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Abstract

This dissertation demonstrates how to utilize data collected previously

from different sources to facilitate learning and inference for a target task.

Learning from scratch for a target task or environment can be expensive

and time-consuming. To address this problem, we make three contribu-

tions in this dissertation: (1) improving the efficiency of classical domain

adaptation methods, (2) developing a novel theory and algorithm for multi-

source adaptation, and (3) proposing a theoretically sound approach to

estimate the stationary distribution of a Markov chain from batch data.

For (1), specifically in the covariate shift scenario, classical methods that

compute importance weights suffer from computational issues when the

sample size is large. We resolve such issues from an optimization per-

spective by applying the Frank-Wolfe algorithm. For (2), to fully utilize

data from not one but multiple sources, we develop a theory and a corre-

sponding algorithm that are suitable for selecting the most relevant sources

for adaptation. Finally, for (3), we propose a method to estimate a target

stationary distribution from batch data without interacting with the en-

vironment. It is a general method that can be applied to many use cases

such as off-policy evaluation in reinforcement learning and post-processing

MCMC samples. For all three contributions, we provide empirical studies

on various tasks and environments, which show that utilizing prior data

effectively can indeed improve learning for a target task.
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Chapter 1

Introduction

Machine learning has achieved phenomenal advancements in recent years.

For instance, deep neural networks have conquered large scale image recog-

nition challenges and revolutionized how machine perceives images (Deng

et al., 2009; Krizhevsky et al., 2012); AlphaGo (Silver et al., 2016) and its

successors (Silver et al., 2017, 2018) showed their capabilities of surpass-

ing human experts in playing Go, Shogi, and Chess. However, these re-

markable achievements come with a price. Deep neural networks or re-

inforcement learning agents are usually data-hungry: e.g., learning image

classifier requires millions of labelled images from the ImageNet1 dataset,

and learning to play Atari games requires millions of interactions with the

environment. Acquiring such a huge amount of data for a specific task can

be difficult or even impossible due to, for example, ethical regulations in

medical domains or physical constraints on robotic arms.

To mitigate the aforementioned data-hungry issue, one idea would be

to utilize data from a different but related source domain to facilitate learn-

ing/inference for a specific target domain. By using previously collected

data effectively, one can avoid the burden of acquiring a significant amount

of (labelled) target data. This idea has been applied to domain adaptation

and off-policy reinforcement learning.

1www.image-net.org
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1.1 Domain Adaptation

One common scenario of domain adaptation (Mansour et al., 2009a) or

transfer learning (Pan and Yang, 2009) is to use a labelled source dataset

and an unlabelled target dataset to learn a model that performs well in the

target domain. Of course, such adaptation from one domain to another

would typically fail if the source and the target have nothing in common.

Therefore, researchers have imposed certain assumptions (Zhang et al.,

2013; Wang and Schneider, 2014), characterizing how the joint distribution

p(x,y) of input x and output y are allowed to differ across domains. As

an example, covariate shift (Shimodaira, 2000; Sugiyama and Kawanabe,

2012) assumes that the conditional distribution p(y|x) remains the same

across domains while the marginal distributions p(x) are different. To at-

tain provable generalization across domains, much existing analysis focus

on developing theories based on various discrepancy measures (Banerjee

et al., 2005; Gretton et al., 2012), which have provided justifications for the

algorithms (Gretton et al., 2009; Sugiyama et al., 2007, 2008).

Importance sampling (Shimodaira, 2000) is one of the mainstream tech-

niques for domain adaption. It learns an importance weight for each source

instance and uses these weights to compute a weighted loss for down-

stream training. Although importance sampling techniques have demon-

strated noticeable improvement over non-adapting methods in the litera-

ture, applying them to large-scale datasets is often difficult due to their

computational cost (Pan et al., 2009). As a result, researchers have resorted

to heuristic remedies such as sub-sampling (Sugiyama et al., 2007).

Besides computational issues, it may be critical to adapt from multiple

sources. Adapting from one source to one target is relatively well studied,

and we have well-developed techniques and theories to address (and of-

ten solve) this problem. However, in practice, we may encounter a more

challenging scenario in which data are collected from not one but multi-

ple sources, and we need to effectively combine them in order to learn a
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model to predict data in a target domain. This is ubiquitous, for example,

in medical problems, as the number of patients in one site is usually small

and providing the labels (here, the diagnosis) for patients requires non-

trivial efforts from medical experts. Therefore, utilizing electronic health

records from several other sites becomes necessary in the hope that this

information can significantly improve the quality of the learned model.

1.2 Off-policy Reinforcement Learning

Reinforcement learning (Sutton and Barto, 2018) focuses on learning by in-

teracting with the environment. By observing the state of the environment,

the learning agent takes actions and in return, the environment provides

feedback such as a reward signal to guide the agent. The policy of an

agent is defined as a mapping from the environment state to an action. The

agent usually needs to interact with the environment for millions of steps

before mastering a superior policy. Unlike simulation-based environments

that enable fast and cheap interactions, real-world interactions take much

more time and energy. For example, the movement of real robotic arms is

restricted due to motor limits and component configurations. Therefore,

using data collected from different but related environments is not only

necessary but also essential for fast learning.

The field of batch reinforcement learning (Lange et al., 2012) investi-

gates this idea and focuses on how to learn a target policy from data col-

lected from some behaviour policy. As a sub-problem in this field, evaluat-

ing the target policy’s performance using behaviour data (obtained using a

different policy) is known as off-policy evaluation (OPE), which finds many

practical applications such as A/B testing (Li et al., 2015a) and treatment

effect estimation (Leacy and Stuart, 2014).

Similar to covariate shift, importance sampling also plays a critical role

in OPE. In the simpler contextual bandit setting where there is no tem-

poral structure and the decision is one-shot, OPE can be carried out by

3



reweighting each observed reward by the action probability ratio of the

target policy over the behaviour policy. Applying importance sampling

can be challenging in practice due to two difficulties. First, the behaviour

action probability is not always available. We may not know why the be-

haviour actions are chosen as they are. Second, the product of probability

ratios will incur an unbearably high variance when it comes to multi-step

decisions in general RL setting (Li et al., 2015b; Jiang and Li, 2016), which

is known as the ªcurse of horizonº (Liu et al., 2018). How to reliably solve

behaviour-agnostic OPE for multi-step RL problems remains unclear in the

literature.

1.3 Contributions

In this dissertation, I will present three contributions outlined as follows:

• To solve the computational issue of popular covariate shift correction

algorithms such as Kernel Mean Matching (KMM) (Gretton et al.,

2009) and Kullback-Leibler Importance Estimation Procedure (KLIEP)

(Sugiyama et al., 2008), we apply the Frank-Wolfe algorithm (Jaggi,

2013) to improve their computational efficiency. The proposed op-

timization procedure is suitable for these algorithms because it can

handle the optimization constraints in a projection-free way. Specif-

ically, the time complexity of solving KMM is reduced from O(n2)

to O(n) per iteration where n is the number of training examples. In

addition, the proposed method can bypass the need for sub-sampling

when solving KLIEP, which our empirical studies show is critical in

finding better solutions. Chapter 2 summarizes this work, which has

been published in a refereed conference proceeding (Wen et al., 2015).

• For multi-source adaptation, we theoretically analyze how to com-

bine data from different sources effectively and derive an end-to-end

algorithm that is suitable for training deep neural networks. The
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new algorithm can choose the most relevant source data during train-

ing and produce interpretable domain weights. Experiments on real-

world problems such as image classification and sentiment analysis

show that the proposed method outperforms state-of-the-art alterna-

tives. Chapter 3 summarizes this work, which has been published in

a refereed conference proceeding (Wen et al., 2020b).

• We propose a variational power method for estimating stationary dis-

tribution of a Markov chain, which can be used for solving behaviour-

agnostic OPE in RL. It is a general method that exploits the eigen-

structure of the state transitions to estimate the stationary distribu-

tion using batch data, without any further interaction with the en-

vironment. We theoretically prove that this method converges. In

addition to OPE, this variational power method has a wide range of

applications for many other fundamental problems, such as solving

stochastic differential equations and post-processing MCMC samples.

Chapter 4 summarizes this work, which has been published in a ref-

ereed conference proceeding (Wen et al., 2020a).
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Chapter 2

Correcting Covariate Shift with
the Frank-Wolfe Algorithm

2.1 Overview

Covariate shift is a fundamental problem for learning in non-stationary

environments where the conditional distribution p(y|x) is the same be-

tween training and test data while their marginal distributions ptr(x) and

pte(x) are different. Although many covariate shift correction techniques

work effectively for real world problems, most do not scale well in prac-

tice. In this chapter, using inspiration from recent optimization techniques,

we apply the Frank-Wolfe algorithm to two well-known covariate shift cor-

rection techniques, Kernel Mean Matching (KMM) and Kullback-Leibler

Importance Estimation Procedure (KLIEP), and identify an important con-

nection between kernel herding and KMM. Our complexity analysis shows

the benefits of the Frank-Wolfe approach over projected gradient methods

in solving KMM and KLIEP. An empirical study then demonstrates the

effectiveness and efficiency of the Frank-Wolfe algorithm for correcting co-

variate shift in practice.

2.2 Introduction

Many machine learning algorithms assume that training and test data

come from the same distribution, which is often violated in practical appli-
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cations. Researchers have thus endeavoured to resolve the distribution shift

problem under varied assumptions (Zadrozny, 2004; Bickel et al., 2007;

Quionero-Candela et al., 2009). In this chapter, we focus on the covariate

shift scenario (Shimodaira, 2000) in which the marginal data distributions

are different between training and test domains (ptr(x) ‰ pte(x)) while

their conditional distributions remain the same (ptr(y|x) = pte(y|x)). Cor-

recting covariate shift has a wide range of applications, such as in natural

language processing (Jiang and Zhai, 2007), off-policy reinforcement learn-

ing (Hachiya et al., 2009), computer vision (Yamada et al., 2012) and signal

processing (Yamada et al., 2010).

A common approach to correcting covariate shift is importance sam-

pling/reweighting: each individual training point is assigned a non-negative

weight intended to diminish the discrepancy between training and test

marginals by some criterion (Sugiyama et al., 2012a). If a reweighting

function is modelled properly, covariate shift can be effectively corrected in

learning. For example, for a given prediction function f(x) and a loss func-

tion l(f(x),y), reweighting training points with weight w(x) = pte(x)/ptr(x)

can minimize the loss over the test distribution:

loss(f) = Ex„pteEy|x[l(f(x),y)] = Ex„ptrEy|x[w(x) l(f(x),y)],

which suggests that one should seek the function f‹ = argminf loss(f) that

minimizes this expected loss. While these correction techniques remain

effective for many real world applications, most of them do not exploit the

structure of the solution and as a result, do not scale well in practice.

Recently, the Frank-Wolfe (FW) algorithm has begun to gain popular-

ity in the machine learning community (Zhang et al., 2012; Bach, 2015). It

has been proven to be an efficient algorithm for many optimization prob-

lems, particularly when the solution has sparse structure (Jaggi, 2013), and

has also been shown effective and efficient in many applications (Joulin

et al., 2014; Salamatian et al., 2014). However, whether Frank-Wolfe can be

applied to the covariate shift problem has remained unexplored.

7



In this work, we show that herding (Welling, 2009; Chen et al., 2010) (as

a Frank-Wolfe algorithm) can be applied to the covariate shift scenario, and

point out a connection between kernel herding and Kernel Mean Matching

(KMM) (Gretton et al., 2009). Moreover, we exploit the structure of another

commonly used covariate shift correction technique, Kullback-Leibler Im-

portance Estimation Procedure (KLIEP) (Sugiyama et al., 2008), to speed

up the algorithm using Frank-Wolfe. We also analyse the convergence rate

and complexity of KMM(FW) and KLIEP(FW), and present an empirical

study that demonstrates the efficiency of Frank-Wolfe in solving KMM and

KLIEP over the traditional projected gradient approach.

2.3 Related Work

This work is closely related to kernel herding (Chen et al., 2010), which is

a sampling technique for moment approximation. In the original setting,

data points are iteratively generated to approximate the population mean

(first moment), either from a population when the distribution p is known,

or selected from existing dataset when p is unknown. This work is different

in that we apply herding to the covariate shift scenario, where the goal is

to approximate the test mean by sub-sampling existing training data.

Even though there are many ways to correct covariate shift, few meth-

ods scale well, which hampers their usage in practice. Tsuboi et al. (2009)

modifies KLIEP with a different parametric form of the weight function.

Although the computation time of the new model is independent of the

number of test points, which is computationally advantageous, the pro-

posed parametric form is less interpretable than the original KLIEP. Here

we apply Frank-Wolfe to the original KLIEP, where the weight function is

parametrized by a mixture of Gaussians. Another attempt has been made

to solve KMM and KLIEP via online learning (Agarwal et al., 2011). How-

ever, the convergence rate of that approach, O(1/
?
t), is slower than our

proposed method, O(1/t), and assumes the availability of explicit feature
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representation of ϕ(x), contrary to the idea of Hilbert space estimation.

There are also several other techniques that correct covariate shift. For

instance, RuLSIF (Yamada et al., 2011) minimizes the α-relative Pearson

divergence using least squares, while RCSA (Wen et al., 2014) corrects co-

variate shift in an adversarial setting. We do not extensively investigate the

possibility of applying Frank-Wolfe to these techniques, since Frank-Wolfe

is efficient primarily when a convex problem has sparse solution structure

and the corresponding linearised problem can be solve easily.

2.4 A Brief Review of Herding

Kernel herding (Chen et al., 2010) is a greedy algorithm that sequentially

generates instances, ϕ(xt) in the tth iteration, to minimize a squared error

E2
T :

E2
T =

›››››
1

T

Tÿ

t=1

ϕ(xt) ´ µp

›››››

2

H

,

where ϕ(¨) is a feature map to a reproducing kernel Hilbert space (RKHS)

H and µp = Ex„p[ϕ(x)] is the population mean. Algorithmically, it gener-

ates instances according to:

xt+1 P argmax
xPX

xut,ϕ(x)y,

ut+1 = ut + µp ´ ϕ(xt+1),
(2.1)

for some properly chosen u0, where X is the sampling space. In the orig-

inal kernel herding algorithm, the expectation is taken with respect to the

training population, i.e., p = ptr.

Bach et al. (2012) showed that herding is equivalent to a Frank-Wolfe

algorithm (also known as conditional gradient descent) for the objective

min
µpPM

1

2
}µp ´ µp}2

H
,

where M is the marginal polytope (the convex hull of all ϕ(x) for x P X).

Specifically, it employs the following updates

st+1 P argmin
sPM

xµpt ´ µp, sy,

µpt+1 = (1 ´ ρt)µpt + ρtst+1,
(2.2)
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where ρt P [0, 1] is step size. They pointed out that herding corresponds to

using a step size ρt = 1/(t+1), while other choices (e.g., via line search) are

also valid. With ρt = 1/(t+ 1), st can be seen as ϕ(xt) while µpt = µ ´ ut/t

as in (2.1).

2.5 Frank-Wolfe for Covariate Shift

2.5.1 Kernel Herding and KMM

In this work, we apply kernel herding to the covariate shift scenario, where

the training and test marginal distributions are different (ptr(x) ‰ pte(x))

while their conditional distributions are the same (ptr(y|x) = pte(y|x)). We

use herding to generate instances from the training pool in order to ap-

proximate the test mean, i.e., where X is the training set but p = pte is the

test marginal distribution. Intuitively, herding actively selects representa-

tive training points to approximate the test population mean. With proper

substitution of empirical estimates, our objective is

min
µpPMp

1

2

››››››
µp ´ 1

m

mÿ

j=1

ϕ(xj)

››››››

2

H

,

where Mp is marginal polytope of training dataset and m is the number of

(unlabelled) test points. According to (2.2), in each update step, a repre-

sentative training point ϕ(xt) will be chosen from Mp and µpt will be moved

toward that direction. This objective is very similar to that of Kernel Mean

Matching (KMM) (Gretton et al., 2009)1:

min
wPW

››››››

nÿ

i=1

wiϕ(xi) ´ 1

m

mÿ

j=1

ϕ(xj)

››››››

2

H

W =

#
w

ˇ̌
ˇ̌
ˇ
nÿ

i=1

wi = 1,wi ě 0

+
,

(2.3)

1Here the predefined bound on the weight (wi ď B) and the derivation tolerance
(|
řn

i=1wi ´ 1| ď ϵ) are ignored for the sake of clarity and simplicity. However, they can
be easily incorporated into the herding scheme.
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where n training points and m test points are given2. Problem (2.3) (a

linearly constrained quadratic program) is generally solved by standard

solver with gradient descent and feasibility projection. However, according

to the interpretation in (2.2), herding for KMM is projection-free: with a

proper step size ρt P [0, 1], the estimated mean µpt is a convex combination

of previous chosen training points, and thus the constraint W in (2.3) is

automatically satisfied.

2.5.2 Frank-Wolfe for KLIEP

Once herding is viewed as a Frank-Wolfe algorithm, it can be applied to

other covariate shift correction procedures. For instance, the Kullback-

Leibler Importance Estimation Procedure (KLIEP) (Sugiyama et al., 2008),

a popular choice for covariate shift correction, can be efficiently solved by

Frank-Wolfe. The objective of KLIEP is to minimize the Kullback-Leibler

divergence from pte(x) to ppte(x), where ppte(x) is attained by reweighting

the training marginal:

ppte(x) = wp (x)ptr(x).

