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Abstract

Electronic Speckle Pattern Interferometry (ESPI) is becoming more and more popular
for deformation analysis and material testing due to its non-invasive nature. In the
present work ESPI is used to determine Young’s modulus E and Poisson ratio v of
materials. First a perfect noise-free synthetic fringe pattern is created assuming normal
loading on the material. In the virtual inversion, an iterative minimum error procedure
(Least Square Minimization) is used to determine Young’s modulus and Poisson ratio.
It employs the relative fringe order of picked positions of fringe maxima and minima
within a single interferogram. The results from this virtual inversion are within 0.1% of
the original values of the Young’s modulus and Poisson ratio. Next this method is tested
experimentally on a homogeneous block of Plexiglas loaded with a normal force to
determine its Young’s modulus and Poisson ratio values. The resultant E and v values
are within 4% and 1% of the respective values obtained by the standard strain gauge
method. This method is then applied to a non-homogeneous marble sample. Finally,
Young’s modulus of an aluminum and marble sample in the form of a cantilever beam
are determined experimentally. The result for aluminum is 60.5 GPa which is within 1%
of the actual value of that aluminum beam obtained by the standard strain gauge

method. The Young’s modulus of marble resulted between 19 GPa and 13 GPa.
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Chapter 1

Introduction

1.1 Motivation

A surface that appears smooth to the unaided eye may well be quite rough on the scale
of optical wavelengths. Coherent laser light reflected from such a surface shows a
speckled pattern of randomly distributed dark and bright patches. These patches arise
from the constructive and destructive interference of waves reflected from the
roughness of the surface and contain important information about the state of the
surface. The phenomenon of laser speckle can be used as a very sensitive method of
vibration, stress, strain, displacement, and material properties determination by
measuring the surface displacement.

Despite the fact that there are well-accepted methods for measuring these
parameters, complementary efforts have focussed on developing optical interferometry'
3 as a tool. Optical methods are desirable because information is obtained over the entire
field of view, the object need only be appropriately illuminated and only little surface
preparation is required. There are a number of complementary optical techniques. Some
of the most popular methods include Double exposure holography?, Moiré
interferometry’ and Electronic Speckle Pattern Interferometry' (ESPI). Each of the
different, but complementary, methods has its advantages and disadvantages for
different applications.

Double exposure holography (DEH) is perhaps the oldest of the techniques and
continues to be used today*®. In its simplest form, two holograms of an object before
and after motion of its surface are recorded on the same piece of film. Reconstruction of
the interference of these two wave fields produces a series of fringe patterns

superimposed on the three-dimensional image of the object. Analysis of the fringe
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patterns can allow for the determination of displacements on the order of one-quarter or
better of the wavelength of the light employed. One of the drawbacks is that
constructing the necessary geometry of reference and object beams might be difficult in
constrained locations.

In Moiré interferometry’" a diffraction grating, typically 1200 lines/mm, is mounted
or scribed on the surface of the object to be studied. The object is illuminated under two
opposing, collimated beams, both incident on the object at the same angle. Under this
geometry, the angle of intersection between the two beams is zero and a uniform
intensity is observed. Once the object is deformed, the angle of intersection is no longer
zero and the two diffracted wave fields interfere to form a fringe pattern. Moir¢é fringe
patterns have good signal to noise ratios and are well resolved such that an accuracy of
+0.02um is possible. One constraint of this method is that the diffraction grating must
be placed on the object in the area to be studied; this may require special machining of
the object or the placement of a prepared diffraction grating using epoxies that could
influence the experiment.

In ESPI, slight changes in the speckle pattern produced by motion of the object
between two video frames provide the basic information. The method exploits the fact
that each speckle on the surface of an object illuminated with coherent radiation is an
interferometer whose intensity varies cyclically depending on the change in the phase of
the light scattered from the location of the speckle. Consequently, the wrapped phase is
determined by local correlations of the observed speckle pattern. The major advantages
of this method are: there is considerable latitude for placement of source beams and the
observing camera, little or no surface preparation is required and the method is
inexpensive to implement.

Because of its overall simplicity, ESPI has been chosen to determine material
properties in this present work. Before proceeding further into the work, a review of the

developments and measurements done using laser speckle interferometry are necessary.
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1.2 Literature Review

Since the invention of laser in early 1960s, laser speckles have been found to be an
inherent characteristic of any laser experiment. Initially it was thought to be undesirable
noise in interferometry but later on was found to contain vast amounts of information
about the deformation state of the object. In this chapter a review has been made on the
research in determination of stress, strain, displacement, material properties etc. using
laser speckle interferometry.

In his paper, Leendertz’ described the speckle correlation phenomenon which
occurred due to the change in an optical path difference. Using a modified Michelson
interferometer, he measured an out of plane displacement by recording two images of
an object, before and after deformation, on two photo sensitive plates. Light waves
transmitted through these plates were diffracted to yield the out of plane displacement
fringes. Following this work, Butters and Leendertz® developed a double photographic
exposure version of the above technique referred to as double exposure speckle pattern
interferometry. Two images of an object, before and after deformation, were recorded
on a single photographic plate. The film plate was given a small displacement between
exposures. The developed film plate shows deformation fringe patterns.

Jones and Wykes® presented a thorough study of ESPI interferometers from the
viewpoint of optimization of an optical system design. In their study they concentrated
on parameters such as television camera characteristics, input laser power, and type of
interferometers available for vibration and displacement measurements.

Linear elastic fracture mechanics (LEFM) has been widely used in rock mechanics
and experimental studies have indicated that in rock a microcracking process zone
exists ahead of the tip of crack. In their work Chengyong et.al.'® observed the growth
and formation of the microcracking process zone for three kinds of rock by laser
speckle interferometry. The effects of crack width and grain size on the process zone
fracture are also studied and the relation between the load and the crack tip opening
displacement are examined. They found that the microcrack forms ahead of the crack

and then links to form a microcrack damage zone. When the load approaches the initial
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crack load, the microcrack process zone extends and widens with the development of
many microcracks. They found that the shape and size of the process zone observed by
the optical microscope are same as the results observed by the laser speckle method.

Dimensional accuracy of components is extremely important to the manufacturing
industry. Very often curvatures are used in specifying the profile of components which,
after being machined, turns out to be difficult to measure. In their paper Shang ez. al."!
presented a non-contacting and whole field method of measuring curvatures using a
moving laser source and image shearing camera. The resulting interference fringe
pattern, which is related to the slope of the profile, provided with the information of the
curvatures. To enhance the feasibility of this technique in the industrial environment,
optical fibres were used so that the desired movement of the laser source could be
achieved readily. They applied this technique to measure the profile of wire-cut
cylinders having circular and elliptical cross-sections.

Holder'? et al. investigated the performance of a digital speckle correlation
interferometer using an image fibre, both theoretically and experimentally. They
derived an expression for the visibility of correlation fringes in terms of spatial filtering
properties of the image fibre. The visibility of fringes depends mainly on the resolution
of the image fibre as well as the in-plane displacement of diffuse objects. The results
show that a computerized video system combined with the image fibre is suitable for
laser speckle interferometry.

Laser speckle interferometry has been used to detect and quantify the rust build up

11> A CCD camera and a frame

on metal surfaces under water by Koyuncu et. a
grabber card captured speckle information from the sample metal surface. Software
techniques were used to convert the image data files in ASCII files in an appropriate
format. Three-dimensional surface plots were generated to define the numerical values
for the amount of rust build up.

The generation and detection of elastic wave by photo-elastic methods, known as
‘laser ultrasonic’ is now a commonly used method in research. Bayon et. al.  used laser
speckle interferometry to record the three components of transient vibration induced by
an ultrasonic wave at a point on the surface of a solid model. They experimentally

investigated the reliability of the method and illustrated maps of the local three-
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dimensional transient vibration and particle trajectories of different points at the surface
of the solid.

1. showed the results of experimental investigations using laser speckle

Xu et a
interferometry on small sized three point bending notched beams and using photo-
elastic coating and strain gauges on very large size compact tension specimens of
concrete. Their investigation showed that there exists a stage of stable crack
propagation before unstable fracture occurs. The results are in agreement with other
investigations using Moiré interferometry’, holographic interferometry* and the
microscope'. Further the study shows that crack initiation, stable crack propagation and
unstable fracture can be distinguished in the fracture process in concrete structures.

Transient in-plane displacements generated in a metal plate subjected to impact
loading are measured using a pulsed digital speckle pattern interferometry system by
Diaz and Kaufmann', Two separated speckle patterns produced by a ruby laser are
recorded using a CCD camera and stored in a frame grabber. Transient displacements
are evaluated by digital analysis of the fringes generated by the subtraction of these
speckle patterns. The computer used for image processing is also utilized to control
image acquisition, to synchronize the laser pulses to the CCD camera and the object
position. Experimental results are compared with numerical calculations obtained using
the finite-element method and they are in agreement.

1.'7 presented a newly developed laser based non-contacting strain

Anwander et. a
sensor suitable for temperatures up to 1200°C, which was adapted to a commercial
tensile testing machine equipped with an electrical furnace. The principle of the strain
sensor is based on tracking laser speckles through a digital correlation technique. Based
on the experimental data, it has been shown that this simple laser-based strain sensor
can be used successfully for the determination of mechanical and thermal strains up to
temperatures of about 1200°C.

Finally a work done by Zhang et. al.'® studied the elastic modulus of bone from a
bovine femur using ESPI. They loaded a small piece of bovine bone prepared as a beam

with three-point bending. Full field displacements are found from the interferograms,

which are used as the solution for the analytical expression for the beam deflection
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defined by classical mechanics of material. The results are in perfect agreement with the

results reported in the open literature™.

1.3 Conclusion

In this present work, ESPI has been used to determine the Young’s modulus and
Poisson ratio of materials. In the second chapter, the basic mechanism of speckle
interferometry and the related mathematical formalism has been discussed. In the third
chapter, first forward modeled synthetic fringe patterns are calculated and inverted in a
virtual inversion experiment and then experimental fringe patterns are generated and
inverted using the same method. In the fourth chapter, experiments have been carried
out with aluminum and marble cantilevers and their Young’s modulus has been

determined.
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Speckle Interferometry

2.1 Speckles and its Origin

A granular pattern appears on a surface illuminated with a coherent light source. This is
known as the speckle effect'. A photographic image of a laser-illuminated surface is
shown in Fig.2.1. A similar effect occurs in coherent radar and in ultrasonic imaging.
This speckle effect occurs only when the surface is optically rough; i.e., its height
variation is of the order of or greater than the wavelength of the illuminating light.
When a laser beam illuminates such a surface, the intensity of the scattered light is
found to vary randomly with position — this is known as objective speckle. On the other
hand, when a rough surface is illuminated by laser light and an image of the surface is
formed, the image shows a similar random intensity variation, but in this case the
speckle is called ‘subjective’. Details on the formation of these two different kinds of
speckles are given below.

Objective speckle: Each point on an illuminated surface can be considered to
absorb and re-emit the light, thus acting as a source of spherical waves. The complex
amplitude of the scattered light at any point in space is given by the sum of the
amplitudes of the contributions from each point on the surface. For a surface in the xy-

plane (Fig.2.2), if the surface height at a point (x,y) is given by £(x,y), then the complex
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Figure-2.1: A subjective speckle pattern obtained by forming the image of an

optically rough surface illuminated by a laser [Taken from Ref. 1,
p-51, with kind permission of Dr. R. Jones].

Figure-2.2: The scattering of light by a rough surface.

10
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amplitude at a point P(r) is the sum of the components scattered from the whole surface

and is given by
Ur) = & [ futs, e 2G5 s 1)

where K is a constant, u(x,)) represents the complex amplitude of the light incident at
(x,y) and G is a geometric factor associated with the illumination and viewing directions
which can be assumed to be constant when P is far away from the surface. Since the
surface height is varying randomly by A or more, the phase term GE(x,y) will also vary
by amounts of Ac or more where c is the speed of light. Hence the resultant amplitude at
P is described by a set of vectors of random phase which when added together give
random resultant amplitude. The total amplitude has a value which varies between zero
and a maximum value determined by the magnitude and phase of the individual
amplitudes. As the point P is varied, the resultant amplitude and hence, intensity, will
have a different random resultant value. It is this random intensity variation which is the
speckle effect. The statistical properties of speckle have been calculated by Goodman®,
According to his calculation; the probability that the intensity / at a point, lies between /
and /+d/ is given by

P(hydl = 1 exp:i 2.2)

() (1)
where (I > is the expected intensity averaged over many points in the scattered field.

The probability P(I") that the intensity is greater than some value I’ is given by

P(I")dI = expi | (2.3)

{1
The mean value of the square of the intensity can be shown to be equal to 2(7)’, so that
the standard deviation of the intensity oy is
o} =(PYy- (1" =(1y’ 24
If the intensities of the scattered light at two points P and P’ are compared, it is clear

that when these points are very close together, the two intensities are closely related but

as they move further apart, the intensities become different. The separation of the

11
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minima (or maxima) in the pattern falls within a fairly narrow range. This means
speckle size cannot be quantified, but it can be related to the autocorrelation function

R(r1,r2) of the intensity distribution, defined as®

R(r,1) = {I(r)I(r)) (2.5)
where the averaging is performed over many speckles and r; and r, refers to the
positions. When r; = 1, from Eq.(2.5), R= <I 2> . As (r1-12) increases, the intensities (1)

and I(r,) are no longer the same, and eventually become totally unrelated to one another.

In that case
Rz, 1) = (TN (r,)) (2.6)
Goodman® has derived an expression for the autocorrelation function of the scattered

intensity where a uniform intensity beam of dimension L illuminates the surface such

that an area of dimensions Lx/ is illuminated as
R(Ax,Ay) = <12 >[l +sin cz(%?z—x—) sin cz(ﬂﬂ Q.7)

where z is the distance between the viewing and object planes, and (Ax, Ay) are the x
and y coordinates of the vector (r;-r) representing the change in viewing position.
The average ‘size’ of the speckle can be taken as the value of Ax (or Ay) for which the

sinc function first becomes zero, given by:
(Ax), == 2.8)

From Eq.(2.8) its seen that the size of the speckles observed in the light scattered by a
rough surface at a given distance from the surface increases as the area illuminated
decreases. This type of speckle is called objective because its scale depends only on the

plane in space where it is viewed, and not on the imaging system used to view it.

