sets, Θ
(0)
j , defined in (3.53) take the following
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forms

Θ
(0)
j = L0(Fj−1) ∩ Dj, j = 1, ..., N. (3.69)

The characterization of the logarithm forward utilities in binomial model is

stated in the following theorem.

Theorem 3.5: The following two assertions are equivalent.

(i) The functional U0(t, x), defined in (3.50), is a forward utility with the

optimal portfolio rate denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The following properties hold:

(ii.1) D0 is a positive martingale and θ̂j is given by

θ̂j =
(ξuj − 1)Qj − (1− ξdj )(1−Qj)

(ξuj − 1)(1− ξdj )Sj−1

∈ Dj, (3.70)

where Qj := Q(Aj|Fj−1), Q := D0(N)
D0(0)

· P and Aj is given by (3.66).

(ii.2) D1 is a supermartingale with predictable part given by

−
j∑

k=1

[
log
(ξuk − ξdj

1− ξdk
Qj

)
Qj + log

(ξuk − ξdj
ξuk − 1

(1−Qj)
)

(1−Qj)
]
. (3.71)

Proof. Remark that the one-dimensional binomial model is only a particular

example of the discrete-time markets models. As a result, the proof of the

current theorem would be very similar with–but simpler than–the proof of

Theorem 3.4 due to the following three remarks.

a) Assumptions (3.54) and (3.51) are automatically satisfied for the current

case due to (3.68) and #(Ω) < +∞, respectively.

b) The function Φj given by (3.62) becomes

Φj(θ) = log
(
(1 + (ξuj − 1)θSj−1)

)
Qj + log

(
(1 + (ξdj − 1)θSj−1)

)
(1−Qj),

(3.72)
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which is differentiable for any θ ∈ Dj and its derivative is given by

Φ′j(θ) =
(ξuj − 1)Sj−1

1 + (ξuj − 1)θSj−1

Qj +
(ξdj − 1)Sj−1

1 + (ξdj − 1)θSj−1

(1−Qj).

Clearly the solution of Φ′j(θ) = 0 is given by (3.70).

c) It is clear that the predictable part of D1 takes the exact form of (see (3.56))

−
j∑

k=1

[
log
(

1 + (ξuj − 1)θ̂kSk−1

)
Qj + log

(
1 + (ξuj − 1)θ̂kSk−1

)
(1−Qj)

]
.

Afterwards, by plugging (3.70) into the above expression, (3.71) follows im-

mediately. This ends the proof of the theorem.

3.C.2 Multi-Dimensional Discrete Model

This subsection will extend the one-dimensional binomial model given in Sub-

section 3.C.1 to multi-dimensional discrete model. Precisely, we will consider

a market with d stocks, (Sij)j=0,1,...,N , i = 1, ..., d. Same as before, we assume

Si > 0, P −a.s.. Moreover, at any time j, the stock price takes up to n, n ≥ 2,

possible values. In other words, for i = 1, ..., d, j = 0, 1, ..., N ,

Sij+1 = ξij+1S
i
j, ξij+1 ∈ {ξij+1(1), ξij+1(2), ... , ξij+1(n)},

where ξij+1 > 0 is Fj+1-measurable. In vector form, we put ξj = (ξ1
j , ξ

2
j , ..., ξ

d
j )
T ,

j = 1, ..., N . Remark that for current multi-dimensional discrete model, the

size of the sample space, Ω, is finite, i.e., #(Ω) = (dn)N .

We denote the set of the index of different scenarios by N := {1, 2, ..., n}.
Then, for d stocks, when the time goes from j to j + 1, there are totally

nd combinations of different scenarios. If we represent one of such scenario

by {n1, n2, ..., nd} with n1, n2, ..., nd ∈ N , then it is an element of the d-

dimensional product space Ñ := N⊗···⊗N . Meanwhile, the price for d stocks,

Sj+1 = (S1
j+1, ..., S

d
j+1)T at time j + 1 for a particular scenario {n1, n2, ..., nd},
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can be represented in a matrix form, i.e.

Sj+1 = Ξj+1(n1, n2, ..., nd)Sj,

where Ξj+1(n1, n2, ..., nd) := diag(ξ1
j+1(n1), ξ2

j+1(n2), ..., ξdj+1(nd)).

We denote the event that the scenario (n1, ..., nd) ∈ Ñ occurs by Aj(n1, ..., nd),

j = 1, ..., N , given by

Aj(n1, ..., nd) := {ξ1
j = ξ1

j (n1), ξ2
j = ξ2

j (n2), ..., ξdj = ξdj (nd)} ∈ Fj, (3.73)

which, naturally, should satisfy

∑
(n1,...,nd)∈Ñ

P (Aj(n1, ..., nd)) = 1, j = 1, ..., N.

As well, we can write the jump process of the price process in the matrix form

as follows

∆Sj := Sj − Sj−1 = (Ξj − Id×d)Sj−1, j = 1, 2, ...N,

where Id×d is the d × d identity matrix. Furthermore, we denote the d-

dimensional vector with all entries equal to 1 by Id.

In this setup, the set Dj, j = 1, 2, ..., N , becomes

Dj :=
{
θ ∈ IRd| 1+θT (Ξj(n1, ..., nd)−Id×d)Sj−1 > 0,∀ (n1, ..., nd) ∈ Ñ

}
. (3.74)

Remark that the set Dj is open. Therefore, we have

int(Dj) = Dj, P − a.e., ∀ j = 1, ..., N. (3.75)

Again, due to #(Ω) < +∞, the admissible sets, Θ
(0)
j , defined in (3.53), be-

comes

Θ
(0)
j = L0(Fj−1) ∩ Dj, j = 1, ..., N. (3.76)
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The characterization of the logarithm forward utilities given by (3.50) in multi-

dimensional discrete model is stated in the following theorem.

Theorem 3.6: The following two assertions are equivalent.

(i) The functional U0(t, x), defined by (3.50), is a forward utility with the

optimal portfolio rate denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The following properties hold:

(ii.1) D0 is a positive martingale and θ̂j ∈ Dj is a root of the equation

∑
(n1,...,nd)∈Ñ

(Ξj(n1, ..., nd)− Id×d)Id
1 + θT (Ξj(n1, ..., nd)− Id×d)Sj−1

Q(Aj(n1, ..., nd)|Fj−1) = 0,

(3.77)

where Q := D0(N)
D0(0)

· P and Aj is given by (3.73).

(ii.2)D1 is a supermartingale with predictable part given by

−
j∑

k=1

∑
(n1,...,nd)∈Ñ

log
(
1 + θT (Ξk(n1, ..., nd)− Id×d)Sk−1

)
Q(Ak(n1, ..., nd)|Fk−1).

(3.78)

Proof. The proof of this theorem would be very similar with the proof of one-

dimensional binomial model and a special case of the proof of Theorem 3.4.

We omit the details of this proof, but only comment on the following.

Assumptions (3.54) and (3.51) are automatically satisfied for the current case

due to (3.75) and #(Ω) < +∞, respectively. Furthermore, in current model,

the functional Φj given by (3.62) becomes

Φj(θ) :=
∑

(n1,...,nd)∈Ñ

log(1 + θT (Ξj(n1, ..., nd)− Id×d)Sj−1)Q(Aj(n1, ..., nd)|Fj−1),

whose derivative, Φ′j(θ), is exact same with the left-hand-side of (3.77). Finally,

it has been proved in Theorem 3.4 that the process D1 is a supermartingale

and its predictable part is given by (3.78) by referring to (3.56).
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3.D Lévy Market Models

This section illustrates the results of Section 3.A on Lévy market models. I

will discuss the general Lévy market model and proceed with characterizing

the log-type forward utilities. This section contains two subsections, namely,

Subsections 3.D.1 and 3.D.2 respectively, that address two popular and prac-

tical models.

Consider a financial market where the stock price process, St, t ∈ [0, T ], is

given by

St = S0 exp(Xt), (3.79)

where X is a locally bounded Lévy process.

For any Lévy process X, the Lévy-Khintchine formula allows us to decompose

it as

Xt = γt+ σWt +

∫ t

0

∫
|x|≤1

xÑ(dt, dx) +

∫ t

0

∫
|x|≥1

xN(dt, dx), (3.80)

where Ñ(dt, dx) = N(dt, dx)− FX(dx)dt,

Here, γ and σ are positive constant; W = (Wt)t∈[0,T ], represents a Brownian

motion; N(dt, dx) is a random measure on [0, T ] × IR \ {0}, called Poisson

random measure; Ñ(dt, dx) is the compensated Poisson measure with the in-

tensity measure FX(dx)dt, where FX(dx) is called the Lévy measure defined

on IR \ {0}, satisfying ∫
IR\{0}

(|x|2∧1)FX(dx) < +∞. (3.81)

For more details about Lévy processes, we refer the reader to [69]. Particularly,

for its applications in mathematical finance, we refer the reader to [4], [19],

[27], [28] and the references therein.

The Lévy processes treated here are semimartingales. Compared with the

decomposition of general semimartingale given in (2.4), Lévy process inherits
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the same structure but has more concrete components. One of main features

for Lévy model is that it is quasi-left continuous. For locally bounded Lévy

process, we don’t need to introduce the truncation function h(x) since there

is no “large jump”. Also, the condition (3.81) is satisfied since the process

[X,X] is locally integrable and hence Wt(x) := x is Ñ(dt, dx)-integrable on

[0, T ]× IR \ {0} due to

(∑
s

(∆Xs)
2

)1/2

≤ ([X,X])1/2 ∈ A+
loc.

Therefore, the process X can be represented as

Xt = γt+ σWt +

∫ t

0

∫
IR\{0}

xÑ(dt, dx). (3.82)

In the same spirit as Theorem 2.2, any local martingale N in this model can

be decomposed as follows

N = β · Sc + (Y − 1) ? (µ− ν) + V ? µ+N ′, ν(dt, dx) = F S(dx)dt. (3.83)

Here, the vector of processes, (β, Y, V,N ′), is the Jacod components of N .

For this Lévy market model, our goal is to characterize the logarithm-type

forward utility, U0(t, x), given by

U0(t, x) = D0(t) log(x) +D1(t), (3.84)

Here we suppose that the processes D0 and D1 of (3.84) satisfy

sup
τ∈TT

E (|D0(τ)|+|D1(τ)|) < +∞. (3.85)

Precisely, we need to describe as explicitly as possible the processes D0 and

D1 such that U0(t, x) is a forward utility. The set D given by (3.3) becomes

D :=
{
θ ∈ IR : 1 + eXθ(ex − 1) > 0, FX − a.e.

}
. (3.86)
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For any probability measure P , stock price process S, and x > 0 such that

U0(t, x, ω) < +∞ we denote by

Aadm(x) :=
{
π ∈ L(S) | sup

τ∈TT
E (|D0(τ) log(x+ π · Sτ ) +D1(τ)|) < +∞

}
,

(3.87)

the set of admissible portfolios and we denoted by Θ(x) the corresponding set

of portfolio rates. Here TT is the set of stopping time, τ , such that τ ≤ T .

Remark that under the assumption (3.85), Proposition 3.2 implies the descrip-

tion on D0 and D1 that

D0 is a positive martingale and D1 is a supermartingale. (3.88)

are necessary conditions for U0 being a forward utility. Thus, without loss of

any generality, we suppose that (3.88) holds. It allows us to write D0 in the

form of stochastic exponential, given by D0 = D0(0)E(N), where N is a local

martingale and we let (β, Y, V,N
′
) be the Jacod components of N . Also, we

consider the following assumption:

Assumption: For any predictable process λ such that λ ∈ D, dP ⊗ dt-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

dP ⊗ dt-a.e., and λn → λ, we have, dP ⊗ dt− a.e.,

lim
n→+∞

∫
K0(eX−(ex − 1)λn)Y (eX−(ex − 1))FX(dx) (3.89)

=

+∞, on Γ;∫
K0(eX−(ex − 1)λ)Y (eX−(ex − 1))FX(dx), on Γc.

where K0(y) :=
|y|2

1 + y
and Γ := {FX(IR) > 0 and λ /∈ int(D)}.

The main result in this section is given in the following theorem.

Theorem 3.7: Consider the functional U0(t, ω, x) defined in (3.84). Suppose

that (3.85), (3.88) and (3.89) hold. Then the following two assertions are
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equivalent.

(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(2) Let Q := D0(T )
D0(0)

· P . Then, the following properties hold:

(2.a) D1/D0 is a Q-supermartingale and its predictable and finite variation

part is given by

−
∫ ·

0

[
σ2e2Xu

2
θ̂2
u + ξ̃u]du. (3.90)

where

ξ̃u :=

∫
IR\{0}

f0((1 + eXu(ex − 1)θ̂u)
−1 − 1)Y (eXu(ex − 1))FX

u (dx).

(2.b) The optimal portfolio rate θ̂ ∈ int(D) is a root for

γ +
1

2
σ2 + eXσ2(β − λ) +

∫
IR\{0}

ex − 1

1 + eX(ex − 1)λ
Y (eX(ex − 1))FX(dx) = 0.

(3.91)

(2.c) The local martingale N̂ := D1 −D0 log(E(θ̂ · S)) is a true martingale.

Proof. Remark that for locally bounded X, S = eX is also locally bounded and

is a Lévy process. Thus, by Ito’s formula, the dynamics of S can be presented

as

dSt
St−

= (γ +
1

2
σ2 +

∫
IR\{0}

(ex− 1)FX
t (dx))dt+ σdWt +

∫
IR\{0}

(ex− 1)Ñ(dt, dx).

We can find out the predictable characteristics of S from this representation,

given by

• Sct =
∫ t

0
eXuσdWu, ct = e2Xt−σ2,

• bt = eXt−(γ + 1
2
σ2 +

∫
IR\{0}(e

x − 1)FX
t (dx))

• ν(dt, dx) = F S
t (dx)dt

Furthermore, for any measurable and non-negative/integrable function k(x),
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the two measures FX(dy) and F S(dx) are related in the following manner∫
IR\{0}

k(x)F S(dx) =

∫
IR\{0}

k(eX−(ey − 1))FX(dy).

Then the characteristics of S under Q are given by

• Sc,Q =

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2βudu,

• bQ = eX−(γ + eX−σ2β + σ2

2
) + eX−

∫
IR\{0}

Y (eX−(ex − 1))(ex − 1)FX(dx)

• FQ(dx) = Y (x)F S(dx).

The assumption (3.89) allows us to apply Proposition 3.1 for the model (S,Q),

which implies that θ̂ is the root of the equation (3.91).

The MHM of order 0, Z̃Q, exists and the Minimal Hellinger process of order

0, h(0)(Z̃Q, Q) is given by

h(0)(Z̃Q, Q) =

∫ ·
0

[
1

2
σ2e2Xu θ̂2

u + ξ̃u]du

We thus have (3.90).

For anything else on this proof that is not provided here can be derived in the

same way as the proof of Theorem 3.3 and will be omitted here.

3.D.1 Jump-Diffusion Model

In this subsection, we will simplify more the Lévy market model in the follow-

ing way. Let the stock price process S be given by

S = S0e
X , Xt = γt+ σWt + Ñt, Ñt = Nt − λt. (3.92)

Here, N is a simple Poisson process with rate λ (λ > 0) and Ñ is the com-

pensated Poisson process. In this model, if X has a jump, its size is 1 and

the Poisson process N counts the number of jumps of X. Compared with the
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Lévy measure FX(dx), the parameter λ can also be explained as the expected

number of jumps per unit time. Here it is treated as a constant.

Consider the stochastic basis (Ω,F , (F)t∈[0,T ], P ) and let the filtration (Ft)t∈[0,T ]

be generated by the Brownian Motion W = (Wt)t∈[0,T ] and the Poisson process

N = (Nt)t∈[0,T ]. Thus, any local martingale Y in this model can be represented

as the sum of stochastic integrals with respect to W and Ñ . Indeed, we have

Yt = Y0 +

∫ t

0

αudWu +

∫ t

0

ηudÑu, t ∈ [0, T ], (3.93)

where α and η are predictable processes such that∫ T

0

(α2
u + η2

u)du < +∞, P − a.s.

In the current context, the set D becomes

D := {θ ∈ IR : 1 + θeX−(e− 1) > 0} = ]− eX−

e− 1
, +∞[ = int(D).

Our main result in this subsection is put in the following theorem.

Theorem 3.8: Consider the functional U0(t, ω, x) defined in (3.84) satisfying

(3.85). Then the following two assertions are equivalent.

(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(2) The processes D0 and D1 satisfy the following conditions :

(2.a) D0 is a positive martingale and we put Q := D0(T )
D0(0)

· P .

(2.b) D1/D0 is a Q-supermartingale and its predictable and finite variation

part is given by

−
∫ ·

0

[
1

2
σ2e2Xu θ̂2

u + λ(1 + ηu)f0((1 + eXu(e− 1)θ̂u)
−1 − 1)]du. (3.94)

(2.c) The optimal portfolio rate θ̂ ∈ D is a root for

γ +
1

2
σ2 + eX−σ2(α− θ) + λ(e− 1)

1 + η

1 + eX−(e− 1)θ
= 0. (3.95)
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(2.d) The local martingale N̂ := D1 −D0 log(E(θ̂ · S)) is a true martingale.

Proof. The dynamics of S can be written as

dSt
St−

= (γ +
1

2
σ2 + (e− 1)λ)dt+ σdWt + (e− 1)dÑt.

Its predictable characteristics are

Sct =

∫ t

0

eXuσdu, c = e2Xσ2, At = t,

bt = (γ +
1

2
σ2 + (e− 1)λ)

∫ t

0

eXudu.

The jumps of S can be calculated by

∆St =

{
eXt−(e− 1), on {∆Xt = 1};
0, on {∆Xt = 0}.

Suppose (i) holds and we apply Theorem 3.2, the process D0 is a positive

martingale. We write it as D0 = E(N), where the local martingale N can be

represented as

N(t) = N(0) +

∫ t

0

αudWu +

∫ t

0

ηudÑu, t ∈ [0, T ]

Then, the characteristics of S with respect to Q are

Sc,Q =

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2αudu,

bQ = eX(γ +
1

2
σ2 + (e− 1)λ) + e2Xσ2α + eXηλ(e− 1).

And, the dynamics of S under Q can be written as

dSt = dSc,Qt + bQt dt+ eX(e− 1)d(Nt − (1 + ηt)λdt).
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Therefore, θ̂ will minimize the function

Φ0(θ) := −θbQ +
1

2
cθ2 + λ(1 + η)

(
θeX−(e− 1)− log(1 + θeX−(e− 1))

)
,

which is differentiable on D, thus, θ̂ is a root of the equation (3.95). The

Minimal Hellinger process of order 0 can be calculated as∫ ·
0

[
1

2
σ2e2Xu θ̂2

u + λ(1 + ηu)f0((1 + eXu(e− 1)θ̂u)
−1 − 1)]du

such that (3.94) would be the predictable part of D1/D0.

The remaining parts of the proof of this theorem follows from the proof of

Theorem 3.3 and will be omitted.

3.D.2 Black-Scholes Model

Here, we consider the Black-Scholes model where there are no jumps and the

only source of uncertainty is from the Brownian Motion. Same as before, the

price process S = S0e
X , where X is an Ito process, given by

Xt = γt+ σWt, t ∈ [0, T ].

The filtration is generated by W = (Wt)t∈[0,T ] such that any local martingale,

Y , can be represented as

Yt = Y0 +

∫ t

0

αudWu, t ∈ [0, T ],

where α is progressively measurable process satisfying∫ T

0

α2
udu < +∞, P − a.s.

Consider the characterization problem of the log-type forward utility, given by

(3.84), we derive the following result.
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Theorem 3.9: Consider the functional U0(t, ω, x) defined by (3.84) satisfying

(3.85). Then the following two assertions are equivalent.

(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(2) The processes D0 and D1 satisfy the following conditions :

(2.a) D0 is a positive martingale and we put Q := D0(T )
D0(0)

· P .

(2.b) D1/D0 is a Q-supermartingale and its predictable and finite variation

part is given by

− 1

2
σ2

∫ t

0

e2Xu θ̂2
udu, t ∈ [0, T ]. (3.96)

(2.c) The optimal portfolio rate θ̂ is given by

θ̂ = α + e−X(γσ−2 +
1

2
). (3.97)

(2.d) The local martingale N̂ := D1 −D0 log(E(θ̂ · S)) is a true martingale.

Proof. The proof of this theorem follows from Theorem 3.8 by putting λ = 0

and η = 0. Only note that the assumption (3.89) is automatically satisfied

since this model is continuous and hence F = 0.

3.E Volatility Models

The volatility models are of great interest in financial industry. The volatility

is a stochastic process and follows its own dynamic. Here we consider two

classes of volatility models, Corrected Stein and Stein Model and Barndorff-

Nielsen Shephard Model. The first one has no jumps, while the later model

permits jumps of Lévy type.

3.E.1 Corrected Stein and Stein Model

In the corrected Stein and Stein model, the price process S follows the dynamic

dSt = µV 2
t Stdt+ σVtStdBt, t ∈ [0, T ], (3.98)
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and the volatility process V follows the dynamic

dVt = (m− αVt)dt+ βdWt, t ∈ [0, T ]. (3.99)

Here, all the parameters µ, σ, m, α and β are positive constants. The

processes B and W are two Brownian Motions with the correlation coeffi-

cient ρ ∈ (−1,+1). The filtration is generated by the Brownian Motions

B = (Bt)t∈[0,T ] and W = (Wt)t∈[0,T ], i.e., F := (FB,Wt )t∈[0,T ].

Theorem 3.10: Consider the functional U0(t, ω, x) defined in (3.84) satisfying

(3.85). Then the following two assertions are equivalent.

(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(2) The processes D0 and D1 satisfy the following conditions :

(2.a) D0 is a positive martingale and we put Q := D0(T )
D0(0)

· P .

(2.b) D1/D0 is a Q-supermartingale with the predictable and finite variation

part given by

− 1

2
σ2

∫ t

0

(µσ−2 + αSu)
2V 2

u du. (3.100)

(2.c) The optimal portfolio rate θ̂ is given by

θ̂t = µσ−2S−1
t + αt. (3.101)

(2.d) The local martingale N̂ := D1 −D0 log(E(θ̂ · S)) is a true martingale.

Proof. From the dynamics of stock price process S in (3.98), the predictable

characteristics of S are

bt = µV 2
t St, ct = σ2V 2

t S
2
t , F = 0, At = t.

Thanks to Theorem 3.2, the process D0 is a positive martingale and hence it

has the form of D0 = E(N). Since the filtration is generated by the Brownian
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motions W and B, the local martingale N can be represented as

N(t) = N(0) +

∫ t

0

αudBu +

∫ t

0

βudWu, t ∈ [0, T ],

where α and β are progressively measurable processes such that∫ T

0

(α2
u + β2

u)du < +∞, P − a.s.

The characteristics of S with respect to Q are

Sc,Qt =

∫ t

0

σVuSudBu −
∫ t

0

σ2V 2
u S

2
uαudu, bQt = µV 2

t St + σ2V 2
t S

2
t αt.

The optimal portfolio rate θ̂ is the root of the following equation (note that

the assumption (3.9) is satisfied since it is continuous (thus F = 0))

bQ − cθ = 0,

that obviously leads to (3.101). The Minimal Hellinger process of order 0 can

be written as

1

2
σ2

∫ t

0

S2
uV

2
u θ̂

2
udu =

1

2
σ2

∫ t

0

(µσ−2 + αSu)
2V 2

u du.

Thus we have (3.100). We omit the proof of the remaining parts as they are

straightforward from the proof of Theorem 3.3.

3.E.2 Barndorff-Nielsen Shephard Model

The model considered in this subsection is known in the literature as the

Barndorff-Nielsen-Shephard model (see [5] and [67]). Precisely, the flow of pub-

lic information is represented by the filtration generated by a one dimensional

Lévy process Y , Y = Y c + Ỹ d, where Y c denotes the continuous part and its

pure discontinuous part is driven by the random measure µ̃(dt×dz) which mea-

sures the jump of Y and has a compensator measure ν̃(dt× dz) = F̃ (dz)dAt.
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Remark that this model is a quasi-left-continuous and for simplicity, we put

At = t since it is continuous and 〈Y c〉t = t.

The price process S is locally bounded and defined by St = exp(Xt), with

X following the dynamics

dXt = (µ+ βσ2
t )dt+ σtdY

c
t + d(ρz ? µ̃Y )t, (3.102)

dσ2
t = −λσ2

t dt+ d(z ? µ̃Y )t, (3.103)

where the parameters µ, β, ρ, λ are real constants with λ > 0 and ρ < 0.

The set D is given by

D :=
{
θ ∈ IR : 1 + S−θ(e

ρx − 1) > 0, F̃ − a.e.
}
. (3.104)

Thanks to the assumption (3.85) and Proposition 3.2, the following conditions

D0 is a positive martingale and D1 is a supermartingale. (3.105)

are necessary conditions for U0 being a forward utility. Thus, without loss

of any generality, we suppose that (3.105) holds. It allows us to write D0 as

D0 = D0(0)E(N), where N is a local martingale and we let (β, Y, V,N
′
) be

the Jacod components of N . We consider the following assumption:

Assumption: For any predictable process λ such that λ ∈ D, dP ⊗ dt-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

dP ⊗ dt-a.e., and λn → λ, we have, dP ⊗ dt− a.e.,

lim
n→+∞

∫
K0(eX−(ex − 1)λn)Y (eX−(ex − 1))F̃ (dx) (3.106)

=

+∞, on Γ;∫
K0(eX−(ex − 1)λ)Y (eX−(ex − 1))F̃ (dx), on Γc.

where K0(y) :=
|y|2

1 + y
and Γ := {F̃ (IR) > 0 and λ /∈ int(D)}.
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For this model, we have the following characterization of the log-type forward

utility.

Theorem 3.11: Consider the functional U0(t, ω, x) defined in (3.84) satisfying

(3.85). Suppose that (3.105) and (3.106) hold. Then the following two

assertions are equivalent.

(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.

(2) Let Q := D0(T )
D0(0)

· P . Then, the followings hold.

(2.a) D1/D0 is a Q-supermartingale and its predictable and finite variation

part is given by

−
∫ ·

0

[
1

2
S2
uσ

2
uθ̂

2
u + ξ̃u

]
du, (3.107)

where

ξ̃u :=

∫
f0((1 + Su(e

ρx − 1)θ̂u)
−1 − 1)Y (Su(e

ρx − 1))F̃u(dx).

(2.b) The optimal portfolio rate θ̂ is a root for

µ+ (β +
1

2
)σ2 − S−σ2θ +

∫
eρx − 1

1 + S−(eρx − 1)θ
Y (S−(eρx − 1))F̃ (dx) = 0.

(3.108)

(2.c) The local martingale N̂ := D1 −D0 log(E(θ̂ · S)) is a true martingale.

Proof. By Ito’s formula, the dynamics of S can be represented as

dSt
St−

=

(
µ+ σ2

t (β +
1

2
) +

∫
(eρz − 1)F̃t(dz)

)
dt+σtdY

c
t +d(eρz−1)?(µ̃Y−ν̃Y )t.

(3.109)

We have Sct = S−σ · Y c
t , ∆St = St−(eρ∆σ2

t − 1). We start by calculating the

predictable characteristics, (b, c, νS), of S from the dynamics (3.109) as follows,

bt = St−

(
µ+ σ2

t (β +
1

2
) +

∫
(eρx − 1)F̃t(dx)

)
,

(3.110)

ct = S2
t−σ

2
t , νS(dt× dz) = F S

t (dz)dt.
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Furthermore, for any measurable and non-negative/integrable function k(x),

the two measures F S and F̃ are related in the following manner∫
IR\{0}

k(x)F S(dx) =

∫
IR\{0}

k(eX−(eρy − 1))F̃ (dy).

Then the characteristics of S with respect to Q are

Sc,Q =

∫ t

0

Su−σudY
c
u −

∫ t

0

S2
u−σ

2
uαudu,

bQ = S−

(
µ+ σ2(β +

1

2
) +

∫
Y ((eρx − 1)S−)(eρx − 1)F̃ (dx)

)
+ S2

−σ
2α,

FQ(dx) = Y (x)F S(dx) = Y ((eρx − 1)S−)F̃ (dx).

Then θ̂ is the root of the equation (3.108). The Minimal Hellinger process of

order 0, h(0)(Z̃Q, Q) can be derived as

1

2

∫ t

0

[
S2
u−σ

2
uθ̂

2
u + ξ̃u

]
du

Thus, we have (3.107). We omit the remaining proof of this theorem. They

are same with the proof of Theorem 3.3.
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Chapter 4

Power-Type Forward Utilities

This chapter focuses on the description of forward utilities that have the form

of power function. Their features lie in the randomness of their risk-aversion

parameter p and a factor D.

Definition: LetX be a RCLL semimartingale andQ be a probability measure.

Then, we call power/power-type forward utility for (X,Q), any forward

dynamic utility for (X,Q) that takes the following form

Up(t, ω, x) := D(t, ω)xp(t,ω), with inf
0≤t≤T

|p(t, ω)|> 0, P − a.s. (4.1)

Here D = (D(t))0≤t≤T and p = (p(t))0≤t≤T are stochastic processes.

There are several sections in this chapter where we consider different models

to exhibit our results. The forthcoming section addresses the most general

case, where the stochastic processes p and D are treated separately.

4.A The Semimartingale Framework

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where the

filtration is complete and right continuous. Here, T represents a fixed horizon

for investments. In this setup, we consider a d-dimensional locally bounded

semimartingale S = (St)0≤t≤T which represents the discounted price processes
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of d risky assets.

The set of equivalent local martingale measures is given by

Me
loc(S) :=

{
Q ∈ Pe : S is a local martingale under Q

}
. (4.2)

For any probability measure Q, any stock price process X, and x ∈ IR such

that Up(t, x, ω) < +∞, P -a.s., ∀ t ∈ [0, T ], we denote by

Aadm(x,X,Q) :=
{
π ∈ L(X) | sup

τ∈TT
EQ
[
D(τ)−(x+ π ·Xτ )

p(τ)
]
< +∞

}
,

(4.3)

the set of admissible portfolios for the model (x,X,Q, U). Here TT is the set

of stopping time, τ , such that τ ≤ T . When X = S and Q = P , we simply

write Aadm(x).

For any random field utility, U(t, x), x ∈ IR+ we define its Frenchel-Legendre

conjugate (called hereafter its random field conjugate), V (ω, t, y), by

V (t, ω, y) := sup
x>0

(
U(t, ω, x)− xy

)
, for t ≥ 0, y > 0. (4.4)

In particular, for a random field utility Up, of the form (4.1), we calculate its

conjugate, Vp as follows

Vp(t, y) = −(D(t)p(t))1−q(t)y
q(t)

q(t)
,

where q is the conjugate process of p and is given by q(t) := p(t)
p(t)−1

, t ≥ 0.

Our first result in this section is simple but very useful, and it deals with

deriving the semimartingale structures for both processes p and D as a result

of the forward property of the utility.

Proposition 4.1: Consider a random utility, Up, having the form (4.1). Then,
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if Up(t, x) is a forward utility and satisfies

sup
τ∈TT

E
[
D(τ)−

]
< +∞. (4.5)

Then (D(t))t≥0 is a RCLL supermartingale and (p(t))t≥0 is a RCLL semi-

martingale satisfying p(t) < 1, P − a.s.

Proof. From the definition of Up given by (4.1), we deduce that for any x > 0,

Up(t, x) is an adapted and RCLL process . Thus, by taking x = 1, we deduce

that D(t) = U(t, 1) is an adapted and RCLL process. Also, the function

x 7→ Up(t, x) is strictly increasing and strictly concave, hence by taking x = 1,

U ′p(t, 1) = D(t)p(t) is positive and U ′′p (t, 1) = D(t)p(t)(p(t) − 1) is negative.

This implies D(t) 6= 0 and p(t) < 1, P -a.s. Thus, by taking x = e, we get

p(t) = log

(
Up(t, e)

D(t)

)
. (4.6)

Hence, p is an adapted and RCLL process.

On the other hand, under the assumption (4.5), the null portfolio is admissible

and Up(t, x) = D(t)xp(t) is a supermartingale for any x > 0. Again, we set x =

1 and conclude that D(t) is a supermartingale. In (4.6), a direct application

of Ito’s formula implies p(t) is a semimartingale. This completes the proof of

this proposition.

Proposition 4.2: Suppose that S is locally bounded and Me
loc(S) 6= ∅. Let p

be a real number such that p ∈ (−∞, 0) ∪ (0, 1), and consider

Up(t, x) = D(t)xp. (4.7)

For any x ∈ (0,+∞), consider the following maximization problem

max
θ∈Aadm(x)

E
[
Up (T, x+ (θ · S)T )

]
, (4.8)

where the set Aadm(x) is defined in (4.3). Then following assertions hold.
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(1) For any x ∈ (0,+∞), if the solution to (4.8) —that we denote by θ̃x—

exists, then

x+ θ̃x · S > 0, and x+ (θ̃x · S)− > 0. (4.9)

(2) Furthermore, the optimal portfolio rate for Up with initial capital x, that

we denote by θ̂x :=
(
x+ (θ̃x · S)−

)−1

θ̃x, is independent of x ∈ (0,+∞) (or

equivalently θ̃x/x is independent of x).

Proof. It is clear from [48], that the random variable x+ (θ̃x · S)T is positive,

and the process (x+ θ̃x ·S)Z is a supermartingale, for any density process Z of

Q ∈Me
loc(S) 6= ∅. These imply that both processes x+ θ̃x ·S and x+ (θ̃x ·S)−

are positive and assertion (1) follows. To prove assertion (2), it is enough to

remark that for any x ∈ (0,+∞), xθ̃1 ∈ Aadm(x), and for any θ ∈ Aadm(x),

we have x−1θ ∈ Aadm(1). This ends the proof of the proposition.

This subsection formulates our main results that explicitly parameterize

forward utilities having the form of (4.1). In fact, through out the rest of the

chapter, we denote by Up(t, x) the functional defined in (4.1). This functional

depends, also, on the uncertainty ω ∈ Ω, while through out the chapter we

use the shorthand Up(t, x) for the sake of simplifying notations.

Our first step —within the explicit parametrization of forward utilities of the

form of (4.1)— consists of describing the dynamic of the process (p(t))0≤t≤T .

This is the aim of the following subsection.

4.A.1 The Dynamic of the Risk-Aversion Process p

The following theorem is the main result in this subsection. It describes the

dynamic of the risk-aversion process p under the forward property.

Theorem 4.1: Suppose that S is locally bounded. Let Up(t, x) be defined in

(4.1), such that p = (p(t))0≤t≤T is locally bounded, satisfies (4.5) and

p(t) < 1, and inf
0≤t≤T

|p(t)|> 0 P − a.s. (4.10)
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If Up(t, x) is a forward utility, then the process p is constant in (ω, t), i.e.

p(ω, t) = p(0), 0 ≤ t ≤ T, P − .a.s. (4.11)

The proof of Theorem 4.1 requires a number of intermediary steps. We

will start by recalling a useful result of [6], where the author tried to measure

the effect of forward property on the random field conjugate, V (t, y).

Proposition 4.3: If U(t, x) is a forward utility, then for any T ′, 0 ≤ t ≤ T ′ ≤
T and any η ∈ L0

+(Ft), we have

V (t, η) ≤ ess inf
Z∈Zeloc(S)

E

(
V (T ′, η

ZT ′

Zt
)
∣∣∣Ft) , P − a.s. (4.12)

Proof. The proof of this proposition can be found in [6].

Lemma 4.1: Suppose that the assumptions of Theorem 4.1 are fulfilled and

the process p = (p(t))t≥0 is positive. Then, the process p is constant in (ω, t)

(i.e. Theorem 4.1 holds true in this case).

Proof. Recall that any random field utility Up(t, x) is strictly increasing as a

function of x for any (t, ω) ∈ [0, T ]×Ω. It implies the product pD > 0, P−a.s.
and, hence D > 0, P − a.s., since p > 0, P − a.s. Furthermore, it is easy to

see that the null portfolio rate θ = 0 is admissible (that is, 0 ∈ Θ(x)) for

any x > 0. Therefore, an application of the optional sampling theorem to the

supermartingale Up(t, x) leads to

E
(
D(σ)xp(σ)|Fτ

)
≤ D(τ)xp(τ), ∀ x > 0, ∀ σ, τ ∈ TT , σ > τ. (4.13)

By putting

Q :=
D(σ)/D(τ)

E(D(σ)/D(τ))
· P and ∆ := p(σ)− p(τ),
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the inequality (4.13) becomes

EQ
(
elog(x)∆ − 1|Fτ

)
≤ CQ, CQ :=

D(τ)

E(D(σ)|Fτ )
− 1, ∀ x > 0. (4.14)

The random variable ∆ can be written in the form of ∆ = ∆+−∆− and thus

elog(x)∆ − 1 = elog(x)∆+

+ e− log(x)∆− − 2.

By inserting this into (4.14), we get

EQ
(
elog(x)∆+

+ e− log(x)∆− |Fτ
)
≤ CQ + 2, ∀ x > 0. (4.15)

A direct application of Jesen’s inequality in (4.15) yields

max
{

exp
(
log(x)EQ(∆+|Fτ )

)
, exp

(
− log(x)EQ(∆−|Fτ )

)}
≤ CQ+2, ∀x > 0.

(4.16)

Therefore, (4.16) is possible only if

EQ(∆+|Fτ ) = EQ(∆−|Fτ ) = 0 or equivalently ∆+ = ∆− = 0, P − a.s.
(4.17)

Otherwise, there would be a contradiction by sending x → +∞ and x → 0,

respectively. This proves that the process p is a constant and the proof of this

lemma is completed.