The reweighting function is further parametrized as a mixture of Gaus-

sians:

wp (x) =
bÿ

l=1

αlφl(x) =
bÿ

l=1

αl exp
(︃

´}x ´ cl}2
2σ2

)︃

, (2.4)

where αl are the mixing coefficients, cl are fixed/predefined centres (usu-

ally test points) and σ is a parameter selected by some criterion. After some

derivation and substitution of empirical marginals, the final objective be-

comes

max
α

F(α) =

mÿ

j=1

log

(︄

bÿ

l=1

αlφl(xj)

)︄

s.t.
nÿ

i=1

bÿ

l=1

αlφl(xi) = n; α1,α2, ¨ ¨ ¨ ,αb ě 0.

(2.5)

2With a slight abuse of notation, we use indices i and j to distinguish data points from
training and test datasets respectively.
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This is a convex optimization problem. To apply Frank-Wolfe, we first

derive the gradient of the objective

BF(α)
Bαl

=

mÿ

j=1

φl(xj)řb
l 1=1 αl 1φl 1(xj)

. (2.6)

Considering the constraint, one can observe that the possible range for αl

is [0,n/
řn

i=1φl(xi)]. For the tth iteration, we choose lt such that

lt = argmax
l

BBF(α)
Bαl

,
nřn

i=1φl(xi)

F
,

then update the current αt by

αt+1 = (1 ´ ρt) ¨ αt + ρt

nÿ

i=1

φlt(xi) ¨ elt , (2.7)

where ρt is the step size and el = [0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0]T (all zeros except

for a one in the lth entry). Compared to KMM(FW), this method chooses

representative Gaussians to match test marginal, instead of choosing indi-

vidual points.

The chosen Gaussian centres (i.e., tclu in Eq. (2.4)) are crucial for KLIEP.

In the original paper (Sugiyama et al., 2008), the tclu are set to be the test

points txju, which can be computationally intensive when one has many

test points. Therefore, for large test data, the original authors proposed to

randomly select b = 100 test points as Gaussian centres. However, such an

approach can significantly reduce the performance of the algorithm, since

the 100 chosen centres might not appropriately model the distribution dif-

ference, a phenomenon we observed in our experiments (see Section 2.7.2).

If Frank-Wolfe is applied, only one Gaussian is amplified per iteration and

the optimal solution can be efficiently attained (Jaggi, 2013), since it tends

to be sparse (Sugiyama et al., 2008). More importantly, we can use all the

test points as Gaussian centres in a computationally efficient way, so that

their information can be used to capture the distribution difference.
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2.6 Convergence and Complexity

2.6.1 Convergence Rate

In this section, we compare the convergence and complexity of projected

gradient (PG) and Frank-Wolfe methods. For convergence, since both

KMM and KLIEP are convex problems, it is well known that the con-

vergence rate of PG is O(1/t) (Bertsekas, 1999). The convergence rate of

Frank-Wolfe for KMM and KLIEP is also O(1/t) without further assump-

tions (Jaggi, 2013). However, under some circumstances, O(1/t2) and even

O(e´t) are possible for KMM(FW) (Chen et al., 2010; Beck and Teboulle,

2004). Moreover, the solutions to KMM and KLIEP tend to be sparse in

practice (for example, see Section Section 2.7.1), which is a very suitable

scenario for the Frank-Wolfe algorithm.

2.6.2 Complexity Analysis

Next we analyze the time and space complexities of the algorithms. Since

both KMM and KLIEP are convex, the computation of the objective is not

necessary in each iteration. Instead, one can simply check the gradient of

the objective and stop when the norm of the gradient is sufficiently small.

We first focus on KMM. Ignoring the term independent of w, one can

rewrite the objective in Eq. (2.3) in matrix form as

min
wPW

1

2
wTKtrw ´ kT

tew, (2.8)

where

(Ktr)ii 1 = x ϕ(xi), ϕ(xi 1) y, (kte)i =
1

m

mÿ

j=1

x ϕ(xi), ϕ(xj) y.

For the projected gradient method, the bottleneck is the computation of the

gradient. From Eq. (2.8) it is clear that O(n2) multiplications are required to

compute the gradient in each iteration. This cannot be simplified because,

unlike the Frank-Wolfe algorithm which will be discussed below, the pro-

jection to W creates a nonlinear operation on wt in each iteration. Projected
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gradient requires additional O(n) space to store the gradient. For Frank-

Wolfe using a 1/(t+ 1) step size, we can see from Eq. (2.2) that the time

complexity is O(n) per iteration. As st+1 must be a single ϕ(xi‹) for some

i‹, we only need to maintain a score list of size n to store txµpt ´µp,ϕ(xi)yu
for all i. The scores can be distributedly stored, and updated in paral-

lel if needed. After decomposition, xµp,ϕ(xi)y is simply (kte)i and can be

precomputed, while xµpt,ϕ(xi)y can be easily maintained for each t as

x µpt+1, ϕ(xi) y = (1 ´ ρt) ¨ x µpt, ϕ(xi) y + ρt ¨ (Ktr)ii‹ .

This is faster than the projected gradient approach because there is no pro-

jection step in Frank-Wolfe, and the score list can be maintained efficiently

with only O(n) additional space. Finally, when line search is applied to

ρt, the time complexity is still O(n), since the line search step size is at-

tained in closed form ρt =
xµp´µpt, st+1´µpty

}st+1´µpt}2
. We can decompose the inner

products as before and see that all operations can be performed in O(n)

time. While the computation of }µpt+1}2 = wT
t+1Ktrwt+1 seems to require

O(n2) multiplications, we can further decompose it, using the fact that

wt+1 = (1 ´ ρt)wt + ρtδwt for some increment δwt, as

(1 ´ ρt)
2 ¨ wT

tKtrwt + 2(1 ´ ρt) ¨ ρt ¨ wT
tKtrδwt + ρ2t ¨ δwT

tKtrδwt

= (1 ´ ρt)
2 ¨ }µpt}2 + 2(1 ´ ρt) ¨ ρt ¨ wT

t (Ktr):i‹ + ρ2t ¨ (Ktr)i‹i‹ ,

where (Ktr):i‹ means the i‹th column of Ktr. Therefore, only O(n) multipli-

cations are required since the first term can be used recursively and δwt

only has one singular non-zero entry. Similar tricks cannot be applied to

projected gradient because its increment δwt is not sparse, and δwT
tKtrδwt

still requires O(n2) computation in general. An additional O(n) storage is

still needed for the score list in the line search case.

Next we investigate the complexity of KLIEP. Similar to KMM, the bot-

tleneck is the computation of the gradient in Eq. (2.6). The projected gra-

dient method requires 2mb multiplications to compute Eq. (2.6) for all l,

while Frank-Wolfe only requires 2m +mb multiplications, since the de-

nominator is linear in α and can be updated efficiently due to Eq. (2.7).
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Table 2.1: Complexities of projected gradient (PG) and Frank-Wolfe with
1/(t+ 1) or line search step size. Time complexity is the complexity of one
iteration. The additional required space is shared across iterations.

PG 1/(t+ 1) Line

KMM
Time O(n2) O(n) O(n)

Space O(n) O(n) O(n)

KLIEP
Time O(mb) O(mb) O(mb)

Space O(m+ b) O(m+ b) O(m+ b)
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Figure 2.1: Runtime plot over different sample sizes. Time is measured in
seconds.

This can lead to different run time in practice (see Section 2.7). Line search

is less efficient for KLIEP(FW) compared to KMM(FW) as there is no closed

form solution to ρt. To find the optimal step size of line search, note that

G(ρt) := F(αt+1) is a concave function of ρt. Moreover, the gradient G 1(¨)
is decreasing in (0,1) with G 1(0) ą 0. Therefore, if G 1(1) ě 0, a step size

of 1 is used, otherwise G 1(1) ă 0 and we use binary search on the interval

[0, 1] to find ρt such that G 1(ρt) = 0. Such a binary search requires O(m)

multiplications. All three versions require O(m+ b) space to compute and

store the gradient. Table 2.1 summarizes the results of this section.

2.7 Experimental Evaluation

In this section, we demonstrate the results of the proposed approach on

both synthetic and some benchmark datasets. In particular, we compare

the proposed Frank-Wolfe method on KMM and KLIEP with the projected

15



gradient (PG) method. In the experiments, a Gaussian kernel is applied to

KMM where the kernel width is chosen to be the median of the pairwise

distances over the training set. For KLIEP, the width is chosen according

to the criterion of Sugiyama et al. (2008).

2.7.1 Synthetic Datasets

To investigate the efficiency of the different methods, we compare their

runtime to reach the same accuracy. Synthetic data is generated from

y = x3 ´x+ 1+ϵ, where ϵ „ N(0, 0.12). Training points are generated from

N(0.5, 0.52) while test points are generated from N(0, 0.32) (Shimodaira,

2000). In the experiment, n = m. We first run the projected gradient

method to convergence, then run the Frank-Wolfe methods (with two dif-

ferent step sizes: ρt = 1/(t+ 1) versus line search) until it reaches the same

objective. Fig. 2.1 shows the runtime in log scale with varied sample sizes.

The Frank-Wolfe methods are consistently faster than the projected gra-

dient method. In the case of KLIEP, although Frank-Wolfe and projected

gradient have the same theoretical complexity and convergence as shown

in Section 2.6, their actual runtime can differ in practice, as the constant

factor in the big-O notation can be different. Also, note that line search

has better efficiency in the case of KLIEP, since the final solution is usually

extremely sparse, meaning that line search can find it in a few iterations

while 1/(t+ 1) takes some more time.

We next check the solution quality of the different methods on the same

problems, to determine the effectiveness of Frank-Wolfe. We generated

n = m = 128 data points and show the final training weights in Fig-

ures 2.2 and 2.3. On one hand, the weights of the three KMM methods

differ from each other significantly, but their objective values remain very

close. This implies that although the objective of KMM (2.3) is convex,

there are many ªoptimalº solutions (in terms of objective values) that min-

imize the discrepancy between the means in the RKHS. This also leads

to different behaviours in the underling task (regression or classification,

16



−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

9

O
u

tp
u

t

Input

 

 

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W
e

ig
h

t

Train point
Test point
Unweighted model
Reweighted model
True model
Weight

(a) Projected gradient

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

9

O
u

tp
u

t

Input

 

 

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W
e

ig
h

t

Train point
Test point
Unweighted model
Reweighted model
True model
Weight

(b) FW 1/(t+ 1) step size
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Figure 2.2: Illustrating the training point weights produced by different
KMM optimization methods. Without reweighting, least squares outputs
the red line as the best linear fit. By adjusting the weights of the training
points (as shown by the purple vertical bars), a new linear fit (blue line)
can be found for better test set prediction. Notice that the three methods
produce significantly different training weights (purple vertical bars), but
their final objective values are very close.

etc). No further criteria is proposed in the literature to distinguish which

solution is preferable for KMM. For example, we include a red line and a

blue line in each graph, showing the linear models learned by least squares

from the unweighted (i.e., with uniform weights) and reweighted training

set, respectively. The blue lines of the three KMM methods are slightly dif-

ferent from each other. More results can be found on benchmark datasets

in Section 2.7.2. On the other hand, although KLIEP also demonstrates

multiple solutions with close objective values, the final weights produced

by the three KLIEP methods are very similar, as shown in Fig. 2.3. Note

that Frank-Wolfe tends to find sparser solutions than projected gradient in

general, which suggests the effectiveness of Frank-Wolfe in finding sparse

solutions if they exist.

2.7.2 Benchmark Datasets

Next we applied the reweighting methods on some benchmark datasets

from the libsvm3 and delve4 libraries to show their performance in cor-

recting covariate shift on reweighted learning. All methods are run until

convergence.

3www.csie.ntu.edu.tw/~cjlin/libsvm
4www.cs.toronto.edu/~delve/data/datasets.html
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(c) FW line search

Figure 2.3: Illustrating the training point weights produced by different
KLIEP optimization methods. These methods choose very different Gaus-
sian centres (the values shown in the α graph at the bottom), but their
training weights (purple vertical bars in the top graphs) are very similar to
each other, obtaining very close final objective values. Note that the mixing
coefficients α in (a) have a different scale for better visualization. The solu-
tions obtained by Frank-Wolfe are sparser than that of projected gradient.
The final solution using line search in (c) has only 7 Gaussian components,
which is extremely sparse compared to all 128 possible Gaussian candi-
dates. This shows the capability of Frank-Wolfe method in finding sparse
solutions.

For each dataset, we first normalize the input features and the output

to [´1, 1] if it is significantly out of scale. We introduce a covariate shift by

the following scheme. First we compute the first (with largest eigenvalue)

principle component of the dataset. Let zmax and zmin be the maximum

and minimum projected values along the principle direction and σz be the

standard deviation of the projected values. In each trial, we first draw

m = 2000 test points without replacement from the pool, with probabil-

ity proportional to N(zmax,σ2
z/4). After removing these test points from

the dataset, we then draw n = 5000 training points without replacement

from the pool, with probability proportional to N(zmin,σ2
z/4). After com-

puting the weights for the training points, we learn a linear model from

the reweighted set and evaluate the model performance on the test set,

using hinge loss for classification and squared loss for regression. We com-

pare the performance of the reweighting methods with the unweighted

method (i.e., with uniform weights for training points). For KMM(FW)

we use 1/(t + 1) as the step size, while for KLIEP(FW) we use the line
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search step size, since these choices are faster in practice. In addition to

the projected gradient solver KLIEP(PG), we also compare the KLIEP(FW)

method with the implementation of the original authors KLIEP(100), where

the ªb = 100º trick is used for projected gradient when there are too many

test instances (only randomly select 100 Gaussian centres; see Section 2.5.2

for more details).

Table 2.2 shows the test loss and Table 2.3 shows the runtime over 50

trials. First, note that the performance of KMM is not very reliable because

(1) the kernel width used in the experiment is difficult to tune, as observed

by others (Cortes et al., 2008) and (2) the solution to KMM tends to be

sensitive to random initialization ± i.e., different solutions may have simi-

lar objective values ± which leads to unstable behaviour on the underlying

task. Next, we can see that KLIEP(FW) is effective in correcting covariate

shift. In most cases its test loss is smaller than unweighted learning as

well as KLIEP(PG) on the test set. One possible reason is that KLIEP(PG)

may fail to improve the objective on a step and stop prematurely. Com-

paring KLIEP(PG) and KLIEP(100), we can see that using all information

from the test set will probably reduce test loss, although it may suffer from

increased runtime. Finally, judging from Table 2.3, Frank-Wolfe is a very

efficient algorithm compared to projected gradient in the current setting

where sparse solutions are possible. KLIEP(100) is extremely fast but its

task performance is so restrictive that it becomes impractical. We may ap-

ply values other than b = 100, but the best value of b is dataset-dependent

and could be hard to identify. Instead, FW does not require parameter

tuning and can utilize all Gaussians without computational issues.

2.8 Conclusion

We have proposed an efficient method that can be incorporated into two

well-known covariate shift correction techniques, Kernel Mean Matching

(KMM) and Kullback-Leibler Importance Estimation Procedure (KLIEP).
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Table 2.2: Test losses for the different covariate shift correction methods
over 50 trials (mean with standard error in parentheses). Weights are com-
puted using either Frank-Wolfe (FW) or projected gradient (PG). Losses
are normalized so that the mean loss of the unweighted method is 1.0.
The upper half of the table considers classification datasets (hinge loss),
while the lower half considers regression datasets (squared loss). The best
method(s) according to the Wilcoxon signed-rank test at the 5% significance
level is(are) shown in bold for each dataset.

Dataset Unweighted KLIEP(FW) KLIEP(PG) KLIEP(100) KMM(FW) KMM(PG)

a7a 1.000 (0.006) 0.978 (0.007) 0.998 (0.015) 0.999 (0.009) 0.968 (0.024) 0.955 (0.023)

a8a 1.000 (0.006) 0.971 (0.008) 1.002 (0.020) 0.997 (0.015) 0.969 (0.027) 0.959 (0.025)

a9a 1.000 (0.005) 0.968 (0.010) 0.983 (0.023) 0.998 (0.012) 0.963 (0.025) 0.965 (0.023)

mushrooms 1.000 (0.077) 1.010 (0.078) 0.981 (0.072) 1.078 (0.109) 0.800 (0.080) 0.923 (0.060)

cpusmall 1.000 (0.001) 0.893 (0.023) 0.943 (0.010) 0.936 (0.016) 1.034 (0.034) 0.978 (0.023)

kin-8fh 1.000 (0.003) 1.014 (0.043) 4.462 (0.511) 5.872 (1.212) 7.686 (2.566) 3.594 (1.059)

kin-8fm 1.000 (0.004) 0.738 (0.048) 5.060 (0.690) 5.329 (0.909) 3.028 (1.070) 1.786 (0.522)

kin-8nh 1.000 (0.002) 1.018 (0.040) 2.032 (0.329) 2.659 (0.454) 2.752 (0.398) 1.913 (0.370)

kin-8nm 1.000 (0.004) 0.803 (0.017) 1.172 (0.112) 1.396 (0.219) 1.031 (0.093) 0.899 (0.055)

Table 2.3: Average runtime in seconds over 50 trials (mean with standard
error in parenthesis). KLIEP(FW) is generally faster than KLIEP(PG). Al-
though KLIEP(100) is extremely fast, its corresponding performance on
the learning task is very restrictive. KMM(FW) is faster than KMM(PG) for
every dataset.

