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Abstract

Advancements in wireless communication are continuously evolving, and the progression

towards the 6th generation (6G) and beyond of cellular architecture will heavily rely on

the implementation of machine learning (ML) algorithms in both cellular devices and base

stations (BSs), along with the deployment of highly dense networks. ML algorithms have

the potential to grant devices the ability to autonomously adapt and modify themselves,

while also facilitating decision-making processes involving non-deterministic polynomial-

time (NP)-hard problems. Therefore, this thesis explores the potential of machine learning

(ML) algorithms in shaping the future of wireless communication and cellular architecture.

SpeciĄcally, it focuses on addressing the challenges faced by conventional architectures in

meeting the data rate and reliability requirements of the anticipated 6G cellular architecture.

The research investigates the application of machine learning and stochastic geometry tech-

niques to propose novel approaches for enhancing performance and overcoming limitations.

The thesis presents a heterogeneous network (HetNet) model that correlates the loca-

tions of small cell base stations (SBSs) with macro base stations (MBSs) using a Poisson-

Voronoi tessellation. Theoretical analysis of this deployment scheme is studied using the

tools of stochastic geometry and the results indicate an improvement up to 21% in the cover-

age probability and up to 28% in the rate coverage. This thesis also introduces a conditional

generative adversarial network (CGAN)-based algorithm for uplink (UL) to downlink (DL)

channel covariance matrix (CCM) mapping and direct UL to DL channel state information

(CSI) mapping in massive MIMO systems operating in a frequency division duplex (FDD)

mode.

Additionally, the research explores multi-agent reinforcement learning (MARL) and
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multi-agent federated reinforcement learning (MAFRL) algorithms for access point (AP)

selection and clustering in cell-free networks. The MARL and MAFRL algorithms provide

a sub-optimal solution to an NP-hard problem and achieve up to 88.3% of the maximum

possible sum spectral efficiency achievable if all APs were to serve all users using cen-

tralized precoding. Furthermore, the thesis investigates the combination of long short-term

memory (LSTM) and CGAN for predicting downlink CSI from earlier uplink CSI estimates

and estimating complete uplink CSI from incomplete information. This algorithm demon-

strates the ability to provide reliable network service to users moving at vehicular speeds

with limited available power.

Through these approaches, the thesis aims to contribute to the development of more

efficient and reliable cellular systems for 6G and beyond. The research Ąndings demonstrate

the potential of ML algorithms and highlight the beneĄts of integrating stochastic geometry

and machine learning techniques in wireless communication systems.
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Chapter 1

Introduction

1.1 Evolution of Mobile Communications

Mobile communication systems have truly revolutionized the way we connect and commu-

nicate with each other, and their evolution shows no signs of slowing down. With each

passing decade, a new generation emerges, pushing the boundaries of what is possible in

terms of services and coverage. The mobile cellular systems journey began in 1979, and

since then, we have witnessed the rise of the Ąrst generation (1G), second generation (2G),

third generation (3G), fourth generation (4G), and now, Ąfth generation (5G) cellular net-

works. The advent of 3G brought about signiĄcant improvements over its predecessor, en-

abling higher mobile data speeds and more advanced services. However, the arrival of

4G truly transformed the landscape. Mobile broadband became dominant over Ąxed-line

broadband services like digital subscriber line (DSL) and Ąber or cable broadband. Thus,

smartphones, capable of running myriad applications, have become an indispensable part

of our daily lives. The demand for mobile data skyrocketed as people embraced streaming,

social media, and other bandwidth-intensive activities.

As we venture into the era of 5G and beyond, the need for even higher mobile data rates

becomes apparent. High-deĄnition videos, immersive media like augmented and virtual

reality, and the Internet of Things (IoT) are examples of emerging bandwidth-demanding

applications. The number of mobile subscribers globally has already reached a staggering

8.4 billion, and this Ągure is projected to surpass 9 billion by 2028 [1]. With around 86%
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Figure 1.1: Growth of mobile data traffic [1]

of these users having access to mobile broadband, the impact of mobile communication on

our lives will only continue to grow. While the growth of smartphone subscriptions may

be reaching saturation point, the demand for mobile data, especially for 5G users, shows no

signs of slowing down. 5G subscribers are forecasted to grow from 1 billion to 5 billion

during the 2022-28 period. According to the mobility report from Ericsson [1], there will

be a 40−fold increase in 5G data traffic by 2020-28, and by 2030 monthly 5G data traffic per

user will surge to a staggering 257 GB [2]. The growth of mobile data traffic is illustrated

in Fig. 1.1. This exponential growth poses both challenges and opportunities for mobile

network service providers, who must continually innovate and expand their infrastructure

to meet the ever-increasing demands of users.

As we progress towards the era of 5G and beyond, several crucial deployment techniques

emerge as key drivers of innovation in mobile communication systems. These include

massive multiple-input multiple-output (MIMO) antenna systems, heterogeneous networks

(HetNets), network densiĄcation techniques like cell-free massive MIMO, utilization of

higher radio frequency spectra like millimeter-wave (mmWave) frequencies, and the inte-

gration of machine learning (ML) algorithms into macro and small-cell base stations (MBSs

and SBSs) Ű all of which are expected to play signiĄcant roles in shaping the future of sixth
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generation (6G) networks [2, 3].

However, despite these technologiesŠ immense potential, certain challenges exist within

the current landscape of MIMO cellular networks. Two primary obstacles that demand at-

tention are inter-cell interference and poor cell-edge coverage. Interference between neigh-

boring cells can hinder network performance, resulting in degraded signal quality and re-

duced system capacity. Furthermore, cell-edge coverage refers to the ability of BSs to pro-

vide reliable connectivity at the outskirts of their coverage areas, where signal strength tends

to diminish, and interference is higher. Overcoming these challenges is crucial to ensure

seamless connectivity and optimal user experiences in future wireless networks.

Incorporating ML algorithms into base stations introduces new challenges that must be

addressed too. One such challenge is power consumption. ML algorithms typically re-

quire signiĄcant computational resources, leading to increased power consumption. In the

context of base stations, which are essential for network operation, minimizing power con-

sumption is of utmost importance to ensure sustainable and efficient network deployment.

Additionally, enhancing the computational capability of base stations becomes crucial to

accommodate the increased processing demands of ML algorithms. Furthermore, ML al-

gorithms must operate seamlessly in real-time environments to effectively handle dynamic

network conditions and evolving user demands. Adapting and learning from real-time data

is vital for ML algorithms to make accurate predictions and decisions, optimizing network

performance. Designing ML algorithms that can operate efficiently in real-time scenarios

without compromising the reliability and stability of the network poses a signiĄcant research

challenge.

To tackle these challenges, there is a need to develop novel cellular architectures that

leverage the potential of technologies like massive MIMO and HetNets while addressing

issues such as inter-cell interference and cell-edge coverage. These architectures should in-

corporate intelligent ML algorithms at the base stations to enhance network performance

and user experiences while considering power consumption, computational capability, and
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real-time operation requirements. This holistic approach ensures that the network infras-

tructure and algorithms work synergistically to meet the evolving needs of future mobile

communication systems.

1.1.1 Massive MIMO Networks

A BS equipped with a massive MIMO antenna array, where the number of antenna elements

is in the order of 102 to 103, signiĄcantly enhanced the capacity and reliability of a wireless

channel between the BS and user equipment (UE) without the use of additional spectrum

[3]. With MIMO (whether massive or not), two fundamental improvements are achieved

compared to single-antenna structures: array gain and spatial multiplexing gain. By utiliz-

ing multiple transmit antennas, the base station (BS) can employ directional beamforming

to steer signals toward users, resulting in an improved signal-to-interference-plus-noise ratio

(SINR) for each user, which is known as array gain. Additionally, MIMO enables the trans-

mitter to concurrently transmit multiple data streams within the same frequency band with

different directional beamforming vectors, thereby increasing the data rate, known as spatial

multiplexing gain. Furthermore, MIMO networks provide spatial diversity gain, which en-

sures reliable connectivity in ultra-reliable low-latency communication (URLLC) scenarios.

By transmitting redundant information streams along multiple spatial paths, the system be-

comes resilient to outages and ensures uninterrupted communication. It is important to note

that apart from higher capacity, spectral efficiency (SE), and improved coverage, massive

MIMO in particular, has two more important advantages over a traditional MIMO, named

favorable propagation and channel hardening, which are explained in detail in Section 2.2.

Additionally, massive MIMO systems exhibit near-optimal performance with simple lin-

ear precoders and detectors [4] and enhanced robustness against fading and interference [5].

These advantages have led to the adoption of massive MIMO transceivers in the 3rd Gen-

eration Partnership Project (3GPP) standards starting in Release 15 [6]. Moreover, massive

MIMO has been successfully commercialized and implemented in practical cellular sys-
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tems [7]. Massive MIMO systems typically operate in time division duplex (TDD) mode

due to the radio channel reciprocity feature. In frequency division duplex (FDD) mode, the

uplink (UL) and downlink (DL) transmissions occur simultaneously but on signiĄcantly

separated carrier frequencies. On the other hand, TDD mode employs the same frequency

band for UL and DL transmissions but at different times during the transmission frame.

Applying beamforming techniques is an essential part of massive MIMO, and knowledge

of DL channel state information (CSI) is necessary to obtain optimal beamforming weights

for DL transmission. UL CSI is obtained from the pilot signals transmitted by the UE. In

TDD mode DL CSI is easily obtained from UL CSI using the radio channel reciprocity

property of TDD. However, in the FDD mode of communication, radio channel reciprocity

is not applicable as the carrier frequency for UL and DL are different and small-scale fad-

ing is dependent on the carrier frequency. Therefore, for massive MIMO communication,

the TDD mode of communication is conventional. However, current cellular infrastructure,

especially voice communication largely operates in FDD mode. Thus there is a motivation

behind the implementation of massive MIMO operating in FDD mode. In Chapter 4, we

discussed the technologies for implementing FDD massive MIMO in greater detail.

1.1.2 Cell-free Massive MIMO Networks

The concept of massive MIMO can be implemented in a distributed manner, eliminating

the need for traditional cells. This approach is known as cell-free massive MIMO [8]. In a

cell-free massive MIMO system, there exists a central controller (CC) alongside a network

of distributed access points (APs) [9]. These APs can be equipped with single or multi-

ple antennas and are interconnected to the CC through a fronthaul link. The presence of a

large number of distributed APs enables efficient data transfer for a smaller number of UEs

within the system. Cell-free massive MIMO typically encompasses two variants: canonical

cell-free massive MIMO and scalable cell-free massive MIMO. In canonical cell-free mas-

sive MIMO, all APs simultaneously communicate with all UEs, while in scalable cell-free
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massive MIMO, each AP serves only a subset of UEs within its coverage area. Scalable

cell-free massive MIMO addresses the scalability challenges associated with the canoni-

cal approach. In canonical cell-free Massive MIMO, as the number of APs increases, the

overhead for channel estimation and centralized processing becomes signiĄcant. Scalable

cell-free Massive MIMO aims to overcome these limitations.

For canonical cell-free massive MIMO, during the UL transmission, the APs receive sig-

nals from UEs and forward them to the CC through the fronthaul link. The CC employs joint

decoding techniques to process the received signals. Conversely, the CC forwards transmis-

sion coefficients and DL data to all APs for DL transmission [8]. In the scalable variant of

cell-free massive MIMO, APs typically do not forward the received pilots from UE to the

CC and take care of the signal processing locally. Although it can still use centralized pre-

coding, and the system performance is better in that case as well, local precoding schemes

are typically employed in the scalable variant [10]. This approach eliminates the need for

centralized coordination and signiĄcantly reduces the fronthaul load.

The advantages of cell-free massive MIMO over small cell systems are numerous. Firstly,

it provides improved uniformity of coverage for UEs. Secondly, it exhibits higher energy

efficiency, thus enabling economical resource utilization. Thirdly, it achieves higher SE,

allowing for increased data rates and system capacity [8]. Additionally, cell-free massive

MIMO offers Ćexibility and ease of deployment, as it reduces the need for cell planning and

conĄguration. Moreover, it provides a more uniform quality of service for UEs, irrespective

of their location within the coverage area. Consequently, cell-free massive MIMO has been

recognized as a promising technology for 5G wireless systems [9].

Despite its potential, cell-free massive MIMO presents several research challenges that

require attention. One such challenge is handling mobile users because APs in a cell-free

scenario have smaller coverage, resulting in frequent changes in associated AP. Another

research area is making the network scalable, which requires determining the optimal AP

selection methods in a scalable cell-free massive MIMO is crucial for maximizing the sys-
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temŠs capacity and enhancing the overall user experience [11].

1.1.3 Heterogeneous Cellular Networks

Integrating low-power BSs within macro cellular networks in a denser manner gives rise

to heterogeneous cellular networks (HetNets). In a HetNet, a combination of macrocells,

remote radio heads (RRHs), and low-power nodes such as picocells and femtocells (comes

under an umbrella term small cell (SC)), and relays coexist within the same frequency band.

This arrangement brings transmit nodes closer to end users, improving coverage and capac-

ity. Deployment of HetNet began for 4G cellular architecture, and it is still relevant for 5G

cellular architecture and beyond. Each cell type within a HetNet may have different speci-

Ącations, including transmit power, coverage area, backhaul connectivity, and responsibili-

ties. Macro cells, designed to cover distances of a few kilometers while ensuring a minimum

data rate within an acceptable delay for thousands of users, typically operate with transmis-

sion power ranging from 5-40W and have dedicated backhaul connections. On the other

hand, picocells serve a smaller number of users within a range of 100m to 250m, primar-

ily enhancing in-building cellular coverage in areas with low macro penetration. Picocells

typically operate with transmit power ranging from 0.2-1W [12]. Overall, the deployment

of SCs helps alleviate traffic congestion on macrocells.

HetNets are combined with spatial multiplexing to increase the throughput. Adding more

BSs to a designated coverage area and increasing the number of antennas at each BS can sat-

isfy the area throughput demands. While macro BSs can be equipped with massive MIMO

antenna arrays, a smaller number of antenna elements is usually sufficient for APs within

each SC, as they cover a smaller area. The introduction of HetNets enhances the perfor-

mance of SCs, but it also presents challenges in terms of backhaul connectivity, power

consumption, and interference management.

Efficiently addressing the backhauling challenge is crucial for HetNet deployment. Back-

haul connections between the BSs and the core network must be established to enable seam-
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less data transfer. The choice of backhaul transmission media, such as Ąber optic cables or

wireless links, depends on factors such as cost, availability, and scalability. Another impor-

tant consideration is power consumption. Energy efficiency becomes critical to ensure sus-

tainable operation with the densiĄcation of BSs in a HetNet. Optimizing power allocation,

utilizing sleep mode techniques, and implementing energy-saving protocols are essential

for minimizing power consumption and reducing the environmental impact.

Interference management is another signiĄcant challenge in HetNets. As multiple cells

coexist within the same frequency band, interference between neighboring cells can degrade

network performance. Advanced interference coordination techniques, such as coordinated

multi-point transmission and reception, inter-cell interference coordination, and advanced

resource allocation algorithms, are employed to mitigate interference and maximize network

capacity.

Although all the above-mentioned points are applicable from the onset of 4G mobile

systems, there are a couple of research problems still open for investigation for 5G and

beyond. To fully exploit the beneĄts of a HetNet system, it is critical to investigate the

user association problem, i.e., how to assign active users to the BSs such that the system-

wide capacity is maximized and usersŠ experience is enhanced. Two main methods to solve

this problem are association bias and load balancing [13]. In HetNet, the typical power of

SBSs is much smaller than that of MBSs; therefore, UEs tend to associate with MBS more

often. However, it reduces the beneĄts of including SCs in the network, and therefore, an

association bias is applied to increase the preferentiality of UEs in associating with the SBS.

Similarly, load balancing is a technique used in HetNets to distribute traffic and user load

among different APs/BSs in a balanced manner. The goal is to optimize resource utilization,

enhance network capacity, and ensure a better user experience. Load balancing algorithms

dynamically analyze the network conditions and decide how to distribute user traffic across

available BSs. The decision-making process considers factors such as current load, channel

conditions, and capacity constraints.
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1.2 Machine Learning in Mobile Communications

Machine learning (ML) and wireless communications are two rapidly advancing technolo-

gies that are shaping our modern world. MLŠs fundamental concept revolves around empow-

ering computers to learn and execute tasks without explicit programming guidance. This

remarkable ability is achieved by training algorithms on relevant data, allowing them to ac-

quire knowledge and improve performance over time. The convergence of ML and wireless

communications holds immense potential, manifesting in two signiĄcant aspects.

The Ąrst aspect involves the application of ML techniques to optimize wireless networks.

This synergy is a natural Ąt since wireless networks encompass numerous inferential and

control tasks, often operating under dynamic or uncertain conditions. ML algorithms can

efficiently analyze vast amounts of data generated by wireless networks, allowing them to

adapt and optimize their operations in real-time. These networks constantly transmit data

at high rates, creating a wealth of examples for ML models to learn from. By leveraging

ML, wireless networks can enhance their efficiency, reliability, and adaptability, leading to

improved user experiences and network performance.

The second application lies in utilizing wireless networks as ML platforms themselves.

This utilization is particularly relevant in the context of emerging wireless networks that

support Internet of Things (IoT) applications. These networks not only facilitate data trans-

mission but also encompass sensing, inference, and control capabilities. With the increas-

ing processing power of edge devices connected to wireless networks, they can serve as

powerful ML platforms. By harnessing the computational capabilities of these devices, ML

algorithms can be deployed at the networkŠs edge, enabling real-time data analysis, decision-

making, and intelligent control. This distributed ML paradigm reduces latency, conserves

bandwidth resources, and enhances privacy by processing data locally rather than relying

on centralized servers.

The combination of ML and wireless communications opens up a myriad of possibil-
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ities. From optimizing network performance to enabling intelligent edge computing, this

convergence creates a fertile ground for innovation and transformative applications. As ML

techniques continue to advance and wireless networks evolve, we can expect even deeper

integration, leading to unprecedented advancements in Ąelds such as autonomous systems,

smart cities, healthcare, and beyond. The future holds immense promise as these two tech-

nologies propel each other forward, shaping a world driven by intelligent wireless connec-

tivity.

ML algorithms can be classiĄed into three categories: supervised, unsupervised, and

reinforcement learning (RL). Each category addresses distinct problem types and has found

valuable applications within the realm of wireless communications.

Supervised learning involves teaching an algorithm the input-output relationship of a

function. In the context of communications, a common application of supervised learning

is the design of a receiver for a speciĄc transmission scheme, which can be viewed as a

classiĄcation task. For instance, consider a modulation scheme that maps input bits to con-

stellation points. The receiverŠs objective is to classify each received noisy symbol into one

of the constellation points, making it a classiĄcation problem [16, 38]. Channel estimation

is another relevant example of a regression problem encountered in wireless communica-

tion systems [14Ű16]. Here, the goal is to estimate channel coefficients from noisy versions

of known pilot signals. Traditional methods assume a known channel model and attempt to

estimate its parameters.

On the other hand, unsupervised learning deals with training data lacking output values,

aiming to learn functions that describe the input data. These functions can prove useful

for enhancing supervised learning efficiency. Common unsupervised learning problems

employed in communication systems include clustering, dimension reduction, and density

estimation. Recently, autoencoders, a speciĄc type of neural network architecture com-

monly used in unsupervised learning tasks, became popular. An autoencoder consists of

an encoder and a decoder. The encoder part takes the input data and maps it to a lower-
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dimensional representation and the decoder then reconstructs the original input data from

the encoded representation. The autoencoder learns to capture the underlying structure and

patterns in the data by reconstructing it accurately. As it excels in data compression and

dimensionality reduction, it is primarily applied to CSI feedback-related research problems

[17Ű19].

RL constitutes another class of machine learning problems, where the objective is to

learn how to interact in an unknown environment based on feedback in the form of costs

or rewards following each action [20]. RL has been applied in wireless networks since the

1990s [21, 22], notably in power optimization within the physical layer to achieve energy-

efficient operation [23]. RL algorithms Ąnd utility in two types of problems that require

interactions with the wireless network environment. First, a device may possess an accurate

model of the environment, but determining an optimal operational policy for the device

remains challenging. RL can provide a solution in such cases. Second, RL methods can be

employed in wireless networking problems when the environment is known to be at least

wide-sense stationary (or changing slowly enough to be treated as such), but a precise model

to characterize its statistical behavior is lacking. This situation often arises when operating

over unlicensed frequency bands.

1.3 Thesis Objectives and Organization

1.3.1 Motivation and Problem Statement

The evolution of mobile communications towards the 6G drives more data and bandwidth-

hungry applications. Therefore, current research works on 6G attempt to develop technolo-

gies that can enhance coverage and provide a higher data rate to all the UEs. Moreover,

these technologies must support UEs at the edge of the cell, as well as UEs moving at a high

velocity. Considering these goals and more uniformity in service, our Ąrst work developed

an SBS placement strategy utilizing stochastic geometry (StoGeo) tools to improve the cov-

erage at cell edges [24]. We also developed the required mathematical tools to derive the
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performance metrics for this SBS placement scheme.

In recent times, FDD mode of communication in massive MIMO networks has gained

a lot of attention. However, one of the main challenges in FDD is the unavailability of

UL-DL radio channel reciprocity. In our second work, we developed an ML algorithm for

the estimation of DL channel information using UL channel information in FDD massive

MIMO networks [25, 26]. In this work we developed a conditional generative adversarial

network (CGAN)-based algorithm to estimate the DL channel covariance matrix (CCM)

and CSI.

Cell-free massive MIMO is also considered to be a key technology for the upcoming

6G systems because it can provide a more uniform coverage than the conventional massive

MIMO networks. Moreover, it can be a more energy-efficient alternative to conventional

cellular architecture. However, one of the key challenges in cell-free massive MIMO is

the optimal association between a UE and a subset or cluster of access points (APs) in the

network. To solve this problem, we have developed a reinforcement learning (RL)-based

framework for AP clustering that helps APs to learn how to select the UEs in a mobile

environment [27, 28].

It was mentioned earlier that massive MIMO typically operates in TDD mode, and radio

channel reciprocity is the primary reason behind it. However, for mobile UEs the radio

channel reciprocity may not stand as the location of UE during UL channel estimation and

DL transmission is not the same. Moreover, availability of limited UL CSI can make the DL

CSI estimation and correspondingly determine efficient beamforming a challenging task.

Therefore, in [29], we have developed a CGAN and long short-term memory (LSTM)-based

algorithm to determine an efficient beamforming vector.

1.3.2 Thesis Outline and Contributions

This section discusses the organization of the thesis and outlines the contributions of each

chapter.
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• Chapter 2 reviews the necessary technical background for the thesis on StoGeo, mas-

sive MIMO, cell-free massive MIMO, and ML algorithms in cellular communica-

tions.

• In Chapter 3, an intuitive solution to improve the coverage of a HetNet is discussed.

We propose a new HetNet deployment model where the locations of SBSs are corre-

lated with those of the MBSs. We place the SBSs at the vertices of each macrocell,

where the macrocells are modeled by a Poisson-Voronoi tessellation with the MBSs as

seeds. Theoretical analysis of this deployment scheme is performed using the tools of

StoGeo. A novel distribution is also derived for the distance between the typical user

and its closest SBS. Two tractable expressions for the distance distribution between a

user and its closest SBS are presented, obtained by modeling the locations of SBSs as

a Poisson point process and a β-Ginibre point process (β-GPP). The β-GPP models

the SBS placement more accurately as it captures the correlation between the MBSs

and SBSs. The performance of the proposed model is evaluated for several values

of the network parameters and our results demonstrate the improvement in coverage

probability, average achievable rate, and rate coverage compared to other schemes in

the literature.

• For the implementation of massive multiple-input multiple-output (MIMO) cellular

systems in frequency division duplex (FDD) mode, accurate estimation of DL CSI is

necessary, but full radio channel reciprocity between the UL and DL does not exist in

that mode. Existing work on estimating DL CSI in FDD massive MIMO systems has

considered such approaches as angle-of-arrival reciprocity, compressive sensing, us-

ing second-order channel statistics (particularly the CCM), and machine learning us-

ing deep neural networks (DNNs). Typical DNN-based approaches are unsuitable for

this problem because DNNs require large datasets, and thousands of training epochs,

and are susceptible to environmental variations. To overcome these shortcomings, in
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Chapter 4 we develop a conditional generative adversarial network (CGAN) approach

to UL-to-DL mapping of both CCMs and CSI. To apply this method, we convert the

UL and DL CCMs/CSI to images and employ CGAN techniques previously applied

to image translation. The normalized mean square error performance of the proposed

CGAN is evaluated for several array sizes for both CCM and CSI mapping. For UL-to-

DL CSI mapping, we also examine the SE performance of our CGAN-based method

and the impact of pilot reuse; both simulated and measured CSI data are considered.

Our results demonstrate performance improvement over existing algorithms.

• For scalable cell-free massive MIMO network the best possible personalized user-

centric cluster of nearby APs should serve each user. Unfortunately, determining that

cluster is a combinatorially-complex problem made even harder when the users are

in motion. Therefore, in Chapter 5, we develop a multi-agent reinforcement learn-

ing (MARL) algorithm for AP selection and clustering. Each AP is an agent in the

MARL algorithm, and it is trained to near-optimally select for itself which users to

serve. Conventional MARL algorithms require a centralized reward system to train

the agents, and the agentsŠ neural network weights tend to depend strongly on their

locations during training. To counteract these problems, we also consider a federated

MARL framework. Simulation results demonstrate both our conventional and feder-

ated MARL algorithms outperform existing published AP selection algorithms and

also provide performance comparable to the case of all APs serving all users. The

results also show the conventional algorithm has somewhat superior performance in

the environment it was trained in, but the federated algorithm transfers its learning to

changed environments much better, with very little performance loss.

• As already mentioned, estimation of DL CSI is necessary for massive MIMO systems

to enable precoding and in general achieve high SE. In massive MIMO TDD mode

of communication is used because of the UL and DL radio channel reciprocity, and
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DL CSI estimation becomes signiĄcantly easier. However, CSI estimation (both UL

and DL) is challenging in an environment with highly mobile users due to rapidly

varying fading. The estimation becomes even more challenging when the UL CSI

knowledge is incomplete due to system constraints. In Chapter 6, we combine two

machine learning techniques to tackle this twofold problem: 1) predicting DL CSI

from earlier UL CSI estimates, and 2) estimating full UL CSI from its incomplete

form. We apply LSTM for the Ąrst sub-problem to capture the spatio-temporal corre-

lation between CSI at different time instances and UE positions. We use a conditional

generative adversarial network (CGAN) for the second sub-problem to estimate the

full UL CSI from its incomplete version. We study the normalized mean squared

error performance of the proposed CGAN-LSTM method and compare the achieved

SE of the system with what is maximally achievable with full CSI knowledge.

• Finally, Chapter 7 summarizes the contributions of the thesis and gives directions for

future research.
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Chapter 2

Background

This chapter provides the mathematical background and descriptions for different concepts

and ML algorithms used in the rest of the thesis.

2.1 Stochastic Geometric Modeling of Cellular Networks

The locations of base stations and user terminals in wireless networks are often not accord-

ing to some predetermined pattern, nor Ąxed. While base station placement is not entirely

random, it has become increasingly irregular due to the deployment of small cells and pico

cells. On the other hand, user terminals are typically randomly distributed and frequently

change their locations. Consequently, traditional Ąxed models like the hexagonal grid model

fail to represent the network topology adequately. This has led to the growing adoption

of StoGeo-based modeling approaches within the research community [30]. These mod-

els provide a more realistic representation of network architecture and offer mathematical

tractability in some cases [31]. StoGeo plays a crucial role in calculating the statistical

properties of point collections and enables the computation of averages across all possible

realizations.

StoGeo is a mathematical discipline that speciĄcally focuses on analyzing random spatial

patterns, particularly point patterns. A point pattern, or point process, refers to a set of points

or locations generated randomly according to a speciĄc mechanism. A countable random

set Φ = {x1, x2, . . .} ∈ R
2 represents a point process. Various mathematical models exist
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to describe point processes, including but not limited to the binomial point process (BPP),

Poisson point process (PPP), Ginibre point process (GPP), various Poisson cluster processes

(PCPs), Matérn hardcore processes, softcore processes, etc. These models allow researchers

to capture and study the characteristics and behavior of point patterns in wireless networks,

aiding in developing and optimizing network designs and protocols.

2.1.1 Poisson Point Process

The two key characteristics of a PPP are 1) the pointsŠ locations are considered randomly

and independently of each other distributed within the space, and 2) the number of points

in any region follows a Poisson distribution. This means that the probability of Ąnding a

certain number of points in a given region depends only on the intensity of points in that

region. Typically, two types of PPPs are considered for network modeling: homogeneous

PPP and inhomogeneous PPP. In the homogeneous PPP, the distribution of points is uni-

formly random across the entire space under consideration. In this model, the probability

of Ąnding a point in any given region is the same across the entire space, and the intensity of

points remains constant. Homogeneous PPP is characterized by invariant statistical prop-

erties across the entire spatial domain. In contrast, an inhomogeneous PPP, also known as

a non-homogeneous PPP or spatially-varying PPP, allows for non-uniform point distribu-

tions across space. In this model, the density of points can vary across different regions of

the space. The intensity function describes the spatial variation, representing the expected

number of points per unit area in different regions. The intensity function can be deĄned

as a function of the spatial coordinates or other relevant factors that inĆuence the point

distribution.

The formal deĄnition of a PPP is given in [30], which in simpler terms is the following:

Φ is a PPP in R
2 if and only if,

• for every bounded closed set A, the number of points N(A) is Poisson distributed
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with mean λ(A) =
∫︁
A
λ(x)dx, where λ(x) is the intensity at location x and

P [N(A) = n] =
(λ(A))n

n!
e−λ(A) , n = 0, 1, . . . (2.1)

• ifA1, A2, . . . , Am are disjoints sets,N(A1), N(A2), . . . , N(Am) are independent ran-

dom variables.

For a homogeneous PPP λ(x) reduces to a constant λ that is the same throughout the entire

space, whereas, in inhomogeneous PPP λ(x) varies based on the region or coordinate.

The PPP has been extensively used to characterize the locations of wireless nodes in

prior research [32Ű35]. The main advantage of PPP is its tractability; it provides a simple

and analytically tractable framework for studying the spatial distribution of wireless nodes.

The mathematical properties of the PPP allow for the derivation of closed-form expressions

and efficient analysis of various system performance metrics, such as coverage probability,

interference, or network capacity.

2.1.2 Poisson Cluster Processes

PCPs are an extension of the PPP that allows for clustering points in space. In the PCP,

the points are organized into clusters, where each cluster consists of a random number of

points distributed according to a speciĄed cluster distribution. The centers of the clusters

themselves are distributed according to a PPP. This means that the overall process exhibits

spatial randomness due to the PPP and local clustering due to the clusters.

Mathematically, the PCP is deĄned as follows: the point process deĄning the centroids

or parent locations of clusters follows a PPP, i.e., for any bounded region A, the number

of clusters N(A) in A follows a Poisson distribution. Each cluster has a random number

of points distributed according to a speciĄed cluster distribution. The points within each

cluster are distributed according to a separate distribution, which may vary depending on the

application. There are two commonly-used PCP types, Matérn cluster process and Thomas

cluster process. In Thomas cluster process, the offspring points around the parent location
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or centroid follow a Gaussian distribution (symmetric in all dimensions) [36], whereas in

Matérn cluster process, offspring points are uniformly distributed within a Ąxed radius from

the parent location [37].

The PCP provides a Ćexible framework for modeling spatial phenomena with both ran-

domness and clustering characteristics. The analysis of the PCP in wireless communications

involves examining the key parameters that inĆuence network behavior. This includes deriv-

ing expressions for the intensity function, which characterizes the average density of clusters

and points within the network. Understanding the intensity function is crucial for evaluat-

ing coverage, capacity, and interference in wireless networks [38, 39]. Another important

aspect of PCP analysis (and of point processes in general) is the study of nearest-neighbor

and contact distance distributions [37, 40]. The nearest-neighbor distance distribution de-

scribes the distribution of distances between each point and its nearest neighboring point

in the same point process. It quantiĄes the typical spacing between adjacent points and

provides insights into the spatial regularity or clustering of the pattern. In contrast, con-

tact distance distribution is the distribution of the distance between a reference point and its

nearest point in the point process, where the reference point is not from the same point pro-

cess. PCP allows for investigating spatial correlations and dependencies between clusters

and their associated points. This information is valuable for designing resource allocation

strategies, interference management techniques, and optimizing network performance.

2.1.3 Hardcore Point Processes

A hardcore point process is a type of spatial point process that incorporates a minimum

distance constraint between points, also known as the hardcore distance or exclusion ra-

dius. This minimum distance constraint introduces repulsion or inhibition between points

[41]. Hardcore processes are particularly useful in modeling the locations of base stations

in wireless communication systems.

Multiple variations of hardcore processes exist, but the most widely known ones are the
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Matérn hardcore process type I, II, and III [42]. Matérn hardcore processes, especially type

I and II, exhibit properties that make them suitable for modeling realistic cellular networks,

whereas type III is typically avoided because it is much harder to analyze [43]. In Matérn

hardcore process type I, points are initially placed following a PPP, and afterward, if any

of the points have a neighbor within a constant distance r, then it is removed. In Matérn

hardcore process type II as well, points are Ąrst distributed following a PPP; thereafter, all

the points are marked by a random value following a uniform distribution on (0, 1]. After-

ward, all the points that have a neighbor within a constant distance r and have a smaller

mark are removed from the point process. Both types of hard-core processes remove all

points simultaneously, meaning that even the thinned-out points can eliminate other points.

If points were removed one by one and the conditions were rechecked after each removal, a

denser arrangement could be achieved for both types of processes. This particular approach

is sometimes known as a Matérn process of type III. However, the Matérn process of type III

is signiĄcantly less tractable than the processes of type I and II [30], and thus is considered

much less often.

By employing hardcore point processes like the Matérn hardcore processes, researchers

can accurately model the spatial arrangement of base stations and explore the effects of their

locations on network performance. Incorporating the hardcore constraint of minimum dis-

tances between points allows a more realistic representation of the networkŠs spatial layout

and interference characteristics than that of a PPP. This modeling approach assists in opti-

mizing resource allocation, interference management, and overall system design in wireless

communication systems.

2.1.4 Softcore Point Processes

A softcore point process is a type of point process that incorporates a soft constraint on

point spacing, in contrast to the hard constraint enforced in a hardcore point process. Un-

like the hardcore process, which strictly enforces a minimum distance between points, the
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softcore process allows for some degree of proximity between points, albeit with a dimin-

ishing probability as points get closer. In a softcore point process, the probability of ob-

serving points within a certain distance from each other gradually decreases as the distance

decreases. One softcore point process used in cellular network modeling is the GPP. This

point process belongs to a class known as determinantal point processes because the prod-

uct densities of the determinantal point process are given by the determinant of a matrix

that is deĄned using a kernel function [30]. For GPP in R
2, the kernel function is given by

K(x, y) = π−1e−(|x|2+|y|2)/2exy.

In wireless communications, a softcore point process is a useful modeling framework for

capturing the spatial distribution of wireless devices, such as base stations or mobile users,

considering a soft constraint on point spacing. Thus, softcore processes offer more Ćexibil-

ity in capturing real-world scenarios where certain proximity between points is permissible

or expected. This Ćexibility enables more accurate modeling of interference patterns, cov-

erage areas, and resource allocation strategies in wireless networks [44].

2.2 Massive MIMO Systems

Massive MIMO systems with on the order of hundreds of antenna elements have emerged

as a crucial component in the next generation of cellular networks, addressing the escalating

quality of service requirements and offering the potential for signiĄcant improvements in SE

and energy efficiency (EE) through relatively simple processing techniques. The concept of

massive MIMO was introduced in [45], where each BS is equipped with hundreds or more

antenna elements. The utilization of massive MIMO brings forth several advantages:

• High SE: Massive MIMO leverages both spatial multiplexing gain and antenna ar-

ray gain, resulting in substantial improvements in SE. The ability to serve multiple

users simultaneously in the same time-frequency resource with minimal inter-user

interference allows for efficient utilization of the available spectrum.
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• High Reliability: The signiĄcant diversity gain achieved through massive MIMO

enhances the systemŠs reliability. By exploiting the multitude of antennas, the system

can mitigate fading effects and improve overall link quality, enhancing reliability and

robustness in wireless communication.

• High EE: Massive MIMO systems concentrate the radiated energy on speciĄc users in

the downlink (DL), resulting in higher energy efficiency. The system optimizes power

allocation by directing energy towards intended users, improving energy efficiency.

• Weak Inter-User Interference: Massive MIMO systems beneĄt from the orthog-

onality of user channels and narrower beams. This reduces inter-user interference,

allowing for better spatial separation of users and enabling higher system capacity.

The properties of channel hardening and favorable propagation phenomena play a piv-

otal role in the performance of massive MIMO systems. These phenomena ensure that the

systemŠs communication performance becomes less dependent on small-scale fading real-

izations and primarily relies on the Ąrst and second-order moments of the channels, which

represent the large-scale fading characteristics [46]. Exploiting these properties offers sig-

niĄcant advantages. First, effective channels, achieved through combining and precoding

techniques, become resilient to small-scale fading, reducing the burden on resource alloca-

tion and scheduling [3]. This enables simpler signal processing algorithms and enhances the

systemŠs overall efficiency. Second, the nearly orthogonal user channel vectors in massive

MIMO systems eliminate the need for complex receive combining and transmit precoding

schemes to manage interference. Simple linear techniques can achieve near-optimal perfor-

mance, ensuring efficient interference management and reducing system complexity [47].

An interesting phenomenon known as Şfavorable propagation" occurs as the number of

BS antennas increases signiĄcantly. Let M be the number of antennas in the BS, K be the

number of users in the area, where M ≫ K, and the uplink channel gain vector between
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BS and users i and j be hi and hj , respectively, with both ∈ C
M×1. Then we have

hH
i hj√︁

E{||hi||2}E{||hj||2}
→ 0 almost surely asM → ∞ (2.2)

It is important to note that the numerator in (2.2) does not go to zero asM increases; rather,

the ratio of numerator to denominator goes to zero. In other words, the channel gain vectors

themselves do not become orthogonal, but their directions do. The phenomenon of favor-

able propagation plays a crucial role in achieving near-optimal performance with simple

linear processing techniques. SpeciĄcally, this property allows for efficient signal detection

and interference suppression in wireless communications. A basic linear detector, such as

a matched Ąlter, can effectively mitigate noise and interference on the UL. On the DL, lin-

ear beamforming techniques like maximum ratio or zero-forcing (ZF) enable base stations

(BS) to simultaneously transmit multiple data streams to multiple users without causing mu-

tual interference. While real-world propagation channels may not always exhibit favorable

propagation characteristics, research has shown that approximate forms of favorable propa-

gation can still be achieved in certain scenarios. For instance, favorable propagation can be

approximated in non-line-of-sight scenarios with rich scattering or line-of-sight scenarios

with distinct user angles [48].

The phenomenon of channel hardening in wireless communications results from the sig-

niĄcant spatial diversity achieved by employing multiple antennas [49]. In systems with

channel hardening, the behavior of the channel becomes nearly deterministic, and the av-

erage gain can well approximate the instantaneous channel gain. Mathematically it is ex-

pressed as [3]

||hk||2
E{||hk||2}

→ 1 almost surely asM → ∞ (2.3)

This means that variations in the channel due to fading or other impairments are mitigated,

and the channelŠs behavior becomes more predictable and stable. The presence of favorable

propagation and channel hardening is advantageous as it simpliĄes the design and optimiza-

tion of wireless communication systems, allowing for more efficient resource allocation and
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transmission strategies.

Even though massive MIMO offers several advantages, it is not free from challenges,

and one of them is pilot contamination. Pilot contamination occurs when the pilot signals

from different UEs interfere with each other due to the limited number of orthogonal pilot

sequences available. This interference can degrade the channel estimation accuracy and

subsequently impact the systemŠs performance. Typically such reduced quality of channel

estimation can occur in two scenarios [50, 51]:

• Limited pilot resources: In a massive MIMO system, the number of UEs is typically

much larger than the number of orthogonal pilot sequences available. As a result,

multiple UEs may end up using the same pilot sequence simultaneously, leading to

pilot contamination and resulting errors in radio channel estimation.

