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Abstract 

 

Metabolomics is an active research field on the methods development for the analysis of small 

metabolites in biological systems. It provides powerful approaches that allow us to examine the 

variations in the metabolic profiles and is capable of detecting complex biological changes using 

statistical pattern recognition methods. In metabolomics analysis, large amounts of data are 

produced routinely in order to characterize a sample consisting of hundreds to thousands of 

metabolites. The conclusions drawn from the metabolomics data rely on the coverage of the 

detection method, the accuracy of the metabolite concentrations, and the completeness of data to 

include all the metabolite signals. Therefore, a number of challenges are associated with the data 

processing methods specific to each experimental platform.  

  The LC-MS technique has been used widely in the application of metabolomics due to its 

high sensitivity and high throughput. Traditional LC-MS platforms are limited by the coverage 

of the detection and the less reproducible quantification results. Thus, the chemical isotope 

labeling LC-MS method was developed in our group for an improvement of the metabolite 

separation and a higher detection sensitivity of a broad range of metabolites in a biological 

sample. In the labeling LC-MS method, each labeled metabolite will generate a peak pair signal 

in their mass spectra, with the light peak from the individual sample and the heavy peak from the 

pooled sample. Accordingly, a customized data processing method is required in dealing with the 

data generated by different chemical isotope labeling LC-MS experiments. My research focused 

on the development of data processing methods to address the challenges from the growing data 

processing tasks in the chemical isotope labeling LC-MS. I developed an integrated data 
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processing workflow that checked the LC-MS raw data in terms of the mass accuracy and 

retention time reproducibility (Chapters 2 and 3), aligned the peak pair data from individual files, 

and removed the false peak pairs and redundant peak pairs to improve the confidence of each 

peak pair in representing a true labeled metabolite (Chapter 4). A missing ratio imputation 

method was developed to fill all missing ratios and generate a complete metabolite-intensity 

table for the statistical analyses (Chapter 4). In the peak pair ratio calculations, I developed a data 

processing method that accounts for natural isotope contributions in the peak intensity of the 

13C2-labeled peak and improved the quantification accuracy (Chapter 5). An intensity-dependent 

mass tolerance method was developed to assist the mass-based database search (Chapter 6). All 

the processing methods were integrated in a program with a graphical user interface that has 

been implemented in the lab for routine data processing tasks. I used an application of a wine 

metabolomics study to demonstrate the data processing workflow (Chapter 7). The integrated 

data processing program can be applied in different chemical isotope labeling LC-MS 

experiments to facilitate the qualitative and quantitative analyses of different metabolomes.  
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1. Chapter 1 Introduction 

 

1.1 Overview of Metabolomics 

Metabolites are defined as the small chemical products in cellular metabolism processes with 

molecular weight less than 1500 Da in contrast to the relatively large biological polymers, such 

as DNA, RNA, proteins, and polysaccharides.1 Similar to the genome, proteome and 

transcriptome, the complete set of metabolites found in one biological sample is called a 

metabolome. Metabolomic is the omics science that studies the metabolites within one 

metabolome, including their identity, quantity, and interactions. Metabolites can include a range 

of endogenous and exogenous compounds, such as amino acids, small polypeptides, nucleic 

acids, oligosaccharides, lipids, and many hormones.2 These small metabolites are related directly 

to the phenotypic traits of an organism, such as color, shape, pattern, and other physical 

characteristics.3 Many functions in a biological system are built on the metabolic processes 

involving small molecules, including signaling among cells, response to environmental stimuli, 

and energy transformations.4  

The collection of metabolites represents both the endpoints of the expressions of the 

genome and the interaction between one subject and its environment. As an emerging field in 

omics, metabolomics answers the questions in life science by looking at the pathway networks 

that involve thousands of metabolites. In contrast to genomics, which can be used to indicate 

what might potentially happen in an organism, metabolomics data can indicate the current state 

in a biological process. Specifically, the concentration changes of metabolites can be reflective to 

the biological processes, such as the development of certain diseases. Therefore, metabolomics 
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can be complementary to the data generated by genomics, transcriptomics, and proteomics as it 

is the “omics” approach closest to the phenotype.5 

In the central molecular biological dogma, genetic information flows directionally from 

DNA to RNA followed by the translation to proteins. The proteins, such as enzymes, can affect 

the concentrations of their substrates and products.6,7 Figure 1.1 shows the different fields of 

omics studies in the scope of the central dogma of molecular biology. From a biochemical 

viewpoint, DNA, RNA, and proteins can be described using their smallest building blocks. For 

example, DNA and RNA are made of four nucleotide monomers, and protein can break down 

into 20 amino acids. Metabolites, on the other hand, contain a much broader scope of chemicals, 

including those naturally produced within an organism as well as other exogenous chemicals 

from the environment. A diverse chemical property and wide concentration distribution make it 

challenging for detecting these metabolites with high coverage. Thus, research in metabolomics 

usually focuses on different groups of metabolites for different applications.  

 

 

Figure 1.1 Omics studies in the central dogma of molecular biology 
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Metabolomics can be a powerful tool for characterization of complex phenotypes and the 

determination of biomarkers for the diagnostics to certain diseases. A biomarker can be defined 

broadly as a characteristic that can be measured to indicate the physiological state or pathogenic 

processes for the purpose of differentiating patients with a specific disease from healthy people.8  

This includes a physical readout, such as blood pressure, a molecule concentration level, and 

even a genome sequencing. The study of disease biomarkers has improved the decision-making 

process in drug development and disease diagnostics greatly. Although many approved 

biomarker assays are based on protein or RNA, small molecule biomarkers have attracted 

increasing interest as they are more sensitive to the biological changes. Small molecular 

diagnostic biomarkers have been used for risk assessment of certain diseases like cancer before 

the symptoms become noticeable, enabling an early diagnosis. A prognostic biomarker can 

indicate the progression and likely outcomes of a disease to assist treatment specifically to each 

patient. Moreover, a biomarker can be related directly or indirectly to the disease development 

during its onset or progression. For this reason, biomarkers using small metabolites are studied 

widely and applied for the diagnosis, assessment of patients, and therapy determination in 

clinical practice.9-11 

The understanding of the disease mechanism through studies of metabolic changes also 

provides a new method for drug development. For years, drug discovery has been focused on the 

genetic origin through genome sequencing, transcripts profiling.12 However, the number of 

targeted disease genes is far fewer than the number of diseases, which is limiting the drug 

discovery pipeline. It was found that only certain diseases have a clear genetic basis as many of 

them are the results of exposures to the environment.13 A study collected the mortality data in the 

United States over 16 years and showed that the leading contributors to death are related to 
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tobacco, alcohol, illicit drugs, microbial agents, toxic agents etc.14 For example, tobacco 

accounts for over 400,000 deaths each year among Americans. Tobacco exposure contributes 

substantially to cancer disease in lung, oral cavity, pancreas, kidney, and other organs. A high 

risk of cardiovascular disease, such as heart disease, stroke, and high blood pressure, was 

observed in frequent smokers. Metabolites from these exogenous origins can have a great impact 

on human health.  

Metabolomics research provides a new angle in drug development by studying the 

alteration of metabolic processes. For example, one study has shown several unexpected 

chemical species that were altered in chronic and complex diseases, including atherosclerosis, 

cancer, and diabetes.15 Both exogenous and endogenous metabolites have a far more significant 

role in cellular signaling, disease development, and physiological homeostasis. For example, 

cancers are well known as a genetic disease with gene mutations. However, increasing evidence 

has shown that a metabolic disorder is associated closely with cancer development. A study 

reported an altered metabolic pattern in tumor cells for aerobic glycolysis and glutaminolysis.16 

Alterations in theses metabolic processes are regulated by oncogenes and tumor suppressor genes. 

In tumor cells, these metabolic disorders were found to have an elevated concentration of 

substrates for cell growth. Blocking or restoring some of these key metabolic pathways involved 

in tumor development potentially can provide a new approach to cancer treatments.  

In addition to drug discovery, the development of metabolomics has led to a new research 

area of precision medicine. This concept takes into account the individual variability and aims at 

providing a personalized treatment plan targeted to one’s own genetic, phenotypic, and 

psychosocial characteristics.17,18 With the developments of large-scale databases, powerful 

analytical platforms, and computational tools, a metabolomics experiment is able to collect a 
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comprehensive personal metabolic signature to allow sub-classification of diseases and reveal 

biomarkers for drug response. Certain biomarkers could be used to determine the efficacy of the 

medication in the treatment of a specific patient. The dose of the drug can be optimized by the 

biomarkers involved in the metabolism of the drug,19 and the optimal therapy can be determined 

further based on the biomarkers profile of an individual. One of the applications of precision 

medicine is in the cancer therapy. Tumor genomic profiling has been used to classify tumor types, 

perform assessments, and determine therapeutic decisions.20 However, the differences in cancer 

genomes can mask the underlying causes. As mentioned earlier, many cancers can have a 

number of unique pathway alterations.16,21 With metabolomics techniques, such as metabolite 

imaging, one can achieve a better classification of the tumors and enable an informed adjustment 

to the cancer therapy.  

 

1.2 Strategies of Metabolomics Study 

1.2.1 Targeted and untargeted metabolomics 

A metabolome may contain a vast variety of metabolites with diverse chemical structures and a 

wide concentration distribution. There is no analytical method that is capable of the measurement 

of all metabolites of interest.22 In a targeted method, the study would focus on a number of 

predefined metabolites as a subset of the metabolome (most typically, dozens to hundreds of 

known compounds). This usually requires an a priori knowledge of the sample and the chemical 

contents. For example, in the study of genetic alteration, the analysis can be constrained to the 

substrate and direct products of the corresponding encoded protein.23  
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The benefit of knowing the list of metabolites of interest is that the sample preparation 

can be optimized for those relatively low abundant metabolites, reducing the dominance of 

metabolite of high concentration in the analyses. Moreover, data processing steps can focus on 

the selected metabolite signal and filter all other noise signals from entering subsequent 

analyses.24 With a targeted metabolomics approach, one can achieve absolute quantification 

using internal standards (e.g. isotope analogues in mass spectrometry) in the sample preparation 

for each targeted metabolite. This approach uses the known information in the metabolic 

pathways and the final metabolite change can be mapped directly onto the biological knowledge 

and integrated with other omics data.  

For the instrumental analysis of a list of targeted compound, predefined metabolite 

signals are edited in the method so as to separate the metabolites of interest from other signals. 

For example, in a LC-MS experiment, the retention time of each target analyte is determined first 

and the m/z of each precursor ion is added into the retention time segments. During the data 

collection, each targeted analyte would be selected in the quadrupole and further detected in the 

mass analyzer.  

Untargeted metabolomics is used for comprehensive metabolome analysis, that is, the 

analysis of all the detectable signals in a sample, giving the ability to detect many unknown 

compounds. This untargeted approach offers the opportunity for the discovery of novel targets 

for further investigation. Unlike the targeted approach, untargeted analysis requires a sample 

preparation step to allow a broad range of metabolites for high metabolome coverage. 

Consequently, the data collected from an untargeted analysis can be large, and it will require an 

efficient data processing method for metabolite information extraction and identification. To 
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maximize the detection coverage, one would consider the sensitivity of the relatively low 

abundant species.24  

The untargeted LC-MS metabolomics platform involves multiple steps. The first step is 

to acquire the complete mass spectrometry data in each individual sample. Metabolite 

information will be extracted from the raw data, and these data will be analyzed using 

bioinformatics software that performs quantitative analyses to recognize the significant 

metabolites feature that cause the biological groups separation. Based on the retention time and 

accuracy mass of each metabolite, one will identify as many as possible metabolites in the data 

using one or multiple standards databases. To confirm the identifications, tandem mass 

spectrometry (MS/MS) can be used to collect MS/MS spectra to provide fragments information. 

A targeted MS/MS analysis is performed typically on one of the pooled samples that usually 

contain most metabolites present in all samples. Then, the fragmentation pattern of the MS/MS 

data is compared to the MS/MS database to confirm the identification. The limitation of using 

MS/MS data matching is that there is a limited number of MS/MS spectra available in a database 

and not all metabolites in a sample can have a high enough concentration to produce sufficient 

fragment ions. Therefore, retention time can be used as another identification parameter. The 

commercial standards will have to be analyzed using the same LC instrument settings and 

gradient to allow for a comparison of the retention time. Accurate mass, MS/MS data and 

retention time often work collaboratively for the identification of the unknowns.  

Targeted and untargeted approaches are complementary in metabolomics. Most often, 

untargeted metabolomics is used first for the comprehensive analysis of all detectable analytes in 

a sample. This list consists of many unknowns, providing the opportunity for discovering novel 

metabolites and pathways. After significant metabolites are extracted from the global analysis, 
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targeted analysis can be conducted on these specific metabolites for their identification, absolute 

quantifications, and pathway analysis. Biological meaning can be explored further for the 

identified metabolites using their measured characteristics in different biological samples.  

 

 

1.2.2 Metabolic profiling and fingerprinting 

Metabolomic profiling and fingerprinting are both untargeted approach. Metabolic profiling uses 

a tool to analyze a group of metabolites in a specific metabolic pathway or in a class of 

metabolites. For example, in a dansylation labeling LC-MS experiment, the amine and phenol 

containing metabolites are labeled selectively during sample preparation for instrumental 

analysis. After obtaining the amine and phenol profile in each sample, one can classify different 

biological groups based further on the concentrations of the labeled metabolites. The 

differentially expressed metabolites can provide more information for the study of potential 

alterations in the related metabolic pathways. Compared to the study of a few marker metabolites, 

the profiling data gives a more detailed description of any metabolic changes.   

In metabolic fingerprinting, the metabolites patterns are obtained without identification of 

each metabolite to enable a quick comparison of metabolic changes in response to stimulants or 

events such as a disease, exposure of a toxin, environmental stress, or genetic change. Metabolic 

fingerprinting requires a rapid, high-throughput global analysis technique, such FT-IR, NMR, 

and MS, in order to be applied to a wide range of metabolites.25-27 As many diseases are the 

result of metabolic disorder that involves a stream of metabolites in the related pathway, it can be 

hard to study the mechanism of a disease development with a few targeted compounds. Often in 
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disease sample analysis, the real differentiating variables can be buried among many other 

common features that show no difference among biological groups. To enable a global view for 

different biological samples, metabolic fingerprinting measures the chemical patterns of 

metabolites in the whole sample as a way to discriminate samples of different biological origins. 

Metabolic fingerprinting, without metabolite identification, can be a diagnostic tool by 

evaluating the metabolic pattern of a sample from a patient in comparison to a healthy or 

diseased sample. The performance of a treatment strategy can be monitored by looking at the 

sample fingerprints after treatment and seeing if they fall in the same cluster as a healthy sample.  

Although metabolic fingerprinting offers a quick tool for sample classification, without 

identification of key metabolites that cause the clustering of different experimental groups, one 

cannot reveal the underlying mechanism of the biological processes. Qualitative and quantitative 

methods should be developed for investigating the specific metabolites in order to tie metabolic 

fingerprinting and profiling together.  

 

1.2.3 Sub-metabolome analysis 

Advances in the sensitivity, dynamic range, and data collection speed in mass spectrometry 

instrumentation have made it possible for the detection of thousands of metabolites in a 

biological sample.  However, the actual number of metabolites can be much larger than the 

detectability of one analytical method. A subclass of the whole metabolome usually is selected as 

the target when developing an analysis method, since certain groups of compound can be the 

most relevant to one study. With this strategy, metabolomics is finding its applications in various 

fields, including lipidomics, exposomics.5  
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Lipids are a class of compounds that are present in tissue, cell, and small hormones. They 

perform a variety of functions in a biological system. Lipids have the unique chemical properties 

of being relatively non-polar and highly soluble in organic solvents. Lipidomics is the branch of 

metabolomics focusing on lipid compounds and aims to provide detailed and quantitative 

information on the construction of cellular lipidome, lipid metabolism, lipid–lipid interaction and 

lipid protein interaction. Due to these unique chemical properties, sample analysis often begins 

with extraction of lipids from a tissue or cell with an organic solvent. Then, the complex lipid 

mixture is analyzed by one or multiple analytical techniques to obtain the lipid profile. The study 

of lipid metabolism and lipid–protein interactions has been shown to have the potential to reveal 

the underlying mechanism of many neurological disorder diseases, such Alzheimer’s disease.28 

A metabolome consists of endogenous compounds produced within an organism and a 

vast variety of exogenous metabolites from the environment. Many diseases can find their causes 

from different environmental factors. For example, a frequent smoker can have a much higher 

risk of having lung cancer compared to a non-smoker. All the non-genetic factors that contribute 

to the development of a disease are considered to be environmental. These include natural or un-

natural chemicals, various drugs, infectious agents and stress-related factors. A relatively new 

research field called “exposomics” attempts to analyze all the  environmental stresses in order to 

obtain the knowledge and understanding in different non-genetic diseases.29 It studies the effect 

of exogenous compounds, including their metabolism in different organisms and the potential 

disturbance on normal pathways. For example, chemical contaminants from air, water, soil, and 

food were found to be related to inflammation reaction, elevated reactive oxygen species, 

methylation, and gene expression changes. The study of these groups of exogenous compounds 
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and their metabolism potentially can reveal the mechanism of many chronic diseases, including 

cancer and diabetes.29  

Chemical isotope labeling LC-MS is a strategy for sub-metabolome analysis that is based 

on the chemical structures of metabolites. The method employs a chemical derivatization method 

in the sample preparation step that targets a group of analytes with a common functional group; 

typical examples are the amine and phenol metabolites analysis with dansylation labeling and the 

acid-containing metabolites analysis with DmPA labeling.30,31 Compared to protein analysis, in 

which can break down the structure to the sequence of 20 amino acids, no general analysis 

method can be applied to all types of metabolites. The divide and conquer strategy in 

metabolomics focuses on each sub-metabolome and method optimization in each labeling 

platform to achieve maximum detection. By combining the results of different sub-metabolomes, 

one can achieve a high coverage of the whole metabolome and obtain the global map of the 

metabolic pathway networks.  

 

1.3 Analytical Technologies in Metabolomics 

1.3.1 Instrumentation 

A metabolomics experiment aims at the simultaneous quantification of multiple metabolites 

using sensitive and specific analytical techniques, such as gas or liquid chromatography 

combined to mass spectrometry.32 Unlike genomics, transcriptomics, or proteomics, which have 

well-developed experimental methods using one or a few instruments, metabolomics usually 

requires multiple instruments and experimental techniques in analyzing metabolites with diverse 

chemical properties.33  
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As one of the most established spectrometric techniques, nuclear magnetic resonance 

spectroscopy (NMR) can identify and quantify a broad range of compounds. The use of NMR in 

studying metabolism and metabolic processes can be traced back to 1973 when A. L. Burlingame 

and his colleagues used stable isotope deuterium and carbon-13 to study the ethanol metabolism 

in rats.34 NMR has been exceptional in identifying and quantifying most organic chemicals in 

complex metabolite mixtures, along with a number of unique advantages. In particular, it is non-

destructive, highly automated, needs little or no sample separation, provides rich structural 

information for the identification of novel compounds, and requires no chemical derivatization.35 

It is fast and usually takes around 2–3 min for the analysis of one sample. NMR has been widely 

used for metabolic profiling, metabolite fingerprinting, and metabolic flux analysis.36 On the 

other hand, the major disadvantage of NMR is its relatively low sensitivity (limit of detection at 

5 μM) and thus requires a large sample amount.37 An NMR instrument also has a high start-up 

cost and a large instrument footprint. With technological advances using higher field magnets 

and cryogenically cooled probes, the sensitivity of the technique has increased for detecting sub 

micro-molar analytes with less sample volume required. However, sensitivity remains the 

number one limitation of the NMR technique for the analysis of large numbers of low-abundance 

metabolites. 

Mass spectrometry (MS) is gaining interest in metabolomics for its superior sensitivity 

and wide dynamic range suitable for the metabolome profiling analysis, in which the 

concentration of metabolites can differ by a few magnitudes.38-40 It can be used as a stand-alone 

platform to analyze a biological sample by a simple direct injection as a rapid technique for 

metabolic fingerprinting. However, direct injection of a complex biological sample can introduce 

strong ion suppression from predominant ions and results in a low ionization efficiency for most 
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low abundant analytes. Also, usually it requires a sample pre-treatment to remove high 

concentrations of salts from the sample, which can be harmful to the MS. To avoid these 

problems, advanced and high throughput separation techniques have been coupled to MS to 

decrease the complexity of a biological sample so as to increase the number of detected 

metabolites.  

Gas chromatography (GC) is a relatively mature and robust separation technology for 

volatile and thermally stable compounds. GC-MS has been used extensively in metabolomics for 

producing efficient and reproducible analysis of a variety of organic molecules and some 

inorganic compounds.41 One advantage of GC-MS is that the data generated from different 

instruments across different labs are consistent with the use of the indexed retention time and the 

highly reproducible electron impact (EI) ionization technique.5,42 Most spectral features 

generated from GC-MS are identifiable with a number of available software packs and GC 

databases for metabolite identification. For the separation of non-volatile compounds on the GC 

column, GC-MS requires a derivatization reaction to create volatile compounds. A derivatization 

method would increase analyte volatility, increase the detector sensitivity, and improve 

chromatographic behavior of an analyte by decreasing its polarity. The applicability of GC-MS 

has expanded greatly due to the advances in derivatization techniques, including but not limited 

to silylation, alkylation, esterification, acylation, and other condensation reactions.43  

High performance liquid chromatography (HPLC) is suited better for the analysis of a 

wide range of chemicals, including labile species, nonvolatile chemicals, polar and nonpolar 

compounds in their native form.44 In reverse phase LC, the stationary phase is made of non-polar 

chemical groups, such as C8 and C18, and the mobile phase is a mixture of water with other 

organic solvents. Several advantages associated with reverse phase LC make it particularly 
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suitable for metabolomics experiments. Firstly, it requires a very small sample volume and 

provides high separation efficiency. Usually, a few microliters to sub-microliters of sample are 

needed as an optimized injection volume. With the development of the UHPLC instrument and a 

separation column with a particle size less than 2 µm, one can achieve an even higher separation 

efficiency with less analysis time. Secondly, it is compatible with most non-polar and moderately 

polar compounds, which covers a wide range of metabolites; since the mobile phase contains 

polar solvents, it is convenient to analyze most water based biological samples. Thirdly, it is 

ready to link to common detector techniques, such as UV and mass spectrometer with an 

Electrospray ionization (ESI) source.45 ESI is a soft ionization method that does not involve 

localized heating during the ionization process. Since there is very little internal energy 

transferred to the molecular ions, most the molecular ions can remain stable during ionization 

into the gas phase. Therefore, ESI is particularly useful for molecular weight determinations, 

making LC-ESI-MS a powerful platform for metabolome profiling work. 

 

1.3.2 Chemical isotope labeling LC-MS based metabolomics 

With the use of Electrospray ionization (ESI) ionization method, we can obtain the signal from 

the intact molecule ions. Though suitable for metabolic profile analysis, ESI suffers from several 

drawbacks, including the most prominent one being the strong ion suppression effect when a 

complex mixture is ionized together. Analytes will compete for charge during the electrospray as 

the ionization efficiency is different for different molecules. Therefore, the level of detected ion 

signal of a particular ion can change, depending on the presence or absence of other co-eluting 

analytes in the matrix. The mass peak intensity data can have relatively large error for 

quantification, especially when comparing samples with different matrices.  
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To improve the quantification accuracy, one can introduce an internal standard in the 

sample to overcome the ion suppression effect through relative quantification. A stable isotope 

internal standard often is used with the mass spectrometry platform. The isotope analogue of a 

targeted compound could have the same retention time as the targeted analyte. As both analyte 

and isotopic internal standard enter the ESI interface, their ionization will remain the same 

regardless of ion suppression from other co-eluting compounds. Therefore, the relative intensity 

ratio can be used to represent the relative concentration of each analyte accurately. However, in 

untargeted metabolomics, it is not possible to prepare an internal isotope standard for each 

metabolite. To address this challenge, our group took another approach using a stable chemical 

isotope labeling LC-MS method. Figure 1.2 shows an example of the labeling reaction with 

dansylation. The dansyl chloride reagent can react with primary or secondary amine and phenol 

containing metabolites. Instead of using an isotope analogue of each metabolite, the labeling 

method introduces a tag molecule to a group of metabolites with either 12C or 13C isotopes. In a 

typical experimental workflow, each individual sample is labeled with 12C-dansyl chloride, and a 

pooled sample (mixture of all individual samples) is labeled with 13C-dansyl chloride. Then, the 

mixture of light and heavy isotope labeled sample is analyzed by LC-MS. For each labeled 

metabolite, it can be detected in the mass spectrum with a light peak from the 12C-labeled 

individual sample and a heavy peak from the 13C-labeled pooled sample. The heavy labeled peak 

here serves as the internal standard for each metabolite. The intensity ratio of light to heavy peak 

is calculated during data processing for further quantitative analysis.  

In addition to a better quantification result, the introduction of a dansyl group also brings 

other advantages to the metabolome analysis. Firstly, it improves the separation of metabolites in 

RPLC; the relatively non-polar dansyl group significantly reduces the polarity of some ionic 
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metabolites. The labeling reaction relatively unifies the chemical diversity of a wide range of 

metabolites and enables an efficient separation using one LC gradient with RPLC. Secondly, it 

improves the ionization efficiency for those less ionizable compounds. The tertiary amine group 

on the dansyl tag can be protonated easily with the addition of formic acid in the mobile phase. 

This overcomes the bias of ESI-MS for those more ionizable species. Thirdly, the use of an 

intensity ratio overcomes the quantification bias towards high abundant analytes. The untargeted 

metabolomics usually favors the high concentration metabolites since they can generate high 

intensity signals. The intensity ratio value is independent of the absolute peak intensity. Even for 

compounds of low concentration, the peak pair ratio can be measured accurately. Therefore, a 

larger quantification range can be achieved with the chemical labeling method. 
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Figure 1.2 Dansylation reaction in the chemical isotope labeling LC-MS platform. The dansyl chloride 

can react with molecules containing amine and phenol to produce a stable labeled compound. The methyl 

group in the dansyl chloride can be either 12C or 13C for light and heavy labeling. 

 

The dansylation labeling LC-MS method has been successfully applied to different biological 

samples, including urine, serum, cerebrospinal fluid, tissues, sweat, and microbial species. 

Yiman Wu and Xian Luo applies the method in microbial metabolomics and obtained the 

metabolic profiles from E. coli and yeast.46,47 Kevin Hooton developed the metabolomics 
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workflow for the human sweat metabolomics using the dansylation labeling method.48,49 

Dorothea Mung used the dansylation labeling method to study the milk metabolomics.50,51 This 

work extended the application of the labeling method to nutrition study. Many diseases were also 

investigated using the dansylation labeling LC-MS method for the discovery of potential 

biomarkers, including Alzheimer’s disease,52-55 Parkinson’s disease,56 prostate cancer,57 

Osteoarthritis,58 etc.  

 

1.4 Data Processing and Analysis in Metabolomics 

1.4.1 Data processing tools for metabolomics 

A large quantity of raw data can be generated from a typical metabolomics experiment with the 

mass spectrometry platform. The raw data contains both the information of the metabolites of 

interest and all other detected signals. It is an impossible task to pick out metabolite information 

by manually examining the spectra, especially in an untargeted analysis. A data processing 

program usually is developed with an efficient algorithm to extract the useful metabolite 

information after instrumental analysis. The use of a processing program significantly reduced 

the time and energy in raw data processing and provided a standard way for processing certain 

types of data.  

Mass spectrometer manufacturers usually have their own data analysis software that 

comes in a bundle with the instrument. Such software contains most general data preprocessing 

methods, including peak centroid calculation, mass calibration, data normalization, and feature 

extraction. In addition to the commercial data processing tools, several web-based data 

processing platforms, including MetAlign,59 MZmine,60 MAVEN,61 MetaboAnalyst, 62-64 and 
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XCMS,65-67 have been developed successfully to facilitate in-depth data processing and analysis. 

Each platform provides unique capabilities in supporting metabolomic data storage, analysis, 

annotation, etc. For example, MetaboAnalyst has been developed mainly for targeted 

metabolomics data analysis, and is used to perform a complete statistical analysis. Users will run 

data processing on the raw data using their software and upload the aligned data table to 

MetaboAnalyst for statistical analysis. The combination of different data processing platforms is 

sufficient for a complete metabolomics data processing pipeline from feature extraction and data 

alignment to metabolite annotation and exploratory statistical analyses.  

In chemical isotope labeling LC-MS based metabolomics, our group has also developed 

several in-house program to assist the data processing. IsoMS68 was the first program developed 

to extract the peak pair data from the raw mass list. It conducts peak pairing, background and 

adduct peak pair filtering, peak pair ratio calculation, and peak pair grouping. This is a unique 

processing step in the labeling experiment for feature picking. The zero-fill69 program was later 

developed for the peak pair data alignment and missing value retrieval for analyzing multiple 

samples. As a continuation of the data processing method development, my thesis discusses the 

new methods in the current workflow that come with unique processing algorithms for a labeling 

experiment.  

 

1.4.2 Current challenges in metabolomics data analysis 

Metabolomics data can have various formats and structures, depending on the experimental 

method and instrument used. Regardless of the instrument platform, the beginning of the data 

processing usually starts by exporting the raw data using the commercial software available to 
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each specific instrument. This converts the instrumental data file to a more accessible format for 

subsequent processing, which separates the useful metabolite information from other interfering 

signals. Experimental design is the primary consideration in designing the processing algorithm. 