Subjective or Image-plane speckle: The size of the speckles in this kind
of speckle is dependent on the aperture of the viewing lens. This is why its termed as
subjective speckle. This effect can be observed by comparing the size of the speckles
when an object is viewed directly by eye and when an aperture smaller than the pupil is

placed in front of the eye. In the latter case the speckle size will be seen to increase’.

12
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Alternatively, the same effect may be observed by focusing and defocusing one’s eyes
alternately when looking at the speckle pattern.

The probability distribution of the speckle intensity at a given point is the same as
those of the objective speckle (Egs. 2.2 to 2.4). However, the spatial distribution of the
speckle is determined by the diffraction limit of the imaging system. According to
Goodman?, the expression for the autocorrelation function of the scattered intensity of

the image-plane speckle is given by?

R(r)=(I’ >[1 +2J, (%) / (5%’1)] 2.9)

where J; is the first order Bessel function. And the speckle size is?

24
a

d

sp

(2.10)

where ‘a’ is the diameter of the viewing lens aperture and v is the distance from the lens

of the image plane. The formation of the speckle pattern is shown in Fig.2.3.

2.2  Phase in Coherent Imaging

In speckle interferometry, light is scattered from a rough surface illuminated with a
coherent light source through a lens onto a plane which normally (but not necessarily) is
the plane in which the object is in focus. In the following section, phase changes which
arise in holographic and speckle interferometric experiments have been calculated.

In Fig.2.4, the surface is illuminated by a wavefront diverging from the point S and
is in focus in the observation plane. A point P in the surface illuminates an area in the
image plane centred on Q. The optical path from S to the point R via P is given by

[=SP+1,+PO+OR 2.1

where SP and PO represent the mean distance from a region around P to S and O
respectively, /, is the optical path associated with the random variation of the surface
height, and OR is the distance from O to R. Now, when the lens is focussed on a point T
(Fig.2.5), the point Q in the viewing plane is illuminated by all the rays scattered from

13
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Object illumination
wavefront

Figure-2.3: The formation of the speckle pattern in the image plane of a lens.

Figure-2.4: The optical path of a ray in subjective speckle: image-plane viewing.

14
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the viewing lens aperture. Thus, the size of the area that illuminates a point in the
viewing plane, is proportional to the viewing lens aperture diameter and inversely
proportional to the distance between T and the viewing lens. Because the optical path
from T to Q is the same for all ray directions, the optical path from S to Q via a point P
is given by

[=SP+1,+TQ-PT (2.12)
when the viewing plane is the focal plane of the lens (Fig.2.6), T is effectively at
infinity. All the rays illuminating a point Q in the viewing plane are parallel to MQ. The
surface area illuminating a point in the viewing plane is now the projection of the
viewing lens aperture on the object, so that unless viewing is at a very oblique angle, its
diameter is approximately that of the viewing lens aperture. The optical path from S to
Qviaapoint P is

[=8SP+1,+MQ+PN (2.13)
when the object is displaced, so that the point P is displaced by d to P’, the optical path
from the source S to a point in the viewing plane via a given point in the object is
altered (Fig.2.7). This change in phase associated with the change in optical path length
is the basis of speckle correlation techniques. If the change in optical path from S to P is
Al then (from Fig.2.7)

Al, = SP' - SP (2.14)
For all practical arrangements SP>>|d], so that

Al =SP'—SP =d cosy, (2.15)
If the direction of SP and SP’ are given by a unit vector n, and n,’, then assuming SP
and SP’ are approximately parallel i.e. ny~n,’, so that

A, =n,-d (2.16)
The path length /, can be assumed to be unchanged and the change in path Al
associated with the path from P to Q (Fig.2.8) is given by

Al, =dcosy,
where its assumed that the direction in which the light is scattered from P to Q and from
P’ to Q are approximately parallel. If this direction is given by n then

A, =-n,-d 2.17)
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Figure-2.7: The ray geometry for the calculation of the phase difference between the

illuminating wavefronts introduced by a surface displacement d.

Figure-2.8: The ray geometry for the calculation of the phase difference between the

scattered wavefronts introduced by a surface displacement d.

17



Chapter 2. Speckle Interferometry

Thus the total phase change due to the displacement is given by

9= (0, -n,)-d @.18)

2.3 Electronic Speckle Pattern Interferometry (ESPI)

2.3.1 Whatis ESPI?

In speckle pattern interferometry a fringe pattern is derived from an optically rough
surface observed in its original and displaced positions. The minimum speckle size is
typically in the range of 5 to 100pm' and a standard video camera may be used to
record the pattern. This method is known as Electronic Speckle Pattern Interferometry
(ESPI) and was first demonstrated by Butters and Leendertz’. Similar work has since
been described by Biedermann e al.* and Lekberg’ et. al. The major feature of ESPI is
that it enables real-time correlation fringes to be displayed directly upon a monitor
without recourse to any form of photographic processing, plate relocation etc. This
comparative ease of operation allows the techniqgue of speckle pattern correlation
interferometry to be extended to considerably more complex problems of shape
measurement and deformation analysis. In the following sections different methods of
correlation fringe formation, and their limitations and applications have been

highlighted.
2.3.2 Fringe Formation by Signal Subtraction

The faceplate of the camera that is used to grab the images is located in the image plane
of the speckle interferometer. In the subtraction method, the output signal from the
camera with the object in its initial state is recorded. The object is then displaced and
the camera signal is subtracted electronically from the stored signal. This process was
carried out in the pre-digital age and hence was accomplished completely with analog

electronics. Those areas of the two images where the speckle pattern remains correlated

18



Chapter 2.  Speckle Interferometry

will give a resultant signal of zero, while the uncorrelated areas will give non-zero
signals. If the sum of the intensities of the incident waves are @; and @, just before and

after the displacements then

O, =1 +1, +2,/1,1, cosy (2.19)
and
®, =1, + I, + 2./, 1, cos(y + Ap) (2.20)

where /; and I, are the intensities of the individual waves, vy is the difference in phase
and Ag is the change in phase due to deformation'.
If the output camera signals V; and V, are linearly proportional to the input image

intensities, then the subtracted signal is given by

V, =07 -,) = (@, -@,)= 21,1, [cosy —cos(y + Ap)]
or V, =4I, sin(y + Aq))sin-zl-mp (2.21)

This signal has positive and negative values depending on the phase term. The monitor
will display the negative-going signals as areas of blackness; to avoid this loss of signal,
V; is rectified before being displayed on the monitor. The brightness B on the monitor is

then proportional to |V, and given by

3
B = 41{[1112 sin’ (w + %A(ﬁ) sin’ —;:Ago] (2.22)

where K is a constant.
If the brightness B is averaged along a line of constant Ag, the maximum and minimum

values of it that comes out are

By, = 2K [II,, when Ag = 2n+1)m, 7=0,1,2.... (2.23)
and
Bpin =0, when Ag =2nn, n=0,1,2.... (2.24)

These alternate maxima and minima gives rise to the fringe pattern. In Fig.2.9,

subtraction correlation fringes are shown.
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2.3.3 Fringe Formation by Signal Addition

Contrary to the signal subtraction, in this case the two signals obtained before and after
the deformation are added together on the camera faceplate. The camera output voltage
is proportional to the added intensities. The areas of maximum correlation have
maximum speckle contrast and, as the correlation decreases, the speckle contrast falls. It
reduces to a minimum but non-zero value where the patterns are uncorrelated. The

voltage V, is given by'
V, (@, +®,)=2I +21, +4,(I,1, cos(l// + -;- Ago) cos-;—Aqo (2.25)

The contrast of the speckle pattern can be defined as the standard deviation of the

intensity. For a line of constant Ag, this is

o, = 2[012 +0; +8(I, {1, )cos’ —;—Aqo]i (2.26)

where oy and o, are the standard deviations of [; and ;. The contrast varies between

maximum and minimum values given by

1
lon]. =267 +o2 + 211, when Ap=2nm, n=0,12.... .27

and

[onl, =207 + agﬁ : when Ap = Qn+l)m, n=0,1,2.... (2.28)
while the contrast of the added intensities varies the mean value along a line of constant
Agp is the same for all Ag and is given by

(@, +@,)=2(1,)+2(1,) (2.29)
when the sum of the two speckle patterns is directly displayed on the monitor, the
average intensity remains constant, and the variation in correlation is shown as a
variation in the contrast of the speckle pattern but not in its intensity. This technique is
employed to observe the time-averaged vibration fringes. The correlation fringe pattern
is shown in Fig.2.10. Subtraction fringes have intrinsically better visibility than addition

fringes since the minima have zero intensity.
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Figure-2.9: Sin’ speckle pattern correlation fringes obtained using electronic
subtraction [Taken from Ref. 1 with kind permission of Dr. R. Jones,
p.169].

Figure-2.10: Speckle pattern correlation fringes obtained using electronic addition.
The sample was excited by a small piezo-electric crystal attached to its rear [Taken

from Ref. 1 with kind permission of Dr. R. Jones, p.172].

21



Chapter 2.  Speckle Interferometry
2.3.4 Fringe Formation by Direct Correlation

This is an alternative and recently developed method of directly correlating digitally
acquired speckle patterns®. This method requires more calculations than the standard
methods described earlier but the main advantage is that it produces substantial fringe
contrast irrespective of the illumination level over the sample surface. Further, the
values output in this method are directly related to a wrapped phase value from
Eq.2.18.

This method is based on the correlation coefficient between the added intensities
®; and @, before and after the deformation irrespectively. The correlation coefficient
of two random variables X and Y is defined as’

Py = <XYZ:£X><Y> (2.30)

where

o). e o= (r)-0y
If X and Y are independent then

(x7) = (X XY) (2.31)
In this case p,, will be zero.
Recall ®, and ®,, which are defined in equations (2.19) and (2.20) as

O, =1 +1,+211, cosy
and

Q,=1+1,+ Z\ﬁI_I_;cos(t// +Ag)
Now consider only a small area of the surface of the object such that over this area Ag,

in nearly uniform. Then the correlation co-efficient between the intensities over this

small area will be

<(D1(D2> '1_' <(D1><(D2> 1 (2.32)
(<(D12> - (®1>2)5(<CD22> - (@2)2)5

This can be further evaluated by noting that:

plagp,)=
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(i) 11, I and y are independent variables and can be averaged separately.
(i)  {cosy)={cos(y +Ap))=0 (ie., the average value of the cosine

function is zero.) and
@) (r’)=2(1)

and assuming (I,) = (I,) = (I}, gives

plAp)= %(1 +cosAg) (2:33)

Thus the correlation is unity when Ag = 2nx, and zero when Ap = (2n+1)x. This
shows the direct relation between the change in the phase Ag introduced by the motion
and the correlation co-efficient calculated from the local intensities in the two images.
The direct correlation method is based on the results of equations (2.32) and (2.33) that
the correlation coefficient between two speckle patterns is modulated with a cosine
dependence on the change in the phase Ag due to the displacement. Consider 4;; and By
are the pixel intensities of two digitally recorded complete speckle patterns, where i and
j represents individual speckle positions within the images and each pixel represents on
average the intensity of each speckle. Now under sufficiently small displacements so
that the speckle de-correlation effect® can be neglected, and over suitably small spatially
corresponding sets of m adjacent pixels a; and by, the change in the phase Ag can be
assumed to be nearly constant, the discrete local correlation coefficient » between these
two cells and analogous to equation (2.32) is given by®

L i (@b )~ [—l‘ i (@) L i (B )}
y= L™ L (2.34)
.0,

a

where

o= {i—f(akf)—[—;;f(am )T } 239)

with the corresponding formula for o,. This is Pearson’s coefficient of correlation for
finite discrete sets of data. Here its taken to be a local approximation to the coefficient

of correlation in equation (2.32). In the analysis, square cells of desired size are selected
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Figure-2.11: Speckle pattern correlation fringes obtained from the same raw frames
by a) subtraction method and b) direct correlation’ method [Taken from

Ref. 6 with kind permission of Dr. D.R. Schmitt, p.8850].
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and the calculation of equation (2.34) is carried out systematically over each possible
set of cells. The mapping of these calculated r values then forms the fringe pattern. An
example of fringe pattern by direct correlation is shown in Fig.2.11.

As suggested in Eq. (2.34), when the in-phase condition exists, » approaches unity,
indicating good positive correlation. For the out-of-phase condition, r approaches zero,
indicating no correlation. It is important to note that r values less than zero are possible
with Eq. (2.34) but should not exist according to Eq. (2.33). Such values represent a
negative correlation between the pixel intensities within the two cells. In the present
context a negative correlation has the same meaning as no correlation and is assigned a

value of zero.
2.3.5 Applications and Limitations of ESPI

Speckle interferometry has a wide range of applications in the field of engineering,
medicine and botany mainly because of its non-invasive approach. It is beyond the
scope of this section to discuss all of them here. However, only the main applications of
ESPI will be highlighted in the following section.

Non-destructive testing (NDT): Interferometric methods are suitable for
their non-contacting character and can measure surface displacements that result from
the application of very small loads. In NDT it is used to detect whether or not a material
has a fault within without damaging it. The discontinuity appears as an irregularity in
the fringe pattern and enables the region of fault to be identified. The surface
displacement is generally created by mechanical loading, heating, hydrostatic pressure
or vacuum or vibration. The major limitations in this process are that the defect has to
be made to create a discontinuity in the surface displacement and comparable to the
minimum fringe spacing to be able to make any appreciable effect on the overall fringe
geometry. When these limitations are taken into account, ESPI becomes one of the most
successfully applied techniques in detection of debonds in tires and composite materials

like carbon fibre reinforced polymer (CFRP) or metal clad honeycomb structures’.
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Figure-2.12: Out of plane displacement ESPI fringes which indicate a region of
debond between a CFRP outer cladding and an internal honeycomb
structure [Taken from Ref. 1 with kind permission of Dr. R. Jones,
Page.278].
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Figure-2.13: The out of plane displacement distribution in the vicinity of a (a) known
good weld and (b) known cold weld using ESPI [Taken from Ref. 1 with
kind permission of Dr. R. Jones, p.279].
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Fig.2.12 demonstrates the way in which debonds between the honeycomb and the CFRP
cladding are revealed under vacuum. The region of high density fringes corresponds to
the faulted zone.