• Hardware impairment: Even if orthogonal pilot sequences are allocated to UEs, there

can be unintended non-orthogonal interference caused by imperfect synchronization,

residual interference, or imperfect channel estimation due to hardware impairments.

This interference can degrade the channel estimation quality and hence cause effects

similar to those caused by pilot contamination.

There are several methods of mitigating the problem of pilot contamination, but a detailed

discussion of them is outside the scope of this thesis.

2.3 Cell-free Massive MIMO

Cell-free massive MIMO systems represent a different approach to deploying massive MIMO

systems, where numerous APs are strategically placed throughout the coverage area to serve

users collectively. This network architecture, which combines the principles of MIMO,

coordinated transmission, and ultra-dense networks with a foundation in cloud radio ac-

cess network (C-RAN), has been shown to possess superior energy efficiency compared to

conventional cellular networks, provided that an appropriate power control strategy is im-
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plemented [52]. In this system, the typical problems caused by inter-cell interference are

signiĄcantly reduced by removing cell boundaries, resulting in a more consistent and uni-

form service quality across the entire coverage area. Typically, cell-free massive MIMO has

two variants: canonical cell-free massive MIMO and scalable cell-free massive MIMO. In

simple words, they can be differentiated as follows: all the APs in a canonical cell-free mas-

sive MIMO serve all the UEs, and in its scalable counterpart, each UE is served by a subset

of APs in the coverage area. This section primarily focuses on the scalable cell-free massive

MIMO as the canonical form has several practical challenges. The assumption of all APs

serving all the UEs results in a huge fronthaul load, requires high computation complexity,

and is poor in energy efficiency [53].

In a scalable cell-free massive MIMO, each AP is equipped with a baseband processor

to carry out major signal processing tasks at the AP itself. This also enables incorporating

additional APs in the network without modifying the CC [10]. A large body of existing

work has been devoted to the AP selection (also known as AP clustering) problem [54Ű

58], and recently ML algorithms are also used to solve this problem [59]. Similar to the

conventional massive MIMO network, the cell-free variant also requires efficient precoding

to fully realize its potential in proving high SE and EE. In the scalable variant, centralized

precoding is still possible (and indeed performs the best). However, to help reduce the load

on the fronthaul links, distributed local precoding is often used. A brief overview of it is

provided below.

Let us consider a geographical area with L APs with K single-antenna UEs, where each

AP is equipped with N antennas, where L × N ≫ K. The DL channel gain vector gkℓ

between user k and AP ℓ can be expanded as

gkℓ =
√︁
βkℓhkℓ , (2.4)

where βkℓ is the large-scale fading channel power gain that accounts for path loss and shadow

fading, and hkℓ ∈ C
N×1 is the small-scale fading channel gain vector. The APs make an

estimate ˆ︁hkℓ of the UL channels based on pilot sequences sent by the UEs. Let us assume
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that UE k is served by the APs in set Lk. We deĄne an N×N binary diagonal matrix Dkℓ

to indicate if UE k is associated with AP ℓ:

Dkℓ =

{︄
IN , ℓ ∈ Lk;

0N×N , ℓ /∈ Lk.
(2.5)

The effective DL channel vector between AP ℓ and UE k can then be considered to be

hH
kℓDkℓ. Some of the commonly used local precoding schemes for the scalable cell-free

massive MIMO are [10]:

• Maximum ratio (MR) precoding: This precoding maximizes the fraction of the

transmitted power from AP ℓ that is received at the desired UE. The precoding vector

is given by

wMR
kℓ = Dkℓ

ˆ︁hkℓ , (2.6)

where ˆ︁hkℓ is the estimated small-scale fading channel gain vector based on pilot se-

quences sent by the UEs.

• Local partial minimum mean square error (LP-MMSE) precoding: The locally

optimal precoding vector is given by

wLP-MMSE
kℓ = pk

(︄
∑︂

i∈Lk

pi

(︂
ˆ︁hiℓ
ˆ︁hH
iℓ +Ciℓ

)︂
+ σ2IN

)︄−1

Dkℓ
ˆ︁hkℓ , (2.7)

where Ciℓ ∈ C
N×N is the covariance matrix of the error between hkℓ and ˆ︁hkℓ, and σ2

is the variance of the noise (assumed to be distributed ∼ CN (0, σ2IN)).

A localized version of regularized zero-forcing (see Section 4.3) is also possible by remov-

ing Ciℓ from (2.7).

The degree to which channel hardening and favorable propagation are experienced in

cell-free massive MIMO is smaller than with co-located massive MIMO [10]. Conse-

quently, more involved forms of precoding (such as LP-MMSE) that more actively remove

interference between UEs are generally required for good performance in the cell-free case.
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2.4 Machine Learning Algorithms for Wireless Systems

One of the major features of 6G wireless systems expected to be is the inherent inclusion of

machine learning (ML) algorithms. This inherent inclusion is expected to involve two cru-

cial aspects: Ąrst, employing ML algorithms to tackle computationally intensive problems

and make intelligent decisions, and second, enhancing the hardware capabilities of wireless

systems to enable on-chip ML functionalities [2]. In this thesis, we primarily focus on the

Ąrst aspect, and in this section, a brief overview of ML algorithms that can be useful in

intelligent decision-making is presented.

2.4.1 Deep Neural Network

A deep neural network (DNN) is an artiĄcial neural network consisting of multiple layers of

interconnected nodes or neurons. DNNs are designed to learn and represent complex pat-

terns and relationships in data by progressively extracting higher-level features from lower-

level ones. Each layer of neurons in a DNN processes the input data and passes it to the next

layer until a Ąnal output is produced. This is one of the most widely used ML algorithms,

with applications ranging from computer vision, natural language processing, speech and

audio processing to robotics and autonomous systems, healthcare systems [60].

In the context of wireless communication, DNNs can be utilized for various tasks, includ-

ing signal detection, channel estimation, modulation classiĄcation, and resource allocation.

They can enhance the performance of wireless systems by improving the accuracy and ef-

Ąciency of these tasks, leading to enhanced spectrum utilization and higher data rates [61,

62]. They can also be useful for solving optimization problems, especially for problems

that require many iterations to converge, resulting in high complexity and latency [63]. Al-

though DNNs are widely used in wireless communication, they have some challenges too.

Training a DNN requires a large dataset, which may not always be available. Moreover, the

training is susceptible to high dimensionality and scalability issues [64].
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2.4.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a powerful class of deep learning models

that have revolutionized the Ąeld of generative modeling [65]. GANs consist of two neural

networks, namely the generator and the discriminator, which are trained simultaneously in

a competitive manner. The generator network learns to generate synthetic data samples

that resemble the training data distribution. It takes random noise as input and transforms

it into realistic-looking data samples. On the other hand, the discriminator network acts

as a classiĄer that learns to distinguish between real and fake data samples. It is trained

using a combination of real training data and generated samples from the generator. This

adversarial training process drives both networks to improve their performance iteratively,

generating increasingly realistic samples over time.

GANs have demonstrated remarkable success in various applications, including image

synthesis, text generation, video generation, and even music composition [66]. They have

enabled the creation of highly realistic images that are indistinguishable from real pho-

tographs and have pushed the boundaries of what is possible in generative modeling. Some

notable GAN architectures include the original Vanilla GAN proposed by Goodfellow et

al. in 2014 [67], as well as subsequent improvements such as Deep Convolutional GANs

(DCGANs) [68], conditional GANs (CGANs) [69], and Wasserstein GANs (WGANs) [70].

Among these variants, CGAN is unique because it uses an additional input, called a condi-

tioning variable or label. It is provided to both the generator and discriminator to serve as

a guide or constraint for the generation process, enabling the GAN to generate samples that

align with the provided condition. For example, in an image generation scenario, the con-

ditioning variable could represent the class label of the image to be generated [69]. These

advancements have addressed training stability and mode collapse 1 issues and improved

the overall quality of generated samples. GANs have also sparked signiĄcant research and

1Mode collapse refers to a common problem in generative models, particularly in the context of generative
adversarial networks (GANs). Mode collapse occurs when the generator network in a GAN fails to capture
the full diversity of the training data and instead generates only a limited set of similar samples or modes [71].
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development in the Ąeld of unsupervised learning, as they can learn representations and cap-

ture underlying structures of complex data without the need for explicit labels. Their ability

to generate novel and diverse samples has made them a valuable tool for data augmentation,

simulation, and creative applications.

Generative Adversarial Networks (GANs) have garnered signiĄcant attention in the Ąeld

of wireless communications due to their ability to generate realistic data and learn complex

distributions. Some of the key applications of GANs in wireless communications are the

following:

• Channel Modeling and Simulation: GANs can be used to generate realistic channel

models for wireless communication systems. Training a GAN on real-world chan-

nel data can make it learn the underlying statistical properties and generate synthetic

channel samples that closely resemble the wireless propagation environment, aiding

in system design and performance evaluation [17].

• Wireless Signal Generation: GANs can generate realistic wireless signals, such as

modulated waveforms or received signal samples, for testing and training wireless

communication systems. This can be particularly useful when collecting real-world

data is challenging or expensive [72].

• Wireless Signal Detection and ClassiĄcation: GANs can be employed for signal

detection and classiĄcation tasks in wireless communications. Training a GAN on

labeled datasets of different wireless signals allows it to discriminate between differ-

ent signal types, enabling accurate and robust signal detection and classiĄcation in

challenging environments [73].

• Channel Equalization and Denoising: GANs can be utilized to enhance the quality

of received signals in wireless communication systems. Training a GAN on pairs of

noisy and clean signals allows it to denoise and equalize the received signals, improv-

ing the overall system performance [74].
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• Wireless Localization: GANs can assist in wireless localization tasks by generating

synthetic radio signal strength measurements based on known positions. By training a

GAN on a dataset of signal strength measurements and corresponding locations, it can

learn to generate realistic signal strength maps, aiding in accurate wireless localization

[75].

2.4.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of deep learning models speciĄcally de-

signed for sequential data processing. Unlike feedforward neural networks, which process

data inputs independently, RNNs can capture temporal dependencies and model sequential

information using recurrent connections. The key characteristic of RNNs is their ability to

maintain an internal memory state, also known as the hidden state, which allows them to

retain information from previous time steps and incorporate it into the current computation.

This recurrent structure enables RNNs to process sequences of varying lengths and capture

long-term dependencies in the data [76]. RNNs are widely used in various tasks involving

sequential data, such as natural language processing, speech recognition, machine transla-

tion, and time series analysis. They excel in tasks that require context understanding and

sequential reasoning.

One popular variant of RNNs is the Long Short-Term Memory (LSTM) network, which

addresses the vanishing gradient problem 2 commonly encountered in traditional RNNs

[78]. LSTM networks utilize a more complex gating mechanism that allows them to se-

lectively remember or forget information over time, enabling them to capture long-range

dependencies and handle sequences with extended temporal gaps. Another notable variant

is the Gated Recurrent Unit (GRU) [79], which simpliĄes the LSTM architecture. GRUs

2The vanishing gradient problem is a challenge that can occur during the training of RNNs, particularly
those with long-term dependencies. When an RNN is trained using gradient-based optimization algorithms,
such as backpropagation through time, gradients are computed by backpropagating the errors from the output
layer to the initial hidden state. However, in RNNs, the gradients are successively multiplied by the weight
matrices of each time step during backpropagation. If these weight matrices have eigenvalues that are less
than one, the gradients computed during the backpropagation process diminish or Şvanish" as they propagate
back through time, making it difficult for the network to learn and update the parameters of early layers [77].
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provide a trade-off between complexity and performance and have been successful in var-

ious applications. RNNs have been instrumental in advancing state of the art in natural

language processing tasks, including language modeling, sentiment analysis, and machine

translation [80]. They can effectively model sentence contextual dependencies and gener-

ate coherent and meaningful text. Moreover, RNNs are valuable in time series analysis and

forecasting. By leveraging the sequential nature of the data, RNNs can capture patterns and

trends over time.

There have been further advancements in RNNs, the use of bidirectional RNNs, which

process the sequence in both forward and backward directions to capture dependencies from

past and future contexts simultaneously [81]. In recent years, the introduction of attention

mechanisms [82] allows the network to focus on speciĄc parts of the input sequence. Recur-

rent Neural Networks (RNNs) have found various applications in wireless communications,

leveraging their ability to model sequential and temporal dependencies in data. Here are

some key applications of RNNs in the Ąeld of wireless communications:

• Channel Prediction: RNNs can be used to predict the future state of wireless chan-

nels, enabling proactive adaptation of communication parameters. By leveraging the

temporal dependencies in channel measurements, RNN-based models can forecast

channel variations, leading to improved link reliability and resource allocation [83].

• Modulation ClassiĄcation: RNNs have been applied to the task of automatic mod-

ulation classiĄcation, where the goal is to identify the modulation scheme used in a

received signal. By learning different modulation schemesŠ temporal patterns and sta-

tistical characteristics, RNN-based classiĄers can achieve accurate modulation clas-

siĄcation in wireless communication systems [84].

• Spectrum Sensing: RNNs can be employed for spectrum sensing in cognitive radio

networks. By analyzing sequential radio spectrum measurements, RNN-based mod-

els can learn to detect the presence or absence of primary users, enabling efficient
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spectrum utilization and dynamic spectrum access [85].

• Interference Detection and Mitigation: RNNs can assist in detecting and mitigating

interference in wireless networks. RNN-based models can identify and suppress in-

terference sources by analyzing the temporal patterns of received signals, improving

signal quality and network performance [86].

• Traffic Prediction: RNNs have been used to predict network traffic patterns in wire-

less communication systems. By analyzing historical traffic data, RNN-based models

can learn to forecast future traffic loads, facilitating efficient resource allocation and

network planning [87].

2.4.4 Federated Learning

Federated Learning (FL) is a distributed machine learning approach that enables training

models on decentralized data sources while preserving data privacy. Unlike traditional cen-

tralized machine learning, where data is collected and stored in a central server, FL allows

training models directly on the local or edge devices where the data resides. The central idea

behind FL is to leverage the collective intelligence of a network of devices while respecting

data privacy constraints. Instead of uploading raw data to a central server, the model is sent

to the edge devices, and the training process occurs locally. The devices compute model

updates based on their local data and send only the updates, rather than the raw data, to

the central server. The server aggregates the updates from multiple devices to improve the

global model, which is then redistributed to the devices for further training iterations [88].

FL offers several advantages. First, it enables training models on a vast amount of dis-

tributed data, including data that may be inaccessible due to privacy concerns or network

constraints. This allows for improved generalization and model performance. Second, FL

reduces the need for data transfer, addressing bandwidth limitations and privacy concerns

associated with centralized data storage. Finally, FL promotes user privacy, as the raw data

remains on the local devices and is never directly exposed to the central server. This ap-
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proach has gained signiĄcant attention in applications where data privacy is crucial, such as

healthcare, Ąnance, and IoT systems. It allows for collaborative learning on sensitive data

without compromising individual privacy or breaching data security regulations. Several

FL algorithms and frameworks have been developed to facilitate the implementation of FL

systems. Notable examples include GoogleŠs Federated Averaging [89], which focuses on

distributed model averaging, and TensorFlow Federated [90], an open-source framework

that simpliĄes the development of FL models.

FL has gained signiĄcant attention in wireless communications due to its potential to

address privacy concerns and enable collaborative learning in distributed networks. Here

are some applications of FL in wireless communications:

• Resource Allocation and Optimization: FL can be used to optimize resource al-

location in wireless networks, such as power control, channel allocation, and user

association. By leveraging the distributed intelligence of user devices, FL algorithms

can learn from local data and make joint decisions to improve network performance

and efficiency [91].

• Interference Management: FL enables collaborative interference management in

wireless networks. By sharing local interference information and learning jointly,

user devices can coordinate their transmissions to mitigate interference and improve

overall system capacity [92].

• Beamforming and Antenna Selection: User devices can enhance signal quality and

increase spectral efficiency by exchanging local channel state information and jointly

learning beamforming vectors and antenna selection strategies [93].

• Spectrum Sensing and Access: User devices can collectively sense the spectrum and

learn to make intelligent decisions on channel availability, ensuring efficient spectrum

utilization while minimizing interference [94].
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Chapter 3

Coverage Enhancement of Massive

MIMO HetNets by Correlated

Placement of SBSs

3.1 Introduction

Among the goals of 5G and future 6G cellular networks are to ensure signiĄcant coverage

and capacity improvement to satisfy the exponential growth of mobile data traffic. One of

the key enablers for increasing network capacity is the deployment of additional low-power

BSs overlaying the coverage area of higher-power BSs [2, 95]. Due to the heterogeneity

of BSs, such a network is known as a HetNet. Being key components of the 5G cellular

standards, HetNets and large-scale antenna arrays, also known as massive MIMO [3], have

attracted considerable attention in the research community.

3.1.1 Background & Motivation

In one of the seminal articles on modeling the layout and performance of HetNets using Sto-

Geo [32], Dhillon et al. have provided a comprehensive analysis based on the assumption

that the placement of BSs within each HetNet tier follows a PPP. That paper has considered

the coverage probability and average rate of a K-tier HetNet downlink with single-antenna

BSs. In this HetNet modeling, the location of each BS is uniformly distributed in the plane

and placed independently of any other BS (whether in the same tier or a different tier). Due

34



to its analytical tractability, this model is considered the baseline model for analyzing Het-

Nets using StoGeo. However, this independent deployment strategy is not very beneĄcial for

improving the coverage; later results have indicated a maximum gain of 5% in the coverage

probability of such HetNets compared to using only a single tier [33].

To further enhance the performance of HetNets, the use of massive MIMO has been

standardized for use at BSs beginning with Release 15 of the 3GPP standards [6]. The

introduction of massive MIMO BSs has resulted in complicated mathematical modeling.

Some earlier results on general MIMO HetNets have been obtained in [34, 35]. Dhillon

et al. [34] have derived closed-form expressions for coverage probability and achievable

rate. However, these expressions are not analytically tractable, and therefore, the authors of

[96] have derived expressions for coverage probability, i.e., the probability of SINR being

greater than a threshold, using Toeplitz matrix representation. Afterwards, this method

has been used in several papers [97Ű99]. Incorporating massive MIMO BSs in a HetNet

with some corresponding interference management policies has been examined in [100];

the interference co-ordination strategies bolstered the inherent interference suppression of

massive MIMO. Several further follow-up articles and books have been published on the

modeling and analysis of massive MIMO enabled HetNets, e.g., [13, 30, 101]. Apart from

interference management, several works have also been published on user association and

resource allocation strategies [102, 103].

While there has been a signiĄcant body of follow-up work, little of it has focused on the

correlated placement of the SBSs and the macrocell base stations MBSs. As noted, ini-

tial work in StoGeo HetNet modeling assumed random deployment of SBSs in its analysis;

however, it is more effective for the SBSs to be deployed in certain regions of a network to

improve coverage and capacity [104]. In existing literature, the following approaches have

been taken for placement of SBSs: a) non-uniform deployment of SBSs [105], b) corre-

lated BS placement based on the location of the users [39, 106], and c) deployment of SBSs

based on a repulsion model [99]. In [105], the authors have used a non-uniform SBS de-
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ployment, where the SBSs are prohibited from being placed within a given distance from an

MBS. Their results indicate that this placement scheme can result in a similar probability of

coverage as compared to a uniformlyŰdistributed SBS layout, even with 50% fewer SBSs.

In [39], the authors have proposed a correlated placement of users and SBSs by modeling

the locations of users as a PCP around the SBSs. However, their results suggest that this

model lacks efficient utilization of the MBSs, with less than 30% of users associating with

the macro tier. Similarly, in [106], the authors have examined correlated BS placement, but

conditioned on covariates based on existing real-life data1, e.g., the location of the popula-

tion and the roads in an area. In [99], the authors have proposed a repulsion-based model

for the placement of SBSs. We are therefore motivated to develop a new StoGeo HetNet

model approach where the placement of SBSs is correlated with the placement of MBSs,

rather than with users or other factors.

Hardcore or softcore processes that account for the repulsion between nodes are required

to model such networks more accurately. Some of these popular softcore and hardcore

models are the Matérn hard-core processes, Strauss process, and the GPP. In this chapter,

we employ a special form of GPP, called a β-GPP, to develop an analytical framework for

comprehensive modeling and analysis of the proposed approach. In [107], a β-GPP has been

used to model a network where nodes exhibit repulsion. It has been further used to model

energy-harvesting networks [108], user placements [109], wireless mutual broadcast net-

works [110], millimeter-wave HetNets [111], and wireless-powered ad hoc networks [112].

An analysis of interference in a single-tier wireless network modeled by determinantal point

processes (of which β-GPP is a sub-class) under spatially-correlated shadowing has been

performed in [113]. The authors of [99] have investigated the performance of a HetNet with

inter-tier interference cancellation where the placement of MBSs has been modeled using

a β-GPP.

An intuitive solution to improve the coverage in a HetNet is to place SBSs at the vertices

1However, the methodology in [106] could also, in principle, use BS locations of one tier as a covariate
for another tier.
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of each macrocell, where the MBSs (whose locations are modeled by a PPP) act as seeds for

a Poisson-Voronoi tessellation. Each Voronoi cell of the tessellation therefore models the

macrocell for the MBS acting as its seed. The vertices represent the locations of the worst

interference, where the same average signal power is received from the three closest MBSs.

In our scheme, users within multiple macrocells can be served by SBSs instead. Thus,

this approach can potentially improve the network coverage signiĄcantly in a cost-effective

manner. We note that deployment of SBSs at cell edges was suggested earlier by the 3GPP

standardization body as far back as Release 9 [114]. However, to the best of our knowledge,

the Ąrst step towards a mathematical model for analysis of this HetNet architecture has Ąrst

been presented in our conference paper [24]. In [24], we provided different distance dis-

tributions for the proposed model, i.e., the distribution of the distance between the typical

user and its nearest SBS and the distance between the MBS and SBS that are closest to the

typical user. Herein, we now assume that the two tiers cause interference with each other,

whereas for simplicity in [24], it was assumed that the tiers were non-interfering. Addition-

ally, this chapter details the derivation of analytical expressions for performance measures

of the proposed HetNet model, which were absent in [24]. SpeciĄcally, using both our

earlier distance distributions and both PPP-based and β-GPP-based approximations of the

distribution of the distance between the typical user and its nearest SBS, we derive analyti-

cal expressions for the user association probability, coverage probability, and rate coverage.

Although the authors of [111] have considered a HetNet where the placement of SBSs is

modeled using a β-GPP, the main problem with these point processes and their analyses

is the limited analytical tractability, which makes it difficult to analyze the properties of

these repulsive point processes, as well as gaining insights from the derived mathematical

expressions. Therefore, in this work we develop methods to derive closed or semi-closed

form expressions for β-GPP-based network models.We also provide simulation and numer-

ical results for these performance measures and compare them with other existing HetNet

models.
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Figure 3.1: Illustration of the proposed two-tier HetNet, where MBSs (illustrated as red triangles)
are located according to a PPP and SBSs (illustrated as green squares) are placed at the vertices of
the Poisson-Voronoi tessellation (i.e., corners of the macrocells). The users are illustrated as black
dots.

Organization: This chapter is organized as follows. We describe the StoGeo-based sys-

tem model in Section 3.2, where we also deĄne the user association policy and the channel

model. Based on the system model, we derive the relevant empirical distance distributions

in Section 3.3. Afterward, for the PPP and β-GPP approximations, we derive expressions

for the tier association probability and conditional distance distributions in Section 3.4, and

for the coverage probability and rate coverage in Section 3.5. A performance evaluation

of the proposed HetNet and discussions based on the derived expressions and simulation

results are given in Section 3.6. Finally, we conclude this paper in Section 3.7.

3.2 System Model

We consider TDD downlink transmission in a two-tier HetNet, which consists of MBSs

and SBSs, as shown in Fig. 3.1. The set of BS tiers can be denoted as J = {1, 2}. We

assume without loss of generality that tier 1 represents MBSs. The MBSs are placed fol-

lowing Φ1, a homogeneous PPP with intensity λM . The points of Φ1 act as seeds for a

Poisson-Voronoi tessellation that represents the macrocells. The SBSs are located at the

vertices of the macrocells, with the set of SBSs denoted by Φ2. Single-antenna users are as-
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sumed to be located independently and uniformly randomly over the plane. Massive MIMO

[3] is deployed in the macrocells, where each MBS is equipped with NM antennas and si-

multaneously transmits to U users (U≪NM) within one time-frequency resource. Each

MBS is assumed to use zero-forcing beamforming (ZFBF) to transmit U data streams, with

equal power allocated to each of the streams/users. Such a transmission scheme has been

widely used in the existing multiuser MIMO work such as [115, 116]. Each SBS has only

one antenna and thus serves one user per time-frequency resource. We also assume perfect

downlink channel state information is known at each BS for all its users. The MBS tier

can interfere with transmissions of the SBS tier, and vice versa. This contrasts with our

conference paper [24], where we assumed the tiers were mutually non-interfering.

3.2.1 User Association

We consider a biased maximum power user association strategy with open access, in which a

user will be associated with the BS that provides the largest biased average received power

for data transmissions, and users are allowed to be associated with any BS. The average

power a user receives from BS b, where b ∈ {Φ1 ∪ Φ2}, is

Pr,b = Ehb

[︁
hb(Pb/Ub) ||db||−αb

]︁
, (3.1)

where the channel power gain and transmit power for BS b are denoted by hb and Pb, respec-

tively. The distance between the user and BS b is denoted by db, and the path loss exponent

is given by αb (> 2). The number of users simultaneously communicating with BS b is

denoted by Ub; Ub = U for MBSs and Ub = 1 for SBSs. It is trivial to see that, if the

distribution for hb and the values of Pb, Ub, and αb are the same for all BSs in tier j, then if

a user associates with tier j, it will be with the closest BS of that tier.

To compensate for the differences in antennas and transmit powers between the macro

and small-cell tiers, as well as allowing for offloading traffic between tiers, a tier-dependent

bias factor Bj is incorporated [117]. Thus, the association strategy of the typical user can
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be expressed as

j⋆ = argmax
j

Bj E{hj}(Pj/Uj)||dj||−αj , j ∈ {1, 2}, (3.2)

where dj is the distance to the nearest BS in tier j, and hj is the channel power gain for that

BS. We specify without loss of generality that bias factor B1 = 1 and B2 = B.

3.2.2 Channel Model

We assume that the channels between any individual antenna at a BS and the user are in-

dependent and identically distributed (i.i.d.), are quasi-static, and undergo Rayleigh fading.

As mentioned earlier, each MBS employs ZFBF precoding to simultaneously communicate

with U users using NM antennas over the same time interval and frequency band. There-

fore, the small-scale fading power gain between any MBS and the users it serves can be

modeled as a gamma distribution with shape parameter NM−U+1 and scale parameter 1,

i.e., h1 ∼ Γ(NM−U+1, 1) [118Ű120]. If the MBS is instead an interfering BS for a user in

another macrocell, the small-scale fading power gain is instead distributed as h1 ∼ Γ(U, 1)

[120]. Similarly, the small-scale fading power gain between any SBS and any user follows

an exponential distribution, i.e., h2 ∼ exp(1) [32, 120]. We also note that the exponen-

tial distribution can be expressed as a special case of the gamma distribution, such that

h2 ∼ Γ(1, 1).

3.2.3 Signal-to-Interference-plus-Noise Ratio

The received SINR for a typical user ŚoŠ when served by MBS k is given by

γ1 =
P1

U
ho,k ||do,k||−α1

I1 + σ2
n

. (3.3)

I1 is the interference from the remaining MBSs {Φ1\k} and all SBSs Φ2, and ho,i (ho,k) is

the small-scale fading power gain between the typical user and BS i (k); ho,i ∼ Γ(Ui, 1)

and ho,k ∼ Γ(NM−U+1, 1) [120]. do,k and do,i are the distances from the typical user to

its associated MBS k and to an interfering BS i, respectively. P1 and σ2
n are the transmit

power of an MBS and the noise power, respectively.
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Similarly, the received SINR when the typical user ŚoŠ is served by SBS ℓ is given by

γ2 =
P2 ho,ℓ ||do,ℓ||−α2

I2 + σ2
n

, (3.4)

where I2 is the interference from the remaining SBSs {Φ2\ℓ} and all MBSs Φ1, P2 is the

transmit power of an SBS, and the small-scale fading power gain between the typical user

and SBS y is ho,y ∼ exp(1) [32, 120].

The expressions for interference when the typical user is associated with MBS k or SBS

ℓ are respectively given by

I1 =
2∑︂

j=1

∑︂

x∈Φj\k

Pj

Uj

ho,x ||do,x||−αj ; (3.5)

I2 =
2∑︂

j=1

∑︂

x∈Φj\ℓ

Pj

Uj

ho,x ||do,x||−αj , (3.6)

where U1 = U , and U2 = 1.

3.3 Distance Distributions

From the above equations, it is evident that one of the most important variables is the dis-

tance between a user and the serving BS. The distribution of the random variable (RV)

representing the distance between a user and MBS is available in the literature. However,

the RV for the distance between a user and its nearest SBS, where SBSs are placed at the

macrocell vertices, has not been analyzed prior to our work in [24].

To derive the distribution of the distance between a user and the nearest SBS, denoted

by RoS , we use two other RVs, RoM and RMS . RoM denotes the distance between the MBS

and the typical user within its cell, and RMS denotes the distance from the MBS to the SBS

(located at a macrocell vertex) that is nearest to the typical user. These distances are shown

in Fig. 3.2. It is known thatRoM is Rayleigh distributed and its probability density function

(PDF) is [121]

fRoM
(r1) = 2πλMr1 exp(−πλMr21), r1 ≥ 0 . (3.7)
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Figure 3.2: Important distances and angles in a macrocell. RoM is the distance between the typical
user ŚoŠ and its nearest MBS, RoS is the distance between the typical user and its nearest SBS, and
RMS is the distance between these two speciĄc BSs. θ is the angle between the lines measuring RoM

and RMS.

The PDF of the distance RMv from the MBS to a random vertex of its Voronoi cell is

available in the literature [122]:

fRMv
(r) = 2π2λ2Mr

3 exp(−πλMr2), r ≥ 0. (3.8)

It can be observed that both follow a Nakagami-m distribution with PDF

f(r) = 2mmr2m−1

ΩmΓ(m)
exp(−mr2

Ω
), r≥ 0 (3.9)

RoM has parameters m=1 and Ω=1/(πλM) and RMv has parameters m = 2 and Ω =

2/(πλM). We also note that in both cases, Ω can be expressed as m/(πλM). However, we

need the distance from the MBS to the speciĄc vertex nearest to the typical user, not to a

random vertex. This condition on the variable has the effect of skewing the distances to

larger values compared to considering a random vertex. The effect is similar to the Şzero-

cellŤ biasing effect on StoGeo measures [123, Ch. 9.3.3], which occurs when the speciĄc

cell containing the origin of the plane is considered rather than the ŞtypicalŤ cell. The

reason for the skew is similar as well Ů the origin of the plane is statistically more likely to

be located inside a larger cell than a smaller one, leading to the larger distances involved.

Proposition 1 The distribution of RMS , the distance between the MBS and the speciĄc

SBS nearest to the typical user, is closely approximated by a Nakagami-m distribution with
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empirical values of m and Ω:

fRMS
(r2) ≈ 2

(︃
m2

Ω2

)︃m2 r2m2−1
2

Γ(m2)
exp

(︃
−m2r

2
2

Ω2

)︃
, r2 ≥ 0,

≈ 2(πλM)2.104
r3.2082

Γ(2.104)
exp
(︁
−πλMr22

)︁
, r2 ≥ 0, (3.10)

where m2 = 2.104 and Ω2 = m2/(πλM).

The empirical values of m and Ω have been veriĄed for several values of λM as shown

in Fig. 3.3. We have generated the theoretical results for three different values of λM using

(3.10) and veriĄed the PDF by simulation results, generated using those three λM values.

As we can observe from Fig. 3.3, our proposed distribution closely follows the simulation

results, with root mean squared error (RMSE) values of 1.8×10−5, 3.54×10−5, and 0.0013

for λM1, λM2, and λM3, respectively. Hence, the proposition is validated.

The distribution of RoS is derived by utilizing the RVs RoM and RMS . It must be noted

that RoM and RMS are not independent, but actually highly correlated. This is intuitive;

larger distances of one should mean larger distances for the other.
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Theorem 1 The distribution of RoS is given by

fRoS
(r) ≈

∫︂ ∞

0

fRoM ,RMS
(r1, r1 + r) dr1 +

∫︂ ∞

r

fRoM ,RMS
(r1, r1 − r) dr1 , r1 ≥ 0, r ≥ 0;

(3.11)

fRoM ,RMS
(r1, r2) is the joint distribution of RoM and RMS:

fRoM ,RMS
(r1, r2) = 4(1− ρ)m2

∞∑︂

k=0

[︄
(m1)k
k!

ρk

×
(︃

m1

Ω1(1− ρ)

)︃m1+k

r
2(m1+k)−1
1

exp(−m1r
2
1/[Ω1(1− ρ)])

Γ(m1 + k)

×
(︃

m2

Ω2(1− ρ)

)︃m2+k

r
2(m2+k)−1
2

exp(−m2r
2
2/[Ω2(1− ρ)])

Γ(m2 + k)

× 1F1

(︃
m2 −m1;m2 + k;

m2ρ

Ω2(1− ρ)
r22

)︃]︄
, r1 ≥ 0, r2 ≥ 0, (3.12)

where m1 = 1, Ω1 = 1/πλM , m2 and Ω2 are same as the values given in (3.10), and

1F1(a; b ; z) is KummerŠs conĆuent hypergeometric function, (·)k denotes the Pochhammer

symbol, and Γ(·) is the Gamma function. The correlation coefficient between RoM and

RMS is denoted by ρ. Note that ρ is independent of λM because of the isotropic nature of

a PPP. We have empirically determined the value of ρ to be about 0.77 by simulations; we

use this value to generate the analytical results.

Proof. Details of the derivation are given in Appendix A.1.

The integration in Theorem 1 can be numerically computed. The accuracy of the derived

PDF is examined for different values of λM and shown in Fig. 3.4 with RMSE values of

4.62× 10−5, 9.53× 10−5, and 2.02× 10−4 for λM1, λM2, and λM3, respectively.

Derivation of network performance metrics (e.g., coverage probability, average achiev-

able rate) requires the distance distribution RoS , and using the distribution in Theorem 1

leads to extremely complicated expressions. Therefore, to simplify the expressions of per-

formance metrics, we provide two alternatives to approximate the distribution of RoS . In

this article, we model the locations of vertices of a Poisson-Voronoi tessellation using two

different point processes: a) an independent homogeneous PPP, and b) a β-GPP.

44



0 100 200 300 400 500 600 700 800 900 1000 1100

r

0

1

2

3

4

5

6

P
D

F

10
-3

M1
 (Simulation)

M1
 (Analytical)

M2
 (Simulation)

M2
 (Analytical)

M3
 (Simulation)

M3
 (Analytical)

Figure 3.4: Probability density function of RoS for different values of λM, with λM 1 = 1
/︁(︁
π5002

)︁
,

λM 2 = 1
/︁(︁
π4002

)︁
, and λM 3 = 1

/︁(︁
π2002

)︁
.

a) Independent PPP modeling: In the Ąrst method we follow [124], which modeled the

locations of the vertices of a Poisson-Voronoi tessellation as an independent Poisson point

process with intensity

λS =
2 π1/2 Γ(5/2)

3 Γ2(3/2)
λM = 2λM , (3.13)

which is obtained by substituting d = 2 in [124, Eq. (7.7)].

The PDF of RoS using the PPP approximation (which we denote by R̃oS) can be derived

by using the void probability of a PPP [34],

FR̃oS
(r) = 1− P

[︁
R̃os > r

]︁
= 1− e−πλSr

2

, r ≥ 0. (3.14)

Correspondingly, the PDF is similar to the one in (3.7):

fR̃oS
(r) = 2πλS re

−πλSr
2

, r ≥ 0. (3.15)

The modeling of vertices of the Poisson-Voronoi tessellation using an independent PPP

does not capture the spatial correlation between placement of MBSs and SBSs, but yields

tractable expressions that suffice for a rough estimate of performance metrics. However, for

more accurate modeling, we employ the second method.
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b) β-GPP modeling: In recent years, it has been observed that a homogeneous PPP

is not ideal to model complex BS deployments. In our proposed SBS placement strategy,

there is some form of repulsion between the locations of SBSs, since they are placed on

the vertices of Poisson-Voronoi tessellation; this effect cannot be modeled using a PPP. In

[107] and [125], a β-GPP has been shown to be a more accurate point process than a PPP

to model practical BS deployment because it models the spatial repulsion between BSs. A

GPP belongs to the class of determinantal point processes and therefore it is a soft-core

model. This is favorable for our scenario because, unlike hard-core point processes, there

is no strict constraint on the distance between two SBSs. In some recent papers [105, 111,

126], expressions for coverage probability and rate coverage have been developed for a β-

GPP model, but they are too complex to provide any meaningful insight. Therefore, in this

paper we have developed simpliĄed expressions for coverage probability and rate coverage

using a β-GPP.

In this model, the placement of SBSs is deĄned as Φ2 = {Xi}i∈Z+ ∼ GPP(λ′S, β).

β (with 0<β≤ 1) is a repulsion parameter and λ′S can be made set proportional to λM ,

similar to (3.13); together these parameters help capture the correlation between Φ2 and Φ1.

Although the locations of the Voronoi tesselation vertices are correlated with those of the

seeds (and in fact the realization of the seeds completely determines the realization of the

vertices), for simplicity we again model the β-GPP SBS process Φ2 as being independent

of Φ1. The leaves the correlation between the two to be expressed solely in the value of the

parameters β and λ′S .

Methods of simulating a GPP are discussed in [127, 128]. The squared distances from

the points in a β-GPP Φ2 to an arbitrary location have the same distribution as a set of

Gamma-distributed RVs {Qk}, ∀k ∈ Z
+. The PDF of Qk is

fQk
(x) =

xk−1 exp
(︂
−πλ′

S

β
x
)︂

(︂
β

πλ′

S

)︂k
Γ(k)

, x ≥ 0. (3.16)

That is, the shape parameter of the distribution for Qk is k and the rate parameter
πλ′

S

β
(or
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equivalently, the scale parameter is β
πλ′

S
). The squared distance of point xk ∈ Φ2 from an

arbitrary location (e.g., the origin) then follows ||xk||2 = Qk . Lastly, each point is retained

independently of the others with probability β (points not retained are removed from the

realization) [107].

Note: In equations pertaining to a β-GPP, the fraction
πλ′

S

β
appears frequently. For com-

pactness of notation, we hereafter denote this fraction as

cβ =
πλ′S
β
. (3.17)

For a β-GPP, the distance distribution RoS can be derived from the contact distribution.

For a motion-invariant point process Φ like β-GPP, the contact distribution is deĄned as the

CDF of ||u − Φ||, where u is any arbitrary location. Specifying u to be the origin o gives

the CDF of RoS . This distribution is [107, Eq. (19)]

FR̃oS
(r) = P

[︁
||o− Φ2|| ≤ r

]︁

= 1−
∞∏︂

k=1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁
, r ≥ 0 , (3.18)

where γ̃(a, x) ≜
(︁∫︁ x

0
e−tta−1dt

)︁
/Γ(a) is the regularized lower incomplete Gamma func-

tion.

Next, we derive a closed-form approximation for the CDF in (3.18) using the following

theorem and lemma.

Theorem 2 (Monotone Convergence Theorem [129]): Suppose (X ,S, µ) is a measure

space, and 0 ≤ f1 ≤ f2 ≤ · · · is an increasing sequence of S-measurable functions.

A function f : X → [0,∞] is deĄned as

f(x) = lim
k→∞

fk(x)

Then

lim
k→∞

∫︂
fk dµ =

∫︂
f dµ =

∫︂
lim
k→∞

fk dµ.
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Proof. We refer the reader to [129] for more in-depth details and deĄnitions related to the

theorem, and speciĄcally to [129, pp. 78Ű79] for its proof.

Lemma 1 An inĄnite sum over k ∈ Z
+ of γ̃(k, x) simpliĄes as follows:

∞∑︂

k=1

γ̃ (k, x) = x . (3.19)

Proof. Using the integral form of the regularized lower incomplete Gamma function,

(3.19) can be expressed as

∞∑︂

k=1

γ̃ (k, x) =
∞∑︂

k=1

1

Γ(k)

∫︂ x

0

exp(−t) tk−1 dt

= lim
k→∞

k∑︂

n=1

1

Γ(n)

∫︂ x

0

exp(−t) tn−1 dt

(a)
= lim

k→∞

∫︂ x

0

exp(−t)
(︄

k∑︂

n=1

tn−1

Γ(n)

)︄
dt . (3.20)

Line (a) follows from the property that the order of Ąnite summation and integration can be

interchanged.

