
 

 

 

Sensor-Based In-situ Process Control of Robotic Wire Arc Additive Manufacturing Integrated 

with Machine Learning 

 

by 

 

Yeon Kyu Kwak 

  

  

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

in  

Control Systems 

 

 

 

 

Department of Electrical and Computer Engineering 

University of Alberta 

 

 

  

 

 

©  Yeon Kyu Kwak, 2023 



ii 

 

Abstract 

 

Wire Arc Additive Manufacturing (WAAM) is a manufacturing technology that has the capability 

to fabricate a large-scale metallic part in a layer-by-layer fashion. It is receiving significant 

attention from many industries as a viable method of manufacturing as it has a high deposition 

rate, production rate, and cost efficiency. However, numerous challenges still need to be addressed 

and overcome to ensure the geometrical accuracy of the manufactured goods produced. As the 

number of deposited layers increases, geometrical errors increase, and the accumulated heat 

becomes significant, leading to the undesirable slumping of the beads. The quality of the part can 

be enhanced through in-situ real-time feedback control. However, as WAAM is a time-variant 

process that is highly non-linear and multi-dimensional, it is difficult to model the relation between 

the process parameters and the final quality of the produced part. To address this challenge, a 

sensor-based in-situ data-driven process control framework integrated with machine learning (ML) 

is proposed to iteratively learn from the feedback, the impacts of various process parameters to 

ultimately control the geometry of a single-bead multi-layer part to conform to desired geometrical 

specifications. The proposed control framework is then implemented and validated on a custom 

robotic large-scale WAAM system. The experiment result showed that the beads printed with the 

proposed control framework had a noticeable improvement in both consistency and following the 

user-specified bead’s geometry, in comparison to traditional printing beads.  
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1. Introduction 

1.1 Motivation 

Wire arc additive manufacturing (WAAM) is an emerging technology that is attracting 

interest from manufacturing industries and academia due to its potential to fabricate large-scale 

metal components with the benefits of low cost and short production lead time. It uses Direct 

Energy Deposition (DED) process by using wire and electric arc as a fusion source to deposit 

materials in a layer-by-layer fashion until a desired 3D part is fabricated. Not only it benefits 

from significant raw material savings in comparison to conventional manufacturing methods 

like CNC machining and forging [1], but it also offers competitive benefits in cost savings 

relative to other similar DED additive manufacturing technologies as well, such as Laser Metal 

Deposition (LMD), Wire Laser Additive Manufacturing (WLAM) and Electron Beam Additive 

Manufacturing (EBAM). Additionally, in comparison to the common powder-based additive 

manufacturing (AM) like powder bed fusion (PBF), WAAM uses wire as feedstock which costs 

less than the powder feedstock and offers high efficiency in the deposition of materials and no 

need for a peripheral powder recycling process [2], alleviating potential health and safety risks. 

WAAM also offers a competitive edge for being able to manufacture with a greater range of 

feedstock materials [3], and is suitable for manufacturing large-scale components with modest 

complexity with a high production rate. 

Manufacturing industries are attracted to WAAM for its potential to manufacture large 

custom-made metal workpieces with high material utilization rates. For instance, the aerospace 

industry is expected to require approximately 20 million tons of billet materials due to the high 

buy-to-fly (BTF) ratio of materials used in the industry like titanium [4]. BTF is the weight of 

the raw material divided by the weight of the final component. High BTF is a result of poor 

machinability of the manufactured part [5]. With machining rates of about 90% and increasing 

material costs, the benefits of additive manufacturing often outweigh traditional subtractive 

manufacturing [6]. To demonstrate the benefits of WAAM in comparison to other additive 

manufacturing techniques, Panchenko et al. [7] evaluated the advantages of WAAM in a scale 

of 0 to 10 relative to other additive manufacturing processes as seen in Figure 1.1. Though 
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WAAM lacks in accuracy and complexity of the part, it outperforms other methods with its 

relatively inexpensive cost, high material deposition rate, strength, and power efficiency. 

 

Figure 1.1 Advantage of WAAM over other Additive Manufacturing processes. ♦) bed 

deposition; ■ ) direct deposition; ×) electron beam freeform fabrication ▲) WAAM  [7] 

 

While WAAM has the ability to produce components with a high deposition rates and 

significant cost savings, it suffers from a lack of dimensional accuracy in the final product. As 

WAAM fabricates a component in a layer-by-layer fashion, a buildup of an error may occur 

where a small error in a previous layer would gradually build up throughout every layer, further 

negatively affecting the geometrical accuracy of the produced part. Various input parameters 

affect the geometrical accuracy of the final part, and they are often difficult to control as they 

are highly non-linear and coupled [8]. To overcome this challenge, control of process 

parameters is required as it would be able to rectify errors and correct itself throughout the 

manufacturing process. However, WAAM is a very complex time-variant dynamic process with 
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numerous process parameters. Some of the input process parameters include torch positioning 

and speed, wire feed rate, dwell time, voltage, and current. To conform to the geometrical 

specifications, these parameters need to be monitored and controlled in real time. Monitored 

process parameters in this study include thermal and geometrical information of beads at the 

location of the deposition. 

Table 1.1 Cost comparison of wire and powder as feedstocks for varying materials 

Feedstock 

Titanium 

6AL-4V 

($/lbs.) 

Tantalum 

($/lbs.) 

Inconel 625 

($/lbs.) 

Stainless Steel 

316 ($/lbs.) 

Wire – 

diameter 

0.9mm 

58 545.30 26.73 5.19 

Powder –  

AM grade 77 522.00 48.00 10.00 

 

1.2 Thesis Objectives 

Overall, this research aims to develop an in-situ reinforcement learning control framework 

for the WAAM process to improve the geometrical quality of a multi-layer single-track wall. 

Specifically, the research objective of this research is as follows: 

- Explore and extend knowledge of machine learning in its adaptability and suitability 

for application of WAAM process in-situ control. 

- Develop a sensor-based in-situ control framework on a 3-axis robotic gantry system 

with WAAM. 

- Discuss the effectiveness of the in-situ machine learning control framework in 

improving the geometrical quality of the printed part. 

The first necessary step in achieving the objective was to research various ML techniques 

applicable to the WAAM process. Then an appropriate control framework was developed in 

software tools that can incorporate the researched ML techniques. Along with sensor 

integrations to collect the in-situ process data, the objective of the research was fulfilled. 
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This thesis proposes a method of sensor-based in-situ control of robotic WAAM integrated 

with machine learning (ML) techniques for the printing of multi-layer single-track walls. The 

term in-situ means ‘on site’ or online. Input process parameters controlled in the study include 

wire feed speed, torch travel speed, previous bead’s geometry, and standoff distance between 

the torch and the bead. The output or the geometrical quality analyzed in the study includes the 

width and the height of the printed bead.  Two algorithms, namely Q-learning and policy 

gradient algorithms were simulated on a custom-built simulator and then tested in a real-world 

scenario. Additionally, by utilizing the historical input and output process parameters, a 

reinforced inverse supervised learning control algorithm is developed and experimented to 

show improvement in the geometrical quality of the printed workpiece.  
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2 Background 

The background consists of the introduction to metal additive manufacturing, its history, 

and its different types. It also contains a brief introduction to various types of machine learning, 

namely reinforcement learning and supervised learning. Lastly, state-of-art papers related to the 

numerous sensing techniques and control of the metal additive manufacturing process are 

introduced. 

2.1 Metal Additive Manufacturing 

Subtractive manufacturing is a traditional way of manufacturing where an over-

dimensioned block of raw material is machined down to the desired component. In contrast, 

additive manufacturing deposits the material in a layer-by-layer fashion to manufacture a 

component [9]. It is an innovative manufacturing process that produces a three-dimensional 

component directly through the use of the Computer-Aided Design (CAD) model.  The major 

advantage of AM is that it reduces the time taken to manufacture and increases the buy-to-fly 

ratio [10] [11].  It provides enormous potential for cost savings in the machining of high-

strength alloys and is widely adopted in marine, aeronautical and aerospace industries [12]–

[16]. It can also fabricate large-scale industrial components using a type of alloy that is costly 

to manufacture by traditional methods [17]. AM can utilize a vast variety of materials including 

functionally graded materials (FGM) for production providing edges over other manufacturing 

processes [18] [19]. 

Numerous techniques have been developed for metal manufacturing AM processes, 

such as shape deposition manufacturing [20], selective laser sintering [21], electron beam 

freeform fabrication [22], direct metal deposition [23] and WAAM [24], [25]. Prominent 

techniques in how the feedstock for additive manufacturing is supplied are powder-feed or 

wire-feed processes [26], [27]. AM with powder-feed technology can fabricate components 

with precise geometrical accuracy but in a small volume. In contrast, the wire-feed technique 

can manufacture a larger component in a cleaner and more environmentally friendly way 

where the operator is not exposed to any potentially hazardous powder. It also has a material 

usage efficiency of up to 100%. Moreover, the cost of material is significantly lower with 

high availability, making the wire-feed method to be very competent. 
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2.1.1 History of Wire Arc Additive Manufacturing 

While the acronym of WAAM has only emerged only about 20 years ago, the concept 

of near net shape manufacturing by welding has existed for the past century. Shape welding 

(SW), shape melting (SM), solid freeform fabrication (SFF), shape metal deposition (SMD), 

and 3D welding [28] were the names that were representing the contemporary welding 

techniques used to produce metal parts with unique shapes.  

The first concept of metal additive manufacturing dates to 1920 when Baker filed a 

patent, “The use of an electric arc as a heat source to generate 3D objects depositing molten 

metal in superimposed layers”, to form a manufactured product as shown in Figure 2.1 [29]. 

White in 1964 manufactured a metal cylinder using submerged arc welding (SAW) as means 

of creating a compression roller [30]. Later, Ujiie from Mitsubishi proposed a method of 

fabricating a pressure vessel using SAW, tungsten inert gas (TIG), and multiple types of wires 

to give a functionally graded wall. Ujie further discussed the machining of the surfaces of the 

final product. By 1983, Thyssen company produced components out of weld metal and 

successfully built a 79 tons multilayer weldment by shape welding technique with a deposition 

rate of 80kg per hour [31]. WAAM in the 1970s and 80s was referred to as shape welding and 

was performed for large parts. 
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Figure 2.1 Products made by Baker using concept of metal additive manufacturing in 

1920 AD [29]  

 

 Along with the advancement in computer-aided design and manufacturing 

(CAD/CAM), in 1992, Dickens et al. [32] utilized a 3D robot welding system and a CAD system 

to generate welding trajectories to manufacture a steel part. Prinz and Weiss patented methods 

of combining built parts with computerized numerical control (CNC) milling was referred to as 

Shape Deposition Manufacturing (SDM). Cranfield University and Rolls Royce developed the 

SMD technique to produce an aero-engine component with Ti-6Al-4V and Inconel 718 alloys 

from 1994 to 1999. WAAM is an SDM technology that is named by Cranfield University. 
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Figure 2.2 World's first ship propeller fabricated with WAAM in 2017 by RAMLAB 

[33] 

 

Varying aspects of studies within the field of WAAM have evolved into more specific 

categories such as path planning, process surveillance and control, materials, post-processing, 

and more to make WAAM more applicable and practical [34]. Today, the complexity and 

variety of manufactured products have grown immensely. Figure 2.3 shows a WAAM-

manufactured propeller being fabricated to be equipped on a ship. Figure 2.3 shows the first 

architectural application of WAAM where a 7.8-ton bridge is made.  
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Figure 2.3 MX3D bridge at Dutch Design Week 2018 [35] 

2.1.2 Gas shielded metal arc welding 

There are three methods to process the fabrication of large-scale metal parts in WAAM. 

They are Plasma Transferred Arc Welding (PTAW) [36], [37], Gas Tungsten Arc Welding 

(GTAW) [32], [38] and Gas Metal Arc Welding (GMAW) [39], [40]. The deposition technique 

utilized in the paper is Cold Metal Transfer (CMT) which is a subset of GMAW. A diagram of 

the GMAW process is depicted in Figure 2.4. GMAW torch feeds a consumable electrode or a 

feedstock material in a form of wire and strikes an arc between the substrate plate and the wire. 

The arc then melts the tip of the wire and deposits material onto the substrate. As the material 

is deposited at high temperatures, the material is prone to corrosion and oxidation. Therefore, 

shielding gas is in place to prevent the metal to react with the surrounding oxygen. The 

deposition rate of the GMAW method is approximately 2-3 times greater than that of the 

GTAW and the PTAW method. However, this comes at the expense of lower stability in 

manufacturing. The GMAW-based method generally produces more fume and spatters as the 

electric current directly acts on the feedstock [41]. Consideration of processing conditions and 

the production rate for the target component is required when deciding what WAAM technique 

is to be utilized. 
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Figure 2.4 Gas metal arc welding process diagram [42] 

 

2.1.3 Cold metal transfer 

CMT is developed by Fronius Company from Austria in 2004 and is a subset of GMAW 

and a variation of the GMAW process. With the integration of high-speed electronics and 

mechanical controls, CMT primarily modified GMAW in the method of deposition or the wire 

feeding technique. CMT creates a weldment in a drop-by-drop fashion where an arc strike 

creates a single droplet of metal to be deposited onto the substrate.  This drop-by-drop of the 

welding material is achieved by reducing the welding current and retracting the wire when a 

short circuit is detected in a repeated manner at very high frequency [43], [44]. 