Another example of NDT application is to inspect the quality of strip welds formed
between thin (=0.1 mm thick) metallic sections. Thé electronic speckle interferogram
shown in Fig.2.13 shows fringe patterns in the vicinity of a known good weld made
under optimum heating conditions and in the vicinity of known poor weld formed under
‘cold’ conditions. There is a clear difference between the two interferograms.

Component inspection and quality control: By virtue of the resolution
and accuracy attainable in interferometric methods, it is used to control and monitor the
dimensional tolerance of production components. Moreover ESPI is used to detect the
shape differences between a master and production components of complex geometry'.
This is a problem of considerable commercial importance since improvements in the
accuracy of the blades help to reduce the fuel consumption of the engine as well as

increasing the level of performance. Two parameters have been measured:

i. the accuracy to which the profile of the manufactured blade follows
that of the design and

ii. orientation of the blade relative to a defined axis usually called the
stacking axis.

The technique requires that a blade of known dimension be used as a master for the
manufacture of the fringe. At the fringe observation stage the master blade is removed
and replaced by nominally identical production blade and fringe is formed. The purpose
of this analysis is to identify the coordinate of the fringe centres and perform the
computations necessary to transform them to a plot of shape difference. Fig.2.14 shows
ESPI fringes at a contour sensitivity of 25um that have been identified and redisplayed
on the monitor. They correspond to the difference between the form of a production

blade and master.
Experimental engineering design investigation: Interferometric fringes

have higher fringe density in regions of a structure where strain concentrations are

present. Moreover, fringe irregularitiecs show up in the regions of uneven load
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distribution. This information may be used in the experimental study of prototype
designs and investigate sources of failure due to stress concentration’.

Static displacements and strain determination: Interferometric fringes
are formed due to the surface displacements and this strain information is embedded in
the fringe patterns. This method therefore provides a powerful tool for experimental
strain analysis, a fact that has been exploited by a considerable number of workers’.

Among many other applications of ESPI, one is to measure the elastic moduli of
materials and that is the aim of this present research. This is of considerable importance

in the fields of Geophysics and Engineering.
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Figure-2.14: 25pm sensitivity ESPI contour fringes defining the difference between a
section of master turbine blade and inspection blade. The position of
these fringes had been identified and enhanced by computer analysis'

[Taken from Ref. 1 with kind permission of Dr. R. Jones, p.292].
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Chapter 3

Determination of [Elastic Coefficients Using

Boussinesq’ Theory

3.1 Introduction

Over the last couple of decades Electronic Speckle Pattern Interferometry’ (ESPI) has
become popular for deformation analysis together with the Holographic
Interferometry’?. ESPI provides measures of displacement through slight changes in
successive video images. The raw recorded data consist of a fringe pattern representing
variations in the phase of the coherent laser used, which in turn depends on the
magnitude and the direction of the motion of the object under study. So the fringe
pattern is a map of the changes in the phase of the light over the surface of the object
due to small displacements introduced by exerting some amount of force between the
exposures. The surface displacement, introduced by a normal force, depends directly on
the materials elastic coefficients. Consequently, a raw fringe pattern provides some
measure of not only the surface displacement but also the elastic properties like
Young’s modulus and Poisson ratio. However, inverting this fringe pattern is
complicated due to the fact that the fringe order number » is not directly yielded. This is
resolved here using an iterative Least Square Minimization method.

In this chapter a methodology to measure the static elastic properties of an isotropic
material by placing a known point load on the material surface is described. In section-
3.2, the analytical treatment of fringe formation and inversion is described. In section-
3.3, a forward model fringe pattern is calculated using the Boussinesq’ theory’ of
surface displacement under a normal force. This fringe pattern is then inverted using the
least square minimization method. The purpose of this virtual experiment is to deduce

what problems might be encountered in the analysis of such fringe patterns. Also an
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error analysis is carried out in this section. The experimental set up is described in
section-3.4. Eventually in section-3.5, this method is applied to experimental fringes to

find out the Young’s modulus and Poisson ratio of the material under investigation.

3.2 Analysis Methodology

The surface displacements on an isotropic elastic half-space subjected to a normal point
load [Boussinesq theory] is given in the Cartesian coordinate system as>*
g o= FA-2v)(1+wv)X
* 2E(X* +Y?)
-FQ-2v)(1+v)Y

_ 32
YT (X + 1) (3-2)

(3.1

and

u, = __{7_(_1;\7_22__1_ (3.3)
rE(X? +Y?)?

where F is the normal force, E is the Young’s modulus and v is the Poisson ratio. u,, u,

and u, are displacements in X, Y and Z directions respectively. The relationship

between the origin O, point of force application P and a displaced point D on the

surface of the material is shown in Fig.3.1.

The ESPI that has been employed in this work has two coherent laser beams made
out of one single laser source using a beam splitter. The geometry is shown in Fig.3.2.
When a certain force is introduced at a point on the surface under investigation, the
speckle pattern changes cyclically with respect to the magnitude and direction of the
displacement and the position of each point P(x,y,z) relative to the sources as
represented by unit vectors m; and my. The change between the speckle patterns taken

immediately before and after the displacement is given in terms of a change in phase

given by’

P(x,3.2) = %@[nl (.3,2) ~ 1, (x5, 3,2)) U, 3.2) (3.4)
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v

S

Figure-3.1: Normal force is applied at P. The relationship of a point on the

surface D and the force point P with the origin O is shown.
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Beam splitter

N

D(x,y,z) ®
T D(x

2Y:2)

Figure-3.2: The geometry of the dual-beam interferometer.
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witing 2 [m(x,,9) - m(x, 7, )] = k(x..2) gives

@(x,,2) =k(x,y,2)-U(x, y,2) (3.5
where K(x,y,2) is the sensitivity vector. The fringe intensity p in terms of ¢ is [from Eq.
(2.33)]

Pl ,2) =1+ o3, 5,) (3.6)

which gives a maximum fringe intensity when

Q=2nx (3.7
where 7 is an integer and is called the fringe order. Equations (3.4) and (3.6) have been
used to model the fringe patterns. Details are given in Appendix B.

To determine the best values of Young’s modulus E and Poisson ratio v from the
picked fringe positions of images, an iterative minimum error procedure has been
employed’. The method assumes that the character of the displacements due to a known
load on the sample surface is known and can be modelled analytically. For a point
on such surface, the displacement is

Uy, z)=wi+u,j+uk (3.8)
where i, j and k are the unit directional vectors in the x, y and z directions respectively,
and u;, u, and w3 are the corresponding unknown components of the displacement
magnitude. The relation between the fringe order and the displacement can be found
from Equations (3.5) and (3.7) as

(5. 3,2) = 5 k(33 2) - UG5, 3.2) 3.9)

As the first step towards inversion, first a number of points are selected at the peak of a
bright fringe. As they come from the same fringe, they all share the same fringe order.
An arbitrary and of course temporary trial fringe order value 7 is assigned to this set of
points. Next, points on the trough of the next (independent of direction) dark fringe are
picked and successively given a fringe order value of (#-1/2). At the next bright fringe
(following the same direction), the fringe peak will have a fringe value of n-1. This
process is progressively repeated with successive fringe peaks and troughs. Note that

some judgement may need to be exercised here and the researcher may need to carry
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out some forward modelling to obtain a starting estimate. Eventually, a series of

equations are developed which is given as

S
n
n-1/2
_b
27
n-1/2
n-1

L

X

k' Ok

kyj kzj

ky J+1 kz J+1 u]

| u, (3.10)

. U

A A

kyk+1 kzk+1

J

Substituting the displacement values from Eq.3.1, 3.2 and 3.3 into Eq.3.10 and after

some rearrangements, one can write

n 4,
A2
n
n-1/2
n-1/2
n-1 .
4,
i 114

B,
B,

.

i-1

[24
} (3.11)
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where i is the total number of picked points. 4, B, a, f are given as

A=t | —FX J+ ky[ —fY J (3.12.a)

472 \((X?+7?)) 4n* (X2 +7?)
k F

B=_= (3.12.b)
2n’ (X2+Y2)%

a=£1—23‘—ggi—v—) (3.13.2)

and

5= | “;2) (3.13.b)

Details of this derivation are given in Appendix B.
Equation (3.11) may be written in matrix notation as
N =GM (3.14)

where G = [4 B] and M = [a ,B]T. In Equation (3.11), the arbitrary assigned value of n
may be wrong but the vector components 4y, 4,..., By, Bs... are known for each
particular picked points form the source geometry S; and S, and the picked points
positions. The values of the elastic coefficients E and v, embedded in M, are still
unknown but can be determined from Eq.(3.14) using the well known Least Square

Minimization method to obtain a trial solution of the form

M=(G"G)'G"N (3.15)
from which a fringe order error value F.,., = |[N-GM] is calculated. The entire
procedure is then repeated by incrementing or decrementing the fringe order values in n
by unity and again solving for a new trial M and corresponding fringe order error by
least squares. The procedure iterates until a minimum error is detected. The fringe order
assignment for this minimum error is most correct and will provide, in the least-square’s
sense, the best value of M for determination of E and v. The Young’s modulus E and
Poisson ratio v are calculated using Eqs.(3.13) with the following relation

M= [a} (3.16)
p .
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In the following sections this procedure is first tested on artificially calculated fringe

patterns and then applied to real experimental fringe patterns.
3.3 Forward Modelling and Inversion

In the following sections, first a forward modelled fringe pattern is calculated by
substituting Boussinesq’s displacement Egs.(3.1), (3.2) and (3.3) into Egs.(3.4) and
(3.6). Then this synthetic fringe pattern is directly inverted using the least square
minimization method [Eq.(3.15)] to get back the Young’s modulus E and Poisson ratio
v of the material. An effort is taken to find the possible sources of errors during the
inversion. Noise is added to the noise free synthetic data and it is inverted again to show
the possible differences between the noisy and noise free cases.

Synthetic fringe creation: The synthetic fringe pattern in Fig.3.3 is created by
applying 1500N force on a Plexiglas block with Young’s modulus E = 3GPa (E = 3E9
N/m?), and Poisson’s ratio v = 0.45. The surface of the block (which is the x-y plane) is
assumed to be illuminated by two coherent laser sources S;i(x,y,z) and Sy(x,y,z). The

input parameters used are given in the following table.

Table-3.1: Input parameters used to create Fig.-3.3.
Viewing Force Force on Sources positions Laser E Poisson
Area application | the block (x,y,z) in cm wavelength ratio
{cm) point. (x-y) (nm) (GPa)
194x 143 | X=9.5 100N | S1¢46,70,-53) 829 30 | 045
S,(23.5,7.3,-6.3)
=32

Inversion of synthetic fringe pattern: The fringe pattern of Fig.3.3 is
inverted to get the E and v values by the fringe picking method which applies least
square minimization as described in the earlier section. To provide input to the
inversion, points were manually picked along the bright and dark fringes. A window of

size 11x11 pixels was delineated around each picked points. This was used to make sure
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Figure-3.3: Noise free synthetic fringe pattern. The orders of the fringes are set

from the results of the minimization curve (Fig.3.4).
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that even if a picked point is not at the maxima or minima (central part of the respective
fringes), the code creates a window all around that picked point and finds the desired
maximum or minimum number within it. This gives a better result with synthetic noise
free images. Window size has to be carefully chosen since a window of wrong size
might bring the next fringe into consideration, resulting a bad output (especially when
the fringes are closely spaced near force point). One of the minimization curves is

shown in Fig.3.4 and the results are given in Table-3.2.

Table ~3.2: Results from inversion of the image in Fig.3.3.

=3 No.of | Win, Ein | Poisson | Least % % Comments
;—’: E; é‘n Points | length | GPa ratiov | sq.error | Error | Error
° & qg’ picked inE inv
1 106 3.0343 | 0.4504 | 0.0020 | 1.14 | 0.08 | Fringes have
2 121 3.0136 | 0.4510 | 0.0017 | 045 | 0.22 | been picked
3 126 3.0350 | 0.4504 | 0.0020 | 1.16 | 0.08 | starting from
4 121 3.0347 | 0.4505 | 0.0034 | 1.15 | 0.11 | right side and
5 116 3.0272 | 0.4506 | 0.0027 | 0.90 | 0.13 | going through
6 109 3.0082 | 0.4511 | 0.0025 | 027 | 024 | all the fringes
7 8 121 | 1Ix11 370317 | 0.4505 | 0.0017 | 1.05 | 0.11 | and ending at
8 117 3.0025 | 04513 | 0.0024 | 0.08 | 028 |the left. The
9 123 2.9957 | 04514 | 0.0027 | 0.14 | 031 | Whole process
10 121 3.0200 | 0.4499 | 0.0314 | 0.96 | 0.02 | can be done in
1 126 3.0471 | 04493 | 0.0380 | 1.57 | 0.5 | e opposite
12 121 3.0284 | 0.4499 | 0.0332 | 0.94 | 0.0z | direction.
13 116 3.0459 | 0.4493 | 0.0340 | 1.53 | 0.15

Small amount
%- - - - 129999 | 04500 |0.0088 |0.003 | 0.0 |of error
% present due to
’ the numeric

One important question in the inversion is, what would be the error just due to
numerics (occurs due to the limitations of the computer) and error due to numerics in
picking. To verify this, the same data set is inverted directly. At first the values of fringe

order # for every pixel point is calculated using Eq.(3.7). This is then used as input into
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The minimization curve from the inversion is shown below.

L : SR 2 AR i 2E bt e e e GBI AR it

Figure 3.4: Least square minimization curve shows that the fringe order of the first

picked fringe is 2. Curves from other trials showed the same result.
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Eq.(3.11) to obtain the E and v values. The unwrapped phase value ¢, and 4 and B
values are the same as obtained from the forward modelling. As is seen from the last
row of Table-3.2, the values of E and v obtained in this way are almost same as the
input values (3GPa and 0.45 respectively) but still there is a little insignificant
difference present. This error arises due to the numerics and the fact that the pixel
values will never be truly 0 or 1 in reality.