We next apply the monotone convergence theorem. It can be observed that each term

in the sequence f1(t), f2(t), · · · , where fk(t) =
∑︁k

n=1 exp(−t) tn−1

Γ(n)
is measurable in R≥0

(and in fact over all of R, although we are only interested in non-negative numbers here).

Also, the sequence converges pointwise to 1 as k→∞ for all t. We also note the property
∑︁∞

n=1[t
n−1/Γ(n)] =

∑︁∞
n=0[t

n/Γ(n+ 1)] = exp(t). Furthermore, for t ≥ 0,

0 ≤
k=1∑︂

n=0

exp(−t) t
n−1

Γ(n)
≤

k=2∑︂

n=0

exp(−t) t
n−1

Γ(n)
≤ . . .

⇒ 0 ≤ f1(t) ≤ f2(t) ≤ . . . (3.21)

Since fk(t) converges to f(t) = 1 as k → ∞, and 0 ≤ f1(t) ≤ f2(t) ≤ · · · , the

conditions of the monotone convergence theorem are satisĄed. Thus,

∞∑︂

k=1

γ̃ (k, x) = lim
k→∞

∫︂ x

0

exp(−t)
(︄

k∑︂

n=1

tn−1

Γ(n)

)︄
dt

=

∫︂ x

0

f(t) dt =

∫︂ x

0

1 dt = x , (3.22)
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which completes the proof.

Using the property proven by Lemma 1, we derive the closed-form approximation of

FR̃oS
(r).

Theorem 3 A closed-form2 approximation of the CDF of R̃oS is given by

FR̃oS
(r) ≃ 1−

[︄
(1− β)m

(︄
1 + β

1−β

m∑︂

k=1

Γ̃
(︁
k, cβr

2
)︁
)︄]︄[︄

n−1∏︂

k=m+1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁
]︄

×
[︄
1− πλ′Sr

2 + β

n−1∑︂

k=1

γ̃
(︁
k, cβr

2
)︁
]︄
, r ≥ 0,

(3.23)

where m =
⌊︂

cβ
ln(10β/[1−β])

r2
⌋︂
, n = ⌈10cβr2⌉, and Γ̃(k, x) is the regularized upper incom-

plete Gamma function.

Proof. See Appendix A.2. In the event thatm = 0, the part in square brackets in the Ąrst

line of (3.23) reduces to 1.

The accuracy of the CDFs in (3.14) and (3.23) is shown in Fig. 3.5. For the latter, the

best-Ąt values of β = 0.95 and λ′S = 1.378λM are obtained from curve Ątting. The value

2In their integral forms, γ̃(k, x) and Γ̃(k, x) are not closed-form. However, for k ∈ Z
+, Γ̃(k, x) can

alternatively be expressed as e−x
∑︁k−1

i=0
xi

i!
[130, Eq. 8.352.4] and γ̃(k, x) as 1 − e−x

∑︁k−1

i=0
xi

i!
[130, Eq.

8.352.6]. Both of these summation-based expressions are closed-form.
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of β is independent of λM since β-GPP is isotropic. Visibly, both approximate CDFs are

similar to the simulated CDF. The RMSE values of the β-GPP approximation for λM1, λM2,

and λM3 are 0.0149, 0.0149, and 0.0146, whereas for the PPP-based approximation, they are

0.015, 0.0157, and 0.0159, respectively.

Corollary 1 Differentiating the approximate CDF of R̃oS in (3.23), the approximate closed-

form PDF of R̃oS is obtained as follows, with integersm andn deĄned the same as for (3.23):

fR̃oS
(r) ≃ ∂

∂r
[1− Ξ1(r)Ξ2(r)Ξ3(r)]

= 2πλ′SrΞ2(r)

{︄
(1− β)m−1Γ̃

(︁
m, cβr

2
)︁
Ξ3(r)+ γ̃

(︁
n− 1, cβr

2
)︁
Ξ1(r)

+Ξ1(r)Ξ3(r)e
−cβr

2
n−1∑︂

k=m+1

(cβr
2)

k−1

Γ(k) [1− βγ̃(k, cβr2)]

}︄
, r ≥ 0,

where Ξ1(r) = (1− β)m
[︃
1 + β

1−β

m∑︂

k=1

Γ̃
(︁
k, cβr

2
)︁]︃
,

Ξ2(r) =
n−1∏︂

k=m+1

[︂
1− βγ̃

(︁
k, cβr

2
)︁ ]︂
, and

Ξ3(r) = 1− πλ′Sr
2 + β

n−1∑︂

k=1

γ̃
(︁
k, cβr

2
)︁
. (3.24)

Proof. See Appendix A.3. We note that in the event that m = 0, Γ̃(0, x) = 0, so the Ąrst

term within the curly brackets will disappear.

3.4 Tier Association Probabilities and Conditional Distance

Distributions

In this section, we derive some preliminary expressions: 1) the probability of the typical user

associating with either the MBS or SBS tier, and 2) the conditional distance distribution of

a user from its serving BS given its serving tier is known. These expressions are required

in the next section for the derivation of coverage probability and rate coverage.
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3.4.1 Tier Association Probability

Expressions for the tier association probability can be derived using the PDFs/CDFs ofRoM

and RoS and the user association strategy from (3.2). First note that the mean of a Gamma-

distributed random variable h ∼ Γ(a, 1) is a. The probability of the typical user associating

with an MBS, denoted by A1, is given by

A1 = ERoM

{︁
P
[︁
E{h1}P1

U
R−α1

oM > E{h2}BP2R
−α2
oS

]︁}︁

= ERoM

{︂
P

[︂
(NM−U+1)

U
P1R

−α1
oM > BP2R

−α2
oS

]︂}︂

= ERoM

{︃
P

[︃
RoS >

(︂
UBP2

(NM−U+1)P1

)︂ 1
α2 R

α1
α2
oM

]︃}︃

= ERoM

{︃
1− FRoS

(︃[︂
UBP2

(NM−U+1)P1

]︂ 1
α2 R

α1
α2
oM

)︃}︃

= 1−
∫︂ ∞

0

FRoS

(︃[︂
UBP2

(NM−U+1)P1

]︂ 1
α2 r

α1
α2

)︃
fRoM

(r) dr. (3.25)

The fraction in the last line of (3.25) appears as a common element in many of the equations,

so for compactness, we denote

ζ =
UBP2

(NM −U +1)P1

. (3.26)

Expressions for the tier association probability for a PPP HetNet model are already available

in the literature (e.g., [117]), using the corresponding PPP distance distributions:

A1,PPP = 2πλM

∫︂ ∞

0

r exp
[︂
−2πλMζ

2
α2 r

2α1
α2 − πλMr

2
]︂
dr. (3.27)

The above equation uses the substitution λS = 2λM from (3.13). In the special case of

α1 = α2 = α, (3.27) reduces to

A1,PPP =
[︂
1 + 2ζ

2
α

]︂−1

. (3.28)

For the β-GPP model, using the CDF of R̃oS from (3.23), we obtain

A1,β-GPP = 2πλM

∫︂ ∞

0

(1− β)m

{︄
r exp(−πλMr2)

[︄
1 + β

1−β

m∑︂

k=1

Γ̃
(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂]︄
×

[︄
n−1∏︂

k=m+1

(︂
1−βγ̃

(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂)︂]︄[︄
1−πλ′S ζ

2
α2 r

2α1
α2 + β

n−1∑︂

k=1

γ̃
(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂]︄}︄
dr,

(3.29)
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with m =
⌊︂
cβζ

2/α2r2α1/α2

ln(10β/[1−β])

⌋︂
and n =

⌈︂
10 cβ ζ

2
α2 r

2α1
α2

⌉︂
. Unfortunately, setting α1 = α2 = α

does not yield a signiĄcant simpliĄcation in this case.

The probability of the typical user associating with an SBS, denoted byA2, can be found

through similar steps as in (3.25), i.e., calculating ERoS

{︃
1− FRoM

(︃
ζ

−1
α1R

α2
α1
oS

)︃}︃
. If A1 is

already known, A2 may be obtained more simply by A2 = 1− A1 .

3.4.2 Conditional Distance Distribution

In this subsection, we derive the conditional distance distributions fRoM |j⋆=1(r) and fRoS |j⋆=2(r),

i.e., the PDF of the distance between a user and its serving BS given its serving tier j⋆ ∈

{1, 2} is known. Deriving these expressions is similar to the the steps in the previous sec-

tion. To begin, the conditional CDF is Ąrst calculated. For the MBS,

FRoM |j⋆=1(r) = P [RoM < r | j⋆ = 1]

=
P [RoM < r, j⋆ = 1]

P [j⋆ = 1]
=

P [RoM < r, j⋆ = 1]

A1

= 1
A1

∫︂ r

0

P
[︁
E{h1}P1

U
r−α1
1 > E{h2}BP2r

−α2
2

]︁

× fRoM
(r1) dr1

= 1
A1

∫︂ r

0

[︃
1− FRoS

(︃
ζ

1
α2 r

α1
α2
1

)︃]︃
fRoM

(r1) dr1. (3.30)

The PDF is then found by differentiating FRoM |j⋆=1(r) with respect to r:

fRoM |j⋆=1(r) =
∂
∂r
FRoM |j⋆=1(r)

= 1
A1

[︂
1− FRoS

(︂
ζ

1
α2 r

α1
α2

)︂]︂
fRoM

(r). (3.31)

Through similar steps, the conditional PDF for the SBS can be found to be:

fRoS |j⋆=2(r) =
1
A2

[︂
1− FRoM

(︂
ζ

−1
α1 r

α2
α1

)︂]︂
fRoS

(r). (3.32)

It then remains to just insert the appropriate distance distributions from earlier into (3.31)

and (3.32). For the PPP model, we end up with expressions similar to related earlier works
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(e.g., [117]). After substituting λS = 2λM , we have:

fRoM |j⋆=1(r) =
2πλM

A1,PPP
r exp

[︂
−πλM

(︂
2 ζ

2
α2 r

2α1
α2 + r2

)︂]︂
, r ≥ 0; (3.33)

fRoS |j⋆=2(r) =
4πλM

A2,PPP
r exp

[︂
−πλM

(︂
ζ
− 2

α1 r
2α2
α1 +2r2

)︂]︂
, r ≥ 0. (3.34)

For the β-GPP model, the conditional distance distributions are:

fRoM |j⋆=1(r) =
2πλM (1−β)m

A1,β-GPP
r exp(−πλMr2)

[︄
1− πλ′S ζ

2
α2 r

2α1
α2 + β

n−1∑︂

k=1

γ̃
(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂]︄

×
[︄
1 + β

1−β

m∑︂

k=1

Γ̃
(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂]︄[︄ n−1∏︂

k=m+1

(︂
1− βγ̃

(︂
k, cβ ζ

2
α2 r

2α1
α2

)︂)︂]︄
, r ≥ 0,

(3.35)

where m =
⌊︂
cβζ

2/α2r2α1/α2

ln(10β/[1−β])

⌋︂
and n =

⌈︂
10 cβ ζ

2
α2 r

2α1
α2

⌉︂
;

fRoS |j⋆=2(r) =
2πλ′

S

A2,β-GPP
rΞ2(r) exp

(︂
−πλMζ

−2
α1 r

2α2
α1

)︂
(1− β)m−1Γ̃

(︁
m, cβr

2
)︁
Ξ3(r)

+ γ̃
(︁
n− 1, cβr

2
)︁
Ξ1(r) + Ξ1(r)Ξ3(r)e

−cβr
2
n−1∑︂

k=m+1

(cβr
2)

k−1

Γ(k) [1− βγ̃(k, cβr2)]

}︄
, r ≥ 0,

(3.36)

where m =
⌊︂

cβ
ln(10β/[1−β])

r2
⌋︂
, n = ⌈10cβr2⌉, and Ξ1(r), Ξ2(r), and Ξ3(r) are as deĄned in

(3.24).

3.5 Coverage Probability & Rate Coverage

In this section, we derive expressions for two common performance metrics for HetNets

modeled by StoGeo, namely the coverage probability and rate coverage. To derive math-

ematical expressions for both these metrics, Ąrst the interference must be characterized.

There are two typical techniques to do so: 1) using the Laplace transform of the interference

distribution, and 2) using moment matching to approximate the interference as a Gamma-

distributed random variable. The method using the Laplace transform unfortunately does

not yield a closed-form solution for the β-GPP model, and correspondingly provides lit-

tle meaningful insight about the network performance [111]. Therefore, in this article we
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use the latter Gamma approximation method for both the β-GPP and PPP models of SBS

placement. To the best of our knowledge, this approximation for the β-GPP model is not

yet available in the literature.

3.5.1 Coverage Probability

The coverage probability, denoted by PC , is deĄned as the probability that the instantaneous

SINR γj⋆ of the typical user is greater than a threshold SINR τc required for coverage. Since

the typical user is associated with one tier j⋆ at any given time, the coverage probability is

PC(τc) = A1PC|M(τc) + A2PC|S(τc), (3.37)

where PC|M(τc) and PC|S(τc) are the conditional coverage probabilities given the user is as-

sociated with the MBS and SBS tier, respectively. The expressions for A1 and A2 were de-

rived earlier in Section 3.4-3.4.1; therefore, it remains to derive expressions for PC|M(τc) =

P [γM ≥ τc | j⋆ = 1] and PC|S(τc) = P [γS ≥ τc | j⋆ = 2]. In both cases, we assume the

network is interference-limited, and as such the noise power σ2
n is negligible relative to the

interference power.

Deriving PC|M and PC|S takes the following general form:

PC|M(S)(τc) ≃ P

⎡
⎢⎢⎢⎣

Pj⋆

Uj⋆
ho,b⋆ ||do,b⋆ ||−αj⋆

2∑︁
j=1

∑︁
x∈Φj\b⋆

Pj

Uj
ho,x ||do,x||−αj

≥ τc

⎤
⎥⎥⎥⎦

= Erj⋆ |j
⋆

{︂
P

[︂
Pj⋆

Uj⋆
ho,b⋆r

−αj⋆

j⋆ ≥ τc Ij⋆
]︂}︂

, (3.38)

where b⋆ represents the MBS or SBS from tier j⋆ that the user associates with, and ||do,b⋆ || =

rj⋆ , which is r1 (or RoM ) for j⋆ = 1 and r2 (or RoS) for j⋆ = 2. Ij⋆ is I1 from (3.5) for

j⋆ = 1 and I2 from (3.6) for j⋆ = 2.

As shown in [131, Lemma 3], if a distribution has mean η and variance σ2, a Gamma

distribution Γ(k, θ) with shape parameter k = η2/σ2 and scale parameter θ = σ2/η will

have the same Ąrst and second moments. Thus, under the method of moment matching, the
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original distribution can be approximated using the Gamma distribution with these matching

moments. Using this method, we characterize the interference terms I1 and I2. First, we

separate the contributions to the interference from the MBS and SBS tiers as follows:

I1 =
∑︂

x∈Φ1\k

P1

U
ho,x ||do,x||−α1 +

∑︂

x∈Φ2

P2ho,x ||do,x||−α2

= I1,1 + I1,2. (3.39)

I2 =
∑︂

x∈Φ1

P1

U
ho,x ||do,x||−α1 +

∑︂

x∈Φ2\ℓ

P2ho,x ||do,x||−α2

= I2,1 + I2,2. (3.40)

Before characterizing I1 and I2 using a Gamma distribution, we Ąrst derive the mean and

variance for each of I1,1, I1,2, I2,1, and I2,2.

Lemma 2 The mean and variance3 of I1,1 respectively are:

E{I1,1} =
2πλMP1

α1 − 2
r2−α1
1 (3.41)

V(I1,1) =
πλMP

2
1 (U + 1)

U(α1 − 1)
r2−2α1
1 (3.42)

Similarly, the mean and variance of I2,1 respectively are:

E{I2,1} =
2πλMP1

α1 − 2
r2−α1
κ1 (3.43)

V(I2,1) =
πλMP

2
1 (U + 1)

U(α1 − 1)
r2−2α1
κ1 (3.44)

where rκ1 = ζ−1/α1 r
α2/α1

2 .

Proof. See Appendix A.4.

If the SBS tier is modeled using a PPP, then similar results are obtained for I1,2 and I2,2:

3We must note that (3.42) corrects an erroneous derivation in [105], which instead states
the formula in (3.42) represents (their equivalent of) E{I21,1}. Calculating E{I21,1} gives

E
{︁∑︁

x∈Φ1\k
P 2

1

U2h
2
o,x ||do,x||−2α1

}︁
+ E

{︁∑︁
x∈Φ1\k

∑︁
y∈Φ1\{k,x}

P 2

1

U2ho,xho,y ||do,x||−α1 ||do,y||−α1

}︁
;

[105] has missed the second part, which does not equal zero. Working out the two parts of the sum, one Ąnds
its Ąrst part equals V(I1,1) as given by (3.42), and the second part equals (E{I1,1})2.
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Lemma 3 For SBS placement modeled using a PPP having λS = 2λM , the mean and

variance of I1,2 are:

E{I1,2} =
4πλMP2

α2 − 2
r2−α2
κ2 (3.45)

V(I1,2) =
4πλMP

2
2

α2 − 1
r2−2α2
κ2 (3.46)

where rκ2 = ζ1/α2 r
α1/α2

1 . Similarly, for SBS placement modeled using a PPP, the mean and

variance of I2,2 are:

E{I2,2} =
4πλMP2

α2 − 2
r2−α2
2 (3.47)

V(I2,2) =
4πλMP

2
2

α2 − 1
r2−2α2
2 (3.48)

Proof. The proof follows much the same as for Lemma 2, so we omit it here. In this case,

ho,x ∼ Γ(1, 1), so Eho,x{ho,x} = 1 and Eho,x{h2o,x} = 2.

On the other hand, if the SBS tier is modeled with a β-GPP, the derivation and results

for the means and variances of I1,2 and I2,2 are more complicated.

Lemma 4 For SBS placement modeled using a β-GPP, the mean and variance of I1,2 are:

E{I1,2} =
2πλ′SP2

α2 − 2
r2−α2
κ2 (3.49)

V(I1,2) =
2πλ′SP

2
2

α2 − 1
r2−2α2
κ2 − β2P 2

2 c
α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
κ2

)︁

Γ2(k + 1)
, (3.50)

where rκ2 = ζ1/α2 r
α1/α2

1 .

Proof. See Appendix A.5. We note that the variance is less than that for a PPP, as expected,

because a β-GPP is repulsive.

Lemma 5 For SBS placement modeled using a β-GPP, the mean and variance of I2,2 are

E{I2,2} =
2πλ′SP2

α2 − 2
r2−α2
2 − βP2 c

α2
2
β e

−cβr
2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)
(3.51)
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V(I2,2) = 2πP 2
2 λ

′
S

r2−2α2
2

α2 − 1
− 2βP 2

2 c
α2
β e

−cβr
2
2

∞∑︂

k=0

(cβr
2
2)

kΓ(1+ k−α2, cβr
2
2)

Γ2(k + 1)

− β2P 2
2 c

α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)
+ 2β2P 2

2 c
α2
β e

−cβr
2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k

× Γ2
(︁
1 + k − α2

2
, cβr

2
2

)︁

Γ3(k + 1)
− β2P 2

2 c
α2
β e

−2cβr
2
2

(︄
∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)

)︄2

.

(3.52)

Proof. See Appendix A.6.

Now that we have the required means and variances, we note again that the point pro-

cesses for each tier are modeled as being independent of each other. As such, measures

on those point processes will also be independent. Thus, I1,1 and I1,2 are independent of

each other, as are I2,1 and I2,2. Consequently, the mean and variance for Ij⋆ will just be,

respectively, the sum of the means and sum of the variances for its constituent components.

Thus, I1 and I2 can be characterized as follows.

Lemma 6 For SBS placement modeled using a PPP having λS = 2λM , interference I1 can

be characterized as I1 ∼ Γ(k1, θ1), where

k1 = 4πλM

[︂
P1

α1−2
r2−α1
1 + 2P2

α2−2
r2−α2
κ2

]︂2
[︂
P 2
1 (U+1)

U(α1−1)
r2−2α1
1 +

4P 2
2

α2−1
r2−2α2
κ2

]︂ , (3.53)

θ1 =

[︂
P 2
1 (U+1)

U(α1−1)
r2−2α1
1 +

4P 2
2

α2−1
r2−2α2
κ2

]︂

2
[︂

P1

α1−2
r2−α1
1 + 2P2

α2−2
r2−α2
κ2

]︂ , (3.54)

and rκ2 = ζ1/α2 r
α1/α2

1 . Similarly, I2 can be characterized as I2 ∼ Γ(k2, θ2), where

k2 = 4πλM

[︂
P1

α1−2
r2−α1
κ1 + 2P2

α2−2
r2−α2
2

]︂2
[︂
P 2
1 (U+1)

U(α1−1)
r2−2α1
κ1 +

4P 2
2

α2−1
r2−2α2
2

]︂ , (3.55)

θ2 =

[︂
P 2
1 (U+1)

U(α1−1)
r2−2α1
κ1 +

4P 2
2

α2−1
r2−2α2
2

]︂

2
[︂

P1

α1−2
r2−α1
κ1 + 2P2

α2−2
r2−α2
2

]︂ , (3.56)

and rκ1 = ζ−1/α1 r
α2/α1

2 .

57



Proof. E{I1} is found by adding (3.41) and (3.45), and V(I1) by adding (3.42) and

(3.46). Then, as per [131, Lemma 3], the Gamma distribution parameters are given by

k1 = (E{I1})2/V(I1) and θ1 = V(I1)/E{I1}. Similarly, E{I2} is found by adding (3.43)

and (3.47), and V(I2) by adding (3.44) and (3.48). Then, k2 = (E{I2})2/V(I2) and θ2 =

V(I2)/E{I2}.

Lemma 7 For SBS placement modeled using a β-GPP, interference I1 can be characterized

as I1 ∼ Γ(k1, θ1), where

k1 =
4π2

[︂
λMP1

α1−2
r2−α1
1 +

λ′

SP2

α2−2
r2−α2
κ2

]︂2
[︂
πλMP 2

1 (U+1)

U(α1−1)
r2−2α1
1 +

2πλ′

SP
2
2

α2−1
r2−2α2
κ2 − ς1,2

]︂ , (3.57)

θ1 =

[︂
πλMP 2

1 (U+1)

U(α1−1)
r2−2α1
1 +

2πλ′

SP
2
2

α2−1
r2−2α2
κ2 − ς1,2

]︂

2π
[︂
λMP1

α1−2
r2−α1
1 +

λ′

SP2

α2−2
r2−α2
κ2

]︂ , (3.58)

ς1,2 =β
2P 2

2 c
α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
κ2

)︁

Γ2(k + 1)
, (3.59)

and rκ2 = ζ1/α2 r
α1/α2

1 . Meanwhile, I2 can be characterized as I2 ∼ Γ(k2, θ2), where

k2 =

[︂
2πλMP1

α1−2
r2−α1
κ1 +

2πλ′

SP2

α2−2
r2−α2
2 − ς2,2

]︂2
[︂
πλMP 2

1 (U+1)

U(α1−1)
r2−2α1
κ1 + V(I2,2)

]︂ , (3.60)

θ2 =

[︂
πλMP 2

1 (U+1)

U(α1−1)
r2−2α1
κ1 + V(I2,2)

]︂

[︂
2πλMP1

α1−2
r2−α1
κ1 +

2πλ′

SP2

α2−2
r2−α2
2 − ς2,2

]︂ , (3.61)

ς2,2 = βP2 c
α2
2
β e−cβr

2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)
, (3.62)

rκ1 = ζ−1/α1 r
α2/α1

2 , and V(I2,2) is given in (3.52).

Proof. The proof is largely the same as for Lemma 6, with (3.49)Ű(3.52) respectively

replacing (3.45)Ű(3.48).

Now we can Ąnally derive expressions of the conditional coverage probabilities PC|M(τc)

and PC|S(τc).
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Theorem 4 Using I1 ∼ Γ(k1, θ1), we can have the coverage probability when the user

associates with the MBS tier as follows:

PC|M(τc) =

∫︂ ∞

0

Γ(NM −U +1+ k1)

Γ(k1 +1)Γ(NM −U +1)

(︃
P1

τcUr
α1
1 θ1

)︃k1

× 2F1

(︃
k1, NM −U +1+ k1; k1 +1;

−P1

τcUr
α1
1 θ1

)︃
fRoM |j⋆=1(r1) dr1, (3.63)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.

Proof. If the user associates with an MBS, then ho,b⋆ is distributed ∼Γ(NM −U +1, 1),

and thus the useful signal power P1

U
ho,b⋆r

−α1
1 is distributed ∼Γ

(︁
NM −U +1, P1

Ur
α1
1

)︁
. The

probability P [γM(r1)≥ τc | j⋆ =1] is primarily derived from [131, Proposition 11]. Next,

we integrate this expression over the PDF fRoM |j⋆=1(r1) to Ąnd the average over all possible

values of r1.

Theorem 5 Using I2 ∼Γ(k2, θ2), we can have the coverage probability when the user as-

sociates with the SBS tier as follows:

PC|S(τc) =

∫︂ ∞

0

(︃
P2

P2 + τcr
α2
2 θ2

)︃k2
fRoS |j⋆=2(r2) dr2. (3.64)

Proof. The proof is similar to that of Theorem 4, where now the useful signal power is

distributed ∼Γ
(︂
1, P2

r
α2
2

)︂
. Furthermore, 2F1(k2, k2 + 1; k2 + 1;−z) reduces to (1 + z)−k2 ,

leading to the less complex expression in (3.64).

Substituting PC|M(τc) and PC|S(τc) from Theorems 4 and 5 into (3.37), we obtain the

expression for coverage probability.

3.5.2 Achievable Rate & Rate Coverage

In the previous subsection, we considered the coverage probability, which is a performance

metric that depends on the channel quality between a user and its serving BS and the qual-

ity of the interfering channels. In this subsection, we develop the mathematical expressions

for rate coverage. Rate coverage is deĄned as the probability of the instantaneous achiev-

able rate being greater than a threshold rate χ. We assume each BS allocates one resource
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block with a normalized unit bandwidth to each user associated with it. The instantaneous

achievable rate of the typical user is deĄned as

R =
2∑︂

j=1

AjRj =
2∑︂

j=1

Aj log2 (1 + γj) , (3.65)

where Rj is the userŠs instantaneous rate if associated with tier j, and Aj is the association

probability for tier jth, and γj is the instantaneous SINR when the user is associated with a

jth-tier BS.

Using (3.65), we also derive the expression for rate coverage, deĄned as

RC(χ) =
2∑︂

j=1

Aj P [Rj ≥ χ]. (3.66)

Based on this deĄnition, we can further derive

RC(χ) =
2∑︂

j=1

Aj P

[︄
log2

(︄
1 +

Pj

Uj
ho,b⋆ ||do,b⋆ ||−αj

Ij

)︄
≥ χ

]︄

=
2∑︂

j=1

Aj P

[︄ Pj

Uj
ho,b⋆ ||do,b⋆ ||−αj

Ij
≥ 2χ − 1

]︄

= PC (2
χ − 1) . (3.67)

From the above expression, the similarity between coverage probability and rate coverage

can be easily observed. For coverage probability, the deĄnition uses τc instead of 2χ − 1.

By replacing τc with 2χ − 1 in the expressions for PC|M and PC|S , we obtain the expression

for RC . Therefore, we omit the remaining details of the derivation here.

3.6 Performance Evaluation

In this section, we provide insights into the network performance for our proposed SBS

deployment scheme. Before presenting the results, we brieĆy describe the network param-

eters. The two-tier network is generated with MBSs placed following a homogeneous PPP

with default intensity λM = 1/(π×5002) (i.e., on average one point within a circular area

having a radius of 500 normalized units of distance), and SBSs are placed at the vertices of
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the macrocells. For each realization of the network, the BSs are placed over a square region

with side lengths of 20000 (normalized units of distance). There is additionally a smaller

central square area within this larger region, with the smaller area having side lengths of

20000/
√
1.5. (This smaller region is used to avoid edge effects for the simulation.) A user

is dropped independently and uniformly randomly over the area of the interior area 10000

times. This process is repeated for a total of 5000 realizations of the BS positions, and the

results are averaged over all drops and realizations. Unless stated otherwise, we assume

NM = 100 and U = 10. Other default parameter values include bandwidth W = 10 MHz,

path loss exponent α = 3.76 for both tiers, MBS transmit power P1 = 43 dBm, SBS trans-

mit power P2 = 30 dBm, and bias factor B=5 (or 7 dB). We consider thermal noise of

−174 dBm/Hz and a noise Ągure for the UE receivers of Nf = 14 dB. Hence, the noise

power is σ2
n = −174 + 10 log10 (W ) +Nf = −90 dBm [33, 105].

Fig. 3.6 shows the coverage probability for varying coverage threshold SINR values τc.

The results are generated for a Ąxed value of the SBS tier bias factor B = 5. We compare

the results of the proposed network layout and its PPP and β-GPP approximations with the

non-uniform layout from [105] and the the PCP layout from [39]. In the case of the scheme

from [105], we have considered the same exclusion radius ofR = 200 m used as the default

value in [105]. For a fair comparison, we consider λS = 2λM to generate the results for

[105] and [39], the same as for our PPP approximation. For the β-GPP, we use the best-Ąt

values of β = 0.95 and λ′S = 1.378λM as obtained earlier at the end of Section 3.3.

From the results in Fig. 3.6(a), we observe that the coverage probability performance de-

grades for greater values of τc as expected, and that our proposed SBS deployment strategy

outperforms existing SBS deployment strategies and models. The results demonstrate that

for τc ≥ −1 dB, locating the SBSs at the corners of the macrocells provides around 1.13Ű

1.21 times higher coverage probabilities than the non-uniform layout of [105], and around

1.4Ű1.95 times higher probabilities than the PCP scheme of [39]. We also note that although

the PPP-based approximation of our SBS placement strategy results in the most tractable
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Figure 3.6: Coverage probability vs. coverage threshold SINR τc, comparing correlated SBS place-
ment strategy, β-GPP and PPP approximations, and SBS deployment schemes from [105] and [39].
NM = 100, U = 10, B = 5, λM = 1

/︁(︁
π5002

)︁
, P1 = 43 dBm, P2 = 30 dBm. (a) λS = 2λM and

λ′
S = 1.378λM. (b) λS = 5λM and λ′

S = 3.445λM.

expressions, the performance of the PPP-based approximation varies somewhat from the

simulated results of the actual network layout. More notably, though, the β-GPP approxi-

mation is considerably better than the PPP approximation; the β-GPP coverage probability

lies approximately midway between that of the PPP-based approximation and the simulated

coverage probability of the ŞtrueŤ network layout. The correlated SBS layout has median

and 90th percentile SINR threshold values of about 10.2 dB and 2.4 dB, respectively. In
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Figure 3.7: Rate coverage (complementary CDFs of rate per user), comparing correlated SBS place-
ment strategy, β-GPP and PPP approximations, and SBS deployment schemes from [105] and [39].
NM = 100, U = 10, B = 5, λM = 1

/︁(︁
π5002

)︁
, P1 = 43 dBm, P2 = 30 dBm.

comparison, the β-GPP approximation provides median and 90th percentile values of about

9.8 dB and 1.7 dB, respectively (about 0.4Ű0.7 dB lower), whereas the PPP approximation

yields median and 90th percentile values of about 9.4 dB and 0.5 dB, respectively (about

0.8Ű1.9 dB lower).

For the sake of interest, in Fig. 3.6(b), we have also generated coverage probability results

when scaling the intensity for the SBSs of the various StoGeo models by a factor of 2.5, i.e.,

λS = 5λM and λ′S = 3.445λM . (We do not depict the correlated SBS scenario this time,

since with its SBSs being located at the macrocell vertices, its SBS intensity cannot change

independently of λM .) As can be seen, in all cases worse coverage probability is the result,

due to the higher number of interfering SBSs. However, we must note these results would

also be dependent on the association bias B. As an example, prior work [117] has shown

that if the path loss exponent for both tiers is the same, there is no association bias (i.e.,

B = 1), and all BSs have a single antenna, the PPP coverage probability no longer is a

function of the intensity λ of the tiers nor of the transmit powers of the BSs.

On the other hand, we have also tested the coverage probability when changing the values
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Figure 3.8: Contours of coverage probability vs. MBS transmit power P1 and coverage threshold
SINR τc, comparing correlated SBS placement strategy, β-GPP and PPP approximations, and SBS
deployment scheme from [105]. NM = 100, U = 10, B = 5, λM = 1

/︁(︁
π5002

)︁
, P2 = 30 dBm.

of λM , λS , and λ′S , but keeping their ratios Ąxed to the same value as in Fig. 3.6(a) (i.e.,

λS = 2λM and λ′S = 1.378λM .) In this case, we found that the coverage probability stays the

same when that ratio is constant. This is logical, as in an interference-limited system, both

the useful power and interference power should change at the same rate when all distances

are scaled proportionally. Thus, the SINR and coverage probabilities remain the same as

well.

We provide performance results in terms of rate coverage in Fig. 3.7. The overall per-

formance trends are similar to those for the coverage probability. The probability of a user

achieving a given rate with the correlated SBS placement strategy is about 5Ű28% higher

than with the scheme from [105] and about 1.22Ű2.24 times larger than with the scheme

from [39]. Once again, the β-GPP approximation provides results closest to those of corre-

lated SBS placement, followed by the PPP approximation.

We are also interested in investigating how the coverage probability changes when vary-

ing the values of other network parameters, to gain insights into the optimal values of those

parameters. From this point forward, we no longer show results for the PCP scheme from
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[39], as it performs signiĄcantly worse than the rest of the schemes. In Fig. 3.8, we vary the

value of P1 and τc while keeping the other parameters constant. The same trend of PC de-

creasing with increasing τc can be observed as was seen before. More notably, it can be seen

that PC increases, though rather slowly, as P1 increases. For example, the correlated SBS

scheme has a coverage probability of about 0.7 (or outage probability of 0.3) with P1 = 30

dBm and τc = 3.2 dB, but to increase the coverage probability to about 0.9 (outage 0.1)

with the same τc requires P1 to be about 45.6 dBm. This represents a roughly 36−37 times

increase in the MBS transmit power to drop the outage probability by a factor of 3. This

result only pertains to keeping P2 Ąxed at 30 dBm. If P2 also changes proportionally to P1

such that their ratio stays Ąxed, then we have found that PC remains constant for a given

value of τc, for all the schemes.

In comparing the various schemes, the correlated SBS strategy achieves any given PC

with the lowest values of P1 and highest values of τc out of all the schemes, meaning that

UEs are the most likely to be in coverage with that strategy. There is a general trend that,

except for low values of PC , the β-GPP approximated coverage probability tends to become

closer to that of the correlated SBS strategy as P1 increases. The same trend holds true for

the PPP approximation for all values of PC . As P1 increases, the SINR provided by the

MBS also increases relative to that provided by the SBSs, making it more likely for a UE

to associate with the MBS tier. Since the MBS tier is modeled by a PPP in all three cases,

it is reasonable to expect that coverage probabilities for the three schemes converge to each

other as more UEs associate with the MBS tier. In contrast, the non-uniform scheme from

[105] diverges from the other three cases as P1 increases. Since SBSs are restricted from

being within a certain distance of an MBS in the non-uniform scheme, it is less likely for

a UE nearer to an SBS to switch over to the MBS as P1 grows. This makes the coverage

probability change considerably smaller as P1 varies for the non-uniform scheme than for

the other schemes.

Figure 3.9 provides contours of coverage probability as the association bias factorB and
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Figure 3.9: Contours of coverage probability vs. association bias factor B and SBS transmit power
P2, comparing correlated SBS placement strategy with β-GPP and PPP approximations. NM = 100,
U = 10, λM = 1
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)︁
, P1 = 43 dBm, τc = 5 dB.

SBS transmit power P2 are varied while the other parameters are constant. We also note that

it is the ratio of P1 to P2 that determines the performance of the system; different values for

the two powers with the same ratio give the same value of PC . So, as an example, P1 =43

dBm and P2 =30 dBm would have the same performance as P1 = 37 dBm and P2 = 24

dBm. For this Ągure, we do not show results for the non-uniform scheme from [105], since

that scheme tends to require signiĄcantly higher ratios of P1 :P2 to achieve a given value

of PC , especially as PC increases. As such, the non-uniform schemeŠs results would lie

mostly off the bottom of the graph in Fig. 3.9. The three schemes all display the same type

of trend as B changes. Initially, as B increases from 1 (0 dB), the contours move to higher

values of P2, but then eventually change direction such that P2 decreases as B continues

to increase. This means that there is a value of B for which a given coverage probability

can be obtained with the highest ratio of P2 :P1, or equivalently, the lowest ratio of P1 :P2.

More importantly, this value of B is optimal in that it yields the highest possible coverage

probability for a given ratio of P1 :P2. For all the schemes in Fig. 3.9, this value lies at

about B = 3−6 dB (or a factor of about 2 to 4 on a linear scale). We also observe that
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Figure 3.10: Contours of coverage probability vs. number of transmit antennas per MBS (NM) and
number of users associated with each MBS (U), comparing correlated SBS placement strategy, β-
GPP and PPP approximations, and SBS deployment scheme from [105]. B = 5, λM = 1
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P1 = 43 dBm, P2 = 30 dBm, τc = 5 dB.

PC is higher for any given values of B and P2 with the proposed correlated SBS placement

strategy than with the other two schemes, similar to previous results.

In Fig. 3.10, we depict contours of coverage probability as the number of antennas per

MBS NM and the number of users U associated with each MBS are varied while the other

parameters are constant. The expected increase in PC with increasingNM can be observed,

due to the increase in spatial diversity and hence SINR for MBS users when more MBS

antennas are deployed. Similarly, as expected, PC decreases with increasing U due to less

power being allocated per MBS user and the increase in multiuser interference on SBS users.

(These trends can also be predicted by the increase or decrease in the shape parameter of

the Gamma-distributed channel power gains as NM or U change.) It can also be observed

that the contour lines are close to being linear for all the schemes. The implication of this

is that if NM and U are both scaled by the same factor, the coverage probability will not

change by much.

We further demonstrate the advantages of the correlated SBS placement strategy in Fig. 3.11

by plotting the joint PDF of the received SINR at the user and the distance from the user to
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Figure 3.11: Joint PDF of received SINR at user and distance from nearest MBS, comparing corre-
lated SBS placement strategy with scheme from [105]. NM = 100, U = 10, λM = 1
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43 dBm, P2 = 30 dBm. (a) 3-dimensional PDF. (b) Contour plots showing where PDF equals {1,3,
5, ...}×10-5.

its nearest MBS. As expected, the probability of a given SINR initially drops off rapidly as

a user gets farther from the MBS, but eventually starts increasing again as a user approaches

an SBS. Comparing the correlated SBS strategy with the non-uniform scheme from [105],

is can be seen in Fig. 3.11(b) that the PDF contours for the latter scheme are shifted down-

wards by about 3Ű4 dB and a bit to the left. This implies that at any given position in the

network, the probability of receiving a larger SINR is higher for the correlated SBS strategy
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than with the scheme from [105]. Alternatively, in order to achieve a certain probability of

a given SINR, the user needs to be located closer to either an MBS or an SBS in the scheme

from [105] than in the correlated SBS strategy.

