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Abstract

Motivated by Elizabeth Meckes’ work on concentration inequalities using

the group SO(n) (see [9]), this thesis explores the use of random rotations for

detecting autocorrelation in time series data. Traditional tests like the Durbin-

Watson test assess autocorrelation by analyzing quadratic forms of residual

vectors. Our new approach uses concentration inequalities associated with

uniform measures on SO(n) to construct a test without strong distributional

assumptions.

We propose a new test statistic for autocorrelation in AR(1) processes,

utilizing random rotations of sample autocorrelation function. By establishing

a subgaussian concentration inequality, we derive a one-sided test with an

upper bound for the p-value. Further refinement through beta adjustment

enhances our p-value accuracy. We also generalize it to a two-sided test.

This thesis provides comprehensive background material on group invari-

ance, random rotations, AR(1) processes, and the Durbin-Watson test. Key

results, including the concentration inequality proof and beta transformation

application, are presented in detail. A simulation study confirms the effec-

tiveness of our rotation test, highlighting its potential in practical statistical

applications.
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Chapter 1

Introduction

Statistical hypothesis testing has always been a hard problem. Typically, para-

metric approaches that assume normality, are used to simplify the problem.

On the other hand, nonparametric tests, while requiring fewer assumptions,

are often challenging, both theoretically and practically. Within the realm of

nonparametric tests, a class known as randomization tests offers an unique

approach by applying random group actions to a dataset and assessing hy-

potheses based on the structure of the group, such as symmetry.

One particularly notable group in this context is the permutation group,

Sn. The utilization of this group leads to a well-known test called Fisher’s

Permutation test. Extensive prior research has been conducted on permutation

tests (see [2]), as well as on concentration of measure (see [1], [4] and [5]).

However, the applications of random rotations to statistical hypothesis testing

remains an understudied area, mainly due to computational limitations.

The main motivation behind using random rotations came from the book,

‘The Random Matrix Theory of the Classical Compact Groups’ by Elizabeth
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Meckes ([9]). In Chapter 5 of that book, there’s a handy concentration in-

equality using the group SO(n) (see Theorem 2.1.5), which helps us get a

bound for our p-value.

After the fitting of a linear model to a dataset, it is often desirable to check

for autoregressive correlations amidst the residual vector. Several tests exist

for assessing serial correlation, such as the well-known Durbin-Watson test.

These tests utilize test statistics that involve ratios of quadratic forms of the

residual vector. The objective is to determine whether the residuals exhibit

statistical characteristics resembling white noise.

We’ve developed a new test for detecting serial correlation, utilizing the

concentration inequalities associated with uniform measures on SO(n). By

leveraging these concentration inequalities, we constructed a robust test that

does not rely on strong assumptions about the underlying data distribution.

We considered an AR(1) process, and introduced a new test statistic which

randomly rotates the sample autocorrelation function. Then, using established

results, we derived a robust subgaussian concentration inequality (see Theorem

3.1.5) related to this test statistic. This enabled us to devise a one-sided

test and obtain an upper bound for the associated p-value. Subsequently, we

harnessed mathematical techniques, precisely, the beta adjustment, to refine

our p-value estimation (see Section 3.2). Upon comparative analysis with

the well-known Durbin-Watson test, we observed that our test demonstrates

comparable performance, closely resembling that of the DW p-value.

Chapter 2 delves into the essential background material and literature re-

view crucial for understanding the context of the thesis. It initiates with the

exploration of Group Invariance, a foundational concept central to the the-

2



sis. Additionally, the chapter delves into the discussion of invariance in the

asymptotic sense when certain condition is not satisfied. A concise overview

is provided on topics such as random rotations, the AR(1) process, and the

Durbin-Watson test.

Moving on to Chapter 3, it unfolds the core findings of the thesis. The

chapter encompasses the proof of key results necessary for deriving the con-

centration inequality. A notable application of the proposed beta transforma-

tion is presented, contributing to the enhancement of p-value accuracy. The

chapter culminates with a simulation study, showcasing the performance of

our rotation test against the Durbin-Watson test.
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Chapter 2

Background Material

In this chapter, we’ll cover some important background information that will

be handy in Chapter 3. We’ll begin by looking into Group Invariance, Random

Rotations and then dive into the well-known Durbin-Watson test.

2.1 Group Invariance

Mathematically, achieving certain symmetries asymptotically means that the

object maintains its invariance under a set of group actions. For example,

the standard Gaussian measure in Rn is invariant under the orthogonal group

O(n). Based on [4], we first setup the general framework. Let

• (Ω,F ,P) be a probability space.

