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Abstract The method of inside dynamics provides a theory that can track the6

dynamics of neutral gene fractions in spreading populations. However, the role of7

mutations has so far been absent in the study of the gene flow of neutral fractions8

via inside dynamics. Using integrodifference equations, we develop a neutral ge-9

netic mutation model by extending a previously established scalar inside dynamics10

model. To classify the mutation dynamics, we define a mutation class as the set11

of neutral fractions that can mutate into one another. We show that the spread12

of neutral genetic fractions is dependent on the leading edge of population as well13

as the structure of the mutation matrix. Specifically, we show that the neutral14

fractions that contribute to the spread of the population must belong to the same15

mutation class as the neutral fraction found in the leading edge of the population.16

We prove that the asymptotic proportion of individuals at the leading edge of17

the population spread is given by the dominant right eigenvector of the associated18

mutation matrix, independent of growth and dispersal parameters. In addition, we19

provide numerical simulations to demonstrate our mathematical results, to extend20

their generality, and to develop new conjectures about our model.21
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1 Introduction35

The neutral theory of molecular evolution posits that most of the genetic variation36

in populations is independent of selection and hence is neutral (Duret, 2008). When37

this theory holds, it suggests that much of the variation in populations is due to38

events such as mutations or genetic drift, without the influence of selection. This39

provides support for including neutral mutation dynamics into models of genetic40

spread. The molecular clock hypothesis states that genes evolve at a relatively41

constant rate over time (Bromham and Penny, 2003). We use this hypothesis in42

our model formulation by assuming the rate of mutation of one gene to another43

is constant over time. This theory suggests the genetic difference between any44

two species is proportional to the time since these species last shared a common45

ancestor. Therefore, if the molecular clock hypothesis is true, this can be used for46

estimating evolutionary timescales (Ho, 2008).47

Neutral genetic patterns caused by range expansions is a topic of recent scien-48

tific and modeling interest (Hallatschek and Nelson, 2008). The establishment of a49

new population undertaken by a few original founders who carry only a small frac-50

tion of the total genetic variation of the parental population is referred to as the51

founder effect (Mayr, 1940). Range expansions are commonly thought to reduce52

the genetic diversity of a population due to the founder effect. When a population53

is expanding its range, consecutive founder events result in the phenomena known54

as gene surfing (Excoffier and Ray, 2008). This is the spatial analog of genetic55

drift and occurs when certain alleles reach higher than expected frequencies at56

the front of a range expansion (Slatkin and Excoffier, 2012). However in the pres-57

ence of neutral mutations, these processes may be altered. We are not the first to58

model this problem; previous studies have used simulation based models (Edmonds59

et al., 2004; Klopfstein et al., 2006) and lab experiments (Hallatschek et al., 2007)60

to understand the effects of neutral mutations on the wave of range expansions.61

On a related front, others have also developed theoretical models to understand62

metapopulation dynamics of gene flow from one population to another (Lande,63

1992; Lynch, 1988; Pannell and Charlesworth, 1999, 2000; Slatkin, 1985). How-64

ever, none have incorporated mutations between neutral genetic fractions into an65

analytical population spread model such as a reaction-diffusion, integrodifference,66

or integrodifferential equations.67

Integrodifference equations have played a central role in studying problems68

in theoretical ecology such as range expansions (Krkošek et al., 2007; Zhou and69

Kot, 2011), the spread of invasive species (Bateman et al., 2017; Kot et al., 1996;70

Lewis et al., 2016), determining the critical domain size for population persistence71

(Lutscher et al., 2005; Reimer et al., 2016; Van Kirk and Lewis, 1997), and more72

recently understanding the neutral genetic structure of populations (Lewis et al.,73

2018; Marculis et al., 2017, 2019). In this work, we aim to understand role that74

mutations play in the neutral genetic diversity of a population undergoing range75

expansion by studying the process via an integrodifference equation model.76
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Yhe classical integrodifference equation is77

ut+1(x) =

∫ ∞
−∞

k(x− y)g(ut(y))ut(y) dy (1)

where ut is the population density at time t, k is the dispersal kernel describing78

dispersal from y to x, g is the per-capita growth function, and u0(x) is the initial79

population distribution in space. To understand the role that mutations play on the80

neutral genetic diversity of a spreading population, we study the inside dynamics81

of integrodifference equations with neutral mutations. The term inside dynamics82

refers to changes in the inside structure of the population rather than in the83

total density. The key assumption in the analysis of inside dynamics is that all84

individuals grow and disperse in the same manner, differing only with respect85

to neutral genetic markers. In other words, all individuals in the population have86

the same fitness. This allows us to partition the population into distinct subgroups87

called neutral fractions and track the spatio-temporal evolution of these subgroups.88

By making the assumption of neutral fractions with no mutations, we obtain the89

following system of equations for the inside dynamics of our scalar integrodifference90

equation,91

vit+1(x) =

∫ ∞
−∞

k(x− y)g(ut(y))vit(y) dy, for i = 1, . . . , n, (2)

where n is the finite number of neutral fractions and ut(x) =
∑n
i=1 v

i
t(x).92

Inside dynamics have been studied for a variety of different spatio-temporal93

population models, including reaction-diffusion equations (Garnier and Lewis,94

2016; Garnier et al., 2012; Roques et al., 2012, 2015), delay reaction-diffusion95

equations (Bonnefon et al., 2013), integro-differential equations (Bonnefon et al.,96

2014), and integrodifference equations (Lewis et al., 2018; Marculis et al., 2017,97

2019). The three previous studies on integrodifference equations analyzed a scalar98

model (Marculis et al., 2017), a model with climate change (Lewis et al., 2018),99

and a stage-structured population model (Marculis et al., 2019). Our extension to100

these previous works is to analyze the inside dynamics of a scalar integrodifference101

equation with mutations between neutral fractions. By comparing the differences102

between our model and those previously studied, we gain insight regarding the103

role of mutations in the spread of neutral genetic markers.104

Mutations between neutral fractions are called neutral mutations because there105

is no direct effect on the fitness of the individual. This process adds a level of bi-106

ological complexity and including it into a model increases the biological realism.107

The addition of neutral mutations to the model is important for realism because it108

is a natural process that is known to occur and can be used in studying molecular109

clocks to identify evolutionary events such as speciation and evolutionary radia-110

tion. For our analyses, we are interested in how the addition of neutral mutations111

into the modeling structure can impact the resulting patterns of genetic spread.112

The organization of the paper is as follows: Section 2 provides a derivation113

of our mutation matrix model. That is, we extend (2) to include mutations be-114

tween neutral fractions. In Section 3, we lay out some preliminary material and115

assumptions that will be used in the main theorems. Once the preliminary ma-116

terial has been established, we move on to the main results. Here, we state four117

main theorems about the asymptotic spread of the neutral fractions in Section 4.118