3.7 Summary

In this chapter, we have proposed a novel HetNet StoGeo model where the locations of SBSs

and MBSs are correlated, with SBSs placed at the corners of the macrocells (modeled by

the cells of the Poisson-Voronoi tessellation). We have developed an analytical framework

for the proposed network with StoGeo tools. We have derived a new distribution for the

distance between a user and its nearest SBS, approximated the placement of SBSs using two

different point processes, and derived approximated distance distributions to derive simpler

analytical expressions. These distance distributions are then used to analyze the downlink

coverage probability of a typical user. Results suggest performance improvement up to 21%

in the coverage probability and up to 28% in the rate coverage.
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Chapter 4

Downlink Channel Estimation For FDD

Massive MIMO Using Conditional

Generative Adversarial Networks

4.1 Introduction

To fully realize the advantages of massive MIMO, the availability of DL CSI is essential

[45, 132]. TDD mode of transmission is most typically considered in the research literature

on massive MIMO systems, because obtaining CSI at the BS is much simpler in TDD mode

than in FDD mode. Following the 3GPP standards [133], in massive MIMO Ąeld deploy-

ments, TDD mode should be used in frequency range 2 (FR2, also known as the mmWave

frequency range), whereas in frequency range 1 (FR1, also commonly referred to as the

sub-6 GHz frequency range), both TDD and FDD may be used. In TDD mode, the UEs

can send pilot signals to the BS, which uses them to estimate the UL channels. Then, un-

der the assumption of UL-DL radio channel reciprocity, the BS uses these estimates on the

DL [3]. However, estimating the CSI in FDD mode is a challenging task, because UL-DL

radio channel reciprocity does not hold due to signiĄcantly different UL and DL carrier fre-

quencies in this mode. Conventional methods such as the use of orthogonal pilot sequences

result in high overhead associated with DL training and UL feedback, along with a short-

age of orthogonal sequences themselves on account of the large size of the antenna arrays

[134]. Nevertheless, for the evolution of 5G cellular systems, using FDD mode for massive
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MIMO is an important consideration for two reasons. First, most current cellular networks

use FDD mode, and thus the infrastructure for it is readily available to network operators

[135]. Second, FDD mode can provide both higher data rates and greater coverage [136].

Although full UL-DL channel reciprocity does not exist in FDD mode, it has been ob-

served that partial channel reciprocity exists in the form of angular, shadow fading, and path

loss reciprocity, because signals on the UL and DL follow the same paths (albeit in opposite

directions) [137, 138]. Angular reciprocity means that the angles of arrival (AoAs) are the

same for UL and DL signals. Two commonly-used algorithms to estimate the AoAs are

MUltiple SIgnal ClassiĄcation (MUSIC) [139] and Estimation of Signal Parameters using

Rotational Invariance Techniques (ESPRIT) [140]. Extensive research has been conducted

to exploit angular reciprocity when estimating DL CSI [141Ű143]. However, this approach

can perform unreliably when the number of paths is large, as the AoAs for so many paths

cannot be evaluated accurately [144].

4.1.1 Prior Research

Existing work on obtaining DL CSI for FDD massive MIMO can be broadly divided into

two classes: a) estimation of DL CSI using DL pilots and UL feedback, and b) estimation of

DL CSI using UL CSI. The Ąrst approach relies on reducing the overhead associated with

DL pilot transmission and UL feedback of the estimated DL CSI. Techniques to reduce the

DL pilot overhead typically utilize channel sparsity in the angular/beamspace domain [145,

146] or the low-rank nature of the channel covariance matrices (CCMs) [147Ű150]. Both of

these properties ease the DL channel estimation process and enable estimation using fewer

pilot sequences than the number of antennas at the BS. Furthermore, compressive sensing

has been used to reduce the UL feedback overhead in [151Ű153]. However, application of

these methods may be limited because channel sparsity can vary from user to user, especially

in a quickly-varying environment or at sub-6 GHz frequency bands1. Therefore, assuming

1Beamspace sparsity would more likely be experienced at mmWave frequencies [154]. However, we note
that our proposed CGAN method can be used whether or not channel sparsity exists.
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the existence or prior knowledge of the channel sparsity or of the rank of the CCMs might

not be justiĄed in practice [136]. In [155], machine learning has been used to train regres-

sion models on the correlation between BS antennas. Pilots are then sent from a subset of

BS antennas, and CSI is estimated for the remaining antennas from codebook-based UE

feedback. Recently, multiple articles have considered reducing DL channel feedback using

a DNN [156Ű158]. However, the dataset needed to train a DNN is very large, on the order

of tens of thousands [159]. Understandably, it may be difficult to obtain such a large dataset

in a practical environment, and if the environment changes then a dataset of similar size is

required to retrain the DNN (although not necessarily from scratch).

In the second approach, DL CSI is estimated using UL CSI, thereby avoiding the over-

head issues faced by the Ąrst approach. These methods can be further divided into two

subclasses, namely ŞindirectŤ vs. ŞdirectŤ. ŞIndirectŤ methods typically use second-order

channel statistics, i.e., the CCM, to provide additional knowledge about the channel and thus

increase the estimation accuracy [160]. The UL CSI is Ąrst used to estimate UL CCMs, map

them to DL CCMs, and then estimate DL CSI using those DL CCMs. A large body of work

in the literature explores this UL-to-DL CCM mapping approach. One of the earliest works

was [161], in which the authors have deĄned a frequency calibration matrix accounting for

the difference in UL/DL carrier frequencies. [162] has used a method of cubic splines to

interpolate magnitude and phase values of the UL CCM to estimate the DL CCM. In [163],

the authors have developed a dictionary-based interpolation algorithm that stores pairs of

UL and DL CCMs measured at different UE locations and uses the dictionary to estimate

the DL CCM for a new UL CCM not in the dictionary. In [164], the authors have Ąrst es-

timated the UL power angular spectrum (PAS), then obtained the DL PAS by resampling

the Fourier transform of the UL PAS, and Ąnally extrapolated the DL PAS to obtain the DL

CCM. More recently, the method in [165] performed CCM mapping by solving an optimiza-

tion problem using inĄnite-dimensional Hilbert spaces. Among these works on UL-to-DL

CCM mapping, [161, 162, 164, 165] are somewhat model-dependent, and [163] requires
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a huge dataset. Notably, to our knowledge, no existing CCM mapping method employs

machine learning techniques, probably due to no direct mapping function nor parametric

model being available for supervised learning to either map from UL CCMs to DL CCMs

or express the output for the DL as a function of the UL input.

In comparison, more recent ŞdirectŤ methods attempt to directly estimate DL CSI from

UL CSI by employing neural networks. [166] and [167] have examined DL CSI extrapo-

lation from UL CSI using a DNN, and considered both single-input single-output (SISO)

and MIMO scenarios and CSI data obtained from both simulated models and Ąeld mea-

surements. In [168Ű170] mapping between UL and DL CSI in space and frequency has

been developed; in these approaches, transmission of DL pilots is no longer required. The

authors of [171] have extracted path delay and AoA/AoD information along with using a

DNN to improve the performance of DL CSI estimation. Their results indicate this method

performs better than a typical DNN, but it considers a small number of clustered paths in

the channels; this may not be true in the case of sub-6 GHz channels. Moreover, to reiterate,

training a DNN generally requires a large dataset and thousands of training epochs [159].

Nevertheless, the above papers demonstrate that UL-to-DL CSI mapping using machine

learning methods is feasible.

4.1.2 Motivation

These challenges have motivated us to employ a GAN [67], a promising machine learning

framework, to solve the UL-to-DL CCM and CSI mapping problems. One of the primary

advantages of a GAN over typical neural network architecture is the encoder-decoder struc-

ture, which helps it to learn common features shared between the input and output, and

thereby closely estimate and generate an output having those features. (In this case, one of

those common features would be angular reciprocity.) In this chapter, we use a speciĄc type

of GAN, called a CGAN used so far for image translation and generation applications [69].

To apply a CGAN in the context of wireless channels (where its use is relatively novel), we
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convert the UL and DL CCMs and CSI to images and train the CGAN using these images.

Thereafter, the trained CGAN framework is used to estimate the DL CCMs or CSI from the

UL CCMs or CSI. Some similar techniques were used in [172], but in the context of only

estimating/predicting CCMs from training signals in a single frequency band, not mapping

CCMs/CSI from one band to another, the latter being a more difficult task.

In our conference paper [25], we used a CGAN to estimate CCMs; however, there are

several limitations to using estimated CCMs. To begin, some time is required to Ąrst ob-

tain numerous UL CSI samples, which are then averaged to estimate the UL CCM. This

delays the operation of the network somewhat. More signiĄcantly, in our CGAN algorithm,

although it is trained for all UEs, only one UE CCM is input at a time. This issue could

be solved with parallel processing, although with some added complexity and perhaps du-

plicated functionality. Most notably, the input data can be somewhat large; if there are M

elements in the antenna array (itself a relatively large number due to massive MIMO), the

CCM for each UE has dimensions M×M .

These problems can be avoided if the CSI can be directly estimated. With the same

CGAN structure, the CSI of all UEs associated with the BS can be jointly estimated in one

go. The amount of input data for the CGAN is also reduced; if there are K single-antenna

UEs, then there are only KM complex values rather than KM2 when using CCMs2. Also,

precoding vectors are most typically obtained from the CSI itself. However, there are down-

sides to direct CSI estimation as well. CSI estimation can be prone to instantaneous channel

Ćuctuations that change the small-scale fading parameters signiĄcantly and are difficult to

predict. This is not an issue in CCM estimation as changes to the CCM occur on a much

longer time scale. Moreover, if UEs become active and inactive, then the input and output

dimensions and overall properties of the CSI matrix change, and it can be difficult for ma-

chine learning techniques to handle this situation. This problem can be avoided in CCM

estimation as well. Therefore, in this article we examine the performance of both CCM and

2However, one could in principle only input about half of this number of values. The CCMs are Hermitian
in structure, so the (j, i)th matrix entry is just the complex conjugate of the (i, j)th entry.
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CSI estimation since either could be useful depending on the situation and system require-

ments.

Organization: The chapter is organized as follows. In Section 4.2, we describe the an-

alytical approach to obtain the exact CCMs, and also the method of estimating the CCMs

when speciĄc parameters required for calculating exact CCMs are unavailable. Similarly,

the system model to obtain simulated UL and DL CSI data is discussed in Section 4.3. The

details of our machine learning technique and the CGAN framework are discussed in Sec-

tion 4.4. A performance evaluation and discussion for exact and imperfect UL CCMs are

given in Section 4.5, whereas the performance of CSI estimation is examined in Section 4.6.

Finally, we conclude the paper in Section 4.7.

4.2 CCM Modeling

Let us Ąrst consider a single-cell massive MIMO system where the BS is equipped with a

large antenna array with M antennas and serves K single-antenna UEs. Using ray tracing,

the UL CSI (channel vector) h ∈ C
M×1 can be expressed as

h =

∫︂ ϑmax

ϑmin

α(ϑ) ejϕ(ϑ)a(ϑ) dϑ, (4.1)

where α(ϑ) and ϕ(ϑ) are respectively the amplitude and phase of the complex UL chan-

nel gain corresponding to the AoA ϑ, and a(ϑ) ∈ C
M×1 is the antenna array response in

the direction of ϑ. The minimum and maximum AoAs are represented by ϑmin and ϑmax.

In a sub-6 GHz cellular network with a large number of scatterers, ϑmin and ϑmax can be

expressed as

ϑmin = ϑ−∆, (4.2)

ϑmax = ϑ+∆. (4.3)

ϑ is the mean AoA for a given UE, and ∆ is the angular spread of AoAs (assumed to be

the same for all UEs). For this chapter, we assume a uniform linear array (ULA) at the BS,
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although the techniques herein are applicable to an arbitrary type of antenna array. The

angle steering (or array response) vector for a ULA is given by

a(ϑ) =
1√
M

[︁
1, e−jχ cos(ϑ), . . . , e−j(M−1)χ cos(ϑ)

]︁T
, (4.4)

where χ = 2πfd/c; f is the carrier frequency, d is the distance between antenna elements,

and c is the speed of light.

In FDD mode, the unknown random quantity is the complex channel gain g(ϑ) = α(ϑ) ejϕ(ϑ).

For a Rayleigh fading channel, the phases are uniformly distributed, ϕ(ϑ) ∈ [−π, π], and

h ∼ CN (0,R), where R ∈ C
M×M is the CCM. It can also be assumed that paths with

different AoAs ϑ1 and ϑ2 have uncorrelated channel gains. As a consequence,

E {g(ϑ1)g
∗(ϑ2)} =

{︄
E {|g(ϑ1)|2} for ϑ1 = ϑ2,

E {g(ϑ1)}E {g∗(ϑ2)} for ϑ1 ̸= ϑ2.
(4.5)

The zero-mean complex Gaussian distribution of h implies that E{g(ϑ)} = 0, ∀ϑ. Thus,

(4.5) can be further simpliĄed to E {g(ϑ1)g
∗(ϑ2)} = E {α2(ϑ1)} for ϑ1 = ϑ2, and 0 other-

wise.

Using (4.1)Ű(4.5), the UL CCM RUL ∈ C
M×M can be presented as follows:

RUL ≜E
{︁
hULh

H
UL

}︁
=

∫︂ ϑ+∆

ϑ−∆

E
{︁
α2
UL(ϑ)

}︁
aUL(ϑ)a

H
UL(ϑ) dϑ. (4.6)

The term E {α2(ϑ)} is also known as the power angular spectrum (PAS). According to

channel model studies, the shape of the PAS is the same as that of the Laplace distribution

[173]:

E
{︁
α2(ϑ)

}︁
=

C√
2∆

exp

(︄
−
√
2 |ϑ− ϑ|
∆

)︄
. (4.7)

The value of the constant C is set so as to give the channel the desired large-scale fad-

ing properties. Furthermore, based on several measurement tests [174Ű176], it has been

observed that the PAS is similar for the UL and DL and can be related as

E
{︁
α2
DL(ϑ)

}︁
≈ µ(f)E

{︁
α2
UL(ϑ)

}︁
, (4.8)
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where µ(f) is a frequency-dependent real-valued quantity. The relation in (4.8) can be

physically interpreted as the DL PAS having the same shape as the UL PAS. Using (4.8),

the DL CCM RDL ∈ C
M×M can be expressed as3

RDL ≈
∫︂ ϑ+∆

ϑ−∆

µ(f)E
{︁
α2
UL(ϑ)

}︁
aDL(ϑ)a

H
DL(ϑ) dϑ. (4.9)

It should be noted that the array response vectors for the UL and DL are different because

the carrier frequencies are different for the UL and DL in FDD mode. In our performance

evaluation simulations, we use three different types of CCM for performance evaluation: a)

exact CCMs, b) CCMs estimated from perfect CSI, and c) CCMs estimated from imperfect

CSI.

a) Exact CCMs: By specifying values for the UL and DL carrier frequencies and an-

tenna spacing in (4.4), using random values generated by the distributions over the UEs

of ϑ and E {α2(ϑ)}, using a constant value of ∆, and then calculating the mathematical

expressions in (4.6) and (4.9), exact CCM data are generated.

b) CCMs estimated from perfect CSI: Here we assume the system has no direct knowl-

edge of the CCMs, but can measure the CSI perfectly. A number N of CSI samples are

generated for each UE using the exact R matrices (known by the channel simulator, but not

the system) by

h = R1/2v, (4.10)

where4 v ∼ CN (0, IM) models uncorrelated Rayleigh fading. Multiplying by R1/2 creates

the desired spatial correlation. Then, the estimated CCM R̂ used by the system is deter-

mined by

R̂ =
1

N

N∑︂

i=1

hih
H
i . (4.11)

3As the CGAN learns to estimate RDL, it inherently subsumes the value of the scalar multiplier µ(f)
within RDL.

4The values of v and ν are different for each sample.

77



Figure 4.1: Network layout considered for UL and DL CSI dataset generation.

c) CCMs estimated from imperfect CSI: Unreliable channel estimation results in im-

perfect CSI. We start with a simpliĄed error model here; one based on channel estimation

from pilot sequences is used in the next section. To generate imperfect CSI samples, we use

[132]

h̃ = ζh+
√︁

1− ζ2 ν, (4.12)

where ζ ∈ [0, 1] is the channel estimation reliability, and4 ν ∼ CN (0, IM). We Ąrst gen-

erate perfect h samples from (4.10) for the channel simulator, then use (4.12) to generate

imperfect h̃ samples for system knowledge. Then, N samples of h̃ are used to estimate the

CCM using (4.11).

To train our CGAN, we need DL CCM data as well, to compare the DL CCMs estimated

by the CGAN with their ŞtrueŤ values. To obtain exact DL CCMs, we use the UL PAS with

the same ϑ and ∆ values, scaled by µ(f). For imperfect DL CCMs, we Ąrst generate the

exact RDL and thereafter follow the same steps used for generating imperfect UL CCMs.

4.3 System Model for Simulated CSI Dataset Generation

For direct estimation of DL CSI from UL CSI, we consider a more sophisticated system

model, largely based off of one in [3, Ch. 4]. We assume a geographical area with L

square-shaped cells. Each cell consists of one BS withM antennas at the cell center andK

single-antenna UEs distributed uniformly over the area of the cell outside of an exclusion

radius Rex from the BS. Fig. 4.1 illustrates the network layout of the system. We assume
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that DL transmissions are enabled using a total resource consumption of τc symbols, sent

simultaneously but split between the UL and DL at their respective frequencies. Of these,

τUL
p pilot symbols are sent on the UL for channel estimation. The remaining τd symbols out

of τc are data symbols sent on the DL.

As before, we assume the UL channel between UE k and the BS in cell ℓ is modeled

as correlated Rayleigh fading, i.e., hUL
ℓk ∼ CN (0,RUL

ℓk ), where RUL
ℓk is the CCM of this

UL channel. The CCM incorporates the large-scale fading coefficient βℓk according to5

βℓk = tr(RUL
ℓk ). βℓk includes the effects of path loss and shadow fading and is given (in dB)

by

βℓk [dB] = Υ(f)− 10γ log10

(︃
dℓk
1 km

)︃
+ Ωℓk. (4.13)

Υ(f) is the frequency-dependent path loss at the reference distance of 1 km, γ is the path

loss exponent, dℓk is the distance between the BS in cell ℓ and UE k, and Ωℓk represents

log-normal shadow fading distributed ∼ N (0, σ2
sf). Similarly, the DL CSI is modeled as

hDL
ℓk ∼ CN (0,RDL

ℓk ). Υ(f) may be considered to incorporate the value of µ(f) Ů from

(4.6)Ű(4.9), at the angle ϑ̄,
tr(RDL

ℓk )

tr(RUL
ℓk )

= µ(f), and from (4.13),
tr(RDL

ℓk )

tr(RUL
ℓk )

= Υ(fDL)−Υ(fUL) dB.

Thus, in linear units, µ(f) can be given by 10[Υ(fDL)−Υ(fUL)]/10.

The channel vectors hUL
ℓk and hDL

ℓk are generated from (4.10), using RUL
ℓk and RDL

ℓk respec-

tively. The CSI used by the system to train the CGAN, perform precoding, etc. is estimated

based on pilot sequences. UL CSI is estimated at the BSs from pilots sent by the UEs.

During the training of the CGAN, the corresponding DL CSI is also required, which is es-

timated by the UEs from pilots sent by the BS, then fed back to the BS6. The estimated UL

CSI for all UEs in cell ℓ can be expressed jointly as Ĥ
UL

ℓ =
[︂
ĥ

UL

ℓ1 ĥ
UL

ℓ2 . . . ĥ
UL

ℓK

]︂
∈ C

M×K ;

the estimated (from pilots) DL channel matrix Ĥ
DL

ℓ and the ŞtrueŤ channel matrices HUL
ℓ

and HDL
ℓ are deĄned similarly. The purpose of the CGAN is to estimate H̆

DL

ℓ ([·]̆ denoting

estimates from the CGAN) from Ĥ
UL

ℓ ([·]̂ denoting estimates from pilots).

5[3] has βℓk = tr(RUL
ℓk )/M , but also does not have the 1/

√
M normalization of the ULA response vector

as we do in (4.4). Since we normalize (4.4), we do not need to normalize tr(RUL
ℓk ) to express βℓk.

6These DL pilots and DL CSI are only required during CGAN training and not during the normal operation
of the system.
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Figure 4.2: Illustration of pilot reuse factor ϖ (cf. [3]).

The pilot sequence for UE k in cell ℓ is given by φℓk ∈ C
τUL
p ×1 with ∥φℓk∥2 = τUL

p , and

is transmitted with power ηUL
ℓk . The available pilot sequences are orthogonal to each other,

but there may be an insufficient number of these sequences for every UE in the system

to be assigned a unique sequence. Consequently, pilot sequences may be reused between

cells; let Pℓk denote the set of all BS-UE pairs (ℓ′, k′) that use the same pilot sequence φℓk.

Additionally, letYp
ℓ ∈ C

M×τUL
p be the received pilot signal at the BS in cell ℓ from all UEs in

all cells. The pilot signal yp
ℓk ∈ C

M×1 for UE k in cell ℓ can be extracted by y
p
ℓk = Y

p
ℓφ

∗
ℓk.

An MMSE estimate7 for the UL CSI can then be obtained by [3]

ĥ
UL

ℓk =
√︂
ηUL
ℓk R

UL
ℓk Ψ

−1
ℓk y

p
ℓk, (4.14)

where

Ψℓk =
∑︂

∀(ℓ′,k′)∈Pℓk

ηUL
ℓ′k′τ

UL
p RUL

ℓk′ + σ2
nIM . (4.15)

Here, RUL
ℓk′ is the CCM of the channel between user k′ located in cell ℓ′ and the BS in cell ℓ

(not ℓ′), and σ2
n is the noise power, which we assume is the same for all UEs and BSs on both

the UL and DL. Ψℓk is the covariance matrix of yp
ℓk, which BS ℓ can obtain from the overall

pilot signal without needing to know the individual CCMs RUL
ℓk′ of UEs in other cells.

For the network layout shown in Fig. 4.1, we consider speciĄcally L = 16 cells. The

distribution of pilot sequences among the cells is determined by the pilot reuse factor ϖ,

meaning pilot sequences are reused every ϖ cells. The physical interpretation of the pilot

7In practice, the BS can obtain knowledge of RUL
ℓk and Ψℓk in (4.14) and (4.15) from averaging multiple

samples of ĥ
UL

ℓk and y
p
ℓk, respectively, similar to what is shown in (4.11).
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reuse factor is illustrated in Fig. 4.2 for ϖ = 1, 2, and 4. A larger value of ϖ means more

orthogonal pilot sequences are required with larger τUL
p , and thus the number of symbols

used for DL data transmission decreases (τd = τc−τUL
p , where we assume τc stays constant)

as the trade-off of obtaining more accurate UL CSI. The length of the pilot sequences as

a function of the pilot reuse factor is given by τUL
p = ϖK. Only during CGAN training

(so τc is unaffected), each BS also sends pilot sequences from each of its M antennas with

power ηDL
ℓ and length τDL

p = Mϖ, which also are reused every ϖ cells. For training, the

UEs estimate and feedback the CSI from these pilots to their BS, similar to (4.14)Ű(4.15).

However, the sum in (4.15) now becomes over the antennas m′ in the cells ℓ′ that share a

sequence.

After the DL CSI is estimated by the CGAN, we perform DL precoding using the result-

ing channel vectors. The precoding vector wℓk ∈ C
M×1 depends on the precoding scheme

used. We consider regularized zero-forcing (RZF), zero-forcing (ZF), and maximum ratio

(MR) precoding, where the (arbitrarily-scaled) precoding vectorsWℓ = [wℓ1 wℓ2 . . . wℓK ]

for cell ℓ are given by [3, Eq. (4.9)Ű(4.11)]:

W
RZF
ℓ = H̆

DL

ℓ

(︂
(H̆

DL

ℓ )HH̆
DL

ℓ + σ2
nP

−1
ℓ

)︂−1

, (4.16a)

W
ZF
ℓ = H̆

DL

ℓ

(︂
(H̆

DL

ℓ )HH̆
DL

ℓ

)︂−1

, (4.16b)

W
MR
ℓ = H̆

DL

ℓ . (4.16c)

In (4.16a), Pℓ = diag(ρℓ1, ρℓ2, . . . , ρℓK), where ρℓk is the transmit power assigned in cell ℓ

to the signal to UE k. The precoding vectors are normalized by wℓk = wℓk/
√︁
E{∥wℓk∥2}.

The received DL data signal yℓk at UE k in cell ℓ is

yℓk =
L∑︂

j=1

K∑︂

i=1

√
ρji(h

DL
jk )

Hwjiςji + nℓk, (4.17)

where ςji is the data symbol from the BS in cell j for its UE i, with E{|ςji|2} = 1, ∀j, i, and

nℓk ∼ CN (0, σ2
n) is noise. The useful part of the double sum in (4.17) for UE k in cell ℓ
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Figure 4.3: Block diagram of our CGAN algorithm.

is
√
ρℓk(h

DL
ℓk )

Hwℓkςℓk; the remainder is multi-user interference. The resulting DL effective

SINR is given by [3]

SINRDL
ℓk =

ρℓk
⃓⃓
E
{︁
wH

ℓkh
DL
ℓk

}︁⃓⃓2
L∑︁

j=1

K∑︁
i=1

ρjiE
{︂⃓⃓

wH
jih

DL
ji

⃓⃓2}︂− ρℓk |E {wH
ℓkh

DL
ℓk }|

2
+ σ2

n

. (4.18)

An achievable effective SE for DL data transmissions to UE k in cell ℓ, accounting for

the resources consumed by pilot signals, may be deĄned as

SEDL
ℓk =

τd
τc

log2(1 + SINRDL
ℓk ). (4.19)

(4.19) includes the factor τd/τc because to enable the DL transmission of τd symbols at the

SINR of (4.18), a total of τc symbols worth of resources must be consumed on the UL and

DL combined. Note also that the above SE will naturally be less than what is maximally

achievable since the precoding is performed using estimated CSI H̆
DL

ℓ rather than the exact

CSIHDL
ℓ . The precoding is therefore imperfect and results in additional residual interference

between UEs compared to if the exact CSI is used, leading to reduced SE.

4.4 CGAN Framework

GANs are a promising machine learning framework that are typically used in image pro-

cessing applications [67]. A GAN consists of two main components, a generator block and

a discriminator block, each with its own neural network. In image processing applications,

82



Figure 4.4: Example images of exact UL CCMs for M = 256.

the generator block generates fake images and the discriminator block, trained with real

images, determines if the generated image is fake or real. During training, the generator is

penalized if the discriminator identiĄes the image as fake, and the generator readjusts its

neural network weights accordingly. Similarly, when the discriminator fails to identify the

image as fake, then the discriminator is penalized and it accordingly updates its neural net-

work weights. However, a traditional GAN generates fake images randomly and does not

depend on any speciĄc input (which, if it has one, is typically noise). However, in our case

we need to obtain the DL CCMs/CSI for speciĄc UL CCMs/CSI. So, we use a variant of

GAN, i.e., a CGAN [69], to solve the UL-to-DL CCM and CSI mapping problems. Unlike

a traditional GAN, the output of a CGAN can be controlled by a conditional input. A block

diagram of our CGAN algorithm is illustrated in Fig. 4.3. The random noise vectors are

used only to initialize the neural network and Ąlter weights.

To employ the CGAN, Ąrst we need to generate images from the UL and DL CCMs or

CSI. To this end, we separate the real and imaginary data of the matrices and then use those

values for red-green-blue (RGB) image channels. Raw RGB images are in the form of an

X×Y×3 dataset, where X is the width of the image, Y is the height of the image, and

three channels are used for red, green, and blue colors. In the case of CCMs, the size of the

image isM×M×3, whereas for CSI the size isM×K×3. Because of potential issues with

the operation of the CGAN in downsampling and upsampling rectangular-shaped images,

we use zero-padding on the CSI matrices to expand them to the size of M×M×3; the

operations in question shall be discussed in Section 4.4.2. We use the real values of the

CCM or CSI for the red channel or (M,M, 1) matrix, and use the imaginary data for the
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Figure 4.5: Example images of UL CSI (rotated by 90◦) for M = 256, K = 10, and several values
of ϖ.

green channel or (M,M, 2) matrix. We normalize the real and imaginary data to the range8

of [−127.5, 127.5]. For the otherwise unused blue channel or (M,M, 3) matrix, we just

set all values to 127.5. A few example images of exact UL CCMs, created using the above

method, are shown in Fig. 4.4 for M = 256. Images corresponding to the DL CCMs

are generated in the same fashion and used to train the CGAN. If the CCMs are estimated

using imperfect CSI as per (4.12), the images become more noisy. Images corresponding

to UL CSI (rotated by 90◦ to Ąt better on the page) are illustrated in Fig. 4.5 for several

values of ϖ. It can be observed that higher values of ϖ result in Ąner details in the images

(i.e., less blurry/fuzzy), since the UL CSI estimation is better with the resulting longer pilot

sequences, being less corrupted by pilot contamination.

4.4.1 Objective of CGAN

To model the objective function of the CGAN, we follow the same approach as [69]. The

objective function of our CGAN is a weighted sum of the binary cross-entropy loss func-

tion that penalizes the generator if the generated image is identiĄed as fake, plus the mean

absolute error that penalizes pixel-wise error. The generatorG learns a mapping from input

image X and random noise vector z to a corresponding ŞtrueŤ output image Y, and the

discriminatorD is trained to identify fake images generated by the generator. The objective

8These normalized values can be mapped directly to color values between 0 and 255 by simply adding
127.5. For RGB images, the color values are also typically quantized integers, e.g., 8 bits per color, but for
our purposes, we use Ćoating point values in the CGAN.
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function of the CGAN can be expressed as follows [69]:

LCGAN(G,D) = EX,z {log(1−D(X, G(X, z))} (4.20)

+ EX,Y {logD(X,Y)}+ λEX,Y,z {∥Y −G(X, z)∥1} .

G(X, z) is the output of the generator (i.e., the DL CCM/CSI image) given inputs X and z,

and D(X,Y) is the discriminatorŠs estimate of the probability that the data of Y are real

for input X. G tries to minimize the objective function in (4.20), whileD tries to maximize

it. Therefore, the overall objective of the CGAN is a minimax optimization, given by [69]

G⋆ = argmin
G

max
D

LCGAN(G,D). (4.21)

The last term in (4.20) represents the pixel-wise difference between the generated image

and the corresponding ŞtrueŤ image, and penalizes the generator based on the size of the

difference; the parameter λ controls the relative size of the penalty. Higher values of λ

decrease the presence of artifacts in the generated image [69]. We have considered λ = 100

for performance evaluation, as used in [69].

4.4.2 Architecture of CGAN

We design the neural network architectures of the generator and discriminator blocks (illus-

trated in Figs. 4.6 and 4.7, respectively) similar to [68]. Both the generator and discrimina-

tor blocks use modules of convolutionŮbatch-normalizationŮrectiĄed linear units (ReLU)

[177].

The generator block of our CGAN is a U-shaped network (U-net) connection [178] be-

tween the encoders and decoders. Seven encoder and seven decoder blocks are used with

skip-connections. Each skip-connection simply concatenates all channels of the connected

blocks, which helps in mapping a high resolution input to a high resolution output. 2D con-

volutional Ąlters are used in the encoder blocks; 2D convolutional transpose Ąlters [179]

of the same size are used in the decoder blocks, but in the reverse order. For the discrimi-

nator block, a convolutional neural network with Ąve layers of 2D convolutional Ąlters are
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Figure 4.6: Neural network architecture of generator block.
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Figure 4.7: Neural network architecture of discriminator block.

used; these are the same as in the Ąrst Ąve layers of the generator block. The number of

Ąlters in each encoder/decoder layer is shown in Figs. 4.6 and 4.7. In both the generator

and discriminator Ąlters, a kernel size of 4×4 and stride size of 2×2 are used9. In decoders

d1Űd4, to reduce the likelihood of generator overĄtting10, we have added a dropout regular-

ization method with retention probability p = 0.8 as in [181]; this feature was not present in

our conference paper [25]. The method temporarily disconnects neurons at random during

training, so each neural network update will be to a slightly different conĄguration.

In convolutional neural networks, Ąlters extract then map small patches of image data

to learn different sections of an input image. The operation of a 2D convolutional Ąlter is

shown in Fig. 4.8. For convolution, on each RGB channel, a dot product is taken between

a kernel-sized patch of the input and the Ąlter. In Fig. 4.8, the 4×4 square patch that is

9These values for the stride size and kernel size might not be optimal, and can be the subject of further
experiments to assess their impact on the performance.

10Generator overĄtting takes place when the generator effectively ŞmemorizesŤ the mapping of a UL CCM
image to its corresponding ŞtrueŤ DL CCM image to such an extent that it cannot generalize to new input data
or to variations of existing data (e.g., a noisy image) [180]. OverĄtting tends to occur in relation to a subset
of the training images and can potentially happen for the entire training set if its cardinality is too small.
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Figure 4.8: Operation of 2D convolutional Ąlter, illustrating the Ąrst stage of our CGAN generator
for M×M input image. (a) Structure of Ąlters, neural networks, and outputs on each layer. (b)
Movement of Ąlter according to stride size.

convolved in the Ąrst step is shown by the grey grid at the top left of the RGB image. The

convolved values are used as inputs to the neural network to ultimately obtain a single pixel

as the output. The values of the Ąlters and the neural network weights are both initialized

randomly using the noise vector, whose entries are Gaussian-distributed with zero mean and

a standard deviation of 0.02. Once the convolution of a patch is complete, the Ąlter slides

across the image according to the stride size. In our case, the Ąlter moves two pixels for

consecutive operations, initially horizontally, as seen at the top right of Fig. 4.8(b). When

the ĄlterŠs right side moves past the end of the row, to obtain the value for the right-most

output column, the right-most Ąlter values are padded with zeros to account for their lack of

input data (see lower left of Fig. 4.8(b)). Once all the pixels in a row have been convolved,

the Ąlter returns to the start of the row, slides two pixels vertically, and starts on the next

87



 
(a) (b) (c) 

(a) 

(b) 

(c) 

Figure 4.9: Example CCM and CSI images for M = 256, K = 10, and ϖ = 4. (a) Exact UL CCM
and MMSE-estimated UL CSI. (b) The corresponding exact CCM and MMSE-estimated CSI for the
DL. (c) DL CCM and CSI generated by CGAN.

row (Fig. 4.8(b), lower right). In this manner, the Ąlter slides across the whole image and

extracts different features of the image. In each encoder layer, multiple Ąlters are used to

map the features of the image more precisely. The outputs of all the Ąlters are stacked

together to obtain the Ąnal output of each layer. Therefore, in the case of M = 256, or an

input image of size 256×256, the output dimensions11 of the Ąrst layer with 64 Ąlters are

128×128×64.

The values obtained from the convolution operation are used as the inputs to the neural

network, shown by the red, green, and blue input circles in Fig. 4.8. A weighted sum of

the input values is fed to the single neuron (shown by the cyan Şf(x)Ť circle), which maps

the result to a single pixel based on the activation function. In this chapter, we have used

normal ReLU as the activation function for the decoders in the generator, and Leaky ReLU

[182, 183] as the activation function everywhere else. These are deĄned as [182]

Normal ReLU: f(x) =

{︄
0 for x < 0,

x for x ≥ 0;
(4.22)

Leaky ReLU: f(x) =

{︄
0.01x for x < 0,

x for x ≥ 0.
(4.23)

11It is the combination of the 4×4 kernel size and 2×2 stride size that causes the reduction by a factor
of two in both dimensions, e.g., 256×256 to 128×128. As a consequence, if the image was rectangular, one
dimension could become incompatibly small before it is processed through all the encoder layers. It is for this
reason that we use zero-padding on the CSI matrices to enlarge them to have square dimensions.
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The advantage of Leaky ReLU over normal ReLU is the range of the function. In normal

ReLU, negative input values are mapped to an output of zero. Hence, the range of normal

ReLU is [0,∞), whereas the range of Leaky ReLU is (−∞,∞). Therefore, using Leaky

ReLU, negative pixel values can also be processed.

The overall process in encoder blocks is known as downsampling. In decoder blocks,

the process is reversed, i.e., the downsampled data are upsampled to generate the estimated

DL CCM/CSI image. Each decoder block uses multiple 2D convolutional transpose Ąlters,

whose operation is the inverse of convolutional Ąlters: the value of a single pixel is multi-

plied with each element in the Ąlter, then the values are placed in a new empty matrix. This

occurs each time the Ąlter slides according to its stride size. In the Ąnal decoder layer, the

three Ąnal output matrices correspond to the three RGB colors for the estimated DL CCM or

DL CSI. A detailed visual representation of a convolutional transpose Ąlter is given in [179].

Example images of CCMs and CSI matrices generated using the CGAN are illustrated in

Fig. 4.9.

After initialization, the values in the Ąlters remain constant. In contrast, all the weights

in the neural network (for example, {w1, . . . , w48} in the Ąrst encoder layer) are updated

after each training step as the generator tries to minimize the loss. As one may expect, up-

dating the weights in one layer impacts the other layers in the neural network. Coordination

of updating weights across multiple layers is done using the batch-normalization technique

[177], which has been designed to optimize the performance of a convolutional neural net-

work [180]. For additional details and information on the operation of the CGAN, we refer

the reader to [68, 69, 177Ű183].

Remark: We assume that DL CCMs or CSI are fed back from the UEs during an initial

setup/training phase for the CGAN; the techniques described in Section 4.1.1 could reduce

the complexity of this overhead. However, this full feedback12 is only required during train-

ing. After training is complete, the discriminator block is disabled and only the generator

12Nevertheless, some less complex periodic feedback may be beneĄcial to account for UEs entering/leaving
the system or their motion.
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block operates, estimating DL CCMs/CSI for new input UL CCMs/CSI. Hence, the short-

term training complexity of the scheme for training is somewhat high. However, over the

longer term after training, the complexity would be much smaller than existing schemes

such as [161Ű164], which still require some form of continuous feedback.

4.5 Performance of CCM Estimation

The performance of our CGAN for CCM estimation is studied for several values of antenna

array size M , and both perfect and imperfect CCMs and CSI as described at the end of

Section 4.2. For imperfect CCMs and CSI, we also examine the effect of the number of

samplesN on the performance. The performance of our CGAN is compared against several

state-of-the-art algorithms for UL-to-DL CCM mapping.

For our simulations, we consider a UL carrier frequency of 2 GHz and DL carrier fre-

quency of 2.18 GHz [133]. The ULA element spacing is half the wavelength at the UL

frequency. To generate the CCMs, the mean AoA over all UEs is assumed to be uniformly

distributed as ϑ ∼ U(−π, π) (i.e., UEs are distributed uniformly omnidirectionally around

the BS), and a constant value of ∆ = 5◦ [173] is used for the angular spread. To gener-

ate CCM data for 500 UEs, we Ąrst generate a value of ϑ for each UE, then use it in (4.6)

and (4.9) to generate CCM data for that UE. Since the exact value of µ(f) in (4.9) is im-

material to the operation and performance of the CGAN (more details on this below), to

generate DL CCM data, we just use a constant value of µ(f) = 2. The CCM data for 400

UEs uniformly randomly chosen13 from 500 is used to train the CGAN in each test run.

The CGAN performance is evaluated using the data from the remaining 100 UEs after 40

training epochs, where each epoch means processing every image in the training set once.

Compared to DNN-based algorithms, this is extremely low, as a DNN requires thousands

of epochs to obtain a stable output [159]. The accuracy of the estimated CCM (R̆, as output

by the CGAN) is evaluated using a normalized mean squared error (NMSE) metric. The

13This follows the commonly-used methodology for machine learning of using about 70Ű90% of the data
for training and the remaining 10Ű30% for testing. We use an 80/20 split recommended in [180].
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Figure 4.10: NMSE performance comparison of several DL CCM estimation methods, using exact
CCMs with M = 256. Error brackets represent 95% conĄdence interval.

NMSE metric14 can be expressed as

NMSE =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∥R̆−R∥2F
∥R∥2F

for exact CCMs,

∥R̆− R̂∥2F
∥R̂∥2F

for imperfect CCMs.