The CMT process is characterized by its innovative method of a detachment of a weld 

drop through the motion of the wire, and the digital process control of the power supply. The 

process can be divided into repeating cycles of the following four stages of the process: 

1. Arc is ignited with high voltage and current, melting the tip of the filler wire. Along 

with the rest of the wire from the torch, a globule of the melted wire moves toward the 

weld pool. 
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2. As the material dips into the molten weld material, a short-circuit is achieved and the 

arc is extinguished, and the digital controller decreases the welding current. The globule 

created from the last step is transferred to the weld pool. 

3. The wire from the torch is retracted rapidly to facilitate the metal droplet to be detached 

from the wire. 

4. The wire is retracted into the torch. Welding voltage and current are raised to ignite the 

arc again. It is ready to extend forward to reignite the arc, raising the temperature for 

the repeating cycle. 

 

 

Figure 2.5 Four phases of wire feed process in CMT welding [45] 

 

Due to the igniting, extinguishing and retracting procedure of CMT, in comparison to 

GMAW, CMT is spatter free with less arc, thus less heat input. The term ‘cold’ from CMT is 

a) b) 

d) c) 
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best understood in terms of the welding process where the arc is extinguished, and the wire is 

retracted back into the torch. Additionally, with advancement of digital and mechanical control 

systems, CMT can regulate welding parameters like the arc length, amount of heat input and 

wire feed speed. 

2.1.4 WAAM Process parameters 

Despite the advantage of WAAM, the drawback is evident. In relation to the other metal 

additive manufacturing technologies, the final product of the WAAM process lacks 

geometrical accuracy, such as layer width and layer height. A few of the primary factors that 

influence the output geometry of WAAM are the dwell time, the geometry of the previous 

layer, wire feed speed, torch travel speed, shielding gas flow rate, and torch standoff distance. 

For example, changes in the heat input of the system or wire feed speed, or the torch travel 

speed can cause significant alteration to the geometry of the deposited bead, thus the quality 

of the entire manufactured part [46]. Furthermore, as these parameters are multi-dimensional 

and non-linear in relation to the resulting geometry of the printed beads of layer, it is often 

difficult to develop a model for the process. 

2.2 Machine learning 

Over the past decade, machine learning and artificial intelligence (AI) have become 

popular subjects both within and outside of the academic community. Machine learning is an 

important component of the growing field of science. Machine learning is simply defined as 

enabling computers to make a successful prediction based on their past experiences [47]. In 

many scientific disciplines, the objective of studies is often focused on modeling the 

relationship between the given input and the resulting outputs. With a mathematical model of 

the system developed, it is possible to predict the output of a system with only sets of input 

variables. However, this modeling and prediction of output given input may be a very difficult 

task as many phenomena encountered in the real world are multi-dimensional and highly non-

linear to be put into a closed-form input-to-output relationship. ML is utilized in the thesis as 

physical models are often difficult to derive and are usually incomplete, and inaccurate. 

Training in ML refers to a process of algorithms building a model and the training data refers 

to the required set of data that is used for training. Once a model is trained, the model can be 



13 

 

utilized as a tool to map the input data to that of the output to make a useful prediction when 

given a novel input that may or may not be part of the training data. 

The accuracy of the model learned depends on a number of factors such as the accuracy, 

quality, and size of training data, the complexity of the input and output relationship, and 

computational constraints like the memory of the computing machine [48]. With the recent 

advancement of digital data gathering, storing, and processing power, the application of 

machine learning has broadened to a variety of industries such as robotics, bioinformatics, 

marketing and sales, transportation, oil and gas, and financial analysis [49]. 

There are three main categories in ML, namely, supervised learning, unsupervised 

learning, and reinforcement learning. The type of ML discussed in the paper is primarily based 

on supervised learning and reinforcement learning. Unsupervised learning is not discussed in 

this thesis as it is a method of recognizing a pattern in input data to predict output without any 

information on the output; therefore it is only useful if there is only input data without any 

corresponding output. However, the method of supervised learning and reinforcement learning 

both emphasizes the need for both input and output data. Supervised learning can model the 

input-to-output relationship through the use of both input and output data. RL aims to find an 

optimized policy such that if given a set of input data, it determines what actions to take to 

obtain the best outcome.  

2.2.1 Reinforcement learning 

Reinforcement learning is an area of Artificial Intelligence and a branch of machine 

learning that has emerged as an effective means of solving sequential decision problems in a 

wide range of fields and industries such as game theory, autonomous driving, robotics, and 

more [50].  

Reinforcement learning is known to resemble the learning process of a human being. For 

example, a student chooses not to sleep before an exam, and that results in a bad grade. The 

student learns from this experience and chooses to get sufficient sleep before other upcoming 

exams. 
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The framework of RL allows an agent to interact with an environment and the goal of the 

agent is to learn to take an action inside the environment such that it receives maximized 

cumulative reward over time [51]. Or the agent in an environment attempts to learn the optimal 

sequence of actions to maximize reward. This concept of RL can be modeled as a Markov 

Decision Process (MDP) [52].  The major advantage of MDP is their generality in the ability to 

handle nonlinear and stochastic dynamics and nonquadratic reward functions [53]. The next 

advantage is that contrary to supervised learning, it may be in a model-free form. Thus, it does 

not need a model of environment dynamics, and simply learns either online, by gathering 

transition samples directly from the interaction with the model, or offline by utilizing samples 

obtained beforehand. This generality provides a significant value in designing an optimal 

controller for a non-linear and stochastic dynamic system. 

2.2.2 Supervised learning 

Supervised learning is applied when the training data is given in the form of input and 

output target value pairs [54]. A supervised learning algorithm learns the mapping function that 

models the input-to-output relation. It is utilized when specific goals are identified to be 

accomplished from a specific set of inputs. It is a “task-driven approach” [55]. 

Supervised learning can be classified into a classification or a regression problem. First, 

classification algorithms are used in supervised learning to address problems in which the 

output variable is categorical, such as male or female, good or bad, and yes or no. The 

classification algorithm can predict the outcome based on the input. A popular example of the 

application of classification is spam filtering. Next, regression is used to solve problems that 

have a correlation between the input and output variables. Regression finds this correlation to 

predict continuous output variables given input variables. Weather prediction is one example 

of a supervised learning regression problem. 

2.3 State of the art 

Wire arc additive manufacturing requires various welding processes to facilitate the 

deposition in a layer-by-layer fashion. First comes a CAD model that is converted to a machine 

path by 3D slicing software. This manufacturing process is often done with sensory information 
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feedback to the welding process control system to produce a compliant part as shown in Figure 

2.6.  

 

Figure 2.6 Overall flowchart for performing WAAM with sensor feedback [56]  

 

2.3.1 Process monitoring in WAAM 

To comply with geometrical, mechanical, or metallurgical specifications such as the 

deposited bead’s width and height, the input process parameters such as the wire feed speed, 

dwell time, and torch travel speed needs to be controlled in real-time while the part is being 

fabricated. Before having to control any of these input process parameters, it is important to 

quantify and measure the output of the system. During the fabrication stage of the WAAM 

process, various sensing units and optical systems are utilized to obtain real-time data of the 

additive manufacturing process. The data gathered from the sensory equipment are used 
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alongside the input process parameter into a control system, which will ultimately conform the 

finished component to the geometrical specifications and constraints. Sensors that are 

commonly used to monitor the welding site use acoustic [57], vision [34], spectral [58], and 

thermal [59] data. A combination of these various sensors is often deployed to provide greater 

insights into the WAAM process. Pringle et al. [60] developed an open-source arc analyzer by 

combining voltage, current, acoustic, spectral, and thermal sensors on the WAAM of an 

aluminum part to analyze the sensitivity of each sensor on varying wire feed speeds. Xu et al. 

[61] proposed a multi-sensor monitoring and control system by utilizing profile, voltage, 

current, gas flow, and oxygen sensors. Flowchart of the deposition control process with sensor 

observation and control stage is shown in Figure 2.7 where it shows more details into the 

feedback loop Figure 2.6.  

 

Figure 2.7 Flowchart of the WAAM deposition control process with various sensors to 

monitor the deposition process 
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2.3.1.1 Vision sensing 

 Vision sensing in WAAM is utilized for measurements and analysis of bead layer and 

surface geometry. Along with the ongoing development of computer vision technology, a large 

number of studies were done with the vision sensing techniques of the metal AM process in 

hopes of providing vital information to perform analysis and controls. Davis et al. [62] proposed 

an approach for non-contact online clad height measurement with high accuracy. Charge-

coupled device (CCD) camera and line laser were used in combination with unique line 

detection and spur trimming algorithm to measure the complete clad profile. Clijsters et al. [63] 

designed an in-situ optical measurement system consisting of high-speed infrared thermal 

CMOS (complementary metal oxide semiconductor) camera and a photodiode for monitoring 

and logging of melt pool data at high sampling rate. The obtained data is post-processed into a 

mapping algorithm to provide the characteristics of the molten pool. The reliability of the 

system was validated by comparing defects found in real time to the defect discovered in the 

printed part. Grasso et al.[64] developed an in-situ vision monitoring system for an SLM 

process by acquiring images of byproducts generated through the AM process. It acquires 

plume images which are put through machine learning algorithms to detect unstable melting 

conditions that may result in defects. Zhang et al. [65] identified three levels of the final product 

quality by capturing the image of the melt pool, plume, and spatters in the LPBF process in an 

offline manner. Images were acquired with a high-speed camera, and they were post-processed 

by extraction of key features which are used as inputs for support vector machine (SVM) and 

convolutional neural network (CNN) classifiers. Repossini et al. [66] monitored and identified 

the quality of the LPBF process by using post-processed in-situ spatter images captured with a 

high-speed camera.  

 Research related to vision sensing in WAAM had been performed not only on the bead 

but also on the wire. For instance, the direction of the wire-feeding significantly influences the 

different droplet transfer modes, lowering the accuracy and quality of the built part. Tang et al. 

[67] developed a detection and classification system capable of detecting surface defects. 

CMOS camera was used to obtain layer surface images. SVM was used to post-process the 

images to categorize the defect into normal, depression, pore, hump, or undercut. Bonaccorso 

et al. [68] combined images obtained from a camera with a filter with arc voltage measurement 
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to control the arc length in the GTAW process. Zhan et al. [69] developed a system of 

monitoring the wire feeding location and the wire deviation angle by using post-processed 

images acquired from a color welding camera.  

2.3.1.2 Spectral sensing 

 Spectral sensing uses optical emission spectroscopy to analyze the composition of the 

welded parts as the elemental information is closely related to spectral signals which are critical 

information in understanding the physical mechanisms. Spectral sensing is used commonly in 

both laser AM and WAAM systems. Spectrums that are produced in the WAAM process give 

abundant information about the metal vapors, arc, and shielding gases which are closely related 

to defects in the WAAM process. Huang et al. [70] developed a method of diagnosing and 

detecting porosity defects by real-time acquisition and processing of spectral data of an 

aluminum alloy. An SVM classification model along with a genetic algorithm (GA) is utilized 

to estimate various types of defects related to porosity. 

2.3.1.3 Acoustic sensing 

Acoustic sensing has proven its potential in its benefits of being a non-destructive and 

flexible method without the need for direct contact with the welding process. Acoustic emission 

(AE) from the welding process is analyzed to provide insight into arc conditions, melt pool 

dynamics, and internal defects such as porosities and cracks. The deposition efficiency can be 

inferred through the AE signal as well [57], [71]. Bhattacharya et al [72] used AE sensors in 

combination with currents and voltage sensors with an artificial neural network to predict weld 

deposition efficiency. Bohemen et al. [73] utilized root mean square values of real-time acoustic 

signal data to detect martensite formation during steel welding. Despite numerous successes in 

research of AE in the application of WAAM, there is not as many publications compared to that 

of traditional GMAW and laser AM. 

2.3.1.4 Thermal sensing 

Sensing temperature in the welding process is critical as failing to control the thermal 

energy poses significant variability in the microstructure of the built part, leading to 

inhomogeneous material properties. Also, the geometry of the built part may deviate from the 

desired geometry due to the undesired slumping of the deposited material. The thermal data 
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gathered during the manufacturing stage could be useful to analyze and identify potential 

problems in the workpiece due to high residual stress or defects [74]. Mireles et al. [75]  

developed a non-constructive method of identifying porosity during the in-situ fabrication stage 

by utilizing IR images to indicate various defects. Also, in-situ correction strategies were 

implemented to correct defects detected during the fabrication process. 