• (H,H) be a Hilbert space space equipped with the Borel σ-field generated

by the norm topology, H.

• (R,B) denote the real line with the standard Borel σ-field.
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• X : Ω → H be an H-valued random variable, and T : H → R be a

measurable function.

• Let G be a compact topological group, i.e., mappings, (g, h) → gh, and

g → g−1 are continuous.

We consider G to be equipped with the normalized Haar measure ρ, which

is the unique left-translation-invariant measure, i.e.,

ρ(gS) = ρ(S) (2.1)

for every g ∈ G and all Borel sets, S ⊆ G. We consider the map, π : G →

L(H), where L(H) is the space of H-endomorphisms with the strong operator

topology, defined by, π(g) = πg where πg ∈ L(H). The Hilbert space H is

called an Hilbert G-Module. A set S ∈ H is said to be G-invariant if S = πgS

for all g ∈ G. Let S be the collection of all G-invariant sets and T = σ(T ).

In the context of hypothesis testing, we impose the following condition:

The measure on R induced by the mapping T (X) is G-invariant, i.e., for all

g ∈ G and B ∈ B,

P(T (X) ∈ B) = P(T (πgX) ∈ B) (2.2)

We also define a randomization threshold tα(x) for a fixed x ∈ H and

α ∈ (0, 1) by,

tα(x) = inf{t ∈ R : ρ({g ∈ G : T (πgx) > t}) ≤ α} (2.3)
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Theorem 2.1.1. Under the above condition, P(T (X) ∈ B|S ∩ T ) = ρ({g ∈

G : T (πgX) ∈ B}), P-almost surely for any B ∈ B.

Corollary 2.1.2. Under the above condition, P(T (X) > tα(X)) ≤ α.

Proof. Define R = {x ∈ H : T (x) > tα(x)}. Then, R ∈ H and from Theorem

2.1.1,

P(T (X) > tα(X)) = E[P(T (X) > tα(X)|S ∩ T )]

= E[ρ({g ∈ G : T (πgX) > tα(X)})] ≤ α

as almost sure equality implies equality in mean.

The corollary essentially implies that by selecting a significance threshold

tα based on the group G and its Haar measure ρ, we can devise a statistical

test at size α significance level.

The choice of group G is critical. For example, if G = {e}, the trivial

group, then the theorem says,

1T (X)∈B =

⎧⎪⎪⎨⎪⎪⎩
1 if T (X) ∈ B

0 if T (X) /∈ B

(2.4)

2.1.1 Asymptotic Group Invariance

For Corollary 2.1.2 to hold true, the aforementioned condition must be satisfied

(Equation 2.2). If this condition is removed, almost sure equality is lost,

although it can still be approached asymptotically.

Let H = R∞ and for all n ∈ N, Sn be the σ-field of Gn-invariant sets in
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Rn. Let Tn : Rn → R be cn-Lipschitz and Tn be the smallest σ-field on Rn

such that Tn is measurable.

Functions Tn, groups Gn, and sets Sn can be extended to R∞. For each

set Sn ∈ Sn, we can express it as {Sn ⊗ R⊗ . . .} ⊂ R∞. This set is invariant

to elements of Gn acting on the first n coordinates while leaving the rest

unchanged. Define G as the union of all Gn, representing group actions that

modify only the first n entries of x ∈ R∞ for all n ∈ N.

Tychnoff’s theorem ensures that as we consider more and more elements,

compactness is preserved in the product topology. Simply put, if you have

compact groups, their arbitrary products and subgroups are also compact.

A tail set E ⊂ R∞ is a set where if a point x is in E, any point y that

differs from x in only a finite number of coordinates is also in E. Because

group elements g ∈ G modify only a finite number of coordinates, if x is in E,

then πg(x) (the result of applying g to x) is also in E. This property makes

tail sets G-invariant.

Moreover, S is the σ-field on R∞ consisting of sets that remain unchanged

under actions of Gn for all n ∈ N. The function T : R∞ → R is defined as

T := limn→∞ Tn, where Tn is defined by projecting x ∈ R∞ onto its first n

coordinates.

In the upcoming discussion, the concept of a Lévy family is essential (see [3];

[7]). Consider a family of metric measure spaces (M (n), d(n), µ(n)) for n ≥ 1.

The open neighborhood of a set A ⊂ M (n) for some t > 0 is denoted as

At = {x ∈ M (n) : d(n)(x,A) < t}. This collection of metric measure spaces is
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termed a normal Lévy family if

sup
A⊂M(n)

{︃(︁
1− µ(n)(At)

)︁
: µ(n)(A) ≥ 1

2

}︃
≤ Ke−knt2

for some constants K, k > 0.