Dataset KLIEP(FW) KLIEP(PG) KLIEP(100) KMM(FW) KMM(PG)
a7a 6.22 (0.03) 5.29 (2.59) 0.07 (0.04) 1.32 (0.02) 1.76 (0.05)

a8a 6.25 (0.04) 7.17 (2.92) 0.04 (0.00) 1.31 (0.02) 1.78 (0.04)

a9a 6.28 (0.04) 4.39 (2.38) 0.06 (0.04) 1.30 (0.02) 1.77 (0.05)

mushrooms 4.19 (0.21) 23.90 (0.02) 0.89 (0.10) 1.18 (0.02) 1.97 (0.10)

cpusmall 1.24 (0.02) 3.18 (1.13) 0.08 (0.03) 1.12 (0.03) 3.32 (0.21)

kin-8fh 5.61 (0.21) 23.79 (0.02) 0.76 (0.13) 1.06 (0.02) 1.56 (0.06)

kin-8fm 5.60 (0.21) 23.78 (0.03) 0.60 (0.14) 1.07 (0.02) 1.53 (0.06)

kin-8nh 5.46 (0.30) 23.85 (0.02) 0.72 (0.13) 1.11 (0.02) 1.53 (0.06)

kin-8nm 5.69 (0.03) 23.76 (0.02) 0.73 (0.13) 1.08 (0.02) 1.55 (0.05)

Our approach is inspired by noticing a connection between kernel herding

and KMM. By exploiting sparse solution structure, we apply the Frank-

Wolfe algorithm to KMM and KLIEP. Since Frank-Wolfe is projection-free,

its time complexity per iteration is in general smaller than the traditional

projected gradient method. Our convergence and complexity analysis show

that KMM(FW) has an advantage over the projected gradient method,
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while KLIEP(FW) has runtime performance comparable to the projected

gradient method. Our empirical studies show that Frank-Wolfe is very

suitable and practical for finding optimal solutions and correcting covari-

ate shift as the sample size grows.

In addition to the mixture of Gaussian parametrization, Frank-Wolfe

can also be applied to different variants of KLIEP, or even other density-

ratio estimation methods (Sugiyama et al., 2012b). As long as the objective

function is convex and differentiable, and there is a compact convex set

constraint, Frank-Wolfe is applicable and potentially more efficient than

the projected gradient method. We may gain additional benefits by using

more sophisticated Frank-Wolfe variants (Lacoste-Julien and Jaggi, 2015),

or their stochastic counterparts (Goldfarb et al., 2017) to handle large-scale

data. These suggest that Frank-Wolfe is a practical and powerful tool for

learning density-ratio for covariate shift problems.
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Chapter 3

Domain Aggregation Networks
for Multi-Source Domain
Adaptation

3.1 Overview

In many real-world applications, we want to exploit multiple source datasets

to build a model for a different but related target dataset. Despite the recent

empirical success, most existing research has used ad-hoc methods to com-

bine multiple sources, leading to a gap between theory and practice. In this

chapter, we develop a finite-sample generalization bound based on domain

discrepancy and accordingly propose a theoretically justified optimization

procedure. Our algorithm, Domain AggRegation Network (DARN), can

automatically and dynamically balance between including more data to

increase effective sample size and excluding irrelevant data to avoid neg-

ative effects during training. We find that DARN can significantly outper-

form the state-of-the-art alternatives on multiple real-world tasks, includ-

ing digit/object recognition and sentiment analysis.

3.2 Introduction

Many machine learning algorithms assume the learned predictor will be

tested on the data from the same distribution as the training data. This

assumption, although reasonable, is not necessarily true for many real-
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world applications. For example, patients from one hospital may have

a different distribution of gender, height and weight from another hos-

pital. Consequently, a diagnostic model constructed at one location may

not be directly applicable to another location without proper adjustment.

The situation becomes even more challenging when we want to use data

from multiple source domains to build a model for a target domain, as this

requires deciding, e.g., how to select the relevant source domains and how

to effectively aggregate these domains when training complex models like

neural networks. Including irrelevant data from certain source domains

can severely reduce the performance on the target domain.

To address this problem, researchers have been exploring methods of

transfer learning (Pan and Yang, 2009) or domain adaptation (Mansour et al.,

2009a; Cortes et al., 2019), where a model is trained based on labelled

source data and unlabelled target data. Most existing works have focused

on single-source to single-target (ªone-to-oneº) domain adaptation, using

different assumptions such as covariate shift (Shimodaira, 2000; Gretton

et al., 2009; Sugiyama and Kawanabe, 2012) or concept drift (Jiang and

Zhai, 2007; Gama et al., 2014). When dealing with multiple source do-

mains, one may attempt to directly use these approaches by combining all

source data into a large joint dataset and then apply one-to-one adaptation.

This naïve aggregation method will often fail as not all source domains are

equally important when transferring to a specific target domain. There

are some works on multi-source to single-target adaptation. Although

some of them are theoretically motivated with cross-domain generaliza-

tion bounds, they either use ad-hoc aggregation rules when developing

practical algorithms (Zhao et al., 2018; Li et al., 2018) or lack finite-sample

analysis (Mansour et al., 2009b,c; Hoffman et al., 2018a). This leaves a gap

between the theory for multi-source adaptation and practical algorithm for

domain aggregation.

This research has three contributions: First, we develop a finite-sample

cross-domain generalization bound for multi-source adaptation, which is
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based on the discrepancy introduced by Cortes et al. (2019). We show

that in order to improve performance on the specific target domain, there

is a trade-off between including all source domains to increase effective

sample size, versus excluding less relevant source domains to avoid neg-

ative outcomes. Second, motivated by our theory and domain adversarial

method (Ganin and Lempitsky, 2015; Ganin et al., 2016), we propose Do-

main AggRegation Network (DARN), which can dynamically adjust the

importance weights of the source domains during the course of training.

Unlike previous works, our aggregation scheme (Eq. (3.7)), which itself is

of independent interest in some other contexts, is a direct optimization of

our generalization upper bound (Eq. (3.4)) without resorting to surrogates.

Third, our experiments on digit/object recognition and sentiment analysis

show that DARN can significantly outperform state-of-the-art methods.

This chapter is organized as follows. Section 3.3 introduces necessary

background on one-to-one adaptation based on discrepancy. Section 3.4

elaborates our theoretical analysis and the corresponding algorithm de-

ployment. Section 3.5 discusses about related approaches in the literature,

highlighting the key differences to our method. Section 3.6 empirically

compares the performance of the proposed method to other alternatives.

Finally, Section 3.7 concludes this work.

3.3 Background on Cross-domain Generalization

This section provides background from previous work on one-to-one do-

main adaptation (Cortes et al., 2019). Let X be the input space, Y Ď R be

output space and H Ď th : X ÞÑ Yu be a hypothesis class. A loss function

L : Y ˆ Y ÞÑ R
+ is µ-admissible1 if

@y,y 1,y2 P Y |L(y 1,y) ´ L(y2,y)| ď µ |y 1 ´ y2|. (3.1)

1For example, the common Lp losses are µ-admissible (Cortes et al., 2019, Lemma 23).
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The discrepancy (Mansour et al., 2009a) between two distributions P,Q over

X is defined as

disc(P,Q) = max
h,h 1PH

|LP(h,h 1) ´ LQ(h,h 1)|

where LP(h,h 1) = Ex„P[L(h(x),h 1(x))].
(3.2)

This quantity can be computed or approximated empirically given samples

from both distributions. For classification problems with 0-1 loss, it reduces

to the well-known dA-distance (Kifer et al., 2004; Blitzer et al., 2008; Ben-

David et al., 2010a) and can be approximated using a domain-classifier loss

w.r.t. H (Zhao et al., 2018; Ben-David et al., 2007, Sec.4), while for regres-

sion problems with L2 loss, it reduces to the maximum eigenvalue (Cortes

and Mohri, 2011, Sec.5); see Section 3.4.2 for more details. For two do-

mains (P, fP), (Q, fQ) where fP, fQ : X ÞÑ Y are the corresponding labeling

functions, we have the following cross-domain generalization bound:

Theorem 1 (Proposition 5 & 8, Cortes et al. (2019)). Let Rm(H) be the

Rademacher complexity of H given sample size m, HQ = tx ÞÑ L(h(x), fQ(x)) :

h P Hu be the set of functions mapping x to its loss w.r.t. fQ and H,

ηH = µ ˆ min
hPH

(︄

max
xPsupp(Pp)

|fP(x) ´ h(x)| + max
xPsupp(Qp )

|fQ(x) ´ h(x)|
)︄

, (3.3)

be a constant measuring how well H can fit the true models where supp(Pp) is the

support of the empirical distribution Pp (using the µ from Eq. (3.1)), and MQ =

supxPX,hPH L( h(x), fQ(x) ) be the upper bound on loss for Q. Given Qp with

m points sampled iid from Q labelled according to fQ, for δ P (0, 1) w.p. at least

1 ´ δ, the following holds for all h P H,

LP(h, fP) ď L
Qp (h, fQ) + disc(P,Q) + 2Rm(HQ) + ηH +MQ

c
log(1/δ)

2m
.

This theorem provides a way to generalize across domains when we

have sample Qp labelled according to fQ and an unlabelled sample Pp. The

first term is the usual loss function for the sample Qp , while the second term
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disc(P,Q) can be estimated based on the unlabelled data Qp ,Pp. ηH measures

how well the model family H can fit the examples from the datasets, and it

is not controllable once H is given. The final term, as a function of sample

size m, determines the convergence speed.

3.4 Domain Aggregation Network

3.4.1 Theory

Suppose we are given k source domains t(Si, fSi) : i P [k] := t1, 2, . . . ,kuu
and a target domain (T , fT ) where Si, T are distributions over X and fSi , fT :

X ÞÑ Y are their respective labelling functions. For simplicity, assume that

each sample Spi has m points, drawn iid from Si and labelled according

to fSi . We are also given m unlabelled points Tp drawn iid from T . We

want to leverage all source domains’ information to learn a model h P H

minimizing LT (h, fT ).

One naïve approach could be to combine all the source domains into

a large joint dataset and conduct one-to-one adaptation to the target do-

main using Theorem 1. However, including data from irrelevant or even

adversarial domains is likely to jeopardize the performance on the target

domain, which is sometimes referred to as negative transfer (Pan and Yang,

2009). Moreover, as certain source domains may be more similar or rele-

vant to the target domain than the others, it makes more sense to adjust

their importance according to their utilities. We propose to find domain

weights αi ě 0 such that
řk

i=1 αi = 1 to achieve this. Our main theorem

below sheds some light on how we should combine the source domains

(the proof is provided in Appendix A.1):

Theorem 2. Given k source domains datasets t(x(i)j ,y(i)
j ) : i P [k], j P [m]u with

m iid examples each where Spi = tx(i)j u and y
(i)
j = fSi(x

(i)
j ), for any α P ∆ = tα :

αi ě 0,
ř

i αi = 1u and δ P (0, 1), w.p. at least 1 ´ δ, the following holds for all
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h P H,

LT (h, fT ) ď
ÿ

i

αi

[︂

L
Spi(h, fSi) + disc(T ,Si) + 2Rm(HSi) + ηH,i

]︂

+ }α}2MS

c
log(1/δ)

2m
,

(3.4)

where HSi = tx ÞÑ L(h(x), fSi(x)) : h P Hu is the set of functions mapping x to

the corresponding loss,

ηH,i = µ ˆ min
hPH

(︄

max
xPsupp(Tp)

|fT (x) ´ h(x)| + max
xPsupp(Spi)

|fSi(x) ´ h(x)|
)︄

,

and MS = supiP[k],xPX,hPH L(h(x), fSi(x)) is the upper bound on loss on the

source domains.

There are several remarks.

• For the last term of the bound, moving }α}2 into the square root will

give us m
}α}22

, which serves as the effective sample size. If α is uniform

(i.e., [1/k, . . . , 1/k]J), the effective sample size is km; if α is one-hot,

we effectively only have m points from exactly one domain.

• Let gh,i := L
Spi(h, fSi) + disc(T ,Si). Small gh,i indicates that we can

achieve small loss on domain Si, and it is similar to the target domain

(i.e., small disc(T ,Si), estimated from Tp,Spi). We may want to focus on

Si by setting αi close to 1, but this will reduce the effective sample

size. Therefore, we have to trade-off between the terms in this bound

by choosing a proper α.

• When Si and T are only partially overlapped, it might be difficult

to find a suitable αi. In such cases, the discrepancy could be large

because the performance gap on the two domains can be big (see

Eq. (3.2)). Then it would be important for the model to learn certain

overlapping representations to control the bound. We can also artifi-

cially split the source domains into smaller datasets (e.g., by cluster-

ing) then apply our method on the finer scale.

• Rm(HSi) determines how expressive the model family H is w.r.t. the

source data Si. Although it can be estimated from samples (Bartlett
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and Mendelson, 2002, Theorem 11), the computation is non-trivial for

a model family like neural networks. ηH,i is assumed to be small,

which is a necessary condition for success adaptation (Ben-David

et al., 2010b, Theorem 2), and estimating ηH,i is impossible without

labelled target data. As removing these two terms does not seem

to be empirically significant, the following analysis ignores them for

simplicity.

Before we proceed to develop an algorithm based on the theorem, we

compare Eq. (3.4) to existing finite-sample bounds. The bound of Blitzer

et al. (2008, Theorem 3) is informative when we have access to a small set

of labelled target examples. In such cases, we can improve our bound by us-

ing this small labelled target set as an additional source domain Sk+1. The

bound of Zhao et al. (2018, Theorem 2) is based on the dA-distance, which

is a special case of disc in our bound. Moreover, Eq. (3.4) uses sample-based

Rademacher complexity, which is generally tighter than other complexity

measures such as VC-dimension (Bartlett and Mendelson, 2002; Koltchin-

skii et al., 2002; Bousquet et al., 2003). Peng et al. (2019, Theorem 1) provide

a bound based on binary classification, which depends on the unknown

target minimizer. In comparison, our bound uses the attainable source

loss. Moreover, we relate our theorem to the optimization procedure, as

we show next.

3.4.2 Algorithm

In this section, we develop a practical algorithm, Domain AggRegation

Network (DARN), based on Theorem 2. Ignoring the constants, we would

like to minimize the upper bound of Eq. (3.4):

min
hPH

min
αP∆

Uh(α) = xgh,αy + τ}α}2 (3.5)

where gh = [gh,1, . . . ,gh,k]
J and τ ą 0 is a hyper-parameter. If we can solve

the inner minimization exactly given h, then we can treat the optimal α˚(h)

as a function of h and solve the outer minimization over h effectively. In
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Figure 3.1: Optimal solution to Eq. (3.6) (best viewed in color). λ˚ compen-
sates what is below the ν˚, while ν˚ is chosen such that the vector of the
green bars has L2 norm of 1.

the following, we show how to achieve this.

Given gh, the inner minimization can be reformulated as a second-order

cone programming problem, but it has no closed-form solution due to the

τ}α}2 term. Consider the following problem (z = ´gh/τ recovers the inner

minimization):

min
αP∆

´xz,αy + }α}2 (3.6)

The Lagrangian for its dual problem is

Λ(α,λ,ν) = ´zJ
α+ }α}2 ´ λ

J
α+ ν(1J

α ´ 1),

with ν P R,λ ľ 0. Taking the derivative w.r.t. α and setting it to zero gives

BΛ
Bα = ´z +

α

}α}2
´ λ+ ν1 = 0 ñ α

˚

}α˚}2
= z ´ ν1+ λ.

Note that α ‰ 0 so we have the constraint }z ´ ν1+ λ}2 = 1. Using this α
˚

in Λ gives the following dual problem

max
ν,λ

´ν s.t. }z ´ ν1+ λ}2 = 1 and λ ľ 0

We would like to decrease ν as much as possible, and the best we can

attain is the ν˚ satisfying }[z ´ ν˚1]+}2 = 1 where [v]+ = max(0, v). In this

case, the optimal λ˚ can be attained as λ˚
i = 0 if zi ´ν˚ ą 0, otherwise λ˚

i =

ν˚ ´ zi; see Fig. 3.1. Although we do not have a closed-form expression
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Figure 3.2: DARN architecture with two source domains (best viewed in
color). Mini-batches of xSi and xT are fed to the network. xSi will go
through the classification/regression path on the upper hy box, while all x
will go through to the corresponding discrepancies (in the lower hd box).
The gradients from the discrepancies will be reverted during backpropa-
gation.

for the optimal ν˚, we can use binary search to find it, starting from the

interval [zmin ´ 1, zmax] where zmin, zmax are the minimum and maximum

of z respectively. Then we can recover the primal solution as

α
˚ = [z ´ ν˚1]+/}[z ´ ν˚1]+}1. (3.7)

Eq. (3.7) gives rise to a new way to project any vector z to the probability

simplex, which is of independent interest and may be used in some other

contexts.2 It resembles the standard projection onto the simplex based

on squared Euclidean distance (Duchi et al., 2008, Eq.(3)). One subtle but

crucial difference is that Eq. (3.6) uses }α}2 instead of }α}22. Recall that

z = ´gh/τ. Here τ can be interpreted as a temperature parameter. On one

hand, if τ " 0, all z will have similar values and thus the optimal ν˚ will

be close to zmax and α
˚ will be close to uniform. On the other hand, as

τ Ñ 0, zmax will stand out from the rest zi and eventually ν˚ = zmax ´ 1.

This means the gh,i corresponding to the zmax is small enough so we focus

solely on this domain and ignore all other domains (even though this will

reduce effective sample size as discussed in Section 3.4.1).

2For example, if z are the logits of the final classification layer of a neural network,
this projection provides another way to produce class probabilities similar to the softmax
transformation.
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We can optimize our objective and train a neural network h using

gradient-based optimizer. The optimal α˚(h) is a function of h and we can

backprop through it. To facilitate the gradient computation and show that

we can efficiently backprop through the projection of Eq. (3.7), we derive

the Jacobian J = Bα/Bz in Appendix A.2. This ensures effective end-to-end

training.