2.3.2 Control of WAAM process 

Most research publications regarding process control in metal AM are related to laser AM 

and not WAAM. Fathi et al. [76] utilized CCD imaging sensors to study the effects of different 

process parameters on the resulting deposition height and used system identification techniques 

to obtain a dynamic model of the laser solid freeform fabrication (LSFF) system. This model 

was used in traditional proportional-integral-derivative (PID) controllers to show improvement 

in target tracking of the deposition height. Heralic et al. [77] utilized a camera and a 3D laser 

scanner to obtain a profile of each layer after every laser metal wire deposition. Through online 

iterative learning control, the deviation of layer height was adjusted by controlling the wire feed 

speed for the next deposition layer. Hagqvist et al. [78] utilized the resistance between the 

nozzle and the substrate during laser AM to acquire the distance between the tool and the 

workpiece. A feedforward control was used to flatten the sequential layer deposition. Then, a 

second-order iterative learning control algorithm is used for determining the wire feed rate. 

Xiong et al. [79] used two CCD cameras to monitor the distance between the nozzle and the 

printing part, and the width of the printed layer. Band filter lenses and image processing 

algorithms were used to filter out the intensive torch light. Another common challenge in the 

WAAM process is to maintain print quality in sharp corners where materials and temperature 

tends to accumulate. To overcome this challenge, Li et al. [80] used an adaptive process control 

scheme (APCS) to achieve uniform bead geometry throughout the deposition process. An 

appropriate wire feed speed is selected depending on various dynamic constraints of different 

corners in the building toolpath. Xiong et al. [81] established an improved self-learning neuron 

feedback control of bead width with a visual sensor and its corresponding image processing 

algorithm. Doumanidis and Kwak [82], [83] used an optical laser scanner and infrared 

pyrometry sensor to monitor the GMAW system. The obtained data are used for developing a 

closed-loop geometry control system. With the system, the bead width and height followed the 
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reference values. To compensate for delays in the measurement, a real-time prediction of the 

deposition model is used. Smith et al. [84] used a CCD camera to capture the image of the 

molten pool surface and obtained the width of its molten pool. This data was then used in the 

closed-loop control of a GTAW system as a feedback signal to control weld penetration. Fan et 

al. [85] implemented feedback control to monitor welding penetration using temperature data. 

An infrared sensing system monitors the surrounding temperature of the melt pool during a 

welding process. Liu and Zhang [86], [87] developed a linear-model-based predictive controller 

to control the penetration or 3D weld pool geometry of a GTAW process. Scetinec et al. [88] 

proposed an online height controller and toolpath replanning for the fabrication of a metal 

workpiece. The result showed that varying currents during welding had more impact on the 

layer height than the voltage, and the fabricated part showed a small deviation from the original 

CAD model. Dharmawan et al. [89] proposed a reinforcement learning control framework for 

controlling layer height. The height data of the preceding layer was recorded along with the 

wire feed speed and the torch travel speed used, and the resulting height of the layer was 

measured with a laser 3D scanner. This set of data was put into an algorithm to train a model. 

Finally, the torch travel speed and wire feed rate were adjusted accordingly during the welding 

process according to the measured height of the preceding layer. Xia et al. [90] developed a 

model predictive control algorithm to control the deposited bead width. The weld pool images 

captured by a passive visual sensor with image processing algorithms were used to obtain the 

width data. The algorithm was tested in simulation and validated through an experiment to show 

acceptable tracking accuracy and robustness. Mu et al. [91] used real-time PID control and 

model-predictive control (MPC) to improve width and height fluctuation when building a 

workpiece. 

Although the effort of modeling and controlling the WAAM process had accomplished 

advancement in control of the WAAM process, there are relevant parameters that were often 

not considered. For instance, one would optimize bead height but not width. Often one of the 

process parameters such as the torch travel speed is held constant in a feedback control loop. 

This calls for the exploration of control algorithms that are more capable handling of a greater 

number of process parameters efficiently. 
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3 Experimental Setup 

The experimental setup consists of two parts. The first part is the hardware setup and the 

second is the software-hardware interface setup. Hardware includes the welding system, a 

gantry positioner, and various sensors. Software and hardware interfacing is required to connect 

the control system with the WAAM system in a way that the control system can both send and 

retrieve commands and information from the deposition process. 

3.1 Hardware setup 

The hardware of the experiments includes setting up the welding machine on a gantry 

system with various sensors such as a profiler and IR camera. The sensors are carefully set up 

to lend data as accurately as possible to minimize the margin of error. As the sensors are 

exposed to a large amount of heat radiation and metal spatters, protective equipment is 

designed. 

3.1.1 Welder setup 

Wire arc additive manufacturing process requires multiple equipment such as the 

operation panel, welding machine, wire feeder, cooling system, feedstock wire, welding gun, 

robot, or gantry system, shielding gas, substrate and more, as seen in Figure 3.1. 

 

Figure 3.1 Schematic diagram of WAAM-CMT equipment with a robotic manipulator 

[92] 
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Figure 3.2 Fronius TPS 5000 CMT welding supply fully integrated with 3 axis gantry 

system with FK4000 cooling unit and VR-7000 wire-feed unit (left) that feeds ER70S-6 

copper coated feedstock wire (right) 

 

Figure 3.3 Schematic of the CMT wire arc additive manufacturing system with sensors 
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3.1.2 Gantry System 

The gantry system refers to a motion-centric system designed for multi-axis operation. It 

is custom designed and hand-built including the worktop and the gantry robot. There are two 

Dantec heavy-duty stepper motor sliders for the first axis. Another stepper motor slider is 

mounted perpendicular with brackets to the two stepper motors to create another axis. Finally, 

another slider equipped with the Fronius torch mounting adapter is attached to create the third 

z-axis. The kinematics and the visual model of the gantry system are built in the ROS 

environment for simulation, enabling collision detection before commencing with gantry 

system operation using a custom G-code. 

3.1.3 Profile sensor 

The model of the profilometer utilized in the experiment is SICK PRO2-N100B25A1. It 

is capable of high-precision measurements by emitting a band-shaped laser beam and using a 

light-plane-intersecting method that triangulates the reflected light. The reflected light from the 

emitted band-shaped laser beam is received by the CMOS light receiving unit and the profile is 

obtained using the resulting image data. The schematic diagram of the profiler measurement 

can be seen in Figure 3.4. It has a measuring distance that ranges from 75 mm to 125 mm away 

from the light emitting unit and measuring width ranging from 17 mm to 27 mm. The z-axis 

resolution is 2 µm and the x-axis resolution is 25 µm with measuring distance of 75 mm.  It 

uses RS-485 serial communication with a laser class of 2. The profiler was mounted on an 

instrumentation rig that was attached to the neck of the torch. This setup enabled in-situ 

monitoring of each layer of bead deposited. 
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Figure 3.4 . Schematic diagram of the SICK profilometer measurements [93] 
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Figure 3.5 Top view of mounted profiler with graphical user interface displaying the 

profile of the bead on the substrate 

.  

Figure 3.6 Sideview of the profiler with accessories attached 
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Figure 3.7 Front view of the schematic of the CMT wire arc additive manufacturing 

system with sensors 

 

 

Figure 3.8 Screenshot of profiler configurator, PRO2 Navigator graphic user interface 

with various measuring areas. Area 1 and 2 were used to obtain width and height of the 

profile. 
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The profilometer comes with configurator software with a graphic user interface (GUI) 

allowing users to conveniently modify camera capture settings and output data as seen in Figure 

3.8. The various areas indicated in the PRO2 Navigator GUI may be adjusted in dimensions 

and locations to lend various information from the obtained profile data, such as width, height, 

and radius of the profile. 

 

Figure 3.9 Schematic side-view diagram of profiler measuring bead at an inclination of 

10° 

 

As the profiler uses the reflection of a laser to acquire profile data, careful tuning of the 

camera setting is required when measuring the shiny surface of the deposited metal bead. To 

alleviate the effects of reflection from the surface of the bead, the shutter time, high dynamic 

range (HDR) shutter time, and gain setting was tuned to 300 𝜇s, 8500 𝜇s, and 1.00, respectively 

through the GUI. The mode was set as HDR. Additionally, the profiler bracket was designed 

such that the mounted profiler is inclined at an angle of 10 degrees to avoid unwanted reflections 

as much as possible. The profiler was mounted to the neck of the torch, enabling an in-situ 

measurement of the deposited bead as shown in Figure 3.6 and Figure 3.7. 
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Figure 3.10 Cross-sectional view diagram of deposited beads where the bead width is 

determined through an offset distance away from the peak 

 

Figure 3.9 and Figure 3.10 display the schematic diagram of the profiler measuring the 

bead’s geometry. The value of width is extracted from this profile. The width of the profile is 

determined as the length of a horizontal chord across the top profile. The chord is generated at 

a fixed offset distance of 1mm below the peak of the bead as depicted in Figure 3.10. Since the 

profiler is mounted at an angle of 10 degrees, the following trigonometrical calculations were 

performed to calculate the offset distance apparent on the PRO2 Navigator GUI: 

 

 
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓𝑓𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑜𝑓𝑓𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

cos 10°
 

(1) 

 

 

With the measurement offset distance set at 1.015mm in the PRO2 Navigator GUI, the obtained 

width data is published to the control algorithm at a rate of 30 Hz. With a given range of torch 

travel speed of 250 to 400 cm/min, the resolution of the measurement is calculated to be ranging 

from 0.14 to 0.22 mm given the range of the travel speed. 
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As the start and end condition of the bead suffers from the hardware limitation, namely, 

delay in the software interface between the Fronius welder driver and the 3-axis gantry system, 

and acceleration and deceleration of the torch, the geometry quality at the edge of each bead 

usually does not accurately reflect the input process parameters used. Therefore, only the 

geometrical values obtained from the middle 85% of the entire length of each bead were used 

and the geometrical information obtained on the remaining 7.5% on each end of the beads was 

excluded from the study. Finally, the overall profile of the side of each printed bead was 

recorded to gathered to visualize and demonstrate the effectiveness of the control technique 

applied to the WAAM system. 

3.1.4 Thermal sensor 

A short wavelength IR camera, Optris PI 1M is used to measure the temperature of the 

printing part in real time for dwell time control. It is suitable for temperature measurements in 

metal as this IR camera exhibit distinctly higher emissivity at the short measurement 

wavelength of 1 𝜇𝑚 than at the measurements in the conventional wavelength range of 8 ~ 14  

𝜇𝑚. It has a fast reaction time of 1ms with a high dynamic CMOS detector with 764 x 480-

pixel resolution with temperature measurements ranging from 450 to 1800 °C. The accuracy of 

the IR camera is ±5.0 °C at room temperature and is ±1% for temperatures under 1400 °C. 

An IR camera was set up on a tripod aloof of the location of deposition such that the 

field of view of the camera captures the entirety of the build process from the first to the last 

layer. The highest temperature of the bead under the perspective of the camera is obtained and 

then transmitted to the main controller at a frequency of 10 Hz. When the controller receives 

the temperature data that is below a specified threshold, the dwell time is signaled to end to 

resume the deposition process of the following layer. 
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Figure 3.11 Isometric view of Optris PI 1M IR camera [94] 

 

Figure 3.12 IR camera mounted on tripod perpendicular to direction of deposited wall  

 

 

Figure 3.13 IR camera field of view aimed to the entirety of printing wall 
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Figure 3.14 ROS integrated control and monitoring system screenshot on PC. a) 

decomposed trajectory toolpath simulation b) weld visual and thermal monitoring and control 

screen being recorded c) welding machine collision detection 

 

Figure 3.15 System setup showing control PC, welding unit and the gantry system 

a) b) 

c) 
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3.2 Software Hardware Interface 

 

Figure 3.16 System flow diagram of the algorithm aided WAAM control process 

 

 The software and hardware interfacing framework are designed to interface the software 

side of the control system with the hardware side of the WAAM system. Figure 3.16 illustrates 

the software-integrated WAAM process, starting from the preprocessing stage where a custom 

G-code is manually inputted to create a desirable shape of the deposited part which is used to 

command the robotic gantry system to coordinate its torch. Then the hardware interface state 

machine and the custom Fronius deposition system driver that is wrapped in Robotic Operating 



33 

 

System (ROS) sends the signal to the physical hardware such as the robot controller and the 

Fronius deposition system to change robot position, velocity and to turn the material deposition 

on and off. As the deposition creates a bead or a part on the substrate plate, the profile and the 

thermal data are collected by the sensors such as the profiler and the IR camera. The collected 

data are fed into the custom algorithm which has the capabilities to take intelligent actions. 

Torch travel speed and standoff distance offset can be sent from the custom algorithm to the 

robotic system. Dwell time triggering, or a triggering action to commence on building another 

layer after the previously deposited bead has been cooled down to a threshold temperature can 

be sent by the algorithm. Furthermore, the algorithm can send the wire feed speed offset as well 

to alter the wire feed speed. 