(4.24)

Based on this metric, the performance of the proposed CGAN is studied for three cases: a)

exact CCMs, b) CCMs estimated from perfect CSI, and c) CCMs estimated from imperfect

CSI. All the performance results are averaged over 100 independent runs.

a) Performance for exact CCMs: The NMSE of the CGAN for exact CCMs with

M = 256 is illustrated in Fig. 4.10. The CGAN performance is compared against the ref-

erence algorithms Fourier-transform-based CCM mapping from [161], cubic-spline-based

CCM mapping from[162], and dictionary-learning-based CCM mapping from [163]. The

error brackets in the plot represent the 95% conĄdence interval of the NMSE values, calcu-

lated using the bootstrap conĄdence interval method described in [184]. From the results,

we observe that our proposed CGAN outperforms all the reference methods. The average

NMSE from the CGAN is about 0.226, whereas the next best performing algorithm (the

dictionary-learning-based algorithm from [163]) yields an average NMSE of about 0.532,

14With the normalization of the NMSE metric, the value of µ(f) cancels out in the numerator and denom-
inator, which is why its value is irrelevant to the performance.
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Figure 4.11: NMSE performance comparison when using imperfect CCMs with varying number of
samples N ; M = 256. Error brackets represent 95% conĄdence interval.
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Figure 4.12: NMSE performance comparison between exact and imperfect CCMs for varying an-
tenna array size M . Error brackets represent 95% conĄdence interval.

which is about 2.35 times higher.

b) Performance for CCMs estimated from perfect CSI: The performance for esti-

mated CCMs is examined for several values of the number of samples N used to estimate

the CCM. In Fig. 4.11, we compare the CGAN performance forN = {10, 50, 100, 200, 500}

with M = 256. The results suggest that even with a small number of h samples, our pro-

posed CGAN provides reasonable performance. This observation is extremely important in

terms of practical application; it suggests that our CGAN can be trained using a small num-

ber of channel samples and much faster than DNN-based algorithms. With N = 500, the

NMSE is about 0.573, which is on par with the exact-CCM performance of the dictionary
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Figure 4.13: Generator loss for varying number of samples N . Light blue line and envelope respec-
tively represent mean value and range of values observed during simulations with dropout regular-
ization; dark grey line and envelope respectively represent mean value and range of values observed
during simulations without dropout regularization.

method from [163].

The CGAN dictionary mapping [163] methodsŠ performance with exact CCMs, com-

pared to using estimated CCMs using N = 500 samples, is illustrated in Fig. 4.12 for

M = {32, 64, 128, 256}. We observe that the NMSE for exact CCMs and estimated CCMs

is much closer for smaller antenna array sizes. This is expected because estimation for a

larger antenna array results in more random values and errors. The CGAN still outper-

forms the dictionary method when using estimated CCMs, although the relative reduction

in NMSE now drops from 2.35 to ranging between 1.32Ű1.96 (decreasing with increasing

M ).

The above performance results do not provide insights about the working and learning

rate of the CGAN. Therefore, we depict the results for generator loss in Fig. 4.13 withM =

256 and several values of N . The metric Şgenerator lossŤ is calculated from the sum of the

Ąrst and third terms of (4.20). In these Ągures, one ŞstepŤ represents the processing of one

CCM image; based on its outcome, the corresponding weights of the neural networks in the

generator and discriminator are updated. As stated earlier, there are 400 such evaluations

per epoch; hence, 16000 steps equals 40 epochs. From the results in Fig. 4.13, we observe

that the generator loss values are much smaller for exact CCMs, whereas when increasing
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N the reduction in generator loss is moderate. These results are consistent with the NMSE

performance seen in Fig. 4.11. We also observe that the addition of dropout regularization to

the generator signiĄcantly reduces the frequency of occasional spikes in the generator loss,

especially during the later portions of training. This indicates that generator overĄtting

has been mitigated with dropout regularization. At the same time, while the variance in

generator loss values is diminished, there is very little effect on the mean generator loss due

to dropout regularization.

c) Performance for CCMs estimated from imperfect CSI: NMSE values when using

CCMs estimated from imperfect channel samples are shown in Table 4.1 for several values

of the channel estimation reliability factor ζ , with M = 256 and N = 500 samples. The

NMSE values are quite similar to theN = 500 case in Fig. 4.11. We observe that the NMSE

performance degrades only marginally in the presence of imperfect channel samples. The

difference is less than 7% even when the channel estimation reliability is 0.6. This further

suggests the robustness of our CGAN-based method, which is able to capture the underlying

similarities between UL and DL CCMs even when the CSI obtained from channel estimation

is imperfect. We note there are also errors in the estimated DL CCM due to sampling the

CSI rather than using exact CCMs, as seen in the difference in the ŞN = 500Ť and ŞExactŤ

bars in Fig. 4.11. However, Table 4.1 shows the incremental loss in performance due to

uncertainty in the CSI is small.

4.6 Performance of CSI Estimation

For performance evaluation of CGAN-based DL CSI estimation, we have considered the

total area as shown in Fig. 4.1 to be 1 km×1 km, making each of the borders of the L = 16

cells 250 m long. The radius of the exclusion zone is set to Rex = 35 m. Each cell serves

K = 10UEs, and we consider BS antenna array sizes ofM = 32, 64, 128, and 256 antennas.

Other simulation parameters are given in Table 4.2.

First we compare the NMSE performance for varying antenna array size M . For CSI
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Table 4.1: DL CCM NMSE for N = 500 Imperfect h Samples, Antenna Array Size M = 256, and
Varying Channel Estimation Reliability ζ

Channel estimation reliability (ζ) DL CCM NMSE

0.6 0.6093

0.7 0.6022

0.8 0.5916

0.9 0.5805

0.99 0.5744

1 (Perfect CSI for h) 0.5729

estimation, the NMSE metric per cell can be expressed as

NMSE =
∥H̆DL

ℓ − Ĥ
DL

ℓ ∥2F
∥ĤDL

ℓ ∥2F
. (4.25)

CSI data are generated for 10 different instances, where UEs are placed at different locations

in each instance. Each time, the CGAN is trained using the 16 UL and DL CSI matrices

for 40 training epochs. Thereafter, a new set of 16 UL and DL CSI matrices (with the same

UE positions) is generated; the UL CSI is provided to the trained generator of the CGAN,

and the estimated DL CSI is compared against the known DL CSI to calculate the NMSE

for each cell. The estimated DL CSI is also used for precoding and to calculate the SE per

cell. Finally, the NMSE and SE performances are evaluated by averaging the results over

all cells per instance, all 10 instances per simulation run, and 100 independent runs.

The NMSE performance when varying the antenna array size M is shown in Fig. 4.14.

We compare our CGAN performance against that of a DNN adapted from [169]. Each BS

has its own DNN15 with 4 hidden layers having 256, 256, 128, and 64 neurons, respectively.

Each DNN takes the individual UL CSI vectors for that cellŠs UEs as inputs (rather than a

matrix or RGB image), and uses the mean absolute error between the ŞtrueŤ and estimated

DL CSI vectors as its loss function. We also compare performance with a DNN with path

gain information (PG-DNN) from [171]. For this, we set the assumed number of path clus-

ters to 15, although since the number of paths is the system model is inĄnite (with powers

15We have also investigated one DNN applied to all 16 cells, and found that it performs worse, so we do
not include that case here.
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Figure 4.14: NMSE performance comparison of CGAN, DNN adapted from [169], and PG-DNN
adapted from [171] for varying antenna array size M with ϖ = 1. Error brackets represent 95%
conĄdence interval.

following the shape of the Laplace distribution, as given by (4.7)), any Ąnite number as-

sumed will result in some error. For a fair comparison in terms of training data, the training

sets for the CGAN and the DNNs are of the same size, i.e., 10 CSI vectors/ 1 CSI matrix per

cell per instance per simulation run, though we allow the DNNs to train for 100 epochs (vs.

40 for the CGAN). From Fig. 4.14, it can be observed that the DNN from [169] performs

much worse than our proposed CGAN method, largely due to the very small (for a DNN)

training set size. The PG-DNN performs slightly better, but still signiĄcantly worse than the

CGAN. While the CGAN yields NMSE values ranging from about 0.027Ű0.067, the DNN

and PG-DNN yield about 0.427Ű0.853 and 0.358Ű0.699, respectively. To test if either DNN

could outperform the CGAN with a larger training set, we increased the number of CSI in-

stances per run ranging from 50−500. The NMSE for the DNNs did decrease initially, but

then stabilized around 200 instances, with no signiĄcant improvements with larger training

sets. The resulting NMSE values were in the range of 0.243Ű0.574, still signiĄcantly higher

than those of the CGAN. Much like in Fig. 4.12, it also can be observed that the NMSE

again increases when increasingM . However, it is important to note that the CGAN NMSE

values for CSI estimation are signiĄcantly smaller than those for CCM estimation, which is

expected as the effective size of a CSI matrix is much smaller than that of a CCM.
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Table 4.2: Simulation Parameters for CSI Dataset Generation

Parameter Value

UL carrier frequency (fUL) 2 GHz
DL carrier frequency (fDL) 2.18 GHz

Reference path loss at 1 km (Υ) −148.1 dB
Path loss exponent (γ) 3.76

Shadow fading standard deviation (σsf) 10

UL pilot power (ηUL
ℓk , ∀ℓ, k) 100 mW

DL pilot power (ηDL
ℓ , ∀ℓ)

(only during CGAN training)

1000

M
mW

DL transmit power per UE (ρℓk, ∀ℓ, k) 20 dBm

Noise power (σ2
n) −94 dBm

µ(f) 2

Total symbols used per DL transmission (τc) 200

Pilot reuse factor (ϖ) 1, 2, and 4

Number of UL pilot symbols (τUL
p ) 10ϖ

Number of DL pilot symbols (τDL
p )

(only during CGAN training)
Mϖ

The NMSE performance for these same values of M and varying pilot reuse factor ϖ

is provided in Fig. 4.15. Overall, it can be seen that there is only a small effect on the

NMSE with different values of ϖ. The NMSE decreases for greater values of ϖ, which is

understandable. Larger values ofϖ correspond to longer training sequences; consequently,

the UL CSI and the DL CSI used for training can be estimated better. Correspondingly, the

estimates made by the CGAN will also be better when trained with these higher quality data

(i.e., less corrupted by pilot contamination), leading to less error in those estimates.

In Fig. 4.16, we examine the average sum SE performance for M =32 and M =128

for RZF, ZF, and MR precoding. We consider three types of DL CSI availability for com-

parison: 1) genie-aided, in which the system is assumed to know the DL CSI perfectly; 2)

feedback-based, where the UEs are assumed to perform MMSE estimation of the DL CSI

based on pilot sequences and feed back these channel vectors to their BS; 3) CGAN-based,

i.e., the DL CSI as estimated by our CGAN algorithm. (In this last case, the DL CSI used for

training is the same type as for the feedback-based case.) The simulation results demonstrate

that when using DL CSI estimated by our CGAN algorithm, the average SE achieved is no
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Figure 4.15: CGAN NMSE performance comparison for varying antenna array size with several
pilot reuse factors. Error brackets represent 95% conĄdence interval

worse than about 89−90% of the best possible SE achieved with perfect Şgenie-aidedŤ chan-

nel knowledge. This worst case occurs for all precoding schemes for M = 32 and ϖ = 1

in Fig. 4.16(a); the mean SE achieved with genie-aided knowledge is about 37.2, 37.0, and

21.7 bits/s/Hz for RZF, ZF, and MR precoding, respectively, whereas the CGAN yields a

mean SE of about 33.1, 32.9, and 19.4 bits/s/Hz, respectively. Overall, with MR precoding,

the CGAN performance is nearly identical to that of feedback-based CSI availability, which

is the best that could be available to a system in practice. With MR precoding, since no

inter-UE interference is actively cancelled, the SE is not quite as sensitive to the accuracy

of CSI as for RZF or ZF precoding. Better relative performance is seen when increasing

M , as the system undergoes more channel hardening [3], so there are smaller Ćuctuations in

the small-scale portion of the CSI around the average. The relative performance also again

improves when increasing ϖ, as already seen and explained in regard to Fig. 4.15.

We also investigate the performance of our CGAN-based CSI estimation using measured

CSI data. SpeciĄcally, we have used the datasets generated as part of [185] and available at

[186]. BrieĆy, the setup for CSI collection in [185] consists of a BS equipped with an 8×8

uniform planar array (UPA) that communicates with single-antenna UEs using orthogonal

frequency-division multiplexing (OFDM) transmission in the 2.4 GHz industrial, scientiĄc

and medical (ISM) band. CSI is measured at 25 different locations with a mixture of line-
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Figure 4.16: Sum spectral efficiency per cell performance results for two different antenna array
sizes M = 32 and 128, three pilot reuse factor values ϖ = 1, 2, and 4, and three precoding schemes
(RZF, ZF, and MR). Three types of DL CSI availability (genie-aided, feedback-based, and CGAN-
based) are compared. Error brackets represent 95% conĄdence interval.

of-sight and non-line-of-sight conditions; this alternatively can be interpreted that CSI data

are available for 25 UEs at those locations. There are 14 subchannels in the 2.4 GHz ISM

band, and channel 1 is selected as the UL channel, whereas channel 14 is chosen as the

DL channel; the center frequencies of these channels are separated by 72 MHz. Both UL

and DL channels have a bandwidth of 20 MHz, and CSI measurements are obtained for 52

OFDM subcarriers. For more details, we refer the reader to [185, 186].

We deĄne UL and DL CSI matrices on a per-subcarrier basis, vectorizing the 8×8 UPA

channel gains. With a total of 64 antenna elements, 25 UEs, and 52 subcarriers, this makes

the dimensions of Ĥ
UL

and Ĥ
DL

64×25, and the training dataset contains 52 pairs of UL/DL

CSI matrices. From these 52 pairs we randomly select 42 to train the CGAN (following the

same methodology mentioned in Footnote 13); the remaining 10 are used to evaluate the

NMSE performance of the CGAN. This procedure is repeated 10 times to obtain the average

performance. The NMSE results when varying the number of training epochs are illustrated

in Fig. 4.17. Initially, the NMSE is comparably high for small epoch values, but it decreases

gradually and stabilizes around 85 epochs. The Ąnal NMSE is on par with what was seen
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Figure 4.17: NMSE performance for measured CSI data of 8×8 UPA from [185, 186], for varying
number of training epochs. Error brackets represent 95% conĄdence interval.

earlier in Fig. 4.15 for simulated CSI data with 64 antennas (a mean about 0.038 before

vs. about 0.045 here, with overlapping conĄdence intervals). These results demonstrate the

robustness of our CGAN approach; it is capable of estimating DL CSI from UL CSI for a

variety of operating frequencies (which need not be known to the CGAN), and is not limited

to a speciĄc type of antenna array.

4.7 Summary

In this chapter, we have developed CGAN-based UL-to-DL CSI and UL-to-DL CCM map-

ping methods. We have described analytical frameworks for generating perfect and imper-

fect CCM data, as well as models to generate CSI data to train the CGAN. The performance

of the proposed CGAN has been examined for several antenna array sizes, perfect and im-

perfect CCMs, and several pilot reuse factors. It has been demonstrated that our proposed

CGAN algorithm outperforms several existing algorithms previously described in the liter-

ature for CCM estimation. Our CGAN exhibits some sensitivity if the CCMs are estimated

from perfect CSI samples instead of having the exact CCMs. However, there is little addi-

tional loss observed if the CSI samples themselves are imperfect.

The CGAN also performs well when directly estimating DL CSI, for both simulated and

measured CSI data. Simulations have demonstrated that our CGAN approach signiĄcantly
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outperforms two DNN approaches when all three use the same small-sized training dataset,

and still outperforms the DNN approaches when they are allowed to use larger datasets than

the CGAN. In terms of SE, when precoding with CSI estimated by the CGAN, the perfor-

mance loss is at worst about 10−11% compared to if perfect Şgenie-aidedŤ CSI knowledge

is available.
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Chapter 5

Access Point Clustering in Cell-Free

Massive MIMO Using Conventional and

Federated Multi-Agent Reinforcement

Learning

5.1 Introduction

Conventionally massive MIMO antenna arrays are assumed to have all their elements co-

located at a BS [187Ű189]. However, in such cases, the massive MIMO cellular network is

normally limited by inter-cell interference, resulting in poor cell-edge performance. There-

fore, for beyond-5G cellular networks, which put more emphasis on equitable service for all

pieces of UE within the coverage area, modiĄcations to the network architecture are nec-

essary. To overcome this shortcoming of conventional massive MIMO, distributed massive

MIMO architectures have been studied. In the literature, the core idea of distributed MIMO

has been examined under various names, including distributed antenna system (DAS) [190,

191], network MIMO [119, 192, 193], coordinated multipoint (CoMP) transmission [194Ű

198], or C-RAN [199Ű203].

More recently, distributed architecture has again appeared in the ŞmassiveŤ-sized array

regime with the name of cell-free massive MIMO [8]. In cell-free massive MIMO, the

APs, each with one or more antennas, are distributed over a geographical area, and multiple

APs coordinate to form a virtual massive MIMO array to serve UEs [10]. Cell-free mas-
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sive MIMO conceptually removes cell boundaries and therefore suppresses the inter-cell

interference problem. This creates more uniformity of service and fairness to UEs over the

entire network area [10]. It has been observed in [8] that in a cell-free massive MIMO net-

work, the APs are closer to the UEs than in conventional massive MIMO, yielding higher

diversity gain, lower path loss, and better throughput. [8] has also shown that cell-free mas-

sive MIMO has signiĄcantly better performance than small-cell systems where each UE is

served by a single BS.

5.1.1 Prior Research

To the best of our knowledge, distributed architecture speciĄcally in the context of massive

MIMO was initially investigated in [204], where a BS selection procedure was developed;

the selected BSs coordinated using either maximum ratio combining or MMSE combining

to serve the UEs on the UL of hexagonal cells. The authors of [8, 205] Ąrst gave the name

Şcell-free massive MIMOŤ to the core idea of distributed massive MIMO architecture.

The beneĄts of cell-free massive MIMO come at the price of increased fronthaul capacity

requirements [206]. Existing literature typically assumes inĄnite-capacity fronthaul links,

e.g., [8, 207]. However, prior work in similar contexts has shown that limited fronthaul

capacity has a signiĄcant performance impact, e.g., for CoMP [208] or C-RAN [209]. The

performance of cell-free massive MIMO with capacity-constrained fronthaul links has been

studied for some speciĄc scenarios in [206, 210, 211]. Distributed precoding [10] also helps

address the issue; we use this approach herein.

Although there are relatively few works on AP clustering or selection, several works on

the related problem of antenna selection for massive MIMO are available in the literature,

e.g., [212Ű215]. Antenna selection and AP clustering are fundamentally the same type of

problem. However, solutions to the former are most typically centric to the transmit nodes,

whereas user-centric solutions are best for the latter. In [213] and [214], the authors have

proposed greedy selection algorithms; [213] has maximized the incremental sum rate with
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each selected antenna, whereas [214] has used the technique of matching pursuits. The au-

thors of [212] have proposed a branch-and-bound selection algorithm based on the largest

minimum singular value of channel submatrices. An ML method for joint antenna selection

and user scheduling to maximize the energy efficiency of a single-cell massive MIMO sys-

tem has been proposed in [215]. The authors of [216] have investigated the related problem

of antenna clustering in distributed antenna systems, and [193] has considered cell cluster-

ing for network MIMO. In the context of C-RANs, the authors of [199] have considered

joint user clustering and sparse beamforming under the constraints of Ąnite-capacity back-

haul links, and have obtained a solution by optimizing a weighted MMSE problem. The

authors of [203] have framed the user clustering problem as one of a cooperative bargain-

ing game, whose Nash equilibrium has been found in part by a Hungarian method to pair

bargaining users.

In the context of cell-free massive MIMO, [211] has proposed two strategies for AP clus-

tering: 1) minimize the number of UE-AP associations subject to the SINR being greater

than a threshold, and 2) maximize the minimum SINR subject to a maximum allowable

number of APs associated with a UE. More recently, an AP selection method using an ML

algorithm based on κ-means clustering has been proposed in [217], a multiple user ac-

cess scheme using deep RL has been investigated in [218], and a distributed beamforming

technique using deep RL has been considered in [219]; [217] has considered DL transmis-

sions, whereas [218] and [219] have considered data transmissions on the UL. Additionally,

cell-free massive MIMO DL power control/allocation schemes using deep RL have been

developed in [220] and [221].

None of the above antenna selection algorithms considers an environment with UEs in

motion. In such a dynamic environment, the association problem needs to be re-solved pe-

riodically. Typical DNNs face another challenge in that the input or output state size may

vary with the number of nearby and/or active UEs. Therefore, we consider the use of RL to

solve the AP clustering problem, as it is suited to handle dynamic environments. Recently,
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the authors of [220] have developed RL-based power allocation strategies for a mobile en-

vironment. In our MARL algorithm, which we Ąrst investigated in [27], we take a more

distributed approach with decentralized actors and a centralized critic, inspired by the work

in [222]. In this approach, each agent (actor) only has localized environmental information

for its AP, whereas the critic has global information. However, a conventional MARL ap-

proach such as this has a couple of shortcomings. First, the agents need frequent feedback

from the central critic to get their rewards and accordingly update their NN weights. Thus,

conventional MARL increases the communication overhead, and to some degree contra-

dicts the basic philosophy of distributed operation in cell-free massive MIMO. Second, the

overall policy learned by each agent is strongly contingent on the location of that agent.

Therefore, the learned policies are somewhat dependent on the environment, which makes

transferring the agents and their policies to a new environment problematic [223, 224].

To overcome these issues, we additionally consider a multi-agent federated reinforcement

learning (MAFRL) algorithm. A key consideration in the development of FL was main-

taining data privacy between different agents in a system. Agents are only allowed to share

learned information (most typically their local NN weights), but not the data with which

they train [225]. In the context of communication systems, FL has been used in a variety

of scenarios ranging from resource allocation and optimization problems, edge caching and

computing, vehicular networks (whether road-based or unmanned aerial vehicles), health

care, and the Internet of Things [226Ű228]. General frameworks for using FL in beyond-5G

networks have been proposed in [229, 230], while [231] has surveyed numerous distributed

ML techniques for wireless communications, including RL, FL, and other methods that op-

erate in a completely distributed manner with no central coordination. In [232], the authors

have considered how best to use the APs of a cell-free massive MIMO system to support

and optimize training of an FL framework, where the local NNs being trained are located

at the UEs. A related problem has been examined in [233], where massive MIMO and

compressive sensing have been used to help reconstruct sparse gradient vectors used for the
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Figure 5.1: Illustration of a cell-free massive MIMO network. (AP: access point, CC: central con-
troller, UE: user equipment.)

FL updates. [234] and [235] have considered FL methods for channel estimation, whereas

[236] has used a mixture of deep FL and game theory for dynamic frequency allocation

in multicell massive MIMO networks. In [237], the authors have used federated deep RL

to tackle the problem of user access control in open radio access networks. However, to

the best of our knowledge, our research is the Ąrst to combine the advantages of both rein-

forcement learning and federated learning in the context of optimizing AP clustering in a

cell-free massive MIMO network, while also considering the mobility of UEs.

5.1.2 Motivation

We illustrate a typical cell-free massive MIMO network in Fig. 5.1. In canonical cell-

free massive MIMO, UEs are served by all the APs [8, 238], which are connected to a

CC using fronthaul connections. Therefore, the number of fronthaul connections increases

proportionally with the number of APs in the network. Furthermore, as each AP serves

all UEs, the overall fronthaul capacity requirement and computing requirements for signal

processing also increase. These factors give rise to scalability issues, and thus the canonical

form of cell-free massive MIMO is impractical for an arbitrarily large number of APs in the

network.

In contrast, in scalable cell-free massive MIMO systems, each UE is served by a subset of
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APs [53, 207, 211, 239, 240]. Importantly, the cluster of serving APs should be user-centric

and individualized for each UE1. This challenge was initially addressed in [207], wherein the

authors proposed a user-centric AP cluster solution; other works since have also examined

the problem (see Section 5.1.1). However, two major issues still remain open: 1) How

should the system select which APs to serve a UE in real-time in an environment where the

UEs are in motion, where AP selection may need to be updated often? 2) How should the

system support the signiĄcant fronthaul and computational load in such an environment?

We focus mainly on the Ąrst question, and address the second through the use of localized

precoding.

To tackle these challenges, this chapter focuses on developing machine learning (ML)

methods for AP clustering such that each AP can determine the UEs it serves mostly inde-

pendently of the others. To support the dynamic nature of a mobile environment, reinforce-

ment learning (RL) is a natural choice. In a recent article [220], multi-agent RL (MARL)

techniques have been applied to a canonical cell-free massive MIMO network to solve the

power allocation problem in a mobile environment, and the performance of the MARL algo-

rithm therein is promising. Those results suggest that MARL algorithms would be suitable

for cell-free massive MIMO with mobile UEs, which served as one of our initial motiva-

tions for applying MARL to AP clustering. In the conference paper [27] we developed an

actor-critic MARL framework that trains the APs to select which UEs to serve; each AP

is a distributed agent/actor in the system, and the centralized critic that judges the agentsŠ

performance is located at the CC of the network. Because the agents are distributed, with

the use of localized precoding, the fronthaul load has been reduced. However, during train-

ing, conventional MARL systems require regular information updates regarding rewards

from the CC, which can result in signiĄcant communication overhead [237]. As an alter-

native, to train the agents with limited interactions between the CC and agents, federated

learning (FL) [225] is a promising technique. Under FL, distributed agents train their neu-

1This is an important and notable difference from earlier research on distributed architecture, where the
clusters of BSs/APs/antennas were typically centric to the serving nodes rather than the UEs.
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ral networks (NNs) locally. The CC periodically requests the NN weights from the agents

and uses those local weights to compute and distribute a global NN weight update for all

agents. FL was initially developed and deployed by Google in their predictive keyboard

feature [241]. Later, it has been observed that combining features of FL with those of RL

can help reduce the number of interactions between the CC and agents [224, 237].

Organization: The rest of the chapter is organized as follows. In Section 5.2, we describe

the model of the cell-free massive MIMO network, the precoding method, and the calcula-

tion of SE. The framework and details of our MARL and MAFRL techniques are discussed

in Sections 5.3 and 5.4, respectively. We evaluate and discuss the simulated performance

of our proposed algorithms in Section 5.5. Finally, we conclude the paper in Section 5.6.

5.2 Cell-Free Massive MIMO System Model

Consider the DL of a cell-free massive MIMO system with L APs that serve a total of K

single-antenna UEs, where each AP is equipped withN antennas. We assume thatL×N ≫

K, which is the typical operating regime for massive MIMO. Each AP can serve any of the

UEs, and theoretically can serve any number of them. However, as mentioned earlier, the

more UEs served, the more signiĄcant the fronthaul load will be. The APs are connected

to a CC that forwards UE data symbols to the APs and coordinates the training of ML.

Time-division duplex (TDD) mode is used to alternate between UL and DL transmis-

sion. As such, DL channel state information (CSI) may be obtained from the assumption

of UL/DL radio channel reciprocity. The UL channel hkℓ ∈ C
N×1 between UE k and AP

ℓ is distributed ∼ CN (0,Rkℓ), which models correlated Rayleigh fading; Rkℓ ∈ C
N×N is

the channel covariance matrix. βkℓ = tr(Rkℓ)/N is the large-scale fading parameter of the

channel, incorporating path loss and shadow fading [10]. The APs make an estimate ˆ︁hkℓ of

the UL channels based on pilot sequences sent by the UEs, as follows [10]:

ˆ︁hkℓ =
√
ρpτp RkℓΨ

−1
kℓ y

p
kℓ, (5.1)
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where

Ψkℓ = E
{︁
y
p
kℓ(y

p
kℓ)

H
}︁
= ρpτpRkℓ + σ2IN (5.2)

is the N×N covariance matrix of the received pilot signal yp
kℓ ∈ C

N×1 from UE k at AP

ℓ. ρp and τp are respectively the power and the length of the transmitted pilot sequence,

and σ2 is the variance of the noise (assumed to be distributed ∼ CN (0, σ2IN)). We also

denote the covariance matrix of the error between hkℓ and ˆ︁hkℓ as Ckℓ ∈ C
N×N = Rkℓ −

ρpτpRkℓΨ
−1
kℓ Rkℓ [10]. Here, we assume for simplicity that every UE has its own orthogonal

pilot sequence, so interference between pilots does not exist. We also assume the noise

variance is the same on the UL and DL and the same2 for all UEs and APs.

Let us assume that UE k is served by the APs in set Lk. We deĄne an N×N binary

diagonal matrix Dkℓ to represent if UE k is associated with AP ℓ:

Dkℓ =

{︄
IN , ℓ ∈ Lk;

0N×N , ℓ /∈ Lk.
(5.3)

The effective DL channel vector between AP ℓ and UE k can then be considered to be

hH
kℓDkℓ. We assume that distributed DL precoding is performed, i.e., precoding is done

locally at each AP. The data symbol for UE k is given by ζk (with E{|ζk|2} = 1), which is

sent from the CC to the serving APs over the fronthaul. The received DL signal at UE k is

given by [10]

yk =

(︄
L∑︂

ℓ=1

hH
kℓDkℓwkℓ

)︄
ζk +

K∑︂

i=1,
i ̸=k

(︄
L∑︂

ℓ=1

hH
kℓDiℓwiℓ

)︄
ζi + nk. (5.4)

wkℓ ∈ C
N×1 is the precoding vector that AP ℓ uses for UE k, and nk is the noise. The

double summation in the second term of (5.4) represents interference from signals for other

UEs, sent from both the serving APs for UE k and the other APs.

To reduce the fronthaul load, we consider localized precoding, where each AP only has

the knowledge of its own CSI for the UEs it serves. Thus, no CSI from other APs needs

to be exchanged over the fronthaul; only data symbols need to be forwarded. However,

2Even if the noise variances are not the same, due to the network being interference-limited, differences
in the variances have a negligible impact on the performance of the system.
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with only local CSI knowledge, an AP canŠt coordinate with any other to serve its UEs.

Therefore, it can only create at most N independent spatial streams for its N antennas,

meaning it can serve up to N UEs simultaneously3. SpeciĄcally, we consider local partial

MMSE (LP-MMSE) precoding [10]. Let the set of UEs served by AP ℓ be denoted by Dℓ.

The (arbitrarily scaled) LP-MMSE precoding vector for UE k at AP ℓ is given by

wkℓ = pkℓ

(︄
∑︂

i∈Dℓ

piℓ

(︂
ˆ︁hiℓ
ˆ︁hH
iℓ +Ciℓ

)︂
+ σ2IN

)︄−1

Dkℓ
ˆ︁hkℓ. (5.5)

pkℓ (piℓ) is the transmit power assigned by AP ℓ for UE k (i). To normalize the total transmit

power, the AP uses the precoding vector wkℓ = wkℓ
√
pkℓ/

√︁
E{∥wkℓ∥2}. Typically, the

transmit power for each UE is determined by a power allocation algorithm, such as in [220]

and [221]. However, for simplicity, in this chapter, we have used equal power allocation, i.e.,

piℓ = Pt/|Dℓ|, ∀i ∈ Dℓ, where Pt is the total transmit power available at the AP (assumed to

be the same for all APs). LP-MMSE precoding is scalable to arbitrary network sizes, since

the maximum data volume transferred over the fronthaul to AP ℓ is |Dℓ| ≤ N data symbols,

which is independent of both K and L.

The effective DL SINR of UE k is given by [10, Eq. (6.22)]

Υk =

⃓⃓
⃓⃓ L∑︁
ℓ=1

E
{︁
hH
kℓDkℓwkℓ

}︁⃓⃓⃓⃓
2

K∑︁
i=1

E

{︄⃓⃓
⃓⃓ L∑︁
ℓ=1

hH
iℓDkℓwiℓ

⃓⃓
⃓⃓
2
}︄

−
⃓⃓
⃓⃓ L∑︁
ℓ=1

E{hH
kℓDkℓwkℓ}

⃓⃓
⃓⃓
2

+ σ2

. (5.6)

An achievable SE for UE k may then be deĄned as:

ηk = log2(1 + Υk). (5.7)

This SE of the UEs is used to deĄne the reward functions in our RL algorithms.

5.3 Reinforcement Learning Framework

In this section, we develop the RL framework for solving our AP clustering problem. RL is

a very effective ML technique for dynamic environments such as real-time strategic games

3This is in contrast toC×N UEs that can be jointly served ifC APs coordinate with centralized precoding.
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and autonomous driving [242Ű244]. To implement the MARL algorithm, Ąrst we deĄne the

AP clustering problem as a Markov game [245], represented as a tuple (L,S,A,P , r, γ)

[246]. L = {1, 2, . . . , |L|} is the set of agents, which in our case are the APs. The state

of the environment or state space is represented by S . In our case, the state is based on the

received signal strength (RSS) of each UE at the APs. The RSS between AP ℓ and UE k is

calculated from the received pilot signal as follows:

RSSkℓ = ||yp
kℓ||2. (5.8)

We note that the RSS is directly proportional to βkℓ, as E{||yp
kℓ||2} = ρpτpNβkℓ + σ2.

Thus, the pilot signals sent by the UEs are used by each AP both to calculate that APŠs RSS

values for all UEs, and to estimate the UL CSI for the set of UEs that AP serves. The joint

action space A is the Cartesian product of the action spaces Aℓ for all agents. The variable

P : S×A×S → R represents the transition probability kernel of moving from one state

to another. The reward function is represented by r : S×A → R, and γ ∈ [0, 1) is called

the discount factor. In the MARL algorithm, each agent ℓ has its own parameter vector θℓ

(which is basically its NN weights); concatenating θℓ of all agents forms a joint parameter

vector θ. In step t ∈ N, the environment is in state s(t); agent ℓ takes an action aℓ,(t) ∈ Aℓ,(t)

based on the policy πθℓ(aℓ,(t)|s(t)), where Aℓ,(t) is the action space of agent ℓ at step t. The

joint policy of all the agents is

πθ(a1,(t), a2,(t), . . . , aL,(t)|s(t)) =
L∏︂

ℓ=1

πθℓ(aℓ,(t)|s(t)). (5.9)

Training the MARL algorithm consists of groups of steps called ŞepisodesŤ; the weights

of the NNs are updated after each episode following a policy gradient approach [247]. The

agents (or actors, in an actor-critic framework) aim to Ąnd the optimal policy that, on av-

erage, will maximize the cumulative reward in step t, i.e., R(t) =
∑︁∞

i=0 γ
ir(t+i). The

performance of agent ℓŠs policy is evaluated using the centralized action-value function

Qπθ

ℓ = (x, a1, a2, · · · , aL), where x contains the relevant information about the state of the

environment. Qπθ

ℓ deĄnes the algorithmŠs critic; essentially, it determines the rewards given
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by the critic to agent ℓ depending on the actions of all agents [222]. For a more detailed

description of these parameters, we refer the reader to [222, 245Ű248].

In our considered system, the UEs are mobile, and therefore, the AP clustering should

focus on long-term rewards for optimal AP-UE association. The value of the discount factor

γ determines over how long of a period an agentŠs actions affect its rewards during training

[220]. An exponentially-decaying weight γi is applied to future rewards; the larger the value

of γ, the more emphasis that is placed on long-term rewards. Each AP needs to decide

whether it is better to serve a given UE now or wait until later, based on the movement of all

UEs. For example, the RSS and SE for a UE and thus the reward for serving that UE will

increase over time if said UE is moving towards the AP, and decrease if it is moving away.

The emphasis of Şwaiting until laterŤ on this decision (and how long to wait) depends on

the value of γ. Thus, in mobile environments, the discount factor indirectly helps APs learn

about possible UE movement and whether serving a speciĄc UE at a given time is good for

the cumulative reward.

In this chapter, we have implemented an actor-critic policy gradient MARL-assisted ap-

proach, which is efficient in dealing with high-dimensional action spaces [247, 249]. In

our case, the size of the action space for each AP is 2K , as the output state for each UE is

either 1 or 0 (i.e., associated with that AP or not). To improve the speed of convergence,

we reduce the size of the state space for each agent by Ąrst selecting a pool of only Φ UEs

with the highest RSS at that AP from the available K. Use of the pool also ensures the

algorithm is scalable to arbitrarily large K. This furthermore largely solves the problem of

potentially inactive UEs, which would cause the length of the input vector for the NNs to

not be constant. We vary the value of Φ to examine its effect on the MARL algorithmŠs

performance.

However, this approach by itself does not guarantee service to all UEs. For instance, a

UE may not be associated with any AP if that UEŠs RSS is not within the top Φ RSSs for

any AP. To address this issue, at each AP, two additional UEs that are not yet in the APŠs
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pool are chosen in a round-robin4 fashion and added to the pool; the AP then serves up to

N UEs from that enlarged pool. Additionally, we introduce a global penalty to all APs if

not all UEs are served. The penalty at time step t is

PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
=
(︁
ϱ+ PG(t−1)

)︁
· 1
(︁⃓⃓

∪
∀ℓ
Dℓ

⃓⃓
< K

)︁
. (5.10)

PG(0) is initialized to 0, and a value of ϱ is progressively added to the penalty for each

time step that all K UEs are not served. The argument of the indicator function checks if

all the UEs in the coverage area have been served. If so, the indicator function resets the

penalty to 0. The CC applies the global penalty to the reward of every AP, then forwards

the resulting rewards to their corresponding APs over the fronthaul. Enlarging each APŠs

pool with unserved UEs, combined with the penalty, helps the agents to learn within a

few time steps that all the UEs should be served. Overall, in the MARL implementation,

the additional overhead is the information shared between the APs and the CC, i.e., the

reward for each AP in every time step. The interaction between the cell-free massive MIMO

network and the agentsŠ NNs in the MARL algorithm is shown in Fig. 5.2.

The NN for each agent consists of an input layer (Φ+2 nodes containing RSS values of

Φ+2 UEs), a hidden layer (20 neurons), and an output layer (Φ+2 neurons that determine

the action aℓ,(t) of the agent). The NN weights are initialized randomly with the distribution

∼ N (0, 0.032). The activation function of the hidden layer neurons is tanh(·), whereas for

the output layer, it is the softmax(·) function5 [246]. The output of each output node n is the

probability χn of serving the UE corresponding to input node n. At each time step, using

{χ1, χ2, . . . , χΦ+2}, the agent calculates the probability of each action from the set of the

possible ones. The UE for node n can either be served (with probability χn) or not served

(with probability 1−χn), making for 2Φ+2 possible actions in total. The agentŠs action (the

4In our conference paper [27], we used uniformly random selection rather than round-robin selection for
the two additional UEs, which also worked well. However, random selection does not completely guarantee
that all UEs will be considered, although the probability of some UE not being considered eventually is quite
low. The choice to consider speciĄcally two additional UEs was made heuristically.

5For z = [z1, z2, . . . , zN ] ∈ R
N , softmax(z) =

[ez1 , ez2 , . . . , ezN ]
∑︁N

i=1
ezi

.
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Figure 5.2: Illustration of the decentralized actor, centralized critic MARL algorithmŠs interactions
between the environment and agents.

set of UEs to be served) is then chosen at random as weighted by the action probabilities.

This method of choosing an action by weighted random sampling from the set of possible

actions is known as stochastic policy gradient-based action selection [222]; it allows for

exploration as well as exploitation of acquired knowledge from earlier training.

The (non-convex) optimization problem of determining which APs should serve which

UEs in order to maximize the achievable sum SE can be formulated as

max
D1,D2,...,DL

K∑︂

k=1

ηk (5.11a)

subject to:
⃓⃓
∪
∀ℓ
Dℓ

⃓⃓
= K, (5.11b)

⃓⃓
Dℓ

⃓⃓
≤ N, ∀ℓ . (5.11c)

Similarly, the optimization problem to maximize the minimum UE SE would replace (5.11a)

by

max
D1,D2,...,DL

min
k∈{1,2,...,K}

ηk (5.12)

with the same constraints as in (5.11b) and (5.11c). However, Ąnding the globally optimum
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solution for either optimization problem would need to be done in a centralized manner.

Implementing such a solution in a cell-free scenario would result in higher fronthaul loads

because the CC would have to transmit its resulting solution to each AP. Instead, a distributed

solution can be found at each AP. Moreover, in a mobile environment, the system should

in general optimize the objective function over some interval (such as several sequential

time steps t in the set T ) in order to account for the movement of the UEs. Therefore, the

optimization problems should be modiĄed. We adjust the max sum SE problem as follows:

max
Dℓ,(t),∀ℓ, ∀t∈T

∑︂

t∈T

L∑︂

ℓ=1

∑︂

k∈Dℓ,(t)

ηk,(t) (5.13a)

subject to:
⃓⃓
∪
∀ℓ
Dℓ,(t)

⃓⃓
= K, ∀t∈T , (5.13b)

⃓⃓
Dℓ,(t)

⃓⃓
≤ N, ∀ℓ, ∀t∈T , (5.13c)

whereas for the modiĄed max min SE problem, (5.13a) is replaced by

max
Dℓ,(t),∀ℓ, ∀t∈T

min
k∈Dℓ,(t)

ηk,(t). (5.14)

It is important to note that solutions to these optimization problems do not depend solely

on the decisions taken by an individual AP, but rather on the decisions made by the cluster

of APs that serve a given UE. Observation of the optimization problem in (5.13) indicates

that these decisions depend on the state of the cellular network at the time steps in T . (If

some of these time steps are in the future, the actual state may be replaced by the predicted

or expected/average state at that time.) Also, the objective function of the optimization

problem exhibits an episodic nature, i.e., the objective function depends on values obtained

at multiple time steps. Thus, the overall optimization problem can be extended to a Markov

game or Markov decision process (MDP). It has been known for some time that RL can be

an efficient methodology to solve MDP problems [250]. This was one of our motivations

for using RL in the Ąrst place.