From the preceding paragraph, we have M (n) = Gn treated as a subgroup

of G that acts as the identity on all coordinates i > n. The measure µ(n) = ρn

will be the Haar measure for Gn. The main results below require the family

(Gn, dn, ρn) to be a normal Lévy family. This, naturally, encompasses a broad

range of groups, including the classical compact groups SO(n), SU(n), and

Sp(2n) with the Hilbert-Schmidt metric, satisfying this requirement.

The following theorem demonstrates that Theorem 2.1.1 can hold in an

asymptotic sense.

Theorem 2.1.3. Let X ∈ R∞, and X(n) ∈ Rn be X projected onto its first n

coordinates. Let Tn be cn-Lipschitz such that for some p ≥ 1, E∥X(n)∥p < ∞

for all n, and
∑︁∞

n=1 c
p
n < ∞. Furthermore, assume n−1/2cn∥X(n)∥ a.s.−−→ 0.

Lastly, let the collection of Gn be a normal Lévy family. Then,

|ρ(
{︁
g ∈ Gn : Tn(πgX

(n)) > t
}︁
)− P(

{︁
Tn(X

(n)) > t | Sn ∩ Tn

}︁
)| −→ 0

P-almost surely and in L1 as n → ∞.

Corollary 2.1.4. Under the above condition, P(Tn(X
(n)) > tα(X

(n))) ≤ α.

Proof. From Theorem 2.1.3, for any ε > 0, there exists an N ∈ N such that
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for all n > N ,

P
{︁
Tn(X

(n)) > tα(X
(n))
}︁
= E

[︁
P
{︁
Tn(X

(n)) > tα(X
(n)) | Sn ∩ Tn

}︁]︁
≤ E

[︁
ρ
{︁
g ∈ Gn : Tn(πgX

(n)) > tα(X
(n))
}︁]︁

+ ε

≤ α + ε.

Taking ε → 0 finishes the proof.

In the realm of statistical testing, where the conventional idea often leans

towards assuming normality due to the central limit theorem, the use of group

invariance marks a notable shift. As it can be seen, group invariance testing

presents a more flexible paradigm, without relying on normality assumptions,

and also achieving the correct test size. It is also valid asymptotically, assuring

reliability even as sample sizes grow.

However, it is important to check all the assumptions stated in the theo-

rems. Furthermore, contemplating the potential applications of other interest-

ing locally compact groups adds a layer of complexity and richness to statistical

methodology. So, group invariance testing gives us a useful and reliable way

to test things in statistics without relying too much on the normality idea,

opening up new possibilities for different kinds of analyses.

In this research, our focus will be on exploring the potential of employing

random rotations in Rn, i.e., the group SO(n). To utilize random rotations,

we require some concentration inequality, and we will draw upon one found in

Meckes’ book [9]. We state the result without proof.

Theorem 2.1.5. Given n1, . . . , nk ∈ N, let G = Gn1 × · · · × Gnk
, where for
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each of the ni, Gni
is one of SO(ni),SO−(ni),SU(ni),U(ni) or Sp(ni). Let G be

equipped with the L2-sum of Hilbert-Schmidt metrics on the Gni
. Suppose that

F : G → R is L-Lipschitz, and that {Uj ∈ Gnj
: 1 ≤ j ≤ k} are independent,

Haar-distributed random matrics. Then for each t > 0,

P[F (U1, . . . , Uk) ≥ EF (U1, . . . , Uk) + t] ≤ exp

{︃
−(n− 2)t2

24L2

}︃
(2.5)

where n = min{n1, . . . , nk}.

Corollary 2.1.6. Let G = SO(n) be equipped with the Hilbert-Schmidt metric.

Suppose that F : G → R is L-Lipschitz, and that U ∈ G be a Haar-distributed

random matrix. Then for each t > 0,

P[F (U) ≥ EF (U) + t] ≤ exp

{︃
−(n− 2)t2

4L2

}︃
(2.6)

2.2 Random Rotations

In the context of permutation and rotation tests, two crucial symmetries to

focus on are exchangeability and rotatability. It’s important to note a clear

difference in the simulation process: simulating permutations is computation-

ally easier, while generating rotation matrices, especially with large datasets,

is not feasible.

For example, Environment Canada has collected over 50 years of climate

data for Edmonton, but the dataset’s size, like a 100-year daily measurement

dataset with 36, 500 points, poses computational challenges. A single random

rotation matrix acting on this dataset would require approximately 40 GB of
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computer memory making it unfeasible to compute with brute force.