Identifying the sensitive parameters: In the above virtual inversion,
the input parameters such as the positions of the sources or the force application point
are exactly the same as used in the forward model [Table-3.1]. In a real test, it might not
be possible to determine these parameters accurately and this will result in some
unavoidable error. In the following section, the input parameters for the inversion will
be slightly changed from their exact values one at a time in order to assess their
vulnerability. To do this, first the fringe pattern of Fig.3.3 has been inverted once again
using the parameters of Table-3.1 as input (this result is given in row 1 of Table-3.3).
The co-ordinates of the picked points, the assigned fringe orders and the total number of
picked points have been saved and subsequently used in the later inversions where only
the input parameters are gradually changed. This keeps the consistency between
different inversions. The percentage of error has been calculated from the first result
relative to the later ones.

The degree of error that might be associated with a certain parameter is selected
with some consideration of a real experimental arrangement, i.e., by estimating the
amount of error that might exist in the experimental determination of those parameters.
Accordingly,

e co-ordinates of the laser sources could be uncertain by as much as +3mm
(cumulative from both of the measuring ends) due to the complex
positioning of the sources relative to the origin and difficulties associated
with measuring points in 3-D space.

e The viewing area of the sample surface may vary by as much as three

millimetres due to the cumulative effect of the errors in measurement
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and cropping of the image area during the inversion. So error of £3mm is
assigned to its dimensions.

e The applied force gets an error of 30N since according to the
manufacturers specification of the load cell, at the peak force range of
1500N there might be 2% error associated with the reading.

e The co-ordinates of the force application point have been assigned an
error value of about +2mm, which again arises from the measurements.

It is evident from Table-3.3 that the co-ordinates of the point of force application
(both x and y co-ordinates individually and combined as seen in rows 2,3and 4), x and
z-coordinates of the first laser source S;, z-coordinate of the second laser source S, and
the length of the block are among the more sensitive parameters. These parameters
individually have contributed more than 2% of error to each or both of the output values
E and v. When many of these errors are considered together [except the force
application point (row 22)], the output Young’s modulus and Poisson ratio values
resulted with 30% and 8% errors respectively, which is extremely high. When
combined all together, these errors affect the results in some anomalous ways- in few
cases their combined effect cuts down the amount of error in the out put (row 23, Table-
3.3), but mostly it increases.

The summary of Table-3.3 is plotted in Fig.3.5. The upper bars show the errors
associated with the Young’s modulus when the parameter values have been increased
from the actual values (by adding the error) and the lower bars show the errors when the
parameter values have been decreased from the actual values. As seen from this figure,
among the most vulnerable parameters are the; x-coordinate of the block dimension, co-
ordinates of force points and the z-coordinate of the first source (8;). To minimize the
error with the result, these parameters should be measured most precisely and carefully
during the experiment.

The situation with Poisson’s ratio is similar to that shown in Fig.3.6, except the fact
that the overall effect of errors on Poisson ratio is less than Young’s modulus. This can
be seen from the magnitude of percentage errors in Fig.3.6.

It is seen that the errors associated with different parameters affect the results

asymmetrically, i.e., when the positive (+) error is added to the parameter it gives a
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Table-3.3: Input parameters and the results from inversion. The values in bold italic

were allowed to change during inversion.

- Viewing Force F. Coordinates of the laser sources E % %
% area Point (N) S;incm S; incm error v err.
8 incm incm | x100 | x y z X y z GPa | inE inv
X=8.53
1 19.4x14.3 | Y=2.70 15 -46 | 70 | -53 1235 13 -6.3 | 3.02 { 0.00 0.450 0.0
X=8.35
2 19.4x14.3 | Y=2.70 15 -46 { 70 | 53 1235 73 <63 | 3.14 | 3.77 0.443 1.5
X=8.53
3 19.4x14.3 | ¥=2.52 15 -4.6 70 | -53 235 | 73 -63 | 286 | 534 | 0454 0.9
X=8.35
4 19.4x143 | ¥=2.52 15 46 | 7.0 53 (235 73 63 | 277 | 827 0.454 0.9
X=8.53 | 14.7
5 19.4x143 | Y=2.70 | (+3) | 46 | 7.0 53 12354 73 -63 | 296 | 2.00 0.450 0.0
X=8.53
6 19.4x14.3 | Y=2.70 15 -4.3 70 | 53 [ 235} 73 -6.3 | 3.11 | 2.79 0.445 1.1
X=8.53
7 19.4x14.3 | Y=2.70 15 -4.9 7.0 -53 | 235 73 -6.3 297 1.70 0.454 0.8
X=8.53
8 19.4x14.3 | Y=2.70 15 46 | 67 | 53 | 235 73 63 | 3.05 | 096 0.449 0.3
X=8.53
9 19.4x143 | Y=2.70 15 -4.6 7.3 53 1235] 73 -63 | 299 | 090 | 0451 0.3
X=8.53
10 194x14.3 | Y=2.70 15 -4.6 70 | 5.0 | 235 | 713 -6.3 | 301 { 0.58 0.457 1.6
X=8.53
11 19.4x143 | Y=2.70 15 -4.6 70 | -5.6 |} 235 73 -63 | 328 | 858 0.436 32
X=8.53
12 19.4x143 | Y=2.70 15 -4.6 7.0 53 12321} 73 -63 | 3.06 | 1.27 0.452 04
X=8.53
13 19.4x14.3 | Y=2.70 15 4.6 7.0 -53 | 238 73 -6.3 | 3.01 | 052 0.449 0.5
X=8.53
14 19.4x143 | Y=2.70 15 -4.6 7.0 53 (2354 7.0 | -63 | 3.02 | 0.02 0.451 02
=8.53
15 19.4x14.3 | Y=2.70 15 -4.6 70 | 53 1235 | 76 | -63 | 3.03 | .024 0.449 02
X=8.53
16 19.4x143 | Y=2.70 15 -4.6 7.0 53 1235 73 -6.0 | 3.17 | 477 0.439 24
X=8.53
17 19.4x14.3 | Y=2.70 15 -4.6 70 |53 | 235 73 -6.6 | 3.05 { 096 0.455 1.2
X=8.53
18 19.Ix143 | Y=2.70 15 -4.6 7.0 53 12351 73 -63 | 3.14 | 3.80 0.444 1.3
X=8.53
19 19.7x14.3 | Y=2.70 15 4.6 7.0 53 1235 73 -63 | 272 | 102 0.461 2.5
=8.53
20 19.4x14.0 | Y=2.70 15 -4.6 70 | 53 | 235 73 -6.3 | 3.04 | 038 0.449 0.2
X=8.53
21 19.4x14.6 | Y=2.70 15 -4.6 7.0 53 12351 73 -63 | 296 | 2.02 0.452 0.5
=8.53
22 19.7x14.6 | Y=2.70 | 14.7 | -4.3 6.7 -5.6 | 23.2 7.6 =6.0 395 304 0411 8.6
X=8.35
23 19.7x14.6 | Y=2.52 | 147 | -4.3 6.7 -5.6 | 23.2 7.6 -6.0 | 3.07 1.64 0.43 4.8
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Figure-3.5: The error values associated with E are plotted against the parameters. The
upper bars represent the parameter values that have been increased from
the actual values by adding the errors associated with parameters. The

lower bars are just the opposite.
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Figure-3.6: The percentage error values associated with v are plotted against the
parameters. The upper bars represent the parameter values that have been
increased from the actual values by adding the errors associated with

parameters. The lower bars are just the opposite.
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Figure-3.7: Synthetic fringe pattern with noise. Random noise with normal
distribution has been added. Fringes are picked along the lines. Force

application point is shown with the white arrow.
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different result than when the negative (-) error is subtracted from the parameters. This
is why the error contributions in Fig.3.5 and Fig.3.6 are not same on both sides of the

origin. The only exception is the force.

Inversion of noisy synthetic fringe pattern: In the earlier section, noise
free synthetic fringe pattern was inverted. But in reality, the fringes will be
contaminated with speckle noise®. In this section a noisy synthetic fringe pattern has
been inverted for E and v values.

The parameters used to make the image in Fig.3.7 are exactly the same as shown in
Table-3.1. Only random noise with Gaussian distribution has been added to it. The
image in Fig.3.7 has been inverted to obtain the values of E and v using the usual fringe
picking method that involves least square minimization. The results are given in Table-

34.

Table-3.4: Results from inversion of the image in Fig.-3.7.

. No. of No. of Win., Ein Poisson | Least sq. % Error- | % Error
;5_' fringes Points length GPa ratio v error nE inv
Z | picked | picked

1 8 148 7x7 2.862 0.455 0.50 4.59 1.05
2 8 161 7x7 3.153 0.445 0.37 5.09 0.98
3 8 134 7x7 2.887 0.455 0.43 3.74 1.15
4 8 128 7x7 2.849 0.456 0.41 5.02 1.37
5 8 139 7x7 2.974 0.452 0:42 0.86 0.49
6 8 142 7x7 2.969 0.453 0.36 1.01 0.63
7 8 145 7x7 2.932 0.454 0.44 2.26 0.90
8 8 149 %7 3.011 0.452 0.46 0.35 0.43
9 8 157 7x7 2.819 0.457 0.36 6.02 1.51
10 8 183 7x7 3.053 0.450 0.73 1.75 0.14
11 8 508 7x7 3.064 0.449 1.43 2.13 0.24
12 8 631 7x7 3.069 0.448 1.62 2.31 0.51
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From the results it is evident that the noise played an important role. The results of
E are in error by as high as 6% and as low as 0.35%. The reason of this variation can be
explained as follows.

When a particular point is picked, suppose on a noise contaminated black fringe (or
white), a window is generated around the point and the coordinate of the minimum
valued (or maximum valued) point within that window is selected. In noise free case
this point happens to be on the actual fringe minima (or maxima) but in the noise
contaminated case, the actual minimum (or maximum) point is shifted due to the noise.
This variation changes with position and consequently the results might be far off or
fairly close depending on the positions selected. This situation is shown in Fig.3.7,

where the lines show the actually picked positions. Noise made the lines erratic.

Inversion of synthetic fringe pattern using white fringes:  Earlier
the noise free and noise contaminated synthetic fringe patterns were inverted using both
the black and the white fringes. Analysis of the experimental images suggests that in
some cases the black fringes seem to be more contaminated by noise than the white
fringes. This has been suggested on the basis of theoretical analysis of the statistics of
the fringe formation recently carried out by Wolfgang Engler®. Consequently, it may be
important to try to invert first the noise free then the noisy synthetic images using white
fringes only. The white fringes are those with a correlation of 1. The results are given in

Table-3.5 and Table-3.6.

Table-3.5: Results from inversion of the image in Fig.3.2 using white fringes.

Trial | Fringes | Points | Window | Ein GPa | Poisson | Leastsq. | % Error | % Error

No. picked -| picked | length ratio v error inE inv
1 4 66 1ix11 3.0166 0.4509 | 3.87x10™ | 0.5537 0.2018
2 4 65 11x11 2.9972 0.4492 0.0013 0.0926 0.1833
3 4 74 11x11 3.0145 0.4509 | 4.06x10" | 0.4822 0.2084
4 4 76 1ix11 2.9986 0.451 0.0127 0.0464 0.2196
5 4 68 1ix11 3.0057 0.4507 0.0121 0.1888 0.1544
6 4 91 11x11 3.0042 0.4507 0.0152 0.1399 0.1557
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From Table-3.5, it’s evident that considering only the white fringes doesn’t
improve the results much at least in the case of noise free fringes.
The results of the inversion of noise-contaminated fringe pattern of Figure-3.7

using the white fringes are given in Table-3.6.

Table-3.6: Results from inversion of the noisy image of Fig.3.7 using white fringes.

Trial | Fringes | Points | Window | E in GPa | Poisson | Leastsq. | % Error | % Error

No. picked | picked | length ratio v error nE inv
1 4 49 11x11 2.9416 0.4521 0.1295 1.9450 0.4608
2 4 50 11x11 2.9180 0.4488 0.1870 2.7336 0.2682
3 4 46 11x11 2.8314 0.4556 0.1519 5.6212 1.2376
4 4 47 11xt1 2.9845 0.4516 0.1359 0.5152 0.3642
5 4 56 11xi11 3.0357 0.4510 0.1814 1.1885 0.2168
6 4 49 11x11 3.1300 0.4476 0.1400 4.3330 0.5400

It is seen that in the noise contaminated case, the results are essentially the same as
before when all the fringes were picked [Table-3.4]. In the following figure, there is a
comparison between all these results taken from Table-3.2, 3.4, 3.5, and 3.6. Only the
first five smallest percentage error values associated with the Young’s modulus are
plotted in Fig.3.8. The values in pink colour represents the result of the noisy fringe
pattern where both black and white fringes have been picked. The black cross represents
results from noisy image inversion when only the white fringes were picked. The blue
and the brown colours represent the same for noise free cases. At this point, it is clear
from these results that picking only the white fringes didn’t help improve the results by

an appreciable amount neither in the noise contaminated case nor in the noise free case.
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Figure-3.8: The percentages of errors associated with Young’s modulus obtained

from different inversions are plotted above.
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3.4 Experimental Set up

In this section, the geometry of the experimental set up and a real picture of the

experimental arrangement are shown.

To the
voltmeter

Hydraulic
cylinder
g CCD camera
To the
computer

Loadcell ——p

Source 1 —p <— Source 2

Geometry of the Experimental Arrangement

Figure-3.9: Experimental set up of the dual beam interferometer. The laser
sources S; and S; are created from a single laser source using a
beam splitter (not shown). The lasers are shining on the

material under investigation.

Optical configuration: During the experiment the whole set up was placed on
a metal isolation table floated by air pressure just to reduce the vibration primarily
arising from motions of the building due to wind, people, and elevator. Thick black
curtains were placed around this table to prevent lights from interfering with the lasers.

This is not essentially necessary and the experiment can actually be conducted under
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full room lights, although this results in a noisier fringe pattern. The computer along
with the monitor, the hydraulic pump and the accumulator are placed in a different table
to isolate them from the floating table.

Laser: A Lepton IV Diode Laser combined with CP series precision Diode
Laser Driver and CT15W Precision Thermoelectric Controller has been employed for
the source. This provides a complete highly stable laser system. The laser wavelength is
829nm (near Infra-red) with maximum output of 35mW. The camera is more sensitive
to the infrared laser. The laser head module contains the laser, collimation optics, beam
shaping optics and thermoelectric cooler, thermistor and heat sink. Together these
provide a highly stable, round collimated source. The beam splitter is a partially
silvered glass that allows nearly half of the incident laser to go through and half reflects
back. These two beams then fall on abraded ceramic surfaces, called sources Sy and S,,
that scatter the light to illuminate the object’s surface. These surfaces were made by
grinding ceramic (or porcelain).