For example, in a chemical isotope labeling LC-MS experiment, a metabolite feature is defined 

by a peak pair consisting of a light and a heavy mass peak. Accordingly, the processing program 

needs to examine the raw mass data for all possible peak pair features that have the peak pair 

distance defined by the heavy labeling reagents. Moreover, a data processing program has to be 

updated frequently to meet the demand from advancements in experimental methods. For 

example, in different labeling experiments, the labeling reagent and the experimental conditions 

may be different. The program then needs to adjust its parameters for data generated by different 

methods in order to generate an accurate and complete metabolite-intensity table. A new function 

often is needed for a specific task in the data processing, such as the background feature removal 

from a new labeling reaction. This poses a challenge to each researcher in metabolomics to 

develop efficient and customized processing programs in dealing with all types of metabolomics 

data.  

The identification of metabolites is important for understanding a biological process. 

Though one can achieve high detection coverage of a metabolome, the identification of each 

metabolite signal remains a major challenge in the current metabolomics workflow. These 

metabolites can have different origins. For example, human biofluids can contain both 

endogenous metabolites synthesized within human cell and the exogenous compounds from diet, 

air, drugs, and gut microflora. Many databases have been developed to contain lists of 

metabolites found in different organisms, including human metabolome database HMDB2 and 

MycompoundID,70 yeast metabolome database YMDB,71 drug pathway, and metabolites 
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database DrugBank,72 etc. Since there is no standard method in the data collection, metabolite 

identification for data generated in different labs can be challenging. The identification of novel 

metabolites has to rely on the authentic standards.  

 

1.4.3 R language platform for data processing and statistical analysis 

R language is a free and open-source software environment that has been used widely in data 

processing, statistical analysis, and data visualization. It has good numerical capabilities, flexible 

visualization capabilities, easy access to databases, and a wide range of statistical and 

mathematical algorithms available in different R packages. R is accepted widely in the 

bioinformatics community for its open-source nature and many well developed packages; this 

makes it convenient for method development on the R platform.  

In recent years, our group has developed a series of data processing programs for 

chemical isotope LC-MS data, including IsoMS,68 Zero-fill,73 and IsoMS-Quant.74 These R 

based programs have been applied successfully in our daily data processing tasks. In the 

following Chapters, R language is used as the development language for all processing algorithm 

designs. Ultimately, the new data processing methods will be integrated with the current 

programs to provide a complete software package for chemical isotope labeling LC-MS data 

processing.  

 

1.5 Processing Speed Optimization 

1.5.1 Hardware optimization 



22 
 

Data processing speed is another important topic in the development of processing algorithms. 

The amount of data generated in a lab is increasing with the growing number of mass 

spectrometers available and the increasing speed in data collection. The processing of a large 

amount of data can result in a long waiting time and can slow down the research progress. Of all 

the strategies in improving data processing speed in large data analysis, an upgrade of the 

hardware infrastructure is often the most feasible and inexpensive one. Nowadays, commercially 

available computers can handle most data processing tasks with a much improved processing 

speed thanks to advances in computer hardware technology. When selecting a data processing 

computer, we usually focus primarily on the CPU performance since it is the center for all 

calculations. The benchmark score of a CPU can be used as a measure of the processing speed. 

Figure 1.3 shows the benchmarks of midrange Intel® processors of different generations from 

2012 to 2018. The benchmark data were collected by PassMark®
 software 

(https://www.passmark.com/), which used a performance test to evaluate the computing power of 

a CPU. We selected the mainstream i5 CPU from the 2nd to the 8th generation (5th generation data 

not available) in the comparison. The generation number is indicated by the first digit of the 

model number (e.g. 8xxx for 8th generation). In the results, we can see that the current 8th 

generation i5 8400 CPU has double the score of the 2nd generation i5 2400 CPU, indicating a 

huge improvement of the CPU computing power in recent years.  

 

https://www.passmark.com/
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Figure 1.3 CPU benchmarks for midrange Intel CPU in each generation. 

 

A computer is a multi-unit system, in which all components have to work together to 

achieve an optimal performance; any low performance unit potentially can be a bottleneck in the 

actual performance. In addition to the CPU unit, other hardware, such as the random-access 

memory (RAM), hard drive, and motherboard, were carefully selected for building our 

processing computers.  

Data reading and writing are two frequent steps in any data processing. When the 

program reads the sample data, it stores the data in RAM memory so as to provide a quick access 

to all the processed information. Additional RAM allows the computer to work with more data at 

the same time. The hard drives stores the input and output data files of each processing step. The 

read/write speed of the hard drive must not be too slow when processing a large number of files. 

Moreover, the hard drive saves the raw files and processed data for each experiment. The 

robustness and long-term stability of a hard drive are crucial for data safety. Although it rarely 
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happens, the failure of a hard drive can be disastrous to the precious sample data, especially 

when the sample volume is limited for re-analysis. A motherboard is the bridge allowing the 

communication between many crucial electronic components of a system such as CPU, RAM, 

and hard drive, and provides connectors for other peripherals. Each generation of CPU usually 

has its compatible motherboard that matches the power requirements and data transfer speed. In 

the end, a processing computer often has to run at the maximum load for days; this can be 

demanding for the cooling system and stability of the power supply. The selection of the power 

supply must match the power requirements of the system, and dust should be vacuumed 

regularly to prevent heat from accumulating inside.  

In conclusion, the upgrade of the computer hardware requires a careful choice of each 

component to achieve the optimal processing speed and long-term performance. With all these 

considerations, I built eight data processing computers in the lab as a data processing station to 

meet the increasing data processing demand from an increasing number of lab users and new 

instruments. To balance the cost and performance, we selected a midrange Intel i5 CPU and a 16 

GB RAM for each computer. We assigned 3–4 computers dedicated to one MS instrument to 

ensure a minimum waiting time in raw data processing.  

 

1.5.2 Multi-core CPU and parallel processing  

In order to run a program more efficiently, i.e., using less time, parallel processing can be used 

where a set of instructions in a program are given to divide a specific task among multiple 

processors. In the earliest computers, only one program could run at a time, and each 

independent program could only be executed when the CPU finished processing the previous 
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task. Parallel processing at its early form used interleaved execution of two programs. The 

computer was able to execute the next processor-intensive program while waiting on the current 

task.75 The total execution time for the two tasks would be less than the sum of the individual 

processing times. Multiple tasks are sharing CPU resources in this way.  

The next improvement in multiprocessing is the introduction of a multi-core CPU, in 

which two or more processors are attached in one CPU module for an enhanced performance and 

a lower power consumption. As the single core CPU rapidly reached its physical limits of 

complexity and calculation speed, a multi-core CPU has become more and more popular by 

combining independent processing units into the same socket. Each of the physical cores of a 

multi-core CPU can read and execute program instructions independently. This is why one can 

run a number of programs in a computer simultaneously and perform other tasks, such as data 

transfer and file editing, without significantly slowing down the programs. Efficiency in 

multitasking has improved much by this multiprocessing technique.  

Ideally, the total processing power of a CPU should be the sum of the processing power 

of all physical cores. However, each core can only run one program task at one time. This means 

that when executing a program script in a 4-core CPU, the usage of the CPU can only reach up to 

25%. In other words, the processing speed is limited most often by a single core speed. Since the 

multi-core CPU is designed for a better multi-processing efficiency, the structure of the program 

can be modified to utilize the multi-processing to its full advantage.  

Figure 1.4 shows the workflow of raw data processing for a chemical isotope labeling 

LC-MS dataset. After data collection, the raw data is exported first from the instrument files to 

mass lists that are easier accessed by customized programs. Then, mass accuracy and retention 

time shift are analyzed in each raw file. Next, the IsoMS program performs the  peak pairs 
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extraction in each individual files and generates the peak pair list for each LC-MS data.68 The 

alignment program aligns the peak pair lists from all individual files into one metabolite intensity 

table, and the zero-filling program calculates the missing ratios based on the raw mass list file.76  

 

 

Figure 1.4 Schematic of data processing workflow in chemical isotope labeling LC-MS data. 

 

One of the speed limiting steps in this work flow is IsoMS processing. In the IsoMS 

program, the raw mass list is processed by a series of functions to generate a final peak pair list. 

Figure 1.5 shows the functions in the IsoMS program. Each function processes the data 

generated by the previous step and passes the result to the next function. In the processing 

pipeline, a function is executed only after the previous function finishes; only one raw file is 

processed at one time. Since the peak pair lists from different files are independent, it is possible 

to have multiple IsoMS programs run at the same time.  
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Figure 1.5 Workflow of the functions in the IsoMS program.  
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To achieve the parallel design, we detect the number of logical cores in the processing 

CPU at the start of IsoMS program. Then, the raw files are divided into multiple groups and 

assigned to each CPU core. For example, in a quad-core CPU, the raw files are divided into four 

groups. Figure 1.6 shows the schematic of file grouping. In a quad-core setting, four independent 

IsoMS programs will be running in parallel, processing the raw files in each file group. In this 

way, the processing speed can be 3–4 times faster than in single core processing.  

 

 

Figure 1.6 File assignment in IsoMS parallel processing. Files are grouped and assigned into each core at 

the beginning of the processing. 4 Independent IsoMS programs are running in parallel on the sub file list.  

 

Another speed limiting step is the zero-fill program. Figure 1.7 shows an example of a 

metabolite intensity table after alignment. Each row contains a unique peak pair and their ratio 

values in each sample. NA indicates a missing value from the IsoMS peak pair extraction. To 

retrieve the missing value, the zero-filling program searches the peak pair in the raw file by the 

retention time and mz information (see Chapter 3 for more details). Depending on the number of 
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missing values in the original alignment table, the zero-filling processing time can vary. When 

the number of samples or number of peak pairs is large, it can take a long time for peak pair 

searching for each of the missing values.  

Since the ratio values are independent, multiple missing values can be searched 

simultaneously in the same raw file. To optimize the loop into a parallel structure, we came up 

with the solution to divide each sample column into multiple segments based on the number of 

CPU cores. Figure 1.8 shows an example of this method in a quad-core CPU. After the raw data 

is read into the memory, the corresponding sample column is divided into four segments based 

on the number of NA. Inside each column segment, an independent zero-fill program is running 

for the calculation of the missing peak pair ratio using the EIC peak area data. After all 

individual zero-fill tasks are finished, the resultant segments are pasted to reconstitute the sample 

column; and the total processing time can be shortened by 3–4 times.  

 

Figure 1.7 Example of an aligned data table from a CIL LC-MS experiment. Each row contains the 

information of a peak pair and the peak pair ratio in each sample. NA represents a missing value.  
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Figure 1.8 Parallel processing in the zero-fill program. The column shows the peak pair ratio values in 

one sample.  

 

One major concern in parallel processing is the potential conflict in combining the 

outputs from parallel tasks. This means that the data structure must be kept the same during the 

parallel process and there should be no dependency from one result on another. For this reason, 

not all processing steps can be modified into a parallel structure. However, after the optimization 
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of the two major speed limiting processing steps, a speed improvement of at least three-fold was 

observed for processing the same number of files.  

With parallel processing, the processing speed can keep increasing with more cores in a 

CPU. Currently, both Intel and AMD have their high-end CPU with up to 32 cores. Meantime, 

the cost of the CPU plus their compatible peripherals (such as RAM, power supply, and cooling) 

also increases significantly, leading to a much higher cost for each desktop. Therefore, we picked 

the newest generation of Intel i5 CPU as a balance between performance and cost. To ensure a 

sufficient access to the computer resources for each lab user, a multi-computer data processing 

system was built to meet the challenges of the growing data collection speed and increasing data 

size.  

 

1.5.3 Optimizing data processing workflow 

Data processing involves multiple steps, and the total processing time for a batch of data files is 

the sum of the processing time of all steps. Now that we have optimized the processing speed in 

individual functions, the next step is to establish a data processing workflow that optimizes the 

total processing time from the raw data to the final data tables. Figure 1.9 shows the design of the 

optimized workflow. We first attach the post-acquisition mass calibration and mass exportation 

methods to each LC-MS method. Then, each LC-MS data is exported to a mass list file at the end 

of the acquisition. While the next LC-MS analysis is running, the data from the previous run is 

exported to a csv file. In this way, all mass list csv files are available at the end of the LC-MS 

analysis sequence.  
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As an example, the analysis of a total number of 120 samples, each with a 47 min (32 

min gradient and 15 min equilibrium) LC running time, we can analyze around 30 samples per 

day. On Day 2, the 30 LC-MS data files are checked for their mass accuracy and retention time 

shift, followed by the IsoMS processing. Peak pair lists are generated on Day 2 for data collected 

in Day 1. Since data alignment requires all the individual peak pair lists, after all peak pair lists 

are generated, we align all data files and run the zero-fill program to generate the final data tables 

for further statistical analysis. The total data alignment and zero-fill processing will take about 

one day.  

In this workflow, the total data processing time is only 1 to 2 extra days on top of four 

days’ instrumental analysis time. Instead of waiting for 1–2 weeks on the computer for data 

processing before the optimization, now one can move quickly on to statistical analysis 

workflow after data collection.  

                   

 

Figure 1.9 Optimized workflow of data processing in dealing with a batch of data files. 
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1.6 Overview of the Thesis 

My research focused on the development of data processing methods to meet the challenges in 

metabolomics data processing in chemical isotope labeling LC-MS. Chapters 2 and 3 discussed 

the LC-MS raw data quality control in terms of mass accuracy and retention time shift. In LC-

MS based metabolomics, m/z and retention time are the two most important measurements of 

one metabolite. All the downstream data processing steps rely on these two parameters for 

feature extraction, data alignment, and metabolite identification, etc. Any large error with mass 

and retention time should be corrected at the beginning of the data processing.  

Chapter 4 discussed the chemical isotope labeling LC-MS data processing workflow and 

explained the algorithms in each function. Unique peak pair features were extracted first from 

each LC-MS analysis. Then, background peak, adducts, and repeatedly detected signals were 

removed from the peak pair list. Next, peak pairs of the same metabolite from different samples 

were aligned into a metabolite intensity table. We calculated each peak pair ratio using the 

average value from the whole peak area to minimize random errors. Each peak pair was 

evaluated on the dependence of the light and heavy peak to ensure it represents a labeled 

metabolite truly. Redundant peak pairs were evaluated by the distance of mass, retention time, 

and similarity of within-sample peak pair ratios. False positive and redundant peak pairs were 

removed from the data table. Missing peak pair ratios were searched in the raw data for possible 

peak pair signals. Different searching algorithms were applied for a multi-layer missing value 

calculation. For peak pairs with the intensity information available in the raw file, we calculated 



34 
 

the ratio based on the original data. For peak pairs missing one or both peak intensities, the peak 

pair ratio was predicted based on any existing intensity and peak pair information in other 

samples. In the end, we generated a complete metabolite intensity table with each peak pair 

uniquely representing a labeled metabolite.  

Chapter 5 studied the natural isotope peak intensity in dansylation labeling LC-MS data. 

It discussed the challenge of quantification in any labeling method with the presence of natural 

isotope peaks. A new method was proposed to remove the peak intensity contribution from 

natural isotope peak to improve the accuracy of the peak pair ratio calculation further.  

Chapter 6 discussed the metabolite identification in metabolomics study. Metabolites in a 

biological sample can have a wide concentration distribution. Accordingly, a wide distribution of 

peak intensities can be observed in the resultant data, and mass error can be affected by the peak 

intensity. We investigated the relationship between mass peak intensity and mass error, and an 

intensity dependent mass tolerance was calculated for each query mass in the library search to 

improve the accuracy and efficiency in the metabolite identification.  

Lastly, we designed a program that incorporates all processing functions with a graphical 

user interface. Figure 1.10 shows a program window of mass accuracy check function. On the 

left are the parameters used in the function, including the reference mass and mass search 

window. At the end of the processing of a total of 280 sample files, a plot was generated in the 

program window with the average and standard deviation of the measured mass in each sample. 

The data in the plot is saved in the local folder for further examination.  

As an objective of this thesis work, an all-around data processing program was designed 

to facilitate the metabolomics research. The integrated data processing program has been 
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implemented as a standard in the lab for data generated with different experimental methods. 

Moreover, feedback was collected from different users to help us update the software further 

with more functions. Metabolite identification and statistical analysis modules could be added to 

the current platform to provide a complete solution to metabolomics data analysis in the future.  

 

Figure 1.10 Example of graphical user interface in the CIL LC-MS data processing program. Parameters 

can be modified in each of the text boxes. An instant plot is generated at the end of the processing to 

provide a quick view of the results.  
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2. Chapter 2 Mass Accuracy and Precision Check for LC-MS Raw Data 

Using Background Mass Peaks 

 

2.2 Introduction 

The data produced by a mass spectrometer are the masses and intensities of analytes and their 

fragments. The accuracy of the mass measurement determines directly the usefulness of the data 

in the identification of metabolites and other statistical analyses. Instruments introduced in the 

past decades have improved the mass resolution and the mass accuracy greatly.77 For example, a 

TOF mass spectrometer with an energy correcting reflectron can attain a mass accuracy at low 

ppm values for detecting low mass ions (<1000 Da).78 Other ion-trap-based mass spectrometers, 

such as a FT-ICR mass spectrometer, provide a resolving power potentially over 1,000,000 with 

an average mass error generally less than 1 ppm.77,79 

 Although high in theoretical resolution, a TOF mass spectrometer requires a regularly 

conducted mass calibration to correct mass shift caused by ambient temperature changes or 

voltage fluctuations in order to maintain the best possible mass accuracy.78 External calibration 

methods have been developed with calibration solutions covering different mass ranges, and they 

are used routinely for mass calibration in different mass spectrometers.80-82 However, compared 

to an internal calibration, an external calibration cannot account for mass shift during data 

acquisition, especially for data collection over a long period of time. To address this issue, a lock 

mass calibration method was introduced with one or multiple mass standards that were injected 

to the mass spectrometer with the sample. The lock mass standards generated signals in every 

mass spectrum to be used as mass references in post-acquisition internal mass calibration.83 The 
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mass standard can be either from an external compound introduced in the ESI source or from a 

known background in the LC-MS analysis. For example, polydimethylcyclosiloxanes, a group of 

ubiquitous contaminants of the laboratory air, were found to be the source of extreme 

background signals in nano-electrospray mass spectrometry.84 Mann et al. later used this known 

background mass peak produced by electrospray for lock mass calibration and achieved sub-ppm 

mass accuracy.85 

 Despite a much improved mass accuracy with lock mass calibration, the method often is 

not compatible with metabolomics experiments, in which the concentration of metabolites can 

vary by a few magnitudes. The introduction of high concentrations of internal mass standards 

can suppress the signals of metabolites of relatively low concentration easily and thus decreases 

the metabolome coverage. To obtain the best mass accuracy possible, our lab employed another 

strategy by implementing a mass calibration segment during the LC dead time for each LC-MS 

run. Figure 2.1 (A) shows a LC chromatogram with a sodium formate calibration solution 

injected at the start of the LC run. In the first two minutes, the eluent from the separation column 

went to waste, and another line of sodium formate solution was connect to the ESI source of the 

mass spectrometer. Figure 2.1 (B) shows a mass spectrum of sodium formate adducts in positive 

mode for mass calibration (see adducts formulas and exact masses in Table 2.1). After data 

collection, each LC-MS data file is calibrated using its calibration segment. Since mass accuracy 

is relatively stable over the course of one sample analysis, the method is able to correct mass 

shift in each individual sample more accurately than traditional external mass calibration.  
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Figure 2.1 (A) LC chromatogram with calibration segment at the beginning two minutes and (B) mass 

spectrum of sodium formate adducts peaks used for mass calibration.  

 

 

Table 2.1 List of sodium formate adducts and their exact mass for mass calibration.  

Formula m/z 

Na(NaCOOH)3 226.951493 

Na(NaCOOH)4 294.938917 

Na(NaCOOH)5 362.926341 

Na(NaCOOH)6 430.913765 

Na(NaCOOH)7 498.901189 

Na(NaCOOH)8 566.888613 

Na(NaCOOH)9 634.876037 
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Na(NaCOOH)10 702.863461 

Na(NaCOOH)11 770.850884 

Na(NaCOOH)12 838.838308 

Na(NaCOOH)13 906.825732 

Na(NaCOOH)14 974.813156 

 

 

  With either external or internal mass calibration, one can achieve the optimal mass 

accuracy available in one instrument. However, mass shift sometimes can occur in the middle of 

the analysis, causing an excessively large mass shift in some of the spectra within a sample. In 

such a situation, the mass calibration method may not correct the mass shift back to within the 

range of the instrument tolerance. Since there is no evaluation method to show the calibrated 

mass accuracy and precision after mass calibration, it is difficult for users to pick out the mass 

spectrum with a mass accuracy issue.   

 Inspired by the work of Mann et al77 who used a naturally occurring background mass 

peak in the nano-LC-MS system for lock mass calibration, I studied the background mass peaks 

in the chemical isotope labeling LC-MS data and found a list of common background peaks 

associated with different labeling methods. The signals of these background peaks may vary by a 

few magnitudes at different retention times, making it less suitable for lock mass calibration even 

with a known exact mass. However, the consistent presence of a background peak can be used as 

a mass reference to evaluate the mass accuracy and precision of the mass measurement in each 

calibrated spectrum. In this work, I developed a program to search the background masses that 

are present in all sample files. Mass errors were calculated in each mass spectrum using the 

reference background mass peaks to show the mass accuracy and precision after mass calibration.  
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2.3 Materials and Methods 

2.3.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). In a dansylation labeling reaction, the 12C-labeling reagent 

(dansyl chloride) was purchased from Sigma-Aldrich, and the 13C-labeling reagent was 

synthesized and purified in our lab using the procedure published previously.30 LC-MS grade 

water, methanol, and acetonitrile (ACN) were purchased from ThermoFisher Scientific. 

 

2.3.2 Dansylation labeling 

Mouse serum samples were collected, and a pooled mouse serum sample was prepared by 

mixing equal aliquots of each individual sample. In a microcentrifuge tube, 30 µL of pooled 

serum were mixed with 90 µL of methanol. The mixture was then incubated at -20 °C for 2 h 

before centrifuging at 15,000 g for 15 min to precipitate the proteins. 90 µL of clear supernatant 

was taken and dried in a SpeedVac vacuum concentrator. The sample was re-dissolved to 75 µL 

with 2:1 H2O/ACN. After that, 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer 

were added to the sample to introduce a basic environment for the labeling reaction. The solution 

was vortexed, spun down, and mixed with 50 µL of freshly prepared 12C-DnsCl solution (18 

mg/mL) (for light labeling) or 13C-DnsCl solution (18 mg/mL) (for heavy labeling). After the 

sample was incubated at 40 °C for 45 min, 10 µL of 250 mM NaOH were added to quench the 

excess dansyl chloride. The solution was incubated further at 40 °C for another 10 min to allow 

the unreacted dansyl chloride to be hydrolyzed fully. Finally, 50 µL of formic acid (425 mM) in 

1:1 ACN/H2O were used to acidify the solution. A quality control (QC) sample was prepared by 
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mixing a 1:1 volume of light labeling and heavy labeling pooled samples. The QC sample was 

injected between individual samples to monitor the instrument stability. A total of 35 QC 

injections were conducted during the LC-MS analysis of individual mouse serum samples. 

  

2.3.3 LC-MS analysis 

The 12C- and 13C-labeled samples were mixed and centrifuged at 20,800 g for 10 min before 

injecting into a Bruker Maxis Impact QTOF mass spectrometer (Billerica, MA, USA) linked to a 

Dionex UltiMate 3000 UHPLC system. A Zorbax Eclipse Plus C18 column (2.1 mm × 100 mm, 

1.8 µm particle size, 95 Å pore size) from Agilent was used. Solvent A was 0.1% (v/v) LC-MS 

grade formic acid in 5% (v/v) grade CAN, and solvent B was 0.1% (v/v) LC-MS grade formic 

acid in LC-MS grade ACN. The gradient elution profile was as follows: t=0.0 min 20% B, t=3.5 

min, 35% B, t=18.0 min, 65%B, t=24 min, 99%B, t=28 min, 99% B. The flow rate was 180 

µL/min. The QC sample injection volume was 2 µL.  

 

2.4 Results and Discussion 

2.4.1 Background mass peak search 

Background mass peaks are not uncommon in LC-MS data. Impurities in reagents, and 

contaminations in sample vials, the mobile phase, or the column itself can introduce background 

signals. The actual type of background peaks can be different from one experiment to another. 

To find potential method-specific background peaks, we designed the first module of the 

program for searching the most frequent background peaks in the raw mass data.  
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  Figure 2.2 shows the workflow for the function. We assumed that the background mass 

peaks were present in more than 80% all spectra within one sample. In searching for background 

signals, the program picked 10 spectra randomly from the sample file and combined all the 

masses into one mass list. From this mass list, the program removed any redundant mass to 

create a background mass candidates list. Based on the threshold (80%) set for each background 

peak, the probability of each qualified background peak present in a random spectrum is 0.8. 

Thus, the probability that the background peak is not present in the candidate mass list is 0.210, 

which is equal to 1.024×10-7. Thus, we can say with confidence that the candidate list should 

include all potential background mass peaks. This random sampling strategy reduced the 

processing time significantly compared to scanning all masses in the raw data. 
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Figure 2.2 Workflow for finding background mass peak. 

 

  Based on the candidate mass list, the program next searched each candidate mass against 

the whole sample data by the user-defined mass tolerance and calculated a total number of 

occurrences of each mass. Table 2.2 shows an example of the resultant table of background mass 

candidates found in one QC sample. Each mass in the “average.mz” column was calculated as 

the averaged measured mass from this file. The standard deviation of measured masses, peak 

intensity average (average.int), and signal to noise ratio average (average.sn) were calculated for 
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each mass candidate. The Frequency column shows how many times each mass candidate 

appears in all spectra, and the Occurrence column gives the percent of each mass candidate 

showing up in all spectra. 

 

Table 2.2 Example of candidate background peak list (only peaks with over 50% occurrence is shown 

here).  

No average.mz Standard 
deviation 

average.int average.sn Frequency Occurrence 

1 252.0695 0.0010 21483.33 119.79 1753 0.922 

2 251.0846 0.0009 121745.94 442.06 1746 0.918 

3 279.1152 0.0009 163049.60 706.43 1669 0.877 

4 254.0756 0.0011 23302.88 128.72 1665 0.875 

5 283.1286 0.0010 163577.33 713.37 1659 0.872 

6 253.0899 0.0012 135623.77 495.52 1572 0.826 

7 274.0505 0.0010 11315.31 60.62 1548 0.814 

8 217.1040 0.0009 14775.07 58.87 1449 0.762 

9 276.0570 0.0011 10739.00 57.34 1444 0.759 

10 236.0653 0.0011 10421.51 57.45 1405 0.739 

11 261.1304 0.0012 10527.87 43.21 1363 0.717 

12 319.1376 0.0014 7201.40 40.01 1353 0.711 

13 250.1777 0.0010 16419.76 75.99 1339 0.704 

14 228.1958 0.0009 13613.21 59.51 1332 0.700 

15 234.0585 0.0011 9326.33 52.63 1312 0.69 

16 305.1559 0.0014 8062.06 34.76 1300 0.683 

17 284.1314 0.0014 34018.62 147.78 1253 0.659 

18 255.0805 0.0016 3408.49 18.81 1245 0.655 

19 226.1802 0.0011 22843.41 89.32 1231 0.647 

20 256.0730 0.0019 42746.62 216.29 1182 0.621 

21 241.0292 0.0010 2486.41 12.12 1116 0.587 

22 245.0989 0.0013 3817.82 16.22 1087 0.572 

23 259.1163 0.0015 4045.83 16.57 1075 0.565 

24 289.1260 0.0016 4069.66 17.48 1064 0.559 

25 391.2831 0.0024 43409.93 219.93 1044 0.549 

26 215.0888 0.0012 2659.68 11.51 1012 0.532 

27 282.2780 0.0012 163544.99 526.87 1002 0.527 

28 305.2464 0.0020 2408.09 11.07 997 0.524 

29 282.1071 0.0013 117137.28 682.07 994 0.523 

30 265.1026 0.0014 8876.73 52.54 993 0.522 

31 413.2664 0.0022 103592.30 557.88 978 0.514 
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Figure 2.3 is a snapshot of the graphical user interface for the function. One can choose 

the number of raw files to be analyzed and the number of scans in each raw data for creating the 

mass candidate list. The “Initial scan number” is used to skip the data during the LC dead time, 

and the “Minimum background peak occurrence” is used to define the occurrence frequency of a 

background peak. After processing all individual files, the program compared the background 

peaks in each sample and combined the common peaks into a final background peaks table in the 

program window (see in Figure 2.3).  

 

Figure 2.3 Graphical user interface of searching background mass peaks. The column on the left shows 

the parameters used in the processing. The right side of the window shows the resultant background mass 

peak list. The table was generated automatically at the end of the program.  
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2.4.2 Mass accuracy and precision check 

The background peak list in Figure 2.3 summarized the mass information of the background 

peaks found in the whole sample data. Some of these masses can be identified further by 

searching in the dansyl library86 using both the accurate mass and the retention time. For 

identified compounds, their exact masses can be used as internal references to check the mass 

accuracy and precision. For other unidentified masses, the averaged measured mass can be used 

to evaluate mass precision.  

 

 

Figure 2.4 Workflow for mass accuracy and precision check.  
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  Figure 2.4 shows the workflow for the mass accuracy and precision check function. I will 

demonstrate the processing algorithm using dansyl ammonia, which is a common background in 

the dansylation labeling method. In the user interface shown in Figure 2.5, we input the 

theoretical m/z of dansyl ammonia, 251.0849, in the reference mass text box; a second optional 

reference mass also is available. One or two reference masses are sufficient to detect any mass 

accuracy issue since mass shift usually occurs in the whole mass range.78 With each input mass, 

the program extracts its measured mass in each spectrum using the user-defined mass tolerance 

and generates an extracted mass list. Mass average and standard deviation are calculated for each 

input mass. 