The construction of such randomization tests have already been discussed

in [8] and [10]. It is based on a group of transformations O such that,

Y
d
= OY under H (2.7)

for every n × n matrix O ∈ O. The main advantage of this condition is

that it provides different observations, OY which have the same probability of

occurring under H.

Equation 2.7 is referred to as the randomization hypothesis and the trans-

formations O as null-invariants. They are called null-invariants as the trans-

formation of Y by O has no effect on the underlying null distribution. In case

of permutations, O consists of all n × n permutation matrices and in case of

rotations, all n× n rotation matrices. Note that, in contrast to permutations,

which are finite in number (n! precisely), rotations are uncountably infinite,

thereby making it more challenging to employ random rotations for hypothesis

testing.

2.3 The AR(1) Model and the Durbin-Watson

Test

We start by defining autoregressive process (of order 1) formally as,

Definition 2.3.1. The time series {Xt} is an AR(1) process if Xt has zero
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mean and if we can write it as,

Xt = ϕXt−1 + εt (2.8)

where εt is white noise with mean zero and ϕ ∈ R is not zero.

Here, ϕ is the autocorrelation between Xt−1 and Xt for all t ∈ {2, . . . , n}.

Without loss of generality, we assume that the sample mean, X̄ is zero. The

reason is two fold:

• Firstly, we can always center the data by defining a new time series

Yt = Xt − X̄ for all t. Note that this doesn’t affect any autocorelation

that may exist in the data.

• Secondly, the expectation of Xt is zero. Therefore for large n, the sample

mean will converge to the true mean which is zero.

The sample autocorrelation is estimated by the statistic,

ϕ̂ =
1

nσ2̂

n−1∑︂
i=1

XiXi+1 (2.9)

where σ2̂ = 1
n

∑︁n
i=1X

2
i = 1

n
∥X∥2, is the sample variance andX = (X1, . . . , Xn)

t.

For our thesis, we also assume that ϕ ∈ (−1, 1) and the process to be

stationary. Note that we can write autocorrelation estimator as,

ϕ̂ =
X tAX

∥X∥2
=

X t

∥X∥
A

X

∥X∥
(2.10)
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where An×n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the shift matrix. Upon writing ϕ̂ in this

way, we can, without loss of generality, assume thatX lies in the n-dimensional

unit sphere, i.e., X ∈ Sn−1 and ϕ̂ = X tAX.

There are various statistical tests to determine autocorrelation in the data.

One of the most well-known test is the Durbin-Watson Test. The Durbin-

Watson test tests for autocorrelations of order 1 among the residuals of a

linear model. Considering the linear model

Yt = β0 + β1t+ · · ·+ βpt
p + rt (2.11)

with t = 1, . . . , n, we can compute the least squares estimator β̂ and then

compute the residuals rt̂ = rt − ⟨β̂, (1, t, . . . , tp)⟩. The Durbin–Watson Test

assumes the following model for the residuals:

rt̂ = ρr̂t−1 + wt (2.12)

where wt is white noise. Then, it tests the hypotheses H0 : ρ = 0 vs H1 : ρ ̸= 0.

It does this by computing the test statistics,

QDW =

∑︁n
t=2(rt̂ − r̂t−1)

2∑︁n
t=2 rt̂

2 . (2.13)

If this test statistic is close to zero, it implies that rt̂ and r̂t−1 are close in value

13



indicating a strong positive autocorrelation of order 1. In contrast, if the test

statistic is large (close to the max of 4), then it indicates that there is a strong

negative autocorrelation of order 1. Otherwise, a test statistic near 2 indicates

no autocorrelation of order 1.

The main purpose of the Durbin-Watson test is to check whether a fitted

model is a good fit or not. It examines the presence of autoregressive corre-

lations within the residual vector. Therefore, it is crucial to conduct tests for

serial correlation for better model selection.