4 Nathan G. Marculis, Mark A. Lewis

In Section 5, we perform some numerical simulations to support our main results119

and understand how different components affect the asymptotic dynamics. These120

simulations lead to conjectures regarding which assumptions in the main theorems121

could be relaxed without changing the results. Finally, in Section 6, we provide a122

discussion of the work including model development, outcomes, limitations, and123

future directions.124

2 Mutation matrix model125

Our goal is to extend the system of equations (2) to include neutral mutations that126

happen during reproduction. To do this, we must determine how to incorporate127

mutations into the model. A common method, which has been previously used128

to study the mutations of DNA, is to use the substitution model. A substitution129

model describes the process of genetic variation by which one variant is replaced130

with another, at a given constant mutation rate (Arenas, 2015). To model the131

substitution process, continuous-time Markov chains are a common tool of choice.132

The first and simplest substitution model was developed by Jukes and Cantor133

for the mutation of DNA base pairs in amino acids (Jukes and Cantor, 1969) .134

This model assumes equal base frequencies and equal mutation rates, giving a135

simplistic one parameter depiction. Others have added complexity to the Jukes136

Cantor model by distinguishing between types of transitions (Kimura, 1980), and137

by allowing the base frequencies to vary (Felsenstein, 1981). In all of these models,138

the dynamics are driven by the rate matrix for the continuous-time Markov chain.139

In our work, we are not concerned with modeling DNA sequence evolution in140

amino acids, but, rather, the change of neutral genetic markers in an organism141

which reproduces at discrete time intervals. To achieve this, we use a modeling142

framework similar to substitution models, but via a discrete-time Markov chain.143

Since our neutral fraction model is an integrodifference equation and we are assum-144

ing that the mutations are occurring during reproduction, a discrete-time Markov145

chain is suitable to model the mutation process. Thus, we can construct a muta-146

tion matrix with entries describing the mutation probabilities. Consider a single147

locus with n different neutral alleles and let 0 < mjl < 1 be the probability of148

mutation from a type l to a type j individual and v =
[
v1, v2, . . . , vn

]T
. Then, we149

obtain the following equation150

vt+1(x) =

∫ ∞
−∞

k(x− y)Mg(ut(y))vt(y) dy, (3)

where ut(x) =
∑n
i=1 v

i
t(x), M is the mutation matrix given by151

M =


1−

∑
j 6=1mj1 m12 . . . m1(n−1) m1n

m21 1−
∑
j 6=2mj2 . . . m2(n−1) m2n

...
...

. . .
...

...
m(n−1)1 m(n−1)2 . . . 1−

∑
j 6=n−1mj(n−1) m(n−1)n

mn1 mn2 . . . mn(n−1) 1−
∑
j 6=nmjn

 ,
(4)
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and our initial condition, v0(x), satisfies152

n∑
i=1

vi0(x) = u0(x). (5)

It should be noted that the same general form of the mutation matrix (4) can153

be attained by assuming there are m loci with a different neutral alleles where154

n = am; see Appendix A. Thus, our model is quite general and could be applied155

to commonly studied neutral genetic marks such as microsatellite data (Selkoe and156

Toonen, 2006) or mutations by single nucleotide polymorphisms (SNPs) (Morin157

et al., 2004). In particular, to study the effects of SNPs on a single locus the158

mutation matrix will have dimensions 4 × 4 to account for the mutation rates159

between the four nucleotides. Our mutation matrix model given in (3) is different160

from the scalar model in (2) because there are interactions between the neutral161

fractions. Thus, for our analysis we must consider all neutral fractions rather than162

focusing on a single neutral fraction as done in previous studies for the scalar163

model.164

Definition 1 A square matrix is called a Markov matrix if all entries are non-165

negative and the sum of each column vector is equal to one.166

Note that the mutation matrix given in (4) is Markov. One consequence of167

a Markov matrix, which we will frequently use throughout our work, is that the168

dominant eigenvalue is equal to one. The mutation matrix given in (4) is a Markov169

matrix. If M is irreducible then it is possible to mutate from any given genotype to170

any other genotype in a finite number of steps. A stricter version of irreducibility is171

primitivity. If M is primitive then there exists a t such that it is possible to mutate172

from any given neutral genotype to any other in exactly t steps (i.e. Mt > 0). We173

assume that this is the case. Recall that a nonnegative matrix is primitive if it174

is irreducible and all the entries on the diagonal are strictly positive. Thus, by175

assuming primitivity instead of irreducibility for the mutation matrix means that176

at each time step for each neutral fraction there are some individuals that do not177

mutate into another type. In our work we consider Markov matrices that are not178

necessarily primitive but are block diagonal primitive.179

Definition 2 A square matrix M is block diagonal primitive if for some t > 0,180

Mt can be written as a block diagonal matrix where each block is primitive. That181

is, we can express182

Mt =


Mt

1 0 . . . 0
0 Mt

2 . . . 0
...

...
. . .

...
0 0 . . . Mt

b

 (6)

where Mt
q > 0 for q = 1, . . . , b.183

In what follows, we make the following assumption:184

A1 : The matrix M is Markov and block diagonal primitive.185
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.186

A consequence of the mutation matrix being a nontrivial block diagonal prim-187

itive matrix is that neutral fractions can only mutate into a select subset of the188

different types. The block primitive assumption is much more general than prim-189

itivity and allows us to study models where the mutations of alleles occurs for b190

different mutation classes. We next define a set that encompasses how the neutral191

fractions can mutate.192

Definition 3 Neutral fraction i is in the mutation class q if mil ∈Mq for some l.193

To connect the concepts of Definitions 2 and 3 we consider a graphical rep-194

resentation of the mutation matrix. In particular, from Definition 2, we can see195

that the mutation matrix M is actually comprised of b disjoint sub-matrices which196

describe b different mutation classes. Thus, if we were to represent the mutation197

matrix as a graph, we would have b disconnected graphs where the nodes corre-198

spond to the n neutral fractions and each sub-graph is connected by the entries199

from the mutation matrix. Thus, it is natural to interpret the b disconnected sub-200

graphs are the mutation classes outlined in Definition 3. For example, a mutation201

matrix with two mutation classes {1, 2} and {3, 4, 5} would have two blocks M1202

and M2 and be given by203

M =

[
M1 0
0 M2

]
(7)

=


1−m21 m12 0 0 0
m21 1−m12 0 0 0

0 0 1−m43 −m53 m34 m35

0 0 m43 1−m34 −m54 m45

0 0 m53 m54 1−m35 −m45

 . (8)