The following lemma deals with the case when the process p is negative.

Lemma 4.2: Suppose that the process p = (p(t))0≤t≤T is negative. Then

Up(t, x) := D(t)xp(t) is a forward utility satisfying (4.5), only if p is constant

in (t, ω), i.e., p(t) = p(0), P − a.s.

Proof. Consider t ≥ 0, arbitrary but fixed. For any T ′ ∈ [t,+∞), Z ∈ Zeloc(S),

and η ∈ L0
+(Ft), a direct application of Proposition 4.3 to Up(t, x) = D(t)xp(t)

90



leads to

E

(
(D(T ′)p(T ′))1−q(T ′)

q(T ′)
(η
ZT ′

Zt
)q(T

′)|Ft
)
≤ (D(t)p(t))1−q(t)

q(t)
ηq(t). (4.18)

By choosing η = Zte
α, α ∈ IR, and putting Xs := (D(s)p(s))1−q(s)

q(s)
Z
q(s)
s , the

equation (4.18) becomes

E
(
XT ′e

α(q(T ′)−q(t))|Ft
)
≤ Xt. (4.19)

Since X is positive (which is due to q(t) = p(t)
p(t)−1

> 0), we derive

max
{
eα

+εE
(
XT ′I{q(T ′)−q(t)≥ε}|Ft

)
, eα

−εE
(
XT ′I{q(T ′)−q(t)≤−ε}|Ft

)}
≤ Xt,

(4.20)

for any α ∈ IR, α = α+−α−, and any ε > 0. Therefore, again, we deduce that

(4.20) holds only if

q(T ′) = q(t), P − a.s. ∀ T ′ ≥ t ≥ 0.

This proves that q(t) = q(0), P − a.s. ∀ t ≥ 0 and hence p(t) has a constant

version, i.e.

p(t) = p(0), P − a.s. ∀ t ≥ 0.

This ends the proof of the lemma.

Proof. of Theorem 4.1: If the process p is either positive or negative, then the

proof of this theorem follows from Lemma 4.1 and Lemma 4.2 respectively.

Thus, the proof of this theorem will immediately follow once we prove that

the process p has a constant sign (i.e. p(t)p(0) > 0, P − a.s. for all t ∈ [0, T ]).

To this end, we consider the following stopping time

τ := inf
{
t ≥ 0

∣∣∣ p(t)p(0) < 0
}
∧ T.

Remark that, due to the right continuity of p and inf
0≤t≤T

|p(t)|> 0, the process
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p has a constant sign if and only if

τ = T, p(0)p(T ) > 0, P − .a.s. (4.21)

Since p is locally bounded, there is no loss of generality in assuming p bounded.

Let θ̂ be the optimal portfolio rate for the initial capital x = 1. Then, DtEt(θ̂ ·
S)p(t) is a true martingale and for any x > 0, the process DtEt(θ̂ · S)p(t)xp(t) is

a supermartingale (since θ̂ is also admissible to x > 0 due to the boundedness

of p). Below, we consider two cases of p(0) < 0 and p(0) > 0 in parts a) and

b), respectively.

a) Suppose that p(0) < 0, and hence D(0) < 0. Then, due to the assumptions

on the processes p and D, we deduce that the null portfolio is admissible for

any x > 0. Hence, the process D(t)xp(t) is a supermartingale, for any x > 0,

and we have

E
(
D(τ)xp(τ)I{p(τ)>0}

∣∣∣ F0

)
≤ −E

(
D(τ)xp(τ)I{p(τ)<0}

∣∣∣ F0

)
+D(0)xp(0).

By letting x goes to infinity and using Fatou’s lemma we conclude that we

should have P (p(τ) > 0) = 0 (otherwise we will have a contradiction from the

above inequality). This proves that p(τ) < 0, P − a.s. or equivalently (4.21)

holds.

b) Suppose that p(0) > 0, or equivalently D(0) > 0. Then for any n ≥ 1,

there exists θn ∈ Aadm(n−1) such that

E
{
D(τ)n−p(τ)(1 + (θn · S)τ )

p(τ)
}

= D(0)n−p(0). (4.22)

Thanks to Lemma 2.1, there exists a sequence of non-negative real numbers,
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(αk)k=n,...,Nn , such that

Nn∑
k=n

αk = 1 and Yn := 1 +
Nn∑
k=n

αk(θk ·S)τ converges almost surely to Y ≥ 0.

Furthermore, we can deduce that Y < +∞, P -a.s., after an application of

Fatou’s Lemma as follows

E (ZY ) ≤ lim
n→+∞

E (ZYn) ≤ 1, ∀ Z ∈ Zeloc(S).

Now, we consider a sequence of random variables, (Xn)n≥1, given by

Xn := D(τ)n−p(τ)Y p(τ)
n −D(τ)Y p(τ)

n .

It is easy to check that

Xn ≤ 0, P − a.s. (4.23)

By considering the cases of {p(τ) > 0} and {p(τ) < 0} separately, we obtain

lim
n→+∞

Xn =

{
−D(τ)Y p(τ), if p(τ) > 0;

−∞, if p(τ) < 0.
(4.24)

Moreover, we have

Xn ≥
Nn∑
k=n

αkn
−p(τ)D(τ)(1 + θk · Sτ )p(τ) −D(τ)Y p(τ)

n

≥
Nn∑
k=n

αkk
−p(τ)D(τ)(1 + θk · Sτ )p(τ) −D(τ)Y p(τ)

n . (4.25)

Then, by taking expectation on both sides of (4.25), and recalling (4.22) and

the supermartingale property of Up(τ, 1 +
∑Nn

k=n αkθk · Sτ ), we derive

E(Xn) ≥ D(0)

[
Nn∑
k=n

αkk
−p(0) − 1

]
. (4.26)
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Since Xn is negative (see (4.23), we apply Fatou’s Lemma to the left-hand-side

term in (4.26) and obtain

E( lim
n→+∞

Xn) ≥ −D(0) > −∞. (4.27)

On the other hand, by considering (4.24), we deduce that P (p(τ) < 0) > 0

implies

−∞ = E(I{p(τ)<0} lim
n→+∞

Xn) ≥ E( lim
n→+∞

Xn).

This is a contradiction with (4.27). Hence, we conclude that

p(τ) > 0, P − a.s.,

which is equivalent to (4.21). This ends the proof of the theorem.

4.A.2 The Dynamic of the Process D

Our next step focuses on describing the process, (D(t))0≤t≤T , and the optimal

portfolio in the utility maximization problem associated to Up(t, x). This step

contains two theorems that are stated in the increasing order of generality.

First, we describe the process D that is predictable with finite variation. Af-

terwards, we drop the predictability and the finite variation assumptions, and

determine the general form of D.

Through out the analysis, the following set, D, will play important roles in

our analysis

D :=
{
θ ∈ IRd : 1 + θTx > 0, F − a.e.

}
. (4.28)

Also, the function Φp will be used from time to time, which takes values in

(−∞,+∞] and is given by

Φp(λ) :=
bTλ

p− 1
+

1

2
λT cλ+

∫
fp(λ

Tx)F (dx), ∀ λ ∈ IRd, p ∈ (−∞, 0)∪ (0, 1),

(4.29)
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where the non-negative function fp is defined by (2.42).

The next assumption is crucial in our proof of Theorem 4.2. It excludes the

situation where the optimal portfolio rate may belong to the boundary of D.

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e.,

(4.30)

lim
n→+∞

∫
Kp(λ

T
nx)F (dx) =

{
+∞, on Γ;∫
Kp(λ

Tx)F (dx), on Γc.

where Kp(y) := |y||(1 + y)p−1 − 1| and Γ := {F (IRd) > 0 and λ /∈ int(D)}.

Theorem 4.2: Let p be a real number such that p ∈ (−∞, 0) ∪ (0, 1), q is its

conjugate (q := p
p−1

), and the set D is given by (4.28). Suppose that D(t)

is a RCLL predictable process with finite variation, S is locally bounded and

assumption (4.30) holds. Then the following assertions are equivalent.

(1) The random field utility, U(t, x) = D(t)xp, is a forward utility with the

optimal portfolio rate θ̂.

(2) The minimal Hellinger martingale density of order q, Z̃, exists and

satisfies:

(2.a) The process Ẑ := Z̃E
(
θ̂ · S

)
is a true martingale.

(2.b) The process D is given by

D = D0E
(
q(q − 1)h(q)(Z̃, P )

)p−1

. (4.31)

(2.c) The optimal portfolio rate, θ̂, belongs to int(D), and is a root for

b+ (p− 1)cθ +

∫ [
(1 + θTx)p−1 − 1

]
xF (dx) = 0, P ⊗ A− a.e. (4.32)

The proof of this theorem is long and requires a number of intermediary results

that are interesting in themselves. Technically, Theorem 4.2 is the back-bone of
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this subsection. Thus, for the sake of clear exposition of our ideas and results,

we will postpone the proof of this theorem. In the following, we will highlight

the importance of Theorem 4.2 on particular case of continuous process S, and

afterwards we will deal with describing D in the general case.

Corollary 4.2.1: Suppose that D is predictable with finite variation, and S

is continuous. Then the following are equivalent.

(1) The random field utility, U(t, x) = D(t)xp, is a forward utility with the

optimal portfolio rate θ̂.

(2) The optimal portfolio rate, θ̂, is a root for

b+ (p− 1)cθ = 0, P ⊗ A− a.e, (4.33)

and the following properties hold:

(2.a) The process D is given by

Dt = D0 exp

(
q

2

∫ t

0

θ̂Tu cuθ̂udAu

)
. (4.34)

(2.b) The process Ẑ := E
(

(p− 1)θ̂ ·M
)
E
(
θ̂ · S

)
is a true martingale,

where M is the local martingale part of S.

Proof. The proof of this corollary is straightforward from Theorem 4.2, and

from the fact that when S is continuous, assumption (4.30) is fulfilled due to

F = 0, and all the minimal Hellinger densities of any order q coincide with

the minimal martingale density. For this last fact we refer the reader to [18].

This ends the proof of this corollary.

Proposition 4.4: Let p ∈ (−∞, 0) ∪ (0, 1), Z̃ be a martingale density, and

θ̂ ∈ Aadm(1) such that Ẑ := Z̃E(θ̂ · S) is a true martingale. If we denote

Q̂ := ẐT · P and consider θ ∈ Aadm(1) satisfying

sup
τ∈TT

EQ̂

(
Eτ (θ · S)p

Eτ (θ̂ · S)p

)
< +∞, (4.35)
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then sign(p)

(
E(θ · S)

E(θ̂ · S)

)p

is a Q̂-supermartingale.

Proof. Notice that the case when p ∈ (0, 1), the proposition is trivial and

(4.35) is always true.

In the remaining part of the proof we assume that p < 0, and we consider

(Tn)n≥1 a sequence of stopping times that increases stationarily to T such that

Z̃Tn is a true martingale. Therefore, since Z̃E(θ · S) is a supermartingale, by

putting Q̃n := Z̃Tn · P and using Jensen’s inequality we derive

EQ̂

(Et∧Tn(θ · S)

Et∧Tn(θ̂ · S)

)p/2 ∣∣∣Fs
 ≥ (EQ̂

[
Et∧Tn(θ · S)

Et∧Tn(θ̂ · S)

∣∣∣Fs])p/2

and EQ̂

[
Et∧Tn(θ · S)

Et∧Tn(θ̂ · S)

∣∣∣Fs] =
EQ̃n (Et∧Tn(θ · S)|Fs)

Es∧Tn(θ̂ · S)
≤ Es∧Tn(θ · S)

Es∧Tn(θ̂ · S)
,

for 0 ≤ s < t ≤ T . This proves that
(
E(θ · S)/E(θ̂ · S)

)p/2
is a nonnegative Q̂-

local submartingale. Then, due to (4.35) and de la Vallée Poussin’s argument,

we deduce that this process is a true Q̂-submartingale. Again, an application

of Jensen’s inequality leads to,

EQ̂

[(
Et(θ · S)

Et(θ̂ · S)

)p ∣∣∣Fs] ≥
EQ̂

(Et(θ · S)

Et(θ̂ · S)

)p/2 ∣∣∣Fs
2

≥

(
Es(θ · S)

Es(θ̂ · S)

)p

,

which is finite due to (4.35). Hence, −
(
E(θ · S)/E(θ̂ · S)

)p
is a Q̂-supermartingale

and this ends the proof.

Now, we are ready to state our parametrization result in its full generality.

Theorem 4.3: Suppose that S is locally bounded. Let Up(t, x) be the random

field utility defined in (4.1) such that p is locally bounded, and (4.5)–(4.10)

hold. Let q be the conjugate process of p (i.e. q := p
p−1

). Then the following

assertions are equivalent.

(1) Up is a forward utility with optimal portfolio rate θ̂x for any x ∈ (0,+∞).
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(2) The process p satisfies (4.11) (i.e. p(t) = p(0), P − a.s. for any t ∈
[0, T ]), and hence θ̂x = θ̂ does not depend on initial capital x ∈ (0,+∞).

The process D is a RCLL supermartingale and there exists a positive local

martingale ZD = E(ND) and a predictable process aD with finite variation

such that

D = D0Z
D exp(aD), (4.36)

and, the functional Up(t, x) = D0Z
D exp(aD)xp is a forward utility.

Proof. Suppose that assertion (1) holds. Then Theorem 4.1 implies that the

process p is constant in (ω, t). This together with the fact that Up is a random

field utility, implies that D/D(0) is a positive RCLL supermartingale (take

x = 1) (see Lemma 4.1 and its proof). A combination of this with (4.5), leads

to the multiplicative Doob-Meyer decomposition of D. Hence, there exists a

positive local martingale ZD = E(ND) and a predictable process with finite

variation, aD, such that

Dt = D0Z
D
t exp(aDt ), 0 ≤ t ≤ T. (4.37)

Consequently, the functional Up(·, x) := D0Z
D exp(aD)xp = Up(·, x) is a for-

ward utility. This ends the proof of (1)⇒ (2).

The proof of (2)⇒ (1) is obvious and the theorem is proved completely.

Let
(
β, f, g,N

D
)

denote the Jacod components for ND and consider the fol-

lowing assumption:

Assumption: For any predictable process λ such that λ ∈ D, P ⊗ A-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

P ⊗ A-a.e., and λn → λ, we have, P ⊗ A− a.e., (4.38)

lim
n→+∞

∫
Kp(λ

T
nx)(1 + f(x))F (dx) =

{
+∞, on Γ;∫
Kp(λ

Tx)(1 + f(x))F (dx), on Γc.

where Kp(y) := |y||(1 + y)p−1 − 1| and Γ := {F (IRd) > 0 and λ /∈ int(D)}.
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Theorem 4.4: Consider the functional Up given by Theorem 4.3–(2). Suppose

that S is locally bounded and (4.38) hold. Then, the following two assertions

are equivalent:

(1) Up is a forward utility with the optimal portfolio rate θ̂.

(2) The following hold:

(2.a) The minimal Hellinger martingale density of order q with respect to

ZD, denoted by Z̃D, exists and

D = D0Z
DE
(
q(q − 1)h(q)(Z̃D, ZD)

)p−1

. (4.39)

(2.b) The optimal portfolio rate, θ̂, belongs to int(D), and is a root for

bD + (p− 1)cθ +

∫ [
(1 + θTx)p−1 − 1

]
xFD(dx) = 0, P⊗A−a.e. (4.40)

Here, bD := b+ cβ +

∫
f(x)xF (dx), FD(dx) := (1 + f(x))F (dx).

(4.41)

(2.c) The process Ẑ := ZDZ̃DE(θ̂ · S) is a true martingale.

Proof. We start by proving (1)⇒ (2). Let (Tn)n≥1 be an increasing sequence

of stopping times that increases stationarily to T and (ZD)Tn is a true mar-

tingale. Put Qn := ZD
Tn
· P . Then, due to Lemma 2.3, we conclude that

Un(t, ω, x) := D0 exp(aDt∧Tn)xp is a forward dynamic utility for (STn , Qn) with

the optimal portfolio rate θ̂n := θ̂I[0,Tn]. Hence, a direct application of The-

orem 4.2 to (STn , Qn, Un, θ̂n) implies the existence of the minimal Hellinger

martingale density for this model, denoted by Z̃D,n, that satisfies

exp(aDt∧Tn) = Et∧Tn
(
q(q − 1)h(q)(Z̃D,n, Qn)

)1/(q−1)

, 0 ≤ t ≤ T, (4.42)

and θ̂ is a root of (4.40) on [0, Tn]. Thus, it is clear that, this last statement

implies assertion (2.b). By virtue of Lemma 2.5, we deduce that the minimal

Hellinger martingale density of order q with respect to ZD (denoted by Z̃D)
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exists and

h
(q)
t (Z̃D,n, Qn) = h

(q)
t∧Tn(Z̃D, ZD).

Therefore, a combination of this equality with (4.42) leads to the assertion

(2.a).

Due to Proposition 2.5 (see formula (2.68) and notice that our θ̂ here is a

version of β̃ of that proposition) and (4.39), we derive

Ẑ = ZDZ̃DE(θ̂ · S) = ZDE
(
H̃D · S + q(q − 1)h(q)(Z̃D, ZD)

)p−1

E(θ̂ · S)

= ZDE(θ̂ · S)p−1E
(
q(q − 1)h(q)(Z̃D, ZD)

)p−1

E(θ̂ · S)

= ZDE
(
q(q − 1)h(q)(Z̃D, ZD)

)p−1

E(θ̂ · S)p

= 1
D0xp

Up(t, xEt(θ̂ · S)).

(4.43)

This proves that Ẑ is a true martingale, since Up(t, x) is a forward utility with

optimal portfolio rate θ̂. This ends the proof of (1)⇒ (2).

In the remaining part of this proof, we will address (2) ⇒ (1). Suppose that

assertion (2) is fulfilled. Remark that (4.43) remains valid as long as assertion

(2–a) holds. Thus, we obtain

Up

(
·, xE

(
θ̂ · S

))
= D0x

pẐ,

and due to assertion (2-c), we conclude that Up

(
·, xE

(
θ̂ · S

))
is a martingale

for any x > 0. Furthermore, for any admissible portfolio rate θ, we have

Up

(
t, xEt (θ · S)

)
= D0x

pẐt

 Et (θ · S)

Et
(
θ̂ · S

)
p

. (4.44)

Thanks to pD0 > 0 since Up(t, x) is a random field utility, Proposition 4.4

(take Z̃ := ZDZ̃D which is a martingale density for S by definition of Z̃D),
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and

sup
τ∈TT

EQ̂


 Eτ (θ · S)

Eτ
(
θ̂ · S

)
p = − 1

D0xp
sup
τ∈TT

E
[
U
(
τ, xEτ (θ · S)

)−]
< +∞,

we deduce that Up (t, xEt(θ · S)) is a supermartingale for any admissible strat-

egy θ and any x > 0. This ends the proof of the theorem.

The rest of this section is to prove Theorem 4.2. To this end, some useful

technical lemmas are required and will be detailed first.

Lemma 4.3: Suppose S is locally bounded. Then, the interior of D satisfies

0 ∈ int(D) = D1

where D1 := {λ ∈ D : ∃ δ > 0, 1 + λTx ≥ δ, F − a.e.}. (4.45)

Proof. The fact that 0 ∈ int(D) ⊆ D1 has already been proved in Lemma

3.1. Here, we focus on the remaining part that int(D) ⊇ D1. By virtue of

the argument of localizing procedure, without loss of generality, we suppose

that S is bounded, for any λ0 ∈ D1, there exists δ > 0 such that 1 + λT0 x ≥ δ

F − a.e. and let K be the bound of S (i.e. |S|≤ K). Consider a neighborhood

at λ0, B(λ0, ε) with radius ε := δ
2K+1

, then for any λ ∈ B(λ0, ε), we have

1 + λTx ≥ δ

2K + 1
> 0.

Hence, λ0 ∈ int(D). This ends the proof of this lemma.

The following two lemmas (Lemmas 4.4 and 4.5) are generalizations of

Lemmas 3.2 and 3.3 to the case of fp and Φp (p 6= 0).

Lemma 4.4: Suppose S is locally bounded, then for any λ ∈ IRd and δ > 0,

we have ∫
{λT x≥δ−1}

fp(λ
Tx)F (dx) < +∞ P ⊗ A− a.e. (4.46)
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Proof. Thanks to Taylor’s expansion of fq, we have

fp(λ
Tx) =

(λTx)2

2
(1 + rλTx)p−2, for 0 < r < 1.

For δ > 0 such that λTx ≥ δ − 1, we put δ := δ ∧ 1 and have

1 + rλTx ≥ 1 + r(δ − 1) ≥ δ ∧ 1 = δ. (4.47)

Therefore, we obtain that∫
{λT x≥δ−1}

fp(λ
Tx)F (dx) ≤ 1

2
δ
p−2|λ|2

∫
|x|2F (dx). (4.48)

Since S is locally bounded, it is easy to see that [S, S] ∈ A+
loc. As a result, we

have x2 ? νT < +∞, P -a.s., and hence∫
|x|2F (dx) < +∞, P ⊗ A− a.s.

By combining this with (4.48), we can conclude (4.46) immediately. This

completes the proof of this lemma.

Lemma 4.5: Suppose S is locally bounded. Then, the following two assertions

hold, P ⊗ A-a.e.

(i) For any λ ∈ int(D),∫
|x||(1 + λTx)1/(q−1) − 1|F (dx) < +∞. (4.49)

(ii) Φp(λ) is differentiable on int(D) and for any λ0 ∈ int(D),

Φ′p(λ0) = b+
cλ0

q − 1
+

∫ [
x(1 + λT0 x)1/(q−1) − x

]
F (dx).

Proof. (i) For any λ ∈ int(D), due to Lemma 4.3, there exists δ ∈ (0, 1) such

that 1 + λTx ≥ δ > 0, F − a.e.
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An application of Taylor’s expansion to (1+λTx)1/(q−1)-1 leads to the existence

of r ∈ (0, 1) such that

(1 + λTx)1/(q−1) − 1 =
λTx

q − 1
(1 + rλTx)

2−q
q−1 . (4.50)

It is easy to see that

1 + rλTx ≥ 1 + r(δ − 1) ≥ δ. (4.51)

By combining (4.51) and (4.50), we have

∫
|x||(1 + λTx)1/(q−1) − 1|F (dx) ≤ δ

2−q
q−1 |λ|
1− q

∫
|x|2F (dx). (4.52)

Since S is locally bounded, it is easy to deduce that (see the proof of Lemma

4.4 for details) ∫
|x|2F (dx) < +∞, P ⊗ A− a.s.

By combining this with (4.52), we can conclude (4.49) immediately. This

completes the proof of this lemma.

(ii) Let λ0 ∈ int(D). Then, for any y ∈ IRd, thanks to Lemmas 4.3 and 4.4,

there exists ε0 > 0 such that for any 0 ≤ ε ≤ ε0, λ0 + εy ∈ dom(Φp).

An application of Taylor’s expansion of the function gp(λ
Tx) := (1+λT x)p−1−pλT x

q(q−1)

implies the existence of r ∈ (0, 1) such that

kε(x) :=
gp(λ

T
0 x+ εyTx)− gp(λT0 x)

ε
= yTx

(
(1 + λT0 x+ rεyTx)1/(q−1) − 1

)
.

Meanwhile, notice that (|kε(x)|)ε is bounded from above by

k(x) := |y||x|max
(
|(1 + λT0 x)1/(q−1) − 1|, |(1 + λT0 x+ ε0y

Tx)1/(q−1) − 1|
)
.

Thanks to Lemma 4.5–(i), k(x) is integrable since λ0, λ0 + ε0y ∈ int(D) ∈
dom(Φp). It allows us to apply Dominated Convergence Theorem to (|kε(x)|)ε,
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which leads to

lim
ε→0

Φp(λ0 + εy)− Φp(λ0)

ε
= yTΦ∗, (4.53)

where Φ∗ is given by

Φ∗ := b+
cλ0

q − 1
+

∫ [
x(1 + λT0 x)1/(q−1) − x

]
F (dx).

It is clear from (4.53) that yTΦ∗ is the directional derivative of Φp at λ0,

which is linear in y. Thus, due to Theorem 25.2 in [68], Φp is differentiable at

λ0 ∈ int(D). This completes the proof.

Lemma 4.6: Suppose S is locally bounded. Then, the interior of the effective

domain of Φp coincides with int(D), that is,

int(dom(Φp)) = int(D).

Proof. ⇒: For any λ0 ∈ int(dom(Φp)), there exists a neighborhood B(λ0, ε),

such that for any λ satisfying |λ − λ0|≤ ε, λ ∈ int(dom(Φp)). Let δ ∈ (0, ε)

and apply the convexity of the function fp(x), we calculate

δ|x|
∣∣∣(1 + λTx)p−1 − 1

p− 1

∣∣∣ ≤ d∑
i=1

[
fp(λ

Tx+ δeTi x) + fp(λ
Tx− δeTi x)

]
,

where ei is the vector of IRd whose ith component equals one, and the others

are null. Then from the above inequality, we clearly deduce that λ ∈ D.

Therefore, λ0 ∈ int(D).

⇐: For any λ0 ∈ int(D), there exists a neighborhood B(λ0, ε) ⊆ int(D).

Then, due to Lemmas 4.3 and 4.4, we have B(λ0, ε) ⊆ dom(Φp). Hence,

λ0 ∈ int(dom(Φp)). This completes the proof of this lemma.

Proposition 4.5: Suppose S is locally bounded and assumption (4.30) holds.

If Φp(λ) attains its minimum at λ̃, then λ̃ ∈ int(D). Furthermore,

Φ′p(λ̃) = b+
cλ̃

q − 1
+

∫ [
x(1 + λ̃Tx)1/(q−1) − x

]
F (dx) = 0. (4.54)

104



Proof. Consider the case of S being bounded and adopt the argument of con-

tradiction. In other words, we suppose that Φp(λ) attains its minimum at λ̃

but λ̃ /∈ int(D). For any λ ∈ D, put λn := (1 − 1/n)λ, which converges to λ

and, due to Lemma 4.4, satisfies∫
fp(λ

T
nx)F (dx) < +∞. (4.55)

For any r ∈ (0, 1), the convex combination

λ := rλn + (1− r)λ̃ = λ̃+ r(λn − λ̃) ∈ D,

thus we have

Φp(λ̃) ≤ Φp(λ), P ⊗ A− a.e. (4.56)

On the other hand, the integrability of fp(λ̃T x)−fp(λ
T
x)

r
follows from

fp(λ̃
Tx)− fp(λ

T
x) ≥ r(fp(λ̃

Tx)− fp(λTnx))

which is due to the convexity of fp and (4.55). This allows us to apply Fatou’s

Lemma, which leads to

(λn − λ̃)TG(λ̃) ≤ lim
r→0

Φp(λ̃)− Φp(λ)

r
≤ 0, P ⊗ A− a.e.,

where

G(λ) := b+
cλ

q − 1
+

∫ [
x(1 + λTx)1/(q−1) − x

]
F (dx).

As a result, we obtain

(λn − λ̃)TG(λ̃) ≤ 0, ∀ n ≥ 1, P ⊗ A− a.e.

By sending n→ +∞ and taking sup for λ over D, we get

λ̃TG(λ̃) ≥ sup
λ∈D

λTG(λ̃), P ⊗ A− a.e.
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As an direct application of above inequality by taking λ = 0 ∈ D, it yields

λ̃TG(λ̃) ≥ 0, P ⊗ A− a.e. (4.57)

We rearrange the terms in (4.57) and get

0 ≤ λ̃T
∫

(x− x(1 + λ̃Tx)p−1)F (dx) ≤ λ̃T b+ (p− 1)cλ̃ < +∞, (4.58)

which is due to the function g(y) := y− y(1 + y)p−1 > 0, 1 + y ≥ 0 and p < 1.

Let (λ̃n)n be given by λ̃n := (1 − 1/n)λ̃. Then, due to Lemma 4.3, λ̃n ∈
int(D) and converges to λ̃. Put

ln(x) := |(1 + λ̃Tnx)1/(q−1) − 1|, l(x) := |(1 + λ̃Tx)1/(q−1) − 1|

and consider two sets

Γ+(λ) := {x : λTx ≥ 0}, Γ−(λ) := {x : λTx < 0}.

By studying ln(x) on Γ+(λ̃n) and Γ−(λ̃n) respectively, we obtain

ln(x)IΓ+(λ̃) = IΓ+(λ̃n)(1− (1 + λ̃Tnx)1/(q−1))

≤ IΓ+(λ̃n)(1− (1 + λ̃Tx)1/(q−1))

= IΓ+(λ̃n)|1− (1 + λ̃Tx)1/(q−1)|,

and ln(x)IΓ−(λ̃) = IΓ−(λ̃n)((1 + λ̃Tnx)1/(q−1) − 1)

≤ IΓ−(λ̃n)((1 + λ̃Tx)1/(q−1) − 1)

= IΓ−(λ̃n)|1− (1 + λ̃Tx)1/(q−1)|.

These imply that

0 ≤ ln(x) ≤ l(x), P ⊗ A⊗ F − a.e.
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Thus, the sequence (|λ̃Tnx|ln)n is bounded by |λ̃Tx|l, which is integrable due

to (4.58). Therefore, an application of the Dominated Convergence Theorem

and assumption (4.30) lead to∫
|λ̃Tx||(1+λ̃Tx)

1
q−1−1|F (dx) = lim

n→+∞

∫
|λTnx||(1+λ̃Tnx)

1
q−1−1|F (dx) = +∞,

which contradicts with (4.58). Hence, λ̃ ∈ int(D). Recalling Lemma 4.5, we

deduce that Φp is differentiable at λ̃ and (4.54) follows immediately.

Lemma 4.7: Suppose that the assumptions and assertion (1) of Theorem 4.2

are fulfilled. Then, the process D satisfies

D = D0 exp(aD) = D0E(XD), XD := aD +
∑

(e∆aD − 1−∆aD),

(4.59)

and the following assertions hold.

(i) For any α ∈ (0, 1), the processes

(1 + θ̂T z)p − 1− pθ̂T z
p(p− 1)

I{|θ̂T z|≤α} ? µ, and (1 + θ̂T z)pI{|θ̂T z|>α} ? µ, (4.60)

are non decreasing and locally integrable.

(ii) P ⊗ A-almost all (ω, t) ∈ Ω× [0,+∞[, θ̂ ∈ int (dom(Φp)).

(iii) The optimal portfolio rate, θ̂, is a root of (4.32). That is P ⊗ A-a.e.

0 =
1

p− 1
b+ cθ̂ +

∫
(1 + θ̂T z)p−1 − 1

p− 1
zF (dz). (4.61)

(iv) The optimal portfolio rate, θ̂, satisfies

e−∆aD ·XD =
q

2
θ̂T cθ̂ ·A+

[∫
(1 + θ̂T z)p − 1− q(1 + θ̂T z)p−1 + q

q − 1
F (dz)

]
·A.

(4.62)

Here XD is given by (4.59).
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(v) If we denote u(t, ω, x) :=
(

1 + xT θ̂t(ω)
)p−1

− 1, then

1 + ût := 1 +

∫
u(t, x)ν({t}, dx) = 1− exp(−∆aD)∆XD = exp(−∆aD),

(4.63)

and, as a consequence, the nonnegative predictable process, (1 + û)−1, is

locally bounded.

Proof. Since pD(t) > 0 for all (t, ω) ∈ [0, T ] × Ω —U(t, x) is a random field

utility—, it is obvious to see that D(t)/D0 is a positive and predictable process

with finite variation. Therefore, the decomposition in (4.59) follows from Ito’s

formula.

Then, for any admissible portfolio rate θ,

U(t, xEt(θ · S)) = D0x
p exp

(
aDt
)
Et (θ · S)p = D0x

pEt
(
XD
)
Et
(
Xθ
)

= D0x
pEt
(
(1 + ∆XD) ·Xθ +XD

)
.

(4.64)

where XD is defined in (4.59) and Xθ is given by

Xθ = pθ · S +
p(p− 1)

2
θT cθ · A+

(
(1 + θT z)p − 1− pθT z

)
? µ.

Therefore, for any admissible portfolio rate θ, U(t, xEt(θ · S)) is a local super-

martingale (respectively is a local martingale) if and only if the process

1

p(1− p)

(
e∆aD ·Xθ +XD

)
,

is a local supermartingale (respectively is a local martingale). Then, due to

Ito’s formula, we easily deduce that this fact is equivalent to

|(1 + θT z)p − 1− pθT zI{|θT z|≤α}| ? µ ∈ A+
loc, α ∈ (0, 1), (4.65)

and exp(−∆aD)
p(1−p) ·X

D−Φp(θ) ·A is non-increasing (respectively is null for θ = θ̂),

108



or equivalently, (4.65) and the following equalities hold,

exp(−∆aD)

p(1− p)
·XD = Φp

(
θ̂
)
· A, (4.66)

and min
θ∈IRd

[Φp(θ)] = Φp(θ̂), (4.67)

where Φp is given by (4.29).

Due to I{|θT z|>α} ? µ =
∑
I{|θT∆S|>α} ∈ A+

loc, and

|(1 + θT z)p − 1− pθT zI{|θT z|≤α}| ? µ = |(1 + θT z)p − 1− pθT z|I{|θT z|≤α} ? µ+

+|(1 + θT z)p − 1|I{|θT z|>α} ? µ,

we deduce that (4.65) is equivalent to the assertion (i) of the lemma.

Then, by combining (4.67) with Proposition 4.5 and recalling Lemma 4.6, we

deduce that θ̂ ∈ int(D) = int (dom(Φp)), and the proof of assertion (ii) and

(iii) are completed.

A direct implication of (4.61) yields

1

p− 1
θ̂T b = −θ̂T cθ̂ −

∫
(1 + θ̂T z)p−1 − 1

p− 1
θ̂T zF (dz) (4.68)

As a consequence, by inserting (4.68) into the equation (4.66), assertion (iv)

follows immediately.

Assertion (v) of the lemma is a direct consequence of (4.61) and (4.62). Indeed,

by multiplying (4.61) with ∆A, using b∆A =
∫
xF (dx)∆A, c∆A = 0 (see the

properties of predictable characteristics of S in Section 2.A for details), we

obtain ∫
(1 + θ̂T z)p−1zν({t}, dz) = 0, (4.69)
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By taking jumps in (4.62), we get

exp(−∆aD)∆XD =

∫
(1 + θ̂T z)p − q(1 + θ̂T z)p−1

q − 1
ν({t}, dz) + a. (4.70)

Then, by combining (4.69), (4.70) and

(1 + θ̂T z)p = (1 + θ̂T z)p−1 + θ̂T z(1 + θ̂T z)p−1, and ∆XD = exp(∆aD)− 1,

assertion (v) follows immediately. This ends the proof of the lemma.

The following lemma will show how the minimal Hellinger martingale density

of order q is built-up and is related to the optimal portfolio rate, θ̂, when U is

a forward utility.

Lemma 4.8: Suppose that the assumptions and assertion (1) of Theorem 4.2

are fulfilled. Then, the following properties hold:

(i) The following P̃-measurable functional

Wt(z) :=

(
1 + θ̂Tt z

)1/(q−1)

− 1

1− at +
∫ (

1 + θ̂Tt y
)1/(q−1)

ν({t}, dy)

=
u(t, z)

1 + û
, (4.71)

is (µ− ν)-integrable, i.e. W ∈ G1
loc(µ).

(ii) The process, Z̃, defined by

Z̃ := E
(
Ñ
)
, Ñ :=

1

q − 1
θ̂ · Sc +W ? (µ− ν), (4.72)

is a martingale density for S.

(iii) The following

(q − 1)XD +
∑[(

1 + ∆XD
)q−1 − 1− (q − 1)∆XD

]
= q(q − 1)h(q)(Z̃, P )

(4.73)

holds, where XD is defined in (4.59).

Proof. Thanks to Lemma 4.7–(v), we deduce that (γ̃t)
−1 = 1

1+û
= exp(∆aD)
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is locally bounded, and

∑
(Ŵt)

2 =
∑(

û

1 + û

)2

� e3|∆aD| · |aD|var.

Hence
∑

(Ŵt)
2 is locally bounded process. Therefore, it is easy to see that

W ∈ G1
loc(µ) if and only if the process

[∑
(Wt(∆St))

2 I{∆St 6=0}

]1/2

=

[
(γ̃)−2

(
(1 + θ̂Tx)p−1 − 1

)2

? µ

]1/2

,

is locally integrable. Since (γ̃)−2 = (1 + û)−2 = e2∆aD is locally bounded, then

this is equivalent to

[(
(1 + θ̂Tx)p−1 − 1

)2

? µ

]1/2

∈ A+
loc. (4.74)

If we put Γ := {z ∈ IRd| |θ̂T z|≤ α}, then it is easy to check that (4.74) is

equivalent to the local integrability of

V1 :=
(

(1 + θ̂T z)p−1 − 1
)2

IΓ ? µ, and V2 := |(1 + θ̂T z)p−1 − 1|IΓc ? µ. (4.75)

The local integrability of V1 follows directly from I{|θ̂T∆S|≤α} · [θ̂ ·S, θ̂ ·S] ∈ A+
loc

(since θ̂ is S-integrable and hence θ̂ · S is a RCLL semimartingale), and

(q − 1)2

(1− α)2(p−2)
V1 �

∑
(θ̂T∆S)2I{|θ̂T∆S|≤α} � I{|θ̂T∆S|≤α} · [θ̂ · S, θ̂ · S].

