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ABSTRACT 
 Lightning is widely acknowledged as a major cause of wildland fires in Canada. 

On average, 250,000 cloud-to-ground lightning strikes occur in Alberta every year. 

Lightning-caused wildland fires in remote areas have considerably larger suppression 

costs and a much greater chance of escaping initial attack. Geographic and temporal 

covariates were paired with Reanalysis and Radiosonde observations to generate a series 

of 6-hour and 24-hour lightning prediction models valid from April to October. These 

models, based on cloud-to-ground lightning from the CLDN, were developed and 

validated for the province of Alberta, Canada. The ensemble forecasts produced from 

these models were most accurate in the Rocky Mountain and Foothills Natural Regions 

achieving hits rates of ~85%. The Showalter index, convective available potential energy, 

Julian day, and geographic covariates were highly important predictors. Random forest 

classification is introduced as a viable modelling method to generate lightning forecasts. 

Limitations and recommendations are also discussed. 
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CHAPTER 1.  INTRODUCTION 

1.1  PREAMBLE 

Since the dawn of civilization people have recorded their interest, fear, and 

fascination of thunder and lightning (Rakov and Uman, 2003). Thunderstorms play a 

prominent role in early religious beliefs and ancient mythology as signals of gods’ will, 

displeasure, or anger (Rakov and Uman, 2003; Schonland, 1964; Wåhlin, 1986). We now 

understand lightning is an atmospheric phenomena that helps maintain and discharge 

Earth’s electric field and thunder is the auditory expression of the process. Even before 

our recorded interest, lightning was shaping and changing the world by creating ozone 

and igniting wildfires. Lightning-caused wildland fires have always been, and will most 

certainly always be, a part of the natural environment of Canada’s vast forests (Flannigan 

and Wotton, 1991), as long as these forests exist.  

It is well known that thunderstorms produce lightning, however, other convective 

systems such as dust storms, wildfire induced pyrocumulus clouds, and volcanic 

eruptions can also provide the conditions conducive to lightning to occurrence (Orville 

and Huffines, 1999). From Benjamin Franklin’s 1750 experimental design used by 

Thomas-François Dalibard in 1752 to prove a charge differential exists between clouds 

and the ground, to current high-tech sensors, our fascination with lightning continually 

drives us to try to understand and quantify the intense power in the sky that we see, hear, 

and often fear. This thesis takes another step towards understand lightning and its impacts 

on wildfires by creating lightning prediction models to forecast the probability of 

lightning occurrence in Alberta. The models presented predict whether or not lightning 

will occur for a specific area and time with the intention of providing an additional 

decision support tool to increase the efficient use of resources for wildland fire 

management. 

 In order to begin working towards this goal, one must first understand the basics 

of what drives lightning and how lightning affects, and often initiates wildfires on the 

landscape. The introductory chapter walks through some background information 

including average global lightning occurrence rates with a focus on Alberta, Canada. An 

introduction to convective dynamics and thunderstorm formation is then presented which 

sets the stage for the following section on cloud electrification and separation of charges. 

Different kinds of lightning and their varying characteristics will then be explored, 

https://en.wikipedia.org/wiki/Thomas-Fran%C3%A7ois_Dalibard
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followed by a look at wildland fire history in Canada and specifically Alberta. Lightning 

and fire are then considered together and their interactions and impacts are explored. 

Previous research and studies on lightning occurrence prediction are then considered. The 

chapter concludes with a section on the research objectives of this study. 

1.2  LIGHTNING : BACKGROUND 

Lightning is the discharge of static electricity in the sky or between the clouds 

and the ground (Rakov and Uman, 2003). Thunder is the auditory companion to lightning 

caused as the air around the discharge channel is heated so rapidly that it expands at a 

supersonic rate producing a shock wave (Christian et al., 2003). A thunderstorm refers to 

a convective storm system that produces lightning. At any moment there are ~2,000 

thunderstorms occurring worldwide with lightning flashing in the sky and striking the 

Earth 25-300 times per second (Oliver, 2005). More than 8.6 million strikes occur per 

day on average; these strikes help to maintain the electrical energy balance, or global 

electric circuit, of the Earth and its atmosphere (Oliver, 2005).  

Over the Great Plains of North America, about one in every six flashes strikes the 

ground, while over the Gulf Coast the rate of ground strikes is much higher at around one 

out of every 2.5 (Christian et al., 2003). Globally, the chance of lightning occurring over, 

or near to land, is ten times greater than over the open ocean and almost 80% of all 

flashes occur in the tropical zone between 30
o 
N and 30

o 
S (Christian et al., 2003). 

Rwanda stands out year round as a lightning hot spot with a peak mean annual flash 

density of 80 flashes km
-2 

(Christian et al., 2003). Lightning is responsible for ~24,000 

deaths and ~240,000 injuries per year (Holle, 2008) although a small percentage of these 

occur in developed countries.  

Zooming in to Canada, on average ~2.4 million lightning strikes hit the ground 

every year with the greatest number of strikes occurring during the month of July 

(Burrows and Kochtubajda, 2010). The average cloud-to-ground (CG) flash density is 

between 0.5 to 1.5 flashes km
-2 

yr
-1

for the majority of the country with a significantly 

higher flash density of 2.8 flashes km
-2

 yr
-1

 occurring in an area of Southwestern Ontario 

(Burrows and Kochtubajda, 2010). Even the highest CG flash densities experienced here 

are an order of magnitude less than that of the global hotspot, Rwanda. Lightning activity 

is influenced by elevation, proximity to large water bodies, length of the warm season 

and thus intuitively latitude (Burrows and Kochtubajda, 2010). From 1999 to 2008, the 

average number of CG strikes per year ranged from around 1.98 million to 2.96 million 
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in Canada (Burrows and Kochtubajda, 2010). Studies of Canadian lightning 

characteristics show that strike occurrence follows a diurnal pattern with maximum 

activity in the late afternoon and minimal activity in the early morning hours although 

mid-continental prairie regions may see considerable nocturnal lightning (Burrows et al., 

2002; Burrows et al., 2005).  

Lightning occurs throughout the year in Canada, however, the vast majority 

occurs during the warm months between April and October (Burrows and Kochtubajda, 

2010; Wierzchowski et al., 2002). A large percentage of the total strikes can often occur 

within a single, or a few, dominant storm events (Wierzchowski et al., 2002). Lightning 

hot spots in Canada include the Foothills of the Rocky Mountains and the Swan Hills in 

Alberta where a pronounced maximum of more than 30 days per year have cloud-to-

ground (CG) lightning occurring (Burrows and Kochtubajda, 2010). A lightning flash 

occurs once every three seconds during the summer months in Canada (Canadian Safety 

Council, 2013). These strikes kill ~10 people per year, injure 92 to 164 people (Mills et 

al., 2008) and ignite around 4,000 forest fires (Stocks et al., 2002). Mills et al. (2010) 

conclude that lightning is one of the utmost sources of weather-related property damage 

in Canada. 

Research on Canadian lightning climatology and its numerous impacts on human 

safety, utility services, travel, and ecological disturbance have advanced greatly since the 

introduction of the Canadian Lightning Detection Network (CLDN) in 1998. Prior to the 

introduction of this national system, small, short term studies were performed based on 

provincial, territorial, or private lightning detection data (Burrows and Kochtubajda, 

2010). With the introduction of a national data base, more work is being done to quantify 

and understand lightning and its impacts. Thunderstorms affect almost all aspects of our 

lives. They can affect our recreational plans and health, cause damage to property, disrupt 

utilities and their transmission to end users, impact agriculture and range farming, cause 

large scale ecological disturbances, and even alter our emotional and psychological 

wellbeing. On the other hand, thunderstorms, and the associated lightning, can provide 

beneficial services such as maintaining Earth’s electrical field (Oliver, 2005), aiding in 

soil fertilization (Boles and Verbyla, 2000), and providing a beauty that only nature can 

produce if one takes the time to watch the lightning dance across the sky. 

Lightning is widely acknowledged as a major contributor and cause of wildland 

fire in Canada (Anderson, 2002; Burrows, 2002; Flannigan and Wotton, 1991; Stocks et 

al., 2002). Thunderstorms are also a significant contributor to blackouts with CG 
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lightning being recognized as the largest cause of electrical power disruptions in 

lightning-prone areas (Cummins and Murphy, 2009). Lightning strikes were responsible 

for the 1977 New York City blackout affecting nine million people, as well as the 1998 

blackout that affected the Upper Midwest, Ontario, Manitoba and Saskatchewan for ~19 

hour (Mills et al., 2010). A summary of literature relating to lightning impacts and 

damage, including impacts to air and ground transportation, telecommunications, fire, 

pipelines and agriculture can be found in Mills et al. (2010). 

1.3  CONVECTIVE BASICS 

Lightning activity is typically associated with convective systems (Rakov and Uman, 

2003). Previous studies on lightning and occurrence prediction have explored many of its 

fundamentals and the mechanisms of its formation. The exact mechanisms of electrostatic 

formation and charge separations are not completely understood, yet there is a general 

consensus that cloud electrification is related to the interactions of the hydrometeors 

within the cloud (Anderson, 2002; Wåhlin, 1986). Before delving into lightning 

morphology and dynamics, a basic understanding of convective cloud and storm 

dynamics is needed. This section provides a brief and general introduction to 

thunderstorm dynamics and atmospheric convection. For additional information on 

convective storms and atmospheric charge separation please refer to texts such as 

Krehbiel (1986), Stolzenburg and Marshall (1998), and Stolzenburg et al. (1998). 

Luke Howard developed a cloud naming system in 1803 where Latin names are used 

to classify cloud types based on their appearance from the ground. His system has since 

been modified and built upon over the years to create the International Cloud Atlas 

(World Meteorological Organization., 1987) that is now used all over the world. Some 

common names include (in the form Latin (translation)): cumulus (heap), stratus (layer), 

cirrus (curl of hair), incus (anvil), and nimbus (rain) (World Meteorological 

Organization., 1987). Cumulonimbus is used to describe a rain storm cloud implying the 

clouds shape is heaping and large or mountainous looking with falling precipitation 

(American Meteorological Society, 2012b). 

Before a storm develops, some preliminary atmospheric conditions must first be met. 

There must be moisture, convective potential, and a mechanism of lift. There are four 

general convective storm types: single cell or air mass storms, multicell storms, squall 

lines, and supercell storms. All of these storms are supported by strong up drafts that 

facilitate the transportation of water droplets from the lower, warm part of the storm to 
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the upper, cooler region. Moore and Vonnegut (2010) describe thunderclouds as large 

heat engines running off of solar energy with water vapor as the agent of heat transfer. 

The convective heart of all thunderstorms has cellular structure(s) with a strong updraft 

(≥10 m s
-1

) a few kilometers in diameter (Liu et al., 2010). Thunderstorms typically range 

from three kilometers to more than 20km in vertical extent (Rakov and Uman, 2003). The 

horizontal span of active thunderstorms can range greatly from air-mass thunder storms 

roughly three kilometers to 50km in diameter, to a multicell squall lines, Mesoscale 

Convective Systems (MCS), and Mesoscale Convective Complexes (MCC) extending 

hundreds of kilometers (Rakov and Uman, 2003). 

All thunderstorms undergo three stages of evolution: (1) developing stage, a towering 

cumulus cloud forms and develops with strong updrafts as warm moist air is lifted; (2) 

mature stage: the storm continues to grow in vertical and horizontal extent as warm moist 

air rises and then spreads out once the equilibrium level is reached creating an anvil 

shaped cloud, cumulonimbus incus. A downdraft is also present. The (3) dissipation stage 

is reached when the updraft is no longer sufficient to support the storm as the storm 

becomes dominated by the strong downdraft and begins to collapse (Rakov and Uman, 

2003). A supercell storm has a long lived, rotating convective updraft separate from the 

downdraft but undergoes a similar, but often more intense and long lived evolutionary 

process and is often associated with high winds, large damaging hail and tornado 

formation. For simplicity sake, from here on convection and electrification mechanics are 

discussed from a single cloud (single-cell storm) perspective unless otherwise stated. It 

should be noted that in multicell storms, MCCs, and MCSs which have a series of cells at 

varying stages of evolution, these processes can be occurring simultaneously, and in 

varying stages or evolution. 

All of these thunder clouds and thunderstorms are the result of one or more 

cumulonimbus cloud(s). While not all cumulonimbus clouds produce lightning, a 

thundercloud is a term that refers to a lightning producing cumulonimbus cloud (Rakov 

and Uman, 2003). Although sometimes used interchangeably, a thundercloud is a single 

cell or air-mass storm while a thunderstorm refers to a system of thunderclouds (Rakov 

and Uman, 2003). Lightning can be produced from other cloud types such as stratus type 

clouds, pyrocumulus clouds (Orville and Huffines, 1999), and clouds caused by nuclear 

explosions, volcanic eruptions and large scale sand storms (Rakov and Uman, 2003). 

Pyrocumulus clouds are convective systems that are induced by the intense heat and 

winds created by large and intense wildfires (Orville and Huffines, 1999).  
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One such instance was a pyrocumulus created during the Chisholm fire in May 2001. 

The induced pyro-cumulonimbus was so intense it reached 2.5km to three kilometers 

above the tropopause where it introduced large amounts of smoke and ashes into the 

stratosphere and supported a dense, high-intensity pocket of positive lightning activity 

(Rosenfeld et al., 2007). This cloud had a high density of intense positive lightning 

compared to the surrounding clouds which were dominated by negative strikes 

(Rosenfeld et al., 2007). Observations from the Chisholm fire induced pyrocumulus cloud 

support Williams et al. (2005) hypotheses that flash rate increases with updraft speed and 

that positive lightning is related to a high liquid water content in the mixed phase region 

(Rosenfeld et al., 2007). 

Convection of warm, moist, buoyant air occurs most often in the troposphere. The 

troposphere is located in the lower atmosphere and extends from the surface to the 

tropopause (American Meteorological Society, 2012d). There is a negative temperature 

gradient in this region. As you move upward in the troposphere, the surrounding 

environmental temperature and pressure are decreasing. Air parcels of warm, moist 

buoyant air rise and cool at the dry-adiabatic lapse rate. As the parcel continues to rise 

and cool it will eventually reach a level where the humidity of the parcel becomes greater 

than the saturation point (vapour pressure becomes equal to the saturation vapor 

pressure). At this point the dewpoint and temperature of the parcel become equal and the 

parcel is said to have reached the Lifted Condensation Level (LCL). Any further lifting 

and cooling leads to a phase change where the water vapor begins to condense onto very 

small airborne particulates creating small water droplets known as hydrometeors
1
. These 

droplets make up the visible cloud, the bottom of which often represents the height of the 

lifted condensation level (Rakov and Uman, 2003).  

As these particles cool and condense, they undergo a phase change releasing 

latent heat of condensation. This heat release further fuels the updrafts. If the air parcel 

remains warmer than the surrounding environment, it continues to rise, cool, condensate, 

and release latent heat which warms the parcels and further drives the process. Buoyancy 

is also aided by the fact that air with a high water vapor content is less dense than dry air 

                                                      

 

 

1
 Hydrometeors are solid or liquid water particles within the atmosphere that make up the visible 

clouds. If they are large enough to be influenced by gravity they are called precipitation (Rakov 

and Uman, 2003).  
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at the same temperature. The higher the vapor content, the less dense the parcel, and the 

more buoyant it becomes. This continues as long as the environmental lapse rate is larger 

than the moist adiabatic lapse rate (0.6
o
C/100m) and the atmosphere is considered 

unstable (Rakov and Uman, 2003). Once the parcel reaches the zero degree isotherm 

some of the water droplets begin the freeze. The rest of the droplets enter a super-cooled 

phase where they are between zero and -40°C but remain in a liquid state (Rakov and 

Uman, 2003). The droplets all turn to ice once the temperature is less than -40°C (Rakov 

and Uman, 2003). Electrification is thought to occur in the mixed phase region between 

the zero degree and -40°C isotherms where supercooled liquid, vapor, and ice coexist 

(Rakov and Uman, 2003; Williams, 1989).  

Hail, ice, graupel, and liquid water are transported up by strong updrafts, and 

down within downdrafts driven by gravity. As the ice, hail and graupel fall into the lower 

warmer regions they collide with liquid water and the droplets adhere to the frozen 

surface releasing latent heat of fusion as they undergo the phase change. This heat causes 

a slight warming of the frozen surface resulting in a mass that is slightly warmer than the 

environment. This relatively warm mass is known as graupel or soft hail. The graupel 

grows by accretion of the supercooled cloud droplets while the ice crystals grow as water 

vapor deposits onto the crystalline structure (Latham, 1991). Some frozen water may also 

melt and evaporate off of the ice or graupel. This process requires a strong updraft to 

transport the hail and graupel up within the cloud. Lightning is highly unlikely if the 

maximum updraft speed does not reach 10 to 12m s
-1 

and maintain an average speed 

greater than six to seven m s
-1

 (Zipser and Lutz, 1994). 

The stratosphere is located above the troposphere and separated by the 

tropopause (Figure 1). The tropopause is marked by a temperature equalization or 

inversion where the negative temperature gradient of the troposphere reverses to a 

positive gradient and temperatures begin to increase with increasing height (American 

Meteorological Society, 2012c). This inversion and positive temperature gradient acts as 

a cap on convection and parcel buoyancy preventing most clouds from extending into the 

stratosphere (Rakov and Uman, 2003). In some cases the updraft is strong enough to 

overcome the capping force and clouds or storm systems are able to extend into the 

stratosphere with cloud tops reaching up to 20km in altitude (Rakov and Uman, 2003). 

The mechanisms of convective cloud formation have been discussed however some 

additional processes must first set the stage for lightning to occur. A separation of 
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charges must take place where electrons and positive ions are transported to different 

regions of the developed cloud to form an electrical dipole (Oliver, 2005). 

 

1.4  CLOUD ELECTRIFICATION  

While we may understand some of the conditions required to produce lightning, 

the exact mechanisms of formation are still debated. That said, theories tend to focus on 

the generation of an electric field within a thunder cloud by some mechanism of electric 

charge separation. The Earth and atmosphere make up a global electric circuit that is 

constantly changing. In this circuit, the Earth’s surface typically holds a net negative 

charge while the air above tends to be net positive, creating a vertical electric field 

(Rakov and Uman, 2003). This electric field’s surface potential gradient is approximated 

to be roughly 120V for every meter increase in altitude near the Earth’s surface under fair 

 Figure 1: Vertical temperature profile of the atmosphere. The troposphere extends from the 

surface to around 12km altitude and has an average temperature lapse rate of 6.5°C km
-1

. Most 

convective weather occurs within the troposphere although some very intense storms can breach 

the capping effect of the tropopause and extend into the stratosphere. 
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weather conditions (Harrison, 2004). The global electric circuit is thought to be changed 

and maintained by the fair weather current, precipitation, corona or point discharge 

currents, and lightning (Harrison, 2004; Williams and Heckman, 1993). A corona is a 

point discharge involving a number of individual streamers within the immediate vicinity 

of a ground object that acts as an electrode but is not self-propagating (Rakov and Uman, 

2003). Lightning rods use the characteristics of corona discharge to create a “preferred” 

path for lightning by concentrating charge at a small point. 

Recent studies tend to agree that ice, hail, and graupel play a quintessential role 

in charge separation within a cloud or storm system and thus are highly important to 

lightning development (Wåhlin, 1986; Williams et al., 2005; Zipser and Lutz, 1994). 

Storms that lack a strong updraft typically fail to produce large quantities of ice, hail, and 

graupel and thus do not typically produce lightning. While a consensus on a quantitative, 

detailed description of charge separation with in the turbulent environment of a 

convective cloud is still lacking, most atmospheric physicists agree that the process 

involves collisions between supercooled water droplets and ice particles, graupel, and 

hail in the mixed phase region (Oliver, 2005). It is believed that as these collisions occur, 

electrons are sheared off of the ascending water particles and collected on the descending 

hail and graupel. This leads to a separation of electrical charges known as the polarization 

of the cloud.  

As the convection continues within the cloud, these collisions continue to occur 

and a net positive charge pool develops in the upper region of the cloud mirrored by a net 

negative charge pool at the base creating a positive dipole electric field. The longer the 

system can sustain a strong updraft, the greater the charge differential potential. At this 

point the cloud can be thought of as a battery with its positive terminal facing upwards 

and the negative terminal towards the ground (Figure 2). The terminals are not in direct 

contact with each other, or any other terminal, rather the atmosphere all around is acting 

as an insulator. The voltage difference between the two charged centers within the cloud 

can reach several million volts (Oliver, 2005) The negative charge pool is usually found 

between the -10°C and -35°C levels where the cloud contains ice and supercooled liquid 

water. Strong updrafts cause an increased altitude and decreased temperature of the 

negative cloud charge center which can also be affected by local terrain (Krehbiel, 1986; 

Livingston and Krider, 1978; Stolzenburg et al., 1998). Krehbiel (1986) also notes that 

the altitude of the negative charge center appears to remain relatively stable throughout 
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the storm evolution while the positive charge pool increases in height as the storm 

develops.  

This is a simplified description of cloud charge differentials and it must be noted 

that these are extremely complex systems that are still not fully understood. This is an 

introductory look at the most common, generalized charge layout however other charge 

pool locations can, and do occur (Krehbiel, 1986; Stolzenburg and Marshall, 1998). The 

charge differential must build up to a point where the charge strength is greater than the 

insulation strength of the atmosphere. Once the strength of the electron field is greater 

than the strength of the atmospheres insulation (dielectric strength), the breakdown 

threshold of the air is met and a transfer of charge occurs. This discharge is known as 

lightning. 

1.5  LIGHTNING 

The term “flash” is usually used to describe any lightning discharge whether it is 

within a cloud, between clouds, or between clouds and the ground (Rakov and Uman, 

2003). The word “strike” is a more specific term describing a flash that makes contact 

with the ground or with a grounded object (Rakov and Uman, 2003). “Component 

stroke” or “stroke” refers to the part of a cloud-to-ground strike where a downward leader 

and upward return stroke occur (Rakov and Uman, 2003). The total energy produced by 

lightning depends on its polarization, duration, and magnitude (Oliver, 2005). For 

example, a typical negative lightning strike has a current of ~30,000A producing a peak 

channel temperature of 30,000K while a positive strike can be 10 times stronger (Rakov 

and Uman, 2003; Rust, 1986). 

There are two general categories used to classify lightning flashes: lightning that 

flashes across the sky, and lightning that strikes the ground. Cloud-to-cloud (CC) 

lightning is the most common type of lightning accounting for ~70% to 85% of all 

flashes typically occurring as intracloud or intercloud
 
discharges (Rakov and Uman, 

2003). Intracloud lightning are discharges between the lower negative (typically four to 

eight kilometers altitude) and upper positive (typically eight to 12km altitude) dipoles of 

a cloud (Cummins and Murphy 2009) while intercloud flashes occur between two 

different clouds. Intracloud and intercloud lightning occur within or between clouds and 

therefore do not play a role in lightning-caused fires. Cloud-to-ground (CG) lightning is 

the special case where a transfer of charge occurs between a cloud and the Earth, or some 

object on or near the Earth’s surface. Cloud-to-cloud lightning occurs more often than 
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CG lightning due to stronger electrical fields and a lower distance between charge pools. 

This thesis focuses on CG lightning as strikes interacting with the ground are of concern 

when dealing with potential lightning-caused fire ignitions. From here on, all references 

to strikes, strokes, flashes or lightning are referring to CG lightning unless explicitly 

stated otherwise. 

Figure 2: Dipole electrical structure of a convective cloud. The upper region and anvil accumulate 

a net positive charge while the cloud base becomes predominantly negative. Opposite charges 

attract forming induced charge pools on the ground.  

 

Cloud-to-ground lightning requires an additional charge differential to occur in 

addition to the cloud charge differentials. Electrical opposites attract, therefore, the 

negative cloud base induces a positive charge pool on the ground below (Rakov and 

Uman, 2003). This pool will follow the cloud until the charge differential is neutralized. 