3.2.1 Software to hardware ROS interface 

G-code, also known as RS-274 is a widely used CNC programming language used 

widely in CAD to control automated machine tools like the 3-axis gantry system. G-code 

consists of a sequence of instructions for the machine controller to tell the motors where to 

move and how fast to move.  As the traditional method of creating a G-code does not allow 

speed and coordinate adjustments in real-time, a custom G-code interpreter had to be designed 

along with manually typed custom G-codes. A trajectory decomposer converts the G-code 

instruction to signals compatible with ROS. Within ROS, robot kinematic and visual model 

helps robot simulation to check the collision of welding parts. Also, ROS contains the custom 

developed algorithm which is used to interact with data gathered from various sensors, and the 

algorithms can send various output signals to the welding system and the gantry system such 

as torch travel speed offset, standoff distance offset, dwell time trigger and wire feed speed 

offset in real-time. On the side of the gantry system, GRBL firmware installed Arduino receives 

the signal from the custom G-code interpreter to control each of the stepper motors via stepper 

motor drivers according to the inputted custom G-code instructions from the PC connected by 

a USB type A port. The physical setup of the stepper motor drivers and the Arduino can be seen 

in Figure 3.17. 
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Figure 3.17 Stepper motor drivers and GRBL firmware installed Arduino setup for 

gantry system, under the welding platform 

 

3.2.2 OpenAI Gym 

OpenAI is a convenient toolkit for developing and testing various machine learning and 

reinforcement learning algorithms. OpenAI gym provides an interface for users to create their 

own environment on which the algorithms can be tested. However, as the WAAM experiment 

is carried out in a real-world scenario, the environment seen and the actions taken by the 

algorithm are interfaced with the physical hardware such as the Fronius torch controller, 3-axis 

gantry system, profiler, and the IR camera.  

 

To utilize a variety of algorithms provided by OpenAI, reset and step functions are required. 

First, the reset function is responsible for setting the environment back to the initial state. For 

example, in the scenario of the WAAM process, the reset function would be called when an 

entire layer is finished, as indicated by the returned values of the step function. Then the 

WAAM system would go on to the next empty space on the substrate plate where other layers 

would be printed for purpose of the initialization of first layers. Next, the step function is a 

function at which an agent in an environment gets to take an action, observe the consequence, 
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and return information on if the episode is in a terminal state at which the reset function is 

called, and the reward received for that timestep. In the case of the WAAM system, here is 

where the command of changing the wire feed speed and torch travel speed would occur. 

Completion of the OpenAI setup enables the use of state of art algorithms for the experiment. 
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4 Methodology 

 Given various sensors streaming real-time data of the environment and a ROS enabled 

systems that read them and allows online control of manufacturing process parameters, various 

algorithms were considered for deployment to optimize deposited bead geometry. Q-learning, 

multi-objective policy gradient reinforcement learning, and inverse supervised learning control 

techniques were examined. Simulation for each of the algorithms were performed followed by 

the actual experiments. Results were analyzed and the most rational algorithm is determined. 

 

4.1 WAAM as Reinforcement Learning Markov Decision Process Framework  

MDP is a discrete-time stochastic control process that provides a mathematical 

framework for modeling decision-making. Every reinforcement learning problem needs to be 

in the form of MDP. The agent-environment interaction in MDP is shown in Figure 4.1. 

 

 

Figure 4.1 Agent-environment interaction [51] 
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MDP is formulated by tuple of four elements (s, a, p, r). 

- State, 𝑠 

The observation that the agent receives from the environment is defined as a state. An 

example of a state in WAAM can be the temperature at which the bead is currently at 

during the welding process. It also can be the geometrical data of the bead that the 

current welding is occurring on top of.   

- Action, 𝑎 

Action is a decision commanded by the agent or the main controller to control the 

environment. Examples of actions in WAAM include changing wire feed speed, torch 

travel speed, standoff distance between the torch and the bead, current, and voltage. 

- Transition probability, 𝑝 

The transition probability is a probability of a state evolving to the next state given the 

agent taking an action. 

- Reward, 𝑟 

The reward is obtained at every timestep, and it is a value that is calculated based on 

how good the next state is after the agent has taken an action in a given state. For 

example, in WAAM, the agent will receive reward based on how well the bead is 

printed. 

These four elements will continue in a cycle until the state reaches a terminal state, 

which marks an end of an episode. The terminal state in the case of WAAM in building a multi-

layer single-track wall can be the state at which the number of bead layers deposited in building 

the wall has reached its predefined maximum and cannot deposit layers further on top. At this 

point, the learning process may be stopped, or continue by resetting the environment and 

proceeding to build more multi-layer single-track walls. 
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Figure 4.2 Agent-environment interaction scenario in WAAM process 

 

4.2 Q-learning 

Machine learning algorithms were utilized for the study of in-situ control of the WAAM 

system. They include Q-learning and policy gradient algorithm. The first reinforcement 

learning algorithm used is called Q-learning [95], also known as a model-free off-policy 

temporal difference method. It is model-free as it does not require any information of the 

environment. It is off-policy because the policy updated is different from the behavior policy. 

The term temporal difference means that the algorithm attempts to predict future rewards or 

value in a sequence of states. The control algorithm is applied to the WAAM system to 

iteratively learn the set of values for each of the various process parameters to achieve a 

specified geometrical quality. After the algorithm converges with the Q-learning method, the 

system can effectively identify what set of action is best for the system to deploy in a real-time 

manner in a single-track, multi-layer printing scenario. The major advantage of the method is 

that it can adjust wire feed rate, torch standoff distance, torch travel speed, and voltage in 

accordance with real-time sensory information from a profilometer and an infrared camera to 

achieve specified geometrical quality. 
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Q-learning is one of the most well-known and employed RL algorithms that belong to the 

class of off-policy methods as convergence is guaranteed for any agent’s policy [51].Algorithm 

is considered converged when the learning curve becomes flat and no longer improves. The 

basis of Q-Learning stems from a concept of Quality Matrix or Q-Matrix. With a matrix size of 

𝑁 ×  𝑍 where 𝑁  is the number of possible states and Z is the number of possible actions that 

can be taken by the agent, the state action space 𝑆 × 𝐴 is discrete. The Q-Matrix is populated 

with Q-values that represent “how good” is it to take specific action given the current state. 

Algorithm 1 summarizes the general Q-learning method. 

4.2.1 Q-learning Algorithm 

The algorithm begins with initialized Q-matrix with random values and is updated using 

the Bellman optimality equation (2).  

 

 𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2) 

 

 

Variables in (2) are defined as, 

• 𝑠𝑡 and 𝑠𝑡+1: current and next state of the observed environment, where 𝑠𝑡 ∈ 𝕊 and 𝑆 is 

the set of possible states. 

• 𝑎𝑡 and 𝑎𝑡+1: current and next action taken by the agent, where 𝑎𝑡 ∈ 𝔸(𝕊𝑡) is the set of 

possible actions given state. 

• 𝛾: discount factor 𝛾 ∈ [0, 1]. Defines how much of future rewards are taken into account 

instead of the immediate rewards. 

• 𝛼 : learning rate, 𝛼 ∈ [0, 1]. Defines extent of newest knowledge replacing the older 

one.  

• 𝑅𝑡: numerical value of an immediate reward, a consequence of the action, 𝑎 taken. 
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 Algorithm 1. Q-learning method [95] 

 

The type of Q-learning deployed here is specifically a  𝜖-greedy Q-learning. 𝜖-greedy method 

is a simple probabilistic exploratory technique commonly used in RL. 𝜖  is an exploration 

probability that represents a value in the range of [0, 1] at which if a randomly generated 

number between that range falls under, the agent takes a completely random action given a 

state. Otherwise, it will take a best-known action. This method explained in (3) allows balancing 

of exploration and exploitation. 

 

 
𝑎𝑡 = {  

max 𝑄𝑡(𝑎) ,        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖 
𝑎𝑛𝑦 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑎         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖 

 

 

(3) 

 

 

 

 

 

 

Set algorithm parameters: 𝛼, 𝛾 

Initialize the Q-matrix, 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝕊, 𝑎 ∈  𝔸, arbitrarily 

Repeat for every episode: 

 Initialize 𝑠  

 Loop for each step of episode: 

  Choose 𝑎𝑡 from 𝑠𝑡 with a set policy derived from 𝑄 (use 𝜖-greedy) 

  Take action 𝑎𝑡 and observe reward, R and next state 𝑠𝑡+1 

  𝑄(𝑠𝑡 , 𝑎𝑡)  ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (update Q-matrix) 

  𝑠𝑡 ← 𝑠𝑡+1 

 until 𝑠𝑡 is terminal 
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Figure 4.3 Flow chart of Q-learning implemented WAAM process integrated with 

process monitoring sensors 

 

4.2.2 Q-learning algorithm implementation in WAAM 

The conceptual idea of reinforcement learning is translated into implementation in 

WAAM of single-track multi-layer walls. Figure 4.3 demonstrates the flowchart of the system 

with the incorporation of the RL algorithm.  The state of the environment corresponds to the 

real-time observation data from a profilometer and an IR camera. The profilometer measures 

the width and height of the bead that the deposition occurs at. Also, the IR camera provides the 

temperature data at the point of the deposition. The thermal and geometrical data of the previous 
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layer largely affects the geometry of the next layer. With the two data combined, the agent is to 

take a corresponding optimized action of changing wire feed speed, torch travel speed, and 

torch standoff distance to specific values that would ultimately give the desired geometry of the 

next layer and the next and so forth. Every deposition of layer is a step in an episode. As the Q-

learning algorithm works with discretized values, Table 4.1 and Table 4.2 are tabulated to show 

the equispaced and discretized values of various states and actions considered in this study. The 

third column represents the count at which an range is discretized into. For example, in Table 

4.1, the temperature at deposition has range of [500, 700] with discretized counts of 5 therefore, 

the state is discretized to 500, 550, 600, 650, and 700 °𝐶. 

Table 4.1 State or observed process parameters discretized within a specified range 

State Range Discretized into counts of 

Bead width at deposition point [mm] [6, 14]  3 

Bead height at deposition point [mm] [2, 4] 3 

Temperature at deposition [C°] [500, 700] 5 

 

Table 4.2 Action or process input parameters discretized within a specified range 

Action Range Discretized into counts of 

Wire feed speed (WFS) [m/min] [2, 3]  5 

Torch standoff distance (SOD) [mm] [10, 13] 3 

Torch travel speed (TTS) [cm/min] [25, 35] 5 

 

The first layer is deposited with a commonly known process parameter and the 

profilometer mounted behind the torch records the bead profile. The setup can be seen in Figure 

4.4. Along with the known temperature and the geometrical profile of the previous layer, or a 

state, deposition of the next layer commences with specific values of wire feed speed, torch 

standoff distance, and torch travel speed, or an action. As the deposition of the next layer occurs, 

the profiler observes the geometrical data of the bead just deposited, given the state information 

of the previous bead’s width, height, and temperature data. The geometrical data of the bead 

that just deposited is used to calculate the reward,  
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 𝑅𝑡 =  −|ℎ𝑜 − ℎ𝑎| −  |𝑤𝑜 − 𝑤𝑎|  (4) 

 

where ℎ𝑜 and ℎ𝑎 represent the desired height and measured the actual height, respectively. 𝑤𝑜 

and 𝑤𝑎  represents the desired width and the measured actual width, respectively. With the 

reward and through Bellman optimality equation (1), the Q-value can be obtained and tabulated 

into the Q-matrix of Table 4.2. The Q-matrix is tabulated at every interval where the action 

parameter changes, and a state observation occurs. The intervals at which action changes and 

state observation occur are portrayed in Figure 4.4. The process iterates for every episode where 

the terminal state is determined to be at the point where the 𝑅𝑡 <  −0.5. 

 

Table 4.3 Q matrix 

 

  

                   

State 

𝐴1

= (𝑤𝑓𝑠1,  𝑠𝑜𝑑1,  𝑡𝑡𝑠1) 

𝐴2

= (𝑤𝑓𝑠1,  𝑠𝑜𝑑1,  𝑡𝑡𝑠2) 
… 

𝐴75

= (𝑤𝑓𝑠5,  𝑠𝑜𝑑3,  𝑡𝑡𝑠5) 

 

𝑆1

= (𝑇1,  𝑤1,  ℎ1) 
𝑄(𝑆1, 𝐴1) 𝑄(𝑆1, 𝐴2) … 𝑄(𝑆1, 𝐴75) 

𝑆2

= (𝑇1,  𝑤1,  ℎ2) 
𝑄(𝑆2, 𝐴1) 𝑄(𝑆2, 𝐴2)   

… …  …  

𝑆45

= (𝑇5,  𝑤3,  ℎ3) 
𝑄(𝑆45, 𝐴1)   𝑄(𝑆45, 𝐴75) 

Action 
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Figure 4.4 Layout of the setup shows that the agents are discretized into sections. An 

action occurs and the result of the action is observed with the profiler and the IR camera. The 

observed profile data is used to evaluate the reward. 

 

Figure 4.5 State transition displayed by cross-sectional side view of a printed wall 
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Figure 4.6 Profilometer attached behind and along the trajectory of the print path 

 

The Q-learning method was validated using a simulator before commencing real-world 

experiments. Second-order regression model [96] was used to map the input parameters, namely 

the wire feed speed, standoff distance, and torch travel speed, to the resulting width and height 

of the printed bead. The model is as follows for the prediction of width, 𝑊 and height, 𝐻, 

respectively. 