To prove the local integrability of V2, it is enough to prove

|
∫

(1 + θ̂T z)p−1θ̂T zI{|θ̂T z|>α}F (dz)|·A ∈ A+
loc. (4.76)

Indeed, by combining (4.76) with (1 + θ̂T z)pI{|θ̂T z|>α} ? µ ∈ A
+
loc (see Lemma
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4.7–(i)), and

(1 + θ̂T z)p−1IΓ ? ν = −
∫

Γ

(1 + θ̂T z)p−1θ̂T zF (dz) · A+ (1 + θ̂T z)pIΓ ? ν,

we deduce that (1 + θ̂T z)p−1I{|θ̂T z|>α} ? µ is locally integrable (since it is non-

decreasing and its compensator is locally integrable). Finally, due to

I{|θ̂T z|>α} ? µ =
∑

I{|θ̂T∆S|>α} ∈ A
+
loc,

which follows from the fact that θ̂ · S is a RCLL semimartingale, we conclude

that V2 is locally integrable. In the remaining part of this proof, we will prove

(4.76).

Thanks to Proposition 2.1, we have

θ̂T cθ̂ ·A ∈ A+
loc, and |ξ̂|·A := |θ̂T b−

∫
θ̂T zI{|θ̂T z|>α}F (dz)|·A ∈ A+

loc. (4.77)

Since θ̂ satisfies (4.61), then we get

− ξ̂− θ̂T cθ̂ =
1

p− 1

∫
Γc

(1 + θ̂T z)p−1θ̂T zF (dz) +

∫
Γ

(1 + θ̂T z)p−1 − 1

p− 1
θ̂T zF (dz).

(4.78)

Then, by combining

0 � (1+θ̂T z)p−1−1
p−1

(θ̂T z)I{|θ̂T z|≤α} ? µ � (1− α)p−2(θ̂T z)2I{|θ̂T z|≤α} ? µ

� (1− α)p−2I{|θ̂T∆S|≤α} · [θ̂ · S, θ̂ · S] ∈ A+
loc,

(4.77) and (4.78), we conclude that (4.76) holds. This ends the proof of asser-

tion (i) of the lemma.

The second assertion (i.e. assertion (ii)) of the lemma, follows directly from

(4.61) by recalling Proposition 2.2.

The equality (4.73) is derived from (4.62) by using (2.50)—(2.51) depending

whether ∆A = 0 or ∆A 6= 0 respectively. Precisely, on {∆A = 0}, a combina-
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tion of (4.62) and (2.50) leads to

I{∆A=0} ·
(

(q − 1)XD +
∑[(

1 + ∆XD
)q−1 − 1− (q − 1)∆XD

])
= I{∆A=0}e

−∆aD ·XD (4.78)

= q(q − 1)I{∆A=0} · h(q)(Z̃, P ).

While, on {∆A 6= 0}, by combining (4.62) and (2.51), we have

∆
(

(q − 1)XD +
∑[(

1 + ∆XD
)q−1 − 1− (q − 1)∆XD

])
= γ̃1−q − 1 = q(q − 1)∆h(q)(Z̃, P ).

This ends the proof of the lemma.

Lemma 4.9: The process Z̃ defined in Lemma 4.8 is the minimal Hellinger

martingale density of order q. That is, Z̃ is a martingale density (belongs

to Zeq,loc(S, P )) satisfying

h(q)(Z̃, P ) � h(q)(Z, P ), for any Z ∈ Zeq,loc(S, P ). (4.76)

Proof. Thanks to Lemma 4.8–(ii), the proof of the lemma will follow from

proving the optimality of Z̃. In virtue of Proposition 3.2 in [17], it is enough

to prove (4.76) for any positive martingale density Z = E(N) of the form

N = β ·Sc+Y ?(µ−ν), Yt(x) = kt(x)+
k̂t

1− at
I{at<1}, k̂t :=

∫
kt(x)ν({t}, dx),

where β ∈ L(S) and
(∑

kt(∆St)
2I{∆St 6=0}

)1/2 ∈ A+
loc. Due to the convexity of

zT cz and φ(z) := (1+z)q−qz−1
q(q−1)

, on the set {∆A = 0} we derive

dh(q)(Z, P )

dA
− dh(q)(Z̃, P )

dA
=

1

2
(βT cβ − θ̃T cθ̃) +

∫ [
φ(k(x))− φ(k̃(x))

]
F (dx)

≥ θ̃T c(β − θ̃) +

∫
θ̃Tx

(
k(x)− k̃(x)

)
F (dx) = 0.

(4.77)
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Here θ̃ = (p− 1)θ̂, k̃(x) := (1 + θ̂Tx)p−1− 1 and φ′(k((x)) = (p− 1)θ̂Tx = θ̃Tx.

The last equality in (4.77) is obtained from the fact that both Z̃ and Z belong

to Zeq,loc(S), which, due to Proposition 2.2, is equivalent to

b+ cβ +

∫
xk(x)F (dx) = 0, and b+ (p− 1)cθ̂+

∫
xk̃(x)F (dx) = 0. (4.78)

On the other hand, due to (2.48), (2.49), and (2.51) in Proposition 2.3 and

the convexity of φ(z), we get

∆hEt (Z, P )−∆hEt (Z̃, P ) = (1− at)

[
φ
(
− k̂t

1− at

)
− φ
(
γ̃−1
t − 1

)]
+

∫ [
φ(kt(x))− φ

(
(1 + θ̂Tt x)p−1γ̃−1

t − 1
)]
νt(dx)

≥ (1− at)(1−
k̂t

1− at
− 1

γ̃t
)
γ̃1−q
t − 1

q − 1

+

∫ [
kt(x) + 1− γ̃−1

t (1 + θ̂Tt x)p−1
](θ̂Tt x+ 1)γ̃1−q

t − 1

q − 1
νt(dx)

=
γ̃1−q
t

q − 1

∫ [
(kt(x) + 1)− (γ̃t)

−1(1 + θ̂Tx)p−1
]
θ̂Tt xνt(dx) = 0. (4.79)

The equation (4.79) follows from Proposition 2.2, which lead to two equations∫
x(k(x) + 1)ν({t}, dx) = 0, and 0 =

∫
γ̃−1x(1 + θ̂Tx)p−1ν({t}, dx).

Thus, by combining (4.77) and (4.79), we deduce that Z̃ is the minimal

Hellinger martingale density of order q for S. This achieves the proof of the

lemma.

Proof of Theorem 4.2:

We start proving (1) =⇒ (2). Thus, suppose that assertion (1) holds. There-

fore, Proposition 4.5 and Lemmas 4.7, 4.8, 4.9 are valid, and the minimal

Hellinger martingale density, Z̃ exists (it is given by Lemma 4.8). Further-

more, an application of Ito’s formula to E(XD)q−1 combined with (4.37) and

(4.73), will easily lead to (4.31). This proves assertions (2.b) and (2.c) of the
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theorem. To conclude that assertion (2) is satisfied, we need to prove the

assertion (2.a). This follows from the forward property of U and

U
(
·, xE

(
θ̂ · S

))
= D0x

pE
(
q(q − 1)h(q)

(
Z̃, P

))p−1

E
(
θ̂ · S

)p
(4.80)

= D0x
pE
(
θ̂ · S

)
E
(
γ̃1−qθ̂ · S + q(q − 1)h(q)

(
Z̃, P

))p−1

(4.81)

= D0x
pE
(
θ̂ · S

)
Z̃ = D0x

pẐ. (4.82)

It is clear that (4.80) follows from (4.37) and p − 1 = 1
q−1

, while (4.81) and

(4.82) follows from (2.56) whenever the MHM density of order q exists and

assertion (2.b) holds. This proves assertion (2).

In the remaining part of this proof, we focus on proving (2) =⇒ (1). Thus, we

suppose that assertion (2) is fulfilled. Then, it is obvious that (4.80), (4.81),

and (4.82) always hold as long as the MHM density of order q exists and

assertion (2.b) is valid. As a consequence, a combination of these equalities

with assertion (2.a) imply that U
(
·, xE

(
θ̂ · S

))
is a martingale. Furthermore,

for any admissible θ, we have

U (·, xE (θ · S))

D0xp
=
E (θ · S)p

E
(
θ̂ · S

)pE (q(q − 1)h(q)
(
Z̃, P

))p−1

E
(
θ̂ · S

)p−1

E
(
θ̂ · S

)

= E
(
θ̂ · S

)
Z̃

 E (θ · S)

E
(
θ̂ · S

)
p

= Ẑ

 E (θ · S)

E
(
θ̂ · S

)
p

.

Then, due to this equality, the equivalence between the admissibility of θ and

(4.35), and Proposition 4.4, we conclude that U (·, xE (θ · S)) is a supermartin-

gale for any admissible θ. Hence, U is a forward utility and assertion (1) holds

true. This ends the proof of the theorem.

115



4.B Discrete-Time Market Models

Consider the discrete-time market model introduced in Section 3.B. Let p be

a real number such that p ∈ (−∞, 0) ∪ (0, 1). Here, consider the following

utilities:

Up(j, x) := D(j)xp, for any x ∈ (0,+∞) and j = 0, ..., N. (4.83)

Here D = (D(j))j=0,...,N is a process satisfying

sup
0≤j≤N

E
[
|D(j)|

]
< +∞. (4.84)

The set Dj and measure Gj(dx) are same as given in (3.52) that I recall below

Dj :=
{
θ ∈ IRd

∣∣∣ 1 + θTx > 0, Gj(dx)− a.e
}
, Gj(dx) := P (∆Sj ∈ dx | Fj−1).

(4.85)

For any process X = (Xj)j=0,...,N , we associate to it the set of admissible

portfolio rates for the jth period of time, denoted by Θ
(p)
j (X), given by

Θ
(p)
j (X) :=

{
θ ∈ L0(Fj−1)∩Dj

∣∣∣E (|Xj|(1 + θT∆Sj)
p
∣∣∣Fj−1

)
< +∞

}
. (4.86)

Consider the following assumption:

Assumption: For any j = 1, ..., N , θ ∈ Dj, P -a.e., and every sequence

(θn)n≥1, θn ∈ int(Dj), P -a.e., and converges to θ, we have, P − a.e. (4.87)

lim
n→+∞

E
(
|D(j)Kp(θ

T
n∆Sj)||Fj−1

)
=

+∞, on Γj;

E
(
|D(j)Kp(θ

T∆Sj)||Fj−1

)
, on Γcj.

where Kp(y) := y(1 + y)1/(q−1) and Γj := {Gj(IR
d) > 0 and θ /∈ int(Dj)}.

Below, we state our parametrization algorithm for forward utilities having the

form of (4.83).
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Theorem 4.5: Suppose that S is bounded, D satisfies (4.84) and assumption

(4.87) holds. Let p ∈ (−∞, 0) ∪ (0, 1). Then, the following are equivalent.

(i) The functional Up(t, x), defined in (4.83), is a forward utility with the

optimal portfolio rate denoted by θ̂ = (θ̂j)j=1,...,N .

(ii) The two processes D and θ̂ are given by

θ̂j ∈ Θ
(p)
j (D) is a root of E

(
D(j)∆Sj(1 + θT∆Sj)

p−1
∣∣∣ Fj−1

)
= 0,

(4.88)

and D(j − 1) = E
(
D(j)(1 + θ̂Tj ∆Sj)

p−1
∣∣∣Fj−1

)
, (4.89)

for all j = 1, ..., N .

Remark: Theorem 4.5 completely parameterizes the forward utilities of (4.83)

in the discrete time setting. In fact, the unique parameter for these forward

utilities is the terminal value of the process D, which is D(N). Given this

random variable, we calculate the optimal portfolio rate for the N th-period

of time, θ̂N as a root of equation (4.88). Afterwards, we calculate DN−1

from (4.89). Then, we repeat this procedure over and over again until we

completely determine the two processes D and θ̂.

Proof of Theorem 4.5:

Remark that, due to (4.84), the process D can be represented by

D(j) = D(0)ZD
j exp(aDj ), ZD

j :=

j∏
i=1

D(i)

E(D(i)|Fi−1)
,

aDj :=

j∑
i=1

log

[
E

(
D(i)

D(i− 1)

∣∣∣Fi−1

)]
, j = 1, ..., N ; ZD

0 = 1, aD0 = 0.

Here it is easy to check that ZD is a true positive (since pD(j) > 0) martingale

and aD is predictable. Thus, through out the proof, we consider the probability

measure Q := ZD
n · P . We will start by proving (i) =⇒ (ii). Thus, suppose

that (i) holds. Then there exists an admissible portfolio rate θ̂ such that for
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any other admissible portfolio rate θ, the processes Up

(
j,

j∏
k=1

(1 + θ̂Tk ∆Sk)

)

and Up

(
j,

j∏
k=1

(1 + θTk ∆Sk)

)
are martingale and supermartingale respectively.

This implies that for any j = 1, ..., N ,

D0E
Q
(

(1 + θTj ∆Sj)
p
∣∣∣Fj−1

)
≤ e−a

D
j +aDj−1 = D0E

Q
(

(1 + θ̂Tj ∆Sj)
p
∣∣∣Fj−1

)
.

(4.90)

Then the equality in the right hand side of (4.90) together with Bayes’ rule

and
D(j)

D(j − 1)
=

ZD
j

ZD
j−1

ea
D
j −aDj−1

implies (4.89). While the whole inequality (4.90) can be transformed into

D0

∫
(1 + θTj x)pGQ

j (dx) ≤ D0

∫
(1 + θ̂Tj x)pGQ

j (dx),

where GQ
j (dx) is the random measure give by GQ

j (dx) := Q
(

∆Sj ∈ dx
∣∣∣ Fj−1

)
.

Considering the assumption (4.87), by virtue of Proposition 4.5, it is clear that

the function

Ψj(λ) := D0

∫
(1 + λTx)pGQ

j (dx), λ ∈ Dj, (4.91)

is differentiable on int(Dj), and attains its maximum at θ̂j. This implies that

θ̂j is a root for

0 = ∇Ψj(λ) = pD0

∫
(1 + λTx)p−1xGQ

j (dx).

This is equivalent to (4.88), and assertion (ii) follows.

To prove the reverse (i.e. (ii) =⇒ (i)), we suppose that assertion (ii) holds.

Then by multiplying both sides of (4.89) by xp
∏j−1

k=1(1 + θ̂Tj ∆Sk)
p, we obtain

D(j − 1)xp
j−1∏
k=1

(1 + θ̂Tk ∆Sk)
p = E

(
D(j)xp

j∏
k=1

(1 + θ̂Tk ∆Sk)
p
∣∣∣Fj−1

)
.
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This proves that for any x ∈ (0,+∞) the process Up

(
j, x

j∏
k=1

(1 + θ̂Tk ∆Sk)

)
, j =

0, 1, ..., N, is a martingale. Since pDj > 0 and p < 1 for any j = 0, ..., , N , then

for any admissible portfolio rate θ, we derive

D(j)(1 + θTj ∆Sj)
p−D(j)(1 + θ̂Tj ∆Sj)

p ≤ D(j)
(
θj − θ̂j

)T
∆Sj(1 + θ̂Tj ∆Sj)

p−1.

Then, by taking conditional expectation in both sides above and using (4.88)

and afterwards (4.89), we obtain

E
(
xpD(j)(1 + θTj ∆Sj)

p
∣∣∣Fj−1

)
≤ E

(
xpD(j)(1 + θ̂Tj ∆Sj)

p
∣∣∣Fj−1

)
= D(j−1)xp.

Then by multiplying both sides of this inequality with

j−1∏
k=1

(1 + θTk ∆Sk)
p, we

conclude that the process

Up

(
j, x

j∏
k=1

(1 + θTk ∆Sk)

)
= xpD(j)

j∏
k=1

(1 + θTk ∆Sk)
p, j = 0, ..., N

is a supermartingale. This ends the proof of the theorem.

4.C Discrete Market Models

Recall the discrete market models introduced in Section 3.C, including the one-

dimensional binomial model in Subsection 3.C.1 and the multi-dimensional

model in Subsection 3.C.2. In this section, I will consider these models, for

which the power-type forward utilities having the form of (4.84) will be char-

acterized.
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4.C.1 One-Dimensional Binomial Model

First of all, for the one-dimensional binomial model, we recall the set Dj,
j = 1, 2, ..., N , (see (3.67) )

Dj =
]
1/(1− ξuj )Sj−1, 1/(1− ξdj )Sj−1

[
. (4.92)

It is clear that Dj is an open set in IR and hence

int(Dj) = Dj, P − a.e., ∀ j = 1, ..., N. (4.93)

Furthermore, recall that #(Ω) < +∞, then the admissible sets, Θ
(p)
j , for the

jth period of time, j = 1, 2, ..., N , defined in (4.86) take the following forms

Θ
(p)
j = L0(Fj−1) ∩ Dj, j = 1, ..., N. (4.94)

Furthermore, remark that in current setting, the assumption (4.84) and (4.87)

are satisfied.

The characterization of the power-type forward utilities in binomial model is

stated in the following theorem.

Theorem 4.6: Then, the following two assertions are equivalent.

(i) The functional Up(t, x), defined in (4.83), is a forward utility with the

optimal portfolio rate denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The process D is a supermartingale with the multiplication Doob-Meyer

decomposition, D = D0M exp(aD) (M is a positive martingale and aD is

predictable with finite variation) such that the following properties hold:

(ii.1) By putting Q := M(N)
M(0)

· P , then θ̂j is given by for j = 1, ..., N

θ̂j =
γj − 1

(ξuj − 1− γjξdj + γj)Sj−1

∈ Dj, γj :=

(
(ξuj − 1)Q(Aj|Fj−1)

(1− ξdj )Q(Acj|Fj−1)

)1−q

(4.95)
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(ii.2) The predictable process aD is given by

aDj = −
j∑

k=1

log
((γp−1

k Q(Ak|Fk−1) +Q(Ack|Fk−1))(ξuk − ξdk)p−1

(ξuk − 1− γkξdk + γk)p−1

)
.

Proof. This theorem can be treated as an application of Theorem 4.5. Thus,

we will avoid to repeat the same proof again, but only give some remarks

emphasizing its nice features that simplify tremendously the proof.

Since Dj is an open and #(Ω) < +∞, the assumptions (4.84) and (4.87) are

automatically fulfilled.

The function Ψj given by (4.91) becomes

Ψj(λ) = Q(Aj|Fj−1)(1 + (ξuj − 1)λSj−1)p +Q(Acj|Fj−1)(1 + (ξdj − 1)λSj−1)p

which is differentiable on Dj. Thus, θ̂j is the solution of the equation, Ψ′(λ) =

0, which leads to (4.95).

Finally, aDj is derived by plugging (4.95) into (4.89) and apply the decomposi-

tion of D. This ends the proof of the theorem.

4.C.2 Multi-Dimensional Discrete Model

Now, we turn to the multi-dimensional discrete market models described in

Subsection 3.C.2. Let Ω be the sample space, which is finite in current model

and the number of its elements is (dn)N . We recall the set Dj, j = 1, 2, ..., N ,

defined in (3.74) and the event Aj, given in (3.73). Remark that the set Dj is

open. Therefore, we have

int(Dj) = Dj, P − a.e., ∀ j = 1, ..., N. (4.96)

Again, due to #(Ω) < +∞, the admissible sets, Θ
(p)
j , defined in (4.86) take

the following forms

Θ
(p)
j = L0(Fj−1) ∩ Dj, j = 1, ..., N. (4.97)
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The characterization of the logarithm forward utilities in multi-dimensional

discrete model is stated in the following theorem.

Theorem 4.7: Then, the following two assertions are equivalent.

(i) The functional Up(t, x), defined in (4.83), is a forward utility with the

optimal portfolio rate denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The process D is a supermartingale with the multiplication Doob-Meyer

decomposition, D = D0M exp(aD), (M is a positive martingale and aD is

predictable with finite variation) such that the following properties hold:

(ii.1) By putting Q := M(N)
M(0)

· P , for j = 1, 2, ..., N , θ̂j ∈ Dj and is a root of

∑
(n1,...,nd)∈Ñ

(Ξj(n1, ..., nd)− Id×d)IdQ(Aj(n1, ..., nd)|Fj−1)

(1 + θT (Ξj(n1, ..., nd)− Id×d)Sj−1)1/(1−q) = 0. (4.98)

(ii.2) The predictable part aD = (aDj )j=1,...,N is given by

aDj = −
j∑

k=1

log [Kk] , (4.99)

where

Kk :=
∑

(n1,...,nd)∈Ñ

(
1 + θT (Ξk(n1, ..., nd)− Id×d)Sk−1

)p−1
Q(Ak(n1, ..., nd)|Fk−1)

Proof. The proof would be a generalization of the proof of Theorem 4.6 to

vectors and matrices. For the same reason as indicated in the proof of Theorem

4.6, the assumptions (4.84) and (4.87) are automatical satisfied.

Herein, the function Ψ(λ) given by (4.91) becomes

Ψ(λ) =
∑

(n1,...,nd)∈Ñ

(
1 + θT (Ξk(n1, ..., nd)− Id×d)Sk−1

)p
Q(Ak(n1, ..., nd)|Fk−1).

Therefore, we can derive (4.98) and (4.99) immediately.

122



4.D Lévy Market Models

Consider the Lévy market models given in Section 3.D. The process of the stock

price is presented by S = S0 exp(X), which is semimartingale. X is modeled

by a locally bounded Lévy process, given by (3.82). Some usual notation will

be put in the same way as Section 3.D. In particular, Wt, t ∈ [0, T ], represents

a Brownian motion; N(dt, dx) is Poisson random measure on [0, T ]× IR \ {0},
used to measure the jumps ofX; Ñ(dt, dx) is the compensated Poisson measure

with the intensity measure FX(dx)dt, where FX(dx) is called the Lévy measure

defined on IR \ {0}.
Since X is locally bounded, S is locally bounded as well. Thus,

∫ ∫
IR\{0}(e

x−
x− 1)FX

t (dx)dt is locally integrable and W (t, x) := ex−x− 1 is Ñ -integrable.

By virtue of Ito’s formula, S is also a Lévy process. Let F S is the intensity of S,

then, Furthermore, for any measurable and non-negative/integrable function

k(x), the two measures FX(dy) and F S(dx) are related in the following manner∫
IR\{0}

k(x)F S(dx) =

∫
IR\{0}

k(eX−(ey − 1))FX(dy).

Remark that this model is quasi-left continuous such that any local martingale

N follows a decomposition given by (3.83) and we let (β, Y, V,N ′) be the Jacod

components of N . For more details on the properties of each component, the

reader can find them in Theorem 2.2, where they are given in the most general

semimartingale framework.

In this section, we will investigate the characterization of the power-type

forward utilities, Up(t, x), given by

Up(t, x) := D(t)xp, p ∈ (−∞, 0) ∪ (0, 1). (4.100)

As usual, an integrability condition imposed on the process D is

sup
τ∈TT

E
[
|D(τ)|

]
< +∞. (4.101)
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Also, we recall the set D given by (4.28) and the functional Φp(λ) given by

(4.29). For any probability measure Q, any stock price process X, and x ∈ IR

such that U0(t, x, ω) < +∞ we denote by

Aadm(x,X,Q) :=
{
π ∈ L(X) | sup

τ∈TT
EQ [|D(τ)(x+ π ·Xτ )

p|] < +∞
}
,

(4.102)

the set of admissible portfolios for the model (x,X,Q, U). Here TT is the set

of stopping time, τ , such that τ ≤ T . When X = S and Q = P , we simply

write Aadm(x).

Recall Theorem 4.3, the following condition is necessary for Up being forward

utility:

D = D0E(N)E(V ), where E(N) > 0, N ∈Mloc(P ) and V ∈ P ∩ V . (4.103)

Let N = (β, Y, V,N ′) be the Jacod components and consider the following

assumption:

Assumption: For any predictable process λ such that λ ∈ D, dP ⊗ dt-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

dP ⊗ dt-a.e., and λn → λ, we have, dP ⊗ dt− a.e.,

lim
n→+∞

∫
Kp(e

X−(ex − 1)λn)Y (eX−(ex − 1))FX(dx) (4.104)

=

+∞, on Γ;∫
Kp(e

X−(ex − 1)λ)Y (eX−(ex − 1))FX(dx), on Γc.

where Kp(y) := y((1 + y)p−1 − 1) and Γ := {FX(IR) > 0 and λ /∈ int(D)}.

Our main result in this section is presented in the following theorem.

Theorem 4.8: Consider the functional Up(t, ω, x) defined in (4.100) satisfying

(4.101). Suppose that the assumption (4.103) and (4.104) hold. Then the
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following two assertions are equivalent.

(1) The functional Up is a forward utility with the optimal portfolio rate θ̂.

(2) The following properties hold.

(2.a) The predictable process V is

q

∫ ·
0

[
1

2
σ2e2Xu θ̂2

u + ξ̃u]du, (4.105)

where

ξ̃u :=

∫
IR\{0}

fp((1 + eXu(ex − 1)θ̂u)
p−1 − 1)Y (eXu(ex − 1))FX

u (dx).

(2.b) The optimal portfolio rate θ̂ is a root for∫
IR\{0}

(ex − 1)(1 + eX(ex − 1)λ)p−1Y (eX(ex − 1))FX(dx)

+γ +
1

2
σ2 + eXσ2(β + (p− 1)λ) = 0

(4.106)

(2.c) The local martingale Ẑ, given by

Ẑ := E(N)E

(
θ̂

q − 1
· Sc +

(
(1 + eX(ex − 1)θ̂)p−1 − 1

)
? N

)
E(θ̂ · S),

is a true martingale. Here,

S
c

=

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2βudu,

N(dt, dx) = N(dt, dx)− Y (eXt(ex − 1))F Y
t (dx)dt.

Proof. This theorem can be viewed as an application of Theorems 4.3 and 4.4.

We can apply their results directly. Furthermore, most of the calculations for

Lévy market model has been given in the proof of Theorem 3.7. They include

the dynamics of S, the predictable characteristics of S, (b, c, F S) under P and,

(bQ, c, FQ), under Q. We only need to mention that the function Φp given by
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(4.29) becomes

Φp(λ) :=
(bQ)Tλ

p− 1
+

1

2
λT cλ+

∫
fp(λ

Tx)FQ(dx), ∀ λ ∈ IRd, p ∈ (−∞, 0)∪(0, 1),

(4.107)

Assumption (4.104) will guarantee its differentiability on int(D), which leads

to (4.106). Furthermore, (4.105) would be a direct application of (4.39). Fi-

nally, the assertion (2.c) can be derived after some simple calculation by using

the predictable characteristics of S.

4.D.1 Jump-Diffusion Model

Here in this subsection, we consider the model where the stock price process

S is given by S = eX , and X is a jump-diffusion process following dynamics

Xt = γt+ σWt + Ñt, Ñt = Nt − λt. (4.108)

Here, W is a standard Brownian Motion, N is a simple Poisson process with

rate λ > 0, and Ñ is the compensated Poisson process (Ñ is a martingale).

(Ft)t∈[0,T ] is the filtration generated by the Brownian Motion W and the Pois-

son process N . In this model, for any local martingale Y , there exists two

predictable processes, α and η, such that

∫ T

0

(α2
u + η2

u)du < +∞, P -a.s., and

Yt = Y0 +

∫ t

0

αudWu +

∫ t

0

ηudÑu, t ∈ [0, T ] (4.109)

Then, the characterization/paramaterization of the power-type forward utili-

ties, Up, defined in (4.100), becomes as follows.

Theorem 4.9: Consider the functional Up(t, ω, x) defined in (4.100) satisfy-

ing (4.101), and the stock price process S = eX with X given by (4.108).

Then the following two assertions are equivalent.

(1) The functional Up is a forward utility with the optimal portfolio rate θ̂.

(2) D = D0E(M)E(V ) is a supermartingale (M is a local martingale fol-
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lowing the decomposition (4.109) and V is non-decreasing and continuous),

satisfying the following properties:

(2.a) The process V coincides with

q

∫ t

0

[
1

2
σ2e2Xu θ̂2

u + λ(1 + ηu)fq((1 + eXu(e− 1)θ̂u)
1
q−1 − 1)]du, 0 ≤ t ≤ T.

(4.110)

(2.b) The optimal portfolio rate θ̂ is a root for

γ+
1

2
σ2 +eX−σ2(α+

θ

q − 1
)+λ(e−1)

1 + η

(1 + eX−(e− 1)θ)1/(1−q) = 0. (4.111)

(2.c) The local martingale

Ẑ := D0E(M)E
(

1

q − 1
θ̂ · Sc +

[
(1 + eX−(e− 1)θ̂)1/(q−1) − 1

]
·N
)
E(θ̂ · S)

is a true martingale. Here

S
c

t =

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2αudu, dN t = dNt − λ(1 + η)dt,

Proof. This theorem is a direct application of Theorem 4.8 and the following

remarks.

a) All quantities required for this proof are already given in the proof of

Theorem 3.8, especially the characteristics of S under P and Q.

b) The assumption (4.104) is satisfied here since the set D is open and is given

by

D := {θ ∈ IR : 1 + θeX−(e− 1) > 0} = ]− eX−

e− 1
, +∞[ = int(D).

c) The function Φp becomes

Φp(θ) :=
θbQ

p− 1
+

1

2
cθ2 + λ(1 + η)fp(θe

X−(e− 1)),

which is differentiable on D. Therefore, (2.a), (2.b) and (2.c) will follow after
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some simple calculations. This ends the proof of the theorem.

4.D.2 Black-Scholes Model

Finally, we consider the Black-Scholes model where there are no jumps and

the only source of uncertainty is from the Brownian Motion. Same as before,

the price process S = eX , where X is an Ito process. It can be written as

Xt = γt+ σWt, t ∈ [0, T ]. (4.112)

The filtration is generated by W such that any local martingale, Y , can be

represented as

Yt =

∫ t

0

αudWu, Y0 = 0, t ∈ [0, T ], (4.113)

where α is a progressively measurable process such that

∫ T

0

α2
udu < +∞, P -

a.s. Hence, the characterization of the power-type forward utilities under this

setup becomes as follows.

Theorem 4.10: Consider the functional Up(t, ω, x) defined in (4.100) satisfy-

ing (4.101) and the stock prices process is given as S = eX , where X follows

the dynamics (4.112). Then the following two assertions are equivalent.

(1) The functional Up is a forward utility with the optimal portfolio rate θ̂.

(2) The processes D = D0E(M) exp(aD) is a supermartingale (M is a local

martingale and aD is continuous with finite variation), satisfying the follow-

ing:

(2.a) The process aD is given by

q

2
σ2

∫ ·
0

e2Xu θ̂2
udu. (4.114)

(2.b) Put M = α ·W , then the optimal portfolio rate θ̂ is given by

θ̂ = (1− q)
[
e−X(γσ−2 +

1

2
) + α

]
. (4.115)
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(2.c) The local martingale Ẑ, given by

Ẑ := E(M)E

(
θ̂

q − 1
eXα ·W − σ2

q − 1

∫ ·
0

θ̂ue
2Xuαudu

)
E(θ̂ · S)

is a true martingale.

Proof. Note that the assumption (4.104) is automatically satisfied when S

is continuous due to F = 0. Then, this theorem follows immediately from

Theorem 4.9 by putting λ = η = 0.

4.E Volatility Market Models

In this section, we will describe the power-type forward utilities in two volatil-

ity models: The corrected Stein and Stein model and the Barndorff-Nielsen-

Shephard model. Detailed formulations on these models have been provided

in Section 3.E.

4.E.1 Corrected Stein and Stein Model

I will start this subsection by recalling the corrected Stein and Stein model as

follows. The stock price process, S, follows the dynamics as

dSt = µV 2
t Stdt+ σVtStdBt, t ∈ [0, T ], (4.116)

where V is the volatility process described by

dVt = (m− αVt)dt+ βdWt. (4.117)

Here, all the parameters µ, σ, m, α and β are positive constants.

Theorem 4.11: Consider two (Ft)0≤t≤T progressively measurable processes,
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D and p, such that

sup
τ∈TT

E [|D(τ)|+|p(τ)|] < +∞, and inf
0≤t≤T

|p(t)|> 0 P − a.s. (4.118)

Then, the following are equivalent.

(i) The functional, U(t, x) := D(t)xp(t), is a forward utility with optimal

portfolio rate, θ̂x, for any initial capital x ∈ (0,+∞).

(ii) The process p(t) is constant in (ω, t) (i.e. p(t, ω) = p(0) = p < 1), and

there exist two progressively measurable processes, φ and ψ, such that∫ T

0

[
(φu)

2 + (ψu)
2
]
du < +∞, P − a.s.,

and the following properties hold.

(ii.a) The process D is described by

D(t) = D(0)Et
(
φ ·B + ψ ·B⊥

)
exp

[
p

2(p− 1)

∫ t

0

(
µVu
σ

+ φu

)2

du

]
.

(4.119)

(ii.b) The optimal portfolio rate, θ̂, is given by

θ̂t = −µVt
σ
− φt. (4.120)

(ii.c) If we put Ψ(θ) := (2 + σSV )θ + µ
σ
V (1 + σSV ), then

E
(
Ψ(φ) ·B + ψ ·B⊥

)
is a martingale. (4.121)

Proof. Remark that, in the current framework, any positive local martingale

Z is given by two progressively measurable processes φ and ψ as follows

ZD := E
(
φ ·B + ψ ·B⊥

)
,

∫ T

0

[
(φu)

2 + (ψu)
2
]
du < +∞, P − .a.s.,

and any local martingale is continuous. Thus, any special semimartingale is

locally bounded (since its local martingale part is continuous), and hence the
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process p is locally bounded. Furthermore, the assumption (4.30) is automat-

ically satisfied in current continuous model since the measure F = 0. Given

these details, it is obvious that the proof of this theorem follows immediately

from Theorem 4.3.

Remark: Since the model in (4.116)—(4.117) is a Markovian model, then one

can probably characterize the forward utilities when p is a real constant by

putting D(t) = g(St, Vt) and g will be then solution to a Hamilton-Jacobi-

Bellman equation (HJB equation hereafter). The main difficulty in this

method (as well as other methods proposed in the literature) lies in solving

the obtained HJB which there is no reason to have an explicit solution.

Hence, this will directly impact negatively our hope to get examples of

forward utilities or explicitly describe this class of forward utilities.

4.E.2 Barndorff-Nielsen Shephard Model

Now, we turn to the Barndorff-Nielsen-Shephard model. The stock price pro-

cess is assumed to be the exponential of a Lévy process and is defined by

St = exp(Xt), where X satisfies

dXt = (µ+ βσ2
t )dt+ σtdY

c
t + d(ρz ? µ̃Y )t, (4.122)

dσ2
t = −λσ2

t dt+ d(z ? µ̃Y )t, (4.123)

Here, the parameters µ, β, ρ, λ are real constants with λ > 0 and ρ < 0. Then,

a simple application of Ito’s formula gives us the following dynamic of S

dSt
St−

=

(
µ+ σ2

t (β +
1

2
) +

∫
(eρz − 1)F̃t(dz)

)
dt+σtdY

c
t +d(eρz−1)?(µY−νY )t.

(4.124)

The set D is given by

D :=
{
θ ∈ IR : 1 + Sθ(eρx − 1) > 0, F̃ − a.e.

}
. (4.125)
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Recall Theorem 4.3, consider a process, D, such that

sup
τ∈TT

E [|D(τ)|] < +∞. (4.126)

If Up is a forward utility, there exist a predictable process, φ ∈ L(Y c), and

a positive and P̃-measurable functional, f ∈ G1
loc(µ), f > 0, such that the

process D is given by

D(t) = D(0)Et(N) exp
(
Vt(φ, f)

)
, (4.127)

where N is given by

N := φ · Y c + (f − 1) ? (µ− ν), (4.128)

Due to Theorem 4.3, (4.127–4.128) are necessary conditions for Up to be a

forward utility.

We consider the following assumption:

Assumption: For any predictable process λ such that λ ∈ D, dP ⊗ dt-a.e.,

and every sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D),

dP ⊗ dt-a.e., and λn → λ, we have, dP ⊗ dt− a.e.,

lim
n→+∞

∫
Kp(e

X−(eρx − 1)λn)f(eX−(eρx − 1))F̃ (dx) (4.129)

=

+∞, on Γ;∫
Kp(e

X−(eρx − 1)λ)f(eX−(eρx − 1))F̃ (dx), on Γc.

where Kp(y) := y((1 + y)p−1 − 1) and Γ := {F̃ (IR) > 0 and λ /∈ int(D)}.

The main result in this subsection is given in the following theorem.

Theorem 4.12: Let p ∈ (−∞, 0)∪(0, 1), q is its conjugate number and (4.129)

holds. D is given by (4.127–4.128) satisfying (4.126). Then, the following
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are equivalent.

(i) U(t, x) := D(t)xp is a forward utility with optimal portfolio rate, θ̂.

(ii) The following holds:

(ii.a) V (φ, f) is coincides with

q

2(q − 1)2

∫ t

0

θ̂2
uσ

2
ue

2Xu−du+ qfq

(
(1 + θ̂(eρz − 1)eX−)

1
q−1 − 1

)
f(z) ? νt.

(4.130)

(ii.b) The optimal portfolio rate, θ̂ is a root for

0 = µ+σ2(β+
1

2
)+σφ+

σ2eX−

q − 1
θ+

∫ (
1 + θ(eρz − 1)eX−

) 1
q−1 (eρz−1)f(z)F̃ (dz).