In the context of this thesis, we are more focused on detecting autocorre-

lation in any time series data, rather than the idea of whether the model is a

good fit. The same can be done using the Durbin-Watson test as well. If Xt

is the time series, then we can fit the most simple intercept model,

Xt = µ+ γt (2.14)

where γt is the white noise and µ is the mean intercept. Now the Durbin-

Watson test is essentially testing for autocorrelation in the time series itself.
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Chapter 3

Main Results

In this chapter, we consider the group SO(n), consisting of all orthogonal

matrices with determinant 1. For each matrix M ∈ SO(n), we define a test

statistic,

ϕ̃M = (MX)tA(MX) (3.1)

where X ∈ Sn−1 and A is the shift matrix as defined before. We are essentially

considering a new test statistic which randomly rotates the sample autocorre-

lation function. As noted in Equation 2.10, we can, without loss of generality,

assume that X ∈ Sn−1. Let M ∈ SO(n) and x ∈ Rn. Then we have,

∥Mx∥22 = (Mx)tMx = xtM tMx = xtx = ∥x∥22 (3.2)

i.e., orthogonal matrices preserve the L2 norm and as a consequence, the op-

erator norm as well. Therefore, we can conclude that MX also belongs to

Sn−1

15



3.1 Concentration Inequality

Note that our matrix A is not symmetric. In the context of quadratic forms,

using a symmetric matrix significantly streamlines our calculations. The fol-

lowing lemma fulfills this requirement.

Lemma 3.1.1. Let B = A+At

2
, be the symmetric part of A. Then for all

x ∈ Rn, we have xtAx = xtBx.

Proof. We note that,

xtBx = xt

(︃
A+ At

2

)︃
x

=
xtAx

2
+

xtAtx

2

=
xtAx

2
+

(xtAx)t

2

=
xtAx

2
+

xtAx

2

= xtAx

Therefore, we can replace our matrix A with the new matrix B (which

is symmetric) without changing our quadratic form. This lemma is useful in

case we want to use a result that requires symmetry. It turns out that B is a

tridiagonal matrix with 0 in the main diagonal and 1
2
both in the upper and

the lower diagonal.

For a fixed x ∈ Sn−1, define Fx : SO(n) → R by,

M ↦−→ (Mx)tA(Mx) (3.3)

16



Note that, FX(M) = ϕ̃M . In order to use Corollary 2.1.6, we have the following

result.

Theorem 3.1.2. For a fixed x ∈ Sn−1, the function Fx is Lipschitz with Lip-

schitz constant 2, where the group SO(n) is equipped with the Hilbert-Schmidt

metric.

Proof. Let g : Sn−1 → R be defined by, g(x) = xtAx = xtBx (using Lemma

3.1.1). It is clear that g is continuously differentiable. Since Sn−1 is com-

pact and any continuously differentiable function over a compact domain is

Lipschitz and the Lipschitz constant equal to the maximum magnitude of the

derivative, we can conclude that g is also Lipschitz. Also, ∇g(x) = 2Bx.

Therefore, the Lipschitz constant of g is,

max
x∈Sn−1

∥2Bx∥ = 2 max
x∈Sn−1

∥Bx∥ = 2ρ(B) (3.4)

where ρ(B) is the spectral radius of B. Using [6], we know that ρ(B) ≤ 1, so,

we can conclude that g is 2-Lipschitz.

Now, let P,Q ∈ SO(n) and x ∈ Sn−1 be fixed. Then, Fx(P ) = g(Px) and

17



Fx(Q) = g(Qx). Therefore,

|Fx(P )− Fx(Q)| = |g(Px)− g(Qx)|

≤ 2∥Px−Qx∥2

= 2∥(P −Q)x∥2

≤ 2∥(P −Q)∥op∥x∥2

≤ 2∥(P −Q)∥op

= 2
√︁

λmax[(P −Q)t(P −Q)]

≤ 2

⌜⃓⃓⎷ n∑︂
i=1

λi[(P −Q)t(P −Q)]

= 2
√︁

trace[(P −Q)t(P −Q)]

= 2∥(P −Q)∥HS

where ∥.∥HS is the Hilbert-Schmidt norm. Therefore, we can conclude that

the function Fx is also 2-Lipschitz.

In order to apply Corollary 2.1.6, we also need to calculate the expected

value of ϕ̃M over SO(n). We use the following proposition from [4].

Proposition 3.1.3. Let S ∈ Rn×n be a symmetric matrix with spectrum λ1 ≥

λ2 ≥ · · · ≥ λn, and let bS : Rn × Rn → R+ be a bilinear form defined by,

bS,SO(n)(x, y) =

∫︂
SO(n)

(Mx)tS(My)dρ(M) (3.5)

where the integration is taken over SO(n) with Haar measure ρ. Then, bS,SO(n)(x, y)
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is rotationally invariant and furthermore,

bS,SO(n)(x, y) = λ̄⟨x, y⟩ (3.6)

where ⟨., .⟩ is the standard Euclidean inner product and λ̄ = n−1
∑︁n

i=1 λi.