 

 𝑊 = 8.9462 + 1.8088𝑅 ∗ 0.3621𝑆 + 0.1739𝑉 − 0.5008𝐷 + 0.003556𝑆𝐷

+ 0.01667𝑉𝐷 − 0.1169𝑅2 + 0.003137𝑆2 

(5) 

 

 

 𝐻 = −0.3514 + 0.4818𝑅 − 0.08477𝑆 + 0.4028𝑉 + 0.01431𝐷 − 0.006146𝑅𝑆

+ 0.001168𝑆2 − 0.012463𝑉2 

(6) 

 

 

where 𝑅, 𝑆, 𝑉, 𝐷  represent wire feed rate, torch speed, arc voltage, and standoff distance, 

respectively. The units are m/min for feed rate, cm/min for welding speed, V for arc voltage 
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and mm for standoff distance. The output temperature data was roughly simulated without an 

expert modeling equation. The learning rate 𝛼, discount factor 𝛾, and exploration probability 𝜖, 

were set at 0.5, 0.99, and 0.1, respectively during the simulation.  

4.2.3 Q-learning results 

Q-learning was implemented and validated with python codes. The simulation of the 

experiment was conducted to show the convergence. Figure 4.7 shows that the first episode of 

learning had an average reward of approximately -75 which corresponds to the summed 

deviation of width and height from the desired value in units of mm. This deviation is further 

minimized as the algorithm further tabulates the Q-Matrix. The system, over 30 episodes seem 

to converge at around a reward of -8.  

It is notable in  Figure 4.8 that the first episode took an average of 40 steps of episodes or 

update iterations until reaching the terminal state and quickly down to less than 10 update 

iterations in the 5th episode. This amount of iteration counts may or may not be a problem 

depending on how sparse the action change interval is in Figure 4.4 in the real-world 

experiment. The steady-state error of the resulting graph is occurred due to 𝜖, which is fixed 

throughout the simulation. The major disadvantage of Q-learning is its sensitivity to varying 

hyperparameters, potentially requiring many training data, perhaps more than the physical 

limitations of the experiment, for the algorithm to reach the optimal Q-value. As the Q-learning 

learns a deterministic policy, the agent either chooses the best action or a random action. This 

could be problematic in a non-stationary environment that is influenced by an unknown 

disturbance. Also, as the states and actions are discretized, the resolution of the state observed 

and the actions taken is limited to Table 4.1 and Table 4.2, respectively. The simulation result 

in Figure 4.7 and Figure 4.8 shows convergence with decreasing amount of the standard 

deviations with an increasing number of the episode as seen by the shaded region. However, 

the performance in the physical experimentation had shown poor convergence in optimizing 

the reward. The agent was not able to quickly reach the terminal state due to the disturbances 

in the system as anticipated. Also, the poor generalization and the size of the Q-table resulted 

in taking a long time and iterations of deposition before showing any signs of convergence. 
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Figure 4.7 Reward obtained with increasing number of episodes averaged over 100 

independent runs in simulation environment 

 

Figure 4.8 Number of update iterations taken to reach terminal state averaged over 100 

independent runs in simulation environment 
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4.3 Policy Gradient 

Another algorithm simulated for the WAAM system is a policy gradient method. It is a 

type of reinforcement learning technique that relies upon optimizing parametrized policies with 

respect to the expected return by a method of gradient descent. It can optimize both width and 

height simultaneously, using a multi-criteria objective function [97]. 

4.3.1 Policy gradient algorithm 

Kohl et al. [98] used policy gradient method approach to automatically learn a fast walk 

on a quadruped robot. The algorithm allowed distributed, efficient policy evaluation, with all 

learning occurring directly on the robot. A policy gradient algorithm used in the experiment 

was designed to suit the WAAM optimization process. The policy gradient algorithm for 

WAAM system uses an initial parameter vector of 𝜋 = {𝜃1, … , 𝜃𝑁} where 𝑁  represents the 

number of controllable parameters available for WAAM system, to estimate the partial 

derivative of the objective function, 𝐹 in equation (7) with respect to each other. The objective 

function 𝐹 is defined to minimize the deviation of width and height of deposited layer given 

corresponding desired values. The estimation of partial derivative of the objective function is 

done by evaluating randomly generated policy of 𝑡 amount {𝑅1, … , 𝑅𝑡} near 𝜋, such that each 

𝑅𝑖 = {𝜃1 + 𝛿1, … , 𝜃𝑁 + 𝛿𝑁}. Here, 𝛿𝑗 is a value that is randomly chosen between a small, fixed 

values of +𝜖𝑗, 0 , −𝜖𝑗.  𝜖𝑗 are relatively small compared to 𝜃𝑗 .  The pseudo algorithm can be 

seen in Algorithm 2. 

 The neighboring random policies 𝑅𝑖 are evaluated with the objective function 𝐹, and 

are categorized into three groups that represent the average evaluated scores for all 𝑅𝑖 that had 

either positive, negative or 0 perturbation in the dimension 𝑛. The three groups are summarized 

as following: 

- 𝐴𝑣𝑔+𝜖,𝑛 if the 𝑛𝑡ℎ parameter of 𝑅𝑖 is 𝜃𝑛+𝜖𝑛
 

- 𝐴𝑣𝑔+0,𝑛 if the 𝑛𝑡ℎ parameter of 𝑅𝑖 is 𝜃𝑛+0 

- 𝐴𝑣𝑔−𝜖,𝑛 if the 𝑛𝑡ℎ parameter of 𝑅𝑖 is 𝜃𝑛−𝜖𝑛
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These average evaluated scores provide estimation of the benefit of switching the 𝑛𝑡ℎ 

parameter, 𝜃𝑛 by  +𝜖𝑗 , 0 ,  or −𝜖𝑗. An adjustment vector 𝐴 has size of 𝑛 is calculated where 

𝐴𝑛  ∈   

- 0 if 𝐴𝑣𝑔+0,𝑛 >  𝐴𝑣𝑔+𝜖,𝑛   and 𝐴𝑣𝑔+0,𝑛 >  𝐴𝑣𝑔−𝜖,𝑛   

- Otherwise, 𝐴𝑣𝑔+𝜖,𝑛 −  𝐴𝑣𝑔−𝜖,𝑛  

𝐴  is then normalized by dividing by the Euclidean norm, then multiplied by a scalar 

adjustment factor 𝜂. Then the resulting vector 𝐴 is summed with the policy 𝜋 and these steps 

are repeated in iteration until the evaluated value of the objective function becomes satisfactory, 

as inputted by the user. The following shows the pseudo code for the policy gradient algorithm. 

Algorithm 2 [98] 

  

𝜋 ←  Initial Policy 

While !done do 

    {𝑅1, … , 𝑅𝑡} = 𝑡 random perturbations of 𝜋 

    Evaluate  {𝑅1, … , 𝑅𝑡} 

    for 𝑛 = 1 to 𝑁 do 

𝐴𝑣𝑔+𝜖,𝑛  ← average score for all 𝑅𝑖 that have a positive perturbation in dimension 𝑛 

𝐴𝑣𝑔+0,𝑛  ← average score for all 𝑅𝑖 that have a zero perturbation in dimension 𝑛 

𝐴𝑣𝑔−𝜖,𝑛  ← average score for all 𝑅𝑖 that have a negative perturbation in dimension 𝑛 

        If 𝐴𝑣𝑔+0,𝑛 > 𝐴𝑣𝑔+𝜖,𝑛  and 𝐴𝑣𝑔+0,𝑛 > 𝐴𝑣𝑔−𝜖,𝑛 then 

    𝐴𝑛  ←  0 

else 

    𝐴𝑛  ←  Avg+𝜖,𝑛 − 𝐴𝑣𝑔−𝜖,𝑛 

end if 

    end for 

    𝐴 ←
A

|A|
× 𝜂 

    𝜋 ← π + A 

end while 
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The objective function is set up such that the system will optimize the bead geometry. The 

components that constitute the objective function are the following: 

1. 𝑀𝑤 - The normalized width deviation from the desired width 

2. 𝑀ℎ - The normalized height deviation from the desired height 

The above components produce the following objective function: 

 𝐹 = 1 − (𝑊𝑤𝑀𝑤 + 𝑊ℎ𝑀ℎ) (7) 

 

All normalized components are multiplied with the user-inputted weight factors of 𝑊𝑤 

and 𝑊ℎ, respectively. The sum of the weights is constrained to be equal to 1. The distribution 

of weights determines how much importance is given to each of the optimization criteria of 

width and height. For example, if the optimization of width is more important than that of the 

height, 𝑊𝑤 will be greater than the other weights. 𝐹 is the score for the objective function. 

4.3.2 Policy gradient result 

To evaluate the performance of the policy with specific parameterization, a second-

order prediction model of the WAAM process is used like the Q-learning method. The model 

can be found in equation (5) and (6). The step size 𝜂 was set as 2, values of 𝜖 for standoff 

distance, wire feed speed, torch travel speed and the voltage were set as 0.2, 0.2, 0.5 and 0.5, 

respectively. The weight factors, 𝑊𝑤 and 𝑊ℎ were both set as 0.5. 6 random perturbations of 

policies, 𝜋 or simulated deposition iterations were performed per single main while loop of the 

algorithm.  

As seen in Figure 4.9, the objective function score,  𝐹  showed improvements with an 

increasing number of iterations, sharply increasing to 0.615 at approximately 50 to 60 iteration 

counts or number of deposition and then converging to a score of approximately 0.625 after 

around 450 iterations of deposition. It can be seen from Figure 4.10 and Figure 4.11 that the 

deviation in width was lowering faster than that of the height, both converging to a deviation 

of approximately 0.5 mm in 50 iterations and 350 iterations for width and height, respectively. 

This method in real-world experiments showed poor results and did not show an increment 

of score in building a multi-layered wall as this method does not take into account the effect of 
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the previously deposited layer’s condition. The previously deposited layer’s condition had a 

significant impact on determining the quality of the next layer in terms of geometry. For 

example, the high temperature of the preceding layer will likely cause the next layer to slump, 

and the large width of the preceding layer will consequently make the next layer to have a larger 

width for the next layer. Due to this inconsistency of iteration starting condition, the algorithm 

did not successfully learn how to create a multi-layer wall with high geometrical accuracy. 

However, the algorithm is very suitable for learning to print a single-layer wall if the substrate 

condition is consistent throughout the learning iterations. 

 

 

Figure 4.9 Objective function score as a function of iterations in simulation 
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Figure 4.10 Normalized width and height deviation values averaged every 6 randomly 

perturbed runs as a function of deposition iterations in simulation 

 

Figure 4.11 Geometry deviation averaged every 6 randomly perturbed runs as a 

function of deposition iterations in simulation 
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4.4 Reinforced inverse supervised learning control 

To find the optimal wire feed speed and torch travel speed to output desired layer width 

and height, a supervised learning inverse control algorithm framework is applied. The method 

of supervised learning functions well with sufficient collected data which had already been 

collected, amounting to approximately 700 deposited layers after the experimentations for the 

previously mentioned algorithms, namely Q-learning and policy gradient method.  

The term inverse refers to the idea of inputting the desired output first into the system 

instead of the traditional method of providing input first to a neural network to obtain the output. 

In the case of WAAM, desired width and height in input to the system to obtain optimal action 

parameters, namely the wire feed speed and the torch travel speed, instead of inputting the wire 

feed speed and torch travel speed to obtain layer width and the layer height. It is reinforced to 

an extent where the data obtained during the deposition process is appended to the historical 

dataset to perform more accurate predictions for coming layers. 

4.4.1 Neural network setup 

The thermal, and geometrical data of the previously deposited layer, wire feed speed, 

and torch travel speed are a set of data composing the input layer of the supervised learning 

neural network and the output is the deposited layer width and height. The neural network 

model that maps the input to the output parameters was initially trained with data from 700 

layers of bead deposition or a multiple of 14 different 50-layered walls. During acquisition of 

training dataset, the layers were deposited with random wire feed speed for every layer, ranging 

from 60 inches per minute (IPM) to 120 IPM with an interval of 10 IPM. 

The pretraining of the network was performed using the Sequential model in Keras [99] 

module, an open-source software library acting as an interface for TensorFlow library [100]. 

The number of nodes for the input and output layers are 5 and 2, respectively. There are two 

hidden layers with first hidden layer having 20 nodes, second one with 5 nodes. 
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Figure 4.12 Schematic diagram of multilayer neural network 

 

4.4.2 Reinforced inverse supervised learning control algorithm and framework 

 The control framework utilizes historical deposition rollout data model the input-to-

output relation and finally can predict the optimal wire feed speed given desired layer width 

and height. Also, the framework is capable of enhancing robustness through data reinforcement 

during the deposition process. Visualization of rollout data collected can be seen in Appendix 

A. Given the trained neural network that can map the input to the output, it is possible to 

formulate a framework that can perform control to optimize the bead geometry. The inputs, as 

can be seen on the input layer of the neural network, are wire feed speed, torch travel speed, 

previous layer width and height, and the dwell time, or the time taken for the layer to cool to 

500 degrees Celsius. The output is the deposited layer’s width and height. 
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Figure 4.13 Flow diagram of the reinforced inverse supervised learning control 

framework 

 

Figure 4.13 illustrates the framework of the algorithm expanded from Figure 4.12. First, 

the user inputs desired layer width and height. Then all combinations of wire feed speed and 

torch travel speed, indicated by C in the diagram, are simulated with the trained model to output 

a model predicted geometrical values of width and height. Then, the combination of the wire 

feed speed and the torch travel speed that resulted in the highest reward value through equation 

(8) will be selected as the action sets to perform. With more collected rollout data, the weights 

of the neural network are retrained in-situ with the deposition of every layer to further improve 

the accuracy of the model.  