We provide a graphical interpretation of this mutation matrix in Figure 1. Note204

that by our assumption that the mutation matrix is block diagonal makes it is clear205

that the mutation classes are independent and disconnected from one another.206

Thus, without loss of generality in our analysis, we are able to focus on mutations207

within a single class.208

3 Spreading properties of integrodifference equations209

In this work, we consider spreading populations that take the form of traveling210

waves. That is, ut(x) = U(x − ct) where c is the wave speed. In the analysis211

that follows, we frequently use the classical result for the spreading speed of a212

population introduced over a compact region. That is, when the maximum per-213

capita growth is at the lowest densities,214

A2 : 0 < g(u) ≤ g(0) for all u ∈ (0, 1),215

k is thin-tailed (i.e., has a moment generating function), and the operator is or-216

der preserving, we can compute the rightward spreading speed for (1) with the217

following formula,218

c∗ = inf
s>0

1

s
ln

(
g(0)

∫ ∞
−∞

k(x)esx dx

)
(9)
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Fig. 1 Here we provide a graphical representation of the sample mutation matrix provided in
(8).

(Weinberger, 1982). In this formula we interpret s as the exponential decay profile219

at the leading edge of the traveling wave solution. We also know from Weinberger220

(1982) that there exists a family of traveling wave solutions parameterized by221

speed c for c ≥ c∗. We can find the leftward spreading speed with a calculation222

similar to (9),223

c∗− = inf
s>0

1

s
ln

(
g(0)

∫ ∞
−∞

k(x)e−sx dx

)
. (10)

In particular, when we assume that224

A3 : k is Gaussian with mean µ and variance σ2,225

the kernel is given by226

k(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (11)

Then, we can calculate the rightward spreading speed to be227

c∗ =
√

2σ2 ln(g(0)) + µ, (12)

and in a similar fashion the leftward spreading speed is228

c∗− =
√

2σ2 ln(g(0))− µ. (13)

A fourth assumption that will be made in our theorems in the next section is229

related to the decay rate of the initial condition. If we consider a traveling wave230

that spreads with speed c ≥ c∗, then the decay properties for the leading edge of231

the wave can be derived from Proposition 3 in Lui (1983). To compute the critical232

decay rate for the rightward spread we solve for the unique value of s that satisfies233

(9) for the rightward spread. In the case when the dispersal kernel is Gaussian,234

we can explicitly solve for this value of s and obtain the value c−µ
σ2 . Similarly, for235

the leftward spread, the critical decay rate for the leftward spread is the unique236

value of s that satisfies (10). In the case when the dispersal kernel is Gaussian,237

we can explicitly solve for this value of s and obtain the value c+µ
σ2 . When c > c∗,238
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then the decay of the rightward traveling wave is Ace
− c−µ

σ2
x at ∞ and the decay239

of the leftward traveling wave is Ace
c+µ

σ2
x at −∞ where Ac is a positive constant.240

When c = c∗, then the decay of the rightward traveling wave is Ac∗xe
− c−µ

σ2
x at241

∞ and the decay of the leftward traveling wave is Ac∗xe
c+µ

σ2
x at −∞ where Ac∗242

is a positive constant. In each of the four theorems, which we present in the next243

section, the precise form of the fourth assumption differs. Thus, we do not explicitly244

write out the different assumptions here, but save them for the statement of the245

theorems. With the definitions, assumptions, and preliminary material in place,246

we can present the main results of the paper.247

4 Asymptotic results248

In this section, we provide some theoretical results for the asymptotic dynam-249

ics of our model given by (3)-(5). Here, we state the four main theorems about250

the asymptotic spread of the neutral fractions. To recap, we make the following251

assumptions on Equation (3):252

A1 : The matrix M is Markov and block diagonal primitive,253

A2 : 0 < g(u) ≤ g(0) for all u ∈ (0, 1), and254

A3 : k is Gaussian with mean µ and variance σ2.255

Assumption A1 (Markov and block diagonal primitive matrix) is needed so we can256

apply the Perron-Frobenius theorem to each block in our analysis. Assumption257

A2 (maximum per-capita growth rate as density approaches zero) is relevant to258

expanding populations exhibiting “pulled” wave dynamics (Stokes, 1976), where259

the leading edge of the wave determines the spreading speed (9). Assumption A3 (a260

Gaussian dispersal kernel) is made for mathematical convenience. This will allow261

us to prove rigorous results about the resulting system.262

Theorem 1 provides sufficient conditions for when neutral fractions in a given263

mutation class are left behind during the population spread and do not contribute264

to the spread of the population. In other words, Theorem 1 states that if there are265

no neutral fractions in a given mutation class at the leading edge, then all members266

of this mutation class converge to zero uniformly in the moving half-frame.267

Theorem 1 Consider (3)-(5) where A1-A3 hold as well as the additional assump-268

tion:269

A4 :
∫∞
−∞ e

c−µ
σ2

yvi0(y) dy <∞ for every i in mutation class q.270

If c ≥ c∗, then for any A ∈ R, the density of the neutral fraction i, vit(x), converges271

to 0 uniformly as t→∞ in the moving half-frame [A+ ct,∞).272

Theorem 1 gives conditions for when neutral fractions for a rightward spreading273

population to converge to zero in the moving half-frame. We can also consider the274

case when we have a leftward spreading population in the following theorem.275

Theorem 2 Consider (3)-(5) where A1-A3 hold as well as the additional assump-276

tion:277

A4− :
∫∞
−∞ e−

c+µ

σ2
yvi0(y) dy <∞ for every i in mutation class q.278
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If c ≥ c∗−, then for any A ∈ R, the density of the neutral fraction i, vit(x), converges279

to 0 uniformly as t→∞ in the moving half-frame (−∞, A− ct].280

From Theorems 1 and 2 we conclude that if each neutral fraction in a given281

mutation class is not located at the leading edge of the traveling wave in the282

sense of A4 or A4− respectively, then these neutral fractions will converge to zero283

in the moving half-frame. Thus, these neutral fractions are not able to keep up284

with the traveling wave which shows erosion of diversity inside such fronts. The285

question remains as to what happens to the neutral fractions at the leading edge286

and to the rest of the neutral fractions in the same mutation class. The next two287

theorems provide asymptotic results for these neutral fractions for a particular288

class of initial data where neutral fractions are proportional to the exponentially289

decaying leading edge of the wave.290

Theorem 3 Consider (3)-(5) where A1-A3 hold as well as the additional assump-291

tion:292

A4′ : Individuals in mutation class q are initially present at the leading edge of293

the front in the sense that294

v0(x)T `q/
(
rTq `q

)
u0(x)

→ pq0 > 0 as x→∞ (14)

and295 ∫ ∞
−∞

e
c−µ
σ2

y

∣∣∣∣v0(y)T `q
rTq `q

− pq0u0(y)