The proof of this proposition follows from the fact that any bilinear form on

a real Hilbert Space is of the form ⟨Mx, y⟩ for some bounded operator M . As

a consequence, we can write b(x, y) =
∑︁n

i=1 cxiyi for some c > 0 by rotational

invariance. The subsequent calculations follow directly from the computation

of c, which is determined to be n−1
∑︁n

i=1 λi. Using this proposition, we get

the following corollary.

Corollary 3.1.4. The expectation of ϕ̃M over SO(n) is 0, i.e., ESO(n)[ϕ̃M ] = 0

Proof. By definition,

ESO(n)[ϕ̃M ] = bB,SO(n)(X,X) =

∫︂
SO(n)

(MX)tB(MX)dρ(M) (3.7)

where B is the symmetric part of our shift matrix A. Now the proof directly

follows from Proposition 3.1.3, noting that B is symmetric with sum of eigen-

values zero, since trace of B is zero.

Having established the Lipschitz continuity of Fx and computed the ex-

pected value, we can now combine these results to derive the desired concen-

tration inequality required for our hypothesis test.
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Theorem 3.1.5. Let M ∈ SO(n). Then for each t > 0,

P(ϕ̃M ≥ t) ≤ exp

{︃
−(n− 2)t2

16

}︃
(3.8)

where ϕ̃M is as defined above.

Proof. The proof follows directly from Corollary 2.1.6, 3.1.4 and Theorem

3.1.2.

Note that we test the hypothesis, H0 : ϕ = 0 vs H1 : ϕ > 0, i.e., we start

by detecting if the there is any positive autocorrelation in our data. Based

on our notation, ϕ̃I is based on the original data, where I is the identity

matrix. Then the p-value of our hypothesis test is P(ϕ̃M ≥ ϕ̃I). One way to

approximate this is by randomly generating huge number of random rotations

from SO(n). However, computations of such large order may be impractical as

explained in Section 2.2. Therefore, Theorem 3.1.5 allows us to avoid relying

on simulation-based approximations and provides a solid sub-Gaussian bound

for the p-value.

3.2 The Beta Adjustment

A significant challenge in employing inequalities, including concentration in-

equalities, for statistical testing is the substantial loss of power to reject the

null hypothesis caused by universal constants that are often too big for applica-

tions. Motivated by the approach in [1], we want to develop a transformation

based on the beta distribution to rectify our p-values and restore the lost

statistical power.
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We begin this section by calculating the mean and variance of the autocor-

relation estimator, ϕ̂, under H0. We start by observing that under H0, ϕ = 0,

i.e, under the null hypothesis, our data behaves like white noise. Therefore,

we have for all t ∈ {1, . . . , n},

Xt = εt (3.9)

where εt is white noise with mean zero. Hence, E[Xt] = E[εt] = 0 for all

t ∈ {1, . . . , n}. Hence, for i ∈ {1, . . . , n− 1}

E[XiXi+1] = E[εiεi+1] = E[εi]E[εi+1] = 0 (3.10)

The above equation holds true since εi’s are uncorrelated. Therefore,

E[ϕ̂] = 0 under H0.

In order to calculate the variance, we will need the following lemma from

[11]. We state the result without proof.

Lemma 3.2.1. Let x have a spherical distribution. Then for symmetric ma-

trices A and B, we have,

E[xtAx · xtBx] = µ22(tr(A) · tr(B) + 2tr(AB)) (3.11)

where µ22 = E[X2
1X

2
2 ].

Here spherical distribution means that x
||x|| is distributed uniformly over the

surface of the unit sphere, independently of ||x||. This result is crucial for our

work, as it allows us to easily calculate expectations of product of quadratic

forms, aiding us in the computation of the variance.

Proposition 3.2.2. Under H0, the variance of ϕ̂ is n−1
n(n+2)

.
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Proof. We start by seeing that, Var(ϕ̂) = E[ϕ̂
2
]−E[ϕ̂]2 = E[ϕ̂

2
], since E[ϕ̂] = 0

under H0. Now, ϕ̂
2
= (X tBX)2 = X tBX · X tBX, where X is uniformly

distributed in the sphere Sn−1. Using Lemma 3.2.1, since trace of B is zero,

we have,

E[ϕ̂
2
] = E[X tBX ·X tBX] = µ22(2tr(B

2)) (3.12)

Now µ22 = E[X2
1X

2
2 ]. To calculate µ22, we note that,

X2
1X

2
2 = (1−X2

2 − · · · −X2
n)X

2
2 = X2

2 −X4
2 −X2

3X
2
2 − · · · −X2

nX
2
2 (3.13)