Now we elaborate on how to compute gh,i. The L
Spi(h, fSi) is the task

loss. The disc(T ,Si) depends on whether the task is classification or regres-

sion. For classification, disc coincides with the dA-distance, so we use the

domain classification loss (Ben-David et al., 2007; Zhao et al., 2018):

disc(Tp,Spi) = 2

(︃

1 ´ min
hd

ϵpT ,Si(hd)

)︃

ϵpT ,Si(hd) =
1

2m

2mÿ

i=1

ˇ̌
hd(x) ´ δ

xPTp
ˇ̌

where ϵpT ,Si(hd) is the sample domain classification loss of a domain classi-

fier hd : X ÞÑ t0, 1u. This minimization over hd will become maximization

once we move it outside of the disc due to the minus sign. Then our

objective consists of minh and maxhd
, which resembles adversarial train-

ing (Goodfellow et al., 2014): learning a task classifier h to minimize loss

and a domain classifier hd to maximize domain confusion. More specifi-

cally, if we decompose the neural network h into a feature extractor hfea

and a label predictor hy (i.e., h(x) = (hy ˝hfea)(x)), we can learn a domain-

classifier hd on top of hfea to classify hfea(x) between Si and T as a binary

classification problem, where the domain itself is the label (see Fig. 3.2).

To achieve this, we use the logistic loss to approximate ϵpT ,Si(hd) and apply

the gradient reversal layer (Ganin and Lempitsky, 2015; Ganin et al., 2016)

when optimizing disc through backpropagation.

If we are solving regression problems with L2 loss, then disc(Tp,Spi) =

}MT ´ MSi}2 is the largest eigenvalue (in magnitude) of the difference of

31



two matrices (Mansour et al., 2009a; Cortes and Mohri, 2011, Sec.5)

MT =
1

m

ÿ

j

hfea(x
(T)
j )hJ

fea(x
(T)
j )

MSi =
1

m

ÿ

j

hfea(x
(i)
j )hJ

fea(x
(i)
j ),

which can be conveniently approximated using mini-batches and a few

steps of power iteration. The overall algorithm is summarized in Algo-

rithm 1.

3.4.3 Complexity Analysis

Here we analyze the time and space complexities of the algorithm in each

iteration. Similar to MDAN (Zhao et al., 2018), in each gradient step,

we need to compute the task loss L
Spi(h, fSi) and the disc(T ,Si) (or dA-

distance) using mini-batches from each source domain i P [k]. The ques-

tion is whether one can maintain the O(k) complexity given that we need

to compute the weights using Eq. (3.7) and backprop through it. For the

forward computation of α
˚, in order to compute the threshold ν˚ to the

ϵ ą 0 relative precision, the binary search will cost O(k log(1/ϵ)). As for

the backward pass of gradient computation, according to our calculation

in Appendix A.2, the Jacobian J = Bα/Bz has a concise form, meaning that

it is possible to compute the matrix-vector product Jv for a given vector v

in O(k) time and space. Therefore, our space complexity is the same as

MDAN and our time complexity is slightly slower by a factor of log(1/ϵ).

In comparison, the time complexity for MDMN (Li et al., 2018) is O(k2)

because it requires computing the pairwise weights within the k source

domains. When there are a lot of source domains, MDMN will be notice-

ably slower than MDAN and DARN.

3.5 Related Work

The idea of utilizing data from the source domain (S, fS) to train a model

for a different but related target domain (T , fT ) has been explored exten-
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Algorithm 1 Domain Aggregation Network
Input:
• k labelled source datasets t(x(i)j ,y(i)

j ) : iP [k], jP [m]u
• One unlabelled target dataset tx(T)j : j P [m]u
• Temperature parameter τ ą 0

• Optimizer learning rate η ą 0

1: Initialize a neural network h with feature extractor hfea, one label pre-
diction head hy and k domain classification heads thd,i : i P [k]u, as in
Fig. 3.2

2: repeat
3: Sample a mini-batch of size B for each dataset
4: Compute the losses for the source mini-batches

LpSi(h) Ð 1

B

Bÿ

j=1

L
[︂

(hy ˝ hfea)(x
(i)
j ) , y

(i)
j

]︂

(3.8)

5: Compute the sample discrepancies discy (T ,Si)
‚ If classification, compute as

1

2B

Bÿ

j=1

[︂

Ld

(︂

(hd,i ˝ hr
fea)(x

(T)
j ), 1

)︂

+ Ld

(︂

(hd,i ˝ hr
fea)(x

(i)
j ), 0

)︂]︂

(3.9)

where Ld is the domain classification loss and hr
fea = r ˝ hfea with

r being the GRL
‚ If regression, compute as

}Mr
T ´ Mr

Si
}2 (3.10)

where Mr
T =

1

B

Bÿ

j=1

hr
fea(x

(T)
j )hr

fea(x
(T)
j )J

and Mr
Si

=
1

B

Bÿ

j=1

hr
fea(x

(i)
j )hr

fea(x
(i)
j )J

6: With gph,i = LpSi(h)+discy (T ,Si), compute the optimal weights α˚(h)

using Eq. (3.7) and temperature τ

7: Compute the objective value Uh = xgph,α˚(h)y+ τ}α˚(h)}2 and take
a gradient step h Ð h ´ ηBUh

Bh
8: until convergence
9: return h

sively for the last decade using different assumptions (Pan and Yang, 2009;

Zhang et al., 2015). For instance, the covariate shift setting (Shimodaira,

2000; Gretton et al., 2009; Sugiyama and Kawanabe, 2012; Wen et al., 2014)

assumes S ‰ T but fS = fT , while concept drift (Jiang and Zhai, 2007;
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Gama et al., 2014) assumes S = T but fS ‰ fT . More specifically, both

domain discrepancy and hypothesis class contribute to the adaptation per-

formance (Ben-David et al., 2010b).

Finding a domain-invariant feature space by minimizing a distance

measure is common practice in domain adaptation, especially for train-

ing neural networks. Tzeng et al. (2017) provided a comprehensive frame-

work that subsumes several prior efforts on learning shared representa-

tions across domains (Tzeng et al., 2015; Ganin et al., 2016). DARN uses

adversarial domain classifier and the gradient reversal trick from Ganin

et al. (2016). Instead of proposing a new loss for each pair of the source

and target domains, one of our contributions is the aggregation technique

of computing the mixing coefficients α, which is derived from theoretical

guarantees. When dealing with multiple source domains, our aggregation

method can certainly be applied to other forms of discrepancies such as

MMD (Gretton et al., 2012; Long et al., 2015, 2016), and other model ar-

chitectures such as Domain Separation Network (Bousmalis et al., 2016),

cycle-consistent model (Hoffman et al., 2018b), class-dependent adversar-

ial domain classifier (Pei et al., 2018) and Known Unknown Discrimina-

tion (Schoenauer-Sebag et al., 2019).

Our work focuses on multi-source to single-target adaptation, which

has been investigated in the literature. Sun et al. (2011) developed a gener-

alization bound but resorted to heuristic algorithms to adjust distribution

shifts. Zhao et al. (2018) proposed a certain ad-hoc scheme for the com-

bination coefficients α, which, unlike ours, are not theoretically justified.

Multiple Domain Matching Network (MDMN) (Li et al., 2018) computes

domain similarities not only between the source and target domains but

also within the source domain themselves based on Wasserstein-like mea-

sure. Calculating such pairwise weights can be computationally demand-

ing when we have a lot of source domains. Their bound requires additional

smooth assumptions on the labelling functions fSi , fT , and is not a finite-

sample bound, as opposed to ours. As for the actual algorithm, they also
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use ad-hoc coefficients α without theoretical justification. Mansour et al.

(2009b,c) consider multi-source adaptation where T =
ř

i βiSi is a convex

mixture of source distributions with some weights βi. Our analysis does

not require this assumption. Hoffman et al. (2018a) provides similar guar-

antees with different assumptions, but unlike ours, their bounds are not

finite-sample bounds.

3.6 Experimental Evaluation

In this section, we demonstrate some of the key properties of DARN on a

synthetic regression problem, then compare DARN to several state-of-the-

art methods on multiple challenging real-world tasks. Additional experi-

ment details can be found in Appendix A.3.

3.6.1 Regression on Synthetic Data

Setup. We construct eight source domains that evenly cover the sin func-

tion on [´π,π] (see Fig. 3.3a). Similarly, we construct four target domains

on the same region (see Fig. 3.3b). Each source/target domain has 100 data

points.

We use labelled source data and unlabelled target data for learning. We

take on one target domain at a time, and learn a linear model from all eight

source domains with MSE loss. The goal is to see whether DARN can focus

on the relevant source domains and learn a linear model that can perform

well on the target domain.

Results and Analysis. First, Fig. 3.3b shows the learned models. The

linear models can fit the target data very well. This shows that DARN can

learn a meaningful model for a specific target domain, using only labelled

source data and unlabelled target data. Second, Fig. 3.3c shows the source

domain weights (the α) for each target domain after training. The weight

colors correspond to the colors in Fig. 3.3a. Noticeably DARN can focus

well on the respective relevant source domains for each target domain and
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(a) Source domains

(b) Target domains & learned models

(c) Domain weights (α values)

Figure 3.3: Regression experiment (best viewed in color).
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ignore the rest (with zero weights). Note that these domain weights are

automatically learned during the training of the model.

3.6.2 Digit Recognition

Table 3.1: Classification accuracy (%) of the target digit datasets. Mean and
standard error over 20 runs. The best method (excluding TAR) based on
one-sided Wilcoxon signed-rank test at the 5% significance level is shown
in bold for each domain.

Method MNIST MNIST-M SVHN Synth Avg.
SRC 96.78 ˘ 0.08 60.80 ˘ 0.21 68.99 ˘ 0.69 84.09 ˘ 0.27 77.66 ˘ 0.14

DANN 96.41 ˘ 0.13 60.10 ˘ 0.27 70.19 ˘ 1.30 83.83 ˘ 0.25 77.63 ˘ 0.35

M3SDA 96.95 ˘ 0.06 65.03 ˘ 0.80 71.66 ˘ 1.16 80.12 ˘ 0.56 78.44 ˘ 0.36

MDAN 97.10 ˘ 0.10 64.09 ˘ 0.31 77.72 ˘ 0.60 85.52 ˘ 0.19 81.11 ˘ 0.21

MDMN 97.15 ˘ 0.09 64.34 ˘ 0.27 76.43 ˘ 0.48 85.80 ˘ 0.21 80.93 ˘ 0.16

DARN 98.09 ˘ 0.03 67.06 ˘ 0.14 81.58 ˘ 0.14 86.79 ˘ 0.09 83.38 ˘ 0.06

TAR 99.02 ˘ 0.02 94.66 ˘ 0.10 87.40 ˘ 0.17 96.90 ˘ 0.09 94.49 ˘ 0.07

Setup. Following previous works (Ganin et al., 2016; Zhao et al., 2018),

we use the four digit recognition datasets in this experiment (MNIST,

MNIST-M, SVHN and Synth). MNIST is a well-known gray-scale im-

ages for digit recognition, and MINST-M (Ganin and Lempitsky, 2015) is

a variant where the black and white pixels are masked with color patches.

Street View House Number (SVHN) (Netzer et al., 2011) is a standard digit

dataset taken from house numbers in Google Street View images. Syn-

thetic Digits (Synth) (Ganin and Lempitsky, 2015) is a synthetic dataset

that mimic SVHN using various transformations. One of the four datasets

is chosen as unlabelled target domain in turn and the other three are used

as labelled source domains.

Baselines. We compare DARN to several baselines and state-of-the-art

methods. There are many approaches in the literature dealing with single-

source to single-target adaption. Since our focus is on the multi-source set-

ting, we mainly compare DARN to the most relevant methods that utilize

multiple sources for adaptation. (1) The SRC (for source) method uses

only labelled source data to train the model. It merges all available source

examples to form a large dataset to perform training without adaptation.
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(2) TAR (for target) is another baseline that only uses labelled target data. It

serves as performance upper bound as if we had access to the true label of

the target data. (3) Domain Adversarial Neural Network (DANN) (Ganin

et al., 2016) is similar to our method in that we both use adversarial train-

ing objectives. Here we follow the previous protocol (Zhao et al., 2018)

and merge all source data to form a large joint source dataset of km in-

stances for DANN. (4) Moment Matching for Multi-Source Domain Adap-

tation (M3SDA) (Peng et al., 2019) is a recent state-of-the-art method that

combines moment matching and maximizing classifier discrepancy (Saito

et al., 2018). We use their public code with a few necessary adjustments

(change classification head based on the number of classes etc.) (5) Mul-

tisource Domain Adversarial Network (MDAN) (Zhao et al., 2018) resem-

bles our method in that we both dynamically assign each source domain

an importance weight during training. However, unlike ours, their weights

are not theoretically justified. We use the soft version from their code since

it is reported to perform better than the hard version. (6) Multiple Do-

main Matching Network (MDMN) (Li et al., 2018) computes weights not

only between source and target domains but also within source domain

themselves. We use their code of computing weights in our implementa-

tion. All the methods are applied to the same neural network structure to

ensure fair comparison.

Results and Analysis. Table 3.1 shows the classification accuracy of

each target dataset. The last column is the average accuracy of four do-

mains, and the standard errors are calculated based on 20 runs. (1) Most

methods can consistently outperform SRC, which has no adaptation. This

shows the improvement when using unlablelled target data for adaptation.

(2) Without proper weighting for each source domain, DANN with joint

source data can sometimes perform worse than SRC. This suggests the im-

portance of ignoring irrelevant data to avoid negative transfer. (3) DARN sig-

nificantly outperforms other methods across all four domains, especially

on the MNIST-M and SVHN domains. Notice that even though MDAN
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and MDMN have generalization guarantees, they both resort to ad-hoc ag-

gregation rules to combine the source domains during training. Instead,

our aggregation (Eq. (3.7)) is a direct optimization of the upper bound (The-

orem 2) thus is theoretically justified and empirically superior for this prob-

lem.

3.6.3 Object Recognition: Office-Home

Table 3.2: Classification accuracy (%) of the Office-Home datasets. Mean
and standard error over 20 runs. The best method (excluding TAR) based
on one-sided Wilcoxon signed-rank test at the 5% significance level is
shown in bold for each domain.

Method Art Clipart Product Real-World Avg.
SRC 58.02 ˘ 0.47 57.29 ˘ 0.30 74.26 ˘ 0.22 77.98 ˘ 0.25 66.89 ˘ 0.16

DANN 57.39 ˘ 0.69 57.35 ˘ 0.35 73.78 ˘ 0.27 78.12 ˘ 0.21 66.66 ˘ 0.19

M3SDA 64.05 ˘ 0.61 62.79 ˘ 0.37 76.21 ˘ 0.30 78.63 ˘ 0.22 70.42 ˘ 0.18

MDAN 68.14 ˘ 0.58 67.04 ˘ 0.21 81.03 ˘ 0.22 82.79 ˘ 0.15 74.75 ˘ 0.18

MDMN 68.67 ˘ 0.55 67.75 ˘ 0.20 81.37 ˘ 0.18 83.32 ˘ 0.14 75.28 ˘ 0.15

DARN 70.00 ˘ 0.38 68.42 ˘ 0.14 82.75 ˘ 0.21 83.88 ˘ 0.16 76.26 ˘ 0.13

TAR 71.19 ˘ 0.38 79.16 ˘ 0.16 90.66 ˘ 0.15 85.60 ˘ 0.14 81.65 ˘ 0.12

Figure 3.4: Example images of the Office-Home dataset.

Setup. To show the applicability of our method to more complicated

real-world tasks, we use the Office-Home dataset (Venkateswara et al.,

2017). Some example images are shown in Fig. 3.4. It contains images

of 65 classes such as spoon, sink, mug and pen from four different do-

mains: Art, Clipart, Product and Real-World. One of the four datasets is

chosen as unlabelled target domain in turn and the other three are used as

labelled source domains.
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Results and Analysis. Table 3.2 shows the classification accuracy of

each target dataset over 20 runs. Most existing works in the literature fo-

cused on single-source adaptation for this problem (e.g., see Long et al.

(2018)). Compared to them, using multi-source methods can significantly

boost performance, revealing the importance of properly combining mul-

tiple source domains. Even though this is a significantly more challenging

problem with more classes and much fewer images compared to the digit

datasets, DARN achieves state-of-the-art performance in this setting, beat-

ing existing methods by a noticeable margin.

3.6.4 Sentiment Analysis

Table 3.3: Classification accuracy (%) of the target sentiment datasets.
Mean and standard error over 20 runs. The best method(s) (excluding
TAR) based on one-sided Wilcoxon signed-rank test at the 5% significance
level is(are) shown in bold for each domain.

Method Books DVD Electronics Kitchen Avg.
SRC 79.15 ˘ 0.39 80.38 ˘ 0.30 85.48 ˘ 0.10 85.46 ˘ 0.34 82.62 ˘ 0.20

DANN 79.13 ˘ 0.29 80.60 ˘ 0.29 85.27 ˘ 0.14 85.56 ˘ 0.28 82.64 ˘ 0.14

M3SDA 79.42 ˘ 0.17 80.82 ˘ 0.35 85.52 ˘ 0.19 86.45 ˘ 0.43 83.05 ˘ 0.14

MDAN 79.99 ˘ 0.20 81.66 ˘ 0.19 84.76 ˘ 0.17 86.82 ˘ 0.13 83.31 ˘ 0.08

MDMN 80.13 ˘ 0.20 81.58 ˘ 0.21 85.61 ˘ 0.13 87.13 ˘ 0.11 83.61 ˘ 0.07

DARN 79.93 ˘ 0.19 81.57 ˘ 0.16 85.75 ˘ 0.16 87.15 ˘ 0.14 83.60 ˘ 0.08

TAR 84.10 ˘ 0.13 83.68 ˘ 0.12 86.11 ˘ 0.32 88.72 ˘ 0.14 85.65 ˘ 0.09

Setup. We use the Amazon review dataset (Blitzer et al., 2007; Chen

et al., 2012) that consists of positive and negative product reviews from

four domains (Books, DVD, Electronics and Kitchen). Each of them is

used in turn as the target domain and the other three are used as source

domains. We follow the common protocol (Chen et al., 2012; Zhao et al.,

2018) of using the top-5000 frequent unigrams/bigrams of all reviews as

bag-of-words features.