We consider four reward policies for our MARL algorithm when evaluating its perfor-

mance:

115



Policy 1 Ů Max sum SE: In this case, the reward function for agent ℓ at time t is deĄned

as

rℓ,(t) =
∑︂

k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
, (5.15)

where ηk is given by (5.7). Pℓ,(t)(|Dℓ|) is a local penalty function that applies if AP ℓ attempts

to serve more than N UEs; if so, a penalty of −10 is incurred. PG(t)(|∪∀ℓ Dℓ|) is the global

penalty described in (5.10); we use ϱ = −20. The purpose of the penalties is to prevent

illegal or undesirable actions by the agents when creating their policies. The penalty values

are thus somewhat arbitrary; any large negative value that negates the potential reward of

such actions will suffice.

Understandably, since the goal of Policy 1 is to maximize the sum SE of all UEs, the APs

will be biased towards associating with the highest RSS (i.e., nearest) UEs. This reduces

the system fairness and more distant UEs might not obtain high quality service. Thus, we

also consider another reward function that incorporates fairness.

Policy 2 Ů Max min SE: In this policy, the agents try to maximize the minimum SE of

their served UEs, thus providing fairness in the performance. The reward function in this

case is expressed as

rℓ,(t) = min
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
. (5.16)

The penalties in (5.16) are the same as in (5.15). However, if the reward function is expressed

as above, without additional constraints such as are typically seen in optimization problems

(for example, a constraint that every UE be guaranteed some minimum quality of service),

then the agents generally do not learn to each serve multiple UEs. (APs instead prefer

serving only one UE each if possible, since that maximizes their minimum, i.e., only, UE

SE, although the single UE each AP serves is generally a different one.) To overcome the

shortfall of the traditional max min policy, we thirdly use a modiĄed max min SE policy.

Policy 3 Ů ModiĄed max min SE: The reward function is modiĄed as follows:

rℓ,(t) = |Dℓ| × min
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
. (5.17)
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By weighting the minimum UE SE with the number |Dℓ| of served UEs, the APs learn to

serve multiple UEs while still maximizing the minimum SE of the UEs they serve. The

penalties in (5.17) are the same as in (5.15).

Policy 4 Ů Hybrid policy6: For the sake of interest, we also examine a policy that is a

heuristic hybrid of the max SE and max min SE policies. In this policy, the minimum UE

SE is weighted by the sum SE of all the agentsŠ served UEs. Because of the presence of the

sum SE, the agents still learn to serve multiple UEs. The reward function is as follows:

rℓ,(t) = min
k∈Dℓ

ηk,(t) ×
∑︂

k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
. (5.18)

The penalties in (5.18) are the same as in (5.15). It is expected that this reward function

should yield a performance somewhere between the performance of the max SE reward and

the performance of the max min SE reward by themselves.

At the completion of training, based upon the Ąnal probabilities at the NN output nodes,

there may remain a very small but non-zero possibility of choosing an action that serves

more than N UEs. To ensure that an agent does not take such an action, we force the

probability of those actions to be zero.7

5.4 Federated Reinforcement Learning Framework

In this section, we develop the MAFRL framework to solve the same AP clustering prob-

lem. Unlike in the conventional MARL algorithm, in the MAFRL algorithm the interaction

between the CC and the APs is now limited to a periodic exchange of NN weights. There-

fore, one can no longer use a centralized critic type of reinforcement learning. Instead, we

consider a policy-gradient approach [249] to train the agents. We assume that there is a set

L of agents, with each agent having a local state space and action space and using the same

6We called this policy the Şmax min SEŤ policy in our conference paper [27]. We have renamed it to be a
ŞhybridŤ policy in this chapter, since, as we will show in the simulation results, the reward function of Policy
3 does a much better job of satisfying the max min SE criterion.

7We did not encounter any such actions in our simulations, even without forcing the probabilities to
be zero. The enforcement therefore mainly guarantees that such actions will not occur over the long-term
timescale of the network operation.
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reward function. Although the state and action spaces may be different for each agent, the

dimensions of the state spaces are the same for every agent, as are the dimensions of the

action spaces. The structure of the NN of each agent is the same as in the previous section.

Similar to the conventional MARL problem, we formulate the MAFRL problem as a Markov

game, represented as a tuple8 (S,A,P , r, γ) [251]. The goal of the MAFRL algorithm is

to have the |L| agents jointly learn a policy function πθ that they all use and that performs

as close to optimally as possible and uniformly well across the entire environment. This

differs from the MARL algorithm, in which each agent has its own (location-dependent)

policy. To reduce the communication overhead, agents do not communicate between them-

selves; instead, they share their parameter vector θℓ (i.e., their NN weights) only with the

CC.

Similar to the previous section, the agents update the weights of their local NNs after

each training episode. Each agent aims to Ąnd the optimal policy to maximize its cumulative

reward in step t, i.e., rℓ,t =
∑︁∞

t=0 γ
irℓ,t+i. The state value function of agent ℓ is deĄned as

Vθℓ(s) = EAℓ,sℓ{rℓ,0 | s0=s}. Mathematically speaking, the goal of each agent is Ąnd the

policy π⋆
θℓ

that maximizes the expected state value function:

π⋆
θℓ

= argmax
πθℓ

E{Vθℓ(s)}. (5.19)

Each AP forms a pool of Φ+2 UEs as the input to its NN in the same fashion as in the

MARL algorithm. Furthermore, each agent in the MAFRL algorithm receives information

about Υk as feedback from the UEs it is serving. Thereafter, it calculates the SE of each

UE using (5.7). However, it is not possible for the agents themselves to determine if all

UEs have been served or not. In the event one or more UEs have not been served, the CC

broadcasts a global penalty to all the APs.

For the MAFRL algorithm, we consider an additional alternative max sum SE reward

function, which has the local penalty removed compared to Policy 1. We make the assump-

tion here that if an AP serves more than N UEs, then the resulting inter-user interference

8L no longer appears in the tuple since every agent is playing a copy of the same game.
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Figure 5.3: Illustration of the MAFRL algorithmŠs interactions between the central controller, envi-
ronment, and agents.

will increase signiĄcantly, resulting in smaller SEs for the UEs and thus a lower reward for

the AP. Formally, the alternative reward policy is deĄned as follows:

Policy 5 Ů Max sum SE for MAFRL: The reward function for agent ℓ at time t is

rℓ,(t) =
∑︂

k∈Dℓ

ηk,(t) + PG(t)

(︁⃓⃓
∪
∀ℓ
Dℓ

⃓⃓)︁
. (5.20)

After TFL episodes, each agent shares its parameter vector θℓ (NN weights) with the CC.

The CC then aggregates the agentsŠ parameter vectors and uses them to calculate updated

global NN weights. There are various possible methods of doing this (see e.g., [226Ű228]),

but a common way is simply to average θℓ over all agents; we use this average in our chap-

ter9. The global NN weight update is transmitted back to the APs via fronthaul links. The

interaction of different components of the MAFRL system is illustrated in Fig. 5.3.

9Averaging may not be the best choice in certain scenarios, such as if there are signiĄcant differences in
the distribution of data each agent trains with or in the computing capabilities of each agent. In the case of
agents training very large DNNs, they may instead send only a portion of their weights to the CC, e.g., for
the last few layers. However, since the NNs in our agents are quite small and the network architecture quite
homogeneous, we simply average the entire NN weight vectors for the agents at the CC.
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Even though our MARL and MAFRL algorithms have many similarities, there are several

signiĄcant differences between them as well, mostly during training. Notably, APs trained

using our MAFRL algorithm will all end up with the same NN weights, whereas each AP

trained using our MARL algorithm will end up with different localized NN weights. During

MARL training, the CC distributes individual rewards (including possible penalties) to each

AP. In contrast, during MAFRL training, in every episode the CC broadcasts the global

penalty to all APs. Every TFL episodes, the agents sent their NN weights to the CC, which

aggregates them and then broadcasts the updated weights to be used by all APs.

5.4.1 Complexity of MARL and MAFRL decisions

Concerning the complexity of an AP making a decision on which UEs to serve, we note

again that the NN of each agent has only three layers: the input and output layers and a

single hidden layer. The number of Ćoating point operations (FLOPs) for each AP to make

a decision can be calculated as follows. In the hidden layer, at each of the 20 neurons, the

Φ+2 input values are multiplied by a weight, then the weighted values are summed. The

sum then passes through the tanh(·) activation function, which requires a bit shift operation

(which is simpler than a FLOP) and ce+3 FLOPs, where ce is the complexity of calculating

ex of a scalar x (an O(1) operation). In the output layer, at each of the Φ+2 neurons, the 20

outputs of the hidden layer are again weighted and summed. Then, the vector of those Φ+2

sums is input into the softmax(·) activation function, which uses (Φ+2)(ce + 2) FLOPs.

Thus, in total, Φ(ce + 82) + 22ce + 224 FLOPs are required to make a decision. As this

number of FLOPs is quite low, the proposed MARL and MAFRL algorithms should not

be a challenge for practical implementation. Additionally, with only three layers, the delay

involved in computation should be sufficiently small for real-time operation. There is of

course additional complexity that occurs during training, but this would happen off-line

and not during the regular operation of the network.
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5.5 Performance Evaluation

In this section, we examine the simulation results of our MARL algorithm for a cell-free

massive MIMO network. We consider L = 40 10-m-tall APs with N = 4 antennas each

that are uniformly distributed over a geographical area of 1 km× 1 km. K = 20 single-

antenna UEs have their locations initialized uniformly over the area. We assume that the

UEs move around the simulation area at a speed10 of v = 1 m/s. The direction of each UE

is initially selected at random isotropically within the range of angles [0, 2π); the UEs move

in a straight line afterwards, with the movement wrapped around the edges of the simulation

area.

We consider a carrier frequency of 2 GHz and channel bandwidth of 20 MHz. The

elements of each APŠs antenna array are spaced at half a wavelength at the carrier frequency.

We neglect any spatial correlation between the antenna elements, i.e., Rkℓ = βkℓIN , ∀k, ℓ.

We set (in dB) βkℓ = −30.5−36.7 log10(dkℓ)+Ωkℓ, where the distance dkℓ (in m) accounts

for the AP height of 10 m, and Ωkℓ ∼ N (0, 42) is log-normal shadowing [238]. When UEs

are initialized at a distance δ from one another, and whenever a UE moves a distance δ, Ωkℓ is

created/updated with a correlation of 2−δ/(9 m) with the earlier value [238]. The transmitted

power of each AP is Pt = 38 dBm and the noise power is assumed to be σ2 = −94 dBm.

K orthogonal pilot sequences are available to the UEs, each with length τp = K and power

ρp = 100 mW. The discount factor for the MARL algorithm is set to γ = 0.95, which is a

typically-used value (e.g., [248, 249]).

We consider a discrete-time system where for the purpose of AP association, the UEsŠ

positions and channels are updated and sampled11 every 63 ms. Thus, the sampling interval

10In this chapter, we limit the examination to pedestrian speeds, because considering vehicular speeds
would result in the channel estimates becoming increasingly inaccurate. Depending on the carrier frequency
and UE speed, the channel coherence time could diminish sufficiently so that the channel could no longer
be considered constant within a TDD frame. As such, channel prediction would be needed along with CSI
estimation. We have begun to investigate networks with UEs moving at vehicular speeds in some of our other
chapter, e.g., [29].

11With a sample period of 63 ms and a UE speed of 1 m/s, the UEs thus move a distance δ = 63 mm when
updating Ωkℓ between samples.
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is about the same as the channel coherence time tc = 0.423λ/v [252, Eq. (5.40.c)], where λ

is the carrier wavelength. In RL terminology, these samples are the steps, and we consider 80

steps during one episode of training. This corresponds to a UE travel distance of 5.04 m at 1

m/s speed. For this relatively small distance, the assumption of UEs moving in a straight line

is reasonable12. After each episode, the UEsŠ locations and directions are reset randomly,

but the AP locations stay the same. The NN weights for each agent are updated after each

episode. For the MAFRL algorithm, the global update of weights at the CC occurs every

TFL = 20 episodes. Agents are trained for 4000 episodes and thereafter their performance is

evaluated for 40 test cases (each being a new episode with the NN weights Ąxed). We repeat

this procedure for 10 independent simulation runs. The performance results averaged over

the 40×10 = 400 total test cases are compared against Ąve existing strategies: a) ŞAllŤ:

UEs are served by all the APs, and coordinated centralized precoding is done rather than

distributed precoding, thus representing the maximum possible performance; b) ŞGreedyŤ:

each AP serves the N highest-RSS (nearest) UEs; c) the max min SINR method proposed

in [211]; d) the κ-means clustering ML algorithm proposed in [217]; e) a modiĄed version

of the RL-based power control method proposed in [221]. In the case of [221], the authors

had originally considered APs equipped with a single antenna each, and UEs served by all

APs with centralized precoding. For a fair performance comparison with the other schemes,

we modiĄed the method from [221] for multi-antenna APs with LP-MMSE precoding Ąrst

by adding the global penalty from our reward policies to its reward function. The use of

localized precoding implies that each AP should serve no more than N UEs. However, it

does not by itself ensure that the APs learn to serve a maximum of N UEs, because if the

power allocated to some UE is very small, the resulting effect on the sum SE would be

negligible. Hence, the algorithm would not be able to learn properly whether that action

is better or worse. Therefore, we additionally deĄned a threshold such that if the power

12If the distance traveled per UE per episode was longer, alternative models for the UE movement could be
more appropriate, such as along a grid in an urban area, along some predeĄned paths, according to a random
walk model (see e.g., [253]), or by a machine-learned model [254]. However, such more complicated UE
movement models are not necessary in this article and are outside of its main focus.
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Figure 5.4: Average sum SE performance of MARL and MAFRL algorithms with several values of
Φ, compared against ŞAllŤ and ŞGreedyŤ strategies, max min SINR strategy from [211], κ-means
clustering ML algorithm from [217], and modiĄed RL-based power control algorithm from [221].
ŞP1Ť: Max sum SE policy having local and global penalties, ŞP2Ť: Max min SE policy, ŞP3Ť: Modi-
Ąed max min SE policy, ŞP4Ť: Hybrid policy, ŞP5Ť: Max sum SE policy having global penalty only.

allocated to a given UE is less than 1% of the APŠs total transmit power, then it is considered

that the given UE and that AP are not associated. This threshold for the scheme modiĄed

from [221] helps limit the number of served UEs to N .

The average sum SE performance of the MARL and MAFRL algorithms with several

values of Φ and the Ąve policies is illustrated in Fig. 5.4. As expected, if UEs are served

by all the APs with centralized precoding, then the sum SE is maximum (21.8 bits/s/Hz),

but so too is the fronthaul load. Our MARL algorithm under Policy 1 with Φ = 10 and

LP-MMSE precoding achieves about 18.2 bits/s/Hz, or about 83.3% of the max SE; this

increases to about 88.3% (19.3 bits/s/Hz) using Φ = 15. As seen, increasing Φ improves

the sum SE performance, but our algorithms require more training episodes to converge

properly. This can be seen in the Φ = 20 result; in this case, 4000 episodes is insufficient

for training because of the large action space for Φ = 20. The results of the MAFRL

algorithm are similar to, though marginally less than, those provided by MARL algorithm.

We Ąrst observe that the MAFRL algorithmŠs results using Policy 1 and Policy 5 are nearly

identical, conĄrming that the MAFRL algorithm does not need the local penalty as in Policy

1 when maximizing the sum SE. We also observe that the MAFRL algorithmŠs sum SE is

about 90−95% of (or about 0.95−1.5 bits/s/Hz less than) that of the MARL algorithm. The

main reason for the worse MAFRL performance is because the NN weights of the MAFRL
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agents are not optimized to their individual locations; rather, the global average is optimized.

Thus, the MAFRL algorithm trades off some locally optimized higher performance in favor

of consistently good performance over the entire coverage area. Given the similarity in

MAFRL performance between Policies 1 and 5, as an additional test, we also checked the

performance of Policy 5 when used with the MARL algorithm, even though that policy

was designed for the MAFRL algorithm. We found the MARL algorithm performance is

also virtually identical for both Policies 1 and 5, which demonstrates that with localized

precoding the sum SE reduces when an AP serves more than N UEs. Thus, the agents can

learn to serve only N UEs even without the local penalty in the reward term when the goal

is to maximize the sum SE. Since the performances of the MARL and MAFRL algorithms

are nearly identical under Policy 1 as they are under Policy 5, hereafter we will just depict

results for MARL using Policy 1 and MAFRL using Policy 5.

Considering the reference algorithms, we observe that the modiĄed RL-based power con-

trol algorithm from [221] performs the best and achieves a sum SE of about 17.6 bits/s/Hz,

or about 81% of the ŞAllŤ case. However, we note that our MARL and MAFRL algorithms

employ equal power allocation to all the UEs, yet with Φ = 15 they outperform [221]. This

is because the APs learn better to account for UE mobility, whereas the method from [221]

does not account for mobility. If we were to incorporate power allocation along with our

MARL and MAFRL algorithms, it can be expected that their performance would be fur-

ther improved. We furthermore note that the higher performance of our algorithms comes

via considerably less complex NNs than the NNs used with the method from [221]. For

instance, our agent NNs have a single hidden layer with 20 neurons, whereas the (multiple)

layers in [221] are of size 400×300.

We next note that considering just the UEs with the highest RSS values or serving the

closest UEs together is far from an optimal AP clustering solution to maximize the sum SE,

as observed from the performance for the schemes from [211] and [217], and the Φ = 5

results for MARL under Policy 1 and MAFRL under Policy 5. These respectively achieve
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only about 68.5%, 69.4%, 70.7%, and 63.8% of the sum SE of the ŞAllŤ case. ŞGreedyŤ

selection performs the worst of the reference schemes, as it is not optimized to maximize

the SE globally13, though the MAFRL algorithmŠs performance with Φ = 5 is the lowest

overall among the algorithms intended to maximize the sum SE. The lower the value of Φ,

the more localized the selection of UEs is around a given AP, and thus in some sense the

whole performance is also based on more localized conditions.

Interestingly, Policies 2 and 3 provide sum SEs not much below that of Policies 1 and

5. They also provide a considerably better sum SE than the scheme from [211], despite

all three nominally having a Şmax minŤ goal. With Φ = 15, Policy 3 yields a sum SE of

about 18.3 bits/s/Hz, while Policy 2 yields a sum SE of about 17.3 bits/s/Hz. The sum SE

of Policy 4 is in between that of Policies 2 and 3, about 17.8 bits/s/Hz. It should be noted,

though, that Policies 2Ű4 perform particularly poorly with low values of Φ. For these three

policies, Φ must be large enough so that the APs can Ąnd the UE with the minimum SE

in a wider area around their vicinity. Φ being too small (e.g., Φ = 5) results in the APs

considering too small of a neighborhood around their respective locations for the algorithm

to properly increase the minimum UE SEs, and thus the sum SE by extension. We lastly

note that we also tested Policies 2, 3, and 4 with the MAFRL algorithm, and they displayed a

similar small drop in performance relative to the MARL algorithm as was seen with Policies

1 and 5. Therefore, we do not depict the MAFRL results for Policies 2Ű4, since the drop in

performance with Policies 1 and 5 is representative of all the policies.

Fig. 5.4 does not provide insight about the fairness of the MARL and MAFRL algo-

rithms. Therefore, in Fig. 5.5 we examine the cumulative distribution functions (CDFs)

of the UEsŠ instantaneous SEs for the Ąve reward policies with Φ = 15, compared with

13The ŞGreedyŤ algorithm selects UEs with the highest RSS values for a given AP. This selection would be
the optimal one in terms of maximizing the sum SE if each AP only had one antenna and served a single UE
each [255]. However, it is no longer optimal when each AP has multiple antennas and serves multiple UEs,
and each UE is served by multiple APs. Instead, other factors such as the orthogonality between the channel
vectors of UEs must be considered, on account of the interference their signals cause on each other. A greedy
algorithm that maximizes the incremental SE provided by each UE it selects in succession can still provide
a near-maximal sum SE. However, using only RSS values, serving the UEs with highest RSS often results in
higher multiuser interference, and correspondingly lower sum SE.
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Figure 5.5: CDFs of UEsŠ instantaneous SEs for MARL and MAFRL algorithms with Φ = 15
under Ąve reward policies, compared with schemes from [211], [217], and [221]. ŞP1Ť: Max sum
SE policy having local and global penalties, ŞP2Ť: Max min SE policy, ŞP3Ť: ModiĄed max min SE
policy, ŞP4Ť: Hybrid policy, ŞP5Ť: Max sum SE policy having global penalty only. (a) UE SEs per
AP. (b) UE SEs summed over their serving APs.

the CDFs for the schemes from [211], [217], and [221]. Fig. 5.5(a) shows the UE SEs per

AP, whereas Fig. 5.5(b) shows the UE SEs summed over their respective serving APs. We

differentiate between the two because our RL reward policies apply separately at each in-

dividual AP, as do the power allocations from [221], whereas [211] and [217] apply more

to the system as a whole. We observe that Policies 1 and 5, which maximize the sum SE,

provide the highest median and 95th percentile total UE SEs in Fig. 5.5(b), as expected.

When each individual AP maximizes the SE of the UEs it serves, that also maximizes the

total SE they receive from all their serving APs. The MAFRL algorithmŠs CDF is slightly

to the left of the one for the MARL algorithm, reĆecting its slightly worse performance seen

in Fig. 5.4. The MARL algorithm under Policy 1 provides median and 95th percentile UE

SEs per AP of about 0.22 bits/s/Hz and 0.45 bits/s/Hz, respectively; the median and 95th

percentile of the UE total SEs are about 0.95 bits/s/Hz and 1.59 bits/s/Hz, respectively. In

comparison, the MAFRL algorithm under Policy 5 yields median and 95th percentile UE

SEs per AP of about 0.20 bits/s/Hz and 0.42 bits/s/Hz, respectively; for UE total SEs, they

are about 0.89 bits/s/Hz and 1.48 bits/s/Hz, respectively. We also note Policy 3 yields about

the same median SE as Policy 1.
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The results for Policy 2 are rather unusual compared to the other schemes. Fig. 5.5(a)

indicates that this policy results in the highest UE SEs per AP out of any of the schemes.

However, this is because under Policy 2, the APs only learn to serve a single UE each at a

time, and UEs are served by only one or two APs in total. This behaviour is largely due to

the fact that, although the reward of Policy 2 is based on the total SE a UE receives, each AP

does not know the speciĄc actions taken at other APs, only the net result of all those actions

(including its own). It therefore cannot properly differentiate whether or not the reward is

solely due to its own actions. This distinction is irrelevant when maximizing the sum SE as

in Policies 1 and 5, but is more important when maximizing the minimum SE. Note that the

policy does indeed achieve its goal of each AP maximizing the minimum SE provided to its

served UEs (its 5th percentile UE SE per AP is 0.14 bits/s/Hz), but it does so by allocating

all its resources to that single UE. This could potentially be problematic with more UEs in

the system. In examining Fig. 5.5(b), it can be observed that Policy 2 generally yields the

lowest total UE SEs out of our Ąve policies. However, the CDF of UE total SEs for Policy 2

is also one of the steepest out of our Ąve policies, meaning that it provides lower variation

/ more uniformity in total SEs among the UEs.

In comparison, the modiĄcation made in Policy 3 allows the agents to learn to serve

multiple UEs, and also results in the highest of the minimum total UE SEs out of all the

examined schemes. The 5th percentile total UE SE of Policy 3 is about 0.55 bits/s/Hz.

This performance is achieved by trading off the SE given to the higher SE UEs; the upper

percentiles are worse for Policy 3 than for Policies 1 and 5. Like Policy 2, Policy 3 also has

a steep CDF, meaning that there again is lower variation / higher uniformity in total SEs

among the UEs.

The results for Policy 4 indicate that the hybrid reward function does not end up working

particularly well at either the lower or the upper end of the CDFs. Neither the sum SE nor

the minimum SE ends up maximized. However, Policy 4 does in general perform better than

Policy 2 in terms of total UE SEs; their CDFs cross each other at about the 35th percentile.

127



Policy 4 provides better performance at the middle and upper end of the CDFs, whereas

Policy 2 provides better performance at the lower end. We Ąnally note that in regard to

our policies, much like for Policies 1 and 5, the MAFRL algorithm provides slightly worse

performance than the MARL algorithm under Policies 2Ű4 as well. (We do not depict the

MAFRL algorithmŠs performance with Policies 2Ű4 in Fig. 5.5 in order to avoid obscuring

the other results.)

In terms of instantaneous SE performance, among the reference algorithms, the modiĄed

RL-based algorithm from [221] provides the highest SEs. Its performance for instantaneous

SE per AP in Fig. 5.5(a) is quite close to that of MAFRL under Policy 5, but with a somewhat

fairer (less varied) distribution of SEs among UEs. This is likely an indication of the power

allocation part of the scheme from [221] diverting power from certain UEs and APs to other

ones. The results for SE summed over all APs in Fig. 5.5(b) show more of a difference

between the MAFRL algorithm and the modiĄed method from [221]; the summed SEs

provided by the former are larger than those of the latter, even for low-SE UEs. This indicates

that the modiĄed scheme from [221] likely allocates most power to a UE at a single ŞbestŤ

AP, and signiĄcantly less at other APs. In both Figs. 5.5(a) and (b), the SEs provided by

the MARL algorithm under Policy 1 are higher than those provided by the modiĄed scheme

from [221] across almost the entire distribution. It can lastly be observed from Fig. 5.5 that

the CDFs for the schemes from [211] and [217] lie mostly to the left of those of our MARL

and MAFRL algorithms. The exception is at the bottom-left of the UE total SE CDFs;

those two schemes provide better lower total UE SEs than our Policies 2 and 4. Hence, the

schemes from [211] and [217] provide the lowest SEs to most of the UEs out of any of the

examined schemes. This reĆects the fact that those two schemes also provide the lowest

sum SE for the system, as seen in Fig. 5.4.

The convergence of the MARL algorithm can be proven following steps similar to those

in [247]. Similarly, [256] provides upper bounds on the convergence rate of FL when global

NN updates are calculated as the average of the local NN weights. It is therefore unnecessary
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Table 5.1: Sum SE for Φ = 10, Max Sum SE Policies, and Varying Number of Training Episodes

Number of training
episodes

MARL Policy 1 Sum SE
(bits/s/Hz)

MAFRL Policy 5 Sum SE
(bits/s/Hz)

500 10.6 11.1

1000 12.5 12.7

1500 14.2 14.2

2000 14.7 14.5

2500 17.7 16.3

3000 16.9 16.8

3500 17.9 17.2

4000 18.2 17.2

4500 18.2 17.3

5000 18.3 17.3

to duplicate such proofs of convergence here. Instead, in Table 5.1, we compare the MARL

and MAFRL performance with Φ = 10 and their max sum SE policies when varying the

number of training episodes, to investigate how many episodes are required for the NNs to

converge. From the results, we observe that the MARL sum SE oscillates initially, but slowly

it stabilizes around 18.2−18.3 bits/s/Hz after about 4000 episodes. The same oscillatory

behaviour is seen with the MAFRL algorthm, but it too stabilizes after roughly the same

amount of training, this time to around 17.2−17.3 bits/s/Hz. The convergence with Policies

2Ű4 is similar for both algorithms.

We have also observed that a UE is served by a mean of 3.82 APs with a standard devia-

tion of 0.52 by the MARL algorithm under Policy 1; the results for the MAFRL algorithm

under Policy 5 are similar. Under Policy 3, UEs are served by a mean of 3.8 APs with a

standard deviation of 0.35 by the MARL algorithm, whereas under Policy 4, UEs are served

by a mean of 3.76 APs with a standard deviation of 0.68 by the MARL algorithm. Hence,

Policies 3 and 4 are comparable in this regard to Policies 1 and 5, but with Policy 3 having

a bit less variation, and Policy 4 a bit more. In sharp contrast, under Policy 2, UEs are only
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Figure 5.6: Average sum SE performance of MARL and MAFRL algorithms under max sum SE
policies with several values of Φ, max min SINR strategy from [211], κ-means clustering ML al-
gorithm from [217], and modiĄed RL-based power control algorithm from [221], when the AP lo-
cations during testing differ from those during training. Arrows show drop in MARL performance
compared to when the training and testing environments match; performance of MAFRL algorithm
is mostly unaffected. Performance of ŞAllŤ strategy also shown for reference. ŞP1Ť: Max sum SE
policy having local and global penalties, ŞP5Ť: Max sum SE policy having global penalty only.

served by a mean of 1.71 APs, with a standard deviation of 0.24, for the reasons explained

earlier. We have additionally conĄrmed that the set of APs that serves each UE changes

as the UEs move through the coverage area. This further demonstrates that the proposed

MARL and MAFRL algorithms can indeed properly handle UE mobility while ensuring

near-optimal performance, enabling UEs to be connected to 4 APs most of the time (with

the exception of Policy 2).

Up to now, the results have suggested that the MARL algorithm outperforms the MAFRL

algorithm. This is indeed true when the algorithms are used in the exact same environment

they are trained in. However, we next consider a scenario where, after training, the algo-

rithms are transferred to a different environment where the APsŠ locations are different than

those during training. SpeciĄcally, both the APsŠ and UEsŠ initial locations are randomized,

with the results averaged over 400 test cases. This lets us examine how well the algorithms

transfer their learning. Fig. 5.6 shows the performance of the MARL and MAFRL algo-

rithms with max sum SE policies, where it can be observed that the MAFRL algorithm now
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has a signiĄcant advantage. The performance of the MARL algorithm drops considerably

in the new environment, between about 1.9 to 4.2 bits/s/Hz, or by 10−27%, compared to

its performance in the training environment. In contrast, there is almost no change in the

MAFRL performance. Its sum SE drops by at most about 0.2 bits/s/Hz, which is too small

for a clear depiction in the Ągure. Thus, the MARL algorithmŠs performance can be highly

dependent on the agentsŠ locations. The Φ = 5 case is particularly vulnerable, because the

chosen UEs in that case tend to be those closest to the AP. As such, the agents do not get as

broad a sense of the overall UE conditions as they do with higher values of Φ. For the refer-

ence algorithms, the scheme from [211] experiences no change in the different environment,

which is understandable Ů its max min SINR metric considers the global environment to

begin with. There is also a very small drop in the performance of the scheme from [217]

in the new environment, just sightly larger than for our MAFRL algorithm. However, there

is a signiĄcant dependency14 of the modiĄed deep RL-based algorithm from [221] on the

training environment similar to that of our MARL algorithm. Consequently, that scheme

also sees a similar loss in performance in the new environment like our MARL algorithm

does.

We next are interested in examining how fast the UEs can move before the performance

of our algorithms signiĄcantly deteriorates. The sum SE performance for UE speeds of

v = {1, 1.5, 2, 2.5, 5} m/s is depicted in Fig. 5.7. The Ąrst four values cover the range of

walking to jogging, while the highest speed that we considered corresponds to a fast run or

leisurely bicycle ride. Importantly, the results shown are all for our algorithms having been

trained using a UE speed of 1 m/s, but tested on different speeds. We do not show results

for the other reference algorithms in this case, because as they do not explicitly account for

UE mobility, their performance does not change signiĄcantly at the tested speeds; there is

just a slight degradation in performance as v increases. From Fig. 5.7, it can be observed

that there is no signiĄcant change in the performance of our algorithms up to v = 2.5 m/s.

14The authors of [221] have noted this dependency on the training environment in their paper. Their results
have circumvented the issue by using data from multiple environments when training.
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Figure 5.7: Average sum SE performance of MARL and MAFRL algorithms with Φ = 15 and
several values of UE speed v, having been trained at 1 m/s. ŞP1Ť: Max sum SE policy having local
and global penalties, ŞP2Ť: Max min SE policy, ŞP3Ť: ModiĄed max min SE policy, ŞP4Ť: Hybrid
policy, ŞP5Ť: Max sum SE policy having global penalty only.

At 2.5 m/s, the drop in performance relative to 1 m/s is less than 1%. It is only at v =

5 m/s that a notable deterioration in performance can be seen. In this case, the sum SE

drops by about 5−6% for all of the reward policies. Even still, the performance of our

MARL algorithm under Policy 1 (18.2 bits/s/Hz at 5 m/s) remains higher than that of the

next-best algorithm from [221] (17.6 bits/s/Hz, as seen in previous Ągures.) The MAFRL

performance at 5 m/s under Policy 5 (17.4 bits/s/Hz) is also only slightly worse. We have

additionally examined the case of our proposed algorithms being both trained and tested at

v = 5 m/s. In this event, the algorithmsŠ performance returns to the same as if they were

both trained and tested at 1 m/s. Moreover, training at 5 m/s and testing at 1 m/s again results

in a decline in performance; the MARL performance under P1 drops to 18.9 bits/s/Hz, for

example. This indicates that the degradation in performance is a result of the mismatch

between the training and testing environments (much like what was seen in Fig. 5.6), rather

than an inability of the proposed algorithms to handle higher UE speeds. It also suggests

that training with a variety of UE speeds ought to result in a bit better performance.

Next, we investigate the impact of varying the ratio of the total number of antenna ele-

ments at the APs to the number of UEs on the sum SE performance. For this, we examine
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the sum SE performance for two different scenarios: a) varying the number of antennas

N per AP while keeping the number of UEs Ąxed, and b) varying the number of UEs K

while keeping the number antennas per AP Ąxed. The performance when varying N is

illustrated in Fig. 5.8(a). We vary N from 2 to 6, and compare the performance of the

MARL and MAFRL algorithms with the Ąve reward policies, both using Φ = 15, against

the same existing strategies as in Fig. 5.4. We observe that the performance of both our

proposed algorithms under Policies 1 and 5 is very close to the maximum performance of

the ŞAllŤ case whenN = 2. This is understandable because for smaller antenna array sizes,

the agents/APs serve fewer UEs; thus, the likelihood of making an optimal UE selection is

considerably higher since the search space is much smaller. For N = 2, the MAFRL and

MARL algorithms obtain about 97−98% of the maximum possible SE of the ŞAllŤ strat-

egy, whereas for N = 3, they obtain about 91−92%. For larger values of N , the slopes

of the curves stabilize, such that the SE obtained by our algorithms is consistently about

83−89% of the maximum. Compared to the modiĄed algorithm from [221], the perfor-

mance of MARL algorithm with Policy 1 is about 7−9% better for N ≥ 4. We again note

that our better performance is with equal power distribution among the UEs; the addition

of power allocation should further enhance the MARL (and MAFRL) performance. At the

same time, for N ≥ 4, the MARL algorithmŠs SE under Policy 1 is at least about 21−23%

larger than the other three reference algorithms, while the MAFRL algorithmŠs SE under

Policy 5 is about 17−19% larger. Policies 3 and 4 provide about the same sum SE as each

other (Policy 3 is marginally better) and their performance improves with N at about the

same rate as Policies 1 and 5. Policy 2 continues to have the worst performance among our

reward policies, though it remains better than that of all the reference schemes other than

the modiĄed one from [221]. Interestingly, although not depicted in the Ągure, we have

observed that the performance of Policy 2 improves slower with N when Φ = 10 is used,

such that the scheme from [211] catches up at N = 6 in that case.

The performance when varying the number of UEsK is illustrated in Fig. 5.8(b). In this
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Figure 5.8: Average sum SE performance of MARL and MAFRL algorithms with Φ = 15 and
varying ratios of total number of AP antennas to number of UEs. Performance is compared against
ŞAllŤ and ŞGreedyŤ strategies, max min SINR strategy from [211], κ-means clustering ML algorithm
from [217], and modiĄed RL-based power control algorithm from [221]. ŞP1Ť: Max sum SE policy
having local and global penalties, ŞP2Ť: Max min SE policy, ŞP3Ť: ModiĄed max min SE policy,
ŞP4Ť: Hybrid policy, ŞP5Ť: Max sum SE policy having global penalty only. (a) K = 20 UEs,
varying numbers of antennas per AP (N ). (b) N = 4, varying number of UEs (K).

case, we vary the number of UEs from 8 to 32 in steps of 8; we also include the previous

results for 20 UEs. The relative performance of all the compared algorithms remains the

same as in Fig. 5.8(a). Moreover, the rate in increase of SE with K for the SE-maximizing

algorithms is roughly the same among that group, as is the rate of increase among the max-

min SE algorithms. Unsurprisingly, the SE grows slower with K for the latter group than

it does for the former. This simply reĆects that the SE-maximizing algorithms can better

exploit multiuser diversity. In contrast, the max-min SE algorithms have to trade off some
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total SE to improve the performance of additional UEs in the system in relatively poorer

channel conditions; hence, their sum SE cannot increase as quickly with K.

5.6 Summary

In this chapter, we have proposed MARL and MAFRL AP clustering algorithms for cell-

free massive MIMO systems. We have described the mathematical details for obtaining the

CSI and precoding vectors for each AP. The proposed algorithmsŠ performance has been

examined for Ąve reward policies and compared with several existing strategies. It has been

demonstrated that our MARL algorithm outperforms the other AP clustering strategies, and

achieves up to 88.3% of the maximum possible sum SE achievable if all APs were to serve

all UEs using centralized precoding. Our MAFRL algorithm performs slightly worse than

our MARL algorithm (about 5−10% lower SE) on account of trading off some localized

performance gains in favor of uniformly good performance across the entire coverage area.

However, that tradeoff also means the MAFRL algorithm can transfer its learning to different

environments much better than the MARL algorithm; the latter instead tends to develop

dependencies on the training environment. When the AP locations are different during

testing than they were during training, the MARL algorithm performance drops signiĄcantly

(up to 27% lower SE in one case), whereas the MAFRL performance is almost unchanged.

A similar but much smaller drop in performance (about 5−6%) occurs for both algorithms

when the UE speeds during testing differ signiĄcantly from those used for training (e.g., 5

m/s vs. 1 m/s or vice versa). The relative performances of all the examined algorithms also

remain about the same when the number of antennas per AP is equal to or greater than 4

and when the number of UEs varies between 8 and 32.
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Chapter 6

Machine Learning Assisted DL CSI

Estimation for High-Mobility

Multi-Antenna Users

6.1 Introduction

In current 5G systems, TDD mode is most commonly considered for massive MIMO sys-

tems to exploit radio channel reciprocity between the UL and DL. In TDD mode, the UEs

send pilot signals to the BSs, which use those pilots to estimate the UL channels. Thereafter,

the BSs use these estimates on the DL channel for purposes such as precoding [3]. Pilot

contamination is a known problem in massive MIMO systems [257], usually caused by an

insufficient number of orthogonal pilot sequences for all UEs in the system. As a result,

certain UEs must share pilot sequences, leading to interference in pilot transmissions be-

tween those UEs and corruption of their channel estimates. Moreover, it is most commonly

assumed in the massive MIMO literature that the UEs are equipped with a single antenna.

However, in practice it is quite common for modern cellphones to be equipped with multi-

ple receive antennas. A unique pilot sequence must be assigned to and sent from each UE

antenna in order to differentiate between them at the BS, which exacerbates the pilot con-

tamination problem. Furthermore, normally there are also power constraints on the signals

(including the pilots) sent by the UEs. For these reasons, the alternative of incomplete CSI

availability may be necessary, such as by UEs not sending pilots sequences from all their
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antennas. Also, the evolution from 5G to 5G-Advanced networks is expected to lead to bet-

ter user mobility support and higher power efficiency [258]. This too can be supported by

limiting the auxiliary transmissions used for CSI acquisition.

6.1.1 Background & Motivation

The related topic of acquiring CSI using methods with limited feedback (where the UE mea-

sures the DL channel and returns information about it to the BS) has been investigated in

numerous articles, e.g., [259Ű262]. In [259], sparse representation and compressive sens-

ing techniques are discussed. A modulation and beamforming technique has been developed

in [260] that exploits the spatial correlation between antennas. The authors of [261] have

proposed an antenna selection algorithm based on Thompson sampling and multi-armed

bandit ML, where CSI is only available for the selected antennas. [262] and several refer-

ences therein use deep learning techniques to create the feedback. Most existing methods

generally require some sort of processing or encoding of the CSI at the UE side to create

the appropriate type of limited feedback, and then decoding said feedback at the BS to ob-

tain the CSI. Understandably, it can be difficult to implement these schemes in a practical

network.