(4.131)

(ii.c) The local martingale

Ẑ := E(N)E

(
θ̂

q − 1
· Sc +

(
(1 + eX−(eρx − 1)θ̂)

1
q−1 − 1

)
? N(dt, dx)

)
E(θ̂·S),

is a true martingale. Here,

S
c

=

∫ t

0

eXuσdWu −
∫ t

0

e2Xu−σ2αudu,

N(dt, dx) = µ(dt, dx)− f(eXt−(eρx − 1))Ft(dx)dt,

Proof. The proof of this theorem is immediate by virtue of Theorem 4.2. We

will only give short remarks to clarify more the connection between the current

theorem and Theorem 4.2.

From the dynamic of S given by (4.124), we can find the predictable char-

acteristics of S, (b, c, νS) under P and, (bQ, c, FQ), under Q (see the proof

of Theorem 3.11 for details). Furthermore, the function Φp given by (4.29)

becomes

Φp(λ) :=
(bQ)Tλ

p− 1
+

1

2
λT cλ+

∫
fp(λ

Tx)FQ(dx), p ∈ (−∞, 0)∪(0, 1), (4.132)

Assumption (4.129) will guarantee its differentiability on int(D), which leads
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to (4.131). The assertion (ii.c) is a direct application of Theorem 4.2–(2.a)

together with some calculations based on the predictable characteristics of

S.
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Chapter 5

Exponential-Type Forward

Utilities

This chapter will address the third and last class of forward utilities. We start

by providing its definition as follows.

Definition: LetX be a RCLL semimartingale andQ be a probability measure.

Then, we call exponential-type forward utility (called exp-type forward util-

ity hereafter) for (X,Q), any forward dynamic utility for (X,Q), U(t, x, ω),

given by

U1(t, x, ω) = − exp

(
−x−Bt(ω)

Nt(ω)

)
, x ∈ IR, (5.1)

where N is a positive process and B is a process.

Herein, the process N can be seen as the risk aversion coefficient of the random

field utility. The interplay between the stochastic risk aversion and the forward

property will be investigated in the following. Indeed, this is an extension of

the case when U1(ω, t, x) is independent of (ω, t) and takes the form of −e−rx.
Remark that one of the main difference between the exp-type forward utili-

ties and the log-type or power-type forward utilities lies in the effective domain

and its impact on the analysis. Moreover, when S is locally bounded, we ac-

tually don’t require any technical assumption to characterize the exp-type

forward utilities.
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5.A The Semimartingale Framework

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where the

filtration is complete and right continuous (i.e. satisfies the usual conditions).

In this setup, we consider a d-dimensional semimartingale S = (St)0≤t≤T which

represents the discounted price processes of d risky assets. The Canonical

representation of S is given by

S = S0 + Sc + h(x) ? (µ− ν) + (x− h(x)) ? µ+B. (5.2)

More details on this representation can be found in Chapter 1. Throughout

this chapter, the main assumption imposed on S is∫
{|x|>1}

|x|eλT xF (dx) < +∞, P ⊗ A− a.e., (5.3)

for all λ ∈ IRd. Remark that this assumption is satisfied automatically when

S is locally bounded.

The following intermediary lemmas play important roles in simplifying our

forthcoming analysis. Furthermore, these lemmas are also interesting on their

own right.

Lemma 5.1: Let Q be a σ-martingale measure for S, and θ ∈ L(S) be such

that

sup
τ∈TT

EQ exp
[
(θ · S)τ

]
< +∞. (5.4)

Then, the process θ · S is a Q-local martingale and the process exp[θ · S] is

a positive Q-submartingale.

Proof. Since Q is a σ-martingale measure for S, then, there exists a positive,

bounded and predictable process φ such that φ ·S is a Q-local martingale. As

a result, θ · S is σ-martingale under Q on one hand. On the other hand, it is

clear that

Xt := exp

(
1

2
(θ · S)t

)
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is a positive and special semimartingale with the Doob-Meyer decomposition

given by

X = X0 +N +B. (5.5)

Here, N is a local martingale and B is predictable with finite variation such

that N0 = B0 = 0. Let (Tn)n≥1 be a sequence of stopping times that increases

stationarily to T and

E
(

[N,N ]
1/2
Tn

+ V arTn(B)
)
< +∞. (5.6)

Then, for any predictable process ϕ such that |ϕ|≤ 1, we have

E|ϕ ·XTn|≤ cE
(

[N,N ]
1/2
Tn

+ V arTn(B)
)
, (5.7)

where c is a constant that does not depend on ϕ.

Thanks to Ito’s formula, we get

X = 1 +
1

2
X− · (θ · S) +X− · V (θ),

where V (θ) is a non-decreasing process given by

V (θ) :=
1

8
θT cθ · A+

(
exp

(
1

2
θTx

)
− 1− 1

2
θTx

)
? µ. (5.8)

Since θ · S is a σ-martingale under Q, then there exists 0 < φ ≤ 1 such that

φθ ·S is a Q-local martingale. Consider a sequence of stopping times, (σn)n≥1,

that increases stationarily to T such that (φθ · S)σn is a true Q-martingale.

Then, for any ε > 0,
(

φ
φ+εX−

X−θ · S
)σn

is also a true Q-martingale. As a

result, we derive

E

∫ σn∧Tn

0

Xs−dVs(θ) = lim
ε↓0

E

∫ σn∧Tn

0

φs
φs + εXs−

Xs−dVs(θ) (5.9)

= lim
ε↓0

E

(
φ

φ+ εX−
·Xσn∧Tn

)
< +∞. (5.10)

137



The first equality follows from the monotone convergence theorem, while the

finiteness of the last quantity is due to (5.7).

Hence, V (θ) is locally integrable and, thus, (θ·S) is a Q-locally integrable. This

proves that (θ · S) is really a Q-local martingale. Furthermore, exp
(

1
2
θ · S

)
is

a positive Q-local submartingale. Then, the condition (5.4) and de la Vallée

Poussin’s argument imply that exp
(

1
2
θ · S

)
is a positiveQ-submartingale which

is square integrable. Hence the lemma follows from Jensen’s inequality.

Lemma 5.2: Suppose that (5.3) holds. Then the function, K : IRd → IR ∪
{−∞,+∞}, given by

K(λ) := bTλ+
1

2
λT cλ+

∫ (
eλ

T x − 1− λTh(x)
)
F (dx), λ ∈ IRd,

is convex, proper, closed, and continuously differentiable with

∇K(λ) = b+ cλ+

∫ (
xeλ

T x − h(x)
)
F (dx), λ ∈ IRd. (5.11)

Proof. Due to assumption (5.3), we deduce that∫
{|x|>1}

(
eλ

T x + 1
)
F (dx) < +∞, for any λ ∈ IRd, P ⊗ A− a.e. (5.12)

On the other hand, it is easy to check that

0 ≤ eα − 1− α ≤ α2

2
e|α|, ∀ α ∈ IR,

from which we get∫
{|x|≤1}

(
eλ

T x − 1− λTx
)
F (dx) ≤ 1

2
e|λ||λ|2

∫
{|x|≤1}

|x|2F (dx). (5.13)

Meanwhile, since S is a semimartingale, we deduce that I{|∆S|≤1} · [S, S] ∈ A+
loc,

which implies ∫
{|x|≤1}

|x|2F (dx) < +∞, P ⊗ A− a.e. (5.14)
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A combination of (5.12), (5.13) and (5.14), we obtain∫ (
eλ

T x − 1− λTh(x)
)
F (dx) < +∞, P ⊗ A− a.e. (5.15)

Therefore, K(λ) is a well defined real-valued function. Hence, K is proper and

closed with effective domain

dom(K) = IRd.

It is obvious that K is convex due to the convexity of λTxλ and
∫
eλ

T xF (dx).

To prove the differentiability of K, we notice that the function

λ→ bTλ+
1

2
λT cλ+

∫
{|x|>1}

eλ
T xF (dx)

is continuous differentiable. Hence, it is enough to prove that the function

K0(λ) :=

∫
{|x|≤1}

(
eλ

T x − 1− λTx
)
F (dx)

is continuously differentiable on IRd. To this end, let λ, γ ∈ IRd and notice that

|γ|−1
∣∣∣K0(λ+ γ)−K0(λ)−

∫
{|x|≤1}

γTx
(
eλ

T x − 1
)
F (dx)

∣∣∣
= |γ|−1

∣∣∣ ∫
{|x|≤1}

eλ
T x
(
eγ

T x − 1− γTx
)
F (dx)

∣∣∣
≤ e|λ|+|γ| |γ|

2

∫
{|x|≤1}

|x|2F (dx)→ 0, as |γ|↓ 0.

(5.15)

Therefore, the function K0 is continuous differentiable at λ with derivative,

OK0(λ), given by

∇K0(λ) =

∫
{|x|≤1}

x
(
eλ

T x − 1
)
F (dx).
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And hence K is also continuous differentiable at λ ∈ IRd with derivative,

∇K(λ), given by (5.11).

Lemma 5.3: The following assertions (i) and (ii) are equivalent:

(i) For any λ ∈ IRd, ∫
{|x|>1}

eλ
T xF (dx) < +∞. (5.16)

(ii) For any λ ∈ IRd, ∫
{|x|>1}

|x|eλT xF (dx) < +∞. (5.17)

As a result, if assertion (i) holds, then for any λ ∈ IRd, any q ∈ (0,+∞),∫
{|x|>1}

|x|qeλT xF (dx) < +∞. (5.18)

Proof. The implication (ii) =⇒ (i) is obvious. We focus on proving the reverse.

Let ei be the element of IRd that has the ith component equal to one and the

other components null. Then, due to the equivalence between norms in IRd, it

is enough to consider the norm |x|=
d∑
i=1

|xi|. Then, we get that

∫
{|x|>1}

|x|eλT xF (dx) =
d∑
i=1

∫
{|x|>1}

(
(eTi x)+ + (−eTi x)+

)
eλ

T xF (dx)

≤
d∑
i=1

∫
{|x|>1}

e(ei+λ)T xF (dx) +
d∑
i=1

∫
{|x|>1}

e(−ei+λ)T xF (dx).

(5.19)

Thus, the last term in the right hand side of the above string is finite for any

λ ∈ IRd, due to assertion (i). The proof of the remaining part of the lemma

follows from the same arguments.

Next, we will state our main results of this section. To this end, we first

assume that the process N = 1 and B is predictable with finite variation.
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Remark that this assumption may sound restrictive, but it leads to some kind

of “uniqueness” of the forward utility.

Theorem 5.1: Suppose that (5.3) holds and B = (Bt)0≤t≤T is a RCLL pre-

dictable process with finite variation. Then, the following assertions are

equivalent:

(i) The random field utility , U(t, ω, x) := − exp(−x+Bt(ω)), is a forward

utility.

(ii) The minimal entropy-Hellinger σ-martingale measure, Q̃, exists and

B = B0 + hE(Q̃, P ). (5.20)

Proof. The proof of this theorem will be achieved in two steps. The first step

(part 1)) will prove (ii) =⇒ (i), while the second step (part 2)) will prove the

reverse implication.

1) In this part, we will prove (ii) =⇒ (i). Suppose that assertion (ii) holds.

Then, thanks to Theorem 2.3 (or see Theorem 4.6 in [16]), the MEH σ-

martingale measure Q̃ with the density process, Z̃, satisfies

log(Z̃) = θ̃ · S + hE(Z̃, P ).

Thus, it is easy to check that −θ̃ is admissible and U(·,−θ̃ · S) = −eB0Z̃ is a

true martingale. Thanks to Lemma 5.1, it is also clear that for any admissible

portfolio θ ∈ Aadm(x), the process

U(·, θ · S) = −eB0Z̃ exp
[
−(θ + θ̃) · S

]
is a supermartingale. Hence assertion (i) follows immediately.

2) In this part, we prove (i) =⇒ (ii) in four steps ((a)–(d)). Precisely,

the first step (part (a)) will show that the optimal portfolio θ̂ satisfies the

pointwise equation that characterizes the MEH σ-martingale density when it

exists. The second step (part (b)) is devoted to the construction of a positive

local martingale, Z̃, candidate to the MEH σ-martingale density. The third
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step (part (c)) will prove (5.20). Finally, the last step (part (d)) will prove

the optimality of Z̃, and, in turn, conclude the whole part 2).

To this end, we suppose that assertion (i) holds. Then, there exists θ̂ ∈
Aadm(x) such that − exp

(
−(θ̂ · S)t +Bt

)
is a true martingale and for any

θ ∈ Aadm(x), the process − exp
(
−(θ · S)t +Bt

)
is a supermartingale.

a) Thanks to Ito’s formula, for any θ ∈ L(S),

− exp
(
−(θ · S)t +Bt

)
= −e−(θ·S)teBt = −eB0Et(Xθ)Et(XB),

Xθ := −θ · S + 1
2
θT cθ · A+ (e−θ

T x − 1 + θTx) ? µ,

XB := B −B0 +
∑

(e∆B − 1−∆B).

(5.21)

Therefore, for any admissible portfolio θ, the process − exp
(
−(θ · S)t + Bt

)
is a local supermartingale (respectively, a local martingale) if and only if the

process e∆B · Xθ + XB is a local submartingale (respectively, is a local mar-

tingale). This fact is equivalent to the statements (a.1) and (a.2) given by:

(a.1) the process |e−θT x − 1 + θTh(x)|?µ is locally integrable,

(a.2) and the process e−∆B · XB − K(θ) · A is nondecreasing (respectively is

null), where

K(θ) := θT b− 1

2
θT cθ +

∫ (
−e−θT x + 1− θTh(x)

)
F (dx), θ ∈ IRd. (5.22)

As a result, the optimal admissible portfolio for the forward utility, θ̂, maxi-

mizes the functional K over the set of admissible portfolios, and

K(θ̂) · A = e−∆B ·XB = e−∆B ·B +
∑

(1− e−∆B −∆Be−∆B). (5.23)

Then, using the optimality of θ̂ together with Lemma 5.2 (note that K(θ) =
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−K(−θ)) we conclude that −θ̂ is a root of the equation

b+ cθ +

∫
[eθ

T xx− h(x)]F (dx) = 0. (5.24)

Furthermore, by combining (5.23) and (5.24), and putting θ̃ := −θ̂, we get[
1

2
θ̃T cθ̃ +

∫
(θ̃Txeθ̃

T x − eθ̃T x + 1)F (dx)

]
·A = e−∆B·B+

∑
(1−e−∆B−∆Be−∆B).

(5.25)

b) Since θ̃ := −θ̂ ∈ L(Sc), the process θ̃ · Sc is a well-defined continuous local

martingale that will constitute the continuous part of Ñ := 1

Z̃−
· Z̃. Hence, to

define the pure discontinuous ingredient of Ñ , we consider the P̃-measurable

functional

Wt(x) := (γ̃t)
−1
(
eθ̃
T
t x − 1

)
, γ̃t := 1− at +

∫
eθ̃
T
t xν({t}, dx) (5.26)

and we will prove that W is (µ − ν)-integrable. This will be carried out in

several steps, see (b.1)–(b.5).

(b.1) Since θ̂ · S is a RCLL semimartingale, then the process I{|θ̃T∆S|≤α} · [θ̃ ·
S, θ̃ · S] is locally bounded and, hence, locally integrable. Then, due to

∑
(eθ̃

T∆S − 1)2I{|θ̃T∆S|≤α} � e2α
∑

(θ̃T∆S)2I{|θ̃T∆S|≤α}

� e2αI{|θ̃T∆S|≤α} · [θ̃ · S, θ̃ · S], (5.27)

we deduce that
∑

(eθ̃
T∆S − 1)2I{|θ̃T∆S|≤α} is locally integrable.

(b.2) Thanks to the equation (5.25) and the local integrability of both pro-

cesses e−∆B · B +
∑

(1− e−∆B −∆Be−∆B) and θ̃T cθ̃ · A, we deduce that the

non-decreasing process

(
θ̃Txeθ̃

T x − eθ̃T x + 1
)
? µ
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is locally integrable. A combination of this and

∑
|eθ̃T∆S−1|I{|θ̃T∆S|>α} �

∑[
eα − 1

α
+
θ̃T∆Seθ̃

T∆S − eθ̃T∆S + 1

α

]
I{|θ̃T∆S|>α},

(5.28)

implies the local integrability of
∑
|eθ̃T∆S − 1|I{|θ̃T∆S|>α}.

(b.3) Using the inequality

(∑
(eθ̃

T∆S − 1)2I{|θ̃T∆S|>α}

)1/2

�
∑
|eθ̃T∆S − 1|I|{θ̃T∆S|>α}

and parts (b.1)–(b.2), we obtain the local integrability of
(∑

(eθ̃
T∆S − 1)2

)1/2

.

(b.4) Due to (5.24) and the properties of the predictable characteristics of S

given in Section 2.A (precisely, c = 0 on {∆A 6= 0} and ∆Bt =

∫
h(x)ν({t}, dx)),

we obtain ∫
xeθ̃

T
t xνt(dx) = 0. (5.29)

By combining (5.29) and (5.25), we derive

γ̃ = 1 +

∫
(eθ̃

T
t x − 1)νt(dx) = e−∆B. (5.30)

Hence, γ̃−1 is locally bounded.

(b.5) Defining Γ := {x ∈ IRd | |θ̃Tx|≤ α} and using the notations of (5.26),

we derive

1

2

∑
(Ŵt)

2 �
∑(

1

γ̃t

∫
Γ

(eθ̃
T
t x − 1)νt(dx)

)2

+
∑(

(γ̃t)
−1

∫
IRd
\Γ

(eθ̃
T
t x − 1)νt(dx)

)2

�
∑

(γ̃t)
−2

∫
Γ

(eθ̃
T
t x − 1)2νt(dx) +

(∑
(γ̃t)

−1

∫
IRd
\Γ
|eθ̃Tt x − 1|νt(dx)

)2

� (γ̃)−2
(
eθ̃
T x − 1

)2

I{|θ̃T x|≤α} ? ν +
(

(γ̃)−1|eθ̃T x − 1|I{|θ̃T x|>α} ? ν
)2

.

Due to (b.1)–(b.2), the predictable nondecreasing processes (eθ̃
T x−1)2I{|θ̃T x|≤α}?

ν and |eθ̃T x−1|I{|θ̃T x|>α}?ν have finite variation and, thus, are locally bounded.
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This follows from the fact that these processes are the compensators of the two

processes discussed in (b.1) and (b.2) respectively. Due to the locally bound-

edness of γ̃−1 proved in part (b.4), the process
∑

(Ŵt)
2 is locally bounded.

(b.6) Using once more the local boundedness of γ̃−1, parts (b.1)–(b.4), and

(∑
(Wt(∆S)I{∆St 6=0} − Ŵt)

2
)1/2

�
(

2
∑

(Wt(∆S))2I{∆St 6=0}

)1/2

+
(

2
∑

(Ŵt)
2
)1/2

=

[
2(γ̃)−2

(
eθ̃
T x − 1

)2

? µ

]1/2

+
(

2
∑

(Ŵt)
2
)1/2

.

we deduce the locally integrability of
(∑

(Wt(∆S)I{∆St 6=0} − Ŵt)
2
)1/2

. This

ends the proof of the (µ− ν)-integrability of W (i.e. W ∈ G1
loc(µ), see (2.3) for

details), and hence W ?(µ−ν) is a local martingale and the process Z̃ := E(Ñ)

such that

Ñ := θ̃ · Sc +W ? (µ− ν), θ̃ = −θ̂, Wt(x) :=
eθ̃
T
t x − 1

1− at +
∫
eθ̃
T
t yν({t}, dy)

,

(5.31)

is well defined and is a σ-martingale density for S due to the equation (5.24)

satisfied by θ̃ and Proposition 2.2.

c) Considering (5.25) and (2.27), on {∆A = 0}, we derive

I{∆A=0} ·B =
(
e−∆BI{∆A=0}

)
·XB

= I{∆A=0}

[
θ̃T cθ̃

2
+

∫ (
θ̃Txeθ̃

T x − eθ̃T x + 1
)
F (dx)

]
· A(5.32)

= I{∆A=0} · hE(Z̃, P ).

Due to (5.30), we have ∆B = − log(γ̃). Hence, by combining this with (2.29)

(here λ = θ̃ and, hence, γ = γ̃), we obtain

∆B = ∆hE(Z̃, P ). (5.33)
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Therefore, (5.20) follows immediately from (5.32) and (5.33).

d) Thanks to Proposition 3.2 in [17] (see also Proposition 4.2 in [16] for the

case of quasi-left continuity), it is enough to consider a positive σ-martingale

density Z = E(N) of the form

N = β·Sc+Y ?(µ−ν), Yt(x) = kt(x)+
k̂t

1− at
I{at<1}, k̂t :=

∫
kt(x)ν({t}, dx),

where β ∈ L(S) and
(∑

kt(∆St)
2I{∆St 6=0}

)1/2 ∈ A+
loc. Then, due to the con-

vexity of zT cz and φ(z) := (1 + z) log(1 + z)− z, we obtain on {∆A = 0} on

one hand

dhE(Z, P )

dA
− dhE(Z̃, P )

dA

=

∫ [
φ(k(x))− φ

(
eθ̃
T x − 1

)]
F (dx) +

1

2
(βT cβ − θ̃T cθ̃) (5.34)

≥ θ̃T c(β − θ̃) +

∫
θ̃Tx

(
k(x) + 1− eθ̃T x

)
F (dx) = 0. (5.35)

Indeed, the equation (5.34) comes from Lemma 2.4 and Proposition 3.5 in [18],

while the equality (5.35) is derived from a combination of (5.24) for Z̃ and a

similar equation for Z, i.e.

0 = b+ cβ +

∫
[x(k(x) + 1)− h(x)]F (dx)

since Z is a σ-martingale density for S (see Proposition 2.2). On the other

hand, due to the convexity of φ, we get

∆hE(Z, P )−∆hE(Z̃, P )

=

∫ [
φ(k(x))− φ

(eθ̃T x
γ̃
− 1
)]
ν̃(dx) + (1− a)

[
φ
( −k̂

1− a

)
− φ
(1

γ̃
− 1
)]

(5.36)

≥
∫

[k(x) + 1− eθ̃
T x

γ̃
](θ̃Tx+ log(

1

γ̃
))ν̃(dx) + (1− a)(1− k̂

1− a
− 1

γ̃
) log(

1

γ̃
).

=

∫ [
(k(x) + 1)− (γ̃)−1eθ̃

T x
]
θ̃Txν̃(dx) = 0, (5.37)
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where ν̃t(dx) := ν({t}, dx). Indeed, the equation (5.36) is derived from Lemma

2.4 and Proposition 3.5 in [18]. The equation (5.37) follows from the fact that

Z and Z̃ are σ-martingale densities for S and an application of Proposition

2.2. Thus, by combining (5.35) and (5.37), we deduce that Z̃ is the MEH σ-

martingale density for S. Furthermore, due to Theorem 2.3, (5.20) and θ̃ = −θ̂
(see part a), (b.1)–(b.6) and c)), we get

Z̃ = e−B0 exp
[
B − (θ̂ · S)

]
= −e−B0U1(·, θ̂ · S).

Hence, it is a true martingale and this implies the existence of the MEH σ-

martingale measure, Q̃. This proves assertion (ii) and the proof of the theorem

is complete.

Remark: 1. It is clear that the proof of the part (ii) =⇒ (i) of Theorem

5.1 follows easily from [16] and [17]. In fact, it was clearly stated in those

papers that this kind of robustness with respect to the horizon is one of

the important features of the minimal entropy-Hellinger σ-martingale

measure that other σ-martingale measures lack to possess; see, also, [18]

for a more explicit relationship between this horizon-robustness for σ-

martingale measures and utility maximization for all HARA utilities.

2. The highly original part of Theorem 5.1 lies in proving that the only for-

ward utility of this kind (i.e. when B is predictable with finite variation)

is the one given through the MEH σ-martingale measure and this σ-

martingale measure exists in fact. Furthermore, this original part of the

theorem also gives necessary and sufficient conditions for the existence of

MEH σ-martingale measure via the utility maximization problem with

weaker conditions on S.

Theorem 5.1 sounds restrictive due to the assumption on B, while—as we

will illustrate in the proof of the next theorem—it is crucial and constitutes

an important step for proving our general result. This result requires some

preparations.
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Definition: A RCLL semimartingale B is called exponentially special, if

exp(B) is a special semimartingale, i.e.

exp(B) = exp(B0) +M (B) + A(B), (5.38)

where M (B) is a local martingale, A(B) is predictable with finite variation

such that M
(B)
0 = A

(B)
0 = 0.

Lemma 5.4: Let B be a RCLL semimartingale. Then, the following hold.

(i) If B is exponentially special, then there exists a unique positive local

martingale, Z(B), and predictable process, B′, with finite variation such that

eB = eB0+B′Z(B), B′0 = 0, Z
(B)
0 = 1. (5.39)

(ii) Suppose that pB is exponentially special, for some p ∈ (1,+∞), Z(B) is

a true martingale, and that (5.3) holds. Then,∫
{|x|>1}

|x|eλT xFQ(dx) < +∞, for all λ ∈ IRd, (5.40)

where FQ is the kernel measure for the jumps sizes of S under Q := Z
(B)
T ·P.

Proof. Since eB is a special semimartingale, then e−B− · eB is also a special

semimartingale. Then, there exist unique local martingale, N (B), and a pre-

dictable process, C(B), with finite variation such that

e−B− · eB = N (B) + C(B) and C
(B)
0 = N

(B)
0 = 0.

Then, the above equation implies

eB = eB0E
(
N (B) + C(B)

)
, 1 + ∆C(B) > 0 and 1 +

∆N (B)

1 + ∆C(B)
> 0.

As a result, the process 1
1+∆C(B) ·N (B) is a local martingale, E

(
1

1+∆C(B) ·N (B)
)
>

0, and E
(
C(B)

)
is a positive predictable process with finite variation. Then,
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due to Yor’s formula (i.e. E(X)E(Y ) = E(X+Y +[X, Y ]) for any semimartin-

gales X, Y ), we write

eB = eB0E
(

1

1 + ∆C(B)
·N (B)

)
E
(
C(B)

)
.

Thus, assertion (i) follows directly from putting Z(B) := E
(

1
1+∆C(B) ·N (B)

)
and B′ := log

[
E(C(B))

]
.

Next, we will prove the assertion (ii). To this end, we suppose that pB is

exponentially special. Thus, B is exponentially special and, hence, assertion

(i) holds. On the other hand, it is clear that (Z(B))p is locally integrable (i.e. a

special semimartingale), and FQ(dx) = (1+f(x))F (dx), if (β, f, g,M) is Jacod

components for M (B) := 1

Z
(B)
−
· Z(B). Then, due to Lemma 5.3, we deduce

∫
{|x|>1}

|x|eλT xFQ(dx) =

∫
{|x|>1}

|x|eλT x(1 + f(x))F (dx)

≤
(∫

I{|x|>1}|x|qeqλ
T xF (dx)

) 1
q
(∫

I{|x|>1}(1 + f(x))pF (dx)

) 1
p

< +∞.

This proves assertion (ii), and the proof of the lemma is complete.

Now, we will state our main and general result of this section.

Theorem 5.2: Suppose that S satisfies (5.3) and consider a RCLL semi-

martingale, B, such that pB is exponentially special for some p ∈ (1,+∞).

Then, the following results hold.

1) The following assertions, (i) and (ii), are equivalent:

(i) The random field utility, U1(t, ω, x) = − exp (−x+Bt(ω)), is a forward

utility with optimal portfolio θ̂.

(ii) There exists a unique positive local martingale Z(B) satisfying:

(ii.a) The MEH σ-martingale density with respect to Z(B) exists. It is de-

noted by Z̃(B) and satisfies

B −B0 = log
[
Z(B)

]
+ hE

(
Z̃(B), Z(B)

)
. (5.41)
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(ii.b) The process Ẑ(B) := Z̃(B)Z(B) is a true martingale, Q̂(B) := Ẑ
(B)
T · P

is a σ-martingale measure, and Ẑ(B) log
[
Ẑ(B)

]
is locally integrable (i.e a

special semimartingale).

(ii.c) We have

log(Z̃(B)) = θ̃(B) · S + hE
(
Z̃(B), Z(B)

)
and θ̃(B) = −θ̂. (5.42)

2) If assertion (i) holds and furthermore, B satisfies

sup
τ∈TT

E
[
epBτ

]
< +∞ for some p ∈ (1,+∞), (5.43)

then Z(B) is a true martingale. Moreover, the probability Q̂(B) has finite

P -entropy, i.e. Q̂(B) ∈Me
f (S).

Proof. The proof of this theorem will be given in three parts. The first part

(part I)) will prove (i) =⇒ (ii), the second part (part II)) will prove the reverse,

while the last part (part III)) will prove assertion 2). First, notice that under

the assumptions of this theorem, the assertions of Lemma 5.4 hold.

I) Suppose that assertion (i) holds and consider a sequence of stopping times,

(Tn)n≥1, that increases stationarily to T such that (Z(B))Tn is a true martingale

and B′t∧Tn is bounded. Then, by putting Qn := Z
(B)
Tn
· P , and using Lemma

2.3, we deduce that the process Un(t, ω, x) := − exp(−x+B′t∧Tn) is a forward

dynamic utility for (STn , Qn). Therefore, assertion (ii) of Lemma 5.4 (precisely

condition (5.40)) guarantee a direct application of Theorem 5.1 on the model

(STn , Qn, Un). This implies the existence of the MEH σ-martingale measure

with respect to Qn, denoted by Q̃n, whose density Z̃(B,n) satisfies

B′t∧Tn = hEt

(
Z̃(B,n), Qn

)
.

Using Lemma 2.5, we conclude that the MEH σ-martingale density with re-
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spect to Z(B), denoted by Z̃(B), exists and satisfies

B′t = hEt

(
Z̃(B), Z(B)

)
.

Then, plugging this equation into (5.39), the assertion (ii)-(a) follows imme-

diately.

From Theorem 2.5, we have

log(Z̃(B)) = θ̃(B) · S + hE
(
Z̃(B), Z(B)

)
,

where the process θ̃(B) is explicitly described and coincides with −θ̂; this fol-

lows as a consequence of Theorem 5.1 on the model (STn , Qn, Un). This proves

(ii)-(c).

To prove assertion (ii)-(b), it is easy to note that—due to the definition of

Z̃(B)—Ẑ(B) is a σ-martingale density for S, and Z(B)Z̃(B) log(Z̃(B)) is locally

integrable.

Now, we will prove that Ẑ(B) log(Ẑ(B)) is locally integrable. Consider a se-

quence of stopping times, (Tn)n≥1, that increases stationarily to T such that

E
[
(Z

(B)
Tn

)p
]
< +∞ (this is possible since pB is exponentially special) and

hEt∧Tn

(
Z̃(B), Z(B)

)
is bounded. Then, by putting ε = p−1 and Qn := Z

(B)
Tn
·P ,

and using Young’s inequality (i.e. xy ≤ y log(y)− y + ex), we derive

E
[
Z

(B)
Tn
Z̃

(B)
Tn

log(Z
(B)
Tn

)
]

= EQn

(
1

ε
Z̃

(B)
Tn

log[(Z
(B)
Tn

)ε]

)
≤ EQn

[
Z̃

(B)
Tn

ε
log(

Z̃
(B)
Tn

ε
)−

Z̃B
Tn

ε

]
+ EQn

[
(Z

(B)
Tn

)ε
]

≤ EQn

[
Z̃

(B)
Tn

ε
log(

Z̃B
Tn

ε
)

]
− 1

ε
+ E

[
(Z

(B)
Tn

)p
]
.

This proves that Z(B)Z̃(B) log(Z(B)) is locally integrable. Thus, by putting

Ẑ(B) log(Ẑ(B)) = Z(B)Z̃(B) log(Z̃(B)) + Z(B)Z̃(B) log(Z(B)), (5.44)
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we deduce that Ẑ(B) log(Ẑ(B)) is locally integrable.

II) Suppose that assertion (ii) holds. Then, assertions (ii)-(b) and (ii)-(c)

imply that −θ̃(B) is an admissible portfolio, the process

U
(
t,−(θ̃(B) · S)t

)
= − exp

(
(θ̃(B) · S)t +Bt

)
= −eB0Ẑ

(B)
t ,

is a true martingale, and Q̂ := Ẑ
(B)
T ·P is a σ-martingale measure for S. Then,

for any admissible portfolio θ, we have

sup
τ∈TT

EQ̂ exp
[
−(θ + θ̃(B)) · Sτ

]
= e−B0 sup

τ∈TT
E exp

[
Bτ − (θ · S)τ

]
< +∞.

Thus, thanks to Lemma 5.1, we deduce that the process

− exp
(
−θ · S +B

)
= −eB0Ẑ(B) exp

(
−(θ̃ + θ) · S

)
,

is a supermartingale. This proves assertion (i).

III) Thanks to (5.41), (5.44), and assertion (ii)-c), we obtain

E
(
Ẑ

(B)
τ∧Tn log

[
Ẑ

(B)
τ∧Tn

])
= EQn

(
Z̃

(B)
τ∧Tn log

[
Z̃

(B)
τ∧Tn

])
+ EQn

[
Z̃

(B)
τ∧Tn

(
BTn∧τ −B0 − log Z̃

(B)
τ∧Tn

)]
= E

[
Ẑ

(B)
τ∧TnBτ∧Tn

]
−B0.

Hence, again Young’s inequality yields

E
(
Ẑ

(B)
τ∧Tn log

[
Ẑ

(B)
τ∧Tn

])
≤ p

p− 1
sup
σ∈TT

E
(
epBσ

)
− p

p− 1
B0.

Then, using Fatou’s lemma, the above inequality leads to Q̂(B) ∈ Me
f (S)

and, hence, assertion 2) of the theorem follows. This ends the proof of the

theorem.

Theorem 5.3: Let B be a RCLL semimartingale and N := E(π·S) a numéraire.

Then, there is equivalence between:
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(i) The random field utility U(t, ω, x) = − exp
(
−x+Bt(ω)

Nt(ω)

)
is a forward util-

ity for the assets S, and

(ii) The random field utility U(t, ω, x) := − exp
(
−x+ Bt(ω)

Nt(ω)

)
is a forward

utility for the assets

S := S − 1

1 + πT∆S
· [S, π · S]. (5.45)

Proof. Due to Yor’s formula, we deduce that

1

N
= E

(
−π · S +

1

1 + πT∆S
· [π · S, π · S]

)
.

On the other hand, Ito’s formula yields

d

(
θ · S
N

)
= φ(θ)dS, (5.46)

where φ(θ) is given by

φ(θ) :=
θ − (θ · S)−π

N−
, for any θ ∈ L(S). (5.47)

As a result, we get

U (t, x+ (θ · S)t) = U
(
t, x+ (φ(θ) · S)t

)
, for any θ ∈ L(S).

Therefore, for any process θ, θ ∈ Aadm(x, S, U) if and only if φ(θ) ∈ Aadm(x, S, U).

The proof of the theorem follows easily.

Remark: 1. Theorem 5.3 yields our complete and explicit parametriza-

tion for the exponential forward utilities. In fact, using a nice result

of [75] that states that if − exp(−x+B
N

) is a forward utility, then N is a

numéraire and B is a semimartingale. This gives us the first parametriza-

tion through the description of N . Then, by using Theorem 5.3, we

transfer the self-generating property to the model S and the payoff

B = B
N

instead, and Theorem 5.2 completes the explicit parametriza-
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tion of the utility by describing the structure of B. Thus, the parame-

ters of a forward utility are (π,N (B)) ∈ L(S)×Mloc(P ) or equivalently

(π, β, f, g,N
(B)

).

2. The semimartingale property for B becomes obvious from the definition

of forward dynamic utility if the set of admissible portfolios Aadm(x)

contains the null portfolio for some x ∈ IR. This situation is realizable

when more integrability conditions are imposed on the payoff B such as

boundedness for instance.

The following remark discusses the originality of this section, and compare

its results (mainly Theorems 5.1–5.2) with the most recent literature on the

exponential forward dynamic utilities.

Remark: This remark, as suggested by an anonymous referee, discusses the

originality of the results of this section and compares them with those of

Zitkovic obtained in [75] (especially Theorem 4.4 of that paper). To this

end, we focus on the case of N = 1 for simplicity. The result of Zitkovic

in [75] characterizes the exponential forward utility relying on the relative

conditional entropy concept. Precisely, for any Q ∈ Pa with density process

ZQ, and any 0 ≤ t ≤ T < +∞,

H(Q, t, T ) := E

(
ZQ
T

ZQ
t

log
(ZQ

T

ZQ
t

)∣∣∣Ft) ,
denotes the relative conditional entropy of Q with respect to P . Using this

concept, Zitkovic derived the following characterization

Bt = − ess inf
Q∈Ma

f (S)
H(Q, t, T ), (5.48)

for the case of N = 1, for any 0 ≤ t ≤ T < +∞. Here, Ma
f (S) denotes the

set of Q ∈ Pa with finite entropy (i.e. H(Q, 0, T ) < +∞ for any T ) such

that S is a Q-local martingale.
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It is very clear—up to our knowledge—that for any T , the essential inf in

the RHS term of (5.48) is attainable under Zitkovic’s assumptions (i.e. S

locally bounded and Ma
f (S) 6= ∅) by the minimal entropy martingale mea-

sure for the model ST . It is, also, very clear that there is no single result

in the literature that describes explicitly this optimal martingale measure

for the general semimartingale S. Thus, in our view, (5.48) is a characteri-

zation that is not applicable (at least we do not see how to apply it) and it

is not explcit for general case of locally bounded semimartingale S. Thus,

This result does not parameterize the exponential forward utility, while our

results (of this section) give a clear and explicit parametrization.