The control algorithm given layer width, height, and the dwell time of the previous layer 

can predict the optimal wire feed speed where the optimality criteria are set by a reward 

function.  The policy in choosing the optimal combinations of wire feed speed and torch travel 

speed is as follows: 
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 𝜋 = argma𝑥
𝑊𝐹𝑆𝑖,𝑇𝑇𝑆𝑗 

(𝑟𝑒𝑤𝑎𝑟𝑑) (8) 

 

Here, 

 𝑟𝑒𝑤𝑎𝑟𝑑 = −|𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑤𝑖𝑑𝑡ℎ − 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑑𝑡ℎ|

−  
|𝐷𝑒𝑠𝑖𝑟𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡|

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
 

(9) 

 

 

The various level of the wire speed available is denoted as 𝑖. The wire speed level ranges from 

60 to 120 IPM, inclusive with interval of 5 IPM. Although the training of the neural network 

was trained with a broader interval of 10 IPM, the wire feed speed was interpolated to a finer 

resolution in the WFS to maximize the reward function. The importance weight represents the 

magnitude at which it diminishes the importance of the height error.  An example graph 

showing how the algorithm decides on the optimal wire feed speed based on the reward 

calculated with the neural network modeled function is illustrated in Figure 4.14.  

 



57 

 

 

Figure 4.14 Example illustration of perception of algorithm of the action parameters. 

Combination of actions that results in best reward is chosen 

 

4.4.3 First deposited layers initialization 

For both the training and rollout stage of the experiment, the first layer must be 

initialized. This initialization is required as the deposition of the first layer occurs on the 

substrate plate with no information of dwell time and the geometrical information on the 

previously deposited bead. Although the minimum number of layers that must be deposited 

prior to deploying the control algorithm is one, the initialization is done with the deposition of 

two layers. This is because the first layer is a special case where the deposition occurs on a cool 

surface, causing the bead to be very different in size in relation to the following layers. 

Subsequently, the second layer is also considered a special case as the deposition occurs on top 

of the first layer. Thus, the first two layers are deposited with a fixed input process parameter. 

The wire feed speed is set as 90 IPM and 350 cm/min as the torch travel speed for the first two 

layers initialization. After the initialization layers have been deposited, the dwell time, layer 

width, and height of the consequent layers are monitored and measured. 
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5 Results and Discussion 

5.1 Control algorithm performance 

Using the reinforced inverse supervised learning control algorithm, four walls of 50 layers 

of deposition were printed, out of which two walls were printed with an input of 5 mm as the 

target, or the desired width. The other two walls were printed with 5.5 mm as the target width. 

The importance weight in the reward function is set as 10, to prioritize width optimization. 

Figure 5.1 shows the tracking performance of the algorithm. All four walls printed showed 

tracking towards to the desired width. The first layer observed shows undershooting of the 

width value because the surface where the deposition occurs is at a low temperature and even 

when it uses the highest possible wire feed rate with low torch travel speed, it cannot achieve 

tracking as seen in Figure 5.2 and Figure 5.3. The height optimization is found to be unnecessary 

due to the Fronius welding unit control system micro adjusting synergic line with varying wire 

stick out length compensating for the deviation in the height during the welding process, giving 

an overall layer height average of 1.3 mm which matches the desired height. 
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Figure 5.1 Width as function of layer index for target width of 5mm and 5.5mm 
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Figure 5.2 Reinforced inverse supervised learning is tracking to the desired layer width 

of 5.5 mm throughout build of a wall with controlled WFS and TTS. WFS interval of 5 IPM 

and 10 IPM were used to fabricate the wall 
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Figure 5.3 Reinforced inverse supervised learning is tracking to the desired layer width 

of 5 mm throughout build of a wall with controlled WFS and TTS. WFS interval of 5 IPM 

and 10 IPM were used to fabricate the wall 

 

5.2 Performance Comparison with Open Loop Control Strategy 

The performance of the proposed control method is compared to that of the traditional 

method of printing the bead. Torch travel speed of 350 cm/min, the wire feed speed of 80 and 

90 IPM were used for printing bead with target width of 5 mm and 5.5 mm, respectively. The 

graphs in Figure 5.4 and Figure 5.5 show the comparison of the resulting width for both the 

proposed control method and traditional methods as a function of deposited layers. 
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 As the traditional method of printing does not take into account of the cool surface during 

the deposition of the earlier layers, the resulting width is small. This can be seen in Figure 5.7 

and Figure 5.8 a) where the width of the earlier layers built using the traditional method is 

noticeably thinner than the layers built later in the wall. However, it gradually gains sufficient 

interpass temperature with every iteration of the building to lend correct deposition width. The 

usage of high wire feed speed by the algorithm at the beginning stage of deposition can be seen 

in Figure 5.4 and Figure 5.5 for target widths of 5 mm and 5.5 mm, respectively. 
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Figure 5.4 Comparison of traditional printing method and proposed control method with 

target width of 5mm. Varying WFS with increasing number of layer index is shown by the 

lines without data points and are represented on right y-axis 
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Figure 5.5 Comparison of traditional printing method and proposed control method with 

target width of 5.5mm. Varying WFS with increasing number of layer index is shown by the 

lines without data points and are represented on right y-axis 

 

 The moving average of the printed walls including walls fabricated using the traditional 

method are shown in Figure 5.6. The moving average graph smoothed out the trajectory of the 

width observed, and it is evident that all methods showed sufficient tracking to the target width. 

Also, there is a slight overshoot in width for all walls printed with the control algorithm, giving 

about 0.1 mm more thickness than the desired width. Although using the maximum allowed 

wire feed speed of 120 IPM at the beginning layer is the desired behavior, the width overshot 

the desired width very slightly by consecutively utilizing a high wire feed speed of 100 for the 

next few layers. This behavior output by the neural network may have been caused by the lack 

of data that matches the condition of printing on a surface with a relatively low temperature. To 

compensate for the undershooting of the width in the beginning layer, the torch travel speed 

could have been set lower by the algorithm, down to 250 cm/min which is the minimum value 

it can have in the experimental setting.  However, it is a significant improvement over the 

traditional method of printing the wall where the wire feed speed is held constant. The width of 

the wall printed with the traditional method does not track the target width fast enough. 

Additionally, having a 5 WFS control interval had a slight edge over having a 10 WFS control 
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interval in tracking the target width, especially when targeting 5.5 mm. Summary of results for 

average width and average standard deviation of width are displayed in TABLE x and x, 

respectively. The tables show decent performance improvement in both tracking performance 

and standard deviation of width throughout the build with the proposed algorithm. Standard 

deviation of width decreased by 49% and 39%, average width deviation dropped by 90% and 

94.5% when building wall of of 5 mm and 5.5 mm thickness, respectively. 

Table 5.1 Average width of printed beads with target width of 5 mm and 5.5 mm for various 

control methods 

Target Width 

  Control method 
5 mm 5.5 mm 

Traditional 4.773 5.292 

10 WFS interval 5.022 5.464 

5 WFS interval 5.044 5.489 

 

Table 5.2 Average standard deviation of printed beads with target width of 5 mm and 5.5 mm 

for various control methods 

Target Width 

  Control method 
5 mm 5.5 mm 

Traditional 4.773 5.292 

10 WFS interval 5.022 5.464 

5 WFS interval 5.044 5.489 
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Figure 5.6 Moving average of width for all printed walls as a function of layer index 
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Figure 5.7 Moving standard deviation of width of all printed walls as a function of layer index 



65 

 

The moving standard deviation with 6 data windows is displayed in Figure 5.7. 

Although the effect of the control algorithm in comparison to the traditional method is not 

visually distinctive throughout the entire layer, the standard deviation of width for the walls 

built with the control algorithm with a 5 WFS interval shows a small improvement over that of 

the traditional method. 

Throughout the experiments, measurement errors may have occurred with the profile 

sensor where the profile reading may be different from the actual value due to the vibration in 

the gantry system during the measurement and the reflection from the shiny surface of the 

deposited layer. Also, the time taken to cool down, or the dwell time may have been affected 

due to the room temperature that varied between 20 to 25 degrees Celsius throughout the 

training data collection stage as well as the actual algorithm testing stage. 
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Figure 5.8 Cross-sectional view of a wall targeted to build 5 mm layer width using a) 

traditional method b) 10 WFS interval c) 5 WFS interval 

  

Figure 5.9 Cross-sectional view of a wall targeted to build 5.5 mm layer width using a) 

traditional method b) 10 WFS interval c) 5 WFS interval 

c) b) a) 

a) b) c) 

10 mm 

10 mm 
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Figure 5.10 Side profile of wall printed with target width of 5mm and 10 IPM of WFS 

interval 

 

 

Figure 5.11 Side profile of wall printed with target width of 5mm and 5 IPM of WFS 

interval 
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Figure 5.12 Side profile of wall printed with target width of 5.5 mm and 10 IPM of WFS 

interval 

 

Figure 5.13 Side profile of wall printed with target width of 5.5mm and 5 IPM of WFS 

interval 
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Figure 5.10 to Figure 5.13 shows the scanned side profiles of all walls printed with the 

control algorithm with varying target width and the WFS interval. The deviation of width of 

the side profile in the measurement window lies between approximately 0.2 mm to 0.3 mm. 

This deviation measurement may have increased due to slant in the workpiece during the 

scanning process and the inconsistency in alignment of the layer deposition during the printing 

process as can be seen by the waviness in the wall as a function of increasing number of layers 

in Figure 5.9 b).  

The major advantage of the WAAM system integrated with a reinforced inverse supervised 

learning control algorithm is the ability to learn from data to make a model of the dynamic 

process. This ability, given sufficient data to learn from, allows the operator of the WAAM 

system to input any reasonable target width, and it will be able to print beads with the desired 

width regardless of choice of the welding material. 

6 Conclusion and Future Work 

6.1 Conclusion 

Numerous input parameters affecting the geometrical output exist in WAAM, and they are 

often difficult to control as they are highly non-linear and coupled. To overcome this challenge, 

an in-situ data-reinforced control framework with machine learning integration or reinforced 

inverse supervised learning control is developed and implemented on a sensor-integrated 

custom 3-axis gantry robot with a CMT welding unit to optimize the output bead geometry of 

building single-track multi-layer wall. Reinforcement learning methods such as Q-learning and 

policy gradient method showed promising results in simulation, but they did not show 

convergence in real-world due to lack of data and the limitation of the algorithms. However, 

the performed experiments provided sufficient training data to initially train the supervised 

learning neural network model within the proposed reinforced inverse supervised learning 

method to successfully have the output bead width track the inputted desired width of 5 mm 

and 5.5mm. In comparison to the traditional method of printing the wall, the tracking 

performance significantly improved especially during the early stage of layer deposition. The 

average width deviation dropped by up to 90% and 94.5%, and the standard deviation of the 

wall width decreased by 49% and 39% with the implementation of the algorithm with the WFS 



70 

 

control resolution of 5 WFS for target wall thickness of 5 mm and 5.5 mm, respectively. A 

major advantage of this control framework is its ability to control the WAAM system to track 

any given width. since it has learned the input-to-output model through the data-driven machine 

learning approach. 

6.2 Future Work 

The future work of the experiment involves incorporating more input and output 

parameters to build more accurate model, hence further improving the quality of the printed 

part. Some of the parameters that could be taken into consideration are part cooling rate, 

material used, gas flow rate, synergic pulse current, voltage, and timing. Additionally, further 

work will involve optimizing the geometries of parts with more complex features such as 

overhangs and angles. As the involvement of complex geometries consequently requires more 

sophisticated sensing technologies, equipment will require modifications and upgrades such as 

development and integration of a 2-axis baseplate positioner and an instrumentation rig that 

allows the sensing equipment like profiler to track the deposited bead with varying angles. With 

the developed in-house ROS integrated control software, future work may involve exploring 

more state-of-art reinforcement learning algorithms suitable for controlling WAAM processes. 

For effective use of the control algorithm, an iterative study will be required to determine the 

optimum hyperparameters such as the number of nodes, layers, required number of training 

data, etc.  

 

  



71 

 

References 

[1] O. Yilmaz and A. A. Ugla, “Shaped metal deposition technique in additive 

manufacturing: A review:,” http://dx.doi.org/10.1177/0954405416640181, vol. 230, 

no. 10, pp. 1781–1798, Apr. 2016, doi: 10.1177/0954405416640181. 

[2] H. P. Tang, M. Qian, N. Liu, X. Z. Zhang, G. Y. Yang, and J. Wang, “Effect of Powder 

Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam 

Melting,” JOM, vol. 67, no. 3, 2015, doi: 10.1007/s11837-015-1300-4. 

[3] Y. Zhang et al., “Additive Manufacturing of Metallic Materials: A Review,” Journal of 

Materials Engineering and Performance, vol. 27, no. 1. 2018. doi: 10.1007/s11665-

017-2747-y. 