 

 

Figure 2.5 Graphical user interface for mass accuracy and precision check. 
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  Figure 2.6 (A) shows the results for the 35 QC samples. The plots were generated in the 

user interface at the end of the processing. Each data point represented the mass average and 

standard deviation of the dansyl ammonia peak in one sample. The mass average showed a mass 

error within 5 ppm (0.0012 Da) compared to the theoretical value of 251.0849. The standard 

deviation within a sample gave a consistent value in most samples except the 3rd sample. A 

relatively large standard deviation may indicate a large mass shift within the sample. Figure 2.6 

(B) shows the number of dansyl ammonia peaks found in each sample. We can observe that the 

5th sample has a significantly smaller value compared to the other samples. This indicates a 

major mass shift in this sample that caused the measured mass of dansyl ammonia to be outside 

the mass tolerance in some of the mass scans. 
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Figure 2.6 (A) Average and standard deviation of the dansyl ammonia peak in 35 samples and (B) number 

of dansyl ammonia peaks found in each sample data.  

 

  From the initial plots, we found two suspicious files that may have mass accuracy issues, 

therefore, we looked into the extracted peak list of the two specific files. Figure 2.7 (A) and (B) 

show the measured mass of dansyl ammonia in each spectrum for Files 3 and 5. We can see that 

the mass shift occurred at scan 1500 in File 3, and the dansyl ammonia peak was missing in File 

5 after scan 1200. By checking the original data in File 5, we found that the mass shift in File 5 

after scan 1200 exceeded the mass tolerance used in the processing. The large mass shift in these 

two files was due to the instability of the power supply of the mass spectrometer. Data affected 

by the mass shift was excluded from further data processing since they are QC samples. For 

individual sample data, one can re-analyze the sample to replace the data with a mass accuracy 

issue.  
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(A) 
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Figure 2.7 Dansyl ammonia peaks in each spectrum in File 3 (A) and File 5 (B). 

 

2.5 Conclusions 

I have developed a data processing program that is able to evaluate mass accuracy and precision 

comprehensively for any type of LC-MS raw data. The program detects the potential background 

mass peaks in one data set and uses one of the two background masses to check the accuracy and 

precision of mass measurement in the whole sample data. A graphical user interface was 

designed to facilitate the use of the program with adjustable parameters. The results of the 

processing are shown in the program window at the end of the processing with the average and 

(B) 
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standard deviation of the background peak and the number of background peaks found in each 

individual sample. One can pick out any sample file with a mass accuracy issue quickly. A list of 

detailed extracted mass data is created in the local user folder for further investigation of the 

issue files. Due to the nature of the background peak of its instable peak intensity, an internal 

mass calibration cannot be conducted to the issue file. To fix the potential mass accuracy issue, 

one would re-analyze the same sample and replace the issue file with the new data.  

  The program has been implemented in the data processing pipeline for CIL LC-MS data 

processing. The processing speed was optimized at around 10 sec in processing one file (~1800 

mass spectra/file). An application of the program was used to show the ability of the processing 

method to pick out any mass spectrum with a major mass shift. Processing results were shown in 

plots in the program window to reduce the manual work of the user in dealing with a large 

number of samples. The program is powerful and efficient for keeping mass data quality in the 

beginning of the data processing pipeline.  
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3. Chapter 3 Retention Time Shift Analysis and Retention Time Correction 

for Chemical Isotope Labeling LC-MS Raw Data 

 

3.1 Introduction 

Retention time and accurate mass are the most important measurements in LC-MS based 

metabolomics. In Chapter 2, we discussed the methods for mass accuracy and precision check as 

a control for mass data quality. This Chapter will focus on the retention time shift analysis and 

the correction of retention time in raw LC-MS data.  

As a characteristic parameter of a compound under a specific LC separation method, 

retention time has been used widely as a criterion in metabolite identification and structure 

confirmation. In the development of different chemical isotope labeling LC-MS methods and the 

standards libraries, an optimized HPLC separation method was developed in each labeling 

method to achieve the separation of a variety of small metabolites, and a high confidence 

metabolite identification was enabled using both the retention time and the accurate 

mass.30,31,47,87,88 The same LC method and separation column have to be used for the same 

labeling method so that retention time data can be used readily for data alignment and peak 

identification.  

Although unique to the molecular structure, the retention time in an actual application can 

vary greatly depending on a number of factors, including instrumental setup, column type, 

elution conditions, etc. For example, tubing volume before and after column, differences of C18 

columns due to different manufacturing processes, or even the same mobile phase prepared by 

different individuals all can introduce retention time errors from a few seconds to over 10 sec. 
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Other events such, as leaks in the LC system, degradation of the separation column stationary 

phase over long a period of time, and other instrumental errors potentially can cause a major 

retention time shift, which can be hard to notice until one manually checks the data files. 

Therefore, a retention time correction always is needed when comparing two batches of LC-MS 

data and identifying compounds in the standards library using both accurate mass and retention 

time.  

  In addition to metabolite identification, retention time also plays an important role in data 

alignment. One challenge of data processing for comparative analysis is to match peak pairs that 

represent the same metabolite from different samples. To overcome the retention time drift from 

sample to sample, an often-used method is to spike a small number of internal standards during 

sample preparation. After data collection, signals of the internal standards are identified in the 

sample data for correcting the retention time shift in the whole dataset.89 However, this method 

requires additional steps in sample preparation, and the spiked standards can suppress signals of 

low concentrations of metabolites easily. A different correction algorithm was developed using 

data dependent internal peaks for retention time alignment in the XCMS online processing tool.90 

In this method, the “internal standards” were selected from hundreds of peaks that are repeatedly 

detected in most of the sample files. These peaks had a high probability of being matched in each 

individual sample and could be used as temporary standards for retention time correction. 

  In the chemical isotope labeling LC-MS data, we usually can find a list of commonly 

detected metabolites for the same type of sample. For example, certain amino acids are always 

present in some biological samples, such as urine or serum. These common metabolites usually 

have relatively high peak intensities and can be captured accurately in each sample data. The 

peak pair pattern of these sample-specific compounds also can help exclude many interfering 
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singular peaks within the mass window of the nominal mass during the search. With the retention 

time and accurate mass of these common metabolites, we can extract their retention times in raw 

LC-MS data and check the retention time deviation in all sample files. As a result, a retention 

time shift correction can be conducted without using extra standards during sample preparation. 

In this Chapter, we will introduce a program that evaluates the retention time distributions in 

sample data using the pre-identified internal standards within a biological sample. A retention 

time correction method was developed for normalizing the retention time in raw LC-MS data 

files. The correction achieved a better accuracy using the identified internal compounds.  

 

3.2 Materials and Methods 

3.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). In the dansylation labeling reaction, the 12C-labeling reagent 

(dansyl chloride) was from Sigma-Aldrich, and the 13C-labeling reagent was synthesized and 

purified in our lab using the procedure published previously.30 LC-MS grade water, methanol, 

and acetonitrile (ACN) were purchased from ThermoFisher Scientific.  

 

3.2.2 Human urine collection 

Human urine samples were collected from six healthy individuals under the Ethics Approval 

from the University of Alberta. Each urine sample was centrifuged at 14,000 rpm for 10 min, and 

the supernatant was filtered twice through a 0.22 μm filter. A pooled urine sample was prepared 
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by mixing all the individual samples by equal volume. A total of 276 human urine samples were 

collected. The filtered urine was aliquoted and stored at -80 °C until further use.  

 

3.2.3 Dansylation labeling 

The frozen urine samples were thawed in an ice-bath and then centrifuged at 14,000 rpm 

for 15 min, and 25 µL of supernatant were transferred into an Eppendorf for the labeling reaction. 

Next, 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer and 25 µL of ACN were 

added. The solution was vortexed, spun down, and mixed with 50 µL of freshly prepared 12C-

dansyl chloride solution (18 mg/mL, for light labeling) or 13C-dansyl chloride solution (18 

mg/mL, for heavy labeling). After 45 min incubation at 40 °C, 10 µL of 250 mM NaOH were 

added to the reaction mixture to quench the excess dansyl chloride. Then, the solution was 

incubated at 40 °C for another 10 min. Finally, 25 µL of formic acid (425 mM) in 50/50 

ACN/H2O were added to consume excess NaOH and to make the solution acidic. The 12C- or 

13C-labeled sample was centrifuged at 14,000 rpm for 10 min before injecting onto LC-UV for 

quantification.91 For LC-MS analysis, the 12C- and 13C-labeled samples were mixed in equal 

amounts based on the quantification results.  

 

3.2.4 LC-MS analysis 

The 12C- and 13C-labeled samples were mixed and centrifuged at 20,800 g for 10 min before 

injecting into a Bruker Maxis Impact QTOF mass spectrometer (Billerica, MA, USA) linked to 

an Agilent 1100 HPLC system (Palo Alto, CA, USA). A Zorbax Eclipse Plus C18 column (2.1 

mm × 100 mm, 1.8 µm particle size, 95 Å pore size) from Agilent was used. Solvent A was 0.1% 
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(v/v) LC-MS grade formic acid in 5% (v/v) LC-MS grade CAN, and solvent B was 0.1% (v/v) 

LC-MS grade formic acid in LC-MS grade ACN. The gradient elution profile was as follows: 

t=0.0 min 20% B, t=3.5 min, 35% B, t=18.0 min, 65% B, t=24 min, 99% B, t=28 min, 99% B. 

The flow rate was 180 µL/min.  

 

3.3 Results and Discussion 

3.3.1 Retention time shift analysis 

Peak pair matching in data alignment usually allows a retention time tolerance from a few 

seconds to tens of seconds to account for retention time shift from sample to sample. If the 

overall retention time shift is well within the tolerance value over the chromatographic profile for 

all samples, a retention time correction may not be necessary for data alignment. At the 

beginning of the processing, we checked the retention time in all sample data to determine if any 

major retention time deviation occurs.  

  For the same type of sample, certain compounds always will show up in the data with 

relatively high peak intensities. Such “well-behaved” peaks can be used as the temporary internal 

standards for checking and correcting the retention time. In this experiment, we generated data 

from the human urine samples in which a list of commonly detected amino acid standards are 

present. These compounds were identified previously as common metabolites in a human urine 

sample. Table 3.1 shows 10 such compounds that were selected for checking the retention time 

in each individual sample. Their retention times are distributed evenly over the significant 

portions of the chromatographic profile. We tried to avoid isomer compounds in the internal 
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standards selection, such as leucine and isoleucine, as they are close in retention time and peak 

intensity (see Figure 3.1).  

Table 3.1 Ten amino acids used as retention time internal standards for checking retention time in each 

sample file. 

Name mz_light mz_heavy RT #Charge #Tag 

Arginine 408.1700 410.1767 2.51 1 1 

Glutamine 380.1275 382.1342 3.32 1 1 

Threonine 353.1166 355.1233 5.37 1 1 

Alanine 323.1060 325.1127 6.90 1 1 

Proline 349.1217 351.1284 9.23 1 1 

Methionine 383.1094 385.1161 9.86 1 1 

Phenylalanine 399.1373 401.1440 11.67 1 1 

Cystine 354.0703 356.0770 13.04 2 2 

Lysine 307.1111 309.1178 16.09 2 2 

Tyrosine 324.5953 326.6020 21.23 2 2 

 

 

 

Figure 3.1 LC chromatographic peaks of dansyl leucine and dansyl isoleucine. The dansyl group is 

omitted in the structures. 
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Figure 3.2 Workflow of retention time shift analysis.  

 

  Figure 3.2 shows the overall workflow of the retention time check function. With the 

selected internal standards in Table 3.1, the program extracts the retention times of each standard 

in each sample file. In different individual samples, the concentration of the standards may vary, 

and it is possible that the signal of one internal standard is relatively low in some of the samples. 

Fortunately, the heavy peak of each standard will provide a more stable intensity as it is from the 

pooled sample. The program searches the heavy peak of each standard in the sample data and 

checks the light peak in the same mass spectrum to confirm the peak pair. Once the peak pairs of 

the standard are found, the program records the retention time of the standard using the highest 

intensity heavy peak. At the end of the processing for all sample files, a plot is generated in the 

program window with the retention times extracted for each input standard. Figure 3.3 shows the 

results of the retention time analysis from three selected standards. Each data point in the plot 

represents a retention time of the standard in one sample. The three standards show the retention 
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time shift at different regions of the chromatographic profile. From the results, we can observe a 

significant retention time delay in some of the samples. The retention time shift is up to nearly 

two min, which is extreme for the LC system. It was found later that due to the aging of the 

injection needle and needle seat in the LC, a minor leak randomly occurred during the data 

collection and resulted in a decreased flow rate. Although retention time increased for some of 

the samples, peak intensities in these samples did not decreased significantly, and the peak pair 

ratio can still be useful with the heavy peaks from the pooled sample as internal standards. To 

make use of the collected data, we will correct the retention time shift before further data 

processing.  
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Figure 3.3 Retention times of (A) dansyl arginine, (B) dansyl proline and (C) dansyl lysine in in each 

sample. 
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3.3.2 Retention time correction using segmented linear calibration 

The retention time shift analysis results showed a large retention shift in some of the human 

urine data, however, the relationship between the retention time deviation and the retention time 

points is still unknown. To study the retention time shift pattern within a sample, we selected one 

sample file as the reference file and calculated the retention time differences of other sample files 

against the reference file. A list of 13 dansyl labeled standards (see Table 3.2) were selected for 

the retention time difference calculation over the chromatographic profile. Figure 3.4 shows the 

retention time difference of one sample compared to the reference file. We can observe that the 

relative retention time shift is not constant at different retention time points but has an increasing 

trend over the profile. Many studies90,92-94 also have pointed out that deviation of retention time 

is not a linear relationship with retention time since the shift is a result of multiple independent 

factors, as discussed in the introduction of this Chapter. Other studies also demonstrated that the 

shift of retention time cannot be approximated well by a quadratic function or other higher-order 

polynomials.90 Therefore, it is not possible to use one fitting function and accurately predict the 

retention time shift over the whole chromatogram. To correct the retention time shift across 

samples better, our group developed a segmented correction strategy that divided the retention 

time into multiple segments and used a local linear calibration method for correcting retention 

time data.86 The method was designed for metabolite identification in the dansyl library by 

correcting retention differences between aligned sample data and library standard data. In this 

work, we updated the algorithm and applied it for retention time correction in the LC-MS raw 

data for the first time.  
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Table 3.2 Retention time reference table. Thirteen dansyl labeled standards were selected for retention 

time correction. Their retention times were extracted from the reference file as the reference retention 

time for the correction of retention time in other samples.   

No mz_light mz_heavy RT nCharge nTag 

1 408.17 410.1767 2.82 1 1 

2 339.1009 341.1076 4.86 1 1 

3 353.1166 355.1233 6.29 1 1 

4 323.106 325.1127 7.99 1 1 

5 349.1217 351.1284 10.7 1 1 

6 383.1094 385.1161 11.43 1 1 

7 399.1373 401.144 13.25 1 1 

8 354.0703 356.077 14.613 2 2 

9 307.1111 309.1178 17.864 2 2 

10 389.1281 391.1343 18.48 1 1 

11 324.5953 326.602 22.97 2 2 

12 354.1159 356.1222 25.3 1 1 

13 611.1222 615.135 28.23 1 2 

 

 

Figure 3.4 Retention time shift in a sample file compared to a reference file. 
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  Figure 3.5 shows the overall workflow of the retention time correction function. To 

correct the retention time in the 278 human urine data files, we selected one data file as the 

reference file to correct the retention times in all other files. The retention time of the reference 

standards were extracted from the reference file first; Table 3.2 shows the details of the reference 

table. Figure 3.6 shows the extracted ion chromatograms of these standards in the reference file, 

and all have a relatively high peak intensity in the file. The reference retention times were then 

passed to the program for retention time correction in sample files.  

 

 

Figure 3.5 Workflow of retention time correction in raw LC-MS data. 
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Figure 3.6 Extracted ion chromatogram (EIC) of 13 internal standards in reference file. Retention 

time of each standard is used as reference in retention time correction. 

 

  Figure 3.7 shows a schematic of the retention time correction algorithm. The correction is 

conducted on one sample file at a time. The program reads each sample data file and extracts the 

retention time of each reference standard. As a result, each reference standard has one reference 

retention time tref from the reference file and one sample retention time tsmp from one sample file. 

At the ith standard (i is any integer between 1 and 13), the retention time difference of sample to 

reference is calculated as Δti = tsmp, i – tref, i. For the retention time between standard i and standard 

i+1 (ti to ti+1), we applied a linear interpolation to calculate the retention time difference Δtx by,  

 

Δtx = Δti + [(Δti+1 – Δti) / (tsmp, i+1 – tsmp, i)] * (tsmp,x – tsmp,i)     (3.1) 
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where Δtx is the retention time shift at any retention time point in the sample data between ti to 

ti+1; tsmp, i is the retention time of ith standard in the sample data and tsmp, x is the retention time in 

the sample where Δtx is measured.  

  For retention time segments before the first standard and after the last standard, only one 

standard is available, so the equation above cannot be applied directly. For the retention time 

before the first reference standard, we assumed a zero retention time shift at time zero and a 

hypothetical standard at t=0 was added in each standard table. For the retention time after the last 

reference standard, we assumed that the retention time shift is relatively constant in this range as 

the mobile phase composition is fixed. The retention time shift at the last reference standard 

point was applied to the data after the last reference standard. In conclusion, the retention time 

shift is calculated as a piecewise linear function of sample retention time by,   

RTcor = RTsmp – fcor (RTsmp)       (3.2) 

where fcor(x) is the piecewise function described in Equation (3.1) for the calculation of the 

retention time shift at each segment. RTsmp and RTcor are the retention time before and after the 

correction, respectively. 
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Figure 3.7 Schematic of the retention time calibration method. tref, i and tsmp, i refer to the retention time of 

the ith standard in the reference file and sample file, respectively. Δti and Δti+1 refer to the retention time 

shift at the ith and i+1th standard from the sample data to the reference data. Red color peaks are the 

sample peaks and blue color peaks are the reference peaks.  

 

  The selection of the reference standards is critical to the correction accuracy. Each 

retention time reference standard must be a peak pair feature and have a relatively high intensity 

in most sample data. The high peak intensity of the standard ensures the accuracy of the retention 

time extraction as there might be other interfering signals within the mass window. One also 

should check each of the selected standards in the chromatogram and see if there are isomers 

with a similar peak intensity in the nearby retention time. An isomer compound can cause miss-

picking of the retention time extraction. In the example shown in Figure 3.1, leucine and 

isoleucine have the same accurate mass and are close in retention time. One can hardly 

differentiate the isomers using solely the accurate mass and an input retention time window.  

  The linear interpolation is an approximation for the data points between two standards. 

The list of reference standards should be distributed evenly over the chromatographic profile of 

data to achieve better accuracy in the correction. A closer distance between two adjacent 

standards will increase the accuracy of the predicted retention time shift.  
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  In searching for the retention time of each standard in the sample data, we sometimes 

found that one of the standards’ peak pairs is missing from some of the sample data. This will 

cause an error in Equation (3.1) due a data point for the linear function. To address this issue, 

whenever there is a missing standard, the program deletes the standard both in the reference and 

sample standards list; the retention time segment is then extended to the next available standard. 

In this way, even with one or two samples with one standard missing, the retention time 

correction still can calculate the retention time shift to complete the correction process. Each 

missing standard will be recorded in the processing log. One can adjust the reference standards 

list to re-correct the retention time in a specific file.  

 

3.3.3 Calibrated retention time evaluation 

We applied the retention time correction for a total of 278 human urine data. The processing 

speed is optimized at 20 sec/file (~1800 spectra/file). To evaluate the retention time after 

correction, the program automatically generated the overlay plots of base peak ion 

chromatogram (BPC) for each individual sample before and after the correction. Figure 3.8 

shows one example of the 278 overlay plots. The black colored chromatogram is the BPC of the 

reference file, and the red and blue colored chromatogram are the data before and after the 

retention time correction, respectively. We clearly can see that the retention time shift was 

corrected to a much smaller deviation after applying the correction algorithm for the high 

intensity peaks. The corrected retention time difference is now within a 30 sec window compared 

to a two min shift before correction. One can go through the 278 overlay plots quickly to check 

the correction results of each individual sample.  
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Figure 3.8 Overlay plots of BPC of one file before (black) and after (red and blue) retention time 

correction against the reference file. 

 

  To test the performance of the correction algorithm on the 278 sample files further, we 

picked another three commonly detected metabolites (see Table 3.3) as testing standards that are 

not in the correction standard list. We used the retention time and accurate mass of the testing 

standards and extracted their measured retention time in each data file before and after the 

retention time correction. The testing results are summarized in Figure 3.9. On the left are the 

retention times of the testing standards in the original LC-MS data, and on the right are the 
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corrected retention times. We can observe that after correction, the retention time of the testing 

standards fell into a ± 30 sec window compared to a two min window before the correction.  

 

Table 3.3 Testing standards used to evaluate the retention time shift after applying retention time 

correction.  

No Name mz_light mz_heavy RT nCharge nTag 

1 Methylamine 265.1011 267.1074 11.2 1 1 

2 Dimethylamine 279.1168 281.1223 16.2 1 1 

3 Cystine isomer 354.0654 356.0720 22.9 2 2 
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Figure 3.9 Retention time of three testing standards before and after retention time correction. 

 

3.4 Conclusions 

In this work, we developed a program that checks and corrects the retention time in the LC-MS 

raw data. A list of commonly detected metabolites was used as internal standards to extract the 

retention time over the chromatographic profile in each sample data. The analysis results were 

shown in the scattered plots to enable a quick view of the retention time distributions at different 

retention time points. The method provides a fast and convenient way for one to 
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comprehensively evaluate the retention time shift over the LC profile in all sample data. Any 

major retention time shift can be picked out easily with the results. The retention time 

distribution plots also can assist researchers in selecting an appropriate retention window for data 

alignment. The retention time check program in combination with the mass accuracy check 

program ensure the raw data quality before the downstream data processing. 

  In addition to the retention time check, a retention time correction program was 

developed for the correction of retention time shift in LC-MS raw data. The correction method 

used the internal standards picked from the commonly detected metabolites in a biological 

sample and enabled an internal calibration without adding extra standards in the sample 

preparation. We applied the correction method to a human urine dataset with a large retention 

time shift. The performance of the correction was evaluated using external testing standards to 

show the accuracy and efficiency of the correction program.  
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4. Chapter 4 Integrated Data Processing Workflow for Generating a 

Complete Metabolite Intensity Table in Differential Chemical Isotope 

Labeling LC-MS for Quantitative Metabolomics 

 

4.1 Introduction 

Chemical isotope labeling (CIL) LC-MS has become a powerful platform for quantification of 

metabolites in metabolomics. With the growing number of labeling methods to analyze 

chemical-group based submetabolomes for increasing metabolome coverage,30,87,88,95 it becomes 

more demanding for rapid data processing workflow to generate a complete quantitative dataset 

with better data integrity and accuracy. Chapter 2 and 3 dealt with the methods for LC-MS raw 

data quality check, focusing on mass accuracy and retention time shift. After examination, the 

raw data require further processing for peak pair extraction and data alignment for comparative 

analysis. In recent years, our group has developed a number of data processing programs68,73,74 

that worked for different chemical isotope labeling LC-MS experiments. With continuing 

advances in metabolomics, along with constant user feedback, it became necessary for a 

substantial upgrade to the current processing workflow with both algorithm updates and new 

function integrations.  

  The ultimate goal of CIL LC-MS raw data processing is to generate a complete data table 

with each labeled metabolite accurately picked from LC-MS raw data and with each peak pair in 

the final data table representing one unique metabolite. The data processing relies on a set of 

criteria in the program for finding and matching peak pairs in multiple sample data. Due to the 
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complexity of signals from a real sample, some of the peak pair patterns may not be truly from a 

labeled metabolite and one labeled metabolite could be repeatedly picked in the data table. We 

collected sample data from different users and looked into each of these issues. Two new 

functions, “peak pair validation” and “redundant peak pair merging”, were proposed and 

integrated in the data processing workflow to deal with false peak pairs and redundant peak pairs. 

These methods further increased the specificity of each peak pair feature as a linkage to a unique 

labeled metabolite.  

 The peak pair intensity ratio is the foundation of quantification in a chemical isotope 

labeling experiment as it is used to reflect the relative concentration change of one metabolite in 

different samples. To account for the concentration variation in different metabolome samples, 

the light labeled individual sample and the heavy labeled pooled sample are normalized and 

mixed in the same total amount prior to injection to LC-MS.91 In the data processing step, the 

peak pair ratio has been calculated simply by using the peak intensity of the light and heavy peak 

within a mass spectrum. With the use of a heavy labeled pooled sample, the intensity ratio of one 

peak pair in the same sample can be very reproducible regardless of absolute peak intensity 

changes. However, a measurement error can be associated with the ratio data due to the 

uncertainty of each individual peak intensity. Instead of using the peak pair ratio in one spectrum, 

we updated the ratio calculation by using all peak pair signals detected in multiple spectra for 

one metabolite and used the average of the peak pair ratios to fill the alignment data table to 

improve the ratio accuracy further.  

Although most of the peak pair ratios can be calculated after a thorough inspection of 

LC-MS raw data, a missing value still can occur in the resultant data table. These missing data 

could have a great influence on the conclusions drawn from different data analysis methods.96 
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Currently, there have been many missing value imputation methods developed for metabolomics 

studies that were designed for metabolite peak intensity data.97-99 In CIL LC-MS, however, the 

abundance of one metabolite is presented as a peak pair ratio value calculated from two peak 

intensities. The mathematical meaning of the ratio value is different from the peak intensity 

value. To generate a complete metabolite intensity table, we investigated the origin of the 

missing ratio in CIL LC-MS data and developed a missing value prediction method based on the 

intensity of light- and heavy-labeled peaks in the LC-MS data.  

  Finally, an integrated data processing workflow is presented here in Figure 4.1, with 

functions of raw data integrity check, peak pair extraction, data alignment, false peak pair and 

redundant peak pair exclusion, missing data imputation, and metabolite identification. This 

workflow comprehensively evaluates the raw data in terms of retention time and mass accuracy 

and generates a well-aligned dataset with each peak pair uniquely linked to a labeled metabolite. 

It provides a new way to examine each metabolite feature to exclude the false and redundant one, 

and the missing data imputation method provide an accurate estimation of the missing ratio  
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Figure 4.1 Overview of functions in the data processing workflow. 

 

 

4.2 Materials and Methods 

4.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). In a dansylation labeling reaction, the 12C-labeling reagent 

(dansyl chloride) was purchased from Sigma-Aldrich, and the 13C-labeling reagent was 

synthesized and purified in our lab using the procedure published previously.30 LC-MS grade 

water and acetonitrile (ACN) were purchased from ThermoFisher Scientific. 
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4.2.2 Human urine sample preparation and dansyl labeling 

A total of 36 human urine samples were collected from two individuals, one male and one 

female. A pooled sample was prepared by mixing equal volumes of all individual samples. The 

urine samples were filtered using a 0.22 um filter after collection and were centrifuged at 20,800 

g for 10 min. Then, 25 µL of the supernatant of each individual sample were transferred into an 

Eppendorf for a labeling reaction. Next, 25 µL of 250 mM sodium carbonate/sodium bicarbonate 

buffer and 25 µL of ACN were added into the sample. The solution was vortexed, spun down, 

and mixed with 50 µL of freshly prepared 12C-dansyl chloride solution (18 mg/mL, for light 

labeling) or 13C-dansyl chloride solution (18 mg/mL, for heavy labeling). After 45 min 

incubation at 40 °C, 10 µL of 250 mM NaOH were added to the reaction mixture to quench the 

excess dansyl chloride, and the solution was incubated at 40 °C for another 10 min. Finally, 50 

µL of formic acid (425 mM) in 50/50 ACN/H2O were added to consume excess NaOH and to 

make the solution acidic. The 12C- or 13C-labeled sample was centrifuged at 14,000 rpm for 10 

min before injecting onto LC-UV for quantification.91 For LC-MS analysis, the 12C and 13C-

labeled samples were mixed in equal amounts based on the quantification results.  

 

4.2.3 LC-UV quantification and sample normalization 

Inter-sample variations in the total metabolite amount must be minimized in order to assess the 

concentration differences caused by the factors being studied accurately. An LC-UV based 

method was applied to determine the total concentration of dansylated amine/phenol-containing 

metabolites based on the UV absorption of the dansyl group.91  The experiment was performed 

with a Waters ACQUITY UPLC system UPLC (Waters, Milford, MA, USA) and a Phenomenex 
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Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size) (Phenomenex, Torrance, CA, USA). 

Two microliters of each dansyl-labeled individual or pooled sample were injected for a fast step-

gradient run. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and solvent B was 

0.1% (v/v) formic acid in ACN. Starting at 0% B for 1 min, the gradient was then increased to 95% 

B within 0.01 min and held at 95% B for 1 min to ensure complete elution of all labeled 

metabolites. The flow rate was 0.45 mL/min, and the total UV absorption of dansyl-labeled 

metabolites in the sample was measured at 338 nm. The peak area, which can represent the total 

metabolite concentration in the sample, was integrated by the Empower software. According to 

the quantification results, the 12C- and 13C-labeled samples were mixed in equal amounts for the 

following LC-MS analysis.  

 

4.2.4  “2:1” sample preparation 

To test the accuracy of the ratio calculation, we selected one human urine sample and labeled it 

with both 12C2- and 13C2-dansyl chloride. The two labeling solutions were then mixed in a 2:1 

ratio by volume followed by injections to LC-MS. A total of 20 injections were conducted at an 

increasing injection volume from 0.1 µL to 1 µL with 0.1 µL increments, and duplicate 

injections were conducted for each injection volume. In this dataset, the intensity of the light 

peak is expected to be twice the intensity of the heavy peak in each detected peak pair.  