A negative charge pool may also develop on the ground below the positively charged 

anvil of the cloud (Figure 2). The corresponding charge differential between the two 

regions of the cloud and the two induced pools on the ground make CG lightning 

possible. 
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Berger (1967) described four basic types of CG lightning: (1) downward 

negative, (2) upward negative, (3) downward positive, and (4) upward positive. Globally, 

downward negative strikes account for almost 90% of all CG strikes (Rakov and Uman, 

2003). Less than 10% of strikes are downward positive (Rakov and Uman, 2003). 

Upward strikes are highly uncommon and are thought to only occur from very tall objects 

(>100m) or from objects at mountain tops (Rakov and Uman, 2003). This thesis does not 

attempt to differentiate between downward and upward strokes, all strokes should be 

considered as downward positive or downward negative. 

There are three main modes of charge transfer from clouds to the ground: (a) dart 

leader return stroke sequence, (b) continuing currents, and (c) M-components which are 

briefly summarized below from Rakov and Uman (2003). The dart leader return stroke 

sequences (a) involve a descending leader that creates a channel, or conductive path, 

towards the ground. A negative charge follows the path to the ground and a return stroke 

then goes back up the path from ground to cloud, and neutralizes the leader. Continuing 

currents (b) are a longer lived current (tens to hundreds of milliseconds) that form a 

quasi-stationary arc between the cloud and ground that persists during the interstroke 

interval (Cummins and Murphy, 2009) while, M-components (c) are surges that take 

place in a continuing current (b). 

When a discharge occurs between the negative cloud base and the positive 

ground pool there is a negative transfer of charges from the cloud base to the ground. 

This is known as negative CG lightning. As the charge differential between the negative 

cloud base and positive ground pool increases, a negatively charged channel known as a 

stepped leader begins to descend from the cloud. It descends very rapidly with 20µs to 

50µs between steps (Rakov and Uman, 2003). The stepped leader is invisible to the 

human eye. A “leader” refers to any self-propagating electrical discharge that creates a 

channel with an electrical conductivity in the order of 10
4
S m

-1
 (Rakov and Uman, 2003). 

As it gets closer to the ground it causes the positive pool to focus and intensify below. A 

positively charged streamer then reaches up from an object on the ground or directly from 

the ground. A streamer is typically characterized by its lower electrical conductivity then 

the leader (Rakov and Uman, 2003). When the stepped leader and the streamer channels 

connect, a transfer of negative current occurs from the cloud to the ground. This current 

flow creates the flash of light that we call lightning.  

If there is sufficient charge remaining, there may be additional strokes (return 

strokes) through the same channel (Rakov and Uman, 2003). This is known as 



 

13 

 

multiplicity and is what we see as the prolonged flickering of a strike. Return strokes 

have a peak current reaching up to more than 200kA lasting tens of microseconds and 

may occur in quick succession with 20 to 100ms between strokes (Cummins and Murphy, 

2009). A negative lightning strike typically has a multiplicity of two to four return strokes 

but may have as many as 20 (Cummins and Murphy, 2009). Subsequent flashes may also 

contact the ground at a different point, up to several kilometers from the initial stroke 

point (Cummins and Murphy, 2009). 

Electricity always takes the path of least resistance. Consequently, taller objects 

do tend to be hit more often as there is less atmospheric insulation between the negatively 

charged cloud base and the positive ground. This does not mean that taller objects will 

always be preferentially hit. Lightning follows the path of least resistance and strikes the 

closest object once the insulated properties of the atmosphere are overcome, therefore it 

can strike open ground even if a tree or tall building is nearby. As the stepped leader 

begins to descend it is “blind” to the ground. Once it is close enough to the ground to be 

influenced, a relatively small area around the stepped leader is likely to be hit. If a tall 

object is within that region it may be hit but if the total resistance is less to open ground 

than to a tall object, the ground will be hit. 

Positive CG lightning occurs in a similar fashion to that of negative CG strikes. 

Positive strike tends to originate from the anvil or upper region of the cloud where the 

positive charge pool has built up. In this case the stepped leader is positively charged and 

forms a channel toward to ground where it induces the concentration of a negatively 

charged streamer that reaches towards it. The net transport of positive charge from cloud 

to ground results, hence the name "positive cloud-to-ground strike”. Positive CG 

lightning accounts for a small portion of strikes but are of particular importance when 

considering lightning from the wildland fire perspective. 

Positive strikes have a much longer flash duration and higher peak current than 

negative strikes (Rust, 1986). These characteristics are due in part to the location of 

origin of the strike from within the cloud. As previously mentioned, positive strikes 

originate from the upper region of the cloud and therefore must travel much greater 

distances (10 to 20km) in order to contact the ground. In other words, thinking back to 

the battery analogy, there is a greater amount of insulation between the two charge 

terminals. The strength of the charge differentials must therefore be much higher to 

overcome the insulation threshold. Positive strikes can have a peak current 10 times 

greater than negative strikes and have been measured as strong as 300,000A or one 
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billion volts (Rust, 1986). The majority of positive CG strikes have one return stroke 

which is often followed by a continuing current ranging from a few milliseconds to 

250ms (Rust, 1986). As a reminder, continuing currents are longer lived current (tens to 

hundreds of milliseconds) that form a quasi-stationary arc between the cloud and ground 

(Rakov and Uman, 2003). It has been found that continuing current in positive return 

strokes can be in excess of 10kA for up to 10 to 40ms (Brook et al., 1982). In other 

words, the current transferred is an order of magnitude or larger than that of negative 

flashes.  

While negative strikes typically strike the ground below the cloud or storm, 

positive lightning usually strikes around the edges and can strike the ground more than 

16km away. Positive strikes have been reported to occur most commonly in the latter 

stage of a storms life and originate from the stratus or anvil (MacGorman and Rust, 

1998). This means that a positive strike has a much greater chance of discharging where 

it has not yet rained and is not currently raining (Rust, 1986). This is known as a dry 

strike. The ability of positive lightning to strike so far away from the storm adds another 

dimension to the risks. People may not anticipate danger from the storm and often fail to 

take necessary precautions. Because the characteristics of positive lightning including 

higher peak current, longer duration, higher channel temperature, and ability to dry strike, 

positive strikes are most likely to cause fire starts (Rust, 1986). Additional information on 

lightning can be found in MacGorman and Rust (1998), Rakov and Uman (2003), and 

Schonland (1964) among others. 

Both lightning and forest fires occur year round in Canada with the majority of 

the strikes and fires occurring during the warm months (Burrows and Kochtubajda, 

2010). Warm season strikes are of particular interest as they often occur when the 

Canadian forests are warm and dry enough to be ignited by CG lightning. The start of the 

lightning and fire seasons usually corresponds with the melting of snow, warmer 

temperatures, and increasing length of daylight hours. The seasons typically end with the 

southward movement of the Arctic cold front (Kochtubajda et al., 2006).  

1.6  FIRE 

 Wildland fires burn an annual average of 2.5 million ha of Canada’s forested area 

(Stocks et al., 2002) resulting in direct suppression cost ranging from CAD $500 million 

to one billion dollars per year (Flannigan et al., 2009). Although wildland fire disturbance 

is a natural and necessary feature of many of Canada’s fire driven ecosystems (Rorig and 
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Ferguson, 1999), human development, valued resources, and health concerns limit our 

capacity to allow fire to roam freely. Historically wildland fires were able to burn at will 

over most of Canada. During the late 19
th
 century, human induced suppression measures 

came into play. In the early 20
th
 century, contemporary fire management in North 

America became focused around strict suppression and prevention (Martell, 2001). Since 

then we have learned that suppression is unnatural and has led to many unanticipated and 

undesirable consequences. Fire exclusion in Canada’s National Parks diminished the 

landscape mosaics which served as the reasoning for protecting the parks in the first place 

(Weber and Stocks, 1998). Fire suppression also often led to an aging, increasingly 

homogeneous forested landscape in many regions. The changing conditions resulting 

from fire suppression have created some areas that are conducive to more severe fire 

behavior. 

 Today we are dealing with the consequences of past fire management decisions. 

To worsen matters, fire and forest managers are also faced with the results of another 

anthropogenic induced change, climate change. In recent decades, Canada has 

experienced some worrisome trends including increased area burned and fire season 

length (Mike Flannigan, personal communication). These trends have been linked to 

changes in temperature, precipitation and extreme weather events. Climate models 

suggest that thunderstorm, and thus lightning activity will increase with projected rising 

temperatures (Price and Rind, 1994) which may translate into more lightning-caused fires 

(Kochtubajda et al., 2006). Future projections predict local and regional warming with 

the greatest temperature increases at higher latitudes during the winter months (Weber 

and Flannigan, 1997). As our climate is shifting, so too are the human dimensions of 

Canada. Demographic changes, increasing population, and shifts in settlement patterns 

result in new Wildland-Urban Interfaces (WUI). As urban and wild become intertwined 

the physical world around us changes and we realize our connection and responsibility to 

Canada’s vast wild lands is paramount. 

Of the ~8,000 wildland fires that occur per year in Canada, only three percent 

(roughly 200 fires) are responsible for 97% of the total area burned (Stocks et al., 2002). 

These fires often impact water quality, air quality, and can directly influence human 

health and safety. Although a natural and integral part of forest ecology, when wildland 

fires come into contact with settlements and infrastructure the major disruptions and 

damage can carry a large financial burden. An example of the economic costs of fire can 

be found in the analysis of the economic impact of the Chisholm, Alberta fire (Rittmaster 
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et al., 2006). Rittmaster et al. (2006) estimated a CAD $20 million loss in timber supply, 

and $10 million cost of suppression over seven days associated with the 2001 Chisholm 

fire. They also estimated the one-day health impacts to be in the range of nine million 

dollars to $12 million. In addition, wildfire impacts on tourism and recreation can cost 

tens of millions of dollars in lost visitation revenue (Martell and Sun, 2008). In the spirit 

of unbiased assessment it must also be noted that wildfires also employ numerous people 

in both seasonal and full time positions directly and indirectly (ex. personal protective 

equipment manufacturing). 

Encompassing ~315 million ha, the boreal forest is the largest forested area in 

Canada (~315 million ha) containing the majority of the wooded area (Weber and Stocks, 

1998) and covering a large swath of continental Canada. This region is distinct due to its 

short warm summers and long cold winters. Lightning fires are the dominant natural 

disturbance (Krawchuk et al., 2006) and an underpinning ecosystem process responsible 

for organizing the physical and biological characteristics of North America’s boreal 

forests with fire regime being the key aspect (Weber and Flannigan, 1997). Canada’s 

largest fires, and greatest fire related problems, occur within the boreal belt where over 

97% of total area burned occurs (Pyne, 2007). The greatest annual areas burned on record 

occur within the past few decades with the exception of almost four million ha burned in 

1961 (Weber and Stocks, 1998). Part of this increasing trend in area burned may be 

attributed to modern technological advances. Large remote areas could have burned 

undetected prior to extensive resource exploration and the use of remote sensing satellites 

for resource management and monitoring. Some common Canadian fire trends include a 

steady increase in the annual number of fires in Canada since the 1930s (possibly due to 

increasing population/land occupation, byproduct of suppression efforts, and better fire 

detection), increase in annual area burned over the last three decades, and an increasing 

recognition of the integral role of lightning.  

The boreal forest is a mosaic dominated by trembling aspen (Populus 

tremuloides), white birch (Betula papyrifera), black spruce (Picea mariana) and jack 

pine (Pinus banksiana) with small clusters of other over story trees (Pyne, 2007). 

Trembling aspen and paper birch are deciduous trees that typically create fire resistant 

blocks during much of the year while the coniferous black spruce and jack pine provide 

clusters apt for intense burning and crown fires (Pyne, 2007). Dense growing jack pine 

and lodgepole pine (Pinus contorta) appear to have co-evolved with fire as they rely on 

heat to open their otherwise sealed serotinous cones (Burns et al., 1990) and are able to 
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carry fire throughout most of their life cycle (Pyne, 2007). The majority of the province 

of Alberta lies outside of the Canadian shield and its abundance of water pockets (Pyne, 

2007). Instead, the boreal forest in Alberta lies over the western plains where fire can 

roam almost unchecked by natural barriers such as lakes and rock outcrops (Pyne, 2007). 

A changing fire regime will alter boreal forest dynamics resulting in different landscape 

mosaics, age class distribution, and forest boundaries (Weber and Flannigan, 1997). 

Wildfire activity in Canada is increasing (Podur et al., 2002). While climate 

change is strongly believed to be a leading cause of increased fire activity and severity 

(Flannigan and Van Wagner, 1991), other factors such as increases in recreational and 

industrial use of forested land, increased fuel loading due to suppression, and better 

detection and recording methods have also contributed to this trend (Tymstra et al., 

2005). Pre-suppression fire return intervals of ~45 to 69 years have been identified for 

Northern Alberta through the use of age class distribution analysis of forest inventory 

data and paleoecological records of charcoal deposits in northern lake sediments 

(Tymstra et al., 2005). Paleoclimate and paleoecology can be studied to provide insight to 

the future. In contrast to the law of uniformitarianism (in a geological sense) where the 

present is the key to the past, reconstruction of past environments may provide a guide to 

the future when trying to piece together a changing boreal fire regime. Pre-European 

settlement, fires were the result of indigenous burning and lightning ignition. These fires 

ran without contemporary suppression efforts likely resulting in a much larger annual 

area burned than we experience today (Weber and Stocks, 1998). 

As climate changes, and the fire season lengthens, fire crews will be struggle to 

keep up with the changes in fire regime. The boreal forest fire regime encompasses fire 

intensity, frequency, size, type, severity, and seasonality. While we can characterize a fire 

regime, it is a statistical combination of individual fire events occurring within a given 

region and time frame and thus does not necessary represent a current situation in much 

the same way an intense individual storm day or current weather conditions may not be in 

sync with an area’s climatology (Pyne, 2007). Canada covers a vast and diverse area 

making it illogical to manage the forests and forecast lightning for the country as a whole. 

Focusing on Alberta allows consideration of the unique conditions to be taken into 

account. Site specific conditions are beginning to be taken into account and utilized in 

Alberta fire management. For example, prescribed burns and natural fire breaks such as 

marsh lands are being identified and strategically used to aid in decision making allowing 

for better allocation of resources.  
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The Wildland-Urban Interface describes the area where humans and human 

developments meet, mix or intermingle with forest or other types of vegetative fuel 

(McFarlane, 2006). Population growth and demographic changes have resulted in 

changes to settlement patterns. The heartlands are becoming more populated and remote 

areas are becoming increasingly occupied. Resource extraction has resulted in road 

networks allowing easier access to previously unreachable places. This has both benefited 

and negatively impacted fire management by providing access to otherwise remote 

lightning fire locations and increasing the number of human caused remote fires. More 

subdivisions, towns, and cities are popping up in forest dominated areas of the northern 

boreal as industry booms and more jobs are created. Recreational properties and vacation 

developments further contribute to this population shift. As the WUI increases, the 

chance of wildland fires adversely affecting communities rises.  

Fires in the WUI pose a disproportionately large risk to life, health, property and 

infrastructure when compared to the small size of area burned (McFarlane, 2006). The 

cost of suppression in the WUI can be 10 times greater than that of wildland fire 

suppression and often present increased risks to firefighters (McFarlane, 2006). Many 

initiatives have been undertaken at the community, regional, provincial, and national 

levels to reduce the impacts of WUI fire disasters. Programs, such as FireSmart® (Vicars, 

1999), aim to educate individuals, industry, and communities about protecting values at 

risk through proper landscaping, use of building materials, and emergency planning 

(Taylor et al., 2006). FireSmart® largely relies on communities and homeowners for 

voluntarily implementation (Taylor et al., 2006). Devastating fires in the WUI, such as 

the Kelowna fires in 2003, and Slave Lake fires in 2011, have resulted in an increased 

awareness of the risks associated with living in fire prone areas. Despite these disasters 

and attempts at increasing public awareness, people continue to build further into the 

forests and fail to take the necessary precautions to make their dwellings less susceptible 

to wildfire. 

Many wildland fires perform a suite of essential ecosystem services. They clean 

out dead debris, expose soils to solar warming and drying, free up nutrients, promote 

species richness and biodiversity (depending on the severity and post fire conditions), 

sustain grasslands, allow regeneration of stands, and promote heterogeneity on the 

landscape among many other things (Latham and Williams, 2001). While people may 

view fire as a negative disturbance, the ecosystems that have evolved with fire require it 

to survive and thrive. Understanding ecosystem dynamics, wildland fire history, and 
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natural ecosystem processes is necessary for proper management of the boreal forest 

(Weber and Flannigan, 1997). This includes understanding driving factors such as 

climate and lightning.  

There is an intimate relationship between climate and ecosystem dynamics; 

therefore understanding climate, and climate change, is paramount to properly managing 

forests and preparing for fires (Weber and Flannigan, 1997). Fire is highly affected by 

fuel moisture. Fuel moisture is directly linked to temperature, precipitation, wind speed 

and relative humidity; thus fire is highly sensitive to changes in weather and climate (Van 

Wagner, 1974; Weber and Flannigan, 1997). Contemporary management and suppression 

techniques have difficulties keeping up with extreme fire events and protection of values 

at risk. Extreme fire-weather conditions, and thus events, are expected to increase in both 

number and frequency in the near future, making this problem increasingly vital as larger, 

more severe, intense, and numerous fires occur (Flannigan et al., 2005; Weber and 

Flannigan, 1997).  

1.7  LIGHTNING-FIRE INTERACTIONS 

While contemporary Canadian studies show lightning-caused fire is less common 

(~35%) than human caused (>60%) in most regions, lightning-caused fire are responsible 

for roughly 80% of the total annual area burned in Canada (Stocks et al., 2002) and 93% 

of land burned in Alaska (Boles and Verbyla, 2000). Lightning strikes are also reported to 

start ~80% of wildland fires in the sparsely populated North West Territories 

(Kochtubajda et al., 2006), and are recognized as the main cause of wildland fires in the 

western United States forested regions (Rorig and Ferguson, 1999). Some argue that 

contemporary statistics on lightning-caused fires could well be doubled in order to 

capture a picture of the magnitude of historical fires and their massive extent (Pyne, 

2007). Existing studies show area burned by wildfires is highly variable in Canada and 

can range from 0.7million to 7.6 million ha per year with an average of 2.5 million ha per 

year burned (Natural Resources Canada, 2004). 

 Lightning fires are responsible for such a vast area of burned forest due to two 

main factors; location, and concentration of strikes. Lightning can occur in remote areas 

far from human activity. This makes detection and response to ignitions difficult and 

increases the chance of the fire escaping initial attack (Martell and Sun, 2008; 

Wierzchowski et al., 2002). Couple remoteness with the reality that lightning has a 

tendency to occur in large concentrations and at multiple locations simultaneously 
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(Martell and Sun, 2008), and it is evident that suppression of lightning fires is a difficult 

feat. In order to adequately plan and react to remote fires, fire management agencies need 

to know about the danger and risk of fire ignition.  

Information regarding fire danger and probability of ignition can be found in the 

Canadian Forest Fire Danger Rating System (Canadian Forestry Service, 1987). The 

system provides guidelines about expected fire behavior in varying fuel types and 

topographies in the Canadian Forest Fire Behaviour Prediction subsystem as well as 

information about fuel moisture (Forestry Canada Fire Danger Group, 1992). The fuel 

moisture component is generated by the Canadian Fire Weather Index System (Van 

Wagner, 1987), a subsystem of the Canadian Forest Fire Danger Rating System. The 

Canadian Fire Weather Index assesses the potential for fire startup and spread by taking 

into account past and current weather. For the purpose of this research, human caused 

fires are not considered, therefore chance of ignition can be thought of as how much CG 

lightning and where. While lightning may also cause structural fires within city limits, 

these fires are outside the scope of this paper and are therefore not considered. 

While fire danger is well covered in Canada, an accurate medium range lightning 

prediction model is not currently available. Despite the need, lightning is not included in 

the Canadian Weather Prediction Model (Burrows et al., 2005) resulting in an 

information gap that can lead to dire results. Lightning fires that occur in remote areas 

have drastically larger suppression costs associated with transportation and access 

(Wierzchowski et al., 2002) and a much greater chance of overrunning initial attack and 

becoming large fires >200ha (Stocks et al., 2002). Geographically speaking, lightning 

fires are more random and clustered than human caused fires as their ignition depends on 

conditions conducive to lightning, the electrical properties of the lightning, local fuel and 

moisture characteristics (Krawchuk et al., 2006), and whether or not the strikes make 

contact with something combustible (Pyne, 2007).  

Intuitively, fuel flammability and characteristics play a key role in the chance of 

lightning ignition (Flannigan and Wotton, 1991; Nash and Johnson, 1996). Lightning-

caused fires tend to form in clusters around dryer landscape patches which typically 

correspond with regions most prone to burning as they are subject to relatively dry 

lightning (Pyne, 2007). Lightning-caused ignition of forest fuels is highly dependent on 

many variables. Fuel type, moisture, density and structure, along with the characteristics 

of the lightning strike(s) all play into the likelihood of ignition (Flannigan and Wotton, 

1991). Certain kinds of strikes have been identified as having greater potential to start 
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lightning-caused fires. These characteristics include positive polarity, long continuing 

current (LCC), and high multiplicity of strikes (Flannigan and Wotton, 1991; Wotton and 

Martell, 2005). 

Strikes with positive polarity have a peak current 10 times greater than negative 

strikes (Rust, 1986) and a greater chance of having a return stroke lasting more than 40ms 

known as LCC (Uman, 1987). Long continuing current can transfer twice as much charge 

to ground compared to a flash without LCC (Uman, 1987). Return strokes with LCC are 

general accepted as a major cause of lightning-caused wildland fire ignitions (Anderson, 

2002; Flannigan and Wotton, 1991; Fuquay et al., 1979; Fuquay et al., 1972). It is 

estimated that ~85% of positive and ~20% of negative strikes have LCC (Uman, 1987). 

Despite the fire danger associated with LCC, little is known about it as it has proven very 

difficult to distinguish and identify strokes with or without LCC (Uman, 1987). The 

presence or absence of a LCC component is currently not detected by operational 

lightning detection sensors. Other characteristics such as high strike multiplicity can also 

increase the chance of ignition (Flannigan and Wotton, 1991) as more than one stroke 

flows though the same channel striking the same spot on the ground (Rakov and Uman, 

2003). 

From a fire suppression/prevention perspective, it is fortunate that positive strikes 

only account for roughly five percent of recorded strikes in the summer months (Orville 

and Songster, 1987). The percentage of positive strikes is minimum in July and August 

(Orville and Huffines, 1999) but does increase after October and peaks with around 80% 

of all strikes in January and February having positive polarity (Orville and Songster, 

1987; Orville and Huffines, 1999). Ignition, survival, and spread of fire depends partially 

on what and where the lightning strikes. If a strike with optimum fire starting 

characteristics occurs, then fuel flammability and characteristics become the determining 

factors as to whether or not a fire will ignite. Even though the greatest number of positive 

strikes, and thus strikes with LCC occur in January and February, the greatest number of 

lightning-caused fires occur during the warm months as conditions are not favorable to 

ignition and spread of fire during the cold, snowy, winter months.  

Anderson (2002) describes the life cycle of lightning-caused ignition by looking 

at three stages of fire: ignition, survival and arrival. Ignition is most often the result of a 

strike with LCC striking the ground and igniting the duff layer. This can smoulder and 

survive (holdover) for several days (Anderson, 2002). If conditions are right, the 

smouldering fire can arrive and spread as flaming combustion (Anderson, 2002). 
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Lightning plays a large role in fire dynamics however it cannot be forgotten that fire can 

also alter lightning. Pyrocumulus clouds can form under extreme fire conditions and are 

driven by intense convective updrafts created by large fires (Latham, 1991). Pyrocumulus 

clouds have a higher proportion of positive CG strikes and create a of positive feedback 

of sorts where increasing intensity of a fire leads to increased strike occurrence and 

greater chance of additional lightning ignitions which can further expand the fire and 

increase its intensity.  