[4] J. Mehnen, J. Ding, H. Lockett, and P. Kazanas, “Global Product Development,” 

Global Product Development, no. January, 2011, doi: 10.1007/978-3-642-15973-2. 

[5] S. W. Williams et al., “Wire+arc additive manufacturing vs. traditional machining from 

solid: a cost comparison,” Materials Science and Technology (United Kingdom), vol. 

32, no. October, 2015. 

[6] J. Mehnen, J. Ding, H. Lockett, and P. Kazanas, “Design study for wire and arc 

additive manufacture,” International Journal of Product Development, vol. 19, no. 1–3, 

2014, doi: 10.1504/IJPD.2014.060028. 

[7] O. v. Panchenko, L. A. Zhabrev, D. v. Kurushkin, and A. A. Popovich, 

“Macrostructure and Mechanical Properties of Al – Si, Al – Mg – Si, and Al – Mg – 

Mn Aluminum Alloys Produced by Electric Arc Additive Growth,” Metal Science and 

Heat Treatment, vol. 60, no. 11–12, 2019, doi: 10.1007/s11041-019-00351-z. 

[8] C. Xia et al., “A review on wire arc additive manufacturing: Monitoring, control and a 

framework of automated system,” J Manuf Syst, vol. 57, no. July, pp. 31–45, 2020, doi: 

10.1016/j.jmsy.2020.08.008. 

[9] J. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of 

Mechanical Properties,” Annu Rev Mater Res, vol. 46, pp. 151–186, 2016, doi: 

10.1146/annurev-matsci-070115-032024. 

[10] T. Sathish, J. Jayaprakash, P. v. Senthil, and R. Saravanan, “Multi period disassembly-

to-order of end of life product based on scheduling to maximize the profit in reverse 

logistic operation,” FME Transactions, vol. 45, no. 1, pp. 172–180, 2017, doi: 

10.5937/fmet1701172S. 



72 

 

[11] T. Sathish, K. Muthukumar, and B. Palani Kumar, “A study on making of compact 

manual paper recycling plant for domestic purpose,” International Journal of 

Mechanical and Production Engineering Research and Development, vol. 8, no. 

Special Issue 7, pp. 1515–1535, 2018. 

[12] B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, “The anisotropic corrosion 

behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution,” 

Corros Sci, vol. 137, no. March, pp. 176–183, 2018, doi: 10.1016/j.corsci.2018.03.047. 

[13] L. E. Murr et al., “Characterization of titanium aluminide alloy components fabricated 

by additive manufacturing using electron beam melting,” Acta Mater, vol. 58, no. 5, 

pp. 1887–1894, 2010, doi: 10.1016/j.actamat.2009.11.032. 

[14] R. Li, J. Xiong, and Y. Lei, “Investigation on thermal stress evolution induced by wire 

and arc additive manufacturing for circular thin-walled parts,” J Manuf Process, vol. 

40, no. June 2018, pp. 59–67, 2019, doi: 10.1016/j.jmapro.2019.03.006. 

[15] S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove, 

“Wire + Arc additive manufacturing,” Materials Science and Technology (United 

Kingdom), vol. 32, no. 7, pp. 641–647, 2016, doi: 10.1179/1743284715Y.0000000073. 

[16] J. Gu et al., “The strengthening effect of inter-layer cold working and post-deposition 

heat treatment on the additively manufactured Al-6.3Cu alloy,” Materials Science and 

Engineering A, vol. 651, pp. 18–26, Jan. 2016, doi: 10.1016/j.msea.2015.10.101. 

[17] V. Dhinakaran, J. Ajith, A. Fathima Yasin Fahmidha, T. Jagadeesha, T. Sathish, and B. 

Stalin, “Wire Arc Additive Manufacturing (WAAM) process of nickel based 

superalloys-A review,” Mater Today Proc, vol. 21, pp. 920–925, 2020, doi: 

10.1016/j.matpr.2019.08.159. 

[18] Y. Zhang, Z. Wei, L. Shi, and M. Xi, “Characterization of laser powder deposited Ti-

TiC composites and functional gradient materials,” J Mater Process Technol, vol. 206, 

no. 1–3, pp. 438–444, 2008, doi: 10.1016/j.jmatprotec.2007.12.055. 

[19] M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J. J. Lewandowski, “Overview of 

Materials Qualification Needs for Metal Additive Manufacturing,” Jom, vol. 68, no. 3, 

pp. 747–764, 2016, doi: 10.1007/s11837-015-1810-0. 

[20] R. Merz, Ramaswami, K. Terk, and M. Weiss, “Shape Deposition Manufacturing,” The 

Solid Freeform Fabrication Symposium, no. 8426325, pp. 1–7, 1994, [Online]. 

Available: https://repositories.lib.utexas.edu/handle/2152/68579 



73 

 

[21] M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, “Direct selective laser 

sintering of metals,” Rapid Prototyp J, vol. 1, no. 1, pp. 26–36, 1995, doi: 

10.1108/13552549510078113. 

[22] K. Taminger and R. Hafley, “Electron beam freeform fabrication: a rapid metal 

deposition process,” Proceedings of the 3rd Annual Automotive Composites 

Conference, pp. 9–10, 2003, [Online]. Available: 

http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040042496_2004036110.p

df 

[23] G. K. Lewis and E. Schlienger, “Practical considerations and capabilities for laser 

assisted direct metal deposition,” Mater Des, pp. 417–423, 2000. 

[24] F. Wang, S. Williams, and M. Rush, “Morphology investigation on direct current 

pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy,” The 

International Journal of Advanced Manufacturing Technology, vol. 57, no. 5–8, pp. 

597–603, Nov. 2011, doi: 10.1007/s00170-011-3299-1. 

[25] P. M. Sequeira Almeida and S. Williams, “Innovative process model of Ti-6Al-4V 

additive layer manufacturing using cold metal transfer (CMT),” 21st Annual 

International Solid Freeform Fabrication Symposium - An Additive Manufacturing 

Conference, SFF 2010, no. January 2010, pp. 25–36, 2010. 

[26] E. Brandl, V. Michailov, B. Viehweger, and C. Leyens, “Deposition of Ti-6Al-4V 

using laser and wire, part I: Microstructural properties of single beads,” Surf Coat 

Technol, vol. 206, no. 6, pp. 1120–1129, 2011, doi: 10.1016/j.surfcoat.2011.07.095. 

[27] S. H. Mok, G. Bi, J. Folkes, and I. Pashby, “Deposition of Ti-6Al-4V using a high 

power diode laser and wire, Part I: Investigation on the process characteristics,” Surf 

Coat Technol, vol. 202, no. 16, pp. 3933–3939, 2008, doi: 

10.1016/j.surfcoat.2008.02.008. 

[28] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-feed additive manufacturing of metal 

components: technologies, developments and future interests,” International Journal of 

Advanced Manufacturing Technology, vol. 81, no. 1–4. 2015. doi: 10.1007/s00170-

015-7077-3. 

[29] R. Baker, “Method of making decorative articles,” 1925 

[30] Jr. William D. White, “Pressure roller and method of manufacture,” 1962. 

[31] K. Kussmaul, F. W. Schoch, and H. Luckow, “High quality large components shape 

welded by saw process,” 1983. 



74 

 

[32] P. M. Dickens, M. S. Pridham, R. C. Cobb, I. Gibson, and G. Dixon, “Rapid 

Prototyping Using 3-D Welding,” 1992. 

[33] RAMLAB, “WAAMpeller.” 2017. [Online]. Available: https://www.ramlab.com/wp-

content/uploads/2017/12/WAAMpeller.jpg 

[34] Z. Pan, D. Ding, B. Wu, and D. Cuiuri, “Arc Welding Processes for Additive 

Manufacturing: A Review,” Transactions on Intelligent Welding Manufacturing, no. 2, 

pp. 3–24, 2019, doi: 10.1007/978-981-10-8740-0. 

[35] C. Buchanan and L. Gardner, “Metal 3D printing in construction: A review of methods, 

research, applications, opportunities and challenges,” Engineering Structures, vol. 180. 

2019. doi: 10.1016/j.engstruct.2018.11.045. 

[36] J. D. Spencer, P. M. Dickens, and C. M. Wykes, “Rapid prototyping of metal parts by 

three-dimensional welding,” Proc Inst Mech Eng B J Eng Manuf, vol. 212, no. 3, pp. 

175–182, 1998, doi: 10.1243/0954405981515590. 

[37] C. S. Wu, L. Wang, W. J. Ren, and X. Y. Zhang, “Plasma arc welding: Process, 

sensing, control and modeling,” J Manuf Process, vol. 16, no. 1, pp. 74–85, 2014, doi: 

10.1016/j.jmapro.2013.06.004. 

[38] O. Yilmaz and A. A. Ugla, “Microstructure characterization of SS308LSi components 

manufactured by GTAW-based additive manufacturing: shaped metal deposition using 

pulsed current arc,” The International Journal of Advanced Manufacturing Technology, 

vol. 89, no. 1–4, pp. 13–25, Mar. 2017, doi: 10.1007/s00170-016-9053-y. 

[39] J. Ding et al., “Thermo-mechanical analysis of Wire and Arc Additive Layer 

Manufacturing process on large multi-layer parts,” Comput Mater Sci, vol. 50, no. 12, 

pp. 3315–3322, 2011, doi: 10.1016/j.commatsci.2011.06.023. 

[40] J. Xiong, Y. Lei, H. Chen, and G. Zhang, “Fabrication of inclined thin-walled parts in 

multi-layer single-pass GMAW-based additive manufacturing with flat position 

deposition,” J Mater Process Technol, vol. 240, pp. 397–403, 2017, doi: 

10.1016/j.jmatprotec.2016.10.019. 

[41] B. Wu et al., “A review of the wire arc additive manufacturing of metals: properties, 

defects and quality improvement,” J Manuf Process, vol. 35, no. February, pp. 127–

139, 2018, doi: 10.1016/j.jmapro.2018.08.001. 

[42] T. Lehmann et al., “Large-scale metal additive manufacturing: a holistic review of the 

state of the art and challenges,” International Materials Reviews, 2021, doi: 

10.1080/09506608.2021.1971427. 



75 

 

[43] R. Fokens, “Cold Metal Transfer - CMT - A Revolution in Mechanized Root Pass 

Pipeline Welding,” 4th Pipeline Technology Conference, 2009. 

[44] C. G. Pickin and K. Young, “Evaluation of cold metal transfer (CMT) process for 

welding aluminium alloy,” Science and Technology of Welding and Joining, vol. 11, 

no. 5, 2006, doi: 10.1179/174329306X120886. 

[45] Fronius, “CMT: Cold Metal Transfer-MIG/MAG dip transfer arc process.” 2021. 

[46] F. Veiga, A. Suárez, E. Aldalur, and T. Bhujangrao, “Effect of the metal transfer mode 

on the symmetry of bead geometry in waam aluminum,” Symmetry, vol. 13, no. 7. 

2021. doi: 10.3390/sym13071245. 

[47] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research 

Directions,” SN Comput Sci, vol. 2, no. 3, pp. 1–21, 2021, doi: 10.1007/s42979-021-

00592-x. 

[48] M. Yin, J. W. Vaughan, and H. Wallach, “Understanding the effect of accuracy on trust 

in machine learning models,” Conference on Human Factors in Computing Systems - 

Proceedings, pp. 1–12, 2019, doi: 10.1145/3290605.3300509. 

[49] L. Bote-Curiel, S. Muñoz-Romero, A. Gerrero-Curieses, and J. L. Rojo-álvarez, “Deep 

learning and big data in healthcare: A double review for critical beginners,” Applied 

Sciences (Switzerland), vol. 9, no. 11, 2019, doi: 10.3390/app9112331. 

[50] S. S. Mousavi, M. Schukat, and E. Howley, “Deep Reinforcement Learning: An 

Overview,” Lecture Notes in Networks and Systems, vol. 16, pp. 426–440, 2018, doi: 

10.1007/978-3-319-56991-8_32. 

[51] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Trans 

Neural Netw, vol. 9, no. 5, 1998, doi: 10.1109/tnn.1998.712192. 

[52] R. Bellman, “A Markovian Decision,” Journal of Mathematics and Mechanics, pp. 

679–684, 1957. 

[53] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision processes,” 

Journal of Machine Learning Research, vol. 22, pp. 182–189, 2012. 

[54] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012. doi: 

10.1016/C2009-0-61819-5. 

[55] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, 

“Cybersecurity data science: an overview from machine learning perspective,” J Big 

Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00318-5. 



76 

 

[56] N. Kumar et al., “Wire Arc Additive Manufacturing – A revolutionary method in 

additive manufacturing,” Mater Chem Phys, vol. 285, no. October 2021, p. 126144, 

2022, doi: 10.1016/j.matchemphys.2022.126144. 

[57] K. Pal, S. Bhattacharya, and S. K. Pal, “Prediction of metal deposition from arc sound 

and weld temperature signatures in pulsed MIG welding,” International Journal of 

Advanced Manufacturing Technology, vol. 45, no. 11–12, pp. 1113–1130, 2009, doi: 

10.1007/s00170-009-2052-5. 