Furthermore,—as mentioned by an anonymous referee—our assumptions on

the model S are much more general than those of Zitkovic. Indeed, in [75],

the author assumed that S is locally bounded andMa
f (S) 6= ∅, while we de-

signed our parametrization under the assumption (5.3) which is much more

weaker.

In our view, the most practical result of [75]—beside the section that deals

with the easiest case of Ito processes—is Proposition 4.7, where the au-

thor proved that the process N (denoted by γ in his chapter) should be a

numéraire. In other words, there exists π ∈ L(S) such that N = N0E(π ·S).

Herein, we use this nice result to complete our full parametrization.

5.B Discrete-Time Market Models

Recall the discrete-time market models described in Section 3.B. Now, we

consider the family of exponential utilities, given by

U1(j, x) = − exp(−x+Bj), j = 0, 1, ..., N, , x ∈ IR. (5.49)

Suppose that the process B satisfies

sup
0≤j≤N

E(eBj) < +∞. (5.50)
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Define the set of admissible portfolios for the jth period of time (j = 1, 2, ..., N),

denoted by Θ
(1)
j , and is given by

Θ
(1)
j :=

{
θ ∈ L0(Fj−1) | E

(
exp(−θT∆Sj +Bj) | Fj−1

)
< +∞

}
. (5.51)

The next theorem will state our parametrization algorithm for the subclass of

exp-type forward utilities having the form of (5.49).

Theorem 5.4: Suppose that (5.50) holds. Then, the following are equivalent.

(i) The functional U1(j, x), defined in (5.49), is a forward utility with the

optimal portfolio denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The following two properties hold:

(ii.1)The process θ̂ = (θ̂j)j=1,...,N satisfies θ̂j ∈ Θ
(1)
j and θ̂j is a root for the

equation

E
(
exp(−λT∆Sj +Bj)∆Sj|Fj−1

)
= 0, j = 1, 2, ..., N. (5.52)

(ii.2) There exists a positive martingale M = (Mj)j=0,...,N such that M0 = 1

and

Bj = B0 +log(Mj)−
j∑

k=1

log
[
EQ
(

exp(−θ̂Tk ∆Sk)|Fk−1

)]
, j = 0, 1, ..., N, 1

(5.53)

where Q := MN · P .

Proof. Suppose that assertion (i) holds, then 2

U1

(
j,

j∑
k=1

θ̂Tk ∆Sk

)
= − exp(−

j∑
k=1

θ̂Tk ∆Sk +Bj), j = 0, 1, ..., N, (5.54)

1By convention, the sum over empty set is zero.
2By convention, the product over empty set is one.
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is a martingale and

U1

(
j,

j∑
k=1

θTk ∆Sk

)
− exp(−

j∑
k=1

θTk ∆Sk +Bj), j = 0, 1, ..., N, (5.55)

is a supermartingale for any admissible portfolio θ (i.e. θj ∈ Θ
(1)
j , j = 1, ..., N).

By combining (5.55) and the assumption (5.50), we deduce that the process

− exp(B) is a supermartingale. Remark that in discrete time models, any

positive special semimartingale can be decomposed explicitly as follows:

exp(Bj) = exp(B0)MjAj, (5.56)

where

Mj =

j∏
k=1

exp(Bk)

E (exp(Bk)|Fk−1)
, Aj =

j∏
k=1

E

(
exp(Bk)

exp(Bk−1)

∣∣∣Fk−1

)
,

It is clear that M is a positive martingale and A is a predictable process.

Put Q := MN · P . Then, by combining Bayes’ rule with (5.54) and (5.55)

respectively, we obtain

EQ
(

exp(−θ̂Tj ∆Sj)|Fj−1

)
=
Aj−1

Aj
, j = 1, ..., N (5.57)

and EQ
(
exp(−θTj ∆Sj)|Fj−1

)
≥ Aj−1

Aj
, ∀ θj ∈ Θ

(1)
j , j = 1, ..., N. (5.58)

From (5.57) and (5.56), we derive (ii.2) directly. Now, we combine (5.57) and

(5.58) together and obtain for every j = 1, ..., N ,

EQ
(

exp(−θ̂Tj ∆Sj)|Fj−1

)
≤ EQ

(
exp(−θTj ∆Sj)|Fj−1

)
, ∀ θj ∈ Θ

(1)
j . (5.59)

By considering the functional

Φj(y) :=

∫
exp(−yTx)G̃j(dx), G̃j(dx) := Q(∆Sj ∈ dx|Fj−1), (5.60)
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the inequality (5.59) is equivalent to

Φj(θj) ≥ Φj(θ̂j), ∀ θj ∈ Θ
(1)
j , j = 1, 2, ..., N. (5.61)

Based on the definition of admissible portfolio in (5.51), the functional Φj is

proper, closed, convex and differentiable on IRd. Therefore, θ̂j is the root of∫
exp(−λTx)xG̃j(dx) = EQ

(
exp(−λT∆Sj)∆Sj|Fj−1

)
= 0, j = 1, 2, ..., N..

This proved (5.52) and completes the proof of (i)⇒(ii).

To prove the reverse, we suppose that assertion (ii) holds. Put Q := MN · P .

Then, for j = 0, 1, ..., N ,

U1

(
j,

j∑
k=1

θ̂Tk ∆Sk

)
= − exp(−

j∑
k=1

θ̂Tk ∆Sk +Bj)

= −Mj exp(−
j∑

k=1

θ̂Tk ∆Sk)

[
j∏

k=1

EQ(exp(−θ̂Tk ∆Sk)|Fk−1)

]−1

,

which is a martingale by a simple calculation. For any admissible portfolio

(θj)j=1,2,...,N , the convexity of the function exp(−y) implies

exp(−θTj ∆Sj +Bj)− exp(−θ̂Tj ∆Sj +Bj) ≥ exp(−θ̂Tj ∆Sj +Bj)(θ̂j − θj)T∆Sj.

By taking conditional expectation in both sides above and using (5.52), we

obtain

E
(

exp(−θ̂Tj ∆Sj +Bj)|Fj−1

)
≤ E

(
exp(−θTj ∆Sj +Bj)|Fj−1

)
. (5.62)

By multiplying both sides of (5.62) with

j−1∏
k=1

exp(−θTk ∆Sk) and using

E
(

exp(−θ̂Tj ∆Sj +Bj)|Fj−1

)
= exp(Bj−1)
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which follows from the martingale property of U1(j,
∑j

k=1 θ̂
T
j ∆Sj), we derive

E

(
U1

(
j, x

j∑
k=0

θTk ∆Sk

)
|Fj−1

)
≤ U1

(
j − 1, x

j−1∑
k=0

θTk ∆Sk

)
.

This proves that U

(
j, x

j∑
k=0

log(1 + θTk ∆Sk)

)
, j = 0, 1, ..., N , is a super-

martingale for any admissible θ and this completes the proof of this theo-

rem.

5.C Discrete Market Models

To further exhibit the characterization of exponential forward utilities in discrete-

time markets, we will consider two particular cases. Namely, the binomial

model and the multi-dimensional discrete model. For details on the setup of

these two models, I refer the readers to Subsections 3.C.1 and 3.C.2.

5.C.1 One-Dimensional Binomial Model

In binomial model, the stock price process, S, satisfies for j = 1, ..., N ,

Sj+1 = S0

j+1∏
k=1

ξk, .

where ξk+1 is a random variable that takes either ξdk+1 or ξuk+1. Here, ξdk+1 and

ξuk+1 are real numbers such that 0 < ξdk+1 < 1 < ξuk+1. We denote a sequence

of events for j = 1, ..., N ,

Aj := {ξj = ξuj } ∈ Fj.

Furthermore, due to #(Ω) < +∞, it is obvious that any real-valued random

variable is integrable and its conditional expectation is finite as well. Thus,

we conclude that the admissible sets, Θ
(1)
j , defined in (5.51) take the following
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forms

Θ
(1)
j = L0(Fj−1), j = 1, ..., N. (5.63)

Theorem 5.5: The following are equivalent.

(i) The functional U1(j, x), defined in (5.49), is a forward utility with the

optimal portfolio denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) There exists a martingale M = (Mj)j=0,...,N such that M0 = 1 and for

j = 0, ..., N , the following two properties hold:

(ii.1) θ̂ = (θ̂j)j=1,...,N is given by

θ̂j =
log(Qj(ξ

u
j − 1))− log((1−Qj)(1− ξdj ))

(ξuj − ξdj )Sj−1

, j = 1, ..., N, (5.64)

where Qj := Q(Aj|Fj−1) and Q := MN · P .

(ii.2) B can be described as follows for j = 0, 1, ..., N

Bj = B0+log(Mj)−
j∑

k=1

log
(

exp((1−ξuk )θ̂Sk−1)Qk+exp((1−ξdk)θ̂Sk−1)(1−Qk)
)
.

(5.65)

Proof. The proof is straightforward from the proof of Theorem 5.4 and the

following remarks.

a) The assumption (5.50) is automatically satisfied since the sample space is

finite.

b) The function given by (5.60) becomes

Φj(θ) = exp[(1− ξuj )λSj−1]Q(Aj|Fj−1) + exp[(1− ξdj )λSj−1]Q(Acj|Fj−1),

and its derivative is given by

Φ′j(λ) = Sj−1(ξuj − 1) exp
[
(1− ξuj ) λSj−1

]
Qj +

Sj−1(ξdj − 1) exp
[
(1− ξdj )λSj−1

]
(1−Qj).

The root of Φ′j(λ) = 0 is obviously given by (5.64).

c) Assertion (ii.2) is a direct application of (5.53).
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This ends the proof of this theorem.

5.C.2 Multi-Dimensional Discrete Model

The setting of the model is same with the model introduced in Section 3.C.2.

To this end, we use the same notations as there and skip their definitions. We

only remark that due to #(Ω) < +∞, the admissible sets, Θ
(1)
j , defined in

(5.51) take the following forms

Θ
(1)
j = L0(Fj−1), j = 1, ..., N. (5.66)

The main result in this subsection is given the following theorem.

Theorem 5.6: The following are equivalent.

(i) The functional U1(j, x), defined in (5.49), is a forward utility with the

optimal portfolio denoted by θ̂ = (θ̂j)j=1,2,...,N .

(ii) The following two properties hold:

(ii.1)There exists a martingale M = (Mj)j=0,...,N , M0 = 1, such that, for

j = 0, ..., N ,

Bj = B0 + log(Mj)−
j∑

k=1

log [Yk] . (5.67)

where we put Q := MN · P and

Yk :=
∑

(n1,...,nd)∈Ñ

Q(Ak(n1, ..., nd)|Fk−1)

exp
(
θ̂T (Ξk(n1, ..., nd)− Id×d)Sk−1

) .
(ii.2) θ̂ = (θ̂j)j=1,...,N is such that θ̂j ∈ L0(Fj−1) and θ̂j is a root of the

equation for j = 1, ..., N

∑
(n1,...,nd)∈Ñ

(Ξj(n1, ..., nd)− Id×d)Id
exp(θT (Ξj(n1, ..., nd)− Id×d)Sj−1)

Q(Aj(n1, ..., nd)|Fj−1) = 0.

(5.68)

Proof. This theorem is a particular case of Theorem 5.4 by considering finite

sample space. Note that the assumption (5.50) is automatically satisfied since

161



the sample space is finite. Therefore, (5.67) and (5.68) can be derived by

writing the expectation in (5.53) and (5.52) for discrete sample space.

5.D Lévy Market Models

Recall the model described in Section 3.D, the stock price process S is given by

S = S0 exp(X), where X is a Lévy process. We consider a class of exponential

forward utilities given in the form of

U1(t, ω, x) := − exp(−x+Bt(ω)). (5.69)

For any probability measure Q, any stock price process X, and x ∈ IR such

that U0(t, x, ω) < +∞ we denote by

Aadm(X,Q) :=
{
π ∈ L(X) | sup

τ∈TT
EQ [exp(−π ·Xτ +Bτ )] < +∞

}
, (5.70)

the set of admissible portfolios for the model (X,Q,U). Here TT is the set of

stopping time, τ , such that τ ≤ T . When X = S and Q = P , we simply write

Aadm .

Theorem 5.7: Suppose that S is locally bounded and consider a RCLL semi-

martingale, B, which is exponentially special. Then the following two asser-

tions are equivalent.

(1) The functional U1 given by (5.69) is a forward utility with the optimal

portfolio θ̂.

(2) There exists a local martingale M := E(N) (let (β, Y, V,N ′) denote the

Jacod components of N) such that

(2.a) B can be written as

B = B0 + log(M)−
∫ ·

0

[
1

2
σ2e2Xu θ̂2

u+

+

∫
IR\{0}

f1(exp(−eXu(ex − 1)θ̂u)− 1)Y (eXu(ex − 1))FX
u (dx)]du.

(5.71)
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(2.c) The optimal portfolio θ̂ is a root for

γ+
1

2
σ2+eX−σ2(β−λ)+

∫
IR\{0}

(ex − 1)Y (eX−(ex − 1))

exp(eX−(ex − 1)λ)
FX(dx) = 0. (5.72)

(2.d) The local martingale exp(−θ̂ · S +B) is a true martingale.

Proof. By Ito’s formula, the dynamics of S can be presented as

dSt
St−

= (γ +
1

2
σ2 +

∫
IR\{0}

(ex− 1)FX
t (dx))dt+ σdWt +

∫
IR\{0}

(ex− 1)Ñ(dt, dx).

The triplet of predictable characteristics of S can be written as follows,

Sct =

∫ t

0

eXuσdWu, ct = e2Xt−σ2,

bt = eXt−(γ +
1

2
σ2 +

∫
IR\{0}

(ex − 1)FX
t (dx))

For any measurable and non-negative/integrable function k(x), FX is related

to F S as follows∫
IR\{0}

k(x)F S(dx) =

∫
IR\{0}

k(eX−(ey − 1))FX(dy).

Since B is assumed to be exponentially special, due to Lemma 5.4, it can be

decomposed as

exp(B) = exp(B0)M exp(B′),

where M is a positive local martingale with M0 = 1. Hence, M = E(N), where

the local martingale N can be represented as

N = β · Sc + (Y − 1) ? (µ− ν) + V ? µ+N ′, ν(dt, dx) = F S(dx)dt.

By the procedure of localization, it is enough to consider M to be a true

martingale and define Q := MT · P , then the characteristics of S with respect
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to Q are

Sc,Q =

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2βudu,

bQ = eX−γ + e2X−σ2β +
1

2
eX−σ2 + eX−

∫
IR\{0}

Y (eX−(ex − 1))(ex − 1)FX(dx)

FQ(dx) = Y (x)F S(dx).

For locally bounded S, the assumption (5.3) is satisfied under measure Q.

Hence, based on Theorem 5.2, θ̂ is the root of the equation (5.72). The Minimal

Entropy Hellinger process, hE(Z̃Q, Q) helps us to find the representation of B

in (5.71). Anything else that is not proved here is straightforward and the

reader can find hints in the proof of Theorems 5.1 and 5.2.

5.D.1 Cramér-Lundberg Risk Model

Consider the classical Cramér-Lundberg risk process (Rt)t≥0, given by

Rt = x+ γt−
Nt∑
i=1

Yi. (5.73)

Here (Yi)i≥1 are i.i.d positive random variables representing the claims, N =

(Nt)t≥0 is an independent Poisson process with intensity λ > 0 modeling the

times at which the claims occur, x > 0 denotes the initial surplus, and γ is a

premium intensity. The stock price process is given by S = exp(R). In this

model, there is no Brownian Motion and the source of risk coming from the

compound Poisson process.

We assume that each claim follows normal distribution, N(µ, σ) with density

function

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Theorem 5.8: Consider the functional U1(t, ω, x) defined in (5.69). Suppose

that pB is exponential special for some p > 1. Then the following two

assertions are equivalent.
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(1) The functional U1 is a forward utility with the optimal portfolio θ̂.

(2) There exists a local martingale M := E(N) (let (β, Y, V,N ′) denote the

Jacod components of N) such that

(2.a) B can be written as

B = B0 + log(M)−

λ

∫ ·
0

[∫
f1(exp(−Su−(ex − 1)θ̂u)− 1)Y (Su−(ex − 1))f(x)dx

]
du.

(5.74)

(2.b) The optimal portfolio θ̂ is a root for

γ + λ

∫
ex − 1

exp(S−(ex − 1)θ)
Y (S−(ex − 1))f(x)dx = 0. (5.75)

(2.c) The local martingale exp(−θ̂ · S +B) is a true martingale.

Proof. Notice that for normal distribution, the intensity ν(dt×dx) = Ft(dx)dt

becomes

F (dx) = λf(x)dx.

Furthermore, the assumption (5.3) is satisfied. Thus, by associating the as-

sumption that pB is exponential special for some p > 1, the functional

Φ(θ) := θb− 1

2
cθ2 + λ

∫
f(x)(−e−θx + 1− θh(x))dx

is proper, closed, convex and differentiable. If (i) holds, θ̂ is the minimum of

Φ(x). That is, the root of (5.75).

Anything else on the proof–that is not provided here–is straightforward and

the reader can find them in the proof of Theorems 5.1 and 5.2.

5.D.2 Jump-Diffusion Model

Consider the jump-diffusion model of Subsection 3.D.1. In current subsection,

we will characterize the exponential forward utilities for this model.
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Theorem 5.9: Consider the functional U1(t, ω, x) defined in (5.69). Suppose

that B satisfies

sup
τ∈TT

E(eBτ ) < +∞. (5.76)

Then the following two assertions are equivalent.

(1) The functional U1 is a forward utility with the optimal portfolio θ̂.

(2) U1 has the following properties:

(2.a) There exists a positive local martingale M , and predictable processes

α and η satisfying

∫ T

0

(α2
u + η2

u)du < +∞, P − a.s., such that

Mt =

∫ t

0

αudWu +

∫ t

0

ηudÑu, M0 = 0, t ∈ [0, T ]

and

B = B0 +log(M)−
∫ ·

0

[σ2e2Xu θ̂2
u

2
+λ(1+ηu)f1(exp(−eXu(e−1)θ̂u)−1)

]
du.

(5.77)

(2.b) The optimal portfolio θ̂ is a root for

γ +
1

2
σ2 + eX−σ2(α− θ) + λ(e− 1)

1 + η

exp(eX−(e− 1)θ)
= 0. (5.78)

(2.d) The local martingale exp(−θ̂ · S +B) is a true martingale.

Proof. The dynamics of S can be written as

dSt
St−

= (γ +
1

2
σ2 + (e− 1)λ)dt+ σdWt + (e− 1)dÑt.

The predictable characteristics of S are

Sct =

∫ t

0

eXuσdu, c = e2X−σ2, At = t,

bt = (γ +
1

2
σ2 + (e− 1)λ)

∫ t

0

eXudu.
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Ft(dx) = δ1(dx).

µS(dt, dx) = (e− 1)St−
∑

I{∆Xs 6=0}δ(s,∆Xs)(ds, dx)

The jumps of S can be calculated by

∆St =

{
eXt−(e− 1), on {∆Xt = 1};
0, on {∆Xt = 0}.

.

Under assumption (5.76), the null portfolio is admissible and the process eB

is a positive submartingale. It can be decomposed as

eB = eB0MeB
′
, M = E(N), M0 = 1.

Due to procedure of localization, it is enough to consider M to be a true

martingale. Put Q := MT · P , then the characteristics of S with respect to Q

are

Sc,Q =

∫ t

0

eXuσdWu −
∫ t

0

e2Xuσ2αudu,

bQ = eX−(γ +
1

2
σ2 + (e− 1)λ) + e2X−σ2α + eX−ηλ(e− 1).

FQ
t (dx) = (1 + ηt)Ft(dx).

And, the dynamics of S under Q can be written as

dSt = dSc,Qt + bQt dt+ eXt−(e− 1)d(Nt − (1 + ηt)λdt).

If (1) holds, then θ̂ will minimize the following equation

Φ(θ) := −θbQ +
1

2
cθ2 + λ(1 + η)

(
θeX−(e− 1)− 1 + exp(−θeX−(e− 1))

)
.

It is clear that φ is differentiable, and hence θ̂ is a root of the equation (5.78).

The Minimal Hellinger process of order 0 can be calculated as∫ ·
0

[
1

2
σ2e2Xu θ̂2

u + λ(1 + ηu)f1(exp(−eXu(e− 1)θ̂u)− 1)]du
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such that (5.77) will be the predictable and finite variation part of D1 with

respect to Q.

5.D.3 Black-Scholes Model

In Black-Scholes model, the only source of risk come from the Brownian Motion

W . The optimal portfolio θ̂ can be obtained explicitly.

Theorem 5.10: Consider the functional U1(t, ω, x) defined in (5.69). Suppose

that B satisfies (5.76). Then the following two assertions are equivalent.

(1) The functional U1 is a forward utility with the optimal portfolio θ̂.

(2) There exists a local martingale Mt :=
∫ t

0
αudWu such that

(2.a) B can be described as

B = B0 + log(M)− 1

2
σ2

∫ ·
0

e2Xu θ̂2
udu. (5.79)

(2.b) The optimal portfolio θ̂ is given by

θ̂ = e−X(γσ−2 +
1

2
) + α. (5.80)

(2.c) The local martingale

Ẑ := ME
(
−σθ̂eX ·W + σ2

∫ ·
0

θ̂ue
2Xuαudu

)
is a true martingale.

Proof. The proof is a direct application of Theorem 5.9 by putting λ = η =

0.
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Chapter 6

Minimal Hellinger Deflator

In this chapter, we combine the concept of deflators (see its definition in Sec-

tion 6.A) with the concept of Hellinger processes and look for the minimal

Hellinger deflator (called MHD hereafter). This idea is a natural extension of

the main idea developed in [16], [17] and [18]. In these papers, the authors

created the concept of entropy-Hellinger process and Hellinger process of order

q for local martingale densities and obtained the minimal Hellinger martingale

densities. The definitions and properties on minimal entropy-Hellinger mar-

tingale density and minimal Hellinger martingale density of order q are briefly

reviewed in Section 2.D.

Here, we extend these concepts and build up the new concept of MHD.

Precisely, we define the Hellinger distance for deflators that are supermartin-

gales. Then, we focus on minimizing this distance to obtain the MHD. Finally,

we conclude our study by deriving properties for this MHD and applying these

results to HARA forward utilities.

6.A Mathematical Model and Preliminaries

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where

the filtration satisfies the usual conditions and is quasi-left continuous. The

quasi-left-continuity of the filtration is equivalent to the continuity of any
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RCLL predictable process. We consider a d-dimensional stock price process,

S, which is a semimartingale with the Canonical representation

S = S0 + Sc + h(x) ? (µ− ν) + (x− h(x)) ? µ+B. (6.1)

More details on this representation can be found in Chapter 2.

Throughout this chapter, the set of integrands, L, given by

L := {π ∈ L(S) : 1 + πTx > 0, P ⊗ F ⊗ A− a.e.} (6.2)

will play a crucial role in our analysis. Moreover, the set of bounded elements

in L will be denoted by Lb, i.e.

Lb := {λ ∈ L : there exists C > 0, C ∈ IR, such that |λ|≤ C.} (6.3)

For p ∈ (−∞, 0) ∪ (0, 1), our main assumption in this chapter is given by

(A1) :

∫ ∣∣∣x(1+λTx)p−1−h(x)
∣∣∣F (dx) < +∞, P ⊗A−a.e., ∀ λ ∈ L. (6.4)

Remark: It is easy to check that the null element 0 ∈ L. Therefore, the

assumption (6.4) implies∫
{|x|>1}

|x|F (dx) < +∞, P ⊗ A− a.e. (6.5)

The condition (6.5) will be used from time to time in this chapter as an

assumption.

Furthermore, the set L (defined in (6.2)) is intimately related to the set of

wealth processes, X+(x), defined below

X+(x) = {X : there exists θ ∈ L(S), X = x+ θ · S, X > 0 and X− > 0.}
(6.6)

The relationship between L and X+(x) is described in the following.
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Lemma 6.1: For x > 0 and θ ∈ L(S), we consider X = x + θ · S. Then,

X ∈X+(x) if and only if there exists π ∈ L such that X = xE(π · S).

Proof. For X = x + θ · S ∈ X+(x), consider the sequence of stopping times,

(Rn)n≥1, given by

Rn := inf {t : Xt ≤ 1/n} ∧ T.

Since X > 0 and X− > 0, it is clear that Rn increases to T stationarily and

on [0, Rn], for n ≥ 1,

Xt− ≥ 1/n, P − a.s.

This implies that the process 1/X− is locally bounded. Hence, the integral

Y := 1
X−
· X is well-defined, which allows us to write X in the stochastic

exponential form as follows

X = xE(π · S).

Then, it is easy to check that π := θ
x+θ·S− ∈ L(S) and 1 + πT∆S = 1+θ·S

1+θ·S− > 0

since θ ∈ L(S) and 1
x+θ·S− is locally bounded.

The remaining part of this proof follows from the following equivalences.

1 + πT∆S > 0, P − a.s.⇐⇒ P − a.s. 1 + πTx > 0, µ− a.e. (6.7)

⇐⇒ 1 + πTx > 0, P ⊗ A⊗ F − a.e. (6.8)

The equivalence (6.7) is easy to see, while the equivalence (6.8) comes from

the following fact:

P ⊗ A⊗ F
(
{(ω, t, x) : 1 + πTx ≤ 0}

)
= E

(∫ T

0

Fs({x : 1 + πTs x ≤ 0})dAs
)

= E
(
I{(t,x):1+πTt x≤0} ? νT

)
= E

(
I{(t,x):1+πTt x≤0} ? µT

)
.

From the equivalences in (6.7) and (6.8), we have immediately that π ∈ L.
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To prove the reverse sense, it is enough to prove that X = xE(π ·S) = x+θ ·S,

θ := πX−, satisfies X > 0 and X− > 0. This follows from 1 + πT∆S > 0,

which is induced by π ∈ L and (6.8). Then, we get

X > 0 and X− =
X

1 + πT∆S
> 0, P − a.s.

This completes the proof of this lemma.

Remark: This lemma allows us to write the wealth process in X+(x) in two

forms:

X = x+ θ · S, or equivalently X = xE(π · S), π :=
θ

x+ θ · S−
∈ L.

Most of the time throughout our analysis in this chapter, the second one is

more convenient and hence frequently adopted.

Definition: A stochastic process Y is called a deflator if Y X is a supermartin-

gale for any X ∈X+(x).

Lemma 6.2: Let V be a RCLL, non-decreasing and predictable process with

V0 = 0. Then, there exist two predictable and non-negative processes, α and

V ⊥, such that V ⊥ is non-decreasing,

α · AT < +∞, P − a.s, (6.9)

and V = α · A+ V ⊥, supp(V ⊥) ∩ supp(A) = ∅. (6.10)

Proof. Thanks to the Lebesgue Decomposition Theorem (see [2], page 115)

which is applied path-by-path, we deduce the existence of processes, Va and

V ⊥,1 such that dVa � dA, V ⊥ ⊥ A and

V = Va + V ⊥.

This proves (6.9) and it is obvious that Va and V ⊥ are RCLL, predictable and

1For instance, we can put Γ := supp(A), Va := 1Γ · V and V ⊥ := 1Γc · V .
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non-decreasing with V ⊥0 = 0. Then, the Radon-Nikodym Theorem implies the

existence of a non-negative and predictable process α such that

Va = α · A.

This ends the proof of the lemma.

Throughout this thesis, the pair (α, V ⊥) will be called the Lebesgue-Radon-

Nikodym components of V .

Definition: Let X and Y be two processes such that X0 = Y0. Then, we

write

X � Y

if Y −X is a nondecreasing process.

Proposition 6.1: Let N ∈M0, loc(P ) with Jacod components (β, f, g,N ′) and

V be a RCLL, predictable and nondecreasing process with Lebesgue-Radon-

Nikodym components (α, V ⊥) such that

1 + ∆N −∆V > 0. (6.11)

Then, the process Y := E(N)E(−V ) is a deflator if and only if the following

conditions hold:

(i) For any θ ∈ L,
∣∣∣θT [(1−∆V )x(1 + f(x) + g(x))− h(x)]

∣∣∣ ? µ is locally

integrable, or equivalently, we have

∣∣∣θTx(1−∆V )(1 + f(x))− θTh(x)
∣∣∣ ? νT < +∞, P − a.s., (6.12)

(ii) For any θ ∈ L, we have

θTG(β, f, α) ≤ α, P ⊗ A− a.e. (6.13)
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where

G(β, f, α) := b+ cβ +

∫ [
(1− α∆A)x(1 + f(x))− h(x)

]
F (dx). (6.14)

Proof. Consider the wealth process X of the form X = E(θ · S), where θ ∈ L.

Then, Y is a deflator if and only if

Y E(θ · S) is a supermartingale for any θ ∈ L. (6.15)

Put θk := θI{|θ|≤k}, k ≥ 1. Then, θk ∈ L, bounded and converges to θ. In

virtue of Fatou’s lemma, (6.15) is equivalent to the fact that

Y E(θ · S) is a supermartingale for any θ ∈ Lb. (6.16)

Moreover, due to Ito’s formula and the Canonical decomposition of S given in

(2.4), (6.16) holds if and only if the process

X := θ · (S + [N,S])− V − [N + θ · (S + [N,S]), V ]

= θTx ? (µ− ν) + θ · Sc −∆V ·N + θT b · A

+θT cβ · A− V + θT [(1−∆V )x(1 + f(x) + g(x))− h(x)] ? µ

is a local supermartingale for any θ ∈ Lb. This is equivalent to the following

two conditions:

|θT [(1−∆V )x(1 + f(x) + g(x))− h(x)]|?µ ∈ A+
loc, (6.17)

and θTG(β, f, α) ≤ α, P ⊗ A− a.e., (6.18)

for any θ ∈ Lb. This equivalence is derived via compensatingX usingMP
µ (g|P̃ ) =

0 and applying Lemma 6.2. Finally, note that for any θ ∈ L, there exists a se-

quence θk := θI{|θ|≤k}, k ≥ 1 such that θk ∈ Lb and converges to θ. Therefore,

(6.17)–(6.18) are equivalent to (6.12)–(6.13) immediately. This completes the
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proof of this proposition.

Remark: In Lemma 6.1, the characterization of deflators is given in the gen-

eral semimartingale framework. When the filtration is quasi-left continuous,

the functional G(β, f, α) in (6.14) becomes

G(β, f) = b+ cβ +

∫
(x− h(x) + xf(x))F (dx), (6.19)

and the condition (6.12) becomes

|θTx(1 + f(x))− θTh(x)| ? νT < +∞, P − a.s.. (6.20)

Furthermore, the conditions (6.17) and (6.18) in the proof of Proposition

6.1 also play important role and can be used as alternative results for (6.12)

and (6.13).

Lemma 6.3: For any positive supermartingale Y , there exists a predictable

and non-decreasing processes V Y and a local martingale MY such that

Y = Y0E(MY )E(−V Y ) = Y0E(M ′− V Y ), M ′ := (1−∆V Y ) ·MY . (6.21)

Proof. The proof of this lemma can be found in [11] and [12].

The following function will be used frequently in the rest of this chapter:

fr(x) :=
(1 + x)r − 1− rx

r(r − 1)
, r ∈ (−∞, 0) ∪ (0, 1) and x ≥ −1; (6.22)

Let p and q are conjugate numbers (p = q
q−1

, q ∈ (−∞, 0)∪ (0, 1)), which will

be used from time to time.

In the current section, we are interested in the set of positive deflators satis-

fying an integrability condition,

Yq(S) :=
{
Y > 0 | Y is a deflator and

∑
fq(∆Y/Y−) ∈ A+

loc

}
. (6.23)
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Definition: Let q ∈ (−∞, 0)∪(0, 1) and Y = E(N−V ) where N ∈M0, loc(P )

and V ∈ P ∩V+ such that 1 + ∆N −∆V > 0. If the non-decreasing process

V (q)(Y ), given by

V
(q)
t (Y ) :=

1

2
〈N c〉t +

∑
0<s≤t

fq(∆Ns) +
Vt

1− q
, 0 ≤ t ≤ T, (6.24)

is locally integrable (i.e. V (q)(Y ) ∈ A+
loc(P )), then its compensator (dual

predictable projection) will be called the Hellinger process of order q for Y

and will be denoted by h(s,q)(Y, P ).

Lemma 6.4: Let q ∈ (−∞, 0)∪(0, 1) and Y = E(N−V ) where N ∈M0, loc(P )

and V ∈ P ∩ V+ such that 1 + ∆N −∆V > 0.

Then, h(s,q)(Y, P ) exists if and only if h(q)(N,P ) exists.

Furthermore, when h(s,q)(Y, P ) exists, it is given by

h(s,q)(Y, P ) = h(q)(N,P ) +
V

1− q
. (6.25)

Proof. Recall the definition of Hellinger processes of order q for local martin-

gales given in [18]: h(q)(N,P ) exists if N ∈ M0, loc(P ) satisfying 1 + ∆N > 0

and
1

2
〈N c〉+

∑
0<s≤·

fq(∆Ns) ∈ A+
loc. (6.26)

Under the conditions of this lemma, we have V ∈ P ∩ V+ and

1 + ∆N > ∆V ≥ 0.

Thus, (6.26) is fulfilled if and only if

V (q)(Y ) =
1

2
〈N c〉+

∑
0<s≤·

fq(∆Ns) +
V

1− q
∈ A+

loc.

This gives us the equivalence between the existence of h(s,q)(Y, P ) and the

existence of h(q)(N,P ). Therefore, by compensating V (q)(Y ), (6.25) follows
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immediately. This completes the proof of the lemma.

6.B Existence of Minimal Hellinger Deflator

This section will discuss the existence of the minimal Hellinger deflator as well

as its description in an explicit way. To this end, we present the following

definition on the “smallest” Hellinger process among all Hellinger processes

for deflators.

Definition: A deflator Ỹ ∈ Yq(S) is called the minimal Hellinger deflator of

order q (called MHD of order q hereafter) if

h(s,q)(Ỹ , P ) � h(s,q)(Y, P ), for any Y ∈ Yq(S).

In virtue of this definition, the MHD of order q is the solution to the

following minimization problem

min
Y ∈Yq(S)

h(s,q)(Y, P ). (6.27)

Therefore, the remaining part of this section will focus on investigating the

existence of solution to (6.27). Thanks to Theorem 2.2, for any local martingale

N ∈M0,loc(P ) with Jacod components (β, f, g,N ′) can be written as

N = N1 + g ? µ+N ′,

where

N1 = β · Sc + f ? (µ− ν). (6.28)

The following lemma characterizes a class of deflators whose local martingale

part has the form of N1.

Lemma 6.5: Let q ∈ (−∞, 0)∪(0, 1) and Y = E(N−V ) where N ∈M0, loc(P )

with Jacod components (β, f, g,N ′) and V ∈ P ∩ V+ with Lebesgue-Radon-
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Nikodym components (α, V ⊥). If Y ∈ Yq(S), then Y 1 := E(N1 − α · A) ∈
Yq(S) where N1 has the form of (6.28).

Proof. For Y = E(N −V ) ∈ Yq(S), we have 1 + ∆N −∆V > 0, which implies

1 + ∆N > ∆V ≥ 0.

Then, an application of Theorem 2.2 (precisely ∆N > −1 implies that f can

be selected to satisfy f + 1 > 0), we get

1 + ∆N1−∆(α ·A) = 1 + f(∆S)I{∆S 6=0} = I{∆S=0}+ (1 + f(∆S))I{∆S 6=0} > 0,

which implies Y 1 > 0, P -a.s. On the other hand, thanks to Proposition 6.1

and ∆V = 0 (due to quasi-left continuity), we have

|θTx(1 + f(x))− θTh(x)|?νT < +∞, P − a.s. and

θTG(β, f) ≤ α, A⊗ P − a.s.

for any θ ∈ L (see (6.19) and (6.20)). Notice that these two conditions–

that completely characterize deflators in the quasi-left continuous context–

are independent with g, V ⊥ and N ′. Hence, these two conditions, in turn,

guarantee that Y 1 is also a deflator. Moreover, Y ∈ Yq(S) satisfies X :=∑
fq(∆N) ∈ A+

loc, whose compensator, Xp, is (see (3.10) in [18] for details)

Xp := fq(f) ? ν + (1 + f)qMP
µ (fq(

g

1 + f
)|P̃) ? ν ∈ A+

loc.

Observe that

fq(f(x)) ? νT ≤ Xp
T < +∞, P − a.s.,

and fq(f(x)) ? νT is the terminal value of the compensator of
∑
fq(∆N

1).

Hence ∑
fq(∆N

1) ∈ A+
loc. (6.29)

Therefore, Y 1 is a positive deflator and satisfies (6.29), from which we can
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deduce that Y 1 ∈ Yq(S). This ends the proof of the lemma.

The subset of Yq(S) whose elements have the form of Y 1 will be denoted

by

Y1
q (S) = {Y = E(N − V ) ∈ Yq(S)|N has the form of (6.28) and dV << dA.}

(6.30)

Proposition 6.2: Let q ∈ (−∞, 0)∪ (0, 1) and Y 1 := E(N1−α ·A) ∈ Y1
q (S),

where N1 has the form of (6.28). Then, the Hellinger process of order q,

hs,q(Y 1, P ) for Y 1, is given by

h(s,q)(Y 1, P ) =
1

2
βT cβ · A+

∫
fq(f)F (dx) · A+

α

1− q
· A. (6.31)

Proof. This proof comes from a combination of Lemma 6.4 and Proposition

3.5 in [18]. First of all, based on Lemma 6.4, we have

h(s,q)(Y 1, P ) = hq(N1, P ) +
α

1− q
· A.