The interactions between fire and lightning are complex and intertwined. When 

looking at ways to improve forest and forest fire management, lightning occurrence must 

be considered. Lightning is responsible for 80% of area burned in Canada and more than 

70% of fires larger than 200ha (Stocks et al., 2002). Fire management costs in Canada 

range from CAD $500 million to $1 billion per year (Flannigan et al., 2009) and the value 

of timber lost can well exceed the value of current harvest in extreme fire years (Natural 

Resources Canada, 2004). Add to the cost of direct suppression an additional CAD $600 

million to $1 billion deficit to the Canadian economy due to lost time and disruptions 

(Stocks et al., 2002) and it becomes clear that additional fire and fire related research is 

both warranted and necessary.  

1.8  PREVIOUS WORKS 

Previous studies on lightning, including occurrence prediction, have explored 

many of the fundamentals of lightning and its formation; however, the exact mechanisms 

of electrostatic formation are not completely understood (Wåhlin, 1986). Research on 

North American lightning climatology and its numerous impacts on human safety, utility 

services, travel, and ecological disturbance have advanced greatly since the introduction 

of the North American Lightning Detection Network (NALDN) in 1998. The NALDN is 

a combination of the contiguous United States of America’s National Lightning 

Detection Network (NLDN) and the Canadian Lightning Detection Network (CLDN). 

Prior to the introduction of the CLDN, Canadian lightning research often involved small, 

short term studies performed on data from provincial, territorial, or private lightning 

detection networks (Burrows and Kochtubajda, 2010). Since 1998, large, long term 

studies have become possible as continuous Canada wide data becomes available. 

Lightning is an atmospheric phenomena and as such it is recognized to be highly 

episodic (Burrows et al., 2002). Large scale predictions such as number of strikes per 

month or average number of strikes per day are difficult to make as a large fraction of the 
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yearly lightning can occur within only a few days of the year (Burrows and Kochtubajda, 

2010). Although this is the case, there are some areas that are recognized to be “hot 

spots” or areas of high lightning activity. These areas are typically characterized by major 

changes in topography and substantial landforms. Lightning is recognized as a major 

contributor to the ignition of forest fires. Considerable research has been done to study 

how lightning influences fire regimes and to quantify its occurrence.  

Many empirical studies on lightning strike characteristics (Berger, 1967; Burrows 

and Kochtubajda, 2010; Kochtubajda and Burrows, 2010; Orville et al., 2002) and 

lightning-caused fire occurrence (Fuquay et al., 1967; Fuquay et al., 1972; Rorig and 

Ferguson, 1999) have been performed and methods of predicting or classifying the 

chance of lightning-caused ignition have been proposed (Anderson, 2002; Fuquay et al., 

1979). After the initiation of the NALDN in 1998, Orville et al. (2002) provided an 

overview of continent-wide CG lightning trends as well as some regional differences for 

three years of continuous lightning detection (1998-2000). Specifically, they looked at 

peak current (kA), multiplicity, and percentage of strikes with positive polarity. In this 

study Alberta was identified as a hotspot for maximum mean negative and positive 

multiplicity (Orville et al., 2002). 

Burrows et al. (2002) also used the NALDN data and found that the greatest 

number of days per year with detected lightning events in Canada and the Northern 

United States of America occurred over the Alberta Foothills east of the Rocky Mountain 

continental divide. This suggests that Alberta is indeed a hotspot for lightning activity in 

Western Canada. Burrows and Kochtubajda (2010) and Kochtubajda and Burrows (2010) 

provide a fundamental look at the spatial and temporal characteristics of CG lightning in 

Canada for 10 consecutive years of lightning data. Their analysis explores flash density, 

occurrence, polarity, multiplicity, and first-stroke peak current (Burrows and 

Kochtubajda, 2010). This two-part paper provides a wealth of background knowledge 

and useful benchmarks regarding lightning. Other studies also work towards 

characterizing lightning in Canada at a provincial or regional scale (Clodman and 

Chisholm, 1996; Kochtubajda et al., 2002; Morissette and Gauthier, 2008) among others. 

The peak lightning season in Canada typically runs from May to October, with 

July being the most active month in the west (Burrows et al., 2002). Wierzchowski et al. 

(2002) found that in Alberta, lightning fire occurrence is fairly constant from June to 

mid-August with a peak in areas burned occurring prior to July (Wierzchowski et al., 

2002). The authors propositioned that this could be due to seasonal changes in foliar 
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moisture content of coniferous trees noting that moisture content decreases in the spring 

in this region (Wierzchowski et al., 2002). These conditions could lead to spring or early 

summer lightning fires progressing to crown fires and spreading rapidly, therefore 

leading to increased area burned when compared to fires started later in the season when 

foliar moisture content is higher (Wierzchowski et al., 2002). Looking to the future, 

global lightning activity is expected to increase with rising temperatures (Price and Rind, 

1994). The increase in lightning activity and the predicted rate of lightning-caused fire 

starts, the projected area burned is also anticipated to increase for central eastern Alberta 

(Krawchuk et al., 2009) and North America as a whole (Price and Rind, 1994). 

There exists a pattern in most of Canada’s ecozones where lightning activity 

increases with increasing precipitation (Kochtubajda et al., 2013). Kochtubajda et al. 

(2013) examined the relationship between CG strikes and convective precipitation across 

Canada. They found that while a pattern did exist, using the relationship for predicting 

convective precipitation yielded great uncertainty, especially so in the western region. 

Steps have also been taken to try to classify lightning and convective days as “wet” or 

“dry” (Rorig and Ferguson, 1999) with the understanding that lightning-caused ignition 

risk is much greater when strikes land where significant precipitation has not been 

received (Rorig and Ferguson, 1999). Such strikes are known as “dry strikes”. Rorig and 

Ferguson (1999) found that dry lightning days occur when there are low moisture levels 

and instability is high in the lower troposphere, while “wet” lightning days occur when 

there is variable lower atmospheric moisture and greater atmospheric instability.  

Various lightning models have been proposed (Anderson, 1991; Burrows, 2002; 

Burrows, 2008; Burrows et al., 2005). Occurrence prediction models tend to predict 

thunderstorm occurrence, and/or mean or total flashes over long time periods (days to 

months) and over large (province to country wide) spatial scales (Burrows et al., 2005). 

Other models to quantify or predict the features of lightning and its numerous interactions 

with the physical world have also been proposed. For example, the computer program 

Lightning-Caused Fire Occurrence Prediction System (Anderson, 2002) predicts the 

probability of a lightning strike resulting in a detectable fire based on the physical 

parameters of the strike, weather and fuels (Anderson, 2002). While work has been done 

to describe the influence of topography, fuel and weather on lightning-caused fire starts 

(Wierzchowski et al., 2002), a provincial model to help predict lightning occurrence 

would greatly advance the cause. 
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Lightning occurrence models are typically based on categorical and regression 

tree analysis. Tree-structured regression has been used to make lightning flash probability 

predictions for 5° latitude by 5° longitude cells across Canada and the northern United 

States (Burrows et al., 2005). Using decision trees, Burrows (2008) was able to reduce 

the number of proposed lightning predictors from 189 to 10 for each of the four 

designated regions of Canada. Top predictors noted in the literature included: mean sea 

level pressure, Showalter index, Lifted index, geopotential height, and precipitable water 

(Anderson, 1991; Burrows, 2008). It should be noted that convective indexes were 

always included among the top predictors. All of the literature encountered to date 

supports the notions that lightning is episodic in nature and its characteristics vary greatly 

over time and space. While these studies are useful for finding long term trends and 

narrowing down the possible significant lightning predictors, a finer temporal and spatial 

resolution model is needed to further benefit wildland fire management and research 

communities. 

1.9  OBJECTIVES 

This study works towards providing lightning occurrence prediction model(s) to 

aid with wildland fire management in the province of Alberta, Canada. According to the 

Government of Alberta, forests cover 60% of the province and the forestry industry 

contributes CAD nine billion dollars to Alberta’s economy (Government of Alberta, 

2012). Alberta’s forests hold great tourist, natural, recreational, cultural, economic, and 

biodiversity value. While excluding fire from Alberta’s landscape is neither economical 

nor environmentally responsible, the immense values of our forests makes it critical to 

know where and when fires occur, so responsible decisions can be made to preserve 

natural ecosystems (including the role of natural disturbances) and insure valued areas 

can be protected. Forest fire management in Alberta is carried out by Alberta 

Environment and Sustainable Resource Development as well as Parks Canada. An 

accurate, medium range lightning prediction model could greatly aid the efforts to 

responsibly manage Alberta’s forests. 

The objective of this study was to build models to accurately predict lightning 

occurrence in Alberta. Ideally these models will require only 12 or 15 input variables. In 

order to accomplish this, 29 general classes of predictors, and their variations, have been 

selected based on previous research. These predictors were used to generate diagnostic 

models to forecast lightning occurrence under a certain set of conditions via random 
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forest classification. Various ensemble forecasts were then generated. The ensemble 

model outputs predict daily and 6-hour lightning occurrence in each cell for three 

different spatial scales: (1) 2.5° latitude by 2.5° longitude, (2) 1.25° latitude by 2.5° 

longitude, and (3) 50km by 50km. The addition of lightning prediction models to the field 

of wildland fire science will increase knowledge of lightning ignitions, better fire 

occurrence models, improve resource allocation, and help increase preparedness of fire 

management agencies and communities alike. 
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CHAPTER 2.  DATA AND METHODS 

2.1  STUDY AREA 

Located in the northwestern hemisphere, Alberta is the western most prairie 

province in Canada (Figure 3). Spanning from the Canada-United States border at the 49
th
 

parallel to the Northwest Territories at 60
°
, the province reaches west from a shared 

border with Saskatchewan at the 110
th
 meridian west to 120° at the northwest corner. The 

western border separating Alberta and British Columbia extends to the south from 60° 

north and 120° west to the Rocky Mountain Continental Divide, at which point it then 

follows the Continental Divide southward to the 49
th
 parallel.  

Figure 3: Located in in North America, the study area, highlighted in red, covers the province of 

Alberta, Canada. 

 

Spanning an area of 661,848 km
2
 (Statistics Canada, 2005), Alberta has a 

population of 3,645,257 people (Statistics Canada, 2013). Alberta is a geographically 

diverse province (Figure 4) with six major Natural Regions (Natural Regions Committee, 

2006). The northern half of the province is primarily covered by the Boreal Forest with a 

small portion of the Canadian Shield reaching into the northeastern corner. Much of the 

southern province can be classified as Parkland and Grassland. The Rocky Mountains 

peak along the southwestern border and gradually lower as you move east into the 

leeward Foothills. The Foothills transition to Boreal Forest in the north, a central aspen 

Parkland, and to the Grasslands of the southeast. The Grasslands are scored by the unique 
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deep canyons of the Alberta badlands; long ago created and continually transformed by 

the Red Deer River.  

Alberta has a dry continental climate with four distinct seasons. Precipitation 

ranges from 550 to 600mm/year in the Foothills, to 300mm in the southeast, and 400 to 

450mm in the north (Stamp 2009). The growing season has a latitudinal gradient lasting 

around 120 days in the south and 60 days in the north (Stamp, 2009). With warm mild 

summers and cold snowy winters, Alberta’s typical summer daytime highs of 20 to 25°C 

greatly contrast the normal winter night-time lows of -15 to -25°C; however temperatures 

can often climb above the mid to upper 30s and drop below -40°C (Government of 

Alberta, 2013). Lightning occurs year round in Alberta with the majority of strikes taking 

place during the warm summer months (Burrows and Kochtubajda, 2010). The Foothills 

and Swan Hills are lightning hotspots experiencing on average more than 30 days per 

year of CG lightning (Burrows and Kochtubajda, 2010). 

2.2  DATA 

 Thirteen years of data from 1999 to 2011 were collected to perform this study. 

As implied by the objectives, the predictand is a binary response variable indicating the 

presence or absence of CG lightning. There are two main groups of predictors: 

geographic and temporal covariates, and weather data. The geographic and temporal 

covariates include location and time specific inputs for each data point. Along with the 

weather data, these two groups make up the input variables used to predict lightning 

occurrence. Weather data was obtained from four separate sources. NCEP-DOE
2
 

Reanalysis ІІ Pressure Level data, NCEP-DOE Reanalysis ІІ Surface Data, 

NCEP/NCAR
3
 Reanalysis I Pressure Level data, and Radiosonde parameters and indexes 

were compiled and evaluated to capture a clear picture of atmospheric conditions and 

their relationship to CG lightning activity. Some additional variables of interest were 

calculated from components of the Reanalysis І and Reanalysis ІІ data. A brief 

description and background of each data set and variable is provided in the following 

sections and a list of all initial predictors is presented in Table 1. Modifications and data 

                                                      

 

 

2
 National Centers for Environmental Protection (NCEP), Department of Environment (DOE) 

3
 National Center for Atmospheric Research (NCAR) 
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quality control measures implemented are discussed in section 2.3  DATA 

PROCESSING AND MODIFICATIONS. 

 

Figure 4: There are six Nation Regions in the province of Alberta separating the province into 

regions with similar terrain and ecology. 
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Table 1: List of input variables. Abbreviations, full names, units of measure, and some additional 

information about data sources and resolution are given for all of the predictors initially 

considered. 

 Predictor Name Units 
Source and 

Specifications 

day Julian day   

lat Latitude Degrees North (°)  

long Longitude Degrees West (°)  

time Time of day 
Coordinated Universal 

Time (Z) 
0000, 0600, 1200 and 1800 

elv Elevation4 Meters (m) Digital Elevation Model5 

Temp Air temperature Kelvin (K) 
NCEP-DOE Reanalysis ІІ: 

Pressure Level 

2.5° Latitude by 2.5° 

Longitude Grid 

17 Pressure Levels  

(1000 to 10mb) 

gpz Geopotential Height Meters (m) 

RH Relative Humidity Percent (%) 

omega Omega: Vertical Winds 
Meters per Second 

(m/s) 
U U Wind: North-South 

V V Wind: East-West 

PW Precipitable Water 
Kilograms per Square 

Meter (kg/m2) 
NCEP-DOE Reanalysis ІІ: 

Surface Grid 

2.5° Latitude by 2.5° 

Longitude Grid 
sfc_p Surface Pressure 

Pascal (Pa) 
mslp Mean Sea Level Pressure 

spec_hum Specific Humidity 
Kilograms per 

Kilogram (kg/kg) 

NCEP/NCAR Reanalysis 

І: Pressure Level 

2.5° Latitude by 2.5° 

Longitude Grid 

Eight Pressure Levels  

(1000 to 300mb) 

CAPE Convective Available Potential Energy Joules per Kilogram 

(J/kg) 
Radiosonde Observations 

Fort Smith (YSM), Fort 

Nelson (YYE), Kelowna 

(WLW), Edmonton Stony 

Plain (WSE), Prince George 

(ZXS), The Pas (YQD), 

Glasgow (GGW), and Great 

Falls (TFX) 

CINS Convective Inhibition 

EQLV Equilibrium Level Millibars (mb) 

KINX K Index  

LIFT Lifted Index  

LCLP Lifted Condensation Level Pressure Millibars (mb) 

LCLT Lifted Condensation Level Temperature Kelvin (K) 

PWAT Precipitable Water6 Millimeters (mm) 

SWET Severe Weather Threat Index  

SHOW Showalter Index  

Td Dewpoint Temperature 
Degrees Celsius (°C) 

Calculated from Reanalysis 

І and Reanalysis ІІ data 

T.Td Temperature-Dewpoint Spread 

haines Haines Index  

Vap Vapour Pressure Millibars (mb) 

 

                                                      

 

 

4
 Above mean sea level 

5
 Digital Elevation Model (DEM) from Global GIS with 30 arc second spacing (~1km), Elevation 

accurate to ± 30m  (http://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm)  
6
 For entire sounding 
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2.2.1  PREDICTAND 

Yearly lightning flash data for a rectangular polygon encompassing the province 

of Alberta were obtained for the thirteen year period. The flash data, provided by 

Environment Canada, include the date (YYYY-MM-DD), Coordinated Universal Time 

(UTC) in Zulu (Z), latitude (decimal degrees), longitude (decimal degrees), event 

strength (kA), and cloud or ground status for each flash record. This data was collected 

and recorded by the Canadian Lightning Detection Network (CLDN), a sub-network of 

the North American Lightning Detection Network (NALDN). The NALDN provides 

continuous lightning data of most CG and some CC flashes for Canada and the 

contiguous United States. The network(s), operated by Vaisala Inc., detect and record 

lightning flashes year round to about 300km offshore, however the detection efficiency of 

the system degrades along the northern most reaches and near the periphery.  

Locations of the NALDN detectors can be found in Orville et al. (2002) and a 

more up to date map of the CLDN sensors can be found in Burrows and Kochtubajda 

(2010). As noted in Burrows and Kochtubajda (2010), the CLDN has experienced many 

changes since its introduction. In February of 1999 the system became able to 

differentiate CG and CC discharges. The CLDN CG detection efficiency drops to roughly 

70% near the periphery of the network area however it exceeds 80% to 90% in most 

regions and has a median location accuracy of 500m (Cummins and Murphy, 2009). 

Alberta’s landlocked location places it well within the 70% detection efficiency line as 

shown in Burrows and Kochtubajda (2010) therefore no modifications were made to 

correct for differences in detection efficiency.  

Additional sensors have been added over the years and starting in 2005 a number 

of sensors were upgraded from Lightning Positioning and Tracking Sensors (LPATS-IV), 

which detect and locate lightning via triangulation by measuring the arrival time of radio 

pulses produced by the flashes, to CG Enhanced Lightning Sensors (LS7000), which 

combine time-of-arrival technology with magnetic direction finding. The newer devices 

only require a strike to be detected by two sensors while the old devices triangulation 

method requires detection by three sensors. Cummins and Murphy (2009) provide a 

concise overview on the history of lightning detection, changes to detection technology, 

and how many of the different sensors work. Information pertaining to field waveforms 

produced by lightning and specifics on the electromagnetic energies emitted by different 
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stroke components can be found in Cummins and Murphy (2009), Krider et al. (1980), 

and Weidman and Krider (1978, 1979) among others. 

2.2.2  PREDICTORS 

Geographic and Temporal Covariates 

Lightning activity is influenced by both geographic and temporal factors. 

Elevation, slope and aspect, proximity to large water bodies, and length of the warm 

season are all related to localized rates of lightning occurrence (Burrows and 

Kochtubajda, 2010). Studies of Canadian lightning characteristics have also shown 

diurnal and seasonal trends. We typically see maximum activity in the late afternoon and 

minimal activity in the early morning hours with the greatest number of strikes occurring 

during the month of July (Burrows et al., 2002; Burrows et al., 2005). In order to try to 

capture these characteristics, latitude, longitude, elevation, Julian day, and time of day 

were all included as input variables.  

Elevation and longitude provide a gradient for slope, aspect, and height from the 

Rocky Mountains and leeward Foothills in the west to the relatively flat prairie lands in 

the east. Latitude and Julian day help capture the length of the warm season as well as 

typical seasonal conditions. Julian day also captures the seasonal trend of peak lightning 

occurrence in July. The diurnal variation is represented by time of day as a predictor. 

These descriptive variables represent the time and geographic characteristic for a specific 

data point. The geographic covariates represent the physical location and elevation at the 

center point of a particular spatial bin, while the temporal covariates represent the time 

frame under consideration. The elevation for each center point was extracted from a 

Digital Elevation Model (DEM) with a 30 arc second (~one km) spacing and an elevation 

accuracy of ±30m.  

Reanalysis ІІ : Pressure Levels 

The first set of weather related variables were provided by the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and obtained from their web site at 

http://www.esrl.noaa.gov/psd/. Reanalysis ІІ pressure level (Kanamitsu et al., 2002) data 

were downloaded for the thirteen year period. Daily mean and four-times daily 

observations of air temperature, geopotential height (gpz), relative humidity (RH), 
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vertical (omega) wind speed, north-south (U) wind speed, and east-west (V) wind speed 

data sets were downloaded for the 17 available pressure levels. This pressure level data 

provides a vertical profile of the atmosphere with observations at the 1000, 925, 850, 700, 

600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10mb levels at a 2.5° latitude 

by 2.5° longitude global grid.  

Since more lightning strikes occur during the warm season and during the warm 

afternoon hours, air temperature may play an important role in lightning prediction. 

Geopotential height (gpz) is an approximation of the actual height in meters of the 

pressure level above mean sea level. The gpz contours of various pressure levels 

including 850, 700, 500, and 300mb, are often analyzed to identify atmospheric ridges 

and troughs. Troughs can often be found where convection is occurring (low pressure 

often associated with fronts) and often bring clouds, precipitation or cold air masses 

(Martell, 2001). Ridges are regions with higher gpz where air is sinking or a warm air 

mass is present (Martell, 2001). 

Ridges often bring warm drier air. Relative humidity (RH) is the ratio of the 

partial pressure of water vapour to the saturated vapour pressure of water at a given 

temperature. Relative humidity is relative to the temperature; warm air can hold more 

water vapour than cooler air therefore the same amount of vapour present in both parcels 

will produce two different RH values. When RH reaches 100% there is a chance of 

precipitation if the air is rising at a sufficient rate. There were some data quality issues 

found in the RH data set (measurement above 100% and below 0%) therefore another 

humidity metric, specific humidity was also obtained from Reanalysis І: Pressure Level. 

The vertical and horizontal winds provide insight into the wind shear and how the air is 

moving at various levels of the atmosphere. Due to the low resolution of the Reanalysis 

data there is little chance of updrafts or downdrafts being captured. The winds were 

initially included to see if they could play a role in lightning prediction at this coarse 

scale. 

Reanalysis ІІ : Surface Grid 

 NCEP-DOE Reanalysis ІІ surface grids provides surface and entire atmosphere 

weather data at a 2.5 degree latitude by 2.5 degree longitude grid. Daily mean values and 

four-times daily observations of surface pressure, mean sea level pressure (mslp), and 

precipitable water (entire atmospheric column) were downloaded for the thirteen year 

period. A falling surface pressure is often associated with increased risk of convective 
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storm occurrence while consistent pressure can be associated with a stable atmosphere. 

Precipitable water is a measure of the total atmospheric water vapour (mm) within a 

vertical column cross-sectional area between the Earth’s surface and the top of the 

atmosphere. Another measure of precipitable water was also obtained from the 

Radiosonde data. 

Reanalysis І : Pressure Levels 

 A final variable was obtained from NCEP/NCAR Reanalysis І pressure level 

(Kalnay et al., 1996) from the website http://www.esrl.noaa.gov/psd/. Specific humidity 

(kg/kg) is approximately equal to the mixing ratio, ratio of the mass of water vapour in an 

air parcel to the mass of dry air for the same parcel. Specific humidity was included since 

unlike relative humidity, it does not vary as the temperature or pressure of an air parcel 

changes making it useful for calculating additional variables. In addition, the RH data had 

some quality issues therefore including specific humidity seemed necessary. 

Radiosonde Observations 

Knowing the physical characteristics of the upper atmosphere is crucial for 

research, aviation navigation, and weather forecasts including thunderstorm prediction. A 

“sounding” refers to the process by which observations of temperature, pressure, 

humidity, and wind speed and direction are made for a vertical column of the atmosphere. 

There are more than 800 Radiosonde Observations (RAOB) stations worldwide with over 

120 stations located in North America and the Pacific islands (NOAA National Weather 

Service, 2013). Environment Canada operates 31 of these stations across Canada 

(Environment Canada, 2013), while the United States National Weather Service Upper-

air Observations Program operates an additional 92 RAOB stations across the United 

States and Pacific islands (National Weather Service, 2009). These stations are the launch 

locations for Radiosondes, small devices suspended below large hydrogen or helium gas 

balloons.  

When launched, the balloons rise at around 300m per minute. During its ascent, 

the sensors in the Radiosonde take measurements of surrounding temperature, pressure, 

and humidity, providing an atmospheric profile up to roughly 30km altitude (Dabberdt et 

al., 2003). Wind speed and direction are recorded by GPS trackers attached to the 

devices. These observations are then used to compute various upper air indexes and 
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parameters which are then broadcasted to various organizations and made readily 

available to the public. Launches occur two times per day (00Z and 12Z) unless severe 

weather is anticipated, in which case additional launches may occur. Upper air 

observations from 1973 onward can be accessed online from the University of Wyoming 

at http://weather.uwyo.edu/upperair/sounding.html. 