[58] W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis In ’T Veld, “Spectroscopic 

monitoring of metallic bonding in laser metal deposition,” J Mater Process Technol, 

vol. 220, pp. 276–284, 2015, doi: 10.1016/j.jmatprotec.2015.01.026. 

[59] S. UNNIKRISHNAKURUP, “Monitoring TIG welding using infrared thermography - 

simulations and experiments,” Przegląd Elektrotechniczny, vol. 1, no. 4, pp. 8–11, 

2016, doi: 10.15199/48.2016.04.02. 

[60] A. M. Pringle, S. Oberloier, A. L. Petsiuk, P. G. Sanders, and J. M. Pearce, “Open 

source arc analyzer: Multi-sensor monitoring of wire arc additive manufacturing,” 

HardwareX, vol. 8, p. e00137, 2020, doi: 10.1016/j.ohx.2020.e00137. 

[61] F. Xu et al., “Multi-Sensor System for Wire-Fed Additive Manufacture of Titanium 

Alloys,” 26th International Conference on Flexible Automation and Intelligent 

Manufacturing (FAIM 2016), vol. 44, no. June, p. Article in Press, 2016. 

[62] T. A. Davis and Y. C. Shin, “Vision-based clad height measurement,” Mach Vis Appl, 

vol. 22, no. 1, pp. 129–136, 2011, doi: 10.1007/s00138-009-0240-9. 

[63] S. Clijsters, T. Craeghs, S. Buls, K. Kempen, and J. P. Kruth, “In situ quality control of 

the selective laser melting process using a high-speed, real-time melt pool monitoring 

system,” International Journal of Advanced Manufacturing Technology, vol. 75, no. 5–

8, pp. 1089–1101, Nov. 2014, doi: 10.1007/s00170-014-6214-8. 

[64] M. Grasso, A. G. Demir, B. Previtali, and B. M. Colosimo, “In situ monitoring of 

selective laser melting of zinc powder via infrared imaging of the process plume,” 

Robot Comput Integr Manuf, vol. 49, pp. 229–239, 2018, doi: 

10.1016/j.rcim.2017.07.001. 

[65] Y. Zhang, G. S. Hong, D. Ye, K. Zhu, and J. Y. H. Fuh, “Extraction and evaluation of 

melt pool, plume and spatter information for powder-bed fusion AM process 

monitoring,” Mater Des, vol. 156, pp. 458–469, 2018, doi: 

10.1016/j.matdes.2018.07.002. 



77 

 

[66] G. Repossini, V. Laguzza, M. Grasso, and B. M. Colosimo, “On the use of spatter 

signature for in-situ monitoring of Laser Powder Bed Fusion,” Addit Manuf, vol. 16, 

pp. 35–48, 2017, doi: 10.1016/j.addma.2017.05.004. 

[67] S. Tang, G. Wang, H. Zhang, and R. Wang, “An online surface defects detection 

system for AWAM based on deep learning,” Solid Freeform Fabrication 2017: 

Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - 

An Additive Manufacturing Conference, SFF 2017, pp. 1965–1981, 2020. 

[68] F. Bonaccorso, L. Cantelli, and G. Muscato, “An arc welding robot control for a shaped 

metal deposition plant: Modular software interface and sensors,” IEEE Transactions on 

Industrial Electronics, vol. 58, no. 8, pp. 3126–3132, 2011, doi: 

10.1109/TIE.2011.2114311. 

[69] Q. Zhan, Y. Liang, J. Ding, and S. Williams, “A wire deflection detection method 

based on image processing in wire + arc additive manufacturing,” The International 

Journal of Advanced Manufacturing Technology, vol. 89, no. 1–4, pp. 755–763, Mar. 

2017, doi: 10.1007/s00170-016-9106-2. 

[70] Y. Huang, D. Wu, Z. Zhang, H. Chen, and S. Chen, “EMD-based pulsed TIG welding 

process porosity defect detection and defect diagnosis using GA-SVM,” J Mater 

Process Technol, vol. 239, pp. 92–102, 2017, doi: 10.1016/j.jmatprotec.2016.07.015. 

[71] K. Pal, S. Bhattacharya, and S. K. Pal, “Investigation on arc sound and metal transfer 

modes for on-line monitoring in pulsed gas metal arc welding,” J Mater Process 

Technol, vol. 210, no. 10, pp. 1397–1410, 2010, doi: 

10.1016/j.jmatprotec.2010.03.029. 

[72] S. Bhattacharya, K. Pal, and S. K. Pal, “Multi-sensor based prediction of metal 

deposition in pulsed gas metal arc welding using various soft computing models,” 

Applied Soft Computing Journal, vol. 12, no. 1, pp. 498–505, 2012, doi: 

10.1016/j.asoc.2011.08.016. 

[73] S. M. C. van Bohemen, M. J. M. Hermans, and G. den Ouden, “Monitoring of 

martensite formation during welding by means of acoustic emission,” J Phys D Appl 

Phys, vol. 34, no. 22, pp. 3312–3317, 2001, doi: 10.1088/0022-3727/34/22/316. 

[74] W. Carter, C. Masuo, A. Nycz, M. Noakes, and D. Vaughan, “Thermal process 

monitoring for wire-arc additive manufacturing using IR cameras,” Solid Freeform 

Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform 

Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019, no. 

Figure 1, pp. 1812–1817, 2019. 



78 

 

[75] J. Mireles, S. Ridwan, P. A. Morton, A. Hinojos, and R. B. Wicker, “Analysis and 

correction of defects within parts fabricated using powder bed fusion technology,” Surf 

Topogr, vol. 3, no. 3, 2015, doi: 10.1088/2051-672X/3/3/034002. 

[76] A. Fathi, A. Khajepour, E. Toyserkani, and M. Durali, “Clad height control in laser 

solid freeform fabrication using a feedforward PID controller,” International Journal of 

Advanced Manufacturing Technology, vol. 35, no. 3–4, pp. 280–292, Dec. 2007, doi: 

10.1007/s00170-006-0721-1. 

[77] A. Heralić, A. K. Christiansson, and B. Lennartson, “Height control of laser metal-wire 

deposition based on iterative learning control and 3D scanning,” Opt Lasers Eng, vol. 

50, no. 9, 2012, doi: 10.1016/j.optlaseng.2012.03.016. 

[78] P. Hagqvist, A. Heralić, A. K. Christiansson, and B. Lennartson, “Resistance based 

iterative learning control of additive manufacturing with wire,” Mechatronics, vol. 31, 

pp. 116–123, 2015, doi: 10.1016/j.mechatronics.2015.03.008. 

[79] J. Xiong and G. Zhang, “Online measurement of bead geometry in GMAW-based 

additive manufacturing using passive vision,” Meas Sci Technol, vol. 24, no. 11, p. 

115103, Nov. 2013, doi: 10.1088/0957-0233/24/11/115103. 

[80] F. Li, S. Chen, Z. Wu, and Z. Yan, “Adaptive process control of wire and arc additive 

manufacturing for fabricating complex-shaped components,” International Journal of 

Advanced Manufacturing Technology, vol. 96, no. 1–4, pp. 871–879, Apr. 2018, doi: 

10.1007/s00170-018-1590-0. 

[81] J. Xiong, G. Zhang, Z. Qiu, and Y. Li, “Vision-sensing and bead width control of a 

single-bead multi-layer part: material and energy savings in GMAW-based rapid 

manufacturing,” J Clean Prod, vol. 41, pp. 82–88, Feb. 2013, doi: 

10.1016/J.JCLEPRO.2012.10.009. 

[82] C. Doumanidis and Y. M. Kwak, “Multivariable adaptive control of the bead profile 

geometry in gas metal arc welding with thermal scanning,” International Journal of 

Pressure Vessels and Piping, vol. 79, no. 4, 2002, doi: 10.1016/S0308-0161(02)00024-

8. 

[83] C. Doumanidis and Y. M. Kwak, “Geometry modeling and control by infrared and 

laser sensing in thermal manufacturing with material deposition,” Journal of 

Manufacturing Science and Engineering, Transactions of the ASME, vol. 123, no. 1, 

2001, doi: 10.1115/1.1344898. 

[84] J. S. Smith and C. Balfour, “Real-time top-face vision based control of weld pool size,” 

Industrial Robot, vol. 32, no. 4, 2005, doi: 10.1108/01439910510600209. 



79 

 

[85] H. Fan, N. K. Ravala, H. C. Wikle, and B. A. Chin, “Low-cost infrared sensing system 

for monitoring the welding process in the presence of plate inclination angle,” in 

Journal of Materials Processing Technology, 2003, vol. 140, no. 1-3 SPEC. doi: 

10.1016/S0924-0136(03)00836-7. 

[86] Y. K. Liu and Y. M. Zhang, “Model-Based predictive control of weld penetration in 

gas tungsten arc welding,” IEEE Transactions on Control Systems Technology, vol. 22, 

no. 3, 2014, doi: 10.1109/TCST.2013.2266662. 

[87] Y. K. Liu and Y. M. Zhang, “Control of 3D weld pool surface,” Control Eng Pract, 

vol. 21, no. 11, 2013, doi: 10.1016/j.conengprac.2013.06.019. 

[88] A. Ščetinec, D. Klobčar, and D. Bračun, “In-process path replanning and online layer 

height control through deposition arc current for gas metal arc based additive 

manufacturing,” J Manuf Process, vol. 64, 2021, doi: 10.1016/j.jmapro.2021.02.038. 

[89] A. G. Dharmawan, Y. Xiong, S. Foong, and G. Song Soh, “A Model-Based 

Reinforcement Learning and Correction Framework for Process Control of Robotic 

Wire Arc Additive Manufacturing,” Proc IEEE Int Conf Robot Autom, pp. 4030–4036, 

May 2020, doi: 10.1109/ICRA40945.2020.9197222. 

[90] C. Xia et al., “Model predictive control of layer width in wire arc additive 

manufacturing,” J Manuf Process, vol. 58, 2020, doi: 10.1016/j.jmapro.2020.07.060. 

[91] H. Mu, J. Polden, Y. Li, F. He, C. Xia, and Z. Pan, “Layer-by-layer model-based 

adaptive control for wire arc additive manufacturing of thin-wall structures,” J Intell 

Manuf, vol. 33, no. 4, pp. 1165–1180, 2022, doi: 10.1007/s10845-022-01920-5. 

[92] Q. Yang et al., “Microstructure and Mechanical Properties of TiB2/AlSi7Mg0.6 

Composites Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal 

Transfer (WAAM-CMT),” Materials, vol. 15, no. 7, 2022, doi: 10.3390/ma15072440. 

[93] SICK Ltd., “SICK Profiler 2 Short range distance sensor operating instructions.” 2021. 

[94] Optris, “IR camera Optris PI 1M.” 2021. [Online]. Available: 

https://www.optris.global/thermal-imager-optris-pi-1m 

[95] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach Learn, vol. 8, no. 3–4, 1992, 

doi: 10.1007/bf00992698. 

[96] J. Xiong, G. Zhang, J. Hu, and L. Wu, “Bead geometry prediction for robotic GMAW-

based rapid manufacturing through a neural network and a second-order regression 

analysis,” J Intell Manuf, vol. 25, no. 1, 2014, doi: 10.1007/s10845-012-0682-1. 



80 

 

[97] M. Saggar, T. D’Silva, N. Kohl, and P. Stone, “Autonomous learning of stable 

quadruped locomotion,” Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4434 

LNAI, pp. 98–109, 2007, doi: 10.1007/978-3-540-74024-7_9. 

[98] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal 

locomotion,” Proc IEEE Int Conf Robot Autom, vol. 2004, no. 3, pp. 2619–2624, 2004, 

doi: 10.1109/robot.2004.1307456. 

[99] C. Francois, “keras.” Github, 2015. [Online]. Available: 

https://github.com/fchollet/keras 

[100] E. B. Martín Abadi, Ashish Agarwal, Paul Barham et al., “TensorFlow: Large-scale 

machine learning on heterogeneous systems.” 2015. [Online]. Available: 

https://www.tensorflow.org/ 

  

 



81 

 

Appendix A. Training Data Analysis 

 

Figure A.1 Resulting layer height (LH) as a function of previous layer height color 

mapped graph shows that the layer height averages to the target value of 1.3 mm due to the 

interference of the Fronius welder’s control unit 

 

 

1.3 mm target 
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Figure A.2 Resulting layer width (LW) as a function of previous layer width color 

mapped graph shows that the Previous layer’s width impacts the width of the following 

layer’s width 
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Figure A.3 Resulting layer height as a function of TTS and WFS 

color mapped. Layer height does not have evident trend with varying 

WFS and TTS 
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Figure A.4 Resulting layer width as a function of TTS and WFS color 

mapped. Layer width shows evident trend with varying WFS and TTS 
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Figure A.5 Resulting layer height as a function of dwell time color 

mapped. No evident correlation is shown between the layer height and 

TTS 
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Figure A.6 Resulting layer width as a function of dwell time color 

mapped. Evident trend is shown between the layer width, TTS and WFS 