 

4.2.5 LC-MS analysis.  

The 12C- and 13C-labeled human urine samples were mixed according to the LC-UV 

quantification results and centrifuged at 20,800 g for 10 min before being injected into a Bruker 
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maXis impact QTOF mass spectrometer (Billerica, MA, USA) linked to an Agilent 1100 series 

binary HPLC system (Agilent Palo Alto, CA). A Zorbax Eclipse Plus C18 column (2.1 mm × 

100 mm, 1.8 µm particle size, 95 Å pore size) from Agilent was used. Solvent A was 0.1% (v/v) 

LC-MS grade formic acid in 5% (v/v) LC-MS grade CAN, and solvent B was 0.1% (v/v) LC-MS 

grade formic acid in LC-MS grade ACN. The gradient elution profile was as follows: t=0.0 min 

20% B, t=3.5 min, 35% B, t=18.0 min, 65% B, t=24 min, 99% B, t=28 min, 99% B. The flow 

rate was 180 µL/min.  

 

4.3 Processing Algorithms 

4.3.1 Peak pair detection with IsoMS 

After data collection from a LC-MS instrument, the raw data are converted to a centroid peak list 

using a data analysis software provided by the manufacturer. All mass peaks above a user-

defined signal to noise ratio (SNR) threshold are exported into a mass list csv file. Different from 

a label-free experiment in which feature picking is based on singular mass peaks, CIL data 

processing focuses on peak pair patterns in each spectrum, which requires the presence of at least 

four peaks (a light peak, a heavy peak, and their first natural isotope peaks, see in Figure 4.2). An 

in-house program, IsoMS,68 was developed previously to extract the peak pairs from raw data. 

From the raw mass list, the IsoMS program performs peak pairing, peak pair filtering, peak pair 

grouping, and intensity ratio calculations. A set of rules is used during the peak pair feature 

selection, including light and heavy peak distance, isotopic pattern, charge state of the light and 

heavy peak, etc. After the first round of peak pairing, an exhausted peak pair list is created with 

all the qualified peak pairs found in each mass spectrum. Next, adduct ions derived from Na+, K+, 
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NH4+, dimers, mutimers, and other common in-source fragment ion peaks are filtered. The user 

also can provide a list of background peak pairs for the program to filter from the peak pair list.  

  Most metabolites will be detected repeatedly in multiple spectra within the corresponding 

chromatographic peak. Based on the first-round peak pair list, IsoMS performs peak pair 

grouping by retaining the highest intensity peak pair for the same metabolite. For isomers with a 

similar retention time, IsoMS will examine the increase and decrease of peak intensity within 

one mass trail to determine if the signals belong to one metabolite or to multiple isomers. If two 

or more peak shapes are found in the adjacent mass spectra, multiple peak pairs will be saved, 

depending on the number of isomers found. As a result, a peak pair list is generated for each LC-

MS data file with the mass and intensity information for each unique labeled metabolite. Table 

4.1 shows the data format of a peak pair list that contains the retention time (RT), light and heavy 

peak intensities (sn_light and sn_heavy), number of tag (nTag), number of charge (nCharge), and 

peak pair ratio for each peak pair.  

 

Table 4.1 Data format of a peak pair list generated by IsoMS processing. Each row contains the peak pair 

information of a unique metabolite.  
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Figure 4.2 A peak pair pattern in the mass spectrum consisting of a light and a heavy peak, along with 

their first natural isotope peaks.  

 

4.3.2 Peak pair alignment 

An important task in metabolomics data processing is the data alignment for matching peak pairs 

representing the same metabolite in different samples. To do this, our group developed the 

IsoMS-align program that performs data alignment, combining the IsoMS peak pair lists from 

multiple samples into one metabolite table.76 The peak pair matching is done by classifying peak 

pairs using their retention time, accurate mass, and heavy peak intensity. Since one peak pair 

potentially can match multiple peak pairs in another sample, depending on the matching 

tolerances used, a scoring method was used for finding the best match across all samples. The 

difference between two peak pairs is described by an alignment score, 

 

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑐𝑜𝑟𝑒 = (1 −
𝑟𝑡. 𝑑𝑖𝑓𝑓

𝑟𝑡. 𝑡𝑜𝑙
) + (1 −

𝑚𝑧. 𝑑𝑖𝑓𝑓

𝑚𝑧. 𝑡𝑜𝑙
) + (1 − 𝑖𝑛𝑡. 𝑑𝑖𝑓𝑓)          (4. 1) 
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where   

            𝑟𝑡. 𝑑𝑖𝑓𝑓 = |𝑟𝑡.13 𝐶. 𝑝𝑒𝑎𝑘(𝑎) − 𝑟𝑡.13 𝐶. 𝑝𝑒𝑎𝑘(𝑏)| 

            𝑚𝑧. 𝑑𝑖𝑓𝑓 = 1 × 106 ×
|𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘(𝑎)−|𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘(𝑏)|

𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘(𝑎)
 

            𝑖𝑛𝑡. 𝑑𝑖𝑓𝑓 = |𝑙𝑜𝑔 (
𝑖𝑛𝑡.13𝐶.𝑝𝑒𝑎𝑘(𝑎)

𝑖𝑛𝑡.13𝐶.𝑝𝑒𝑎𝑘(𝑏)
)| 

 

  The alignment score consists of three comparisons: retention time difference (rt.diff), 

mass difference (mz.diff), and intensity difference (int.diff). The differences are calculated based 

on the heavy peak in the two peak pairs since it usually gives a more consistent signal than the 

light peak. The retention time tolerance (rt.tol) and mass tolerance (mz.tol) are provided by the 

user, depending on the mass accuracy and retention time variation of the instruments.  

 

  The alignment processing starts with one IsoMS file as a template. For each additional 

file, it compares the peak pairs in the new file with those in the template and calculates the peak 

pair difference by the alignment score. If the score is larger than the score threshold (default 

value at 1.5), the new peak pair is aligned to the existing peak pair in the same row; otherwise, a 

new peak pair is created in the alignment table. Table 4.2 shows the data structure of an 

alignment table. The left side of the table contains the peak pair information, including retention 

time, accurate mass, and peak intensity (intensity column not shown); all values are averages 

from individual peak pairs. The right side of the table contains the peak pair ratios in each 

sample. Within each row, one can compare the relative concentrations of the metabolite in all 

samples.  
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  Compared to other alignment methods90,100,101 in which retention time and mass of each 

feature are compared, CIL data alignment additionally used the intensity of the heavy peak as the 

third comparison. This is because in the labeling experiment, the heavy labeled pooled sample is 

added to each individual sample with the same total sample amount.91 For each labeled 

metabolite, although the light peak intensity can vary greatly, depending on the metabolite 

concentration in one sample, its heavy peak will be more consistent in all samples. Therefore, the 

heavy peak intensity difference was used in the score to increase the matching accuracy.  

 

Table 4.2 Data format of an alignment table of n number of individual samples and m number of peak 

pairs. Peak pair ratios of each peak pair from different samples are aligned in the sample columns.  

 

 

4.3.3 Identifying isomers 

Ideally, the same metabolite should have the same measured m/z and retention time in different 

samples. However, due to instrumental limitations, retention time shift and mass error will exist 

from one sample to another. Therefore, mass tolerance and retention time tolerance were used in 

the alignment score to allow peak pair matching in different sample data files. On the other hand, 

if the retention time or the mass of one metabolite in one sample shifted enough to have its 
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matching score lower than the score threshold, its peak pair will be recorded in the alignment 

table as a new peak pair. A peak pair in such a case is considered as a redundant peak pair. 

Redundant peak pairs can be similar to isomers that have similar retention times within a sample 

file. To distinguish between the two cases, we added one more step at the end of the alignment to 

identify all potential isomers.  

  True isomers are different peak pairs in one sample peak pair list after IsoMS processing. 

During the alignment, each of the isomers will be aligned into the alignment table with ratio 

values for all of them. For redundant peak pairs, only one of them can be present in a sample 

peak pair list. Thus, in the alignment table, only one ratio can be present for redundant peak pairs 

within each sample column. Figure 4.3 shows an example of the two cases. Leucine and 

isoleucine are two known isomers in the urine sample and were separated by 15 sec in the LC 

chromatogram. In the alignment table, both peak pairs have all ratios present in all sample 

columns. Another group of similar peak pairs is shown in Figure 4.3 (B) with only one ratio 

value available within a sample column. The extracted ion chromatogram showed only one 

distinctive peak present, indicating that the two peak pairs are likely to be redundant due to the 

retention time shift in some of the samples.  

  Based on this difference, we designed an algorithm to detect isomer peak pairs within an 

alignment table. To do this, the program first groups all peak pairs that are close in retention time 

and m/z using the same alignment RT and m/z window. Next, peak pairs are compared pair-wise 

within each group. If more than a certain percentage (20% by default) of the sample columns 

have both ratios showing up, the program labels the two peak pairs as isomers. The identified 

isomers will be reserved in the data table throughout the processing, and the true redundant peak 

pairs will be evaluated again later in the redundant peak pair merging step.  
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Figure 4.3 Examples of isomers (A) and redundant peak pairs (B) in the alignment table. Leucine and 

isoleucine are shown in chromatogram (A) and another unknown peak is shown in chromatogram (B). 

The data tables shows the corresponding peak pair data from the alignment table. 

 

4.3.4 Ratio zero-filling 

In an alignment table, missing values may show up randomly in different peak pairs. These 

missing values can be caused by the absence of a certain metabolite in some of the samples or 

due to technical and data processing limitations. For example, the initial peak pair selection is 
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based on a set of criteria to balance the sensitivity and specificity in peak pair picking. With each 

paired light and heavy peaks, the IsoMS program searches further for the natural isotope peaks to 

ensure that the light and heavy peaks have the same charge state and number of tags. Only the 

peak pair meeting all selection rules can be saved in the sample peak pair list. For some of the 

low abundance peaks or other peaks not meeting all the IsoMS criteria, their ratios could be 

missing in the alignment table.  

  The initial peak pair searching in LC-MS raw data is based on the peak pair pattern in 

each mass spectrum. After alignment, a list of commonly detected metabolites are available in 

the data table. A peak pair with a missing ratio value will have a relatively high probability of 

presence in the raw data due to the same nature of the sample. To retrieve the missing ratios, a 

ratio zero-filling program was developed by re-analyzing the original LC-MS data in a targeted 

manner based on the peak pair information in the alignment table.76 The zero-fill program 

searches the heavy peak of the peak pair in the original mass list based on its retention time, m/z, 

and peak intensity. The matching score is calculated by, 

𝑟𝑎𝑡𝑖𝑜. 𝑧𝑒𝑟𝑜𝑓𝑖𝑙𝑙𝑖𝑛𝑔. 𝑠𝑐𝑜𝑟𝑒 =
1 −

𝑟𝑡. 𝑑𝑖𝑓𝑓
𝑟𝑡. 𝑡𝑜𝑙
4

+
1 −

𝑚𝑧. 𝑑𝑖𝑓𝑓
𝑚𝑧. 𝑡𝑜𝑙
2

+
1 − 𝑖𝑛𝑡. 𝑑𝑖𝑓𝑓

4
   (4. 2) 

𝑤ℎ𝑒𝑟𝑒  

             𝑟𝑡. 𝑑𝑖𝑓𝑓 = |𝑟𝑡.13 𝐶. 𝑝𝑒𝑎𝑘 − 𝑟𝑡. 𝑟𝑎𝑤. 𝑑𝑎𝑡𝑎. 𝑝𝑒𝑎𝑘| 

              𝑚𝑧. 𝑑𝑖𝑓𝑓 = 1 × 106 ×
|𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘−𝑚𝑧.𝑟𝑎𝑤𝑑𝑎𝑡𝑎.𝑝𝑒𝑎𝑘|

𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘
 

              𝑖𝑛𝑡. 𝑑𝑖𝑓𝑓 = |𝑙𝑜𝑔 (
𝑖𝑛𝑡.13𝐶.𝑝𝑒𝑎𝑘

𝑖𝑛𝑡.𝑟𝑎𝑤𝑑𝑎𝑡𝑎.𝑝𝑒𝑎𝑘
)| 
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  The weights allocated to the three comparisons, retention time, mass, and heavy peak 

intensity, are 25%, 50%, and 25%, respectively. We use a score threshold of 0.6 to determine a 

qualified match. With a matched heavy peak, the program continues to look for the light peak in 

the highest score heavy peak scan. A new peak pair ratio is calculated to fill the missing value if 

both light and heavy peak intensity are found.  

 

4.3.5 Peak pair ratio calculation using chromatographic peak area 

One limitation of the first-generation zero-filling algorithm is that it requires the presence of both 

the light and heavy peaks in one specific scan from the best matched heavy peak. It works in 

most cases, but in some low intensity peak pairs, the light peak can be missing in the highest 

score heavy peak scan.  

  On the other hand, a peak pair ratio calculated from one single data point may introduce a 

random measurement error. To estimate this error, we extract the peak pairs from an identified 

compound, dansyl proline, in a sample data. Peak pair ratios of dansyl proline were calculated in 

each mass spectrum where the signals of the peak pair can be detected. After a round of 

calculations, the list of ratios was plotted against the retention time in Figure 4.4; the red data 

points are the absolute peak intensities in the whole LC peak. We can see that the peak pair ratio 

is relatively stable regardless of the peak intensity changes; the average of the ratio is 1.57 ± 0.04 

with a relative standard deviation of 2.49%.  

In addition to the peak pair ratio, we also calculated the intensity ratio of the first natural isotope 

peak against the light peak. The relative peak intensity of the first isotope peak is dictated by the 

element composition of the compound; in theory, the intensity ratio of the first isotope peak 
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against the main peak should be a constant. Figure 4.5 shows the results of the intensity ratio as a 

function of retention time; the blue data points are intensity ratios calculated in each mass scan 

for the dansyl-proline light peak; the standard deviation and relative standard deviation are 0.016 

and 7.9%, respectively.    

  These two experiments showed the precision of intensity ratio measurements. The error 

in the intensity ratio is due mainly to the uncertainty in the measurement of individual peak 

intensities. In conclusion, a random measurement error is associated with the peak pair ratio 

calculation, and a potentially large error can occur in the ratio calculated when using one 

spectrum.  
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Figure 4.4 Peak pair ratios and light peak intensities of dansyl proline extracted from a sample data file. 

Blue data points are the peak pair ratios calculated in each mass spectrum and red data points are the light 

peak intensity in each spectrum.  

 

 

Figure 4.5 Peak intensity ratio of the first natural isotope peak versus the main peak for dansyl proline. 

Red data points are the proline main peak intensity, and blue data points are the intensity ratios in each 

mass spectrum.  

 

  Fortunately in a CIL LC-MS experiment, the peak pair ratio is independent of the 

absolute peak intensity. To improve the peak pair ratio accuracy, we updated the zero-filling 

function by calculating the peak pair ratio in all mass scans with signals of the peak pair and used 
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the average of the ratios to fill the alignment table. The program now searches all heavy peaks 

within the matching tolerances of retention time, accurate mass, and peak intensity. For each 

matched heavy peak, the program looks further for the light peak in the same mass spectrum. In 

this way, the data from the whole peak area of one metabolite is extracted and used for 

calculating the peak pair ratio average. If one of the light peaks is missing in one of the spectra, 

the program simply skips that scan. With the updated method, the accuracy of the peak pair ratio 

calculation was improved, and an increased number of missing values were retrieved from the 

raw LC-MS data.  

 

4.3.6 Saturation signal determination 

The detector of any mass spectrometer will have an upper limit for the ion intensity. The upper 

limit is the maximum intensity reading of one instrument and should not be confused with the 

upper limit of the linear range, which is always lower than the maximum detector intensity. To 

determine the upper limit of the linear range in one mass spectrometer, the data from a saturated 

peak pair (337/339) was extracted for an investigation. Figure 4.6 (A) shows the intensity ratio of 

the light peak over the heavy peak in different mass scans for the saturated peak pair; the red 

colored data are the light peak intensity for the peak pair. A drop in the intensity ratio can be 

observed when the light peak intensity increased to a certain value. Figure 4.6 (B) and (C) show 

the mass spectra of a saturated scan and an unsaturated scan. Since the light peak is more intense 

than the heavy peak, it became saturated earlier than the heavy peak as both intensities increased. 

Therefore, the intensity ratio would decrease after the light peak reached the saturation point. 

From Figure 4.6 (A), we can estimate the saturation intensity for the QTOF instrument to be at 
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around ~1.2×107, which is lower than the maximum display intensity of 2×107. In the peak pair 

ratio calculation, we will exclude peak pair data that have either peak intensity saturated.  
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Figure 4.6 (A) Peak pair ratios for a peak pair 337/339 at different scans. Blue colored data are the peak 

pair ratios, and red colored data are the light peak intensities. (B) and (C) are mass spectra of an 

unsaturated scan and a saturated scan.  

 

4.3.7 Peak pair validation 

A biological sample may contain thousands of metabolites that can be detected using one 

labeling method. One should expect to see the peak pair signal for any labeled metabolite with a 

concentration above the detection limit. All the initial data processing steps followed the peak 

pair patterns to extract metabolite information. However, the complexity of the sample may 

introduce signals in which a “light” and a “heavy” peak from different molecules are paired 

falsely. These peak pairs are considered as false positive peak pair features.  

  Figure 4.7 shows a case of a suspicious false peak pair in a sample data. The three mass 

spectra were picked from three consecutive mass scans in one sample. The mass distances of 

peak pair A–B and peak pair B–C are in the mass window by 2.0067 Da. In principle, peaks A, 

B, and C can combine to have three different peak pairs as peak pairs A–B, B–C, and A–C (peak 

pair A–C can be a 2-tag 1-charge peak pair). To test the three potential peak pairs, we calculated 

the peak pair ratio of each possible combination in the three mass spectra (see Table 4.3). From 
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the result, we can observe a clear difference among the ratios for peak pairs A–B and B–C. Such 

a ratio difference from scan to scan indicated a falsely paired light and heavy peak. By 

examining more spectra, we found that peak A is an interfering peak that coincidently showed up 

near peak B by a 2.0067 Da distance. In this way, we concluded that only peak pair B–C is a true 

peak pair.  
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Figure 4.7 Three consecutive mass spectra in one sample data (scan number 175-177) zoomed in for the 

three mass peaks of interest. The mass distance of peak A to peak B and peak B to peak C are close to 

2.0067 Da.  
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Table 4.3 Peak pair ratios calculated for the three peak pairs. The relative standard deviation (RSD) was 

calculated for the ratios in the three spectra.  

Peak pair ratio A–B B–C A–C 

#175 0.95 0.98 0.86 

#176 1.91 0.94 1.45 

#177 2.23 0.89 2.05 

RSD 0.39 0.05 0.41 

 

 

  To exclude all the falsely paired peak pairs in the alignment data table, we designed a 

peak pair validation step by testing the inter-dependence of the light and heavy peak for each 

collected peak pair. For each ratio in the alignment table, the program extracts the light and 

heavy peak in the whole peak area and calculates a list of ratios from all spectra. A validation 

score is calculated by,   

 

 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛. 𝑠𝑐𝑜𝑟𝑒 = (1 −
𝑟𝑎𝑡𝑖𝑜.𝑟𝑎𝑛𝑔𝑒

𝑟𝑎𝑛𝑔𝑒.𝑡𝑜𝑙
) ×

1

3
+ (1 −

𝑟𝑎𝑡𝑖𝑜.𝑅𝑆𝐷

𝑅𝑆𝐷.𝑡𝑜𝑙
) ×

2

3
 

                                          + 𝑙𝑜𝑔10(1 +
𝑠𝑛.𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑣𝑒𝑟𝑎𝑔𝑒.𝑠𝑛.𝑙𝑖𝑔ℎ𝑡
)+ 𝑙𝑜𝑔10(1 +

𝑠𝑛.𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑣𝑒𝑟𝑎𝑔𝑒.𝑠𝑛.ℎ𝑒𝑎𝑣𝑦
) 

                                                       + (1 − 𝑠𝑐𝑎𝑛.𝑑𝑖𝑓𝑓
2

) × 1
2
                                                                (4.3) 
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The score consists of three parts. In the first part, it calculates the difference among all the ratios 

using the ratio range (ratio.range) and relative standard deviation (ratio.RSD). Next, a 

compensation score is added for a peak pair with a relatively low intensity. This is because the 

low intensity peaks tend to have a larger uncertainty for the measured intensity, giving the peak 

pair ratio a larger error. As the peak pair intensity (average of light or heavy peak intensity) gets 

close to the signal to noise ratio threshold (sn.threshold), an increasing score is added to 

compensate for the increasing uncertainty. The last part of the score looks at the differences in 

the retention time of light and heavy peaks. Since the isotope labeling (13C-/12C-labeling) will not 

affect the retention behavior of the labeled metabolites, a difference in the scan number (scan.diff) 

for light and heavy peaks can be another indicator of two independent peaks.  

  A validation score is calculated for each existing ratio after ratio zero-filling. We use a 

validation score of 0 as a threshold to label each ratio as TRUE or FALSE for one peak pair. If 

the ratios from all samples are labeled as FALSE (the peak pair is determined as a false peak pair 

in all samples), we then have a high confidence that the peak pair is a false peak pair. All the 

false peak pairs will be excluded from the data table at the end of the processing.  

 

4.3.8 Redundant peak pair merging 

The retention time and m/z of the same metabolite will have variations from sample to sample. 

In the alignment step, an alignment score was designed with a retention time and mass tolerance 

for matching the peak pair across samples. A threshold score value was optimized in the program 

to balance the sensitivity and specificity in peak pair matching and increase the accuracy of data 

alignment. However, due to experimental error, some of the peak pairs may have a relatively 
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large retention time or mass shift that gives them an alignment score larger than the score 

threshold. These peak pairs become redundant features in the alignment table. We have 

identified previously the isomer peak pairs that can be confused easily with redundant peak pairs. 

In this step, we will examine the rest of the peak pairs and remove the real redundant ones.  

  For the same metabolite, we have shown consistent peak pair ratio values within one 

sample. For two peak pairs with a similar retention time and m/z in an alignment table, we can 

compare further the ratio values column-wise to test the correlation of two peak pairs. If the ratio 

values are similar for two peak pairs in all sample columns, they are likely to be redundant peak 

pairs. Based on this strategy, the program first groups all peaks pairs with the retention time and 

m/z difference within the matching window. Within each group, a pairwise comparison is 

conducted between two peak pairs, peak pair (a) and peak pair (b). An overall peak pair ratio 

difference is calculated  by,  

 

               𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 𝑒𝑟𝑟𝑜𝑟 = (∑
|𝑟𝑎𝑡𝑖𝑜𝑛𝑎,𝑖−𝑟𝑎𝑡𝑖𝑜𝑛𝑏,𝑖|

𝑟𝑎𝑡𝑖𝑜𝑛𝑎,𝑖

𝑛
𝑖 )/𝑛                (4.4) 

 

where n is the total number of samples that have ratio values in both peak pair (a) and peak pair 

(b), and ratioa,i and ratiob,i are the peak pair ratios in the ith sample column. The average of the 

relative ratio error is calculated as a measure of the ratio difference between two peak pairs. If 

the difference is less than the threshold (default at 20%), we determine the peak pairs to be 

redundant. Within each true redundant group, we keep the highest heavy peak intensity peak pair 

and merge the ratio values into the highest intensity peak pair. Table 4.4 shows an example of 

the redundant peak pair processing; Table 4.4 (A) is the alignment result and Table 4.4 (B) is the 



98 
 

table after the zero-filling processing. After ratio zero-filling, most of the missing value were 

recalculated from the peak pair’s chromatographic data. If the two peak pairs are from the same 

LC peak, the ratio calculated from the peak area will similar. From Equation (4.4), we calculated 

an average relative ratio error between the two peak pairs at 1.58%. This result indicated a very 

similar ratio value for the two peak pairs, thus labeling them as true redundant peak pairs. Next, 

the ratios were merged into the highest intensity peak pair. In this example, the ratio value in 

sample column 8 from the removed peak pair was used to fill the missing value in the saved peak 

pair, as shown in Table 4.4 (C). 

 

Table 4.4 (A) Example of two suspicious peak pairs after data alignment.  

# RT mz_light mz_heavy intensity 1 2 3 4 5 6 7 8 

914 396.1415 406.1416 408.1483 7824 NA NA NA NA NA NA NA 1.77 

1036 414.1165 406.1425 408.149 252904 2.16 2.00 2.09 2.20 1.82 1.71 1.92 NA 

 

Table 4.5 (B) The two suspicious peak pairs after ratio zero-filling.  

# RT mz_light mz_heavy intensity 1 2 3 4 5 6 7 8 

914 396.1415 406.1416 408.1483 7824 2.10 2.05 2.09 2.22 NA 1.69 1.88 1.77 

1036 414.1165 406.1425 408.149 252904 2.16 2.00 2.09 2.20 1.82 1.71 1.92 NA 

 

Table 4.6 (C) The merged peak pair after redundant peak pair merging. The ratio value of column 8 is 

filled using the data from the removed peak pair.  

# RT mz_light mz_heavy intensity 1 2 3 4 5 6 7 8 

1036 414.1165 406.1425 408.149 252904 2.16 2.00 2.09 2.20 1.82 1.71 1.92 1.77 
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  Another source of redundant peak pairs can be from peak tailing. Peak tailing occurs for a 

relatively high intensity peak in which the signal of the peak can extend to a few minutes at the 

tail of the LC peak. The peak pair of one metabolite can be detected repeatedly within the tailing 

retention time, causing redundancy in the data table. To exclude a redundant peak pair caused by 

peak tailing, the program first searches all peak pairs with a heavy peak intensity larger than 106 

and checks repeated peak pairs in a 3-min window after the main peak. If more than three 

repeated peak pairs are found in the 3-min tail with peak intensity lower than 5% of the main 

peak (see Figure 4.8), they are labeled as tailing peak pairs and deleted from the peak pair table.  

 

 

Figure 4.8 Peak tailing in the tailing peak pair removing process. The main peak must have an intensity 

larger than 106 (for Bruker QTOF mass spectrometer), and the tailing peak pair has to show up more than 

three (>=3) times within a 3-min tailing retention time window.  
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4.3.9 Missing value imputation 

In studies of metabolomics, missing quantity values of metabolites are encountered commonly. 

They can originate from various sources, including analytical, computational, and biological.102 

These missing values can be problematic for statistical analysis as many analysis methods 

require a complete metabolite-intensity matrix. Methods for imputing missing data have been 

developed in recent years, but these were not designed usually for CIL LC-MS data in which 

peak pair ratio represents the relative abundance of each labeled metabolite in the metabolite-

intensity table.  

  The zero-filling program can retrieve a significant portion of missing data based on their 

signals in the raw file. For the remaining missing ratios, we conducted a manual search in the 

raw data and found that most of the missing values either have their intensity totally missing or 

have an intensity much lower than those of existing peak pairs. A missing value in CIL LC-MS 

data can be divided into two categories: both peak intensities missing and one of the peak 

intensities missing.  

  The program first attempted to search for the possible peak intensities in each missing 

ratio. Two peak intensity tables were created first for the light and the heavy peak during the 

peak pair alignment step. For each ratio calculated in the metabolite-intensity table, its light and 

heavy peak intensities were stored in the light and heavy peak intensity tables through all 

processing steps. An intensity zero-filling program was developed to retrieve peak pair 

intensities from the raw data. Based on the two peak intensity tables, the light and heavy peak of 

a missing ratio are searched in the raw data by, 
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                     𝑠𝑐𝑜𝑟𝑒. 𝑙𝑖𝑔ℎ𝑡 = (1 −
𝑟𝑡.𝑑𝑖𝑓𝑓

𝑟𝑡.𝑡𝑜𝑙
)/3 + (1 −

𝑚𝑧.𝑙𝑖𝑔ℎ𝑡.𝑑𝑖𝑓𝑓

𝑚𝑧.𝑡𝑜𝑙
) × 2/3 

                     𝑠𝑐𝑜𝑟𝑒. ℎ𝑒𝑎𝑣𝑦 = (1 −
𝑟𝑡.𝑑𝑖𝑓𝑓

𝑟𝑡.𝑡𝑜𝑙
)/3 + (1 −

𝑚𝑧.ℎ𝑒𝑎𝑣𝑦.𝑑𝑖𝑓𝑓

𝑚𝑧.𝑡𝑜𝑙
) × 2/3         (4.5)        

where        𝑟𝑡. 𝑑𝑖𝑓𝑓 = |𝑟𝑡.
13

𝐶. 𝑝𝑒𝑎𝑘 − 𝑟𝑡. 𝑟𝑎𝑤. 𝑑𝑎𝑡𝑎. 𝑝𝑒𝑎𝑘| 

                     𝑚𝑧. ℎ𝑒𝑎𝑣𝑦. 𝑑𝑖𝑓𝑓 = 1 × 106 ×
|𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘−𝑚𝑧.𝑟𝑎𝑤𝑑𝑎𝑡𝑎.𝑝𝑒𝑎𝑘|

𝑚𝑧.13𝐶.𝑝𝑒𝑎𝑘
 

                      𝑚𝑧. 𝑙𝑖𝑔ℎ𝑡. 𝑑𝑖𝑓𝑓 = 1 × 106 ×
|𝑚𝑧.12𝐶.𝑝𝑒𝑎𝑘−𝑚𝑧.𝑟𝑎𝑤𝑑𝑎𝑡𝑎.𝑝𝑒𝑎𝑘|

𝑚𝑧.12𝐶.𝑝𝑒𝑎𝑘
               

                 

If the score is larger than the threshold value of 0.3, the intensity is filled in the intensity table. In 

this round of search, the score calculation is different from the ratio zero-fill in that the intensity 

difference restriction was removed from the peak matching. This is because the missing ratio is 

likely to have its light or heavy peak intensity much lower than other peak pairs. As a result, if 

both intensities are found in this round, a new ratio is filled in the ratio table.  