Eight RAOB stations were chosen in an attempt to provide coverage of the entire 

province. Only a single station is located within Alberta, station 71119: Edmonton Stony 

Plain (WSE). The remaining seven stations surround the province. Station 71934: Fort 

Smith (YSM) is located near the Alberta border in the Northwest Territories, 71945: Fort 

Nelson (YYE) in northeastern British Columbia, 71203: Kelowna (WLW) in the southern 

interior of British Columbia, 71908: Prince George (ZXS) roughly between Fort Nelson 

and Kelowna, 71867: The Pas (YQD) in Manitoba, 72768: Glasgow (GGW) Montana, 

and 72776: Great Falls (TFX) Montana. Figure 5 shows the locations of the sounding 

stations used. 

Figure 5: The location of the eight RAOB sounding locations used to provide information about 

the upper atmosphere conditions over Alberta. General locations are marked by yellow triangle 

with the corresponding station call names below. 

Based on previous literature, including: Burrows (2002, 2008), and Burrows et 

al. (2005); some of the parameters and indexes available from the sounding data were 

chosen. The variables chosen are: Convective Available Potential Energy (CAPE), 

Convective Inhibition (CINS), Equilibrium Level (EQLV), George’s K Index (KINX), 

Lifted Index (LIFT), Lifting Condensation Level Pressure (LCLP), Lifting Condensation 

Level Temperature (LCLT), Precipitable Water (PWAT), Severe Weather Threat Index 
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(SWET), and Showalter Index (SHOW). A short review of each Radiosonde variable is 

provided. For the following equations notation is as follows unless otherwise stated: 

Temperature in degrees Celsius denoted by T, Td represents the dewpoint temperature 

also in degrees Celsius, and numbered subscripts indicate the atmospheric level (mb) at 

which the variable refers. Acceleration due to gravity is indicated by g.  

Convective Available Potential Energy (CAPE): An indicator of atmospheric 

instability, CAPE is a numerical measure of the amount of energy, in J/kg, available to a 

parcel of air if lifted through the atmosphere. The positive buoyancy of the parcel can be 

found by calculating the area on a thermodynamic diagram (Skew-T log-P) between the 

height of the level of free convection, zEQ, and the equilibrium level height, zLFC, where 

the environment temperature profile is cooler than the parcel temperature. CAPE can also 

be calculated using the virtual temperature (abbreviated as CAPV on soundings) however 

that is not the case for this study. CAPE values less than 1,000J/kg indicate a relatively 

stable atmosphere while values in excess of 2,000J/kg and 3,000J/kg indicate sufficient 

energy for thunderstorm and severe thunderstorms respectively. 

   

Convective Inhibition (CINS): The opposite of CAPE, CINS is the amount of 

energy in J/kg needed to overcome the negative buoyant energy exerted by the 

environment on an air parcel. Like CAPE, CINS can be determined from a Skew-T log-P 

diagram by taking the area between the cooler parcel temperature and warmer 

environment temperature profile beginning at the surface, Zsfc, and going up to the level 

of free convection, ZLFC. CINS can also be calculated using the virtual temperature 

(abbreviates as CINV on soundings) however that is not the case for this study. Given as 

a negative value, CINS of zero to -50J/kg represents a weak capping effect, -50 to -

200J/kg represent a moderate cap, and less than -200J/kg represents a strong capping 

force and thus likely a stable atmosphere. 

   

Equilibrium Level (EQLV): The height of the level of neutral buoyancy where a 

parcel is no longer buoyant. This level is often near the tropopause. Due to numerous 

missing values in the data set, Equilibrium Level was removed from the list of variables 

prior to analysis. 

Georges K-Index (KINX): Taking the lapse rate, dewpoint temperature at 850mb, 

and the 700mb temperature-dewpoint spread into account, KINX provides an estimate of 
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the likelihood of thunderstorms. A value of less than 20 indicates zero likelihood, but as 

the value increases to 20 or greater the chance of precipitation and thunderstorms is 

expected to increase. A value greater than 35 indicates a good chance of numerous 

thunderstorms (George, 1960).  

   

Lifted Index (LIFT): While the formula is the same as that for SHOW, when 

calculating LIFT the temperature of the parcel (Tparcel) is the 500mb temperature of a 

lifted parcel with average pressure, temperature, and dewpoint of the layer 500m above 

the surface (Morales et al., 2007). As LIFT decreases, the atmosphere becomes more 

unstable. A LIFT of 10 or more indicates stable weather. As LIFT falls below zero 

thunderstorms become possible, while values less than or equal to -4 indicate severe 

thunderstorm potential. 

   

Lifted Condensation Level Pressure (LCLP): The pressure (mb) level at which a 

parcel of air lifted
7
 from the surface dry-adiabatically would become saturated. The lifted 

condensation level can often be observed as the cloud base and is easily found on a 

Skew-T log-P by lifting a near surface temperature and dewpoint value. Where T is in 

Kelvin and KAPPA is Poisson’s constant, 2/7. 

   

Lifted Condensation Level Temperature (LCLT): Temperature in Kelvin at the 

lifted condensation level (LCL). The LCL is the level at which a parcel of air lifted from 

the surface dry-adiabatically would become saturated. Note: for this equation temperate 

and dewpoint are in Kelvin. 

   

Precipitable Water (PWAT): Total atmospheric water vapour (mm) within a 

vertical column cross-sectional area between the Earth’s surface and the top of the 

atmosphere. Provides an idea of how much precipitation could fall as the result of a low 

pressure system or storm. 

                                                      

 

 

7
 Unless otherwise stated, when a parcel is lifted it is done so dry-adiabatically until saturated at 

which point if it continues to lift it will do so moist-adiabatically. 
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Severe Weather Threat Index (SWET): More commonly referred to as SWEAT, 

the severe weather threat index (Williams et al., 2008) is used to analyze thunderstorm 

potential. Values greater than 300 indicate an increased risk of severe thunderstorm, 

while values of 400 and greater represent considerable risk of tornadoes. In the formula, 

TT is the Total Totals Index (if less than 49, set to zero), V refers to wind speed in knots 

and ΔV500-850 is the change in wind direction (degrees) between the 500mb and 850mb 

levels. 

  

Showalter Index (SHOW): Another atmospheric instability index that evaluates 

the potential for convective storm activity. The Showalter (1947) Index is the difference 

between the 500mb environmental temperature, T500, and the temperature of a parcel 

lifted from 850mb to 500mb, Tparcel. As the Showalter Index decreases below zero the 

chance of convective activity, including precipitation and thunderstorms, is expected to 

increase.  

   

Calculated Variables 

 Additional variables were calculated to supplement those obtained from the 

previous data sources. Dewpoint temperature, vapour pressure (mb), temperature-

dewpoint spread, and Haines index (Haines, 1988) were calculated from the Reanalysis І 

and Reanalysis ІІ data. In order to obtain the dewpoint temperature (°C), vapour pressure 

(mb) was calculated from the specific humidity obtained from Reanalysis І. The 

following two formulas (Bolton, 1980) for specific humidity (kg/kg), q, and vapour 

pressure (mb), e, were modified in order to calculate the dewpoint temperature. p=surface 

pressure in mb. 

   

   

By solving for vapour pressure, e, the dewpoint temperature can then be calculated. 

   

   

Vapour pressure and dewpoint temperature were calculated for the 1,000mb level, 850mb 

level, and 700mb levels. Quality controls were set in the codes preventing a dewpoint 

temperature from being greater than the corresponding air temperature. If such an event 
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occurred then the dewpoint temperature was set equal to the air temperature. The 

temperature dewpoint spread, a simple subtraction of dewpoint temperature from air 

temperature, was then calculated for the three levels.  

The Haines Index (Haines, 1988) is a lower atmosphere stability index often used 

to help understand and describe fire weather. Although typically used as an indication of 

the potential of wildfire growth and risk of extreme fire behaviour, this index was 

included due its representation of moisture and stability in the lower atmosphere. 

Wildland fire organizations typically calculate the Haines index from the 12Z morning 

sounding in North America. Ranging from values of two to six. A Haines index of two 

represents a moist and stable lower atmosphere with very low fire growth potential while 

a value of six indicated a dry unstable lower atmosphere with a high risk of fire growth 

and extreme fire behaviour (Haines, 1988).  

The Haines Index can be calculated for low (950 to 850mb), mid (850 to 700mb) 

and high (700 to 500mb) elevations. These variables were calculated from the Reanalysis 

ІІ data which does not have a value for the 950mb level therefore the low elevation 

Haines Index was not calculated. Due to the general elevation of the province (excluding 

the mountainous region) the mid-level Haines index was considered sufficient. 

Calculated in a series of steps based on various thresholds the mid-level Haines Index 

was calculated as follows:  

The Stability Term is based on the difference between the 850mb and 700mb air 

temperatures, 

   

where if         Tdiff  ≤ 5°, Stability Term = 1  

 6° ≤ Tdiff  ≤ 10°, Stability Term = 2 

         Tdiff  ≥ 11°, Stability Term =3. 

The Moisture Term represents the temperature dewpoint spread at the 850mb level, 

   

where if         Tspread ≤ 5°, Moisture Term = 1  

 6° ≤ Tspread  ≤ 12°, Moisture Term = 2 

         Tspread  ≥ 13°, Moisture Term =3 

The Haines index can then be calculated as the sum of the Stability Term and Moisture 

Term. Finally, 24-hour change, was also calculated for each of the existing Reanalysis 

variables and each of the newly calculated variables. 
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2.3  DATA PROCESSING AND MODIFICATIONS  

From a wildland fire management perspective, the primary interest and 

application of lightning predictions models lies in accurately predicting lightning events 

in remote forested areas. Nonetheless, lightning prediction models were created for the 

entire province. It is believed the benefits of lightning prediction models reach far beyond 

the proposed fire management objectives of improving resource allocation and 

preparedness. Models were created for two time frames (daily and 6-hour) and three 

different spatial scales (Figure 6): 2.5 ° latitude by 2.5° longitude grid, 1.25° latitude by 

2.5° longitude grid, and a 50km by 50km grid. The province as a whole was considered 

for the first two spatial scales. For the third scale, 50km by 50km, the province was 

subdivided into three separate zones based on the Natural Regions of Alberta (Natural 

Regions Committee, 2006). Figure 7 shows the three zones which separate the province 

into large geographically and ecologically similar regions. Daily and four-times daily (6-

hour) lightning predictions models were developed for each of the spatial scales. No 

predictions were made for the Canadian Shield Region as it is a small (9,719km
2
), 

sparsely vegetated area of transition between the tundra and forest and therefore is not of 

particular concern for wildland fire occurrence. In addition, even at the 50km scale there 

would only be a couple of points within this area. 

 

 

Figure 6: Lightning prediction models were created for the province of Alberta at three different 

spatial scales. From left to right: 2.5 ° latitude by 2.5° longitude grid, 1.25° latitude by 2.5° 

longitude grid, and a 50km by 50km grid. 
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Figure 7: Three zones were created for the 50km by 50km spatial scale. These zones are based on 

the Natural Regions of Alberta and include the Boreal Forest Zone, Parkland and Grassland Zone, 

and the Rocky Mountain and Foothills Zone. 

 

 Before the prediction models were created, a suite of data processing, 

interpolation, quality control, and modifications were needed. This section walks through 

the methods used to process, generate, and modify the lightning and predictor data. A 

description of the interpolation methods and quality control measures applied to the 

Reanalysis and Radiosonde data is then provided along with an overview of the 

interpolation technique. Finally the methods for the modeling component are outlined 
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along with a basic background of the statistics and algorithms used. All of the data 

processing, quality control, analysis, and modeling was performed in the R programming 

environment (R Core Team, 2013). 

2.3.1  LIGHTNING DATA PROCESSING 

The objective of this study is to create models that predict warm season CG 

lightning occurrence for multiple spatial and temporal scales within the Province of 

Alberta. In order to model lightning occurrence, the raw lightning data needed to be 

processed and reorganized to meet the objectives. The CLDN data includes all lightning 

flashes recorded within a rectangular polygon encompassing the province of Alberta. 

Using the maptools (Bivard and Lewin-Koh, 2013) package and a shape file of Alberta, a 

clip was performed to remove all flash records outside of the Alberta boundary. The data 

set was also subset to only include lightning flash data from April 1
st
 to October 31

st
 for 

each of the thirteen years. 

Quality control measures were then implemented on the remaining data. The 

same methods of reclassification used in Burrows and Kochtubajda (2010) were 

implemented to correct for misclassification of CG status. Any positive CG strikes 

recorded with a peak current strength less than 15kA were reclassified as CC flashes, and 

all positive flashes classified as CC with a strength greater than 20kA were reclassified as 

CG. Misclassifications occurred in less than 7% of the data. The majority of the 7% 

classification error were flashes incorrectly classified as CG (less than 15kA). 

In contrast to Burrows et al. (2005), who aimed to predict all detected lightning, a 

decision was made to remove the CC strikes and only build models to predict CG strikes 

as these are the flashes of interest when predicting lightning from a wildland fire 

perspective. After the reclassification process, all CC strikes were removed from the data 

set. Once the data was subset to the proper spatial range, time frame, and lightning type, 

the data needed to be processed to generate a series of individual data sets with various 

spatial and temporal resolutions. Six distinct lightning data sets were needed. Each of the 

three spatial scales required two separate sets, one with the total daily occurrence, and the 

other with lightning strikes binned into four separate six-hour time bins for each day. 

In order to create the different spatial grids, a series of center points were 

identified for each scale. A series of rectangular bins were then created surrounding each 

center point. Figure 6 shows the three spatial scales and the approximate location of the 

center points. The center points and corresponding spatial bins for the first two scales 
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were created with ArcGIS with a World Geodetic System 84 (WGS 84) projection and 

are measured out in degrees latitude and longitude. The Lambert Conformal Conic 

projection was used to generate the 50km by 50km grid. Any strikes falling within the 

boundary of particular bin were assigned a “POINT_ID” corresponding to the unique 

spatial bin. Four distinct time bins were also created.  

The Reanalysis data is available in daily mean and four-times daily observations 

occurring at 00Z, 06Z, 12Z, and 18Z. The upper air sounding data are typically available 

for 00Z and 12Z observations. Four time bins were created for the lightning data based on 

the temporal resolution of the predictor data sets. All lightning strikes occurring within 

the given time frame were classified with corresponding “tbin” value: 

- tbin = 1 from 21Z to 03Z (15:00 to 21:00 MST) 

- tbin = 2 from 03Z to 09Z (21:00 to 03:00 MST) 

- tbin = 3 from 09Z to 15Z (03:00 to 09:00 MST) 

- tbin = 4 from 15Z to 21Z (09:00 to 15:00 MST) 

Since the tbin=1 time frame spans over a two day period (from 9pm to 3am 

UTC), a one day adjustment is needed to properly place the six-hour consecutive time 

frame together. In order to do this a fifth temporary time bin was created. The fifth time 

bin was applied to all strikes occurring after 21:00:00Z (hh:mm:ss). This temporary time 

bin, tbin=5, allowed for one Julian day to be added to each strike occurring between 21Z 

and 24Z, effectively coupling these strikes with the following days 00Z to 03Z 

observations. The spatial bins and time bins created for the lightning data were also used 

to classify the predictor variables allowing the predictors and the predictand to be merged 

together into six master data sets. 

2.3.2  REANALYSIS DATA PROCESSING 

Each of the daily mean and four-times daily Reanalysis variables downloaded 

contained a year of observations for the entire globe. The variables were clipped to the 

spatial and temporal ranges as outlined in 2.3.1  LIGHTNING DATA PROCESSING. 

The basic variables from the Reanalysis ІІ: Pressure Level data have measurements for 

17 vertical levels. Since a unique variable variation is created for each of the six basic 

variables at each of the 17 levels at each time (4+1, four-times daily and daily mean), the 

number of variables stemming from the Reanalysis ІІ: Pressure Level data alone was 510. 

In order to narrow down the amount of variables, some of the levels were removed prior 
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to processing. Removing even a few of the levels resulted in a significant decrease in data 

size and reduced the number of inputs for the models.  

 All levels above 250mb were removed effectively decreasing the number of 

layers from 17 to nine. Once some of the levels were removed, a data quality overview 

was performed where the maximum and minimum values for each variable were found. 

While almost all variables had their extreme values fall within an acceptable range, RH 

stood out as having some quality issues. Physically impossible values of greater than 

100% and less than 0% were found throughout the data set. The less than 0% invalid 

entries appeared to propagate across time and space indicating a possible systematic 

upload error in the RH data set. A decision was made to replace any invalid data with the 

closest acceptable value and a note was made of each invalid data point. 

The specific humidity data available through Reanalysis І: Pressure Level had 

only eight levels of data available versus the 17 available for the other pressure level data. 

The eight levels follow the same pressure level spacing but only extend up to the 300mb 

level. All eight levels were kept. The Reanalysis data came from the source as 2.5° 

latitude by 2.5° longitude gridded data. In order to interpolate the Reanalysis data for the 

1.25° latitude by 2.5° longitude and the 50km by 50km spatial scales a thin-plate spline 

was used. The interpolated variables were then subject to quality control as outlined in 

section 2.3.4  THIN-PLATE SPLINE. No additional processing was needed for 

geographic and temporal covariates as these variables are explanatory characteristics of 

the data points. The elevation was extracted from the DEM for each of the three spatial 

scales. 

2.3.3  RADIOSONDE DATA PROCESSING 

The Radiosonde data set includes point data for eight stations in and surrounding 

Alberta. An initial data quality assessment turned up some entries where -9999 were 

reported for missing data. This can occur if the sounding has a malfunction or if a certain 

level or index cannot be found or computed. The missing data code, -9999, showed up so 

often for the Equilibrium Level (EQLV) that a decision was made to remove the variable 

prior to any processing, reducing the number of Radiosonde variables to nine. For the 

remaining sounding variables, if a value of -9999 was reported it was replaced with NA 

in order to prevent future errors if -9999 was considered as a numeric value. Sometimes 

soundings are not performed at the 00Z and 12Z preset time. They may be performed 
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early, be delayed due to malfunction, or more than one may be done if severe weather is 

anticipated. 

Codes were written to classify all soundings occurring before 03Z as 00Z, after 

21Z as 24Z, and between 09Z and 15Z as 12Z. Those with a 24Z classification had one 

Julian day added to the date column and then were reclassified as 00Z. The average was 

computed for each of the variables if more than one sounding was available for a 

particular RAOB station, date, and time. This averaging resulted in one or fewer (if no 

sounding was available) rows of data for each station at a given date and time. Once this 

was complete, the data were subset to include only data with the 00Z and 12Z time 

classification. In order to interpolate values for Alberta at the same spatial grids as the 

lightning and Reanalysis data, three separate thin-plate splines were used to interpolate 

and smooth the newly generated Radiosonde data. 

2.3.4  THIN-PLATE SPLINE 

A Thin-plate Spline (TPS) regression was performed using the Tps function in 

the fields package (Furrer et al., 2013). The Tps function fits a TPS surface to irregularly 

spaced data. A TPS can be thought of as trying to fit a semi ridged sheet over an uneven 

surface terrain. The resistance of the sheet to bending is analogous to the penalties 

applied by the TPS for roughness. Now imagine that instead of the underlying terrain you 

only have an incomplete version with x number of irregularly spaced points. Given only 

x number of points, you want to best interpolate the missing data. A TPS is an 

interpolating and smoothing technique that tries to minimize the residual sum of squares. 

A TPS is restricted in that the function must have a certain level of smoothness (Green 

and Silverman, 1994).  

Thin-plate splines were used on all of the weather predictor data sets in order to 

interpolate data points for the different spatial scales. For the initial 2.5° latitude by 2.5° 

longitude scale, TPS were applied to the sounding data only as the Reanalysis data came 

from the source with a 2.5° latitude by 2.5° longitude grid spacing. For the second spatial 

scale of 1.25° latitude by 2.5° longitude, TPS were applied to the sounding and 

Reanalysis data. The Reanalysis and sounding data were then subject to the third set of 

TPS for the 50km by 50km spatial scale.  

When performing the TPS for the sounding data, an additional condition was set. 

Only eight data points (RAOB locations) are available for the sounding data. A condition 

was placed on the TPS such that a minimum threshold of five stations must have valid 
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observations of the interpolated variable in order for the TPS to run. If for a particular 

time (00Z or 12Z) and day there were less than five stations with valid observations 

available, no interpolations were made, instead the interpolated values for the variable 

were set to NA. 

Quality control measures were put in place for all interpolated values. Acceptable 

ranges were set for each variable according to their physical limits or original range of 

values. Variables with physical limits were given a range with hard values. For example 

RH must be between zero and 100%, CAPE must be ≥ zero, and CINS must be ≤ zero 

etc. When a hard value was not physically, or theoretically supported, values were set 

based on the range of values for that variable in its original scale. The maximum and 

minimum values for each variable falling into this category were calculated and a buffer 

of ±10% was applied. If an interpolated value fell outside of the acceptable range, the 

value was replaced with the nearest acceptable value.  

The presence of unacceptable values does not necessarily indicate there are 

issues with the TPS model. An unacceptable value can be generated for a point external 

to the reference points. For example, in Figure 8, six stations of data are available 

however none of the stations are located in the northern region. Without a station to 

bound the TPS it may continue on the current trajectory extrapolating values outside of 

the normal range. This is common when attempting to extrapolate values outside or at the 

edge of the reference points and is discussed in further detail in the Discussion Chapter in 

section 4.4.1  THIN-PLATE SPLINE. Once all of the data were processed, interpolated, 

and cleaned, they were merged together into six master files. 

Each daily data set and each 6-hour data set contained the geographic and 

temporal covariates, daily mean Reanalysis data, four-time daily Reanalysis data and the 

00Z and 12Z sounding observations for that spatial scale. The lightning observations 

were also merged into each data set. The 50km by 50km data were further subdivided 

into three zones shown in Figure 7 leading to the 10 data sets listed in Table 2. Before 

moving on to the modeling phase, all data points with NAs present were removed. This 

prevented the missing data from creating future problems when running correlation 

analyses, building the models, and using the models for predictions. 
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Table 2: List of the 10 data sets created for the two time frames (daily and 6-hour) and three 

spatial scales. The finest resolution scale (50km by 50km) is further subdivided into three separate 

zones. The number of observations remaining after all rows with NAs present were removed are 

also provided for all data sets. These 10 data sets are the basis for the lightning prediction models. 

Lightning Prediction Model Data Sets Number of Observations 

2.5° Latitude by 2.5° Longitude Daily 64,674 

2.5° Latitude by 2.5° Longitude 6-hour 282,896 

1.25° Latitude by 2.5° Longitude Daily 106,875 

1.25° Latitude by 2.5° Longitude 6-hour 499,680 

50km by 50km Boreal Forest Daily 290,394 

50km by 50km Boreal Forest 6-hour 1,083,904 

50km by 50km Parkland and Grassland Daily 93,483 

50km by 50km Parkland and Grassland 6-hour 348,928 

50km by 50km Mountain and Foothills Daily 119,340 

50km by 50km Mountain and Foothills 6-hour 445,440 

 

Figure 8: An example of a situation where data is only available for six of the eight RAOB 

stations. When using TPS to interpolate data for Alberta (highlighted), the northern most 

extrapolated values may be outside of an acceptable range as there is no point to bound the spline. 
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2.4  MODELLING METHODS 

A series of random forest models were created for each spatial scale and time 

frame. The randomForest package (Liaw and Wiener, 2002) was used. An iterative 

process was used where the variable importance from each random forest model was 

used to decrease the number of predictors and generate a new random forest model until 

only the top five variables remained. This section provides a basic introduction to random 

forests followed by the various techniques used to generate the random forest models. 

2.4.1  RANDOM FOREST: BACKGROUND 

Random forest (Breiman, 2001) is a supervised machine learning algorithm that 

constructs a forest by growing multiple classification trees. For a training set with n 

number of rows (number of entries) and m number of columns (number of input 

variables), each tree, and thus the forest, is grown as follows (modified from Breiman 

(2001)). Unless otherwise specified by the argument sampsize, a random bootstrap 

sample (with replacement) of n entries creates a new training set which will be used to 

grow a new tree. A subsample of the m input variables are randomly selected and the best 

split is selected to split the node. The best split for the node is often a strong variable with 

a clear division of values (or categories) between the categorical outputs. No pruning 

takes place therefore every tree is grown to the largest possible extent. Any number of 

trees can be grown to construct the forest (argument ntree).  