By symmetry, µ22 = E[X2
i X

2
j ] for any i ̸= j. Therefore, taking expectations,

µ22 = E[X2
2 ]− E[X4

2 ]− (n− 2)µ22 (3.14)

Upon rearranging, we get,

µ22 =
1

n− 1

(︁
E[X2

2 ]− E[X4
2 ]
)︁

(3.15)

Now,
∑︁n

1 X
2
i = 1. Taking expectation, E[X2

2 ] =
1
n
by symmetry. Also, since

X2
2

d
= Beta

(︃
1
2
, (n−1)

2

)︃
, E[X4

2 ] is equal to the second moment of the beta dis-

tribution, which is 3
n(n+2)

. Therefore,

µ22 =
1

n− 1

(︃
1

n
− 3

n(n+ 2)

)︃
=

1

n(n+ 2)
. (3.16)

Finally, we calculate the trace of B2. From [6], we know the eigenvalues of B
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are,

λk = cos

(︃
kπ

n+ 1

)︃
(3.17)

where k = 1, 2, · · · , n. Since the trace of B2 is the sum of its eigenvalues, we

have,

tr(B2) =
n∑︂

k=1

λ2
k =

n∑︂
k=1

cos2
(︃

kπ

n+ 1

)︃
(3.18)

To simplify our calculations, we express cos in terms of complex numbers, i.e.,

cos

(︃
kπ

n+ 1

)︃
=

1

2

(︂
ei

kπ
n+1 + e−i kπ

n+1

)︂
(3.19)

Hence,

cos2
(︃

kπ

n+ 1

)︃
=

1

4

(︂
e2i

kπ
n+1 + e−2i kπ

n+1 + 2
)︂

(3.20)

Therefore,

n∑︂
k=1

cos2
(︃

kπ

n+ 1

)︃
=

1

4

n∑︂
k=1

(︂
e2i

kπ
n+1 + e−2i kπ

n+1 + 2
)︂

(3.21)

We have two geometric progressions, which are straightforward to calculate.

1 +
n∑︂

k=1

e2i
kπ
n+1 =

n∑︂
k=0

(︂
e2i

π
n+1

)︂k
=

1− (e2i
π

n+1 )n+1

1− e2i
π

n+1

= 0 (3.22)

1 +
n∑︂

k=1

e−2i kπ
n+1 =

n∑︂
k=0

(︂
e−2i π

n+1

)︂k
=

1− (e−2i π
n+1 )n+1

1− e−2i π
n+1

= 0 (3.23)

Plugging this in equation 3.18, we get,

tr(B2) =
1

4
(−1− 1 + 2n) =

n− 1

2
(3.24)
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Thus, finally we have our variance,

Var(ϕ̂) =
n− 1

n(n+ 2)
(3.25)

Therefore for large n, the variance is approximately equal to 1
n
. The 1

n

term signifies that, with larger sample sizes n, the estimation of autocorrela-

tion becomes more precise. Finally, combining the above results, we have the

following theorem.

Theorem 3.2.3. Under the setting of Theorem 3.1.5 with n sufficiently large,

P

(︄
exp

{︃
−(n− 2)(ϕ̃I)

2

16

}︃
≤ u

)︄
≤ C0I

(︃
u;

8n(n+ 2)

(n− 1)(n− 2)
,
1

2

)︃
(3.26)

where I(u;α, β) is the regularized incomplete beta function and,

C0 =

(︃
8n(n+ 2)

(n− 1)(n− 2)

)︃1/2

Γ

(︃
8n(n+ 2)

(n− 1)(n− 2)

)︃
Γ

(︃
1

2
+

8n(n+ 2)

(n− 1)(n− 2)

)︃−1

Proof. We begin by noting that ϕ̂ = ϕ̃I . By central limit theorem,

⎛⎝ ϕ̃I√︂
n−1

n(n+2)

⎞⎠2

=
n(n+ 2)(ϕ̃I)

2

n− 1
(3.27)

is approximately χ2(1). Now for Z ∼ χ2(1), some c > 0 and u ∈ (0, 1), we
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have,

P(e−Z/c ≤ u) = P(Z ≥ −c log u)

=
√
2π

∫︂ ∞

−c log u

x−1/2e−x/2dx

=

√︃
c

2π

∫︂ u

0

(− log y)−1/2yc/2−1dy

≤
√︃

c

2π

∫︂ u

0

(1− y)−1/2yc/2−1dy

=
(c/2)1/2Γ(c/2)