Results and Analysis. Table 3.3 summarizes the classification accura-

cies over 20 runs. (1) Some domains are harder to adapt to than the others.

For example, the accuracies of SRC and TAR on the Electronics domain are
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very close to each other, indicating that this requires little to no adapta-

tion. Yet, DARN is the closest to the TAR performance here. The Books

domain is more challenging. Even though there exists a large gap between

SRC and TAR, the improvements over the SRC method are very small for

all methods. (3) DARN is always within the best performing methods

and significantly outperforms others in the Electronics domain. Note that

MDMN additionally computes similarities within source domains in each

iteration, which can be computationally expensive (O(k2) per iteration) if

the number of source domains is large. Instead, DARN focuses on the dis-

crepancy between source and target domains (O(k) per iteration) so it is

more efficient.

3.6.5 Visualizing Domain Importance

(a) MDMN (b) DARN

Figure 3.5: Domain weights for the Amazon data.

To show how DARN can aggregate multiple source domains effectively,

we visualize the source domain weights (i.e., α in DARN) for the Amazon

dataset. We also compared to the weights of MDMN, using the original

authors’ code.

Fig. 3.5a and Fig. 3.5b compare the evolution of source domain weights

during training. In each subfigure, every row corresponds to the weights

of the source domains when learning for one target domain. Brighter color

indicates larger weight and the target domain itself has no weight. They are
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evaluated at the end of each epoch over 50 epochs. To avoid noisy values

due to small mini-batch size, the values are exponential moving averages

with a decay rate of 0.95. There are a few observations. (1) The domain

weights produced by MDMN are not very stable. We can see that their

weights change drastically, especially towards the end of the training (e.g.,

epochs 40-50 for the Books target domain). After examining the MDMN

weights, we notice that it can produce alternating one-hot vectors α, con-

stantly changing from one domain to a different domain and ignoring the

rest. This instability makes their domain weights hard to interpret. (2) In

comparison, DARN has smoother weights during training. In Fig. 3.5b,

as Electronics and Kitchen are more related to each other than Books and

DVD, their respective weights remain higher during training. This is rea-

sonable since they have overlapping products (e.g., blenders). (3) The α of

DARN is changing dynamically during training, showing the flexibility of

DARN to adjust domain importance when necessary.

3.7 Conclusion

This work uses the discrepancy (Mansour et al., 2009a; Cortes et al., 2019)

to derive a finite-sample generalization bound for multi-source to single-

target adaptation. We show that, in order to achieve the best possible

generalization upper bound for a target domain, we need to trade-off be-

tween including all source domains to increase effective sample size and

excluding less relevant domains to avoid negative transfer. Based on the

theory, we develop an algorithm, Domain AggRegation Network (DARN),

that can dynamically adjust the weight of each source domain during end-

to-end training. Experiments on digit/object recognition and sentiment

analysis show that DARN outperforms state-of-the-art alternatives. Re-

cent analysis (Zhao et al., 2019; Johansson et al., 2019) show that solely

focusing on learning domain invariant features can be insufficient when

the marginal label distributions are significantly different. Thus it makes
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sense to take ηH into consideration when a small amount of labelled data

is available for the target domain, which we will explore in the future.
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Chapter 4

Batch Stationary Distribution
Estimation

4.1 Overview

This chapter considers the problem of approximating the stationary distri-

bution of an ergodic Markov chain given a set of sampled transitions. Clas-

sical simulation-based approaches assume access to the underlying process

so that trajectories of sufficient length can be gathered to approximate sta-

tionary sampling. Instead, we consider an alternative setting where a fixed

set of transitions has been collected beforehand, by a separate, possibly un-

known procedure. The goal is still to estimate properties of the stationary

distribution, but without additional access to the underlying system. We

propose a consistent estimator that is based on recovering a correction ratio

function over the given data. In particular, we develop a variational power

method (VPM) that provides provably consistent estimates under general

conditions. In addition to unifying a number of existing approaches from

different subfields, we also find that VPM yields significantly better esti-

mates across a range of problems, including queueing, stochastic differen-

tial equations, post-processing MCMC, and off-policy evaluation in rein-

forcement learning.
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4.2 Introduction

Markov chains are a pervasive modeling tool in applied mathematics of

particular importance in stochastic modeling and machine learning. A key

property of an ergodic Markov chain is the existence of a unique station-

ary distribution; i.e., the long-run distribution of states that remains invari-

ant under the transition kernel. In this chapter, we consider a less well

studied but still important version of the stationary distribution estima-

tion problem, where one has access to a set of sampled transitions from

a given Markov chain, but does not know the mechanism by which the

probe points were chosen, nor is able to gather additional data from the

underlying process. Nevertheless, one would still like to estimate target

properties of the stationary distribution, such as the expected value of a

random variable of interest.

This setting is inspired by many practical scenarios where sampling

from the Markov process is costly or unavailable, but data has already

been collected and available for analysis. A simple example is a queue-

ing system consisting of a service desk that serves customers in a queue.

Queue length changes stochastically as customers arrive or leave after be-

ing served. The long-term distribution of queue length (i.e., the stationary

distribution of the underlying Markov chain) is the object of central interest

for managing such a service (Haviv, 2009; Serfozo, 2009). In practice, how-

ever, queue lengths are physical quantities that can only be measured for

moderate periods, perhaps on separate occasions, but rarely for sufficient

time to ensure the (stochastic) queue length has reached the stationary dis-

tribution. Since the measurement process itself is expensive, it is essential

to make reasonable inferences about the stationary distribution from the

collected data alone.

We investigate methods for estimating properties of the stationary dis-

tribution solely from a batch of previously collected data. The key idea is

to first estimate a correction ratio function over the given data, which can
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then be used to estimate expectations of interest with respect to the sta-

tionary distribution. To illustrate, consider an ergodic Markov chain with

state space X, transition kernel T, and a unique stationary distribution µ

that satisfies

µ
(︁

x 1
)︁

=

ż
T
(︁

x 1|x
)︁

µ (x)dx := (Tµ)
(︁

x 1
)︁

. (4.1)

Assume we are given a fixed sample of state transitions, D =
␣
(x, x 1)

n
i=1

(
„

T (x 1|x)p (x), such that each x has been sampled according to an unknown

probe distribution p, but each x 1 has been sampled according to the true

underlying transition kernel, x 1|x „ T (x 1|x). Below we investigate pro-

cedures for estimating the point-wise ratios, τp (xi) « µ(xi)
p(xi)

, such that the

weighted empirical distribution

µ̂(x) :=
(︂

nÿ

i=1

τp (xi)
)︂´1 nÿ

i=1

τp (xi) Itx = xiu

can be used to approximate µ directly, or further used to estimate the ex-

pected value of some target function(s) of x with respect to µ. Crucially,

the approach we propose does not require knowledge of the probe dis-

tribution p, nor does it require additional access to samples drawn from

the transition kernel T, yet we will be able to establish consistency of the

estimation strategy under general conditions.

In addition to developing the fundamental approach, we demonstrate

its applicability and efficacy in a range of important scenarios beyond

queueing, including:

• Stochastic differential equations (SDEs) SDEs are an essential modeling

tool in many fields like statistical physics (Kadanoff, 2000), finance (Ok-

sendal, 2013) and molecular dynamcis (Liu, 2008). An autonomous SDE

describes the instantaneous change of a random variable X by

dX = f (X)dt+ σ (X)dW , (4.2)

where f (X) is a drift term, σ (X) a diffusion term, and W the Wiener

process. Given data D =
␣
(x, x 1)

n
i=1

(
such that x „ p (x) is drawn from

an unknown probe distribution and x 1 is the next state after a small time
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step according to (4.2), we consider the problem of estimating quantities

of the stationary distribution µ when one exists.

• Off-policy evaluation (OPE) Another important application is behavior-

agnostic off-policy evaluation (Nachum et al., 2019) in reinforcement learn-

ing (RL). Consider a Markov decision process (MDP) specified by M =

xS,A,P,Ry, such that S and A are the state and action spaces, P is the

transition function, and R is the reward function (Puterman, 2014). Given

a policy π that maps s P S to a distribution over A, a random trajectory

can be generated starting from an initial state s0: (s0,a0, r0, s1,a1, r1, . . .),

where at „ π(¨|st), st+1 „ P(¨|st,at) and rt „ R (st,at). The value of a

policy π is defined to be its long-term average per-step reward:

ρ(π) := lim
TÑ∞

E

[︄

1

T

T´1ÿ

t=0

rt

]︄

= E(s,a)„dπ˝π [R(s,a)] ,

where dπ denotes the limiting distribution over states S of the Markov

process induced by π. In behavior-agnostic off-policy evaluation, one is

given a target policy π and a set of transitions D =
␣
(s,a, r, s 1)ni=1

(
„

P (s 1|s,a)p (s,a), potentially generated by multiple behavior policies.

From such data, an estimate for ρ (π) can be formed in terms of a sta-

tionary ratio estimator:

ρ(π) = E(s,a)„p

[︃

dπ (s)π (a|s)
p (s,a)

r (s,a)
]︃

« 1

n

nÿ

i=1

τp(si,ai)ri . (4.3)

We refer the interested readers to Section 4.6.4 and Appendix C for fur-

ther discussion.

For the remainder of the chapter, we will outline four main contribu-

tions. First, we generalize the classical power iteration method to obtain

an algorithm, the Variational Power Method (VPM), that can work with ar-

bitrary parametrizations in a functional space, allowing for a flexible yet

practical approach. Second, we prove the consistency and convergence

of VPM. Third, we illustrate how a diverse set of stationary distribution

estimation problems, including those above, can be addressed by VPM in
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a unified manner. Finally, we demonstrate empirically that VPM signif-

icantly improves estimation quality in a range of applications, including

queueing, sampling, SDEs and OPE.

4.3 Variational Power Method

To develop our approach, first recall the definition of T and µ in (4.1). We

make the following assumption about T and µ throughout the chapter.

Assumption 1 (ergodicity). The transition operator T has a unique stationary

distribution, denoted µ.

Conditions under which this assumption holds are mild, and have been

extensively discussed in standard textbooks (Meyn et al., 2009; Levin and

Peres, 2017).

Next, to understand the role of the probe distribution p, note that we

can always rewrite the stationary distribution as µ = p ˝ τ (i.e., µ (x) =

p (x) τ (x), hence τ (x)=
µ(x)
p(x)

), provided the following assumption holds.

Assumption 2 (absolute continuity). The stationary distribution µ is absolutely

continuous w.r.t. p. That is, there exists C ă ∞ such that }τ}
∞

ď C.

Assumption 2 follows previous work (Liu and Lee, 2017; Nachum et al.,

2019), and is common in density ratio estimation (Sugiyama et al., 2008;

Gretton et al., 2009) and off-policy evaluation (Wang et al., 2017; Xie et al.,

2019).

Combining these two assumptions, definition (4.1) yields

µ
(︁

x 1
)︁

=

ż
T
(︁

x 1|x
)︁

µ (x)dx =

ż
T
(︁

x 1|x
)︁

p (x)
µ (x)

p (x)
dx

:=

ż
Tp
(︁

x, x 1
)︁

τ (x)dx, which implies

p
(︁

x 1
)︁

τ
(︁

x 1
)︁

=

ż
Tp
(︁

x, x 1
)︁

τ (x)dx := Tpτ
(︁

x 1
)︁

. (4.4)

This development reveals how, under the two stated assumptions, there is

sufficient information to determine the unique ratio function τ that ensures
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p ˝ τ = µ in principle. Given such a function τ, we can then base inferences

about µ solely on data sampled from p and τ.

4.3.1 Variational Power Iteration

To develop a practical algorithm for recovering τ from the constraint (4.4),

in function space, we first consider the classical power method for recov-

ering the µ that satisfies (4.1). From (4.1) it can be seen that the stationary

distribution µ is an eigenfunction of T. Moreover, it is the principal eigen-

function, corresponding to the largest eigenvalue λ1 = 1. In the simpler

case of finite X, the vector µ is the principal (right) eigenvector of the trans-

posed transition matrix. A standard approach to computing µ is then the

power method:

µt+1 = Tµt, (4.5)

whose iterates converge to µ at a rate linear in |λ2|, where λ2 is the second

largest eigenvalue of T. For ergodic Markov chains, one has |λ2| ă 1 (Meyn

et al., 2009, Chap 20).

Our initial aim is to extend this power iteration approach to the con-

straint (4.4) without restricting the domain X to be finite. This can be

naturally achieved by the update

τt+1 =
Tpτt

p
, (4.6)

where the division is element-wise. Clearly the fixed point of (4.6) corre-

sponds to the solution of (4.4) under the two assumptions stated above.

Furthermore, just as for µt in (4.5), τt in (4.6) also converges to τ at a linear

rate for finite X. Unfortunately, the update (4.6) cannot be used directly in

a practical algorithm for two important reasons. First, we do not have a

point-wise evaluator for Tp, but only samples from Tp. Second, the oper-

ator Tp is applied to a function τt, which typically involves an intractable

integral over X in general. To overcome these issues, we propose a vari-

ational method that considers a series of reformulated problems whose

optimal solutions correspond to the updates (4.6).
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To begin to develop a practical variational approach, first note that (4.6)

operates directly on the density ratio, which implies the density ratio esti-

mation techniques of Nguyen et al. (2007) and Sugiyama et al. (2012a) can

be applied. Let ϕ be a lower semicontinuous, convex function satisfying

ϕ (1) = 0, and consider the induced f-divergence,

Dϕ (p̃}q̃) =
ż
p̃ (x)ϕ

(︃

q̃ (x)

p̃ (x)

)︃

dx = ´
(︂

min
ν

Ep̃ [ϕ
˚ (ν)] ´ Eq̃ [ν]

)︂

, (4.7)

where ϕ˚ (x) = supyPR
xJy ´ ϕ (y) is the conjugate function of ϕ. The key

property of this formulation is that for any distributions p̃ and q̃, the inner

optimum in ν satisfies Bϕ˚(ν) = q̃/p̃ (Nguyen et al., 2007); that is, the

optimum in (4.7) can be used to directly recover the distribution ratio.

To apply this construction to our setting, first consider solving a prob-

lem of the following form in the dual space:

νt+1 = arg min
ν

Ep(x 1)

[︁

ϕ˚
(︁

ν
(︁

x 1
)︁)︁]︁

´ ETp(x,x 1)

[︁

Bϕ˚ (νt (x)) ¨ ν
(︁

x 1
)︁]︁

(4.8)

= arg min
ν

Ep(x 1)

[︁

ϕ˚
(︁

ν
(︁

x 1
)︁)︁]︁

´ ETp(x,x 1)τt(x)

[︁

ν
(︁

x 1
)︁]︁

, (4.9)

where to achieve (4.9) we have applied the inductive assumption that τt =

Bϕ˚(νt). Then, by the optimality property of νt+1, we know that the solu-

tion νt+1 must satisfy

Bϕ˚(νt+1) =
Tpτt
p = τt+1, (4.10)

hence the updated ratio τt+1 in (4.6) can be directly recovered from the

dual solution νt+1, while also retaining the inductive property that τt+1 =

Bϕ˚(νt+1) for the next iteration.

These developments can be further simplified by considering the spe-

cific choice ϕ (τ) = (τ ´ 1)2, which leads to ϕ˚ (ν) = ν+ ν2

4 , τ = Bϕ˚(ν) =

1+ ν
2 and

τt+1=arg min
τě0

1
2Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ ETp(x,x 1)

[︁

τt(x)τ
(︁

x 1
)︁]︁

. (4.11)

Crucially, this variational update (4.11) determines the same update as

(4.6), but overcomes the two aforementioned difficulties. First, it bypasses
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the direct evaluation of Tp and p, and allows these to be replaced by unbi-

ased estimates of expectations extracted from the data. Second, it similarly

bypasses the intractability of the operator application Tpτt in the functional

space, replacing this with an expectation of τt ˝ τ that can also be directly

estimated from the data.

We now discuss some practical refinements of the approach.

4.3.2 Normalization

For τt to be a proper ratio µt

p , it should be normalized w.r.t. p, i.e. Ep [τt] =

1. To address this issue, we explicitly ensure normalization by considering

a constrained optimization in place of (4.11):

min
τě0

1
2Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ ETp(x,x 1)

[︁

τt (x) τ
(︁

x 1
)︁]︁

,

s.t. Ep(x) [τ (x)] = 1.
(4.12)

We can tackle this by solving its Lagrangian. To avoid instability, we add a

regularization term:

min
τě0

max
vPR

J(τ, v) = 1
2Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ ETp(x,x 1)

[︁

τt (x) τ
(︁

x 1
)︁]︁

+ v (Ep [τ] ´ 1) ´ λ
2v

2.
(4.13)

where λ ą 0 is a regularization parameter. Crucially, the dual variable v

is a scalar, making this problem much simpler than dual embedding (Dai

et al., 2017), where the dual variables form a parameterized function that

introduces approximation error. The problem (4.13) is a straightforward

convex-concave objective with respect to (τ, v) that can be optimized by

stochastic gradient descent.