The error rate depends primarily on if any two trees are correlated (and the level 

of correlation) as well as the individual strength of the trees (Breiman, 2001). Correlation 

between trees increases the error rate while high tree strength improves the skill and 

decreases the error rate. The number of input variables has a direct impact on the error 

rate. Increasing the number of input variables has a positive relationship with between 

tree correlation, increasing the correlation and thus error (Breiman, 2001). Increasing the 

number of inputs also increases the individual tree strength and thus decreases error 

(Breiman, 2001). Due to these relationships, it is common practice to look for an 

optimum number of variables by comparing the Out-of-Bag (OOB) error rate for 

different forests generated with different numbers of input variables. 

When the training set for the current tree is being sampled with replacement 

under default conditions, roughly two-thirds of the data set is selected. This leaves one-

third as the OOB data. Once the tree is grown the OOB data is used to find the OOB error 
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estimate and to estimate the importance of each input variable. Due to the retention of 

OOB data, Breiman (2001) argues there is no need for cross-validation. Despite this 

recommendation a decision was made to manually separate the original data sets into 

separate training and validation sets. It was felt that a measure of truly independent 

validation could be accomplished in this way. Each randomForest generates an output of 

the input variables relative importance. The importance function displays the 

MeanDecreaseGini variable importance for the forest. 

The MeanDecreaseGini output provides a relative ranking of variable 

importance. If a variable is important it plays a large role making accurate predictions 

(Liaw, 2009). Likewise, randomly altering the variables values would have a strong 

effect on the skill of the predictions. The MeanDecreaseGini output tries to capture this 

importance by assigning relative values to all of the input variables (Liaw, 2009). The 

highest values are given to the most important variables while lower values are given to 

variables with less importance. The random forest algorithm was chosen for this study 

due to its efficiency with large data sets, ability to handle large number of input variables, 

and ability to rank input variables by importance. Both categorical and quantitative 

variables are used to predict lightning. This is not a problem for randomForest. In 

addition, the randomForest package has some built in arguments that can be modified to 

deal with imbalanced data.  

2.4.2  CONUNDRUM OF IMBALANCED DATA 

Many practical classification problems involve imbalanced data. A data 

imbalance occurs when one or more of the classes account for a small proportion of the 

data while another accounts for a large percentage. In other words there is one large class 

and another small or rare class. Often our interests rest in the rare class, also known as the 

“positive class”, while there is little interest is the large class “negative class”. Many 

examples of imbalanced data can be found in research dealing with rare disease diagnosis 

and fraud detection (Chen et al., 2004). Focusing back on lightning observations, we see 

that lightning events account for a small minority of the data while non-occurrences make 

up the majority of the observations. 

Machine learning classification algorithms can often fall short when dealing with 

imbalanced data as they are formulated to minimize overall error rates. This focus on 

overall accuracy favours the negative class producing a model with little information 

about the object(s) of interest. Researchers from many different fields and disciplines 
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have worked towards addressing this problem employing different statistical methods. 

One such method is to modify the arguments within the randomForest algorithm for 

classification and regression. There are three different typical approaches to deal with 

increasing the accuracy of the positive class prediction skill when working with random 

forests. 

 The first two approaches involve resampling of the data to help balance out the 

disproportion between the classes while the third takes a different approach by 

implementing cost-sensitive learning (Chen et al., 2004). Up-sampling (boosting) the 

minority class, and down-sampling the majority class are the two general resampling 

methods known as a Balanced Random Forest (BRF) approach (Chen et al., 2004). Up-

sampling involves random resampling of the positive class with replacement. This 

boosting of the minority class adds repeated data points thereby increasing the overall 

number of positive class measurements. In contrast, down-sampling of the majority class 

involves a random, or strategic, sub-sampling of the majority class to omit data points 

and decrease the number of measurement in the negative class. While both approaches 

increase the skill of the model with respect to the positive class, up-sampling leads to 

increased computational time while the down-sampling approach can result in a loss of 

information as not all data points from the negative class may be used. 

Weighted Random Forest (WRF) is the third method suggested by previous 

research and involves a cost-sensitive approach where class weights are implemented into 

the random forest model such that more weight is applied to the object(s) of interest 

(Pazzani et al., 1994). The performance of the three approaches was assessed by Chen et 

al. (2004) by comparing the resulting confusion matrixes from six unique data set runs. It 

was found that while both WRF and BRF show about equal improvements, BRF has a 

better false negative rate while WRF has a slightly better true positive rate (Chen et al., 

2004). 

The BRF method was chosen as it decreases the overall computation time 

compared to WRF (Chen et al., 2004). A decision was made to perform the BRF with 

down-sampling only as up-sampling would increase computational time and expense. 

Furthermore, down-sampling can be performed without a loss of information if 

implemented correctly. The initial BRF method used involves the down-sampling of the 

majority class such that the sample sizes are equal for the minority and majority classes. 

The number of trees grown are at minimum greater than the number needed to include all 

of the training data available for the majority class resulting in little or no lost 
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information. This method is more computationally efficient than the others as a smaller, 

balanced, sample of data is used for each tree. 

The following approach was used to build the series of balanced random forests 

used to determine the top predictors. Let n be the number of observations in the minority 

class. Using the sampsize argument in the randomForest package, a random bootstrap 

sample with replacement of n number of data points were drawn from the minority and 

the majority classes. This effectively balances the number of observations from each 

class that will be used to build each tree. The key is to limit the negative examples and 

keep all positive examples even if they are noisy as they are too rare to waste (Kubat and 

Matwin, 1997).  

2.4.3  RANDOM FOREST : MODELLING 

A suite of random forests models were run on the 10 data sets. Before an attempt 

was made to run the models for all of the data sets, a handful of preliminary models were 

run on subsets of the various sets to get a feel for the general trends and relationships 

between different variables and lightning occurrence. These exploratory runs were also 

used to narrow down the number of variables and thus the size of the data sets. The large 

size of the data files made computation time and computer memory a major concern. The 

majority of the processing and model building was able to be done in steps with 16GB of 

RAM however some runs required a 32GB machine. Following the preliminary models 

the newly refined data sets were run through a suite of random forest algorithms to 

produce multiple models for each spatial and temporal scale.  

Preliminary Runs 

At this point the data sets included all of the Reanalysis variables daily mean and 

four-time daily observations, two-times daily sounding observations, and the geographic 

and temporal covariates. In addition, 24-hour change is included for each weather 

variable. The data sets also contained a binary (0/1) predictand where 0 indicates no 

lightning and 1 indicates lightning observed. The exploratory runs began with the 

smallest of the data sets, the daily 2.5° latitude by 2.5° longitude. This data set contained 

~740 columns of input variables (including all variable variations) and ~65,000 rows 

corresponding the location and time of each observation. Before any random forest 

modeling was attempted, a correlation analysis was performed.  
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The findCorrelation function from the caret package (Kuhn et al., 2013) was 

used to remove correlated variables. Correlation thresholds of r ≥ 0.7 (r
2
 = 0.49) and r ≥ 

0.9 (r
2
 = 0.81) were implemented in the code. The r

2
 is often thought of as the amount of 

variation in one variable explained by the other. A correlation coefficient between 0.7 

and one (-0.7 and -1) indicates a strong linear relationship between the two variables. A 

threshold of 0.7 allowed for removal of one of the strongly correlated variables. When 

two variables are found to be correlated, the function removes the variable with largest 

mean absolute correlation (Kuhn et al., 2013). The correlation analysis resulted in a much 

smaller data set with only 111 variables remaining when the 0.7 threshold was 

implemented. Some preliminary random forests were then run on the remaining daily 

2.5° latitude by 2.5° longitude data.  

A random subsample of seven years made up the training set which was used to 

build the model (1999, 2000, 2002, 2004, 2006, 2007, and 2009). For consistency these 

same seven years were used to build all future training data sets. The randomForest 

codes were run under default conditions (shown below) unless otherwise stated. Where x 

= input variables, y = response vector, and ntree specifies the number of trees in the 

forest (default 500).  

randomForest(x, y, ntree=500, 

replace=TRUE, classwt=NULL,  

sampsize = nrow(x)) 

The bootstrap sample of training data taken will be of size n = number of rows in x and 

occurs with replacement by default. No class weightings are applied unless specified. The 

response vector, y, is a binary (0/1) predictand which is classified as factor therefore the 

randomForest runs as a classification algorithm. If the predictand were numeric, 

regression would be assumed (Liaw and Wiener, 2002).  

The exploratory runs resulted in a decision to remove all of the daily mean 

Reanalysis variables as well the RH, U wind and V wind variables from the data sets. A 

new correlation analysis was run on the remaining variables (~380) using the same 

method described above. The resulting trimmed down data set contained 75 input 

variables, far smaller than the initial ~740. Some additional preliminary models were run 

on subsets of other data sets to insure the removal of the daily mean variables, RH, U 

wind and V winds would not negatively impact the models skill. The removal of these 

variables had no significant impact on the models skill and the decision was made to 
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remove the variables in question and all of their variations from all of the data sets prior 

to the correlation analysis. 

An additional predictor variable, elevation, was added to the 50km by 50km data 

set. Due to the large size of the 50km by 50km data sets, an attempt was made to decrease 

the total number of data point thereby reducing computational time and memory 

requirements by changing the study time frame from April 1
st
 to October 31

st
 to May 1

st
 

to September 30
th
. An exploratory run was performed on the 6-hour and daily Mountain 

and Foothills data sets to compare the influence the change of dates would have on the 

model. The shorter date range altered the model accuracy and therefore was not 

continued despite the computational benefits.  

Creating Random Forest Models 

The newly trimmed down data sets were used to begin building the predictive 

models for each of the data sets. For each of the spatial and temporal scales the following 

methods were implemented. An assessment of data imbalance for each data set was 

performed. The findCorrelation function (Kuhn et al., 2013) was used to remove 

variables with correlation coefficient greater or equal to 0.7. The data classification of the 

latitude, longitude, time (if 6-hour model), and Haines index inputs were set to factor 

while the rest remained as numeric. An exception occurred for the 50km by 50km models 

where the latitude and longitude could not be classified as factors due to a limitation of 

randomForest only permitting factors with 32 or fewer classes. For these models the 

latitude and longitude were left as numeric. 

The same seven years randomly chosen to create the training set were used to 

build the models (1999, 2002, 2004, 2009, 2000, 2007, and 2006). A series of random 

forests were then run. The first random forest was run with all of the variables remaining 

post correlation analysis. Due to the imbalanced nature of the data the random forests 

were modified with a BRF sub-sampling approach. The sampsize argument was set as 

follows: For the binary predictand (0/1), let n be the number of rows in which 1 occurs 

(number of lightning events). The random bootstrap sample with replacement was forced 

to sample n entries with lightning events and n entries with non-events effectively 

balancing the training set for each tree. 

For the first run, seven balanced random forests were run. The number of trees 

was set to 10 and for the first run with subsequent runs performed for ntree of 25, 50, 

100, 200, 300, and 400. The range of trees were used to determine the number of trees 
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needed to stabilize the model. The codes written were programmed to automatically 

select and save the best random forest model and use that model to rank the predictors by 

MeanDecreaseGini score. The top 75 predictors were then selected and a new set of 

randomForests were run with ntree= 100, 150, 200, 250, 300, 350, and 400. The 2.5° 

latitude by 2.5° longitude data only had 75 predictors remaining post correlation analysis. 

These predictors were used in the previous runs therefore this step was skipped for data at 

this scale. In the same manner, the variables were ranked and a smaller number of 

variables were used for the next model. This process was repeated as the number of 

predictor variables were decreased from 75 to 35, 25, 20, 15, 21, 10, eight, and five. 

For comparison, an additional set of models were created for the 2.5° latitude by 

2.5° longitude data. These models were created with an imbalanced approach where the 

sampsize argument was left in its default form. Once all of the prediction models were 

created, the various models for each scale were compared to determine the optimum 

number of input variables. Predictions were then made with the top 12 variables and top 

15 variables. The prediction were made on the independent validation data set with the 

six unused years (2001, 2003, 2005, 2008, 2010, and 2011). 

The predictions were done in an ensemble like fashion where the top 12 and top 

15 variables, as determined in the previous stages, were used to regenerate a series of 

new random forests from the training set. Each newly generated forest was then used to 

make predictions for the validation data set. A model output of 1 indicates the models 

forecasts a lightning event and a forecast of 0 represents a forecasted non-event. This was 

repeated 10 times. The 10 predictions were then averaged to create ensemble forecast 

ranging from zero to one. This process was done for a series of sampsize variations in an 

attempt to maximize the 1 (event) prediction skill. 

The skills of the models were then analyzed. Different thresholds were used to 

separate lightning predictions and non-lightning predictions. Lightning prediction 

thresholds of ≥ 0.5, ≥ 0.7, and ≥ 0.9 were applied to the ensemble forecasts. 

Meteorological forecast skill criteria were then used to analyze the performance of the 

different models. The models skill for correctly forecasting the lightning events were 

measured by the Post-Agreement (PAG), Hit Rate (H), and Proportion Correct (PC). The 

False Alarm Ratio (FAR) and False Alarm Rate (F) were used to assess the skill of the 

models with respect to false event forecasting. The Equitable Threat Score (ETS) was 

also calculated for each model to provide an overall picture of model skill. The Critical 

Success Index (CSI), or Threat Score, is sensitive to imbalanced data and often gives 
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poor scores for rare events therefore this metric was calculated but is not included. A list 

of the forecast skill measures, formulas and general information are shown in Table 4. 

The formula inputs for Table 4 are shown in the contingency table provided in Table 3. 

Table 3: Contingency matrix for model forecasts. The A and D cells (highlighted in grey) show 

the correctly forecasted events and non-events, respectively. 

 
 

Event Observed 

 
 

Yes (1) No (0) 

Event 

Forecast 

Yes (1) 
A                            

(hit) 
B                           

(false alarm) 

No (0) 
C                          

(miss) 
D                        

(correct non-event) 

 

Table 4: List of the forecast skill criterion used to analyses the lightning prediction models. The 

inputs for the formulas can be found in the contingency matrix shown in Table 3. 

Abbreviation/Name Formula Description 

CSI 

Critical 

Success Index 

(Threat Score) 
 

Ranging from zero to one, a one 

indicates a perfect forecast. Taking into 

account both false alarms and missed 

events, the CSI is sensitive to 

imbalanced data, often giving poor 

scores for rare events. This index was 

not used but is included in the table for 

comparison to the ETS. 

ETS 
Equitable 

Threat Score 

 

where,                              

 

Provides a more balanced threat score 

when dealing with rare events. The ETS 

has a range from -1/3 to one. A higher 

score indicates increased forecast skill 

while a score below zero indicates an 

unskilled forecast. 

F 
False Alarm 

Rate 
 

Also known as the probability of false 

detection, F shows the fraction of 

observed non-events that were 

forecasted as false alarms. 

FAR 
False Alarm 

Ratio 
 

Represents the fraction of forecasted 

events that are false alarms. 

H 
Hit Rate  

(1 skill) 
 

Also known as the probability of 

detection, the Hit Rate is a score from 

zero to one where one is a perfect 

forecast. This measure of skill is 

sensitive only to misses and does not 

take false alarms into account. 

PAG 
Post-

Agreement 
 

 

The complement of FAR (1-FAR), PAG 

is the fraction of the forecasted events 

which are correct. 

PC 
Proportion 

Correct 
 

 

Provides the overall skill of the model 

but is not a good measure of skill for 

forecasting rare events of interest. 
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CHAPTER 3.  RESULTS 

 The results are split into three separate sections. The various findings from the 

exploratory runs that were instrumental in shaping the random forest modeling are 

discussed first in this chapter. Next, the results from the top predictor selection process 

for each data set are provided. Finally, the results from the various lightning ensemble 

forecasts for each spatial and temporal scale are presented. 

3.1  EXPLORATORY RUNS 

The exploratory runs provided valuable insight, highlighting many data and 

model trends. Basic statistics were generated for the lightning data. Figure 9 shows the 

diurnal and seasonal trends. Some variables were rarely, if ever, found to be highly 

important as determined by the MeanDecreaseGini output. RH, U winds, V winds, and 

the daily mean Reanalysis variables for all surface and vertical levels were rarely selected 

by the models as top predictors. Removal of these variables in the preliminary runs also 

found that the model skill was not negatively affected. In fact, removal of these variables 

prior to the correlation analysis allowed other variables previously removed by the 

correlation analysis to make it through to the model runs. Some of the new variables were 

found to be important contributors to the models’ skill. Due to the large number of input 

variables and the lack of contribution to the models skill, a decision was made to remove 

all of the daily mean variables as well as the 6-hour RH, U wind, and V wind variables 

prior to the correlation analysis. 

Two different Pearson’s correlation coefficient (r) thresholds, |r| ≥ 0.7 and |r| ≥ 

0.9, were explored for the correlation analysis. A threshold of |r| ≥ 0.9 resulted in many 

strongly correlated variables remaining in the data set. The computational expense was 

increased as a greater number of variables made it through the correlation analysis and 

into the initial model runs. Despite the increase in the number of variables, no increase in 

model skill was observed, therefore a decision was made to use the |r| ≥ 0.7 threshold for 

all future models. The findings of Dormann et al. (2013) support the decision to remove 

variables with |r| ≥ 0.7. The authors found that when variables with correlation 

coefficients greater than 0.7 were included in various multiple regression and machine 

learning approaches (including random forest), the collinearity began to severely distort 

the models and thus degrade the predictive skill (Dormann et al., 2013). 
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In an attempt to further decrease the computational expense of the models, a trial 

set of random forest runs were performed with a shorter subset of days on the 50km by 

50km data. Observations from May 1
st
 to September 30

th
 were used instead of the initial 

April 1
st
 to October 31

st
 date range. While the models built on the smaller data set had a 

slightly better (~1%) prediction skill for event occurrence and non-occurrence, the FAR 

increased by over 6%. A decision was made to stick with the initial date range. 

The various data imbalances were also identified in this preliminary phase. The 

imbalances (Table 5) range from a ~30/70 (1/0) split for the daily lightning data at 2.5° 

latitude by 2.5° longitude spatial scale, to a ~4/96 (1/0) split for the 6-hour 50km by 

50km Parkland and Grassland data set. The 6-hour lightning data sets have a higher 

imbalance than the corresponding daily data sets. The predictand imbalance also 

increases with increasing spatial resolution. An initial assessment was performed on the 

imbalanced data at the 2.5° latitude by 2.5° longitude with no balancing modifications. 

While the overall error rate was good (˂ 14% with 15 variables), the positive class error 

rate was quite dismal (˃ 30% for 15 variables). Forcing equal sample sizes through the 

randomForest model via the sampsize operation produced superior results for the 

objectives by minimizing the positive class error rates while still maintaining a near equal 

overall error rate. 

Figure 9: The boxes encompass the 1
st
 and 3

rd
 quartiles with the median indicated by a heavy center 

line and the mean marked by the red diamond. Whiskers extend to the minimum and maximum 

values. The Box plots represent the average values for13 consecutive years of lightning data from 

1999 to 2011. 
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Table 5: Level of imbalance between the positive (events) and negative class (non-events) for 

each data set. The number of observations are for the training sets, however, the proportions hold 

true for both the training and validation sets. 

Figure 10: Comparison of the overall OOB error estimate for a series of balanced and unbalanced 

random forest models. Models were run on the daily 2.5° latitude by 2.5° longitude data set. The 

overall error rates are very similar for the two models. 

 

Data Sets 
Lightning Events Non-Lightning Events 

# % # % 

2.5° Latitude by 2.5° 

Longitude Daily 
19,435 30.05% 45,239 69.95% 

2.5° Latitude by 2.5° 

Longitude 6-hour 
34,351 12.14% 248,545 87.86% 

1.25° Latitude by 2.5° 

Longitude Daily 
25,830 24.17% 81,045 75.83% 

1.25° Latitude by 2.5° 

Longitude 6-hour 
46,872 10.12% 416,449 89.88% 

50km by 50km Boreal 

Forest Daily 
38,626 14.25% 232,350 85.67% 

50km by 50km Boreal 

Forest 6-hour 
54,414 5.02% 1,029,490 94.98% 

50km by 50km Parkland 

and Grassland Daily 
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Figure 10 provides a comparison of the overall OOB error estimate for models 

generated with balanced and unbalanced approaches. The overall error rates are quite 

similar for the two model approaches with the unbalanced model consistently having a 

slightly lower overall error rate. A BRF approach does result in a slight (1 to 2%) overall 

increase in error rate however the increased skill to the positive class is necessary to help 

meet the objectives of predicting lightning events. Breaking down the OOB error 

estimate by class shows that the slight decrease in PC is due to an increase in the 

non-event prediction error and an increase in event prediction skill (hit rate). In Figure 11 

we see the non-event prediction error rate increase by ~7% while the event error rate is 

nearly halved. Due to these results, a BRF approach was implement to build all of the 

random forests. 

 

 

Figure 11: Comparison of the class 0 (non-event) and class 1 (event) OOB error estimate for 

balanced and unbalanced random forest models generated with 12 and 15 variables. 

A series of trial random forests were run to find the number of trees required to 

obtain stable model outputs. A sufficient number of trees was determined by generating a 

simple plot of the OOB error estimate for the series of random forests. The random 

forests were built under default conditions and under BRF conditions. The number of 

trees (ntree) were specified at seven different values (Figure 12). Various runs were 

performed on each of the data sets. It was found that the same general trend shown in 
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Figure 12 emerged for all of the data sets. The plot shows the OOB error estimate 

beginning to balance out around 100 trees and stabilizing by 200 trees. Based on these 

runs, all future random forest runs were performed in seven steps starting with ntree=100 

and increased at increments of 50 until ntree= 400.  

Figure 12: The OOB error estimate trend for random forest models with different number of trees 

(ntree). The OOB estimate or error begins to balance around 100 trees and stabilizes by 200 trees. 

3.2  DETERMINING TOP PREDICTORS 

Following the TPS and quality control measurers described in 2.3.4  THIN-

PLATE SPLINE, all data points with missing data (NA) were removed. The removal of 

NAs resulted in a loss of ~7% of the points on average. The percentage of points 

removed from the positive and negative predictand classes were nearly equal. Once all 

NAs were removed, a series of balanced random forest runs were performed on each data 

set as outlined in 2.4.3  RANDOM FOREST : MODELLING. For each data set, the 

model with the lowers OOB in each run (with x number of variables) was selected and 

used to narrow down the number of variables for the following run. The OOB error 

estimate for the optimum models from each random forest run with x variables are show 

in Figure 13a-e.  
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Figure 13: The OOB error estimate (y-axis) fluctuations as the number of variables included in 

the random forest model are changed (x-axis). Note the different scales for the x and y axes.  
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The first random forest run for each data set includes all the variables remaining 

after the correlation analysis. There are 75 variables for the initial daily and 6-hour 2.5° 

latitude by 2.5° longitude runs, 110 variables for the 1.25° latitude by 2.5° longitude runs 

and 115 variables for each of the three 50km by 50 km runs. According to the overall 

OOB error estimate, the optimum number of variables for the 2.5° latitude by 2.5° 

longitude and 1.25° latitude by 2.5° longitude scales occurs around the 25 to 35 variables 

mark. The Boreal Forest models optimize around 10 to 12 variables with a second 

optimization occurring when only 5 variables are present. The Parkland and Grassland 

models also have optimum error rates when 10 to 12 variables are used with the overall 

error rate decreasing when only 5 variables are used for 6-hour Parkland and Grassland 

models. Finally, the Mountain and Foothills have optimal error rates when the top 12 to 

20 variables are included in the random forest.  

Ten separate sets of top predictors were created based on the MeanDecreaseGini 

values. Table 6 provides an example of variable importance as generated by the 

importance( ) function. The output provides the MeanDecreaseGini which is a relative 

value of the variables’ importance. Since the values are relative, they cannot be compared 

between models. The top 12 and 15 predictors from each data set are shown in Table 7. 