∣∣∣∣ dy <∞ (15)

where rq the eigenvector of M associated to the eigenvalue 1 from the ma-296

trix Mq and `q be the eigenvector of MT associated to the eigenvalue 1297

from the matrix MT
q .298

Then, for c ≥ c∗ and any A ∈ R,299

max
[A+ct,∞)

∥∥∥∥∥vt(x)−
nq∑
q=1

pq0ut(x)rq

∥∥∥∥∥→ 0 as t→∞. (16)

Theorem 3 provides the asymptotic proportion of each neutral fraction in mu-300

tation class q for the rightward spread. In particular, if individuals from only one301

mutation class q are intially present at the leading edge of the population then this302

proportion is simply rq, the right eigenvector of Mq corresponding to eigenvalue303

1. We can also compute the leftward proportion in the following theorem.304

Theorem 4 Consider (3)-(5) where A1-A3 hold as well as the additional assump-305

tion:306

A4′− : Individuals in mutation class q are initially present at the leading edge307

of the front in the sense that308

v0(x)T `q/
(
rTq `q

)
u0(x)

→ pq0 > 0 as x→ −∞ (17)
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and309 ∫ ∞
−∞

e−
c+µ

σ2
y

∣∣∣∣v0(y)T `q
rTq `q

− pq0u0(y)

∣∣∣∣ dy <∞ (18)

where rq the eigenvector of M associated to the eigenvalue 1 from the310

matrix Mq and `q be the eigenvector of MT associated to the eigenvalue311

1 from the matrix MT
q .312

Then, for c ≥ c∗− and any A ∈ R,313

max
(−∞,A−ct]

∥∥∥∥∥vt(x)−
nq∑
q=1

pq0ut(x)rq

∥∥∥∥∥→ 0 as t→∞. (19)

The proofs of Theorems 1-4 are provided in Appendix B.314

5 Numerical simulations315

In this section we illustrate our theory in Section 4 with some simple examples. All316

simulations were done by using the fast Fourier transform technique (Cooley and317

Tukey, 1965). This method is better than classical quadrature because it speeds318

up the numerical process from O(n2) to O(n log(n)).319

For our first set of simulations, we consider an example where the Assumptions320

A1, A2, and A3 are satisfied. Specifically, we assume that k is a Gaussian dispersal321

kernel and g is the Beverton-Holt growth function. That is, k is given by (11) and322

g(ut(y)) =
R

1 + R−1
K ut(y)

. (20)

The model we simulate is323

vt+1(x) =

∫ ∞
−∞

1√
2πσ2

e−
(x−y−µ)2

2σ2
R

1 + R−1
K ut(y)

Mvt(y) dy (21)

where M is the mutation matrix. In this section, we consider a few different mu-324

tation matrices. The first mutation matrix is primitive and allows for mutations325

between all neutral fractions. This matrix is given by326

M1 =


0.85 0.01 0.04 0.02 0.03
0.03 0.92 0.02 0.01 0.05
0.07 0.05 0.86 0.02 0.03
0.01 0.01 0.06 0.93 0.03
0.04 0.01 0.02 0.02 0.86

 . (22)

The second mutation matrix we consider is block primitive. Here, the parameters327

are the same as in M1 except we let m13 = m14 = m15 = m23 = m24 = m25 =328

m31 = m32 = m41 = m42 = m51 = m52 = 0. Then M2 is given by329

M2 =


0.97 0.01 0 0 0
0.03 0.99 0 0 0

0 0 0.92 0.02 0.03
0 0 0.06 0.96 0.03
0 0 0.02 0.02 0.94

 . (23)
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Notice that M2 is block primitive because it only allows for mutations between330

two distinct classes of neutral fractions. The two mutation classes are given by331

{1, 2} and {3, 4, 5}. Thus, neutral fractions 1 and 2 can mutate into each other332

but not into neutral fractions 3, 4, and 5 and vice-versa.333

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

(a)

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

(b)

(c)

Fig. 2 Numerical realization of (21) for the parameter values σ2 = 0.01, µ = 0, R = 2, K = 1.
Figure 2(a) is the initial condition for the simulations seen in Figures 2(b) and 2(c). In 2(b) we
use the mutation matrix M1 given by (22). The dashed lines in Figure 2(b) give the asymptotic
proportion of neutral fractions as calculated in Theorem 3. In 2(c) we use the mutation matrix
M2 given by (23). The dashed lines in Figure 2(c) give the rightward asymptotic proportion of
neutral fractions as calculated in Theorem 3 and the solid lines in Figure 2(c) give the leftward
asymptotic proportion of neutral fractions as calculated in Theorem 4.

The simulations for our model are given in Figure 2. We chose these initial334

conditions so as to satisfy Assumptions A4 (see Theorem 1) and A4− (see Theorem335

2). However, note that the initial conditions plotted in Figure 2(a) are not the same336

as those assumed by A4′ and A4′− for Theorems 3 and 4. These initial data were337

chosen in an effort to see if the results of the theorems could hold for a more338

general class of initial data than was assumed in the statement of the theorems.339

The initial density of each neutral fraction is given by vi0(x) = 1−i<x≤−(i−1) where340
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1 is the indicator function. In Figure 2(b), we are using the mutation matrix M1341

given by (22) where there is only one mutation class. Thus, the stable distribution342

of neutral fraction is calculated using Theorems 3 and 4 and is given by r1 =343

[0.1377, 0.2229, 0.2179, 0.2932, 0.1283]T . The stable distribution can be seen by the344

dashed lines in Figure 2(b). In Figure 2(c), we use the mutation matrix M2 given345

by (23) and we can see that the spread to the right and left have different neutral346

fractions because of the initial distribution of neutral fractions and because the347

structure of the mutation matrix is block diagonal primitive with two blocks. The348

asymptotic distribution of neutral fractions for the first mutation class {1, 2} in the349

rightward spread is calculated by Theorem 3 and is given by r1 = [0.25, 0.75]T .350

This is seen by the dashed lines in Figure 2(c). The asymptotic distribution of351

neutral fractions for the second mutation class {3, 4, 5} in the leftward spread is352

calculated by Theorem 4 and is given by r2 = [0.225, 0.525, 0.25]T . This is seen by353

the solid lines in Figure 2(c).354

In this section, we also would like to understand dynamics of mutation matrices355

that do not satisfy Assumptions A1 and A3 of Theorems 1-4. In particular, we356

want to consider matrix structures that do not fit to the block diagonal primitive357

assumption, and dispersal kernels that are not Gaussian. We first, consider the358