  The remaining missing ratio data is divided into three specific cases: light peak missing, 

heavy peak missing, and both peaks missing. Of the three cases, the light peak missing was 

found to be the most frequent one since the heavy peak from the pooled sample usually gives a 

consistent signal. The reason for not detecting the light peak could be that the metabolite 

concentration in this sample was too low or the ion intensity was below the detection limit due to 

a strong ion suppression effect.  

  To estimate the missing ratio with better accuracy, we developed an algorithm to account 

for the ion suppression effect based on the comparison of the heavy peak intensity of the missing 
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value pair to that of another pair with the lowest light peak intensity. Figure 4.9 shows the details 

of the algorithms. In the light peak missing case, missing peak pair (1) has its light peak below 

the detection limit. Then, we find the peak pair (2) from another sample with the lowest light 

peak intensity. The ratio of the two heavy peaks is used as an estimate of the ion suppression 

difference in the two samples. The predicted light peak intensity is calculated based on the light 

peak intensity from peak pair (2) and another prediction constant. The prediction constant is a 

number between 0 and 1 to compensate for the fact that the light peak is not detected. After an 

estimated light peak intensity is calculated, the new ratio is calculated to fill the data table.  

  For the heavy peak missing case, the heavy peak intensity is likely to be below the 

detection limit. We use a value below the intensity threshold to replace the missing value. For 

both peak missing cases, we can assume only that both peaks are below the intensity threshold, 

so the peak pair ratio average in other samples is used to replace the missing value.  
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Figure 4.9 Missing value prediction algorithm: (A) a light peak missing, another existing ratio with the 

lowest light peak intensity is used for the intensity estimation, (B) a heavy peak missing, the heavy peak 

intensity is replaced by a small value below the intensity threshold, and (C) both peak intensities missing, 

the ratio is replaced by the average of ratios from that peak pair. The red dashed line indicates the level of 

the detection limit. The prediction constant is a number between 0 and 1 for the missing intensity 

prediction.  
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4.4 Results and Discussion 

4.4.1 Saturation signal determination 

Before analyzing each individual sample in LC-MS, the injection amount was optimized first to 

allow the detection of low concentration metabolites and achieve maximum detectability. With 

the increasing injection amount, more peak pairs could be detected from one sample. However, a 

higher injection can cause the signal from the high concentration analytes to be saturated, 

making the ratio calculation inaccurate. To determine the saturation signal of one mass 

spectrometer, we collected data from a 2:1 mixture of a human urine sample (Section 4.2.4). 

After data collection, we selected a high intensity peak pair and calculated the intensity ratios of 

light peak over heavy peak in its chromatographic peak. Figure 4.6 shows the ratio change in the 

whole peak area. Since the light peak has a larger intensity than the heavy peak, saturation first 

occurred on the light peak and caused the ratio to decrease. The ratio curving point indicated a 

saturation signal at 1.2 X 107.  

  In general, one can use any saturated peak to determine the saturation intensity by 

calculating the intensity ratio of a saturated peak over its first natural isotope peak in the whole 

LC peak area. Since the relative intensity of the natural isotope peak for the same compound is a 

constant, the intensity ratio value can be used to estimate the saturation intensity. One should 

check the saturation signal when using a new mass method or after instrument maintenance. All 

saturation signals will be excluded from ratio calculations.  

 

4.4.2 Performance of ratio zero-filling 
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  We ran the alignment and ratio zero-filling method on the 2:1 mixture LC-MS data using 

both a previous zero-filling method and the updated one. After alignment of 20 sample files, we 

had 3,055 peak pairs in the metabolite-intensity table. The overall missing value percentage is 

65.08% in the alignment table. After ratio zero-filling, the missing percentage is 16.74% with the 

first generation zero-filling method and 5.60% in the updated zero-fill method. The new ratio 

zero-fill showed a roughly 10% increase of the ratio values retrieved than the first generation 

zero-fill.  

  Figure 4.10 shows the ratio value distribution in each sample column for the 20 samples. 

Figure 4.10 (A) and Figure 4.10 (B) are the box plots of data generated by the first generation 

zero-fill and the updated ratio zero-fill, respectively. From the plots we can see that the new 

processing method removed most extreme outliers after peak pair validation. These outlier ratios 

were mostly from the low intensity peak pair. Their ratios tend to have a larger random error than 

high intensity peak pairs. Ratio medians are shown in Figure 4.10 (C), with all medians close to 

the theoretical value of 2.00. Figure 4.10 (D) shows the interquartile range of ratios in each 

sample column. An overall smaller interquartile range can be seen for data from the updated 

zero-fill method, indicating the improved accuracy after using ratios calculated from peak area 

data.  
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Figure 4.10 Peak pair ratio distribution in boxplot for data generated by (A) the first generation zero-fill 

method and (B) the updated zero-fill method. (C) The median value for the ratio in each sample column 

and (D) the interquartile range for each sample. The new method removed most of the extreme outliers 

and showed a smaller interquartile range.  
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  Figure 4.11 shows the number of missing values in each sample. Duplication injections 

were conducted for each injection volume. The number of missing values decreases as the 

amount of sample injection increases. As injection volume increased, more peaks became 

saturated, causing a greater ion suppression to those low abundant peaks; this led to an increased 

missing value at over injection.  

  For the remaining 5.60% missing ratios, we applied the ratio value imputation method 

(Section 4.3.9) and generated a complete metabolite intensity table with no missing ratios. The 

5.60% predicted values were extracted, and a box plot was created for a predicted value in each 

sample column in Figure 4.12. We can see that the medians for predicted values are close to the 

reference value of 2.00. Although the predicted ratio error can be relatively large for some of the 

data points, the overall prediction accuracy is good for each sample data.  

 

Figure 4.11 Number of missing values in each sample column after ratio zero-fill. Duplicate injections 

were conducted for each injection volume.  
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Figure 4.12 Box plots of predicted values in each sample column. 

 

4.4.3 Human urine data 

We applied the data processing workflow to the human urine data collected from two individuals. 

A total of 9,444 peak pairs were detected after aligning 18 sample data. On average, there are 

77.76% ratio values missing in the ratio matrix after alignment. After ratio zero-filling, the 

missing value percentage dropped to 7.54%. In the peak pair validation and redundant peak pair 

merging steps, 395 and 1,122 peak pairs were deleted, respectively.  

  We filtered out the peak pairs that had the ratio missing in more than 50% of the samples 

after the ratio zero-fill and intensity zero-fill. A peak pair missing over 50% of its ratio values 

may have inadequate data for making an accurate prediction of the missing ratios. 101 peak pairs 

were excluded from the 50% filter, leaving a total number of 7,826 peak pairs. After missing 

data imputation, a complete data table was generated.  
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  Figure 4.13  (A) and Figure 4.13 (B) are the principal component analysis (PCA) score 

plots for two missing data treatments: k nearest neighbor (KNN) method and zero-filling 

imputation processing method (plots generated by MetaboAnalyst64). Red and green data points 

are sample data from individual (1) and (2). Since the urine sample was collected from two 

genders, a separation is expected to be seen in a PCA score plot. In this result, the PCA plot (B) 

for data from the zero-filling imputation method shows a better separation between the two 

groups, with a smaller intra-group variation. Figure 4.13 (C) shows a comparison of the first two 

component percentages in the PCA plot using all available imputation methods in 

MetaboAnalyst and zero-filling imputation. A larger component of percentages can be seen in 

the result from the zero-filling ratio imputation method in comparison to all other imputation 

methods, showing the advantage of our method for predicting missing ratio data in a CIL LC-MS 

experiment. 
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Figure 4.13 Principal component analysis (PCA) score plots using (A) the KNN imputation method and 

(B) the zero-filling processing method. (C) Comparison of PCA component 1 and 2 percentages using 

available imputation methods at metaboanalyst.ca.  
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4.5 Conclusions 

We reported an integrated data processing workflow for the chemical isotope labeling LC-MS 

experiment. In the new zero-fill algorithm, an extracted ion chromatogram was constructed for 

each ratio, and a new ratio was recalculated using the average of the peak pair ratios in the whole 

peak area. All saturated signals were excluded from the ratio calculation. A novel missing data 

imputation method was developed for the prediction of missing ratios based on the intensity data. 

The peak pair ratio imputation method showed a significant improvement in the separation of 

two biological groups in a PCA plot compared to other imputations methods.  

  In the data table, each peak pair should be representative of a labeled metabolite. 

However, due to random chances, there are a few cases where a light and a heavy peak were 

falsely paired together. A scoring method was designed to find all false positive peak pairs by 

evaluating the consistency of ratios from one peak pair and the overlap between light and heavy 

chromatographic peaks. The redundant peak pairs were examined also through the peak pair 

table. After ratio zero-filling using chromatographic peak area data, ratios for one metabolite 

should be the same in each sample. We tested the similarity among peak pairs based on 

differences in retention time, m/z, and within-sample ratio values to exclude all redundant peak 

pairs.  

  The new processing workflow was found to improve the peak pair ratio accuracy by 

using data from a whole peak area and minimizing noise data by excluding false positives and 

redundant peak pairs. These novel labeling data processing methods show the advantages of the 

chemical isotope labeling LC-MS platform. We also showed the performance of the workflow in 

a comparative metabolomics study using a human urine dataset collected from two individuals. 
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A better inter-group separation and a small intra-group variation were observed in the PCA score 

plots in comparison to data generated from previous workflow using imputation methods on 

MetaboAnalyst.  

  Moreover, we designed a graphical user interface based on the R shiny package and 

provided an easy access to all the processing functions; Figure 4.14 shows the current design of 

the program window. In comparison to the script format in the previous workflow, the graphical 

interface is more user friendly with all the adjustable parameters for each processing method. 

The program has been installed in our lab for processing data generated from different isotope 

labeling methods using different MS instruments. In future work, we will continue to integrate 

more data analysis methods in the workflow and provide a complete data analysis package for all 

types of metabolomics data.  
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Figure 4.15 Graphical user interface for IsoMS, alignment and zero-fill. 
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5. Chapter 5 Improving Accuracy of Peak-Pair Intensity Ratio Measurement 

in Differential Chemical Isotope Labeling LC-MS for Quantitative 

Metabolomics 

 

5.1 Introduction 

Chemical isotope labeling (CIL) LC-MS has developed rapidly as a powerful tool for 

metabolomic profiling in metabolomics research. With differential isotope labeling of individual 

samples (e.g., 12C2-labeling) and a control sample (e.g., 13C2-labeling), the resulting mixtures 

(12C2-labeled sample and 13C2-labeled control) can be analyzed using LC-MS to detect peak pairs 

of labeled metabolites from which the peak-pair intensity ratios can be measured to provide the 

basis of relative quantification of metabolites in different samples. A number of labeling reagents 

have been reported with varying degrees of enhancements in analytical performance.30,103-105 

With a rational design of the chemical structure of the labeling reagents used to derivatize a class 

of metabolites (i.e., a chemical-group-based submetabolome), both efficient LC separation and 

sensitive MS detection of labeled metabolites can be achieved, resulting in very high 

metabolomic coverage.87,88 Using differential isotope labeling, where the light reagent is used to 

label the individual samples and the heavy reagent is used to label a control sample (e.g., a 

pooled sample for relative quantification or a standard with known concentration for absolute 

quantification), accurate and precise quantification of metabolites in comparative samples can be 

performed. To avoid the isotopic effect on chromatography separation of the light and heavy 

labeled metabolites, 13C-encoded reagents are preferred over deuterium-containing reagents. 

However, 13C-reagents may not be available at a reasonable cost compared to deuterium-based 
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isotope reagents. In some reagents, such as dansyl chloride (DnsCl) that has been widely used to 

label amine- and phenol-containing metabolites,30 the relatively inexpensive form of 13C-Dns 

contains only two 13C atoms. As a result, the mass difference between the light (12C2-) and heavy 

(13C2-) labeled metabolite is 2 Da if one reagent tag is attached to a metabolite. Two other high-

performance reagents, DmPA and dansylhydrazine, used to label carboxylic submetabolome31,106 

and carbonyl submetabolome,88 respectively, also have a 2 Da difference between the light and 

heavy forms.  

  A mass difference of 2-Da apart between the light and heavy labeled metabolite may 

introduce an error in measuring the intensity ratio of the peak pair for relative metabolite 

quantification. This is because natural isotopologues of the light labeled metabolite may overlap 

with the heavy labeled peak and contribute their intensity to that of the heavy labeled peak, 

making the intensity ratio of 13C2-peak vs. 12C2-peak artificially higher. In this work, we have 

investigated the intensity contributions of the natural isotopes of various common elements 

present in human endogenous metabolites, including carbon, hydrogen, oxygen, nitrogen, 

phosphorus, and sulfur. We report a data processing method that accounts for natural isotope 

contributions in the ratio calculation for 12C2- and 13C2-labeled peak pairs. It is shown that this 

method can improve the measurement accuracy for determining the peak intensity ratio of the 

light and heavy labeled metabolite in metabolomic profiling. 

 

5.2 Materials and Methods 

5.2.1 Chemicals and reagents 



118 
 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). For the dansylation labeling reaction, the 12C2-labeling reagent 

(dansyl chloride) was from Sigma-Aldrich, and the 13C2-labeling reagent was synthesized in our 

lab using the procedure published previously.30 LC-MS grade water, methanol, and acetonitrile 

(ACN) were purchased from ThermoFisher Scientific (Nepean, ON, Canada).  

 

5.2.2 Human urine sample collection 

Human urine samples were collected from two individuals to generate test data. Equal volumes 

of all the individual samples were mixed together to make a pooled sample. Each urine sample 

was centrifuged at 14,000 rpm for 10 min, and the supernatant was filtered twice through a 0.2 

μm filter. The filtered urine was aliquoted and stored at -80°C until further use. 

 

5.2.3 Dansylation labeling 

A mixture solution of amino acid and peptide standards was prepared in 1:1 ACN/H2O with a 

concentration of 0.1 mM for each. The frozen urine samples were thawed in an ice-bath. A 25 

µL sample of urine or standard mixture solution was taken out for a labeling reaction in an 

Eppendorf tube. Then, 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer were 

added to the sample to introduce a basic environment for the labeling reaction. The solution was 

vortexed, spun down, and mixed with 50 µL of freshly prepared 12C2-DnsCl solution (18 mg/mL) 

(for light labeling) or 13C2-DnsCl solution (18 mg/mL) (for heavy labeling).30 After the sample 

was incubated at 40 °C for 45 min, 10 µL of 250 mM NaOH were added to quench the excess 

dansyl chloride. The solution was incubated further at 40 °C for another 10 min to allow the 
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unreacted dansyl chloride to be hydrolyzed fully. Finally, 50 µL of formic acid (425 mM) in 1:1 

ACN/H2O were used to acidify the solution.  

5.2.4 LC-MS 

Each 12C-labeled individual urine sample was mixed with the 13C-labeled pooled urine sample in 

equal mole amounts based on the LC-UV measurement of labeled metabolites in individual and 

pooled samples.107 The 12C-labeled standard solution was mixed with an equal volume of the 

13C-labeled standard solution. The mixture was then ready to be analyzed by LC-MS using a 

Thermo Scientific Dionex Ultimate 3000 UHPLC System (Sunnyvale, CA) linked to a Bruker 

Impact quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). The LC 

column was an Agilent reversed phase (RP) Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 μm 

particle size, 95 Å pore size). The LC gradient was: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18 

min, 65% B; t = 24 min, 99% B; t = 34 min, 99% B. The flow rate was 0.18 mL/min.  

 

5.2.5 Data analysis 

All the spectra were first converted to .csv files by Bruker Daltonics Data Analysis 4.3 software. 

The peak pairs were extracted from .csv files by IsoMS.108 Human urine data generated from 

multiple runs were aligned together based on the individual peak’s accurate mass and retention 

time. The missing values in the aligned file were filled by Zerofill software.76   

 

5.3 Results and Discussion 

5.3.1 Peak ratio error 
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In differential CIL LC-MS using light and heavy reagents of 2-Da apart (e.g., 12C2- and 13C2-

dansyl chloride), quantification is performed by analyzing the mixture of the 12C2-labeled 

individual sample and 13C2-labeled control. Since the same amount of 13C-labeled control is 

spiked into the 12C-labeled individual samples, the intensity ratio values of a labeled peak pair of 

a metabolite measured from different samples reflect the concentration differences of the 

metabolite in these comparative samples. If the 13C2-labeled control is a standard of known 

concentration, the absolute concentration of this metabolite in a sample also can be determined. 

In both cases, measuring the peak intensity ratio of the 12C-/13C-labeled peak pair is needed. 

Table 5.1 shows the peak pair ratio values measured experimentally from LC-MS analysis of 1:1 

(in mole) 12C-/13C-dansyl labeled standards.  The expected ratio of the 13C-labeled peak vs. the 

12C-labeled peak is 1.0. However, as Table 1 shows, the measured ratios calculated based on 

their intensities are greater than 1, with the highest ratio of 1.239 for dansyl labeled Gly-Gly-

Phe-Leu. Thus, the error can be as high as 23.9%. 

 

Table 5.1 Peak pair ratios of 1:1 (in mole) 12C-/13C-dansyl labeled standards and adjusted peak pair ratios 

after excluding the natural isotope intensity of the light labeled peak. 

Name mz_light #C #S #O Peak 
pair 
ratio 

2nd 
isotope 
intensity 
by fitting 
function 

Adjusted 
peak pair 
ratio 

Theoretical 
2nd isotope 
intensity  

Adjusted 
peak pair 
ratio 

L-Alanine 323.106 15 1 4 1.131 0.0525 1.078 0.053 1.078 

Ammonium 
chloride 

251.0849 12 1 2 1.096 0.0497 1.047 0.046 1.051 

L-Arginine 408.17 18 1 4 1.135 0.0599 1.075 0.058 1.077 

L-Aspartic acid 367.0958 16 1 6 1.061 0.0558 1.006 0.057 1.004 

L-Glutamic acid 381.1115 17 1 6 1.084 0.057 1.027 0.059 1.025 

Glycine 309.0903 14 1 4 1.066 0.0517 1.014 0.051 1.015 
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L-Histidine 389.1278 18 1 4 1.08 0.0578 1.022 0.058 1.022 

L-Isoleucine 365.1529 18 1 4 1.11 0.0556 1.055 0.058 1.053 

L-Methionine 383.1094 17 2 4 1.134 0.0572 1.077 0.092 1.043 

L-Phenylalanine 399.1373 21 1 4 1.137 0.0589 1.078 0.063 1.074 

L-Proline 349.1216 17 1 4 1.041 0.0543 0.987 0.056 0.985 

L-Serine 339.1009 15 1 5 1.11 0.0536 1.057 0.054 1.056 

L-Threonine 353.1166 16 1 5 1.124 0.0546 1.07 0.056 1.068 

L-Valine 351.1373 17 1 4 1.116 0.0544 1.062 0.056 1.06 

Trp-Gly-Gly 552.1911 27 1 6 1.022 0.0825 0.939 0.081 0.941 

Gly-Gly-Phe-Leu 626.2643 31 1 7 1.239 0.0991 1.14 0.094 1.145 

 

5.3.2 Theoretical isotopologue intensity 

The ratio difference between the expected value and the measured value, as shown in Table 1, 

can be attributed to the contribution of natural abundance peaks from the light labeled metabolite. 

Human endogenous metabolites contain mainly hydrogen, carbon, oxygen, nitrogen, sulfur, and 

phosphorus.109 The natural isotope abundance of these elements at a peak of +2-Da from the light 

labeled metabolite can be calculated readily. For example, for a compound containing n number 

of carbons (n=1, 2, 3 …), its mass spectrum, in theory, should have n number of 13C isotopic 

peaks. The kth isotopic peak (k=1, 2, 3…, n) occurs when the number of carbons, k, in this 

compound happens to be 13C. Based on the binomial distribution model,110 the probability of the 

kth isotopic peak can be described as,   

 

𝑃(𝑘) = (
𝑛

𝑘
) × 1.109%𝑘 × (1 − 1.109%)(𝑛−𝑘)     (5.1) 

(
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
     (5.2) 
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 where (𝑛
𝑘

)  calculates the number of possible combinations of k 13C out of n carbons in a 

compound.  

  The relative peak intensity of the kth 13C isotopic peak vs. the main peak (all 12C 

molecular peak) is equal to the probability ratio of these two isotope peaks. Therefore, the 

relative intensity of the kth isotope peak can be calculated as,  

 

𝑘𝑡ℎ 𝑝𝑒𝑎𝑘 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
(𝑛

𝑘
) × 1.109%𝑘 × (1 − 1.109%)(𝑛−𝑘) 

(1 − 1.109%)𝑛
       (5.3) 

 

where (1 − 1.109%)𝑛  is the probability of all carbons in the compound being 12C. From 

Equation (5.3) we can calculate the theoretical relative intensity of the first and second 13C 

isotope peak as 0.0112*n and 0.000063*n*(n-1), respectively. For other elements, we can 

calculate their isotopologue relative intensity using equation (5.3) by substituting the isotope 

abundance. Using this method, we can calculate the theoretical relative peak intensity for any 

isotopologue. Table 5.2 lists the natural abundance of isotopes of common elements in human 

endogenous metabolites, including carbon, hydrogen, oxygen, nitrogen, and sulfur. Isotopes with 

an abundance less than 0.01% (e.g., phosphorus) are not listed. The m column shows the 

monoisotopic mass difference of each isotope with respect to the most abundant isotope in that 

element. Due to mass defect, m of adjacent isotopes in different elements can have a difference 

of a few mDa. 
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  The 13C2 and 34S of the light (12C2-) labeled peak are found to be the major contributors to 

the heavy (13C2-) labeled peak in a quadrupole time-of-flight (QTOF) mass spectrometer, which 

generally has a resolving power of less than 50,000 for detecting low molecular mass ions 

(<1000 Da). The 34S peak is separable from the 13C2 peak when using ultrahigh resolution mass 

spectrometry, such as FT-ICR-MS or Orbitrap-MS. However, compared to these ion-trap-based 

high resolution devices, QTOF ion detection has a higher tolerance to ion saturation.111 As a 

consequence, a larger amount of sample can be injected in order to detect the relatively lower 

abundance metabolites in a complex metabolome sample. For example, in our experience, the 

Bruker Impact QTOF instrument can detect about 20–25% more peak pairs, compared to the 

Bruker 9.4-T Fourier-transform mass spectrometer in 12C2-/
13C2-dansyl labeled samples such as 

human urine.  

  To evaluate the natural isotopologue interference with the +2-Da labeled peak, we plot 

the relative intensity of the 13C2, 
34S and 18O peak as a function of the number of atoms (for each 

element) in a dansyl labeled molecule. Other potential peaks at +2-Da, such as the 15N13C, 2H2, 

2H13C, and 33S13C peak, are not shown due to their low relative intensity for metabolites with 

molecular mass less than 1000 Da. The dansyl labeling tag will introduce 12 carbon, 1 sulfur and 

2 oxygen atoms to the labeled molecule. Figure 5.1 clearly shows that the relative peak intensity 

of the natural abundance peak of the light labeled peak can be greater than 10% at the +2-Da 

heavy labeled peak.  As the molecular mass of a metabolite increases, this intensity contribution 

or error would increase. 

 

Table 5.2 Stable isotope abundance of common elements in endogenous human metabolites. 
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Isotope m (Da) Abundance 

12C 0 98.9% 

13C 1.00335 1.1% 

1H 0 99.98% 

2H 1.00628 0.02% 

14N 0 99.6% 

15N 0.99704 0.4% 

16O 0 99.76% 

17O 1.00422 0.04% 

18O 2.00425 0.20% 

32S 0 94.99% 

33S 0.99939 0.75% 

34S 1.9958 4.25% 
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Figure 5.1 Relative intensity of +2-Da natural isotope peak as a function of (A) number of carbon, (B) 

number of sulfur, and (C) number of oxygen. 

 

 

 

5.3.3 Excluding natural isotopologue contributions in ratio calculation 

If one knows the chemical structure of the metabolite, the natural isotopologue contribution of 

the light labeled metabolite to the peak intensity of the +2-Da heavy labeled metabolite can be 

calculated (e.g., using Equation 5.3) and then subtracted from the measured intensity of the +2-

Da peak to arrive at an accurate value of the 13C2-labeled peak intensity. This approach is similar 

to those reported for correcting natural isotope contributions in lipid and metabolite analyses.112-

117 However, in untargeted metabolomic profiling, the chemical structures are not known, a 

priori, and many metabolites cannot be identified positively. Thus, we cannot rely on the 

elemental composition information to subtract out the natural isotope contribution. 

  We examined the possibility of using the molecular mass (strictly m/z, but z is usually +1, 

for dansyl labeled ions) of the labeled metabolite to calculate the intensity contribution of the 
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natural isotopologue of the light labeled metabolite. Table 5.3 summarizes the results of the 1st 

and 2nd natural isotope peak relative intensities for 13 labeled standards. Figure 5.2(A) shows the 

intensity of the 1st natural isotope peak (+1-Da peak) of the light labeled standards as a function 

of their m/z values. The experimental relative intensity shows a linear relation with the m/z of 

the standards. Figure 5.2(B) shows the intensity of the 2nd natural isotope peak (+2-Da peak) of 

the light labeled standards as a function of their m/z values. The experimental value and the 

theoretical value have a quadratic relation with m/z. In both cases, as the molecular mass 

increases, the carbon number increases and the relative intensity of the 1st and 2nd isotope peaks 

increases. We note that there are some variations in replicate measurements of the relative 

intensity values shown in Figure 5.2. This is expected as the QTOF-MS instrumental setup was 

optimized to detect as many labeled metabolites as possible and not for targeted analysis of one 

or a few metabolites. Thus, the signal-to-noise ratio and signal integration time of a given 

metabolite ion may not be ideal to generate the perfect isotope abundance pattern. Overall, as the 

results of Figure 5.2 show, the QTOF-MS instrument measured the isotope abundances well. 

More importantly, the quadratic curve fit shown in Figure 5.2(B) can be useful in determining 

the relative intensity of the 2nd natural isotope peak of a light labeled metabolite based on its m/z 

value. Thus, without knowing the elemental composition of a metabolite, we propose to use the 

m/z value of the light labeled peak to estimate the relative intensity of its 2nd natural isotope peak. 

  We used a set of dansyl labeled dipeptides to test the accuracy of the quadratic equation 

for calculating the 2nd natural isotope intensity. Table 5.4 shows the calculated values, along with 

the theoretical values and the measured values. All three values are very close to each other, 

indicating the effectiveness of using the quadratic equation for determining the natural isotope 

peak intensity. 
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  We applied the quadratic equation to calculate the 2nd isotope intensity of the dansyl 

labeled standards, and the results are shown in Table 5.1 (i.e., in the column entitled 2nd isotope 

intensity by fitting function). We subtracted this value from the heavy labeled peak intensity and 

then re-calculated the peak-pair intensity ratio (13C2-/
12C2-labeled peak) to arrive at an adjusted 

peak pair ratio (see Table 5.1). This adjusted ratio is closer to 1.0, with an average ratio of 1.044 

for these 15 labeled standards (methionine is not included; see discussion in the next Section for 

this special case) and a standard derivation of 0.046. Compared to an average ratio of 1.104 

before subtracting the calculated contribution of the natural isotope peak of the lighted labeled 

metabolite, this adjusted ratio reduces the average error to 4.4% from 10.4% without adjustment. 

  Table 5.1 also shows the theoretical 2nd isotope intensity as the elemental compositions of 

these standards are known. The adjusted peak ratio using the theoretical intensity for each 

labeled metabolite, instead of the calculated intensity with the quadratic equation, is listed at the 

last column in Table 5.1. The average ratio found using the theoretical intensity values is 1.044, 

which is the same as the average ratio found using the calculated intensity. These results indicate 

that the proposed method of using the quadratic equation to calculate the natural isotope 

contribution and then subtract it from the measured intensity of the heavy labeled peak is an 

effective method to improve peak-ratio measurement accuracy. 
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Figure 5.2 The theoretical and experimental (A) +1-Da and (B) +2-Da natural isotope peak relative 

intensity for standards with m/z of 250 to 700. 

 

 

Table 5.3 Amino acid and dipeptide standards for investigating the relationship between the isotope peak 

intensity and the mass of the light labeled peak. Each experimental value was calculated from the peak 

intensities in multiple mass scans (n=5). 

Name mz_light #C #
S 

#
O 

#N 1st isotope 
peak 
theoretical 
intensity (%) 

1st isotope 
peak exp’t 
intensity 
(%) 

1st isotope 
peak 
standard 
deviation 
(%) 

2nd isotope 
peak 
theoretical 
intensity 
(%) 

2nd isotope 
peak exp’t 
intensity 
(%) 

2nd  isotope 
peak 
standard 
deviation (%) 

L-Alanine 323.1060 15 1 4 2 18.394 18.17 0.69 5.275 5.61 0.42 

Ammonium 
chloride 

251.0849 12 1 2 2 15.034 15.19 1.00 4.563 4.69 0.55 

L-Arginine 408.17 18 1 4 5 22.96 24.48 1.12 5.758 5.43 0.87 

L-Aspartic acid 367.0958 16 1 6 2 19.514 20.67 1.08 5.746 5.54 0.59 

Glycine 309.0903 14 1 4 2 17.274 16.69 0.82 5.134 5.02 0.72 

L-Histidine 389.1278 18 1 4 4 22.558 23.22 0.61 5.758 5.53 0.51 

Phenylalanine 399.1373 21 1 4 2 25.114 25.62 1.80 6.332 6.21 1.12 

L-Proline 349.1216 17 1 4 2 20.634 19.97 0.87 5.587 5.59 0.57 

Ala-Phe 470.1744 24 1 5 3 28.876 26.28 1.34 7.156 7.02 0.44 

Leu-Phe 512.2214 27 1 5 3 32.236 28.86 1.66 7.91 7.21 0.65 
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Trp-Gly-Gly 552.1911 27 1 6 4 32.638 30.55 0.73 8.07 8.25 0.63 

Gly-Gly-Phe-
Leu 

626.2643 31 1 7 5 37.52 35.47 0.87 9.378 9.17 0.97 

Phe-phe-phe 693.2741 39 1 6 4 46.078 44.48 0.78 11.994 12.19 0.89 

 

 

Table 5.4 Relative intensity of the +2-Da natural isotope peak of dipeptide standards for evaluating the 

quadratic fitting curve generated from Figure 5.2 (B). 