The top predictors are similar among many of the models. The 00Z Showalter Index 

(SHOW00), Convective Available Potential Energy (CAPE00), Lifted Condensation 

Level Temperature (LCLT00), Julian day , 00Z and 12Z Convective Inhibition (CINS00, 

CINS12), and time of day (for 6-hour models) are some of the highest ranked predictors 

for the 2.5° latitude by 2.5° longitude and 1.25° latitude by 2.5° longitude models. A few 

of the top predictors for the 50km by 50km 

scale varied from those identified for the 

coarser scales. Latitude (lat), mean sea level 

pressure (mslp), elevation (elv), and Severe 

Weather Threat Index (SWET00, SWET12) 

show up as top predictors alongside SHOW00, 

CAPE00, Julian day, and time. The top 12 and 

15 predictors shown in Table 7 were then used 

to generate lightning forecast ensembles for 

each of the independent validation data sets.  

Table 6: Variable importance for a 1:1 BRF 

model with ntree=300 generated for the 6-

hour Boreal Forest data set. The higher the 

MeanDecreaseGini value, the greater the 

variable importance and thus the rank. 

Boreal Forest 6-hour  
Predictor MeanDecreaseGini Rank 

SHOW00 4132.005 1 

CAPE00 2718.889 2 

time 2300.323 3 

mslp_00 2296.990 4 

lat 2279.292 5 

day 2231.839 6 

CINS00 2053.856 7 

SWET12 2029.684 8 

Temp_8_18 2000.488 9 

omega_9_12 1979.637 10 

SWET00 1968.168 11 

CINS12 1827.819 12 
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3.3  LIGHTNING PREDICTION MODELS 

Models for the prediction ensemble were generated from the results of the 1:1 

BRF runs performed on each data set. Six different approaches were taken to building the 

prediction models for the 10 data set (Table 8). Each of the six models used a different 

bootstrap sampling method to generate the random forest models. A BRF approach was 

used for five of the six models. For the final unbalanced model approach, the random 

forests were built with default sampsize making the imbalance for each model roughly 

equal to that of the original data set (Table 5). The predictions were made in an ensemble 

like fashion where the top 12 and top 15 variables, as determined in the previous stages, 

were used to regenerate a series of 10 new random forests from the training set with 

ntree=251. Each newly generated forest was then used to make predictions for the 

corresponding validation data set. A model output of 1 indicates the model forecasts a 

lightning event while an output of 0 represents a forecasted non-event. This was repeated 

10 times. The 10 predictions were then averaged to create ensemble forecasts ranging 

from zero to one.  

Table 8: Six predictions models were generated with the top 15 and top 12 variables from each 

data set. Let n be the number of observations in the minority class. The second and third columns 

show how the sampsize arguments for each model were specified to change the number of 

observations sampled from each class with replacement. The unbalanced model was run under 

default conditions making the imbalance similar to the original data imbalance outlined in Table 5.  

 Lightning prediction thresholds of ≥ 0.5, ≥ 0.7, and ≥ 0.9 were applied to the 

resulting ensemble forecasts. Contingency tables were generated for each ensemble and 

the skill was analyzed with meteorological forecast skill criteria (Table 4). The changes 

in overall forecast skill, event forecast skill, and non-event forecast skill between the 

various prediction ensemble model are demonstrated in Figure 14. The overall forecast 

skill of the models are around 80% for all of the data sets. As the event forecast skill 

increases, the non-event skill and the overall forecast skill decreases. Intuitively, setting 

the forecast threshold to ≥ 0.5 produces a superior hit rate while also increasing the FAR 

Prediction Model 

Name 

Number of Non-Events   

(0) Sampled  

Number of Lightning Events 

(1) Sampled 

Balanced (1) n n 

Balanced (0.8) 0.8* n 0.8*n 

Balanced (0.6) 0.6*n 0.6*n 

0.8:1 0.8*n n 

0.6:1 0.6* n n 

Unbalanced Proportion roughly equal to original class imbalance 
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(0.6:0.6) 0.5 (0.8:1) 0.9 (0.8:1) 0.7 (0.8:1) 0.5

and F. The threshold of ≥ 0.5 implies that only 50% of the models must predict lightning 

for the ensemble to forecast a lightning event. The three thresholds for the 0.6:1 

prediction models generate the highest skilled ensemble forecasts when measured by hit 

rate while also generating the least skilled forecast for non-events. The balanced (1:1) 

ensemble with a ≥0.9 threshold produce the lowest hit rates for all of the data sets while 

the 0.6:1 ensemble with a ≥0.5 threshold produces the highest hit rate.  

 
Figure 14: This plot demonstrates the overall, 1 (event), and 0 (non-event) prediction skills for 

various ensemble forecasts. All forecasts were generated with the top 15 variables for the 1.25° 

latitude by 2.5° longitude daily data. The legend represent the BRF (event: non-event) with the 

number to right specifying the ensemble threshold. 

 As the hit rates increases, the number of false alarms also increase producing an 

increased FAR. The conservative ensembles with the 0.9 threshold and 1:1 BRF 

approach, tend to have lower FAR and higher non-event prediction skill but lower hit 

rates (Figure 15). An example of the relationships between the FAR, F, and Equitable 

Threat Score for various models are shown in Figure 16. The F is consistently lower than 

the FAR due to the imbalanced nature of the data. FAR represents the fraction of 

forecasted events that are false alarms by taking the hits and misses into account while 

the F takes looks at the fraction of observed non-events that were forecasted as false 

alarms. The following sections break down the results for each spatial and temporal scale. 

Plots of the various models created for each scale are provided. The scale of the y-axis 

varies from plot to plot. 
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Figure 16: The relationship between the False Alarm Ratio (FAR), False Alarm Rate (F) and 

Equitable Threat Score (ETS). As the ensemble models are tweaked to maximize hit rate, the 

number of false alarms increase. This decreases the overall skill as measured by the ETS. All 

forecasts were generated with data from the daily 1.25° latitude by 2.5° longitude 15 variable 

prediction ensembles. The legend represent the BRF (event: non-event) with the number to 

right specifying the ensemble threshold. 

 

 
Figure 15: As the hit rate (1 skill) increases, the 0 prediction skill falls and the FAR increases. 

All forecasts were generated with data from the daily 1.25° latitude by 2.5° longitude 15 

variable prediction ensembles. The legend represent the BRF (event: non-event) with the 

number to right specifying the ensemble threshold. 
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3.3.1  2.5° LATITUDE BY 2.5° LONGITUDE  

 The optimum hit rates for lightning prediction at the 2.5° latitude by 2.5° 

longitude spatial scale are achieved with the 0.6:1 BRF model approach. The highest 

ensemble hit rates for both daily and 6-hour lightning prediction are produced by 0.6:1 

models generated with the top 15 predictors and an event threshold of ≥ 0.5. The 0.6:1 

models created with 12 variables for the 6-hour time scale have nearly equal measure of 

skill compared to the 15 variable model. The top predictors for each temporal prediction 

scale are similar with SHOW00, LCLT00, CAPE00, Julian day, and CINS00 showing up 

in the top 5 variables of the two optimum models chosen for the 2.5° latitude by 2.5° 

longitude spatial scale. 

Daily Lightning Prediction 

 The hit rates for the 2.5° latitude by 2.5° longitude daily prediction ensemble 

models built with the top 15 and top 12 variables are shown in Figure 17. The unbalanced 

randomForest ensemble forecasts have a hit rate around 15-20% lower than the BRF 

models with the same event thresholds. The unbalanced model results highlight the 

improved event forecast skills achieved by using a BRF method. Since the unbalanced 

models do not produce skillful event forecasts relative to the BRF models, their results 

are excluded for the majority of the following spatial scales. The optimum hit rates for 

daily lightning prediction at the 2.5° latitude by 2.5° longitude scale are achieved with the 

0.6:1 BRF models.  

The 15 variable 0.6:1 ensemble forecast with an event threshold of 0.5 has the 

highest hit rate at just over 85% and an overall PC of ~78% (Table 9). The proportion of 

forecasted events that are correct (PAG) is over 61% while the proportion of observed 

non-events forecasted as false alarms (F) is ~24.5%. The proportion of incorrectly 

forecasted events (FAR) is~38.5%. In contrast, the 1:1 balanced model with a 0.5 

threshold has a hit rate of ~6.5% lower and a PC ~ 2% lower. The PAG is roughly 5% 

better while the F and FAR are ~6.5% and 5% lower. The 15 variable 0.6:1 model with 

an ensemble threshold of ≥ 0.5 is the optimum model for daily lightning event forecasting 

at the 2.5° latitude by 2.5° longitude. SHOW00, LCLT00, Julian day, CAPE00 and 00Z 

mean sea level pressure make up the top five variables in order of importance, for the 

optimum model (Figure 19a). 
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Figure 17: The hit rates (%) for the various 2.5° latitude by 2.5° longitude daily prediction 

ensemble models. Models built with the top 15 variables are represented by bars, while the red 

line represents models generated from the top 12 variables. The BRF method applied to each 

model is shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) 

listed on the x-axis. The unbalanced models on the far right were run under default 

randomForest conditions and are included to highlight the increase in skill by implementing the 

various BRF approaches.  

Table 9: Optimum daily ensemble models (0.6:1) produced with 15 variables for the 2.5° latitude 

by 2.5° longitude scale. The 15 variable balanced models are included for comparison. The three 

event forecast thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown for each model. As H increases, the 

FAR and F increase, and the PAG and PC decrease.  

2.5x2.5 Daily Balanced (1) 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.7482 0.7595 0.7854 0.8262 0.8368 0.8524 

Post Agreement (PAG) 0.6864 0.6789 0.6668 0.6340 0.6295 0.6155 

Proportion Correct (PC) 0.8130 0.8111 0.8088 0.7950 0.7934 0.7823 

False Alarm Ratio (FAR) 0.3136 0.3211 0.3332 0.3660 0.3705 0.3845 

False Alarm Rate (F) 0.1572 0.1651 0.1805 0.2193 0.2265 0.2449 

6-hour Lightning Prediction 

 The hit rates for the 2.5° latitude by 2.5° longitude 6-hour prediction ensemble 

models built with the top 15 variables and top 12 variables are shown in Figure 18. The 

optimum hit rates are achieved with the 0.6:1 BRF models. The 0.6:1 ensemble model 

with 15 variables produces the best forecast model in terms of probability of detection. 

This model is compared to the 0.6:1 BRF model generated with the top 12 variables in 
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Table 10. The two models produce very similar results for all measures of skill (within 

less than 0.5%). The 15 variable 0.6:1 model with an event threshold of 0.5 produces the 

best forecast in terms of probability of lightning detection (H) with a 84% hit rate. The 12 

variable 0.6:1 model with an event threshold of 0.5 produced a comparable forecast skill 

with a hit rate of 83.5%. The 12 variable 0.6:1 model with an event threshold of 0.5 is 

chosen as the optimum model as it produces roughly the same results with three fewer 

variables and is thus more computationally efficient. 

Table 10: Comparison of the two top ensemble models (0.6:1) produced with the top 12 and 15 

variables for the 2.5° latitude by 2.5° longitude 6-hour forecast. The ensemble variations for the 

three event forecast thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown for each model.  

2.5x2.5 6-hour 12 Variables 0.6 : 1  15 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.8485 0.8143 0.8348* 0.8088 0.8185 0.8398* 

Post Agreement (PAG) 0.3767 0.3705 0.3563 0.3807 0.3737 0.3586 

Proportion Correct (PC) 0.7860 0.7800 0.7655 0.7888 0.7823 0.7670 

False Alarm Ratio (FAR) 0.6233 0.6295 0.6437 0.6193 0.6263 0.6414 

False Alarm Rate (F) 0.2171 0.2256 0.2458 0.2145 0.2236 0.2448 

 
Figure 18: The hit rates for the 2.5° latitude by 2.5° longitude 6-hour prediction ensembles. 

Models built with the top 15 variables are represented by the bars, while the red line represents 

the models generated from the top 12 variables. The BRF methods applied to each model are 

shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the 

x-axis.  
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The 12 variable 0.6:1 ensemble forecast with an event threshold of 0.5 has an 

overall PC of over 76.5%. The proportion of forecasted events that are correct (PAG) is 

~36% while the proportion of observed non-events forecasted as false alarms (F) is 

~24.6%. The proportion of incorrectly forecasted events (FAR) is~64.4%. The 12 

variables and their rank in terms of importance are shown in Figure 19b. The same five 

variables identified in the optimum 2.5° latitude by 2.5° longitude daily prediction model 

are present in the top five for the 6-hour model. In order of importance, SHOW00, 

LCLT00, CAPE00, Julian day, and CINS00 make up the top five variables for 6-hour 

lightning prediction. 

  

Figure 19: Variable importance plots for the top models selected for the 2.5° latitude by 2.5° 

longitude spatial scale. The variable importance for the daily prediction model is shown in Figure 

19a while the 6-hour model variable importance is shown in Figure 19b. The MeanDecreaseGini 

values on the x-axis are relative values of each variables importance. The values cannot be 

compared between different models however the relative ranking of variables can be compared. A 

higher value assigned to a variable indicates it has a greater importance. 

3.3.2  1.25° LATITUDE BY 2.5° LONGITUDE 

The prediction models for this spatial scale produce similar results to the models 

generated for the 2.5° latitude by 2.5° longitude spatial scale. Both scales produce better 

hit rates for daily lightning forecasts than for the 6-hour forecasts. Similar to the 2.5° 

latitude by 2.5° longitude forecasts, the optimum hit rates for lightning prediction at the 

1.25° latitude by 2.5° longitude spatial scale are achieved with the 0.6:1 BRF approach. 

The top predictors are similar for optimum models selected for each temporal scale. 

19a 19b 
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Daily Lightning Prediction 

 The hit rates for the daily 1.25° latitude by 2.5° longitude prediction ensemble 

models built with the top 15 and top 12 variables are shown in Figure 20. The 12 and 15 

variable 0.6:1 ensemble models produce similar results with all measures of skill within 

1% of each other (Table 11). The 15 variable model produces superior measure of skill 

for hit rate, PAG, PC, FAR and F compared to the 12 variable model. With a hit rate of 

~85%, an overall PC score of 78% and a FAR and F or 45% and 24% respectively, the 15 

variable 0.6:1 model with an event threshold of 0.5 is the preferred model for daily 

lightning prediction at this scale. The models performance is similar to the top model 

chosen for the daily 2.5° latitude by 2.5° longitude scale. The hit rates, PC, and F skills 

are nearly equal, for the two models, however, the daily 2.5° latitude by 2.5° longitude 

model has a better FAR (~38.5) than the 1.25° latitude by 2.5° longitude (~45.0%). 

 

 
Figure 20: The hit rates for the various 1.25° latitude by 2.5° longitude daily prediction 

ensembles. Models built with the top 15 variables are represent by the bars, while the red line 

represents the hit rate of models generated from the top 12 variables. The BRF methods applied 

to each model are shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 

0.5) for each BRF ensemble listed on the axis.  
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Table 11: Comparison of the top two daily ensembles lightning forecast models for the 1.25° 

latitude by 2.5° longitude scale. The three event forecast thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are 

shown for each model.  

1.25x2.5 Daily 12 Variables 0.6 : 1  15 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.8174 0.8263 0.8449 0.8254 0.8345 0.8519 

Post Agreement (PAG) 0.5601 0.5538 0.5414 0.5718 0.5652 0.5498 

Proportion Correct (PC) 0.7860 0.7821 0.7740 0.7942 0.7905 0.7805 

False Alarm Ratio (FAR) 0.4399 0.4462 0.4586 0.4282 0.4348 0.4502 

False Alarm Rate (F) 0.2251 0.2333 0.2509 0.2167 0.2250 0.2445 

6-hour Lightning Prediction 

The unbalanced ensemble forecasts for the 6-hour 1.25° latitude by 2.5° 

longitude scale generate hit rates of only ~7-12% while all other proposed models 

generated hit rates above 64% (Figure 21). Similar to the previous models, the 0.6:1 

models generate maximum hit rates compared to all other BRF models. The 12 and 15 

variable 0.6:1 models produce similar forecast skills with the hit rates typically within 1% 

of each other. A closer comparison of the two models 0.5 event threshold forecast skill 

(Table 12) show that the two models have nearly equal hit rates (81.54%, 81.58%). The 

12 variable model has a slightly better PAG (29.24%), PC (76.89%), FAR (70.76%), and 

F (23.67%). Although the 12 variable hit rate is 0.04% less than the 15 variable hit rate, 

all other measure of skill are slightly better therefore the 12 variables 0.6:1 model with a 

0.5 event threshold is chosen as the optimum lightning prediction model for the 6-hour 

1.25° latitude by 2.5° longitude scale. The top ranked predictors in this model are similar 

to those selected for daily lightning prediction (Figure 22). 
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Figure 21: Hit rates of the 1.25° latitude by 2.5° longitude 6-hour prediction ensembles. 

Models built with the top 15 variables are represented by bars, and the red line represents 

models generated from the top 12 variables. The BRF methods applied to each model are 

shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the 

x-axis. The unbalanced models on the far right were run under default randomForest 

conditions. 

 
Table 12: Forecast skill comparison for the top two 6-hour ensembles lightning forecast models 

for the 1.25° latitude by 2.5° longitude scale. The three event forecast thresholds of ≥ 0.9, ≥ 0.7, 

and ≥ 0.5 are shown for each model.  

1.25x2.5 6-hour 12 Variables 0.6 : 1  15 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.7765 0.7894 0.8154 0.7804 0.7923 0.8158 

Post Agreement (PAG) 0.3112 0.3056 0.2924 0.3086 0.3033 0.2911 

Proportion Correct (PC) 0.7920 0.7853 0.7689 0.7892 0.7828 0.7675 

False Alarm Ratio (FAR) 0.6888 0.6944 0.7076 0.6914 0.6967 0.7089 

False Alarm Rate (F) 0.2062 0.2152 0.2367 0.2097 0.2183 0.2383 
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Figure 22: Variable importance plots of the top models selected for the 1.25° latitude by 2.5° 

longitude spatial scale. The daily prediction model is shown to the left (Figure 22a) while the 6-

hour model is shown on the right (Figure 22b). The MeanDecreaseGini values on the x-axis are 

relative values of each variables importance. Actual values cannot be compared between different 

models however the relative ranking of variables can be compared. A higher value indicates 

greater importance. 

3.3.3  50KM BY 50KM 

The 50km by 50km ensemble models predict lightning at a much finer spatial 

scale. As the spatial resolution increases, so too does the data imbalance between the 

positive (event) and negative (non-event) classes. The range of hit rates between the 

various BRF models generated for the 50km by 50km scale is larger than that of the 2.5° 

latitude by 2.5° longitude and 1.25° latitude by 2.5° longitude scales. For the 50km by 

50km prediction models, the province was split into three geographically and 

ecologically similar zones. The daily and 6-hour prediction results for each of the three 

zones are provided in the following six sections. The variable importance plots for the 

various optimum models are provided at the end of the 50km by 50km results in Figure 

33. 

Boreal Forest : Daily Lightning Prediction 

 The five BRF models generated with the top 12 and 15 variables for the Boreal 

Forest zone produced daily ensemble forecasts with hit rates ranging from ~48-72% 

(Figure 23). The daily Boreal Forest data set is moderately imbalanced with lightning 

events make up around 14% of the total observations. Similar to the previous two scales, 

the probability of detection is maximized with the 0.6:1 BRF approach. The skills of the 

22a 22b 
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ensemble forecasts generated with models containing the top 15 variables are quite 

similar to those generated with the top 12 variables. When determining the top predictors 

in section 3.2  DETERMINING TOP PREDICTORS, it was found that the OOB error 

decreased as the number of variables included in the models were reduced (Figure 13c). 

The lowest OOB error estimate occurred when only five variables were included in the 

model. Additional ensemble forcasts were created to explore this trend. 

Ensemble models for the top 10, eight, and five variables were created with the 

same BRF methods and event threshold used for the top 12 and 15 variables. The 

ensembles created with the models containing the top eight variables produced similar 

results to those generated from the top 12 and 15 variables. The top 10 and top five 

variable ensembles produced higher hit rates (~74-78%) than all other models (Figure 

24). The five variable 0.6:1 models generated the highest hit rates and PC scores while 

also having lower FAR and F than the 10, 12 and 15 variables models. The ensemble 

predictions made with the five variable 0.6:1 models and 0.5 event threshold, have a ~6% 

higher hit rate, 5% higher PC, 7% lower FAR and a 5% lower F when compared to the 

 
Figure 23: The hit rates for the various Boreal Forest daily prediction ensembles. Models built 

with the top 15 variables are represented by bars, and the red line represents models generated 

from the top 12 variables. The BRF methods applied to each model are shown below the x-axis 

with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the x-axis.  
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optimum 12 variable model (Table 13). The ensemble created with the 0.6:1 five variable 

model and a 0.5 threshold is selected as the optimum forecast model.  

Figure 24: Comparison of the daily ensemble forecast models generated with a 0.6:1 BRF 

approach for the top 12, 10 and five variables. The hit rates are shown by broken lines while the 

proportion correct (PC) are given by solid lines. 

Table 13: Ensemble forecast skill comparison of the optimum forecast model (five variable 0.6:1) 

generated for daily lightning prediction in the Boreal Forest. The optimum model is compared to a 

model variation often selected as a top forecast model for the coarser spatial scales (12 variable 

0.6:1). The three event forecast thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown for each model. 

Boreal Forest Daily 12 Variables 0.6 : 1  5 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.6594 0.6825 0.7244 0.7440 0.75522 0.7809 

Post Agreement (PAG) 0.3672 0.3573 0.3339 0.4265 0.4183 0.4020 

Proportion Correct (PC) 0.7702 0.7595 0.7323 0.8067 0.8007 0.7875 

False Alarm Ratio (FAR) 0.6328 0.6427 0.6661 0.5735 0.5817 0.5980 

False Alarm Rate (F) 0.2094 0.2262 0.2663 0.1820 0.1910 0.2113 

 

Boreal Forest : 6-hour Lightning Prediction 

The data imbalance of the 6-hour Boreal Forest data sets is roughly three times 

greater than that of the daily Boreal Forest set. Lightning events making up ~5% of the 

total observations. The five BRF models generated with the top 12 and 15 variables 
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produce ensemble forecasts with hit rates ranging from ~43-72% (Figure 25). The 

probability of detection is maximized with the 0.6:1 BRF approach. The 15 variable 

ensemble have a lower lightning prediction rate than that of the 12 variable models. In 

section 3.2  DETERMINING TOP PREDICTORS, the 6-hour Boreal Forest random 

forests produced the best OOB error estimate when the top 10 or top five variables were 

included in the model (Figure 13c). Additional ensemble forcasts were created to explore 

this trend.  

 None of the ensemble forecast models generated for the Boreal Forest at a 6-hour 

time had a PAG greater than 23%. The forecasts predicted false alarm often with the 15 

variable balanced (1) BRF producing the lowest FAR of ~77%. The majority of the 

models were fairly skilled at predicting non-events even with the BRF efforts consistently 

producing non-event prediction skills of around 80% and higher. The 15 variable 

balanced (1) model ensemble with a 0.5 threshold had a hit rate of only 51% but was able 

to accurately forecast non-events with ~89% accuracy.  

 

Figure 25: The hit rates for the various Boreal Forest 6-hour prediction ensembles. Models 

built with the top 15 variables are represented by bars, and the red line represents models 

generated from the top 12 variables. The BRF methods applied to each model are shown below 

the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the x-axis.  
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 The ensemble forecasts generated with the 0.6:1 BRF method with the top 12, 10, 

eight and five variables are compared in Table 14 and the event forecast skills are 

displayed in Figure 26 . In terms of optimal hit rates, the five variable 0.6:1 model is the 

most skilled producing hit rates of just over 68% to ~74% (Figure 26). The five variable 

model is selected as the optimum forecast model when a threshold of 0.5 is implemented. 

Under these settings, the ensemble predictions have a hit rate of ~74%, roughly 2% 

higher than the 10 variable ensemble, while the PAG, PC, FAR and F are within less than 

1% (Table 14). These top two models exhibit similar skills however the computation 

efficiency of removing half the variables makes the five variable model more desirable. 