Laplace dispersal kernel,359

k(x− y) =
1

2b
e−|x−µ|/b (24)

again with Beverton-Holt growth given by (20). Then the model that we simulate360

is given by361

vt+1(x) =

∫ ∞
−∞

1

2b
e−|x−µ|/b

R

1 + R−1
K ut(y)

Mvt(y) dy. (25)

For our simulations, we want to compare the effect of the dispersal kernel on362

the asymptotic proportion of neutral fractions. Thus, we run simulations similar363

to those in Figure 2 by using the same demographic parameters and mutation364

matrices, but we use a Laplace dispersal kernel.365

The simulations for our model are given in Figure 3. The initial conditions366

are plotted in Figure 3(a) and are the same initial conditions used for the sim-367

ulations in Figure 2. The initial density of each neutral fraction is given by368

vi0(x) = 1−i<x≤−(i−1) where 1 is the indicator function. In Figure 3(b) since369

we are using the mutation matrix M1 given by (22) there is only one muta-370

tion class. We can see that the stable distribution of neutral fraction is given371

by r1 = [0.1377, 0.2229, 0.2179, 0.2932, 0.1283]T and is the same distribution as372

calculated using Theorems 3 and 4. This suggests that the dispersal kernel does373

not affect the asymptotic proportion, as expected, since the asymptotic propor-374

tion calculated by our main theorems is independent of the dispersal parameters.375

The stable distribution can be seen by the dashed lines in Figure 3(b). In Fig-376

ure 3(c), we can see that the spread to the right and left have different neutral377

fractions because of the initial distribution of neutral fractions and because the378

mutation matrix M2 given by (23) is block diagonal primitive with two blocks.379

The asymptotic distribution of neutral fractions for the first mutation class {1, 2}380

in the rightward spread is r1 = [0.25, 0.75]T . This is seen by the dashed lines in381

Figure 3(c). The asymptotic distribution of neutral fractions for the second muta-382

tion class {3, 4, 5} in the leftward spread is r2 = [0.225, 0.525, 0.25]T . This is seen383
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Fig. 3 Numerical realization of (25) for the parameter values b =
√

0.005, µ = 0, R = 2,
K = 1. We chose b and µ this way so that the mean and variance for the Laplace kernel is
the same as the Gaussian kernel used for the simulations in Figure 2. Figure 3(a) is the initial
condition for the simulations seen in Figures 3(b) and 3(c). In 3(b) we use the mutation matrix
M1 given by (22). The dashed lines in Figure 3(b) give the asymptotic proportion of neutral
fractions as calculated in Theorem 3. In 3(c) we use the mutation matrix M2 given by (23).
The dashed lines in Figure 3(c) give the rightward asymptotic proportion of neutral fractions
and the solid lines in Figure 3(c) give the leftward asymptotic proportion of neutral fractions.

by the solid lines in Figure 3(c). Notice that these proportions are again the same384

as suggested by Theorems 3 and 4.385

Next, we consider a mutation matrix where the mutation classes are weakly386

linked. An example of this can be seen in the following matrix,387

M3 =


0.97 0.01 0 0 0
0.03 0.99 ε 0 0

0 0 0.92− ε 0.02 0.03
0 0 0.06 0.96 0.03
0 0 0.02 0.02 0.94

 (26)

where ε is small. In this scenario, we see that there is only one mutation class388

because of the weak linkage parameter ε. This matrix structure violates Assump-389
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tion A3 because it is not block primitive as the bottom left block of the matrix390

is always zero. The structure of this matrix suggests that eventually all neutral391

fractions should become one of the first two types. For our simulation with this392

mutation matrix, we use a Gaussian dispersal kernel and Beverton-Holt growth393

function as given by (21). We can see a simulation of this in Figure 4.394

For the mutation matrix M3 we can see that it has one eigenvalue of 1 with395

eigenvector r1 = [0.25, 0.75, 0, 0, 0]. Thus, in this scenario, we conjecture that the396

asymptotic distribution of neutral fractions is given by r1. To test this conjecture,397

we simulate the model in Figure 4. One thing to note from Figure 4 is the amount398

time it takes to converge to the asymptotic proportion. Here we see that the399

leftward moving front takes over two thousand generations to reach the steady400

state. This is due to the fact that there is only one weak linkage, ε, from {3, 4, 5}401

to {1, 2}. Note that this kind of behavior can also occur for a matrix that is402

irreducible but not primitive because the eigenvector has entries that are zero.403

-20 -10 0 10 20
0

0.2
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0.6

0.8

1

1.2

(a) (b)

(c) (d)

Fig. 4 Numerical realization of (21) for the parameter values σ2 = 0.01, µ = 0, R = 2, K = 1
with the mutation matrix M3 given by (26) where ε = 0.01. Figure 2(a) is the initial condition
for the simulations seen in Figures 4(b), 4(c), and 4(d). The dashed lines in Figure 4(b), 4(c),
and 4(d) are the conjectured asymptotic proportion of neutral fractions.
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6 Discussion404

By incorporating mutations of neutral fractions into a scalar inside dynamics405

model, we developed a neutral mutation model to study the effect of mutations406

on the neutral genetic structure of an expanding population. In previous studies407

concerning the inside dynamics for scalar population models, the analysis concerns408

a single neutral fraction at a time (Marculis et al., 2017). In our model, the inter-409

actions between the neutral fractions by mutation require us to analyze a system410

of equations for the neutral fractions. By studying a system we must include an411

assumption on the interactions so as to prove the asymptotic results presented in412

Section 4.413

We derive our model from the scalar inside dynamics integrodifference equa-414

tion in Section 2. To include the mutations in our model, we allow for neutral415

fractions to mutate into one another with a given probability. The molecular clock416

hypothesis states that genes evolve at a relatively constant rate over time (Ho,417

2008). Thus, our model is in line with the molecular clock hypothesis because we418

assume a constant probability of mutation over time. This modeling framework is419

commonly referred to in the genetic literature as a substitution model. The addi-420

tion of mutations changes the model by now having interactions between neutral421

fractions that are governed by a mutation matrix.422

The results in Section 4 are divided into four theorems. We first show when423

neutral fractions converge to zero uniformly in a moving half-frame. These results424

are provided in Theorems 1 and 2. We see that this happens when the neutral425

fractions in a given mutation class are not initially present at the leading edge of426

the expansion. In Theorems 3 and 4, we show that the only neutral fractions that427

matter are those at the leading edge and are in the accompanying mutation class.428