Furthermore, hq(N1, P ) has already been derived from Proposition 3.5 in

[18] as (for quasi-left continuous model)

hq(N1, P ) =
1

2
βT cβ · A+

∫
fq(f)F (dx) · A.

Therefore, (6.31) follows immediately.

In the following, we will prove that the solution to (6.27) – when it exists

– will belong to Y1
q (S).

Proposition 6.3: The following equivalence holds:

min
Y ∈Yq(S)

h(s,q)(Y, P ) = min
Y ∈Y1

q (S)
h(s,q)(Y, P ). (6.32)
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Proof. Thanks to Lemma 6.4, for any Y = E(N − V ) ∈ Yq(S), where

N = N1 + g ? µ+N ′ and V = α · A+ V ⊥,

its Hellinger process h(s,q)(Y, P ) can be represented as

h(s,q)(Y, P ) = h(q)(N,P ) +
V

1− q
.

Following a similar argument as Proposition 4.2 in [18], we can easily prove

that (recall that X � Y means that Y −X is non-decreasing)

h(q)(N1, P ) � h(q)(N,P ).

Meanwhile, due to Lemma 6.2, we have

V � α · A.

Thus, for any Y ∈ Yq(S), there always exists a process Y 1 := E(N1 − V 1),

which belongs to Y1
q (S) deduced from Lemma 6.5 and whose Hellinger process,

h(s,q)(Y 1, P ), satisfies

h(s,q)(Y 1, P ) � h(s,q)(Y, P ).

This leads to

min
Y ∈Yq(S)

h(s,q)(Y, P ) < min
Y ∈Y1

q (S)
h(s,q)(Y, P ).

Therefore, (6.32) follows immediately due to Y1
q (S) ⊆ Yq(S). This ends the

proof of this proposition.

By observing closely the elements in Y1
q (S), one may find that any deflator

Y ∈ Y1
q (S) can be uniquely determined by a triplet (β, f, α). Particularly, we

call β the principal component for reasons that will be explained later on when

we are looking for the MHD of order q (q ∈ (−∞, 0) ∪ (0, 1)). Moreover, due

to positivity of any deflator in Yq(S), we have f > −1. Here, we denote the
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set of all such triplets by J1(S), which can be defined precisely as

J1(S) := {(β, f, α) : β ∈ L(Sc), 0 ≤ α ∈ P ∩ L(A) and − 1 < f(x) ∈ G1
loc(µ)

satisfying (6.20) and fq(f) ? νT < +∞}.

Thanks to Proposition 6.3, the minimization (6.27) becomes

min
(β,f,α)∈J1(S)

K(β, f, α), subject to sup
θ∈L

θTG(β, f) ≤ α, P ⊗ A− a.e.

(6.33)

where K(β, f, α) :=
1

2
βT cβ +

∫
fq(f)F (dx) +

α

1− q
.

The next theorem states our main result of this section. We provide –

under some no-arbitrage assumptions on the model – sufficient and necessary

conditions for the existence of the MHD of order q, as well as its explicit

description.

Theorem 6.1: Let q ∈ (−∞, 0) ∪ (0, 1) and suppose that (6.5) holds. Then,

the MHD of order q exists if and only if Yq(S) 6= ∅.
Furthermore, if the MHD (denoted by Ỹ ) exists, then there exists λ̃ ∈ L
such that

Ỹ = E(Ñ − α̃ · A), Ñ :=
λ̃

q − 1
· Sc + f̃ ? (µ− ν), (6.34)

where

f̃(x) :=
(

1 + λ̃Tx
)1/(q−1)

− 1, and α̃ := λ̃TG(β̃, f̃) = sup
λ∈L

λTG(β̃, f̃).

The proof of this theorem is long and requires numerous lemmas. The first one
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introduces a new minimization problem by considering a set J2(S), defined by

J2(S) := {(β, f) : β ∈ L(Sc) and − 1 < f(x) ∈ G1
loc(µ) satisfying (6.20),

sup
λ∈L

θTG(β, f) ∈ L(A) and fq(f) ? νT < +∞}.

(6.35)

The new minimization problem has close relationship with the minimization

of (6.33), which is described in the following.

Lemma 6.6: The optimization problem (6.33) admits a solution (β̃, f̃ , α̃) if

and only if the following optimization problem:

min
(β,f)∈J2(S)

H(β, f), (6.36)

admits a solution (β̂, f̂). Here

H(β, f) :=
1

2
βT cβ +

∫
fq(f)F (dx) +

1

1− q
sup
θ∈L

θTG(β, f), (6.37)

Furthermore, the two solutions–when they exist–are connected as follows

β̃ = β̂, f̃ = f̂ , α̃ = sup
θ∈L

θTG(β̃, f̃). (6.38)

Proof. We start by supposing that the minimization (6.36) admits a solution,

denoted by (β̂, f̂). Thus, for any (β, f) ∈ J2(S), we obtain

K(β̂, f̂ , α̂) = H(β̂, f̂) ≤ H(β, f), where α̂ := sup
θ∈L

θTG(β̂, f̂). (6.39)

On the other hand, for any (β, f, α) ∈ J1(S) satisfying the constraint

sup
θ∈L

θTG(β, f) ≤ α, P ⊗ A− a.e.,
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we have

H(β, f) ≤ K(β, f, α). (6.40)

By combining (6.39) and (6.40), we deduce that (β̂, f̂ , α̂) is solution of (6.33).

To prove the reverse, suppose that (6.33) has a solution, denoted by (β̃, f̃ , α̃).

Then, the following holds

α̃ ≥ α := sup
θ∈L

θTG(β̃, f̃), P ⊗ A− a.e.

We start by proving that α̃ = α. Indeed, if α̃ > α, then K(β̃, f̃ , α̃) >

K(β̃, f̃ , α), which is a contradiction with the fact that (β̃, f̃ , α̃) is the solu-

tion of (6.33).

Now, for any (β, f) ∈ J2(S), we put α = sup
θ∈L

θTG(β, f) such that

H(β, f) = K(β, f, α). (6.41)

It is easy to see that (β, f, α) ∈ J1(S) and by taking β̂ := β̃, f̂ := f̃ , we have

H(β̂, f̂) = K(β̃, f̃ , α̃) ≤ K(β, f, α) = H(β, f). (6.42)

This proves that (β̂, f̂) ∈ J2(S) is the solution of (6.36). This completes the

proof of the lemma.

The next lemma is a technical result that is needed in the forthcoming analysis.

Lemma 6.7: For any q ∈ (−∞, 0)∪(0, 1), the conjugate function of the convex

function, fq(x), defined in (6.22), is given by

f ∗q (y) =
1− (1 + (1− q)y)

q
q−1

q
− y, for y > 1

q−1
= p− 1. (6.43)

Proof. In general, for a convex function k(y), its conjugate function, k∗(y), is

defined by

k∗(y) = inf
x>−1

(k(x) + xy).
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Thus, a simple calculation leads to (6.43).

Associated with the set L, we introduce another set of L , defined by

L := {λ ∈ L(S) : 1 + λTx ≥ 0, P ⊗ F ⊗ A− a.e.}

The following lemma defines a functional on L and provides its upper bound

over L.

Lemma 6.8: Let q ∈ (−∞, 0)∪ (0, 1) and suppose that (6.5) holds. Then, the

functional

L(λ) =
λT b

1− q
− 1

2

λT cλ

(1− q)2
+

∫ (
1− (1 + λTx)p

q
+
λTh(x)

q − 1

)
F (dx), λ ∈ L,

(6.44)

is well defined 2 (p = q
q−1

).

Furthermore, for any (β, f) ∈ J2(S) and ∀ λ ∈ L, we have

L(λ) ≤ H(β, f), P ⊗ A− a.e.. (6.45)

Proof. We first check that the function L is well defined on L. Indeed, under

the assumption (6.5), we can rewrite the integral part of L as∫ (
1− (1 + λTx)p

q
+

λTx

q − 1

)
F (dx) +

∫
{|x|>1}

λTx

q − 1
F (dx).

Meanwhile, notice that the function g(y) := 1−(1+y)p

q
+ y

q−1
satisfies that g(y) ≤

0 for any y ≥ −1. Hence, the integral

∫
g(λTx)F (dx) is well defined for any

λ ∈ L and thus the function L is also well defined on L.

On one hand, for any (β, f) ∈ J2(S) and λ ∈ L, thanks to Lemma 6.7, we get

1

q
(1− (1 + λTx)p)− 1

1− q
λTx ≤ (1 + f(x))q − 1− qf(x)

q(q − 1)
+

1

1− q
λTxf(x).

(6.46)

2by convention 1/0 = +∞
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On the other hand, since the following quadratic formula always holds,

(
λ

1− q
+ β

)T
c

(
λ

1− q
+ β

)
≥ 0,

we have

− 1

2

1

(1− q)2
λT cλ ≤ 1

2
βT cβ +

1

1− q
λT cβ. (6.47)

Then, by combining (6.46) and (6.47), we get

L(λ) ≤ 1

2
βT cβ+

λT b

1− q
+
λT cβ

1− q
+

∫ (
fq(f(x)) +

λTx(f(x) + 1)− λTh(x)

1− q

)
F (dx).

(6.48)

Due to the definition of J2(S) in (6.35), for any λ ∈ L∫
|λT (1 + f(x))x− λTh(x)|FT (dx) < +∞, P ⊗ A− a.e. (6.49)

This allows us to rewrite the integral in the right-hand-side term of (6.48) as

follows

1

2
βT cβ +

∫
fq(f)F (dx) +

λTG(β, f)

1− q
,

where G is defined in (6.19). Therefore, it is clear that

L(λ) ≤ 1

2
βT cβ +

∫
fq(f)F (dx) +

1

1− q
λTG(β, f) ≤ H(β, f).

This completes the proof of this lemma.

Lemma 6.9: For any r ∈ (−∞, 0) ∪ (0, 1), the function, f̃r(y), given by

f̃r(y) :=

{
(1+y)r−1−ry

r(r−1)
, y ≥ −1;

+∞, otherwise.
(6.50)

is lower semi-continuous on IRd.

Proof. For any y ∈ IRd and an arbitrary sequence in IRd, (yi) → y, such that

f̃r(yi) converges to l, we consider three cases: y > −1, y < −1 and y = −1.
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For y > −1, there exists an integer N such that for any i ≥ N , yi > −1.

Hence, due to continuity of f̃r(y) for y > −1, we get

f̃r(y) = lim
i→+∞

f̃r(yi) = l.

For y < −1, f̃r(y) = +∞ and there exists an integer N such that for any

i ≥ N , yi < −1 in which case

f̃r(y) = lim
i→+∞

f̃r(ymi) = +∞ = l.

For y = −1, we can either find an integer N such that for any i ≥ N , yi+1 ≥ 0

in which case

f̃r(y) = lim
i→+∞

f̃r(ymi) = l,

or, otherwise, there exists a subsequence of ymi satisfying ymi < −1 such that

ymi → y, in which case,

f̃r(y) ≤ lim
i→+∞

f̃r(ymi) = +∞ = l.

Thus, we always have f̃r(y) ≤ l for any y ∈ IRd. Hence, f̃r is lower semi-

continuous.

Remark: As stated in [68], page 51, an alternative definition of lower semi-

continuity for f̃r is:

f̃r(y) = lim inf
z→y

f̃r(z) = lim
ε→0

(inf{f̃r(z)| |z − y|≤ ε}), ∀ y ∈ IRd.

Thus, for any sequence of (yi)→ y, we have

f̃r(y) = lim inf
z→y

f̃r(z) ≤ lim inf
yi→y

f̃r(yi).

We also introduce the following technical result. This result provides a suffi-

cient condition for L to be included in the effect domain of the functional L
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(defined in (6.44)), denoted by dom(L). It also gives us a way to approximate

the element in L by a sequence of elements in dom(L).

Lemma 6.10: Let q ∈ (−∞, 0) ∪ (0, 1) and suppose that (6.5) holds. Then,

for any λ ∈ IRd and δ ∈ (0, 1), we have∫
{λT x≥δ−1}

fp(λ
Tx)F (dx) < +∞ P ⊗ A− a.e. (6.51)

Proof. Consider the following two sets:

Γ+
λ := {x : λTx ≥ 0}, Γ−λ := {x : λTx < 0}, ∀λ ∈ IRd.

For any λ ∈ IRd, the integral λ · S = λTS is a well-defined semimartingale.

Thus, we have

∑
I{|λT∆S|≤α}(λ

T∆S)2 ≤ I{|λT∆S|≤α} · [λ · S, λ · S] ∈ A+
loc, ∀α > 0. (6.52)

Hence its compensator I{|λT x|≤α}(λ
Tx)2 ? ν exists and belongs to A+

loc.

Then, in one hand, by putting α = 1− δ, we derive∫
{λT x≥δ−1}∩Γ−λ

fp(λ
Tx)F (dx) ≤ (1 + δp−2)

∫
{|λT x|≤α}

(λTx)2F (dx) < +∞.

(6.53)

On the other hand, due to assumption (6.5) and {λTx ≥ δ−1} ⊆ Γ+
λ , we have∫

Γ+
λ∩{|x|>1}

fp(λ
Tx)F (dx) ≤ |λ|

1− p

∫
{|x|>1}

|x|F (dx) < +∞, (6.54)

and due to (6.52), we get∫
Γ+
λ∩{|x|≤1}

fp(λ
Tx)F (dx) ≤ |λ|2

∫
{|x|≤1}

|x|2F (dx) < +∞. (6.55)

Therefore, by combining (6.53), (6.54) and (6.55), we deduce that (6.51) holds.
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The following lemma will play an important role when proving our main results

in this chapter.

Proposition 6.4: Let q ∈ (−∞, 0)∪ (0, 1). Suppose that Yq(S) 6= ∅ and (6.4)

holds. Then, the following arise.

(i) The functional L(λ) given in (6.44) attains its maximum at some λ̃ ∈ L.

(ii) We have

β̃ :=
1

q − 1
λ̃ ∈ L(Sc), f̃ :=

(
1 + λ̃Tx

)1/(q−1)

− 1 ∈ G1
loc(µ), (6.56)

fq(f̃) ? ν ∈ A+
loc, (6.57)

λ̃TG(β̃, f̃) = sup
λ∈L

λTG(β̃, f̃), and λ̃TG(β̃, f̃) · A ∈ A+
loc. (6.58)

Proof. (i) Consider the function f̃p defined in (6.50) by putting r = p and the

functional L̃, given by

L̃(λ) := Γ(λ) + (p− 1)2

∫
f̃p(λ

Tx)F (dx), λ ∈ IRd. (6.59)

Here Γ(λ) is a quadratic function of λ, given by

Γ(λ) := (p− 1)λT b+
1

p− 1

∫
{|x|>1}

λTxF (dx) +
1

2
(p− 1)2λT cλ.

Due to the assumption (6.5), it is clear that

L̃(λ) =

{
−L(λ), on L;

+∞, otherwise.

Next, we are going to prove that the functional L̃ attains its minimum at

λ̃ ∈ L. This proof relies on Theorem 27.1–(b) in [68], which states that a

convex, proper and closed function would attain its minimum if the set of

recession is contained in the set of directions in which L̃ is constant.

First of all, it is easy to see that L̃ is convex and proper. Meanwhile, note

a fact that for convex function, the closeness is equivalent to its lower semi-
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continuity. Thus, in order to prove L̃ being closed, it is enough to focus on its

lower semi-continuity in the following.

For any sequence of (λi)→ λ such that L̃(λi) converges. In virtue of Lemma

6.9 and the remark after it, the sequence yi := λTi x converges to y := λTx and

we have

f̃p(y) ≤ lim inf
yi→y

f̃p(yi).

Then, an application of Fatou’s lemma leads to

L̃(λ) ≤ lim inf
λi→λ

L̃(λi) = lim
λi→λ

L̃(λi).

This proved the closeness of L̃.

In the remaining part of this proof, we will calculate the set of recession for

L̃. First of all, we calculate its recession function L̃0+(δ), which is defined by

L̃0+(δ) := lim
α→+∞

L̃(λ+ αδ)− L̃(λ)

α
, δ ∈ IRd.

By considering different cases, we obtain

L̃0+(δ) =


+∞, F (Γ−δ ) > 0;

+∞, F (Γ−δ ) = 0 and cδ 6= 0;
bT δ−

∫
δT h(x)F (dx)

q−1
, F (Γ−δ ) = cδ = 0 and F (Γ+

δ ) ≥ 0;

(6.60)

where

Γ+
δ := {z ∈ IRd : zT δ > 0}, Γ−δ := {z ∈ IRd : zT δ < 0}.

We need to work more on the third case in (6.60). Remark that the assumption

Yq(S) 6= ∅ implies that there exists a local martingale density Z0 = (β0, Y0 > 0)

(see [45] and [18]) such that

b+ cβ0 +

∫
(xY0(x)− h(x))F (dx) = 0. (6.61)
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By virtue of (6.61), the third case in (6.60) can be rewritten as

bT δ −
∫
δTh(x)F (dx)

q − 1
=

+∞, F (Γ−δ ) = cδ = 0, F (Γ+
δ ) > 0 and

∫
δTh(x)F (dx) = +∞;

−
∫
δT xY0(x)F (dx)

q−1
> 0, F (Γ−δ ) = cδ = 0, F (Γ+

δ ) > 0 and
∫
δTh(x)F (dx) < +∞.

bT δ
q−1

, F (Γ−δ ) = cδ = F (Γ+
δ ) = 0;

Furthermore, using (6.61) again, we deduce that

bT δ = 0, P ⊗ A− a.e., on {F (Γ−δ ) = cδ = F (Γ+
δ ) = 0}.

Therefore, the set of recession for L̃ (i.e. {δ : L̃0+(δ) ≤ 0}), is

R := {δ ∈ IRd : cδ = 0, bT δ = F (Γ+
δ ) = F (Γ−δ ) = 0}.

It is easy to check that δ ∈ R if and only if −δ ∈ R. As a result, the set of

directions in which L̃ is a constant (i.e. {δ : L̃0+(δ) ≤ 0 and L̃0+(−δ) ≤ 0}),
coincides with R. Hence, due to Theorem 27.1–(b) in [68], we deduce that the

functional L̃(λ) attains its minimum in L, we denote it as λ̃.

(ii) Thanks to measurable selection theorem, λ̃ can be selected to be pre-

dictable. For any λ ∈ L, put λn := (1 − 1/n)λ, that converges to λ. Due to

Lemma 6.10 (consider δ = 1/n), we have∫
fp(λ

T
nx)F (dx) < +∞, n ≥ 1. (6.62)

For any r ∈ (0, 1), the convex combination

λ := rλn + (1− r)λ̃ = λ̃+ r(λn − λ̃) ∈ L,

thus we have

L̃(λ̃) ≤ L̃(λ), P ⊗ A− a.e. (6.63)
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The convexity of fp and (6.62) implies

fp(λ̃
Tx)− fp(λ

T
x)

r
≥ fp(λ̃

Tx)− fp(λTnx).

This allows us to apply Fatou’s Lemma and get

(1− p)(λn − λ̃)TG(β̃, f̃) ≤ lim
r→0

L̃(λ̃)− L̃(λ)

r
≤ 0, P ⊗ A− a.e.

Thus, we have

(λn − λ̃)TG(β̃, f̃) ≤ 0, ∀ n ≥ 1, P ⊗ A− a.e.

By sending n→ +∞ and taking sup for λ over L, we get

λ̃TG(β̃, f̃) ≥ sup
λ∈L

λTG(β̃, f̂), P ⊗ A− a.e.

As an direct application of above inequality by taking λ = 0 ∈ L, it yields

λ̃TG(β̃, f̃) ≥ 0, P ⊗ A− a.e. (6.64)

Then, by rearranging the terms in (6.64), we get

0 ≤ λ̃T
∫

(x−x(1+λ̃Tx)p−1)F (dx) ≤ λ̃T
∫
|x|≥1

xF (dx)+λ̃T b+(p−1)λ̃T cλ̃ < +∞,

(6.65)

due to our assumption (6.5) and the positivity of the function g(y) := y −
y(1 + y)p−1, 1 + y ≥ 0 and p < 1. Thus, F ({x : 1 + λ̃Tx = 0}) = 0 which

implies λ̃ ∈ L. This proves the first part of (6.58).

Consider β̃ and f̃ defined in (6.56). Then, a simple calculation leads to

1− (1 + λ̃Tx)p

q
+
λ̃Th(x)

q − 1
= fq(f̃(x)) +

1

1− q
λ̃T (x(1 + f̃(x))− h(x)) (6.66)
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Then, (6.65) allows us to rewrite L(λ̃) as

L(λ̃) =
1

2
β̃T cβ̃ +

∫
fq(f̃)F (dx) +

1

1− q
λ̃TG(β̃, f̃). (6.67)

Observe that the first two terms of L(λ̃) expressed in (6.67) are non-negative

and the last one, due to (6.64), is non-negative as well. Meanwhile, due to

Yq(S) 6= ∅, there exists (β0, f0) ∈ J2(S). Then, thanks to Lemma 6.8, we have

L(λ̃) · A ≤ H(β0, f0) · A ∈ A+
loc,

which implies

β̃T cβ̃ · A ∈ A+
loc, fq(f̃) ? ν ∈ A+

loc and λ̃TG(β̃, f̃) · A ∈ A+
loc.

This completes the proof of the first part of (6.56) and (6.58). It remains

to prove (6.57). To prove it, we apply Theorem 1.33–d) in [39] which states

f̃(x) ∈ G1
loc(µ) if and only if

C(f̃) :=

(
1−

√
1 + f̃

)2

? ν ∈ A+
loc.

For x > −1 arbitrary and fixed, a study on the functions f1(q) := (1+x)q−1−qx
q

and f2(q) := (1+x)q−1−qx
q−1

reveals that f1(q) is increasing for 0 ≤ q ≤ 1/2, thus

−f1(q) ≥ −2(
√

1 + x− 1− 1

2
x) = (1−

√
1 + x)2.

and f2(q) is increasing for 1/2 ≤ q ≤ 1, thus

f2(q) ≥ −2(
√

1 + x− 1− 1

2
x) = (1−

√
1 + x)2.

By putting K := max(q, 1− q), we have

(
1−

√
1 + f̃

)2

? ν ≤ Kfq(f̃) ? ν ∈ A+
loc.

192



This completes the proof.

Proof of Theorem 6.1:

Suppose that Yq(S) 6= ∅. Thanks to Proposition 6.4, the functional L(λ)

attains its maximum at λ̃ ∈ L. And, for any (β, f) ∈ J2(S), we deduce from

Lemma 6.8 that

L(λ̃) ≤ H(β, f), P ⊗ A− a.e.

By taking minimum over (β, f), we derive

L(λ̃) ≤ min
(β,f)∈J2(S)

H(β, f). (6.68)

By putting

β̃ :=
1

q − 1
λ̃, f̃(x) := (1 + λ̃Tx)1/(q−1) − 1 and α̃ := λ̃TG(β̃, f̃)

and a direct application of Proposition 6.4 lead to

β̃ ∈ L(Sc), fq(f̃) ? ν ∈ A+
loc, f̃ ∈ G1

loc(µ) (6.69)

α̃ = sup
λ∈L

λTG(β̃, f̃) ∈ L(A). (6.70)

We deduce from (6.70) that ∀ λ ∈ L

λTG(β̃, f̃) ≤ α̃, P ⊗ A− a.e. (6.71)

Meanwhile, due to assumption (6.4), we have ∀ λ ∈ Lb

|λTx(1 + f̃(x))− λTh(x)| ? νT < +∞, P − a.s. (6.72)

Then, thanks to Proposition 6.1 (and the remark after it), (6.71) and (6.72)

allow us to construct a deflator

Ỹ := E(Ñ), Ñ = β̃ · Sc + f̃ ? (µ− ν)− α̃ · A.
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Moreover, by combining (6.69) and (6.70), we deduce that (β̃, f̃) ∈ J2(S) and

L(λ̃) can be rewritten as

L(λ̃) =
1

2
β̃T cβ̃ +

∫
fq(f̃)F (dx) +

1

1− q
λ̃TG(β̃, f̃) = H(β̃, f̃). (6.73)

Thus, by recalling (6.68), it is clear that (β̃, f̃) is the solution of (6.36). Fur-

thermore, from Lemma 6.6, the triplet (β̃, f̃ , α̃) will be the solution of (6.33).

It remains to verify that Ỹ is the MHD. Note that due to Proposition 6.3,

it is enough to consider this problem over Y1
q (S). We let Y 1 be an arbitrary

element in Y1
q (S), given by

Y 1 := E(N1 − α · A), N1 := β · A+ f ? (µ− ν).

Recall Proposition 6.31, the Hellinger process of order q, h(s,q)(Y 1, P ), is

h(s,q)(Y 1, P ) =
1

2
βT cβ · A+

∫
fq(f)F (dx) · A+

α

1− q
· A. (6.74)

Recalling (6.73), since (β̃, f̃) ∈ J2(S) is the solution of (6.36), we get

h(s,q)(Ỹ , P ) = L(λ̃) · A = H(β̃, f̃) · A � h(s,q)(Y 1, P ) = K(β, f, α) · A.

This proves the minimality of Ỹ and completes the proof of this theorem.

6.C A Useful Characterization of MHD

In this section, we will elaborate a very important property on MHD.

Theorem 6.2: Let Ỹ ∈ Yq(S) and λ̃ ∈ P be such that 1+ λ̃T z > 0, P⊗F⊗A-

a.e. and

Ỹ = E(Ñ − α̃ · A), Ñ =
λ̃

q − 1
· Sc + f̃ ? (µ− ν). (6.75)
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Here,

f̃t(x) =
(

1 + λ̃Tt x
)1/(q−1)

− 1, α̃ = λ̃TG(
λ̃

q − 1
, f̃). (6.76)

Then, λ̃ ∈ L(S) and

Ỹ q−1 = E
(
λ̃ · S + q(q − 1)h(s,q)(Ỹ , P )

)
. (6.77)

Proof. In virtue of Ito’s formula, we have

Ỹ q−1 = E(X̃),

where X̃ is given by

X̃ = (q − 1)Ñ +
(q − 1)(q − 2)

2
〈Ñ c〉+

∑(
(1 + ∆Ñ)q−1

−1− (q − 1)∆Ñ
)
− (q − 1)α̃ · A.

(6.78)

Therefore, to prove (6.77), it is enough to show

X̃ = λ̃ · S + q(q − 1)h(s,q)(Ỹ , P ). (6.79)

First of all, notice that

∆Ñ = f(∆S)I{∆S 6=0} = (1 + λ̃T∆S)1/(q−1) − 1.

By inserting ∆Ñ into (6.78) and integrating I{|λ̃|≤n} on both sides of the re-

sulting equality, we obtain

I{|λ̃|≤n} · X̃ (6.80)

= λ̃(n) · Sc +
q − 2

2(q − 1)
(λ̃(n))T cλ̃(n) · A+ (q − 1)((1 + (λ̃(n))Tx)

1
q−1 − 1) ? (µ− ν)

+
(

(λ̃(n))Tx− (q − 1)((1 + (λ̃(n))Tx)
1
q−1 − 1)

)
? µ− (q − 1)I{|λ̃|≤n}α̃ · A,

where λ̃(n) := λ̃I{|λ̃|≤n}. Recall the (µ − ν)-integrability of f̃ and the bound-
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edness of h(x), we have the (µ− ν)-integrability of the process

(λ̃(n))Th(x)− (q − 1)
(

(1 + (λ̃(n))Tx)
1
q−1 − 1

)
.

Thus, the fourth term in (6.80) can be rewritten as

(
(λ̃(n))Tx− (q − 1)((1 + (λ̃(n))Tx)

1
q−1 − 1)

)
? µ

= (λ̃(n))T (x− h(x)) ? µ+
(

(λ̃(n))Th(x)− (q − 1)
(

(1 + (λ̃(n))Tx)
1
q−1 − 1

))
? ν

+
(

(λ̃(n))Th(x)− (q − 1)
(

(1 + (λ̃(n))Tx)
1
q−1 − 1

))
? (µ− ν), (6.81)

On the other hand, note that α̃ satisfies the equation

λ̃T b · A+
1

q − 1
λ̃T cλ̃ · A+

(
λ̃Tx(1 + λ̃Tx)

1
q−1 − λ̃Th(x)

)
? ν = α̃ · A. (6.82)

Hence, due to (6.81), (6.82) and recalling the decomposition of S in (2.4),

(6.80) can be rewritten as

I{|λ̃|≤n} · X̃ = I{|λ̃|≤n}λ̃ · S +
q

2(q − 1)
I{|λ̃|≤n}λ̃

T cλ̃ · A− qI{|λ̃|≤n}α̃ · A

+q(q − 1)I{|λ̃|≤n}fq(f̃(x)) ? ν,

(6.83)

Since X̃ is a semimartingale and the processes α̃·A, λ̃T cλ̃·A and fq(f̃(x))?ν are

non-decreasing and locally bounded, we deduce that I{|λ̃|≤n} · X̃ converges in

the semimartingale topology to X̃, and the random variables I{|λ̃|≤n}λ̃
T cλ̃ ·AT ,

I{|λ̃|≤n}α̃ ·AT and I{|λ̃|≤n}fq(f̃(x))?νT all converges in probability. This implies

that I{|λ̃|≤n}λ̃·S converges in semimartingale topology. Hence λ̃ ∈ L(S). Thus,

by sending n→ +∞ in (6.83), we derive

X̃ = λ̃ · S +
q

2(q − 1)
λ̃T cλ̃ · A+ q(q − 1)fq

(
(1 + λ̃Tx)

1
q−1 − 1

)
? ν − qα̃ · A

= λ̃ · S + q(q − 1)h(s,q)(Ỹ , P ).

It completes the proof of this proposition.
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6.D Duality with HARA Forward Utilities

In this section, we will investigate an important application of the MHD.

Precisely, we will establish a duality between the MHD of order q and the

HARA forward utilities.

Considering the HARA forward utilities, U(t, x), having the power form as

follows

U(t, x) = D(t)xp, x > 0. (6.84)

where p is a constant, p ∈ (−∞, 0) ∪ (0, 1), and D is a process. The following

theorem is our main result of this section.

Theorem 6.3: Consider the quasi-left continuous model defined in Section

6.A and q ∈ (−∞, 0) ∪ (0, 1). Suppose Yq(S) 6= ∅ and (6.4) holds. Let D(t)

is a RCLL predictable process with finite variation. Then, the following

assertions are equivalent.

(1) The random field utility, U(t, x), given by (6.84), is a forward utility

with the optimal portfolio rate θ̂.

(2)The minimal Hellinger deflator of order q, Ỹ , exists with the principal

component θ̂/(q − 1) such that

(2.a) Ŷ := Ỹ E
(
θ̂ · S

)
is a true martingale.

(2.b) The process D is given by

D(t) = D0E
(
q(q − 1)h(s,q)(Ỹ , P )

)1/(q−1)

. (6.85)

Proof. We will start proving (2) ⇒ (1). Suppose assertion (2) holds. By

combining (6.85) and Lemma 6.2 , for the particular portfolio rate θ̂, we have

U
(
·, xE

(
θ̂ · S

))
= D0x

pE
(
q(q − 1)h(s,q)

(
Ỹ , P

))1/(q−1)

E
(
θ̂ · S

)p
= D0x

pE
(
θ̂ · S

)
E
(
θ̂ · S + q(q − 1)h(s,q)

(
Ỹ , P

))1/(q−1)

= D0x
pE
(
θ̂ · S

)
Ỹ

= D0x
pŶ ,
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which is a true martingale due to assertion (2.a). This also allows us to define

a new martingale measure Q̂ := ŶT ·P . Then, for any admissible portfolio rate

θ, we have

U (·, xE (θ · S))

= D0x
p E (θ · S)p

E
(
θ̂ · S

)pE (q(q − 1)h(s,q)
(
Ỹ , P

))1/(q−1)

E
(
θ̂ · S

) q
q−1

(6.86)

= D0x
pE
(
θ̂ · S

)
Ỹ

 E (θ · S)

E
(
θ̂ · S

)
p

= D0x
pŶ

 E (θ · S)

E
(
θ̂ · S

)
p

.

Since θ is admissible (see (2.10)) and D0p > 0, (6.86) implies

sup
τ∈TT

EQ̂

 Eτ (θ · S)

Eτ
(
θ̂ · S

)
p

= − 1

D0xp
sup
τ∈TT

E
[
U (τ, xEτ (θ · S))−

]
< +∞. (6.87)

Since Ŷ is a martingale density, we combine (6.87) with Proposition 4.4 and de-

duce that U(·, xE(θ·S)) is a supermartingale. This ends the proof of (2)⇒ (1).

In the rest of the proof, we focus on (1)⇒ (2). Suppose (1) holds. Since D(t)

is predictable with finite variation and never vanish, we can write it in the

form of D(t) = D0 exp(aDt ). In virtue of Ito’s formula, the forward property

of U(t, x) = D(t)xp leads to

1

q
aD ≥ L(θ) · A, ∀ θ ∈ Aadm, (6.88)

and
1

q
aD = max

θ∈L
L(θ) · A = L(θ̂) · A. (6.89)

Here, for any λ ∈ L, L(λ) is given by

L(λ) =
λT b

1− q
− 1

2

λT cλ

(1− q)2
+

∫ (
1− (1 + λTx)p

q
+
λTh(x)

q − 1

)
F (dx).

Remark that θ̂ ∈ L since θ̂ is admissible and θ̂ is the maximizer of L over L.
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Thus, by putting

β̃ :=
1

q − 1
θ̂, f̃ :=

(
1 + θ̂Tx

)1/(q−1)

− 1 and α̃ := θ̂TG(β̃, f̃),

we follow the same argument carried out in (6.70)–(6.72) and deduce that the

process

Ỹ := E(β̃ · Sc + f̃ ? (µ− ν)− α̃ · A) (6.90)

is a deflator. Furthermore, thanks to (6.57), we have fq(f̃) ? ν ∈ A+
loc. Hence,

Ỹ ∈ Y1
q (S).

In the following, we will prove that Ỹ is the minimal Hellinger deflator of order

q. To this end, we consider any deflator Y ∈ Y1
q (S) (it is enough to consider

Y ∈ Y1
q (S) instead of Yq(S) due to Proposition 6.3), given by

Y = E(N − V ), N = β · Sc + f ? (µ− ν), V = α · A.

Thanks to (6.31), the Hellinger processes of order q, h(s,q)(Y, P ) and h(s,q)(Ỹ , P ),

are given by

h(s,q)(Y, P ) =
1

2
βT cβ · A+

∫
fq(f)F (dx) · A+

α

1− q
· A. (6.91)

h(s,q)(Ỹ , P ) =
1

2
β̃T cβ̃ · A+

∫
fq(f̃(x))F (dx) · A+

α̃

1− q
· A. (6.92)

By plugging β̃, f̃ and α̃ into h(s,q)(Ỹ , P ), we obtain

h(s,q)(Ỹ , P ) = L(θ̂) · A.

Moreover, an application of Lemma 6.8, we deduce that

L(θ̂) · A � H(β, f) · A = h(s,q)(Y, P ), P − a.s., ∀ Y ∈ Y1
q (S).

This proves that Ỹ is the MHD of order q. Furthermore, recalling (6.89), we
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have

D = D0 exp(aD) = D0E
(
q(q − 1)h(s,q)(Ỹ , P )

)1/(q−1)

.

Finally, due to Proposition 6.2, we have

Ỹ E(θ̂ · S) = E
(
θ̂ · S + q(q − 1)h(s,q)(Ỹ , P )

)1/(q−1)

E(θ̂ · S)

= E(θ̂ · S)1/(q−1)E
(
q(q − 1)h(s,q)(Ỹ , P )

)1/(q−1)

E(θ̂ · S)

= E(θ̂ · S)pE(qh(s,q)(Ỹ , P ))

=
1

D0xp
U(t, xEt(θ̂ · S)).

Hence, Ŷ := Ỹ E(θ̂ · S) is a true martingale. This completes the proof of this

theorem.
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Chapter 7

Horizon-Unbiased Hedging

In general, the optimal portfolio depends on the variation of horizon. The

difficulty lies in how we can materialize this dependence and there is no single

result in the literature addressing this issue. As explained before, the notion

of forward utilities cancels out the effect of horizon on optimal portfolio. Here,

in this chapter, we explore the case where the optimal portfolio is horizon-

unbiased (independent of horizon) from a different perspective. In fact, we

consider an agent with classical exponential utility. We want to characterize

all payoff processes that this agent can hedge with an optimal portfolio which

is horizon-unbiased. Basically, we are approaching this horizon-unbiased opti-

mal portfolio from the view of contract theory.

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where

the filtration is complete and right continuous. We consider a d-dimensional

semimartingale stock price process, S. The set of σ-martingale measures with

finite entropy is denoted by

Me
f (S) =

{
Q ∈ Pe | S ∈Mσ(Q), and E

[
dQ

dP
log
(dQ
dP

)]
< +∞

}
. (7.1)

Throughout this chapter, we assume that

S locally bounded and Me
f (S) 6= ∅. (7.2)
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Remark that under assumption (7.2), Mσ(Q) =Mloc(Q).