The top predictors are similar for the optimum models selected for each temporal scale 

(Figure 33). 

Figure 26: Comparison of the 6-hour ensemble forecast models generated with a 0.6:1 BRF 

approach for the top 12, 10, eight, and five variables. The hit rates are shown by broken lines 

while the proportion correct (PC) are given by solid lines. 
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Table 14: Ensemble forecast skill comparison of the 0.6:1 BRF models generated for 6-hour 

lightning prediction in the Boreal Forest. Ensemble models created from the top 12, 10, eight and 

five variables are included. The three event forecast thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown 

for each model. 

Boreal Forest 6-hour 12 Variables 0.6 : 1  10 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.6580 0.6770 0.7165 0.6721 0.6885 0.72554 

Post Agreement (PAG) 0.1721 0.1677 0.1589 0.1737 0.1689 0.1590 

Proportion Correct (PC) 0.8070 0.7974 0.7758 0.8061 0.7964 0.7738 

False Alarm Ratio (FAR) 0.8279 0.8323 0.8411 0.8263 0.8311 0.8410 

False Alarm Rate (F) 0.1843 0.1956 0.2208 0.1861 0.1973 0.2234 

 8 Variables 0.6 : 1  5 Variables 0.6 : 1 

 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.6314 0.6527 0.6998 0.6835 0.7008 0.7357 

Post Agreement (PAG) 0.1516 0.1469 0.1373 0.1673 0.1370 0.1565 

Proportion Correct (PC) 0.7854 0.7723 0.7416 0.7954 0.7871 0.7674 

False Alarm Ratio (FAR) 0.8484 0.8531 0.8627 0.8327 0.8360 0.8435 

False Alarm Rate (F) 0.2056 0.2207 0.2559 0.1981 0.2079 0.2308 

Parkland and Grassland : Daily Lightning Prediction 

 The daily Parkland and Grassland data set has a similar data imbalance to that of 

the Boreal Forest with lightning events making up around 13% of the total observations. 

The five BRF models generated with the top 12 and 15 variables produced daily 

ensemble forecasts with a hit rates varying between ~55-78% (Figure 27). The ensemble 

forecasts generated with the top 15 variables are less skillful at predicting lightning 

occurrence than the 12 variable models (Figure 27). When determining the top predictors 

for the Parkland and Grassland zone by examining the changes in OOB error estimate, it 

was found that as the number of variables decreases, so too does the OOB error estimate. 

The random forest with the top 10 variables included had the lowest OOB error estimate 

(Figure 13d). Additional ensemble forcasts were created to explore this trend. 
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Ensemble predictions were made with the 0.6:1 BRF method for models 

including the top 10, eight and five variable. The newly generated ensemble forecasts 

produced superior hit rates compared to the 12 and 15 variable models (Figure 28). As 

the number of input variables decreases, the hit rate and FAR rise (Table 15). The PAG 

skill for the daily Parkland and Grassland ensembles are between 36% and 43%. The F 

rates are fairly low for the 12 to five variable ensembles (~15-23%) while the FAR are 

quite high (~57-64%). The ensemble forecasts based on the five variable model with an 

event threshold of 0.5 produces a maximum hit rate of 86.4%. An overall PC of ~79% is 

achieved however the PAG is only 36% for this ensemble. The five variable model was 

selected as the optimal model. 

 
Figure 27: The hit rates for the various Parkland and Grassland daily prediction ensembles. 

Models built with the top 15 variables are represented by bars, and the red line represents 

models generated from the top 12 variables. The BRF methods applied to each model are 

shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the 

x-axis. 
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Figure 28: Comparison of the daily ensemble forecast models generated with a 0.6:1 BRF 

approach for the top 12, 10, eight, and five variables. The hit rates are shown by broken lines 

while the proportion correct (PC) are given by solid lines. 

Table 15: Comparison of the daily Parkland and Grassland ensemble forecasts generated from the 

0.6:1 BRF models for the top 12, 10, eight and five variables. The three event forecast thresholds 

of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown for each model. 

Parkland Daily 12 Variables 0.6 : 1  10 Variables 0.6 : 1 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.7369 0.7511 0.7767 0.7488 0.7582 0.7856 

Post Agreement (PAG) 0.4312 0.4221 0.3979 0.4290 0.4223 0.4055 

Proportion Correct (PC) 0.8378 0.8323 0.8164 0.8361 0.8321 0.8206 

False Alarm Ratio (FAR) 0.5688 0.5779 0.6021 0.5710 0.5777 0.5945 

False Alarm Rate (F) 0.1469 0.1554 0.1777 0.1507 0.1568 0.1741 

 8 Variables Balanced (1) 5 Variables 0.6 : 1 

 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.7698 0.7828 0.8041 0.8432 0.8497 0.8640 

Post Agreement (PAG) 0.4081 0.4037 0.3889 0.3736 0.3705 0.3629 

Proportion Correct (PC) 0.8232 0.8197 0.8084 0.7943 0.7913 0.7913 

False Alarm Ratio (FAR) 0.5919 0.5963 0.6111 0.6264 0.6295 0.6371 

False Alarm Rate (F) 0.1687 0.1748 0.1910 0.2131 0.2175 0.2286 
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Parkland and Grassland : 6-hour Lightning Prediction 

The data imbalance for the 6-hour Parkland and Grassland data sets is roughly 

four times greater than that of the daily lightning occurrence data set. Lightning events 

making up less than~4% of the total observations. The five BRF models generated with 

the top 12 and 15 variables produce ensemble forecasts with hit rates ranging from ~39-

70% (Figure 29). The 15 variable models ensemble prediction skills are less than that of 

predictions made with the 12 variables models. Due to the increased skill with the 12 

variable models and the trend in Figure 13d, an additional set of ensemble predictions 

were run for the top 10, eight and five variables.  

For the 10 variable 0.6:1 ensemble, the hit rates of 62%, 64%, and 69% for the 

thresholds of 0.9, 0.7 and 0.5 respectively, were higher than the 15 variable hit rates but 

lower than those generated with the top 12 variables (Table 16). The FAR and F were 

also higher when only 10 variables were included. Similar trends were found for models 

generated with the top eight variables. The hit rate is highest when only five variables are 

 

Figure 29: The hit rates for the various Parkland and Grassland 6-hour prediction ensembles. 

Models built with the top 15 variables are represented by bars, and the red line represents 

models generated from the top 12 variables. The BRF methods applied to each model are 

shown below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the 

x-axis.  
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included in the models, however the PAG is low (less than 16%). The PAG is below 

~24% for all of the models and well below 20% for the 0.6:1 BRF ensembles. The five 

variable 0.6:1 model with an event threshold of 0.5 produces the highest hit rate (78.7%). 

The PC is more than 2% lower than the comparable 12 variable models, yet the FAR is 

within less than 0.5%. Again, the 5 variable model is chosen due to its comparable skill 

and decreased computational expense. 

 
Figure 30: Comparison of the 6-hour ensemble forecast models generated with a 0.6:1 BRF 

approach for the top 12 and top 5 variables. The hit rates are shown by broken lines while the 

proportion correct (PC) are given by solid lines. 

Table 16: Comparison of the 6-hour Parkland and Grassland ensemble forecasts generated from 

the 0.6:1 BRF models for the top 12, 10, eight and five variables. The three event forecast 

thresholds of ≥ 0.9, ≥ 0.7, and ≥ 0.5 are shown for each model. 

Skill 

Measure 

12 Variables 0.6 : 1  10 Variables 0.6 : 1 5 Variables 0.6 : 1 

0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 

H 0.6378 0.6566 0.6973 0.6209 0.6426 0.6888 0.7396 0.7551 0.7872 

PAG 0.1797 0.1739 0.1615 0.1531 0.1492 0.1408 0.1659 0.1635 0.1574 

PC 0.8527 0.8442 0.8235 0.8284 0.8190 0.7969 0.8209 0.8152 0.8008 

FAR 0.8203 0.8261 0.8385 0.8469 0.8508 0.8592 0.8341 0.8365 0.8426 

F 0.1372 0.1470 0.1706 0.1618 0.1727 0.1980 0.1752 0.1820 0.1985 
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Mountain and Foothills : Daily Lightning Prediction 

The daily Mountain and Foothills data set has the lowest data imbalance of all the 

50km by 50km zones. Roughly 17% of the total observations have lightning occurrence. 

The five BRF models generated with the top 12 and 15 variables produce ensemble 

forecasts with hit rates ranging from ~70% to over 85% (Figure 31). The prediction skills 

of the15 variable model ensembles are less than the skills of the 12 variable models 

(Table 17). Due to the relatively high prediction skill, low FAR, and trend in Figure 13e, 

no additional models were run for the Mountain and Foothills zone. 

Overall, the 15 and 12 variable ensembles are quite comparable in terms of skill. 

The 15 variable 0.6:1 ensemble produced slightly lower hit rates but higher PC than the 

corresponding 12 variable models. The FAR is also lower for the 15 variable ensembles 

although it is within less than 2% of the 12 variable ensembles. The F skills are within 

less than 2% of each other with the 15 variable model having a slightly lower number of 

false alarms. The two models show some of the highest hit rates (~82-85%) and lowest 

FAR (~50-53%) compared to the other 50km by 50km models. The 12 variable 0.6:1 

model with an event threshold of 0.5 is chosen as the optimum model as it produces 

 
Figure 31: The hit rates for the various Mountain and Foothills daily prediction ensembles. 

Models built with the top 15 variables are represented by bars, and the red line represents 

models generated from the top 12 variables. The BRF methods applied to each model are shown 

below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the x-axis. 
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roughly the same results with three fewer variables and is thus more computationally 

efficient. 

Table 17: Comparison of the Mountain and Foothills ensemble forecasts generated from the 0.6:1 

BRF models for the top 12 and 15 variables. The three event forecast thresholds of ≥ 0.9, ≥ 0.7, 

and ≥ 0.5 are shown for each model. 

Mountains Daily 12 Variables 0.6 : 1  15 Variables (0.6:1) 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.8229 0.8327 0.8538 0.8088 0.8208 0.8465 

Post Agreement (PAG) 0.4826 0.4769 0.4655 0.5013 0.4950 0.4814 

Proportion Correct (PC) 0.8152 0.8115 0.8035 0.8263 0.8227 0.8142 

False Alarm Ratio (FAR) 0.5174 0.5231 0.5345 0.4987 0.5050 0.5186 

False Alarm Rate (F) 0.1864 0.1930 0.2071 0.1700 0.1770 0.1927 

Mountain and Foothills : 6-hour Lightning Prediction 

The data imbalance for the 6-hour Mountain and Foothills data sets is around 

three times greater than the imbalance for daily lightning occurrence. Roughly 6% of the 

total observations in the data set have lightning occurrence. The BRF models generated 

with the top 12 and top 15 variables produce ensemble forecasts with hit rates ranging 

from ~63-82% (Figure 32). The 15 variable models ensemble hit rate skills are less than 

 
Figure 32: The hit rates for the various Mountain and Foothills 6-hour prediction ensembles. 

Models built with the top 15 variables are represented by bars, and the red line represents 

models generated from the top 12 variables. The BRF methods applied to each model are shown 

below the x-axis with the three forecast thresholds (≥ 0.9, ≥ 0.7, and ≥ 0.5) listed on the x-axis. 
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that of predictions made with the 12 variable models. Due to the relatively high hit rate, 

trend in Figure 13e, and the already relatively high FAR of the 12 and 15 variable 

models, no additional models were run for the Mountain and Foothills zone. 

Overall, the 15 and 12 variable ensembles are quite comparable in terms of skill. 

The 12 variable 0.6:1 ensembles produced hit rates of ~79-82% compared to the ~77-

81% of the 15 variable models (Table 18). The 12 variable ensemble with a 0.5 threshold 

also produced nearly equal PAG and PC skills. The FAR is slightly lower for the 12 

variable 0.5 threshold ensemble although it is within ~0.1% of the 15 variable ensemble. 

The F skills are within less than 0.3% of each other with the 15 variable model having a 

slightly lower value. The 12 variable 0.6:1 model with an event threshold of 0.5 is chosen 

as the optimum model as it produces comparable measures of skill and a slightly better 

hit rate (80.7%) with three fewer variables and is thus more computationally efficient. 

Table 18: Comparison of the Mountain and Foothills ensemble forecasts generated from the 0.6:1 

BRF models for the top 12 and 15 variables. The three event forecast thresholds of ≥ 0.9, ≥ 0.7, 

and ≥ 0.5 are shown for each model. 

The variable importance plots for the top models selected for each 50km by 

50km zones are illustrated in Figure 33. The variable importance plots for the daily and 

6-hour optimum models were nearly identical, therefore only the daily plot was included. 

SHOW00, CAPE00, and Julian day show up in nearly all the top models for every spatial 

scale. SHOW00, latitude (lat), and Julian day were in the top five predictors for all of the 

50km by 50km models. CAPE00 appears in the top five variables for both Boreal Forest 

models, the 6-hour Parkland and Grassland, and the 6-hour Mountain and Foothills 

models. Elevation (elv) and longitude (long) are highly important for the daily Mountain 

and Foothills models. Sample forecast skill maps are also provided for each the three 

zones (Figure 34, Figure 35, and Figure 36).  

Mountains 6-hour 12 Variables 0.6 : 1  15 Variables (0.6:1) 

Skill Measure 0.9 0.7 0.5 0.9 0.7 0.5 

Hit Rate (H) 0.7873 0.7997 0.8235 0.7666 0.7805 0.8065 

Post Agreement (PAG) 0.2529 0.2482 0.2352 0.2588 0.2508 0.2341 

Proportion Correct (PC) 0.8359 0.8305 0.8155 0.8403 0.8351 0.8169 

False Alarm Ratio (FAR) 0.7471 0.7518 0.7648 0.7412 0.7492 0.7659 

False Alarm Rate (F) 0.1607 0.1674 0.1850 0.1517 0.1612 0.1824 
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Figure 33: Variable importance plots for the optimum models selected for each spatial and 

temporal scale. The models represent the Boreal Forest, Parkland and Grassland, and Mountain 

and Foothills from top to bottom. The daily models variable importance are displayed on the left 

and the 6-hour models to the right. The plots were nearly identical for the daily and 6-hour Boreal 

Forest therefore only the daily plot was included. The MeanDecreaseGini values on the x-axis are 

relative values of each variables importance. Actual values cannot be compared between different 

models however the relative ranking of variables can be compared. A higher value assigned to a 

variable indicates it has greater importance. 
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Figure 34: Ensemble forecast prediction accuracy for a randomly chosen day with lightning (July 

13, 2005). The optimum Boreal Forest model was used to generate the ensemble forecast. 
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Figure 35: Ensemble forecast prediction accuracy for a randomly chosen day with lightning (July 

23, 2011). The optimum Grassland and Parkland model was used to generate the ensemble 

forecast.  
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Figure 36: Ensemble forecast prediction accuracy for a randomly chosen day with lightning (July 

19, 2005). The optimum Mountain and Foothills model was used to generate the ensemble 

forecast. 
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CHAPTER 4.  DISCUSSION 

The top ten models created through implementation of the random forest 

classification algorithm are compared and discussed followed by an in-depth look at 

variable importance and the predictor-predictand relationships. Random forest modeling 

is then discussed in greater detail as the approach is fairly new to the fields of 

meteorology and wildland fire science. The advantages and disadvantages of the 

modelling approach are discussed along with the various modifications implemented. To 

conclude the chapter, possible sources of model error are discussed followed by some 

suggestions for future research. 

4.1  TOP MODEL SELECTION 

The top 10 models selected were compared and rank from one to10 in order of their 

various measures of skill (Table 19). All of the top models selected were generated with 

the 0.6:1 BRF approach and interpreted with a 0.5 event threshold. Of the top 10 models 

selected, the daily prediction models for the Parkland and Grassland, Mountain and 

Foothills, 2.5° latitude by 2.5° longitude, and 1.25° latitude by 2.5° longitude have the 

top four hits rates of 86.40%, 85.38%, 85.24% and 85.19% respectively. The lowest 

FAR, and therefore best PAG skills, are achieved by the daily models for the 2.5° latitude 

by 2.5° longitude, 1.25° latitude by 2.5° longitude, Mountain and Foothills and Boreal 

Forest. The range of PC is small with a maximum value of 81.55% for the 6-hour 

Mountain and Foothills and the lowest value of 76.55% for the 6-hour 1.25° latitude by 

2.5° longitude model.  

The ETS were calculated for each ensemble. There was little variation between 

the models ETS therefore this measure didn’t provide much insight for picking an 

optimum model. It should be noted that all ETS calculated were positive. This indicates 

that none of the models generated were “unskilled”. A model is “unskilled” if the chance 

forecast is preferred to the generated forecast. The 2.5° latitude by 2.5° longitude, and 

1.25° latitude by 2.5° longitude models had ETS values of ~35% while the 50km by 

50km has values around 15-18%. 

A PAG of less than 50% indicates that the model forecasts false alarms more 

often than hits. The daily 2.5° latitude by 2.5° longitude, and 1.25° latitude by 2.5° 

longitude, are the only two models that generate a PAG greater than 50%. This is 

partially due to selecting top models based on optimal hit rates, as hit rates are often 



 

92 

 

maximized at the expense of the false alarms. The 0.6:1 BRF approach contributes to the 

low PAG skill as the sample size specification create a model that is biased to the positive 

class. Although not to the same extent, the 0.6:1 BRF approach essentially flips the data 

imbalance such that the majority class sample is now the positive class. The daily 

Mountain and Foothills (47%) and daily Boreal Forest (~40%) forecasts have the highest 

PAG out of the 50km by 50km models. 

From a wildland fire perspective, accurate lightning prediction is most valuable 

in the Boreal Forest and part of the Mountain and Foothills zones. Unfortunately the 6-

hour Boreal Forest ensemble has one of the worst forecast performances in terms of hit 

rate, PC and FAR. The daily Boreal Forest model was ranked 4/10 for PAG, FAR and F 

and 5/10 for PC but ranked 9/10 for hit rate. The 6-hour Mountain and Foothills model 

ranked 1
st
 for F and PC, 8/10 for PAG and FAR, and 6/10 for hit rate. The daily 

Mountain and Foothills model has the best overall performance ranking 2/10 for hit rate 

and PC and 3/10 for all other measures. This ensemble model was generated with the top 

12 variables and a 0.6:1 BRF approach. Four of the top variables from the Mountain and 

Foothills model include Julian day, elevation, and SHOW00, and CAPE00. The 

individual contribution of these four variables to the random forest model are interpreted 

from the partial dependence plots and discussed in 4.2.1  PARTIAL DEPENDENCE 

PLOTS. 

With minor modifications for data input discontinuities (such as scale 

differences), and a small amount of training, these models could easily be introduced into 

fire management and operations. The majority of the variables in the final model 

selections are geographic covariates or from the Radiosonde data. The radiosonde data 

are available almost immediately after the sounding. A different source is necessary to 

replace the reanalysis variables as these are not immediately available. The Reanalysis 

variables are mean sea level pressure, 250mb vertical winds and surface pressure. These 

variables could be obtained from weather station data, forecasts, numerical weather 

prediction models, or calculated from the soundings.  
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Table 19: The model selected for each of the data sets are ranked from in order of decreasing skill 

from one to 10 for various forecast skill criteria.  

4.2  PREDICTOR IMPORTANCE AND CONTRIBUTION 

 Variable importance plots for the top 10 models selected are shown in sections: 

3.3.1  2.5° LATITUDE by 2.5° LONGITUDE, 3.3.2  1.25° LATITUDE by 2.5° 

LONGITUDE, and 3.3.3  50KM BY 50KM . The daily Mountain and Foothills model 

has the best overall performance of the 10 models and is thus selected as the optimum 

model produced. This section discusses the variable importance and predictor-predictand 

relationship with respect to this specific model unless otherwise stated. 

4.2.1  PARTIAL DEPENDENCE PLOTS 

Partial dependence plots can be used to help understand the contribution a 

variable makes to a given random forest model (Hastie et al., 2009). The partial 

dependence plots provide a visualization of the relationship between a selected individual 

predictor variable and the binary (0/1) output from the random forest. In essence, the 

plots show the average trend of a selected variable integrating all other variables out 

(Liaw and Wiener, 2002). By default, the plots focus on the first class (0); therefore the 

which.class argument was used to generate the plots with a focus on lightning events (1). 

The y-axis on the partial dependence plots provided is the logit of the probability of  

 

 

 

Rank Hit Rate (H) Post-

Agreement 

(PAG) 

Proportion 

Correct (PC) 

False Alarm 

Ratio (FAR) 

False Alarm 

Rate (F) 

1 Daily Parkland  Daily 2.5°x2.5°  6-hr Mountain  Daily 2.5°x2.5°  6-hr Mountain  

2 Daily Mountain  Daily 1.25°x2.5°  Daily Mountain  Daily 1.25°x2.5°  6-hr Parkland  

3 Daily 2.5°x2.5°  Daily Mountain  6-hr Parkland  Daily Mountain  Daily Mountain  

4 Daily 1.25°x2.5°  Daily Boreal  Daily Parkland  Daily Boreal  Daily Boreal  

5 6-hr 2.5°x2.5°  Daily Parkland  Daily Boreal  Daily Parkland  Daily Parkland  

6 6-hr Mountain  6-hr 2.5°x2.5°  Daily 2.5°x2.5°  6-hr 2.5°x2.5°  6-hr Boreal  

7 6-hr 1.25°x2.5°  6-hr 1.25°x2.5°  Daily 1.25x2.5°  6-hr 1.25°x2.5°  6-hr 1.25°x2.5°  

8 6-hr Parkland  6-hr Mountain  6-hr 1.25°x2.5°  6-hr Mountain  Daily 1.25°x2.5°  

9 Daily Boreal  6-hr Parkland  6-hr Boreal  6-hr Parkland  Daily 2.5°x2.5°  

10 6-hr Boreal  6-hr Boreal  6-hr 2.5°x2.5° 6-hr Boreal  6-hr 2.5°x2.5° 
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Figure 37: Partial dependence plots for Julian day for daily lightning prediction in the Mountain 

and Foothills (left) and daily lightning prediction at the 2.5° latitude by 2.5° longitude spatial scale 

(right). The y-axes are the logit of the probability of the lightning occurrence. 

 

lightning occurrence. The ticks inside the x-axis show the deciles
8
 of the data distribution 

for the corresponding variables (Hastie et al., 2009). A lower density of ticks in a certain 

region of a plot means that the data density is low in that range; therefore the curves are 

less determined (Hastie et al., 2009). While the numbers on the y-axis vary from plot to 

plot, the general trends can be compared between variables by comparing the shape and 

range of the plots.  

Figure 37 shows the partial dependence plots generated for Julian day for daily 

lightning prediction in the Mountain and Foothills and daily lightning prediction at the 

2.5° latitude by 2.5° longitude spatial scale. The plots have a unimodal distribution with 

the logit of predicted probability of lightning being highest when Julian day is ~150-230, 

and lowest for the days occurring at the tail ends (April and October).This trend was 

anticipated and clearly shows the seasonal variation with peak lightning occurrence in the 

months of June, July and August. Peak lightning occurrence during these months in 

Alberta is well documented (Burrows et al., 2002). Both plots show similar trends 

however the trend is more clearly defined in the daily lightning 2.5° latitude by 2.5° 

                                                      

 

 

8
 A variation of quantile, the deciles are the nine values that split the data into ten equal parts. 
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longitude plot. This is partially due to the larger spatial scale encompassing all of Alberta 

and thus having more unique thunderstorm events over a larger range of days, as shown 

by the x-axis and decile tick marks. 

The partial dependence plots for SHOW00, and CAPE00 are shown in Figure 38. 

The 00Z Showalter index has a fairly linear negative relationship with the logit of the 

probability of lightning occurrence. Lower SHOW00 values correspond to a higher 

probability of lightning. This trend was anticipated as a negative SHOW value indicates 

that the air in the upper planetary boundary layers is unstable when compared to the 

middle troposphere therefore convection may occur. A positive Showalter index indicates 

stable air while values below zero indicate increasing instability as the value decreases 

(Showalter, 1947). Burrows et al., (2005) also found the Showalter index to be a good 

predictor of lightning, and identified it as the top overall predictor for Canada and the 

northern United States. The Showalter Index is also recognized as an important instability 

measure for severe storms and tornadic activity (Dupilka and Reuter, 2011). 