Camera: A CCD camera [Texas Instruments multicam CCD] has been
employed to capture the images of the displaced and undisplaced modes.

Hydraulic system: The hydraulic hand pump is connected to the cylinder
and piston assembly and an accumulator. The accumulator is used to achieve small
changes in the line pressure. A load cell is attached between the piston and the indenter
that reads the force exerted on the sample surface by the indenter. The indenter tip is
made approximately 0.5cm in diameter to prevent the sample from cracking under load.
The signal from the load cell passes through a signal conditioner [Intertechnology,
Model 460-1135, Calex]. Eventually the force is read in a calibrated voltmeter.

Surface preparation: The surface of the material under investigation has
been sand blasted. For the case of aluminum and Plexiglas this sand blasted surface has
been painted with non-reflecting white paint to get better scattering of laser light. This
improves the image quality significantly. In the case of materials like marble, painting
is not required since it is already white. This material is then placed on a solid steel
surface (Fig.3.11) that is a part of the interferometer and it also holds the hydraulic

cylinder.
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a) Left side.

b) Right side.

Figure-3.10: Photograph of the experimental set up.
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The source holders, beam splitter, camera and laser are all movable in three directions

X, v and z, which gives flexibility in setting up the apparatus.

3.5 Experimental Results

During the experiment, grey scale images (8 bit, 640 pixels horizontally and 480 pixels
vertically) from a high resolution Charged Coupled Display (CCD) camera have been
captured immediately before and after the object has been deformed. An image is
formed in the monitor by the ‘Speckle’ software created by Wolfgang Engler, in
collaboration with Vision Smart, Edmonton AB, as part of an NSERC strategic grant.
This software captures one initial reference image (consider it as the undeformed state
of the surface) and later captures the image (video image) of the deformed surface.
These two images are cross-correlated (using Pearson’s cross correlation method
described in chapter 2) to give a fringe pattern on the computer monitor in near real
time (system yields four frames per second at present).

This experiment has been done with Plexiglas and marble as samples. The top
left corner of the image is chosen as the origin and the source positions are measured
with respect to it. The co-ordinates of the point of force application are also measured
from this origin and all subsequent measurement such as positions of each pixel, are
measured relative to the force application point. The point of force application can also
be made as the origin but having the top left corner of the image as origin makes all

measurements much easier. The results are summarized in Table-3.8, 3.9 and 3.10.

Results for Plexiglas: A Plexiglas block of dimension 25x22x5 c¢m is
used in this experiment. The viewing area of the surface is 12x8.7cm rectangle. The
reference image and the video image are shown in Fig.3.11. The final fringe pattern
(Fig.3.12.a) is created after cross correlating these two images using the Speckle
Software. The arrow in each figure shows the point of force application. Following

similar method Fig.3.12.b is created.
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Force application pt.

/ Force application pt.

Figure-3.11: a) Reference image and b) Video image from the experiment.

57



Chapter 3. Determination of Elastic Coefficients Using Boussinesq’ Theory

Figure-3.12.a: Experimental Fringe pattern of Plexiglas. The indenter put
1000N of force on the surface. The intensity pattern along
0.06m line is shown in Fig.3.13.

Figure-3.12.b: Experimental Fringe pattern of Plexiglas. The indenter put
1300N of force on the surface. The intensity pattern along
0.06m line is shown in Fig.3.13.
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Table-3.7: Input parameters used in the inversion of experimental images.

Viewing area Force appl. Force on the Source positions Laser
Point in cm. block (x,y,z) in cm wavelength
(12x 8.7) cm X=6.3 1000-N S, (-2.3, 4.6, -5.6) 829nm
Y=1.0 1300-N S, (15,5.1,-5.4)

Table-3.8: Results of inversion of experimental fringe pattern for Plexiglas.

App. Trial No. Points | Win. | Ein GPa | Poisson | Least Ave. Ave.
Force | No. Fringe | picked | length ratio v sq. E v
N picked error GPa | +0.03
+0.3
1 280 3.31 0.37 0.56
2 391 3.11 0.39 0.58
1000 3 8 386 0x0 3.05 0.39 0.74 3.1 0.38
4 484 3.15 0.39 0.67
5 597 3.16 0.38 0.48
1 297 3.35 0.37 44
2 330 3.16 0.37 6.8
1300 3 6 436 0x0 3.19 0.39 5.35 3.1 0.38
4 308 2.9 0.39 4.5
5 503 2.81 0.38 5.0

In the inversion, the experimental image is first corrected for perspective
distortion (details of this analysis is given in Appendix C). Then points are picked
manually along the lines in Fig.3.12.a, i.e., no window was created around the picked
point. The reason can be seen from the intensity spectrum of this noisy image
(Fig.3.13). A window would not be able to find the exact position of the central maxima
or the minima as it is shifted due to the noise. So, in this case, the minima and the
maxima are selected just by looking at the image with the interpreter biases included.
Similar method is followed for the inversion of Fig.3.12.b.

The average results of E and v are 3.1+0.3GPa and 0.38+0.03 respectively.

These two values are used along with the input parameters in Table-3.7 to reproduce the
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Figure-3.13: Intensity spectrum of the image in Fig.3.12.a along 0.06m.
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Figure-3.14:

Reproduced Fringe pattern of Plexiglas corresponding the
experimental one in Fig.3.12.a. The parameters used are same as in
experiment (Table-3.7). E and v are 3.1GPa and 0.38 respectively
(Table-3.8).
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Figure-3.15:  Intensity spectrum of the reproduced image in Fig.3.14 along
0.06m line.
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fringe pattern in Fig.3.12.a. This will allow comparing the experimental image with the

synthetic one. The reproduced fringe pattern is shown in Fig.3.14 and the intensity

spectrum along 0.06m line is potted in Fig.3.15.

Results for marble: One of the objectives of this work is to apply this ESPI

method to natural rocks to determine their elastic parameters. Experimental results

using marble as sample has been presented in the following section.

Table-3.9:

Input parameters used in the inversion of experimental marble image.

Viewing area Force appl. Force on the Source positions Laser
Point in cm. block in N (x,y,z) in cm wavelength
X=7 1000 S, (1.5, 6, -6.65)
(13x 9) cm Y=2.4 S, (15.8,6.2,-1.3) 829 nm
1100

Table-3.10.A:

Results of inversion of experimental fringe pattern of marble.

et Trial No. Points: | Win. | Ein GPa | Poisson Least Ave. Ave,
% No. Fringes | picked | length ratiov | sq.error | Ein v
L'; picked GPa
1 293 3.05 0.245 0.73
2 181 2.99 0.238 0.77
3 3 on left 413 0x0 2.98 0.250 0.52 3.00 0.25
4 285 3.03 0.246 0.88
—_ 5 364 2.97 0.251 0.28
§ I 465 1.48 0.353 21.7
2 398 1.68 0.334 19.2
3 10 421 0x0 1.55 0.347 22.5 1.50 0.36
4 456 1.29 0.374 11.5
5 343 1.48 0.351 18.6
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Table-3.10.B:  Results of inversion of experimental fringe pattern of marble.

wy | Trial No. Points | Win. | EinGPa | Poisson Least Ave. Ave.
% No. | Fringes | picked | length ratiov | sq.error | Ein v
5 picked GPa
1 230 2.94 0.253 1.21
2 180 2.82 0.267 0.20
3 Jonleft | 264 0x0 2.95 0.25 0.23 296 | 0.25
4 275 3.11 0.235 0.52
_ 5 313 2.98 0.245 0.26
é 1 442 1.22 0.39 11.16
2 380 1.19 0.40 13.21
3 10 286 0x0 1.42 0.37 16.10 13 0.38
4 422 1.36 0.37 21.15
5 356 1.39 0.36 19.85

In the inversion of experimental images for marble, first three fringes on left side of
the images [Fig.3.16.a and Fig.3.16.b] are picked. Next, ten fringes from all over the
images are picked. This is done to find the effect of the non-homogeneity of the marble
sample. The average results obtained from the second type of inversion [Table-3.10.A,
E=1.5GPa, v=0.36 and Force=1000N] is used to reproduce the fringe pattern in Fig.3.17
which corresponds to the experimental fringe pattern in Fig.3.16.a. The difference
between Fig.3.17 and Fig.3.16.a is clearly visible. But when the image is reproduced
using the average values of E=3GPa and v=0.25 with the force F=1000N [Table-
3.10.A], the three fringes on left side [Fig.3.18, fringes 2, 1.5 and 1] matched exactly
with the same three fringes in Fig.3.16.a. Similar situation is observed between Fig.3.19
and Fig.3.16.b.
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Figure-3.16.a:  Experimental fringe pattern of marble.
Force applied = 1000N.

Figure-3.16.b:  Experimental fringe pattern of marble.
Force applied = 1100N.
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Figure-3.17:  Reproduced fringe pattern of marble with the values of
E=1.5Gpa and v=0.36.
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bt
Figure-3.18: Reproduced fringe pattern of marble using the values E=3Gpa and
v=0.25. Applied force is 1000N. This figure corresponds to
Fig.3.16.a.

Figure-3.19: Reproduced fringe pattern of marble using the values E=2.96Gpa and
v=0.25. Applied force is 1100N. This figure corresponds to
Fig.3.16.b.
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3.5 Conclusion

The ESPI method employing fringe inversion by direct correlation resulted in values of
Young’s modulus E and Poisson ratio v with an error of 2% and 0.3% respectively in
the case of synthetic fringes. For experimental fringes the result of E for Plexiglas
matched with the manufacturers specification of 3.1GPa and within 3% of the value
determined by the strain gauge method (Appendix D), which is 3GPa. The Poisson ratio
v is found to be 0.38 which also matched with the value obtained by the strain gauge
method (0.38). Therefore for Plexiglas, which is a homogeneous material, this ESPI
method is very successfully applied. For marble the results (E=2.96GPa and v=0.25) are
not as expected (E=20~70GPa and v=0.2~0.3). This could be due to the non-
homogeneity of the sample used or due to bending occurring when the sample is loaded
or the uneven lower surface of the sample. This marble sample is further investigated in

Chapter-4 using a different method.
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Chapter 4

Determination of Young’s Modulus of Cantilever

Beams

4.1 Introduction

In the previous chapter, Young’s modulus and Poisson ratio of a block of material has
been determined using ESPI quite successfully. In each case the viewing area was large
in all directions. In reality situations may arise where the sample size is significantly
small and force of the amount of thousands of Newton might destroy or disfigure the
sample permanently. This chapter is devoted to determine the Young’s modulus of a
sample that has thickness as little as 0.64cm, width 2.54cm and length 13cm. It is a
piece of aluminum block and would require very little force to cause any appreciable
displacement if it is set up as a cantilever beam. This is discussed in the following

sections.
4.2  Analysis Methodology

The deflection curve for a cantilever beam, fixed at one end and loaded at the other end
(Fig.4.1), is given by’

2
U, - 2_27(1)& --’53-) @1

where F is the force causing the deflection, £ is the Young’s modulus of the material of
the beam, / is the distance of the point of load application on the beam and x is the

distance from the fixed end to the point of deflection on the beam. The moment of
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inertia / is dependent on the width and thickness of the beam and is given by

bd’
I=22 42
12 (42)

where b is the width and d is the thickness of the beam. The beam deflection U, is
entirely assumed in the z-direction die to the geometry of the problem.

A dual-beam laser speckle interferometer is employed to find the change in phase
in the speckle pattern due to the deflection of the beam. The speckle pattern changes
cyclically with respect to the magnitude and direction of the displacement and the
position of each point on the cantilever surface relative to the sources as represented by
unit vectors n; and n; (Appendix B, Fig.B.1). The change between the speckle patterns
taken immediately before and after the displacement is given in terms of a change in

phalse2 as
2
O(x,9,2) = 7[”’ (x,,2) =, (x,y,2)]- U(x,,2) (4.3)

Substituting the value of defection U, into Eq.(4.3) and following the same procedure

as described in Section-3.2, the fringe intensity is calculated from the following relation
1
P(xayaz)='5(1"‘005(0(35,)’;2)) (44)

Now recall Eq.(3.11) which has been used for inversion of fringe pattern in Section-3.2.

The corresponding equation for the cantilever problem is

- —_ - —

n A
4,
4y
n
n—-1/2 .
=. [m] 4.5)
n-1/2
n-1 .
Ai~1
i 1 14
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where i is the total number of picked points. In this case 4 and m are given as

3
PR, (4.6)
4l 3
m= 1 4.7)
z .
Equation (4.5) may be written in matrix notation as
N=GM (4.8)

The value of Young’s modulus F is determined from Eq.(4.8) using the well known
Least Square Minimization method as employed in Section-3.2

M=(G"G)'G'N (4.9)
In the following sections this procedure is first tested on artificially calculated fringe

patterns and then applied to real experimental fringe patterns.

4.3 Modelling and Inversion:

In the following sections, first a forward modelled fringe pattern of a deflected
cantilever beam is created from Eq.(4.4) by substituting Eq.(4.1) into Egs.(4.3). Then
this synthetic fringe pattern is directly inverted using the least square minimization

method [Eq.(4.9)] to get back the Young’s modulus E of the material.

Synthetic fringe creation: The fringe pattern in Fig.4.2 is created by
applying 0.25N force at the end of the cantilever beam made of aluminum with Young’s
modulus E = 70GPa (E = 70E9 N/m?). The surface of the cantilever (which is the x-y
plane) is assumed to be illuminated by two coherent laser sources S;(x,y,z) and Sx(x,y,2).
The input parameters used are given in the following table.

Table-4.1:Input parameters used to create Fig.4.2.

Viewing Force Force Sources positions Laser E
area appl. point. in (x,y,z) in cm wavelength InGPa
(x-y) em Newtons
(5x25)em | 100 0.25 S1(-1,15,-8) 829nm 70
Y=1.25 S, (171.5-7)
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Fixedend O I
» 1 ;l
a) ]
Free end
Fixed end

b)

Vend

Figure-4.1: Cantilever carrying a concentrated load at the end.
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Inversion of synthetic fringe pattern: The fringe pattern of Fig.4.2 is

inverted to get the value of E by the fringe picking method which applies least square
minimization as described before [Chapter 3, Section-3.2]. To provide input to the
inversion, points were manually picked along the bright and dark fringes. A window of

size 15x15 pixels was delineated around each picked points. One of the minimization

curves is shown in Fig.4.3. The results are given in Table-4.2.