Moreover, many of these approaches are not suitable for mobile UEs where, along with

spatial correlation of channel gains between antenna elements, temporal correlation between

time instances is also involved. Compounded upon this is that in high-mobility scenarios,

the channel during the DL part of the TDD frame may no longer quite match the measure-

ments made during the UL part of the frame, if the channel changes quickly enough. These

changes should be accounted for and compensated for. Methods of estimating the CSI for

mobile UEs have been studied in prior literature, e.g., [263Ű266]. Many recent works (e.g.,

[267Ű270]) have considered various machine learning methods for high-mobility scenarios.

However, the combination of estimating the DL CSI of highly mobile multi-antenna UEs

in a massive MIMO system with limited CSI availability is something that has yet to be
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well studied. Upon surveying the literature, we have found only one closely similar work

[271], where the CSI has been estimated for single-antenna mobile UEs with partial CSI

acquisition of only a subset of BS antennas and TDD frames. In [271], temporal correlation

of CSI has been estimated using an autoregressive (AR) model, while complete CSI has

been estimated using a speciĄc spatial correlation model. A key limitation of that approach

is a lack of robustness of the authorsŠ proposed algorithm Ů the approach only applies to

the one speciĄc correlation model it is designed for. These challenges have motivated us to

employ a combination of ML techniques to create a robust algorithm that can be used with

multi-antenna UEs as well as with any spatial correlation model.

These challenges have led us to employ a combination of ML techniques to estimate DL

CSI while compensating for both the change in the CSI since the UL part of the TDD frame

and for incomplete CSI from multi-antenna UEs.

In this chapter, we consider limited CSI availability resulting from UEs sending pilots

from only a subset of their antennas. For the spatial dimension, we use a CGAN [67], a

promising ML framework, to estimate and interpolate the complete CSI for all UE antennas

from the information available. The problem of estimating complete CSI from partial CSI

is similar to the problem of complete image generation from a masked image [272, 273].

It has been observed that CGANs perform quite well for this type of problem [274], which

has motivated us to employ a CGAN in our scenario. For the temporal dimension, we use

LSTM cells, a type of recurrent neural network, to capture the temporal correlation from

past UL CSI measurements and predict the CSI at the time of DL transmission. Earlier work

has shown that LSTM is very effective for time-series forecasting problems in capturing

the dependency between values from different time instances [275, 276]. More recently, a

combination of LSTM and CGAN has been employed to generate replicated network attacks

[277], which further proves the robustness of the CGAN and LSTM approach. Finally,

using simulations, we evaluate the performance of the proposed ML-assisted CSI estimation

method using NMSE and sum SE metrics.
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6.2 Channel Dataset Generation Methodology

Our massive MIMO system model is largely based on the one in [278]. We assume a single-

cell massive MIMO network where the BS is equipped with M antennas and serves K

UEs (with M≫K), each equipped with N antennas. Each UE is mobile and moves in a

straight line at a constant speed. We assume the channels undergo spatially and temporally

correlated Rayleigh fading. The UL channel gain matrix Gk ∈ C
M×N between UE k and

the BS can be deĄned as

Gk =
√︁
βk R

1/2
b,k Gw,kR

1/2
u,k , (6.1)

where Rb,k ∈C
M×M is the spatial correlation at the BS side and Ru,k ∈C

N×N is the spa-

tial correlation at UE kŠs side. Gw,k ∈C
M×N represents the Rayleigh small-scale fading

channel between the BS and UE k, with each element having an independent and identi-

cally distributed (i.i.d.) zero-mean, unit-variance, circularly-symmetric complex Gaussian

distribution. βk includes the large-scale fading parameters for UE k, i.e., path loss and

lognormal shadow fading. It is assumed UE k knows its covariance matrix Ru,k. Let the

eigen decomposition of Ru,k be denoted UkΛkU
H
k , where Uk ∈C

N×N is a unitary matrix

containing the eigenvectors and Λk ∈R
N×N is a diagonal matrix containing the associated

eigenvalues.

For complete pilot-based CSI acquisition at the BS, τ = KN orthogonal pilot sequences

of length τ are required. Let us assume that the pilot sequence matrix for UE k is Fk ∈

C
N×τ , and the maximum pilot transmit power for UE k is ρk. Under the power constraint

for pilot transmission tr(FkF
H
k ) ≤ τρk, we assume the pilot matrix has the form Fk =

UkL
1/2
k VT

k , where the diagonal matrix Lk ∈ R
N×N deĄnes how the power is distributed to

theN dimensions, andVk ∈ C
τ×N satisĄesVH

k Vk = τIN andVH
k Vℓ = 0N if k ̸= ℓ [278].

From [279], this form for Fk minimizes the mean squared error of the channel estimation.
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The exact CSI can be expressed as [278]

Hk =
√︁
βk R

1/2
b,k Gw,kUk⏞ ⏟⏟ ⏞

H̄k

, (6.2)

where H̄k represents the spatially-correlated small-scale part of the CSI. Under a temporal

AR model for the CSI, we assume the matrix given by (6.2) is the initial value. We then use

an AR model to generate the small-scale part of the CSI for successive time instances. For

an AR(P ) process of order P , the small-scale part of the CSI at a given time instance can

be modeled as a function of that of the P previous time instances [280, 281]:

h̄
(t)
k =

P∑︂

p=1

Φp,kh̄
(t−p)
k +wk, (6.3)

where h̄
(t)
k = vec(H̄

(t)
k ) is the small-scale part of the CSI at time instance t, Φp,k is the pth

AR coefficient for UE k, and wk ∼ CN (0, σ2
k(IN ⊗Rb,k)) is the innovation process [281].

Note that the AR(P ) process for UE k involves P+1 unknowns: the P AR coefficients

Φp,k and the variance σ2
k of the innovation process. We use the Yule-Walker equations

method to derive the values of these unknowns [282]. The Yule-Walker equations can be

represented in vector-matrix form by

[Rk(1) Rk(2) · · · Rk(P )]
T = Rk[Φ1,k Φ2,k · · · ΦP,k]

T , (6.4)

where

Rk =

⎡
⎢⎢⎢⎢⎢⎢⎣

Rk(0) Rk(1) · · · Rk(P − 1)

Rk(1) Rk(0) · · · Rk(P − 2)
...

...
. . .

...

Rk(P − 1) Rk(P − 2) . . . Rk(0)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6.5)

Here,Rk(p) is the temporal autocorrelation function (ACF) between the CSI at time instance

t and t−p. For a Rayleigh fading channel, the ACF is given by [283]

Rk(p) = J0(2πpfD,kTs), p ≥ 0. (6.6)

J0(·) is the zero-order Bessel function of the Ąrst kind, Ts is the sampling period, and fD,k

is the Doppler frequency shift for UE k, given by fD,k = vkfc
c

; vk is the speed of UE k, fc
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is the carrier frequency, and c is the speed of light. The AR coefficients are obtained by

solving (6.4), after which σ2
k is found by

σ2
k = Rk(0)−

P∑︂

p=1

Φp,kRk(p). (6.7)

Plugging these values into (6.3), the small-scale part of the CSI for P successive time in-

stances can then be generated.

Meanwhile, the two components of the large-scale fading βk are updated separately. The

path loss at time instance t is updated based on UE kŠs distance dk to the BS at that time.

The lognormal shadowing componentΩ(t)
k with standard deviation σΩ is updated using Gud-

munsonŠs exponential correlation model [284, Ch. 2.6.1],[285]:

Ω
(t)
k [dB] = ζk Ω

(t−1)
k +

√︂
1− ζ2k v

(t)
k , (6.8)

where vk is an independent zero-mean Gaussian random variable with the same standard

deviation σΩ. ζk is the shadowing correlation parameter for UE k, given by

ζk = exp(−∆k/dcorr), (6.9)

where ∆k is the distance UE k moves between time instance t−1 and t, and dcorr is the

shadowing correlation distance of the environment.

The UL CSI for the UEs is estimated at the BS using the received pilot transmissions.

The pilot signal Y∈C
M×τ received at the BS can be expressed as

Y =
K∑︂

k=1

Yk =
K∑︂

k=1

GkFk +N =
K∑︂

k=1

Hk(ΛkLk)
1/2VT

k +N, (6.10)

where N∈C
M×τ is a noise matrix with each entry being i.i.d. complex Gaussian with zero

mean and variance σ2
n. The minimum mean squared error (MMSE) estimate of the CSI

ĥk = vec(Ĥk) for UE k is given by [278, 279]

ĥk =
(︁
(ΛkLk)

1/2 ⊗Rb,k

)︁(︂
(ΛkLk)⊗Rb,k +

σ2
n

τ
IMN

)︂−1

bk, (6.11)
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where bk = vec( 1
τ
YkV

∗
k). For UEs that do not send pilot sequences from all their antennas,

the columns of their CSIHk and Ĥk corresponding to the antennas without pilots have those

values set to all zeros.

Lastly, we deĄne Ĥ
(t)

= [Ĥ
(t)

1 , Ĥ
(t)

2 , . . . , Ĥ
(t)

K ] ∈ C
M×KN as the joint CSI matrix for all

UEs at time instance t. Such joint matrices for multiple consecutive values of t act as the

inputs to our ML algorithm.

6.3 Machine Learning Framework

In this section, the CGAN-LSTM-based ML architecture is discussed. The CGAN is used

to capture the spatial correlation between BS and UE antennas, and to generate and inter-

polate for the CSI missing from UE antennas that donŠt send pilot sequences. Meanwhile,

the LSTM network is used to capture the spatio-temporal correlation1 between CSI at dif-

ferent time instances and UE locations. Before going into the details of the neural network

architecture, we Ąrst provide a brief overview of LSTM methods.

In Chapter 4, we successfully used a CGAN algorithm to perform CSI estimation for

the DL of a frequency-division-duplex massive MIMO system based on the UL CSI. This

has motivated us to employ the same architecture for this problem as well. Details of the

CGAN architecture and the method of converting CSI to images and back are identical to

that in Chapter 4. The key difference now is that the input to the CGAN generator is images

with data missing/masked out from certain pixels (corresponding to UE antennas without

pilots), and the discriminator is trained using complete images.

6.3.1 LSTM Overview

LSTM networks have been developed to handle time-series data where correlation between

data at nearby time instances exists [287]. Within this context, the architecture of an LSTM

1If there is low or no correlation between the various variables in question, then no estimation or prediction
method of any kind would work well, since the information the system has would say next to nothing about
the information that is missing.
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Figure 6.1: Block diagram of LSTM unit (cf. [286]). The addition, multiplication, tanh(·), and
sigmoid (σ(·)) functions operate on a per-element basis.

network can learn this data correlation over time, thus giving it the ability to predict future

data based on previous observations. LSTM networks have been used to solve several com-

munication problems involving sequential data, e.g., [288, 289]. An LSTM unit (depicted

in Fig. 6.1) contains several computational blocks known as gates that control and track the

Ćow of information over time. t and t−1 respectively denote the current and previous time

instances. et ∈ R
F denotes the current input2 (a.k.a. ŞeventŤ), where F is the number of

ŞfeaturesŤ of the input (e.g., the number of channel gain values). ct−1 and ct are respec-

tively the previous and current long-term memory states, and st−1 and st are respectively

the previous and current short-term (hidden) memory states; all four have lengthL, which is

also the length of the output vector of each LSTM unit. σ(·) is a sigmoid function, speciĄ-

cally, the logistic function σ(x) = 1
1+e−x . The various matrices W∈R

U×(U+F ) and vectors

b∈R
U are weights and bias values, respectively. The concatenate operation on the left side

of Fig. 6.1 vertically stacks st−1 and et.

The input gate and candidate state c̃t together determine which parts of the information

are relevant. The forget gate determines what information to keep as long-term memory.

2This can also be a matrix Et ∈ R
F×B , if the network processes data in batches of size B. The other

vector variables then also become matrices accordingly.
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Those three components contribute to update the long-term memory ct, after which the

output gate determines the updated short-term memory st. Due to space and novelty con-

siderations, for a more detailed description, we refer the reader to [286]. In this chapter, we

have considered the traditional architecture of the LSTM unit. More recently, the interaction

between the gates of the LSTM unit have been modiĄed and the results thereof investigated

[290].

Table 6.1: Parameters of ML Neural Networks

CGAN

Type of network Convolutional

Input/output size M×M×3

Kernel size 4×4

Stride size 2×2

Number of layers (generator) 7 encoder, 7 decoder

Number of layers (discriminator) 5 (encoder)

Number of Ąlters per layer
(generator encoders)

64, 128, 256, 512, 512, 512, 512

Number of Ąlters per layer
(generator decoders)

512, 512, 512, 512, 256, 128, 64

Number of Ąlters per layer
(discriminator)

64, 128, 256, 512, 512

Activation functions
Leaky ReLU [183] (encoders),

Normal ReLU (decoders)

LSTM

Number of features (F ) 2MNP

Number of LSTM units (U) 300

Input size of dense layer L×1 with L = 300

Output size of dense layer 2MN×1

Dense layer activation function Leaky ReLU
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Figure 6.2: Block diagram of CGAN-LSTM-based algorithm for DL CSI estimation. The algorithm
works on image pixel values; CSI data matrices are converted to images before the depicted functions,
then back to data matrices afterwards. There may alternatively be K identical copies of the LSTM,
dense, and reshape layers, with the UE vectors processed in parallel instead of serially.

6.3.2 Overall ML Structure

The overall ML architecture of our CGAN-LSTM-based method is illustrated in Fig. 6.2,

while Table 6.1 summarizes the various parameters of the neural networks. The CGAN and

LSTM portions are trained separately; thereafter, they are combined to estimate the CSI at

the P th time instance. The reason for training the CGAN and LSTM parts separately is due

to the unavailability of a suitable loss function to train both together. Once complete CSI

for t=0 to P−1 is generated by the CGAN, the CSI is split into the matrices for each UE,

which are vectorized and sent to the LSTM layer. The LSTM layer and dense layer estimate

the CSI for time instance P . To train the LSTM and CGAN, we use an Adam optimizer with

a learning rate of 0.001 [291]. The reshape layers convert length-2MN vectors back to two

M×N matrices (the real and imaginary parts of the CSI). Lastly, the M×N×2 outputs

are concatenated along the 2nd dimension to obtain two M×KN matrices, the real and

imaginary parts of the estimated joint CSI matrix H̃
(P )

for all UEs at time instance P .

6.4 Simulated Performance Evaluation

For performance evaluation, we simulate a circular cellular area with a 500 m radius. The

number of BS antennas is varied, with default valueM =128, whereas the UEs have a con-

stant N =4 antennas. We consider a carrier frequency of fc =2 GHz, channel bandwidth

of 20 MHz, and two values for the sampling period Ts: 10 µs and 1 ms. We use the ex-

ponential correlation model from [292] for Rb,k and Ru,k with a correlation coefficient of
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0.4ejθb,k and 0.4ejθu,k , where both θb,k and θu,k are distributed ∼ U [0, 2π). For large-scale

fading, we follow the urban microcell non-line-of-sight (UMi NLoS) model in [285]. Thus,

the large-scale fading is given in dB by Λk =36.7 log10(dk)+ 30.5+Ωk, with dk in m, and

Ωk having σΩ = 4 dB and correlation distance dcorr =13 m; βk is then given by 10−Λk/10.

The BS height is assumed to be 10 m when calculating dk. The BS transmit power is 100

mW and the noise power is σ2
n = − 94 dBm. For simplicity, power at each UE is allocated

equally to all pilot signals, such that each pilot has power ρk/4=0.25 mW.

The training and test datasets consist of 500 and 100 independent episodes, respectively.

In each episode, K = 10 UEs are initially placed uniformly over the cell area outside of a

circular exclusion area with radius 70 m centered on the BS. Each UE direction is uniformly

and isotropically random with a speed chosen at random uniformly between 30Ű50 km/h.

The UEs move in a straight line afterwards, with the movement wrapped around the edges

of the simulation area. Complete CSI for P+1 time instances (t=0 to P ) is generated using

the methodology described in Section 6.2. Partial CSI is created by assuming 2 to 4 out of

the 10 UEs3, chosen uniformly randomly, each alternate between sending pilots only from

antennas #1 and #3, then #2 and #4, in successive time instances. The CGAN is trained

with corresponding pairs of partial and complete CSI, whereas the LSTM is trained just

with complete CSI. Importantly, note that when training the CGAN, the matrices need not

follow a speciĄc order, but when training the LSTM network, the CSI for each UE must be

ordered chronologically. Both the CGAN and the LSTM network are trained for 40 epochs.

In Fig. 6.3, the NMSE performance of our proposed CGAN-LSTM method is evaluated.

We have plotted the NMSE values for the CGAN-generated CSI as well as the NMSE values

of the complete algorithm to investigate which component generates the most error. The

3Only 2 to 4 UEs are chosen to ensure that enough of the CSI image remains for the CGAN to process.
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Figure 6.3: NMSE performance of CGAN component alone and of CGAN-LSTM algorithm when
an AR(P ) process is assumed for the LSTM network. Lower orange bars represent Ts = 10 µs;
higher blue bars represent Ts = 1 ms.
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where H̃
(P )

k is the CGAN-LSTM estimated CSI and Ĥ
(P )

k is the MMSE value of the com-

plete CSI, both at time instance P , and H̆
(p)

k is the CGANŠs generated CSI for time instance

p. The results are generated for varying M and P in the LSTM network. We observe that

the NMSE worsens if smaller values of P are used. Please note that CSI for testing is gen-

erated always using an AR(10) process, creating CSI for 11 time instances. However, for

training and testing the LSTM, we use CSI from the previous P instances. (For example, for

P =2, test CSI is from time instance 11 and training CSI is from time instances 9 and 10).

The results also show that with Ts =10 µs, the largest portion of the error generally comes

from the CGAN module. With P = 10, the CGAN accounts for about 51−72% of the

NMSE. However, for P =2, this drops to about 39−64%, meaning the LSTM component

contributes proportionally more to the increasing NMSE as P decreases. Upon increasing

Ts to 1 ms, the NMSE of the CGAN is essentially unaffected, as expected, since the CGAN

only estimates missing spatial data for the UE antennas. In contrast, the LSTM contribu-

147



Table 6.2: NMSE for U = 300 LSTM cells, M = 128, Ts = 10 µs, and varying depth D of LSTM
layers

LSTM layer depth (D) NMSE LSTM layer depth (D) NMSE

1 0.0315 5 0.0346

2 0.0316 6 0.1249

3 0.0322 7 0.1327

4 0.0328 10 0.1581

tion to the overall NMSE increases, again as expected due to the decrease in the correlation

of CSI realizations spaced further apart in time. With Ts =1 ms and P =10, the CGAN

now only accounts for about 43−67% of the total NMSE. Overall, the NMSE is quite low,

though it increases withM . This behavior is simply a byproduct of the larger matrices being

estimated; the more matrix entries with errors in there are in total, the larger the NMSE will

be.

To potentially increase the processing speed, we have investigated varying the depthD of

the LSTM layers (a.k.a. stacked LSTM [293]) while keeping the total number of LSTM cells

Ąxed. Table 6.2 shows the NMSE performance of our algorithm at various layer depths. We

observe that increasing the depth beyond 5 results in signiĄcant performance degradation

due to a decreasing number of LSTM layer outputs being mapped in the dense layers. (For

depth D, the mapping is from L/D values to 2MN output nodes.) The same performance

trend with D occurs for other values of M and Ts. As the best result is obtained for a depth

of 1, we continue to use that depth for the remainder of the performance evaluation.

In Fig. 6.4, the DL sum SE for varying M is examined, where the BS is assumed to

use matched Ąltering (MF) precoding [278, Eq. (17)Ű(18)] and equal power allocation to

all UEs. We compare the performance of our proposed CGAN-LSTM algorithm with that

of having the complete MMSE CSI estimate for time instance P , the method from [271],

and mean CSI inĄlling. Mean CSI inĄlling means that rather than use the CGAN, the BS

Ąlls in the missing CSI for a UE using the mean of the available CSI for its antennas. The
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Figure 6.4: DL sum SE performance for MF precoding, comparing complete CSI, our CGAN-LSTM
algorithm, the method from [271], and mean CSI inĄlling. Higher purple bars represent Ts = 10
µs; lower blue bars represent Ts = 1 ms. (Complete CSI is the same for both values of Ts.)
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Figure 6.5: DL sum SE performance for BD precoding, comparing complete CSI, our CGAN-LSTM
algorithm, the method from [271], and mean CSI inĄlling. Higher purple bars represent Ts = 10
µs; lower blue bars represent Ts = 1 ms. (Complete CSI is the same for both values of Ts.)

results demonstrate that for Ts = 10 µs, our CGAN-LSTM-based algorithm achieves about

91−92% of the maximum achievable sum SE when the complete MMSE CSI is available.

We also observe that our CGAN-LSTM-based algorithm has a superior performance of

about 12−21% higher than mean CSI inĄlling and about 5−9% higher than the method

from[271]. For Ts = 1 ms, our algorithmŠs performance relative to having complete CSI

drops to about 83−84%. However, our performance relative to the other two methods im-

proves slightly (about 15−28% higher than mean CSI inĄlling and about 6−12% higher

than the method from[271]).

More complicated methods of MIMO precoding are known to be more sensitive to CSI

errors. Hence, in Fig. 6.5, we also examine the DL sum SE performance of the various
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schemes using block-diagonalization (BD) precoding [294] (an extension of zero-forcing

precoding for multi-antenna UEs). Interestingly, the simulation results show that although

all the SEs increase compared to MF precoding, the relative performance of our algorithm

vs. complete CSI is essentially unchanged from that in Fig. 6.4. Our algorithm also gains a

few more percentage points relative to the other two methods.

As a Ąnal note on complexity, our ML algorithm will initially have a fairly high com-

plexity when training. However, the sizes of the neural networks used are rather small (see

Table 6.1). Thus, when in standard operation, the complexity would be comparatively small

and capable of supporting real-time operation.

6.5 Summary

In this chapter, we studied a CGAN-LSTM-based algorithm for DL CSI prediction from par-

tial UL CSI for TDD massive MIMO systems with high UE mobility. We have described the

details to generate the CSI dataset and outlined the ML architecture. Our algorithmŠs perfor-

mance has been examined considering NMSE and DL sum SE metrics. It has been demon-

strated that our algorithm achieves low NMSE for its estimates, outperforms the method

from [271], and achieves about 91−92% and 83−84% of the maximum possible DL sum

SE for CSI sampling periods of Ts = 10 µs and 1 ms, respectively.
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Chapter 7

Conclusion

In this chapter, we will discuss some key take-aways of this dissertation and a few promising

areas for future work.

7.1 Summary of Contributions

In Chapter 3, we have considered the downlink of a HetNet with massive MIMO MBSs

and developed a placement strategy of single-antenna SBSs correlated with the placement

of MBSs. Using StoGeo methods, we have developed the analytical model of the HetNet

and derived expressions for several performance metrics, i.e., coverage probability, average

achievable user rate, and the complementary cumulative distribution function (CDF) for

user rates (a.k.a. rate coverage). As part of this process, we have also derived the distribu-

tions for the distance between the typical user and its closest SBS, and the distance between

the MBS and SBS that are closest to the user. SpeciĄcally, the contributions of this chapter

are:

• We have developed a StoGeo-based analytical framework for the HetNet with SBSs

placed at the vertices of the macrocells. We have also derived the distribution of the

distance from the typical user to its closest vertex in a Poisson-Voronoi tessellation.

We have also provided two different point process approximations for the placement

of SBSs, a simple PPP-based approximation, and a more complicated β-GPP approx-

imation. The latter captures the effect of correlated placement of SBSs.
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• We have provided the empirical distribution of the distance between the seed of a

Poisson-Voronoi cell and the vertex that is the nearest to the origin of the plane. In

the context of a HetNet, this represents the distance between the MBS and SBS that

are nearest to the typical user. We have also derived closed-form expressions of the

distance distributions for the PPP and β-GPP approximations.

• We have derived analytical expressions for the user association probability, where the

association policy is based on the highest biased average received power. We have

also derived expressions for the coverage probability and rate coverage.

• We have examined the coverage probability and rate coverage performance of the pro-

posed HetNet model and its approximations when varying several network parame-

ters. Our results indicate an improvement of up to 21% in the coverage probability

and up to 28% in the rate coverage compared to the reference SBS placement scheme

used in [105], and at least 1.4 times higher coverage probability and 1.22 times higher

rate coverage than [39].

In Chapter 4, we have developed a CGAN system for DL channel information estima-

tion from UL channel information using two methods, one using DL CCM estimation and

another using DL CSI estimation. SpeciĄcally, the contributions of this chapter are:

• We have developed a CGAN framework for DL CCM/CSI estimation from UL CCM/CSI.

We have also provided a methodology to convert the UL and DL CCMs and CSI to

images that are used to train and operate the CGAN. Furthermore, we have modiĄed

the CGAN structure from our earlier work in [25] to improve its operation.

• We have described the analytical details of determining exact CCMs when the mean

AoA and angular spread are known. We have also described how to estimate the CCM

from the CSI if these parameters are unavailable.

• We have evaluated by simulation the NMSE performance of the proposed CGAN
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against existing CCM mapping algorithms for both perfect and imperfect CCM knowl-

edge and observed a signiĄcant reduction in NMSE with our method. We have also

evaluated both the NMSE and SE performance for CSI estimation and compared it

against a typical DNN. In this latter case of CSI estimation, we have performed the

evaluation using both simulated and measured CSI data.

In Chapter 5 we have developed conventional and federated multi-agent reinforcement

learning for AP clustering in cell-free massive MIMO systems. The speciĄc contributions

of this chapter are:

• We have developed a MARL framework for AP clustering in an environment with

mobile (i.e., non-stationary) UEs. We have considered UE mobility at pedestrian

speeds when creating the simulation environment. We have formulated the problem

as a Markov game and then solved it using the Şdecentralized actor, centralized criticŤ

variant of reinforcement learning. We have developed multiple reward policies to

incorporate fair performance.

• We have extended the MARL system to a MAFRL system by introducing FL features.

We have described how implementing a MAFRL-based solution can further reduce

the communication overhead fronthaul load.

• We have examined the performance of the proposed actor-critic MARL and MAFRL

algorithms for UE association and AP clustering via simulations. We have also com-

pared the SE of the MARL and MAFRL algorithms with those of greedy-based AP

clustering, ML-based clustering algorithms proposed in [211] and [217], and a mod-

iĄed RL-based downlink (DL) power control algorithm from [221]. As part of this

examination, we have illustrated the differences in the performance obtained by ex-

tending our MARL algorithm to a MAFRL algorithm. We have demonstrated that

the MAFRL performance is somewhat inferior to that of the MARL algorithm in the

trained environment, but the MAFRL algorithm also transfers its learning to new en-
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vironments more readily and without a notable performance loss, in contrast to the

MARL algorithm.

In Chapter 6 we have developed an ML-based system for DL CSI estimation when users

are moving at vehicular speed and limited UL CSI is available at the BS. We have assumed

that the BSs are equipped with a massive MIMO antenna array and TDD mode of commu-

nication is used. SpeciĄcally, the contributions of this chapter are:

• We have developed an LSTM-based CSI prediction algorithm for mobile UEs where

DL CSI at a given time instance is predicted using UL CSI for earlier instances. This

algorithm is suitable when the entire CSI matrices are available for UEs.

• We have also developed a CGAN-based algorithm that can estimate and interpolate

the complete CSI matrix for all of a UEŠs antennas given CSI for only some of its

antennas.

• We have combined the LSTM-based and CGAN-based algorithms to develop a frame-

work capable of predicting full DL CSI from partial UL CSI of high-mobility UEs.

• We have simulated and evaluated the performance of our proposed method using

NMSE and SE metrics, and have demonstrated it is close to that achievable with full

CSI knowledge.

7.2 Possible Future Research Directions

Future research directions for Chapter 3 may involve development of interference mitiga-

tion techniques and examination of the network with multi-antenna SBSs. It might also be

interesting to extend this SBS placement strategy when HetNets with more than two tiers

are considered. This work can be extended to check how different SBS placement strategies

perform when interference mitigation or coordinated transmission is used.

The research in Chapter 4 can lead to further analysis and implementation of FDD mas-

sive MIMO. While several extensions of this work are possible, immediate follow-up work

154



could involve tweaking the parameters or structure of the neural networks for better perfor-

mance. For instance, when converting data to images, the blue color channel for the RGB

images is currently unused in our work. The CGAN methodology was initially developed

for image-to-image translation; leaving the channel present simpliĄed translating the use of

a CGAN to our context of CSI estimation. In the future, the blue channel can be utilized

to carry additional information about the channels with the goal of further improving the

estimation. The scenario of limited feedback can also be explored; the unused blue channel

could play an important role in this case. Similarly, the raw UL pilot symbols could also be

used as inputs/data for machine learning. Furthermore, we envision that precoding vectors

could be directly estimated, rather than estimating CCMs/CSI as an intermediate step, then

precoding from those estimates. Lastly, in the future, it will be important to address how

to handle a non-constant number of active UEs when designing, training, and operating the

CGAN for direct CSI estimation.

Several extensions of the research in Chapter 5 are possible, such as tweaking the hy-

perparameters of the agentsŠ NNs for better performance. The operation of the MARL and

MAFRL algorithms using measured channel data or a ray-traced environment model could

be examined. The performance of other types of ML algorithms can also be studied. In

our simulations, the ability to adapt the UE SEs to maximize the rewards of the RL policies

is somewhat lessened by the use of equal power allocation for the UEs. It would therefore

be useful to examine implementing a power allocation method along with our proposed AP

clustering algorithms, possibly together within the same type of MARL/MAFRL frame-

work. Another interesting extension might be investigating a higher-mobility environment,

i.e., with much higher UE speeds than the pedestrian speeds considered herein.

Several extensions of the research in Chapter 6 are possible, such as modifying the ML

loss function(s), examining the convergence of the proposed algorithm, and investigating

how much UL CSI can be missing without the algorithmŠs performance suffering signiĄ-

cantly.
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Appendix A:

A.1 Proof of Theorem 1 from Chapter 3

The required RV RoS , the distance between the typical user and its nearest SBS, can be

derived as a function of RoM and RMS as follows:

R2
oS = R2

oM +R2
MS − 2RoMRMS cos θ, (A.1)

where θ is the angle between the line joining the MBS and the user, and the line joining

the MBS and the SBS, respectively. These distances and θ are depicted in Fig. 3.2. The

simulated PDF of cos θ is shown in Fig. A.1. Note that the distribution of cos θ is indepen-

dent of λM because a PPP is isotropic. Varying λM has the effect of scaling the distances

between points equally in all directions. Therefore, the distribution of angle θ, and by exten-

sion the distribution of cos θ, does not change with λM . For similar reasons, the correlation

coefficient ρ between RoM and RMS also does not change with λM .

In Fig. A.1, a large spike in the distribution can be observed at cos θ = 1. Consequently,

in the following derivations, we will approximate the distribution as a Dirac delta function.

This is equivalent to treating cos θ as a constant equal to 1.

Now, to determine the distribution ofRoS , Ąrst we need the joint distribution ofRoM and

RMS , where RoM and RMS are correlated. As noted in Section 3.3, a Rayleigh distribution

is a special case of a Nakagami-m distribution, therefore, the distribution of RoM can be

expressed as Nakagami-m with parameters m1 = 1 and Ω1 = 1/(πλM). It helps us to use

the bivariate Nakagami-m distribution, which is available in the literature [295, Eq. 12] and
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is given by

fR1,R2(r1, r2) = 4(1− ρ)m2

∞∑︂

k=0

[︄
(m1)k
k!

ρk
(︃
m1/Ω1

(1− ρ)

)︃m1+k

r
2(m1+k)−1
1

(︃
m2/Ω2

(1− ρ)

)︃m2+k

× r
2(m2+k)−1
2

exp
(︁
−m1r

2
1/[Ω1(1− ρ)]

)︁
exp
(︁
−m2r

2
2/[Ω2(1− ρ)]

)︁

Γ(m1 + k)Γ(m2 + k)

× 1F1

(︃
m2 −m1;m2 + k;

m2ρ

Ω2(1− ρ)
r22

)︃]︄
, r1, r2 ≥ 0, (A.2)

where R1 has parameters m1 and Ω1 and R2 has parameters m2 and Ω2, with m2 ≥ m1. ρ

is the correlation coefficient betweenR1 andR2, 1F1(a, b ; z) is KummerŠs conĆuent hyper-

geometric function, (·)k denotes the Pochhammer symbol, and Γ(·) is the Gamma function.

Using the joint distribution in (A.2), the cumulative distribution function (CDF) of RoS

can be derived as

FRoS
(r) = P

(︃√︂
R2

oM +R2
MS − 2RoMRMS cos θ ≤ r

)︃

≈ P

(︃√︂
R2

oM +R2
MS − 2RoMRMS ≤ r

)︃

= P ( |RMS −RoM | ≤ r)

= P (−r ≤ RMS −RoM ≤ r)

= P (RMS −RoM ≤ r)− P (RMS −RoM ≤ −r)

=

∫︂ ∞

0

∫︂ r1+r

0

fRoM ,RMS
(r1, r2) dr1 dr2 −

∫︂ ∞

r

∫︂ r1−r

0

fRoM ,RMS
(r1, r2) dr1 dr2.

(A.3)

To obtain the PDF in Theorem 1, (A.3) is differentiated with respect to r, which leads to

fRoS
(r) =

∫︂ ∞

0

f(r1 + r, r1) dr1 +

∫︂ ∞

r

f(r1 − r, r1) dr1. (A.4)

A.2 Proof of Theorem 3 from Chapter 3

To begin, we note the following properties of the regularized lower and upper incomplete

Gamma functions, i.e., γ̃(k, x) and Γ̃(k, x), respectively, where Γ̃(k, x) ≜

∫︁
∞

x e−ttk−1 dt

Γ(k)
=

1− γ̃(k, x):
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Figure A.1: PDF of cos θ.

Lemma 8 Γ̃(k, ck) increases monotonically with increasing k if 0<c≤ 1. Correspond-

ingly, γ̃(k, ck) decreases monotonically with increasing k if 0<c≤ 1.

Proof. γ̃(k, ck) can also be written as [130, Eq. 8.351.4]

γ̃(k, ck) =
(ck)ke−ck

Γ(k+1)
1F1(1; k+1; ck) (A.5a)

=
(ck)k

Γ(k+1)
1F1(k; k+1;−ck), (A.5b)

where 1F1(a; b; z) is KummerŠs conĆuent hypergeometric function. From the deĄnitions of

1F1(a; b; z) and of the Pochhammer symbol (a)n = Γ(a+n)/Γ(a), we can rewrite (A.5b)

as

γ̃(k, ck) =
(ck)k

Γ(k+1)

∞∑︂

n=0

(k)n(−ck)n
(k + 1)nn!

(a)
=

∞∑︂

n=0

(−1)n(ck)k+n

Γ(k) (k+n)n!
, (A.6)

where line (a) follows after substituting in the deĄnition of the Pochhammer symbols, using

the property Γ(x+1) = xΓ(x), and cancelling alike terms in the numerator and denomi-

nator.
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We may then calculate the partial derivative of γ̃(k, ck) with respect to k as

∂
∂k
γ̃(k, ck) =

∞∑︂

n=0

(−1)n

n!

[︃
(ck)k+n

Γ(k) (k + n)

(︃
k+n

k
+ ln(ck)

)︃

− (ck)k+n

(k+n)
[Γ(k)]−2[Γ(k)ψ(k)]− (ck)k+n

Γ(k) (k+n)2

]︃
, (A.7)

where ψ(k)≜ ∂
∂k

ln(Γ(k))= [ ∂
∂k
Γ(k)]/Γ(k) is the digamma or psi function. Rearranging

terms, we get

∂
∂k
γ̃(k, ck) =

(ck)k

k Γ(k)

∞∑︂

n=0

(−ck)n
n!

+ [ln(ck)− ψ(k)]
∞∑︂

n=0

(−1)n(ck)k+n

Γ(k) (k+n)n!

− (ck)k

Γ(k)

∞∑︂

n=0

(−ck)n
(k+n)2 n!

. (A.8)

The sum in the Ąrst line of (A.8) is equivalent to e−ck. Comparing the sum in the second

line of (A.8) with the second line of (A.6) shows this is simply γ̃(k, ck). For the sum in the

third line of (A.8), we multiply the numerator and denominator by [Γ(k+n)Γ(k+1)Γ(k)]2.

Then, pairs of Gamma functions in the numerator and denominator can be combined into

Pochhammer symbols to yield the following sum:

1

k2

∞∑︂

n=0

(k)n(k)n(−ck)n
(k+1)n(k+1)n n!

, (A.9)

We now note the deĄnition of the generalized hypergeometric function pFq [130, Eq.

9.14.1]:

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑︂

n=0

(a1)n(a2)n · · · (ap)n(z)n
(b1)n(b2)n · · · (bq)n n!

. (A.10)

(1F1 and 2F1 are special cases of pFq.) Comparison of (A.9) and (A.10) shows that the

sum in (A.9) can be expressed as 2F2(k, k; k+1, k+1,−ck). Making the substitutions

described above into (A.8), we Ąnally arrive at:

∂
∂k
γ̃(k, ck) = [ln(ck)−ψ(k)] γ̃(k, ck) + (ck)k

Γ(k+1)

[︃
e−ck − 1

k
2F2(k, k; k+1, k+1,−ck)

]︃
.

(A.11)

Fig. A.2 plots ∂
∂k
Γ̃(k, ck) (which equals − ∂

∂k
γ̃(k, ck)) vs. c and k. As seen, for 0<c≤ 1,

the surface is always above zero and the distance of the surface from the zero plane decreases
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Figure A.2: ∂

∂k
Γ̃(k,ck) (or − ∂

∂k
γ̃(k,ck)) vs. c and k. Blue plane indicates where z-axis equals zero;

thick dashed line indicates where c = 1.

with increasing k. Note that (A.11) applies for any positive real value of k, not just integer

values. However, it is rather difficult to formally prove the conjecture of this Lemma ana-

lytically instead of pictorially, i.e., that ∂
∂k
γ̃(k, ck) ≤ 0 if 0<c≤ 1. We therefore instead

analytically prove the case of k ∈ Z
+, which suffices for the work in the this paper.

Let us Ąrst deĄne the following two functions:

f(c, k) =
k−1∑︂

n=0

(ck)n

n!
; (A.12a)

g(c, k) = f(c, k+1) =
k∑︂

n=0

[c(k+1)]n

n!
. (A.12b)

By inspection, for k > 0, f and g are polynomials in c, both with a positive coefficient on

all of their cn terms. Therefore, f and g are both positive and increasing functions of c.

Furthermore, for any positive value of c, both f and g must be increasing functions of k,

since not only does each individual term in the sum increase with k (other than n=0, which

is constant), an additional positive term is added to the sum when k is incremented. As such,

it must be true that g − f > 0, or alternatively, g/f > 1 or f/g < 1.

We next consider the ratio f/g in terms of c. We make use of the following theorem:
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Theorem 6 Let An(x) =
∑︁n

i=0 aix
i and Bn(x) =

∑︁n
i=0 bix

i be polynomials of order n

such that bi> 0 for 0≤ i≤n. If ai/bi is increasing (decreasing) for increasing i, 0≤ i≤n,

then the function given byAn(x)/Bn(x) is increasing (decreasing) with increasing x for all

x> 0. Moreover, if ai/bi is strictly increasing/decreasing with increasing i, thenAn(x)/Bn(x)

will also be strictly increasing/decreasing with increasing x.

Proof. See [296] and references therein.

The nth coefficient of f as a polynomial in c is fn = kn/n!, 0≤n≤ k− 1, whereas the

nth coefficient of g is gn = (k+1)n/n!, 0≤n≤ k. Thus, fn
gn

=
(︁

k
k+1

)︁n
, which is strictly

decreasing from n=0 up to n= k− 1. At n= k, fk = 0, so fk
gk

= 0, which is still a strict

decrease from n= k− 1. Thus, by Thm. 6, f/g must be a strictly decreasing function of c

for c> 0, or alternatively, g/f must be strictly increasing with increasing c.

We now proceed to consider Γ̃(k, ck) = e−ckf(c, k) and Γ̃(k+1, c(k+1)) = e−c(k+1)g(c, k).