The following theorem shows that under certain conditions, the nor-

malization will be maintained for any λ ą 0.

Theorem 3 (Normalization of solution). If Ep [τt] = 1, then for any λ ą 0,

the estimator (4.13) has the same solution as (4.12), hence Ep [τt+1] = 1.

Hence, we can begin with any τ0 satisfying Ep [τ0] = 1, and the theorem

ensures that the normalization of τt+1 will be inductively maintained using

any fixed λ ą 0. The proof is given in Appendix B.1.
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4.3.3 Damped Iteration

The next difficulty to be addressed arises from the fact that, in practice, we

need to optimize the variational objective based on sampled data, which

induces approximation error since we are replacing the true operator Tp by

a stochastic estimate Tpp such that E[Tpp] = Tp. Without proper adjustment,

such estimation errors can accumulate over the power iterations, and lead

to inaccurate results.

To control the error due to sampling, we introduce a damped version of

the update (Ryu and Boyd, 2016), where instead of performing a stochastic

update τt+1 =
Tpp
p τt, we instead perform a damped update given by

τt+1 = (1 ´ αt+1) ¨ τt +αt+1 ¨ Tpp
p τt (4.14)

where αt P (0, 1) is a stepsize parameter. Intuitively, the update error

introduced by the stochasticity of Tpp is now controlled by the stepsize αt.

The choice of stepsize and convergence of the algorithm is discussed in

Section 4.4.

The damped iteration can be conveniently implemented with minor

modifications to the previous objective. We only need to change the sample

from Tp in (4.13) by a weighted sample:

min
τě0

max
vPR

J(τ, v) = 1
2Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ (1 ´ αt+1)Ep(x 1)

[︁

τt
(︁

x 1
)︁

τ
(︁

x 1
)︁]︁

´ αt+1ETp(x,x 1)

[︁

τt(x)τ
(︁

x 1
)︁]︁

+ v (Ep [τ] ´ 1) ´ λ
2v

2.
(4.15)

4.3.4 A Practical Algorithm

A practical version of VPM is described in Algorithm 2. It solves (4.15)

using a parameterized τ : X ÞÑ R expressed as a neural network τθ with

parameters θ. Given the constraint τ ě 0, we added a softplus activa-

tion log(1+ exp(¨)) to the final layer to ensure positivity. The expectations

with respect to p and Tp are directly estimated from sampled data. When

optimizing τθ by stochastic gradient methods, we maintain a copy of the

previous network τt as the reference network to compute the second and
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Algorithm 2 Variational Power Method

1: Input: Transition data D = t(x, x 1)ni=1u, learning rate αθ,αv, number of
power steps T , number of inner optimization steps M, batch size B

2: Initialize τθ
3: for t = 1 . . . T do
4: Update and fix the reference network τt = τθ
5: for m = 1 . . .M do
6: Sample transition data t(x, x 1)Bi=1u
7: Compute gradients ∇θJ and ∇vJ from (4.16)
8: θ = θ ´ αθ∇θJ Ź gradient descent
9: v = v+αv∇vJ Ź gradient ascent

10: end for
11: end for
12: Return τθ

third terms of (4.15). The gradients of J(τ, v) with respect to θ and v are

given by

∇θJ(τ, v) = Ep [τ∇θτ] ´ (1 ´ αt+1)Ep [τt∇θτ]

´ αt+1ETp [τt∇θτ] + vEp [∇θτ] , (4.16)

∇vJ(τ, v) = Ep [τ] ´ 1 ´ λv.

After convergence of τθ in each iteration, the reference network is updated

by setting τt+1 = τθ. Note that one may apply other gradient-based opti-

mizers instead of SGD.

4.4 Convergence Analysis

We now demonstrate that the final algorithm obtains sufficient control over

error accumulation to achieve consistency. For notation brevity, we discuss

the result for the simpler form (4.5) instead of the ratio form (4.6). The

argument easily extends to the ratio form.

Starting from the plain stochastic update µt = Tpµt´1, the damped up-

date can be expressed by

µt = (1 ´ αt)µt´1 +αtTpµt´1

= (1 ´ αt)µt´1 +αtTµt´1 +αtϵ,
(4.17)
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where ϵ is the error due to stochasticity in Tp. The following theorem es-

tablishes the convergence properties of the damped iteration.

Theorem 4 (Informal). Under mild conditions, after t iteration with step-size

αt = 1/
?
t, we have

E

[︂

}µR ´ TµR}22
]︂

ď C1?
t

}µ0 ´ µ}22 +
C2 ln t?

t
}ϵ}22 ,

for some constants C1,C2 ą 0, where the expectation is taken over the distri-

bution of iterates (µR)
t
R=1. In other words, E

[︂

}µR ´ TµR}22
]︂

= Or
(︂

t´1/2
)︂

, and

consequently µR converges to µ for ergodic T .

The precise version of the theorem statement, together with a complete

proof, is given in Appendix B.2.

Note that the optimization quality depends on the number of samples,

the approximation error of the parametric family, and the optimization al-

gorithm. There is a complex trade-off between these factors (Bottou and

Bousquet, 2008). On one hand, with more data, the statistical error is re-

duced, but the computational cost of the optimization increases. On the

other hand, with a more flexible parametrization, such as neural networks,

reduces the approximation error, but adds to the difficulty of optimization

as the problem might no longer be convex. Alternatively, if the complex-

ity of the parameterized family is increased, the consequences of statistical

error also increases.

Representing τ in a reproducing kernel Hilbert space (RKHS) is a partic-

ularly interesting case, because the problem (4.13) becomes convex, hence

the optimization error of the empirical surrogate is reduced to zero. Nguyen

et al. (2007, Theorem 2) show that, under mild conditions, the statistical er-

ror can be bounded in rate O

(︂

n´ 1
2+β

)︂

in terms of Hellinger distance (β

denotes the exponent in the bracket entropy of the RKHS), while the ap-

proximation error will depend on the RKHS (Bach, 2017).
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4.5 Related Work

The algorithm we have developed reduces distribution estimation to den-

sity ratio estimation, which has been extensively studied in numerous con-

texts. One example is learning under covariate shift (Shimodaira, 2000),

where the ratio τ can be estimated by different techniques (Gretton et al.,

2009; Nguyen et al., 2007; Sugiyama et al., 2008; Sugiyama and Kawanabe,

2012). These previous works differ from the current setting in that they re-

quire data to be sampled from both the target and proposal distributions.

By contrast, we consider a substantially more challenging problem, where

only data sampled from the proposal is available, and the target distribu-

tion is given only implicitly by (4.1) through the transition kernel T. A more

relevant approach is Stein importance sampling (Liu and Lee, 2017), where

the ratio is estimated by minimizing the kernelized Stein discrepancy (Liu

et al., 2016). However, it requires additional gradient information about the

target potential, whereas our method only requires sampled transitions.

Moreover, the method of Liu and Lee (2017) is computationally expensive

and does not extrapolate to new examples.

The algorithm we develop in this chapter is inspired by the classic

power method for finding principal eigenvectors. Many existing works

have focused on the finite-dimension setting (Balsubramani et al., 2013;

Hardt and Price, 2014; Yang et al., 2019), while Kim et al. (2005) and Xie

et al. (2015) have extended the power method to the infinite-dimension

case using RKHS. Not only do these algorithms require access to the tran-

sition kernel T, but they also require tractable operator multiplications. In

contrast, our method avoids direct interaction with the operator T, and can

use flexible parametrizations (such as neural networks) to learn the density

ratio without per-step renormalization.

Another important class of methods for estimating or sampling from

stationary distributions are based on simulations. A prominent example

is Markov chain Monte Carlo (MCMC), which is widely used in many
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statistical inference scenarios (Andrieu et al., 2003; Koller and Friedman,

2009; Welling and Teh, 2011). Existing MCMC methods (e.g., Neal et al.,

2011; Hoffman and Gelman, 2014) require repeated, and often many, in-

teractions with the transition operator T to acquire a single sample from

the stationary distribution. Instead, VPM can be applied when only a

fixed sample is available. Interestingly, this suggests that VPM can be

used to ªpost-processº samples generated from typical MCMC methods

to possibly make more effective use of the data. We demonstrated this

possibility empirically in Section 4.6. Unlike VPM, other post-processing

methods (Oates et al., 2017) require additional information about the target

distribution (Robert and Casella, 2013). Recent advances have also shown

that learning parametric samplers can be beneficial (Song et al., 2017; Li

et al., 2019), but require the potential function. In contrast, VPM directly

learns the stationary density ratio solely from transition data.

One important application of VPM is off-policy RL (Precup et al., 2001).

In particular, in off-policy evaluation (OPE), one aims to evaluate a target

policy’s performance, given data collected from a different behavior policy.

This problem matches our proposed framework as the collected data nat-

urally consists of transitions from a Markov chain, and one is interested in

estimating quantities computed from the stationary distribution of a dif-

ferent policy. (See Appendix C for a detailed description of how the VPM

algorithm can be applied to OPE, even when γ = 1.) Standard importance

weighting is known to have high variance, and various techniques have

been proposed to reduce variance (Precup et al., 2001; Jiang and Li, 2016;

Rubinstein and Kroese, 2016; Thomas and Brunskill, 2016; Guo et al., 2017).

However, these methods still exhibit exponential variance in the trajectory

length (Li et al., 2015b; Jiang and Li, 2016).

More related to the present work is the recent work on off-policy RL

that avoids the exponential blowup of variance. It is sufficient to adjust

observed rewards according to the ratio between the target and behavior

stationary distributions (Hallak and Mannor, 2017; Liu et al., 2018; Gelada
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and Bellemare, 2019). Unfortunately, these methods require knowledge

of the behavior policy, p(a|s), in addition to the transition data, which is

not always available in practice. In this work, we focus on the behavior-

agnostic scenario where p(a|s) is unknown. Although the recent work of

Nachum et al. (2019) considers the same scenario, their approach is only

applicable when the discount factor γ ă 1, whereas the method in this

work can handle any γ P [0, 1].

4.6 Experimental Evaluation

In this section, we demonstrate the advantages of VPM in four representa-

tive applications. Experiment details are provided in Appendix B.4.

4.6.1 Queueing

(a) Number of samples (b) Finish probability

Figure 4.1: Log KL divergence between estimation and the truth.

In this subsection, we use VPM to estimate the stationary distribution of

queue length. Following the standard Kendall’s notation in queueing the-

ory (Haviv, 2009; Serfozo, 2009), we analyze the discrete-time Geo/Geo/1

queue, which is commonly used in the literature (Atencia and Moreno,

2004; Li and Tian, 2008; Wang et al., 2014). Here the customer inter-arrival

time and service time are geometrically distributed with one service desk.

For this problem, x represents the queue length, and the observed transi-

tion (x, x 1) is the change in queue length after one time step. For example,
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a transition (3, 4) indicates that the queue changes from 3 customers to

4 customers after one time step (recall that this is a discrete-time queue).

The probe distribution p(x) is a uniform distribution over the lengths in a

predefined range [0,B), meaning that we have some information on how

the queue length can change within this range. This queue setting has a

closed-form stationary distribution that we can compare to (Serfozo, 2009,

Sec.1.11).

Fig. 4.1 provides the log KL divergence between the estimated and true

stationary distributions. We compare VPM to a model-based approach,

which estimates the transition matrix Tp(x 1|x) from the same set of data,

then simulates a long trajectory using Tp. It can be seen that our method can

be more effective across different sample sizes and queue configurations.

4.6.2 Solving SDEs

We next apply VPM to solve a class of SDEs known as the Ornstein-

Uhlenbeck process (OUP), which finds many applications in biology (But-

ler and King, 2004), financial mathematics and physical sciences (Oksendal,

2013). The process is described by the equation:

dX = θ(m ´ X)dt+ σdW

where m is the asymptotic mean, σ ą 0 is the deviation, θ ą 0 determines

the strength, and W is the Wiener process. The OUP has a closed-form

solution, which converges to the stationary distribution, a normal distri-

bution N(m,σ2/2θ), as t Ñ ∞. This allows us to conveniently calculate

the Maximum Mean Discrepancy (MMD) between the adjusted sample to

a true sample. We compare our method with the Euler-Maruyama (EM)

method (Gardiner, 2009), which is a standard simulation-based method

for solving SDEs. VPM uses samples from the EM steps to train the ratio

network and the learned ratio is used to compute weighted MMD.

The results are shown in Fig. 4.2, with different configurations of pa-

rameters (m,σ, θ). It can be seen that VPM consistently improves over the
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(a) Mean m (b) Deviation σ

(c) Strength θ (d) Phylogeny Studies

Figure 4.2: Log MMD versus number of EM steps across different set-
tings, default (m,σ, θ) = (2, 2, 2). (d) is based on the real-world phy-
logeny studies (Beaulieu et al., 2012; Santana et al., 2012) with (m,σ, θ) =
(0.618, 1.584, 3.85), (0.661, 0.710, 8.837) respectively.

EM method in terms of the log MMD to a true sample from the normal

distribution. The EM method only uses the most recent data, which can

be wasteful since the past data can carry additional information about the

system dynamics.

In addition, we perform experiment on real-world phylogeny studies.

OUP is widely used to model the evolution of various organism traits. The

results of two configurations (Beaulieu et al., 2012; Santana et al., 2012,

Tab.3&1 resp.) are shown in Fig. 4.2d. Notably VPM can improve over the

EM method by correcting the sample with learned ratio.
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(a) Potentials (b) Model (c) VPM (d) Estimated τ

Figure 4.3: The 2nd and 3rd columns are samples from the model-based
method and VPM respectively. Rows (from top to bottom) correspond to
data sets: 2gauss, funnel, kidney, banana.

4.6.3 Post-processing MCMC

In this experiment, we demonstrate how VPM can post-process MCMC

to use transition data more effectively in order to learn the target distri-

butions. We use four common potential functions as shown in the first

column of Fig. 4.3 (Neal, 2003; Rezende and Mohamed, 2015; Wenliang

et al., 2019). A point is sampled from the uniform distribution p(x) =

Unif(x; [´6, 6]2), then transitioned through an HMC operator (Neal et al.,

2011). The transitioned pairs are used as training set D.
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We compare VPM to a model-based method that explicitly learns a tran-

sition model Tp(x 1|x), parametrized as a neural network to produce Gaus-

sian mean (with fixed standard deviation of 0.1). Then, we apply Tp 100

times to a hold-out set drawn from p(x), and use the final instances as lim-

iting samples (second column of Fig. 4.3). As for VPM, since p is uniform,

the estimated τp is proportional to the true stationary distribution. To obtain

limiting samples (third column of Fig. 4.3), we resample from a hold-out

set drawn from p(x) with probability proportional to τp.

The results are shown in Fig. 4.3. Note that the model-based method

quickly collapses all training data into high-probability regions as station-

ary distributions, which is an inevitable tendency of restricted parametrized

Tp. Our learned ratio faithfully reconstructs the target density as shown in

the right-most column of Fig. 4.3. The resampled data of VPM are much

more accurate and diverse than that of the model-based method. These

experiments show that VPM can indeed effectively use a fixed set of data

to recover the stationary distribution without additional information.

Figure 4.4: MMD before and after ratio correction using VPM.
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To compare the results quantitatively, Fig. 4.4 shows the MMD of the

estimated sample to a ªtrueº sample. Since there is no easy way to sample

from the potential function, the ªtrueº sample consists of data after 2k

HMC steps with rejection sampler. After each MCMC step, VPM takes the

transition pairs as input and adjusts the sample importance according to

the learned ratio. As we can see, after each MCMC step, VPM is able to

post-process the data and further reduce MMD by applying the ratio. The

improvement is consistent along different MCMC steps across different

datasets.
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(a) # of trajectories (b) Trajectory length (c) Policy deviation

Figure 4.5: Log MSE of different methods for various datasets and settings.
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4.6.4 Off-Policy Evaluation

Finally, we apply our method to behavior-agnostic off-policy evaluation

outlined in Section 4.2, in which only the transition data and the target

policy are given, while the behavior policy is unknown. Concretely, given

a sample D =
␣
(s,a, r, s 1)

n
i=1

(
from the behavior policy, we compose each

transition in D with a target action a 1 „ π (¨|s 1). Denoting x = (s,a), the

data set can be expressed as D =
␣
(x, x 1)

n
i=1

(
. Applying the proposed VPM

with T(x 1|x), we can estimate µ(s,a)
p(s,a) , hence the average accumulated reward

can be obtained via (4.3). Additional derivation and discussion can be

found in Appendix B.3.

We conduct experiments on the (discrete) Taxi environment as in Liu

et al. (2018), and the challenging (continuous) environments including the

Reacher, HalfCheetah and Ant.

Taxi is a gridworld environment in which the agent navigates to pick

up and drop off passengers in specific locations. The target and behavior

policies are set as in Liu et al. (2018). For the continuous environments,

the Reacher agent tries to reach a specified location by swinging an robotic

arm, while the HalfCheetah/Ant agents are complex robots that try to

move forward as much as possible. The target policy is a pre-trained PPO

or A2C neural network, which produces a Gaussian action distribution

N(mt,Σt). The behavior policy is the same as target policy but using a

larger action variance Σb = (1 ´ α)Σt + 2αΣt,α P (0, 1]. We collect T trajec-

tories of n steps each, using the behavior policy.

We compare VPM to a model-based method that estimates both the

transition T and reward R functions. Using behavior cloning, we also com-

pare to the trajectory-wise and step-wise weighted importance sampling

(WIST,WISS) (Precup et al., 2001), as well as Liu et al. (2018) with their

public code for the Taxi environment.