Name mz_light Theoretical value 
(% ) 

Prediction 
(%) 

Experimental value 
(%) 

Error to prediction 
(%) 

His-Ile 502.2128 7.129 7.319 6.704 0.616 

Glu-Gly 438.1329 6.04 6.353 6.278 0.075 

Gly-Asp 424.1173 6.211 6.175 6.127 0.048 

Asp-Thr 468.1435 6.744 6.774 6.427 0.347 

His-Thr 490.1755 6.836 7.118 6.835 0.283 

His-Val 488.1962 6.897 7.086 6.464 0.623 

Trp-Trp 624.2275 9.996 9.856 9.865 0.01 

Thr-Ala 424.1537 6.232 6.175 5.793 0.382 

 

 

5.3.4 Sulfur natural isotopologue intensity contribution   

The above discussion only considered the natural isotope peak contributions of carbon. One of 

the standards in Table 5.1 is methionine, which contains one sulfur atom. The use of molecular 

mass to calculate the contribution of the 13C2 natural isotope peak to the heavy labeled peak, as 

discussed in Section 5.3.3, works well if there is no additional S present in a metabolite. For an 

untargeted analysis of a metabolome, we do not know whether a metabolite contains S or not. 

The presence of one sulfur atom in a metabolite will add 4.47% to the heavy labeled peak. The 

question is whether this small contribution will introduce a bias in the relative quantification of 

metabolites among different comparative samples. In metabolomics, the first task of 

metabolomic profiling is to determine the significant metabolites that can differentiate two or 

more groups of samples; relative quantification is required for this task. If one S is present in a 
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metabolite, does it cause an error in relative quantification? We used an example of analyzing 

13C-/12C-dansyl labeled human urine to answer this question. 

  Figure 5.3 (A) shows the box plots of peak pair ratios of methionine (Met) in two groups 

of samples (group A, n=9; group B, n=9), and their corresponding ratio values are shown in 

Table 5.5. In Table 5.5, columns A and B show the peak pair ratios that were calculated from 

light and heavy peak intensities that were adjusted using the isotope intensity fitting line. Each 

peak pair was adjusted further by removing the extra sulfur contribution, and their values are 

shown in columns A’ and B’. The fold change of group B over group A is 0.661 and 0.648 

before and after subtracting the sulfur contribution, respectively. Although different in the exact 

fold change value, both results show a significant change of methionine in the two biological 

groups. This example illustrates that the presence of one sulfur atom in a metabolite does not 

cause a significant difference in calculating the peak ratio change or in the relative metabolite 

quantification. 

  The presence of two or more S atoms in a metabolite would increase the 34S isotope peak 

contribution to the heavy labeled metabolite (n×4.47% where n = number of sulfur atoms); the 

value 4.47% is calculated by the abundance ratio of S34/S32=4.25%/94.99%. Table 5.6 shows 

ratio data of a putatively identified compound methionyl-methionine (Met-Met) that contains 

two sulfur atoms. Columns A’ and B’ show the ratios after excluding sulfur contribution. Figure 

5.3 (B) shows the box plot of the ratio data in all groups. The folder change of group B over 

group A is 1.07 and 1.08 before and after removing the S contribution, respectively.  

  The above discussion indicates that the presence of S (1 or 2) does not cause a major 

problem in relative quantification; however, it can affect the absolute quantification. For absolute 

quantification, we determine the absolute concentration of a metabolite in a pooled sample using 
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a labeled standard of known concentration. We then use the peak ratio of an individual sample vs. 

the pooled sample of the metabolite multiplied by the absolute concentration of the pool to 

determine the absolute concentration of this metabolite in the individual sample. Fortunately, at 

the research stage where we want to determine the absolute concentration of a metabolite (e.g., 

this metabolite is considered to be a biomarker of a certain disease), the metabolite structure 

would be known and the number of S atoms present in a molecule is known. We can calculate 

and subtract out the contribution of the S atoms to the heavy labeled peak by n×4.47%, where n 

= number of sulfur atoms, to determine the absolute concentration of the metabolite in individual 

samples.  
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Figure 5.3 Boxplot of peak intensity ratio data for (A) Met and (B) Met-Met for two groups of human 

urine, A and B. A’ and B’ are the data after excluding the sulfur contribution to the heavy peak intensity. 

 

 

Table 5.5 Peak pair ratio of Met in group A and group B. A’ and B’ show the ratio values after removing 

the sulfur isotope contribution.  

  A B A’ B’ 

Peak pair ratio 1.07 0.67 1.03 0.63 

 1.39 0.84 1.35 0.80 

 1.36 0.81 1.32 0.77 

 1.12 1.05 1.08 1.01 

 0.99 0.83 0.95 0.79 

 1.00 0.65 0.96 0.61 

 1.36 0.77 1.32 0.73 

 1.12 0.69 1.08 0.65 

  1.42 0.85 1.38 0.81 
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Average 1.20 0.80 1.16 0.75 

Standard deviation 0.18 0.12 0.18 0.12 

 

Table 5.6 Peak pair ratio of Met-Met in group A and group B. A’ and B’ show the ratio values after 

removing the isotope contribution of two sulfur atoms. 

  A B A' B' 

Peak pair ratio 1.08 0.62 0.99 0.53 

 1.04 1.23 0.95 1.14 

 1.17 0.90 1.08 0.81 

 1.11 0.99 1.02 0.90 

 0.78 1.24 0.69 1.15 

 0.92 0.93 0.83 0.84 

 1.52 0.84 1.43 0.75 

 0.79 1.28 0.70 1.19 

  0.92 1.96 0.83 1.87 

Average 1.08 1.11 0.95 1.02 

Standard deviation 0.21 0.36 0.13 0.27 

 

5.4 Conclusions 

We report a detailed study of the natural isotopologue intensity of a light (13C2-) labeled 

metabolite and its potential interference in the peak pair ratio calculation in chemical isotope 

labeling LC-MS using QTOF-MS. For a carbon natural isotope contribution, a new algorithm 

based on the m/z value to estimate the 2nd natural isotope peak intensity was developed to reduce 

its interference with the heavy (13C2-) labeled peak intensity. For a sulfur natural isotope 

contribution, with one or two sulfur atoms in a metabolite, a relative quantification of peak ratios 

from two groups of samples still can be performed without a correction. However, for 

determining the absolute concentration of a metabolite containing sulfur, a sulfur natural 
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isotopologue contribution needs to be subtracted from the +2-Da heavy labeled peak in order to 

reduce the peak ratio error. 
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6. Chapter 6 Intensity-dependent Mass Search in Liquid Chromatography 

Mass Spectrometry Based Metabolomics 

 

6.1 Introduction 

Mass spectrometry (MS)-based metabolomics has advanced rapidly in recent years. One of the 

central challenges in metabolomics is metabolite identification. Regardless of whether one uses 

targeted or untargeted metabolomics, eventually all paths lead to the requirement of identifying 

and quantifying certain key metabolites. Without metabolite identification, the results of any 

metabolomic analysis are biologically and chemically uninterpretable. Given the chemical 

diversity of most metabolomes and the characteristics of most metabolomic data, metabolite 

identification is intrinsically difficult. Over the past decade, a great deal of effort in 

metabolomics has been focused on making metabolite identification better, faster, and cheaper. 

The fast growing metabolite databases have facilitated the metabolite identification in 

metabolomics studies greatly.2,70,118-122 However, a mass-based database search is still a 

challenging step in metabolomics as many potential structures can match to a single query mass 

within the search window. Currently, a mass-based library search relies on accurate mass 

information from the user along with a mass tolerance window. The mass window varies 

according to the type of instrument and MS setups used in the metabolome analysis. It requires 

the highest possible mass accuracy and a carefully chosen mass tolerance to obtain accurate 

match results.  

  The choice of search tolerance is often derived by one’s experience of the mass error 

from a specific MS instrument and MS settings. Too large a tolerance may lead to many possible 
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matches to one query mass, while a narrow tolerance would lower the number of successful 

matches. To increase the number of metabolites identified, one can increase the mass tolerance in 

the search, however, this will increase the manual effort in interpreting the results.   

  The precision of a mass measurement is dependent on the number of ions sampled in the 

measurement and is likely to be different for every measurement. Due to the complexity of the 

metabolome, a wide range of signal intensities can be detected from different metabolites in a 

given sample. The difference in the peak intensity can influence the mass peak shape and affect 

the mass precision further.123 In the experimental data, metabolites with a different signal 

intensity were observed to give a different mass error. The current use of a fixed tolerance in the 

search assumed the same mass error for all query masses. This is true when analyzing standards 

with an optimal injection amount in which the detected intensities are relatively high. In real 

sample analysis, the intensity of the metabolites can vary by a few magnitudes. Compared to the 

data from chemical standards, the biological sample data may contain more low intensity peaks; 

in this case, the accuracy of the mass measurement can vary for different peaks.  

  In this work, an intensity-dependent mass accuracy was studied and a correlation of mass 

error with mass peak intensity was observed in TOF-MS based data. Mass error distribution was 

investigated using data from chemical standards at different peak intensities. An intensity-

dependent mass tolerance method was developed and applied in a mass-based data search. All 

programs were developed using R language. We will implement the function at the public 

website (www.mycompoundid.org). The new search function allows users to generate an 

intensity-dependent mass tolerance for each query mass and ultimately improve the accuracy in 

the library search results.  
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6.2 Materials and Methods 

6.2.1 Preparation of sodium formate solution for mass calibration 

A sodium formate calibration solution was prepared by mixing formic acid and sodium 

hydroxide in 50% isopropanol in water. Different orders of sodium formate adducts will be 

produced in the solution in the form of Na(NaCOOH)n (n=1, 2, 3, ...). Table 6.1 shows the full 

list of sodium formate adducts used in the calibration for an m/z range below 1000. The 

concentration and injection volume were adjusted so that all sodium formate adduct peaks are 

detected with a relatively high intensity to ensure the quality of mass calibration (see in Figure 

6.1). The sodium formate calibration solution was injected into the mass spectrometer during the 

first 2 min of each LC-MS analysis and served as an external mass calibration segment.  

Table 6.1 The sodium formate adducts list used in positive mode mass calibration.  

Formula m/z 

Na(NaCOOH)3 226.951493 

Na(NaCOOH)4 294.938917 

Na(NaCOOH)5 362.926341 

Na(NaCOOH)6 430.913765 

Na(NaCOOH)7 498.901189 

Na(NaCOOH)8 566.888613 

Na(NaCOOH)9 634.876037 

Na(NaCOOH)10 702.863461 

Na(NaCOOH)11 770.850884 

Na(NaCOOH)12 838.838308 

Na(NaCOOH)13 906.825732 

Na(NaCOOH)14 974.813156 
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Figure 6.1 An example of the mass spectrum of sodium formate adducts for mass calibration. 

 

 

6.2.2 Sodium formate series injection 

To study the mass accuracy at different peak intensities, a sodium formate solution was diluted 

into a series of concentrations to generate data with various intensities covering the linear range 

of the MS detector. The analysis was done using two Bruker mass spectrometers of maXis 

impact and maXis II quadrupole time-of-flight (Q-TOF) (Bruker, Billerica, MA).  

 

6.2.3 Standard mixture analysis 

A standard mixture solution was prepared by mixing 22 selected standards (see Table 6.2) with 

the same concentration of each. The resulting sample was labeled with 12C-/13C-isotope dansyl 

chloride using the labeling protocol.30 The light and heavy labeled samples were mixed in a 1:1 

ratio, followed by the analysis of LC-QTOF-MS. The mass of the dansylated standards cover a 

mass range from 250 to 700, consistent with most small metabolites. The mixture was diluted 

into different concentrations to obtain standards with mass peaks of different intensities.  
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Table 6.2 Twenty-two standards used for the preparation of the standard mixture solution. 

Name Accurate mass m/z light peak m/z heavy peak RT (sec) 

L-Alanine 89.0477 323.1060 325.1127 377 

Ammonium chloride 17.0266 251.0849 253.0916 317 

L-Arginine 174.1117 408.1700 410.1767 154 

L-Aspartic acid 133.0375 367.0958 369.1025 282 

L-Cystine 240.0238 354.0702 356.0769 510 

L-Glutamic acid 147.0532 381.1115 383.1182 279 

Glycine 75.0320 309.0903 311.0970 341 

L-Histidine 155.0695 389.1278 391.1345 114 

L-Isoleucine 131.0946 365.1529 367.1596 500 

L-Lysine 146.1055 307.1111 309.1178 556 

L-Methionine 149.0510 383.1094 385.1161 457 

L-Phenylalanine 165.0790 399.1373 401.1440 493 

L-Proline 115.0633 349.1216 351.1283 445 

L-Serine 105.0426 339.1009 341.1076 258 

L-Threonine 119.0582 353.1166 355.1233 308 

L-Tyrosine 181.0739 324.5953 326.6020 630 

L-Valine 117.0790 351.1373 353.1440 459 

Ala-Phe 236.1160 470.1744 472.1811 476 

Leu-Phe 278.1630 512.2214 514.2281 543 

Try-Gly-Gly 318.1328 552.1911 554.1978 371 

Gly-Gly-Phe-Leu 392.2060 626.2643 628.2710 476 

Phe-phe-phe 459.2158 693.2741 695.2808 579 
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6.2.4  HPLC-QTOF-MS analysis of human urine  

Human urine samples were collected from six healthy individuals and filtered using a 0.22 μm 

pore size filter (Millipore Corp., MA). A pooled sample was prepared by mixing equal volumes 

of all individual urine samples. The individual and pooled samples were labeled with 12C-/13C-

isotope dansyl chloride using the labeling protocol.30 After centrifugation at 20,800 g for 10 min, 

25 µL of the supernatant of each individual sample were transferred into an Eppendorf for a 

labeling reaction. Next, 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer and 25 

µL of ACN were added to the sample. The solution was vortexed, spun down, and mixed with 50 

µL of freshly prepared 12C-dansyl chloride solution (18 mg/mL, for light labeling) or 13C-dansyl 

chloride solution (18 mg/mL, for heavy labeling). After 45 min incubation at 40 °C, 10 µL of 

250 mM NaOH were added to the reaction mixture to quench the excess dansyl chloride. The 

solution was then incubated at 40 °C for another 10 min. Finally, 50 µL of formic acid (425 mM) 

in 50/50 ACN/H2O were added to consume excess NaOH and to make the solution acidic. Equal 

volumes of the light and heavy labeled pooled urine were mixed to generate a QC sample and 

were injected every 10 sample runs to monitor the instrument stability. During the data analysis, 

QC data was used for metabolite identification as it contains all the metabolites from the 

individuals. LC-MS analysis was performed on the Bruker QTOF-MS equipped with an Agilent 

1100 HPLC system (Palo Alto, CA). A reversed-phase Zorbax Eclipse C18 column (2.1 mm × 

100 mm, 1.8 μm particle size, 95 Å pore size) from Agilent was used. Solvent A was 0.1% (v/v) 

formic acid in water with 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The 

gradient elution profile was as follows: t=0.0min, 20%B; t=3.5min, 35% B; t=18.0 min, 65% B; 

t=24 min, 99% B; t=28 min, 99% B. The flow rate was 180 μL/min. The sample injection 
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volume was optimized for the highest detectability. All the spectra were collected using the 

positive ion mode.  

 

6.3 Results and Discussion 

6.3.1 Overall workflow 

Figure 6.2 shows the overall workflow of an intensity dependent mass search. During 

instrumental analysis, the sodium formate calibration solution was injected into the mass 

spectrometer during the LC dead time for a post-acquisition mass calibration on each LC-MS run. 

The mass data from the calibration segment was extracted first from all sample data in order to 

investigate the relationship between mass error and peak intensity. The mass error was calculated 

for each sodium formate peak at different peak intensities. A mathematical relationship was 

derived between the mass tolerance and the peak intensity. Finally, an intensity dependent mass 

tolerance was assigned for each mass in the sample data table to be used in the standards library.  
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Figure 6.2 Overall workflow for an intensity dependent mass search. 
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6.3.2 Mass calibration and mass error distribution 

The error for a measured mass is composed of two components, the systematic error (the 

accuracy of the measurement) and the statistical or random error (the precision of the 

measurement). A quadrupole time-of-flight mass spectrometer (QTOF) in general has a resolving 

power of up to 50,000 for detecting low molecular mass ions (m/z<1000). With proper mass 

calibration, the mass accuracy can reach low ppm values for small metabolites.  

  In a chemical isotope labeling LC-MS workflow, an external mass calibration with 

sodium formate solution was conducted frequently to maintain the mass accuracy of one QTOF 

instrument. An injection of sodium formate also was implemented at the beginning of each LC-

MS run to obtain mass calibration spectra. Each LC-MS data file was calibrated after data 

acquisition using its calibration segment before exporting peaks to a mass list csv file. Table 6.3 

shows a typical calibration status result using sodium formate in the positive mode. The mass 

error was calculated at each sodium formate standard. At the end, a standard deviation of the 

mass errors was calculated with a less than 1 ppm value to show a good calibration status.  

  The calibration status sheet provides only the mass error for calibration standards with a 

relatively high peak intensity. To monitor the mass fluctuations at a different peak intensity, we 

picked a background mass peak (average measured m/z at 335.144) and plotted the peak 

intensity and measured mass in each mass scan in Figure 6.3. From the extracted chromatogram, 

we can see that the mass intensity ranged from the low end of the detection limit to over 104 over 

the whole chromatogram. The mass error plot shows the mass error distribution at different 

intensities. At a relatively high peak intensity, the mass shows a better precision with a much 

narrower error distribution, and the random mass error increased for low intensity peaks; this 

indicated that the peak intensity can affect the mass precision. 
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Table 6.3 An example of a mass calibration status sheet for a LC-MS file. 

Date:     11/17/2016 10:57   

Calibration spectrum: +MS, 0.0-2.0min #1-119: Scan  

Reference mass list: ESI: Na Formate (pos)  

Calibration mode: HPC Calibration   

    

Reference m/z Resulting m/z  Intensity Error [ppm] 

226.9515 226.9515 3357893 -0.067 

294.9389 294.9390 402100 0.213 

362.9263 362.9263 2798971 -0.172 

430.9138 430.9137 3184750 -0.124 

498.9012 498.9013 993770 0.229 

566.8886 566.8886 997247 -0.037 

634.876 634.8760 697186 -0.006 

702.8635 702.8634 908381 -0.103 

770.8509 770.8509 692145 0.045 

838.8383 838.8384 660032 0.071 

906.8257 906.8257 585708 -0.063 

974.8132 974.8132 450964 0.015 

Standard deviation: 0.189    
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Figure 6.3 An extracted ion chromatogram of a background mass peak and its measured mass at each 

mass scan after mass calibration.  
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6.3.3 The influence of signal intensity on mass accuracy 

To investigate the influence of peak intensity on mass error, different concentrations of sodium 

formate were prepared and analyzed using two models of QTOF mass spectrometers from 

Bruker. The intensity and accurate mass from sodium formate were extracted from each LC-MS 

run. A broad range of signal intensities was collected for each calibration standard. In total, 

11,306 mass peaks were collected from impact QTOF, and 3,771 mass peaks from maXis II 

QTOF.  

  For each sodium formate adduct, the mass error was calculated as the measured mass 

minus the exact mass. The mass errors were plotted against the logarithm of the signal to noise 

ratio (SNR). Data from impact QTOF and Maxis II QTOF are shown in Figure 6.4 and Figure 

6.5, respectively. In each Figure, 12 plots were created for each sodium formate adduct. Each 

data point represents a mass error from a sodium formate adduct peak. Fewer data points were 

observed for higher molecule weight sodium formate adducts due to relatively lower 

concentrations and the mass setting used in this experiment. From Figure 6.4 and Figure 6.5, we 

can observe an increasing trend of random mass error as the peak intensity decreases.  

  Figure 6.6 shows the mass error standard deviation for peaks in different intensities for 

data generated with impact QTOF. The standard deviation was calculated using mass peaks 

within each small intensity window. For different masses, we can observe a uniform trend of 

increasing mass error variation with decreasing peak intensity; this shows that the relation 

between mass error and peak intensity is relatively independent of the m/z value. 
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Figure 6.4 Mass error against peak signal to noise (SNR) for each sodium formate adduct peak in Bruker 

impact QTOF.  
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Figure 6.5 Mass error against peak signal to noise (SNR) for each sodium formate adduct peak in Bruker 

maXis II QTOF. 
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Figure 6.6 The mass error standard deviation at different peak intensities for all 12 sodium formate peaks. 

Each data point is the standard deviation of the mass error within a window of 0.05 length on the log10 

(SNR) axis.  
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  To better understand the error distribution and the increased random mass error at lower 

peak intensity, we checked some of the mass peak signals in the LC-MS data manually. We 

selected a compound, dansyl-Phe-Phe-Phe, that showed a large mass error in some of its spectra. 

Three of its mass peaks were picked in Figure 6.7. In the three continuous mass scans, the 

measured mass of dansyl-Phe-Phe-Phe gave mass errors of -0.28, 7.89, and -8.00 ppm, showing 

an abnormal mass shift in a small time window. By carefully inspecting the mass peaks, we can 

see that the distortion of the peak shape caused the error in the peak centroid calculation.  

  For a real sample analysis, the sample matrix can be a lot more complicated, and mass 

measurements of metabolites often are affected by coeluting interfering peaks. Thus, low 

concentration metabolites can be affected more easily by the noise signal. As a result, random 

mass error increased for those peaks with decreased peak intensity, as shown in Figure 6.4 and 

Figure 6.5; this indicated an intensity dependent mass error in a real dataset.  
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Figure 6.7 Mass peaks of dansyl-Phe-Phe-Phe in three consecutive scans. Mass errors are -0.28, 7.89, and 

-8.00 ppm for the three peaks.  

 



154 
 

6.3.4 Mass tolerance estimation for database search 

Since mass error is related to peak intensity, the mass tolerance used in the mass database search 

should also be different for different masses. To be able to estimate the mass error at different 

peak intensities in the actual sample dataset, we extracted the data from the sodium formate 

calibration segment and used it as training data to establish a mathematical relationship between 

mass error and peak intensity.  

  In this experiment, different concentrations of the 22-standard mixture (see Table 6.2) 

solutions were prepared and analyzed using LC-QTOF-MS. In total, 94 sample data files were 

generated. Figure 6.8 (a) shows the sodium formate data by combining the sodium formate peaks 

in all 94 runs. The mass errors were plotted against log10(SNR). To determine the mass tolerance 

at different intensity levels, we divided the dataset by the peak intensity using a window size of 

0.1 in the log10(SNR) axis. For data in each intensity range, we calculated the 95th percentile 

mass error point in Figure 6.8 (b). We then applied a quadratic equation to construct the 

tolerance curve using these 95th percentile points in each peak intensity range. The results are 

shown as the curve in Figure 6.8 (b). From the tolerance curve fitting function, the mass 

tolerance can be estimated for any peak intensity. A minimum of 2 ppm is set for the tolerance 

upper limit.  
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Figure 6.8 (a) The mass error of sodium formate at different peak intensities, and (b) the 95th percentile 

point of mass error in each 0.1 length window in the log10(SNR) axis.  

 

  To validate the tolerance curve derived from the training dataset, we examined the mass 

errors from the 22 standards and compared them with the estimated mass tolerance. From the 94 

LC-MS runs, we extracted peak pairs from all standards. The test data from 22 standards were 

divided into three groups according to their dilution factors so that we could have data with three 

intensity levels. In each group, the data were aligned into one metabolite intensity table. The 

mass tolerance was calculated based on the tolerance curve generated by the training dataset. The 

actual mass error for each standard also was calculated. The result is plotted in Figure 6.9; red 

data points are the actual mass error, and blue data points are the calculated mass tolerance. The 

result showed an accurate tolerance estimation as most of the actual errors are below the 

corresponding mass tolerance for three data tables. Using the intensity-dependent tolerance, we 

could achieve a 100%, 95.2%, and 95.2% correct matching rate in the three groups of data in 

searching the 22 standards in the library.  
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Figure 6.9 Mass tolerance and actual mass error calculated for 22 standards. (A), (B) and (C) are data 

generated from different concentrations of the standard mixtures.  
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  We applied this algorithm to a human urine dataset. We aligned 9 QC data files to 

generate an alignment data table to be used in a library search. In this dataset, the signal to noise 

ratio of the detected signal ranged from 10 to 104. A mass tolerance curve was derived first from 

the sodium formate data from the same batch of sample data. Based on the peak intensity of the 

heavy peak in each peak pair, mass tolerances were calculated for each mass.  

  Next, a database search was performed against the MyCompoundID70 database using the 

intensity-dependent mass tolerance along with other fixed tolerance searches. Table 6.4 

summarizes the number of matches using different parameters. “Number of query mass with 

match from library” shows the number of query mass with at least one matched compound in the 

library, and “total number of matched compounds from library” is the sum of all the matches 

from each query mass and includes the multiple match cases. Compared to the fixed tolerance, 

the intensity-dependent tolerance search gave a larger number of matched query masses and a 

relative small number of total matched compounds, showing an improvement over other 

arbitrary fixed tolerance searches.  

  From the matching results, we took 133 compounds that were identified definitely using 

the dansyl library86 and evaluated the accuracy of the search further. Table 6.5 shows the number 

of correct matches out of these 133 compounds using different search tolerances in 

MyCompoundID database. The intensity-dependent method gave a 94.7% (126 out of 133) 

correct matching rate.  

  Table 6.6 shows the false positive and false negative rate of the search result. A false 

positive case is defined as a wrong match resulting from a query mass, and a false negative case 

is defined as a missed match from a query mass. The intensity-dependent search gave a zero 

false positive result and showed a relative low false negative rate.  
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  We tested the search method in MyCompoundID website (www.mycompoundid.org). 

Figure 6.10 shows the user interface on the webpage. R programs will be posted on the website 

for free downloading. Three different searching modes are provided on this page, including fixed 

tolerance search, user-defined intensity-dependent tolerance search, and data derived intensity-

dependent tolerance search. In this way, the user can input one’s own intensity-dependent search 

tolerance if sodium formate data was not available.  

 

Table 6.4 MyCompoundID Library search results using different search tolerances. 

Search tolerance (ppm) 2 5 10 15 30 Intensity-

dependent 

Number of query mass 

with match from library 

202 476 711 855 1072 708 

Total number of matched 

compounds from library 

537 1199 1716 2030 2480 1608 

 

Table 6.5 Number of correct matches out of 133 identified compounds. 

Search tolerance 

(ppm) 
5 10 15 20 30 

Intensity-

dependent 

Number of 

correct match 
91 116 121 124 129 126 

 

Table 6.6 False negative/positive rate of the intensity-dependent search and other fixed tolerance searches. 

 Intensity-based 5 ppm 10 ppm 15 ppm 20 ppm 30 ppm 

False negative rate 5.22% 31.34% 12.69% 8.96% 6.72% 2.99% 

False positive rate 0.00% 0.00% 0.00% 2.24% 4.48% 6.72% 

 

http://www.mycompoundid.org/
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Figure 6.10 MyCompoundID webpage for an intensity-dependent mass-based library search. The 

database provides three searching options: 1) fixed tolerance, 2) user-defined tolerance by intensity 

intervals, and 3) pre-defined tolerance for each query mass. 
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6.4 Conclusions 

In this study, we investigated the influence of peak intensity on mass accuracy. The random mass 

measurement error was observed to increase with the decrease of peak intensity. By investigating 

the relationship between peak intensity and mass error, we designed an algorithm to predict a 

mass tolerance for each measured mass accurately, and use them in the database searching. The 

method does not require additional experimental steps and used the sodium formate calibration 

data from the sample data to determine the mass tolerances.  

  Compared to an arbitrary tolerance, the new method provided an accurate estimate of the 

mass search tolerance and improved the metabolite identification efficiency during the database 

search. The searching function will be added to the MyCompoundID database search webpage in 

future work.  
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7. Chapter 7 Development of Chemical Isotope Labeling LC-MS for Wine 

Metabolomics 

 

7.1 Introduction 

In recent years, metabolomics has been used increasingly for nutritional studies in the production 

of nutritional products and the relation between diet and health.124-126 Nutritional metabolomics 

involves the characterization of the food metabolomes and the investigation of their effects on 

the metabolic profile of a specific organism.127 Wine is a widely consumed alcoholic beverage 

throughout the world and represents an important food commodity of a relatively high 

commercial value. Therefore, it requires a fast and sensitive analytical method for the detection 

of a wide range of molecules in a wine sample for the wine quality and authenticity control.  