If Γ̃(k, ck) is increasing with k, then Γ̃(k+1, c(k+1))−Γ̃(k, ck) ≥ 0 for all values of k, or

Γ̃(k+1, c(k+1))/Γ̃(k, ck) ≥ 1. This then means e−cg/f ≥ 1, or g/f ≥ ec. To test whether

this holds, we Ąrst consider the limiting case as c→ 0. In this case, the polynomials are dom-

inated by their lowest-order terms, but we must also account for the fact that g is one order

higher than f . We can therefore approximate g/f ≈ 1+(k+1)c+(k+1)2c2/2
1+kc

, except for k=1,

where g/f is exactly 1+2c. Meanwhile, from its Taylor series expansion, ec is closely

approximated by 1+ c+ c2

2
. For the k=1 case, g/f − ec ≈ (1+ 2c) − (1+ c+ c2

2
) =

c(1− c
2
) > 0. For larger k, 1+(k+1)c+(k+1)2c2/2

1+kc
− (1+ c+ c2

2
) = k2c2(1−c)

2(1+kc)
> 0. Therefore,

since g/f > ec for all k > 0, Γ̃(k, ck) must increase with k for very small values of c.

At the other end of the scale, as c→∞, the polynomials will be dominated by their

highest-order terms. Hence, g/f ≈ (k+1)kck/k!
[kc]k−1/(k−1)!

= [k+1
k
]kc = [1+ 1

k
]kc, which grows

linearly with c. However, ec grows exponentially with c, so regardless of the value of k,

there must eventually be some large enough value of c such that g/f ≥ ec can no longer be

satisĄed. There must therefore exist some maximum value of c for which g/f ≥ ec can be

satisĄed for all values of k.
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Let us now consider the case of c=1, and switch our focus back to g− f . g(1, k) can be

rewritten as

g(1, k) =
k∑︂

m=0

(k+1)m

m!
=

k∑︂

m=0

m∑︂

n=0

(︃
m

n

)︃
kn

m!

=
k∑︂

m=0

m∑︂

n=0

kn

n!(m−n)!
=

k∑︂

n=0

[︂ k∑︂

m=n

1

(m−n)!

]︂kn
n!
.

(A.13)

As such, g(1, k)− f(1, k) is

(g− f)
⃓⃓
c=1

=
k∑︂

n=0

[︂ k∑︂

m=n

1

(m−n)!

]︂kn
n!

−
k−1∑︂

n=0

kn

n!

=
kk

k!
+

k−1∑︂

n=0

[︂ k∑︂

m=n

1

(m−n)!
− 1
]︂kn
n!

=
kk

k!
+

k−1∑︂

n=0

[︂ k∑︂

m=n+1

1

(m−n)!

]︂kn
n!

(A.14)

We now compare the inner sums in the last part of (A.13) and (A.14). Regardless of the

value of k, the inner sum in (A.14) has one fewer term than the inner sum in (A.13). Thus,

the value of the inner sum in (A.14) must be less than that of the inner sum in (A.13). As

such, if k is incremented, g− f must grow less than g when c=1, or in other words, g− f

grows slower with increasing k than g for all values of k when c=1. If for c=1, g− f

grows slower than g, then g−f
g

= 1− f
g

must decrease with increasing k, f
g

must increase

with increasing k, and g
f

must decrease with increasing k.

This being the case, if we want to test whether g/f ≥ ec, it suffices to test what happens

in the limit as k → ∞. Referring back to (A.12), we note that f(c, k) will converge to

eck for large k, while g(c, k) will converge to ec(k+1). Hence, at g/f will converge to ec as

k → ∞, which satisĄes the test, and for c=1, g/f will be larger for smaller values of k.

To conclude, we have proved that g/f ≥ ec, ∀k ∈ Z
+ in the limit as c approaches 0 and

for c=1, and by the monotonically increasing nature of g/f with c, this property therefore

holds for all values of c in between. Because of this property, it thereby analytically proves

Γ̃(c, k) increases (and hence γ̃(c, k) decreases) with increasing k ∈ Z
+ for 0<c≤ 1, while

Fig. A.2 this same increasing/decreasing nature is true more generally for k ∈ R
+.
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Lemma 9

γ̃(k, x) ≪ 1, for x ≤ k

10
. (A.15a)

Γ̃(k, x) ≪ 1, for x ≥ 3k. (A.15b)

Proof. We wish to Ąnd a value of c where γ̃(k, ck) ≪ 1, ∀k. From Lemma 8, it suffices

to Ąnd the value of c satisfying this for k=1; larger values of k will meet the condition

even better. As a general rule of thumb, a ≪ b means that a should be at least an order of

magnitude less than b. We therefore want to Ąnd c such that γ̃(1, c) < 0.1. The integral for

γ̃(1, c) trivially reduces to 1 − e−c; solving for 1 − e−c < 0.1 for c gives c < − ln(0.9) ≃

0.10536. Since this value of c is within (0, 1], it will also work for larger k; for example,

γ̃(2, 2c) ≃ 0.0193. For simplicity, we round down c to 0.1 (or 1/10), so that x = ck ≤ k/10

will make γ̃(k, x) ≪ 1, thereby completing the proof for (A.15a).

By similar arguments, since Γ̃(k, x) = 1 − γ̃(k, x), to have Γ̃(k, x) ≪ 0.1, we need

1− (1− e−c) < 0.1, or ec > 10, or c > ln(10) ≃ 2.3. Again for simplicity, we round c up

to 3. This completes the proof for (A.15b).

Next, if for n1 ≤ k≤n2 all the magnitudes |ak| ≪ 1, then

n2∏︂

k=n1

(1− ak) ≃ 1−
n2∑︂

k=n1

ak, (A.16)

which is obtained by expanding out the product and using only the Ąrst-order terms from

the result.

Since the product series in (3.18) consists of inĄnite terms, for Ąnite x there exists some

smallest integer n that satisĄes n ≥ 10x. Thus, for all k ≥ n, (A.15a) will hold and so we
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can apply (A.16). Splitting the series in (3.18) into two parts:

1 −
∞∏︂

k=1

(︁
1− βγ̃

(︁
k, cβr

2
)︁)︁

= 1−
n−1∏︂

k=1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁ ∞∏︂

k=n

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁

≃ 1−
n−1∏︂

k=1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁[︃

1− β
∞∑︂

k=n

γ̃
(︁
k, cβr

2
)︁ ]︃

(a)
= 1−

n−1∏︂

k=1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁ [︃

1− πλ′Sr
2 + β

n−1∑︂

k=1

γ̃
(︁
k, cβr

2
)︁ ]︃
,

(A.17)

where n = ⌈10cβr2⌉, and line (a) follows from Lemma 1. Note that in the above, we actually

need βγ̃(k, cβr2) ≪ 1 rather than just γ̃(k, cβr2) ≪ 1. However, since 0<β≤ 1, choosing

n as above will more than satisfy the condition.

We can similarly split off the Ąrst m terms from the product in (A.17), and rearrange

them as follows:

m∏︂

k=1

[︁
1− βγ̃

(︁
k, cβr

2
)︁]︁

=
m∏︂

k=1

(︂
1− β

[︂
1− Γ̃

(︁
k, cβr

2
)︁]︂)︂

=
m∏︂

k=1

(︂
[1− β]

[︂
1− β

β−1
Γ̃
(︁
k, cβr

2
)︁]︂)︂

= (1− β)m
m∏︂

k=1

[︂
1− β

β−1
Γ̃
(︁
k, cβr

2
)︁]︂
. (A.18)

If β
β−1

Γ̃(k, cβr
2) ≪ 1, we can replace the product with a sum much the same as before.

However, β may be close to or even equal 1, so that β
β−1

may be extremely large in mag-

nitude. Following from the proof of Lemma 9, we want
⃓⃓
⃓ β
β−1

Γ̃(1, c)
⃓⃓
⃓ < 0.1, or ec > 10β

1−β
.

Thus, if we specify m =
⌊︂

cβ
ln(10β/[1−β])

r2
⌋︂
, we will satisfy the conditions for (A.16) for

k ≤ m. The last line of (A.18) can then be replaced by

≃ (1− β)m
[︃
1 + β

1−β

m∑︂

k=1

Γ̃
(︁
k, cβr

2
)︁ ]︃
. (A.19)

For sufficiently small r and/or sufficiently large β, we will end upm = 0. We remark that

the above approximation still holds in the event thatm = 0, since by convention
∏︁0

k=1(·) =

1; (A.19) also equals 1 for m = 0, even in the limit as β → 1.
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By replacing the Ąrstm terms of the product series in line (a) of (A.17) with the approx-

imation of (A.19), we obtain Thm. 3.

A.3 Proof of Corollary 1 from Chapter 3

DeĄne the three parts of the product in (3.23) as Ξ1(r), Ξ2(r), and Ξ3(r) as denoted in

(3.24). Following the chain rule for differentiation, the derivative of (3.23) is fR̃oS
(r) =

−∂Ξ1(r)
∂r

Ξ2(r)Ξ3(r) − Ξ1(r)
∂Ξ2(r)

∂r
Ξ3(r) − Ξ1(r)Ξ2(r)

∂Ξ3(r)
∂r

. Note that although m and n

are technically functions of r, due to the ceiling and Ćoor functions, they can be treated

as constants for differentiation. For compactness, we denote x = cβr
2 in the following.

Tackling the derivatives of the three parts separately:

∂Ξ1(r)

∂r
= β(1− β)m−1

(︄
m∑︂

k=1

−e−xxk−1

Γ(k)

)︄
(2cβr)

= −2πλ′Sr(1− β)m−1e−x

m−1∑︂

a=0

xa

Γ(a+ 1)

(a)
= −2πλ′Sr(1− β)m−1Γ̃(m, x) , (A.20)

where line (a) follows from the series expression for Γ̃(m, x) (see Footnote 2 on pg. 49).

Similarly,

∂Ξ3(r)

∂r
= −2πλ′Sr + β

(︄
n−1∑︂

k=1

e−xxk−1

Γ(k)

)︄
(2cβr)

= −2πλ′Sr

(︄
1− e−x

n−2∑︂

a=0

xa

Γ(a+ 1)

)︄

= −2πλ′Sr γ̃(n− 1, x). (A.21)

Finally, for Ξ2(r), again by the chain rule,

∂Ξ2(r)

∂r
=

n−1∑︂

k=m+1

[︃ (︁
∂
∂r
[1− βγ̃(k, x)]

)︁
×

n−1∏︂

ℓ=m+1,
ℓ̸=k

[1− βγ̃(ℓ, x)]

]︃
(A.22)

The product above can be rewritten as [
∏︁n−1

ℓ=m+1(·)]÷ [1− βγ̃(k, x)], which allows the nu-

merator to be pulled out of the sum, since it no longer depends on k. Also note that the
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numerator is simply Ξ2(r) itself. Continuing the differentiation:

∂Ξ2(r)

∂r
= Ξ2(r)

n−1∑︂

k=m+1

[︄
∂
∂r
[1− βγ̃(k, x)]

1− βγ̃(k, x)

]︄
= Ξ2(r)

n−1∑︂

k=m+1

[︃ −βe−xxk−1

Γ(k)(1− βγ̃(k, x))
(2cβr)

]︃

= −2πλ′SrΞ2(r)e
−x

n−1∑︂

k=m+1

xk−1

Γ(k)[1− βγ̃(k, x)]
. (A.23)

Substituting the last lines of (A.20), (A.21), and (A.23) into fR̃oS
(r), we Ąnd 2πλ′SrΞ2(r)

is a common multiplier in all the terms. Pulling this multiplier out in front gives the expres-

sion found in (3.24).

A.4 Proof of Lemma 2 from Chapter 3

SlivnyakŠs theorem states that for a PPP, adding or removing a point from the process

does not change its distributions [121]; thus, the distributions of Φ1\k are the same as for

Φ1. Furthermore, CampbellŠs theorem states that for a stationary point process, EΦ{S} =

EΦ{
∑︁

x∈Φ f(x)} = λ
∫︁
R2 f(x) dx [121]. In the speciĄc case of a homogeneous PPP, it also

results that V(S) = λ
∫︁
R2 f

2(x) dx [121, Corollary 4.8].

If the typical user associates with an MBS at distance r1, this means that any interfer-

ence from the MBS tier must be from points with distance ||do,x|| > r1. On the other

hand, if the typical user associates with an SBS at distance r2, then based on the asso-

ciation policy of (3.2), this means that all MBSs must be at least a distance of rκ1 =
(︂

(NM−U+1)P1

UBP2

)︂1/α1

r
α2/α1

2 = ζ−1/α2r
α2/α1

2 from the user. This makes the function f(x) for

calculating I1,1 (I2,1) equal to P1

U
ho,x ||do,x||−α1 for ||do,x|| > r1 (rκ1), and 0 otherwise.

Applying SlivnyakŠs and CampbellŠs theorems:

E{I1,1} = EΦ1,ho,x

{︄
∑︂

x∈Φ1

f(x)

}︄
= Eho,x

{︃
λM

∫︂

R2

f(x) dx

}︃

=
λMP1

U
Eho,x{ho,x}

∫︂ 2π

0

∫︂ ∞

r1

r−α1 r dr dθ

(a)
=

2πλMP1

α1 − 2
r2−α1
1 , (A.24)
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forα1 > 2 (which we have already assumed in Section 3.2.1). Line (a) substitutesEho,x{ho,x} =

U for an interfering MBS, since ho,x ∼ Γ(U, 1). Similarly:

V(I1,1) = Eho,x

{︃
λM

∫︂

R2

f 2(x) dx

}︃

=
λMP

2
1

U2
Eho,x{h2o,x}

∫︂ 2π

0

∫︂ ∞

r1

r−2α1 r dr dθ

(b)
=
πλMP

2
1 (U + 1)

U(α1 − 1)
r2−2α1
1 , (A.25)

where line (b) substitutes Eho,x{h2o,x} = U2+U for an interfering MBS. The calculation of

E{I2,1} and V(I1,1) is identical except replacing r1 with rκ1.

A.5 Proof of Lemma 4 from Chapter 3

CampbellŠs theorem, in the form used in Appendix A.4, applies to stationary point pro-

cesses in general, not just a PPP. A consequence of this is that the mean interference when

measured over all the points of the process will be the same regardless of the speciĄc sta-

tionary process. Hence, E{I1,2} for a β-GPP is the same as for a PPP, i.e., the expression

given by (3.45), except we do not substitute λ′S = 2λM this time. Similarly, we can also use

CampbellŠs theorem to Ąnd E{I21,2}:

E{I21,2} = EΦ2,ho,x

⎧
⎨
⎩

(︄
∑︂

x∈Φ2

f(x)

)︄2
⎫
⎬
⎭

(a)
= EΦ2,ho,x

{︄
∑︂

x∈Φ2

P 2
2 h

2
o,x||do,x||−2α2

}︄

(b)
+ EΦ2,ho,x,ho,y

{︄
∑︂

x,y∈Φ2,
x ̸=y

P 2
2 ho,xho,y||do,x||−α2 ||do,y||−α2

}︄
. (A.26)

The expectation in line (a) of (A.26) is the same expression seen before when calculating

interference variances; it evaluates to
2πλ′

SP
2
2

α2−1
r2−2α2
κ2 . (Here U = 1, so E{h2o,x} = U2 +U =

2.) However, the expectation in line (b) now poses more of a challenge due to the x ̸= y

part of the sum. Unlike a PPP, removing one point from a β-GPP (or from most point
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processes, generally) does change its statistics, so SlivnyakŠs theorem no longer applies as

it did in Appendix A.4. Instead, we make use of the second moment density ϱ(2)(x, y) and

the second factorial moment measure α(2)(A,B), where A and B are regions [121]. In

differential form, the two are related by α(2)(dx, dy) = ϱ(2)(x, y) dx dy. From CampbellŠs

theorem, it can be found that [121]:

EΦ

{︄
∑︂

x,y∈Φ,
x ̸=y

f(x, y)

}︄
=

∫︂

R2

∫︂

R2

f(x, y)α(2)(dx, dy)

=

∫︂

R2

∫︂

R2

f(x, y)ϱ(2)(x, y) dx dy (A.27)

ϱ(2)(u) for a β-GPP is given by [107, Eq. 6]:

ϱ(2)(u) = λ′2S
[︁
1− exp

(︁
−cβu2

)︁]︁
, (A.28)

where u = |x− y| is the distance between points. If we express the points x and y in polar

coordinates as rxejθx and ryejθy , respectively, then (A.28) can be rewritten as

λ′2S

[︂
1− exp

(︁
−cβ

[︁
r2x + r2y − 2rxry cos(θx−θy)

]︁)︁]︂
. (A.29)

Returning to line (b) of (A.26), taking the expectation over ho,x and ho,x, and noting

||do,x||= rx and ||do,y||= ry, we are left with P 2
2 EΦ2

{︂∑︁
x,y∈Φ2,x ̸=y r

−α2
x r−α2

y

}︂
. Just as in

the PPP case, if the user associates with the MBS tier, all SBSs must be a distance of at least

rκ2 =
(︂

UBP2

(NM−U+1)P1

)︂1/α2

r
α1/α2

1 = ζ1/α2r
α1/α2

1 away from the user. Thus, f(x, y) = 0 for

distances shorter than that. Applying (A.27) and substituting in (A.29), we have that line

(b) of (A.26) equals:

P 2
2λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

rκ2

∞∫︂

rκ2

r−α2
x r−α2

y

[︂
1− exp

(︂
− cβ

[︁
r2x + r2y − 2rxry cos(θx−θy)

]︁)︂]︂

× rxdrx rydry dθx dθy

= 4π2P 2
2 λ

′2
S

∞∫︂

rκ2

∞∫︂

rκ2

r1−α2
x r1−α2

y drx dry − ς1,2

= 4π2P 2
2 λ

′2
S

r4−2α2
κ2

(α2 − 2)2
− ς1,2 , (A.30)
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where

ς1,2 = P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

rκ2

∞∫︂

rκ2

r1−α2
x r1−α2

y exp
(︂
− cβ

[︁
r2x + r2y − 2rxry cos(θx−θy)

]︁)︂

× drx dry dθx dθy. (A.31)

We note that by inspection, the Ąrst term in the last line of (A.30) equals (E{I1,2})2. The

second term ς1,2 can be evaluated as follows:

ς1,2
(c)
= 4π2P 2

2 λ
′2
S

∞∫︂

rκ2

∞∫︂

rκ2

r1−α2
x r1−α2

y exp
(︁
−cβ

[︁
r2x + r2y

]︁)︁
I0(2cβrxry) drx dry

(d)
= 4π2P 2

2 λ
′2
S

∞∫︂

rκ2

∞∫︂

rκ2

r1−α2
x r1−α2

y exp
(︁
−cβ

[︁
r2x + r2y

]︁)︁ ∞∑︂

k=0

(cβrxry)
2k

Γ2(k + 1)
drx dry. (A.32)

Line (c) follows from Ąrst noting that the starting and ending points for the angular integra-

tions are arbitrary, so long as a range of 2π radians is covered. Thus, the limits for θx can

be changed to between −π+ θy and π+ θy. We next use a change of variables ϕx = θx−θy
when integrating over θx, then apply [130, Eq. 8.431.3] for the modiĄed Bessel function of

Ąrst kind Iν(z) with ν = 0; note I0(z) is an even function, so the integral over ϕx from −π

to π is twice the integral from 0 to π. Line (d) follows from the power series expansion of

I0(z) in [130, Eq. 8.447.1], which can be alternatively written as limn→∞

∑︁n
k=0

(z/2)2k

(k!)2
.

Next we apply the monotone convergence theorem (Theorem 2) to interchange the order

of the limit and integration. Each term in the sequence f1(rx, ry), f2(rx, ry), f3(rx, ry), . . .,

where fn(rx, ry) =
∑︁n

k=0
(cβrxry)

2k

Γ2(k+1)
exp
(︁
−cβ

[︁
r2x + r2y

]︁)︁
(rxry)

1−α2 , is measurable in R
2
≥0.

The sequence converges pointwise to f(rx, ry) = I0(2cβrxry) exp
(︁
−cβ

[︁
r2x + r2y

]︁)︁
(rxry)

1−α2

asn→∞. Furthermore, for rx, ry ≥ 0, every term in the summation is positive. Hence, each

addition of a term to the summation will increase its value. Thus, the sequence fn(rx, ry)

is monotonically increasing, i.e., 0≤ f1(rx, ry)≤ f2(rx, ry)≤ . . . . Since fn(rx, ry) con-

verges to function f(rx, ry) asn→∞, and 0 ≤ f1(rx, ry) ≤ f2(rx, ry) ≤ . . . , the monotone

convergence theoremŠs conditions are satisĄed.
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Thus, we can pull the limit outside of the integration, along with the associated sum:

ς1,2 = 4π2P 2
2 λ

′2
S lim

n→∞

n∑︂

k=0

(︄
c2kβ

Γ2(k + 1)

∞∫︂

rκ2

∞∫︂

rκ2

(rxry)
1+2k−α2 exp

(︁
−cβ

[︁
r2x + r2y

]︁)︁
drx dry

)︄

(e)
= 4π2P 2

2 λ
′2
S

∞∑︂

k=0

c2kβ
Γ2(k + 1)

Γ2
(︁
1+ k− α2

2
, cβr

2
κ2

)︁

4 c2+2k−α2
β

= β2P 2
2 c

α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
κ2

)︁

Γ2(k + 1)
, (A.33)

where line (e) comes from applying [130, Eq. 3.381.9] for each integral. We remark that

in the event α2

2
∈ Z

+, the Ąrst parameter in Γ
(︁
1+ k− α2

2
, cβr

2
κ2

)︁
will become a negative

integer for the Ąrst few values of k. However, calculating Γ(−n, x) with n∈N
+ does not

have the same issue as calculating Γ(−n), where singularities cause the value to become

∞. The integral for Γ(−n, x) can still be calculated numerically, or alternatively one of

[130, Eq. 8.352.3], [130, Eq. 8.352.5], or [297, Eq. 8.4.15] may be used.

Overall, combining (A.26), (A.30), and (A.33), we have E{I21,2} =
2πλ′

SP
2
2

α2−1
r2−2α2
κ2 +

(E{I1,2})2 − ς1,2. Since V(I1,2) = E{I21,2} − (E{I1,2})2, we Ąnally obtain V(I1,2) =

2πλ′

SP
2
2

α2−1
r2−2α2
κ2 − ς1,2.

A.6 Proof of Lemma 5 from Chapter 3

To Ąnd E{I2,2}, we follow a similar methodology as on [121, pg. 173]. Since a β-GPP

is motion invariant, the mean interference from the SBS tier without counting the point

representing the associated transmitter b⋆ is found by the reduced Palm expectation, shifting

the points so that the transmitter is located at the origin and the user is at the location z. The

reduced Palm expectationE!
o, conditioned on the point located at the origin but not including

it, is:

E
!
o

{︄
∑︂

x∈Φ2

f(x− z)

}︄
= 1

λ′

S

∫︂

R2

f(x− z)ϱ(2)(x) dx, (A.34)

where ϱ(2)(u) for a β-GPP is given by (A.28). However, since the associated (closest) SBS

transmitter is at a distance r2 away from the user (i.e., ||z|| = r2), the interference for all
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other points x ∈ Φ2 must be 0 for distances ||x− z|| ≤ r2. So:

f(x− z) =

⎧
⎨
⎩

||x− z||−α2 , if ||x− z|| > r2,

0, otherwise.
(A.35)

We next perform a change of variables y = x − z in (A.34) (with dy = dx), so that

when expressing y in polar coordinates as ryejϕy , the condition ||x− z|| > r2 simpliĄes to

ry > r2. Thus, at location z = r2e
jθz ,

E{I2,2} = P2λ
′
S

∫︂

R2

||y||−α2
[︁
1− exp

(︁
−cβ||y + z||2

)︁]︁
dy

= P2λ
′
S

π∫︂

−π

∞∫︂

r2

r−α2
y

[︂
1− exp

(︂
− cβ

[︁
r2y + r22 + 2ryr2 cos(ϕy − θz)

]︁)︂]︂
ry dry dϕy

= P2λ
′
S

π∫︂

−π

∞∫︂

r2

r1−α2
y dry dϕy − ς2,2 = 2πP2λ

′
S

r2−α2
2

α2 − 2
− ς2,2, (A.36)

where

ς2,2 = P2λ
′
S

π∫︂

−π

∞∫︂

r2

r1−α2
y exp

(︂
− cβ

[︁
r2y + r22 + 2ryr2 cos(ϕy − θz)

]︁)︂
dry dϕy

= 2πP2λ
′
S exp

(︁
−cβr22

)︁
∞∫︂

r2

r1−α2
y exp

(︁
−cβr2y

)︁
I0(2cβr2ry) dry

= βP2 c
α2
2
β e−cβr

2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)
. (A.37)

For the variance V{I2,2}, we again begin by calculating E{I22,2}. We split the calculation

into two parts (respectively denoted ϖ1 and ϖ2) much the same as in (A.26).

ϖ1 = 2P 2
2E{

∑︂

x∈Φ2\b⋆

||do,x||−2α2}

= 2P 2
2E

!
o{
∑︂

x∈Φ2

||x−z||−2α2} (A.38)

this is calculated the same as in (A.36)Ű(A.37), with α2 replaced by 2α2 and P2 replaced

by 2P 2
2 . (The 2 in front of P 2

2 is E{h2o,x} = 2.) The result is

ϖ1 = 2πP 2
2 λ

′
S

r2−2α2
2

α2 − 1
− 2βP 2

2 c
α2
β e

−cβr
2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ(1+ k−α2, cβr
2
2)

Γ2(k + 1)
. (A.39)
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The second part (ϖ2) involves a sum over pairs of points x and y, where x ̸= y and

neither x nor y equals b⋆. We again use a reduced Palm expectation by shifting all points so

b⋆ is at the origin and the user is at location z. The expectation is now found by means of

the third moment density ϱ(3):

E
!
o

{︄
∑︂

x,y∈Φ,
x ̸=y

f(x− z, y − z)

}︄
= 1

λ′

S

∫︂

R2

∫︂

R2

f(x− z, y − z)ϱ(3)(o, x, y) dx dy (A.40)

The third moment density for a β-GPP is [107, Eq. 7]:

ϱ(3)(a, b, c) = ϱ(3)(o, w1, w2)

= λ′3S

[︂
1− e−cβ |w1|2 − e−cβ |w2|2 − e−cβ |w1−w2|2

(︂
1− e−cβw1w∗

2 − e−cβw2w∗
1

)︂]︂

= λ′3S

[︂
1⏞⏟⏟⏞

{1}

− e−cβ |w1|2

⏞ ⏟⏟ ⏞
{2}

− e−cβ |w2|2

⏞ ⏟⏟ ⏞
{3}

− e−cβ |w1−w2|2

⏞ ⏟⏟ ⏞
{4}

+ e−cβ |w1−w2|2
(︂
e−cβw1w∗

2 + e−cβw2w∗
1

)︂

⏞ ⏟⏟ ⏞
{5}

]︂
, (A.41)

where w1 = b−a, w2 = c−a, and point a is speciĄed as the origin o. We split the equation

up into Ąve parts as indicated for later use.

Making the change of variables u = x − z and v = y − z in (A.40), the second part of

E{I22,2} becomes

ϖ2 =
P 2
2

λ′

S

∫︂

R2

∫︂

R2

f(u, v)ϱ(3)(o, u+ z, v + z) du dv

= P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

r2

∞∫︂

r2

r−α2
u r−α2

v

{︄
1− e−cβ [r

2
u+r22+2rur2 cos(ϕu−θz)]

− e−cβ [r
2
v+r22+2rvr2 cos(ϕv−θz)] − e−cβ [r

2
u+r2v−2rurv cos(ϕu−ϕv)]

×
[︃
1− 2 cos

(︂
cβ
[︁
rurv sin(ϕu − ϕv) + rur2 sin(ϕu − θz)− rvr2 sin(ϕv − θz)

]︁)︂

× e−cβ [r
2
2+rurv cos(ϕu−ϕv)+rur2 cos(ϕu−θz)+rvr2 cos(ϕv−θz)]

]︃}︄
rudru rvdrv dϕu dϕv (A.42)

We again note that the upper and lower limits on the angle integrals are arbitrary, provided

that they cover a range of 2π radians. To solve this quadruple integration, we divide it into
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Ąve parts ϖ2,1 to ϖ2,5 (corresponding to the Ąve parts in (A.41)) and solve them separately.

To begin,

ϖ2,1 = P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v dru drv dϕu dϕv

= 4π2P 2
2 λ

′2
S

r4−2α2
2

(2− α2)2
. (A.43)

Next:

ϖ2,2 = −P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v exp
(︂
− cβ

[︁
r2u + r22 + 2rur2 cos(ϕu − θz)

]︁)︂

× dru drv dϕu dϕv

=
2πP 2

2 λ
′2
S r

2−α2
2

2− α2

π∫︂

−π

∞∫︂

r2

r1−α2
u exp

(︂
− cβ

[︁
r2u + r22 + 2rur2 cos(ϕu − θz)

]︁)︂
dru dϕu.

(A.44)

We now note that the remaining double integral is mostly the same as the one appearing in

(A.37), just with a different factor in front. Thus, we end up with a similar result:

ϖ2,2 =
2β2P 2

2

2− α2

c
1+

α2
2

β r2−α2
2 e−cβr

2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+k−α2

2
, cβr

2
2

)︁

Γ2(k + 1)
. (A.45)

The third term ϖ2,3 is nearly identical, just with rv and ϕv swapping places with ru and

ϕu, respectively. Since the limits of integration are the same for u and v, the end result is

the same as in (A.45):

ϖ2,3 = −P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v exp
(︂
− cβ

[︁
r2v + r22 + 2rvr2 cos(ϕv − θz)

]︁)︂

× dru drv dϕu dϕv

=
2β2P 2

2

2− α2

c
1+

α2
2

β r2−α2
2 e−cβr

2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+k−α2

2
, cβr

2
2

)︁

Γ2(k + 1)
. (A.46)

The fourth term ϖ2,4 is almost identical to (A.31); the main difference is the lower limit

of integration for the distance variables is now r2 instead of rκ2. Hence, we can use the
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result from (A.33), replacing rκ2 with r2:

ϖ2,4 = −P 2
2 λ

′2
S

π∫︂

−π

π∫︂

−π

∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v exp
(︂
− cβ

[︁
r2u + r2v − 2rurv cos(ϕu −ϕv)

]︁)︂

× dru drv dϕu dϕv

= −β2P 2
2 c

α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)
. (A.47)

Finally, we derive the Ąfth term ϖ2,5 as follows. For later convenience, we set the limits

of integration for the angle variables to be from θz to 2π+ θz.

ϖ2,5 = 2P 2
2 λ

′2
S

2π+θz∫︂

θz

2π+θz∫︂

θz

∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v e−cβ [r
2
u+r2v+r22 ]

× cos
(︂
cβ
[︁
rurv sin(ϕu − ϕv) + rur2 sin(ϕu − θz)− rvr2 sin(ϕv − θz)

]︁)︂

× e−cβ [rur2 cos(ϕu−θz)+rvr2 cos(ϕv−θz)−rurv cos(ϕu−ϕv)] dru drv dϕu dϕv. (A.48)

Making the transformation of variables θu =ϕu − θz and θv = ϕv − θz, and changing the

order of the integrals, we obtain

ϖ2,5 = 2P 2
2 λ

′2
S

[︄ ∞∫︂

r2

∞∫︂

r2

r1−α2
u r1−α2

v e−cβ [r
2
u+r2v+r22 ] ×

Z

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2π∫︂

0

2π∫︂

0

e−cβ [rur2 cos θu+rvr2 cos θv−rurv cos(θu−θv)]

× cos
(︂
cβ
[︁
rurv sin(θu − θv) + rur2 sin(θu)

− rvr2 sin(θv)
]︁)︂
dθu dθv dru drv

]︄
.

(A.49)

We now focus on the inner two integrals, denoted byZ . Using the properties cos(a±b) =

cos a cos b∓sin a sin b and sin(a±b) = sin a cos b±cos a sin b, we expand the cos(θu − θv)

and sin(θu − θv) terms to obtain

Z=

2π∫︂

0

2π∫︂

0

e−cβ [rucos θu(r2−rvcos θv)−rurv sin θu sin θv+rvr2cos θv ]

× cos
(︂
cβ
[︁
sin θu(rur2 + rurv cos θv)− rurv cos θu sin θv − rvr2 sin θv

]︁)︂
dθu dθv

(continued next page)
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(a)
=

2π∫︂

0

2π∫︂

0

ecos θu(cβrurvcos θv−cβrur2)⏞ ⏟⏟ ⏞
p

+sin θu(cβrurv sin θv)⏞ ⏟⏟ ⏞
q

e−cβrvr2 cos θv

(︃
cos[cβrvr2 sin θv]

× cos
[︂
(sin θu)

g⏟ ⏞⏞ ⏟
(cβrur2+cβrurv cos θv) + (cos θu)(−cβrurv sin θv)

]︂
+ sin[cβrvr2 sin θv]

× sin
[︂
(sin θu)(cβrur2+cβrurv cos θv)+(cos θu)(−cβrurv sin θv)⏞ ⏟⏟ ⏞

f

]︂)︃
dθu dθv

(b)
=

2π∫︂

0

e−cβrvr2cos θv cos(cβrvr2 sin θv)

(︄ 2π∫︂

0

ep cos θu+q sin θu cos[f cos θu + g sin θu]dθu

)︄
dθv

(c)
+

2π∫︂

0

e−cβrvr2cos θv sin(cβrvr2 sin θv)

(︄ 2π∫︂

0

ep cos θu+q sin θu sin[f cos θu + g sin θu]dθu

)︄
dθv,

(A.50)

where line (a) comes from applying expanding cos(a−b) with the expressions in the previ-

ous two lines before (a) playing the parts of ŞaŤ and ŞbŤ, respectively. We also note that the

expressions we have denoted p, q, f , and g do not contain θu, and so are not involved when

integrating over θu.

Next, we apply [130, Eq. 3.937.1] to the inner integral of (A.50) line (c) and [130, Eq.

3.937.2] to the inner integral of (A.50) line (b), both with m=0. These equations both

require (g−p)2+(f+q)2 > 0 to be used. In our case, f + q = 0 and g − p = 2cβrur2.

Since cβ , ru, and r2 are all positive real values, the condition is satisĄed. With m = 0,

the results of the two integrals simplify considerably. They yield expressions just involving

I0
(︁√

C ± iD
)︁
, where C = p2+q2−f 2−g2 = −4c2βr

2
urvr2 cos θv and1 D = 2(fp+ gq) =

−4c2βr
2
urvr2 sin θv. We further note from [297, Eq. 10.39.9] that I0(z) = 0F1(; 1;

z2

4
).

Hence,

I0
(︁√
C ± iD

)︁
=I0

(︂√︂
−4c2βr

2
urvr2 cos θv∓i4c2βr2urvr2 sin θv

)︂

= 0F1

(︁
; 1;−c2βr2urvr2e∓iθv

)︁
. (A.51)

1Please note that there is a typo in the 8th edition of [130] stating that D = −2(fp + gq). The correct
version ofD, without the minus sign, is given in the original source, [298, Sec. 337, Eq. 9a] and earlier editions
of [130].
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Thus, (A.50) becomes

Z =

2π∫︂

0

πe−

t1⏟ ⏞⏞ ⏟
(cβrvr2)cos θv cos(cβrvr2 sin θv)[0F1(; 1;−c2βr2urvr2eiθv)

+ 0F1(; 1;−
t2⏟ ⏞⏞ ⏟

(c2βr
2
urvr2)e

−iθv)]dθv

+

2π∫︂

0

iπe−cβrvr2cos θv sin(cβrvr2 sin θv)[0F1(; 1;−c2βr2urvr2eiθv)

− 0F1(; 1;−c2βr2urvr2e−iθv)]dθv

=

2π∫︂

0

πe−t1cos θv
(︂
cos(t1 sin θv)+ i sin(t1 sin θv)] 0F1(; 1;−t2eiθv)

+[cos(t1 sin θv)− i sin(t1 sin θv)] 0F1(; 1;−t2e−iθv)
)︂
dθv

=

2π∫︂

0

πe−t1 cos θv
[︂
0F1

(︁
; 1;−t2eiθv

)︁
ei t1 sin θv + 0F1

(︁
; 1;−t2e−iθv

)︁
e−i t1 sin θv

]︂
dθv

=

2π∫︂

0

π
[︂
e−t1 cos θv+i t1 sin θv

0F1

(︁
; 1;−t2eiθv

)︁
+ e−t1 cos θv−i t1 sin θv

0F1

(︁
; 1;−t2e−iθv

)︁ ]︂
dθv

=

2π∫︂

0

π
[︂
exp
(︁
−t1e−iθv

)︁
0F1

(︁
; 1;−t2eiθv

)︁
+ exp

(︁
−t1eiθv

)︁
0F1

(︁
; 1;−t2e−iθv

)︁ ]︂
dθv

(d)
= 2π

2π∫︂

0

exp
(︁
−t1e−iθv

)︁
0F1

(︁
; 1;−t2eiθv

)︁
dθv

(e)
= 2π

∮︂

C

exp
(︁
−t1z−1

o

)︁
0F1(; 1;−t2zo)dzoizo

. (A.52)

Line (d) follows from a change of variable θs = −θv in the second half of the line

preceding (d), then noting it results in the same integral as the Ąrst half, just from −2π to 0;

it is equivalent to shift those limits to be from 0 to 2π. Line (e) follows from the change of

variable zC = eiθv , which transforms the equation into a contour integral, where the contour

C is the unit circle.

ezC has only one (essential) singular point at zC = ∞̃. Hence, e−t1z
−1
C , with t1 ∈ R

+,

has one singular point at zC = 0. Meanwhile, 0F1(; 1;−t2zC) with t2 ∈ R
+ has no poles or

singularities inside the unit circle. Therefore, by the residue theorem for contour integration,
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when integrating over function f(zC), the value of the integral will be 2πi times the sum

of residues of f(zC) at zC = 0. Furthermore, if f(zC) is written as a power series, i.e.,

f(zC) =
∑︁∞

n=−∞ anz
n
C
, the sum of residues in this case will be the coefficient on the z0

C

term of zC·f(zC). So,

zC·f(zC) = 2π
i exp

(︁
−t1z−1

C

)︁
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1 tℓ2 z
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C
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(A.53)

Line (f) follows from the change of variables n = ℓ− k, and line (g) follows from reversing

the order of the summations.

Thus, the coefficient on the z0
C

term is

2π

i

∞∑︂

ℓ=0

tℓ1 t
ℓ
2

(1)ℓ ℓ! ℓ!
=
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i
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i
0F2(; 1, 1; t1t2). (A.54)

So, we arrive at

Z = 2πi× 2π

i
0F2(; 1, 1; t1t2) = 4π2·0F2(; 1, 1; t1t2)

= 4π2·0F2
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2
ur

2
vr

2
2

)︁
(A.55)

and

ϖ2,5 = 8π2P 2
2 λ

′2
S
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dru drv. (A.56)

Converting 0F2 back to its power series form, we get

ϖ2,5 = 8π2P 2
2 λ
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S e
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2
2
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which we note is very similar in structure to the double integral in (A.32). As such, it can
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be solved in much the same manner. The result is
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Collecting everything together, we have V(I2,2) = ϖ1 + ϖ2 − (E{I2,2})2 = ϖ1 +
∑︁5

n=1ϖ2,n − (E{I2,2})2. The last term, found by squaring (A.36)Ű(A.37), is
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(A.59)

We note by inspection that the Ąrst line of (A.59) equalsϖ2,1 in (A.43), and the second line

of (A.59) equals ϖ2,2+ϖ2,3 from (A.45) and (A.46). Hence, those terms will cancel each

other in V(I2,2). We therefore Ąnally obtain

V(I2,2) = 2πP 2
2 λ

′
S

r2−2α2
2

α2 − 1
− 2βP 2

2 c
α2
β e

−cβr
2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ(1+ k−α2, cβr
2
2)

Γ2(k + 1)

− β2P 2
2 c

α2
β

∞∑︂

k=0

Γ2
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)

+ 2β2P 2
2 c

α2
β e

−cβr
2
2

∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ2
(︁
1 + k − α2

2
, cβr

2
2

)︁

Γ3(k + 1)

− β2P 2
2 c

α2
β e

−2cβr
2
2

(︄
∞∑︂

k=0

(︁
cβr

2
2

)︁k Γ
(︁
1+ k− α2

2
, cβr

2
2

)︁

Γ2(k + 1)

)︄2

. (A.60)
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