Γ((c+ 1)/2)
I(u; c/2, 1/2)

where the inequality − log y ≥ 1 − y for y ∈ (0, 1) is used. Replacing our

constant c with 16n(n+2)
(n−1)(n−2)

, we get that,

P

(︄
exp

{︃
−(n− 2)(ϕ̃M)2

16

}︃
≤ u

)︄
≤ C0I

(︃
u;

8n(n+ 2)

(n− 1)(n− 2)
,
1

2

)︃
(3.28)

where C0 =
(︂

8n(n+2)
(n−1)(n−2)

)︂1/2
Γ
(︂

8n(n+2)
(n−1)(n−2)

)︂
Γ
(︂

1
2
+ 8n(n+2)

(n−1)(n−2)

)︂−1

.

Theorem 3.2.3 allows us to improve our p-values from Theorem 3.1.5 in

order to recover the lost statistical power. The improved bound is,

P(ϕ̃M ≥ t) ≤ C0I

(︃
exp

{︃
−(n− 2)t2

16

}︃
;

8n(n+ 2)

(n− 1)(n− 2)
,
1

2

)︃
(3.29)

Note that since t > 0, this test essentially tests for positive autocorrelation

instead of any autocorrelation in the data. Hence, this is a one-sided test. In

order to make it a two-sided test, we need a bound for P(|ϕ̃M | ≥ t). We note
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that, for t > 0,

P(|ϕ̃M | ≥ t) = P(ϕ̃M ≥ t) + P(ϕ̃M ≤ −t)

= P(ϕ̃M ≥ t) + P(−ϕ̃M ≥ t)

By similar argument, −ϕ̃M is also 2-Lipschitz and we have the same con-

centration inequality for −ϕ̃M as well. Therefore, we can conclude that,

P(|ϕ̃M | ≥ t) ≤ 2C0I

(︃
exp

{︃
−(n− 2)t2

16

}︃
;

8n(n+ 2)

(n− 1)(n− 2)
,
1

2

)︃
(3.30)

results in a two-sided test.

3.3 Simulation Study

We conducted simulation studies to better understand how our rotation test

is performing when compared to the Durbin-Watson test.

3.3.1 Normal Errors

In Figure 3.1, we compared the mean log2 p-values for three results for a sample

size of 1000, repeated 100 times as the autocorrelation is varied from 0 to 0.20.

We have considered a two sided test. For this example, we have assumed that

the errors are N (0, 1). We considered the original p-value from Theorem 3.1.5,

the improved p-value from 3.30 and the p-value from the Durbin-Watson test.

As it can be seen, our original p-values are larger than the DW test while
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the beta adjusted bound is tighter giving a close approximation to the DW

p-value.

In Figure 3.2, we have considered a higher sample size of 10000. The other

conditions remain the same. As it can be seen, as the sample size increases,

the beta adjusted and the DW p-values almost become indistinguishable.

3.3.2 t-Distributed Errors

In this context, our framework remains consistent with that of normal er-

rors, with the sole distinction being the adoption of t-distributed errors. Our

analysis is based on a sample size of 1000. Specifically, in Figure 3.3, we

set the degrees of freedom to 2, and in Figure 3.4, the degrees of freedom

are set to 3. The sharp corners present in Figure 3.3 makes sense since the

t-distribution with degrees of freedom equal to 2 has infinite variance. As

observed previously, our original p-values are larger than those obtained from

the Durbin-Watson test. However, the application of the beta-adjusted bound

produces a more constrained range, closely mirroring the DW p-value.
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Figure 3.1: Normal errors with n = 1000

Figure 3.2: Normal errors with n = 10000
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Figure 3.3: t-Distributed errors with df = 2

Figure 3.4: t-Distributed errors with df = 3
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3.4 Discussion and Future Work

Our rotation test currently works well for finding autocorrelation with lag of

order 1, similar to the Durbin-Watson test. The advantage of our test is that

it can be extended to work with higher lags, unlike the Durbin-Watson test,

where the DW statistic gets too complicated as the lag increases.

To handle higher lags, let’s say for k, greater than 1, we can use a new

shift matrix Ak where A is the original shift matrix. This leads to our auto-

correlation estimator:

ϕ̂k = X tAkX (3.31)

While the basic math stays the same, we should be able to adjust how

we deal with the eigenvalues of Ak when calculating the variance of ϕ̂k. This

tweak is important for keeping the accuracy of our method.

Looking ahead, we aim to make our approach work for higher lag orders,

showing our commitment to improving and expanding its usefulness. Also, it’s

worth noting that our method can be applied to any general quadratic form,

making it useful for other types of analyses.
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