 Wine is a complex matrix of its major components, water, alcohol, and abundant organic 

and inorganic contents. The wine making process involves the harvest of grapes from different 

grape varieties and the fermentation process that transforms grape juice into an alcoholic 

beverage.128 During the fermentation, sugars in the grapes juice are turned into ethanol, and a 

number of compounds are produced through the metabolism of the yeast. The product after the 

metabolic fermentation will go through aging to allow further chemical reactions within the wine 

solution, giving the wine a more complex flavor. The wine metabolites are the combination of 

grape metabolites, yeast metabolites, and the interaction of both through a series of steps in the 

wine making process. The concentration levels of the compounds in wine are influenced 

significantly by many factors, including grape variety, climate, grape-growing area, and the 

winemaking process. Numerous studies have been published on the wine topic describing the 
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applications of the instrumental analysis for detecting various groups of compounds to enable the 

wine classification and quality control.129-134 

  The chemical isotope labeling (CIL) LC-MS method has been used widely in metabolic 

profiling of different biological samples. CIL LC-MS is a general strategy of using chemical 

labeling to improve separation, detection, and quantification of metabolites.30 CIL targets a 

particular sub-metabolome based on a shared chemical group; for example, dansylation labeling 

has been shown to be effective in analyzing the amine/phenol sub-metabolome. In this Chapter, 

we develop a workflow using the CIL LC-MS method for the profiling of wine samples and 

demonstrate the overall analytical performance of the method in differentiating wines of different 

brands.  

 

7.2 Materials and Methods 

7.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). In the dansylation labeling reaction, the 12C-labeling reagent 

(dansyl chloride) was from Sigma-Aldrich, and the 13C-labeling reagent was synthesized and 

purified in our lab using the procedure published previously.30 LC-MS grade water, methanol, 

and acetonitrile (ACN) were purchased from ThermoFisher Scientific. 
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7.2.2 Red wine sample collection and preparation 

All wines were purchased from a local certified liquor store. Each wine was aliquoted in a 1.5 

mL vial and stored at -80 °C until use. Different brands of wine were selected from various grape 

varieties and geographical origins (see Table 7.1); all are red wines, except the Pinot Grigio, 

which is a white wine. A 1 mL volume of wine sample was centrifuged at 14,000 rpm for 15 min, 

and a 50 μL of supernatant was taken into a 1.5 mL vial for dansylation labeling. A pooled wine 

sample was prepared by mixing all the individual samples in equal volumes.  

  A dealcoholized red wine sample was prepared using a sample from BBR red wine to test 

the interference of alcohol contents on the sample analysis. After centrifugation, a 50 μL of 

supernatant solution was transferred to a 1.5 mL vial in the SpeedVac for drying. The drying 

process will remove water and other volatile alcohol components. The dried sample was 

reconstituted with 50 μL of water as the dealcoholized sample.  

 

Table 7.1 Wine sample list.  

Grape variety Sample ID Vintage Region 

Cabernet Sauvignon CS1 

CS2 

CS3 

2012 

2014 

2015 

South Australia 

ON, Canada 

ON, Canada 

Cabernet Merlot CM 2012 BC, Canada 

Shiraz SZ 2014 BC, Canada 

Big Bold Red BBR 2013 CA, USA 

Pinot Grigio PG 2013 South Australia 
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7.2.3 Dansylation labeling 

Dansyl chloride (DnsCl) was used as the labeling reagent to react mainly with amine- and 

phenol-containing metabolites to form dansyl-amine or dansyl-phenol derivatives. For a labeling 

reaction, 50 μL of sample were mixed with 25 μL of ACN and 25 µL of 250 mM sodium 

carbonate/sodium bicarbonate buffer, which introduced a basic environment for the labeling 

reaction. The solution was vortexed, spun down, and mixed with 50 µL of freshly prepared 12C-

DnsCl solution (18 mg/mL, for light labeling) or 13C-DnsCl solution (18 mg/mL, for heavy 

labeling). After the sample was incubated at 40 °C for 45 min, 10 µL of 250 mM NaOH were 

added to quench the excess dansyl chloride. The solution was incubated further at 40 °C for 

another 10 min to allow the unreacted dansyl chloride to be hydrolyzed fully. Finally, 50 µL of 

formic acid (425 mM) in 1:1 ACN/H2O were used to acidify the solution.  

 

7.2.4 Sample normalization by LC-UV 

Sample normalization is a necessary step to minimize the inter-sample variations. An LC-UV 

based method was applied to determine the total concentration of dansylated amine/phenol-

containing metabolites based on the UV absorption of the dansyl group.91  The experiment was 

performed with a Waters ACQUITY UPLC system UPLC (Waters, Milford, MA, USA) and a 

Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size, Phenomenex, Torrance, 

CA, USA). Two microliters of each dansyl-labeled individual or pooled sample were injected for 

a fast step-gradient run. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and 

solvent B was 0.1% (v/v) formic acid in ACN. Starting at 0% B for 1 min, the gradient was then 

increased to 95% B within 0.01 min, and held at 95% B for one min to ensure complete elution 
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of all labeled metabolites. The flow rate was 0.45 mL/min, and the total UV absorption of 

dansyl-labeled metabolites in the sample was measured at 338 nm. The peak area, which can 

represent the total metabolite concentration in the sample, was integrated by the Empower 

software. According to the quantification results, the 12C- and 13C-labeled samples were mixed in 

equal amounts for the following LC-MS analysis.  

 

7.2.5 LC-MS analysis 

Figure 7.1 shows the workflow of dansylation isotope labeling LC-MS analysis for wine samples. 

Each individual sample was labeled by the 12C-DnsCl, and the pooled sample was labeled by the 

13C-DnsCl. The mixture of the two labeling solutions was analyzed by LC-MS with an Agilent 

1100 HPLC system (Palo Alto, CA) connected to Bruker Impact HD quadrupole time-of-flight 

(QTOF) mass spectrometer (Billercia, MA) with an ESI source. The MS settings were: end plate: 

500 V, capillary voltage 4500 V, nebulizer: 1.0 bar, dry gas: 8.0 L/min, dry temperature: 230 °C, 

scan range: 220-1000. MS spectra were acquired in the positive ion mode. Chromatographic 

separations were performed on an Agilent C18 column (2.1 mm × 100 mm, 1.7 μm). Mobile 

phase A consisted of 5% (v/v) acetonitrile and 0.1% (v/v) formic acid in water. Mobile phase B 

was 0.1% (v/v) formic acid in acetonitrile. The 32-min gradient conditions were: 0 min (20% B), 

0-3.5 min (20-35% B), 3.5-18 min (35-65% B), 18-24 min (65-99% B), and 24-32 min (99% B). 

The column was re-equilibrated at 20% B for 10 min, and the flow rate was 180 μL/min.  



166 
 

 

Figure 7.1 Workflow of dansylation isotope labeling LC-MS for a wine sample.   
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7.2.6 Data analysis 

Bruker DataAnalysis software 4.3 was used to extract MS spectral peaks. We ran a raw data 

quality check on the raw mass list for the mass accuracy and retention time shift. An in-house 

software IsoMS was used to extract unique peak pairs from each individual sample file. The peak 

pair lists were aligned and zero-filled using the processing methods discussed in Chapter 4. The 

same peak pairs detected from multiple samples were aligned to produce a CSV file containing 

the metabolites information and peak ratios relative to a control (i.e., a pooled sample). False 

peak pairs and redundant peak pairs were evaluated and excluded from the alignment data table. 

The missing ratio data was imputed using the ratio imputation method discussed in Chapter 4. 

The final complete metabolite-intensity data table was uploaded to MetaboAnalyst135 for 

multivariate analyses.  

 Positive metabolite identification was performed based on mass and retention time 

matching to the dansyl standards library consisting of 665 entries.86 The database includes the 

dansyl library in MyCompoundID and the data of 400 dansyl peptides from all combinations of 

20 common amino acids. Putative identification was done based on the accurate mass match to 

the metabolites in the human metabolome database (HMDB) (8,021 known human endogenous 

metabolites) and the Evidence-based Metabolome Library (EML) (375,809 predicted human 

metabolites with one reaction) using MyCompoundID.70 The mass accuracy tolerance window 

was set at 10 ppm, and the retention time tolerance window was set to 20 sec for the data 

alignment and library searches. For multifunction compounds (e.g., containing two amines), 

labeling by one or more reagent molecules to generate multiple products may happen to some 

metabolites, although in most cases the complete labeling was found. If multiple products were 
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found from one metabolite, they could be spotted readily in the final list of significant 

metabolites for differentiating different groups as they would be matched to the same metabolite.  

 

7.3 Results and Discussion 

7.3.1 Sample normalization for a red wine sample 

Different varieties of red wine can have different concentrations of metabolites due to the 

different grape varieties and manufacturing processes. For a labeling reaction with a red wine 

sample, we had to determine the metabolite concentration first in order to choose a proper 

amount of starting material. Also, for a comparative analysis, it is necessary to normalize the 

total amount of metabolites in order to minimize the variation caused by the difference in the 

total concentration of metabolites. Our group previously developed a LC-UV based sample 

quantification method, which measures the UV peak area of dansyl labeled metabolites for the 

quantification of total amount of analytes.91 It assumed that the dansyl group contributed most to 

the UV absorption and that the native chemical structures would not affect the accuracy of the 

UV quantification. The red wine, however, contains many polyphenols that can have UV 

absorption over a broad range of wavelengths; this may affect the quantification result of the LC-

UV experiment.  

 To study the UV absorption of native red wine metabolites, we analyzed the unlabeled 

and labeled red wine sample using the established LC-UV method. Figure 7.2 (A) shows the 

integrated UV peak areas of the unlabeled and labeled red wine samples from the BBR red wine. 

Each data point is an average of peak areas from duplicate injections. Samples of 5 µL to 50 µL 

of red wine were used in this experiment. Each sample was diluted to 50 µL, followed by the 
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dansyl labeling protocol. Table 7.2 summarizes the UV peak areas from different sample 

volumes and the area ratios of the unlabeled red wine to the labeled one. The labeled red wine 

sample has a much higher UV absorption since the wavelength was optimized for the dansyl 

group. However, the UV absorption of native red wine contributed also to the total UV area in 

each sample volume. We subtracted the UV area of unlabeled red wine from labeled red wine in 

each sample volume and plotted it in Figure 7.2 (B).  

  From Table 7.2, we can see that the UV peak area ratio of the unlabeled red wine 

increased with an increase in sample volume. This indicates that the labeling efficiency 

decreased with higher sample amounts. As a result, 25 µL was selected as the volume for the 

labeling reaction. Figure 7.3 shows the total concentration for different types of wine calculated 

from the amino acid calibration curve.91 Red wines from different grape varieties and brands 

show a similar total concentration for the labeled metabolites, and less amine and phenol 

containing metabolites were found in the white wine sample PG.  

 

Table 7.2 The UV integrated area for the dansyl labeled red wine sample at different sample volumes and 

the ratios of the unlabeled red wine peak area.  

Sample volume (µL) UV integrated area 

(labeled red wine) 

Ratio of UV area 

(unlabeled/labeled) 

5 1,146,204 0.07102 

10 2,154,313 0.07788 

20 3,977,676 0.08645 

30 5,281,741 0.1027 

40 6,491,637 0.1149 

50 7,598,724 0.1209 
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Figure 7.2 (A) The UV integrated peak area of the labeled and the unlabeled red wine, and (B) The UV 

integrated peak area of the labeled red wine after subtraction of the peak area from the unlabeled red wine. 

Different sample volumes were used in each injection. Each data point is an average of duplicate 

injections for one sample volume.  
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Figure 7.3 The total concentration of labeled metabolites in different types of wine. See Table 7.1 for 

sample ID information. CSD is the dealcoholized sample prepared from CS1. BBR1 and BBR2 are two 

different batches of the BBR red wine.  

 

7.3.2 Alcohol interference 

Alcohol makes up 12.5% to 14.5 % (by volume) of red wine content. Although the dansyl 

labeling reaction is not targeted at alcohol compounds, at a relatively high concentration, ethanol 

still can be labeled. Figure 7.4 shows a LC chromatogram of a labeled red wine sample. The red 

colored extracted ion chromatogram shows the signal from the dansyl ethanol. The presence of 

ethanol and other alcohol compounds potentially can suppress the signals of other labeled 

metabolites.  
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Figure 7.4 A LC chromatogram of a dansyl labeled red wine sample. A dansyl ethanol peak (in red color) 

shows up at 18.65 min.  

 

  To test the interference of ethanol in the data collection, we designed a study to compare 

the red wine sample with and without the alcohol components. Since alcohol compounds are not 

the targets of the dansylation reaction, we can remove them at the beginning of the sample 

preparation. After a complete drying down of the sample in the SpeedVac, ethanol, along with 

other volatile alcohols, were removed from the sample. Then, water was added to the sample vial 

for a reconstitution of the sample solution. The dealcoholized red wine sample was labeled with 

13C-dansyl chloride, and the raw red wine sample was labeled with 12C-dansyl chloride. We 

mixed the two labeling solutions in equal volumes; therefore, the peak pair ratio of each 

metabolite can reflect the concentration changes in the drying process. The raw red wine sample 

was labeled also with light and heavy dansyl chloride and mixed in equal volumes as a control 

sample. The mixtures were analyzed by the LC-MS in triplicate injections.  

  After data collection, we extracted all the peak pairs detected in each injection and 

calculated the peak pair ratio (see Table 7.3). Sample 0 shows the data from the control 

experiment with the raw red wine. The peak pair ratio of each metabolite in the control sample 

was expected to be close to 1. Samples 1–3 are the results from the dried red wine sample in 

experimental triplicates. We can observe a lower total peak pair number and a higher peak pair 
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ratio average in the dried sample compared to the raw sample. The increased peak pair ratio 

average indicates an overall smaller relative peak intensity of the heavy peak. Since each of the 

light peaks are from the raw sample and the heavy peaks are from the dried sample, the ratio 

increase with respect to 1 indicates the sample loss during the drying step. Also, the Venn 

diagram in Figure 7.5 shows a larger number of metabolites in the raw red wine that were not 

detected in the dried wine sample.  

  In conclusion, the sample drying process can eliminate the alcohols in the wine sample. 

However, the drying step can cause the loss of certain metabolites and increase the error of the 

quantification results. In considering the speed and convenience in sample handling, we decided 

to use the raw wine sample for the labeling reaction.  

 

Table 7.3 Peak pair number and average peak pair ratio in data collected from red wine and dried red 

wine sample. 

Sample number # peak pair Average ratio 

0 1649±58 (n=3) 1.031 

1 1463 1.478 

2 1516 1.168 

3 1523 1.211 
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Figure 7.5 Venn diagram of peak pair distribution in raw red wine and dried red wine. 

 

7.3.3 Injection optimization 

In LC-MS operation, using an optimal sample injection amount is critical in order to detect the 

maximum number of labeled metabolites. With dansyl labeling, the total concentration of labeled 

metabolites in each sample can be measured by LC-UV, as described in the experimental section. 

One benefit of knowing the total concentration of labeled metabolites is that the exact amount of 

sample injected into LC-MS can be controlled well. To determine the optimal injection amount, 

a 1:1 12C-/13C-labeled red wine sample with a known concentration measured by LC-UV was 

injected from 1 to 30 μL (1.032 to 30.96 nmol) to the LC-MS.  

  Experimental triplicate runs were performed for gauging the technical reproducibility. 

Figure 7.6 shows the plot of the peak pair number detected as a function of sample amount 

injected. Peak pair number saturation occurred when 5.16 nmol of sample in 5 μL was injected. 

Thus, in subsequent experiments, we injected 5 nmol of labeled sample for each of the LC-MS 

for analyses.  
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Figure 7.6 Number of peak pair commonly found in triplicate injections at different injection amounts. 

 

7.3.4 Metabolic profiling of different red wines 

To demonstrate the applicability of the workflow for red wine metabolomics, we examined the 

metabolome differences among different groups of red wine samples. The profiling work 

involved the analysis of seven wine samples collected from six red wine brands and a white wine 

brand (see Table 7.1), among which, CS2 and CS3 are the products from the same brand but of a 

different production year. An unknown sample was selected randomly from the seven wine 

samples to test the classification results. Experimental triplicates were performed for each 

sample, except for the BBR red wine, in which four labeled samples were prepared. In total, 25 

samples were prepared and analyzed by LC-MS. 
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  Figure 7.7 shows a base peak chromatogram of a wine sample. After exporting the 

instrument data to a CSV file, we checked the mass accuracy and retention time shift using the 

internal compounds from the samples. Two internal compounds were used for the mass accuracy 

check: dansyl ammonia and dansyl proline; Figure 7.8 shows the mass accuracy results. Each 

data point is the average of the measured mass in a sample file. The exact mass of dansyl 

ammonia and dansyl proline are 251.0849 and 349.1216, respectively. We can see that most of 

the mass average values are within the 5 ppm error window compared to the theoretical value, 

except for the data in File 1, which shows a larger mass error in both compounds. Figure 7.9 (A) 

and (B) show the measured masses of dansyl ammonia and dansyl proline in each mass spectrum 

in File 1. We can observe a mass shift towards a lower value over the course of the analysis, 

which caused the large mass error in Figure 7.8 (A). Fortunately, there was enough sample 

volume for a re-analysis, and the problematic file was replaced by the newly collected data. 

Figure 7.8 (C) shows the results after the re-analysis of the sample. The new file shows a similar 

mass error as the rest of the files.  

 In retention time analysis, common amino acids were selected to evaluate the retention 

shift in all the sample data files. Figure 7.10 shows the retention times of three standards: 

threonine, proline, and tyrosine. The range of the retention time for each standard is well within a 

20-sec window, which is expected from the LC system. From the results of the mass accuracy 

check and retention time shift analyses, we determine the mass tolerance and retention time 

tolerance to be 10 ppm and 20 sec, respectively, for data alignment and library searches. 
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Figure 7.7 An example of the base peak chromatogram in a LC-MS analysis of a red wine sample.  
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Figure 7.8 Mass accuracy results using two different internal compounds from the background mass 

peaks in the red wine data: (A) dansyl ammonia, (B) dansyl proline, and (C) mass check results after 

replacing the file with a mass accuracy issue with the newly collected data.  
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Figure 7.9 Measured masses of dansyl ammonia in (A) File 1, and (B) data re-collected using the same 

sample.  
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Figure 7.10 Retention time analysis using (A) threonine, (B) proline, and (C) tyrosine. Each data point is 

the retention time extracted from one sample data file.  
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 After running the IsoMS program to extract the peak pairs in each individual sample, a 

peak pair list was created for each data file, and Figure 7.11 shows the number of peak pairs 

found in each sample from the experimental triplicates. On average, the number of peak pairs 

found in the red wine sample and the white wine sample were 3,178 ± 180 (n=19) and 1,983 ± 

17 (n=3), respectively. The main difference in the white wine making procedure is that the grape 

skin is removed before the fermentation. The lower number of peak pairs found in the white 

wine sample, PG, indicated that a number of metabolites were missing in the wine after 

removing the grape skin.  

 

 

Figure 7.11 Number of peak pairs detected in each type of wine sample. 

 

  The peak pair lists were aligned and zero-filled using the processing method discussed in 

Chapter 4. After alignment of the peak pair data from 25 samples, a total of 13,467 peak pairs 
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were recorded in the metabolite-intensity table. After peak pair validation, 495 peak pairs were 

excluded as false peak pairs. In the redundant peak pair merging, 3,111 peak pairs were deleted 

as repeated peak pairs, and 58 peak pairs were deleted as tailing peak pairs. After these peak pair 

checking steps, 9,803 peak pairs were reserved in the data table. Figure 7.12 shows the missing 

value distribution in the ratio matrix. A white area represents the missing data, and a black area 

indicates the true ratios. We can see that a significant portion of ratio data can be retrieved by the 

zero-filling method. Three columns from the white wine samples can be observed to have a 

larger area of missing value in the NA maps, since some of the metabolites could not be detected 

in the white wine samples.  

 

Figure 7.12 Missing value maps for ratio matrix after alignment and zerofilling.  

 

  The 9,803 peak pairs were searched against the dansyl standards library using a search 

window of 20 sec and 10 ppm, by which 305 metabolites were positively identified (see Table 

7.4). Some of the peak pairs were matched to two dipeptide isomers in the library since the 
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retention time of some of the dipeptide isomers are within the retention time search window. In 

such cases, MS/MS data can be collected in the future to confirm the identity of the compounds. 

By using the accurate mass against the HMDB and EML libraries, 1,536 and 6,303 peak pairs 

were matched to one or a few chemical structures, respectively. It should be noted that the 

human metabolome database was used in the identification of wine metabolites since the 

database for wine metabolites is not available.  

  After applying the ratio imputation method to the ratio matrix of the aligned data table, 

we generated the complete data table and conducted the multivariate analysis with 

MetaboAnalyst. Figure 7.13 shows the principal component analysis (PCA) score plot. Each data 

point represents the data collected from one sample. The triplicate data points within a sample 

group cluster together tightly, indicating a good reproducibility of the method. We can observe a 

much greater separation of the white wine type PG, reflecting a much different metabolome 

between red wine and white wine. The unknown samples, which were originally collected from 

the CS1 sample, show a good clustering with the CS1 sample points. The CS2 and CS3 samples 

from the same brand with different production years were separated in the plot, showing a good 

sensitivity of the method to detect difference among different batches of red wines. Figure 7.14 

shows the peak pair ratios of two identified compounds from the dansyl library. With the ratio 

results, we can monitor the concentration difference of each identified compound in different 

wine samples easily.  
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Figure 7.13 PCA score plots (2-D and 3-D plots) of wine samples grouped based on the brand of the wine.  

 

 

Figure 7.14 Peak pair ratio changes in different wine samples using two identified compounds: tyramine 

and 5-aminopentanoic acid. 

 

7.4 Conclusions 
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We have developed an analytical workflow to address the current challenges of performing 

comprehensive and quantitative profiling of the wine metabolome. The sample preparation was 

optimized, and the dansylation isotope labeling LC-MS method was applied successfully in the 

wine metabolomics study.  

  The data processing methods described in Chapters 2–4 were used in the wine data 

processing. With the mass accuracy check and retention time shift analysis, we were able to pick 

out the file with a mass accuracy issue quickly after raw data were exported. The sample was re-

analyzed, and the new data were used to replace the issue file. Mass and retention time tolerances 

were determined from the raw data checking results.  

  After data alignment and zero-filling, a total of 9,308 peak pairs were aligned in the 

metabolite-intensity table, with each peak pair representing a unique labeled metabolite 

commonly detected in the wine samples. Among all the detected peak pairs, 305 of them were 

positively identified using the dansyl library. The high-coverage and quantitative metabolome 

data were used to reveal small differences in wine metabolome profiles. The application of the 

workflow potentially can be applied to a comprehensive and quantitative wine metabolomics 

studies in the future for the quality control and product authentication in the wine industry.  

 

 

 

Table 7.4 Search results using the dansyl library.  

No Input 
mass 

Calibrated 
RT (sec) 

Name mz of light 
peak 

Monoisotopic 
mass 

Library RT 
(sec) 



186 
 

1 408.1709 146.74 L-Arginine 408.1700 174.1117 2.44 

2 318.0780 1441.10 3,4-
Dihydroxybenzeneacetic 
acid 

318.0794 168.0423 23.90 

3 364.1810 278.12 Agmatine 364.1802 130.1218 4.52 

4 319.1115 800.31 Gamma-Aminobutyric 
acid - H2O 

319.1144 103.0633 13.57 

5 317.6082 1535.28 3-Methoxytyramine 317.6056 167.0946 25.49 

6 317.6082 1535.28 Phenylephrine 317.6056 167.0946 25.39 

7 302.6001 1550.74 Tyramine 302.6004 137.0841 25.83 

8 329.1059 735.99 Diaminopimelic acid 329.1060 190.0954 12.30 

9 329.1057 768.95 Diaminopimelic acid - 
Isomer 

329.1060 190.0954 12.96 

10 364.6259 785.10 Lysyl-Aspartate 364.6246 261.1325 13.00 

11 356.1321 1544.41 4-Ethylphenol 356.1315 122.0732 25.63 

12 337.1223 462.38 Gamma-Aminobutyric 
acid 

337.1216 103.0633 7.79 

13 363.1023 561.09 L-Glutamic Acid - H2O 363.1009 147.0532 9.46 

14 366.1132 178.48 L-Asparagine 366.1118 132.0535 3.00 

15 278.1082 1266.97 1,4-diaminobutane 278.1083 88.1000 21.27 

16 400.1222 1087.97 Desaminotyrosine 400.1213 166.0630 18.04 

17 371.6324 785.37 Lysyl-Glutamate 371.6324 275.1481 13.05 

18 289.0775 1599.28 pyrocatechol 289.0767 110.0368 26.70 

19 438.1484 681.70 L-Tryptophan 438.1482 204.0899 11.44 

20 351.1378 523.83 5-Aminopentanoic acid 351.1373 117.0790 8.68 

21 505.2227 253.10 Arginyl-Proline 505.2228 271.1644 4.23 

22 546.2048 988.32 Phenylalanylphenylalani
ne 

546.2057 312.1474 16.49 

23 368.0875 948.79 L-Homocystine 368.0859 268.0551 15.82 

24 521.2538 388.18 Arginyl-Leucine 521.2541 287.1957 6.54 

25 510.1905 130.51 Saccharopine 510.1905 276.1321 2.26 

26 460.1178 511.11 Uridine - H2O 460.1173 244.0695 8.67 

27 456.1593 696.49 Glycyl-Phenylalanine 456.1588 222.1004 11.65 

28 361.1336 646.44 4-Guanidinobutanoic 
acid - H2O 

361.1329 145.0851 11.00 

29 446.1750 546.68 L-prolyl-L-proline 446.1744 212.1161 9.08 

30 335.6218 911.48 Glycyl-Lysine 335.6218 203.1270 15.20 

31 342.6295 929.28 Lysyl-Alanine 342.6296 217.1426 15.53 

32 383.1106 649.09 L-Methionine 383.1094 149.0510 10.89 

33 436.1902 653.86 Alanyl-isoleucine 436.1900 202.1317 10.86 

34 465.1793 374.13 Asparaginyl-Valine 465.1802 231.1219 6.21 

35 307.1110 1047.88 L-Lysine 307.1111 146.1055 17.47 

36 450.2058 690.61 Valyl-Valine 450.2057 216.1474 11.45 
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37 353.1063 1278.59 Glycyl-Tyrosine 353.1060 238.0954 21.63 

38 436.1903 676.62 Alanyl-Leucine 436.1901 202.1317 11.36 

39 422.1869 165.31 Homo-L-arginine 422.1856 188.1273 3.00 

40 374.1301 1373.29 Tyrosyl-Valine 374.1295 280.1423 22.83 

41 365.1543 783.43 L-Alloisoleucine 365.1529 131.0946 13.20 

42 365.1543 783.43 L-Isoleucine 365.1529 131.0946 13.06 

43 452.1850 449.42 Isoleucyl-Serine 452.1850 218.1267 7.46 

44 452.1850 449.42 Threoninyl-Valine 452.1850 218.1267 7.61 

45 464.2214 819.31 Leucyl-Valine 464.2214 230.1630 13.70 

46 464.2214 819.31 Valyl-Isoleucine 464.2214 230.1630 13.60 

47 464.2214 819.31 Valyl-Leucine 464.2214 230.1630 13.95 

48 464.2212 825.42 Valyl-Leucine 464.2214 230.1630 13.95 

49 410.1381 324.22 Glycyl-Threonine 410.1380 176.0797 5.10 

50 399.1379 772.70 L-Phenylalanine 399.1373 165.0790 12.74 

51 339.1019 262.21 L-Serine 339.1009 105.0426 4.40 

52 381.1362 1422.01 Leucyl-Tyrosine 381.1373 294.1580 23.98 

53 353.1063 1192.71 Tyrosyl-Glycine 353.1060 238.0954 20.19 

54 462.2056 782.28 Leucyl-Proline 462.2057 228.1474 12.99 

55 480.1620 706.10 Prolyl-Methionine 480.1621 246.1038 11.64 

56 452.1850 526.40 Serinyl-Leucine 452.1850 218.1267 8.90 

57 452.1850 526.40 Serylisoleucine 452.1850 218.1267 8.66 

58 551.2325 948.80 Leucyl-Tryptophan 551.2323 317.1739 15.77 

59 346.0867 680.03 Uracil 346.0856 112.0273 11.34 

60 480.1607 678.49 Methionyl-Proline 480.1621 246.1038 11.16 

61 464.2198 792.09 Isoleucyl-Valine 464.2214 230.1630 13.14 

62 365.1528 801.89 L-leucine 365.1529 131.0946 13.36 

63 470.1382 400.98 Methionyl-Serine 470.1414 236.0831 6.86 

64 360.1140 1301.05 Alanyl-Tyrosine 360.1138 252.1110 21.85 

65 328.1002 1401.91 Phenol 328.1002 94.0419 23.16 

66 345.0921 813.06 Allocystathionine 345.0920 222.0674 13.33 

67 345.0921 813.06 Allocystathionine - 
Isomer 

345.0920 222.0674 13.61 

68 345.0921 813.06 L-Cystathionine 345.0920 222.0674 13.34 

69 345.0921 813.06 L-Cystathionine - Isomer 345.0920 222.0674 13.69 

70 498.2055 879.60 Valyl-Phenylalanine 498.2057 264.1474 14.63 

71 460.1634 1055.31 Alanyl-Histidine 460.1649 226.1066 17.62 

72 500.1850 642.75 Threoninyl-
Phenylalanine 

500.1850 266.1267 10.70 

73 381.1363 1429.45 Tyrosyl-Isoleucine 381.1373 294.1580 23.76 

74 381.1363 1429.45 Tyrosyl-Leucine 381.1373 294.1580 23.77 

75 373.0864 909.66 6-Hydroxynicotinic acid - 
Isomer 

373.0853 139.0269 15.32 
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76 371.6330 813.62 Glutamyl-Lysine 371.6324 275.1481 13.60 