Table —4.2: Results from inversion of the image in Fig.4.2.

~ No. of Win. E in GPa Least sq.error % Error | Average
ii % 2| Points | length X10° inE Ein
® a U&Q" picked GPa

1 116 70.04 2.55 0.052

2 101 70.62 2.88 0.886

3 6 96 15x15 70.44 2.38 0.624 70.4

4 119 70.61 1.31 0.871

5 113 70.08 2.12 0.114

6 124 70.51 1.67 0.730
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Figure-4.3:  One of the minimization curves from the inversion of Fig.4.2.
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4.4 Experimental Results and Discussion:

Results for aluminum: An aluminum cantilever beam of length 13cm,
width 2.54cm and thickness 0.64cm is loaded with 0.20N and 0.30N of forces at the
free end. Grey scale images (8 bit, 640 pixels horizontally and 480 pixels vertically)
from a high resolution Charged Coupled Display (CCD) camera have been captured
immediately before and after the cantilever is loaded. The images are formed in the
monitor and subsequently inverted using the fringe picking method. The results are
summarized in Table-4.3 and 4.4. The top left corner of the image is considered as
origin for all the measurements. The rest of the procedure in fringe picking is exactly

the same as followed in Chapter-3. These images are shown in Fig.4.4 and Fig.4.5.

Table-4.3: Input parameters used in the inversion of experimental images.

Viewing area Force appl. Applied Source positions Laser wavelength
Point in cm. load (x,y,2) incm
(13% 2.54) cm X=13 02-N S ¢14.1,1.3,-4.7) 829nm
S;(3.3,1.5,-4.4)
Y=1.25 0.3-N
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Table-4.4: Results of inversion of experimental fringe pattern for aluminum.

Trial No. Points Load | Win. E in GPa Least sq. Ave.
No. Fringes picked in length +2.5 error E in GPa
picked N +2.5

1 6 121 62.83 0.44

2 6 137 61.95 0.39

3 6 153 59.65 0.86

4 6 134 0.2 60.11 0.57 61.1

5 6 147 61.02 0.55

1 6 119 0x0 60.96 0.25 60.5

2 6 134 58.88 0.53

3 6 149 59.20 0.80

4 6 138 0.3 61.10 0.71 60.0

5 6 i35 59.85 0.62

The average result of E is 60.5+2.5GPa. This value is used along with the input
parameters in Table-4.3 to reproduce the fringe patterns. This allowed comparing the
experimental images with the synthetic ones. The reproduced fringe patterns are shown
in Fig.4.4.b and Fig.4.5.b. This value of Young’s modulus (60.5+2.5GPa) agrees with
the result 60+2GPa found by the standard strain gauge method (Appendix D). When the
experimental images and the reproduced images are compared, they are in excellent
agreement. The extreme right ends of the experimental images are hazy because of the
high illumination level of the laser at this end. The fringe positions of the reproduced
patterns in Fig.4.5.a and Fig.4.5.b matched with that of the experimental fringe patterns
in Fig.4.4.a and Fig.4.4.b respectively.
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Figure-4.4.a: Experimental fringe pattern of cantilever beam. The applied load is 0.2N

at the extreme right end of the image. Fringes are picked along the lines.

Figure-4.4.b: Reproduced fringe pattern with E=60.5GPa and F=0.2N. This image

corresponds to Fig.4.4.a.
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I

Figure-4.5.b: Reproduced fringe pattern with E=60.5GPa and F=0.3N. This image
corresponds to Fig.4.4.b.
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Results for marble: In this case a piece of marble (16.2x3.2x1.55)cm has
been used as cantilever beam and is deformed gradually by placing 30, 40, 50, 70 and
100gm of weight at the free end. As before grey scale images of the deformed and
unreformed states are captured and subsequently inverted using the fringe picking
method (Fig.4.6). These results are summarized in Table-4.5 and 4.6. Using the results
in Table-4.6 and the input parameters in Table-4.5, each of the images have been

reproduced and shown in Fig.4.7.

Table-4.5: Input parameters used in the inversion of experimental marble images.

Viewing area Force appl. Applied Source positions Laser wavelength
Point in cm. load (x,¥,2z) in cm
0.29-N
(16.2x32) cm X=16.2 0.39-N S, (1.9, 14, -3.8) 82%nm
Y=1.6 0.49-N S,(19.3,1.3,-3.9)
0.69-N
0.98-N

Table-4.6:  Results of inversion of experimental marble fringe patterns.

Appliedlcad in N | No. Fringes Win. No. of trials for Average E in GPa
picked length each image +2
0.29 3 5 18.1
0.3 4 6 18.2
0.49 5 6 17.2
0.69 5 0x0 6 13.5
0.98 7 5 13.2
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Figure-4.6.c: Experimental fringe pattern of marble for 50gm load.
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Figure-4.6.d:  Experimental fringe pattern of marble for 70gm load.

a
Figure-4.6.e: Experimental fringe pattern of marble for 100gm load.
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Figure-4.7.c: Reproduced fringe pattern of marble cantilever loaded with 50gm.
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Figure-4.7.d: Reproduced fringe pattern of marble cantilever loaded with 70gm.

Figure-4.7.e: Reproduced fringe pattern of marble cantilever loaded with 100gm.
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The value of the Young’s modulus obtained from the inversion of marble images varied
between 13Gpa to 19Gpa with different applied load as shown in Table-4.6. This might
be arising from the non-homogeneity of the marble sample. When the images are
reproduced, the first three (Figures 4.7.a, 4.7.b and 4.7.c) showed significant difference
from the respective experimental images in terms of the fringe positions. But the last
two reproduced fringe patterns (Figures 4.7.d and 4.7.e) are very close with the
respective experimental images.

The results of the Young’s modulus of marble obtained above are plotted in Fig.4.8
against the applied load. There is a gradual decrease in the value of E. Although the
mechanical properties of rocks may not follow linear elasticity at high stress level, or at
temperatures that are a significant fraction of the rock solidus, all rocks at relatively low
temperatures and pressures behave elastically when the applied force is not too large’.
So at this experimental load range it is more likely that the differences in E values are

due to the unevenness of the sample surfaces than anything else.

4,5 Conclusion

Electronic Speckle Pattern Interferometry has been successfully applied in creating
interferograms of cantilever beams both virtually and experimentally. The virtual
inversion resulted an average value of 70.4Gpa of the Young’s modulus which is only
0.6% off from the input 70Gpa. The experimental interferogram of aluminum cantilever
beam resulted a value 60.5Gpa of the Young’s modulus of the material which is less
than 1% off from the value obtained using strain gauge method (60Gpa). For the
cantilever beam made of non-homogeneous marble, the value of Young’s modulus
ranges from 13Gpa to 19Gpa depending on applied load. The reproduced
interferograms show better similarity with the experimental ones when the input

Young’s moduli are around 13Gpa.
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Young's modulus vs Load for Marble cantilever

20

15 &

10 ¢

E in GPa

0.3 0.39 0.49 0.69 0.98
Load in Newtons

Figure-4.8: Experimentally obtained values of the Young’s modulus E of marble
cantilever are plotted against the applied load. A non-linear response is

readily observable.
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Conclusion

In the present work, Electronic Speckle Interferometry (ESPI) has been employed to
measure the elastic co-efficients of homogeneous and non-homogeneous materials; an
extension of the technique of residual stress determination by Schmitt and Hunt'. In the
process first theoretical interferograms are created and inverted and later it has been
tested experimentally on three different kinds of materials — Plexiglas, marble and
aluminum, to determine their Young’s modulus and Poisson ratio.

During the Boussinesq analysis of Plexiglas and marble blocks, forward modelled
synthetic fringe patterns are calculated using the Boussinesq displacement equations®
for normal loading on the surface of the material. These synthetic interferograms are
inverted using Least Square Minimum error method to obtain the Young’s modulus and
Poisson ratio of the material. This virtual inversion produced results with less than 2%
of error for Young’s modulus and 0.4% for Poisson ratio. To verify the computer
precision, synthetic fringes have been directly inverted from the known phase. The
result for Young’s modulus is within 0.003% of the original value and Poisson ratio
resulted with 0% error. One significant feature that is observed during the inversion is
that the value of the Poisson ratio always resulted with less error. An error analysis has
been carried out to find the sensitivity of the parameters like x, y and z co-ordinates of
the laser sources, applied load etc. in the experiment. It is found that the cumulative
effect of the errors associated with different parameters brings the errors with the output
values towards 5% to 6%. The virtual inversion is performed successfully and the whole
method is tested experimentally with Plexiglas and marble samples.

In the experiment with Plexiglas, which applied Boussinesq’s deformation theory,
the values of Young’s modulus and Poisson ratio are calculated independently from two

interferograms created by deforming the Plexiglas surface with known force. No fringe
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processing technique was used to remove the noise. The fringe picking method resulted
in values of 3.1GPa and 0.38 for Young’s modulus and Poisson ratio respectively. The
manufacturer’s specification for this material are E=3GPa and v=0.32~0.45. The values
obtained by the standard strain gauge method are E=3GPa and v=0.38. This Plexiglas
block is homogeneous and the results matched with the respective expected values. The
reproduced fringe patterns show close similarity with the experimental one.

When this experimental test is done with a piece of non-homogeneous marble, the
result came out to be E=3GPa and v=0.25 when only three fringes on the left side of the
interferogram are considered. Considering the entire interferogram resulted even lower
values; E=1.3~1.5GPa and v=0.36~0.38. All these values are much lower than the
expected value of E=20~70GPa. This is probably due to the unevenness of the lower
surface of the sample which would tend to bend under pressure. This marble sample is
further studied in the form of a cantilever beam.

In the cantilever experiment, first forward modelled synthetic fringe patterns have
been created considering the cantilever deformation equation® under a steady load at the
free end. These fringe patterns resulted in a value of 70.4GPa in the virtual inversion
which is less than 0.6% off from the input value 70GPa. Two cantilever beams made of
aluminum and marble has been tested experimentally.

In the experiment, a cantilever beam made of aluminum is loaded at the free end
with 20gms and 30gms of weight and two interferograms are created due to the
deformation of the surface. These interferograms are inverted for Young’s modulus by
the fringe picking method and resulted in an average value of E=60.5GPa. The standard
strain gauge method resulted in a value of 60GPa for the same piece of aluminum.

The marble cantilever beam has been loaded with five different loads starting from
30gms and ending at 100gms. For each of the cases an interferogram is created and later
inverted following the same procedure of fringe picking. At lower loads of 30, 40 and
50gms the value of the Young’s modulus of the material of the cantilever came out to
be between 17.2 to 18.2GPa. Whereas for 70gms and 100gms of weights the values are
13.5 and 13.2GPa. When the experimental images are reproduced theoretically with
these values of E, the images that represent 13.2 and 13.5GPa came out to be similar to

the respective experimental ones. Which implies the Young’s modulus of the marble to
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be 13.3GPa (average value of 13.2 and 13.5GPa). But again this is not in the range of
the expected value of 20~70GPa for marble.

Therefore, for the non-homogeneous marble sample the Boussinesq analysis
resulted in a value of E=3GPa and the Cantilever method resulted in E=13.3GPa. This
discrepancy could be due to the fact that although in both cases the marble samples are
cut from the same piece, they are not measured in the same direction; i.e., during the
Boussinesq method the E was measured along z-direction whereas in the cantilever test
it was measured along y-direction. The result is, therefore, inconclusive for the marble
and further investigation is necessary.

A Few of the disadvantages of the ESPI method as observed during this work are as
follows:

e The optics has to be separated from the surroundings to reduce noise due to
vibration of the building. This requires the experiment to be done on an
optical table floated by air. This would limit the applicability of the method
in fieldwork.

e The fringe patterns are highly sensitive to temperature fluctuations mainly
due to the heat radiated from human body close to the set up. Moreover, the
experimental sample has to be warmed up for at least half an hour before
the experiment to avoid any significant movement due to heat conduction
on the surface.

e The material under investigation has to be sand blasted and smoothened to
achieve correct deformation at a specific load.

e The width and breadth of the cantilever beam is highly influential on the
result. For example a change of Imm in breadth along the length of the
beam can change the result of E by 15 to 20 percent. So the beam has to be

evenly cut and smoothened.
The advantages are:

e The inversion method is simple and straightforward. It does not require any

fringe processing.
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e The whole experiment can be done on a sample without cutting out portions

of it to fit into the universal testing machines.

e The cantilever experiment is particularly simple to implement and invert.

This ESPI technique can be utilized to determine stress discontinuity and crack
formation and propagation on materials. Further effort can be made in automating the
fringe picking method so that after the deformation the output results will be shown in

the monitor in real time.
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Appendix A

Basic Concepts

Waves and Their Superposition

The simplest kind of oscillation, which is fundamental to all kinds of wave motion, is
known as Simple Harmonic Motion (SHM). When a particle is oscillating with simple
harmonic motion, its displacement @(t) in a given direction from a fixed point at time t
is described by the following equation

D(t) = u, sin(2aft + @) (A.D)
where u, is the maximum displacement of the particle from its equilibrium position and
f is the frequency of vibration of the particle. The argument of the sine function
(2aft + ¢) is called the phase of the oscillation with initial phase ¢. The time period
7=1/f is the duration of one cycle of motion. This vibrating system is given an initial
energy which it will try to retain indefinitely if dissipative forces are not present. The

kinetic energy K of the system is given by
K= %mvz (A.2)

where v is the velocity of the body. In reality the velocity changes cyclically and so
must the kinetic energy. However, a potential energy P may be defined such that the

sum of the two remains constant. The elastic potential energy P is given as
P= %zoc2 (A.3)

where « is the spring constant and is a measure of the stiffness of the spring.