In this chapter, we are interested with the following exponential random field

utility,

U(t, x) = − exp(−x+Bt), x ∈ IR, t ∈ [0, T ]. (7.3)

For the process B and any stopping time τ , we denote by Q(τ,B) the minimal

entropy martingale measure for Sτ with respect to P (τ,B), where P (τ,B) :=

eBτ

E(eBτ )
· P . Then, the set of admissible portfolios that we will consider in this

chapter is given by

Θ(S,B) :=
{
θ ∈ L(S)| (θ · S)τ ∈M(Q(τ,B)), for all τ ∈ TT

}
, (7.4)

where TT denotes the set of all stopping times that are bounded from above

by T . This definition of portfolio extends slightly the definition given by [24]

to the case of a dynamic payoff B. For other sets of portfolios, we refer the

reader to this seminal paper.

For the random field utility U(t, x) defined in (7.3), we will focus on describing

the process B such that the optimal hedging portfolio, θ̂, is horizon-unbiased

(independent of horizon). In other words, we will find B such that for any

τ ∈ TT , the following holds

max
θ∈Θ(S,B)

E
[
− exp

(
Bτ − (θ · S)τ

)]
= E

[
− exp

(
Bτ − (θ̂ · S)τ

)]
. (7.5)

As a consequence of our method, the optimal portfolio θ̂ will be described as

explicit as possible.

In what follows, we will solve this problem in two steps. First of all,

a particular case when B is predictable with finite variation is investigated

and the necessary and sufficient conditions for horizon-unbiased hedging are

derived. Afterwards, the most general case when B is a semimartingale is

considered and is fully solved. In both cases, the optimal horizon-unbiased

hedging portfolio is presented explicitly.

For a random variable H, we denote by Q̃(H) the minimal entropy martin-
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gale measure for S with respect to P (H) := eH
(
E(eH)

)−1 · P . Moreover, Θ1

denotes the set of portfolios considered in [24], and is given by

Θ1 :=
{
θ ∈ L(S)

∣∣∣ (θ · S) ∈M(Q̃(H))
}
. (7.6)

Lemma 7.1: Suppose that (7.2) holds. Let H be a random variable that is

bounded from below and

E
[
epH
]
< +∞, (7.7)

for some p ∈ (1,+∞), and θ̃ ∈ Θ1.

Then, the following are equivalent:

(i) We have

1− u0 := inf
θ∈Θ1

E
(

exp
[
H − (θ · S)T

])
= E

(
exp

[
H − (θ̃ · S)T

])
.

(ii) For any stopping time σ ≤ T , we have

1− uσ := ess inf
θ∈Θ1

E

(
exp
[
H −

∫ T

σ

θudSu

]∣∣∣Fσ)
= E

(
exp
[
H −

∫ T

σ

θ̃udSu

]∣∣∣Fσ) .
Proof. Using the results in [24], we change the probability and work under Q

instead of P , where

Q :=
exp(H)

E[exp(H)]
· P.

Suppose that assertion (i) holds, and put

Jt := ess inf
Z∈Zef (S,Q)

EQ

(
ZT
Zt

log
ZT
Zt

∣∣∣Ft) , (7.8)

where Zef (S,Q) is given by

Zef (S,Q) :=
{
Z > 0|Z ∈Mloc(Q), ZS ∈Mloc(Q) andEQ[ZT log(ZT )] < +∞

}
.

(7.9)

203



Due to the assumption (7.2), Proposition 3.1 in [44] implies the existence of ξ

that belongs to the set

Ξ :=
{
ξ > 0 | E(ξ) = 1, E(ξη) = 0, for any η := (θ · S)T , θ ∈ Θ1

}
and ξ satisfies

J0 = min
ξ∈Ξ

EQ(ξ log ξ) = EQ(ξ log ξ).

Furthermore, an application of Theorem 3.5 in [44] leads to

ξ = exp
(
− log

(
EQe−(θ̃·S)T

)
− θ̃ · ST

)
and u0 = 1− e−J0 . (7.10)

It is clear that the set Zef (S,Q) is stable under concatenation 1, and due

to Proposition 4.1 in [44], we conclude that the optimizer of Jt is given by

Z∗t := EQ(ξ|Ft) ∈ Zef (S,Q). Then, by considering P ∗ := Z∗T ·Q and applying

Bayes’ rule, it is easy to derive the following two equalities

EQ

(
Z∗T
Z∗σ

e−Jσ log

(
Z∗T
Z∗σ

e−Jσ
) ∣∣∣Fσ) = 0, (7.11)

EQ

((∫ T

σ

θudSu

)Z∗T
Z∗σ

e−Jσ
∣∣∣Fσ) = 0. (7.12)

Moreover, the first equation in (7.10) implies

Jt = EQ

(
Z∗T
Z∗t

log
Z∗T
Z∗t

∣∣∣Ft) = J0 − θ̃ · St − logZ∗t .

Equivalently, for any stopping time σ ≤ T , we have

Z∗T
Z∗σ

= exp

[
−
∫ T

σ

θ̃udSu + Jσ

]
. (7.13)

And by taking conditional expectation, it is easy to see that

EQ
(

1− e−
∫ T
σ θ̃udSu

∣∣∣Fσ) = 1− e−Jσ (7.14)

1We refer for more details on this concept to [44]
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Thanks to Young’s inequality (i.e. xy ≤ ex + y log(y)− y), for any θ ∈ Θ1, we

obtain that(
−
∫ T

σ

θudSu

)(
Z∗T
Z∗σ

e−Jσ
)
≤ e−

∫ T
σ θudSu +

Z∗T
Z∗σ

e−Jσ log

(
Z∗T
Z∗σ

e−Jσ
)
− Z∗T
Z∗σ

e−Jσ .

Therefore, by taking conditional expectation above on both sides, and using

(7.11), (7.12) and (7.13), we derive

EQ
(

1− e−
∫ T
σ θudSu

∣∣∣Fσ) ≤ 1− e−Jσ . (7.15)

By combining (7.14) and (7.15), assertion (ii) follows immediately. The con-

verse is immediate by putting σ = 0. This ends the proof of the lemma.

In the following, we start addressing the horizon-unbiased hedging problem

for the case when the payoff process B is predictable with finite variation. The

next proposition characterizes the optimal portfolio θ̂ being the solution of an

equation.

Proposition 7.1: Suppose that (7.2) is satisfied and let B be a bounded pre-

dictable process with finite variation. Then, if there exists θ̂ ∈ Θ(S,B) such

that for any stopping time τ ,

min
θ∈Θ(S,B)

E
[
exp
(
Bτ − (θ · S)τ

)]
= E

[
exp
(
Bτ − (θ̂ · S)τ

)]
, (7.16)

then, −θ̂ is a pointwise root of

0 =


b+ cθ +

∫
x(eθ

T x − 1)F (dx), on {∆A = 0};∫
xeθ

T xF (dx), on {∆A 6= 0}.
(7.17)

Proof. Notice–see Lemma 7.1 for details–that (7.16) is equivalent to the fact
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that for any stopping times T ≥ τ ≥ σ and any θ ∈ Θ(S,B), we have

E

(
exp
[
Bτ −

∫ τ

σ

θudSu

]∣∣∣Fσ) ≥ E

(
exp
[
Bτ −

∫ τ

σ

θ̂udSu

]∣∣∣Fσ) , P − a.s.

(7.18)

Put Xθ
t := exp

[
Bt − (θ · S)t

]
, and for any θ ∈ Θ(S,B) consider a stationarily

increasing sequence of stopping times (Tn)n≥1 such that X θ̂
t∧Tn and Xθ

t∧Tn are

both special semimartingales with integrable martingale and predictable parts,

and their left limit processes are bounded from below by 1/n. Then for each Tn,

(7.18) implies that for any nonnegative left continuous and bounded process

H, and any subdivision ρ := (τi)0≤i≤m+1 with τ0 = 0 and τm+1 = Tn, which is

composed by a finite and increasing sequence of stopping times, we have

m∑
i=0

HτiE(exp[Bτi+1
−
∫ τi+1

τi

θudSu]| Fτi)

≥
m∑
i=0

HτiE(exp[Bτi+1
−
∫ τi+1

τi

θ̂udSu] | Fτi).
(7.19)

Due to (7.19), it is easy to deduce that:

E

(
m∑
i=0

Hτi

Xθ
τi

(Xθ
τi+1
−Xθ

τi
)

)
≥ E

(
m∑
i=0

Hτi

X θ̂
τi

(X θ̂
τi+1
−X θ̂

τi
)

)
(7.20)

Let Km(θ) :=
∑m

i=0

Hτi
Xθ
τi

I]τi,τi+1]. Then, the sums in (7.20) can be written in

the form of integrals and consequently (7.20) can be written as follows

E

(∫ Tn

0

Km
u (θ)dXθ

u

)
≥ E

(∫ Tn

0

Km
u (θ̂)dX θ̂

u

)
(7.21)

Due to the arbitrariness of the subdivision ρ, we let |ρ|→ 0.2 Then, Km(θ)→
H
Xθ
−

and (7.21) becomes

E
(∫ Tn

0

Hu

Xθ
u−
dXθ

u

)
≥ E

(∫ Tn

0

Hu

X θ̂
u−
dX θ̂

u

)
. (7.22)

2Here, we put |ρ|:= sup0≤i≤m(τi+1 − τi)
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An application of Ito’s formula to (Xθ)Tn and (X θ̂)Tn , and recalling the bound-

edness of H, (Xθ
−)Tn and (X θ̂

−)Tn , we have

E
[∫ Tn

0

HudA
θ
u

]
= E

[∫ Tn

0

Hu

Xθ
u−
dXθ

u

]
, and E

[∫ Tn

0

Hu

X θ̂
u−
dX θ̂

u

]
= E

[∫ Tn

0

HudA
θ̂
u

]
,

(7.23)

where Aθ is a predictable process with finite variation given by

Aθ := B − θT b · A+
1

2
θT cθ · A+

∑
(e∆B − 1−∆B)(1− a)+

+
(
e∆B−θT x − 1−∆B + θTx

)
? ν.

(7.24)

Since the process H is arbitrary, we let n→ +∞ in (7.23) and deduce that

Aθ̂ � Aθ, for any θ ∈ Θ(S,B).

Or, equivalently, for any θ ∈ Θ(S,B),

f(θ) ≥ f(θ̂), where f(λ) := −λT b+1

2
λT cλ+

∫
(e∆B−λT x−1−∆B+λTx)F (dx).

We easily deduce that, on the set {∆A = 0}, the function f(θ) coincides

with K(−θ) of Lemma 5.2 (note that, in our current situation, the truncation

function can be taken h(x) = x due to the local boundedness of S), where

K(λ) := bTλ+
1

2
λT cλ+

∫ (
eλ

T x − 1− λTx
)
F (dx), λ ∈ IRd.

Hence, we deduce that −θ̂ is a root of the first equation in (7.17). On the set

{∆A 6= 0}, we obtain

f t(θt)∆At = e∆Bt

∫
e−θ

T
t xν({t}, dx)− (1 + ∆Bt)at

= e∆Bt(K(−θt)∆At + at)− (1 + ∆Bt)at.

Hence −θ̂ is a root of the second equation in (7.17). This completes the proof
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of the proposition.

Our main result is given in the following theorem.

Theorem 7.1: Suppose that (7.2) is satisfied and let B be a bounded pre-

dictable process with finite variation. Then, the following are equivalent:

(i) There exists θ̂ ∈ Θ(S,B) such that for any stopping time τ ,

min
θ∈Θ(S,B)

E
[
exp
(
Bτ − (θ · S)τ

)]
= E

[
exp
(
Bτ − (θ̂ · S)τ

)]
. (7.25)

(ii) For any θ ∈ Θ(S,B)

I{(θ·S)− 6=0} ·B = I{(θ·S)− 6=0} · hE(Z̃, P ), (7.26)

where Z̃ = exp
(
θ̃ · S + hE(Z̃, P )

)
is minimal entropy-Hellinger local mar-

tingale density.

Furthermore, the optimal portfolio θ̂ coincides with −θ̃ obtained explicitly

from Z̃, i.e. −θ̂ is a pointwise root of

0 =


b+ cθ +

∫
x(eθ

T x − 1)F (dx), on {∆A = 0};∫
xeθ

T xF (dx), on {∆A 6= 0}.
(7.27)

Proof. In Proposition 7.1, we have proved that the optimal portfolio θ̂ in

(7.25)–when it exists–can be derived from (7.27). Therefore, in the remaining

part, we focus on the equivalence between assertions (i) and (ii). First, we

assume that assertion (i) holds, and put

Θb := {θ ∈ L(S) | (θ · S)t(ω) is uniformly bounded in t and ω} . (7.28)

Then, for any θ ∈ Θb, both (θ · S)τ and (θ̂ · S)τ are true Q(τ,B)-martingales,

where Q(τ,B) is given by

Q(τ,B) :=
exp[Bτ − (θ̂ · S)τ ]

E exp[Bτ − (θ̂ · S)τ ]
· P.
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Therefore, for any θ ∈ Θb and any stopping time τ , we obtain

E
[
(θ · S)τ exp

(
Bτ − (θ̂ · S)τ

)]
= E

[
(θ̂ · S)τ exp

(
Bτ − (θ̂ · S)τ

)]
= 0.

Hence, the process (θ ·S) exp(B−(θ̂ ·S)) = eB−h
E(Z̃,P )Z̃(θ ·S) is a local martin-

gale. Then, a direct application of Ito’s formula leads to (7.26), and assertion

(ii) follows.

Now, suppose that assertion (ii) holds. Thanks to a direct application of Ito’s

formula, assertion (ii) is equivalent to the statement that, for any θ ∈ Θ(S,B),

the process Y θ := exp
[
B + θ̃ · S

]
(θ · S) is a local martingale. Indeed, this

equivalence follows immediately from the fact that

exp
[
B + θ̃ · S

]
(θ · S) = Z̃ exp

[
B − hE(Z̃, P )

]
(θ · S).

Let θ ∈ Θb, and (Tn)n≥1 be a sequence of stopping times that increases station-

arily to T and Y θ̃
t∧Tn and Y θ

t∧Tn are true martingales. Then, for any stopping

time τ , we put τn := τ ∧ Tn and obtain

E[eBτn−(θ·S)τn ]− E[eBτn+(θ̃·S)τn ] ≥ E
{

((−θ − θ̃) · S)τne
Bτn+(θ̃·S)τn

}
= 0

Thanks to Fatou’s lemma and the boundedness of exp[B + (θ · S)] for any

θ ∈ Θb, we get

E
(

exp
[
Bτ − (θ · S)τ

])
≥ E

(
exp
[
Bτ + (θ̃ · S)τ

])
. (7.29)

Due to Theorem 2.1–(c) in [44], there exists a sequence of (θn)n≥1, θn ∈ Θb,

such that

lim
n→+∞

E
(

exp
[
Bτ − (θn · S)τ

])
= inf

θ∈Θ(S,B)
E
(

exp
[
Bτ − (θ · S)τ

])
(7.30)

By combining (7.29) and (7.30), and putting θ̂ := −θ̃, the proof of the assertion
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(i) is complete.

Remark: Theorem 7.1 determines explicitly the optimal portfolio in the horizon-

unbiased exponential hedging when it exists. Furthermore, the theorem

clearly illustrates the relationship between horizon-unbiased hedging and a

forward utility. In fact, we can easily conclude that, in general, the horizon-

unbiased problem in (7.25) admits a solution while the corresponding ran-

dom field utility , U(t, x) = − exp(−x + Bt), may not be a forward utility.

A simple example is when S is constant in a neighborhood of zero (i.e

St = S0 for t close to zero), and B is neither increasing nor constant pro-

cess. Furthermore, the equivalence between the existence of solution to the

horizon-unbiased hedging problem and the property that − exp(−x+B) is

a forward utility only holds only if there exists a portfolio θ such that

{(ω, t)|(θ · S)t−(ω) 6= 0} = Ω×]0, T ].

In general, this equality does not hold. In fact if S is constant in a neighbor-

hood of zero (i.e St = S0 for t close to zero), then this equality is violated.

Hence, in this case, the two concepts of forward utility and horizon-unbiased

utility differ.

Also, it is easy to see that the horizon-unbiased hedging problem admits a

solution and its value function v(τ) := minθ∈Θ(S,B) E
[
exp
(
Bτ − (θ · S)τ

)]
is constant, i.e. v(τ) = v(T ), if and only if − exp(Bt − x) is a forward

dynamic utility.

Now, we turn to the general case, where B is semimartingale satisfying the

following condition:

sup
τ∈TT

E
[
epBτ

]
< +∞ for some p ∈ (1,+∞). (7.31)

Our main result is formulated in the following theorem.

Theorem 7.2: Suppose that (7.2) holds and consider a semimartingale, B,
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satisfying (7.31) with the Doob-Meyer multiplicative decomposition given by

eB = eB0Z(B)eB
′
. (7.32)

Here Z(B) is a positive local martingale (Z
(B)
0 = 1) and B′ is a predictable

process with finite variation (B′0 = 0).

Then, there is equivalence between assertions (i) and (ii):

(i) There exists θ̂ ∈ Θ(S,B) such that for any stopping time τ ,

min
θ∈Θ(S,B)

E
[
exp(Bτ − (θ · S)τ )

]
= E

[
exp(Bτ − (θ̂ · S)τ )

]
. (7.33)

(ii) The MEH local martingale density with respect to Z(B), denoted by Z̃(B),

exists and satisfies

I{(θ·S)− 6=0} ·B′ = I{(θ·S)− 6=0} · hE
(
Z̃(B), Z(B)

)
, (7.34)

for any θ ∈ Θ(S,B).

Furthermore, the optimal portfolio in (7.33) is given by

log(Z̃(B)) = −θ̂ · S + hE
(
Z̃(B), Z(B)

)
. (7.35)

Proof. Consider a sequence of stopping times, (Tn)n≥1, that increases station-

arily to T and such that (B′)Tn is bounded and (Z(B))Tn is a true martingale.

Then, by putting Qn := Z
(B)
Tn
·P , assertion (i) implies that the horizon-unbiased

hedging problem for (STn , (B′)Tn , Qn) has a solution. Thus, a direct applica-

tion of Theorem 7.1—to the model (STn , (B′)Tn , Qn)—implies that (7.34) holds

for any θ ∈ Θ(S,B), and the optimal portfolio θ̂ in (7.33) coincides with −θ̃,
where θ̃ is the integrand that appears in the expression of Z̃(B). This proves

assertion (ii).

Next, assume that assertion (ii) holds, and notice that this assertion is equiv-

alent to the statement that exp(B − θ̂ · S)(θ · S) is a local martingale for any

θ ∈ Θ(S,B). Let θ ∈ Θb and (Tn)n≥1 be a stationarily increasing sequence
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of stopping times such that ((θ̂ − θ) · S)Tn exp

(
BTn −

(
θ̂ · S

)Tn)
is a true

martingale.

Then, for any stopping time τ , we derive

0 = E

[
exp
(
Bτ∧Tn − (θ̂ · S)τ∧Tn

)(
(θ̂ − θ) · S

)
τ∧Tn

]
≤ E

[
exp
(
Bτ∧Tn − (θ · S)τ∧Tn

)]
− E

[
exp

(
Bτ∧Tn − (θ̂ · S)τ∧Tn

)]
.

(7.36)

Thus, due to Fatou’s lemma we get

E
[
exp
(
Bτ − (θ̂ · S)τ

)]
≤ lim inf

n→+∞
E
[
exp
(
Bτ∧Tn − (θ · S)τ∧Tn

)]
= E

[
exp
(
Bτ − (θ · S)τ

)]
.

The last equality above follows from the fact that {exp(Bτ−(θ ·S)τ ), τ ∈ TT}
is uniformly integrable. Indeed, this fact follows from∫

{Bτ>c}
eBτdP ≤ e−(p−1)cE

[
epBτ

]
≤ e−(p−1)c sup

τ∈TT
E
[
epBτ

]
,

and for any θ ∈ Θb,

eBτ−(θ·S)τ ≤ eBτ exp

[
| sup
t∈[0,T ]

|(θ · S)t||∞

]
.

Hence, again due to Theorem 2.1–(c) in [44], we obtain that

E
[
exp

(
Bτ − (θ̂ · S)τ

)]
= min

θ∈Θ(S,B)
E [exp (Bτ − (θ · S)τ )]

= inf
θ∈Θb

E [exp (Bτ − (θ · S)τ )] .

This proves assertion (i), and the proof of the theorem is complete.
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Chapter 8

Optimal Investment Timing and

Optimal Portfolio

In this chapter, we focus on the problem where the investor is seeking the opti-

mal portfolio from her investment in stocks and the optimal time to liquidate

her assets (tradable or not). In previous chapters, we have introduced and

developed two powerful approaches when dealing with this problem (i.e. for-

ward utilities and horizon-unbiased hedging). In fact, these two methods solve

this problem partially. This chapter will exhibit direct approaches to solve

this problem in two contexts. Precisely, we will use the martingale theory for

general market model with exponential utility, and control theory when the

market model is Markovian.

The martingale approach is detailed in Section 8.A. Therein, we focus on

the exponential random utility and look for the explicit description of the

optimal portfolio and the optimal stopping time via studying the value pro-

cess. The second approach is investigated in Section 8.B and deals with the

Markovian framework. Therein, the value function is proved to be the unique

viscosity solution of the variational inequalities.
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8.A Exponential Hedging with Variable Hori-

zon

Consider a filtered probability space denoted by (Ω,F , (Ft)0≤t≤T , P ) where

the filtration is complete and right continuous. In this setup, we consider a

d-dimensional semimartingale S = (St)0≤t≤T which represents the discounted

price processes of d risky assets. The set of σ-martingale measures with finite

entropy is given by

Me
f (S) =

{
Q ∈ Pe | S ∈Mσ(Q), and E

[
dQ

dP
log
(dQ
dP

)]
< +∞

}
. (8.1)

Throughout this section, we assume the following:

Me
f (S) 6= ∅, and ∀ λ ∈ IRd,

∫
{|x|>1}

|x|eλT xF (dx) < +∞, P⊗A−a.e. (8.2)

Consider the following exponential random field utility,

U(t, x) = − exp(−x+Bt), x ∈ IR, t ∈ [0, T ], (8.3)

where the process B is a RCLL semimartingale and the set of admissible

portfolios is given by

Θ :=

{
θ ∈ L(S)

∣∣∣ sup
τ∈TT

E (exp[Bτ − (θ · S)τ ]) < +∞
}
. (8.4)

Occasionally in our analysis, there are integrability conditions imposed on B,

such as

sup
τ∈TT

E
[
exp(Bτ )

]
< +∞. (8.5)

and sup
τ∈TT

E
(
epBτ

)
< +∞ for some p ∈ (1,+∞). (8.6)

This section is devoted to the following optimization problem. Throughout

this thesis, we often call it the optimal sale problem.
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Problem 8.1: Find the pair (θ∗, τ ∗) ∈ Θ× TT such that

min
θ∈Θ,τ∈TT

E
(

exp
[
Bτ − (θ · S)τ

])
= E

(
exp
[
Bτ∗ − (θ∗ · S)τ∗

])
. (8.7)

Remark that the solution of this problem has two components. Namely, the

optimal portfolio θ∗ and optimal investment timing τ ∗. Our contribution lies in

describing—as explicitly as possible—the optimal solution (θ∗, τ ∗) to Problem

8.1. The description is essentially based on the characterization of the optimal

value process via a dynamic programming equation. This will constitute our

first result in this section and is given by Theorem 8.1. The latter is based on

the following lemma.

Lemma 8.1: Suppose that the payoff process, B, satisfies (8.5). Then, for

any θ ∈ Θ, the process

Lt(θ) := V (t) exp

(
−
∫ t

0

θudSu

)
, 0 ≤ t ≤ T, (8.8)

is a supermartingale. Here, V is the value process, given by

V (t) := ess sup
θ∈Θ, τ≥t

E

(
− exp

[
Bτ −

∫ τ

t

θudSu

]∣∣∣Ft) , 0 ≤ t ≤ T. (8.9)

Proof. For any θ ∈ Θ and any stopping time τ ≥ t, we put

jt(θ, τ) := E
(
−e−

∫ τ
t θudSu+Bτ

∣∣∣Ft)

and Jt(θ) := ess sup
τ≥t

E
(
−e−

∫ τ
t θudSu+Bτ

∣∣∣Ft) .
Notice that the process J(θ) exp(−θ ·S) is the Snell envelope of − exp(−θ ·S+

B) and, hence, it is a RCLL supermartingale (see [56], and [26]). Furthermore,

we have for any t ∈ [0, T ], τ ≥ t, and any θ ∈ Θ,

V (t) ≥ Jt(θ) ≥ jt(θ, τ) and jt(θ, τ) = jt(θI]t,T ], τ).
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Consider t ≥ s ≥ 0, τ ≥ t, and θ, θ ∈ Θ such that θI[s,t] = θI[s,t]. Then, due

to the above facts, we derive

V (s) ≥ Js(θ) ≥ E
(
Jt(θ)e

−
∫ t
s θudSu

∣∣∣Fs) = E
(
Jt(θ)e

−
∫ t
s θudSu

∣∣∣Fs)
≥ E

(
jt(θ, τ)e−

∫ t
s θudSu

∣∣∣Fs) .
(8.10)

Remark that for two pairs (θ1, τ1) and (θ2, τ2), there exists (θ3, τ3) such that

max(jt(θ1, τ1); jt(θ2, τ2)) = jt(θ3, τ3).

In fact, it is enough to consider

θ3 := θ1I{jt(θ1,τ1)≥jt(θ2,τ2)}⊗]t,T ] + θ2I{jt(θ1,τ1)<jt(θ2,τ2)}⊗]t,T ],

which is predictable and belongs to Θ, and

τ3 =

{
τ1, on {jt(θ1, τ1) ≥ jt(θ2, τ2)};
τ2, otherwise,

which is a stopping time satisfying τ3 ≥ t. Then—an application of Zorn’s

lemma leads to—for any t there exists a sequence of pairs (θn, τn) such that

jt(θn, τn) increases to V (t). By combining this fact with (8.10), we obtain

V (s) ≥ E
(
jt(θn, τn)e−

∫ t
s θudSu

∣∣∣Fs) .
Thus, due to the monotone convergence theorem, we deduce that

V (s) ≥ E
(
V (t)e−

∫ t
s θudSu

∣∣∣Fs) .
This ends the proof of the lemma.

Theorem 8.1: Suppose that (8.5) holds. Then, the following assertions hold:

(i) V admits a RCLL modification and satisfies the following dynamic pro-
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gramming equation

V (t) = max

[
−eBt ; ess sup

θ∈Θ,τ>t
E

(
V (τ) exp

[
−
∫ τ

t

θudSu

]∣∣∣Ft)] . (8.11)

(ii) If B is bounded from below and assumption (8.2) holds, then V is a

RCLL negative semimartingale that has the following decomposition

V (t) = V (0)Et(MV )eA
V
t (8.12)

where MV = β · Sc +W ? (µ− ν) + g ? µ+MV

and Wt(x) := ft(x) +
f̂t

1− at
I{at<1}.

(8.13)

Here, AV is a predictable process with finite variation, MV is a local mar-

tingale, and (β, f, g,MV ) are its Jacod components.

Proof. (i) It is clear from Lemma 8.1, that the process L(θ) is a supermartin-

gale for any θ ∈ Θ. Then, thanks to Theorem 2 in [26] (page 73), we deduce

that the process L(θ) admits right and left limits along the rationals and,

the process Lt+(θ) is a RCLL supermartingale with respect to the filtration

Ft+ = Ft. These imply that both processes V (t+) and V (t−) exist, and

moreover that

V (t) ≥ V (t+), P − a.s. (8.14)

On the other hand, since Lt+(θ) = V (t+) exp [−(θ · S)t] is a RCLL super-

martingale and V (t+) ≥ −eBt , then an application of the optional sampling

theorem for supermartingales leads to the inequalities

V (t+) ≥ E

(
V (τ+) exp(−

∫ τ

t

θudSu)
∣∣∣Ft) ≥ E

(
− exp

[
−
∫ τ

t

θudSu +Bτ

]∣∣∣Ft) .
Then, by taking the essential sup, we obtain that

V (t+) ≥ V (t).

Thus, a combination of this with (8.14), the right continuity of V follows
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immediately. This proves that the process V admits a modification that is

RCLL. We will consider this modification throughout the rest of this chapter.

As a result, the two processes L(θ) and (θ · S) are RCLL semimartingales for

any θ ∈ Θ. Therefore, an application of the optional sampling theorem implies

V (t) ≥ ess sup
θ∈Θ,τ>t

E

(
V (τ) exp

[
−
∫ τ

t

θudSu

]∣∣∣Ft) .
Combining the above with V (t) ≥ −eBt , we conclude that

V (t) ≥ max

[
−eBt ; ess sup

θ∈Θ,τ>t
E

(
V (τ) exp

[
−
∫ τ

t

θudSu

]∣∣∣Ft)] .
To prove the reverse inequality, we write

V (t) = ess sup
θ∈Θ,τ≥t

E

(
− exp

[
Bτ −

∫ τ

t

θudSu

]∣∣∣Ft)

= max

[
−eBt ; ess sup

θ∈Θ,τ>t
E

(
− exp

[
Bτ −

∫ τ

t

θudSu

]∣∣∣Ft)]

≤ max

[
−eBt ; ess sup

θ∈Θ,τ>t
E

(
V (τ) exp

[
−
∫ τ

t

θudSu

]∣∣∣Ft)] .
(8.15)

This ends the proof of assertion (i).

(ii) Suppose that B is bounded from below by a constant −C. Then, we derive

−V (t) = ess inf
θ∈Θ,τ∈TT

E

(
exp

(
Bτ −

∫ τ

t

θudSu

) ∣∣∣Fτ)
≥ e−C ess inf

θ∈Θ,τ∈TT
E

(
exp(−

∫ τ

t

θudSu)
∣∣∣Fτ)

= e−C ess inf
θ∈Θ

E

(
exp(−

∫ T

t

θudSu)
∣∣∣Ft)

= e−C exp

(
− ess inf

Z∈Zef (S)
E
(ZT
Zt

log
(ZT
Zt

)∣∣∣Ft)) .
Here Zef (S) denotes the set of martingale densities, Z, such that Z log(Z) is an
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integrable submartingale. Due to the assumption that Me
f (S) is not empty,

or equivalently Zef (S) 6= ∅, we have

ess inf
Z∈Zef (S)

E

(
ZT
Zt

log
(ZT
Zt

)∣∣∣Ft) < +∞, P − a.s.

Hence, this together with the right continuity of V prove that the process V is

a negative supermartingale (take θ = 0 in Lemma 8.1) or, equivalently, V
V (0)

is a

positive exponential local submartingale. This leads to the existence of a local

martingale MV and a predictable process, AV , with finite variation such that

V = V (0)E(MV )eA
V

. These facts follow from the Doob-Meyer decomposition

and the fact that 1
V−
· V is a local submartingale. The decomposition for the

local martingale MV follows from Jacod Theorem; see Theorem 2.2. This

completes the proof of the theorem.

Remark: The equation (8.11) describes the optimal cost process/optimal

value process. This description resembles the dynamic maximum princi-

ple, which will lead, in the Markovian case, to a HJB equation. In a model

driven by Brownian motions, this HJB equation can be solved explicitly

such as the case in [35]. The derivation of these HJB in a more general case

than the Brownian as well as their investigations, and their relationship to

backward stochastic differential equations (BSDEs) are not the scope of this

thesis and are left to future research.

Once the process V is determined, then the optimal investment timing and

the optimal portfolio can be derived in the general semimartingale framework,

as it will be illustrated in the following.

Theorem 8.2: Consider the process V defined in (8.9) and its Jacod com-

ponents (β, f, g,MV , AV ) given by (8.12)–(8.13). Suppose that Problem 8.1

admits a solution (θ∗, τ ∗), and that the assumptions (8.2) and (8.6) are ful-

filled. Then, the following assertions hold.

(i) There exists a probability measure QV ∼ P such that the MEH martin-
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gale measure with respect to QV —that we denote by Q̃V and its density by

Z̃V
t := E(dQ̃V

dQV
| Ft)—exists and satisfies

AVt∧τ∗ = hEt∧τ∗(Q̃V , QV ), and log(Z̃V ) = θ̃V · S + hE(Q̃V , QV ). (8.16)

(ii) The optimal controls, (θ∗, τ ∗), solution to (8.7) can be described as fol-

lows:

a) The optimal investment θ∗ coincides with −θ̃V on [0, τ ∗], i.e. −θ∗ is a

pointwise root to

−b+c(θ−β)+

∫ [
h(x)− (f(x) + 1)e−θ

T xx
]
F (dx) = 0, on {∆A = 0}∩[0, τ ∗]

(8.17)

and

∫
(f(x) + 1)e−θ

T xxF (dx) = 0, on {∆A 6= 0} ∩ [0, τ ∗]. (8.18)

b) The stopping time τ ∗ satisfies τ ∗ ≥ τ̃ P − a.s., where τ̃ is the smallest

stopping times such that (θ∗I[0,τ̃], τ̃) is a solution to (8.7), and is given by

τ̃ = inf{0 ≤ t < T | V (t) = −eBt , or V (t−) = −eBt− } ∧ T, (8.19)

i.e. V (0) = sup
θ∈Θ

E
[
−e−(θ·S)τ̃+Bτ̃

]
. More generally, we have

V (t) = ess sup
θ∈Θ

E

(
− exp

[
−
∫ τt

t

θudSu +Bτt

]∣∣∣Ft) ,
where τt := inf{u ∈ [t, T [ | V (u) = −eBu , or V (u−) = −eBu− } ∧ T.

(8.20)

Proof. First, recall that due to the main result of [15], we deduce that the

set Zef,loc(S,Q) 6= ∅, for any Q ∼ P if and only if Zeloc(S) 6= ∅. Here

the set Zef,loc(S,Q) denotes the set of positive Q-local martingale, ZQ, (i.e.

ZQ ∈ Mloc(Q), ZQ > 0) such that ZQS is a σ-martingale under Q, (i.e.

ZQS ∈Mloc(Q)) and ZQ log
(
ZQ
)

is Q-locally integrable.

It is obvious that (−V (0))−1V is a positive local submartingale and the in-

equality, V
V (0)

= E
(
MV

)
eA

V ≤ eB

−V (0)
, holds. Thus, under assumption (8.6),
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we derive

sup
τ∈TT

E
[
Eτ
(
MV

)p] ≤ (−V (0))−p sup
τ∈TT

E
(
epBτ

)
< +∞,

and the uniform integrability of E
(
MV

)
follows. Hence, QV := ET

(
MV

)
·P ∼

P is a probability measure. Furthermore, due to Lemma 5.3 and assumption

(8.2), we get ∫
{|x|>1}

eλ
T xFQV (dx) < +∞, (8.21)

where FQV (dx) is the kernel corresponding to the jumps of S under the mea-

sure QV . Thus, under assumption (8.2) and (8.6), we deduce that

Zef,loc(S,QV ) 6= ∅

and, thus, we can apply Theorem 3.3 of [17] for the model (S,QV ). This proves

the existence of the MEH σ-martingale density Z̃V := Z̃QV with respect to

QV , and moreover, that, log(Z̃V ) = θ̃V · S + hE
(
Z̃V , QV

)
.

Since L(θ) = V e−θ·S is a supermartingale for any θ ∈ Θ, we deduce that the

process exp
(
AV − hE(Q̃V , QV )− (θ + θ̃V ) · S

)
is a Q̃V -submartingale. As a

result, the process

L
(
−θ̃V

)
= V eθ̃

V ·S = V (0)E
(
MV

)
eA

V +θ̃V ·S = V (0)E
(
MV

)
Z̃V eA

V −hE(Q̃V ,QV )

is a local supermartingale or, equivalently, the process AV − hE
(
Z̃V , QV

)
is

nondecreasing. Furthermore, a combination of the inequalities

EQV
(
eh

E
T (Z̃V ,QV )

)
≤ EQV

(
eA

V
T

)
= E

(
V (T )

V (0)

)
= E

(
−eBT
V (0)

)
< +∞,

and Theorem III.1 of [53], we deduce that Z̃V is a true QV -martingale. This

proves the existence of the MEH σ-martingale measure for (S,QV ) denoted by

Q̃V . This proves the assertion (i) without the first equality of (8.16).
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By combining the equality

V exp(−(θ∗ · S)) = V0E(MV )Z̃V exp
(
AV − hE(Q̃V , QV )− (θ̃V + θ∗) · S

)
,

the Q̃V -submartingale property of

AVt∧τ∗ − hEt∧τ∗
(
Q̃V , QV

)
− (θ̃ + θ∗) · St∧τ∗ , (8.22)

and the strict convexity of ez, we deduce that V (t∧ τ ∗) exp(−(θ∗ · S)t∧τ∗) is a

true martingale if and only if the process (8.22) is null, or, equivalently, that

AVt∧τ∗ = hEt∧τ∗
(
Q̃V , QV

)
, θ̃I[0,τ∗] = −θ∗I[0,τ∗].

This ends, simultaneously, the proof of assertion (i) and assertion (ii)-a).

Next, we will prove assertion (ii)-b). To this end, we consider the process Ỹ

and the stopping time τ̃ ∗ given, respectively, by

Ỹt := ess sup
τ≥t

E

(
− exp

[
Bτ +

∫ τ

t

θ̃udSu

] ∣∣∣ Ft) and

τ̃ ∗ := inf
{
t ∈ [0, T [ : Ỹt = −eBt , or Ỹt− = −eBt−

}
∧ T. (8.23)

Then, it is obvious to note that for any t ∈ [0, T ],

V (t) ≥ Ỹ (t) ≥ − exp(Bt), P − a.s. (8.24)

Furthermore, since

V (0) = E
[
−V (τ ∗) exp

(
−(θ∗ · S)τ∗

)]
= E

[
− exp

(
Bτ∗ − (θ∗ · S)τ∗

)]
≤ sup

τ∈TT
E
[
− exp

(
Bτ − (θ∗ · S)τ

)]
=: Ỹ (0),
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we derive

V (0) = Ỹ (0) and τ ∗ ≥ τ̃ ≥ τ̃ ∗ P − a.s.