77 394.1440 384.05 Alanyl-Alanine 394.1431 160.0848 6.10 

78 337.1199 542.90 2-Aminoisobutyric acid 337.1216 103.0633 8.91 

79 337.1199 542.90 D-Alpha-aminobutyric 
acid 

337.1216 103.0633 9.23 

80 337.1199 542.90 L-Alpha-aminobutyric 
acid 

337.1216 103.0633 9.13 

81 478.2368 909.35 Isoleucyl-Isoleucine 478.2370 244.1787 15.14 

82 422.1749 658.15 Glycyl-Isoleucine 422.1744 188.1161 10.78 

83 422.1749 658.15 Glycyl-L-leucine 422.1744 188.1161 10.97 

84 373.1220 1354.20 Tyrosyl-Proline 373.1216 278.1267 22.60 

85 318.0794 1498.64 Homogentisic acid 318.0794 168.0423 24.84 

86 512.2214 995.00 Leucyl-Phenylalanine 512.2214 278.1630 16.59 

87 494.1953 562.54 Glutamylisoleucine 494.1955 260.1372 9.44 

88 375.1206 1135.91 Tyrosyl-Threonine 375.1191 282.1216 19.10 

89 479.2071 158.73 Alanyl-Arginine 479.2071 245.1488 2.43 

90 479.2071 158.73 Arginyl-Alanine 479.2071 245.1488 2.78 

91 337.1221 517.95 3-Aminoisobutanoic acid 337.1216 103.0633 8.67 

92 454.1465 537.24 Alanyl-Methionine 454.1465 220.0882 9.00 

93 454.1465 537.24 Methionyl-Alanine 454.1465 220.0882 8.84 

94 355.6380 1069.01 Prolyl-Lysine 355.6375 243.1583 17.92 

95 553.1760 478.59 Tryptophyl-Aspartate 553.1751 319.1168 7.74 

96 342.6286 954.38 Alanyl-Lysine 342.6296 217.1426 15.83 

97 364.1329 705.45 Lysyl-Asparagine 364.1325 260.1485 11.77 

98 514.1646 591.23 Aspartyl-Phenylalanine 514.1642 280.1059 9.97 

99 514.1646 591.23 L-Aspartyl-L-
phenylalanine 

514.1642 280.1059 10.07 

100 511.1745 434.36 Arginyl-Cysteine 511.1792 277.1209 7.08 

101 512.2208 928.40 Phenylalanyl-Isoleucine 512.2214 278.1630 15.44 

102 537.2123 121.78 Arginyl-Glutamic acid 537.2126 303.1543 1.97 

103 537.2123 121.78 Glutamylarginine 537.2126 303.1543 2.03 

104 335.6217 874.97 Lysyl-Glycine 335.6218 203.1270 14.61 

105 393.1246 1565.97 Histidinyl-Tyrosine 393.1247 318.1328 26.37 

106 351.1373 645.59 L-Valine 351.1373 117.0790 10.81 

107 357.6352 853.13 Threoninyl-Lysine 357.6349 247.1532 14.18 

108 356.6454 1097.96 Lysyl-Valine 356.6453 245.1739 18.44 

109 494.1957 586.05 Glutamylleucine 494.1955 260.1372 9.84 

110 381.1352 1434.60 Isoleucyl-Tyrosine 381.1373 294.1580 23.98 

111 410.1387 261.48 Alanyl-Serine 410.1380 176.0797 4.54 

112 410.1387 261.48 Serylalanine 410.1380 176.0797 4.36 

113 466.2007 599.41 Threoninyl-Leucine 466.2006 232.1423 10.18 

114 355.6378 1052.52 Lysyl-Proline 355.6375 243.1583 17.65 
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115 452.1850 473.49 Leucyl-Serine 452.1850 218.1267 7.93 

116 436.1905 577.36 Isoleucyl-Alanine 436.1901 202.1317 9.64 

117 356.6457 1081.14 Valyl-Lysine 356.6453 245.1739 18.08 

118 478.2365 928.59 Isoleucyl-Leucine 478.2370 244.1787 15.51 

119 478.2365 928.59 Leucyl-Isoleucine 478.2370 244.1787 15.57 

120 360.1024 657.90 Imidazoleacetic acid 360.1012 126.0429 11.12 

121 382.1099 1151.71 Aspartyl-Tyrosine 382.1087 296.1008 19.35 

122 410.1387 245.78 Threoninyl-Glycine 410.1380 176.0797 4.20 

123 466.2008 534.70 Leucyl-Threonine 466.2006 232.1423 8.84 

124 358.1113 1354.60 Guaiacol 358.1107 124.0524 22.54 

125 399.1051 241.12 Methionine Sulfoxide - 
Isomer 

399.1043 165.0460 4.20 

126 478.2369 944.17 Leucyl-Leucine 478.2370 244.1787 15.80 

127 399.1055 210.77 Methionine Sulfoxide 399.1043 165.0460 3.72 

128 479.1953 486.18 Asparaginyl-Leucine 479.1959 245.1376 7.93 

129 293.0949 943.66 2,4-Diaminobutyric acid 293.0954 118.0742 15.80 

130 389.1177 1145.57 Glutamyltyrosine 389.1166 310.1165 19.30 

131 493.2112 553.55 Glutaminylisoleucine 493.2115 259.1532 9.32 

132 408.1593 586.85 Gly-Norvaline 408.1588 174.1005 9.51 

133 315.1081 827.23 5-Hydroxylysine 315.1085 162.1004 13.88 

134 416.1169 867.04 Hydroxyphenyllactici 
acid 

416.1162 182.0579 14.39 

135 402.1013 1047.77 Vanillic acid 402.1006 168.0423 17.34 

136 360.1142 1242.82 Tyrosyl-Alanine 360.1138 252.1110 20.86 

137 521.2541 375.61 Arginyl-Isoleucine 521.2541 287.1957 6.21 

138 466.1988 573.46 Threoninyl-Isoleucine 466.2006 232.1423 9.44 

139 388.6233 993.02 Tyrosyl-Glutamine 388.6246 309.1325 16.71 

140 494.1957 481.93 Isoleucyl-Glutamate 494.1955 260.1372 8.01 

141 422.1751 568.27 Alanyl-Valine 422.1744 188.1161 9.44 

142 422.1751 568.27 Leucyl-Glycine 422.1744 188.1161 9.37 

143 370.0986 512.86 Hypoxanthine - multi-
tags 

370.0968 136.0385 8.73 

144 512.2210 948.21 Phenyl-Leucine 512.2214 278.1631 15.90 

145 408.1593 531.52 Glycyl-Valine 408.1588 174.1004 9.19 

146 382.1080 1089.36 Tyrosyl-Aspartate 382.1087 296.1008 18.44 

147 363.6536 1170.98 Isoleucyl-Lysine 363.6531 259.1896 19.41 

148 480.1800 404.88 Valyl-Glutamate 480.1799 246.1216 6.57 

149 368.1117 1087.82 Tyrosyl-Serine 368.1113 268.1059 18.26 

150 371.1402 696.33 Lysyl-Glutamine 371.1404 274.1641 11.58 

151 375.6415 1458.70 Histidinyl-Lysine 375.6405 283.1644 24.12 

152 375.6415 1458.70 Lysyl-Histidine 375.6405 283.1644 24.15 

153 486.1809 1191.97 Prolyl-Histidine 486.1806 252.1222 20.09 
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154 537.2137 838.09 Valyl-Tryptophan 537.2166 303.1583 13.98 

155 478.1280 463.18 Uridine 478.1279 244.0695 7.84 

156 409.1546 205.80 Citrulline 409.1540 175.0957 3.74 

157 368.1115 1169.12 Seryltyrosine 368.1113 268.1059 19.59 

158 465.1913 152.67 Glycyl-Arginine 465.1915 231.1331 2.39 

159 326.0777 1307.64 3,4-Dihydroxymandelic 
acid 

326.0769 184.0372 21.73 

160 512.2213 970.42 Isoleucyl-Phenylalanine 512.2214 278.1630 16.17 

161 495.1715 673.62 Glycyl-Tryptophan 495.1697 261.1113 11.19 

162 496.1874 779.45 L-phenylalanyl-L-proline 496.1901 262.1317 12.94 

163 356.0960 1304.20 3-Hydroxymandelic acid - 
COOH 

356.0951 168.0423 21.64 

164 422.1742 523.02 Isoleucyl-Glycine 422.1744 188.1161 8.65 

165 420.1600 453.93 Alanyl-Proline 420.1588 186.1004 7.89 

166 500.1850 526.01 Phenylalanyl-Threonine 500.1850 266.1267 8.73 

167 480.1801 503.93 Leucyl-Aspartate 480.1799 246.1216 8.37 

168 466.2004 506.40 Isoleucyl-Threonine 466.2006 232.1423 8.47 

169 464.1491 406.37 Aspartyl-Proline 464.1486 230.0903 6.50 

170 464.1491 406.37 Prolyl-Aspartate 464.1486 230.0903 6.58 

171 438.1695 381.89 Valyl-Serine 438.1693 204.1110 6.06 

172 488.1958 1183.25 Valyl-Histidine 488.1962 254.1379 19.88 

173 504.1547 861.42 Histidinyl-Aspartate 504.1547 270.0964 14.13 

174 462.2047 738.39 Isoleucylproline 462.2057 228.1474 12.61 

175 363.6541 1181.70 Leucyl-Lysine 363.6531 259.1896 19.73 

176 381.6158 1058.88 Asparaginyl-Tyrosine 381.6167 295.1168 17.95 

177 462.2057 833.67 Prolyl-Isoleucine 462.2057 228.1474 13.91 

178 459.1331 436.75 Cytidine - H2O 459.1333 243.0855 7.38 

179 454.1642 241.35 Threoninyl-Threonine 454.1642 220.1059 4.05 

180 452.1606 858.10 N-Acetylserotonin 452.1638 218.1055 14.32 

181 454.1282 164.41 Serylaspartic acid 454.1279 220.0695 2.81 

182 480.1800 469.74 Glutamylvaline 480.1799 246.1216 7.82 

183 480.1800 469.74 Isoleucyl-Aspartate 480.1799 246.1216 7.65 

184 466.1644 392.24 Valyl-Aspartate 466.1642 232.1059 6.33 

185 490.1750 979.87 Threoninyl-Histidine 490.1755 256.1172 16.36 

186 311.0716 1482.16 Gentisic acid - multi-tags 311.0716 154.0266 24.69 

187 311.0716 1482.16 Protocatechuic acid 311.0716 154.0266 24.51 

188 466.1640 457.29 Aspartyl-Valine 466.1642 232.1059 7.61 

189 493.2109 410.23 Isoleucyl-Glutamine 493.2115 259.1532 6.86 

190 374.1301 1401.42 Valyl-Tyrosine 374.1295 280.1423 23.30 

191 373.0860 1417.84 4-Nitrophenol 373.0853 139.0269 23.45 

192 424.1179 259.85 Aspartyl-Glycine 424.1173 190.0590 4.20 

193 424.1179 259.85 Glycyl-Aspartate 424.1173 190.0590 4.40 
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194 386.0931 529.26 Xanthine 386.0917 152.0334 8.95 

195 468.1423 180.47 Glutamylserine 468.1435 234.0852 3.27 

196 502.2114 1282.13 Histidinyl-Isoleucine 502.2119 268.1535 21.38 

197 502.2114 1282.13 Histidinyl-Leucine 502.2119 268.1535 21.62 

198 502.2114 1282.13 Isoleucyl-Histidine 502.2119 268.1535 21.20 

199 502.2114 1282.13 Leucyl-Histidine 502.2119 268.1535 21.57 

200 388.1200 1431.89 3,5-Dimethoxyphenol 388.1213 154.0630 23.75 

201 438.1324 284.94 Alanyl-Aspartic Acid 438.1329 204.0746 4.83 

202 438.1324 284.94 Glycyl-Glutamate 438.1329 204.0746 4.87 

203 363.6532 1206.95 Lysyl-Leucine 363.6531 259.1896 20.28 

204 498.1403 440.91 Aspartyl-Methionine 498.1363 264.0780 7.63 

205 498.1403 440.91 Methionyl-Aspartate 498.1363 264.0780 7.16 

206 476.1597 908.81 Serylhistidine 476.1598 242.1015 15.14 

207 365.1179 455.27 5-Aminolevulinic acid 365.1166 131.0582 7.59 

208 408.1590 432.80 Valyl-Glycine 408.1588 174.1004 7.07 

209 363.6533 1192.08 Lysyl-Isoleucine 363.6531 259.1896 19.98 

210 493.2115 445.63 Leucyl-Glutamine 493.2115 259.1532 7.19 

211 398.1283 1449.18 Phenylalanyl-Tyrosine 398.1295 328.1423 24.22 

212 398.1283 1449.18 Tyrosyl-Phenylalanine 398.1295 328.1423 24.08 

213 528.1800 520.21 Phenylalanyl-Glutamate 528.1799 294.1216 8.54 

214 318.1019 1164.85 Pyridoxamine 318.1033 168.0899 19.47 

215 411.1060 1159.51 Chlorogenic acid 411.1059 354.0951 19.45 

216 479.1926 433.25 Leucyl-Asparagine 479.1959 245.1376 7.16 

217 363.1384 796.72 D-Pipecolic acid 363.1373 129.0790 13.23 

218 363.1384 796.72 L-Pipecolic acid 363.1373 129.0790 13.45 

219 486.1695 582.18 Serinyl-Phenylalanine 486.1693 252.1110 9.38 

220 360.1019 797.32 Thymine 360.1012 126.0429 13.21 

221 480.1801 544.14 Aspartyl-Isoleucine 480.1799 246.1216 9.17 

222 480.1803 569.11 Aspartyl-Leucine 480.1799 246.1216 9.53 

223 496.1927 843.00 Methionyl-Isoleucine 496.1934 262.1351 13.94 

224 496.1927 843.00 Methionyl-Leucine 496.1934 262.1351 14.26 

225 536.1961 1285.65 Phenylalanyl-Histidine 536.1962 302.1379 21.64 

226 450.1693 404.15 Prolyl-Threonine 450.1693 216.1110 6.91 

227 365.1512 836.02 L-Norleucine 365.1529 131.0946 14.11 

228 335.1065 556.95 L-Homoserine - H2O 335.1060 119.0582 9.26 

229 323.1063 452.26 L-Alanine 323.1060 89.0477 7.57 

230 462.2059 844.85 Prolyl-Leucine 462.2057 228.1474 14.09 

231 416.1152 990.56 Homovanillic acid 416.1162 182.0579 16.51 

232 436.1544 387.77 Prolyl-Serine 436.1537 202.0954 6.19 

233 535.2012 834.77 Prolyl-Tryptophan 535.2010 301.1426 13.89 

234 496.1900 911.14 L-prolyl-L-phenylalanine 496.1901 262.1317 15.11 



192 
 

235 406.1440 461.24 Prolylglycine 406.1431 172.0848 7.57 

236 450.1695 390.76 Threoninyl-Proline 450.1693 216.1110 6.44 

237 364.1703 418.48 N-Acetylputrescine 364.1689 130.1106 7.25 

238 451.1659 206.22 Alanyl-Glutamine 451.1646 217.1063 3.72 

239 509.1708 150.63 Glutaminylglutamic acid 509.1701 275.1117 2.67 

240 509.1708 150.63 Glutamylglutamine 509.1701 275.1117 2.69 

241 285.1161 1345.87 Cadaverine 285.1162 102.1157 22.39 

242 514.1651 506.60 Phenylalanyl-Aspartate 514.1642 280.1059 8.54 

243 375.1182 1235.16 Threoninyl-Tyrosine 375.1191 282.1216 20.72 

244 525.1817 457.75 Tryptophyl-Serine 525.1802 291.1219 7.39 

245 380.6449 1218.65 Lysyl-Phenylalanine 380.6453 293.1739 20.42 

246 481.1752 157.39 Threoninyl-Glutamine 481.1751 247.1168 2.67 

247 452.1516 304.60 Alanyl-Glutamic acid 452.1486 218.0903 4.97 

248 476.1602 834.76 Histidinyl-Serine 476.1598 242.1015 14.01 

249 478.1649 417.89 Prolyl-Glutamate 478.1642 244.1059 6.77 

250 373.1225 1415.62 Prolyl-Tyrosine 373.1216 278.1267 23.50 

251 309.0908 393.65 Glycine 309.0903 75.0320 6.59 

252 388.0853 1036.69 Gentisic acid 388.0849 154.0266 17.11 

253 470.1745 725.92 Alanyl-Phenylalanine 470.1744 236.1161 12.11 

254 353.1173 362.07 L-Threonine 353.1166 119.0582 5.79 

255 411.1060 1259.28 Chlorogenic acid - Isomer 411.1059 354.0951 21.24 

256 440.1495 189.36 Serylthreonine 440.1486 206.0903 3.40 

257 440.1495 189.36 Threoninyl-Serine 440.1486 206.0903 3.25 

258 420.1599 509.99 Prolyl-Alanine 420.1588 186.1004 8.47 

259 446.1488 916.53 Histidinyl-Glycine 446.1493 212.0909 15.32 

260 324.5954 1362.12 L-Tyrosine 324.5953 181.0739 22.65 

261 324.5954 1362.12 o-Tyrosine 324.5953 181.0739 22.38 

262 300.1027 1004.14 Ornithine 300.1033 132.0899 16.58 

263 380.6459 1185.47 Phenylalanyl-Lysine 380.6453 293.1739 19.92 

264 390.1192 1370.31 Tyrosyl-Methionine 390.1155 312.1144 22.79 

265 482.1596 208.29 Threoninyl-Glutamate 482.1592 248.1008 3.76 

266 295.1116 377.11 Ethanolamine 295.1111 61.0528 6.00 

267 432.1113 763.50 Vanillylmandelic acid 432.1111 198.0528 12.81 

268 477.1447 369.79 Cytidine 477.1438 243.0855 5.87 

269 486.1709 483.31 Phenylalanyl-Serine 486.1693 252.1110 8.02 

270 390.1147 1409.12 Methionyl-Tyrosine 390.1155 312.1144 23.37 

271 426.1289 155.10 Serylserine 426.1329 192.0746 2.69 

272 319.1115 987.25 3-Aminoisobutanoic acid 
- H2O 

319.1110 103.0633 16.29 

273 380.1280 196.87 L-Glutamine 380.1275 146.0691 3.32 

274 372.0912 1061.64 4-Hydroxybenzoic acid 372.0900 138.0317 17.57 

275 394.1574 1088.00 Tryptamine 394.1584 160.1000 18.03 
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276 494.1957 516.47 Leucyl-Glutamate 494.1955 260.1372 8.55 

277 518.1702 861.80 Histidinyl-Glutamate 518.1704 284.1121 14.23 

278 428.1162 1111.99 trans-Ferulic acid 428.1162 194.0579 18.47 

279 359.0751 137.00 Taurine 359.0730 125.0147 2.24 

280 365.1493 862.56 L-Norleucine 365.1529 131.0946 14.11 

281 467.1598 139.19 Glutaminylserine 467.1595 233.1012 2.32 

282 467.1598 139.19 Serylglutamine 467.1595 233.1012 2.33 

283 495.1540 131.08 Glutaminylaspartic acid 495.1544 261.0961 2.49 

284 388.0855 989.39 2-Pyrocatechuic acid 388.0849 154.0266 16.31 

285 353.1177 242.81 L-Homoserine 353.1166 119.0582 4.05 

286 323.1063 556.03 Sarcosine 323.1060 89.0477 9.34 

287 342.1163 1485.72 p-Cresol 342.1158 108.0575 24.54 

288 436.2015 184.05 Symmetric 
dimethylarginine 

436.2013 202.1430 3.05 

289 406.1426 427.12 Glycylproline 406.1431 172.0848 7.17 

290 594.2538 417.04 Arginyl-Tryptophan 594.2493 360.1910 6.75 

291 530.1779 822.75 Phenylalanyl-Methionine 530.1778 296.1195 13.87 

292 470.1739 621.72 Phenylalanyl-Alanine 470.1744 236.1161 10.58 

293 398.1064 1115.01 m-Coumaric acid 398.1057 164.0473 18.51 

294 512.1531 459.46 Glutamylmethionine 512.1520 278.0936 7.77 

295 422.1748 407.04 N-Alpha-acetyllysine 422.1744 188.1161 6.79 

296 432.1117 1079.68 Syringic acid 432.1111 198.0528 18.10 

297 400.1487 1174.49 Lysyl-Tryptophan 400.1507 332.1848 19.83 

298 323.1067 433.28 Beta-Alanine 323.1060 89.0477 7.24 

299 452.1813 428.84 Valyl-Threonine 452.1850 218.1267 6.96 

300 339.1347 328.48 Diethanolamine 339.1373 105.0790 5.49 

301 402.1007 986.14 5-Methoxysalicylic acid 402.1006 168.0423 16.38 

302 389.1289 1086.68 L-Histidine 389.1278 155.0695 18.09 

303 381.6165 1012.87 Tyrosyl-Asparagine 381.6167 295.1168 16.96 

304 481.1384 136.92 Asparaginyl-Aspartic acid 481.1388 247.0804 2.34 

305 402.0979 788.49 3-Hydroxymandelic acid 402.1006 168.0423 12.94 
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8. Chapter 8 Conclusions and Future Work 

 

Metabolomics is an active research field concerned with developing methods for the analysis of 

low molecular weight compounds in biological systems. In metabolomics analysis, large 

amounts of data are produced routinely in order to characterize a sample consisting of hundreds 

to thousands of metabolites. The conclusions drawn from the resultant data rely on the accuracy 

of the metabolite concentration measurements, the coverage of the detection method, and the 

completeness of data to include all the metabolite signals. Therefore, a number of challenges are 

associated with the data processing methods specific to each experimental platform.  

  The LC-MS technique has been used widely in the application of metabolomics due to its 

high sensitivity and high throughput. However, the traditional LC-MS platforms are limited by 

the coverage of the detection and the less reproducible quantification results. Thus, the chemical 

isotope labeling LC-MS method was developed in our group for an improvement of the 

metabolite separation and a higher detection sensitivity of a broad range of metabolites in a 

biological sample. In the labeling LC-MS method, each labeled metabolite will generate a peak 

pair signal in the mass spectrum, with the light peak from the individual sample and the heavy 

peak from the pooled sample. Accordingly, a customized data processing method is required in 

dealing with the data generated by different chemical isotope labeling LC-MS experiments. The 

design of the data processing algorithms have to consider the specific experimental methods and 

instrumental settings to serve the objectives of the metabolomics study. For this reason, my 

thesis work focuses primarily on the development of data processing methods to address the 

challenges from the growing data processing tasks in the chemical isotope labeling LC-MS. This 
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thesis work focuses on the novel aspects of the data processing area in the CIL LC-MS 

metabolomics workflow and provides a number of original algorithms design in response to the 

current challenges in metabolomics data processing. 

  Chapter 1 provides an overview of metabolomics, its relationship with other omics 

studies, and the different applications using metabolomics technologies. We compared the 

different analytical methods and discussed specifically the CIL LC-MS method to show the 

advantage in its detection sensitivity and quantification accuracy. We presented the current 

development of data processing in CIL LC-MS; possible solutions were proposed to the data 

processing challenges that arose with the development in the experimental methods.  

  Chapter 2 discuss the methods for the data quality check in the LC-MS raw data, which is 

not limited to the labeling method. Instead of using an internal standard in the sample preparation, 

the method exploited the internal compounds that are shared by different samples in their LC-MS 

raw data to monitor the instrument fluctuation in terms of the mass accuracy. The background 

mass peaks usually are the signals to be excluded from the LC-MS data in the initial data 

processing. In our method, we designed a program to find the background mass peaks that 

constantly show up in most of the mass spectra and used them as the internal references to 

calculate the mass shift over the course of data acquisition. Compared to the traditional approach 

that shows the mass errors of a few calibration standards after mass calibration, the background 

mass monitoring method examines the mass accuracy in every single mass spectrum and 

provides a more comprehensive evaluation of the mass accuracy. Although an internal mass 

calibration was not achieved with the background mass peaks due to the relatively low peak 

intensity, the mass accuracy monitoring method can help to pick out any LC-MS data file with a 

major mass shift and assist the user to correct or replace the issue data either by an additional 
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mass calibration or a re-analysis of the same sample. The program is generally applicable to any 

LC-MS data, and background mass peak was first used in the software for gauging mass 

accuracy.  

  In Chapter 3, in developing the retention time shift analysis, a similar strategy was 

applied by using the commonly detected internal compounds in the same type of sample to 

monitor the inter-sample retention time changes. Compared to other MS method without the 

labeling step, our method used the highly confident identified compound by their peak pair 

signals in the retention time analysis and correction. After the retention time of the internal 

compounds were extracted from each individual sample, the retention time shift at different 

retention time points can be viewed from the scattered plots generated by the program (see plot 

shown in Figure 8.1). A retention time correction program was designed to normalize the 

retention time of multiple LC-MS data based on the retention time of the selected internal 

compounds. 

  The LC-MS raw data check program provides a new way to determine the mass and 

retention time tolerances for data alignment and library search. One challenge in comparative 

metabolomics is to align the metabolites detected in different samples. In the LC-MS data, the 

retention time and mass are used as the parameters to assign the signals of peak pairs in different 

samples to the same compound. However, the retention time and mass measurement always will 

show some inter-sample variation due to the limitations of the analytical instruments. The 

selection of the alignment tolerances often is based on one’s experience of the instruments and 

settings applied in the data acquisition. The measurement error can change from one experiment 

to another, and the same alignment tolerances may not be applicable to the data generated from 

different experiments. With the results from the LC-MS raw data check, the actual mass error 
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and retention time shift in all the sample data are presented in detail; this can be used to estimate 

the tolerances for data alignment and library search. Figure 8.1 shows an example of this strategy 

using the retention time analysis of dansyl threonine in a total of 25 sample data files. The range 

of the retention time data shows the overall retention time change at the dansyl threonine peak. 

Therefore, a retention time window of ±15 sec could be estimated roughly from the distribution 

of the dansyl threonine’s retention times. Since the retention time shift can be different for 

different peaks, one can examine the results from all standards to determine the retention time 

window used in the subsequent data processing. 

 

Figure 8.1 Determination of the retention time window using the results from the retention time shift 

analysis. The retention times of dansyl threonine were extracted from 25 sample data files and are shown 

in the scattered plot. From the distributions of the retention time at different retention time points, one can 

determine the retention time tolerance to be used in data alignment and database search.  
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 Chapter 4 discusses the data processing algorithms in CIL LC-MS. A number of topics 

were involved in the design of the processing pipeline, including isomer compounds, false peak 

pair, redundant peak pair, and missing ratio data. False metabolite features are encountered often 

in the metabolomics data in which the noise signal can be selected as a metabolite feature. With 

the chemical isotope labeling method, the metabolites of interest are labeled selectively in the 

sample with an enhanced sensitivity in the detection. The peak pair pattern from each labeled 

metabolite facilitates greatly the feature selection and helps to exclude all the unlabeled signals. 

For each peak pair detected, we checked also the inter-dependency of the light and heavy peak to 

remove any falsely paired one. Moreover, the repeated peak pairs are removed by examining the 

similarities of mass, retention time, and within-sample ratios. The methods are unique to the 

chemical isotope labeling method and ensure that each peak pair data entry represents a true 

labeled metabolite.  

 The ratio matrix in the data table represents the relative concentration of each metabolite 

in different samples. Although most of the peak pair ratios can be calculated after a thorough 

inspection of LC-MS raw data, a missing value still can occur in the resultant data table. These 

missing data could have a great influence on the conclusions drawn from different data analysis 

methods. In CIL LC-MS, the abundance of one metabolite is presented as a peak pair ratio value 

calculated from two peak intensities. The mathematical meaning of the ratio value is different 

from the peak intensity value, making most of the current missing data imputation methods 

inapplicable in predicting the missing ratio data. To generate a complete metabolite intensity 

table, we investigated the origin of the missing ratio in CIL LC-MS data and developed a 

missing value prediction method based on the intensity of light- and heavy-labeled peaks in the 

LC-MS data. We demonstrated the prediction accuracy by comparing the predicted values 
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against the experimental values, and the ratio imputation method showed a much improved 

accuracy than other imputation methods.  

 Peak pair ratio calculation is a critical step in the CIL LC-MS data processing and 

determines directly the results of the statistical analyses. The ratio measurement has been shown 

to be reproducible regardless of the changes in the absolute peak intensity. To reduce the random 

measurement error, the peak pair ratio calculation was improved by using the peak pair signals in 

multiple scans, and the average of the ratios was used in the alignment table. Another ratio error 

can be from the natural isotopologues that are present for any mass peak. These natural occurring 

peaks often can overlap with the signal of the heavy- labeled peak and introduce a systematic 

bias in the peak pair ratio calculation. Chapter 5 discusses the intensity of the natural 

isotopologues from different elements existing in human endogenous metabolites, including 

carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorous. We reported a data processing 

method that accounts for natural isotope contributions in ratio calculations for 12C2- and 13C2-

labeled peak pairs. It was shown that this method can improve the measurement accuracy for 

determining the peak intensity ratio of the light- and heavy- labeled metabolite in metabolomic 

profiling. 

 Metabolite identification is another important step in metabolomics. Without metabolite 

identification, the results of any metabolomic analysis are biologically and chemically 

uninterpretable. The identification of the metabolite is essential for the explanation of the 

biological meanings in a metabolomics study. Chapter 6 presents a mass-based database 

searching algorithm to improve the accuracy of the metabolite identification. Mass accuracy was 

observed to vary depending on the peak intensities. For mass peaks with relatively low peak 

intensity, the mass measurement is more likely to give a larger error than peaks with higher 
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intensity. An intensity-dependent mass tolerance was calculated to facilitate the mass search 

using a compound database.  

  The identification of a metabolite usually requires a multi-layer confirmation that 

involves the accurate mass, tandem mass data, and retention time. A continuous effort is needed 

to expand the current database by collecting data of different groups of standards. For example, 

the small peptide compounds have been shown to have an important role in various biological 

processes,136-139 and different biological samples can have a specific collection of metabolites. 

Structure specific and sample specific metabolite databases could be created in the future to 

increase the efficiency and confidence of the metabolite annotation step further.140  
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