If P is defined as zero when K=Knay, then the total energy E is given by
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E=K,_, (A4)
When the vibrating particle passes through the origin, its velocity is at a maximum,
having a value of

Vo = 27U, (A.5)
giving the energy of the system as

E=2mn’f’u (A.6)
Now consider a wave being propagated along a string. If one end of the string is made
to vibrate up and down so that its motion is described by Eq.(A.1). A point adjacent to
the end of the string will be forced to oscillate in the same, but will be slightly behind
the first point in its motion. However, since the motion of points along the string is
cause by the motion of the end of the string, it is clear that energy must be supplied to
that point in order to maintain the motion. The rate at which energy passes a given point
in unit time is known as the intensity of the wave. If the medium is considered to be
made up of a series of particles of mass m and if there are N particles per unit length
then the total energy E, over one wavelength is

E, =2mNAz’ f*u,’ (A7)
Now during one cycle of the motion, an amount of energy E passes a given point so that
the amount of energy, which passes a given point in unit time, is given by

=L suNer? fu)’ (A.8)

T A

Thus the intensity of the wave is proportional to the square of its amplitude.

The principle of superposition of waves states that if two or more wavefronts are
travelling past a given point, the total amplitude of the displacement at that point is
given by the sum of the individual displacements; a system that obeys this principle is a
linear system. If the waves are polarized in the same direction, the amplitudes are added
algebraically; if the polarizations are different, then a vector addition is required.
Consider two wavefronts incident at a point given by

@, = u, sinCaft + ¢,) (A9)
D, =u, sin2afi + ¢,) (A.10)

The total amplitude after some algebraic manipulation is given by
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D, =0, +®, =24, sin(Zﬂft + 1’51—3;—2‘1) cos(ﬁ%?%-) (A.11)

Thus the resultant motion is a simple harmonic oscillation of frequency fand amplitude
u, =2u, cos(¢1 5 %, ) (A.12)

Since the intensity of the wavefronts is proportional to the square of the amplitude, the

total intensity /r given by

I, < 4u,’ cos (¢1 2¢2j (A.13)
which may be written as

I, =4I cos ("’1 > b ) (A.14)

where I, is the intensity of a single wave. Thus the intensity of the sum of the waves
may be twice the intensity of the sum of the individual intensities, may be zero or may
have any intermediate value depending on the cosine term. This effect is known as
interference.

The solution of Eq.(A.11) to give Eq.(A.12) and Eq.(A.14) for the displacement
and intensity were fairly simple since both the waves had the same amplitude u,. If,
however, the amplitudes are different, the above analysis becomes tedious. The
mathematics is simplified by representing the displacement with a complex number.
Consider the case of light beam. The complex amplitude of the light wave is described
by

D(r,t) = u, expi(2aft + §) (A.15)
where @(r,t) is known as the complex amplitude.

Since the intensity is proportional to U, , One may write

I o ®D" (A.16)
Now consider two collinear beams of light represented by complex amplitudes @; and
@, given as

O, =u, expi(2afi + ¢,) (A7)

D, =u, expi2nft + ¢,) (A.18)
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The total complex amplitude is given by

D, =u, expi2afi + @) + u, expiaft + ¢,)
This may be written as

O, =(u, expig, +u, expig,)expiafi
The intensity is then readily found from

Toc®,®," =u’+u,” +uu,lexpi(d —¢,) + exp(—i(d, — ¢,)]
Using the relationship

(expix + exp—ix) =2cosx
Eq.(A.21) can be written as

@, 0, =u’ +u,” +2uu, cos(¢, — ¢,)
Hence

I = I, + I, + 2,[I.1, cos(¢, — ¢,)

when the intensity is calculated, the time dependence of the waves disappears.
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Appendix B

Analytical Treatment of the Synthetic Fringe

Formation and Inversion

B.1 The Sensitivity Vector and Fringe Formation

In a dual-beam speckle interferometer, a coherent laser beam is split and the two rays
subsequently expanded to illuminate the surface of the object. Consider a point P on the
surface of the object. The vectors joining the point P and the sources S; and S, are r;
and r; respectively. The geometry is shown in Fig.B.1. Unit vectors n; and n; indicate
the directions from the source points to the surface point P(x,y,z). A, B, C are position

vectors of the points P, S;, and S; respectively which are given as

A=xf+yj'+zl€ B.1)
B=xi+y,)+zk (B.2)
C=x,i +,] +2,k (B.3)
Again
n=A-B
or r, =(x—x1)z°+(y—y1)j'+(z—z,)l:t B.4)

And the magnitude of r; is

5| =yGE-x ) +G-nF+Ge-z) (B.5)
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Figure-B.1:

Geometry of the fringe pattern calculation of dual-beam

interferometer.
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and similarly,
n=@E-50+@-)j+E-2Kk (B.6)

and |r2|=\/(x—x2)2+(y—y2)2+(z——zz)2 B.7)

The unit vectors n; and n; in the directions of r; and r; are given as

=0
M

n, = (c-x ) +(-p)i+E-z)k
\/(x—xl)2 +(y-y ) +(z-z)

or n, = [x——xl Jf+(y_yl J}+[ﬁjl€ (B.8)
I I Il

Similarly

n,=| 2 | X205 1 25 f
I | I I

The expression for the sensitivity vector K(x,y,z) is then calculated from the following

or

relation!
2z
K(xayaz)=(7)(“1(%)’:2)—“2(%)’52» (B9)
So that
K(x,»,2) =K, i +k,j+kk (B.10)
Where
2r
K, = 7 (nl,, —H,, )
27
&, =\ = Jin, -m,) (B.11)
27
K, = 7 (”1, M, )

The change in the speckle patterns taken immediately before and after the displacement
U(x,y,z) is quantified as a phase angle change ¢ given by’
o =K(x,y,2)-U(x,y,2) (B.12)
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The fringe pattern intensity p in terms of phase ¢ is'
olx,v,2) =1+ cos(p(x, y,2)))/ 2 (B.13)

B.2 Analytical Treatment of Fringe Pattern Inversion

The fringe order number n in terms of the sensitivity vector K(x,y,z) and the
displacement vector U(x,y,z) is given as’

n(x,y,z)= K(xsyaz)'U(an’»Z) (Bl4)
2r
Where
U(x,y,2)=Ui+U,j+Uk (B.15)

The surface displacements on isotropic elastic half-space subjected to a normal point
load [Boussinesq theory] is given in the Cartesian coordinate system as’
-F1-2v)(1+v)X
U, = 2 v2
2ZE(X°+Y7)

~F(1-2v)(1+v)Y
Uy = 2 2
2nE(X* +Y7)

(B.16)

F(1-v?)

and U.=

z nE(X? + YZ)%

where F is the normal force, E is the Young’s modulus and v is the Poisson ratio. U, U,
and U, are displacements in X, Y and Z directions respectively.
Equation (B.14) can be written as

KU, +kU,+KU,

= (B.17)

n(x, y,z)=
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Substituting Eq.(B.16) into Eq.(B.17) yields

n(x,y,z) = k"( - FX +Ky - FY (1-2v)1+v)
. 22\ 22\ X? +7?)) 27\ 22(X7% +7?) z

(B.18)
X, F (i-v?)
+ 1
2z n'(X2 +Y2)5 E
Eq.(B.18) can be written as
n(x, v, z) = A(x, ¥, z)a + B(x, ¥, z)ﬂ (B.19)
Where
k -FX K -FY
Alx,y,z)= ( = — B.20
(2:2) 272\ 222 +77)) 2 (2756)(2 +Y? )H (8.20)
B(x,y,z)= K, _———-F———l- (B.21)
27\ a(x? 412
a= _(.l__f_;zl/l(lf_‘_’) (B.22)
E
2
and S = Q-ZEQ (B.23)

Eq.(B.19) can be written in matrix form as
N=[4 Blla I (B.24)
The values of E and v can be found from Eq.(B.22) and (B.23) to be

_a-p
V=235 (B.25)

1-v?
£ B.26
F; (B.26)

Once the values of a, # are known, E and v is calculated from Eqs(B.25) and (B.26).
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Appendix C

Correction for Perspective Distortion

The images captured in the ESPI method suffers from perspective distortion mainly due
to the angle of view of the CCD (Charged Couple Display) camera, which captures the
images of the undeformed and deformed states of the surface under investigation, with
respect to the surface normal. Due to this oblique sight the inspected surface appears
deformed in the recorded image and may not fill the full frame. A spatial transform
maps the pixels of the recorded interferograms to new pixels in the output
interferogram, such that identical points of the object surface, which are imaged to
different pixels in the recorded images, are mapped to identical pixels in the output
images.

In the algorithm given below, a distorted image of an arbitrary convex quadrangle
is rectified into a rectangular image (Fig.C.1). The spatial transform is performed by a
bilinear interpolation’. Consider X(, y) be the recorded and stored perspectively distorted
interferogram with pixel coordinates (x,y). Then the corrected interference pattern is
I'(x,y) such that'

I'(x,y)=1(x",y") = Kax +by +cxy +d,ex + fy + gy + h) (C.1)
This bilinear transformation is defined by the values of the eight coefficients a through
h. By specifying the mapping of the four vertices (x,y;), (*,¥5), (x.yc) and (xzy4) of the

input quadrangle to the four vertices (xo,p), (x1,0), (x1,¥1) and (xg,y;) of the output
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rectangle, four equations are obtained

x, X, Yo %Yo 1lla
X _ X Yo 51y 1](b (C2)
X, x »n ay ljlec
X4 X, » %Xy 1]|d

After inversion of the matrix the four coefficients a, b, ¢ and d are obtained as follows

a N - Yo o —Yoll|*a
b _ 1 x, - X, X, —x ||x, C3)
c (xo-xl)(y1_yo) -1 1 -1 1 X,
d —Xy Y XV X Yo XM [ X4
The y, through y, are given by
Ya Xo Yo XYy li|e
Yo - X Yo Xy 11| f (C.4)
Ye oy xy 1l|g
Ya Xo o Xy 1]k
and the four coefficients e, £, g and h are given by
€ B4 - Yo —YoliYa
f _ 1 xl - xo x() - xl yb (C 5)
gl (x-x)u-») -1 1 -1 1 ||y
h Xy X X Vo X Vo] | Va

Thus once the coefficients of bilinear transform are defined, the transformation is

implemented by Eq.(C.1).
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(%z:Ya)
(X, 1)
(xaYa)
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Figure.C.1: Bilinear mapping during perspective correction.
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Appendix D

Determination of Young’s modulus and Poisson Ratio

Using the Strain Gauge Method

To verify the results obtained in chapters 3 and 4, it is now necessary to derive the
values of Young’s modulus and Poisson ratio of the samples using a well-accepted
standard method. Strain gauge method, which is widely used in determining materials
properties, has been used to measure the E and v values for Plexiglas and Aluminum.

A piece of Plexiglas (approximately 12cm x 2.8cm x 0.69cm) is cut from the
Plexiglas sample and is fixed in the jaws of a 20,000lbs Universal Testing Machine
(Fig.D.3). This machine is preset to apply 600ibs (272.11 kg) of load over Ssecs. The
resultant strains (both axial and transverse) are measured by a strain gauge (1/16 inch.
grid length, 90° stacked gauges, made by Micro Measurements) attached on the sample.
This strain gauge is connected to a signal conditioner (Vishay Instruments, 2100 series)
and eventually to a digital scope (Tektronix TDS410A series) that collects the data. The
Young’s modulus is measured from the slope of the stress-strain curve and the Poisson
ratio is measured from the ratio of the transverse strain to the axial strain. The results

obtained are following:

e The Young’s modulus of the Plexiglas E = 3+0.1GPa.
e The Poisson ratio of the Plexiglas is v = 0.38+.01.
e The Young’s modulus of Aluminum E = 60+2GPa.

Under applied load Plexiglas creeps very fast and eventually might show lower value of
E. To avoid this from happening, E has been calculated during the first 1sec of loading.

The stress-strain curves are shown in Fig.D.1 and Fig.D.2.
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Stress-strain curve for Plexiglas
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Figure.D.1: Stress-strain curve for Plexiglas. The slope of the curve gives the

value of Young’s modulus.
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Stress-Strain curve for cantilever beam
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Figure.D.2: Stress-strain curve for Aluminum. The slope of the curve gives the

value of Young’s modulus.

109



Appendix D. Determination of Young’s modulus and Poisson Ratio Using the Strain
Gauge Method

Figure.D.3: Experimental set up of Strain gauge method. The aluminum cantilever

beam is placed between the jaws (Arrow).
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Appendix E

Codes Used for Fringe Creation and Inversion

E.1 Codes for Fringe Formation

The analytical treatment of synthetic fringe creation and inversion is given in Appendix
B. In the following section computer programs that are written for fringe creation are

shown. All codes are written in MATLAB.

E.1.1Fringe Formation for a block of sample

% Code name: ‘makes_block_image.m’.

% Written by S. Shareef (June 2000).

%

% This program makes fringe pattern that is created by loading the sample
% by a normal force [Boussinesq method)].

% First it calculates the displacements in three directions x,y, and z due to the
% force using Boussinesq displacement equations.

% Then it calls the function ‘Speck.m’ which produces the fringe pattern.
%

% Nomenclature:

% urow and uzeta are the radial and vertical displacements in the

% cylindrical coordinates.

% u_x, u_y and u_z are the displacements in Cartesian coordinate system.
% F,E and v are the applied force, Young's modulus and Poisson ratio.

% lambda is the laser wavelength.

% All the units are in MKS system.

%

%

clear all; close all;
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%

% Define input parameters:

length =.12;

width = .087;

E = 3E9;

F =1000;

Jambda = §29E-9;

v =0.45;

%

%Source Positions s1 & s2

s1 =[-.023 .046 -.056];

s2 =[0.15 .051 -.054];

%

% Following generates the surface points

[X,Y] = meshgrid(0:0.0009:length,0:0.0009: width);
%

% Point of force application

PPx = 0.063;

PPy = 0.01;

PP1 = (size(X,2)*PPx)/length;

PP2 = (size(X,1)*PPy)/width;

%

% Calculates the radial distance from the point of force application to
% ali other surface points.

M = (X-X(1,PP1));

N = (Y-Y(PP2,1));

r=sqri{M.A2 + N.A2);

%

% Calculates displacements in three directions.
urow = {-F*(1-2*v)(1+v))./(2*pi*E.*);

uzeta = (F * (1 - vA2))./(pi*E.*r);

u_z = uzets;

u_x = (urow)."( M./r);

u_y = (urow).*{ N.Ir);

%

% Calls back the function ‘speck.m’.