Combining these inequalities with the fact that V (t ∧ τ̃ ∗) exp(−(θ∗ · S)t∧τ̃∗)

and Ỹt∧τ̃∗ exp(−(θ∗ · S)t∧τ̃∗) are martingales, we deduce that

EV (t ∧ τ̃ ∗) exp(−(θ∗ · S)t∧τ̃∗) = EY (t ∧ τ̃ ∗) exp(−(θ∗ · S)t∧τ̃∗).

This equality together with (8.24) prove that the two processes V (t ∧ τ̃ ∗) and

Ỹ (t ∧ τ̃ ∗) coincide. Thus, the two stopping times τ̃ and τ̃ ∗ coincide also.

Thanks, to the result of [54] (see Théorème 4 therein), we deduce that the

stopping time τ̃ is the smallest optimal stopping time, and the assertion (ii)-

b) follows. This ends the proof of the theorem.

Remark: 1. Our main results of this section (Theorems 8.1 and 8.2) con-

tribute by giving the structure of the optimal value process V , and the

explicit description of τ ∗ and θ∗ when they exist.

2. The financial problem that we consider in this section is the same as

the one of [35]. Therefore, our two theorems generalize the results of

that paper to the semimartingale framework. See also [36], [29], and the

reference therein for the same financial problem with other utilities.

3. Concerning the mathematical formulation and/or technical aspects, Prob-

lem 8.1 is very close to the one considered in [47]. However, there are

fundamental differences:

(a) Our running reward function (ex) is multiplied to the terminal re-

ward function (g(St) = −eBt), while in [47] they add-up. Further-

more, the control θ appears in the expectation operation which is

not the case in our situation.

(b) The terminal reward function, g(x), is assumed to be bounded from

below (positive), which does not correspond to our case (g(St) =

−eBt < 0 might be unbounded from below). It is important to
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mention that this positivity assumption is crucial in the analysis of

[47].

(c) Our framework is very general by dealing with semimartingales in

which the predictable representation property may never hold. Fur-

thermore, the additional feature of jumps in the model may add

tremendous technical difficulties to the method used in [47].

Comment that the optimal sale problem with investments (i.e. Problem 8.1)

was the main motivation for the horizon-unbiased utility concept of Henderson-

Hobson. Herein, Theorem 8.2—and mainly its proof—establishes the connec-

tion between the existence of solution to Problem 8.1 and the forward utility

concept of Musiela-Zariphopoulou. This can be stated as follows.

Corollary 8.2.1: Suppose that assumptions of Theorem 8.2 hold, and con-

sider the following random field utility

U(t, ω, x) = Vt(ω) exp(−x). (8.25)

Then, there exists a stopping time τ such that the random field utility

U(t∧τ(ω), x) is an exponential forward dynamic utility for the model Sτ , and

τ̃—defined in (8.19)—is the smallest stopping time satisfying this property.

Proof. The proof of this Corollary follows directly from the proof of Theorem

8.2.

8.B Markovian Case

In Markovian case, the value process V (see (8.9)) can be written as

V (t, x, p) := ess sup
θ∈Θ(x,p), τ≥t

E
(
e−

∫ τ
t ζu(Xθ

u)duU(τ,Xθ
τ − ξ(Pτ ))

∣∣∣Xθ
t = x, Pt = p

)
.

(8.26)
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Here, U(t, x), (t, x) ∈ IR+ × IR, is deterministic utility function. We assume

that U(t, x) is global Lipschitz continuous, i.e. ∃ K such that

|U(t, x)− U(s, y)|≤ K(|t− s|+|x− y|). (8.27)

We also assume the function x 7→ ξ(x) is global Lipschitz continuous, i.e.

|ξ(x)− ξ(y)|≤ K|x− y|, ∀ x, y ∈ IR+, (8.28)

satisfying ξ(0) = 0. 1

ζ is the discount rate process. Θ(x, p) is the set of admissible portfolios (see

(2.10)), where, in particular, we require that the portfolios are bounded, i.e.

there exists K > 0 such that |θt|≤ K, P -a.s.

Xθ is the wealth process under the trading strategy θ which represents the

proportion of wealth invested in the stock,
dXθ

t

Xθ
t−

= θt
dSt
St−

. Consider the dynamics

of the stock price process S as follows

dSt
St−

= µdt+ σdWt +

∫
IR\{0}

ψ(z)Ñ(dz, dt). (8.29)

Here, N(dz, dt) is a Poisson random measure on the Borel sets of IR+×IR\{0}
with intensity dt× n(dz). n(dz) is the Lévy measure which is positive and σ-

finite on IR \ {0} such that ∫
{|z|≥1}

n(dz) < +∞

Ñ is the compensated Poisson measure given by Ñ(dz, dt) = N(dz, dt) −
n(dz)× dt. ψ(z) is assumed to be Borel measurable on IR \ {0} satisfying∫

IR\{0}
ψ2(z)dz < +∞. (8.30)

1For example, the call option ξ(x) = (x−K)+.
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Moreover, ψ(z) is assumed to be bounded in a neighborhood of z = 0.

Therefore, the dynamics of the wealth process Xθ can be expressed by

dXθ
t = µθtX

θ
t dt+ σθtX

θ
t dWt +

∫
IR\{0}

θtψ(z)Xθ
t−Ñ(dz, dt). (8.31)

Let the payoff process P follow the dynamics

dPt = Ptκdt+ PtηdBt +

∫
IR\{0}

Pt−`(z)Ñ(dz, dt), P0 > 0, (8.32)

which satisfies Pt > 0, P − a.s.. Here, `(z) is assumed to be Borel measurable

on IR \ {0} satisfying ∫
IR\{0}

`2(z)dz < +∞. (8.33)

Also, it is assumed to be bounded in a neighborhood of z = 0.

The Brownian motions W and B are correlated with ρ ∈ [−1, 1] and we can

write

dWt = ρdBt +
√

1− ρ2dZt

for another Brownian motion Z which is independent of B.

Note that in above setup, the coefficients of Xθ satisfies the global Lipschitz

conditions, i.e. there exists K > 0 such that:

|µθx− µθy| ≤ K|x− y|, (8.34)

|σθx− σθy| ≤ K|x− y|, (8.35)

|ψ(z)θx− ψ(z)θy| ≤ K|ψ(z)||x− y|, (8.36)

And, the global linear growth conditions hold:

|µθx| ≤K|x|, (8.37)

|σθx| ≤ K|x|, (8.38)
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In particular, by following the above conditions, the wealth dynamics (8.31)

has a unique strong solution.

8.B.1 Hamilton-Jacobi-Bellman equation

For any φ ∈ C2([0, T ]× IR+ × IR+), we define two differential operators

Dxpφ(t, x, p) :=

(
∂φ
∂x

(t, x, p)
∂φ
∂p

(t, x, p)

)
, D2

xpφ(t, x, p) :=

(
∂2φ
∂x2 (t, x, p) ∂2φ

∂x∂p
(t, x, p)

∂2φ
∂x∂p

(t, x, p) ∂2φ
∂p2 (t, x, p)

)

And, for any (t, x, p) ∈ [0, T ] × IR+ × IR+ and any admissible strategy θ ∈
Θ(x, p), we define the operator

Aθ(t, x, p,m,M) :=
(
µθx κp

)
.m+ tr

{( σ2

2
θ2x2 σηρ

4
θxp

σηρ
4
θxp η2

2
p2

)
M
}

Furthermore, for δ ∈ (0, 1) and φ ∈ C2([0, T ]× IR+ × IR+), we define

Bθ
δ−(t, x, φ) :=

∫
{|z|≤δ}

[
φ(t, x + θψ(z)x, p+ `(z)p)− φ(t, x, p)

− θψ(z)x
∂φ

∂x
(t, x, p)− `(z)p

∂φ

∂p
(t, x, p)

]
n(dz)

Remark that under our assumptions on n(z), ψ(z) and `(z), Bθ
δ−(t, x, φ) is well

defined, bounded uniformly in θ and

lim
δ→0

sup
θ
Bθ
δ−(t, x, φ) = 0. (8.39)

Define a set of continuous functions, C2, that grow in quadratic rate:

C2([0, T ]× IR+ × IR+) :={
φ ∈ C0([0, T ]× IR+ × IR+) : sup

[0,T ]×IR+×IR+

φ(t, x, p)

1 + x2 + p2
< +∞.

}
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For φ ∈ C2([0, T ]× IR+ × IR+), we define an operator

Bθ
δ+(t, x,m, φ) :=

∫
{|z|≥δ}

[
φ(t, x + θψ(z)x, p+ `(z)p)

− φ(t, x, p)−
(
θψ(z)x `(z)p

)
.m
]
n(dz)

Also, under our assumptions on n(z), ψ(z) and `(z), Bθ
δ+(t, x,m, φ) is well

defined and bounded uniformly in θ.

By putting Bθ(t, x,m, φ) = Bθ
δ−(t, x, φ)+Bθ

δ+(t, x,m, φ), we define an operator

Lθv(t, x, p) := −ζv + vt + Aθ(t, x,Dv,D2v) +Bθ(t, x,Dv, v)

If we denote Ũ(t, x, p) := U(t, x− ξ(p)), the HJB equation can be formulated

in the form of variational inequality

0 = min

{
− sup

θ
Lθv(t, x, p), v(t, x, p)− Ũ(t, x, p)

}
, (t, x, p) ∈ [0, T )×IR+×IR+,

(8.40)

with the terminal condition

v(T, x, p) = Ũ(T, x, p), ∀ (x, p) ∈ IR+ × IR+. (8.41)

8.B.2 Viscosity solution

We start by putting the definition of a viscosity solution.

Definition: (i) Any v ∈ C0([0, T ] × IR+ × IR+) is a viscosity supersolution

(subsolution) of (8.40) if

min
{
v − Ũ , ζv − ϕt − sup

θ

(
Aθ(t, x,Dϕ,D2ϕ) +Bθ(t, x,Dϕ, ϕ)

)}
≥ 0

(≤ 0)whenever ϕ ∈ C2([0, T ]× IR+× IR+)∩C2([0, T ]× IR+× IR+) and v−ϕ
has global minimum (maximum) at (t, x, p) ∈ [0, T )× IR+ × IR+.

(ii) v is a viscosity solution of (8.40) if it is both supersolution and subsolu-

tion.

228



We recall some usual notions that appears in different books and literatures.

Given v ∈ C0([0, T ]× IR+ × IR+) and (t, x, p) ∈ [0, T )× IR+ × IR+, we define

the parabolic superjet:

P2,+v(t, x, p) := {(m0,m,M) ∈ IR× IR2 × S2 : v(s, y, q) ≤ v(t, x, p)+

m0(s− t) +m.(y − x q − p) +
1

2
(y − x q − p)′M(y − x q − p)

+o(|s− t|2+|y − x|2+|q − p|2), as (s, y, q)→ (t, x, p)}.

and its closure

P2,+ v (t, x, p) :=

{(m0,m,M) ∈ IR× IR2 × S2 : (m0,m,M) = lim
n→+∞

(mn
0 ,m

n,Mn)

with (mn
0 ,m

n,Mn) ∈ P2,+v(tn, xn, pn)

and lim
n→+∞

(tn, xn, pn, v(tn, xn, pn)) = (t, x, p, v(t, x, p))}.

Parabolic subjet can be defined as P2,−v(t, x, p) = −P2,+(−v(t, x, p)) and

its closure P2,−v(t, x, p) = −P2,+(−v(t, x, p)). One fact which is proved by

P.L.Lions is that

P2,+(−)v(t, x, p) = {(∂φ
∂t

(t, x), Dxpφ(t, x, p), D2
xpφ(t, x, p)) : φ ∈ C2 and

v − φ has a global maximum (minimum) at(t, x)}

In the set C2([0, T ] × IR+ × IR+), the viscosity solution can be characterized

in another way as follows. It is convenient to use this formulation when we

study its uniqueness.

Lemma 8.2: Let v ∈ C2([0, T ] × IR+ × IR+) be a viscosity supersolution

(resp. subsolution). Then, for all (t, x, p) ∈ [0, T ) × IR+ × IR+ and for

any (m0,m,M) ∈ P2,−
v(t, x, p) (resp. P2,+

v(t, x, p)), there exists ϕ ∈ C2
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such that

min
{
v − Ũ , ζ ≥ v −m0 − sup

θ
(Aθ(t, x, p,m,M) +Bθ

δ−(t, x, p, ϕ)

+ Bθ
δ+(t, x, p,m, v))

}
≥ 0 (resp. ≤ 0).

Proof. The proof of this lemma is referred to Lemma 2.1 in [72].

Proposition 8.1: Under our assumptions on U , ξ, ψ and `, i.e. (8.27),(8.28),

(8.30) and (8.33), the value process satisfies the growth property,

|V (t, x, p)|≤ K(1 + |x|+|p|), K > 0,

and it is Lipschitz continuous in x and p uniformly in t, i.e.

|V (t, x, p)− V (t, y, q)|≤ K(|x− y|+|p− q|), K > 0.

Proof. Due to the Lipschitz continuity of U(t, x) with x uniformly in t we have

its linear growth rate

|U(t, x)|≤ K(1 + |x|).

The lipschitz continuity of ξ(x) also implies its linear growth rate,

|ξ(x)|≤ K(1 + |x|).

Applying these results, we have

|V (t, x, p)| ≤ ess sup
θ∈Θ(x,p), τ≥t

E
(
e−

∫ τ
t ζu(Xθ

u)du|U(τ,Xθ
τ − ξ(Pτ )|

∣∣∣Xθ
t = x, Pt = p

)
≤ ess sup

θ∈Θ(x,p), τ≥t
E
(

2 + |Xθ
τ |+|Pτ |

∣∣∣Xθ
t = x, Pt = p

)
.

Due to Gronwall’s lemma, we can prove that

E(|Xθ
τ |2) ≤ C|x|2, E(|Pτ |2) ≤ C|p|2. (8.42)

230



Thus, by applying Holder’s inequality, we have

|V (t, x, p)|≤ K(1 + |x|+|p|).

Similarly, we can show the Lipschitz continuity,

|V (t, x, p)− V (t, y, q)|≤ K(|x− y|+|p− q|).

The following Dynamic Programming equation will play an important role

in our analysis:

Proposition 8.2: Suppose the optimization for V admits a solution (θ∗, τ ∗).

Let ε > 0. For all (t, x, p) ∈ [0, T ] × IR+ × IR+ and for each admissible

strategy θ ∈ Θ(x, p), define the stopping time

τ εt,x,p,θ = inf
{
t ≤ s ≤ T : V (s,Xθ

s , Ps) ≤ U(s,Xθ
s + ξ(Ps)))

}
(8.43)

Then, if t ≤ τθ ≤ τ εt,x,p,θ for all θ ∈ Θ(x, p), we have

V (t, x, p) = ess sup
θ∈Θ(x,p)

E
(
e−

∫ τ
t ζu(Xθ

u)duV (τ,Xθ
τ , Pτ )

∣∣∣Xθ
t = x, Pt = p

)
Proof. Let (θ∗, τ ∗) be the optimizer of the value function V (t, x), then we

have V (τ ∗, Xθ∗
τ∗ ) = U(τ ∗, Xθ∗

τ∗ + ξ(Pτ∗)) and the process V (t ∧ τ ∗, Xθ∗
t ) is a

true martingale. Then, the claim follows immediately by optional sampling

theorem.

The above dynamic programming equation implies another version which

we need in the following.
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Proposition 8.3: For all (t, x, p) ∈ [0, T ]× IR+ × IR+, h ∈ Tt,T , we have

V (t, x, p) = ess sup
θ∈Θ(x,p),τ≥t

E
(
I{τ<h}e

−
∫ τ
t ζu(Xθ

u)duU(τ,Xθ
τ + ξ(Pτ ))

+ I{τ≥h}e
−

∫ h
t ζu(Xθ

u)duV (h,Xθ
h, Ph)

∣∣∣Xθ
t = x, Pt = p

)
Proof. The implication of the proof from Proposition 8.2 refers to [49].

The continuity of the value function is stated in the following.

Proposition 8.4: Under assumption that every θ ∈ Θ(x, p) is bounded and

U(t, x) is Lipschitz continuous, the value function V ∈ C0([0, T ]×IR+×IR+).

Proof. We first focus on the continuity of V (t, x, p) in t. From dynamic pro-

gramming equation in Proposition 8.3, for 0 ≤ t ≤ s ≤ T , let h = s − t,

then

0 ≤ V (t, x, p)− V (s, x, p)

≤ ess sup
θ∈Θ(x,p),τ≥t

E
(
I{τ<h}e

−
∫ τ
t ζu(Xθ

u)du(U(τ,X + ξ(P ))− U(t, x+ ξ(p)))

+I{τ<h}e
−

∫ τ
t ζu(Xθ

u)du(U(t, x+ ξ(p))− V (s, x, p))

+I{τ<h}(e
−

∫ τ
t ζu(Xθ

u)du − 1)V (s, x, p) + I{τ≥h}(e
−

∫ h
t ζu(Xθ

u)du − 1)V (s, x, p)

+I{τ≥h}e
−

∫ h
t ζu(Xθ

u)du(V (h,Xh, Ph)− V (s, x, p))
)

which implies

|V (t, x, p)− V (s, x, p)| ≤ K
(

ess sup
θ∈Θ(x,p),τ≥t

E(|Xτ − x|+|Pτ − p|)

+ ess sup
θ∈Θ(x,p)

E(|Xh − x|+|Ph − p|) + (1 + |x|+|p|)h
)

≤ K(1 + |x|+|p|)(|s− t|1/2+|s− t|)

Then, for any (t, x, p), (s, y, q) ∈ [0, T ]× IR+ × IR+, we obtain

|V (t, x, p)− V (s, y, q)|≤ K(|x− y|+|p− q|+(1 + |x|+|p|)(|s− t|1/2+|s− t|))
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This completes the proof of this proposition.

Here we provide a technical result which is needed when we characterize V as

the viscosity solution in Theorem 8.3.

Lemma 8.3: For any (t, x, p) ∈ [0, T ]× IR+× IR+, θ ∈ Θ(x, p) and h ∈ [t, T ],

there exists some ε > 0 and constant C > 0 such that

P (h > τ εt,x,p,θ) ≤ Ch. (8.44)

where τ εt,x,p,θ (we will write it as τ ε for short) is a stopping time defined as

(8.43).

Proof. We define ε in an explicit form as

ε :=

{
1
2
(V (t, x, p)− U(t, x+ ξ(p))), if V (t, x, p) > U(t, x+ ξ(p));

δ, if V (t, x, p) = U(t, x+ ξ(p)).

for some δ > 0. Then, by the definition of τ ε and Markov’s inequality, we have

P (h > τ ε)

≤ P
(

sup
t≤s≤h

|V (s,Xθ
s , Ps)− U(s,Xθ

s + ξ(Ps))− V (t, x, p) + U(t, x+ ξ(p))|≥ ε

)
≤ 1

ε2
E

(
sup
t≤s≤h

|V (s,Xθ
s , Ps)− U(s,Xθ

s + ξ(Ps))− V (t, x, p) + U(t, x+ ξ(p))

)2

≤ 1

ε2
E
(

sup
t≤s≤h

|V (s,Xθ
s , Ps)− V (t, x, p)|+

sup
t≤s≤h

|U(s,Xθ
s + ξ(Ps))− U(t, x+ ξ(p))|

)2

.

Recall the Lipschitz continuity of V (t, x, p) proved in Proposition 8.1 and as-

sumed for functions U(t, x) and ξ(x), we have

P (h > τ ε) ≤ K

ε2
E

(
sup
t≤s≤h

|Xθ
s − x|+ sup

t≤s≤h
|Ps − p|

)2

.

From the dynamics of Xθ given in (8.31), we can solve Xθ explicitly and then
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combine it with the inequality derived in (8.42), we have

E

(
sup
t≤s≤h

|Xθ
s − x|

)2

≤ C1E

(∫ h

t

Xθ
sds

)2

≤ C1

∫ h

t

E(Xθ
s )2ds ≤ C ′1|x|2h

By performing a similar argument for P , we can conclude (8.44) immediately.

Now, we are ready to state our first main result for this section.

Theorem 8.3: Under assumptions (8.27),(8.28), (8.30) and (8.33), the value

function V is a viscosity solution of (8.40).

Proof. Proposition 8.4 has proved the continuity of V , hence, it remains to

prove that V is both a supersolution and subsolution. We start from the

supersolution.

For any (t, x, p) ∈ [0, T ] × IR+ × IR+, we let ϕ be a function in C2([0, T ] ×
IR+ × IR+) ∩ C2([0, T ] × IR+ × IR+) such that V − ϕ has global minimum at

(t, x, p). Without loss of generality, we assume

min
(s,y,q)∈[0,T ]×IR+×IR+

(V (s, y, q)− ϕ(s, y, q)) = V (t, x, p)− ϕ(t, x, p) = 0.

Thus, a direct application of the dynamic programming principle derived in

Proposition 8.3 by putting τ = h (we choose stopping time h as a constant in

(t, T ]), we have

V (t, x, p) = ϕ(t, x, p) ≥ ess sup
θ∈Θ(x,p)

E
(
e−

∫ h
t ζu(Xθ

u)duϕ(h,Xθ
h, Ph)

∣∣∣Xθ
t = x, Pt = p

)
.

Applying Ito’s formula to the process e−
∫ s
t ζu(Xθ

u)duϕ(s,Xθ
s , Ps), s ∈ [t, h] and

then rearranging the terms and dividing it by (h − t) in above inequality, we

have

0 ≥ 1

h− t
E

[∫ h

t

e−
∫ s
t ζu(Xθ

u)duGθ(s,Xθ
s , Ps)ds|Xθ

t = x, Pt = p

]
, ∀ θ ∈ Θ(t, p)

(8.45)
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where

Gθ(ϕ; t, x, p) = −ζϕ+ ϕt + κpϕp +
η2

2
ϕpp + µθxϕx +

σ2

2
θ2x2ϕxx +

σηρ

2
θxpϕxp

−
∫

[−ϕ(x) + ϕ(x− θψ(z)x) + ϕx(x− θψ(z)x)θψ(z)x]n(dz)

In (8.45), we let h→ t and notice the differentiability of the integral

∫ h

t

Gθ(ϕ; s,Xθ
s , Ps)ds

with respect to h, h ∈ [t, T ], and the right continuity of Gθ(ϕ; s,Xθ
s , Ps) with

respect to s, s ∈ [t, h], we have

0 ≥ Gθ(ϕ; t,Xθ
t , Pt), ∀ θ ∈ Θ(x, p).

Due to the arbitrariness of θ, and note the fact V (t, x, p) ≥ U(t, x + ξ(p)) for

any (t, x) ∈ [0, T ]× IR+, we have

min
{
V (t, x, p)− U(t, x+ ξ(p)), ζV − ϕt − κpϕp −

η2

2
ϕpp −

sup
θ

[
µθxϕx +

σ2

2
θ2x2ϕxx +

σηρ

2
θxpϕxp −

∫
[− ϕ(x) + ϕ(x− θψ(z)) +

ϕx(x− θψ(z))θψ(z)
]
n(dz)]

}
≥ 0

which proves that the value process V is a supersolution.

It remains to prove the value process V is also a subsolution. For any (t, x, p) ∈
[0, T ]× IR+× IR+, we let ϕ be a function in C2([0, T ]× IR+× IR+)∩C2([0, T ]×
IR+ × IR+) such that V − ϕ has global maximum at (t, x, p). Without loss of

generality, we assume

max
(s,y,q)∈[0,T ]×IR+×IR+

(V (s, y, q)− ϕ(s, y, q)) = V (t, x, p)− ϕ(t, x, p) = 0.
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For any ε > 0, θ ∈ Θ(x, p), define the stopping time

τ ε = inf
{
t ≤ s ≤ T, V (s,Xθ

s , Ps) ≤ U(s,Xθ
s + ξ(Ps)))

}
.

Thus, for any h ∈ [t, T ], since h∧ τ ε ≤ τ ε, the dynamic programming principle

stated in Proposition 8.2 implies,

V (t, x, p) = ess sup
θ∈Θ(x,p)

E
(
e−

∫ h∧τε
t ζu(Xθ

u)duV (h ∧ τ ε, Xθ
h∧τε , Ph∧τε)

∣∣∣Xθ
t = x, Pt = p

)
.

(8.46)

Then, for any δ > 0, there exists some strategy θ ∈ Θ(x, p) which depends on

δ and h such that

−δ(h− t)

≤ E
(
e−

∫ h∧τε
t ζu(Xθ

u)duV (h ∧ τ ε, Xθ
h∧τε , Ph∧τε)

∣∣∣Xθ
t = x, Pt = p

)
− V (t, x, p)

≤ E
(
e−

∫ h∧τε
t ζu(Xθ

u)duϕ(τ,Xθ
τ , Pτ )− ϕ(t, x, p)

∣∣∣Xθ
t = x, Pt = p

)
. (8.47)

Applying Ito’s formula to the process e−
∫ s
t ζu(Xθ

u)duϕ(s,Xθ
s , Ps), s ∈ [t, T ], and

noticing that I{s≤tε} = 1− I{s>tε}, the inequality (8.47) can be improved as

−δ ≤ 1

h− t
E

(∫ h

t

e−
∫ s
t ζu(Xθ

u)duGθ(s,Xθ
s , Ps)ds

∣∣∣Xθ
t = x, Pt = p

)
+

1

h− t
E

(∫ h

t

−I{s>tε}Gθ(s,Xθ
s , Ps)ds

∣∣∣Xθ
t = x, Pt = p

)
.

(8.48)

Now, let’s focus on the second term in (8.48). Firstly, by using Hölder’s

inequality, we derive

1

h− t
E

(∫ h

t

−I{s>tε}Gθ(s,Xθ
s , Ps)ds

∣∣∣Xθ
t = x, Pt = p

)
≤

√
E
∣∣∣ 1

h− t

∫ h

t

Gθ(s,Xθ
s , Ps)ds

∣∣∣2√P (h > tε).
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Meanwhile, we recall the result proved in Lemma 8.3,

P (h > tε) ≤ Ch.

Therefore, by letting h→ t and δ → 0 in (8.48), we have immediately that

− sup
θ

(Gθ(t, x, p)) ≤ −Gθ(t, x, p) ≤ 0.

Combining this with the fact that V (t, x, p) ≥ U(t, x+ ξ(p)), we can conclude

that the value process V is a subsolution.

We have verified that the value process (Vt)0≤t≤T is a viscosity solution

of the HJB equation (8.40). It remains to show it is the unique one. We

will prove the uniqueness by the comparison principle of the second-order

integrodifferential PDE. This result is presented in next theorem. Since the

value process (Vt)0≤t≤T has been characterized to be uniformly continuous in

x and p, uniformly in t, it is now enough to show the uniqueness in the set,

UC(x, p), which is a collection of all uniformly continuous functions in x and

p.

Theorem 8.4: Under our assumptions (8.27) and (8.28) on the Lipschitz

continuity of ξ(x) and U(t, x), let u (resp. v) be a subsolution (resp. su-

persolution) of (8.40) in UC(x, p). If u(T, x, p) ≤ v(T, x, p) for all (x, p) ∈
IR+ × IR+, then

u(t, x, p) ≤ v(t, x, p), ∀ (t, x, p) ∈ [0, T ]× IR+ × IR+. (8.49)

Proof. Remark that it is enough to prove (8.49) for t ∈ (0, T ] since the trivial

case of t = 0 will follow immediately by the right continuity.

For any t ∈ (0, T ], x, y, p, q ∈ IR and β, ε, α, λ > 0, we define a function

φ(t, x, y, p, q) :=
β

t
+

(x− y)2 + (p− q)2

2ε
+ αeλ(T−t)(x2 + y2 + p2 + q2),
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which is second order differentiable and has second order growth rate in

t, x, y, p, q. For u and v in UC(x, p) defined on [0, T ]× IR+ × IR+, their mod-

ulus are sublinear and, therefore, have linear growth rate. Thus, the function

Φ(t, x, y, p, q) defined as

Φ(t, x, y, p, q) := u(t, x, p)− v(t, y, q)− φ(t, x, y, p, q)

admits an maximum on (0, T ]× IR+ × IR+ × IR+ × IR+. Let the maximum be

reached at (t, x, y, p, q), which is dependent on β, ε, α, λ. To see such depen-

dence closely, we notice that

Φ(t, x, x, p, p) + Φ(t, y, y, q, q) ≤ 2Φ(t, x, y, p, q)

which, after simplification, is

(x− y)2 + (p− q)2

ε
≤ u(t, x, p)− u(t, y, q) + v(t, x, p)− v(t, y, q).

Thus, due to the uniformly continuity of u(t, x, p) and v(t, x, p) in (x, p), uni-

formly in t, there exists δ̃ > 0 such that

(x− y)2 + (p− q)2 ≤ min(εδ̃, δ̃). (8.50)

Therefore, when ε→ 0, we have (x, p)→ (y, q). Furthermore, due to

Φ(T, 0, 0, 0, 0) ≤ Φ(t, x, y, p, q)

we have

δ(x2 + y2 + p2 + q2) ≤ C(1 + x+ y + p+ q).

This fact conflicts with their growth rates, which implies that x, y, q, q are

bounded by some constant depending on α. Thus, for the sequence (t, x, y, p, q)

parameter ε, by sending ε → 0, there exists a subsequence converging to

(t0, x0, y0, p0, q0).
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For the extreme case that t = T , the fact φ(t, x, x, p, p) ≤ Φ(T, x, y, p, q) yields

u(t, x, p)− v(t, x, p)− β
t
− 2αeλ(T−t)(x2 + p2) ≤ u(T, x, p)− v(T, y, q)

≤ v(T, x, p)− v(T, y, q),

(8.51)

where in the last inequality, we have used the condition that u(T, x, p) ≤
v(T, x, p). Recall the dependence of (T, x, y, p, q) on ε in (8.50), we let β, ε, α→
0 in (8.51). Thus, the uniformly continuity of v implies

u(t, x, p) ≤ v(t, x, p).

We now focus on the case t ∈ (0, T ), which allows us to apply directly Theorem

9 in [21]. It states that there exist m1,m2 ∈ IR and 2 × 2 matrix M,N such

that

(m1, Dxpφ(t, x, p, y, q),M) ∈ P2,+u(t, x, p), (8.52)

(m2, Dyqφ(t, x, p, y, q), N) ∈ P2,+(−v(t, y, q)), (8.53)

and satisfies

m1 +m2 =
∂φ

∂t
(t, x, y, p, q) = − β

t2
− λαeλ(T−t)(x2 + y2 + p2 + q2) (8.54)

(
M 0

0 N

)
≤

(
D2
xpφ(t, x, y, p, q) 0

0 D2
yqφ(t, x, y, p, q)

)
. (8.55)

Recall the formulation of viscosity solution in Lemma 8.2. For the subsolution

u ∈ C2 , there exists φ1 ∈ C2 such that (I omit the dependence of m1, φ and

M on (t, x, p, y, q))

min
{
u(t, x, p)− Ũ(t, x, p), G(t, x, p, u, ϕ1,m1, Dxpφ,M)

}
≤ 0. (8.56)
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where

G(t, x, p, u, ϕ1, m1, Dxpφ,M) = ζu(t, x, p)−m1 − sup
θ

(Aθ(t, x, p,Dxpφ,M)

+ Bθ
δ−(t, x, p, ϕ1(t, x, p)) +Bθ

δ+(t, x, p,Dxpφ, u(t, x, p))).

For the supersolution v ∈ C2, we have

(−m2,−Dyqφ(t, x, p, y, q),−N) ∈ P2,−v(t, y, q)

such that there exists φ2 ∈ C2 2

min
{
v(t, y, q)− Ũ(t, y, q), G(t, y, q, v, ϕ2,−m2,−Dyqφ,−N)

}
≥ 0. (8.57)

Combining (8.57) and (8.56) and noting one simple fact that min{a, b} ≤
min{c, d} → a ≤ c or b ≤ d, we have two cases: either

u(t, x, p)− Ũ(t, x, p) ≤ v(t, y, q)− Ũ(t, y, q), (8.58)

or,

G(t, x, p, u, ϕ1,m1, Dxpφ,M) ≤ G(t, y, q, v, ϕ2,−m2,−Dyqφ,−N). (8.59)

For the first case in (8.58), recall the Lipschitz continuity of U and ξ and the

result in (8.50), we have

u(t, x, p)− v(t, y, q) ≤ C min(εδ̃, δ̃).

Also, recall that the function φ(t, x, y, p, q) reaches its maximum at (t, x, y, p, q),

thus, for any (t, x, p) ∈ [0, T ]× IR+ × IR+,

u(t, x, p)− v(t, x, p) ≤ −φ(t, x, y, p, q) + C min(εδ̃, δ̃).

2we omit the dependence of m2, φ and N on (t, x, p, y, q)
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By sending ε, β, α→ 0, we have

u(t, x, p) ≤ v(t, x, p).

For the case in (8.59), we rearrange the terms and recall the result in (8.54),

meanwhile, note one simple fact that sup(a+ b) ≤ sup(a) + sup(b), we have

ζ(u(t, x, p)−v(t, y, q))+
β

t2
+λαeλ(T−t)(x2 +y2 +p2 +q2) ≤ I1 +I2 +I3 (8.60)

where

I1 := sup
θ

(Aθ(t, x, p,Dxpφ,M)− Aθ(t, y, q,−Dyqφ,−N))

I2 := sup
θ

(Bθ
δ−(t, x, p, ϕ1(t, x, p))−Bθ

δ−(t, y, q, ϕ2(t, y, q)))

I3 := sup
θ

(Bθ
δ+(t, x, p,Dxpφ, u(t, x, p))−Bθ

δ+(t, y, q,−Dyqφ, v(t, y, q)))

Dxpφ(t, x, p, y, q) =

(
x− y
ε

+ 2αeλ(T−t)x
p− q
ε

+ 2αeλ(T−t)p

)′
Dyqφ(t, x, p, y, q) =

(
−x− y

ε
+ 2αeλ(T−t)y − p− q

ε
+ 2αeλ(T−t)q

)′
.

D2
xpφ(t, x, y, p, q) = D2

yqφ(t, x, y, p, q) =

(
1/ε+ 2αeλ(T−t) −1/ε

−1/ε 1/ε+ 2αeλ(T−t)

)
For I1, recalling the boundedness of θ, we have

I1 ≤ C1
(x− y)2 + (p− q)2

ε
+ C2αe

λ(T−t)(x2 + y2 + p2 + q2).

For I2, recalling what we have discussed before in (8.39), both of Bθ
δ− and Bθ

δ+

are bounded uniformly in θ, thus

lim
δ→0

I2 ≤ 0.
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For I3, we combine the two integrals and calculate its integrand,

Bθ
δ+(t, x, p,Dxpφ, u(t, x, p))−Bθ

δ+(t, y, q,−Dyqφ, v(t, y, q))

=

∫
{|z|≥δ}

H(z, θ, u, v)n(dz)

where

H(z, θ, u, v) :=

Φ(t, x+ θψ(z)x, p+ `(z)p, y + θψ(z)y, q + `(z)q)− Φ(t, x, y, p, q) +

(x− y)2θ2ψ2(z) + (p− q)2`2(z)

2ε
+ αeλ(T−t)[(x2 + y2)θ2ψ2(z) + (p2 + q2)`2(z)]

Due to the boundedness of θ and the assumption (8.30) on ψ and (8.33) on `,

we have∫
{|z|≥δ}

H(z, θ, u, v)n(dz) ≤ C1
(x− y)2 + (p− q)2

ε
+C2αe

λ(T−t)(x2+y2+p2+q2)

Since the function Φ(t, x, y, p, q) has its maximum at (t, x, y, p, q), we have

Φ(t, x, x, p, p) ≤ Φ(t, x, y, p, q) ≤ u(t, x, p)− v(t, y, q), ∀ (t, x, p)

By applying the inequality in (8.60) and after some simplifications, this implies

u(t, x, p)−v(t, x, p) ≤ β

t
+2αeλ(T−t)x2+

1

ζ
(I1+I2+I3)−λα

ζ
eλ(T−t)(x2+y2+p2+q2)

Let ε → 0 and recall that (t, x, x, p, p) → (t0, x0, y0, p0, q0) which may depend

on α, thus,

u(t, x, p)− v(t, x, p) ≤ β

t
+ 2αeλ(T−t)x2 +

2α

ζ
eλ(T−t)(C − λ)(x2

0 + p2
0)

We choose λ > C and let β, α→ 0, it yields

u(t, x, p) ≤ v(t, x, p).
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The uniqueness of the viscosity of the HJB equation (8.40) associated with

the terminal condition (8.41) is straightforward by using above theorem. Pre-

cisely, assume that u1 and u2 are two viscosity solutions of (8.40) satisfying

u1(T, x, p) = u2(T, x, p) = Ũ(T, x, p), ∀ (x, p).

They are both subsolutions and supersolutions. Then, by applying Theorem

8.4, we have both u1 ≤ u2 and u2 ≤ u1, hence, u1 = u2.
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nance, In Lévy processes: Theory and Applications, (Eds), OE Barndorff-
Nielsen, T Mikosch, SI Resnick, Birkhäuser, Boston, 319–326, 2001.
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