The results are shown in Fig. 4.5. The x-axes are different configurations

and the y-axes are the log Mean Square Error (MSE) to the true average tar-
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get policy reward, estimated from abundant on-policy data collected from

the target policy. As we can see, VPM outperforms all baselines signifi-

cantly across different settings, including number of trajectories, trajectory

length and behavior policies. The method by Liu et al. (2018) can suffer

from not knowing the behavior policy, as seen in the Taxi environment.

Weighted importance sampling methods (WIST,WISS) also require access

to the behavior policy.

4.6.5 Ablation Study

(a) Learning rate (b) # of inner steps M (c) Regularization λ

Figure 4.6: Ablation study. MMD versus number of power iterations for
the funnel dataset. Default (lr,M, λ) = (0.001, 10, 0.5).

In this section, we conduct an ablation study to show that VPM is

robust to different choices of the parameters. Fig. 4.6 shows the MMD

curves for the MCMC funnel dataset in Section 4.6.3, using different learn-

ing rates, number of inner optimization steps and the regularization λ.

Other datasets show similar trends.

Learning rates. In all experiments, we use Adam optimizer (Kingma

and Ba, 2014). Fig. 4.6a shows the convergent behaviour with different

learning rates in t0.0003, 0.0006, 0.001, 0.003u. The algorithm can take a

longer time to converge when using a small learning rate. Even though

large learning rate (e.g., 0.003) seems to converge faster, its final solution

can be noisy. We can see that VPM can work using different learning rates

around the default Adam learning rate of 0.001.

Number of inner optimization steps. Recall that in each power iter-

ation, VPM solves an inner optimization Eq. (4.15). Fig. 4.6b shows the
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the effect of different number of inner optimization steps M. Larger M

can produce more accurate power iterator and converge faster in terms of

number of power iterations, but the time per iteration will also increase

accordingly. If M is too small (e.g., 3), the learning can be unstable and the

final ratio network can be inaccurate. Due to the damped update, the error

in each power iteration can be controlled effectively and VPM can converge

to the optimal ratio as long as M is reasonably large.

Regularization. Finally, we investigate the effect of the regularization

parameter λ. Intuitively, λ controls the capability of the dual variable v in

Eq. (4.13). The results are shown in Fig. 4.6c. Although different λ values

can have different convergence speeds, their final solutions can achieve low

MMD given sufficient iterations, as suggested by Theorem 3.

4.7 Conclusion

We have formally considered the problem of estimating stationary distri-

bution of an ergodic Markov chain using a fixed set of transition data. We

extended a classical power iteration approach to the batch setting, using

an equivalent variational reformulation of the update rule to bypass the

agnosticity of transition operator and the intractable operations in a func-

tional space, yielding a new algorithm Variational Power Method (VPM). We

characterized the convergence of VPM theoretically, and demonstrated its

empirical advantages for improving existing methods on several impor-

tant problems such as queueing, solving SDEs, post-processing MCMC

and behavior-agnostic off-policy evaluation.
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Chapter 5

Perspectives and Prospects

In this dissertation, we showed how to utilize data from prior sources

to facilitate learning and inference in new environments. Specifically, we

demonstrated this idea for domain adaptation and reinforcement learning.

For domain adaptation, we first improved the computational efficiency of

classical algorithms, KMM and KLIEP, that compute importance weights

for covariate shift problems in Chapter 2. Then, we presented a novel

theoretical analysis and algorithmic development for multi-source adapta-

tion problems in Chapter 3. For reinforcement learning, we developed a

variational power method for behaviour-agnostic off-policy evaluation and

beyond in Chapter 4. Although the proposed methods have their respec-

tive assumptions, they all require that the prior data is ªsimilarº to the

target data in some sense. Specifically, for methods based on importance

sampling (Chapter 2 and Chapter 4), it is assumed that the density ratio is

bounded from above. This corresponds to the case that we always have a

chance to see any target example in the source/behaviour dataset. As for

Theorem 2 in Chapter 3, if none of the sources is similar to the target data,

then finding the optimal domain weights for the upper bound is not very

meaningful. It is important to identify and verify the required character-

istics of the prior data, otherwise, it would not make sense to use them to

facilitate learning for a target domain/environment.

The proposed methods have improved over existing work in different

ways. The optimization procedure in Chapter 2 for KMM and KLIEP is
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based on the Frank-Wolfe algorithm (a.k.a. conditional gradient descent).

It reduced the computational complexity of KMM from O(n2) to O(n) per

iteration, and improved the KLIEP so that it can utilize all source data

points without sub-sampling. The domain aggregation network in Chap-

ter 3 is based on a novel theoretical analysis extended from single-source

to single-target adaptation. The algorithm can combine data from multi-

ple domains effectively and train a model end-to-end with interpretable

domain importance. Finally, the variational power method in Chapter 4 is

suitable for several fundamental estimation problems including off-policy

evaluation even in the behaviour-agnostic setting. Besides, it is provably

convergent, unlike similar techniques in the literature.

The methods introduced in this dissertation are fundamental and can

be applied to various practical problems. For example, correcting sam-

ple bias is critical for treatment effect estimation using observational data.

Unlike randomized control trials (RCT), observational data is often biased

due to clinical constraints. Thus bridging the gap between RCT and ob-

servational studies is essential to obtain an accurate treatment effect. As

another example, off-policy evaluation can be applied to A/B testing in the

web/app industries. Evaluating new product variants offline is appealing

since conducting A/B testing with real-world users can be expensive, and

we are likely to have plenty of log data collected from prior interactions.

These are just two examples of potential applications, and there are many

other possibilities for us to explore.

Nevertheless, the methods developed here have limitations. It is clear

that if the source/behaviour data has nothing in common with the target

data, using prior data may even hurt learning in the target domain. This

can happen in domain adaptation, for example, when the source and target

domains have contradicting/adversarial concepts: given the same image,

the source domain claims it is a dog, while the target domain claims it is

only a cat. Of course, this is an extreme case, and the source and the target

may only partially disagree for real-world problems. However, this shows
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that, aligning datasets without looking at their labels would be insufficient

under some circumstances. The most straightforward amendment is to

acquire and utilize a small labelled set from the target domain, which is

indeed practical in most use cases. A similar problem can happen for pol-

icy evaluation in the RL. If the behaviour data doesn’t have full support

over the target data, evaluating the target policy would be difficult because

there exists some part of the state space that has never been explored be-

fore. One possible solution to extrapolate beyond source/behaviour data

is to provide confidence bounds: the further away from source/behaviour,

the less confident about the prediction. This can be helpful or even essen-

tial for many decision-making applications.

5.1 Future Directions

The methods introduced in this dissertation are fundamental and it is pos-

sible to extend the ideas to several related fields of research in the literature.

Federated Learning In federated learning, we have a centralized model

on the server and decentralized data scattered over different user devices

like cell phones or smartwatches. The model needs to be transferred to

a local device for prediction, and it also needs to be updated periodically

for better prediction. However, user privacy is crucial in federated learn-

ing, so accessing user data directly from the server is prohibited. One of

the prominent applications of federated learning is text typing, in which

the user types in some text and the prediction model offers several auto-

completes. Learning from different users, the model tries to provide ac-

curate predictions without transferring sensitive data to the server. There

are two challenges from the two directions of the communication: (1) af-

ter the model is transferred to the local device, how to further improve its

performance locally using user data for better personalization, and (2) what

information should be transferred to the server to update the centralized

model. The techniques discussed in this dissertation are not immediately
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applicable due to the following reasons. For the first challenge, to better

fit a particular user’s data, one needs to compare them (e.g., user’s typing

history) to a larger set of other users’ data (others’ histories). Such a com-

parison is difficult as it is likely to cause privacy violations. For the second

challenge, aggregating information from different users is difficult without

direct access. We need to explore ways to adjust existing algorithms for

such a privacy-sensitive situation.

Imitation Learning Unlike batch RL that learns/evaluates from arbi-

trary experience, the agent in imitation learning wants to learn from ex-

pert’s demonstrations. The expert’s actions are supposed to be close to

optimal, so behaviour cloning (Ross et al., 2011) might be a good strat-

egy for the agent. However, mimicking the expert’s behaviour might not

be sufficient unless the expert is truly optimal. Moreover, in most cases,

demonstration is limited, and the environment is large and complicated.

Therefore, it would be essential for the agent to explore beyond the ex-

pert’s demonstration.

There are other scenarios in which the demonstrations come from mul-

tiple experts, or the same expert with different intents. This is common in

the multi-task setting where each collected trajectory is associated with a

task. For example, one trajectory is to go to the kitchen and cook, while an-

other one is to go to the living room and clean. In the same state/position,

the expert may head to different directions depending on the task in mind.

Figuring out the underlying intent of each trajectory and then apply the

most relevant demonstrations for a specific target task is similar to what

was presented in this dissertation.

Sim2Real One may learn a model from simulation since collecting data

from a simulator is relatively cheap and easy. However, applying such a

model to real-world environments can be problematic due to the so-called

reality gap. A model built on synthetic data may not work well for real-

world data because of their differences, and we may need to refine the

synthetic data in some way so that they are more realistic. Such refinement
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can be carried out not only at the data level but also at the code level: we

can modify the simulator itself so that the generated data become more

realistic. Besides, using simulated data can improve data efficiency for

solving real-world problems. For example, we can generate as many data

as we want using simulated robot arms. Instead of running a real robot

for months, using simulation data collected under different conditions can

accelerate learning without interacting with the physical environment. Bor-

rowing ideas from domain adaptation can alleviate the burden of collecting

a large amount of real-world data, and the ideas presented in this disserta-

tion may be used to select the most relevant simulations. In short, utilizing

simulation data can be beneficial if we can close the reality gap.

5.2 Summary

This dissertation demonstrated how to utilize data collected from different

sources to assist learning and inference for domain adaptation, reinforce-

ment learning and beyond. We have developed novel theories and efficient

algorithms for both one-to-one and multi-source adaptation. We have also

proposed new algorithms to compute importance ratios in different con-

texts, and empirical studies show that the proposed methods can outper-

form popular alternatives in the literature. These methods can be used

for a wide range of applications and may also inspire advancements for

related fields of research in the future.
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Appendix A

Details on DARN

A.1 Proof of Theorem 2

Theorem 2 Given k source domains datasets t(x(i)j ,y(i)
j ) : i P [k], j P [m]u with

m iid examples each where Spi = tx(i)j u and y
(i)
j = fSi(x

(i)
j ), for any α P ∆ = tα :

αi ě 0,
ř

i αi = 1u and δ P (0, 1), w.p. at least 1 ´ δ, the following holds for all

h P H,

LT (h, fT ) ď
ÿ

i

αi

[︂

L
Spi(h, fSi) + disc(T ,Si) + 2Rm(HSi) + ηH,i

]︂

+ }α}2MS

c
log(1/δ)

2m
,

where HSi = tx ÞÑ L(h(x), fSi(x)) : h P Hu is the set of functions mapping x to

the corresponding loss,

ηH,i = µ ˆ min
hPH

(︄

max
xPsupp(Tp)

|fT (x) ´ h(x)| + max
xPsupp(Spi)

|fSi(x) ´ h(x)|
)︄

,

and MS = supiP[k],xPX,hPH L(h(x), fSi(x)) is the upper bound on loss on the

source domains.

Proof. Given α P ∆, the mixture Sp =
ř

i αiSpi can be considered as the joint

source data with km points, where a point x(i) from Spi has weight αi/m.

Define Φ = suphPH LT (h, fT )´
ř

i αiLSpi(h, fSi). Changing a point x(i) from

Spi will change Φ at most MSαi
m . Using the McDiarmid’s inequality, we have

Pr(Φ ´ E[Φ] ą ϵ) ď exp
(︂

´ 2ϵ2m
M2

S}α}22

)︂

. As a result, for δ P (0, 1), w.p. at least
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1 ´ δ, the following holds for any h P H

LT (h, fT ) ď
ÿ

i

αiLSpi(h, fSi) + E[Φ] + }α}2MS

c
log(1/δ)

2m
.

Now we bound E[Φ]. Let HSi = tx ÞÑ L(h(x), fSi(x)) : h P Hu.

E[Φ] = E
Sp

[︄

sup
hPH

LT (h, fT ) ´
ÿ

i

αiLSpi(h, fSi)

]︄

ď E
Sp

[︄

sup
hPH

ÿ

i

αiLSi(h, fSi) ´
ÿ

i

αiLSpi(h, fSi)

]︄

+ sup
hPH

(︄

LT (h, fT ) ´
ÿ

i

αiLSi(h, fSi)

)︄

ď E
Sp

[︄ÿ

i

αi sup
hPH

(︂

LSi(h, fSi) ´ L
Spi(h, fSi)

)︂

]︄

+
ÿ

i

αi sup
hPH

(︁

LT (h, fT ) ´ LSi(h, fSi)
)︁

=
ÿ

i

αiESpi

[︃

sup
hPH

(︂

LSi(h, fSi) ´ L
Spi(h, fSi)

)︂

]︃

+
ÿ

i

αi sup
hPH

(︁

LT (h, fT ) ´ LSi(h, fSi)
)︁

ď 2
ÿ

i

αiRm(HSi) +
ÿ

i

αi sup
hPH

(︁

LT (h, fT ) ´ LSi(h, fSi)
)︁

ď
ÿ

i

αi

(︁

2Rm(HSi) + disc(T ,Si) + ηH,i
)︁

.

where first and second inequalities are using the subadditivity of sup, fol-

lowed by the equality using the independence between the domains tSpiu,

the second last inequality is due to the standard ªghost sampleº argument

in terms of the Rademacher complexity and the last inequality is due to

Cortes et al. (2019, Proposition 8) for each individual Si.
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A.2 Jacobian

Here we calculate the Jacobian Jij = Bαi/Bzj for Eq. (3.7) in the main text:

α
˚ = [z ´ ν˚1]+/}[z ´ ν˚1]+}1.

In the following, we write α = α
˚,ν = ν˚ to simplify notations. Let

S = ti : zi ´ν ą 0u be the support of the probability vector α. Jij = 0 if i R S

or j R S since αi = 0 in the former case while zj does not contribute to the

α in the latter case. Now consider the case i, j P S. Let K = }[z ´ ν1]+}1 =
ř

jPS(zj ´ ν). Then αi = (zi ´ ν) ¨ 1
K and

Bαi

Bzj
=

(︃

δi=j ´ Bν
Bzj

)︃

¨ 1
K

´ 1

K2
¨ BK

Bzj
¨ (zi ´ ν)

=
1

K

(︃

δi=j ´ Bν
Bzj

´ BK
Bzj

¨ αi

)︃

,
(A.1)

where δi=j is the indicator or delta function. Now we compute Bν
Bzj

and BK
Bzj

.

By the definition of ν, we know that

ÿ

jPS

(zj ´ ν)2 = |S|ν2 ´ 2ν
ÿ

jPS

zj +
ÿ

jPS

z2j = 1

=ñ ν =

ř
jPS zj

|S| ´
?
A

|S| where A =

⎛

⎝

ÿ

jPS

zj

⎞

⎠

2

´ |S|

⎛

⎝

ÿ

jPS

z2j ´ 1

⎞

⎠

=ñ Bν
Bzj

=
1

|S| ´ Bj

|S|
?
A

where Bj =
ÿ

j 1PS

zj 1 ´ |S|zj (A.2)

The first line is due to the quadratic formula and realizing that
ř

jPS zj/|S|
is the mean of the supported zj so ν must be smaller than it (i.e., we take

´ in the ˘ of the quadratic formula, otherwise some of the zj will not be

in the support anymore). And

BK
Bzj

= 1 ´ |S| ¨ Bν
Bzj

=
Bj?
A

. (A.3)

Plugging Eq. (A.2) and Eq. (A.3) in Eq. (A.1) gives

Bαi

Bzj
=

1

K

[︃

δi=j ´ 1

|S| +
Bj?
A

¨
(︃

1

|S| ´ αi

)︃]︃
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Note that

Bj

K
=

ř
j 1PS zj 1 ´ |S|zjř
j 1PS(zj 1 ´ ν)

=

ř
j 1PS(zj 1 ´ ν) + |S|(ν ´ zj)ř

j 1PS(zj 1 ´ ν)
= 1 ´ |S|αj.

Then

Jij =
Bαi

Bzj
=

1

K

(︃

δi=j ´ 1

|S|

)︃

+
|S|?
A

(︃

1

|S| ´ αi

)︃(︃

1

|S| ´ αj

)︃

.

In matrix form,

J =
1

K

(︃

Diag(s) ´ ssJ

|S|

)︃

+
|S|?
A

(︃

s

|S| ´ α ˝ s

)︃(︃

s

|S| ´ α ˝ s

)︃J

,

where s = [s1, . . . , sk]J is a vector indicating the support si = δiPS and ˝ is

element-wise multiplication. More often, we need to compute its multipli-

cation with a vector v

Jv =
s

K
˝
(︃

v ´ sJv

|S|

)︃

+
|S|?
A

(︃

s

|S| ´ α ˝ s

)︃(︃

s

|S| ´ α ˝ s

)︃J

v.

Note that all quantities except A have been computed during the forward

pass of calculating Eq. (3.7). A can be computed in O(|S|) time so the

overall computation is still O(k) since |S| ď k.
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A.3 Experiment Details

The following provides additional details of the experiments.

A.3.1 Regression

For the eight source domains, the ith (i = t0, 1, . . . , 7u) domain data is

generated by xi „ N(π4 i ´ 7π
8 , 0.22) and the output is y = sin(x) + ϵ where

ϵ „ N(0, 0.052) is random noise. For the four target domains, the jth (j =

t0, 1, 2, 3u) domain is generated by xj „ N(π2 j ´ 3π
4 , 0.42).