The CAPE00 partial dependence plot has a fairly linear positive relationship 

from zero to ~600J/kg at which point the curve plateaus. The positive relationship with 

the logit of the probability of lightning occurrence indicates that as higher values of 

CAPE00 correspond to higher probabilities of lightning occurrence. Again, this trend was 

anticipated as CAPE is a measure of the convective potential of the lower atmosphere. 

CAPE values less than 1000J/kg indicate a relatively stable atmosphere while values in 

excess of 3000J/kg indicate sufficient energy for severe thunderstorms. The partial 

dependence plot doesn’t seem to capture the upper end variations in CAPE. This could be 

due to the low number of observations available in the upper range. The thin-plate spline 

(TPS) interpolation of CAPE may have also failed to capture the solar heating of the 

south facing slopes of the mountains. The slopes facing the sun heat at a faster rate than 

the relatively flat areas to the east due to the angle of inclination. As the warm air rises 

into cooler ambient air, it has a positive buoyancy. This process may encourage strong 

updrafts that may become sufficient to support storm activity. 
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Figure 38: Partial dependence plots of SHOW00 (left) and CAPE00 (right) for daily lightning 

occurrence in the Mountain and Foothills. The y-axes are the logit of the probability of the 

lightning occurrence. 

Elevation was selected as a top predictor for the both of the Mountain and 

Foothills models. Elevation (center of cell) was only included as an input at the 50km by 

50km scale. The two other scales are too coarse for center point or average elevation to 

provide valuable information. The partial dependence plot of elevation is provided in 

Figure 39. Burrows et al. (2002) identified areas of high flash density with elevation of 

~1000m along the eastern slopes of the foothills. A band of high flash density was also 

identified between the 1200m and 2000m contour lines from west of Brazeau County to 

north of Canmore. These findings correspond fairly well with the partial dependence plot. 

The sharp rise and peak at around 2800m in the partial dependence plots was not 

anticipated. The increase at ~2800m occurs well outside of the deciles indicating there 

were not a large number of events.  

Upon exploring the possibility that a small number of lightning events may have 

been captured around a single mountain (or a few neighbouring peaks), it was found that 

all strikes records with an elevation above 2500m occurred in a single 50km by 50km 

spatial cell. The cell had a center point location of 82.57916°N and 117.2654°W. These 

coordinates are located in Jasper National Park on the NE side of Cornucopia Peak. 

Looking back at the training data, it was found that lightning strikes occur in this specific 

bin between ~20 to 30 times per year. Cornucopia Peak is located roughly 5km to the 

north east of Mt. Brazeau and is within the band of high flash density identified by 

Burrows et al. (2002). When creating decisions trees for warm season lightning 
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prediction Burrows et al. (2005) 

discussed that while elevation 

ranked fairly low overall in their 

models, it was a highly 

important variable for locations 

with significant elevation and 

gradients such as the Mountain 

and Foothills zones.  

Partial plots were not 

generated for the remaining top 

variables as the trends became 

very difficult to interpret and 

were obscured by noise. This is 

a typical response as only the 

highly relevant predictors for 

each models are likely to 

produce informative partial dependence plots (Hastie et al., 2009). In addition, variables 

with an additive effect also provide the clearest plots (Hastie et al., 2009). The remaining 

variables include latitude, longitude, SWET12, mslp, CINS00 and surface pressure at 

00Z. Mean sea level pressure and Severe Weather Threat index were also identified as 

top predictors ranking second and fourth overall by Burrows et al. (2005)  

The mslp and surface pressure at 00Z would likely provide information to the 

model about the location of low pressure systems. A decrease change in surface pressure 

can occur due to changing in the mass of air in the vertical column above a given point or 

by causing an air mass near the surface to rise to fall. As explained section 1.3  

CONVECTIVE BASICS, an air mass that is warmer than the surrounding environment 

will become buoyant and rise. This can occur due to solar heating and warm air advection 

(Aguado and Burt, 2010). The contributions of these variables to the model cannot be 

discussed with certainty, however, the general relationship between lower surface 

pressure and convective activity is well known. The severe weather threat index is used 

to analyze thunderstorm (and thus lightning) potential therefore it may be considered 

intuitive that it is selected by the models. It is postulated that this variable would have a 

positive relationship with probability of occurrence.  

Figure 39: Partial dependence plot of elevation for 

daily lightning occurrence in the Mountains and 

Foothills. The y-axis is the logit of the probability of the 

lightning occurrence. 
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 Convective inhibition is the amount of energy in J/kg needed to overcome the 

negative buoyant energy exerted by the environment on an air parcel. Although CINS 

was ranked fairly low by Burrows et al. (2005), its importance in the Mountain and 

Foothills models is not unexpected as CINS00 showed in the top 15 predictors for all of 

the spatial scales (Table 7). Again, the exact impact of CINS00 on the model cannot be 

stated however it is proposed that CINS had a positive relationship with the probability of 

lightning. Given as a negative value, CINS of zero to -50J/kg represent a weak capping 

effect, -50 to -200J/kg represent a moderate capping effect, and values lower 

than -200J/kg represents a strong capping force, and thus likely a stable lower 

atmosphere.  

Latitude and longitude were also selected by the Mountain and Foothills models. 

While the trends were unclear in the partial plots, there are documented variations in 

lightning occurrence with both variables (Burrows and Kochtubajda, 2010). Elevation 

and longitude can provide proxy information to the models about the slope and aspect as 

the cells move east from the mountains into the leeward Foothills. Latitude and Julian 

day help capture the length of the warm season as well as typical seasonal conditions. 

The prevalence of variables with the 00Z time frame may speak to the importance of 

diurnal trends and daily solar heating for thunderstorm production. The standard local 

time in Alberta is Mountain Standard Time (MST) and is equal to UTC-7. Therefore, the 

00Z observations correspond to 5:00pm MST (and 6:00pm MDT). 

4.3  RANDOM FOREST MODELLING 

Previously created lightning prediction models have focused on classification and 

regression tree analysis. While tree-structured regression (Burrows et al., 2005) and 

decision tree analysis (Burrows, 2008) have been used to predict lightning, no attempts of 

creating prediction models via random forest modeling were found to date. Although 

many aspects of this study were built off of previous research, the random forest 

classification approach to prediction of cloud-to-ground lightning is novel. Lightning is 

episodic in nature and its characteristics vary greatly over time and space making creation 

of prediction models difficult. Random forest classification is well suited for lightning 

prediction modeling due to its ability to model complex interactions, efficiency with large 

data sets, and very high classification accuracy compared to other classification and 

regression models (Chen et al., 2004; Cutler et al., 2007). 
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4.3.1  BENEFITS 

There are many characteristics of random forest classification that make it well 

suited for lightning occurrence prediction. The ability to model complex interactions 

efficiency with large data sets, and high classification accuracy compared to other 

classification and regression models are some of the benefits of random forest (Chen et 

al., 2004; Cutler et al., 2007). Single decision trees can often be biased or have high 

levels of variance. Random forests attempt to mitigate this by producing numerous 

decision trees whose output votes are averaged, theoretically producing some level of 

balance (Breiman, 2001). The ability to modify the model parameters to compensate for 

data imbalances and balance the class specific errors is another strong benefit. For data 

sets with multiple interactions between the variables, random forests tend to outperform 

linear models (Cutler et al., 2007).  

4.3.2  DATA IMBALANCE 

 At first sight, the initial assessment of the data sets performed with no balancing 

modifications appeared to produce promising results. The overall OOB error estimates 

indicated models accuracies of ~ 80-90% for the coarser spatial scales and well over 90% 

for the 50km by 50km scale. Upon further analysis it was found that while the overall 

skill was quite high, this is a typical response of random forest when dealing with 

imbalanced data sets. While the data imbalances were by no means extreme, they were 

sufficient to significantly bias the prediction skill of the models to the negative class. 

This conundrum of imbalanced data classification is well documented in the 

research pertaining to bioinformatics (Chen et al., 2004; Kubat and Matwin, 1997). The 

important need for accurate rare event predictions is also prevalent in meteorology and 

wildfire science. Forecasting severe storms, issuing weather alerts, and trying to predict 

extreme fire behaviour are three such examples. When trying to accurately predict rare 

events, modelling becomes a balancing act between maximizing hits without drastically 

over predicting false alarms. The five BRF methods applied to generate the ensemble 

forecasts play off this balancing act by forcing various proportions of each predictand 

class into the random forest models in an attempt to generate optimal hit rate forecasts.  
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4.3.3  OOB ERROR ESTIMATE VS. INDEPENDENT PREDICTIONS 

The unbiased OOB error estimate is a beneficial tool allowing general model 

skill to be assessed without running a cross-validation. While the OOB error estimate 

may be sufficient for generating an unbiased estimate of error for the test set, separate 

training and validation data sets were used. If the goal was simply to identify top 

predictors of lightning then the entire data set could be used and the OOB-estimate of 

error would provide a sufficient overview of the skill. However, since the objective is to 

use the generated models to produce a series of predictions in order to create ensemble 

forecasts, an independent data set is required. Since forecast ensembles were generated 

from a series of predictions from 10 separate random forest models, it was necessary to 

have a test set to build the models and a separate validation set on which to make the 

predictions. Using the entire data set to build the model would mean re-running the test 

set (or a portion of it) through the model to create predictions. This would have generated 

a deceptively low estimate of error. Although each tree only uses a portion of the data set 

to grow, and retains the remainder to find the OOB error estimate, once the entire forest 

is grown each data point will have been included in multiple trees. As Liaw (2010) 

explains, due to the processes used for tree and forest building, near perfect prediction on 

the training data set is basically, by design, a self-fulfilling prophecy.  

As described in section 2.4.1  RANDOM FOREST: BACKGROUND, the OOB 

error estimate of a random forest model depends primarily on two conditions, the level of 

correlation between trees and the strength of the individual trees (Breiman, 2001). The 

number of input variables included in the model have a direct impact on the two 

conditions, and thus the error rate. Theoretically, as the number of input variables is 

decreased, the between tree correlation and individual tree strength also decrease. The 

Mountain and Foothills plot in Figure 13e demonstrates this trend. Since the primary 

interest of this research lies in correctly predicting the positive class (1), this trend is not 

necessary upheld when changing the number of variables as a BRF approach is applied. 

By implementing this approach, the overall skill of the models are decreased in order to 

optimize the event forecast skill. This deviation from the default conditions of 

randomForest helps explains why even though the optimum number of variables was 

expected to be 15 to 25, when the various BRF models were run and the ensemble 

forecasts were generated, the optimum models often had a smaller number of predictors.  
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4.3.4  EFFECTS OF CORRELATION 

It was anticipated that there would be a high level of correlation between many of 

the input variables as many of the predictors are directly or indirectly related. Each of the 

pressure level reanalysis variables have a series of vertical observations of daily mean 

measurements and four-times daily observations. Adding to the possible correlation, 24-

hour change was calculated for each variable. Removal of the very highly correlated 

variables is essential to preserving the skill of the model and thus its predictive 

capabilities (Dormann et al., 2013; Tolosi and Lengauer, 2011). If multiple sets of 

variables that are highly correlated are included in the model the chance of between tree 

correlations may be higher. Strobl et al. (2008) observed that if multiple highly correlated 

variables are included in the random forest they are often used interchangeably. This can 

lead to less relevant (correlated) variables replacing others with higher predictive 

capability. 

The party package (Hothorn et al., 2013) was developed to mitigate the effect of 

correlated variables. The package uses conditional inference trees to help alleviate the 

bias that random forests have towards highly correlated variables. Attempts were made to 

produce the models with this package however some of the necessary features were 

deemed too memory and CPU-intensive. In order to mitigate the possible introduction of 

model error from highly correlated variables a correlation analysis was performed as 

outlined in section 3.1  EXPLORATORY RUNS. Variables with |r| ≥ 0.7 were removed 

prior to generating the random forests. The findings of Dormann et al. (2013) supported 

this decision. The authors found that when variables with correlation coefficient greater 

than 0.7 were included in various multiple regression and machine learning approaches 

(including random forest), the collinearity began to severely distort the models and thus 

degrade the predictive skill (Dormann et al., 2013). 

4.3.5  NUMBER OF TREES 

The number of trees necessary to produce stable model outputs was determined 

in the preliminary phase. To ensure the number of trees included in the random forests 

remained sufficient for the various spatial and temporal scales, OOB error estimate plots, 

similar to Figure 12, were generated and checked for each series of runs. A relatively 

small number of trees were needed to generate a stable model output (~200 trees). Since 

the number of observations is much greater than the number of input variables, a smaller 
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number of trees is sufficient compared to high dimensional data where number of 

observations is less than number of predictors (Genuer et al., 2008). For each run, forests 

with 100 to 400 trees, at 50 tree intervals were created. Once the top predictors were 

selected, ntree was set to 251 for each of the models created for the ensemble forecasts. 

An odd number of trees were used to prevent ties from occurring within the model. If an 

even number of trees are used, there is a possibility the forest will have an equal number 

of votes. If this occurs, the tie is randomly broken (Liaw and Wiener, 2002). Using an 

odd number of trees avoids this issue all together. 

4.3.6  DISADVANTAGES 

 Some disadvantages of random forests include possible over fitting of noisy 

classification and regression tasks and poor skill when large number of irrelevant features 

are included. Fortunately, it is believed that neither of these disadvantages affected the 

models generated. Over fitting occurs in only extreme scenarios where either the sample 

size is very small or there are a large number of highly noisy variables (Segal, 2004), 

which is not the case for this study. The vast majority of variables included in the random 

forest models were chosen because they were previously found to be useful predictors for 

lightning occurrence. In addition, the removal of correlated variables and the iterative 

process used to narrow down the number of variables would have further prevented the 

chance of a few, let alone a large number of irrelevant features being included. 

Another, and more prominent, disadvantage of random forests are the difficulties 

associated with interpreting the models. Due to the highly computational procedures of 

the random forests, the predictor-predictand relationships are complex and the full 

classification functions cannot be represented by formulas or graphs (Cutler et al., 2007). 

This makes interpreting the models difficult. Partial dependence plots can be generated 

for one or two specific variables, however if multiple variables are highly importance to 

the classification or if there are high-level interactions the plots provide little information 

(Cutler et al., 2007). Building the models is also fairly memory intensive. 

4.4  POSSIBLE SOURCES OF ERROR 

The removal of data points with NAs present should not have affected the skill of 

the models. Roughly the same proportion (7%) of data point were removed from each 
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year and spatial scale. The proportion of data points removed from the two predictand 

classes were nearly equal.  

4.4.1  THIN-PLATE SPLINE 

The primary deficiency of data interpolated with the TPS is due to the low 

density of the RAOB stations. Tait et al. (2006) also experienced the drawbacks of low 

station density when interpolating daily rainfall in New Zealand from climate station 

data. Interpolation methods, such as TPS, are designed to interpolate, not extrapolate 

therefore inaccurate and physically impossible results can occur when such extrapolations 

are made (Xiao et al., 1996). Of the values generated by the TPS, ~2-4% were values 

outside of the normal range and ~3-5% of the outputs were NAs. If fewer than 5 stations 

had valid measurements for a particular variable a TPS was not performed, instead a 

value of NA was assigned. When unacceptable values were encountered, the value was 

corrected by replacing it with the nearest acceptable value and a note was made. 

In addition to the problem of poor extrapolation skill, the small number of 

stations can also produce highly generalized interpolations. Entire thunderstorm events in 

Alberta can be missed if the storm system is not located within close proximity of the 

nearest RAOB station. In contrast, if independent thunderstorm events are occurring near 

multiple RAOB locations the interpolated conditions may be highly skewed providing a 

false set of conditions with strong convective potential when in actuality only a few small 

scattered or even no thunderstorm events in Alberta have actually occurred. This could 

cause model confusion if some of the storm conditions were captured by the reanalysis 

data but not picked up by the sounding variables. 

4.4.2  LIGHTNING MISCLASSIFICATION 

Misclassifications of CG or CC lightning occurred in less than 7% of the data. Of 

the 7% classification error, the majority were CC flashes incorrectly classified as CG 

(less than 15kA). The CLDN claims a CG detection efficiency exceeding 80-90% in most 

regions and a median location accuracy of 500m (Cummins and Murphy, 2009). The 

claims of detection efficiency and location accuracy are cautiously accepted as it is not 

uncommon for accuracy to be overstated or reported for best case scenarios. At best, the 

CG lightning data used to generate and validate the models is ~90% accurate. This 

implies that there is a possible error of 10% or greater introduced to the models. Areas 
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with low station density or down sensors can also contribute to error. Additional error is 

introduced by binning the strikes into predetermined cells, especially at the 2.5° latitude 

by 2.5° longitude and 1.25° latitude by 2.5° longitude scales. 

Environmental conditions may vary greatly within each cell and between 

neighbouring cells. Strikes occurring near the periphery of the spatial bins may be 

misplaced into a neighbouring spatial bins and thus be separated for the corresponding 

atmospheric conditions. In general, any model is limited by the spatial and temporal 

resolution, and level of accuracy of each input variable. 

4.5  LOOKING FORWARD 

Alberta is a geographically diverse province with distinct landforms and 

ecosystems. This makes modelling for the entire province a challenge. In order to try to 

capture this variation, the province was subdivided into three separate zones based on the 

Natural Regions of Alberta for the 50km by 50km scale. It was believed that splitting the 

province into these zones would allow for region specific models to be built that could 

capture unique local conditions. For example, the weather systems developing leeward of 

the Rocky Mountains are not the same as storm development along the north eastern 

border. In addition, the Foothills are a lightning hotspot, experiencing on average more 

than 30 days per year of CG lightning (Burrows and Kochtubajda, 2010) and are 

therefore highly important to model accurately. Looking forward, a further breakdown of 

the province into geographically unique zones could prove beneficial. Separating the 

Mountains from the Foothills may produce some interesting results for the lower foothills 

region. The Boreal Forest could also be further divided into its Natural Subregions, or the 

Alberta Wildfire Management Areas designated by Alberta Environment and Sustainable 

Resource Development
9
.  

The models generated to predict lightning were generated from a binary 

predictand. Perhaps implementing a measure of the number of lightning strikes observed 

instead of a straight 0/1 predictand would have produced superior results. If the number 

of strikes were used, lightning density could also be predicted. The number of strikes can 

                                                      

 

 

9
 Alberta Wildfire Management Areas map available at: http://esrd.alberta.ca/wildfire/wildfire-

maps/documents/WildfireManagementAreas-2013.pdf 



 

105 

 

be easily demined from the CLDN data set by summing the number of occurrences over a 

given time frame and spatial scale. It would also be interesting to see if the polarity of 

lightning strikes could be predicted. Naturally, better quality, higher resolution data 

would improve the capabilities of the models. 

The predictors were narrowed down from all variables reaming post-correlation 

analysis to the top 12 by running a series of random forest models with a 1:1 BRF 

approach. This uniform approach was applied to all of the data sets regardless of the data 

imbalance. Perhaps selecting and implementing the optimum balancing method (BRF or 

WRF) from the initial random forest run (post-correlation) for each data set would have 

produced superior results. Finally, due to the highly correlated nature of the variables, a 

principal component analysis may prove beneficial for capturing the trends of related 

variables. The party package, or a similar approach using conditional inference trees to 

reduce the bias that random forests have towards highly correlated variables may also 

prove useful for future prediction models generated with random forest. 
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CHAPTER 5.  CONCLUSIONS 

Cloud-to-ground lightning is a major contributor to wildland fires in Canada. 

Despite the need, lightning is not included in the Canadian Weather Prediction Model 

resulting in an information gap that can lead to dire results. The primary objective of this 

study was to generate skillful lightning prediction models for the province of Alberta. 

Before the data and methods were introduced an overview of convective dynamics, 

thunderstorm formation, cloud electrification, types of lightning, and wildland fire in 

Canada was provided in the introductory chapter. A literature review including previous 

research on generating lightning occurrence prediction models was also provided. 

Thirteen years (1999-2011) of weather and lightning data were collected. Upper 

air indexes and parameters from Radiosonde observations, surface and pressure level 

Reanalysis data, and a few additional calculated variables comprised the atmospheric 

inputs for the models. Geographic and temporal covariates such as latitude, longitude, 

elevation, and Julian day were also included as predictors. Random forest classifications 

were used to generate a series of lightning prediction models and forecast ensembles for 

Alberta.  

A series of 6-hour and 24-hour lightning prediction models valid April-October 

were developed at three different spatial scales. The entire province was included in the 

first two spatial scales of 2.5° latitude by 2.5° longitude and 1.25° latitude by 2.5° 

longitude. For the third spatial scale of 50km by 50km, the province was divided into 

three separate zones based on the Natural Regions of Alberta. The first zone corresponds 

to the Boreal Forest Region, the second zone includes the Parkland and Grassland 

Regions, and the third zone encompasses the Rocky Mountain and Foothills Regions. 

Thin-plate splines were used to interpolate the input variables for the various spatial 

scales. Variables with Pearson’s correlation coefficients greater or equal to 0.7 were 

excluded from the models. 

A Balanced Random Forest (BRF) approach was used to generate a set of top 

predictors for each spatial scale and time frame. The BRF approach provides a level of 

model bias correction that was introduced by the imbalanced lightning occurrence data. 

The thirteen years of data were split into a seven year training set and a six year 

validation set. Random forest models were grown on the training set and then used to 

make ensemble predictions on the validation set. This provided an independent measure 

of forecast skill.  
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A wide range of models were generated for each spatial and temporal scale in an 

attempt to maximize hit rate. Optimum models were then selected based on the generated 

forecast skill measures. It was found that hit rate was maximized when the predictand 

(0:1) class sample size used to generated each tree in the forest was specified at a 

proportion of 0.6:1, where 0 indicates a non-event and 1 indicates a lightning event. 

Ensemble forecasts generated with this 0.6:1 BRF approach were interpreted with three 

different event thresholds (≥ 0.5, ≥ 0.7, and ≥ 0.9). Intuitively, setting the forecast 

threshold to ≥ 0.5 produced a superior hit rate while also increasing the number of false 

alarms as only 50% of the models included in the ensemble must predict lightning for the 

ensemble to forecast a lightning event. 

In order to maximize the hit rate, a larger number of variables were required for 

the 2.5° latitude by 2.5° longitude, 1.25° latitude by 2.5° longitude, and the Mountain and 

Foothills zone than for the Boreal Forest zone and Parkland and Grassland zones. 

Showalter index (00Z), Julian day, convective available potential energy (00Z), and time 

of day (for 6-hour models) were commonly identified top predictors. The geographic 

covariates of latitude, longitude and elevation were highly important for the Mountain 

and Foothills models. 

The daily lightning prediction model for the Mountain and Foothills zone was 

selected as the model with the best overall performance as determined from the 

independent prediction ensembles. The ensemble forecast had a hit rate of over 85%, an 

overall proportion correct of ~80%,  false alarm ratio of 53%, and a false alarm rate of 

19%. The variable importance and predictor-predictand relationships were discussed for 

this model. Showalter index (00Z), latitude, elevation, Julian day, and longitude were the 

top five variables in order of importance selected by this model. 

Possible sources of error and limitations of the methods and models were 

discussed. Although many aspects of this study incorporated findings from previous 

research, the random forest classification approach to prediction of cloud-to-ground 

lightning is novel. A discussion regarding random forest modeling methods with respect 

to lightning prediction was provided and the advantages of this method were discussed. 

Recommendations for future research on lightning occurrence prediction modeling are 

also provided. While the models generated had good hit rates, the high rate of false 

alarms is a major drawback.  

The addition of lightning prediction models to the field of wildland fire science 

will increase knowledge of lightning ignitions, better fire occurrence models, improve 
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resource allocation, and help increase preparedness of fire management agencies and 

communities alike. With a few weather input modifications and a small amount of 

operator training, the suggested models could easily be introduced into current wildland 

fire management and operations to aid with decision making.  
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