Moreover, Theorems 3 and 4 show that the proportion of neutral fractions is given429

by the right dominant eigenvector of the mutation matrix for the mutation class430

that was initially present at the leading edge of the population.431

Our results only apply to a certain class of models. First, we make the assump-432

tion that the mutation matrix is block diagonal primitive on top of the Markov433

structure. This assumption is needed to apply the Perron-Frobenius theorem guar-434

anteeing that we have a dominant eigenvalue. In Figure 2, we consider two differ-435

ent kinds of mutation matrices. The first mutation matrix is primitive and only436

contains one mutation class because every neutral fraction can mutate into one437

another. Thus, we see that all neutral fractions contribute the spread of the pop-438

ulation and each neutral fraction converges to a proportion of the traveling wave439

solution. The result of the simulation is seen in Figure 2(b). In the second exam-440

ple, the mutation matrix has two mutation classes and we see the spread of one441

mutation class to the right and the spread of the other mutation class to the left442

in Figure 2(c). This is because of the initial positioning of the neutral fractions as443

seen in Figure 2(a). Therefore, we conclude that the spread of the neutral frac-444

tions is dependent on the initial positioning of each neutral fraction as well as the445

structure of the mutation matrix.446

In addition, we numerically examined a mutation matrix structure that does447

not satisfy Assumption A1 of our main theorems. In particular, we constructed a448

mutation matrix that is not block diagonal primitive. This matrix is similar to our449

second example with two mutation classes, but we include a small parameter to450

introduce a weak linkage between the two mutation classes. This matrix is given by451
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(26). We see that the weak linkage only allows for individuals to mutate from the452

second mutation class {3, 4, 5} to the first mutation class {1, 2}. In particular, we453

see that the weak linkage is a small mutation probability from neutral fraction 3454

to 2. Thus, because of this structure, we expect that eventually all individuals will455

be in the first mutation class regardless of the initial distribution of individuals.456

The simulation for this example is given in Figure 4. The initial condition for the457

neutral fractions is seen in Figure 4(a). Then, the dynamics of the neutral fractions458

is seen in Figures 4(b)-4(d). We see that the asymptotic distribution of neutral459

fractions is given by the right eigenvector corresponding to eigenvalue 1. However,460

convergence to the asymptotic distribution takes a long time because of the weak461

linkage. We conjecture that if the linkage were larger or if there were more linkages462

then we expect the convergence to the asymptotic proportion would be faster.463

We also make the assumption that our growth function is bounded by its value464

at zero. This assumption does not allow for growth functions with Allee effects465

which we know from the scalar model to produce interesting asymptotic dynamics466

(Marculis et al., 2017). By adding the complexity of mutations into the modeling467

framework, we are able to obtain dynamics that are not seen in scalar models that468

have no mutations. Unlike the scalar model case, we find that multiple neutral469

fractions can contribute to the spread of the population in absence of an Allee470

effect. Thus, we can conclude that these neutral mutations and their structure are471

an important driver of maintaining genetic diversity in an expanding population.472

This conclusion agrees with previous studies that have shown range expansions473

affect the neutral genetic variation of the population (Excoffier et al., 2009; Lehe474

et al., 2012).475

In addition we assume that the dispersal kernel is Gaussian. While this is476

needed for mathematical convenience, we conjecture that this assumption should477

be able to be weakened to an assumption that the dispersal kernel is thin-tailed478

since the results for the asymptotic proportion of each neutral fraction is inde-479

pendent of the parameters from the dispersal kernel. To test this conjecture, we480

provided simulations for a Laplace dispersal kernel as seen in Figure 3. These481

simulations show that by only changing the form of the dispersal kernel, we can482

obtain the same asymptotic proportion of neutral fractions as seen in Figure 2.483

We were not able to rigorously prove this result and instead leave this conjecture484

for future analysis.485

Other spatial models have shown that neutral mutations at the leading edge of486

a range expansion sometimes surf on the wave (Edmonds et al., 2004; Klopfstein487

et al., 2006). In particular, one study found that due to the gene surfing, the488

mutations reach a larger spatial distribution and higher frequency than would be489

expected in stationary populations (Edmonds et al., 2004). Our results agree with490

these studies that the neutral mutations at the leading edge are the drivers of the491

population spread. However, our model predicts that the spatial distribution of492

neutral fractions at the leading edge is the same as what would be expected in a493

stationary population. The primary conclusion for another simulation based model494

found that the final spatial and frequency distributions depend on the local size of495

a subdivided population (Klopfstein et al., 2006). We showed that the asymptotic496

distribution of neutral fractions is dependent on what individuals were at the497

leading edge, however, our asymptotic proportion we calculate does not depend498

on on the initial size of the population. We believe that these differences arise499

because the way we incorporate mutations is deterministic, but gene surfing is an500
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inherently stochastic process. Thus, in some sense our model describes the average501

behavior as seen from many realizations of the stochastic process of spread.502

Overall, our results show how adding neutral mutations to a model can strongly503

influence the spread of neutral fractions. We find that the mutation matrix struc-504

ture and the initial distribution of neutral fractions are important drivers in deter-505

mining the spread of neutral fractions. However, it should be noted that our model506

structure is restricted to consider mutations between neutral fractions, so there is507

no selection occurring in the population dynamics. The mutations are incorporated508

into the model through a matrix where there are constant probabilities of muta-509

tions occurs between individuals. Even though this mutation matrix structure is510

very general, there are still other ways of including mutation dynamics that could511

be explored such as including stochastic mutation probabilities. The results we512

were able to prove in our four theorems relied upon somewhat restrictive assump-513

tions. First, we make the assumption throughout every theorem that the dispersal514

kernel is Gaussian. However, since our numerical simulations find that our asymp-515

totic proportion does not directly depend on the Gaussian kernel parameters, we516

conjecture that our result should extend to a larger class of thin-tailed dispersal517

kernels. Second, the assumption of block diagonal primitivity placed on the mu-518

tation matrix is not always satisfied for biological realistic models. We illustrate519

this with the weak connectivity example.520

Appendix A Derivation of a general mutation matrix521

Here we show how one can generalize the assumption of a single locus with n dif-522

ferent neutral alleles to m loci with two neutral alleles. Let there be m independent523

loci ai, 1 ≤ i ≤ m, where each loci has one of two possible alleles, ai = 0 or ai = 1.524

Then we define the transition probabilities as follows:525

Pr{ai = 0→ ai = 1} = qi and Pr{ai = 1→ ai = 0} = ri. (27)

We index this process by t ∈ N where t describes the number of possible transitions526

taken so far. There are 2m possible states for this system. Let n = 2m and let the527

probability of being in state j, 1 ≤ j ≤ n, be given by vj where the state is528

j = 1 +
m∑
i=1

ai2
i−1. (28)

In the case when m = 2, there are four total states. We denote our states in the529

following form,530 (
a1
a2

)
. (29)

Our indexing for j gives the following relationship between the state and the index531

as follows:

Index j = 1 j = 2 j = 3 j = 4

State

(
0
0

) (
1
0

) (
0
1

) (
1
1

)
.
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532

By letting mjl = Pr{vj → vl}, then the mutation matrix becomes533

M =


(1− q1)(1− q2) r1(1− q2) (1− q1)r2 r1r2
q1(1− q2) (1− r1)(1− q2) q1r2 (1− r1)r2
(1− q1)q2 r1q2 (1− q1)(1− r2) r1(1− r2)
q1q2 (1− r1)q2 q1(1− r2) (1− r1)(1− r2)

 . (30)

From this example, one can deduce how to generalize this process for more than534

two neutral alleles making the structure of this mutation matrix quite general.535

Appendix B Proofs of the theorems536

Proof of Theorem 1537

Proof Without loss of generality, we can assume that neutral fraction i belongs to538

the mutation class q. Then, since M is block diagonal, we only need to consider539

the following equation540

vq,t+1(x) = Mq

∫ ∞
−∞

k(x− y)g(ut(y))vq,t(y) dy. (31)

Using the fact that 0 < g(u) ≤ g(0) for all u ∈ (0, 1) we can use a comparison541

principle, see Lemma 2.1 of Li et al. (2005), to show that a new sequence wq,t(x)542

defined by543

wq,t+1(x) = g(0)Mq

∫ ∞
−∞

k(x− y)wq,t(y) dy (32)

is always greater than the solution to any neutral fraction, vq,t(x), with the same544

initial condition wq,0(x) = vq,0(x). The solution of (32) is given by the t-fold545

convolution546

wq,t(x) = [g(0)Mq]
t k∗twq,0(x). (33)

Applying the reflected bilateral Laplace transform to (33) and using the convolu-547

tion theorem, we obtain548

M[wq,t(x)](s) = [g(0)Mq]
t [M [k(x)] (s)]tM [wq,0(x)] (s) (34)

= [g(0)Mq]
t

[
e
σ2s2

2
+µs

]t
M [wq,0(x)] (s) (35)

= [g(0)Mq]
te

σ2ts2

2
+µtsM [wq,0(x)] (s) (36)

= [g(0)Mq]
tM

[
1√

2πσ2t
e−

(x−µt)2

2σ2t

]
(s)M [wq,0(x)] (s) (37)

= [g(0)Mq]
tM [(kt ∗wq,0)(x)] (s) (38)

where kt is Gaussian with mean µt and variance σ2t. Then applying the inverse549

transform yields550

wq,t(x) = [g(0)Mq]
t(kt ∗wq,0)(x) (39)

= [g(0)Mq]
t

∫ ∞
−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t wq,0(y) dy. (40)
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In the moving half-frame with fixed A ∈ R, consider the element x0 + ct with551

c ≥ c∗ =
√

2σ2 ln(g(0)) + µ. When we rewrite wq,t(x) in this moving half-frame552

we have553

wq,t(x0 + ct) = [g(0)Mq]
t

∫ ∞
−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t wq,0(y) dy. (41)

Expanding in the exponential, yields554

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(42)

≥ (x0 − y)2

2σ2t
+
c− µ
σ2

(x0 − y) + ln(g(0))t. (43)

Thus,555

wq,t(x0 + ct) ≤Mt
q
eln(g(0))t√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)e− ln(g(0))twq,0(y) dy

(44)

= Mt
q

1√
2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)wq,0(y) dy (45)

= Mt
q
e−

c−µ
σ2

x0

√
2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e
c−µ
σ2

ywq,0(y) dy. (46)

Since x0 ≥ A we have556

wq,t(x0 + ct) ≤Mt
q
e−

A(c−µ)
σ2

√
2πσ2t

∫ ∞
−∞

e
c−µ
σ2

ywq,0(y) dy. (47)

Since Mq is a Markov matrix, we know that limt→∞Mt
q = [rq, . . . , rq] where rq is557

the right eigenvector of Mq corresponding to eigenvalue 1 such that
∑
i=1 rq,i = 1.558

By Assumption A4,
∫∞
−∞ e

c−µ
σ2

ywiq,0(y) dy < ∞ for every i in mutation class q559

we have wiq,t(x0 + ct) → 0 uniformly as t → ∞ in [A,∞). Recall that wiq was560

constructed so that 0 ≤ viq,t(x) ≤ wiq,t(x). This implies the uniform convergence561

of vit(x)→ 0 as t→∞ in the moving half-frame [A+ ct,∞) for each i in mutation562

class q. The proof of Theorem 1 is complete. ut563

Proof of Theorem 2564

Proof Repeat the proof of Theorem 1 in the left moving half-frame with fixed565

A ∈ R and consider the element x0 − ct with c ≥ c∗− =
√

2σ2 ln(g(0)) − µ. From566

this change, the result follows in the same manner as in Theorem 1. ut567

Proof of Theorem 3568

Proof We begin by decomposing Rn according to the eigenspace of the matrix Mq.569

By assumption, since all the blocks in M are primitive, we know that the principle570

eigenvalue is simple and equal to 1 with nonnegative eigenvector rq because Mq is571

Markov. With a small abuse of notation, we call rq the eigenvector of M associated572

to the eigenvalue 1 coming from the matrix Mq. In a similar manner, we define573
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`q be the eigenvector of MT associated to the eigenvalue 1 from the matrix MT
q .574

Moreover, since the mutation matrix M is block diagonal, we can decompose the575

space Rn as follows576

Rn =

nq⊕
q=1

rqR
nq⊕
q=1

(rqR)⊥ (48)

where (rqR)⊥ =
{
v ∈ Rn,vT `q = 0

}
. Let v0(x) satisfy 0 ≤ vi0(x) ≤ u0(x) in R577

for i = 1, . . . , n. Then, we can decompose vt(x) as follows578

vt(x) =

nq∑
q=1

aqt (x)rq +

nq∑
q=1

bqt (x)hqt (49)

where aqt (x) and bqt (x) are functions from R to R and hqt are in (rqR)⊥ with579

‖hqt‖ = 1. Then by applying our decomposition to (3) we can see that580

vt+1(x) =

∫ ∞
−∞

k(x− y)g(ut(y))Mvt(y) dy (50)

=

∫ ∞
−∞

k(x− y)g(ut(y))M

( nq∑
q=1

aqt (y)rq +

nq∑
q=1

bqt (y)hqt

)
dy (51)

=

nq∑
q=1

∫ ∞
−∞

k(x− y)g(ut(y))aqt (y) dyMrq +

nq∑
q=1

∫ ∞
−∞

k(x− y)g(ut(y))bqt (y) dyMhqt .