A.3.2 Digit Recognition

MNIST images are resized to 32 ˆ 32 and represented as 3-channel color

images in order to match the shape of the other three datasets. Each do-

main has its own given training and test sets when downloaded. Their

respective training sample sizes are 60000, 59001, 73257, 479400, and the

respective test sample sizes are 10000, 9001, 26032, 9553. In each run, 20000

images are randomly sampled from each domain’s training set as actual

labelled source or unlabelled target training examples, and 9000 images

are randomly sampled from each domain’s test set as actual test exam-

ples for evaluation. The model structure is shown in Fig. A.1. There is no

dropout and the hyper-parameters are chosen based on cross-validation. It

is trained for 50 epochs and the mini-batch size is 128 per domain. The op-

timizer is Adadelta with a learning rate of 1.0. The soft version of MDAN

has an additional parameter γ = 1/τ which is the inverse of our tempera-

ture τ. γ = 0.5 is used for MDAN and γ = 0.1 for DARN.

A.3.3 Object Recognition: Office-Home

For the four domains, Art, Clipart, Product and Real-World, the respective

sample sizes are 2427, 4365, 4439, 4357. In each run, 2000 images are ran-

domly sampled from each domain as labelled source or unlabelled target

training examples, and the rest images are used as test images for evalu-
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Figure A.1: Model architecture for the digit recognition.

ation. We use the ResNet50 (He et al., 2016) pretrained features from the

ImageNet as the base network for feature learning and put an MLP with

[1000, 500, 100, 65] units on top for classification. It is trained for 50 epochs

and the mini-batch size is 32 per domain. The optimizer is Adadelta with

a learning rate of 1.0. MDAN uses γ = 1.0 while DARN uses γ = 0.5.

A.3.4 Sentiment Analysis

The respective sample sizes for the Books, DVD, Electronics and Kitchen

domains are 6465, 5586, 7681, 7945. We train a fully connected model

(MLP) with [1000, 500, 100] hidden units for classifying positive versus neg-

ative reviews. The dropout drop rate is 0.7 for the input and hidden layers.

In each run, we randomly sample 2000 reviews from each domain as la-

belled source or unlabelled target training examples, while the remaining

instances are used as test examples for evaluation. The hyper-parameters

are chosen based on cross-validation. The model is trained for 50 epochs

and the mini-batch size is 20 per domain. The optimizer is Adadelta with

a learning rate of 1.0. The chosen parameters are γ = 10.0 for MDAN and

γ = 0.9 for our DARN, which are selected from a wide range of candidate

values.

Fig. A.2a and Fig. A.2b show the domain weights of MDMN and DARN

without exponential average smoothing. They correspond to Fig. 3.5a and

Fig. 3.5b in the main text. Although both can have certain instability due
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to small mini-batch size, MDMN is noticeably less stable, especially to-

wards the end of the training, in which alternating one-hot weights can

occur (e.g., epochs 40-50 for the Books target domain). This makes their

weights hard to interpret.

(a) MDMN (b) DARN

Figure A.2: Domain weights for the Amazon data without smoothing.
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Appendix B

Details on VPM

B.1 Consistency of the Objectives

Theorem 3 (Normalization of solution) If Ep [τt] = 1, then for any λ ą 0,

the estimator (4.13) has the same solution as (4.12), hence Ep [τt+1] = 1.

Proof. Taking derivative of the objective function in (4.12) and setting it

to zero, we can see that the unconstrained solution is Tpτt
p . Moreover, it

satisfies the constraint when Ep [τt] = 1: we can rewrite τt =
µt

p for some

distribution µt and Ep

[︂

Tpτt
p

]︂

=
ş
T (x 1|x)µt (x)dxdx

1 = 1.

We just need to show Tpτt
p is also the solution to (4.13). First, note that

for any primal τ, the optimal dual v can be attained at v = 1
λ(Ep [τ] ´ 1).

Plugging it to (4.13), we have for any λ ą 0

min
τě0

1

2
Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ ETp(x,x 1)

[︁

τt (x) τ
(︁

x 1
)︁]︁

+
1

2λ
(Ep [τ] ´ 1)2

ě min
τě0

1

2
Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ ETp(x,x 1)

[︁

τt (x) τ
(︁

x 1
)︁]︁

+ min
τě0

1

2λ
(Ep [τ] ´ 1)2

= ´1
2Ep

[︃

(︂

Tpτt
p

)︂2
]︃

.

(B.1)

This lower bound is attainable by plugging τ =
Tpτt
p in (4.13). Finally, we

conclude the proof by noticing that (4.13) is strictly convex so the optimal

solution is unique.
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B.2 Convergence Analysis

Let (X,Σ,ν) be a measure space. The L2(X) space consists of measurable

functions f : X ÞÑ R such that }f} = (
ş

|f|2dν)1/2 ă ∞. Suppose the initial

µ0 P L2(X), we want to show the converging behavior of the following

damped iteration:

µt = (1 ´ αt)µt´1 +αtTpµt´1

= (1 ´ αt)µt´1 +αtTµt´1 +αtϵ
(B.2)

with suitable step-sizes αt P (0, 1), where ϵ P L2(X) is a random field due

to stochacity in Tp. To this end, we will use the following lemma.

Lemma 5. For α P R, f,g P L2(X)

}(1 ´ α)f+αg}2 = (1 ´ α)}f}2 +α}g}2 ´ α(1 ´ α)}f ´ g}2.

This can be proved by expanding both sides. Now we state our main

convergence result.

Theorem 4 Suppose µ0 P L2(X), the step size is αt = 1/
?
t, ϵ P L2(X) is

a random field and T has a unique stationary distribution µ. After t iterations,

define the probability distribution over the iterations as

Pr(R = k) =
αk(1 ´ αk)řt

k 1=1 αk 1(1 ´ αk 1)

Then there exist some constants C1,C2 ą 0 such that

E

[︂

}µR ´ TµR}22
]︂

ď C1?
t

}µ0 ´ µ}22 +
C2 ln t?

t
}ϵ}22 ,

where the expectation is taken over R. Consequently, µR converges to µ for ergodic

T.

Proof. Using Lemma 5 and the fact that T is non-expansive, we have

}µt ´ µ}2 = }(1 ´ αt)(µt´1 ´ µ) +αt(Tµt´1 ´ µ) +αtϵ}2

ď }(1 ´ αt)(µt´1 ´ µ) +αt(Tµt´1 ´ µ)}2 +α2
t}ϵ}2

ď (1 ´ αt)}µt´1 ´ µ}2 +αt}Tµt´1 ´ µ}2

´ αt(1 ´ αt)}µt´1 ´ Tµt´1}2 +α2
t}ϵ}2

ď }µt´1 ´ µ}2 ´ αt(1 ´ αt)}µt´1 ´ Tµt´1}2 +α2
t}ϵ}2.
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Then telescoping sum gives

0 ď }µt ´ µ}2 ď }µ0 ´ µ}2 +
tÿ

k=1

α2
k}ϵ}2 ´

tÿ

k=1

αk(1 ´ αk)}µk ´ Tµk}2

So

tÿ

k=1

αk(1 ´ αk)}µk ´ Tµk}2 ď }µ0 ´ µ}2 +
tÿ

k=1

α2
k}ϵ}2.

Divide both sides by
řt

k=1 αk(1 ´ αk) (taking expectation over iterations)

gives

E[}µR ´ TµR}2] =
tÿ

k=1

αk(1 ´ αk)ř
k 1 αk 1(1 ´ αk 1)

}µk ´ Tµk}2

ď }µ0 ´ µ}2 +
řt

k=1 α
2
k}ϵ}2

řt
k=1 αk(1 ´ αk)

.

When αt = 1/
?
t, we have

tÿ

k=1

α2
k}ϵ}2 =

tÿ

k=1

1

k
}ϵ}2 ď (ln t+ 1)}ϵ}2

tÿ

k=4

αk(1 ´ αk) =

tÿ

k=4

1?
k

´ 1

k
ě
ż t

4

(︃

1?
k+ 1

´ 1

k+ 1

)︃

dk = Ω
(︂

t
1
2

)︂

So for big enough t, there exists C0 ą 0 such that

E

[︂

}µR ´ TµR}2
]︂

ď }µ0 ´ µ}2 + ln(t+ 1)}ϵ}2
C0

?
t

,

which leads to the the bound in the theorem and E
[︁

}µR ´ TµR}2
]︁

= Or
(︂

t´1/2
)︂

.

Additionally, since T has a unique stationary distribution µ = Tµ, we have

µR converges to µ.
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B.3 Application to Off-policy Stationary Ratio Es-

timation

We provide additional details describing how the variational power method

we have developed in the main body can be applied to the behavior-

agnostic off-policy estimation problem (OPE). The general framework has

been introduced in Section 4.2 and the implementation for the undiscounted

case (γ = 1) is demonstrated in Section 4.6.4. Specifically, given a sample

D =
␣
(s,a, r, s 1)

n
i=1

(
from the behavior policy, we compose each transition

in D with a target action a 1 „ π (¨|s 1). Denoting x = (s,a), the data set

can be expressed as D =
␣
(x, x 1)

n
i=1

(
. Applying the proposed VPM with

T(x 1|x), we can estimate µ(s,a)
p(s,a) . Here the µ(s,a) = dπ(s)π(a|s) consists of

the stationary state occupancy dπ and the target policy π, while p(s,a) is

the data-collecting distribution. Then the average accumulated reward can

be obtained via (4.3).

Here we elaborate on how the discounted case (i.e., γ P (0, 1)) can be

handled by our method. We first introduce essential quantities similar to

the undiscounted setting. For a trajectory generated stochastically using

policy π from an initial state s0: (s0,a0, r0, s1,a1, r1, . . .), where at „ π(¨|st),
st+1 „ P(¨|st,at) and rt „ R (st,at), the the policy value is

ργ (π) := (1 ´ γ)Es0„µ0,a„π,s 1„P

[︁ř
∞

t=0 γ
trt
]︁

,

where µ0 is the initial-state distribution. Denote

dπ
t (s,a) = P

⎛

⎝st = s,at = a

ˇ̌
ˇ̌
ˇ̌

⎡

⎣

s0 „ µ0, @i ă t,
ai „ π (¨|si) ,

si+1 „ P(¨|si,ai)

⎤

⎦

⎞

⎠ .

The discounted occupancy distribution is

µγ (s,a) := (1 ´ γ)

∞ÿ

t=0

γtdπ
t (s,a) . (B.3)

Then, we can re-express the discounted accumulated reward via µγ and

the stationary density ratio,

ργ (π) = E(s,a)„µγ(s,a) [r(s,a)] = E(s,a)„p(s,a)

[︃

µγ (s,a)
p (s,a)

r(s,a)
]︃

. (B.4)
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The proposed VPM is applicable to estimating the density ratio in this

discounted case. Denoting x = (s,a), x 1 = (s 1,a 1) respectively for nota-

tional consistency, we expand µγ and use the definition of dπ
t :

µγ

(︁

s 1,a 1
)︁

= (1 ´ γ)µ0

(︁

s 1
)︁

π
(︁

a 1|s 1
)︁

+ γ

ż
π
(︁

a 1|s 1
)︁

P
(︁

s 1|s,a
)︁

µγ (s,a)ds da

=ñ p
(︁

x 1
)︁

τ˚
(︁

x 1
)︁

= (1 ´ γ)µ0π
(︁

x 1
)︁

+ γ

ż
Tp
(︁

x, x 1
)︁

τ˚ (x)dx, (B.5)

where µ0π (x 1) = µ0 (s
1)π (a 1|s 1) and Tp (x, x 1) = π (a 1|s 1)P (s 1|s,a)p (s,a).

It has been shown that the RHS of (B.5) is contractive (Sutton and Barto,

2018; Mohri et al., 2018), therefore, the fix-point iteration,

p
(︁

x 1
)︁

τt+1

(︁

x 1
)︁

= (1 ´ γ)µ0π
(︁

x 1
)︁

+ γ

ż
Tp
(︁

x, x 1
)︁

τt (x)dx, (B.6)

converges to the true τ as t Ñ ∞, provided the update above is carried

out exactly. Compared to (4.6), we can see that the RHS of (B.6) is now a

mixture of µ0π and Tp, with respective coefficients (1 ´ γ) and γ.

Similarly, we construct the (t+ 1)-step variational update as

τt+1 = arg min
τě0

1
2Ep(x 1)

[︂

τ2
(︁

x 1
)︁

]︂

´ γETp(x,x 1)

[︁

τt (x) τ
(︁

x 1
)︁]︁

´ (1 ´ γ)Eµ0p(x
1)

[︁

τ
(︁

x 1
)︁]︁

+ λ (Ep [τ] ´ 1)2 .
(B.7)

Compared to (4.11), we see that the main difference is the third term of (B.7)

involves the initial distribution. As γ Ñ 1, (B.7) reduces to (4.11).
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B.4 Experiment Details

Here we provide additional details about the experiments. In all experi-

ments, the regularization λ = 0.5 and the optimizer is Adam with β1 = 0.5.

The τ model is a neural network with 2 hidden layers of 64 units each with

ReLU activation and softplus activation for the output.

B.4.1 Queueing

For Geo/Geo/1 queue, when the arrival and finish probabilities are qa,qf P
(0, 1) respectively with qf ą qa, the stationary distribution is P(X = i) =

(1 ´ ρ)ρi where ρ = qa(1 ´ qf)/[qf(1 ´ qa)] (Serfozo, 2009, Sec.1.11). The

defaults are (n,qa,qf) = (100, 0.8, 0.9) for the figures. ρ is called traffic

intensity in the queueing literature and we set B = r40ρs in the experi-

ment. The mean and standard error of the log KL divergence is computed

based on 10 runs. We conduct closed-form update for 1000 steps. As for

the model-based method, we simulate the transition chain for 200 steps to

attain the estimated stationary distribution.

B.4.2 Solving SDEs

Using initial samples are uniformly spaced in [0, 1], we run the Euler-

Maruyama (EM) method and evaluate the MMD along the path. The

τ model is a neural network with 2 hidden layers of 64 units each with

ReLU, and Softplus for the final layer. Numbers of outer and inner steps

are T = 50,M = 10. The learning rate is 0.0005. At each evaluation time

step t, we use the most recent 1% of evolution data to train our model τ.

The plots are reporting the mean and standard deviation over 10 runs. For

the phylogeny studies, the number of particles is 1k and dt = 0.0005 for

the EM simulation, while the rest settings using dt = 0.001.
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B.4.3 Post-processing MCMC

The potential functions are collected from several open-source projects12.

50k examples are sampled from the uniform distribution

p(x) = Unif(x; [´6, 6]2),

then transition each x through an HMC operator (one leapfrog step of size

0.5). The model-based Tp has a similar structure as τ except the final layer

has 2D output without activation to estimate the Gaussian mean. The mini-

batch size is B = 1k, the maximum number of power iterations T = 150

and the number of inner optimization steps is M = 10. The model-based

T is given the same number of iterations (MT = 1500). The learning rate

is 0.001 for τ and 0.0005 for Tp. To compute the model-based sample, we

apply the estimated transition 100 time steps. The MMD plot is based on

a ªtrue sampleº of size 2k from the stationary distribution (estimated by

2k HMC transition steps). The numbers are mean and standard deviation

over 10 runs. The MMD is computed by the Gaussian kernel with the

median pairwise distance as kernel width.

The quality of the transition kernel and the generated data is critical.

Since x and x 1 are supposed to be related, we use an HMC kernel with

one leap-frog step. The initial x is effectively forgotten if using too many

leap-frog steps. The main point is to show that our method can utilize the

intermediate samples from the chain other than the final point. Moreover,

to conform with Assumption 2, the potential functions are numerically

truncated.

To verify the convergent behavior of our method, Fig. B.1 shows how

the ratio network improves as we train the model. It can be seen that the

our method quickly concentrates its mass to the region with high poten-

tials.
1https://github.com/kamenbliznashki/normalizing_flows
2https://github.com/kevin-w-li/deep-kexpfam
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Figure B.1: The VPM estimates after t10, 20, 30, 150u iterations on the
datasets. As we can see, with the algorithm proceeds, the learned sta-
tionary density ratio is getting closer to the ground-truth.

B.4.4 Off-policy Evaluation

Taxi is a 5 ˆ 5 gridworld in which the taxi agent navigates to pick up and

drop off passengers in specific locations. It has a total of 2000 states and 6

actions. Each step incurs a ´1 reward unless the agent picks up or drops

off a passenger in the correct locations. The behavior policy is set to be

the policy after 950 Q-learning iterations and the target policy is the policy

after 1000 iterations. In the Taxi experiment, given a transition (s,a, s 1),

instead of sampling one single action from the target policy π(a 1|s 1), we

use the whole distribution π(¨|s 1) for estimation. We conduct closed-form
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update in the power method and the number of steps is T = 100.

Continuous experiments. The environments are using the open-source

PyBullet engine. The state spaces are in R
9, R

26, R
28 respectively and the

action spaces are in R
2, R

6, R
8 respectively. the τ model is the same as in

the SDE experiment (except for input, which depends on the environment).

T = 200,M = 10,B = 1k and the learning rate is 0.0003. The model-based

method has a similar neural network structure and is trained for MT = 2k

steps with a learning rate of 0.0005. The target policy for the Reacher

agent is pretrained using PPO while the HalfCheetah and Ant agents are

pretrained using A2C (all with two hidden layers of 64 units each).

The results in the plots are mean and standard deviation from 10 runs.
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