% row is the fringe pattern intensity and phi is the phase.
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[row,phi} = speck(lambda,s1(1),51(2),51(3),52(1),52(2),82(3},u_x,u_y,u_z XY);
%

% Draws the fringe pattern

x = finspace(0,length,size(row,2));

y = linspace(0,width,size(row,1));

imagesc(x,y,row);colormap(gray);coiorbar;

xiabel{'Length in meters');

yiabel('Width in meters');

title('Synthetic fringe pattern’);

E.1.2 Fringe Formation for the Cantilever
The following program is similar to the previous one and uses the

cantilever displacement equation to calculate the fringe pattern.

% Code name: ‘makes_cantilever_image.m’;
% Written by S. Shareef (August 2000).
% This program makes synthetic cantilever image. It uses ‘speck.m’ function
% to create the fringes.

% All units are in MKS system.

%

clear all; close all;

%

% Define parameters

lambda = 829E-9;

F=02

b = 0.025; %Width

d = 0.006; %Thickness

E = 70E9;

L = 0.15; %Length

1= 112"0*d"3;

% Generates surface points.

[X,Y] = meshgrid(0:.0003:L,0:0.0006:b);
%

%Source positions x,y,z.
s1=[-1.91.3-4.7}/1100;
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s2=[15.51.5 -4.4]./100;

%

% Calcuiates beam deflection

deflection = ((P.*L.*XA2). {2*E*))}H{(P.*X.A3)/(B*E*));
u_z=deflection;

u_x=zeros(size(deflection)};

u_y=zeros(size{deflection));

%

% Calls function ‘speck.m’ to produce the fringe pattern.

[row phi] = speck{lambda,s1(1),s1(2),51(3),52(1),52(2),52(3),u_x,u_y,u_x.XY);
%

% Draws the fringe pattern.

x = linspace(0,L,size(row,2));

y = linspace(0,b,size(row,1));
figure(1);imagesc(x,y,row);colormap(gray);colorbar('horizontal');
axis image;

xlabel('Length in meters’);

ylabel('Width in meters’);

fitle('Synthetic fringe pattern of cantilever beam”);

E.1.3  Function ‘speck.m’

%.Code name: ‘speck.m’.

% Written by S. Shareef (May 2000).

% This function takes the deformations in three directions x,y and z
% as-input and returns the fringe intensity pattern.

%

%

function[row,phi] = speck{lambda,s1x,51y,512,52x,52y,s2z,u_x,u_y,u_z,X,Y);
st = [s1xsly s1z;

52 = [s2x 52y 522];

Z = zeros(size(X));

%

% Calculates the unit vectors.

magr1 = sqgrt (X - s1(1)).22 + (Y - $1(2)).*2 + (Z - 81(3)).%2);
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magr2 = sqrt ((X - s2(1)).22 + (Y - $2(2)).%2 + (Z - s2(3))."2);
X-s1(1
(

=

1x=(X-s1(1))/magrt;

1y = (Y - 51(2))/magrt;

n1z = (Z - s1(3))./magr1;

n2x = (X - s2(1))./magr2;

n2y = (Y - s2(2))./magr2;

02z = (Z - s2(3))./magr2;

%

% Calculates the sensitivity vectors.
kx = (2 * piflambda) * (n1x - n2x);
ky = (2* pifiambda) * (n1y - n2y);
kz = (2 * pilambda) * (n1z - n2z);
%

% Rearranges the deformations

=

ux = zeros(size(kx));

uy = zeros(size(ky));

uz = zeros(size(kz));

UX = UX + u_X;

uy =uy +uy,

uz=uz+u_z

%

% Calculates the phase and fringe intensity.
phi=kx *ux+ky .*uy +kz *uz

row = (1.+ cos{(phi)))./2;

E.2 Code for Fringe Inversion

The following section shows the computer programs that are written for fringe

inversion. All codes are written in MATLAB.

E.2.1Inversion of Fringe Pattern for Block

% Code name: ‘invert_blockimage.m’.
% Written by S.Shareef (July 2000).
%
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% This program inverts the synthetic or experimental fringe pattern.
% It employs the Least Square Minimization method.

% All units are in MKS system.

%

clear all; close all;

%

% Input parameters

length =.12;

width =.087;

F =1300;

window = 0;

lambda = 829E-8;

% Source Positions 51 & s2

51 =1[-.023 .046 -.056];

52 =10.15 .051 -.054];

%

% Loads the ‘image’ to be inverted and draws it.

load 1.v_IR_pers.mat;

xx = linspace(0,length,size(image, 2));

yy = linspace(0,width,size(image,1));
figure(1);imagesc(xx,yy,image);colormap(gray);

%

% Draw the image again.

X=image;

figure(2); imagesc(x); colormap(gray);

%

% Pick Points along the fringe maxima and minima.

f_n = input('Number of fringes for which to pick points : *);

fxy=[;

P=0; mm=0;Q=0;r=0;i=0;L=0;X=0;Y=0;X11=0;Y11=0,DD=0; D=0;f=0;99=0;hh=0;jc=0;
forn=f n:-1:1;

input(['Press Enter to pick points with fringe order ',num2str((n/2)+.5),
' & Press Enter when finished'});

%

% Choose color of fringe.

color = input('What is the color of this fringe? Insert 0 for black and 1 for white: ')
clearPQrtLXYX11Y11 DD ffgghhjemmD;
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[P,Q] = getline(2);

if color == 1;

for j = 1:size(P,1);

%

% Creates a window of size rxr around the picked point and selects the maximum value within it.
r = x{(round(QYj))-window) :(round(Q(j)}+window),((round(P(j))-window):(round(P(j}}+window)));
(.90} = max(r);

hh=max(ff);

je1=find(ff==hh);

je=round(0.5%(size(jc1,2)));

mm = gg(jc);

L(j) = round(P(j))-window + (jc-1);

DD(j) = round(Q(j))-window+(mm-1);

X11(j) =((length*L()))/size(x,2));

D(j) = width*DD(j)/size(x,1);

Y11()=D();

X=X114

Y=Y11'

ord_n = ones(length(X),1)*(n/2+.5);

figure(1);hold on; piot(X,Y,'color’, black’);

end

end

if color == 0;

forj = 1:size(P,1);

% Creates a window of size rxr around the picked point and selects the minimum value within it.
r = x{(round(Q(j))-window):{round({Q(j)) *window), ({round(P(j))-window}):(round(P(j)) +window})));
[ff.gg] = minr);

hh=min(ff);

je1=find(ff==hh);

jc=round(0.5%(size(jc1,2)));

mm = gg(jc);

L(j) = (round(P(j))-window) + (jc-1);

DD{j) = (round(Q(j))-window) +(mm-1);

X11() = ((length1*L{j))/size(x,2));

D(j) = width*DD(j)/size(x,1);

Y11() = D();

X=X11

117



Appendix E. Computer Programs Used for Fringe Creation and Inversion

Y =Y11,
ord_n = ones(length(X),1)*(n/2+.5);
figure(1);hold on; plot(X,Y,'color','white');
end
end
%
% Wirites the coordinates of the picked points and the fringe orders in a matrix.
f xy={f xyord_n XY},
end
%
% Calculates the sensitivity vectors.
X1=f_xy(;,2);
Y1i=f_xy(:,3);
Z1=zeros(size(X1));
magri = sqrt {(X1 - s1(1)).2 + (Y1 - s1(2)).2 + {21 - 51(3)).%2);
magr2 = sqrt {(X1 - s2(1)).A2 + (Y1 - s2(2)).%2 + (21 - 52(3)).*2);
nix = (X1 - s1(1))./magr1;
nty = (Y1 - s1(2))./magr1;
n1z = ({21 - s1(3)))./magrt;
n2x = (X1 - s2(1))
n2y = (Y1 - s2(2))./magr2;
n2z = ((Z1 - s2(3)))./magr2;
kx = (2 * piflambda) * (n1x - n2x};
=(2* piflambda) * (n1y - n2y);
kz = (2 * pilambda) * (n1z - n2z);
%
% Input coordinates of force application points.
XP1=0.083;
YP1=0.01;
MM = (X1-XP1);
NN = (Y1-YP1);
RR = sqri{MM.A2 + NN.A2);
%
% Calculated the matrix G to be used in LSM.
A1 = (-F*MM)./(2*pi*RR.A2);
A2 = (-F*NN).J(2'pi*RR.*2);
A3 =F./(pI"RR);

Jmagr2;
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G11 = (kw/(2*pi)).*A1;

G22 = (ky/(2*pi)).*A2,

G2 = (kz/(2*pi)).*A3;

G1=G11+G22;

G=[G1G2;

%

%

% Uses the guessed fringe order in LSM.
n_0=F_xy(;,1);

n_1 = input{'What is your guessed N order {integer) : );
nn=(n_1:-1-n_1);

le_and_n =};

%

% Least Square Minimization (LSM).

for i=1:size(nn,2);

n_01=n_0-n_0(1)*+nn(i);

m=inv(G*G)*G"n_01;

le=sum{abs(n_01-G*m).A2);

le_and_n=[le_and_n;le];

end

%

% Plots the Least square errors vs Assigned fringe order.
figure(3);

plot(nn,le_and_n)

%

% Finds the fringe order for which the least square error is minimum.
find_min11 = min{le_and_n);

find_min1 = find{le_and_n == find_min11);

find_min = find_min1(1);
n_01=n_01-n_01(1)+nn(find_min});

% Calculates the values of Young's modulus and Poisson ratio.
m1 = inv(G*G)*G™n_01;

fe = sum(abs(n_01-G*'m1).A2)

nu = abs((m1(2,1)-m1{1, H)A2*m1(2,1)-m1{1,1)})

E = abs((1-nut2)/m1(2,1))

%

%
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% Shows the total number of picked point.
whos X1

E.2.1Inversion of Cantilever Fringe Pattern

This program is similar to the previous one except that it inverts
cantilever fringe patterns. It employs the deflection equation of

cantilever under load.

% Code name: ‘invert_cantiimage.m’.

% Wiitten by S. Shareef (July 2001).

% This program inverts the cantilever image for Young's modulus.
% All the units used are in MKS system.

%

%

clear all; close all;

% input parameters

window = 0;

length =.122;

b =.025; % width;

lambda = 829E-9;

load = 0.2,

d = 0.006; % depth;

%

%Source Positions 51 & s2

s1=1[-.019 0.013 -0.047};

s2 =[0.155 0.015 -0.044);

%

% Loads the ‘image’ to be inverted and draws it.
load('20gm2_pers.mat’);

xx = finspace(0,length, size(x,2));

yy = linspace(0,b,size(x,1));
figure(1);imagesc(xx,yy,image);colormap(gray);axis image;
%

% Draw the image again

X = image;

figure(2); imagesc(x); colormap(gray); axis image;
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% Pick Points
%
f_n = input('Number of fringes (includes black & white ) for which to pick points : *);

fxy=[}

=0; mm=0,Q=0;r=0;{=0;L=0;X=0;Y=0;X11=0;Y11=0;DD=0;D=0;{f=0;gg=0;hh=0;jc=0;
forn=f_n-1:1;
input(['Press Enter to pick points with fringe order ',num2str((n/2)+.5), ' & Press Enter when
finish']);

color = input{"'Whats the color of this fringe? Insert 0 for black and 1 for white: ')
clear PQrtL XY X11 Y11 DD ffgg hh jcmm D;
[P,Q] = getline(2);

if color == 1;

for j = 1:size(P,1);

r = x({round{Q(j)}-window): (round(Q(j))+window),{(round(P(j))-window):(round(P(j)\*window)));
[ff.gg] = max(r);

fhh,jc] = max(ff);

mm = gg(jc);

L(j) = round(P(j)}-window + (jc-1);

DD(j) = round{Qyj))-window+({mm-1);
X11(j) =((length1*L(j))/size(x,2)};

D(j) = width*DD(j)/size(x,1);

Y11()=DG);

X=x11"

Y=Y11,

ord_n = ones{length(X),1)*(n/2+.5);
figure(1);hold on; plot(X,Y,'color','black’);
end

end

if color == 0;

for j = 1:size(P,1);

r = x{(round(Q(j))-window):(round(Q(j))+window),((round(P(j))-window):(round(P(j)) *windowy)));
[ff.gg] = min(r);

[hh,jc] = min(ff);

mm = gg(jc);

L(j) = round(P(j))-window + (jc-1);
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DDY(j) = round(Q(j))-window+{mm-1);
X11(j) =({length1*L(j) )/size(x,2));

D(j) = width*DD(j)/size(x,1);

Y11()=DG);

X=X11',

Y=Y11,

ord_n = ones(length(X), 1)*(n/2+.5);
figure(1);hold on; plot(X,Y, 'color', white');
end

end

f_xy=[f_xy;ord_n XY];
end
%
X1=f (., 2);
Yi=f_xy(;,3);
Z1=zeros(size(X1));
%
%Calculates sensitivity vector kz
%
magr1 = sart (X1 - s1(1)).22 + (Y1 - s1(2)).22 + (Z1 - $1(3)).*2);
magr2 = sqrt (X1 - 82(1)).A2 + (Y1 - $2(2)).22 + (Z1 - $2(3)).%2);
niz = (Z1 - s1(3))./magrt;
n2z = (21 - s2(3))./magr2;
kz = ({2*piylambda).*{n1z - n2z);
% Calculates matrix G.
I=(b*d"3)/12;
n_0=f_xy(:,1);
cant_l=length;
n_1=input{'What is your guessed N order (integer) : ');
nn=(n_1:-1:-n_1);
G=(load/(4*pi*))*kz.*({cant_I.*X1.42)-(X1.43/3));
le_and_n=[);
- % Minimization using LSM
%
for i=1:size(nn,2);
n_01=n_0-n_0(1)+nn(i);
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m=inv(G*G)*G*n_01;
le=sum(abs(n_01-G.*m).A2);
le_and_n=[le_and_n;le];
end
%
% Plots Least square etror vs Assigned fringe order.
figure(3);
plot(nn,le_and_n)
%
% Finds the fringe order value for the minimum Least square error.
find_min11 = min(le_and_n);
find_min1 = find(le_and_n == find_min11);
find_min = find_min1(1);
n_01 =n_01-n_01(1)+nn(find_min);
%
% Uses the correct fringe order value to determine Young's modulus.
mi=inv(G*G)*G"n_01;
le=sum({abs(n_01-G*m1).2)
=abs(1/m1)
%
% Total number of picked points.
whos X1
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