(52)

Since Mrq = rq and M stabilizes the space (rqR)⊥, we can see from (49) and (52)581

that for all q ∈ {1, . . . , nq} and t > 0582

aqt+1(x) =

∫ ∞
−∞

k(x− y)g(ut(y))aqt (y) dy and (53)

bqt+1(x)hqt+1 =

∫ ∞
−∞

k(x− y)g(ut(y))bqt (y) dyMhqt . (54)

We first focus our attention on (54). By the properties of M through the matrices583

Mq there exists δ ∈ (0, 1) such that for any q ∈ {1, . . . , nq} and h ∈ (rqR)⊥ then584

‖Mh‖ ≤ δ‖h‖. Thus, from (54) we can see that585

|bqt+1(x)| = ‖bqt+1(x)hqt+1‖ (55)

≤
∫ ∞
−∞

k(x− y)g(ut(y))|bqt (y)| dy‖Mhqt‖ (56)

≤ δ
∫ ∞
−∞

k(x− y)g(ut(y))ut(y)
|bqt (y)|
ut(y)

dy. (57)

Since 0 ≤ vi0(x) ≤ u0(x) for all x ∈ R for i = 1, . . . , n, it is clear that |bq0(x)| ≤586

δ′u0(x) for all x ∈ R where 0 < δ′ ≤ 1. From iteration of (57) we have that587

|bqt+1(x)| ≤ δtδ′max
x∈R
‖u0(x)‖. (58)
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Since δ ∈ (0, 1),588

lim
t→∞

|bqt+1(x)| ≤ lim
t→∞

δtδ′max
x∈R
‖u0(x)‖ (59)

= 0. (60)

Thus, bqt+1(x) converges uniformly to 0 on R. Next, we turn our attention to the589

remaining piece of our decomposition for aqt (x). First, it is important to note that590

aq0(x) is a projection of v0(x) on rq. Thus, it satisfies591

aq0(x) =
v0(x)T `q

rTq `q
. (61)

From our assumption that the mutation class q is present at the leading edge of592

the front we have593

aq0(x)

u0(x)
→ pq0 > 0 as x→∞ and

∫ ∞
−∞

e
c−µ
σ2

y |aq0(y)− pq0u0(y)| dy <∞. (62)

Next, we consider the sequence |zt(x)| = |aqt (x)− pq0ut(x)| that satisfies594

|zt+1(x)| ≤
∫ ∞
−∞

k(x− y)g(ut(y))|zt(y)| dy (63)

with |z0(x)| = |aq0(x) − pq0u0(x)|. By the assumption that 0 < g(u) ≤ g(0) for all595

u ∈ (0, 1) we obtain a super-solution596

|zt+1(x)| ≤ g(0)

∫ ∞
−∞

k(x− y)|zt(y)| dy (64)

with same initial condition. The solution of (64) is bounded by the t-fold convo-597

lution598

|zt(x)| ≤ [g(0)]t k∗t|z0(x)|. (65)

Applying the reflected bilateral Laplace transform to (65) and using the convolu-599

tion theorem, we obtain600

M[|zt(x)|](s) ≤ [g(0)]t [M [k(x)] (s)]tM|z0(x)|] (s) (66)

= [g(0)]t
[
e
σ2s2

2
+µs

]t
M [|z0(x)|] (s) (67)

= [g(0)]te
σ2ts2

2
+µtsM [|z0(x)|] (s) (68)

= [g(0)]tM
[

1√
2πσ2t

e−
(x−µt)2

2σ2t

]
(s)M [|z0(x)|] (s) (69)

= [g(0)]tM [(kt ∗ |z0|)(x)] (s) (70)

where kt is Gaussian with mean µt and variance σ2t. Then applying the inverse601

transform yields602

|zt(x)| ≤ [g(0)]t(kt ∗ |z0|)(x) (71)

= [g(0)]t
∫ ∞
−∞

1√
2πσ2t

e−
(x−y−µt)2

2σ2t |z0(y)| dy. (72)
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In the moving half-frame with fixed A ∈ R, consider the element x0 + ct with603

c ≥ c∗ =
√

2σ2 ln(g(0)) +µ. When we rewrite |zt(x)| in this moving half-frame we604

have605

|zt(x0 + ct)| ≤ [g(0)]t
∫ ∞
−∞

1√
2πσ2t

e−
(x0+ct−y−µt)2

2σ2t |z0(y)| dy. (73)

Expanding in the exponential, yields606

(x0 + ct− y − µt)2

2σ2t
=

(x0 − y)2

2σ2t
+

2(c− µ)t(x0 − y) + (c− µ)2t2

2σ2t
(74)

≥ (x0 − y)2

2σ2t
+
c− µ
σ2

(x0 − y) + ln(g(0))t. (75)

Thus,607

|zt(x0 + ct)| ≤ eln(g(0))t√
2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)e− ln(g(0))t|z0(y)| dy (76)

=
1√

2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e−
c−µ
σ2

(x0−y)|z0(y)| dy (77)

=
e−

c−µ
σ2

x0

√
2πσ2t

∫ ∞
−∞

e−
(x0−y)2

2σ2t e
c−µ
σ2

y|z0(y)| dy. (78)

Since x0 ≥ A we have608

|zt(x0 + ct)| ≤ e−
A(c−µ)
σ2

√
2πσ2t

∫ ∞
−∞

e
c−µ
σ2

y|z0(y)| dy. (79)

From our assumption that the mutation class q is initially present at the leading609

edge of the front, we know that
∫∞
−∞ e

c−µ
σ2

y|z0(y)| dy < ∞ Thus, we have that610

|zt(x)| → 0 uniformly as t → ∞ in the moving half-frame [A + ct,∞) with speed611

c ≥ c∗. Returning to the definition of |zt(x)| we can see that612

|aqt (x)− pq0ut(x)| → 0 uniformly as t→∞ (80)

in the moving half-frame [A+ ct,∞). Then by putting together all the pieces, we613

can see from (49) that614 ∥∥∥∥∥vt(x)−
nq∑
q=1

aqt (x)rq

∥∥∥∥∥ =

∥∥∥∥∥
nq∑
q=1

bqt (x)hqt

∥∥∥∥∥ (81)

≤
nq∑
q=1

|bqt (x)|‖hqt‖ (82)

=

nq∑
q=1

|bqt (x)| (83)

Therefore, from (60) and (80) the we can conclude that615

max
[A+ct,∞)

∥∥∥∥∥vt(x)−
nq∑
q=1

pq0ut(x)rq

∥∥∥∥∥→ 0 as t→∞. (84)

The proof of Theorem 3 is complete. ut616
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Proof of Theorem 4617

Proof Repeat the proof of Theorem 3 in the left moving half-frame with fixed618

A ∈ R and consider the element x0 − ct with c ≥ c∗− =
√

2σ2 ln(g(0)) − µ. From619

this change, the result follows in the same manner as in Theorem 3. ut620
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